

Lecture Notes in Computer Science 7611
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA

Marcos K. Aguilera (Ed.)

Distributed
Computing
26th International Symposium, DISC 2012
Salvador, Brazil, October 16-18, 2012
Proceedings

13

Volume Editor

Marcos K. Aguilera
Microsoft Corporation
Building SVC6, 1065 La Avenida
Mountain View, CA 94043, USA
E-mail: marcos_aguilera_msrsvc@live.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-33650-8 e-ISBN 978-3-642-33651-5
DOI 10.1007/978-3-642-33651-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012947417

CR Subject Classification (1998): C.2.4, C.2, H.4, D.2, H.3, F.2, I.2.11

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

DISC is the International Symposium on Distributed Computing, an interna-
tional forum on the theory, design, analysis, implementation, and application of
distributed systems and networks. DISC is organized in cooperation with the
European Association for Theoretical Computer Science (EATCS). This vol-
ume contains the papers presented at DISC 2012, which was held during 16–18
October 2012 in Salvador, Brazil.

This year, the symposium received 112 regular paper submissions, of which
27 were selected for regular presentations at the symposium. Each regular pre-
sentation was accompanied by a paper of up to 15 pages in this volume. The
symposium also received 7 brief announcement submissions. Among these sub-
missions and the regular paper submissions, 24 submissions were selected to ap-
pear as brief announcements. Each brief announcement reflected ongoing work
or recent results, and was accompanied by a two-page abstract in this volume.
It is expected that these brief announcements will appear as full papers in other
conferences or journals.

Submissions were evaluated in two phases. In the first phase, every submission
was evaluated by three members of the program committee. Submissions deemed
promising were further examined in the second phase by at least two additional
program committee members. As a result of this two-phase review process, every
submission was evaluated by at least three program committee members, while
every submission accepted for a regular presentation was evaluated by at least
five program committee members. Program committee members were assisted by
around 122 external reviewers. After the reviews were completed, the program
committee engaged in email discussions and made tentative decisions for some
papers. The program committee later held a phone meeting on 28 July 2012 to
discuss the borderline papers and finalize all decisions.

Revised and expanded versions of several accepted papers will be considered
for publication in a special issue of the Distributed Computing journal.

The Best Paper Award of DISC 2012 was presented to Mika Göös and Jukka
Suomela for the paper titled “No Sublogarithmic-Time Approximation Scheme
for Bipartite Vertex Cover”.

The Best Student Paper Award of DISC 2012 was presented to Boris Koren-
feld and Adam Morrison for the paper titled “CBTree: A Practical Concurrent
Self-Adjusting Search Tree”, which was co-authored with Yehuda Afek, Haim
Kaplan, and Robert E. Tarjan.

The symposium featured two keynote presentations. The first one was given
by Yehuda Afek from Tel-Aviv University, and was titled “Launching Academic
Ideas into the Real World”. The second keynote presentation was given by Simon
Peyton-Jones from Microsoft Research, and was titled “Towards Haskell in the
Cloud”.

VI Preface

In addition, the symposium included four tutorials. The first tutorial, presented
by Elias P. Duarte Jr., was titled “System-Level Diagnosis: A Stroll through 45
Years of Research on Diagnosable Systems”. The second tutorial, presented by
Michel Raynal, was titled “Implementing Concurrent Objects in Multiprocessor
Machines”. The third tutorial, presented by Nicola Santoro, was titled“An Intro-
duction to Distributed Computing by Mobile Entities: Agents, Robots, Sensors”.
The fourth tutorial, presented by Paulo Veŕıssimo, was titled “Beyond the Glam-
our of Byzantine Fault Tolerance: OR Why Resisting Intrusions Means More Than
BFT”.

Two workshops were co-located with the symposium and were held on 19
October 2012. The Workshop on Advances in Distributed Graph Algorithms
(ADGA) was organized by Amos Korman. DISC’s Social Network Workshop
(DISC’s SON) was organized by Anne-Marie Kermarrec and Alessandro Mei.

DISC 2012 acknowledges the use of the HotCRP system for handling sub-
missions and managing the review process.

October 2012 Marcos K. Aguilera

Symposium Organization

DISC, the International Symposium on Distributed Computing, is an annual
forum for the presentation of research on all aspects of distributed computing.
It is organized in cooperation with the European Association for Theoretical
Computer Science (EATCS). The symposium was established in 1985 as a bi-
ennial International Workshop on Distributed Algorithms on Graphs (WDAG).
Its scope was soon extended to cover all aspects of distributed algorithms, and
WDAG came to stand for International Workshop on Distributed Algorithms,
becoming an annual symposium in 1989. In 1998, WDAG was renamed to DISC
(International Symposium on Distributed Computing) to reflect the expansion
of its coverage to all aspects of distributed computing, a field that has featured
rapid and exciting developments.

Program Committee Chair

Marcos K. Aguilera Microsoft Research Silicon Valley, USA

Program Committee

Lorenzo Alvisi University of Texas at Austin, USA
James Aspnes Yale University, USA
Hagit Attiya Technion, Israel
Shlomi Dolev Ben-Gurion University of the Negev, Israel
Faith Ellen University of Toronto, Canada
Yuval Emek ETH Zurich, Switzerland
Rui Fan Nanyang Technological University, Singapore
Paola Flocchini University of Ottawa, Canada
Felix Freiling FAU, Germany
Cyril Gavoille Université de Bordeaux, France
Seth Gilbert National University of Singapore, Singapore
Fab́ıola Greve Universidade Federal da Bahia, Brazil
Flavio Junqueira Yahoo! Research, Spain
Petr Kuznetsov TU Berlin/T Labs, Germany
Christoph Lenzen Weizmann Institute, Israel
Toshimitsu Masuzawa Osaka University, Japan
Boaz Patt-Shamir Tel Aviv University, Israel
Andrzej Pelc Université du Québec en Outaouais, Canada
Michel Raynal IRISA, France
Eric Ruppert York University, Canada
André Schiper EPFL, Switzerland
Nir Shavit MIT, USA and TAU, Israel

VIII Symposium Organization

Neeraj Suri TU Darmstadt, Germany
Philippas Tsigas Chalmers University, Sweden
Jennifer Welch Texas A&M University, USA
Shmuel Zaks Technion, Israel
Piotr Zieliński Google, USA

Steering Committee

Marcos K. Aguilera Microsoft Research Silicon Valley, USA
Shlomi Dolev Ben-Gurion University of the Negev, Israel
Antonio Fernández Anta Institute IMDEA Networks, Spain
Chryssis Georgiou University of Cyprus, Cyprus
Nancy Lynch MIT, USA
David Peleg Weizmann Institute, Israel
Sergio Rajsbaum (chair) UNAM, Mexico

Local Organization

Raimundo Macêdo (Chair,
Tutorial Chair) Universidade Federal da Bahia, Brazil

Aline Andrade Universidade Federal da Bahia, Brazil
Flávio Assis Universidade Federal da Bahia, Brazil
Marcos Barreto Universidade Federal da Bahia, Brazil
Sérgio Gorender Universidade Federal da Bahia, Brazil

External Reviewers

Ittai Abraham
Beley Alexey
Dan Alistarh
Miguel Angel Mosteiro
Luciana Arantes
Sima Barak
Leonid Barenboim
Joffroy Beauquier
Hrishikesh B. Acharya
Martin Biely
Lelia Blin
Max Blin
Peter Bokor
François Bonnet
Zohir Bouzid
Armando Castañeda
Arnaud Casteigts
Keren Censor-Hillel

Bapi Chatterjee
Ioannis Chatzigiannakis
Wei Chen
Viacheslav Chernoy
Bogdan Chlebus
Gregory Chockler
Hyun Chul Chung
Allen Clement
Alejandro Cornejo
Shantanu Das
Carole Delporte-Gallet
Benjamin Doerr
Danny Dolev
Dana Drachsler
Lúcia Drummond
Ali Ebnenasir
Raphael Eidenbenz
Panagiota Fatourou

Hugues Fauconnier
Hillit Fisch
Mateo Frigo
Eli Gafni
Leszek Gasieniec
Georgios Georgiadis
Anders Gidenstam
Maria Potop-Butucaru
Vincent Gramoli
Rachid Guerraoui
Sandeep Hans
Danny Hendler
Maurice Herlihy
Ted Herman
Stephan Holzer
Damien Imbs
Taisuke Izumi
Tomoko Izumi

Symposium Organization IX

Marek Janicki
Colette Johnen
Tomasz Jurdzinski
Hirotsugu Kakugawa
Erez Kantor
Barbara Keller
Eliran Kenan
Amir Kimchi
Ralf Klasing
Guy Korland
Eleftherios Kosmas
Darek Kowalski
Evangelos Kranakis
Milind Kulkarni
Michael Kuperstein
Edya Ladan Mozes
Tobias Langner
Victor Luchangco
Matthias Majuntke
Alex Matveev
Alessia Milani
Avery Miller
Zarko Milosevic

Pradipta Mitra
Sébastien Monnet
Farnaz Moradi
Angelia Nedich
Dang Nhan Nguyen
Ioannis Nikolakopoulos
Fukuhito Ooshita
Rotem Oshman
Oren Othnay
Victor Pankratius
Ami Paz
David Peleg
Lucia Penso
Haim Peremuter
Franck Petit
Darko Petrovic
Laurence Pilard
Giuseppe Prencipe
Rami Puzis
Sergio Rajsbaum
Thomas Ropars
Gianluca Rossi
Jared Saia

Nuno Santos
Stav Sapir
Christian Scheideler
Elad Schiller
Stefan Schmid
Jochen Seidel
Marco Serafini
Hakan Sundell
Jukka Suomela
Shachar Timnat
Ruben Titos-Gil
Sébastien Tixeuil
Lewis Tseng
Nir Tzachar
Nitin Vaidya
David Wilson
Philipp Woelfel
Edmund Wong
Li Ximing
Amos Zamir
Akka Zemmari
Jin Zhang

X Symposium Organization

Sponsoring Organizations

CAPES

European Association for Theoretical
Computer Science

LaSiD at Universidade Federal da Bahia

Microsoft Research

Sociedade Brasileira de Computação

Table of Contents

Shared Memory I

CBTree: A Practical Concurrent Self-Adjusting Search Tree 1
Yehuda Afek, Haim Kaplan, Boris Korenfeld, Adam Morrison, and
Robert E. Tarjan

Efficient Fetch-and-Increment . 16
Faith Ellen, Vijaya Ramachandran, and Philipp Woelfel

Show No Weakness: Sequentially Consistent Specifications of TSO
Libraries . 31

Alexey Gotsman, Madanlal Musuvathi, and Hongseok Yang

Mobile Agents and Overlay Networks

Collecting Information by Power-Aware Mobile Agents 46
Julian Anaya, Jérémie Chalopin, Jurek Czyzowicz, Arnaud Labourel,
Andrzej Pelc, and Yann Vaxès

Memory Lower Bounds for Randomized Collaborative Search and
Implications for Biology . 61

Ofer Feinerman and Amos Korman

A Generalized Algorithm for Publish/Subscribe Overlay Design and Its
Fast Implementation . 76

Chen Chen, Roman Vitenberg, and Hans-Arno Jacobsen

Wireless and Multiple Access Channel Networks

Bounded-Contention Coding for Wireless Networks in the High SNR
Regime . 91

Keren Censor-Hillel, Bernhard Haeupler, Nancy Lynch, and
Muriel Médard

Distributed Backbone Structure for Algorithms in the SINR Model of
Wireless Networks . 106

Tomasz Jurdzinski and Dariusz R. Kowalski

Distributed Online and Stochastic Queuing on a Multiple Access
Channel . 121

Marcin Bienkowski, Tomasz Jurdzinski,
Miroslaw Korzeniowski, and Dariusz R. Kowalski

XII Table of Contents

Dynamic Networks

Fast Distributed Computation in Dynamic Networks via Random
Walks . 136

Atish Das Sarma, Anisur Rahaman Molla, and Gopal Pandurangan

Dense Subgraphs on Dynamic Networks . 151
Atish Das Sarma, Ashwin Lall, Danupon Nanongkai, and
Amitabh Trehan

Lower Bounds on Information Dissemination in Dynamic Networks 166
Bernhard Haeupler and Fabian Kuhn

Distributed Graph Algorithms

No Sublogarithmic-Time Approximation Scheme for Bipartite Vertex
Cover . 181

Mika Göös and Jukka Suomela

“Tri, Tri Again”: Finding Triangles and Small Subgraphs in a
Distributed Setting (Extended Abstract) . 195

Danny Dolev, Christoph Lenzen, and Shir Peled

Distributed 2-Approximation Algorithm for the Semi-matching
Problem . 210

Andrzej Czygrinow, Michal Hanćkowiak, Edyta Szymańska, and
Wojciech Wawrzyniak

Wireless and Loosely Connected Networks

Bounds on Contention Management in Radio Networks 223
Mohsen Ghaffari, Bernhard Haeupler, Nancy Lynch, and
Calvin Newport

Efficient Symmetry Breaking in Multi-Channel Radio Networks 238
Sebastian Daum, Fabian Kuhn, and Calvin Newport

On Byzantine Broadcast in Loosely Connected Networks 253
Alexandre Maurer and Sébastien Tixeuil

Shared Memory II

RMR-Efficient Randomized Abortable Mutual Exclusion
(Extended Abstract) . 267

Abhijeet Pareek and Philipp Woelfel

Table of Contents XIII

Abortable Reader-Writer Locks Are No More Complex Than Abortable
Mutex Locks . 282

Prasad Jayanti and Zhiyu Liu

Pessimistic Software Lock-Elision . 297
Yehuda Afek, Alexander Matveev, and Nir Shavit

Robots

Asynchronous Pattern Formation by Anonymous Oblivious Mobile
Robots . 312

Nao Fujinaga, Yukiko Yamauchi, Shuji Kijima, and
Masafumi Yamashita

How to Gather Asynchronous Oblivious Robots on Anonymous
Rings . 326

Gianlorenzo D’Angelo, Gabriele Di Stefano, and Alfredo Navarra

Position Discovery for a System of Bouncing Robots 341
Jurek Czyzowicz, Leszek G ↪asieniec, Adrian Kosowski,
Evangelos Kranakis, Oscar Morales Ponce, and Eduardo Pacheco

Lower Bounds and Separation

Counting-Based Impossibility Proofs for Renaming and Set
Agreement . 356

Hagit Attiya and Ami Paz

Randomized Distributed Decision . 371
Pierre Fraigniaud, Amos Korman, Merav Parter, and David Peleg

The Strong At-Most-Once Problem . 386
Sotirios Kentros, Chadi Kari, and Aggelos Kiayias

Brief Announcements I

Brief Announcement: Wait-Free Gathering of Mobile Robots 401
Zohir Bouzid, Shantanu Das, and Sébastien Tixeuil

Brief Announcement: Distributed Exclusive and Perpetual Tree
Searching . 403

Lélia Blin, Janna Burman, and Nicolas Nisse

Brief Announcement: Reaching Approximate Byzantine Consensus in
Partially-Connected Mobile Networks . 405

Chuanyou Li, Michel Hurfin, and Yun Wang

XIV Table of Contents

Brief Announcement: Distributed Algorithms for Maximum Link
Scheduling in the Physical Interference Model . 407

Guanhong Pei and Anil Kumar S. Vullikanti

Brief Announcement: A Fast Distributed Approximation Algorithm for
Minimum Spanning Trees in the SINR Model . 409

Maleq Khan, Gopal Pandurangan, Guanhong Pei, and
Anil Kumar S. Vullikanti

Brief Announcement: Deterministic Protocol for the Membership
Problem in Beeping Channels . 411

Bojun Huang

Brief Announcement: Probabilistic Stabilization under Probabilistic
Schedulers . 413

Yukiko Yamauchi, Sébastien Tixeuil, Shuji Kijima, and
Masafumi Yamashita

Brief Announcement: An Analysis Framework for Distributed
Hierarchical Directories . 415

Gokarna Sharma and Costas Busch

Brief Announcement: Flooding in Dynamic Graphs with Arbitrary
Degree Sequence . 417

Hervé Baumann, Pierluigi Crescenzi, and Pierre Fraigniaud

Brief Announcement: Node Sampling Using Centrifugal Random
Walks . 419

Andrés Sevilla, Alberto Mozo, and Antonio Fernández Anta

Brief Announcement: Concurrent Wait-Free Red-Black Trees 421
Aravind Natarajan, Lee Savoie, and Neeraj Mittal

Brief Announcement: A Contention-Friendly, Non-blocking Skip List . . . 423
Tyler Crain, Vincent Gramoli, and Michel Raynal

Brief Announcements II

Brief Announcement: Consensus and Efficient Passive Replication 425
Flavio Junqueira and Marco Serafini

Brief Announcement: Anonymity, Failures, Detectors and Consensus 427
Zohir Bouzid and Corentin Travers

Brief Announcement: Do VNet Embeddings Leak Information about
ISP Topology? . 429

Yvonne-Anne Pignolet, Stefan Schmid, and Gilles Tredan

Table of Contents XV

Brief Announcement: Efficient Private Distributed Computation on
Unbounded Input Streams . 431

Shlomi Dolev, Juan Garay, Niv Gilboa, Vladimir Kolesnikov, and
Yelena Yuditsky

Brief Announcement: Fast Travellers: Infrastructure-Independent
Deadlock Resolution in Resource-restricted Distributed Systems 433

Sebastian Ertel, Christof Fetzer, and Michael J. Beckerle

Brief Announcement: Hashed Predecessor Patricia Trie - A Data
Structure for Efficient Predecessor Queries in Peer-to-Peer Systems 435

Sebastian Kniesburges and Christian Scheideler

Brief Announcement: Naming and Counting in Anonymous Unknown
Dynamic Networks . 437

Othon Michail, Ioannis Chatzigiannakis, and Paul G. Spirakis

Brief Announcement: SplayNets: Towards Self-Adjusting Distributed
Data Structures . 439

Stefan Schmid, Chen Avin, Christian Scheideler,
Bernhard Haeupler, and Zvi Lotker

Brief Announcement: Semantics of Eventually Consistent Replicated
Sets . 441

Annette Bieniusa, Marek Zawirski, Nuno Preguiça, Marc Shapiro,
Carlos Baquero, Valter Balegas, and Sérgio Duarte

Brief Announcement: Decoupled and Consensus-Free Reconfiguration
for Fault-Tolerant Storage . 443

Eduardo Alchieri, Alysson Bessani, Fab́ıola Greve, and Joni Fraga

Brief Announcement: Atomic Consistency and Partition Tolerance in
Scalable Key-Value Stores . 445

Cosmin Arad, Tallat M. Shafaat, and Seif Haridi

Brief Announcement: Weighted Partial Message Matching for Implicit
Multicast Systems . 447

William Culhane, K.R. Jayaram, and Patrick Eugster

Author Index . 449

CBTree: A Practical Concurrent Self-Adjusting

Search Tree

Yehuda Afek1, Haim Kaplan1, Boris Korenfeld1,
Adam Morrison1, and Robert E. Tarjan2

1 Blavatnik School of Computer Science, Tel Aviv University
2 Princeton University and HP Labs

Abstract. We present the CBTree, a new counting-based self-adjusting
binary search tree that, like splay trees, moves more frequently accessed
nodes closer to the root. After m operations on n items, c of which access

some item v, an operation on v traverses a path of length O(log
m

c
) while

performing few if any rotations. In contrast to the traditional self-adjusting
splay tree in which each accessed item is moved to the root through a se-
quence of tree rotations, the CBTree performs rotations infrequently (an
amortized subconstant o(1) per operation ifm � n), mostly at the bottom
of the tree. As a result, the CBTree scales with the amount of concurrency.
We adapt the CBTree to a multicore setting and show experimentally that
it improves performance compared to existing concurrent search trees on
non-uniform access sequences derived from real workloads.

1 Introduction

The shift towards multicore processors raises the importance of optimizing con-
current data structures for workloads that arise in practice. Such workloads are
often non-uniform, with some popular objects accessed more frequently than
others; this has been consistently observed in measurement studies [1,2,3,4].
Therefore, in this paper we develop a concurrent data structure that completes
operations on popular items faster than on ones accessed infrequently, leading
to increased overall performance in practice.

We focus on the binary search tree (BST), a fundamental data structure for
maintaining ordered sets. It supports successor and range queries in addition to
the standard insert, lookup and delete operations.

To the best of our knowledge, no existing concurrent BST is self-adjusting,
adapting its structure to the access pattern to provide faster accesses to popular
items. Most concurrent algorithms (e.g., [5,6]) are based on sequential BSTs that
restructure the tree to keep its height logarithmic in its size. The restructuring
rules of these search trees do not prioritize popular items and therefore do not
provide optimal performance for skewed and changing usage patterns.

Unlike these BSTs, sequential self-adjusting trees do not lend themselves to an
efficient concurrent implementation. A natural candidate would be Sleator and
Tarjan’s seminal splay tree [7], which moves each accessed node to the root us-
ing a sequence of rotations called splaying. The amortized access time of a splay

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 1–15, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 Y. Afek et al.

tree for an item v which is accessed c(v) times in a sequence of m operations is

O(log
m

c(v)
), asymptotically matching the information-theoretic optimum [8].

Unfortunately, splaying creates a major scalability problem in a concurrent
setting. Every operation moves the accessed item to the root, turning the root
into a hot spot, making the algorithm non-scalable. We discuss the limitations
of some other sequential self-adjusting BSTs in Sect. 2. The bottom line is that
no existing algorithm adjusts the tree to the access pattern in practice while still
admitting a scalable concurrent implementation.

In this paper,we present a counting-based tree, CBTree for short, a self-adjusting
BST that scales with the amount of concurrency, and has performance guarantees
similar to the splay tree. The CBTree maintains a weight for each subtree S, equal
to the total number of accesses to items in S. The CBTree operations use rotations
in a way similar to splay trees, but rather than performing them at each node along
the access path, decisions of where to rotate are based on the weights. The CBTree
does rotations to guarantee that theweights along the access pathdecrease geomet-
rically, thus yielding a path of logarithmic length. Specifically, afterm operations,

c of which access item v, an operation on v takes time O(1 + log
m

c
).

The CBTree’s crucial performance property is that it performs only a sub-
constant o(1) amortized number of rotations per operation, so most CBTree
operations perform few if any rotations. This allows the CBTree to scale with
the amount of concurrency by avoiding the rotation-related synchronization bot-
tlenecks that the splay tree experiences. Thus the performance gain by eliminat-
ing rotations using the counters outweighs losing the splay tree’s feature of not
storing book-keeping data in the nodes.

The CBTree replaces most of the rotations splaying does with counter updates,
which are local and do not change the structure of the tree. To translate the
CBTree’s theoretical properties into good performance in practice, we minimize
the synchronization costs associated with the counters. First, we maintain the
counters using plain reads and writes, without locking, accepting an occasional
lost update due to a race condition. We show experimentally that the CBTree
is robust to inaccuracies due to data races on these counters.

Yet even plain counter updates are overhead compared to the read-only traver-
sals of traditional balancedBSTs.Moreover,we observe that updates of concurrent
counters can limit scalability on a multicore architecture where writes occur in a
core’s private cache (as in Intel’s Xeon E7) instead of in a shared lower-level cache
(as in Sun’s UltraSPARC T2). We thus develop a single adjuster optimization in
which an adjuster thread performs the self-adjusting as dictated by its ownaccesses
andother threadsdonotupdate counters.Whenall the threads’ accesses come from
the same workload (same distribution), the adjuster’s operations are representa-
tive of all threads, so the tree structure is good and performance improves, as most
threadsperformread-only traversalswithout causing serializationoncounter cache
lines. If the threads have different access patterns, the resulting structurewill prob-
ably be poor no matter what, since different threads have different popular items.

CBTree: A Practical Concurrent Self-Adjusting Search Tree 3

In addition, we describe how to exponentially decay the CBTree’s counters
over time so that it responds faster to a change in the access pattern.

One can implement the CBTree easily on top of any concurrent code for
doing rotations atomically, because the CBTree restructures itself by rotations
as does any other BST. Our implementation uses Bronson et al.’s optimistic BST
concurrency control technique [5]. We compare our CBTree implementation with
other sequential and concurrent BSTs using real workloads, and show that the
CBTree provides short access paths and excellent throughput.

2 Related Work

Treaps. A treap [9] is a BST satisfying the heap property: each node v also
has a priority which is maximal in its subtree. An access to node v generates a
random number r which replaces v’s priority if it is greater than it, after which
v is rotated up the treap until the heap property is restored. Treaps provide
probabilistic bounds similar to those of the CBTree: node v is at expected depth

O(log
m

c(v)
) and accessing it incurs an expected O(1) rotations [9]. Since the

treap’s rotations are driven by local decisions it is suitable for a concurrent
implementation. However, we find that in practice nodes’ depths in the treap
vary from the expected bound. Consequentially, CBTrees (and splay trees) have
better path length than treaps (Sect. 5).

Binary Search Trees of Bounded Balance. Nievergelt and Reingold [10] described
how to keep a search tree balanced by doing rotations based on subtree sizes.
Their goal was to maintain O(log n) height; they did not consider making more
popular items faster to access.

Biased Search Trees. Several works in the sequential domain consider biased
search trees where an item is a priori associated with a weight representing its
access frequency. Bent, Sleator and Tarjan discuss these variants extensively [11].
Biased trees allow the item weight to be changed using a reweight operation,
and can therefore be adapted to our dynamic setting by following each access
with a reweight to increment the accessed item’s weight. However, most biased
tree algorithms do not easily admit an efficient implementation. In the biased
trees of [11,12], for example, every operation is implemented using global tree
splits and joins, and items are only stored in the leaves. The CBTree’s rotations
are the same as those in Baer’s weight-balanced trees [13], but the CBTree uses
different rules to decide when to apply rotations. Our analysis of CBTrees is
based on the analysis of splaying whereas Baer did not provide a theoretical
analysis. Baer also did not consider concurrency.

Concurrent Ordered Map Algorithms. Most existing concurrent BSTs are bal-
anced and rely on locking, e.g. [5,6]. Ellen et al. proposed a nonblocking concurrent
BST [14]. Their tree is not balanced, and their focus was obtaining a lock-free BST.
Crain et al.’s recent transaction-friendly BST [15] is a balanced tree in which a
dedicated thread continuously scans the tree looking for balancing rule violations

4 Y. Afek et al.

that it then corrects. Unlike the CBTree’s adjuster, this thread does not perform
other BST operations. Ordered sets and maps can also be implemented using skip
lists [16], which are also not self-adjusting.

3 The CBTree and Its Analysis

3.1 Splaying Analysis Background

x

A B

C

y

y

A

D

z

x

B C

z

D

x

A B

y

z

C D

y

A B

x

z

C D

double
rotation

single
rotation

Φ Φ'

Φ Φ'

Fig. 1. Semi-splaying restructuring: cur-
rent node is x, and the next two nodes on
the path to the root are y and z. The case
when y is a right child is symmetric.

The CBTree’s design draws from the
analysis of semi-splaying, a variant
of splaying [7]. To (bottom-up) semi-
splay an item v known to be in the
tree, an operation first locates v in the
tree in the usual way. It then ascends
from v towards the root, restructuring
the tree using rotations as it goes. At
each step, the operation examines the
next two nodes along the path to the
root and decides which rotation(s) to
perform according to the structure of
the path, as depicted in Fig. 1. Follow-
ing the rotation(s) it continues from
the node which replaces the current
node’s grandparent in the tree (in Fig.
1, this is node y after a single rotation
and node x after a double rotation). If only one node remains on the path to the
root then the final edge on the path is rotated.

To analyze the amortized performance of splaying and semi-splaying Sleator
and Tarjan use the potential method [17]. The potential of a splay tree is defined
based on an arbitrary but fixed positive weight which is assigned to each item.1

The splay tree algorithm does not maintain these weights; they are defined for
the analysis only.

Let c(v) be the weight assigned to node v, and let W (v) be the total weight of
the nodes currently in the subtree rooted at v. Let r(v) = lgW (v) be the rank
of v.2 The potential of a splay tree is Φ =

∑
r(v) over all nodes v in the tree.

Sleator and Tarjan’s analysis of semi-splaying relies on the following bound for
the potential change caused by a rotation [7]:

Lemma 1. Let Φ and Φ′ be the potentials of a splay tree before and after a
semi-splay step at node x, respectively. Let z be the grandparent of x before the
semi-splay step (as in Fig. 1), and let ΔΦ = Φ′ − Φ. Then

2 + ΔΦ ≤ 2(r(z)− r(x))

where r(x) and r(z) are the ranks of x and z in the tree before the step, respectively.

1 The splay algorithm never changes the node containing an item, so we can also think
of this as the weight of the node containing the item.

2 We use lg to denote log2.

CBTree: A Practical Concurrent Self-Adjusting Search Tree 5

The analysis uses this lemma to show that the amortized time of semi-splaying
node v in a tree rooted at root is O(r(root) − r(v)) = O(lg(W (root)/W (v)) + 1).
This holds for any assignment of node weights; different selections of weights yield
different bounds, such as bounds that depend on access frequencies of the items or
bounds that capture other patterns in the access sequence. Here we focus on using
a node’s access frequency as its weight, i.e., given a sequence ofm tree operations
let c(v) be the number of operations on v in the sequence. Using Lemma 1 with this
weight assignment Sleator and Tarjan proved the following [7]:

Theorem 1 (Static Optimality of Semi-Splaying). The total time for a
sequence of m semi-splay operations on a tree with n items v1, . . . , vn, where
every item is accessed at least once, is

O
(
m+

n∑
i=1

c(vi) lg
m

c(vi)

)
,

where c(v) is the number of times v is accessed in the sequence.

Hereafter we say that O(lg(m/c(v)) + 1) is the ideal access time of v.

3.2 The Sequential CBTree

A CBTree is a binary search tree where each node contains an item; we use the
terms item and node interchangeably. We maintain in any node v a weight W (v)
which counts the total number of operations on v and its descendants. We can
compute C(v), the number of operations performed on v until now, from the
weight of v and its children by C(v) = W (v)− (W (v.left) +W (v.right)), using
a weight of 0 for null children.

A CBTree operation performs steps similar to semi-splaying, however it does
them in a top-down manner and it decides whether to perform rotations based
on the weights of the relevant nodes.

Lookup: To lookup an item v we descend from the root to v, possibly making
rotations on the way down. We maintain a current node z along the path to v
and look two nodes ahead along the path to decide whether to perform a single
or a double rotation. Assume that the next node y along the path is the left child
of z (the case when it is a right child is symmetric). If the child of y along the
path is also a left child we may decide to perform a single rotation as in the top
part of Fig. 1. If the child of y along the path is a right child we may perform
a double rotation as in the bottom part of Fig. 1. From here on, unless we need
to distinguish between the cases, we refer to a single or a double rotation simply
as a rotation.

We perform a rotation only if it would decrease the potential of the tree by at
least a positive constant ε ∈ (0, 2), i.e., if ΔΦ < −ε. After performing a rotation
at z, the CBTree operation changes the current node to be the node that replaces
z in the tree, i.e., node y after a single rotation or node x after a double rotation.
If we do not perform a rotation, the current node skips ahead from z to x without

6 Y. Afek et al.

restructuring the tree. (Naturally, if the search cannot continue past y the search
moves to y instead.) A search whose traversal ends finding the desired item v
increments W (v) and then proceeds in a bottom-up manner to increment the
weights of all the nodes on the path from v to the root.

To summarize, during a search the parent of the current node stays the same
and we keep reducing the potential by at least ε using rotations until it is no
longer possible. We then advance the current node two steps ahead to its grand-
child.

Insert: An insert of v searches for v while restructuring the tree, as in a lookup.
If v is not found, we replace the null pointer where the search terminates with a
pointer to a new node containing v with W (v) = 1, then increment the weights
along the path from v to the root. If v is found we increment W (v) and the
weights along the path and consider the insert failed.3

Delete:We delete an item v by first searching for it while restructuring the tree
as in a lookup. If v is a leaf we unlink it from the tree. If v has a single child we
remove v from the tree by linking v’s parent to v’s child. If v has two children we
only mark it as deleted. We adapt all operations so that any restructuring which
makes a deleted node a leaf or a single child unlinks it from the tree. With these
changes, CBTree’s space consumption remains linear in n, the number of non-
deleted nodes in the tree. If we are willing to count failed lookups as accesses,
we can update the counters top-down instead of bottom-up.

Computing Potential Differences: To decide whether to perform a rotation,
an operation needs to compute ΔΦ, the potential difference resulting from the
rotation. It can do this using only the counters of the nodes involved in the rota-
tion, as follows. Consider first the single rotation case of Fig. 1 (the other cases
are symmetric). Only nodes whose subtrees change contribute to the potential
change, so ΔΦ = r′(z) + r′(y) − r(z) − r(y), where r′(v) denotes the rank of v
after the rotation. Because the overall weight of the subtree rooted at z does not
change, r′(y) = r(z), and thereby ΔΦ = r′(z)− r(y). We can express r′(z) using
the nodes and their weights in the tree before the rotation to obtain

ΔΦ = lg(C(z) +W (y.right) +W (z.right))− lgW (y). (1)

For a double rotation, an analogous derivation yields

ΔΦ = lg (C(z) +W (x.right) +W (z.right))+

lg (C(y) +W (y.left) +W (x.left))−
lgW (y)− lgW (x). (2)

When we do a rotation, we also update the weights of the nodes involved in the
rotation.

Note that our implementation works with the weights directly by computing
2ΔΦ using logarithmic identities and comparing it to 2−ε.

3 A failed insert() can change auxiliary information associated with v.

CBTree: A Practical Concurrent Self-Adjusting Search Tree 7

An alternative rule for deciding when to do a rotation is to rotate when
W (z)/W (x) < α, where α is a constant less than two. This rule is simpler to
apply, simpler to analyze, and more intuitive than rotating when the potential
drops by at least ε, but we have not yet had time to try it in experiments.

3.3 Analysis

In this section we consider only successful lookups, that is, lookups of items that
are in the tree. For simplicity, we do not consider deleting an item v and then
later inserting it again, although the results can be extended by considering such
an item to be a new item. We prove that Theorem 1 holds for the CBTree.

Theorem 2. Consider a sequence of m operations on n distinct items, v1, . . . ,
vn, starting with an initially empty CBTree. Then the total time it takes to
perform the sequence is

O
(
m+

n∑
i=1

c(vi) lg
m

c(vi)

)
,

where c(v) is the number of times v is accessed in the sequence.

An operation on item v does two kinds of steps: (1) rotations, and (2) traversals of
edges in between rotations. The edges traversed in between rotations are exactly
the ones on the path to v at the end of the operation. Our proof of Theorem 2
accounts separately for the total time spent traversing edges in between rotations
and the total time spent doing rotations.

We first prove that an operation on node v, applied to a CBTree with weights
W (u) for each node u, traversesO(lg(W/C(v)) edges in between rotations, where
W = W (root) is the weight of the entire tree and C(v) is the individual weight
of v at the time the operation is performed (Lemma 2). From this we obtain

that the time spent traversing edges between rotations is O(c(v) + c(v) lg
m

c(v)
)

(Lemma 3). Having established this, the amortized bound in Theorem 2 follows
by showing that the total number of rotations in all m operations in the sequence
is O(n+ n ln m

n) = O(m).

Lemma 2 (Ideal access path). Consider a CBTree with weights W (u) for
each node u. The length of the path traversed by an operation on item v is
O(lg(W/C(v)) + 1), where W = W (root) and C(v) is the individual weight of
v, at the time the operation is performed.

Proof. The path to v at the end of the operation (i.e., just before v is unlinked if
the operation is a delete) consists of d pairs of edges (z, y) and (y, x) that the
operation skipped between rotations, and possibly a single final edge if the op-
eration could look ahead only one node at its final step. For each such pair (z, y)
and (y, x), let ΔΦ be the potential decrease we would have got by performing a
rotation at z. Since we have not performed a rotation, ΔΦ > −ε. By Lemma 1
we obtain that

2(r(z)− r(x)) ≥ 2 + ΔΦ > 2− ε. (3)

8 Y. Afek et al.

Define δ = 1 − ε/2. Then Equation (3) says that r(z) − r(x) > δ for each such
pair of edges (z, y) and (y, x) on the final path. Summing over the d pairs on the
path we get that r(root) − r(v) > dδ and so

d <
r(root) − r(v)

δ
= O

(
lg

W (root)

W (v)

)
= O

(
lg

W

C(v)

)
.

Since the length of path to v is at most 2d+ 1, the lemma follows. ��

We now show that Lemma 2’s bound matches that of the splay tree.

Lemma 3. The total time spent traversing edges between rotations in all the

operations that access v is O(c(v) + c(v) lg
m

c(v)
).

Proof. The time spent traversing edges between rotations is 1 plus the number
of edges traversed. Because the CBTree’s weight is at most m throughout the
sequence, and v’s individual weight after the k-th time it is accessed is k, Lemma
2 implies that the time spent traversing edges between rotations over all the

operations accessing v is c(v) +O
(∑c(v)

j=1 lg
m

j

)
. By considering separately the

cost of the final half of the operations, the quarter before it, and so on, we bound
this as follows:

c(v) +O
(
c(v)

2
lg

m

c(v)/2
+

c(v)

4
lg

m

c(v)/4
+ . . .

)
=c(v) +O

(
c(v) lg

m

c(v)
+ c(v)(

lg 2

2
+

lg 4

4
+ . . .)

)
,

which is O
(
c(v) + c(v) lg

m

c(v)

)
because

∑∞
k=1

k

2k
= 2. ��

The following lemma, proved in the extended version of the paper [18], bounds
the number of rotations.

Lemma 4. In a sequence of m operations starting with an empty CBTree, we

perform O(n+ n ln
m

n
) = O(m) rotations, where n is the number of insertions.

4 The Concurrent CBTree

We demonstrate the CBTree using Bronson et al.’s optimistic BST concurrency
control technique [5] to handle synchronization of generic BST operations, such
as rotations and node link/unlinks. To be self contained, we summarize this
technique in Sect. 4.1. Section 4.2 then describes how we incorporate the CBTree
into it; due to space limitations, pseudo-code is presented in the extended version
of the paper [18]. Section 4.3 describes our single-adjuster optimization. Section
4.4 describes the Lazy CBTree, a variant of the CBTree meant to reduce the
overhead caused by calculating potential differences during the traversal.

CBTree: A Practical Concurrent Self-Adjusting Search Tree 9

4.1 Optimistic Concurrent BSTs

Bronson et al. implement traversal through the tree without relying on read-write
locks, using hand-over-hand optimistic validation. This is similar to hand-over-
hand locking [19] except that instead of overlapping lock-protected sections, we
overlap atomic blocks which traverse node links. Atomicity within a block is
established using versioning. Each node holds a version number with reserved
changing bits to indicate that the node is being modified. A navigating reader
(1) reads the version number and waits for the changing bits to clear, (2) reads
the desired fields from the node, (3) rereads the version. If the version has not
changed, the reads are atomic.

4.2 Concurrent CBTree Walk-Through

We represent a node v’s weight W (v), equal to the total number of accesses to
v and its descendants, with three counters: selfCnt, counting the total number
of accesses to v, rightCnt for the total number of accesses to items in v’s right
subtree, and leftCnt, an analogous counter for the left subtree.

Traversal: Hand-over-hand validation works by chaining short atomic sections
using recursive calls. Each section traverses through a single node u after vali-
dating that both the inbound link, from u’s parent to u, and the outbound link,
from u to the next node on the path, were valid together at the same point
in time. If the validation fails, the recursive call returns so that the previous
node can revalidate itself before trying again. Eventually the recursion unfolds
bottom-up back to a consistent state from which the traversal continues.

When traversing through a node (i.e., at each recursive call) the traversal may
perform a rotation. We describe the implementation of rotations and of the rota-
tiondecision rule below.Fornow,notice thatperforming a rotation invalidatesboth
the inbound and outbound links of the current node. Therefore, after performing
a rotation the traversal returns to the previous recursion step so that the caller
revalidates itself. Using Fig. 1’s notation, after performing a rotation at z the re-
cursion returns to z’s parent (previous block in the recursion chain) and therefore
continues from the node that replaces z in the tree. In doing this, we establish that
a traversed link is always verified by the hand-over-hand validation, as in the origi-
nal optimistic validation protocol. The linearizability [20] of the CBTree therefore
follows from the linearizability of Bronson et al.’s algorithm.

Rotations: To do a rotation, the CBTree first acquires locks on the nodes
whose links are about to change in parent-to-child order: z’s parent, z, y, and
for a double rotation also x (using Fig. 1’s notation). It then validates that the
relationship between the nodes did not change and performs the rotation which
is done exactly as in Bronson et al.’s algorithm, changing node version numbers
as required and so on. After the rotation the appropriate counters are updated
to reflect the number of accesses to the new subtrees.

Counter Maintenance: Maintaining consistent counters requires synchroniz-
ing with concurrent traversals and rotations. While traversals can synchronize

10 Y. Afek et al.

by atomically incrementing the counters using compare-and-swap, this does not
solve the coordination problem between rotations and traversals, and any addi-
tional mechanism to synchronize them would be pure overhead because rotations
are rare. We therefore choose to access counters using plain reads and writes,
observing that wrong counter values will not violate the algorithm’s correctness,
only possibly its performance.

A traversal increments the appropriate counters as the recursion unfolds at the
end of the operation (i.e., not during the intermediate retries that may occur). In
the extended version [18] we discuss the races that can occur with this approach
and show that such races – if they occur – do not keep the CBTree from obtaining
short access paths for frequent items.

Operation Implementation: A lookup is a traversal. Insertion is a traversal
that terminates by adding a new item or updating the current item’s value. Our
delete implementation follows Bronson et al.’s approach [5], marking a node as
deleted and unlinking it when it has one or no children.

Speeding Up Adaptation to Access Pattern Change: After a change in
the access pattern, i.e., when a popular item becomes unpopular, frequent nodes
from the new distribution may take a lot of time until their counters are high
enough to beat nodes that lost their popularity. To avoid this problem we add
an exponential decay function to the counters, based on an external clock that
is updated by an auxiliary thread or by the hardware. We detail this technique
in the extended version [18]. We note here that the decaying is an infrequent
event performed by threads as they traverse the tree. Therefore decaying updates
can also be lost due to races, which we again accept since the decaying is an
optimization that has no impact on correctness.

4.3 Single Adjuster

Even relaxed counter maintenance can still degrade scalability on multicore ar-
chitectures such as Intel’s Xeon E7, where a memory update occurs in a core’s
private cache, after the core acquires exclusive ownership of the cache line. In
this case, when all cores frequently update the same counters (as happens at
the top of the tree) each core invalidates a counter’s cache line from its previous
owner, who in turn had to take it from another core, and so on. On average,
a core waits for all other cores to acquire the cache line before its write can
complete. In contrast, on Sun’s UltraSPARC T2 Plus architecture all writes oc-
cur in a shared L2 cache, allowing the cores to proceed quickly: the L2 cache
invalidates all L1 caches in parallel and completes the write.

To bypass this Intel architectural limitation, we propose an optimization in
which only a single adjuster thread performs counter updates during its lookups.
The remaining threads perform read-only lookups. Thus, only the adjuster
thread requires exclusive ownership of counter cache lines; other lookups re-
quest shared ownership, allowing their cache misses to be handled in parallel.
Similarly, when the adjuster writes to a counter, the hardware sends the invalida-
tion requests in parallel. Synchronization can be further reduced by periodically
switching the adjuster to read-only mode, as we did in our evaluation.

CBTree: A Practical Concurrent Self-Adjusting Search Tree 11

4.4 The Lazy CBTree

Calculating potential differences during the CBTree traversal, which involves
multiplication and division instructions, has significant cost on an in-order pro-
cessor such as Sun’s UltraSPARC T2. When no rotation is performed – as is
usually the case – the calculations are pure overhead. We have therefore de-
veloped the Lazy CBTree, a variant of the CBTree that greatly reduces this
overhead by not making rotation decisions during a lookup traversal.

A Lazy CBTree traversal makes no rotation decisions along the way. When
reaching the destination node, the operation makes a single rotation decision
which is based only on counter comparisons, and then proceeds to update the
counters along the path back to the root. If the operation is an insert() of a
new item, it may make more (cheap) rotation decisions as it unfolds the path
back to the root. We refer the reader to the extended version for details [18].
While the CBTree analysis does not apply to the Lazy CBTree, in practice the
Lazy CBTree obtains comparable path lengths to CBTree but with much lower
cost per node traversal, and so obtains better overall throughput.

5 Experimental Evaluation

In this section we compare the CBTree’s performance to that of the splay tree,
treap [9] and AVL algorithms. All implementations are based on Bronson et al.’s
published source code. Benchmarks are run on a Sun UltraSPARC T2+ processor
and on an Intel Xeon E7-4870 processor. The UltraSPARC T2+ (Niagara II)
is a multithreading (CMT) processor, with 8 1.165 HZ in-order cores with 8
hardware strands per core, for a total of 64 hardware strands per chip. Each
core has a private L1 write-through cache and the L2 cache is shared. The Intel
Xeon E7-4870 (Westmere EX) processor has 10 2.40GHz cores, each multiplexing
2 hardware threads. Each core has private write-back L1 and L2 caches and a
shared L3 cache.

Overall, we consider the following implementations: (1) CB, CBTree with de-
caying of node counters disabled, (2) LCB, the lazy CBTree variant (Sect. 4.4),
(3) Splay, Daniel Sleator’s sequential top-down splay tree implementation [21]
with a single lock to serialize all operations, (4) Treap, and (5) AVL, Bronson
et al.’s relaxed balance AVL tree [5]. Because our single adjuster technique ap-
plies to any self-adjusting BST, we include single adjuster versions of the splay
tree and treap in our evaluation, which we refer to as [Alg]OneAdjuster for
Alg ∈ {Splay,Treap,CB,LCB}. In these implementations one dedicated thread
alternates between doing lookups as in Alg for 1 millisecond and lookups with-
out restructuring for t milliseconds (t = 1 on the UltraSPARC and t = 10 on the
Intel; these values produced the best results overall). All other threads always
run lookups without any restructuring. Insertions and deletions are done as in
Alg for all threads. Note that SplayOneAdjuster is implemented using Bronson
et al.’s code to allow lookups to run concurrently with the adjuster’s rotations.

12 Y. Afek et al.

5.1 Realistic Workloads

Here the algorithms are tested on access patterns derived from real workloads: (1)
books, a sequence of 1, 800, 825 words (with 31, 779 unique words) generated
by concatenating ten books from Project Gutenberg [22], (2) isp, a sequence
of 27, 318, 568 IP addresses (449, 707 unique) from packets captured on a 10
gigabit/second backbone link of a Tier1 ISP between Chicago, IL and Seattle,
WA in March, 2011 [23], and (3) youtube, a sequence of 1, 467, 700 IP addresses
(39, 852 unique) from YouTube user request data collected in a campus network
measurement [24]. As the traces we obtained are of item sequences without
accompanying operations, in this test we use only lookup operations on the
items in the trace, with no inserts or deletes. To avoid initialization effects
each algorithm starts with a maximum balanced tree over the domain, i.e., where
the median item is the root, the first quartile is the root’s left child, and so on.
Each thread then repeatedly acquires a 1000-operation chunk of the sequence
and invokes the operations in that subsequence in order, wrapping back to the
beginning of the sequence after the going through entire sequence.

Table 1 shows the average number of nodes traversed and rotations done by
each operation on the Sun UltraSPARCmachine. As these are algorithmic rather
than implementation metrics, results on the Intel are similar and thus omitted.
Figure 2 shows the throughput, the number of operations completed by all the
threads during the duration of the test.

CBTree obtains the best path length, but this does not translate to the best
performance: on the UltraSPARC, while CBTree scales well, its throughput is

Table 1. Average path length and number of rotations for a single thread and 64
threads. When the single thread result, r1, significantly differs from the 64 threads
result, r64, we report both as r1, r64. To reduce overhead, data is collected by one
representative thread, who is the adjuster in the single adjuster variants.

AVL Splay Treap CBTree Lazy Splay Treap CBTree Lazy
CBTree CBTree

Single adjuster

Average path length

books 17.64 10.63, 11.19 9.54, 9.71, 11.71 11.43 10.13, 10.30,
12.06 8.64 9.11 11.71 11.43 11.06 10.68

isp 17.86 9.09, 14.64 11.13 11.95, 13.39 14.46, 12.33, 12.41,
12.89 11.38 15.1 13.25 13.49

youtube 14.35 8.52, 15.75 11.81 12.06, 13.47 15.84 12.27 12.24
13.31 11.87

Rotations per operation

books 0 9.16 < 0.01 < 0.01 0.02 2.95 0.09 0.02 0.02
isp 0 8.09, 0.03 0.01 0.03 2.65, 0.25 0.01 0.03

10.45 3.10
youtube 0 7.52, < 0.01 < 0.01 < 0.01 3.17 0.11 0.03 0.02

10.73

CBTree: A Practical Concurrent Self-Adjusting Search Tree 13

Fig. 2. Test sequence results. Left: Sun UltraSPARC T2+ (up to 64 hardware threads).
Right: Intel Westmere EX (up to 20 hardware threads).

lower than some of the other algorithms due to the cost of calculating potential
differences, and on the Intel Xeon E7 CBTree scales poorly because the counter
updates serialize the threads (Sect. 4.3). Lazy CBTree, which avoids computing
potential differences, outperforms all algorithms except single adjuster variants
on the UltraSPARC, but also scales poorly on the Intel.

The single adjuster solves the above problems, making CBOneAdjuster and
LCBOneAdjuster the best performers on both architectures. For example, on

14 Y. Afek et al.

the isp sequence, CBOneAdjuster and LCBOneAdjuster outperform treap, the
next best algorithm, respectively by 15% and 30% on the Intel and by 20% and
50% on the UltraSPARC at maximum concurrency. Because Lazy CBTree on
the UltraSPARC incurs little overhead, if LCBOneAdjuster obtains significantly
worse path length (e.g., on the books sequence), it performs worse than Lazy
CBTree. The treap high performance is because an operation usually updates
only its target node. However, this results in suboptimal path lengths, and also
prevents the treap from seeing much benefit due to the single adjuster technique.
While the AVL tree scales well, its lack of self-adjusting leads to suboptimal path
lengths and performance. On books, for example, CBOneAdjuster outperforms
AVL by 1.6× at 64 threads on the UltraSPARC machine.

The splay’s tree coarse lock prevents it from translating its short path length
into actual performance. Applying our single adjuster optimization allows
readers to run concurrently and benefit from the adjuster’s splaying, yielding a
scalable algorithm with significantly higher throughput. Despite obtaining com-
parable path lengths to CBOneAdjuster, the SplayOneAdjuster does > 100×
more rotations than CBOneAdjuster, which force the concurrent traversals to
retry. As a result, CBOneAdjuster outperforms SplayOneAdjuster.

Additional Experiments: The extended version [18] describes additional experi-
ments: (1) evaluating the algorithms on synthetic skewed workloads following a
Zipf distribution, (2) examining how the algorithms adjust to changes in the
usage pattern, (3) measuring performance under different ratios of insert/
delete/lookup, and (4) showing that CBTree is robust to lost counter updates.

Future work. We intend to experiment with other CBTree variants, including
the one mentioned at the end of Sect. 3.2, as well as with a top-down version of
semi-splaying.

Acknowledgments. This work was supported by the Israel Science Foundation
under grant 1386/11, by the Israeli Centers of Research Excellence (I-CORE)
program (Center 4/11), and by the BSF. Robert E. Tarjan’s work at Princeton
is partially supported by NSF grant CCF-0832797. Adam Morrison is supported
by an IBM PhD Fellowship.

References

1. Gill, P., Arlitt, M., Li, Z., Mahanti, A.: YouTube traffic characterization: a view
from the edge. In: Proceedings of the 7th ACM SIGCOMM Conference on Internet
Measurement, IMC 2007, pp. 15–28. ACM, New York (2007)

2. Mahanti, A., Williamson, C., Eager, D.: Traffic analysis of a web proxy caching
hierarchy. IEEE Network 14(3), 16–23 (2000)

3. Cherkasova, L., Gupta, M.: Analysis of enterprise media server workloads: access
patterns, locality, content evolution, and rates of change. IEEE/ACM Transactions
on Networking 12(5), 781–794 (2004)

4. Sripanidkulchai, K., Maggs, B., Zhang, H.: An analysis of live streaming workloads
on the internet. In: Proceedings of the 4th ACM SIGCOMM Conference on Internet
Measurement, IMC 2004, pp. 41–54. ACM, New York (2004)

CBTree: A Practical Concurrent Self-Adjusting Search Tree 15

5. Bronson, N.G., Casper, J., Chafi, H., Olukotun, K.: A practical concurrent binary
search tree. In: Proceedings of the 15th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, PPoPP 2010, pp. 257–268. ACM, New York
(2010)

6. Hanke, S., Ottmann, T., Soisalon-soininen, E.: Relaxed Balanced Red-black Trees.
In: Bongiovanni, G., Bovet, D.P., Di Battista, G. (eds.) CIAC 1997. LNCS,
vol. 1203, pp. 193–204. Springer, Heidelberg (1997)

7. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. Journal of the
ACM 32, 652–686 (1985)

8. Knuth, D.E.: The Art of Computer Programming, Volume 3: Sorting and Search-
ing. Addison Wesley Longman Publishing Co., Inc., Redwood City

9. Seidel, R., Aragon, C.R.: Randomized search trees. Algorithmica 16, 464–497
(1996), doi:10.1007/s004539900061

10. Nievergelt, J., Reingold, E.M.: Binary search trees of bounded balance. In: Pro-
ceedings of the Fourth Annual ACM Symposium on Theory of Computing, STOC
1972, pp. 137–142. ACM, New York (1972)

11. Bent, S.W., Sleator, D.D., Tarjan, R.E.: Biased 2-3 trees. In: Proceedings of the
21st Annual Symposium on Foundations of Computer Science, FOCS 1980, pp.
248–254. IEEE Computer Society, Washington, DC (1980)

12. Feigenbaum, J., Tarjan, R.E.: Two new kinds of biased search trees. Bell System
Technical Journal 62, 3139–3158 (1983)

13. Baer, J.L.: Weight-balanced trees. In: American Federation of Information Pro-
cessing Societies: 1975 National Computer Conference, AFIPS 1975, pp. 467–472.
ACM, New York (1975)

14. Ellen, F., Fatourou, P., Ruppert, E., van Breugel, F.: Non-blocking binary search
trees. In: Proceeding of the 29th ACM SIGACT-SIGOPS Symposium on Principles
of Distributed Computing, PODC 2010, pp. 131–140. ACM, New York (2010)

15. Crain, T., Gramoli, V., Raynal, M.: A speculation-friendly binary search tree. In:
Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP 2012, pp. 161–170. ACM, New York (2012)

16. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Communications
of the ACM 33, 668–676 (1990)

17. Tarjan, R.E.: Amortized computational complexity. SIAM Journal on Algebraic
and Discrete Methods 6(2), 306–318 (1985)

18. Afek, Y., Kaplan, H., Korenfeld, B., Morrison, A., Tarjan, R.E.: CBTree: A prac-
tical concurrent self-adjusting search tree. Technical report (2012)

19. Bayer, R., Schkolnick, M.: Concurrency of operations on b-trees. In: Readings in
Database Systems, pp. 129–139. Morgan Kaufmann Publishers Inc., San Francisco
(1988)

20. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for con-
current objects. ACM Transactions on Programming Languages and Systems
(TOPLAS) 12, 463–492 (1990)

21. Sleator, D.D.: Splay tree implementation, http://www.link.cs.cmu.edu/splay
22. Project Gutenberg, http://www.gutenberg.org/
23. kc claffy, Andersen, D., Hick, P.: The CAIDA anonymized 2011 internet traces,

http://www.caida.org/data/passive/passive_2011_dataset.xml

24. Zink, M., Suh, K., Gu, Y., Kurose, J.: Watch global, cache local: YouTube network
traffic at a campus network - measurements and implications. In: Proceeding of
the 15th SPIE/ACM Multimedia Computing and Networking Conference, vol. 6818
(2008)

http://www.link.cs.cmu.edu/splay
http://www.gutenberg.org/
http://www.caida.org/data/passive/passive_2011_dataset.xml

Efficient Fetch-and-Increment�

Faith Ellen1, Vijaya Ramachandran2, and Philipp Woelfel3

1 University of Toronto
faith@cs.toronto.edu

2 University of Texas at Austin
vlr@cs.utexas.edu

3 University of Calgary
woelfel@ucalgary.ca

Abstract. A Fetch&Inc object stores a non-negative integer and sup-
ports a single operation, fi, that returns the value of the object and in-
crements it. Such objects are used in many asynchronous shared memory
algorithms, such as renaming, mutual exclusion, and barrier synchroniza-
tion. We present an efficient implementation of a wait-free Fetch&Inc

object from registers and load-linked/store-conditional (ll/sc) objects.
In a system with p processes, every fi operation finishes in O(log2 p)
steps, and only a polynomial number of registers and O(log p)-bit ll/sc
objects are needed. The maximum number of fi operations that can be
supported is limited only by the maximum integer that can be stored
in a shared register. This is the first wait-free implementation of a
Fetch&Inc object that achieves both poly-logarithmic step complexity
and polynomial space complexity, but does not require unrealistically
large ll/sc objects or registers.

1 Introduction

A Fetch&Inc object stores a non-negative integer and supports a single oper-
ation, fi, that returns the value of the object and increments it. Such objects
are fundamental synchronization primitives which have applications in many
asynchronous shared memory algorithms. For example, a one-shot Fetch&Inc

object, which allows at most one fi operation per process, can be used to solve
the one-shot renaming problem: assign unique names from a small name space
to participating processes. Each participating process performs fi and uses the
result as its name. Thus, if k processes participate, they get unique names in
the optimal range {0, . . . , k − 1}. Fetch&Inc objects have also been used in
algorithms for mutual exclusion [5], barrier synchronization [10], work queues
[11], and producer/consumer buffers [12,6].

We consider wait-free, linearizable implementations of Fetch&Inc objects in
the standard asynchronous shared memory system with p processes with unique

� This research was supported in part by the Natural Sciences and Engineering Re-
search Council of Canada (NSERC) and by Grant CCF-0830737 of the US National
Science Foundation (NSF).

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 16–30, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Efficient Fetch-and-Increment 17

identifiers, 1, . . . , p. Wait-freedom means that each Fetch&Inc operation fin-
ishes within a finite number of (its own) steps. Linearizability imposes the con-
dition that when some instance op of fi returns the value v, the total number of
completed fi operations (including op) is at most v + 1, and the total number
of completed and pending fi operations is at least v + 1.

Fetch&Inc objects have consensus number two, which means that they
can be used to solve wait-free consensus for two processes, but not three. It
is not possible to implement Fetch&Inc objects just from registers. This is
in contrast to weak counter objects, which support two separate operations, in-
crement and read, where increment increases the value of the counter by
one but does not return anything, and read returns the counter value. Unlike
Fetch&Inc objects, weak counters have wait-free implementations from reg-
isters. Our Fetch&Inc implementation also supports a read operation that
returns the object value and, thus, is strictly stronger than a weak counter.

To implement Fetch&Inc objects, the system needs to provide primitives
of consensus number at least two. Implementations from Test&Set and Swap

objects exist [2], but are inefficient. In fact, a lower bound by Jayanti, Tan, and
Toueg [17] implies that for any weak counter implementation from resettable con-
sensus and arbitrary history-less objects (and thus from Test&Set and Swap

objects), some operations may require Ω(p) shared memory accesses. However,
non-linearizable counters, such as those obtained from counting networks [6], can
be more efficient. But a linear lower bound on the depth of linearizable count-
ing networks [15] shows that such networks cannot be used to obtain efficient
linearizable Fetch&Inc implementations.

We consider implementations of Fetch&Inc from load-linked/store-
conditional (ll/sc) objects. An ll/sc object O provides three operations:
ll, vl, and sc. ll(O) returns the value of objectO. vl(O) returns true or false
and, like ll(O), does not change the value of the object. sc(O, x) either sets the
value of object O to x and returns true or does not change the value of O and
returns false. A vl(O) or sc(O, x) operation by process p returns true (in which
case, we say that it is successful) if and only if p previously executed ll(O) and no
other process has executed a successful sc on objectO since p’s last ll(O).

ll/sc objects allow implementations of any properly specified object using
universal constructions. However, such generic universal constructions are not
efficient. For example, Herlihy’s standard universal constructions [13,14] require
Ω(p) steps per implemented operation. As pointed out by Jayanti [16], the uni-
versal construction by Afek, Dauber and Touitou [1] can be modified so that
each implemented operation takes only O(log p) steps, which is optimal. But
this requires that registers can hold enough information to describe p opera-
tions. Since the description of an operation includes the identifier of the process
that is executing the operation, Ω(p log p)-bit registers are necessary. Thus, this
construction is impractical for systems with many processes. There are also ef-
ficient randomized Fetch&Inc implementations (e.g., Alistarh etal. presented
one based on repeated randomized renaming [3]), but there seems to be no ob-
vious way to derandomize them.

18 F. Ellen, V. Ramachandran, and P. Woelfel

In this paper, we present two Fetch&Inc implementations that have poly-
logarithmic (in p) step complexity and do not require unrealistically large reg-
isters or ll/sc objects. In particular, O(log p) bits suffice for each ll/sc object
and registers just need to be large enough to store the value of the Fetch&Inc

object. Our first implementation, presented in Section 2, is efficient when the
number of fi operations, n, is polynomial in the number of processes. Each fi

operation finishes in O
(
(log p)(log n)

)
steps, and a total of O

(
p+n(log p)(log n)

)
shared registers and ll/sc objects are used. Then, in Section 3, we will explain
how to extend this implementation (using a memory compression technique) to
improve the worst case step complexity to O

(
(log p)2

)
, using O(p3) shared regis-

ters and ll/sc objects. Both of our implementations support a Read operation
with constant step complexity.

2 The First Implementation

The idea of our first implementation is that processes cooperate to construct (an
implicit representation of) a sequence of process identifiers. The sequence has
one copy of i for each instance of fi that process i performs. The values returned
by these instances are the positions of i within this sequence, in increasing order.

The main data structure is a fixed balanced binary tree τ with p leaves, one
per process, and height �log p�. The representation of τ doesn’t matter. For
example, it can be stored implicitly in an array, like a binary heap. Let P (v)
denote the set of ids of processes whose leaves are in the subtree rooted at node
v. At each node, v, there is an implicit representation of a sequence, C(v), of ids
in P (v). Initially, C(v) is empty. The sequence C(v) at an internal node is an
interleaving of a prefix of the sequence C(left(v)) at its left child and a prefix
of the sequence C(right(v)) at its right child.

To perform fi, process i appends i to the sequence at process i’s leaf. Then pro-
cess i proceeds up the tree, trying to propagate information about the sequence
at the current node, v, and the sequence at its sibling to its parent, as in [1]. It
combines the current information at v and sibling(v) and then tries to change
parent(v) so that it contains this updated information. If it doesn’t succeed,
it tries again. If it doesn’t succeed a second time, it is guaranteed that some
other process has already propagated the necessary information to parent(v).
Process i determines the position of its instance in C(parent(v)), the sequence
at the parent of its current node, from the position of its instance in C(v) and
the number of elements from its sibling(v) that precede the block containing its
instance. Then process i moves to parent(v). When process i reaches the root,
it returns the position of its instance in the sequence at the root. The sequence
C(root(τ)) provides a linearization of all completed instances of fi and at most
one uncompleted instance of fi by each process.

The sequence at process i’s leaf is represented by a single-writer register, Ni,
containing the length of the sequence. Thus Ni = 0 if the sequence at this leaf
is empty. To append i to the sequence at this leaf, process i simply increments
the value of Ni.

Efficient Fetch-and-Increment 19

For any internal node, v, let N(v) denote the length of the sequence C(v)
at v, let NL(v) denote the number of elements of C(v) whose leaves are in v’s
left subtree, and NR(v) denote the number of elements of C(v) whose leaves are
in v’s right subtree. Then N(v) = NL(v) + NR(v). The sequence C(v) can be
implicitly represented by a sequence I(v) of pairs (sidej , sizej) ∈ {L,R} × Z+.
Specifically, suppose the sequence C(v) consists of h blocks �1, . . . , �h of size
x1, . . . , xh interleaved with k blocks r1, . . . , rk of size y1, . . . , yk, where �1 · · · �h is
a prefix of the sequence C(left(v)) at the left child of v and r1 · · · rh is a prefix of
the sequence C(right(v)) at the right child of v. Then I(v) is an interleaving of
the two sequences of pairs [(L, x1), . . . , (L, xh)] and [(R, y1), . . . , (R, yk)], where
(sidej , sizej) = (L, xi), if the j’th block of C(v) is �i, and (sidej , sizej) = (R, yi)
if the j’th block of C(v) is ri. Note that NL(v) = x1 + · · · + xh and NR(v) =
y1 + · · ·+ yk. For example, if

C(left(v)) = [5, 3, 1, 2],

C(right(v)) = [9, 10, 15, 12, 15], and

I(v) = [(L, 1), (R, 3), (L, 3)] ,

then C(v) = [5, 9, 10, 15, 3, 1, 2], with h = 2, �1 = [5], x1 = 1, �2 = [3, 1, 2],
x2 = 3, k = 1, r1 = [9, 10, 15], and y1 = 3. If two consecutive blocks of I(v) have
the same side, they can be combined into one block, whose size is the sum of
the sizes of those two blocks, without changing the sequence C(v) it represents.
Thus, we may assume, without loss of generality, that the sides of the blocks in
I(v) alternate between L and R.

Each internal node v has an ll/sc object v.T containing a pointer into a
persistent data structure Tv representing versions of the sequence I(v) and, hence
implicitly, the sequence C(v). This data structure supports one update operation
and two query operations. Here t is a pointer into Tv that indicates one version
I of I(v).

APPEND(t, x, y): return a pointer to a new version of I(v) obtained from I by
appending the pairs (L, x) and (R, y) to it, as appropriate. More specifically,
if the last block of I is (L, z), update that block to (L, z + x) and, if y 	= 0,
append the pair (R, y). If the last block of I is (R, z), update that block to
(R, z + y) and, if x 	= 0, append the pair (L, x). When I is empty, append
(L, x), if x 	= 0, and append (R, y), if y 	= 0.

Note that, if I is nonempty when APPEND(t, x, y) is called, then the new
sequence either has the same length as I or length one greater. If there are two
pairs to append, the pair from the same side as the last pair in I is appended
first. Two query operations are also supported.

BLOCKSUM(t, s, j): among the first j blocks of I, return the sum of the
sizes of those blocks with first component s, i.e. BLOCKSUM(t, s, j) =∑
{sizeh | sideh = s and 1 ≤ h ≤ j},

FINDBLOCK(t, s,m): return the minimum j with BLOCKSUM(t, s, j) ≥ m.

20 F. Ellen, V. Ramachandran, and P. Woelfel

Local variables:
v: a node in τ
s �= s′: elements of {L,R}
t, t′: pointers to nodes in Tv

j,m, h, k: nonnegative integers.

1 m ← read(Ni) + 1
2 write Ni ← m
3 v ← process i’s leaf (in τ)
4 while v �= root(τ) do
5 if v = left(parent(v))
6 then s ← L
7 s′ ← R
8 else s ← R
9 s′ ← L
10 v ← parent(v)

%t is a pointer to the current root of Tv

11 t ← ll(v.T)
%Check whether i’s instance of fi has reached v,
%i.e. C(v) contains at least m elements from side s

12 while read(t.Ns) < m do
%Compute the length h of C(left(v))

13 if left(v) is a leaf of τ
14 then h ← read(Nj), where j is the index of this leaf
15 else t′ ← read(left(v).T)
16 h ← read(t′.NL) + read(t′.NR)

%Compute the length k of C(right(v))
17 if right(v) is a leaf of τ
18 then k ← read(Nj), where j is the index of this leaf
19 else t′ ← read(right(v).T)
20 k ← read(t′.NL) + read(t′.NR)

%Compute a pointer t′ to an updated version T ′ of Tv

21 t′ ← APPEND(t, h− t.NL, k − t.NR)
%Try to update v.T to point to T ′

22 sc(v.T, t′)
23 t ← ll(v.T)

end while
%Compute the position of i’s current instance in C(v)
%by finding the block j that contains the m’th element
%from side s and the sum of all previous blocks with side s′

24 j ← FINDBLOCK(t, s,m)
25 m ← m+ BLOCKSUM(t, s′, j − 1)

end while
26 return m− 1

Fig. 1. Algorithm for fi performed by process i

Efficient Fetch-and-Increment 21

Initially, Ni = 0, for i = 1, . . . , p, and the sequences represented at every node
are empty. Pseudocode for fi appears in Figure 1.

A persistent augmented balanced binary tree [9,8], such as a red-black tree
or an AVL tree, is used to implement Tv. Each pair in the sequence I(v) is
represented by a node containing the side and the size of the pair. Nodes also
contain pointers to their left and right children and balance information. They do
not contain parent pointers. Each node u of Tv is augmented with the number of
nodes in its subtree, the sum u.NL of the sizes of the pairs in its subtree that have
side L, and the sum u.NR of the sizes of the pairs in its subtree that have side R.
In particular, if Tv is nonempty, then v.T is an ll/sc object that points to the
root of a tree in Tv representing the sequence I(v), root(Tv).NL stores NL(v),
and root(Tv).NR stores NR(v). Initially, v.T = nil and NL(v) = NR(v) = 0.

Processes do not change any information in nodes of Tv once they have been
added to the data structure. Instead, when performing APPEND, they create
new nodes containing the updated information. Thus, all of the ancestors of a
changed node must also be changed. Although APPEND changes Tv, it does not
affect I(v) until v.T is changed to the pointer it returns.

If t = nil, APPEND(t, x, y) creates a new tree containing (L, x), if x 	= 0, and
(R, y), if y 	= 0. If t 	= nil, then APPEND(t, x, y) starts at the root in Tv pointed
to by t and follows the rightmost path of its tree, making a copy of each node it
encounters and pushing the copy onto a stack. If the side of the rightmost node
in the tree is L, then x is added to its size and, if y 	= 0, the right child pointer
of this node is changed from NIL to a new leaf that contains the element (R, y).
Otherwise, y is added to its size and, if x 	= 0, the right child pointer of this node
is changed from NIL to a new leaf that contains the element (L, x). Then, the
stack is popped to progress back up the tree. As each node is popped, its right
pointer is set to the root of the updated subtree. The information at the node,
including its balance, is updated and rotations are performed, if necessary. The
step complexity of APPEND is logarithmic in the number of nodes reachable
from the root pointed to by t.

To perform a query operation, it suffices to perform the query as one would in
the underlying augmented balanced binary tree, starting from a root. However,
since the tree reachable from this root never changes while it can be accessed,
there are no conflicts with update operations. Using an augmented, balanced
binary tree to represent each version of I(v) enables each query to be performed
in time logarithmic in the length of the version to which it is applied.

Theorem 1. A wait-free, linearizable, unbounded Fetch&Inc object shared by
p processes on which at most n fi operations are performed can be implemented
so that each fi takes O(log p logn) steps and each read takes O(1) steps.

Proof (sketch). An instance of fi is linearized when root(τ).T is first updated
during an APPEND (not necessarily performed by the same process) to point
to the root a tree that contains information about this instance. At each node
v of τ , the length of the sequence represented by any tree in Tv is at most n, so
each operation on Tv can be performed in O(log n) steps. Since the tree τ has
height Θ(log p) and a process performs only a constant number of operations at

22 F. Ellen, V. Ramachandran, and P. Woelfel

each node on the path from its leaf to the root during an instance of fi, each fi

operation takes O(log p logn) steps.
To read the value of the Fetch&Inc object, a process reads root(τ).T to

get a pointer to the current root of the tree representing I(root(τ)). The read

is linearized at this step. If t is NIL, then the Fetch&Inc object has its initial
value, 0. Otherwise, its value is the sum of the persistent values t.NL and t.NR,
which is the length of C(root(τ)) at the linearization point. This takes a constant
number of steps.

Initially, this implementation uses Θ(p) space. Each fi operation adds O(log n)
nodes to the data structure Tv, for each node v on the path from some leaf of τ to
its root. Since τ has height O(log p), the total space used by this implementation
to perform n operations is O(p+ n logn log p).

For a one-shot Fetch&Inc object, n ≤ p, so O(log2 p) steps are used to
perform each instance of fi and O(p log2 p) registers and ll/sc objects are used.

3 The Second Implementation

We now present a more efficient implementation, which is obtained by com-
pressing the tree in the data structure Tv that is pointed to by each node v of
τ . Specifically, if there are � = �(v) leaves in the subtree of τ rooted at v, we
show how to ensure that the number of nodes reachable from each root of Tv

is O(�2). This results in an implementation whose worst-case step complexity is
O(log2 p).

If C(v) = [c0, . . . , ck−1], we define Q(v) = {(j, cj) | j = 0, . . . , k − 1} to be
the set of all position-id pairs. We say that a position j is old at v if there exists
i ∈ P (v) and j′ > j such that (j, i), (j′, i) ∈ Q(v), i.e., some id i occurs at
position j in C(v), but this is not the last occurrence of i. A position is current
at v, if it is not old at v.

We take advantage of the fact that once a position becomes old at v, the
identifier at that position is no longer accessed by any process. Thus, the identi-
fiers at old positions can be permuted without affecting the outcome of pending
or future fi operations. For example, if I(v) contains three consecutive blocks
(L, x), (R, y), (L, z), which represent x + y + z old positions in C(v), then we
can replace these blocks with two blocks (L, x+z), (R, y). Because the permuted
sequence has fewer blocks, it can be represented by a tree with fewer nodes. An
algorithm to compress � consecutive positions of C(v) is presented in Section
3.1. It has O(log �) step complexity.

We add a deletion structure Δ(v) at v to facilitate the identification of se-
quences of � consecutive old positions to compress. It contains an array of 2�+1
status-units, which are described in Section 3.2. Each status-unit is associated
with � consecutive positions of the sequence C(v). A persistent balanced binary
search tree, Av, enables processes to find the status-unit associated with any
current position. When a position j becomes old, the process whose id is at
position j of C(v) records that fact in the status-unit associated with position
j. The status-unit is also used to determine when all of its associated positions

Efficient Fetch-and-Increment 23

are old. A fixed deletion tree, Dv, with 2�+1 leaves, described in Section 3.4, is
used to keep track of such status units.

After all the positions associated with a status-unit have been compressed,
the status-unit is recycled. This means that it is reinitialized and associated with
a new sequence of positions. This is described in Section 3.5.

To perform fi, a process proceeds up the tree τ , as in the first implementation,
starting from its leaf. Before propagating information up to a node v from its
children, process i finds the status-unit associated with the position j in C(v)
that contains the id i added to the sequence when i last performed fi. Then it
marks position j in that status-unit, to indicate that the position is old at v. If
there is a status-unit whose associated positions are all old, process i also tries
to compress these positions in the tree in Tv rooted at v.T and recycle the status
unit. The algorithm for performing fi is described in more detail in Section 3.6.

3.1 Compression

The idea of compression is as follows: Once all positions in C(v) that correspond
to a block (s, x), s ∈ {L,R}, of I(v) are marked, the entire block can be marked
by changing its side s to s′ ∈ {L′, R′}, i.e., by replacing (L, x) with (L′, x) or
(R, x) with (R′, x). A block (s′, x) with s ∈ {L′, R′} is called a marked block. Two
adjacent marked blocks (s′, y) and (s′, z) with the same side s′ can be replaced
by a single marked block (s′, y + z). A sequence of consecutive marked blocks,
(s′j , xj), (s

′
j+1, xj+1), . . . , (s

′
k, xk), containing at least one with side L′ and one

with side R′ can be replaced by two marked blocks (L′, y) and (R′, z), where
y =

∑
{xi | j ≤ i ≤ k and s′i = L′} and z =

∑
{xi | j ≤ i ≤ k and s′i = R′}.

This is equivalent to permuting the elements in the corresponding locations of
C(v).

Suppose t is a pointer into Tv indicating a version I of I(v) and suppose the
� consecutive positions m, . . . ,m+ � − 1 in a status-unit are all marked. These
positions in I are compressed by updating Tv as follows: We assume m > 0; the
special case m = 0 can be handled analogously. First, FINDBLOCK(t,m) and
FINDBLOCK(t,m+ �+1) are used to find the blocks (sj , xj) and (sk, xk) that
represent positions m− 1 and m+ �, respectively.

If j = k, then (sj , xj) is partitioned into three blocks, (sj , x
′
j), (s

′
j , �), and

(sj , x
′′
j), where x′

j is the number of positions less than m represented by (sj , xj)
and x′′

j is the number of positions greater than or equal to m + � represented
by (sj , xj). Note that block (s′j , �) is now marked, and all positions represented
by that block are old. Moreover, the number of blocks in I(v) and, hence, the
number of nodes in Tv increased by 2.

Now suppose that j 	= k. If j < k− 1, then all of the positions represented by
blocks (si, xi), j < i < k, are marked. These blocks are removed from the tree
rooted at t.

If m is represented by block (sj , xj), then (sj , xj) is conceptually partitioned
into two blocks (sj , x

′
j) and (s′j , x

′′
j), where x′

j is the number of positions less
than m represented by (sj , xj) and x′′

j is the number of positions greater than
or equal to m represented by (sj , xj). The block (s′j , x

′′
j) is removed. This is

24 F. Ellen, V. Ramachandran, and P. Woelfel

accomplished by changing xj to x′
j . Similarly, if m+�−1 is represented by block

(sk, xk), then (sk, xk) is conceptually partitioned into two blocks (s′k, x
′
k) and

(sk, x
′′
k) where x

′
k is the number of values less than m+ � represented by (sk, xk)

and x′′
k is the number of values greater than or equal to m + �, represented by

(sk, xk). The block (s′k, x
′
k) is also removed.

If block (sj , xj) is marked and does not represent m, then it is removed and,
if it is immediately preceded by a marked block, that block is removed, too.
Similarly, if block (sk, xk) is marked and does not represent m+ �− 1, then it is
removed, together with the next block, if it exists and is also marked. Note that,
if there is a block immediately preceding or immediately following the removed
blocks, it is unmarked.

Let x be the sum of the sizes of all the removed blocks with side = L. This
can be computed in O(log �) steps directly from the tree rooted at t in Tv as the
blocks are removed, using the augmented information at each node.

Similarly, let y be the sum of the sizes of all removed blocks with side = R.
Finally, in place of the removed blocks, add the new marked block (L′, x), if
x > 0, and the new marked block (R′, y), if y > 0. This maintains the invariant
that there is at least one unmarked block between any two marked blocks with
the same side. Since I(v) contains O(�2) unmarked blocks, I(v) contains O(�2)
blocks in total. Hence, the tree in Tv that represents I(v) has O(�2) nodes.

3.2 Status-Units

The deletion structure Δ(v) contains a collection of 2� + 1 status-units, Sv[j],
for 1 ≤ j ≤ 2�+ 1. A status-unit has three parts: a name, a flag, and a progress
tree. A name is a non-negative integer that can increase during an execution.
When its name is g, the status-unit is associated with the � consecutive positions
�g, . . . , �g+ �−1. Initially, status-unit Sv[j] has name j−1, for j = 1, . . . , 2�+1.

An ll/sc object can be used to store the name of a status unit. However, the
name of a status unit grows each time it is recycled. To avoid using large ll/sc
objects, we represent the name of a status unit using an ll/sc object namer,
which stores a process identifier in P (v), and an array, names, of � single-writer
registers, indexed by P (v). At any time, the name of the status unit is the value
of names[namer].

The flag is a single-bit ll/sc object. It is initially 0 and it is reset to 0 whenever
the status-unit changes its name. After all of its associated positions have been
marked, its flag is changed from 0 to 1. This indicates that these positions can be
compressed. After that has been done, the status-unit can be reused.

The progress tree is a fixed full binary tree on � leaves, represented implicitly
by an array progress[1..2�− 1] of �− 1 single-bit ll/sc objects and � single-bit
registers. It enables processes to determine when all the positions, �g, . . . , �g +
�− 1, represented by a status-unit with name g are old at v. Progress trees were
introduced for processes to keep track of their collective progress performing a
collection of tasks [4,7].

When a status-unit is reused, its progress tree also needs to be reused. Because
it has 2�− 1 fields, it would take too much time to reinitialize all of them to 0.

Efficient Fetch-and-Increment 25

Thus, we need an implementation of a progress tree that can be reused without
being reinitialized. This is discussed in Section 3.3.

Each node of the tree Av stores the name of one status-unit. The index of the
status-unit with that name is stored as auxiliary data. Processes make updates
to Av similarly to the way they make updates to Tv. Initially, Av stores the
initial names of all 2�+ 1 status-units (i.e., name j − 1 and auxiliary data j for
status-unit j, 1 ≤ j ≤ 2�+ 1).

2�+ 1

Dv

0

0

1
1

1

1

progress names namer flag

1 0 0 1 0 0 9 0 2 0
0 0 0 1 1 1 0 0 1 0
1 1 1 1 1 2 12 0 2 1
0 0 0 0 0 13 13 13 1 0
0 0 0 0 0 4 0 0 1 1
0 0 0 0 0 17 17 16 2 1
1 1 0 1 1 18 17 18 1 0

2�− 1

Av

1 2 9 1 13 4 18 7

4 5 17 6

12 3

�

Fig. 2. An example of a deletion structure Δ(v) for � = 3

Figure 2 presents an example of a deletion structure for a node v of τ with
� = 3 leaves in its subtree. The j’th row in the table represents the status-unit
Sv[j], for j = 1, . . . , 7 = 2� + 1. Its name is indicated in bold. The tree on the
left is Av and the tree on the right is Dv.

3.3 Reusable Progress Trees

A reusable progress tree is represented implicitly using an array of length 2�− 1
(as in a binary heap). We will use leaf(m) to denote the location of the m’th leaf
in this array and use parent(u), left(u), and right(u) to represent the locations
of the parent, left child, and right child, respectively, of node u.

Each node of the progress tree stores a single bit. When the flag of a status-
unit is 1, all bits of its progress tree are the same. Before any nodes in the
progress tree are changed, the flag is reset to 0. Only the process that received
position g� +m − 1 can change the value of leaf(m) in the progress tree of the
status-unit with name g. Say it changes this bit from 1− b to b. After doing so,
the process progresses up the tree, setting the bit at each ancestor of leaf(m) to
b, if the bits at both of the children of that ancestor are b. Thus, an internal
node of the tree is changed only after all of the leaves in its subtree have been
changed. When the bit at the root of the progress tree changes to b, all of the
bits in the tree are b and the flag can be changed from 0 to 1. After that, the
flag is not reset to 0 again until namer is changed.

A process that is progressing up the tree, but falls asleep for a long time,
should not change bits in the progress tree of a status-unit that has since
changed its name. To ensure this, each bit corresponding to a non-leaf node
of the progress tree is an ll/sc object. Before changing its leaf, the process
performs ll(namer). To change the bit at an internal node u to b, the process

26 F. Ellen, V. Ramachandran, and P. Woelfel

performs ll(u) followed by vl(namer) and only performs sc(u, b) and continues
to parent(u) if the validation indicates that namer has not been updated. If
the validation is unsuccessful, the process is done, since the bit at the root has
already been changed to b. After a process changes the bit at the root of the
progress tree to b, it performs ll(flag) and vl(namer) to verify that flag has
value 0 and namer has not changed. If successful, it then performs sc(flag, 1)
to change flag to 1.

Pseudocode is presented on lines 1–10 of Figure 3.

1 u ← leaf(m)
2 b ← ¬Sv [j].progress[u]
3 ll(Sv [j].namer)

%Change the mark at leaf(m)
4 Sv[j].progress[u] ← b
5 while u �= root do
6 if Sv[j].progress[sibling(u)] = ¬b then return
7 u ← parent(u)
8 ll(Sv[j].progress[u])
9 if ¬ vl(Sv[j].namer) then return
10 sc(Sv[j].progress[u], b)

end while
11 ll(Sv [j].flag)
12 if ¬ vl(Sv[j].namer) then return
13 if ¬ sc(Sv [j].flag, 1) then return
14 u ← j’th leaf of Dv

15 while u �= root do
16 u ← parent(u)
17 ll(Dv [u])
18 if ¬ vl(Sv[j].namer) then return
19 if sc(Dv [u], 1) = false
20 then if ll(Dv [u]) = 0
21 then if ¬ vl(Sv[j].namer) then return
22 sc(Dv[u], 1)

end while
23 return

Fig. 3. Algorithm to mark position �n′ +m− 1 in status-unit Sv[j] with name n′ and
add j to Dv , if necessary

3.4 Deletion Tree Dv

The deletion tree Dv is used to represent the marked status-units, i.e. whose
flags are set. Hence, the positions associated with these status-units can be com-
pressed. This data structure allows a process to efficiently find such a status-unit.
It can also be updated efficiently. It is a fixed full binary tree whose leaves are
Sv[1].f lag, . . . , Sv[2� + 1].f lag. Each non-leaf node is a single-bit ll/sc object,
which is initially 0.

When a process changes the flag of the status unit Sv[j] from 0 to 1, it adds j
to the set by walking up the tree Dv starting from the parent of this leaf, trying

Efficient Fetch-and-Increment 27

to set every ll/sc object it visits on this path to 1. Because the process may
be slow or may fall asleep for a long time, status-unit Sv[j] may be reallocated
before the process reaches the root ofDv. To prevent this from causing problems,
the process proceeds as in a reusable progress tree: For each node u that the
process visits on the path it first executes ll(Dv[u]), then vl(Sv[j].namer) and
finally performs sc(Dv[u], 1) if and only if the validation of Sv[j].namer was
successful. If the validation was successful, but the sc fails and Dv[u] is still
0 after the unsuccessful sc, the process repeats the ll and vl a second time
and, if the validation is now successful, it also performs sc a second time. If the
validations are successful, the process proceeds to parent(u). If any validation is
unsuccessful, Sv[j] has already been recycled and the process does not continue.
Pseudocode appears on lines 11–23 of Figure 3.

While a status-unit Sv[j] is being recycled, its flag gets reset to 0, and j has
to be removed from Dv. To do so, a process proceeds up the tree Dv on the
path from the i’th leaf to the root, trying to reset the bit at each node to 0
until it finds a node which has a child with value 1, indicating the presence
of a leaf with value 1 in its subtree. Specifically, at the non-leaf node u, the
process performs ll(Dv[u]) and, if 0 is returned, it proceeds to parent(u) (or is
done, if u is the root). If u was 1, then the process performs ll(Dv[left(u)]) and
ll(Dv[right(u)]). If at least one of the ll operations returns 1, the process is
done. Otherwise, it performs vl(v). If the validation is unsuccessful, the process
is done. Otherwise, it performs sc(Dv[u], 0). If Dv[u] is still 1 after the sc, the
process repeats the ll’s follows by a vl a second time and, if no child of u has
value 1 and the validation is successful, the process also performs sc a second
time. If u is 0 after either of these sc’s, the process continues to parent(u) (or
is done, if u is the root). If not, some other process adding some value j into Dv

performed ll(Dv[u]) and sc(Dv[u], 1) between the first process’s first ll(Dv[u])
and its last sc(Dv[u], 0). In this case, Sv[j].f lag is a leaf of node u and had value
1 between the ll and sc, and the first process can stop.

More generally, the following invariants will be maintained:

— if a non-leaf node u of Dv is 0, then either there are no leaves with value 1
in the subtree of Dv rooted at u or there is some leaf in its subtree that has
value 1 and the process that last changed this leaf to 1 is at or below node
u, and

— if a non-leaf node u of Dv is 1, then there is a leaf in the subtree of Dv rooted
at u that either has value 1 or is being recycled by some process that is at
or below node u.

Note that multiple status-units can be added to Dv concurrently, but only one
status unit is removed from Dv at a time.

To find a marked status-unit (i.e., one whose flag is set), a process walks down
the tree from the root to a leaf, at each node reading the values of its children,
and proceeding to a child whose value is 1, if such a child exists. If the process
reaches a leaf j with value 1, this means that Sv[j].flag is set. It may happen
that the process gets stuck at a node whose children both have value 0, in which
case the process aborts its attempt to find a marked status-unit.

28 F. Ellen, V. Ramachandran, and P. Woelfel

3.5 Recycling

Status units are recycled one at a time. The node v has a field v.E that indicates
which status unit is to be recycled next. When a process recycles a status unit
Sv[j], it first tries to change its name. Process i begins by writing a proposed
new name into the single-writer register Sv[j].names[i]. Then it tries to change
Sv[j].namer to i by performing ll(Sv[j].namer) followed by sc(Sv[j].namer, i).
If the sc is successful, this changes the name of Sv[j] to the name it proposed.
To prevent a slow process from accidentally changing the name of a status-unit
that has already been recycled, process i performs a vl at v between the ll and
the sc. If the validation is unsuccessful, then the recycling of status-unit Sv[j]
has already been completed and process i does not continue trying to recycle it.

Next, process i tries to change Sv[j].f lag from 1 to 0 by executing
ll(Sv[j].f lag) and, if that returns 1, performing sc(Sv[j].f lag, 0). Again, process
i performs a vl at v between each ll and matching sc to see whether Sv[j] has
finished being recycling and, if so, does not continue to try to recycle it. Then
process i removes j from the set represented by Dv, as described in Section 3.4.

3.6 Overall Algorithm

Instead of the ll/sc object v.T , as in the first implementation, we now have
an ll/sc object with three fields, v.T , v.A, and v.E. To avoid having an ll/sc

object with multiple fields, we could use indirection and, instead, have the ll/sc
object contain a pointer to a record with three registers.

The first two fields contain (pointers to) the trees of Tv and Av, rooted at
v.T and v.A, respectively. The last field contains an element e of {0, . . . , 2�+1}.
When e 	= 0, Sv[e] is a status unit that is ready to be recycled, i.e. it has been
marked, the positions associated with its current name have been compressed,
and there is no node in Av whose key is this name.

The algorithm to perform fi is a modification of the algorithm in Figure 1.
Lines 11 and 23 are replaced by (t, a, e)←ll(v.T, v.A, v.E). Since Tv and Av are
persistent data structures, the trees rooted at t and a do not change during an
iteration of the while loop beginning on line 12.

Before the body of this loop is performed, process i finds the largest name n′′

stored in the tree rooted at a. If process i has previously performed an instance
of fi, it determines the name of the status-unit that is associated with the last
position m′ of i in C(v). Then it searches in the binary search tree rooted at
a for the key with this name. Since position m′ is not yet marked, it can be
shown that a node having this name will be found. Let j′ be the index of the
status-unit, which is also stored in this node. Process i marks m′ as old in Sv[j

′]
and propagates this change up the progress tree, as described in Section 3.3.

If e 	= 0, then process i tries to recycle the status-unit Sv[e] by updating its
name to n′′ + 1, changing Sv[e].f lag from 1 to 0, and deleting e from the set
represented by Dv, as described in Section 3.5.

Next, process i tries to find a status-unit whose flag is 1, using the deletion
treeDv as described in Section 3.4. If it finds such a status unit e′, then process i
compresses the positions associated with the status-unit Sv[e

′] in the tree rooted

Efficient Fetch-and-Increment 29

at t, as described in Section 3.1, and uses the root of the resulting tree in place
of t in line 21. Otherwise, e′ = 0.

If e′ = e = 0, let a′ = a. Otherwise, process i creates a new tree in Av starting
from the tree with root a by adding a node with key n′′+1 and auxiliary data e
(if e 	= 0) and removing the node with key Sv[e

′].names[Sv[e
′].namer] (if e′ 	= 0).

Let a′ denote the root of this tree.
Finally, line 22 in Figure 1 is replaced with sc((v.T, v.A, v.E), (t′, a′, e′)), where

t′ is the result computed on line 21. Note that unless this sc is successful, process
imakes no modifications to the trees of Tv and Av, rooted at v.T and v.A, respec-
tively. However, the changes made by each process to status-units and Dv occur
asynchronously before it attempts this sc at the end of the iteration.

At any point in time, at most 2� of the positions in {0, . . . , |C(v)| − 1} are not
marked: the current position for each process and possibly its previous position.
Since each status-unit is associated with � positions, there are O(�2) positions
represented in the uncompressed portion of the tree in Tv rooted at v.T . It
follows that this tree has O(�2) nodes. We now state our main theorem.

Theorem 2. A wait-free, linearizable, unbounded Fetch&Inc object shared by
p processes can be implemented so that each Fetch&Inc takes O(log2 p) steps
and each READ takes O(1) steps, regardless of the number of Fetch&Inc op-
erations performed. Assuming garbage collection is performed, the number of
registers and LL/SC objects needed is O(p2).

Proof (sketch). The linearization points of fi and read are the same as in the
proof of Theorem 1. Suppose v is a node of τ with � ≤ p leaves in its subtree.
Since O(�) and O(�2) nodes are reachable from any root of a tree in Av and
Tv, respectively, searches and updates in these persistent data structures take
O(log p) steps. Likewise, Dv and the progress trees are fixed balanced trees with
2�+1 and � leaves, respectively, so operations on them also take O(log p) steps.
Since τ has height O(log p), it follows that fi has O(log2 p) step complexity. As
in the first implementation, read can be performed in a constant number of
steps.

Excluding Av, O(�2) registers and ll/sc objects are used to represent Δ(v).
There are O(�2) nodes, each consisting of a constant number of objects, reachable
from the roots of Av and Tv. Summing over all internal nodes v of τ gives a total

of O
(∑�log2 p�−1

j=0 2j(2�log2 p�−j)2
)
= O(p2) objects.

Although only a bounded number of nodes in Av and Tv are reachable from
v.A and v.T , the total number of nodes in these persistent data structures grows
with n. However, full persistence is not needed by our implementation: When a
node is no longer reachable from v or the local pointer of any process, it can be
removed to save space, since it will not be accessed from then on. At any point
in time, each process has a constant number of local pointers into persistent
structures and O(p2) nodes are reachable from each of them. Thus, the total
number of registers and ll/sc objects used by our implementation is O(p3),
assuming garbage collection is performed.

30 F. Ellen, V. Ramachandran, and P. Woelfel

4 Extensions

Our implementations of Fetch&Inc can be extended to Fetch&Add by hav-
ing each element of the sequence C(v) contain the input to each instance of fa,
together with the identifier of the process that performed the instance. Likewise,
each block of I(v) can be augmented with the sum of the inputs to all instances
occurring in or before this block and that are from the same side. Details of this
algorithm and a proof of its correctness will appear in the full version of the
paper. Ways to remove nodes from Av and Tv that are no longer reachable will
also be addressed.

References

1. Afek, Y., Dauber, D., Touitou, D.: Wait-free made fast. In: Proc. of 27th ACM
STOC, pp. 538–547 (1995)

2. Afek, Y., Weisberger, E., Weisman, H.: A completeness theorem for a class of
synchronization objects. In: Proc. of 12th PODC, pp. 159–170 (1993)

3. Alistarh, D., Aspnes, J., Censor-Hillel, K., Gilbert, S., Zadimoghaddam, M.:
Optimal-time adaptive strong renaming, with applications to counting. In: Proc.
of 30th PODC, pp. 239–248 (2011)

4. Anderson, R.J., Woll, H.: Algorithms for the certified write-all problem. SIAM J.
Comput. 26(5), 1277–1283 (1997)

5. Anderson, T.: The performance of spin lock alternatives for shared-money multi-
processors. IEEE Trans. Parallel Distrib. Syst. 1(1), 6–16 (1990)

6. Aspnes, J., Herlihy, M., Shavit, N.: Counting networks. J. of the ACM 41(5), 1020–
1048 (1994)

7. Buss, J.F., Kanellakis, P.C., Ragde, P., Shvartsman, A.A.: Parallel algorithms with
processor failures and delays. J. Algorithms 20(1), 45–86 (1996)

8. Clements, A.T., Kaashoek, M.F., Zeldovich, N.: Scalable address spaces using RCU
balanced trees. In: 17th ASPLOS, pp. 199–210 (2012)

9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
MIT Press (2001)

10. Freudenthal, E., Gottlieb, A.: Process coordination with fetch-and-increment. In:
Proc. of ASPLOS-IV, pp. 260–268 (1991)

11. Goodman, J., Vernon, M., Woest, P.: Efficent synchronization primitives for large-
scale cache-coherent multiprocessors. In: Proc. of ASPLOS-III, pp. 64–75 (1989)

12. Gottlieb, A., Lubachevsky, B., Rudolph, L.: Basic techniques for the efficient coor-
dination of very large numbers of cooperating sequential processors. ACM Trans.
Program. Lang. Syst. 5(2), 164–189 (1983)

13. Herlihy, M.: Wait-free synchronization. ACM Trans. Program. Lang. Syst. 13(1),
124–149 (1991)

14. Herlihy, M.: A methodology for implementing highly concurrent objects. ACM
Trans. Program. Lang. Syst. 15(5), 745–770 (1993)

15. Herlihy, M., Shavit, N., Waarts, O.: Linearizable counting networks. Distr.
Comp. 9(4), 193–203 (1996)

16. Jayanti, P.: A time complexity lower bound for randomized implementations of
some shared objects. In: Proc. of 17th PODC, pp. 201–210 (1998)

17. Jayanti, P., Tan, K., Toueg, S.: Time and space lower bounds for nonblocking
implementations. SIAM J. Comput. 30(2), 438–456 (2000)

Show No Weakness:
Sequentially Consistent Specifications of TSO Libraries

Alexey Gotsman1, Madanlal Musuvathi2, and Hongseok Yang3

1 IMDEA Software Institute
2 Microsoft Research
3 University of Oxford

Abstract. Modern programming languages, such as C++ and Java, provide a se-
quentially consistent (SC) memory model for well-behaved programs that follow
a certain synchronisation discipline, e.g., for those that are data-race free (DRF).
However, performance-critical libraries often violate the discipline by using low-
level hardware primitives, which have a weaker semantics. In such scenarios, it is
important for these libraries to protect their otherwise well-behaved clients from
the weaker memory model.

In this paper, we demonstrate that a variant of linearizability can be used to
reason formally about the interoperability between a high-level DRF client and a
low-level library written for the Total Store Order (TSO) memory model, which
is implemented by x86 processors. Namely, we present a notion of linearizability
that relates a concrete library implementation running on TSO to an abstract spec-
ification running on an SC machine. A client of this library is said to be DRF if its
SC executions calling the abstract library specification do not contain data races.
We then show how to compile a DRF client to TSO such that it only exhibits SC
behaviours, despite calling into a racy library.

1 Introduction

Modern programming languages, such as C++ [3,2] and Java [11], provide memory
consistency models that are weaker than the classical sequential consistency (SC) [10].
Doing so enables these languages to support common compiler optimisations and to
compile efficiently to modern architectures, which themselves do not guarantee SC.
However, programming on such weak memory models can be subtle and error-prone.
As a compromise between programmability and performance, C++ and Java provide
data-race free (DRF) memory models, which guarantee SC for programs without data
races, i.e., those that protect data accesses with an appropriate use of high-level syn-
chronisation primitives defined in the language, such as locks and semaphores1.

While DRF memory models protect most programmers from the counter-intuitive
effects of weak memory models, performance-minded programmers often violate the
DRF discipline by using low-level hardware primitives. For instance, it is common
for a systems-level C++ program, such as an operating system kernel, to call into
highly-optimised libraries written in assembly code. Moreover, the very synchronisa-
tion primitives of the high-level language that programmers use to ensure DRF are

1 C++ [3,2] also includes special weak atomic operations that have a weak semantics. Thus, a
C++ program is guaranteed to be SC only if it is DRF and avoids the use of weak atomics.

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 31–45, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

32 A. Gotsman, M. Musuvathi, and H. Yang

usually implemented in its run-time system in an architecture-specific way. Thus, it be-
comes necessary to reason about the interoperability between low-level libraries native
to a particular hardware architecture and their clients written in a high-level language.
While it is acceptable for expert library designers to deal with weak memory models,
high-level language programmers need to be protected from the weak semantics.

In this paper, we consider this problem for libraries written for the Total Store Order
(TSO) memory model, used by x86 processors (and described in Section 2). TSO allows
for the store buffer optimisation implemented by most modern processors: writes per-
formed by a processor are buffered in a processor-local store buffer and are flushed into
the memory at some later time. This complicates the interoperability between a client
and a TSO library. For instance, the client cannot assume that the effects of a library
call have taken place by the time the call returns. Our main contributions are:

– a notion of specification of native TSO libraries in terms of the concepts of a
high-level DRF model, allowing the model to be extended to accommodate such
libraries, while preserving the SC semantics; and

– conditions that a compiler has to satisfy in order to implement the extended memory
model correctly.

Our notion of library specification is based on linearizability [9], which fixes a cor-
respondence between a concrete library and an abstract one, the latter usually imple-
mented atomically and serving as a specification for the former. To reason formally
about the interoperability between a high-level DRF client and a low-level TSO library,
we propose a variant of linearizability called TSO-to-SC linearizability (Section 3). It
relates a concrete library implementation running on the TSO memory model to its
abstract specification running on SC. As such, the abstract specification describes the
behaviour of the library in a way compatible with a DRF memory model. Instead of re-
ferring to hardware concepts, it fakes the effects of the concrete library implementation
executing on TSO by adding extra non-determinism into SC executions. TSO-to-SC
linearizability is compositional and allows soundly replacing a library by its SC speci-
fication in reasoning about its clients.

TSO-to-SC linearizability allows extending DRF models of high-level languages to
programs using TSO libraries by defining the semantics of library calls using their SC
specifications. In particular, this allows generalising the notion of data-race freedom
to such programs: a client using a TSO library is DRF if so is every SC execution of
the same client using the SC library specification. Building on this, we propose re-
quirements that a compiler should satisfy in order to compile such a client onto a TSO
machine correctly (Section 5), and establish the Simulation Theorem (Theorem 13, Sec-
tion 5), which guarantees that a correctly compiled DRF client produces only SC be-
haviours, despite calling into a native TSO library. The key benefit of our framework is
that both checking the DRF property of the client and checking the compiler correct-
ness does not require TSO reasoning. Reasoning about weak memory is only needed
to establish the TSO-to-SC linearizability of the library implementation. However, this
also makes the proof of the Simulation Theorem challenging.

Our results make no difference between custom-made TSO libraries and TSO im-
plementations of synchronisation primitives built into the run-time system of the high-
level language. Hence, TSO-to-SC linearizability and the Simulation Theorem provide

Show No Weakness: Sequentially Consistent Specifications of TSO Libraries 33

conditions ensuring that a given TSO implementation of the run-time system for a DRF
language has the desired semantics and interacts correctly with its compilation.

Recently, a lot of attention has been devoted to criteria for checking whether a TSO
program produces only sequentially consistent behaviours [12,4,1]. Such criteria are
less flexible than TSO-to-SC linearizability, as they do not allow a program to have
internal non-SC behaviours; however, they are easier to check. We therefore also anal-
yse which of the criteria can be used for establishing the conditions required by our
framework (Sections 4 and 6).

Proofs of all the theorems stated in the paper are given in [7, Appendix C].

2 TSO Semantics

Due to space constraints, we present the TSO memory model only informally; a formal
semantics is given in [7, Appendix A]. The most intuitive way to explain TSO is using
an abstract machine [13]. Namely, consider a multiprocessor with n CPUs, indexed by
CPUid = {1, . . . ,NCPUs}, and a shared memory. The state of the memory is described
by an element of Heap = Loc → Val, where Loc and Val are unspecified sets of
locations and values, such that Loc ⊆ Val. Each CPU has a set of general-purpose
registers Reg = {r1, . . . , rm} storing values from Val. In TSO, processors do not write
to memory directly. Instead, every CPU has a store buffer, which holds write requests
that were issued by the CPU, but have not yet been flushed into the shared memory.
The state of a buffer is described by a sequence of location-value pairs.

The machine executes programs of the following form:

L ::= {m = Cm | m ∈M} C(L) ::= let L in C1 ‖ . . . ‖ CNCPUs

A program C(L) consists of a declaration of a library L, implementing methods m ∈
M ⊆ Method by commands Cm, and its client, specifying a command Ct to be run by
the (hardware) thread in each CPU t. For the above program we let sig(L) = M . We
assume that the program is stored separately from the memory. The particular syntax
of commands Ct and Cm is of no concern for understanding the main results of this
paper and is deferred to [7, Appendix A]. We consider programs using a single library
for simplicity only; we discuss the treatment of multiple libraries in Section 3.

The abstract machine can perform the following transitions:

– A CPU wishing to write a value to a memory location adds an appropriate entry to
the tail of its store buffer.

– The entry at the head of the store buffer of a CPU is flushed into the memory at a
non-deterministically chosen time. Store buffers thus have the FIFO ordering.

– A CPU wishing to read from a memory location first looks at the pending writes
in its store buffer. If there are entries for this location, it reads the value from the
newest one; otherwise, it reads the value directly from the memory.

– Modern multiprocessors provide commands that can access several memory loca-
tions atomically, such as compare-and-swap (CAS). To model this in our machine,
a CPU can execute a special lock command, which makes it the only CPU able
to execute commands until it executes an unlock command. The unlock command

34 A. Gotsman, M. Musuvathi, and H. Yang

has a built-in memory barrier, forcing the store buffer of the CPU executing it to
be flushed completely. This can be used by the programmer to recover SC when
needed.

– Finally, a CPU can execute a command affecting only its registers. In particular, it
can call a library method or return from it (we disallow nested method calls).

The behaviour of programs running on TSO can sometimes be counter-intuitive. For
example, consider two memory locations x and y initially holding 0. On TSO, if two
CPUs respectively write 1 to x and y and then read from y and x, as in the following
program, it is possible for both to read 0 in the same execution:

x = y = 0;

x = 1; b = y; ‖ y = 1; a = x;

{a = b = 0}

Here a and b are local variables of the corresponding threads, stored in CPU registers.
The outcome shown cannot happen on an SC machine, where both reads and writes ac-
cess the memory directly. On TSO, it happens when the reads from y and x occur before
the writes to them have propagated from the store buffers of the corresponding CPUs
to the main memory. Note that executing the writes to x and y in the above program
within lock..unlock blocks (which on x86 corresponds to adding memory barriers after
them) would make it produce only SC behaviours.

We describe computations of the machine using traces, which are finite sequences
of actions of the form

ϕ ::= (t, read(x, u)) | (t,write(x, u)) | (t, flush(x, u)) |
(t, lock) | (t, unlock) | (t, callm(r)) | (t, ret m(r))

where t ∈ CPUid, x ∈ Loc, u ∈ Val, m ∈ Method and r ∈ Reg → Val. Here
(t,write(x, u)) corresponds to enqueuing a pending write of u to the location x into the
store buffer of CPU t, (t, flush(x, u)) to flushing a pending write of u to the location
x from the store buffer of t into the shared memory. The rest of the actions have the
expected meaning. Of transitions by a CPU affecting solely its registers, only calls and
returns are recorded in traces. We assume that parameters and return values of library
methods are passed via CPU registers, and thus record their values in call and return
actions. We use the standard notation for traces: τ(i) is the i-th action in the trace τ , |τ |
is its length, and τ |t its projection to actions by CPU t. We denote the concatenation of
two traces τ1 and τ2 with τ1τ2.

Given a suitable formalisation of the abstract machine transitions, we can define
the set of traces �C(L)�TSO generated by executions of the program C(L) on TSO
[7, Appendix A]. For simplicity, we do not consider traces that have a (t, lock) action
without a matching (t, unlock) action.

To give the semantics of a program on the SC memory model, we do not define
another abstract machine; instead, we identify the SC executions of a program with
those of the TSO machine that flush all writes immediately. Namely, we let �C(L)�SC
be the set of sequentially consistent traces from �C(L)�TSO , defined as follows.

DEFINITION 1. A trace is sequentially consistent (SC), if every action (t,write(x, u))
in it is immediately followed by (t, flush(x, u)).

Show No Weakness: Sequentially Consistent Specifications of TSO Libraries 35

We assume that the set of memory locations Loc is partitioned into those owned by
the client (CLoc) and the library (LLoc): Loc = CLoc � LLoc. The client C and the
library L are non-interfering in C(L), if in every computation from �C(L)�TSO , com-
mands performed by the client (library) code access only locations from CLoc (LLoc).
In the following, we consider only programs where the client and the library are non-
interfering. We provide pointers to lifting this restriction in Section 7.

3 TSO-to-SC Linearizability

We start by presenting our notion of library specification, discussing its properties and
giving example specifications. The notion of specification forms the basis for interop-
erability conditions presented in Section 5.

TSO-to-SC Linearizability. When defining library specifications, we are not interested
in internal library actions recorded in traces, but only in interactions of the library with
its client. We record such interactions using histories, which are traces including only
interface actions of the form (t, call m(r)) or (t, ret m(r)), where t ∈ CPUid, m ∈
Method, r ∈ Reg → Val. Recall that r records the values of registers of the CPU that
calls the library method or returns from it, which serve as parameters or return values.
We define the history history(τ) of a trace τ as its projection to interface actions and
lift history to sets T of traces pointwise: history(T) = {history(τ) | τ ∈ T }. In the
following, we write for an expression whose value is irrelevant.

DEFINITION 2. The linearizability relation is a binary relation � on histories de-
fined as follows: H � H ′ if ∀t ∈ CPUid. H |t = H ′|t and there is a bijection
π : {1, . . . , |H |} → {1, . . . , |H ′|} such that ∀i.H(i) = H ′(π(i)) and ∀i, j. i < j ∧
H(i) = (, ret) ∧H(j) = (, call)⇒ π(i) < π(j).

That is, H ′ linearizes H when it is a permutation of the latter preserving the order of
actions within threads and non-overlapping method invocations.

To generate the set of all histories of a given library L, we consider its most gen-
eral client, whose hardware threads on every CPU repeatedly invoke library meth-
ods in any order and with any parameters possible. Its formal definition is given in
[7, Appendix B]. Informally, assume sig(L) = {m1, . . . ,ml}. Then MGC(L) =
(let L in Cmgc

1 ‖ . . . ‖ Cmgc
NCPUs), where for all t, the command Cmgc

t behaves as

while (true) { havoc; if (*) m1; else if (*) m2; ... else ml; }

Here * denotes non-deterministic choice, and havoc sets all registers storing method
parameters to arbitrary values. The set of traces �MGC(L)�TSO includes all library be-
haviours under any possible client. We write �L�TSO for �MGC(L)�TSO and �L�SC for
�MGC(L)�SC. We can now define what it means for a library executing on SC to be a
specification for another library executing on TSO.

DEFINITION 3. For libraries L1 and L2 such that sig(L1) = sig(L2), we say that
L2 TSO-to-SC linearizes L1, written L1 �TSO→SC L2, if ∀H1 ∈ history(�L1�TSO).
∃H2 ∈ history(�L2�SC). H1 � H2.

36 A. Gotsman, M. Musuvathi, and H. Yang

word x=1;

void acquire()

{

while(1) {

lock;

if (x==1) {

x=0;

unlock;

return;

}

unlock;

while(x==0);

}

}

void release()

{

x=1;

}

int tryacquire()

{

lock;

if (x==1) {

x=0; unlock;

return 1;

}

unlock;

return 0;

}

word x=1;

void acquire()

{

lock;

assume(x==1);

x=0;

unlock;

}

void release()

{

x=1;

}

int tryacquire()

{

lock;

if (x==1 && *)

{

x=0;

unlock;

return 1;

}

unlock;

return 0;

}

(a) (b)

Fig. 1. (a) Lspinlock: a test-and-test-and-set spinlock implementation on TSO; (b) L�
spinlock: its SC

specification. Here * denotes non-deterministic choice. The assume(E) command acts as a filter
on states, choosing only those where E evaluates to non-zero values (see [7, Appendix A]).

Thus, L2 linearizes L1 if every history of the latter on TSO may be reproduced in a
linearized form by the former on SC. When the library L2 is implemented atomically,
and so histories in history(�L2�SC) are sequential, Definition 3 becomes identical to the
standard linearizability [9], except the libraries run on different memory models.

Example: Spinlock. Figure 1a shows a simple implementation Lspinlock of a spinlock
on TSO. We consider only well-behaved clients of the spinlock, which, e.g., do not
call release without having previously called acquire (this can be easily taken into
account by restricting the most general client appropriately). The tryacquire method
tries to acquire the lock, but, unlike acquire, does not wait for it to be released if it is
busy; it just returns 0 in this case. For efficiency, release writes 1 to x without execut-
ing a memory barrier. This optimisation is used, e.g., by implementations of spinlocks
in the Linux kernel [5]. On TSO this can result in an additional delay before the write re-
leasing the lock becomes visible to another CPU trying to acquire it. As a consequence,
tryacquire can return 0 even after the lock has actually been released. For example,
the following is a valid history of the spinlock implementation on TSO, which cannot
be produced on an SC memory model:

(1, call acquire) (1, ret acquire) (1, call release) (1, ret release)

(2, call tryacquire) (2, ret tryacquire(0)). (1)

Figure 1b shows an abstract SC implementation L�
spinlock of the spinlock capturing the

behaviours of its concrete TSO implementation, such as the one given by the above
history. Here release writes 1 to x immediately. To capture the effects of the concrete
library implementation running on TSO, the SC specification is weaker than might be
expected: tryacquire in Figure 1b can spuriously return 0 even when x contains 1.

Show No Weakness: Sequentially Consistent Specifications of TSO Libraries 37

PROPOSITION 4. Lspinlock �TSO→SC L�
spinlock.

The same specification is also suitable for more complicated spinlock implementations
[7, Appendix B]. We note that the weak specification of tryacquire has been adopted
by the C++ memory model [3] to allow certain compiler optimisations. As we show in
Section 5, linearizability with respect to an SC specification ensures the correctness of
implementations of tryacquire and other synchronisation primitives comprising the
run-time system of a DRF language. Our example thus shows that the specification used
in C++ is also needed to capture the behaviour of common spinlock implementations.

Correctness of TSO-to-SC Linearizability. A good notion of library specification has
to allow replacing a library implementation with its specification in reasoning about a
client. We now show that the notion of TSO-to-SC linearizability proposed above sat-
isfies a variant of this property. To reason about clients of TSO libraries with respect
to SC specifications of the latter, we consider a mixed TSO/SC semantics of programs,
which executes the client on TSO and the library on SC. That is, read and write com-
mands by the library code bypass the store buffer and access the memory directly (the
formal semantics is given in [7, Appendix B]). We denote the set of traces of a program
C(L) in this semantics with �C(L)�TSO/SC.

To express properties of a client preserved by replacing the implementation of the
library it uses with its specification, we introduce the following operation. For a trace τ
of C(L), let client(τ) be its projection to actions relevant to the client, i.e., executed by
the client code or corresponding to flushes of client entries in store buffers. Formally,
we include an action ϕ = (t,) such that τ = τ ′ϕτ ′′ into the projection if:

– ϕ is an interface action, i.e., a call or a return; or

– ϕ is not a flush or an interface action, and it is not the case that τ |t =
τ1 (t, call) τ2ϕτ3, where τ2 does not contain a (t, ret) action; or

– ϕ = (, flush(x,)) for some x ∈ CLoc.

We lift client to sets T of traces pointwise: client(T) = {client(τ) | τ ∈ T }.

THEOREM 5 (Abstraction to SC). IfL1 �TSO→SC L2, then client(�C(L1)�TSO) ⊆
client(�C(L2)�TSO/SC).

According to Theorem 5, while reasoning about a client C(L1) of a TSO library L1,
we can soundly replace L1 with its SC version L2 linearizing L1: if a trace property
over client actions holds of C(L2), it will also hold of C(L1). The theorem can thus be
used to simplify reasoning about TSO programs. Although Theorem 5 is not the main
contribution of this paper, it serves as a sanity check for our definition of linearizability,
and is useful for discussing our main technical result in Section 5.

Compositionality of TSO-to-SC Linearizability. The following corollary of Theo-
rem 5 states that, like the classical notion of linearizability [9], ours is compositional:
if several non-interacting libraries are linearizable, so is their composition. This allows
extending the results presented in the rest of the paper to programs with multiple li-
braries. Formally, consider libraries L1, . . . , Lk with disjoint sets of declared methods
and assume that the set of library locations LLoc is partitioned into locations belonging

38 A. Gotsman, M. Musuvathi, and H. Yang

to every library: LLoc = LLoc1 � . . . � LLock. We assume that, in any program, a li-
brary Lj accesses only locations from LLocj . We let L, respectively, L� be the library
implementing all of the methods from L1, . . . , Lk, respectively, L�

1, . . . , L
�
k.

COROLLARY 6 (Compositionality). If ∀j. Lj �TSO→SC L�
j , then L �TSO→SC L�.

Comparison with TSO-to-TSO Linearizability. As the abstract library implementa-
tion in TSO-to-SC linearizability executes on SC, it does not describe how the concrete
library implementation uses store buffers. TSO libraries can also be specified by ab-
stract implementations running on TSO, which do describe this usage. In [6], we pro-
posed the notion of TSO-to-TSO linearizability�TSO→TSO between two TSO libraries,
which validates the following version of the Abstraction Theorem.

THEOREM 7 (Abstraction to TSO). If L1 �TSO→TSO L2, then client(�C(L1)�TSO) ⊆
client(�C(L2)�TSO).

The particularities of TSO-to-TSO linearizability are not relevant here; suffice it to
say that the definition requires that the two libraries use store buffers in similar ways,
and to this end, enriches histories with extra actions. The spinlock from Figure 1a has
the abstract TSO implementation with acquire and release implemented as in Fig-
ure 1b, and tryacquire, as in Figure 1a (the implementation and the specification of
tryacquire are identical in this case because the spinlock considered is very simple;
see [7, Appendix B] for more complicated cases). Since the specification executes on
TSO, the write to x in release can be delayed in the store buffer. In exchange, the
specification of tryacquire does not include spurious failures.

Both TSO-to-SC and TSO-to-TSO linearizability validate versions of the Abstrac-
tion Theorem (Theorems 5 and 7). The theorem validated by TSO-to-SC is weaker than
the one validated by TSO-to-TSO: a property of a client of a library may be provable
after replacing the latter with its TSO specification using Theorem 7, but not after re-
placing it with its SC specification using Theorem 5. Indeed, consider the following
client of the spinlock in Figure 1a, where a and b are local to the second thread:

u = 0;

acquire(); release(); u = 1; a = u; b = tryacquire();

{a = 1 ⇒ b = 1}

The postcondition shown holds of the program: since store buffers in TSO are FIFO, if
the write to u has been flushed, so has been the write to x in release, and tryacquire
has to succeed. However, it cannot be established after we apply Theorem 5 with the
spinlock specification in Figure 1b, as the abstract implementation of tryacquire re-
turns an arbitrary result when the lock is free. The postcondition can still be established
after we apply Theorem 7 with the TSO specification of the spinlock given in Sec-
tion 3, since the specification allows us to reason about the correlations in the use of
store buffers by the library and the client. To summarise, SC specifications of TSO
libraries trade the weakness of the memory model for the weakness of the specification.

Example: Seqlock. We now consider an example of a TSO library whose SC specifica-
tion is more subtle than that of a spinlock. Figure 2 presents a simplified version Lseqlock

Show No Weakness: Sequentially Consistent Specifications of TSO Libraries 39

word x1 = 0, x2 = 0, c = 0;

write(in word d1, in word d2) {

c++;

x1 = d1; x2 = d2;

c++;

}

read(out word d1, out word d2) {

word c0;

do {

do { c0 = c; } while (c0 % 2);

d1 = x1; d2 = x2;

} while (c != c0);

}

Fig. 2. Lseqlock: a TSO seqlock implementation

of a seqlock [5]—an efficient implementation of a readers-writer protocol based on ver-
sion counters used in the Linux kernel. Two memory addresses x1 and x2 make up a
conceptual register that a single hardware thread can write to, and any number of other
threads can read from. A version number is stored at c. The writing thread maintains
the invariant that the version is odd during writing by incrementing it before the start of
and after the finish of writing. A reader checks that the version number is even before
attempting to read. After reading, it checks that the version has not changed, thereby en-
suring that no write has overlapped the read. Neither write nor read includes a barrier,
so that writes to x1, x2 and c may not be visible to readers immediately.

An SC specification for the seqlock is better given not by the source code of an ab-
stract implementation, like in the case of a spinlock, but by explicitly describing the set
of its histories history(�L2�SC) to be used in Definition 2 (an operational specification
also exists, but is more complicated; see [7, Appendix B]). We now adjust the definition
of TSO-to-SC linearizability to accept a library specification defined in this way.

Specifying Libraries by Sets of Histories. For a TSO libraryL and a set of histories T ,
we let L �TSO→SC T , if ∀H1 ∈ history(�L�TSO). ∃H2 ∈ T.H1 � H2. The formula-
tion of Theorem 5 can be easily adjusted to accommodate this notion of linearizability.

We now give a specification to the seqlock as a set of histories Tseqlock. First of all,
methods of a seqlock should appear to take effect atomically. Thus, in histories from
Tseqlock, if call action has a matching return, then the latter has to follow it immediately.
Consider a history H0 satisfying this property. Let writes(H0) be the sequence of pairs
(d1, d2) from actions of the form (, call write(d1, d2)) in H0, and reads(H0), the
sequence of (d1, d2) from actions of the form (, ret read(d1, d2)). For a sequence α,
let α† be its stutter-closure, i.e., the set of sequences obtained from α by repeating some
of its elements. We lift the stutter-closure operation to sets of sequences pointwise.
Given the above definitions, a history H belongs to Tseqlock if for every prefix H0 of
H , reads(H0) is a subsequence of a sequence from ((0, 0)writes(H0))

†. Recall that a
seqlock allows only a single thread to call write. This specification thus ensures that
readers see the writes in the order it issues them, but possibly with a delay.
PROPOSITION 8. Lseqlock �TSO→SC Tseqlock.

4 TSO-to-SC Linearizability and Robustness

One way to simplify reasoning about a TSO program is by checking that it is robust,
meaning that it produces only those externally visible behaviours that could also be ob-
tained by running it on an SC machine. Its properties can then be proved by considering

40 A. Gotsman, M. Musuvathi, and H. Yang

only its SC executions. Several criteria for checking robustness of TSO programs have
been proposed recently [12,4,1]. TSO-to-SC linearizability is more flexible than such
criteria: since an abstract library implementation can have different source code than
its concrete implementation, it allows the latter to have non-SC behaviours. However,
checking the requirements of a robustness criterion is usually easier than proving lin-
earizability. We therefore show how one such criterion, data-race freedom, can be used
to simplify establishing TSO-to-SC linearizability when it is applicable. On the way, we
introduce some of the technical ingredients necessary for our main result in Section 5.

We first define the notion of DRF for the low-level machine of Section 2. Our in-
tention is that the DRF of a program must ensure that it produces only SC behaviours
(see Theorem 10 below). All robustness criteria proposed so far have assumed a closed
program P consisting of a client that does not use a library. We define the robustness of
libraries using the most general client of Section 3. For a trace fragment τ with all ac-
tions by a thread t, we denote with block(τ) a trace of one of the following two forms:
τ or (t, lock) τ1 τ τ2 (t, unlock), where τ1, τ2 do not contain (t, unlock).

DEFINITION 9. A data race is a fragment of an SC trace of the form
block(τ) (t′,write(x,)) (t′, flush(x,)), where τ ∈ {(t,write(x,)) (t, flush(x,)),
(t, read(x,))} and t 	= t′. A program P is data-race free (DRF), if so are traces
in �P �SC; a library L is DRF, if so are traces in �L�SC.

Thus, a race is a memory access followed by a write to the same location, where the
former, but not the latter, can be in a lock..unlock block. This is a standard notion of
a data race with one difference: even though (t, read(x)) (t′,write(x)) (t′, flush(x)) is
a race, (t, read(x)) (t′, lock) (t′,write(x)) (t′, flush(x)) (t′, unlock) is not. We do not
consider conflicting accesses of the latter kind (e.g., with the write inside a CAS, which
includes a memory barrier) as a race, since they do not lead to a non-SC behaviour.

We adopt the following formalisation of externally visible program behaviours. As-
sume a set VLoc ⊆ CLoc of client locations whose values in memory can be ob-
served during a program execution by its environment. Visible actions are those of
the form (t, read(x, u)) or (t, flush(x, u)), where x ∈ VLoc. We let visible(τ) be
the projection of τ to visible actions, and lift visible to sets T of traces pointwise:
visible(T) = {visible(τ) | τ ∈ T }. Visible locations are protected in C(L), if every
visible action in a trace from �C(L)�TSO occurs within a lock..unlock block. On x86,
this requires a memory barrier after every output action, thus ensuring that it becomes
visible immediately. The following is a folklore robustness result.

THEOREM 10 (Robustness via DRF). If P is DRF and visible locations are protected
in it, then visible(�P �TSO) ⊆ visible(�P �SC).

Note that here DRF is checked on the SC semantics and at the same time implies that
the program behaves SC. This circularity is crucial for using results such as Theorem 10
to simplify reasoning, as it allows not considering TSO executions at all.

THEOREM 11 (Linearizability via DRF). If L is DRF, then L �TSO→SC L.

This allows using classical linearizability [9] to establish TSO-to-SC one by linearizing
the library L running on SC to its SC specification L�, thus yielding L �TSO→SC L�.
This can then be used for modular reasoning by applying Theorem 5.

Show No Weakness: Sequentially Consistent Specifications of TSO Libraries 41

Many concurrent algorithms on TSO (e.g., the classical Treiber’s stack) are DRF,
as they modify the data structure using only CAS operations, which include a memory
barrier. Hence, their linearizability with respect to SC specifications can be established
using Theorem 11. However, the DRF criterion may sometimes be too strong: e.g., in
the spinlock implementation from Figure 1a, the read from x in acquire and the write
to it in release race. We consider more flexible robustness criteria in Section 6.

5 Conditions for Correct Compilation

Our goal in this section is to extend DRF memory models of high-level languages to the
case of programs using native TSO libraries, and to identify conditions under which the
compiler implements the models correctly. We start by presenting the main technical
result of the paper that enables this—the Simulation Theorem.

Simulation Theorem. Consider a program C, meant to be compiled from a high-level
language with a DRF model, which uses a native TSO library L. We wish to determine
the conditions under which the program produces only SC behaviours, despite possible
races inside L. To this end, we first generalise DRF on TSO (Definition 9) to such
programs. We define DRF with respect to an SC specification L� of L.

DEFINITION 12. C(L�) is DRF if so is any trace from client(�C(L�)�SC).

This allows races inside the library code, as its internal behaviour is of no concern to
the client. Note that checking DRF does not require reasoning about weak memory.

THEOREM 13 (Simulation). If L �TSO→SC L�, C(L�) is DRF, and visible locations
are protected in C(L), then visible(�C(L)�TSO) ⊆ visible(�C(L�)�SC).

Thus, the behaviour of a DRF client of a TSO library can be reproduced when
the client executes on the SC memory model and uses a TSO-to-SC linearization of
the library implementation. Note that the DRF of the client is defined with respect to
the SC specification L� of the TSO library L. Replacing L by L� allows hiding non-SC
behaviours internal to the library, which are of no concern to the client. Corollary 6
allows applying the theorem to clients using multiple libraries.

Extending Memory Models of High-Level Languages. We describe a method for
extending a high-level memory model to programs with native TSO libraries in general
terms, without tying ourselves to its formalisation. We give an instantiation for the case
of the C++ memory model (excluding weak atomics) in [7, Appendix B]. Consider a
high-level language with a DRF memory model. That is, we assume an SC semantics for
the language, and a notion of DRF on this semantics. For a program P in this language,
let �P� be the set of its externally visible behaviours resulting from its executions in the
semantics of the high-level language. At this point, we do not need to define what these
behaviours are; they might include, e.g., input/output information.

Let C(L) be a program in a high-level language using a TSO library L with an SC
specification L�, i.e., L �TSO→SC L�. The specification L� allows us to extend the
semantics of the language to describe the intended behaviour of C(L). Informally, we

42 A. Gotsman, M. Musuvathi, and H. Yang

let the semantics of calling a method of L be the effect of the corresponding method
of L�. As both C and L� are meant to have an SC semantics, the effect of L� can be
described within the memory model of the high-level language.

To define this extension more formally, it is convenient for us to use the specifica-
tion of L� given by its set of histories history(�L��SC), rather than by its source code, as
this sidesteps the issues arising when composing the sources of programs in a low-level
language and a high-level one. Namely, we define the semantics of C(L) in two stages.
First, we consider the set of executions of C(L) in the semantics of the high-level lan-
guage where a call to a method ofL is interpreted in the same way as a call to a method of
the high-level language returning arbitrary values. Since the high-level language has an
SC semantics, every program execution in it is a trace obtained by interleaving actions
of different threads, which has a single history of calls to and returns from L. We then
define the intended behaviour of C(L) by the set �C(L�)� of externally visible behaviours
resulting from the executions that have a history from history(�L��SC)

2. This semantics
also generalises the notion of DRF to the extended language: programs are DRF when
the executions of C(L) selected above have no races between client actions as defined for
high-level programs without TSO libraries. In particular, DRF is defined with respect to
SC specifications of libraries that the client uses, not their TSO implementations.

From the point of view of the extended memory model, the run-time system of the
high-level language, implementing built-in synchronisation primitives, is no different
from external TSO libraries. The extension thus allows deriving a memory model con-
sistent with the implementation of synchronisation primitives on TSO (e.g., spinlocks
or seqlocks from Section 3) from the memory model of the base language excluding
the primitives. Below, we use this fact to separate the reasoning about the correctness
of a compiler for the high-level language from that about the correctness of its run-
time system. This approach to deriving the memory model does not result in imprecise
specifications: e.g., the SC specification of a TSO spinlock implementation in Section 3
corresponds to the one in the C++ standard.

Conditions for Correct Compilation. Theorem 13 allows us to formulate conditions
under which a compiler from a high-level DRF language correctly implements the ex-
tended memory model defined above. Let 〈C〉(L) be the compilation of a program C in
the high-level language to the TSO machine from Section 2, linked with a native TSO
library L. Assume an SC specification L� of L:

(i) L �TSO→SC L�.
Then the extended memory model defines the intended semantics �C(L�)� of the pro-
gram. Let us denote the compiled code linked with L�, instead of L, as 〈C〉(L�). We
place the following constraints on the compiler:
(ii) C is correctly compiled to an SC machine: visible(�〈C〉(L�)�SC) ⊆ �C(L�)�.

(iii) 〈C〉(L�) is DRF, i.e., so are all traces from client(�〈C〉(L�)�SC).

(iv) Visible locations are protected in 〈C〉(L).
2 Here we assume that language-level threads correspond directly to hardware-level ones. This

assumption is sound even when the actual language implementation multiplexes several threads
onto fewer CPUs using a scheduler, provided the latter executes a memory barrier at every
context switch; see [7, Appendix B] for discussion.

Show No Weakness: Sequentially Consistent Specifications of TSO Libraries 43

From Theorem 13 and (i), (iii) and (iv), we obtain visible(�〈C〉(L)�TSO) ⊆
visible(�〈C〉(L�)�SC), which, together with (ii), implies visible(�〈C〉(L)�TSO) ⊆
�C(L�)�. Hence, any observable behaviour of the compiled code using the TSO library
implementation is included into the intended semantics of the program defined by the
extended memory model. Therefore, our conditions entail the compiler correctness.

The conditions allow for a separate consideration of the hardware memory model
and the run-time system implementation when reasoning about the correctness of a
compiler from a DRF language to a TSO machine. Namely, (ii) checks the correctness
of the compiler while ignoring the fact that the target machine has a weak memory
model and assuming that the run-time system is implemented correctly. Conditions (iii)
and (iv) then ensure the correctness of the compiled code on TSO, and condition (i), the
correctness of the run-time system.

Establishing (iii) requires ensuring the DRF of the compiled code given the DRF of
the source program in the high-level language. In practice, this might require the com-
piler to insert additional memory barriers. For example, the SC fragment of C++ [3,2]
includes so-called strong atomic operations, whose concurrent accesses to the same
location are not considered a race. The DRF of the high-level program thus ensures
that, in the compiled code, we cannot have a race in the sense of Definition 9, except
between instructions resulting from strong atomic operations. To prevent the latter, ex-
isting barrier placement schemes for C++ compilation on TSO [2] include a memory
barrier when translating a strong atomic write. As this prevents a race in the sense of
Definition 9, these compilation schemes satisfy our conditions.

Discussion. Theorem 13 is more subtle than might seem at first sight. The crux of the
matter is that, like Theorem 10, it allows checking DRF on the SC semantics of the
program. This makes the theorem powerful in practice, but requires its proof to show
that a trace from �C(L)�TSO with a visible non-SC behaviour can be converted into one
from �C(L�)�SC exhibiting a race. Proving this is non-trivial. A naive attempt to prove
the theorem might first replace L with its linearization L� using Theorem 5 and then try
to apply a variant of Theorem 10 to show that the resulting program is SC:

visible(�C(L)�TSO) ⊆ visible(�C(L�)�TSO/SC) ⊆ visible(�C(L�)�SC).

However, the second inclusion does not hold even if C(L�) is DRF, as Theorem 10 does
not generalise to the TSO/SC semantics. Indeed, take the spinlock implementation and
specification from Figure 1 as L and L� and consider the following client C:

x = y = 0;

acquire(); x = 1; release(); lock; y = 1; unlock;

b = y; acquire(); a = x; release();

{a = b = 0}

The outcome shown is allowed by �C(L�)�TSO/SC, but disallowed by �C(L�)�SC, even
though the latter is DRF. It is also disallowed by �C(L)�TSO: in this case, the first
thread can only read 0 from y if the second thread has not yet executed y = 1; but
when the second thread later acquires the lock, the write of 1 to x by the first thread
is guaranteed to have been flushed into the memory, and so the second thread has to

44 A. Gotsman, M. Musuvathi, and H. Yang

read 1 from x. The trouble is that �C(L�)�TSO/SC loses such correlations between the
store buffer usage by the client and the library, which are important for mapping a non-
SC trace from �C(L)�TSO into a racy trace from �C(L�)�SC. The need for maintaining
the correlations leads to a subtle proof that uses a non-standard variant of TSO to first
make the client part of the trace SC and only then replace the library L with its SC
specification L�. See [7, Appendix C] for a more detailed discussion.

6 Using Robustness Criteria More Flexible Than DRF

Assume that code inside a lock..unlock block accesses at most one memory location.

DEFINITION 14. A quadrangular race is a fragment of an SC trace of the form:

(t,write(x,)) τ1 (t, read(y,)) block((t′,write(y,)) (t′, flush(y,))) τ2 block(ϕ),

where ϕ ∈ {(t′′,write(x,)) (t′′, flush(x,)), (t′′, read(x,))}, t 	= t′, t 	= t′′, x 	= y,
τ1 contains only actions by t, and τ1, τ2 do not contain (t, unlock). A program P is
quadrangular-race free (QRF), if so are traces in �P �SC.

THEOREM 15 (Robustness via QRF). If P is QRF and visible locations are protected
in it, then visible(�P �TSO) ⊆ visible(�P �SC).

This improves on a criterion by Owens [12], which does not require the last access to
x, and thus falsely signals a possible non-SC behaviour when x is local to thread t.

Unfortunately, QRF cannot be used to simplify establishing TSO-to-SC linearizabil-
ity, because Theorem 11 does not hold if we assume only that L is QRF. Intuitively,
transforming a TSO trace satisfying QRF into an SC one can rearrange calls and returns
in ways that break linearizability. Formally, the spinlock Lspinlock in Figure 1a is QRF,
and its history (1) has a single linearization—itself. However, it cannot be reproduced
when executing Lspinlock on an SC memory model. Moreover, the QRF of a library does
not imply Theorem 13 for L� = L [7, Appendix B]. We now show that Theorem 13 can
be recovered for QRF libraries under a stronger assumption on the client.

DEFINITION 16. A program C(L) is strongly DRF if it is DRF and traces
in client(�C(L)�SC) do not contain fragments of the form (t, read(x,))
block((t′,write(x,)) (t′, flush(x,))), where t 	= t′.

THEOREM 17. If L is QRF, C(L) is strongly DRF, and visible locations are protected
in it, then visible(�C(L)�TSO) ⊆ visible(�C(L)�SC).

When C is compiled from C++, the requirement that C be strongly DRF prohibits the
C++ program from using strong atomic operations, which is restrictive.

7 Related Work

To the best of our knowledge, there has been no research on modularly checking
the interoperability between components written for different language and hardware

Show No Weakness: Sequentially Consistent Specifications of TSO Libraries 45

memory models. For example, the existing proof of correctness of C++ compilation
to x86 [2] does not consider the possibility of a C++ program using arbitrary native
components and assume fixed implementations of C++ synchronisation primitives in
the run-time system. In particular, the correctness proofs would no longer be valid if
we changed the run-time system implementation. As we discuss in Section 5, this paper
provides conditions for an arbitrary run-time system implementation of a DRF lan-
guage ensuring the correctness of the compilation.

We have previously proposed a generalisation of linearizability to the TSO memory
model [6] (TSO-to-TSO linearizability in Section 3). Unlike TSO-to-SC linearizability,
it requires specifications to be formulated in terms of low-level hardware concepts,
and thus cannot be used for interfacing with high-level languages. Furthermore, the
technical focus of [6] was on establishing Theorem 7, not Theorem 13.

To concentrate on the core issues of handling interoperability between TSO and DRF
models, we assumed that the data structures of the client and its libraries are completely
disjoint. Recently, we have proposed a generalisation of classical linearizability that
allows the client to communicate with the libraries via data structures [8]. We hope that
the results from the two papers can be combined to lift the above restriction.

Acknowledgements. We thank Matthew Parkinson and Serdar Tasiran for comments
that helped to improve the paper. Yang was supported by EPSRC.

References
1. Alglave, J., Maranget, L.: Stability in Weak Memory Models. In: Gopalakrishnan, G.,

Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 50–66. Springer, Heidelberg (2011)
2. Batty, M., Owens, S., Sarkar, S., Sewell, P., Weber, T.: Mathematizing C++ concurrency. In:

POPL (2011)
3. Boehm, H.-J., Adve, S.V.: Foundations of the C++ concurrency memory model. In: PLDI

(2008)
4. Bouajjani, A., Meyer, R., Möhlmann, E.: Deciding Robustness against Total Store Ordering.

In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp.
428–440. Springer, Heidelberg (2011)

5. Bovet, D., Cesati, M.: Understanding the Linux Kernel, 3rd edn. O’Reilly (2005)
6. Burckhardt, S., Gotsman, A., Musuvathi, M., Yang, H.: Concurrent Library Correctness on

the TSO Memory Model. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 87–107.
Springer, Heidelberg (2012)

7. Gotsman, A., Musuvathi, M., Yang, H.: Show no weakness: Sequentially consistent specifi-
cations of TSO libraries (extended version) (2012),
http://www.software.imdea.org/~gotsman

8. Gotsman, A., Yang, H.: Linearizability with Ownership Transfer. In: Ulidowski, I. (ed.)
CONCUR 2012. LNCS, vol. 7454, pp. 256–271. Springer, Heidelberg (2012)

9. Herlihy, M.P., Wing, J.M.: Linearizability: a correctness condition for concurrent objects. In:
TOPLAS (1990)

10. Lamport, L.: How to make a multiprocessor computer that correctly executes multiprocess
programs. IEEE Trans. Comp. (1979)

11. Manson, J., Pugh, W., Adve, S.V.: The Java memory model. In: POPL (2005)
12. Owens, S.: Reasoning about the Implementation of Concurrency Abstractions on x86-TSO. In:

D’Hondt, T. (ed.) ECOOP 2010. LNCS, vol. 6183, pp. 478–503. Springer, Heidelberg (2010)
13. Owens, S., Sarkar, S., Sewell, P.: A Better x86 Memory Model: x86-TSO. In: Berghofer, S.,

Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs 2009. LNCS, vol. 5674, pp. 391–407.
Springer, Heidelberg (2009)

http://www.software.imdea.org/~gotsman

Collecting Information by Power-Aware Mobile Agents�

Julian Anaya1, Jérémie Chalopin2, Jurek Czyzowicz1, Arnaud Labourel2,
Andrzej Pelc1, and Yann Vaxès2

1 Université du Québec en Outaouais, C.P. 1250, succ. Hull, Gatineau, Qc. J8X 3X7 Canada
ingjuliananaya@gmail.com, {jurek,pelc}@uqo.ca
2 LIF, CNRS & Aix-Marseille University, 13453 Marseille, France

{jeremie.chalopin,arnaud.labourel,yann.vaxes}@lif.univ-mrs.fr

Abstract. A set of identical, mobile agents is deployed in a weighted network.
Each agent possesses a battery - a power source allowing the agent to move along
network edges. Agents use their batteries proportionally to the distance traveled.
At the beginning, each agent has its initial information. Agents exchange the
actually possessed information when they meet. The agents collaborate in order
to perform an efficient convergecast, where the initial information of all agents
must be eventually transmitted to some agent.

The objective of this paper is to investigate what is the minimal value of power,
initially available to all agents, so that convergecast may be achieved. We study
the question in the centralized and the distributed settings. In the distributed set-
ting every agent has to perform an algorithm being unaware of the network. We
give a linear-time centralized algorithm solving the problem for line networks.
We give a 2-competitive distributed algorithm achieving convergecast for tree
networks. The competitive ratio of 2 is proved to be the best possible for this
problem, even if we only consider line networks. We show that already for the
case of tree networks the centralized problem is strongly NP-complete. We give
a 2-approximation centralized algorithm for general graphs.

1 Introduction

The Model and the Problem. A set of agents is deployed in a network represented by
a weighted graph G. An edge weight represents its length, i.e., the distance between
its endpoints along the edge. The agents start at different nodes of G. Every agent has
a battery : a power source allowing it to move in a continuous way along the network
edges. An agent may stop at any point of a network edge (i.e. at any distance from
the edge endpoints, up to the edge weight). The movements of an agent use its battery
proportionally to the distance traveled. We assume that all agents move at the same
speed that is equal to one, i.e., the values of the distance traveled and the time spent
while travelling are equivalent. Each agent starts with the same amount of power noted
P , allowing all agents to travel the same distance P .

Initially, each agent has an individual piece of information. When two (or more)
agents are at the same point of the network at the same time, they automatically detect

� Partially supported by NSERC discovery grant and by the Research Chair in Distributed Com-
puting at the Université du Québec en Outaouais.

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 46–60, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Collecting Information by Power-Aware Mobile Agents 47

each other’s presence and they exchange their information, i.e., each agent transmits
all its possessed information to all other agents present at the point (hence an agent
transmits information collected during all previous meetings). The purpose of a con-
vergecast algorithm is to schedule the movements of the agents, so that the exchanges
of the currently possessed information between the meeting agents eventually result in
some agent, not a priori predetermined, holding the union of individual information of
all the agents. This task is important, e.g., when agents have partial information about
the topology of the network and the aggregate information can be used to construct a
map of it, or when individual agents hold measurements performed by sensors located
at their initial positions and collected information serves to make some global decision
based on all measurements.

Agents try to cooperate so that the convergecast is achieved with the agent’s smallest
possible initial battery power POPT , i.e., minimizing the maximum distance traveled
by an agent. We investigate the problem in two possible settings, centralized and dis-
tributed.

In the centralized setting, the problem must be solved by a centralized authority
knowing the network and the initial positions of all the agents. We define a strategy
as a finite sequence of movements executed by the agents. During each movement,
starting at a specific time, an agent walks between two points belonging to the same
network edge. A strategy is a convergecast strategy if the sequence of movements re-
sults in one agent possessing the initial information of every agent. We consider two
different versions of the problem : the decision problem, i.e., deciding if there exists
a convergecast strategy using power P (where P is the input of the problem) and the
optimization problem, i.e., computing the smallest amount of power that is sufficient to
achieve convergecast.

In the distributed setting, the problem must be approached individually by each
agent. Each agent is unaware of the network, of its position in the network and without
the knowledge of positions (or even the presence) of any other agents. The agents are
anonymous, i.e., they must execute the same algorithm. The agent has a very simple
sensing device allowing it to detect the presence of other agents at its current location
in the network. The agent is also aware of the degree d of the node at which it is located
and it can identify all ports represented by integers 1, 2, . . . d. The agent is aware of the
directions from which are coming all agents currently present at its location (i.e. their
entry ports to the current node or their incoming directions if currently located inside
an edge). Each agent has memory sufficient to store all information initially belonging
to all agents as well as a small (constant) number of real values. Since the measure of
efficiency in this paper is the battery power (or the maximum distance traveled by an
agent, which is proportional to the battery power used) we do not try to optimize the
other resources (e.g. global execution time, local computation time, memory size of the
agents, communication bandwidth, etc.). In particular, we conservatively suppose that,
whenever two agents meet, they automatically exchange the entire information they
possess (rather than the new information only). This information exchange procedure is
never explicitly mentioned in our algorithms, supposing, by default, that it always takes
place when a meeting occurs. The efficiency of a distributed solution is expressed by
the competitive ratio, which is the worst-case ratio of the amount of power necessary to

48 J. Anaya et al.

solve the convergecast by the distributed algorithm with respect to the amount of power
computed by the optimal centralized algorithm, which is executed for the same agents’
initial positions.

It is easy to see, that in the optimal centralized solution for the case of the line
and the tree, the original network may be truncated by removing some portions and
leaving only the connected part of it containing all the agents (this way all leaves of
the remaining tree contain initial positions of agents). We make this assumption also in
the distributed setting, since no finite competitive ratio is achievable if this condition is
dropped. Indeed, two nearby anonymous agents inside a long line need to travel a long
distance to one of its endpoints to break symmetry in order to meet.

Related Work. The rapid development of network and computer industry fueled the re-
search interest in mobile agents (robots) computing. Mobile agents are often interpreted
as software agents, i.e., programs migrating from host to host in a network, performing
some specific tasks. However, the recent developments in computer technology bring
up specific problems related to physical mobile devices. These include robots or motor
vehicles, various wireless gadgets, or even living mobile agents: humans (e.g. soldiers
on the battlefield or emergency disaster relief personnel) or animals (e.g. birds, swarms
of insects).

In many applications the involved mobile agents are small and have to be produced at
low cost in massive numbers. Consequently, in many papers, the computational power of
mobile agents is assumed to be very limited and feasibility of some important distributed
tasks for such collections of agents is investigated. For example [6] introduced popu-
lation protocols, modeling wireless sensor networks by extremely limited finite-state
computational devices. The agents of population protocols move according to some
mobility pattern totally out of their control and they interact randomly in pairs. This is
called passive mobility, intended to model, e.g., some unstable environment, like a flow
of water, chemical solution, human blood, wind or unpredictable mobility of agents’
carriers (e.g. vehicles or flocks of birds). On the other hand, [37] introduced anony-
mous, oblivious, asynchronous, mobile agents which cannot directly communicate, but
can occasionally observe the environment. Gathering and convergence [5,19,20,21], as
well as pattern formation [23,25,37,38] were studied for such agents.

Apart from the feasibility questions for such limited agents, the optimization prob-
lems related to the efficient usage of agents’ resources have been also investigated. En-
ergy management of (not necessarily mobile) computational devices has been a major
concern in recent research papers (cf. [1]). Fundamental techniques proposed to reduce
power consumption of computer systems include power-down strategies (see [1,8,30])
and speed scaling (introduced in [39]). Several papers proposed centralized [17,36,39]
or distributed [1,4,8,30] algorithms. However, most of this research on power efficiency
concerned optimization of overall power used. Similar to our setting, assignment of
charges to the system components in order to minimize the maximal charge has a flavor
of another important optimization problem which is load balancing (cf. [10]).

In wireless sensor and ad hoc networks the power awareness has been often related
to the data communication via efficient routing protocols (e.g. [4,36]. However in many

Collecting Information by Power-Aware Mobile Agents 49

applications of mobile agents (e.g. those involving actively mobile, physical agents) the
agent’s energy is mostly used for its mobility purpose rather than communication, since
active moving often requires running some mechanical components, while communica-
tion mostly involves (less energy-prone) electronic devices. Consequently, in most tasks
involving moving agents, like exploration, searching or pattern formation, the distance
traveled is the main optimization criterion (cf. [2,3,11,12,15,16,22,24,26,33]). Single
agent exploration of an unknown environment has been studied for graphs, e.g. [2,22],
or geometric terrains, [12,16].

While a single agent cannot explore an unknown graph unless pebble (landmark)
usage is permitted (see [13]), a pair of robots is able to explore and map a directed
graph of maximal degree d in O(d2n5) time with high probability (cf. [14]). In the
case of a team of collaborating mobile agents, the challenge is to balance the workload
among the agents so that the time to achieve the required goal is minimized. However
this task is often hard (cf. [28]), even in the case of two agents on a tree, [9]. On the
other hand, [26] study the problem of agents exploring a tree showing O(k/ log k)
competitive ratio of their distributed algorithm provided that writing (and reading) at
tree nodes is permitted.

Assumptions similar to our paper have been made in [11,16,24] where the mobile
agents are constrained to travel a fixed distance to explore an unknown graph, [11,16], or
tree, [24]. In [11,16] a mobile agent has to return to its home base to refuel (or recharge
its battery) so that the same maximal distance may repeatedly be traversed. [24] gives an
8-competitive distributed algorithm for a set of agents with the same amount of power
exploring the tree starting at the same node.

The convergecast problem is sometimes viewed as a special case of the data ag-
gregation question (e.g. [32,35]) and it has been studied mainly for wireless and sensor
networks, where the battery power usage is an important issue (cf. [31,7]). Recently [18]
considered the online and offline settings of the scheduling problem when data has to be
delivered to mobile clients while they travel within the communication range of wireless
stations. [31] presents a randomized distributed convergecast algorithm for geometric
ad-hoc networks and studies the trade-off between the energy used and the latency of
convergecast. To the best of our knowledge, the problem of the present paper, when the
mobile agents perform convergecast, by exchanging the previously acquired informa-
tion when meeting, while optimizing the maximal power used by a mobile agent, has
never been investigated.

Our Results. In the case of centralized setting we give a linear-time deterministic algo-
rithm finding an optimal convergecast strategy for line networks. We show that, already
for the case of tree networks, the centralized problem is strongly NP-complete. We give
a 2-approximation centralized algorithm for general graphs.

For the distributed setting, we show that the convergecast is possible for tree net-
works if all agents have the amount of initial power equal to twice the power necessary
to achieve centralized convergecast. The competitive ratio of 2 is proved to be the best
possible for this problem, even if we only consider line networks. Most proofs are omit-
ted due to lack of space. They will appear in a journal version of this paper.

50 J. Anaya et al.

2 Centralized Convergecast on Lines

In this section we consider the centralized convergecast problem for lines. We give
an optimal, linear-time, deterministic centralized algorithm, computing the optimal
amount of power needed to solve convergecast for line networks. As the algorithm is
quite involved, we start by observing some properties of the optimal strategies. Already
relatively apparent properties permit us to design an intuitive decision procedure, veri-
fying whether a given amount of power is sufficient to perform convergecast. Then we
present other ingredients needed for the linear-time optimization procedure.

We order agents according to their positions on the line. Hence we can assume
w.l.o.g., that agent ai, for 1 ≤ i ≤ n is initially positioned at point Pos[i] of the
line of length � and that Pos[1] = 0 < Pos[2] < . . . < Pos[n] = �.

2.1 Properties of a Convergecast Strategy

In this subsection, we show that if we are given a convergecast strategy for some con-
figuration, then we can always modify it in order to get another convergecast strategy,
using the same amount of maximal power for every agent, satisfying some interesting
properties. These observations permit us to restrict the search for the optimal strategy
to some smaller and easier to handle subclass of strategies.

Observe that, in order to aggregate the entire information at a single point of the line,
every agent ai, for 1 < i < n, must learn either the initial information of agent a1 or
an. Therefore, we can partition the set of agents performing a convergecast strategy into
two subsets LR and RL, such that each agent ai ∈ LR learns the initial information
of agent a1 before learning the initial information of agent an (or not learning at all the
information of an). All other agents belong to RL. For any convergecast strategy all
the points visited by agent ai form a real interval containing its initial position Pos[i].
We denote by [bi, fi] the interval of all points visited by ai ∈ LR and by [fj , bj] - the
points visited by aj ∈ RL.

In the next lemma, we show a necessary and sufficient condition for the existence of
a convergecast strategy. It also shows that any convergecast strategy may be converted
to a strategy that we call regular having particular properties. Firstly, each agent from
LR of a regular strategy is initially positioned left to all agents of RL. Secondly, each
agent of regular strategy needs to change its direction at most once. More precisely, each
agent ai ∈ LR first goes back to a point bi ≤ Pos[i], getting there the information from
the previous agent (except a1 that has no information to collect), then it goes forward
to a point fi ≥ bi. Similarly, each agent in RL first goes back to a point bi ≥ Pos[i]
and then moves forward to a point fi ≤ bi. Moreover, we assume that each agent of a
regular strategy travels the maximal possible distance, i.e., it spends all its power.

Lemma 1. There exists a convergecast strategy S for a configurationPos[1 : n] if and
only if there exists a partition of the agents into two sets LR and RL and if for each
agent ai, there exist two points bi, fi of segment [0, �] such that

1. there exists p such that LR = {ai | i ≤ p} and RL = {ai | i > p},
2. if ai ∈ LR, bi = min{fi−1, Pos[i]} (b1 = Pos[1] = 0) and fi = min{2bi + P −

Pos[i], �},

Collecting Information by Power-Aware Mobile Agents 51

3. if ai ∈ RL, bi = max{fi+1, Pos[i]} (bn = Pos[n] = �) and fi = max{2bi−P −
Pos[i], 0},

4. max{fi | ai ∈ LR} ≥ min{fi | ai ∈ RL}.

In the following, we only consider regular strategies. Note that a regular strategy is fully
determined by the value of P and by the partition of the agents into the two sets LR
and RL. For each agent ai ∈ LR (resp. ai ∈ RL), we denote fi by ReachLR(i, P)
(resp. ReachRL(i, P)). Observe that ReachLR(i, P) is the rightmost point on the line
to which the set of i agents at initial positions Pos[1 : i], each having power P , may
transport the union of their initial information. Similarly, ReachRL(i, P) is the leftmost
such point for agents at positions Pos[i : n].

Lemma 1 permits to construct a linear-time decision procedure verifying if a given
amount P of battery power is sufficient to design a convergecast strategy for a given
configuration Pos[1 : n] of agents. We first compute two lists ReachLR(i, P), for
1 ≤ i ≤ n and ReachRL(i, P), for 1 ≤ i ≤ n. Then we scan them to determine if there
exists an index j, such that ReachLR(j, P) ≥ ReachRL(j + 1, P). In such a case, we
set LR = {ar | r ≤ j} and RL = {ar | r > j} and we apply Lemma 1 to obtain a
convergecast strategy where agents aj and aj+1 meet and exchange their information
which totals to the entire initial information of the set of agents. If there is no such index
j, no convergecast strategy is possible. This implies

Corollary 1. In O(n) time we can decide if a configuration of n agents on the line,
each having a given maximal power P , can perform convergecast.

The remaining lemmas of this subsection bring up observations needed to construct an
O(n) algorithm designing an optimal centralized convergecast strategy.

Note that if the agents are not given enough power, then it can happen that some
agent ap may never learn the information from a1 (resp. from an). In this case, ap
cannot belong to LR (resp. RL). We denote by ActLR(p) the minimum amount of
power we have to give the agents to ensure that ap can learn the information from a1: if
p > 0, ActLR(p) = min{P | ReachLR(p− 1, P) + P ≥ Pos[p]}. Similarly, we have
ActRL(p) = min{P | ReachRL(p+ 1, P)− P ≤ Pos[p]}.

Given a strategy using power P , for each agent p ∈ LR, we have P ≥ ActLR(p)
and either ReachLR(p − 1, P) ≥ Pos[p], or ReachLR(p − 1, P) ≤ Pos[p]. In the
first case, ReachLR(p, P) = Pos[p] +P , while in the second case, ReachLR(p, P) =
2ReachLR(p− 1, P) + P − Pos[p].

We define threshold functions THLR(p) and THRL(p) that compute for each in-
dex p, the minimal amount of agents’ power ensuring that agent ap does not go back
when ap ∈ LR or ap ∈ RL respectively (i.e. such that bp = Pos[p]). For each p, let
THLR(p) = min{P | ReachLR(p, P) = Pos[p] + P} and THRL(p) = min{P |
ReachRL(p, P) = Pos[p]− P}. Clearly, THLR(1) = THRL(n) = 0.

The next lemma illustrates how to compute ReachLR(q, P) and ReachRL(q, P) if
we know THLR(p) and THRL(p) for every agent p.

Lemma 2. Consider an amount of power P and an index q. If p = max{p′ ≤
q | THLR(p

′) < P}, then ReachLR(q, P) = 2q−pPos[p] + (2q−p+1 − 1)P −∑q
i=p+1 2

q−iPos[i]. Similarly, if p = min{p′ ≥ q | THRL(p
′) < P}, then

ReachRL(q, P) = 2p−qPos[p]− (2p−q+1 − 1)P −
∑p−1

i=q 2i−qPos[i].

52 J. Anaya et al.

Observe that the previous lemma implies that, for each q, the function ReachLR(q, ·)
is an increasing, continuous, piecewise linear function on [ActLR(q),+∞) and
that ReachRL(q, ·) is a decreasing, continuous, piecewise linear function on
[ActRL(q),+∞).

In the following, we denote SLR(p, q) =
∑q

i=p+1 2
q−iPos[i] and SRL(p, q) =∑p−1

i=q 2i−qPos[i].

Remark 1. For every p ≤ q ≤ r, SLR(p, r) = 2r−qSLR(p, q) + SLR(q, r).

We now show that for an optimal convergecast strategy, the last agent of LR and the
first agent of RL meet at some point between their initial positions and that they need
to use all the available power to meet.

Lemma 3. Suppose there exists an optimal convergecast strategy for a configuration
Pos[1 : n], where the maximum power used by an agent is P . Then, there exists an
integer 1 ≤ p < n such that Pos[p] < ReachLR(p, P) = ReachRL(p + 1, P) <
Pos[p+ 1].

Moreover, ∀q ≤ p, ActLR(q) < P < THRL(q) and ∀q > p, ActRL(q) < P <
THLR(q).

2.2 A Linear Algorithm to Compute the Optimal Power Needed for Convergecast

In this section, we prove the following theorem.

Theorem 1. An optimal convergecast strategy for the line can be computed in linear
time.

We first explain how to compute a stack of couples (p, THLR(p))that we can subse-
quently use to compute ReachLR(p, P) for any given P . Then, we present a linear
algorithm that computes the value needed to solve convergecast when the last index
r ∈ LR is provided: given an index r, we compute the optimal power needed to solve
convergecast assuming that LR = {aq | q ≤ r} and RL = {aq | q > r}. Finally, we
explain how to use techniques introduced for the two previous algorithms in order to
compute the optimal power needed to solve convergecast. These computations directly
imply the schedule of the agents’ moves of the optimal convergecast strategy.

Computing the Thresholds Values. To describe explicitly the function ReachLR(q, ·),
we need to identify the indexes p such that for every r ∈ [p+1, q], we have THLR(r) >
THLR(p). They correspond to the breakpoints at which the slopes of the piecewise
linear function ReachLR(q, ·) change. Indeed, if we are given such an index p, then
for every P comprised between THLR(p) and min{THLR(r) | p < r ≤ q}, we have
ReachLR(q, P) = 2q−pPos[p] + (2q−p+1 − 1)P − SLR(p, q). We denote by XLR(q)
this set of indexes {p ≤ q | ∀r ∈ [p+ 1, q], THLR(r) > THLR(p)}.

In particular, if we want to computeTHLR(q+1), we just need to find p = max{r ≤
q | ReachLR(q, THLR(r)) < Pos[q+1]}, and then THLR(q+1) is the value of power
P such that 2q−pPos[p] + (2q−p+1 − 1)P − SLR(p, q) = Pos[q + 1]. Moreover, by
the choice of p, we have XLR(q + 1) = {r ∈ XLR(q) | r ≤ p} ∪ {q + 1}.

Collecting Information by Power-Aware Mobile Agents 53

Using these remarks, the function ThresholdLR, having been given an agent
index r, returns a stack THLR containing couples (p, P) such that p ∈ XLR(r) and
P = THLR(p). Note that in the stack THLR, the elements (p, P) are sorted along both
components, the largest being on the top of the stack.

The algorithm proceeds as follows. Initially, the stack THLR contains only the couple
(1, THLR(1)). At each iteration, given the stack corresponding to the index q, in order
to compute the stack for the index q + 1, we first pop out all elements (p, P) such that
ReachLR(q, P) > Pos[q+1]. After that, the integer p needed to compute THLR(q+1)
is located on the top of the stack. Finally, the couple (q+1, THLR(q+1)) is pushed on
the stack before we proceed with the subsequent index q. At the end of the procedure,
we return the stack THLR corresponding to the index r.

The number of stack operations performed during the execution of this function is
O(r). However, in order to obtain a linear number of arithmetic operations, we need to
be able to compute 2q−p and SLR(p, q) in constant time.

In order to compute 2q−p efficiently, we can store the values of 2i, i ∈ [1, n − 1]
in an auxiliary array, that we have precomputed in O(n) time. We cannot precompute
all values of SLR(p, q) since this requires calculating Θ(n2) values. However, from
Remark 1, we know that SLR(p, q) = SLR(1, q)− 2q−pSLR(1, p). Consequently, it is
enough to precomputeSLR(1, i) for each i ∈ [2, n]. Since SLR(1, i+1) = 2SLR(1, i)+
Pos[i+ 1], this can be done using O(n) arithmetic operations.

Function ThresholdLR(array Pos[1 : n] of real;
r:integer):stack

THLR = empty_stack;
push (THLR,(1, 0));
for q = 1 to r − 1 do

(p, P) = pop(THLR) ; /* p = q and P = THLR(p) */
while 2q−p ∗ Pos[p] + (2q−p+1 − 1) ∗ P − SLR(p, q) ≥ Pos[q + 1] do
(p, P) = pop(THLR);
/* while ReachLR(q, P) ≥ Pos[q + 1] we consider the next

element in THLR */
push (THLR,(p,P));
Q = (2q−p ∗ Pos[p]− Pos[q + 1]− SLR(p, q))/(2

q−p+1 − 1);
/* Q is the solution of ReachLR(q, P) = Pos[q + 1] */
push (THLR,(q + 1, Q));

return (THLR);

Similarly, we can define the function ThresholdRL (array Pos[1 : n]
of real, r:integer):stack that returns a stack THRL containing all pairs
(q, THRL(q)) such that for every p ∈ [r, q − 1], we have THRL(p) > THRL(q).

Computing the Optimal Power When LR and RL Are Known. Suppose now that we
are given an agent index r and we want to compute the optimal power needed to solve
convergecast when LR = {ap | p ≤ r} and RL = {aq | q > r}. From Lemma 3, we
know that there exists a unique POPT such that ReachLR(r, POPT) = ReachRL(r +
1, POPT).

54 J. Anaya et al.

As previously, by Lemma 2, we know that the value of ReachLR(r, POPT) depends
on p = max{p′ ≤ r | THLR(p

′) < POPT }. Similarly, ReachRL(r + 1, POPT)
depends on q = min{q′ ≥ r + 1 | THRL(q

′) < POPT }. If we are given the values of
p and q, then POPT is the value of P such that

2r−pPos[p]− (2r−p+1 − 1)P −SLR(p, r) = 2q−r−1Pos[q]− (2q−r − 1)P −SRL(q, r+1).

In Algorithm OptimalAtIndex, we first use the previous algorithm to compute the
two stacks THLR and THRL containing respectively {(p, THLR(p)) | p ∈ XLR(r)} and
{(q, THRL(q)) | q ∈ XRL(r + 1)}. Then at each iteration, we consider the two ele-
ments (p, PLR) and (q, PRL) that are on top of both stacks. If PLR ≥ PRL (the other
case is symmetric), we check whether ReachLR(r, PLR) ≥ ReachRL(r + 1, PLR).
In this case, we have P > POPT , so we remove (p, PLR) from the stack THLR and we
proceed to the next iteration. If ReachLR(r, PLR) < ReachRL(r + 1, PLR), we know
that POPT ≥ PLR ≥ PRL and we can compute the value of POPT using Lemma 2.

Function OptimalAtIndex(array Pos[1 : n] of real;
r:integer):stack

THLR = ThresholdLR(r); THRL = ThresholdRL(r + 1) ;
(p, PLR) = pop(THLR); (q, PRL) = pop(THRL); P = max{PLR, PRL};
/* p = r, PLR = THLR(r), q = r + 1, PRL = THRL(r + 1). */
while
2r−pPos[p]+(2r−p+1−1)P−SLR(p, r) ≥ 2q−r−1Pos[q]−(2q−r−1)P−SRL(q, r+1)
do /* While ReachLR(r, P) ≥ ReachRL(r + 1, P) do */

if PLR ≥ PRL then (p,PLR) = pop(THLR);
else (q, PRL) = pop(THRL);
P = max{PLR, PRL};

POPT =
(2q−r−1Pos[q]− SRL(q, r + 1)− 2r−pPos[p] + SLR(p, r))/(2

r−p+1 + 2q−r − 2);
/* POPT is the solution of

ReachLR(r, POPT) = ReachRL(r + 1, POPT) */
return (POPT);

Let YLR(r, P) denote {(p, THLR(p)) | p ∈ XLR(r) and THLR(p) < P} and
YRL(r + 1, P) = {(q, THRL(q)) | q ∈ XRL(r + 1) and THRL(q) < P}.

Remark 2. At the end of the execution of the function OptimalAtIndex, THLR and
THRL contain respectively YLR(r, POPT) and YRL(r + 1, POPT).

Moreover, if initially the two stacks THLR and THRL contain respectively YLR(r, P)
and YRL(r + 1, P) for some P ≥ POPT , then the value computed by the algorithm is
also POPT .

Computing the Optimal Power for convergecast. We now explain how to compute the
optimal amount of power needed to achieve convergecast using a linear number of
operations.

Collecting Information by Power-Aware Mobile Agents 55

Let P<r be the optimal value needed to solve convergecast when max{s | as ∈
LR} < r, i.e., when the two agents whose meeting results in merging the entire infor-
mation are ai and ai+1 for some i < r. If ReachLR(r, P<r) ≤ ReachRL(r + 1, P<r),
then P<r+1 = P<r. However, if ReachLR(r, P<r) > ReachRL(r + 1, P<r), then
P<r+1 < P<r and P<r+1 is the unique value of P such that ReachLR(r, P) =
ReachRL(r + 1, P). This corresponds to the value returned by OptimalAtIndex
(Pos, r).

The general idea of Algorithm ComputeOptimal is to iteratively compute the
value of P<r. If we need a linear time algorithm, we cannot call repeatedly the func-
tion OptimalAtIndex. However, from Remark 2, in order to compute P<r+1 when
P<r+1 ≤ P<r, it is enough to know YLR(r, P<r) and YRL(r + 1, P<r). If we
know YLR(r, P<r) and YRL(r + 1, P<r), then we can use the same algorithm as in
OptimalAtIndex in order to compute P<r+1. Moreover, from Remark 2, we also
get YLR(r, P<r+1) and YRL(r + 1, P<r+1) when we compute P<r+1.

Before proceeding to the next iteration, we need to compute YLR(r + 1, P<r+1)
and YRL(r + 2, P<r+1) from YLR(r, P<r+1) and YRL(r + 1, P<r+1). Note that if
THLR(r) > P<r+1, then YLR(r + 1, P<r+1) = YLR(r, P<r+1). If THLR(r) ≤
P<r+1, we can use the same algorithm as in ThresholdLR to compute YLR(r +
1, P<r+1) = {(p, THLR(p)) | p ∈ XLR(r)} from YLR(r, P<r+1). Consider now
YRL(r+2, P<r+1). If THRL(r+1) > P<r+1, then (r+1, THRL(r+1)) /∈ YRL(r+
1, P<r+1), and YRL(r+ 2, P<r+1) = YRL(r +1, P<r+1). If THRL(r +1) ≤ P<r+1,
then either Pos[r + 1] − P<r+1 ≥ ReachRL(r + 1, P<r+1) if P<r+1 = P<r,
or Pos[r + 1] − P<r+1 = ReachRL(r + 1, P<r+1) = ReachLR(r, P<r+1) if
P<r+1 < P<r. In both cases, it implies that ActLR(r + 1) ≥ P<r+1. Therefore, by
Lemma 3, P<i = P<r+1 for every i ≥ r + 1 and we can return the value of P<r+1.

In Algorithm ComputeOptimal, at each iteration, the stack THLR contains
YLR(r, P<r) (except its top element) and the stack THRL contains YRL(r + 1, P<r)
(except its top element). Initially, THLR is empty and THRL contains O(n) elements. In
each iteration, at most one element is pushed into the stack THLR and no element is
pushed into the stack THRL. Consequently, the number of stack operations performed by
the algorithm is linear.

3 Distributed Convergecast on Trees

A configuration of convergecast on graphs is a couple (G,A) where G is the weighted
graph encoding the network and A is the set of the starting nodes of the agents. Let
D(G,A) = max∅�X�A{minx∈X,y∈A\X{dG(x, y)}} where dG(x, y) is the distance
between x and y in G. Clearly, we have D(G,A) ≤ 2POPT .

We consider weighted trees with agents at every leaf. The next theorem states that
there exists a 2-competitive distributed algorithm for the convergecast problem on trees.

Theorem 2. Consider a configuration (T,A) where T is a tree and A contains all the
leaves of T . There is a distributed convergecast algorithm using D(T,A) ≤ 2POPT

power per agent.

Sketch of the proof: In order to perform the convergecast, each agent executes
Algorithm 1.

56 J. Anaya et al.

Algorithm 1. UnknownTree

collecting = true;
while collecting = true do

Wait until there is at most one port unused by the agent incoming at the current
node;
if all ports of current node were used by incoming agents then
collecting = false;
if the agent has used less power than any other agent present at the node and
collecting = true then

Move through the unused incoming port until you meet another agent or reach a
node;

else collecting = false;
if the agent is inside an edge then collecting = false;

The agents traverse the leaf edges then edges between nodes at height one and two
and so on. When all the tree is traversed, all the information is collected at the last
meeting point. No agent will use more power than D(T,A) ≤ 2POPT . ��
The following theorem shows that no distributed algorithm may offer a better competi-
tive ratio than 2 even if we only consider line networks.

Theorem 3. Consider any δ > 0, and any value of power P . There exists an integer n
and a configuration Pos[1 : n] of n agents on the line such that there is a convergecast
strategy using power P and so that there is no deterministic distributed strategy allow-
ing the agents to solve convergecast when the amount of power given to each agent is
(2− δ)P .

Sketch of the proof: Let ε = δP/4 and σ = ε/2 = δP/8. Let l = �log(8/δ)� and
k = l + 2.

Consider a set of agents positioned on a line as follows (See Figure 1). There is an
agent a0 (resp. a2l+1) at the left (resp. right) end of the line on position s′0 = 0 (resp.
s2l+1 = �). For each 1 ≤ i ≤ 2l, there is a set Ai of k agents on distinct initial positions
within a segment [si, s′i] of length σ such that for each 1 ≤ i ≤ 2l + 1, the distance
between si and s′i−1 is 2(P − ε). Using Lemma 2, we can show, that if the amount of
power given to each agent is P , then convergecast is achievable.

s′0 s1 s′1

2(P − ε)

σ σσ

s2 s2� s2�+1s′2 s′2�

2(P − ε) 2(P − ε)

Fig. 1. The configuration in the proof of Theorem 3

Suppose now that there exists a distributed strategy S that solves convergecast on
the configuration when the amount of power given to each agent is (2 − δ)P . We can
show that for each i ∈ [1, l], all agents from Ai perform the same moves as long as

Collecting Information by Power-Aware Mobile Agents 57

the leftmost agent of Ai has not met any agent from Ai−1. We show by induction on
i ∈ [1, l] that agents in Ai learn the information from a0 before the one from a2l+1

and that no agent in the set Ai knowing the information from a0 can reach the point
si+1 − (2i+2 − 2)ε. If we consider the agents from Al, we get that no agent from Al−1

can reach sl− (2l+1− 2)ε ≤ sl− (8/δ− 2)δP/4 = sl− 2P + δP/2 < sl− 2P + δP
having the initial information of a0. Since no agent from the set Al can reach any
point on the left of sl − 2P + δP , it implies that no agent from Al can ever learn the
information from a0 and thus, S is not a distributed convergecast strategy. ��

4 Centralized Convergecast on Trees and Graphs

We show in this section that for trees the centralized convergecast problem is substan-
tially harder than for lines.

Theorem 4. The centralized convergecast decision problem is strongly NP-complete
for trees.

Sketch of the proof: We construct a polynomial-time many-one reduction from the
3-Partition problem which is strongly NP-Complete [27]. The 3-partition problem an-
swers the following question: can a given multiset S of 3m positive integers xi such
that R/4 < xi < R/2 be partitioned into m disjoint sets S1, S2, . . . , Sm of size three
such that for 1 ≤ j ≤ m,

∑
x∈Sj

x = R? The instance of the centralized convergecast
problem constructed from an instance of 3-partition is the star depicted in Figure 2.
There is an agent at each leaf and each agent is given power equal to 2R + 1. We can
assume that in any convergecast strategy, agents ai first move to the center u, each agent
bi moves at distance xi from u and agent c moves at distance 2R from u. Agents ai, for
1 ≤ i ≤ m, must then collect the information from agents bi and finally agent am+1

must move to c in order to complete the convergecast. Since agents ai, while reaching
u have the remaining power of 2R and that collecting information from bi and return
to node u costs 2xi power, the instance of convergecast has a solution if and only if the
original instance of 3-partition has a solution.

It remains to show that the problem is in NP . Given a strategy S, the certificate of
the instance encodes in chronological order the positions of meetings in which at least
one agent learns a new piece of information. There is a polynomial number of such
meetings called useful meetings. We can show that the strategy S ′, in which agents
move via shortest paths to their useful meetings, is a convergecast strategy and uses less
power than S. If a useful meeting occurs on an edge, the certificate encodes the name
of a variable di that represents the exact position inside the edge. Checking that we can
assign values to di, such that each agent moves a distance less than P in S ′, can be done
in polynomial time using linear programming. ��
Even if the exact centralized optimization problem is NP-complete, we can obtain a
2-approximation of the power needed to achieve centralized convergecast in arbitrary
graphs in polynomial time.

Theorem 5. Consider a configuration(G,A) for an arbitrary graphG. There is a poly-
nomial algorithm computing a centralized convergecast strategy using D(G,A) ≤
2POPT power per agent.

58 J. Anaya et al.

set A of

3m agents

. . .

.
.
.

1

2R+ 1 + x
1

2R
+ 1 +

x3m

2R+ 1 + x2

1 1

set B of

m+ 1 agents

1 agent
set C of

a1 a2 am+1

b1

b2

b3m

c

4R+ 1u

Fig. 2. Instance of centralized convergecast problem from an instance of 3-partition in the proof
of Theorem 4

Sketch of the proof: The idea of the algorithm is to construct a total order ui on the
positions of agents in the following way. We put in set V an arbitrary agent’s initial
position u1. Iteratively, we add to the set V of already treated agents’ positions a new
agent’s position ui, which is at the closest distance from V along some path Pi. Then
agents move in the reverse order, starting with agent at un. Agent at ui moves following
the path Pi. The length of Pi is less than D(G,A). When all agents have moved, the
agent at u1 gets all the information. ��

5 Conclusion and Open Problems

It is worth pursuing questions related to information transportation by mobile agents
to other communication tasks, such as broadcasting or gossiping. Only some of our
techniques on convergecast extend to these settings (e.g. NP-hardness for trees).

The problem of a single information transfer by mobile agents between two station-
ary points of the network is also interesting. In particular, it is an open question whether
this problem for tree networks is still NP-hard or if a polynomial-time algorithm is
possible, since our reduction to 3-partition is no longer valid.

Other related questions may involve agents with unequal power, agents with non-
zero visibility, labeled agents, unreliable agents or networks, etc.

References

1. Albers, S.: Energy-efficient algorithms. Comm. ACM 53(5), 86–96 (2010)
2. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. on Comput.

29(4),1164–1188
3. Alpern, S., Gal, S.: The theory of search games and rendezvous. Kluwer Academic Publ.

(2002)
4. Ambühl, C.: An Optimal Bound for the MST Algorithm to Compute Energy Efficient Broad-

cast Trees in Wireless Networks. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C.,
Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1139–1150. Springer, Heidelberg (2005)

Collecting Information by Power-Aware Mobile Agents 59

5. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point convergence
algorithm for mobile robots with limited visibility. IEEE Trans. on Robotics and Automa-
tion 15(5), 818–828 (1999)

6. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of
passively mobile finite-state sensors. In: Distributed Computing, pp. 235–253 (2006)

7. Annamalai, V., Gupta, S.K.S., Schwiebert, L.: On Tree-Based Convergecasting in Wireless
Sensor Networks. IEEE Wireless Communications and Networking 3, 1942–1947 (2003)

8. Augustine, J., Irani, S., Swamy, C.: Optimal powerdown strategies. SIAM J. Comput. 37,
1499–1516 (2008)

9. Averbakh, I., Berman, O.: A heuristic with worst-case analysis for minimax routing of two
traveling salesmen on a tree. Discrete Applied Mathematics 68, 17–32 (1996)

10. Azar, Y.: On-line Load Balancing. In: Fiat, A., Woeginger, G. (eds.) Online Algorithms 1996.
LNCS, vol. 1442, pp. 178–195. Springer, Heidelberg (1998)

11. Awerbuch, B., Betke, M., Rivest, R., Singh, M.: Piecemeal graph exploration by a mobile
robot. Information and Computation 152, 155–172 (1999)

12. Baeza Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in the Plane. Information and
Computation 106(2), 234–252 (1993)

13. Bender, M., Fernandez, A., Ron, D., Sahai, A., Vadhan, S.: The power of a pebble: exploring
and mapping directed graphs. In: Proc. 30th STOC, pp. 269–278 (1998)

14. Bender, M., Slonim, D.: The power of team exploration: two robots can learn unlabeled
directed graphs. In: Proc. 35th FOCS, pp. 75–85 (1994)

15. Betke, M., Rivest, R.L., Singh, M.: Piecemeal learning of an unknown environment. Machine
Learning 18(2/3), 231–254 (1995)

16. Blum, A., Raghavan, P., Schieber, B.: Navigating in unfamiliar geometric terrain. SIAM J.
Comput. 26(1), 110–137 (1997)

17. Bunde, D.P.: Power-aware scheduling for makespan and flow. In: SPAA, pp. 190–196 (2006)
18. Chen, F., Johnson, M.P., Alayev, Y., Bar-Noy, A., La Porta, T.F.: Who, When, Where: Times-

lot Assignment to Mobile Clients. IEEE Transactions on Mobile Computing 11(1), 73–85
(2012)

19. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the Robots Gathering Prob-
lem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS,
vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003)

20. Cohen, R., Peleg, D.: Convergence Properties of the Gravitational Algorithm in Asyn-
chronous Robot Systems. SIAM J. on Comput. 34(6), 1516–1528 (2005)

21. Cord-Landwehr, A., Degener, B., Fischer, M., Hüllmann, M., Kempkes, B., Klaas, A., Kling,
P., Kurras, S., Märtens, M., Meyer auf der Heide, F., Raupach, C., Swierkot, K., Warner, D.,
Weddemann, C., Wonisch, D.: A New Approach for Analyzing Convergence Algorithms for
Mobile Robots. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS,
vol. 6756, pp. 650–661. Springer, Heidelberg (2011)

22. Deng, X., Papadimitriou, C.H.: Exploring an unknown graph. In: Proc. 31st FOCS, vol. I,
pp. 355–361 (1990)

23. Das, S., Flocchini, P., Santoro, N., Yamashita, M.: On the Computational Power of Oblivious
Robots: Forming a Series of Geometric Patterns. In: Proc. PODC, pp. 267–276 (2010)

24. Dynia, M., Korzeniowski, M., Schindelhauer, C.: Power-Aware Collective Tree Exploration.
In: Grass, W., Sick, B., Waldschmidt, K. (eds.) ARCS 2006. LNCS, vol. 3894, pp. 341–351.
Springer, Heidelberg (2006)

25. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous robots
with limited visibility. Th. Comp. Science 337, 147–168 (2005)

26. Fraigniaud, P., Gąsieniec, L., Kowalski, D.R., Pelc, A.: Collective Tree Exploration. In:
Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 141–151. Springer, Heidelberg
(2004)

60 J. Anaya et al.

27. Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-
Completeness, 96–105, 224 (1979)

28. Frederickson, G., Hecht, M., Kim, C.: Approximation algorithms for some routing problems.
SIAM J. on Comput. 7, 178–193 (1978)

29. Heinzelman, W.B., Chandrakasan, A.P., Balakrishnan, H.: An Application-Specific Proto-
col Architecture for Wireless Microsensor Networks. Transactions on Wireless Communica-
tion 1(4), 660–670 (2002)

30. Irani, S., Shukla, S.K., Gupta, R.: Algorithms for power savings. ACM Trans. on Algo-
rithms 3(4), Article 41 (2007)

31. Kesselman, A., Kowalski, D.R.: Fast distributed algorithm for convergecast in ad hoc geo-
metric radio networks. Journal of Parallel and Distributed Computing 66(4), 578–585 (2006)

32. Krishnamachari, L., Estrin, D., Wicker, S.: The impact of data aggregation in wireless sensor
networks. In: ICDCS Workshops, pp. 575–578 (2002)

33. Megow, N., Mehlhorn, K., Schweitzer, P.: Online Graph Exploration: New Results on Old
and New Algorithms. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011, Part II.
LNCS, vol. 6756, pp. 478–489. Springer, Heidelberg (2011)

34. Nikoletseas, S., Spirakis, P.G.: Distributed Algorithms for Energy Efficient Routing and
Tracking in Wireless Sensor Networks. Algorithms 2, 121–157 (2009)

35. Rajagopalan, R., Varshney, P.K.: Data-aggregation techniques in sensor networks: a survey.
IEEE Communications Surveys and Tutorials 8(4), 48–63 (2006)

36. Stojmenovic, I., Lin, X.: Power-Aware Localized Routing in Wireless Networks. IEEE Trans.
Parallel Distrib. Syst. 12(11), 1122–1133 (2001)

37. Suzuki, I., Yamashita, M.: Distributed Anonymous Mobile Robots: Formation of Geometric
Patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

38. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious anony-
mous mobile robots. Th. Comp. Science 411(26-28), 2433–2453 (2010)

39. Yao, F.F., Demers, A.J., Shenker, S.: A scheduling model for reduced CPU energy. In: Proc.
of 36th FOCS, pp. 374–382 (1995)

Memory Lower Bounds

for Randomized Collaborative Search
and Implications for Biology

Ofer Feinerman1,� and Amos Korman2,��

1 Incumbent of the The Louis and Ida Rich Career Development Chair,
The Weizmann Institute of Science, Rehovot, Israel

feiner@weizmann.ac.il
2 CNRS and University Paris Diderot, France

amos.korman@liafa.jussieu.fr

Abstract. Initial knowledge regarding group size can be crucial for col-
lective performance. We study this relation in the context of the Ants
Nearby Treasure Search (ANTS) problem [18], which models natural co-
operative foraging behavior such as that performed by ants around their
nest. In this problem, k (probabilistic) agents, initially placed at some
central location, collectively search for a treasure on the two-dimensional
grid. The treasure is placed at a target location by an adversary and the
goal is to find it as fast as possible as a function of both k andD, where D
is the (unknown) distance between the central location and the target. It
is easy to see that T = Ω(D+D2/k) time units are necessary for finding
the treasure. Recently, it has been established that O(T) time is sufficient
if the agents know their total number k (or a constant approximation of
it), and enough memory bits are available at their disposal [18]. In this
paper, we establish lower bounds on the agent memory size required for
achieving certain running time performances. To the best our knowledge,
these bounds are the first non-trivial lower bounds for the memory size
of probabilistic searchers. For example, for every given positive constant
ε, terminating the search by time O(log1−ε k · T) requires agents to use
Ω(log log k) memory bits.

From a high level perspective, we illustrate how methods from
distributed computing can be useful in generating lower bounds for co-
operative biological ensembles. Indeed, if experiments that comply with
our setting reveal that the ants’ search is time efficient, then our theo-
retical lower bounds can provide some insight on the memory they use
for this task.

1 Introduction

Background and Motivation: In biology, individuals assemble into groups
that allow them, among other things, to monitor and react to relatively large

� Supported by the THE ISRAEL SCIENCE FOUNDATION FIRST grant (No.
1694/10) and by the Clore Foundation.

�� Supported in part by the ANR projects DISPLEXITY and PROSE, and by the
INRIA project GANG.

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 61–75, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

62 O. Feinerman and A. Korman

environments. For this, the individuals typically spread over length scales that
are much larger than those required for communication. Thus, collecting knowl-
edge regarding large areas dictates a dispersion that may come at the price of
group coordination. A possible solution involves the use of designated, localized
areas where individuals convene to share information and from which they then
disperse to interact with the environment. Indeed, such convention areas have
been identified in a wide spectrum of biological systems ranging from groups of
immuno-cells [33] to flocking birds [16,54].

Here we focus, on a third example, that of collective central place foraging
[32,40] where a group of animals leave a central location (e.g., a nest) to which
they then retrieve collected food items. Ants, for example, were shown to commu-
nicate within their nest regarding food availability and quality outside it [9,29].
This information is then used as a means of regulating foraging efforts. It may
be the case that such communication is constrained to the central place alone.
For example, once they leave their nest, desert ants (e.g., of the genus Catagly-
phys) rarely interact [32]. This is due to their dispersedness and lack of chemical
trail markings. Similar communication constraints are also experienced by the
honeybee Apis mellifera. Other than being central-place, the search we discuss
is cooperative: although it is conducted by individuals any findings are shared.

One piece of information that may be available to a localized group is its
size. In a process known as quorum sensing, a threshold estimate of group size
is used to reach collective decisions and choose between divergent courses of ac-
tion [10,17,43,50,51]. Here, we study the potential benefits of estimating group
size in the context of collective central place foraging without mid-search in-
teractions. Clearly, due to competition and other time constrains, food items
must be found relatively fast. Furthermore, finding food not only fast but also in
proximity to the central location holds numerous advantages at both the search
and the retrieval stages [32,38,40]. Intuitively, the problem at hand is efficiently
distributing searchers within bounded areas around the nest while minimizing
overlaps.

It was previously shown that the efficiency of collective central place foraging
may be enhanced by initial knowledge regarding group size [18]. More specifi-
cally, that paper introduces the Ants Nearby Treasure Search (ANTS) problem,
which models the aforementioned central place foraging setting. In this problem,
k (probabilistic) agents, initially placed at some central location, collectively
search for a treasure in the two-dimensional grid. The treasure is placed at a
target location by an adversary and the goal is to find it as fast as possible as
a function of both k and D, where D is the (unknown) distance between the
central location and the target. Once the agents initiate the search they cannot
communicate between themselves. Based on volume considerations, it is an easy
observation that the expected running time of any algorithm is Ω(D +D2/k).
It was established in [18] that the knowledge of a constant approximation of k
allows the agents to find the treasure in asymptotically optimal expected time,
namely, O(D + D2/k). On the other hand, the lack of any information of k
prevents them from reaching expected time that is higher than optimal by a

Memory Lower Bounds for Randomized Collaborative Search 63

factor slightly larger than O(log k). That work also establishes lower bounds on
the competitiveness of the algorithm in the particular case where some given
approximation to k is available to all nodes.

In this work, we simulate the initial step of information sharing (e.g., regard-
ing group size) within the nest by using the abstract framework of advice (see,
e.g., [12,23,25]). That is, we model the preliminary process for gaining knowl-
edge about k (e.g., at the central location) by means of an oracle that assigns
advice to agents. To measure the amount of information accessible to agents, we
analyze the advice size, that is, the maximum number of bits used in an advice.
Since we are mainly interested in lower bounds on the advice size required to
achieve a given competitive ratio, we apply a liberal approach and assume a
highly powerful oracle. More specifically, even though it is supposed to model
a distributed (probabilistic) process, we assume that the oracle is a centralized
probabilistic algorithm (almost unlimited in its computational power) that can
assign different agents different advices. Note that, in particular, by considering
identifiers as part of the advice, our model allows to relax the assumption that
all agents are identical and to allow agents to be of several types. Indeed, in the
context of ants, it has been established that ants on their first foraging bouts
execute different protocols than those that are more experienced [52].

The main technical results of this paper deal with lower bounds on the advice
size. For example, with the terminology of advice, [18] showed that advice of
size O(log log k) bits is sufficient to obtain an O(1)-competitive algorithm. We
prove that this bound is tight. In fact, we show a much stronger result, that
is, that advice of size Ω(log log k) is necessary even for achieving competitive-
ness which is as large as O(log1−ε k), for every given positive constant ε. On
the other extremity, we show that Ω(log log log k) bits of advice are necessary
for being O(log k)-competitive, and that this bound is tight. In addition, we ex-
hibit lower bounds on the corresponding advice size for a range of intermediate
competitivenesses.

Observe that the advice size bounds from below the number of memory bits
used by an agent, as this amount of bits in required merely for storing some
initial information.

In general, from a purely theoretical point of view, analyzing the memory
required for efficient search is a central theme in computer science [45], and is
typically considered to be difficult. To the best of our knowledge, the current
paper is the first paper establishing non-trivial lower bounds for the memory of
randomized searching agents with respect to given time constrains.

From a high level perspective, we illustrate that distributed computing can
potentially provide a novel and efficient methodology for the study of highly
complex, cooperative biological ensembles. Indeed, if experiments that comply
with our setting reveal that the ants’ search is time efficient, in the sense detailed
above, then our theoretical results can provide some insight on the memory ants
use for this task. A detailed discussion of this novel approach is given in Section 5.

Our Results: The main technical results deal with lower bounds on the advice
size. Our first result is perhaps the most surprising one. It says not only that

64 O. Feinerman and A. Korman

Ω(log log k) bits of advice are required to obtain an O(1)-competitive algorithm,
but that roughly this amount is necessary even for achieving competitiveness
which is as large as O(log1−ε k), for every given positive constant ε. This result
should be put in contrast to the fact that with no advice at all, one can obtain a
search algorithm whose competitiveness is slightly higher than logarithmic [18].

Theorem 1. There is no search algorithm that is O(log1−ε k)-competitive for
some fixed positive ε, using advice of size o(log log k).

On the other extremity, we show that Ω(log log log k) bits of advice are necessary
for constructing anO(log k)-competitive algorithm, and we prove that this bound
on the advice is in fact tight.

Theorem 2. There is no O(log k)-competitive search algorithm, using advice of
size log log log k − ω(1). On the other hand, there exists an O(log k)-competitive
search algorithm using advice of size log log log k +O(1).

Finally, we also exhibit lower bounds for the corresponding advice size for a
range of intermediate competitivenesses.

Theorem 3. Consider a Φ(k)-competitive search algorithm using advice of size
Ψ(k). Then, Φ(k) = Ω(log k/2Ψ(k)), or in other words, Ψ(k) = log log k −
logΦ(k)−O(1). In particular, if Φ(k) = log k

2logε log k , then Ψ(k) = logε log k−O(1).

Our results on the advice complexity are summarized in Table 1. As mentioned,
our lower bounds on the advice size are also lower bounds on the memory size
of agents.

Table 1. Bounds on the advice for given competitiveness

Competitiveness Advice size
Tight bound O(1) Θ(log log k)
Tight bound O(log1−ε k) 0 < ε < 1 Θ(log log k)
Lower bound log k/2log

ε log k 0 < ε < 1 logε log k −O(1)
Tight bound O(log k) log log log k +Θ(1)
Upper bound [18] O(log1+ε k) zero

Related Work: Our current work falls within the framework of natural algo-
rithms, a recent attempt to study biological phenomena from an algorithmic
perspective [1,8,11,18].

The notion of advice is central in computer science. In particular, the concept
of advice and its impact on various computations has recently found various
applications in distributed computing. In this context, the main measure used
is the advice size. It is for instance analyzed in frameworks such as proof label-
ing [36,37], broadcast [23], local computation of MST [25], graph coloring [24]
and graph searching by a single robot [12,31]. Very recently, it has also been
investigated in the context of online algorithms [15].

Memory Lower Bounds for Randomized Collaborative Search 65

Collective search is a classical problem that has been extensively studied in
different contexts (for a more comprehensive summary refer to [18]). Social for-
aging theory [28] and central place foraging typically deal with optimal resource
exploitation strategies between competing or cooperating individuals. Actual col-
lective search trajectories of non-communicating agents have been studied in the
physics literature (e.g., [6,46]). Reynolds [46] achieves optimal speed up through
overlap reduction which is obtained by sending searchers on near -straight dis-
joint lines to infinity. This must come at the expense of finding proximal trea-
sures. Harkness and Maroudas [32] combined field experiments with computer
simulations of a semi-random collective search and suggest substantial speed ups
as group size increases. The collective search problem has further been studied
from an engineering perspective (e.g., [42]). In this case, the communication be-
tween agents (robots) or their computational abilities are typically unrestricted.
These works put no emphasis on finding nearby treasures fast. Further, there is
typically (with the exception of [32]) no reference to group size.

In the theory of computer science, the exploration of graphs using mobile agents
(or robots) is a central question. (For amore detailed survey refer to e.g., [2,18,20].)
Most graph exploration research in concerned with the case of a single determin-
istic agent exploring a finite graph, see for example [3,13,14,27,41,45]. The more
complex situation of multiple identical deterministic agents was studied
in [4,20,21,22]. In general, one of the main challenges in search problems is the
establishment of memory bounds. For example, the question of whether a single
agent can explore all finite undirected graphs using logarithmic memory was open
for a long time; answering it to the affirmative [45] established an equality between
the classes of languages SL and L.

Evaluating the running time as a function of D, the distance to the treasure,
was studied in the context of the cow-path problem [5,34]. In [39], the cow-
path problem was extended by considering k agents. However, in contrast to our
setting, the agents they consider have unique identities, and the goal is achieved
by (centrally) specifying a different path for each of the k agents.

The question of how important it is for individual processors to know their
total number has recently been addressed in the context of locality. Generally
speaking, it has been observed that for several classical local computation tasks,
knowing the number of processors is not essential [35]. On the other hand, in the
context of local distributed decision, some evidence exist that such knowledge is
crucial for non-deterministic verification [26].

2 Preliminaries

General Setting: We consider the Ants Nearby Treasure Search (ANTS) prob-
lem initially introduced in [18]. In this central place searching problem, k mobile
agents are searching for a treasure on the two-dimensional plane. The agents are
probabilistic mobile machines (robots). They are identical, that is, all agents ex-
ecute the same protocol P . Each agent has some limited field of view, i.e., each
agent can see its surrounding up to a distance of some ε > 0. Hence, for simplic-
ity, instead of considering the two-dimensional plane, we assume that the agents

66 O. Feinerman and A. Korman

are actually walking on the integer two-dimensional infinite grid G = Z2 (they
can traverse an edge of the grid in both directions). The search is central place,
that is, all k agents initiate the search from some central node s ∈ G, called the
source. Before the search is initiated, an adversary locates the treasure at some
node t ∈ G, referred to as the target node. Once the search is initiated, the agents
cannot communicate among themselves1. We denote by D the (Manhattan) dis-
tance between the source node and the target, i.e., D = dG(s, t). It is important
to note that the agents have no a priori information about the location of t or
about D. We say that the agents find the treasure when one of the agents visits
the target node t. The goal of the agents it to find the treasure as fast as possible
as a function of both D and k.

Since we are mainly interested in lower bounds, we assume a very liberal set-
ting. In particular, we do not restrict neither the computational power nor the
navigation capabilities of agents. Moreover, we put no restrictions on the internal
storage used for navigation. (On the other hand, we note that for constructing
upper bounds, the algorithms we consider use simple procedures that can be
implemented using relatively little resources.) In addition, even though it may
seem natural to require that agents return to the source occasionally (e.g., to
know whether other agents have already found the treasure), our lower bounds
do not rely on such an assumption.

Oracles and Advice: We would like to model the situation in which before
the search actually starts, some initial communication may be made between
the agents at the source node. In reality, this preliminary communication may
be quite limited. This may be because of difficulties in the communication that
are inherent to the agents or the environment, e.g., due to faults or limited
memory, or because of asynchrony issues regarding the different starting times
of the search, or simply because agents are identical and it may be difficult for
agents to distinguish one agent from the other. Nevertheless, we consider a very
liberal setting in which this preliminary communication is almost unrestricted.

More specifically, we consider a centralized algorithm called oracle that as-
signs advices to agents in a preliminary stage. The oracle, denoted by O, is a
probabilistic centralized algorithm that receives as input a set of k agents and
assigns an advice to each of the k agents. We assume that the oracle may use a
different protocol for each k; given k, the randomized algorithm used for assign-
ing the advices to the k agents is denoted by Ok. An example for such an oracle
is the case where each agent is given the same (deterministic) advice which en-
codes some approximation to the number of agents2. However, in principle, the
oracle may assign a different advice to each agent, and these advices may not

1 As mentioned earlier, the particular kinds of animals that we are interested in (e.g.,
the desert ants Cataglyphys and the honeybees Apis mellifera) rarely interact outside
their source while searching [32]. Nevertheless, the theoretical question of how and to
what extent mid-search interactions may aid the search is interesting and a subject
of future work.

2 These types of simple oracles are actually used by our upper bound constructions.

Memory Lower Bounds for Randomized Collaborative Search 67

necessarily correspond to an approximation of k. Observe, this definition of an
oracle allows it to simulate almost any reasonable preliminary communication
between the agents3.

It is important to stress that even though all agents execute the same searching
protocol, they may start the search with different advices. Hence, since their
searching protocol may rely on the content of this initial advice, agents with
different advices may behave differently. Another important remark concerns
the fact that some part of the advices may be used for encoding (not necessarily
disjoint) identifiers. That is, assumptions regarding the settings in which not all
agents are identical and there are several types of agents can be captured by our
setting of advice.

Finally, note that, in contrast to previous works regarding oracles, here, the
knowledge of the oracle is limited, as it does not know D. This means, in partic-
ular, that a probabilistic oracle may potentially be strictly more powerful than a
deterministic one. Indeed, the oracle assigning the advice may use the random-
ization to reduce the size of the advices by balancing between the efficiency of
the search for small values of D and larger values.

To summarize, a search algorithm is a pair 〈P ,O〉 consisting of a randomized
searching protocol P and randomized oracle O = {Ok}k∈N. Given k agents,
the randomized oracle Ok assigns a separate advice to each of the given agents.
Subsequently, all agents initiate the actual search by letting each of the agents
execute protocol P and using the corresponding advice as input to P . Once the
search is initiated, the agents cannot communicate among themselves.

Consider an oracle O. Given k, let ΨO(k) denote the maximum number of bits
devoted for encoding the advice of an agent, taken over all coin tosses of Ok,
and over the k agents. In other words, ΨO(k) is the minimum number of bits
necessary for encoding the advice, assuming the number of agents is k. Note that
ΨO(k) also bounds from below the number of memory bits of an agent required
by the search algorithm 〈P ,O〉, assuming that the number of agents is k. The
function ΨO(·) is called the advice size function of oracle O. (When the context
is clear, we may omit the subscript O from ΨO(·) and simply use Ψ(·) instead.)

Time Complexity: When measuring the time to find the treasure, we assume
that all internal computations are performed in zero time. For the simplicity of
presentation, we assume that the movements of agents are synchronized, that
is, each edge traversal is performed in precisely one unit of time. Indeed, this
assumption can easily be removed if we measure the time according to the slowest

3 For example, it can simulate to following very liberal setting. Assume that in the
preprocessing stage, the k agents are organized in a clique topology, and that each
agent can send a separate message to each other agent. Furthermore, even though
the agents are identical, in this preprocessing stage, let us assume that agents can
distinguish the messages received from different agents, and that each of the k agents
may use a different probabilistic protocol for this preliminary communication. In
addition, no restriction is made neither on the memory and computation capabilities
of agents nor on the preprocessing time, that is, the preprocessing stage takes finite,
yet unlimited, time.

68 O. Feinerman and A. Korman

edge-traversal. We also assume that all agents start the search simultaneously at
the same time. This assumption can also be easily removed by starting to count
the time when the last agent initiates the search.

The expected running time of a search algorithm A := 〈P ,O〉 is the expected
time until at least one of the agents finds the treasure. The expectation is defined
with respect to the coin tosses made by the (probabilistic) oracle O assigning
the advices to the agents, as well as the subsequent coin tosses made by the
agents executing P . We denote the expected running time of an algorithm A
by τ = τA(D, k). In fact, for our lower bound to hold, it is sufficient to assume
that the probability that the treasure is found by time 2τ is at least 1/2. By
Markov inequality, this assumption is indeed weaker than the assumption that
the expected running time is τ .

Note that if an agent knowsD, then it can potentially find the treasure in time
O(D), by walking to a distance D in some direction, and then performing a circle
around the source of radius D (assuming, of course, that its navigation abilities
enable it to perform such a circle). On the other hand, with the absence of
knowledge about D, an agent can find the treasure in time O(D2) by performing
a spiral search around the source (see, e.g., [5]). The following observation imply
that Ω(D+D2/k) is a lower bound on the expected running time of any search
algorithm. The proof is straightforward and can be found in [18].

Observation 4. The expected running time of any algorithm is Ω(D +D2/k),
even if the number of agents k is known to all agents.

We evaluate the time performance of an algorithm with respect to the lower
bound given by Observation 4. Formally, let Φ(k) be a function of k. A search
algorithmA := 〈P ,O〉 is called Φ(k)-competitive if τA(D, k) ≤ Φ(k)·(D+D2/k),
for every integers k and D. Our goal is establish connections between the size
of the advice, namely Ψ(k), and the competitiveness Φ(k) of the search algorithm.

More Definitions: The distance between two nodes u, v ∈ G, denoted d(u, v),
is simply the Manhattan distance between them, i.e., the number of edges on the
shortest path connecting u and v in the grid G. For a node u, let d(u) := d(u, s)
denote the distance between u and the source node. Hence, D = d(t).

3 Lower Bounds on the Advice

The theorem below generalizes Theorem 4.1 in [18], taking into account the
notion of advice. All our lower bound results follow as corollaries of this theorem.
Note that for the theorem to be meaningful we are interested in advice size whose
order of magnitude is less than log log k. Indeed, if Ψ(k) = log log k, then one
can encode a 2-approximation of k in each advice, and obtain an optimal result,
that is, an O(1)-competitive algorithm (see [18]).

Before stating the theorem, we need the following definition. A non-decreasing
function Φ(x) is called relatively-slow if Φ(x) is sublinear (i.e., Φ(x) = o(x)) and
if there exist two positive constants c1 and c2 < 2 such that when restricted

Memory Lower Bounds for Randomized Collaborative Search 69

to x > c1, we have Φ(2x) < c2 · Φ(x). Note that this definition captures many
natural sublinear functions4.

Theorem 5. Consider a Φ(k)-competitive search algorithm using advice of size
Ψ(k). Assume that Φ(·) is relatively-slow and that Ψ(·) is non-decreasing. Then

there exists some constant x′, such that for every k > 2x′, the sum
∑log k

i=x′
1

Φ(2i)·2Ψ(k)

is at most some fixed constant.

Proof. Consider a search algorithm with advice size Ψ(k) and competitiveness
Φ′(k), where Φ′(·) is relatively-slow. By definition, the expected running time is
less than τ(D, k) = (D + D2/k) · Φ′(k). Note, for k ≤ D, we have τ(D, k) ≤
D2Φ(k)

k , where Φ(k) = 2Φ′(k), and Φ(·) is relatively-slow. Let c1 be the constant
promised by the fact that Φ is relatively-slow. Let x0 > c1 be sufficiently large
so that x0 is a power of 2, and for every x > x0, we have Φ(x) < x (recall, Φ is
sublinear).

Fix an integer T > x2
0. In the remaining of the proof, we assume that the

treasure is placed somewhere at distance D := 2T + 1. Note, this means, in
particular, that by time 2T the treasure has not been found yet.

Fix an integer i in [log x0,
1
2 logT], set di =

√
T ·ki

Φ(ki)
, and let B(di) := {v ∈

G : d(v) ≤ di} denote the ball of radius di around the source node. We consider
now the case where the algorithm is executed with ki := 2i agents (using the
corresponding advices given by the oracleOki). For every set of nodes S ⊆ B(di),
let χi(S) denote the random variable indicating the number of nodes in S that
were visited by at least one of the ki agents by time 2T . (For short, for a singleton
node u, we write χi(u) instead of χi({u}).) Note, the value of χi(S) depends on
the values of the coins tosses made by the oracle for assigning the advices as well
as on the values of the coins tossed by the ki agents. Now, define the ring

Ri := B(di) \B(di−1).

Claim. For each integer i ∈ [log x0,
1
2 logT], we have E(χi(Ri)) = Ω(d2i).

To see why the claim holds, note that by the properties of Φ, and from the

fact that 2i ≤
√
T , we get that ki ≤ di, and therefore, τ(di, ki) ≤ d2

iΦ(ki)
ki

= T .
It follows that for each node u ∈ B(di), we have τ(d(u), ki) ≤ T , and hence,
the probability that u is visited by time 2T is at least 1/2, that is, Pr(χi(u) =
1) ≥ 1/2. Hence, E(χi(u)) ≥ 1/2. Now, by linearity of expectation, E(χi(Ri)) =∑

u∈Ri
E(χi(u)) ≥ |Ri|/2. Consequently, by time 2T , the expected number of

nodes in Ri that are visited by the ki agents is Ω(|Ri|) = Ω (di−1(di − di−1)) =

Ω
(

T ·ki

Φ(ki−1)
·
(√

2Φ(ki−1)
Φ(ki)

− 1
))

= Ω
(

T ·ki

Φ(ki)

)
= Ω(d2i), where the second equality

follows from the fact that di = di−1 ·
√

2Φ(ki−1)
Φ(ki)

, and the third equality follows

from the fact that Φ(·) is relatively-slow. This establishes the claim.

4 For example, note that the functions of the form α0 + α1 log
β1 x + α2 log

β2 log x +

α32
logβ3 log x log x+ α4 log

β4 x logβ5 log x, (for non-negative constants αi and βi, i =
1, 2, 3, 4, 5 such that

∑4
i=1 αi > 0) are all relatively-slow.

70 O. Feinerman and A. Korman

Note that for each i ∈ [log x0 + 1, 12 logT], the advice given by the oracle to

any of the ki agents must use at most Ψ(ki) ≤ Ψ(
√
T) bits. In other words,

for each of these ki agents, each advice is some integer whose value is at most

2Ψ(
√
T).

Let W (j, i) denote the random variable indicating the number of nodes in
Ri visited by the j’th agent by time 2T , assuming that the total number of
agents is ki. By Claim 3, for every integer i ∈ [log x0 + 1, 12 logT], we have:

E(
∑ki

j=1 W (j, i)) ≥ E(χi(Ri)) = Ω(d2i). By linearity of expectation, it

follows that for every integer i ∈ [log x0 + 1, 12 logT], there exists an integer
j ∈ {1, 2, · · · , ki} for which E(W (j, i)) = Ω(d2i /ki) = Ω(T/Φ(ki)).

Now, for each advice in the relevant range, i.e., for each a ∈ {1, · · · , 2Ψ(
√
T)},

let M(a, i) denote the random variable indicating the number of nodes in Ri that
an agent with advice a visits by time 2T . Note, the value of M(a, i) depends
only on the values of the coin tosses made by the agent. On the other hand, note
that the value of W (j, i) depends on the results of the coin tosses made by the
oracle assigning the advice, and the results of the coin tosses made by the agent
that uses the assigned advice. Recall, the oracle may assign an advice to agent j
according to a distribution that is different than the distributions used for other
agents. However, regardless of the distribution used by the oracle for agent j,

it must be the case that there exists an advice ai ∈ {1, · · · , 2Ψ(
√
T)}, for which

E(M(ai, i)) ≥ E(W (j, i)). Hence, we obtain:

E(M(ai, i)) = Ω(T/Φ(ki)).

Let A = {ai | i ∈ [log x0+1, 12 logT]}. Consider now an “imaginary” scenario5 in
which we execute the search algorithm with |A| agents, each having a different
advice in A. That is, for each advice a ∈ A, we have a different agent executing
the algorithm using advice a. For every set S of nodes, let χ̂(S) denote the
random variable indicating the number of nodes in S that were visited by at
least one of these |A| agents (in the “imaginary” scenario) by time 2T . Let
χ̂ := χ̂(G) denote the random variable indicating the total number of nodes
that were visited by at least one of these agents by time 2T .

By definition, for each i ∈ [log x0 + 1, 12 logT], the expected number of nodes
in Ri visited by at least one of these |A| agents is E(χ̂(Ri)) ≥ E(M(ai, i)) =
Ω(T/Φ(ki)). Since the sets Ri are pairwise disjoint, the linearity of expectation
implies that the expected number of nodes covered by these agents by time 2T is

E(χ̂) ≥
∑ 1

2 log T
i=x0+1 E(χ̂(Ri)) = Ω

(∑ 1
2 log T
i=x0+1

T
Φ(ki)

)
= T ·Ω

(∑ 1
2 log T
i=x0+1

1
Φ(2i)

)
.Re-

call thatA is included in {1, · · · , 2Ψ(
√
T)}. Hence, once more by linearity of expec-

tation, there must exist an advice â ∈ A, such that the expected number of nodes

5 The scenario is called imaginary, because, instead of letting the oracle assign the
advice for the agents, we impose a particular advice to each agent, and let the agents
perform the search with our advices. Note, even though such a scenario cannot occur
by the definition of the model, each individual agent with advice a cannot distinguish
this case from the case that the number of agents was some k′ and the oracle assigned
it the advice a.

Memory Lower Bounds for Randomized Collaborative Search 71

that an agent with advice â visits by time 2T is T · Ω
(∑ 1

2 log T
i=x0+1

1

Φ(2i)·2Ψ(
√

T)

)
.

Since each agent may visit at most one node in one unit of time, it follows that,

for every T large enough, the sum
∑ 1

2 log T
i=x0+1 1/Φ(2

i) · 2Ψ(
√
T) is at most some fixed

constant. The proof of the theorem now follows by replacing the variable T with
T 2. ��
Corollary 1. Consider a Φ(k)-competitive search algorithm using advice of size
Ψ(k). Assume that Φ(·) is relatively-slow. Then, Φ(k) = Ω(log k/2Ψ(k)), or in
other words, Ψ(k) = log log k − logΦ(k)−O(1).

Proof. Theorem 5 says that for every k, we have 1
2Ψ(k)

∑log k
i=1

1
Φ(2i) = O(1). On

the other hand, since Φ is non-decreasing, we have
∑log k

i=1
1

Φ(2i) ≥
log k
Φ(k) . Hence,

log k
2Ψ(k)·Φ(k)

= O(1). The corollary follows. ��

The following corollary follows directly from the previous one.

Corollary 2. Let ε < 1 be a positive constant. Consider a log k
2logε log k -competitive

search algorithm using advice of size Ψ(k). Then Ψ(k) = logε log k −O(1).

Our next corollary implies that even though O(log log k) bits of advice are suffi-
cient for obtaining O(1)-competitiveness, roughly this amount of advice is nec-
essary even for achieving relatively large competitiveness.

Corollary 3. There is no O(log1−ε k)-competitive search algorithm for some
positive constant ε, using advice of size Ψ(k) = ε log log k − ω(1).

Proof. Assume that the competitiveness is Φ(k) = O(log1−ε k). Then, we have∑log k
i=1

1
Φ(2i)·2Ψ(k) = Ω

(
logε k
2Ψ(k)

)
. According to Theorem 5, this sum is constantly

bounded, and hence, we cannot have Ψ(k) = ε log log k − ω(1). ��
Corollary 4. There is no O(log k)-competitive search algorithm, using advice
of size log log log k − ω(1).

Proof. Assume that the competitiveness is Φ(k) = O(log k). Since Φ(2i) = O(i),

we have
∑log k

i=1 1/Φ(2i) =
∑log k

i=1 1/i = Ω(log log k). According to Theorem 5,
1

2Ψ(k)

∑log k
i=1 1/Φ(2i) = Ω(log log k/2Ψ(k)) must converge as k goes to infinity. In

particular, we cannot have Ψ(k) = log log log k − ω(1). ��

4 Upper Bound

The lower bound on the advice size given in Corollary 3 is tight, as O(log log k)
bits of advice are sufficient to obtain an O(1)-competitive search algorithm. To
further illustrate the power of Theorem 5, we now claim that the lower bound
mentioned in Corollary 4 is also tight. Theorem 2 follows by combining the
Theorem 6 below and Corollary 4. Due to space considerations, the proof of
Theorem 6 is deferred to the full version of this paper.

Theorem 6. There exists an O(log k)-competitive algorithm using log log log k+
O(1) bits of advice.

72 O. Feinerman and A. Korman

5 Implications for Biology

A common problem, when studying a biological system is the complexity of the
system and the huge number of parameters involved. This raises the need for
more concise descriptions and several alternatives have been explored. One tactic
is reducing the parameter space. This is done by dividing the parameter space
into critical and non-critical directions where changes in non-critical parameters
do not affect overall system behavior [19,30]. A different approach involves the
definitions of bounds which govern biological systems independently of any algo-
rithms or parameters. Previous works have utilized physics [7] and information
theory [44] to set such bounds.

Our results are an attempt to draw non-trivial bounds on biological systems
from the field of distributed computing. Such theoretical lower bounds on advice
size may enable one to relate group search performance to the extent of informa-
tion sharing within the nest. These types of bounds are particularly interesting
since they provide not a single rule but relations between key parameters. In
our case these would be the memory capacity of an agent and collective search
efficiency.

We do not claim that our setting precisely captures the framework in which
the aforementioned species perform search, yet we do believe that it provides
a first approximation for it. Indeed, apart from engaging in central-place for-
aging with no mid-search communication, these species possess many of the
individual skills required for the behavioral patterns that are utilized in our up-
per bounds [32,47,48,49,52,53]. It is not unreasonable to assume that a careful
inspection of these species in nature would reveal a slightly different frame-
work and would require the formulation of similar suitable theoretical memory
bounds. Combining such memory lower bounds with experimental measurements
of search speed with varying numbers of searchers would then provide quan-
titative evidence regarding the number of memory bits (or, alternatively, the
number of states) used by ants during a search. In particular, this would help
to understand the ants’ quorum sensing process, as this number of memory bits
are required merely for representing the output of that process. Although such
experiments are beyond the scope of the current work, our results provide a
“proof-of-concept” for this methodology.

References

1. Afek, Y., Alon, N., Barad, O., Hornstein, E., Barkai, N., Bar-Joseph, Z.: A biolog-
ical solution to a fundamental distributed computing problem. Science 331(6014),
183–185 (2011)

2. Alpern, S., Gal, S.: The Theory of Search Games and Rendezvous, 319 p. Kluwer
(now Springer) Academic Publishers (2003)

3. Albers, S., Henzinger, M.R.: Exploring unknown environments. SIAM J. on Com-
puting 29, 1164–1188 (2000)

4. Averbakh, I., Berman, O.: (p − 1)/(p + 1)-approximate algorithms for p-traveling
salesmen problems on a tree with minmax objective. Discr. Appl. Mathematics 75,
201–216 (1997)

Memory Lower Bounds for Randomized Collaborative Search 73

5. Baeza-Yates, R.A., Culberson, J.C., Rawlins, G.J.E.: Searching in The Plane. In-
formation and Computation 106(2), 234–252 (1991)

6. Berkolaiko, G., Havlin, S.: Territory covered by N Levy flights on d-dimensional
lattices. Physical Review. E 55(2), 1395–1400 (1999)

7. Bialek, W.: Physical limits to sensation and perception. Annual Review of Bio-
physics and Biophysical Chemistry 16, 455–478 (1987)

8. Bonifaci, V., Mehlhorn, K., Varma, G.: Physarum can compute shortest paths. In:
Proc. 23th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
233–240 (2012)

9. Le Breton, J., Fourcassié, V.: Information transfer during recruitment in the ant
Lasius niger L (Hymenoptera: Formicidae). Behavioral Ecology and Sociobiol-
ogy 55(3), 242–250 (2004)

10. Burroughs, N.J., de, M., de Oliveira, B.M.P.M., Adrego, P.A.: Regulatory Tcell
adjustment of quorum growth thresholds and the control of local immune responses.
J. of Theoretical Biology 241, 134–141 (2006)

11. Chazelle, B.: Natural algorithms. In: SODA 2009, pp. 422–431 (2009)
12. Cohen, R., Fraigniaud, P., Ilcinkas, D., Korman, A., Peleg, D.: Label-Guided

Graph Exploration by a Finite Automation. ACM Transactions on Algorithms
(TALG) 4(4) (2008)

13. Dessmark, A., Pelc, A.: Optimal Graph Exploration without Good Maps. In:
Möhring, R.H., Raman, R. (eds.) ESA 2002. LNCS, vol. 2461, pp. 374–386.
Springer, Heidelberg (2002)

14. Diks, K., Fraigniaud, P., Kranakis, E., Pelc, A.: Tree exploration with little mem-
ory. In: SODA 2002, pp. 588–597 (2002)

15. Emek, Y., Fraigniaud, P., Korman, A., Rosen, A.: Online Computation with Ad-
vice. Theoretical Computer Science (TCS) 412(24), 2642–2656 (2011)

16. Feare, C.J., Dunnet, G.M., Patterson, I.J.: Ecologicalstudies of the rook (Corvus
frugilegus L.) in north-east Scotland; Food intake and feeding behaviour. J. of
Applied Ecology 11, 867–896 (1974)

17. Feinerman, O., Jentsch, G., Tkach, K.E., Coward, J.W., Hathorn, M.M., Sneddon,
M.W., Emonet, T., Smith, K.A., Altan-Bonnet, G.: Single-cell quantification of IL-
2 response by effector and regulatory T cells reveals critical plasticity in immune
response. Molecular Systems Biology 6(437) (2010)

18. Feinerman, O., Korman, A., Lotker, Z., Sereni, J.S.: Collaborative Search on the
Plane without Communication. To appear in PODC 2012 (2012)

19. Feinerman, O., Veiga, J., Dorfman, J.R., Germain, R.N., Altan-Bonnet, G.: Vari-
ability and robustness in T Cell activation from regulated heterogeneity in protein
levels. Science 321(5892), 1081–1084 (2008)

20. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Remembering without memory:
tree exploration by asynchronous oblivious robots. TCS 411, 1583–1598 (2010)

21. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: How many oblivious robots can
explore a line. Inf. Process. Lett. 111(20), 1027–1031 (2011)

22. Fraigniaud, P., G ↪asieniec, L., Kowalski, D.R., Pelc, A.: Collective Tree Exploration.
In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 141–151. Springer,
Heidelberg (2004)

23. Fraigniaud, P., Ilcinkas, D., Pelc, A.: Oracle size: a new measure of difficulty for
communication tasks. In: PODC 2006, pp. 179–187 (2006)

24. Fraigniaud, P., Gavoille, C., Ilcinkas, D., Pelc, A.: Distributed Computing with
Advice: Information Sensitivity of Graph Coloring. In: Arge, L., Cachin, C., Ju-
rdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 231–242.
Springer, Heidelberg (2007)

74 O. Feinerman and A. Korman

25. Fraigniaud, P., Korman, A., Lebhar, E.: Local MST Computation with Short Ad-
vice. Theory of Computing Systems (ToCS) 47(4), 920–933 (2010)

26. Fraigniaud, P., Korman, A., Peleg, D.: Local Distributed Decision. In: FOCS 2011
(2011)

27. Gasieniec, L., Pelc, A., Radzik, T., Zhang, X.: Tree exploration with logarithmic
memory. In: SODA (2007)

28. Giraldeau, L.A., Carco, T.: Social Foraging Theory (2000)
29. Gordon, D.M.: The regulation of foraging activity in red harvester ant colonies.

The American Naturalist 159(5), 509–518 (2002)
30. Gutenkunst, R.N., Waterfall, J.J., Casey, F.P., Brown, K.S., Myers, C.R., Sethna,

J.P.: Universally sloppy parameter sensitivities in systems biology models. PLOS
Computational Biology 3(10), e189 (2007), doi:10.1371/journal.pcbi.0030189

31. Hanusse, N., Kavvadias, D.J., Kranakis, E., Krizanc, D.: Memoryless search algo-
rithms in a network with faulty advice. TCS 402(2-3), 190–198 (2008)

32. Harkness, R.D., Maroudas, N.G.: Central place foraging by an ant (Cataglyphis
bicolor Fab.): a model of searching. Animal Behavior 33(3), 916–928 (1985)

33. Janeway, C.A., Travers, P., Walport, M., Shlomchik Immunobiology, M.J.: The
Immune System in Health and Disease. Garland Science, New Yoy (2001)

34. Kao, M., Reif, J.H., Tate, S.R.: Searching in an Unknown Environment: An Opti-
mal Randomized Algorithm for the Cow-Path Problem. J. of Inf. Comput., 63–79
(1996)

35. Korman, A., Sereni, J.S., Viennot, L.: Toward More Localized Local Algorithms:
Removing Assumptions Concerning Global Knowledge. In: PODC 2011 (2011)

36. Korman, A., Kutten, S.: Distributed Verification of Minimum Spanning Trees.
Distributed Computing (DC) 20(4) (2007)

37. Korman, A., Kutten, S., Peleg, D.: Proof Labeling Schemes. Distributed Comput-
ing (DC) 22(4) (2010)

38. Krebs, J.: Optimal foraging, predation risk and territory defense. Ardea 68, 83–90
(1980), Nederlandse Ornithlogische Unie

39. López-Ortiz, A., Sweet, G.: Parallel searching on a lattice. In: CCCG 2011, pp.
125–128 (2001)

40. Orians, G.F., Pearson, N.E.: On the theory of central place foraging. Analysis of
Ecological Systems, 155–177 (1979)

41. Panaite, P., Pelc, A.: Exploring unknown undirected graphs. J. of Algorithms 33,
281–295 (1999)

42. Polycarpouy, M.M., Yang, Y., Passinoz, K.M.: A Cooperative Search Framework
for Distributed Agents. In: Intelligent Control, pp. 1–6 (2001)

43. Pratt, S.C.: Quorum sensing by encounter rates in the ant Temnothorax albipennis.
Behavioral Ecology 16(2), 488–496 (2005)

44. Rieke, F., Warland, D., Bialek, W.: Coding efficiency and information rates in
sensory neurons. Europhysics Letters 22(2), 15–156 (1993)

45. Reingold, O.: Undirected connectivity in log-space. J. ACM 55(4) (2008)
46. Reynolds, A.M.: Cooperative random Lévy flight searches and the flight patterns

of honeybees. Physics Letters A 354, 384–388 (2006)
47. Reynolds, A.M.: Optimal random Lévy-loop searching: New insights into the

searching behaviours of central-place foragers. European Physics Letters 82(2),
20001 (2008)

48. Sommer, S., Wehner, R.: The ant’s estimation of distance travelled: experiments
with desert ants, Cataglyphis fortis. J. of Comparative Physiology A 190(1), 1–6
(2004)

Memory Lower Bounds for Randomized Collaborative Search 75

49. Srinivasan, M.V., Zhang, S., Altwein, M., Tautz, J.: Honeybee Navigation: Nature
and Calibration of the Odometer. Science 287, 851–853 (2000)

50. Surette, M.G., Miller, M.B., Bassler, B.L.: Quorum sensing in Escherichia coli,
Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for
autoinducer production. Proc. National Acadamy of Science 96, 1639–1644 (1999)

51. Town, C.D., Gross, J.D., Kay, R.R.: Cell differentiation without morphogenesis in
Dictyostelium discoideum. Nature 262, 717–719 (1976)

52. Wehner, R., Meier, C., Zollikofer, C.: The ontogeny of foraging behaviour in desert
ants, Cataglyphis bicolor. Ecol. Entomol. 29, 240–250 (2004)

53. Wehner, R., Srinivasan, M.Y.: Searching behaviour of desert ants, genus
Cataglyphis (Formicidae, Hymenoptera). J. of Comparative Physiology 142(3),
315–338 (1981)

54. Zahavi, A.: The function of pre-roost gatherings and communal roosts. Ibis 113,
106–109 (1971)

A Generalized Algorithm for Publish/Subscribe Overlay
Design and Its Fast Implementation

Chen Chen1, Roman Vitenberg2, and Hans-Arno Jacobsen1

1 Department of Electrical and Computer Engineering, University of Toronto, Canada
2 Department of Informatics, University of Oslo, Norway

{chenchen,jacobsen}@eecg.toronto.edu, romanvi@ifi.uio.no

Abstract. It is a challenging and fundamental problem to construct the underly-
ing overlay network to support efficient and scalable information distribution in
topic-based publish/subscribe systems. Existing overlay design algorithms aim to
minimize the node fan-out while building topic-connected overlays, in which all
nodes interested in the same topic are organized in a directly connected dissem-
ination sub-overlay. However, most state-of-the-art algorithms suffer from high
computational complexity, such as O(|V |4|T |), where V is the node set and T is
the topic set.

We devise a general indexing data structure that provides a significantly faster
implementation, with O(|V |2|T |) running time, for different state-of-the-art al-
gorithms. The generality of the indexing data structure is due to the fact that it
enables edge lookup by both node degree and edge contribution, a central metric
in all existing algorithms. When tested on typical pub/sub workloads, the speedup
observed was by a factor of over 1 000, thereby rendering the algorithms more
suitable for practical use. For example, under a typically Zipf distributed pub/sub
workload, with 1 000 nodes and 100 topics, our new implementation completes
in 3.823 seconds, while the previous alternative takes over 555 minutes.

1 Introduction

Publish/subscribe (pub/sub) systems constitute an attractive choice as communication
paradigm and messaging substrate for building large-scale distributed systems. Many
real-world applications are using pub/sub for message dissemination, such as appli-
cation integration across data centers [27], financial data dissemination [3], RSS feed
aggregation, filtering, and distribution [23,26], and business process management [21].
Google’s GooPS [27] and Yahoo’s YMB [15] constitute the distributed messaging sub-
strates for online applications operating worldwide, TIBCO RV [3] has been used ex-
tensively for NASDAQ quote dissemination and order processing, and GDSN (Global
Data Synchronization Network) [1] is a global pub/sub network enabling suppliers and
retailers to exchange timely and accurate supply chain data.

In a distributed pub/sub system, so called pub/sub brokers, often connected in a
federated manner as an application-level overlay network, efficiently route publica-
tion messages from data sources to sinks. The overlay of a pub/sub system directly
impacts the system’s performance and the message routing cost. Constructing a high-
quality broker overlay is a key challenge and fundamental problem for distributed
pub/sub systems that has received attention both in industry [27,15] and academia
[13,24,25,18,7,10].

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 76–90, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Generalized Algorithm for Publish/Subscribe Overlay Design 77

The notion of topic-connectivity is defined for topic-based pub/sub overlays [13],
which informally speaking means that all nodes (i.e., pub/sub brokers) interested in
the same topic are organized in a connected dissemination sub-overlay. This property
ensures that nodes not interested in a topic would never need to contribute to disseminat-
ing information on that topic. Publication routing atop such overlays saves bandwidth
and computational resources otherwise wasted on forwarding messages of no interest
to the node. It also results in smaller routing tables. From a security perspective, topic-
connectivity is desirable when messages are to be shared across a network among a set
of trusted users without leaving this set.

Apart from topic-connectivity, it is imperative for an overlay network to have a low
node degree. It costs a lot of resources to maintain adjacent links for a high-degree node
(i.e., monitor the links and the neighbors [13,25]). Besides, for a typical pub/sub sys-
tem, each link would have to accommodate a number of protocols, service components,
message queues and so on. While overlay designs for different applications might be
principally different, they all share the strive for maintaining bounded node degrees,
whether in DHTs [22], wireless networks [16], or for survivable network design [19].

Several centralized algorithms have been proposed for constructing topic-connected
overlays with the average node degree or the maximum node degree provably close
to the optimal ones [13,24,25,10,12]. These state-of-the-art algorithms target overlay
construction in a managed large cluster of up to thousands of servers where full mesh
solutions exhibit scalability problems [27,15]. Such clusters are characterized by a large
degree of control and relatively low churn rates (in the order of one change every hour,
depending on the size of the cluster [2]), which makes centralized overlay construction
a viable solution. Besides, these algorithms serve as stepping stones and comparison
baselines for dynamic environments and decentralized overlay construction protocols.

However, the algorithms in [24,25,12] have the prohibitively expensive runtime cost
of O(|V |4|T |) where |V | is the number of nodes and |T | is the number of topics. This
fundamental drawback makes the algorithms non-suitable for the managed cluster envi-
ronment because it takes tens of minutes or hours to compute an overlay for a realistic
scale on a high-end machine. The runtime cost also limits the applicability of the algo-
rithms as a comparison baseline.

The main contribution of this paper is that we generalize the above algorithms and
come up with a new indexing data structure that supports a significantly faster imple-
mentation, with O(|V |2|T |) time efficiency. Specifically, all algorithms follow the same
pattern: they iteratively add edges until the resulting overlay satisfies topic-connectivity.
The data structure that we propose exhibits the following properties: (a) its initialization
complexity is O(|V |2|T |), (b) the cumulative complexity of selecting an edge at all it-
erations is O(|V |2|T |), and (c) the amortized complexity of updating the data structure
over all iterations is also O(|V |2|T |). The generality of the indexing data structure is
due to the fact that it allows edge lookup by both node degree and the edge contribution,
a central metric in the above algorithms.

To complement the theoretical analysis, we conduct comprehensive experiments
under a variety of characteristic pub/sub workloads. Our experiments show that on
average, for a typical pub/sub scale and interest distribution, our generalized algo-
rithm with its efficient implementation builds the same overlay as previously known

78 C. Chen, R. Vitenberg, and H.-A. Jacobsen

state-of-the-art algorithms in less than 0.37% of the running time. For example, under
the Zipf distributed pub/sub workload, with 1000 nodes and 100 topics, our new im-
plementation completes in 3.823 seconds, while the previous alternative takes over 555
minutes.

2 Related Work

The research in distributed pub/sub systems has been considering two main directions:
(1) the design of routing protocols with emphasis on the efficiency and scalability of
message dissemination from numerous publishers to a large number of subscribers (see
for example: [28,8,20,4]) and (2) the construction of the underlying overlay topology
such that network traffic is minimized (see for example: [13,24,18,7,10,25,17,12]). This
paper focuses on the latter direction.

Topic-connectivity is a required property in [6,14]. It is also an implicit requirement
in [8,5,7,9,17], which all aim to reduce the number of unnecessary intermediate overlay
hops for message delivery using a variety of techniques.

Chockler et al. [13] introduced the parametrized family of Scalable Overlay Con-
struction (SOC) design problems for pub/sub that captures the trade-off between the
overlay scalability and the cost of message dissemination. They specifically focus on the
MinAvg-TCO problem of minimizing the average node degree of the topic-connected
overlay [13]. They proved the NP-Completeness of MinAvg-TCO and proposed the
GM (Greedy Merge) algorithm that achieves a logarithmic approximation ratio with
regard to average node degree [13]. Chen et al. [10] use GM as a building block for
designing a divide-and-conquer approach to overlay design for pub/sub systems. This
approach significantly reduces the time and space complexity of constructing a topic-
connected overlay with a low average node degree.

Onus and Richa [24] analyzed the MinMax-TCO problem of minimizing the max-
imum degree of a topic-connected overlay network. They present the MinMax-ODA
(Minimum Maximum Degree Overlay Design Algorithm) that attains a logarithmic ap-
proximation ratio on the maximum node degree. Chen et al. [12] focus on providing
an efficient solution for MinMax-TCO by combining greedy and divide-and-conquer
algorithm design techniques.

The GM and MinMax-ODA algorithms each focus on minimizing one single node
degree metric, either average or maximum node degree. Each algorithm was shown to
perform poorly with respect to the complementary metric. Onus and Richa [25] intro-
duced the Low-TCO problem for minimizing both average and maximum node degrees
in a topic-connected pub/sub overlay design at the same time. The authors designed the
Low-ODA (Low Degree Overlay Design Algorithm), which achieves sub-linear ap-
proximations for both metrics [25].

Both MinMax-ODA and Low-ODA have the high time complexity of O(|V |4|T |),
where |V | is the number of nodes and |T | is the number of topics. In this paper,
we provide a generalization of the GM, MinMax-ODA, and Low-ODA algorithms
and propose a fast implementation for the generalized algorithm with running time
O(|V |2|T |). This speedup technique is also applicable to the algorithms proposed by
Chen et al. [10,12] that can use the generalized algorithms as building blocks.

A Generalized Algorithm for Publish/Subscribe Overlay Design 79

3 Background

In this section we present some definitions and background information essential for
the understanding of the algorithms developed in this paper.

Let V be the set of nodes and T be the set of topics. The interest function Int is
defined as Int : V × T → {true, false}. Since the domain of the interest function
is a Cartesian product, we also refer to this function as an interest matrix. Given an
interest function Int , we say that a node v is interested in some topic t if and only if
Int(v, t) = true. We then also say that node v subscribes to topic t.

An overlay network G(V,E) is an undirected graph over the node set V with the
edge set E ⊆ V × V . Given an overlay network G(V,E), an interest function Int , and
a topic t ∈ T , we say that a sub-graph Gt(Vt, Et) of G is induced by t if Vt = {v ∈
V |Int(v, t)} and Et = {(v, w) ∈ E|v ∈ Vt ∧ w ∈ Vt}. An overlay G is called topic-
connected if for each topic t ∈ T , the sub-graph Gt of G induced by t contains at most
one topic-connected component (TC-component). A topic-connected overlay (TCO) is
denoted as TCO(V, T, Int, E), TCO in short.

The concept of TCO is applicable to both P2P solutions for pub/sub in which the
clients form the TCO and broker-based solutions in which the brokers form the TCO.
It does not differentiate between publishers and subscribers. This abstraction simplifies
the presentation for a theoretical and algorithmic treatment of the problem, while fully
preserving its practical character. Aiming to achieve topic-connectivity while optimiz-
ing node degrees has resulted in the formulation of various problems: MinAvg-TCO for
average degree [13], MinMax-TCO for maximum degree [24], and Low-TCO for both
average degree and maximum degree simultaneously [25].

Problem 1. MinAvg-TCO(V, T, Int): Given a set of nodes V , a set of topics T , and the
interest function Int , construct a topic-connected overlay which has the least possible
total number of edges (i.e., the least possible average node degree).

Problem 2. MinMax-TCO(V, T, Int): Given a set of nodes V , a set of topics T , and
the interest function Int , construct a topic-connected overlay with the smallest possible
maximum node degree.

Problem 3. Low-TCO(V, T, Int): Given a set of nodes V , a set of topics T , and the
interest function Int , construct a topic-connected overlay with both low average and
low maximum node degree.

MinAvg-TCO and MinMax-TCO are proven NP-Complete [13,24]. Low-TCO inte-
grates the optimization objectives of the former problems. Approximation algorithms
are proposed for these TCO construction problems, all following a greedy heuristic:
the GM algorithm for MinAvg-TCO [13], the MinMax-ODA algorithm for MinMax-
TCO [24], and the Low-ODA algorithm for Low-TCO [25].

4 Generalized Overlay Design Algorithm

In this section, we introduce Gen-ODA (Generalized Overlay Design Algorithm) as
specified in Alg. 1. It captures the similarities embedded in the GM, MinMax-ODA,

80 C. Chen, R. Vitenberg, and H.-A. Jacobsen

and Low-ODA algorithms and offers an easy-to-specialize pattern for studying families
of algorithms for solving TCO design problems. We illustrate some of the specializa-
tions of this pattern in this paper.

Gen-ODA starts with the overlayG(V,Enew) where Enew = ∅ so that there are
∣∣{v

: Int(v, t)}
∣∣ singleton TC-components for each topic t ∈ T , i.e., there are∑

t∈T

∣∣{v:Int(v, t)}∣∣ separate TC-components in total. The algorithm progresses by
adding edges to Enew , thus merging TC-components until G(V,Enew) contains at most
one TC-component for each t ∈ T , i.e., the resulting overlay is topic-connected.

At each step, an edge e is selected
from the potential edge set Epot by
findEdge() in Line 6 of Alg. 1. Specific
algorithms for different TCO problems
have their own rules for edge selec-
tion, i.e., findEdge() is a virtual func-
tion that needs to be overwritten with
an implementation of a concrete crite-
rion, which governs edge selection. We
next illustrate these rules for the above
listed algorithms. The rules are based
on a combination of two criteria: node
degree and edge contribution, which is
defined as reduction in the number of
TC-components caused by the addition

Alg. 1. Generalized Overlay Design Algorithm
Gen-ODA(V, T, Int)

Input: V, T, Int

Output: A topic-connected overlay TCO(V, T, Int , E)

1: Enew , Epot ← ∅
2: for all e=(v, w) s.t. (w, v)/∈Epot where v, w∈V do
3: add e to Epot

4: initDataStructures()

5: while G(V,Enew) is not topic-connected do
6: e ← findEdge()
7: Enew ← Enew ∪ {e}
8: Epot ← Epot − {e}
9: updateDataStructures(e)

10: return TCO(V, T, Int , Enew)

of the edge to the current overlay. The edge contribution for e is denoted as contrib(e).
1. Chockler et al. [13] use the GM-rule for edge selection with regard to MinAvg-

TCO: GM greedily selects an edge with the highest contribution (regardless of the node
degree). An optimized implementation of GM has the runtime of O(|V |2|T |). GM
achieves a logarithmic approximation ratio for the average node degree; however, GM
only provides an approximation ratio of Θ(|V |) for the maximum node degree [24].

2. Onus et al. [24] use the MinMax-ODA-rule for edge selection with regard to
MinMax-TCO: MinMax-ODA also selects the edge with the highest contribution,
but only among the edges that would minimally increase the maximum node degree.
MinMax-ODA always produces a TCO that has a maximum node degree within at
most log(|V ||T |) times the optimal maximum node degree.However, MinMax-ODA
only attains an approximation ratio of Θ(|V |) for the average node degree [25].

3. Onus et al. [25] propose the Low-ODA-rule for solving the Low-TCO problem:
Low-ODA uses a parameter k to trade off the balance between average and maximum
node degrees. The algorithm makes a weighed selection between the edge e1 chosen
by the GM-rule and the edge e2 selected by the MinMax-ODA-rule: If contrib(e1)
is greater than k · contrib(e2), e1 is added; otherwise e2 is added. Low-ODA achieves
sub-linear approximation ratios on both average and maximum node degrees.

Both MinMax-ODA and Low-ODA find an edge in O(|V |2) time by scanning
all potential edges in a brute force manner, which leads to the time complexity of
O(|V |4|T |) [24,25]. This runtime cost is the main impediment for deploying the al-
gorithms in a relatively static cluster environment where the large degree of control

A Generalized Algorithm for Publish/Subscribe Overlay Design 81

makes a centralized overlay construction feasible. Furthermore, it limits the scale of
validation for MinMax-ODA and Low-ODA which in turn diminishes the potential
for using these algorithms as the building blocks (e.g., in the design of divide and con-
quer algorithms [12]) and the comparison baselines for distributed alternatives.

5 Fast Implementation of TCO Algorithms

This section offers an efficient implementation for our proposed Gen-ODA algorithm
pattern and its various instantiations. With Alg. 1 as the common pattern, functions
initDataStructures() and updateDataStructures() are shared by different instantia-
tions of Gen-ODA, while findEdge() is specialized for different edge selection rules.
The fast implementation is based on the new indexing structure that we introduce in
this work. A simpler structure was used in [13], which only provided indexing by the
edge contribution. In contrast, the structure we propose in this work allows for indexing
both by the edge contribution and node degree. In particular, the use of this structure
allows us to implement a faster version of MinMax-ODA and Low-ODA running
in O(|V |2|T |) time. By using this faster version, we can accelerate the efficiency of
divide-and-conquer algorithms proposed in [12].

We first present the central data structures and elementary functions utilized in our
fast implementation of Gen-ODA. Then, we describe the implementation of functions
initDataStructures() and update-
DataStructures() shared by dif-
ferent instantiations. Finally, we
show how to realize different edge
selection rules under the umbrella
of this common algorithm pat-
tern. We prove results about the
runtime complexity for each of
these elements, which allows us
to derive the total complexity of
O(|V |2|T |). Table 1 summarizes
the overlay construction problems
and algorithms, which will be dis-
cussed in this section.

Table 1. Algorithms for Solving the TCO Problems

MinAvg-TCO Minimum Average Degree TCO Problem
GM Greedy Merge algorithm [13], O(|V |2|T |)
F-MinAvg-ODA Fast implementation for GM, O(|V |2|T |)
MinMax-TCO Minimum Maximum Degree TCO Problem
MinMax-ODA Minimum Maximum Degree Overlay Design

Algorithm [24], O(|V |4|T |)
F-MinMax-ODA Fast MinMax-ODA, O(|V |2|T |)
Low-TCO Low Avg and Max Degree TCO Problem
Low-ODA Low Degree Overlay Design Algorithm [25],

O(|V |4|T |)
F-Low-ODA Fast Low-ODA, O(|V |2|T |)
TCOALG

* The TCO produced by ALG
TALG Running time of ALG

* where ALG stands for any of the discussed algorithms.

5.1 An Indexing Data Structure

We introduce an indexing data structure, EdgeContrib , as the underlying bedrock for
our fast implementation of Gen-ODA. We opt to presentEdgeContrib in Class 2 using
object-oriented design principles, because: (1) it provides a standard interface that can
be reused efficiently to develop key functions of Gen-ODA; and (2) the grouping of
data and procedures facilitates reasoning about the algorithms and time complexity.

EdgeContrib defines an internal class EDGESTRUCT, which encapsulates an edge
and meta-information about it, such as its contribution. Besides, EDGESTRUCT contains
pointer fields prev and next to allow inclusion into a doubly-linked list.

82 C. Chen, R. Vitenberg, and H.-A. Jacobsen

EdgeContrib contains two additional member attributes:edgeArray andedgeMap.
As illustrated in Fig. 1(a), memberedgeArray is a 2-dimensional array of size |T |×|V |,
which is designed for quick search for the “best” edge at each iteration of Alg. 1. Each
entryedgeArray[c][d] contains a doubly-linked list of EDGESTRUCT objects correspond-
ing to different edges with contribution c and higher node degree d.

Member edgeMap is a hashtable
such that given an edge e, edgeMap
allows for an efficient lookup of
the corresponding EDGESTRUCT(e). In
a well-dimensioned hashtable, arbi-
trary insertions, lookups and dele-
tions have a constant average time
cost per operation. Fig. 1. (a) EdgeContrib.edgeArray (b) TCC-Nodes

Class 2. EdgeContrib Interface and Implementation

// Definition of EDGESTRUCT - data structure for EdgeContrib entries
EDGESTRUCT: an encapsulation of an edge and its corresponding information. It is implemented as an element in a
doubly-linked list, so that inserting and deleting an edge can be performed in constant time.

◦ e(v, w): the edge
◦ contrib: the edge contribution of e(v, w), i.e., contrib(e)

◦ prev : pointer to its predecessor in the linked list
◦ next : pointer to its successor in the linked list

◦ degree: max{deg(v), deg(w)} where deg(v) is the degree of node v in G(V,Enew)

// Member attributes and auxiliary variables for EdgeContrib

� edgeArray : a 2-dimensional array with |T |×|V | entries, each representing a set of edges (and their correspond-
ing information) chosen from V ×V . An edge e(v, w) is wrapped in an EDGESTRUCT object (see the data struc-
ture definition above), denoted as EDGESTRUCT(e), when storing in an entry of edgeArray . If EDGESTRUCT(e) ∈
edgeArray [c][d], then: (1) e ∈ Epot ; (2) c = EDGESTRUCT(e).contrib; (3) d = EDGESTRUCT(e).degree.

� edgeMap: A hashtable that maps an edge e (as a key) to its associated EDGESTRUCT(e) (as a value) in edgeArray .

// Functions for EdgeContrib

� initEntry(c, d)

1: edgeArray [c][d] ← ∅

� insertEdge(e(v, w), c, d)

1: construct EDGESTRUCT(e) s.t. contrib=c and degree=d

2: put key-value pair (e, EDGESTRUCT(e)) into edgeMap
3: insert EDGESTRUCT(e) into edgeArray [c][d]

� deleteEdge(e(v, w), c, d)

1: get EDGESTRUCT(e) from edgeMap using e as the key
2: delete key-value pair (e, EDGESTRUCT(e)) from edgeMap
3: delete EDGESTRUCT(e) from edgeArray [c][d]

� getOneEdge(c, d)

1: return the first edge from edgeArray [c][d]

� getContrib(e(v, w))

1: get EDGESTRUCT(e) from edgeMap by key e

2: return EDGESTRUCT(e).contrib

� getDegree(e(v, w))

1: get EDGESTRUCT(e) from edgeMap by key e

2: return EDGESTRUCT(e).degree

� entrySize(c, d)

1: return
∣
∣edgeArray [c][d]

∣
∣

While the implementation of individual functions in EdgeContrib is rather straight-
forward, it is important to observe that each function has a per-invocation runtime cost
of O(1). Edge addition or deletion takes constant time thanks to the use of a doubly-
linked list. Edge lookup takes O(1) due to using the edgeMap hashtable. This property
of the constant per-invocation cost is essential for the time efficiency of updating all
EDGESTRUCTs in edgeArray after adding each edge to the overlay, as we further elab-
orate upon in Lemma 3.

A Generalized Algorithm for Publish/Subscribe Overlay Design 83

5.2 A Common Template for Implementations

We have showed the outline of Gen-ODA in Alg. 1. A more detailed description with
actual data structures for Gen-ODA is presented in the following algorithms: defini-
tions of data structures (Alg. 3), initialization of data structures (Alg. 4) and the update
of data structures after each edge addition (Alg. 5). GM [13], MinMax-ODA [24] and
Low-ODA [25] all fit into the framework of the Gen-ODA, and the only difference is
that they use different criteria to select an edge at each iteration (Line 6 of Alg. 1).

Alg. 3. Global Variables
� EdgeContrib: an indexing data structure de-
signed for quick search for the best candidate edge
using various edge selection rules. See Class 2.
� TCC-Nodes: a 2-dimensional array
of size |V |×|T | in which each element
TCC-Nodes[v][t] is a subset of V s.t. for each
w ∈ TCC-Nodes[v][t], (1) Int(w, t) = true,
and (2) both w and v belong to the same
TC-component for t.

� Enew : set of edges in the overlay built so far.
� Epot : set of potential edges that can be added.
� nodeDegree: an array with length |V | s.t.
nodeDegree[v] is the degree of node v in G(V,Enew).
� maxContrib: the highest edge contribution in Epot .
� maxDegree: the maximum node degree in G(V,Enew).
� curContrib: contribution of the currently selected edge.
� curDegree: the higher node degree of the currently se-
lected edge.

Our implementation of
Gen-ODA uses several global
variables defined in Alg. 3. Among
these data structures, EdgeContrib
and TCC-Nodes play the most impor-
tant roles (see Fig. 1). EdgeContrib
is an indexing data structure de-
signed to organize all potential
edges (see Class 2). TCC-Nodes
is a 2-dimensional array of size
|V |×|T | which keeps track of the
TC-components in the current overlay
G(V,Enew): TCC-Nodes [v][t] holds
the set of nodes belonging to the same
TC-component for t as v. To support
all these variables for Gen-ODA, a
polynomial space is sufficient.

Alg. 4. Data Structure Initialization
initDataStructures()

1: for all v ∈ V do
2: nodeDegree[v] ← 0

3: for all v ∈ V ∧ t ∈ T such that Int(v, t) do
4: TCC-Nodes[v][t] ← {v}
5: for c ← |T | down to 1 do
6: for d ← 0 to |V | − 1 do
7: EdgeContrib.initEntry(c, d)

8: for all e = (v, w) ∈ Epot do
9: c ← |{t ∈ T |Int(v, t) ∧ Int(w, t)}|
10: if c > 0 then
11: EdgeContrib.insertEdge(e, c, 0)

12: maxContrib

← max{c | ∃ d s.t. EdgeContrib.entrySize(c, d)>0}
13: curContrib ← maxContrib

14: curDegree ← 0, maxDegree ← 0

Lemma 1. Alg. 1 takes O(|V |2|T |) space.

The initialization of these data structures (Alg. 4) takes place at the very beginning
of the Gen-ODA algorithm. Gen-ODA starts with the overlay G(V, ∅), and Alg. 4
initializes all global variables defined in Alg. 3 accordingly. Lemma 2 shows the time
complexity of the initialization.

Lemma 2. The running time of Alg. 4 is O(|V |2|T |).
Proof. The cost of Gen-ODA’s initialization is dominated by the calculation of edge
contribution for all potential edges Epot in Lines 8-11 of Alg. 4. If the interest of each
node is stored as a list of topics, then the complexity of this computation for Epot will
be O(

∑
e=(v,w)∈Epot

|{t ∈ T |Int(v, t) ∧ Int(w, t)}|) = O(|V |2|T |). ��

84 C. Chen, R. Vitenberg, and H.-A. Jacobsen

After adding e to the overlay and removing it from the potential set (Line 7-8 in
Alg. 1), nodes and edges ought to be re-arranged in EdgeContrib and TCC-Nodes
dynamically to reflect the new edge contributions, TC-components, and node degrees
(Line 9 in Alg. 1). This is performed by Alg. 5.

Alg. 5. Data Structure Update
updateDataStructures(e(v,w))

// (1) Update variables for current edge

1: curContrib ← EdgeContrib.getContrib(e)

2: curDegree ← EdgeContrib.getDegree(e)

3: EdgeContrib.deleteEdge(e, curContrib,

curDegree)

// (2) Update contributions and TC-components
4: for all t ∈ T such that Int(v, t) ∧ Int(w, t)∧

TCC-Nodes[v][t] �= TCC-Nodes[w][t] do
5: for all v′ ∈ TCC-Nodes[v][t]∧

w′ ∈ TCC-Nodes[w][t]∧
e′(v′, w′) �= e(v, w) do

6: c←EdgeContrib.getContrib(e′),
d←EdgeContrib.getDegree(e′)

7: EdgeContrib.deleteEdge(e′, c, d)
8: if c > 1 then
9: EdgeContrib.insertEdge(e′,c−1, d)

10: else
11: delete e′ from Epot

12: new tcc nodes ←
TCC-Nodes[v][t] ∪ TCC-Nodes[w][t]

13: for all u ∈ new tcc nodes do
14: TCC-Nodes[u][t] ← new tcc nodes

// (3) Update node degrees
15: nodeDegree[v] ← nodeDegree[v] + 1,

nodeDegree[w] ← nodeDegree[w] + 1

16: maxDegree ←
max{maxDegree,nodeDegree[v],nodeDegree[w]}

17: for all (v′, w′) ∈ Epot that is incident on v or w do
18: dold←EdgeContrib.getDegree((v′, w′))
19: dnew←max{nodeDegree[v′],nodeDegree[w′]}
20: if dold < dnew then
21: c ← EdgeContrib.getContrib((v′, w′))
22: EdgeContrib.deleteEdge((v′, w′), c, dold)

23: EdgeContrib.insertEdge((v′, w′), c, dnew)

// (4) Update maxContrib

24: while maxContrib > 0 do
25: for degree ← 0 to maxDegree do
26: if EdgeContrib.entrySize(maxContrib,

degree) > 0 then
27: break from while loop in Line 24
28: maxContrib ← maxContrib − 1

As shown In Alg. 5, the update has four parts: (1) Lines 1-2 update curContrib and
curDegree using the currently selected edge; (2) Lines 4-14 update edge contributions
for EDGESTRUCTs stored in EdgeContrib and TC-components recorded in TCC-Nodes ;
(3) Lines 17-23 update the array entries in EdgeContrib according to node degrees of
G(V,Enew); (4) Lines 24-28 update the global variable maxContrib.

Part (1) and Part (4) deal with basic data types, and are relatively straightforward.
Parts (2) and Part (3) are responsible for handling complex data structures.

In Part (2), Lines 6-11 update the contribution of each edge affected by the addition
of e(v, w) to the overlay. An edge is affected if its endpoints belong to different TC-
components prior to the addition but those components are merged as a result of the ad-
dition. Once edge e(v, w) is added to the overlay, two TC-components are merged into a
single one new tcc nodes=TCC-Nodes [v][t]∪TCC-Nodes [w][t] (Lines 12). Accord-
ingly, for each node u ∈ new tcc nodes , TCC-Nodes [u][t] is updated (Lines 13-14).

In Part (3), Alg. 5 handles the node degree update. Lines 15-16 update global variables
nodeDegree and maxDegree following the addition of a new edge e(v, w). Lines 17-
23 examine all potential edges incident on either v or w and update the corresponding
node degrees as the dimension in EdgeContrib .edgeArray. For each edge e′(v′, w′),
Line 18 retrieves the old degree as the index in EdgeContrib .edgeArray, and Line 19
computes the new degree in G(V,Enew); Lines 20-23 update the indexing structure if
dold < dnew .

A Generalized Algorithm for Publish/Subscribe Overlay Design 85

Lemma 3 shows the cumulative running time of updates performed by Alg. 5 for all
edges added to the TCO. We provide the detailed proof in our technical report [11].

Lemma 3. The cumulative running time of all invocations of Alg. 5 during the entire
execution of Alg. 1 is O(|V |2|T |).

Having presented an efficient implementation of initDataStructures() and update-
DataStructures() for Alg. 1, we now focus on the concrete realizations of findEdge()
for different TCO construction criteria in Sec. 5.3, 5.4, and 5.5. At each iteration of
Gen-ODA, findEdge() (Line 6 in Alg. 1) finds an edge e, whose addition would merge
at least two different TC-components (for at least one topic), thus reducing the total
number of TC-components by at least one. While naive search for the next “best” edge
takes O(|V |2) time, the implementation presented here improves the time complexity
by employing the auxiliary indexing data structureEdgeContrib . This data structure fa-
cilitates finding the ‘best’ edge at each iteration taking both edge contribution and node
degree into account because the algorithm can traverse EdgeContrib .edgeArray[c][d]
in the order of decreasing contribution c and increasing degree d and pick an edge from
the first non-empty entry.

5.3 Finding Edge for MinAvg-TCO

Gen-ODA together with Alg. 6, re-
ferred to as F-MinAvg-ODA (Fast
MinAvg Overlay Design Algorithm),
builds the same overlay as GM [13].
Alg. 6 implements the GM-rule: it al-
ways chooses the edge with the highest
contribution toward topic-connectivity
regardless of node degrees.

Alg. 6. Find a MinAvg Edge
findMinAvgEdge()

Output: an edge e to be added to Enew

1: for degree ← curDegree to maxDegree do
2: if EdgeContrib.entrySize(maxContrib,

degree) > 0 then
3: e←EdgeContrib.getOneEdge(maxContrib,

degree)

4: return e

Lemma 4 shows that F-MinAvg-ODA achieves the same time efficiency as GM.
The formal proof for Lemma 4 is omitted here, since it basically is a simplification of
the time efficiency proof for F-MinMax-ODA, which we present in Sec. 5.4.

Lemma 4. The cumulative running time of all invocations of Alg. 6 during the entire
execution of Alg. 1 is O(|V |2|T |).

5.4 Finding Edge for MinMax-TCO

MinMax-ODA in [24] yields the time complexity of O(|V |4|T |). Gen-ODA with
the MinMax-ODA-rule implemented in Alg. 7 provides an efficient realization of
MinMax-ODA, with an improved running time of O(|V |2|T |). We refer to this com-
bined algorithm as F-MinMax-ODA (Fast MinMax-ODA).

In order to explain Alg. 7, we first observe that MinMax-ODA (and consequently
F-MinMax-ODA) adds new edges in phases. At the start of each phase, MinMax-ODA
selects a new edge that increases the maximum degree of the overlay by one. Then, the
algorithm proceeds with adding edges without raising the maximum degree until the ad-
dition of any extra edge would cause a new increase, at which point the phase ends. The
number of such phases is limited by the highest possible overlay degree, i.e., O(|V |).

86 C. Chen, R. Vitenberg, and H.-A. Jacobsen

When invoked by Alg. 1 at each
iteration, Alg. 7 scans the entries cor-
responding to non-maximum degree
(< maxDegree) in edgeArray of
EdgeContrib in the order of increasing
degree and decreasing contribution. If a
non-empty entry is found, an arbitrary
edge from the entry edge list is selected.
Otherwise, an edge from the entry with
the maximum contribution and maximum
degree is selected, which leads to the in-
crease in the overlay degree and signifies
a start of a new phase.

The crucial element for the efficiency
of the implementation is that rather
than scanning the entire edgeArray of
EdgeContrib at each invocation, Alg. 7
continues the scan from the last selected

Alg. 7. Find a MinMax Edge
findMinMaxEdge()

Output: an edge e to be added to Enew

1: e ← NIL, contrib ← curContrib

2: while e = NIL ∧ contrib > 0 do
3: initDegree ← 0

4: if contrib = curContrib then
5: initDegree ← curDegree

6: for degree←initDegree to maxDegree−1 do
7: if EdgeContrib.entrySize(contrib,

degree) > 0 then
8: e←EdgeContrib.getOneEdge(contrib,

degree)

9: break from for loop in Line 6

10: contrib ← contrib − 1

11: if e = NIL then
12: e←EdgeContrib.getOneEdge(maxContrib,

maxDegree)

13: return e

entry. First, it does not affect the correctness of the scan: while after an edge addition,
Alg. 5 reshuffles potential edges across edgeArray, it only moves the edges in the
order of decreasing contrib (Lines 7-9) or increasing degree (Lines 22-23). Since Alg. 7
scans the entries in precisely the same order, it cannot miss a potential edge.

Secondly, continuing the scan from the last selected entry upon each Alg. 7 invo-
cation within a single phase implies that the number of entries scanned at each phase
is limited by the sum of two factors: the total number of entries in edgeArray of
EdgeContrib (which is equal to |V | · |T |) plus the number of entries scanned mul-
tiple times, i.e., the number of Alg. 7 invocations, which is equal to the number of
edges selected at this phase (which is limited by |V |

2 [24]). Therefore, the number of
entries scanned during the entire execution of Alg. 1 (i.e., at all O(|V |) phases) is
O(|V | ·(|V ||T |+ |V |

2)) = O(|V |2|T |). This underlines the proof of Lemma 5; complete
proof can be found in our technical report [11].

Lemma 5. The cumulative running time for all invocations of Alg. 7 during the entire
execution of Alg. 1 is O(|V |2|T |).

5.5 Finding Edge for Low-TCO

A naive implementation of Low-ODA
yields the time complexity of O(|V |4|T |)
(see Lemma 3 in [25]). The Gen-ODA
implementing the Low-ODA-rule is de-
scribed in Alg. 8, which we refer to as
F-Low-ODA (Fast Low-ODA), produces
the same overlay with the improved running
time of O(|V |2|T |). Combined, Lemma 4
and Lemma 5 allow us to establish Lemma 6.

Alg. 8. Find a Low Edge
findLowEdge(k)

Input: k: parameter to balance edge selection rules
Output: an edge e to be added to Enew

1: e1 ← findMinAvgEdge(),
contrib1 ← EdgeContrib.getContrib(e1)

2: e2 ← findMinMaxEdge(),
contrib2 ← EdgeContrib.getContrib(e2)

3: if contrib1 ≥ contrib2 × k then
4: return e1

5: else
6: return e2

A Generalized Algorithm for Publish/Subscribe Overlay Design 87

Lemma 6. The cumulative running time for all invocations of Alg. 8 during the entire
execution of Alg. 1 is O(|V |2|T |).

5.6 Running Time for Gen-ODA

To summarize all complexity analyses based on Lemmas 2, 3, 4, 5 and 6, the follow-
ing lemma establishes the time efficiency of our implementation for F-MinAvg-ODA,
F-MinMax-ODA and F-Low-ODA.

Lemma 7. The running time of Alg. 1 with function findEdge() instantiated as either
Alg. 6, Alg. 7 or Alg. 8 is O(|V |2|T |).

6 Evaluation

We implement all algorithms in Table 1 in Java and evaluate the running time of dif-
ferent algorithms, i.e., F-MinMax-ODA (vs. MinMax-ODA) and F-Low-ODA (vs.
Low-ODA). We denote by Tv the topic set which node v subscribes to, and by |Tv|
the subscription size of node v. In these experiments, we use the following value ranges
as input: |V |∈[100, 1 000], |T |∈[100, 1 000], and |Tv|∈[10, 100], where the subscription
size is fixed for each node in the input. Each topic ti∈T is associated with probability
qi,
∑

i qi=1, so that each node subscribes to ti with a probability qi. The value of qi is
distributed according to either a uniform, a Zipf (with α=2.0), or an exponential dis-
tribution. According to [14], these distributions are representative of actual workloads
used in industrial pub/sub systems today. Liu et al. [23] show that the Zipf distribu-
tion faithfully describes the feed popularity distribution in RSS feeds (a pub/sub-like
application scenario). The exponential distribution is used by stock-market monitoring
engines for the study of stock popularity in the New York Stock Exchange [29].

6.1 F-MinMax-ODA for MinMax-TCO

We now consider F-MinMax-ODA’s performance compared to MinMax-ODA with
respect to different input parameters. Both F-MinMax-ODA and MinMax-ODA al-
gorithms use the MinMax-ODA-rule for edge selection but are based on different im-
plementations. Since the TCOs they compute are the same, we only show their running
time ratios here.

Fig. 2(a) depicts the comparison between F-MinMax-ODA and MinMax-ODA as
the number of nodes increases when |T | = 100. As the figure shows, F-MinMax-ODA
runs considerably faster. Under uniform distribution, TFMM is on average 0.858% of
TMM; under Zipf distribution, TFMM is on average 1.17% of TMM. Additionally, the
F-MinMax-ODA algorithm gains more speedup with the increase in the number of
nodes compared to MinMax-ODA: when |V |=1000, TFMM = 0.0158%·TMM for the
uniform distribution and TFMM = 0.0115%·TMM for the Zipf distribution. The gap in
the running time between our algorithms and existing ones is so significant that instead
of showing the absolute values on the same scale we opt to present the ratio. For ex-
ample, under the Zipf distribution, with 1000 nodes and 100 topics, F-MinMax-ODA
completes in 3.823 seconds, while MinMax-ODA takes over 555 minutes. This shows

88 C. Chen, R. Vitenberg, and H.-A. Jacobsen

that F-MinMax-ODA provides an adequate solution for the above target settings while
MinMax-ODA does not.

Fig. 2(b) depicts how F-MinMax-ODA and MinMax-ODA perform when the num-
ber of topics varies. The running time ratio of F-MinMax-ODA to MinMax-ODA
increases as the number of topics increases from 100 to 1000. In order to explain
this effect, we observe that the running time of scanning the indexing structure in
F-MinMax-ODA is proportional to the maximum edge contribution while the running
time of MinMax-ODA is independent of edge contributions. Increasing the number of
topics leads to reduced correlation, i.e., the probability of having two nodes interested in
the same topic drops as the number of topics increases, and with reduced correlation the
edge contribution tends to be lower. This reduction in correlation is more pronounced
for the uniform distribution of interests compared to skewed ones, such as Zipf. Yet, the
increase in the running time ratio is not very significant: on average, F-MinMax-ODA
is less than 0.236% of MinMax-ODA under the uniform distribution, and less than
0.019% under the Zipf distribution.

 0.0001

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500 600 700 800 900 1000

tim
e

ra
tio

 (l
og

 s
ca

le
)

(a) # of nodes

TFMM /T MM Unif
TFMM /T MM Zipf

 0.0001

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500 600 700 800 900 1000

tim
e

ra
tio

 (l
og

 s
ca

le
)

(b) # of topics

TFMM /T MM Uni f
TFMM /T MM Zipf

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70 80 90 100

tim
e

ra
tio

 (l
og

 s
ca

le
)

(c) subscription size

TFMM /T MM Unif
TFMM /T MM Zipf

Fig. 2. F-MinMax-ODA vs. MinMax-ODA

Fig. 2(c) depicts the impacts of the subscription size on F-MinMax-ODA and
MinMax-ODA. We set |T | = 200, and |Tv| varies from 10 to 100. As shown in the fig-
ure, the ratio of TFMM to TMM decreases with the increase of |Tv|, and the ratio becomes
relatively stable around 0.02% when |Tv| > 50.

6.2 F-Low-ODA for Low-TCO

We now explore the impact of different input variables on the performance of the
F-Low-ODA and Low-ODA algorithms. Both apply the Low-ODA-rule for edge se-
lection, so for the evaluation, we only consider their implementation efficiency.

Fig. 3(a) depicts the comparison between these two algorithms as the number of
nodes increases where |T |=100. As the figure shows, F-Low-ODA runs significantly
faster. Under the uniform distribution, TFLOW is on average 1.2% of TLOW. Under the
Zipf distribution, TFLOW is on average 0.6% of TLOW. Additionally, F-Low-ODA gains
more speedup with the increase in the number of nodes compared to Low-ODA: when
|V | = 1000, TFLOW = 0.15% · TLOW for the uniform distribution and TFMM = 0.11% ·
TMM for the Zipf distribution.

Fig. 3(b) depicts the performance of F-Low-ODA and Low-ODA when we vary
the number of topics. The ratio of TFLOW to TLOW increases as the number of topics
increases from 100 to 1000, yet this effect is insignificant: on average, F-Low-ODA

A Generalized Algorithm for Publish/Subscribe Overlay Design 89

 0.0001

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500 600 700 800 900 1000

tim
e

ra
tio

 (l
og

 s
ca

le
)

(a) # of nodes

TFLOW /T LOW Unif
TFLOW /T LOW Zipf

 0.0001

 0.001

 0.01

 0.1

 1

 0 100 200 300 400 500 600 700 800 900 1000

tim
e

ra
tio

 (l
og

 s
ca

le
)

(b) # of topics

TFLOW /T LOW Unif
TFLOW /T LOW Zipf

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70 80 90 100

tim
e

ra
tio

 (l
og

 s
ca

le
)

(c) subscription size

TFLOW /T LOW Uni f
TFLOW /T LOW Zipf

Fig. 3. F-Low-ODA vs. Low-ODA

takes less than 0.172% of Low-ODA’s running time under the uniform distribution and
less than 0.020% under the Zipf distribution. Further, F-Low-ODA has more speedup
on the time efficiency for skewed distributions as the number of topics increases. The
reason is that increasing the number of topics leads to less correlation, and under skewed
distribution, the correlation among nodes drops relatively slower compared to that under
the uniform distribution.

Fig. 3(c) depicts the effects of the subscription size on F-Low-ODA and Low-ODA.

We set |T |=200 and |Tv|∈[10, 100]. As shown in the figure, the running time ratio TFLOW

TLOW

decreases with the increase of |Tv|. The ratio becomes stable around 0.02% as |Tv|>50.

7 Conclusions

In this paper, we develop the Gen-ODA framework that covers existing greedy algo-
rithms with different edge selection rules for different optimization criteria. By using
the indexing data structures that we have devised, a number of known algorithms gain
a significant running time speedup, i.e., the time complexity of MinMax-ODA and
Low-ODA is improved from O(|V |4|T |) to O(|V |2|T |).

We have evaluated the algorithms through a comprehensive experimental analysis,
which demonstrates their performance and scalability under various practical pub/sub
workloads. Our proposed Gen-ODA is well suited to different TCO construction prob-
lems: its efficient implementation accelerates the time efficiency by a factor of more
than 1 000, and it gains more impact in the running time when the workloads scale up.

References

1. GDSN, http://bit.ly/cjnevk
2. Google Cluster Data, http://code.google.com/p/googleclusterdata/
3. TIBCO Rendezvous, http://www.tibco.com
4. Araujo, F., Rodrigues, L., Carvalho, N.: Scalable QoS-based event routing in publish-

subscribe systems. In: NCA 2005 (2005)
5. Baehni, E., Eugster, P., Guerraoui, R.: Data-aware multicast. In: DSN 2004 (2004)
6. Baldoni, R., Beraldi, R., Quema, V., Querzoni, L., Tucci-Piergiovanni, S.: TERA: topic-based

event routing for peer-to-peer architectures. In: DEBS 2007 (2007)
7. Baldoni, R., Beraldi, R., Querzoni, L., Virgillito, A.: Efficient publish/subscribe through a

self-organizing broker overlay and its application to SIENA. Comput. J. 50(4) (2007)

http://bit.ly/cjnevk
http://code.google.com/p/googleclusterdata/
http://www.tibco.com

90 C. Chen, R. Vitenberg, and H.-A. Jacobsen

8. Castro, M., Druschel, P., Kermarrec, A.M., Rowstron, A.: SCRIBE: A large-scale and decen-
tralized application-level multicast infrastructure. JSAC (2002)

9. Chand, R., Felber, P.: Semantic peer-to-peer overlays for publish/subscribe networks. In:
EUROPAR 2005 (2005)

10. Chen, C., Jacobsen, H.-A., Vitenberg, R.: Divide and conquer algorithms for pub-
lish/subscribe overlay design. In: ICDCS 2010 (2010)

11. Chen, C., Vitenberg, R., Jacobsen, H.-A.: A generalized algorithm for publish/subscribe over-
lay design and its fast implementation. Tech. rep., U. of Toronto & U. of Oslo,
http://msrg.org/papers/TRCVJ-GenODA

12. Chen, C., Vitenberg, R., Jacobsen, H.-A.: Scaling construction of low fan-out overlays for
topic-based publish/subscribe systems. In: ICDCS 2010 (2010)

13. Chockler, G., Melamed, R., Tock, Y., Vitenberg, R.: Constructing scalable overlays for pub-
sub with many topics: Problems, algorithms, and evaluation. In: PODC 2007 (2007)

14. Chockler, G., Melamed, R., Tock, Y., Vitenberg, R.: Spidercast: A scalable interest-aware
overlay for topic-based pub/sub communication. In: DEBS 2007 (2007)

15. Cooper, B.F., Ramakrishnan, R., Srivastava, U., Silberstein, A., Bohannon, P., Jacobsen, H.-
A., Puz, N., Weaver, D., Yerneni, R.: PNUTS: Yahoo!’s hosted data serving platform. Proc.
VLDB Endow. (2008)

16. De Santis, E., Grandoni, F., Panconesi, A.: Fast Low Degree Connectivity of Ad-Hoc Net-
works Via Percolation. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS,
vol. 4698, pp. 206–217. Springer, Heidelberg (2007)

17. Girdzijauskas, S., Chockler, G., Vigfusson, Y., Tock, Y., Melamed, R.: Magnet: practical
subscription clustering for internet-scale publish/subscribe. In: DEBS 2010 (2010)

18. Jaeger, M.A., Parzyjegla, H., Mühl, G., Herrmann, K.: Self-organizing broker topologies for
publish/subscribe systems. In: SAC 2007 (2007)

19. Lau, L.C., Naor, J.S., Salavatipour, M.R., Singh, M.: Survivable network design with degree
or order constraints. In: Proc. ACM STOC 2007 (2007)

20. Li, G., Muthusamy, V., Jacobsen, H.-A.: Adaptive Content-Based Routing in General Over-
lay Topologies. In: Issarny, V., Schantz, R. (eds.) Middleware 2008. LNCS, vol. 5346, pp.
1–21. Springer, Heidelberg (2008)

21. Li, G., Muthusamy, V., Jacobsen, H.-A.: A distributed service oriented architecture for busi-
ness process execution. In: ACM TWEB (2010)

22. Liben-Nowell, D., Balakrishnan, H., Karger, D.: Analysis of the evolution of peer-to-peer
systems. In: PODC 2002 (2002)

23. Liu, H., Ramasubramanian, V., Sirer, E.G.: Client behavior and feed characteristics of RSS,
a publish-subscribe system for web micronews. In: IMC 2005 (2005)

24. Onus, M., Richa, A.W.: Minimum maximum degree publish-subscribe overlay network de-
sign. In: INFOCOM 2009 (2009)

25. Onus, M., Richa, A.W.: Parameterized maximum and average degree approximation in topic-
based publish-subscribe overlay network design. In: ICDCS 2010 (2010)

26. Petrovic, M., Liu, H., Jacobsen, H.-A.: G-ToPSS: fast filtering of graph-based metadata. In:
WWW 2005 (2005)

27. Reumann, J.: Pub/Sub at Google. Lecture & Personal Communications at EuroSys & CA-
NOE Summer School, Oslo, Norway (August 2009)

28. Tam, D., Azimi, R., Jacobsen, H.-A.: Building content-based publish/subscribe systems with
distributed hash tables. In: DBISP2P 2003 (2003)

29. Tock, Y., Naaman, N., Harpaz, A., Gershinsky, G.: Hierarchical clustering of message flows
in a multicast data dissemination system. In: IASTED PDCS (2005)

http://msrg.org/papers/TRCVJ-GenODA

Bounded-Contention Coding

for Wireless Networks in the High SNR Regime

Keren Censor-Hillel1, Bernhard Haeupler1, Nancy Lynch1, and Muriel Médard2

1 CSAIL, Massachusetts Institute of Technology, MA 01239, USA
2 RLE, Massachusetts Institute of Technology, MA 01239, USA

Abstract. Efficient communication in wireless networks is typically chal-
lenged by the possibility of interference among several transmitting nodes.
Much important research has been invested in decreasing the number of
collisions in order to obtain faster algorithms for communication in such
networks.

This paper proposes a novel approach for wireless communication,
which embraces collisions rather than avoiding them, over an additive
channel. It introduces a coding technique called Bounded-Contention
Coding (BCC) that allows collisions to be successfully decoded by the
receiving nodes into the original transmissions and whose complexity
depends on a bound on the contention among the transmitters.

BCC enables deterministic local broadcast in a network with n nodes
and at most a transmitters with information of � bits each within
O(a log n + a�) bits of communication with full-duplex radios, and
O((a log n+ a�)(logn)) bits, with high probability, with half-duplex ra-
dios. When combined with random linear network coding, BCC gives
global broadcast within O((D + a + log n)(a log n + �)) bits, with high
probability. This also holds in dynamic networks that can change ar-
bitrarily over time by a worst-case adversary. When no bound on the
contention is given, it is shown how to probabilistically estimate it and
obtain global broadcast that is adaptive to the true contention in the
network.

Keywords: wireless networks, high SNR, coding, additive channel.

1 Introduction

Handling interference in wireless networks is a fundamental challenge in de-
signing algorithms for efficient communication. When two devices that are near
each other transmit at the same time the result is a collided signal. In order to
enable the receivers to obtain the original information that was sent, thereby
achieving efficient communication that allows the design of fast algorithms for
wireless networks, much important research has been invested in scheduling the
transmissions in a way that avoids collisions as much as possible.

Avoiding collisions basically requires some type of symmetry breaking among
the nodes that want to transmit, to prevent them from transmitting at the
same time. Simple solutions like Time Division Multiple Access (TDMA), which

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 91–105, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

92 K. Censor-Hillel et al.

assigns predetermined slots according to node IDs, are expensive in situations
where not all of the nodes want to transmit, since their costs depend on the
total number of nodes rather than on the number of actual transmitters. One
can improve this solution by allowing nodes that cannot interfere with each other
to share a slot, so that the number of slots depends on the node degrees in the
network graph rather than on the total number of nodes. However, this requires
the nodes to have information regarding the topology of the network, and is
still expensive in cases where the contention is less than the node degrees. One
successful approach for avoiding collisions in wireless networks is to allow each
node to use a schedule of probabilities to decide whether to transmit at each
time slot [4, 10, 28]. These algorithms typically guarantee a high probability of
successful transmissions after some bounded number of attempts.

In this paper we provide a coding framework for coping with collisions in a
wireless communication model abstraction called the finite-field additive radio
network model, where a collision of transmissions optimally coded for an Addi-
tive White Gaussian Noise (AWGN) channel with multiple-user interference is
represented to be equivalent to the element-wise XOR of a string of bits repre-
senting the original transmissions. More generally, collisions can be modelled as
being equivalent to the sum, symbol-wise, of the elements of vectors over a finite
field, where the transmission of a user is represented as a vector in that finite
field, the XOR case being the special case where the field is F2. Such a model
has been shown to be approximately valid in a high SNR (signal-to-noise ratio)
regime, abstracting away the effect of noise in the channels and allowing us to
concentrate on the theoretical aspects of the interference among transmissions.
Such a model in effect replaces the traditional information-theoretic setting of
Gaussian inputs for an AWGN channel with an approximate finite algebraic con-
struct [3,24]. Such additive models have been shown, albeit without a finite field
construct, to be effective in high SNR settings even in the absence of underlying
capacity-achieving codes, for instance in such systems as zig-zag decoding [16],
which can be modelled algebraically [36].

In this additive model, our key observation is that only if not all messages are
valid transmissions then a sum representing a collision might indeed be uniquely
decodable. However, we do not wish to restrict the information the users may send
in the wireless system. Instead, we propose encoding the information sent into
restricted sets of signals that do allow unique decoding when they collide. A node
receiving a collision can then uniquely decode the signal to obtain the original
unrestricted messages. Clearly, for information-theoretic reasons, we cannot hope
to restrict the transmissions without the cost of some overhead in the amount
of information sent. The challenge, then, is to find codes that allow unique
decoding in the above setting with the shortest possible codewords. Under our
high SNR assumption, we consider both half-duplex (sometimes termed time-
division duplex - TDD) and full-duplex channels. While the TDD model is by
far the most common current mode of operation, high SNR conditions can allow
full-duplex operation.

Bounded-Contention Coding for Wireless Networks in the High SNR Regime 93

1.1 Our Contributions

The Bounded-Contention Coding (BCC) Framework: We define a new class of
codes, which are designed for settings in which the number of transmitters is
bounded by a known constant a. Each such code consists of an individual code
for each node, and has the desirable property that, when codewords from at
most a different transmitting nodes are summed up, the result can be uniquely
decoded into the original transmissions. This decoding process does not require
that the nodes know the identities of the transmitters. Moreover, the active nodes
may change from round to round. We show simple constructions of Bounded-
Contention Codes, where the length of the codewords depends on both the known
contention bound and the total number of nodes, but the dependency on the total
number of nodes is only logarithmic.

Distributed computation Using BCC: Using the new Bounded-Contention Cod-
ing technique, we show how to obtain local and global broadcast in both single-
hop and multi-hop networks. BCC enables deterministic local broadcast in a
network with n nodes and at most a transmitters with information of � bits
each within O(a logn + a�) bits of communication with full-duplex radios, and
O((a log n+a�)(logn)) bits, with high probability, with half-duplex radios. When
combined with random linear network coding, BCC gives global broadcast within
O((D + a + logn)(a logn + �)) bits. These results also hold in highly dynamic
networks that can change arbitrarily over time under the control of a worst-case
adversary.

Further, we show how to remove the assumption that the nodes know a bound
a on the contention, by developing a method for handling unknown contention
(or contention that varies over space and time), which is common in wireless
networks. Also, while it may be reasonable to assume a bound on the contention,
it is often the case that the actual contention is much smaller.

Because of space limitations, many proofs have been omitted and can be found
in the full version of this manuscript.

1.2 Related Work

The finite-field additive radio network model of communication considered in this
paper, where collisions result in an addition, over a finite field, of the transmitted
signals, was previously studied in [3, 24], where the main attention was towards
the capacity of the network, i.e., the amount of information that can be reliably
transmitted in the network. While the proof of the validity of the approximation
[3] is subtle, the intuition behind this work can be readily gleaned from a simple
observation of the Cover-Wyner multiple access channel capacity region. Under
high SNR regimes, the pentagon of the Cover-Wyner region can, in the limit,
be decomposed into a rectangle, appended to a right isosceles triangle [24]. The
square can be interpreted as the communication region given by the bits that
do not interfere. Such bits do not require special attention. In the case where
the SNRs at the receiver for the different users are the same, this rectangle

94 K. Censor-Hillel et al.

vanishes. The triangular region is the same capacity region as for noise-free
additive multiple access channel in a finite field [13], leading naturally to an
additive model over a finite field.

Note that, while we consider an equivalent additive finite-field additive model,
this does not mean our underlying physical network model is reliant on symbol-
wise synchronization between the senders. Asynchrony among users does not
affect the behavior of the underlying capacity region [20], on which the approx-
imate model is predicated. Nor are users required to have the same received
power in order to have the finite-filed equivalence hold – differences in received
power simply lead to different shapes of the Cover-Wyner region, but the inter-
pretation of the triangular and rectangular decomposition of the Cover-Wyner
region is not affected. Moreover, our assumption of knowing the interfering users
is fairly standard in multiple access wireless communications. Issues of synchro-
nization, SNR determination and identification of users are in practice handled
often jointly, since a signature serves for initial synchronization in acquiring the
signal of a user, for measuring the received SNR and also for identification of the
transmitting user. Finally note that, as long as we have appropriate coding, then
the Cover-Wyner region represents the region not only for coordinated transmis-
sions, but also for uncoordinated packetized transmissions, such as exemplified in
the classical ALOHA scheme [34]. This result, which may seem counterintuitive,
is due in effect to the fact that the system will be readily shown to be stable as
long as the individual and sum rates of the Cover-Wyner region will exceed the
absolute value of the derivative of an appropriately defined Lyapunov function
based on the queue length of a packetized ALOHA system.

There has been work on optimization of transmissions over the model of [3].
These approaches [2, 15, 38] generally provide algorithms for code construction
or for finding the maximum achievable rate, for multicast connections, over a
high SNR network under the model of [3]. The approach of [14,24,25] considers a
more general finite-field model and reduces the problem to an algebraic network
coding problem [26]. Random code constructions, inspired from [19] are then
with high probability optimal. These approaches differ from our work in this
paper in that they are interested in throughput maximization in a static model
rather than completion delay when multiple transmission rounds may occur. We
are interested in the latter model and, in particular, in how long it takes to
broadcast successfully a specific piece of information.

There are many deterministic and randomized algorithms for scheduling trans-
missions in wireless networks. They differ in some aspects of the model, such as
whether the nodes can detect collision or cannot distinguish between a collision
and silence, and whether the nodes know the entire network graph, or know
only their neighbors, or do not have any such knowledge at all. Some papers
that studied local broadcast are [11, 27], where deterministic algorithms were
presented, and [6, 21, 33], which studied randomized algorithms.

In the setting of a wireless network, deterministic global broadcast of a single
message was studied in [10, 12, 28], the best results given being O(n log n) and
O(n log2 D), where D is the diameter of the network. Bar-Yehuda et al. [4] were

Bounded-Contention Coding for Wireless Networks in the High SNR Regime 95

the first to study randomized global broadcast algorithms. Kowalski and Pelc [28]
and Czumaj and Rytter [10] presented randomized solutions based on selecting
sequences, with complexities of O(D log n

D + log2 n). These algorithms match
lower bounds of [1, 32] but in a model that is weaker than the one addressed in
this paper. The algorithms mentioned above are all for global broadcast of one
message from a known source. For multiple messages, a deterministic algorithm
for k messages with complexity O(k log3 n+ n log4 n) appears in [7], while ran-
domized global broadcast of multiple messages was studied in [5,22,23]. We refer
the reader to an excellent survey on broadcasting in radio networks in [37].

Wireless networks are not always static; for example, nodes may fail, as a re-
sult of hardware or software malfunctions. Tolerating failed and recovered com-
ponents is a basic challenge in decentralized systems because the changes to
the network graph are not immediately known to nodes that are some distance
away. Similarly, nodes may join and leave the network, or may simply be mobile.
All of these cases result in changes to the network graph that affect commu-
nication. Depending on the assumptions, these changes can be quite arbitrary.
Having a dynamic network graph imposes additional challenges on designing
distributed algorithms for wireless networks. Dynamic networks have been stud-
ied in many papers. The problems addressed include determining the number of
nodes in the network, gossiping messages, data aggregation, and distributed con-
sensus [9, 29–31]. For global broadcast, some papers assume restrictions on the
changes made in each round. For example, [8] consider graph changes that are
random. They also consider the worst-case adversary, as do the studies in [29,35].
In [29] collisions are abstracted away, so that edges of the network graph do not
represent nodes that hear the transmissions, but nodes that actually obtain the
message. In [17], the authors show how to use network coding in order to obtain
more efficient algorithms for global broadcast in this dynamic model.

2 Network Abstraction

We consider a wireless network where the transmission of a node is received
at all neighboring nodes, perhaps colliding with transmissions of other nodes.
Formally, the network is represented by an undirected graph G = (V,E), where
|V | = n. We denote by N(u) the subset of V consisting of all of u’s neighbors in
G and by D the diameter of the network. The network topology is unknown.

We address two different radio models. One is the full-duplex model, in which
nodes can listen to the channel while transmitting. The second is the half-duplex
mode, in which at every time, a node can either transmit or listen to the chan-
nel. A transmission of a node v ∈ V is modeled as a string of bits s̄v. The
communication abstraction is such that the information received by a listening
node u ∈ V is equal to

⊕
v∈N(u) s̄v, where the operation ⊕ is the bit-wise XOR

operation.
The model is further assumed to be synchronous, that is, the nodes share

a global clock, and a fixed slot length (typically O(polylog n)) is allocated for
transmission.

96 K. Censor-Hillel et al.

Most of the paper assumes a bound a ≤ n on the contention that is known
to all nodes. However, the actual contention in the network, which we denote by
a′, may be even smaller than a. Each node has a unique ID from some set I of
size |I| = N , such that N = nO(1).

3 Bounded-Contention Codes

To extract information from collisions, we propose the following coding technique
for basic Bounded-Contention Coding, in which each node encodes its message
into a codeword that it transmits, in such a way that a collision admits only a
single possibility for the set of messages that produced it. This enables unique
decoding.

Definition 1. An [M,m, a]-BCC-code is a set C ⊆ {0, 1}m of size |C| = M
such that for any two subsets S1, S2 ⊆ C (with S1 	= S2) of sizes |S1|, |S2| ≤ a it
holds that

⊕
S1 	=

⊕
S2, where

⊕
X of X = {x̄1, . . . , x̄t} is the bit-wise XOR

x̄1 ⊕ · · · ⊕ x̄t.

As a warm-up, we start by giving an example of a very simple BCC-code. This
is the code of all unit vectors in {0, 1}M , i.e., C = {x̄i|1 ≤ i ≤ M, x̄i(j) =
1 if and only if i = j}. It is easy to see that C is an [M,M,M]-BCC-code, since
every subset S ⊆ C is of size s ≤M , and we have

⊕
S = x̄s, where x̄s(j) = 1 if

and only if x̄i ∈ S, implying that Definition 1 holds.
The parameter M will correspond to the number of distinct transmissions

possible throughout the network; for example, it could correspond to the number
of nodes. The parameters a and m will correspond to contention and slot length,
respectively. Therefore, the BCC-codes that interest us are those with m as
small as possible, in order to minimize the amount of communication. The above
simple code, although tolerating the largest value of a possible, has a very large
codeword length. Hence, we are interested in finding BCC codes that trade off
between a and m. To show that such good codes exist, we need the following
basic background on linear codes. An [M,k, d]-linear code is a linear subspace of
{0, 1}M , (any linear combination of codewords is also a codeword) of dimension
k and minimum Hamming weight d (the Hamming weight of a codeword is the
number of indexes in which the codeword differs from zero). The dual code of
a linear code D, denoted D⊥, is the set of codewords that are orthogonal to
all codewords of D, and is also a linear code. It holds that (D⊥)⊥ = D. The
construction for arbitrary [M,m, a]-BCC-codes works as follows.

BCC Construction: Let D be a linear code of words with length M and
Hamming weight at least 2a+ 1. Let {x̄1, . . . , x̄m} be a basis for the dual code
D⊥ of D. Let H be the m×M parity-check matrix of D, i.e., the matrix whose
rows are x̄1, . . . , x̄m, and let C be the set of columns of H . We claim that C is
the desired BCC-code.

Lemma 1. The code C constructed above is an [M,m, a]-BCC-code.

Bounded-Contention Coding for Wireless Networks in the High SNR Regime 97

As the following sections will show, we need [M,m, a]-BCC-codes withm as small
as possible and a as large as possible. By Lemma 1, this means we need to find
linear codes of dimension k = M−m as large as possible and minimum Hamming
weight d ≥ 2a + 1 as large as possible. Note that we are only interested in the
existence of good codes as the ID of a node will imply the codewords assigned
to it, requiring no additional communication.

Lemma 2. There is an [M,m, a]-BCC code with m = O(a logM).

Lemma 2 implies, for example, that there are BCC-codes with a = Θ(logM) and
m = O(logM ·logM) = O(log2 M). As explained earlier, for solving the problem
of local broadcast, the parameters a and m correspond to the contention and
the transmission length, respectively. As we show in the next section, such BCC-
codes with polylogarithmic parameters are well-suited for the case of bounded
contention, hence we refer to them as Bounded-Contention Codes.

In fact, the BCC-codes presented above are optimal, since Ω(a logM) is a
lower bound for m. The reason for this is that each XOR needs to uniquely
correspond to a subset of size at most a out of a set of size M . The number of
such subsets is

(
M
a

)
, therefore each codeword needs to have length Ω(log

(
M
a

)
) =

Ω(a logM).

4 Local Broadcast

This section shows how to use BCC-codes for obtaining local broadcast in the
additive radio network model. The simplest way to illustrate our technique is the
following. Assume that in every neighborhood there are at most a participants,
and each node needs to learn the IDs of all participants in its neighborhood.
The nodes use an [N, a logN, a]-BCC code to encode their IDs and, since at
most a nodes transmit in every neighborhood, every receiver is guaranteed to
be able to decode the received XOR into the set of local participants. For the
case of a single-hop network, we show in the full version of this paper how this
information can then be used in order to assign unique transmission slots for
the participants. However, while this shows the simplicity of using BCC-codes
for coping with collisions, it does not extend to multi-hop networks since these
require more coordination in order to assign slots for interfering transmitters
(who can be more than a single hop from one another, as in the case of a
hidden terminal). Instead, we show how to use BCC-codes for directly coding
the information rather than only the IDs of the transmitters.

We assume the real data that a node v wants to transmit may be any element
s ∈ {0, 1}�. Instead of encoding the IDs of the nodes in the network, we use an
[N2�,m, a]-BCC code C and every node v is assigned 2� codewords {C(v, s)|s ∈
{0, 1}�} for it to use. This implies that the length of the codewords is m =
O(a log (N2�)) = O(a(logN + �)) = O(a(log n+ �)). Notice that this is optimal
since a logn is required in order to distinguish subsets of size a among n nodes,
and the a� term cannot be avoided if a nodes transmit � bits each.

98 K. Censor-Hillel et al.

With half-duplex radios, we let each node choose whether it listens or trans-
mits (if needed) with probability 1/2. This gives that for every message and
every node v, in each round there is probability 1/4 for the message to be trans-
mitted and heard by v. In expectation, a constant number of rounds is needed
for v to hear any single message, and using a standard Chernoff bound implies
that O(log n) rounds are needed with high probability. Finally, a union bound
over all n nodes and all messages gives the following theorem.

Theorem 1. In a multi-hop network with at most a transmitters with informa-
tion of � bits each in each N(u), local broadcast can be obtained within O((a log n+
a�) logn) bits, with high probability.

5 Global Broadcast

In this section we show how to obtain global broadcast by combining BCC and
network coding. We assume that at most a nodes have a message of � bits each
that needs to be received by all nodes of the network. We first briefly introduce
random linear network coding (RLNC) as a solution to the global broadcast
problem in additive radio networks and then, in Subsection 5.2, show how BCC
can significantly reduce the coding coefficient overhead of RLNC when a << n.

5.1 Random Linear Network Coding

RLNC is a powerful method to achieve optimal global broadcast, in particular
in distributed networks in which nodes cannot easily coordinate to route infor-
mation through the network. Instead of sending pieces of information around
directly, RLNC communicates (random) linear combinations of messages over a
finite field Fq. In this paper we will choose the field size q to be 2 which allows
us to see vectors in Fq simply as bit-vectors and linear combinations of vectors
as XORs.

We denote with mu ∈ F �
2 the message sent out by node u and denote with S

the set of at most a nodes that initially have a message. Given this, any packet
sent out during the RLNC protocol has the form (μ,

∑
u∈I μumu) ∈ FN+�

2 where
μ ∈ FN

2 is a coefficient vector indicating which messages are XOR-ed together
in the second portion of a packet, i.e., a characterizing vector. We call packets
of this form valid. A node u that initially starts with a message mu treats this
message as if it received the packet (eu,mu) before round one, where eu is the
standard basis vector corresponding to u (that is, with a one at the coefficient
corresponding to u, and zeros otherwise). During the protocol, each node that is
supposed to send a packet takes all packets it has received so far and includes each
of them independently with probability 1/2 in the new packet. The new packet
is formed by taking the XORs of all packets selected in this way (if no packet
is selected the node remains silent or alternatively sends the all zero vector).
Nodes decode by using Gaussian elimination. This can be done if and only if a
node has received a valid packets with linearly independent coefficient vectors.

Bounded-Contention Coding for Wireless Networks in the High SNR Regime 99

We note that, because of linearity, all initial packets and all packets created
during the RLNC protocol are valid. More importantly, if multiple neighbors of
a node send valid packets then the XOR of these packets which is received is
also valid since the coefficient vectors and the message part XOR separately and
component-wise. This makes RLNC a simple but powerful tool for exploiting the
linear and additive nature of the additive radio networks we study in this paper.

We analyze the complexity of this RLNC scheme when used on top of an
additive radio network. As in Section 4, nodes can either transmit or listen to
the channel at any given round since they have half-duplex radios. We use the
above RLNC algorithm together with the strategy of choosing in each round
whether to transmit or listen at random with probability 1/2.

We show that the RLNC protocol achieves an optimal round complexity of
O(D + a + logn) with high probability. Our proof is based on the projection
analysis technique from [18] but we give a simple, self-contained proof in the full
version of this paper. The reason that the analysis carries over from a message
passing model to the radio networks considered here so easily is their additivity.
In particular, we use the effect that the XOR of randomly selected packets sent
out by several neighbors which get XORed in the air are equivalent to the XOR
of a random selection of packets known to at least one neighbor.

Theorem 2. RLNC disseminates all a messages, with high probability, in O(D+
a+ logn) rounds in which messages of N + � bits are sent in each round.

5.2 Reducing the Overhead of Random Linear Network Coding via
BCC-Codes

Note that Theorem 2 shows that RLNC has an essentially optimal round com-
plexity. In particular, Ω(D) is a trivial lower bound since information passes at
most one step in the network per round and Ω(a) is a lower bound too since
in each round at most � bits worth of information messages are received while
a� bits need to be learned in total. Lastly, the Ω(log n) factor is tight for the
proposed algorithm, too, because of the randomness used. On the other hand,
the packets sent around have size N+ � while carrying only � bits of information
about the messages. Note that N > n and in many cases N = nc >> � for some
constant c which renders the standard RLNC implementation highly inefficient.

The reason for this is that we use an N bit vector as a header to describe the
set of IDs of nodes whose message is coded into the packet. This vector is always
extremely sparse since at most n << N nodes are present and at most a << n
nodes are sending a message. Instead of writing down a vector as is one could
thus try to use a short representation of these sparse vectors. Writing down only
the IDs of the non-zero components would be such a sparse representation (with
almost optimal bit size a logN) but does not work here, because when multiple
neighbors of a node send sparse coefficient vectors their received XOR cannot be
uniquely decoded. BCC-codes solve exactly this problem, by providing a sparse
vector representation:

100 K. Censor-Hillel et al.

Definition 2. Let I be an ID set of size N and a be a sparseness parameter.
Any [N, a logN, a]-BCC code C mapping any ID u ∈ I to C(u) ∈ F a logN

2 in-
duces a sparse vector representation s that maps the vector μ ∈ FN

2 to s(μ) =∑
u|μu=1 C(u).

The following two properties make this representation so useful (in particular in
this context):

Lemma 3. Let I be an ID set of size N, a be a sparseness parameter and s be
a sparse vector representation induced by a BCC-code C. For any two vectors
μ, μ′ ∈ FN

2 with at most a non-zero components we have:

– Unique Decodability: μ 	= μ′ =⇒ s(μ) 	= s(μ′).
– Homomorphism under addition: s(μ) + s(μ′) = s(μ+ μ′).

Replacing the coefficient vectors μ in the RLNC scheme with their sparse rep-
resentation leads to the much more efficient RLNC+BCC scheme.

As in the RLNC protocol, we denote with mu ∈ F �
2 the message sent out

by node u and denote with S the set of at most a nodes that initially have a
message. Any packet sent out during the RLNC+BCC protocol has the form
(μ,
∑

u∈I μumu) ∈ F a logN+�
2 where μ ∈ F a logN

2 is a coded coefficient vector
indicating which messages are XOR-ed together in the second portion of a packet,
i.e., it holds the XOR of the BCC-codewords of the IDs of the messages. As
before, each node that is supposed to send a packet takes all packets it has
received so far and includes each of them independently with probability 1/2 in
the new packet. The new packet is formed by taking the XORs of all packets
selected in this way, preceded by the corresponding coded coefficient vector.
Nodes decode by using Gaussian elimination, which can be done if and only if a
node has received a valid packets with linearly independent coefficient vectors.
We note that, because of linearity, all initial packets and all packets created
during the RLNC protocol are valid. Unlike having a list of IDs as a sparse
representation of the coefficient vector, the power of BCC here is that if multiple
neighbors of a node send valid packets then the XOR of these packets which is
received is also valid since the BCC-coded coefficient vectors and the message
part XOR separately and component-wise. Formally, the algorithm is identical
to RLNC, except that the set Su of messages received by node u is initialized to
(C(u),mu) instead of (eu,mu), and the node listens for a logN + � bits, rather
than N + �.

Theorem 3. RLNC+BCC disseminates all a messages, with high probability,
in O(D + a+ logn) rounds in which messages of O(a log n+ �) bits are sent in
each round.

6 Dynamic Networks

In this section, we consider the case of a highly-dynamic network with a worst-
case adversary: in every round, that is, between the times nodes send packets,

Bounded-Contention Coding for Wireless Networks in the High SNR Regime 101

the network graph is determined by the adversary, which observes the entire
computation so far when deciding upon the graph for the next round. Notice
that all of the above results for local broadcast hold for such dynamic networks,
given that a slot length is sufficiently long in order to contain the required
information. This is, for example, O(a(log n+ �)) bits in the full-duplex model,
which is reasonable to assume if a and � are not too large. We get absolute
guarantees for local broadcast in this highly dynamic setting, while existing work
on avoiding collisions in radio networks cannot achieve this since they require
probabilistic transmissions.

Next, we generalize the RLNC+BBC framework for the case of this highly-
dynamic network with a worst-case adversary. The only restriction is that the
graph has to be connected in every round. The proof of the resulting theorem
is essentially the same as for the static case but instead of arguing that every
message makes progress over a shortest path P , we argue that it makes some
progress since the graph is always connected. Hence D is replaced by n in the
number of rounds needed.

Theorem 4. In a dynamic additive radio network controlled by an adaptive
adversary subject to the constraint that the network is connected at every round,
RLNC+BCC achieves global broadcast of a messages, with high probability, in
O(n+ a+ log n) rounds using a packet size of O(a log n+ �) bits.

7 Estimating the Contention

We have given an almost optimal scheme for achieving global broadcast when
the number of senders a (or a good upper bound on it) is known a priori. This
assumption is not an unreasonable one, for example, if network statistics show
such behavior. However, in many cases, local contention may differ at different
places throughout the network, or vary over time. It may also be that the known
bound is pessimistic, and the actual contention is much smaller than this bound.
In this section, we show a method for removing this assumption by using BCC-
codes to quickly determine a (and also reveal the identity of all senders).

The mechanism we present allows for estimating the current contention and
then using a code that corresponds to that estimate. A standard way to obtain a
good estimation of contention is by having the nodes double a small initial guess
until they succeed in local broadcast. In our BCC framework, the tricky part
of this approach is to identify success. Specifically, using a bounded-contention
code with parameter a for a set S of k > a transmitters may produce an XOR
that is a valid XOR of some set S′ of k′ ≤ a transmitters. Hence, the nodes need
to be able to distinguish between such a case and the case where S′ is the true
set of transmitters.

The idea behind our algorithm is simple. We use an [N, 2k logN, 2k]-BCC code
to send out IDs in every round to make them propagate through the network.
Every node u keeps track of the set Su of all IDs it has heard from so far.
In every round node u sends out an XOR in which each of the IDs in Su is
independently included with probability 1/2. If k ≥ a then nodes receive the

102 K. Censor-Hillel et al.

sum of at most a nodes in every round and are able to split this sum into IDs
which are then added to their sets. This way an ID propagates from one node to
the next with constant probability and we show that within O(D+log n) rounds
every node, with high probability, receives the ID of every node that wants to
send. However, if k < a we may get XORs of more than 2k IDs, which have
no unique decoding guarantees by the BCC-code. The following algorithm takes
care of this by detecting such a case eventually (and sufficiently fast).

Algorithm 1. Estimating the Contention a, pseudocode for node u.

1: k ← 2
2: REPEAT UNTIL failu = false and |Su| ≤ k
3: k ← 2k
4: failu ← false
5: C ← [N, 2k logN, 2k]-BCC code
6: IF node u is a sender
7: Su ← {C(u)}
8: ELSE
9: Su ← ∅
10: FOR iteration i = 1, . . . , 32(D + log n):
11: IF failu
12: send log n random bits
13: ELSE
14: listen for log n random bits
15: IF received a non-zero string
16: failu ← true
17: With probability 1/2 DO
18: Send

∑
v∈Su

XvC(v) where Xv are i.i.d. uniformly Bernoulli

19: OTHERWISE
20: listen for 2k logN bits
21: IF what received can be decoded as

∑
v∈S C(v) for a |S| ≤ k

22: Su ← Su ∪ S
23: ELSE
24: failu ← true

Theorem 5. With high probability, Algorithm 1 correctly identifies the subset
of senders S at every node after a total amount of communication of O((D +
logn)(a logn)) bits.

One can use this procedure not just to estimate a but also to exploit the fact
that it gives the IDs of all senders in order to simplify the RLNC algorithm.
For this, we order the IDs of the senders and assign to the i highest node the
ith standard basis vector out of the space F a

2 . We then use this as a sparse and
concise coefficient vector in the RLNC protocol. This gives the following:

Corollary 1. After running the BCC-Estimation algorithm, RLNC achieves
global broadcast, with high probability, in O(D+a+log n) rounds in which packets
of size a+ � bits are sent in each round.

Bounded-Contention Coding for Wireless Networks in the High SNR Regime 103

8 Discussion

This paper presents a coding technique for additive wireless networks, which
allows efficient local and global broadcast given a bound on the amount of con-
tention. It also shows how to estimate the contention when it is not known in
advance. The results hold also for dynamic networks whose arbitrary changes
are controlled by a worst-case adversary. For full-duplex radios, it gives a deter-
ministic framework providing absolute guarantees.

Directions for further research include using BCC-codes for solving additional
distributed problems in the additive wireless network model, and handling ex-
tensions to the model, such as noise and asynchrony.

Acknowledgments. The authors thank Seth Gilbert for useful discussions re-
garding probabilistic retransmissions, MinJi Kim and Ali ParandehGheibi for
many discussions about the XOR collisions model addressed in this paper, and
Amir Shpilka for pointing out the existence of the simple codes we use to im-
plement our BCC framework. This work was supported in part by the Simons
Postdoctoral Fellows Program and NSF Award 0939370-CCF.

References

1. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast.
Journal of Computer and System Sciences 43, 290–298 (1991)

2. Amaudruz, A., Fragouli, C.: Combinatorial algorithms for wireless information
flow. In: SODA (2009)

3. Avestimehr, A.S., Diggavi, S.N., Tse, D.N.C.: Wireless network information flow:
A deterministic approach. IEEE Transactions on Information Theory 57(4), 1872–
1905 (2011)

4. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in
multi-hop radio networks: An exponential gap between determinism and random-
ization. J. Comput. Syst. Sci. 45(1), 104–126 (1992)

5. Bar-Yehuda, R., Israeli, A., Itai, A.: Multiple communication in multi-hop radio
networks. SIAM Journal on Computing 22, 875–887 (1993)

6. Bienkowski, M., Klonowski, M., Korzeniowski, M., Kowalski, D.R.: Dynamic shar-
ing of a multiple access channel. In: Marion, J.-Y., Schwentick, T. (eds.) 27th
International Symposium on Theoretical Aspects of Computer Science (STACS
2010). Leibniz International Proceedings in Informatics (LIPIcs), vol. 5, pp. 83–94.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl (2010)

7. Chlebus, B.S., Kowalski, D.R., Pelc, A., Rokicki, M.A.: Efficient Distributed Com-
munication in Ad-Hoc Radio Networks. In: Aceto, L., Henzinger, M., Sgall, J. (eds.)
ICALP 2011, Part II. LNCS, vol. 6756, pp. 613–624. Springer, Heidelberg (2011)

8. Clementi, A.E.F., Monti, A., Pasquale, F., Silvestri, R.: Broadcasting in dynamic
radio networks. J. Comput. Syst. Sci. 75(4), 213–230 (2009)

9. Cornejo, A., Newport, C.: Prioritized gossip in vehicular networks. In: Proceedings
of the 6th ACM SIGACT/SIGMOBILE International Workshop on Foundations
of Mobile Computing (DIALM-POMC 2010), Cambridge, MA (September 2010)

10. Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown
topology. In: Proceedings of the 44th Annual IEEE Symposium on Foundations of
Computer Science (FOCS 2003), p. 492 (2003)

104 K. Censor-Hillel et al.

11. Czyzowicz, J., Gasieniec, L., Kowalski, D.R., Pelc, A.: Consensus and mutual ex-
clusion in a multiple access channel. IEEE Transactions on Parallel and Distributed
Systems 22(7), 1092–1104 (2011)

12. De Marco, G.: Distributed broadcast in unknown radio networks. SIAM Journal
of Computing 39, 2162–2175 (2010)

13. Effros, M., Médard, M., Ho, T., Ray, S., Karger, D., Koetter, R.: Linear network
codes: A unified framework for source channel, and network coding. In: Proceedings
of the DIMACS workshop on Network Information Theory (2003) (invited paper)

14. Erez, E., Xu, Y., Yeh, E.M.: Coding for the deterministic network model. In: Aller-
ton Conference on Communication, Control and Computing (2010)

15. Goemans, M.X., Iwata, S., Zenklusen, R.: An algorithmic framework for wireless
information flow. In: Proceedings of Allerton Conference on Communication, Con-
trol, and Computing (2009)

16. Gollakota, S., Katabi, D.: Zigzag decoding: combating hidden terminals in wireless
networks. In: SIGCOMM, pp. 159–170 (2008)

17. Haeupler, B., Karger, D.: Faster information dissemination in dynamic networks via
network coding. In: Proceedings of the 30th Annual ACM Symposium on Principles
of Distributed Computing (PODC 2011), San Jose, CA, pp. 381–390 (June 2011)

18. Haeupler, B.: Analyzing network coding gossip made easy. In: Proceedings of the
43rd Annual ACM Symposium on Theory of Computing, STOC 2011, pp. 293–302.
ACM, New York (2011)

19. Ho, T., Médard, M., Koetter, R., Karger, D.R., Effros, M., Shi, J., Leong, B.:
A random linear network coding approach to multicast. IEEE Transactions on
Information Theory 52(10), 4413–4430 (2006)

20. Hui, J., Humblet, P.: The capacity region of the totally asynchronous multiple-
access channel. IEEE Transactions on Information Theory 31(2), 207–216 (1985)

21. Jurdziński, T., Stachowiak, G.: Probabilistic Algorithms for the Wakeup Problem
in Single-Hop Radio Networks. In: Bose, P., Morin, P. (eds.) ISAAC 2002. LNCS,
vol. 2518, pp. 535–549. Springer, Heidelberg (2002)

22. Khabbazian, M., Kowalski, D.: Time-efficient randomized multiple-message broad-
cast in radio networks. In: Proceedings of the 30th Annual ACM Symposium on
Principles of Distributed Computing (PODC 2011), San Jose, California, June 6-8
(2011)

23. Khabbazian, M., Kowalski, D., Kuhn, F., Lynch, N.: Decomposing broad-
cast algorithms using Abstract MAC layers. In: Proceedings of Sixth ACM
SIGACT/SIGMOBILE International Workshop on Foundations of Mobile Com-
puting (DIALM-POMC 2010), Cambridge, MA (September 2010)

24. Kim, M., Erez, E., Edmund, M., Médard, M.: Deterministic network model revis-
ited: An algebraic network coding approach. CoRR, abs/1103.0999 (2011)

25. Kim, M., Médard, M.: Algebraic network coding approach to deterministic wireless
relay network. In: Allerton Conference on Communication, Control and Computing
(2010)

26. Koetter, R., Médard, M.: An algebraic approach to network coding. IEEE/ACM
Transaction on Networking 11, 782–795 (2003)

27. Komlós, J., Greenberg, A.G.: An asymptotically fast nonadaptive algorithm for
conflict resolution in multiple-access channels. IEEE Transactions on Information
Theory 31(2), 302–306 (1985)

28. Kowalski, D.R., Pelc, A.: Kowalski and Andrzej Pelc. Broadcasting in undirected
ad hoc radio networks. Distribed Computing 18, 43–57 (2005)

Bounded-Contention Coding for Wireless Networks in the High SNR Regime 105

29. Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic net-
works. In: Proceedings of the 42nd ACM Symposium on Theory of Computing
(STOC), pp. 513–522 (2010)

30. Kuhn, F., Moses, Y., Oshman, R.: Coordinated consensus in dynamic networks.
In: Proceedings of the 30th Annual ACM Symposium on Principles of Distributed
Computing, San Jose, California, June 6-8 (2011)

31. Kuhn, F., Oshman, R.: The Complexity of Data Aggregation in Directed Networks.
In: Peleg, D. (ed.) Distributed Computing. LNCS, vol. 6950, pp. 416–431. Springer,
Heidelberg (2011)

32. Kushilevitz, E., Mansour, Y.: An Ω(D log(N/D)) lower bound for broadcast in
radio networks. In: Proceedings of the 12th Annual ACM Symposium on Principles
of Distributed Computing (PODC 1993), pp. 65–74. ACM, New York (1993)

33. Martel, C.U.: Maximum finding on a multiple access broadcast network. Informa-
tion Processing Letters 52(1), 7–15 (1994)

34. Medard, M., Huang, J., Goldsmith, A.J., Meyn, S.P., Coleman, T.P.: Capacity of
time-slotted aloha packetized multiple-access systems over the awgn channel. IEEE
Transactions on Wireless Communications 3(2), 486–499 (2004)

35. O’Dell, R., Wattenhofer, R.: Information dissemination in highly dynamic graphs.
In: Proceedings of the 2005 Joint Workshop on Foundations of Mobile Computing,
DIALM-POMC 2005, pp. 104–110. ACM, New York (2005)

36. ParandehGheibi, A., Sundararajan, J.-K., Médard, M.: Collision helps - algebraic
collision recovery for wireless erasure networks. In: WiNC (2010)

37. Peleg, D.: Time-Efficient Broadcasting in Radio Networks: A Review. In: Janowski,
T., Mohanty, H. (eds.) ICDCIT 2007. LNCS, vol. 4882, pp. 1–18. Springer, Heidel-
berg (2007)

38. Shi, C., Ramamoorthy, A.: Improved combinatorial algorithms for wireless infor-
mation flow. In: Proceedings of Allerton Conference on Communication, Control,
and Computing (2010)

Distributed Backbone Structure for Algorithms

in the SINR Model of Wireless Networks�

Tomasz Jurdzinski1 and Dariusz R. Kowalski2

1 Institute of Computer Science, University of Wroc�law, Poland
2 Department of Computer Science, University of Liverpool, United Kingdom

Abstract. The Signal-to-Interference-and-Noise-Ratio (SINR) physical
model is one of the most popular models of wireless networks. Despite
of the vast amount of study done in design and analysis of centralized
algorithms supporting wireless communication under the SINR physi-
cal model, little is known about distributed algorithms in this model,
especially deterministic ones. In this work we construct, in a determinis-
tic distributed way, a backbone structure on the top of a given wireless
network, which can be used for efficient transformation of many algo-
rithms designed in a simpler model of ad hoc broadcast networks with-
out interference into the SINR physical model with uniform power of
stations. The time cost of the backbone data structure construction is
only O(Δ polylogN) rounds, where Δ is roughly the network density
and {1, . . . , N} is the range of identifiers (IDs) and thus N is an upper
bound on the number of nodes in the whole network. The core of the con-
struction is a novel combinatorial structure called SINR-selector, which
is introduced in this paper. We demonstrate the power of the backbone
data structure by using it for obtaining efficient O(D + Δ polylogN)
round and O(D+k+Δ polylogN) round deterministic distributed solu-
tions for leader election and multi-broadcast, respectively, where D is the
network diameter and k is the number of messages to be disseminated.

Keywords: Wireless networks, SINR, Backbone structure, Distributed
algorithms, Leader Election, Multi-message broadcast.

1 Introduction

In this work we study a fundamental problem how to transform algorithms de-
signed and analyzed for ad hoc networks without any interference (e.g., message
passing or multicast networks) to ad-hoc wireless networks under the Signal-to-
Interference-and-Noise-Ratio model (SINR). A wireless network considered in
this work consists of n stations, also called nodes, with uniform transmission
powers, deployed in the two-dimensional Euclidean space. Stations act in syn-
chronous rounds; in every communication round a station can either transmit

� This work was supported by the Engineering and Physical Sciences Research Council
[grant number EP/G023018/1]. The work of the first author was done during this
author stay at the University of Liverpool. The work of the second author was done
during this author visit at the Institute IMDEA Networks, Madrid, Spain.

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 106–120, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Distributed Backbone Structure for Wireless Networks 107

a message or listen to the wireless medium. A communication (or reachability)
graph of the network is the graph defined on network nodes and containing links
(v, w) such that if v is the only transmitter in the network then w receives the
message transmitted by v under the SINR physical model. Each station initially
knows only its own unique ID in the range {1, . . . , N}, location,1 and parameters
N and Δ, where Δ is the upper bound on the node degree in the communication
graph of the network, and corresponds roughly to the network density.

We consider global communication tasks in the SINR wireless setting, and our
objective is to minimize time complexity (i.e., the number of rounds) of determin-
istic distributed solutions. In order to overcome the impact of signal interference,
we show how to compute a backbone data structure in a distributed deterministic
way, which also clusters nodes and implements efficient inter- and intra-cluster
communication. It allows to transform a variety of algorithms designed and an-
alyzed in models without interference to the SINR wireless model with only
additive O(Δ polylogN) overhead on time complexity. We demonstrate such ef-
ficient transformation on two tasks: leader election and multi-broadcast with
small messages.

1.1 Previous and Related Results

SINR Model. The Signal-to-Interference-and-Noise-Ratio (SINR) physical
model is currently the most popular framework for modelling physical wire-
less interference for the purpose of design and theoretical analysis of wireless
communication tasks. There is a vast amount of work on centralized algorithms
under the SINR model. The most studied problems include connectivity, capac-
ity maximization, link scheduling types of problems (e.g., [10,16,1]). See also the
survey [13] for recent advances and references.

Recently, there is a growing interest in developing solutions to local commu-
nication problems, in which stations are only required to exchange information
with a subset of their neighbors. Examples of such problems include local broad-
cast or local leader election. A deterministic local broadcasting, in which nodes
have to inform only their neighbors in the corresponding reachability graph, was
studied in [25]. The considered setting allowed power control by algorithms, in
which, in order to avoid collisions, stations could transmit with any power smaller
than the maximal one. Randomized solutions for contention resolution [17] and
local broadcasting [12] were also obtained. Single hop topologies were also stud-
ied recently under the SINR model, c.f., [22].

Randomized distributed solutions to local communication problems, as cited
above, can often be used as a basic tool for obtaining randomized solutions to
global communication tasks, i.e., tasks requiring information exchange through-
out the whole network. Examples of such task include multi-broadcast or leader
election. A randomized distributed algorithm for the multi-broadcast problem
was recently presented by Yu et al. [24]; this algorithm works under additional
assumption that the closest neighbor of a station is in distance at most 1/3 of the

1 For the result of this work to hold it is enough to know only approximate location.

108 T. Jurdzinski and D.R. Kowalski

maximal range of the station. These problems are also related, though often not
equivalent, to several graph-related problems of finding a maximal/maximum
independent set, minimal/minimum (connected) dominating set (our backbone
structure is an example of the latter, with additional useful properties). Re-
cently, an efficient randomized distributed solution was obtained to the problem
of finding a constant-density dominating set by Scheideler et al. [23], however
the model of that paper is slightly different than the one in this work, i.e., it
combines SINR with radio model.

Surprisingly, there are very few results on deterministic distributed solutions to
fundamental global communication problem under the SINR model. To the best
of our knowledge, the only result of this type is devoted to data aggregation in
networks with carrier sensing ability (which is not given in our model) [14]. Such
algorithms are especially important from perspective of maintaining network
infrastructure and applications to distributed systems. Deterministic solutions
are often desired in such cases, due to their reliability. One could apply a naive
round-robin algorithm to build a collision-free deterministic solution to such
problems, but apparently it is extremely inefficient.

Radio Network Model. In the related radio model of wireless networks, a
message is successfully heard if there are no other simultaneous transmissions
from the neighbors of the receiver in the communication graph. This model
does not take into account the real strength of the received signals, and also the
signals from the outside of some close proximity. In the geometric ad hoc setting,
Dessmark and Pelc [8] were the first who studied global communication problems,
mainly broadcasting. They analyzed the impact of local knowledge, defined as a
range within which stations can discover the nearby stations. The most related
results to this paper are devoted to unit-disk graph radio networks (UDG). Emek
et al. [9] designed a broadcast algorithm working in time O(min{D+g2, D log g})
in UDG radio networks with eccentricity D and granularity g, where eccentricity
was defined as the minimum number of hops to propagate the broadcast message
throughout the whole network and granularity was defined as the inverse of
the minimum distance between any two stations. Leader election problem for
geometric radio networks was studied e.g., by Chung et al. [4] in the case of
mobile devices.

Communication problems are well-studied in the setting of graph radio model,
in which stations are not necessarily deployed in a metric space. Due to limited
space and the fact that this research area is not directly related to the core of this
work, we refer the reader to the recent literature on deterministic [3,6,7,11,18,19].
and randomized [2,6,18,21] solutions.

1.2 Our Results

The main result of this work is a deterministic and distributed algorithm con-
structing a complex backbone distributed data structure, consisting of a combi-
natorial structure with local operations on it, that is aimed to support wireless
global communication tasks; for brief description of this structure see Section 2,

Distributed Backbone Structure for Wireless Networks 109

and for detail implementation and properties we refer the reader to Section 4.
The construction is in O(Δ polylogN) rounds, where {1, . . . , N} is the range of
identifiers (IDs) and thus N is an upper bound on the number of nodes in the
whole network. The algorithm constructing the backbone network uses a novel
concept of SINR-selectors, which are specific efficient schedules for ad hoc one-
hop communication. We define them and show that their existence in Section 3.
We do not provide efficient construction of SINR-selectors, but there is a random-
ized method of selecting a schedule that satisfies properties of a SINR-selector
with high probability [15].

Our work can be also viewed as a deterministic distributed implementation
of an abstract MAC layer, introduced by Kuhn et al. [20], under the SINR
model. It also allows to transform several algorithms designed for networks
without interference to the SINR wireless model, with two additive overheads:
O(Δ polylogN) coming from spanning the backbone data structure, and the
number of required parallel outer-backbone communication tasks multiplied by
O(Δ). In many cases the number of such parallel local convergecasts can be low-
ered to polylogN or even a constant. As examples, we argue that the problems
of leader election and multi-broadcast (with small messages) can be solved by a
deterministic distributed algorithm in almost optimal O(D +Δ polylogN) and
O(k +D +Δ polylogN) rounds, respectively. They are shown to be optimal in
the SINR model up to a polylogarithmic factor, i.e., they require Ω(D+Δ) and
Ω(k +D +Δ) rounds, respectively.

Due to limited space, some proofs and technical details are deferred to the
full version of the paper [15].

2 Model and Notation

Throughout the paper, N denotes the set of natural numbers and Z denotes the
set of integers. For i, j ∈ N, we use the notation [i, j] = {k ∈ N | i ≤ k ≤ j} and
[i] = [1, i].

We consider a wireless network consisting of n stations, also called nodes,
deployed into a two dimensional Euclidean space and communicating by a wire-
less medium. All stations have unique integer IDs in the set [N], where N is
an integer model parameter. Stations are denoted by letters u, v, w, which si-
multaneously denote their IDs. Stations are located on the plane with Euclidean
metric dist(·, ·). Each station v has its transmission power Pv, which is a positive
real number. There are three fixed model parameters: path loss α ≥ 2, threshold
β ≥ 1, and ambient noise N ≥ 1. The SINR(v, u, T) ratio, for given stations
u, v and a set of (transmitting) stations T , is defined as follows:

SINR(v, u, T) =
Pv

dist(v,u)α

N +
∑

w∈T \{v}
Pw

dist(w,u)α

(1)

In the Signal-to-Interference-and-Noise-Ratio model (SINR) considered in this
work, station u successfully receives, or hears, a message from station v in a
round if v ∈ T , u /∈ T , and the following two properties hold:

110 T. Jurdzinski and D.R. Kowalski

– SINR(v, u, T) ≥ β, where T is the set of stations transmitting at that time,
– Pvdist

−α(v, u) ≥ (1 + ε)βN ,

where ε > 0 is a fixed sensitivity parameter of the model. The above definition
is common in the literature, c.f., [17].2

In the paper, we make the following assumptions for the sake of clarity of
presentation: β = 1, N = 1. In general, these assumptions can be dropped
without harming the asymptotic performances of the presented algorithms and
lower bounds formulas.

Ranges and Uniformity. The communication range rv of a station v is the
radius of the circle in which a message transmitted by the station is heard,
provided no other station transmits at the same time. A network is uniform when
ranges (and thus transmission powers) of all stations are equal, or nonuniform
otherwise. In this paper, only uniform networks are considered. For clarity of
presentation we make an assumption that all powers are equal to 1, i.e., Pv = 1
for each v. The assumed value 1 of Pv can be replaced by any fixed positive
value without changing asymptotic formulas for presented algorithms and lower
bounds. Under these assumptions, rv = r = (1 + ε)−1/α for each station v. The
range area of a station with range r located at point (x, y) is defined as a ball
of radius r centered at (x, y).

Communication Graph and Graph Notation. The communication graph
G(V,E), also called the reachability graph, of a given network consists of all
network nodes and edges (v, u) such that u is in the range area of v. Note
that the communication graph is symmetric for uniform networks, which are
considered in this paper. By a neighborhood Γ (u) of a node u we mean the set
of all neighbors of u, i.e., the set {w | (w, u) ∈ E} in the communication graph
G(V,E) of the underlying network. The graph distance from v to w is equal to
the length of a shortest path from v to w in the communication graph (where
the length of a path is equal to the number of its edges). The eccentricity of a
node is the maximum graph distance from this node to all other nodes (note
that the eccentricity is of order of the diameter if the communication graph is
symmetric — this is also the case in this work).

We say that a station v transmits c-successfully in a round t if v transmits a
message in round t and this message is received by each station u in a distance
smaller or equal to c from v. We say that a station v transmits successfully in
round t if it transmits r-successfully, i.e., each of its neighbors in the communica-
tion graph can successfully receive its message. Finally, v transmits successfully
to u in round t if v transmits a message in round t and u successfully receives
this message.

Synchronization. It is assumed that algorithms work synchronously in rounds,
each station can either act as a sender or as a receiver in a round. All stations
2 The first condition is a straightforward application of the SINR ratio, comparing
strength of one of the received signals with the remainder. The second condition
enforces the signal to be sufficiently strong in order to be distinguished from the
background noise, and thus to be decoded.

Distributed Backbone Structure for Wireless Networks 111

are active in the beginning of computation, i.e., they start computation in the
same round.

Collision Detection and Channel Sensing. We consider the model without
collision detection, that is, if a station u does not receive a message in a round t,
it gets no information from the physical wireless layer whether any other station
was transmitting in that round and about the value of SINR(v, u, T), for any
station u, where T is the set of transmitting stations in round t.

Communication Problems and Complexity Parameters. We consider
two global communication problems: leader election and multi-broadcast. Leader
election is defined in the following way: initially all stations of a network have
the same status non-leader and the goal is for all nodes but one to keep this
status and for the remaining single node to get the status leader. Moreover, all
nodes must learn the ID of the leader.

The multi-broadcast problem is to disseminate k distinct messages initially
stored at arbitrary nodes, to the entire network (it is allowed that more than
one message is stored in a node).

For the sake of complexity formulas, in the analysis we consider the following
parameters: n, N , D, Δ where: n is the number of nodes, [N] is the range of IDs,
D is the diameter and Δ is the upper bound on the degree of a station in the
communication graph. Note thatΔ is proportional, due to geometric constraints,
to the largest number of stations in a ball with radius equal to the range of a
station, and as such corresponds roughly to the network density.

Backbone Data Structure. As a generic tool for these and possibly other
global communication tasks, we design a deterministic distributed algorithm
building a backbone data structure, which is a connected dominating set (i.e., a
connected subgraph such that each node is either in the subgraph or is a neigh-
bor of a node in the subgraph, also called a CDS) with constant degree, constant
approximation of the size of a smallest CDS, and diameter proportional to the di-
ameter of the whole communication graph. Additionally, our algorithm organizes
all network nodes in a graph of local clusters, and computes efficient schedules
for inter- and intra-cluster communication. More precisely: the computed inter-
cluster communication schedule works in constant number of rounds and can
be done in parallel without a harm from the interference to the final result,
similarly as intra-cluster broadcasting schedules; the intra-cluster convergecast
operations, although can be done in parallel, require Θ(Δ) rounds.

Messages. In general, we assume that a single message sent in the execution
of any algorithm can carry a single message (in case of multi-broadcast) and at
most logarithmic, in the size of the ID range N , number of control bits.

Knowledge of Stations. Each station knows its own ID, location, and parame-
tersN ,Δ. Moreover, a station knows its location on the plane. (Actually, our algo-
rithmsworkunderweaker assumption that a stationknows its locationwith respect
to the points of a square grid with the size of a square proportional to the range of
stations.) We assume that stations do not know any other information about the
topology of the network at the beginning of an execution of an algorithm.

112 T. Jurdzinski and D.R. Kowalski

3 Technical Preliminaries and SINR-Selectors

Given a parameter c > 0, we define a partition of the 2-dimensional space into
square boxes of size c×c by the grid Gc, in such a way that: all boxes are aligned
with the coordinate axes, point (0, 0) is a grid point, each box includes its left
side without the top endpoint, its bottom side without the right endpoint and
does not include its right and top sides. We say that (i, j) are the coordinates of
the box with its bottom left corner located at (c · i, c · j), for i, j ∈ Z. A box with
coordinates (i, j) ∈ Z2 is denoted C(i, j). As observed in [8,9], the grid Gr/

√
2 is

very useful in design of algorithms for UDG radio networks, provided r is equal
to the range of each station. This follows from the fact that r/

√
2 is the largest

parameter of a grid such that each station in a box is in the range of every other
station in that box. In the following, we fix γ = r/

√
2, where r = (1 + ε)−1/α,

and call Gγ the pivotal grid.
Two boxes C,C′ are neighbors if there are stations v ∈ C and v′ ∈ C′ such that

edge (v, v′) belongs to the communication graph of the network. For a station v
located in position (x, y) on the plane we define its grid coordinates with respect
to the grid Gc as the pair of integers (i, j) such that the point (x, y) is located
in the box C(i, j) of the grid Gc (i.e., ic ≤ x < (i + 1)c and jc ≤ y < (j + 1)c).
Moreover, box(v) = C(i, j) for a station v with grid coordinates (i, j). If not
stated otherwise, we will refer to grid coordinates with respect to the pivotal
grid.

A (classical) communication schedule S of length T wrt N ∈ N is a mapping
from [N] to binary sequences of length T . A station with identifier v ∈ [N]
executes the schedule S of length T in a fixed period of time consisting of T
rounds, when v transmits a message in round t of that period iff the tth position
of S(v) is equal to 1.

A geometric communication schedule S of length T with parameters N, δ ∈ N,
(N, δ)-gcs for short, is a mapping from [N] × [0, δ − 1]2 to binary sequences of
length T . Let v ∈ [N] be a station whose grid coordinates with respect to the
grid Gc are equal to (i, j). We say that v executes (N, δ)-gcs S for the grid
Gc in a fixed period of time, when v transmits a message in round t of that
period iff the tth position of S(v, i mod δ, j mod δ) is equal to 1. We say that
(i1, j1) ≡ (i2, j2) mod d if and only if i1 ≡ i2 mod d and j1 ≡ j2 mod d. A set
of stations A on the plane is δ-diluted wrt Gc, for δ ∈ N \ {0}, if for any two
stations v1, v2 ∈ A with grid coordinates (i1, j1) and (i2, j2), respectively, the
relationship (i1, j1) ≡ (i2, j2) mod d holds.

Let S be a classical communication schedule S wrt N of length T , let c >
0 and δ > 0, δ ∈ N. A δ-dilution of S wrt (N, c) is a (N, δ)-gcs (geometric
communication schedule) S ′ of length T · δ2 defined such such that the bit (t−
1)δ2 + aδ+ b of S ′(v, a, b) is equal to 1 iff the bit t of S(v) is equal to 1. In other
words, each round t of S is partitioned into δ2 rounds (t, a, b) of S ′ indexed
by pairs (a, b) ∈ [0, δ − 1]2, such that a station with grid coordinates (i, j) in
Gc is allowed to send messages only in rounds (t, i mod δ, j mod δ), provided
schedule S admits a transmission of this station in its round t.

Distributed Backbone Structure for Wireless Networks 113

C
u

v
w

z

Fig. 1. If v, w, z are in the range
area of u, then boxes containing
v, w, and z are neighbors of C

Observe that, since ranges of stations are
equal to the length of diagonal of boxes of the
pivotal grid, a box C(i, j) can have at most
20 neighbors (see Figure 1). We define the
set DIR ⊂ [−2, 2]2 such that (d1, d2) ∈ DIR
iff it is possible that boxes with coordinates
(i, j) and (i + d1, j + d2) can be neighbors.
For each (d1, d2) ∈ DIR and i, j ∈ Z, we say
that a box C′ = C(i + d1, j + d2) is located
in direction (d1, d2) from the box C(i, j).

Proposition 1. For each α > 2 (α =
2, resp.) there exists a constant d (d =
O(logN), resp.) such that the following
property is satisfied:

Let A be a δ-diluted, wrt the pivotal grid Gγ , set of stations on the plane such
that δ ≥ d and each box contains at most one element of A. Then, if all elements
of A transmit messages simultaneously in the same round t and no other station
is transmitting, each of them transmit successfully.

The correctness of the above proposition simply follows from the fact that∑∞
i=1 1/i

σ = O(1) for each σ > 1, and
∑n

i=1 1/i = O(log n) for n ∈ N (these
sums appear when one evaluates maximal possible interference generated by
elements of A \ {v} to a box containing any neighbor of v ∈ A).

A set of stations A on the plane is Δ-dense if at most Δ elements of A are
located in each box of the pivotal grid. A station v ∈ A is grid-isolated if v is
the only element of A in box(v).

Definition 1 (SINR selector). A (N, δ)-gcs S, for N, δ ∈ N, is a (N, δ,Δ, μ)-
SINR-selector if for each Δ-dense set A with IDs in the range [N], the following
properties are satisfied:
(a) At least μ · |A| stations from A transmit successfully during execution of S
on A.
(b) Let B ⊆ A be the set of elements of A which are not grid-isolated. Then, at
least μ · |B| stations from B transmit successfully during execution of S on A.

Lemma 1. For each N ∈ N and Δ ≤ N , there exists a (N, δ,Δ, 1/2)-SINR-
selector S of size: O(Δ log2 N) for α > 2, and O(Δ log3 N) for α = 2, where
δ = O(logN). Moreover, S is a δ-dilution of some classical communication
schedule.

The proof of Lemma 1 is based on the probabilistic method. Its idea is as follows.
Consider a randomly generated classical communication schedule S, such that
each v ∈ [N] is chosen to be a transmitter in round i with probability 1

Δ . The
goal is to show that S satisfies the properties of a SINR-selector after applying
d-dilution with appropriately chosen d. Unfortunately, unlike in radio networks,
it is not sufficient to prove that a station v is the only (successful) transmitter in

114 T. Jurdzinski and D.R. Kowalski

the ball of radius r centered at v. Technical challenge here is to deal with inter-
ferences going from stations located in other (even distant) boxes, even though in
expectation there are not many of them. We deal with this issue by bounding the
probabilities that many boxes may contain more than 2i transmitting stations,
for increasing values of i, and calculating probabilities of large interferences us-
ing these bounds. Although for a particular box it might be the case that the
fraction of successfully transmitting stations from this box is small, we can still
prove a global bound on the number of successfully transmitting stations from
the whole considered set A. Moreover, it can be shown that such a randomly
generated schedule is a SINR-selector with high probability.

4 Backbone Structure and Algorithm

In this section we describe a method of building a backbone network, a sub-
network of an input wireless network which acts as a tool to perform several
communication tasks. Given a network with a communication graph G, a back-
bone of G is a subnetwork H which satisfies the following properties:

P1 : the stations of H form a connected dominating set of G;
P2 : the number of stations in H is O(m), where m is the size of the smallest

connected dominating set of G;
P3 : each station from G \ H is associated with exactly one its neighbor that

belongs to H (its leader).

Moreover, we define protocols A1 and A2 for a network G and its backbone H ,
with the following characteristics:

A1 : a protocol simulating one round of a message passing network on H in a
multi-round, which consists of constant number of rounds; more precisely,
this protocol makes possible to exchange messages between each pair of
neighbors of H in one multi-round; moreover, each message received by a
station v ∈ H is successfully broadcasted to all stations from G associated
with v (i.e., stations for which v is the leader);

A2 : a protocol which, assuming that each station v has its own message, makes
possible to transmit message of each station to its leader in O(Δ) rounds.

Below, we describe efficient protocol(s) which build a backbone of the underlying
network. Our algorithms strongly rely on SINR-selectors. First, leaders in boxes
of the pivotal grid are chosen (Local Leader Election), then these leaders
acquire knowledge about stations in their boxes and their neighbors in the com-
munication graph (Local Leader Election andNeighborhood Learning)
and finally a constant number of stations are added in each box (of the pivotal
grid) to these leaders in order to form the network H satisfying stated above
properties (Inter-Box Communication). Below, we describe these phases of
the algorithm in more detail. We assume that Δ is known to all stations of a
network. We make a simplifying assumption that, if at most one station from
each box of the pivotal grid transmits in a round t, then each such transmission

Distributed Backbone Structure for Wireless Networks 115

is successful. Due to Proposition 1, one can achieve this property using dilution
with constant parameter d for α > 2 (or d = O(logN) for α = 2), which does not
change the asymptotic complexity of our algorithm. We also use the parameter
δ which corresponds to the dilution parameter from Lemma 1.

Local Leader Election. The goal of this phase is to choose the leader in each
nonempty box of the pivotal grid (i.e., each box containing at least one sta-
tion of G). Each station v has a local variable st(v) denoting its state. At the
beginning st(v) = active for each station. Our algorithm consists of logN exe-
cutions of (N, δ,Δ, 1/2)-SINR-selector S. However, in each step of an execution,
only stations in state active are allowed to send messages. After each round t of
the algorithm, each station v which can hear a message in t sent by a station
u ∈ box(v) changes its state to passive. After logN executions of S, each station
v such that st(v) =active changes its state to leader and becomes the leader of
its box.

Let M(i) be the set of stations which, after the ith execution of the SINR-
selector S, are in state active and they are located in boxes which contain at
least two stations in state active at this time.

Proposition 2. |M(i)| ≤ |M(i− 1)|/2 for each i ∈ [logN].

Proof. Let canonical execution of S be an execution in which the set of stations
participating during the execution does not change. The properties of S imply
that the set X of stations from M(i − 1) which transmit successfully during
the ith execution of S has at least |M(i − 1)|/2 stations. Let X = X1 ∪ X2,
whereX1 contains those stations which became passive before having a successful
transmission in S, andX2 = X\X1. Note that v does not belong toM(i) for each
v ∈ X2, since all stations in box(v) except of v become passive after a successful
transmission of v. On the other hand, stations from X1 does not belong to M(i)
either, since they are in state passive by definition. Thus, M(i) ⊆M(i− 1) \X
and therefore |M(i)| ≤ |M(i− 1)|/2.

Lemma 2. After logN application of SINR-selector S during Local Leader

Election, there is exactly one station in state leader in each nonempty box.

Proof. Observe that |M(0)| ≤ N and therefore, by Proposition 2, |M(logN)| =
0. Thus, there is no box with more than one active station at the end of the
algorithm.

It remains to verify that each nonempty box has a station in state active at
the end of the algorithm. However, note that the number of active stations in a
box in a particular round t may decrease only in the case that at least one station
in that box is transmitting in t. Thus, this station remains active. Therefore, it
is not possible that a nonempty box has no station in state active at the end of
the algorithm.

Local Learning. The goal of this phase is to assure that each leader of a box
gets knowledge about all stations in its box and shares this knowledge with these
stations. To this aim, we execute the SINR-selector S on the set of non-leaders

116 T. Jurdzinski and D.R. Kowalski

logN times. And, the leaders send confirmation messages after each round of
the selector if they can hear a message from their boxes. And in turn, stations
which receive confirmations of their messages, get passive. Moreover, leaders
(and other stations) store counters of confirmed stations from their boxes and
arrays containing IDs of confirmed stations. Below, we describe this idea in more
detail.

Algorithm 1. Local Learning

1: for each station v: if st(v) �= leader, then st(v) ←active;
2: Repeat logN times the SINR-selector S. In each round, only stations in the state

active can send messages. Each round t of the selector is followed by an extra round
t′, in which each station v executes the following instructions 3− 6:

3: if st(v) = leader, box(v) = C and v received a message from u ∈ C in t then
4: count ← count + 1
5: set[count] ← u
6: send a message containing the ID u, the coordinates of u and count.
7: After the round t′, each station w which receives a message from the leader of its

box, updates its local copies of count and set appropriately.

The properties of S and an analysis similar to the analysis of the phase Local
Leader Election directly imply the following result.

Lemma 3. After Local Learning each station knows all stations located in
its box, stored in its array set[1, count].

Neighborhood Learning. Note that leaders of boxes form a “backbone” which
is a dominating set of the communication graph. In fact such a dominating set
is at most |DIR| + 1 = 21 times larger than a smallest dominating set (since
each station v can be only in range of stations located in box C = box(v) and
boxes in directions (d1, d2) ∈ DIR from C). Our goal is to add a constant num-
ber of stations from each nonempty box to the backbone, in order to guarantee
connectivity of the backbone and make efficient communication inside the back-
bone possible. To this aim we first design a communication schedule which gives
each station some knowledge about neighbors of each station in its box. This is
achieved by allowing that, given a box C, each station from C sends a message
in different round. Thus, each such message is received by all neighbors of the
transmitting station (due to dilution). Moreover, each station adds locations and
IDs of all stations from which it receives messages to (stored locally) the set of
its neighbors. Given a box C(i, j) and (d1, d2) ∈ DIR, the key information for us
is whether and which stations from C have neighbors in the box C(i+d1, j+d2).
Therefore, we repeat the second time the procedure in which each station in each
box transmits separately. This time each station v attaches to its messagesD(v),
the set of directions from DIR describing boxes in which v has neighbors, and for
each such direction (d1, d2), it attaches twin(d1,d2)(v), the smallest ID of such
a neighbor3. Thanks to that, this information is spread in the whole box(v).

3 We do not allow a station to send information about all its neighbors in order to
keep messages small, i.e., of size O(logN).

Distributed Backbone Structure for Wireless Networks 117

Given this information, stations “responsible” for communication with other
boxes are chosen in each box.

Algorithm 2. Neighborhood Learning

1: Each station v sets: Γ (v) = ∅
2: for each station v do
3: for i = 1, 2, . . . ,Δ do
4: if v = set[i] then
5: v sends a message,
6: else if v can hear u: Γ (v) ← Γ (v) ∪ {u}
7: for each station v do
8: for i = 1, 2, . . . ,Δ do
9: if v = set[i] then v sends D(v).
10: if v can hear D(u) then v stores it.

11: for (d1, d2) ∈ DIR and v ∈ C = C(i, j) do
12: C′ ← C(i+ d1, j + d2)
13: nb(d1,d2) ← {u ∈ C | u has a neighbor in C′}
14: if nb(d1,d2) �= ∅: sC(d1,d2) ← min(nb(d1,d2))

15: rC
′

(−d1,−d2)
← twin(d1,d2)(s

C
(d1,d2)

).

16: sC(d1,d2) sends a message to rC
′

(−d1,−d2)
.

Note that each station can perform computation from line 10-14 independently
using information received in the first two loops. All stations of type sC(d1,d2)

and

rC(d1,d2)
are added to the backbone H (except of leaders of all boxes). The idea is

that the task of sC(d1,d2)
(senders) is to send a message from the box C to the box

C′ located in direction (d1, d2) from C, while the task of rC
′

(−d1,−d2)
(receivers) is

to broadcast this message to all stations in C′. That is,H consists of stations with
status leader and stations sC(d1,d2)

, rC(d1,d2)
for each (d1, d2) ∈ DIR and box C.

Simulation of Message Passing Model Inside the Backbone. Now, we
define multi-round which consists of |DIR| · (δ′)2 actual rounds of our network,
where δ′ corresponds to the parameter δ from Proposition 1.

Algorithm 3. Multi-round

1: for each station v do
2: if st(v) = leader then v sends a message;

3: for (d1, d2) ∈ DIR do
4: for each station v do
5: Round 1: if (v = s

box(v)

(d1,d2)
):

6: send a mess.;
7: Round 2: if (v = r

box(v)

(−d1,−d2)
):

8: send a mess. received in Round 1;

Note that, since at most one station from each box is sending a message,
each stations is transmitting successfully. Moreover, since each station from H

118 T. Jurdzinski and D.R. Kowalski

is sending during a multi-round, each station can (successfully) send a message
to all its neighbors in H during a multi-round. Below, we formulate a corollary
emphasizing the fact that our backbone provides possibility of communication
in a graph whose vertices correspond to boxes of the pivotal grid and edges
connecting boxes which are neighbors in a network (see Figure 1).

Lemma 4. Assume that all stations in C know the same message MC, for a box
C of the pivotal grid. During a multi-round, the message MC can be transmitted
to each station v′ ∈ C′, for each pair of boxes C,C′ that are neighbors in the
underlying network.

Theorem 1. The backbone H satisfying properties P1−P3 and protocols satis-
fying A1, A2 can be build in time O(Δ polylogN).

Note that protocols A1, A2 can be obtained by Lemma 4 and Lemma 3, resp.

5 Applications of Backbone

Using the result of Theorem 1, one can efficiently simulate algorithms designed
for message passing networks in the SINR model. Such a simulation requires
O(Δ polylogN + TΔ) rounds, where T is the time complexity of the simulated
algorithm in the message passing network without interference. However, if an
execution of the simulated algorithm can be done only on the backbone of the
underlying network, the multiplicative factor Δ disappears, i.e., time complexity
of such simulation is O(Δ polylogN + T), where the factor Δ polylogN corre-
sponds to the algorithm building the backbone.

An example of such a situation is the leader election problem. In order to
choose the leader of a network, one can build the backbone H , choose the leader
among elements of H and then, using protocol A1, broadcast ID of the leader to
the remaining stations in O(1) rounds. If the diameter of a network D is known
in advance, one can choose a leader by a simple flooding algorithm in O(D)
rounds (recall that the degree of stations in H is bounded by a constant). As we
show in the full version of the paper, a similar complexity can be achieved also
in the case that D is not known to the stations in advance.

Theorem 2. There is a deterministic algorithm choosing a leader in O(D +
Δ polylogN) rounds, where D is the diameter of the underlying network.

We complement the above result by a lower bound, which leaves only a poly-
logarithmic gap in complexity. Interestingly, it also holds for randomized algo-
rithms. Here, we say that a randomized algorithm works in time f(n), where n
is the size of a network, if it accomplishes the task (on every network) in f(n)
rounds with probability at least 1− τ(n), where τ(n) = o(1).

Theorem 3. Each (randomized) algorithm solving leader election problem works
in Ω(Δ+D) rounds in the worst case.

Distributed Backbone Structure for Wireless Networks 119

Finally, using the backbone structure and the leader election algorithm, we can
solve the multi-broadcast problem. Assume that k distinct messages are located
in various stations of a network. Our algorithm uses the backbone structure
and protocols A1, A2 in order to collect all messages in leaders of appropriate
boxes. Then, the global leader of the entire network is chosen (see Theorem 2).
Simultaneously, a rooted spanning tree of the backbone H is build, the diameter
of this tree is proportional to the diameter of H . Next, using techniques of Cidon
et al. [5], all messages are collected in the root of the tree. Finally, all messages
are broadcasted by a pipelined flooding algorithm along the spanning tree. The
following theorem characterizes efficiency of our solution.

Theorem 4. There is a deterministic algorithm that finishes multi-broadcast in
O(D + k +Δ polylogN) rounds.

6 Final Remarks and Extensions

It is worth noting that our algorithm constructing the backbone is local in nature,
and it tolerates a small constant inaccuracy in the location data. The construc-
tion of efficient SINR-selector can be complex (we only showed its existence);
in practice, one could select such structure using randomness, which guarantees
that with very high probability the obtained structure will be a SINR-selector.

We have not specified exact complexities of algorithms, because they depend
on the actual value of the path loss parameter α. Since in our applications SINR-
selectors are applied logN times, Lemma 1 implies that the polylogN factor in
our algorithms is equal to log3 N for α > 2 and to log4 N for α = 2.

References

1. Avin, C., Lotker, Z., Pasquale, F., Pignolet, Y.-A.: A Note on Uniform Power
Connectivity in the SINR Model. In: Dolev, S. (ed.) ALGOSENSORS 2009. LNCS,
vol. 5804, pp. 116–127. Springer, Heidelberg (2009)

2. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in
multi-hop radio networks: An exponential gap between determinism and random-
ization. J. Comput. Syst. Sci. 45(1), 104–126 (1992)

3. Censor-Hillel, K., Gilbert, S., Kuhn, F., Lynch, N.A., Newport, C.C.: Structuring
unreliable radio networks. In: PODC, pp. 79–88. ACM (2011)

4. Chung, H.C., Robinson, P., Welch, J.L.: Optimal regional consecutive leader elec-
tion in mobile ad-hoc networks. In: FOMC, pp. 52–61. ACM (2011)

5. Cidon, I., Kutten, S., Mansour, Y., Peleg, D.: Greedy packet scheduling. SIAM J.
Comput. 24(1), 148–157 (1995)

6. Czumaj, A., Rytter, W.: Broadcasting algorithms in radio networks with unknown
topology. In: FOCS, pp. 492–501. IEEE Computer Society (2003)

7. DeMarco, G.: Distributed broadcast in unknown radio networks. SIAM J. Com-
put. 39(6), 2162–2175 (2010)

8. Dessmark, A., Pelc, A.: Broadcasting in geometric radio networks. J. Discrete Al-
gorithms 5(1), 187–201 (2007)

120 T. Jurdzinski and D.R. Kowalski

9. Emek, Y., Gasieniec, L., Kantor, E., Pelc, A., Peleg, D., Su, C.: Broadcasting in
udg radio networks with unknown topology. Distributed Computing 21(5), 331–351
(2009)

10. Fanghänel, A., Kesselheim, T., Räcke, H., Vöcking, B.: Oblivious interference
scheduling. In: PODC, pp. 220–229. ACM (2009)

11. Galćık, F., Gasieniec, L., Lingas, A.: Efficient broadcasting in known topology radio
networks with long-range interference. In: PODC, pp. 230–239. ACM (2009)

12. Goussevskaia, O., Moscibroda, T., Wattenhofer, R.: Local broadcasting in the phys-
ical interference model. In: DIALM-POMC, pp. 35–44. ACM (2008)

13. Goussevskaia, O., Pignolet, Y.A., Wattenhofer, R.: Efficiency of wireless networks:
Approximation algorithms for the physical interference model. Foundations and
Trends in Networking 4(3), 313–420 (2010)

14. Hobbs, N., Wang, Y., Hua, Q.-S., Yu, D., Lau, F.C.M.: Deterministic Distributed
Data Aggregation under the SINR Model. In: Agrawal, M., Cooper, S.B., Li, A.
(eds.) TAMC 2012. LNCS, vol. 7287, pp. 385–399. Springer, Heidelberg (2012)

15. Jurdzinski, T., Kowalski, D.: Distributed backbone structure for deterministic al-
gorithms in the sinr model of wireless networks. CoRR abs/1207.0602v2 (2012)

16. Kesselheim, T.: A constant-factor approximation for wireless capacity maximiza-
tion with power control in the sinr model. In: SODA, pp. 1549–1559. SIAM (2011)

17. Kesselheim, T., Vöcking, B.: Distributed Contention Resolution in Wireless Net-
works. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp.
163–178. Springer, Heidelberg (2010)

18. Kowalski, D.R., Pelc, A.: Optimal deterministic broadcasting in known topology
radio networks. Distributed Computing 19(3), 185–195 (2007)

19. Kowalski, D.R., Pelc, A.: Leader Election in Ad Hoc Radio Networks: A Keen
Ear Helps. In: Albers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S.,
Thomas, W. (eds.) ICALP 2009, Part II. LNCS, vol. 5556, pp. 521–533. Springer,
Heidelberg (2009)

20. Kuhn, F., Lynch, N.A., Newport, C.C.: The abstract mac layer. Distributed Com-
puting 24(3-4), 187–206 (2011)

21. Kushilevitz, E., Mansour, Y.: An omega(d log (n/d)) lower bound for broadcast in
radio networks. SIAM J. Comput. 27(3), 702–712 (1998)

22. Richa, A., Scheideler, C., Schmid, S., Zhang, J.: Towards jamming-resistant and
competitive medium access in the sinr model. In: S3 2011, pp. 33–36. ACM (2011)

23. Scheideler, C., Richa, A.W., Santi, P.: An o(log n) dominating set protocol for
wireless ad-hoc networks under the physical interference model. In: MobiHoc, pp.
91–100. ACM (2008)

24. Yu, D., Hua, Q.-S., Wang, Y., Tan, H., Lau, F.C.M.: Distributed Multiple-Message
Broadcast in Wireless Ad-Hoc Networks under the SINR Model. In: Even, G.,
Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 111–122. Springer,
Heidelberg (2012)

25. Yu, D., Wang, Y., Hua, Q.S., Lau, F.C.M.: Distributed local broadcasting algo-
rithms in the physical interference model. In: DCOSS, pp. 1–8. IEEE (2011)

Distributed Online and Stochastic Queuing

on a Multiple Access Channel�

Marcin Bienkowski1, Tomasz Jurdzinski1,4,
Miroslaw Korzeniowski2,3, and Dariusz R. Kowalski4

1 Institute of Computer Science, University of Wroc�law, Poland
2 Inst. of Mathematics and Computer Science, Wroc�law Univ. of Technology, Poland

3 LaBRI, Univeristy of Bordeaux 1, France
4 Department of Computer Science, University of Liverpool, UK

Abstract. We consider the problems of online and stochastic packet
queuing in a distributed system of n nodes with queues, where the com-
munication between the nodes is done via a multiple access channel. In
each round, an arbitrary number of packets can be injected into the sys-
tem, each to an arbitrary node’s queue. Two measures of performance
are considered: the total number of packets in the system, called the total
load, and the maximum queue size, called the maximum load. In the on-
line setting, we develop a deterministic algorithm that is asymptotically
optimal with respect to both complexity measures, in a competitive way.
More precisely, the total load of our algorithm is bigger then the total
load of any other algorithm, including centralized offline solutions, by
only O(n2), while the maximum queue size of our algorithm is at most n
times bigger than the maximum queue size of any other algorithm, with
an extra additive O(n). The optimality for both measures is justified by
proving the corresponding lower bounds. Next, we show that our algo-
rithm is stochastically optimal for any expected injection rate smaller or
equal to 1. To the best of our knowledge, this is the first solution to the
stochastic queuing problem on a multiple access channel that achieves
such optimality for the (highest possible) rate equal to 1.

1 Introduction

Multiple Access Channel is one of the fundamental models for distributed com-
munication. It has been widely studied and used in the context of theoretical
analysis of Ethernet and wireless protocols, contention resolution in systems with
buses, and in other emerging technologies. Roughly speaking, a multiple access
channel models environments in which distributed nodes/resources compete for
access to the shared communication and distribution channel, and in case of
contention, no contender wins the access.

� Supported by MNiSW grant number N N206 368839, 2010-2013. The work of the sec-
ond and the fourth author was supported by the Engineering and Physical Sciences
Research Council [grant number EP/G023018/1]. The third author is supported by
grant 2010/342643 of the Institute of Mathematics and Computers Science of the
Wroclaw University of Technology.

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 121–135, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

122 M. Bienkowski et al.

Distributed queuing on a multiple access channel is one of the most funda-
mental problems, widely studied by both theoreticians (cf. [7]) and practitioners
(cf. [4]). In this problem, packets arrive continuously at nodes, and the goal is to
maintain bounded queues and latency, whenever possible. The main two lines of
research include design and analysis of protocols in two scenarios: for restricted
adversarial injection patterns and for stochastic injections. The best up-to-date
results guarantee bounded queues only for arbitrarily bounded packet burst, in
case of the former setting, and only for stochastic injection rates smaller than 1
in the latter one. This work aims to resolve the remaining cases of heavy traffic
in affirmative. We believe that the newly developed and analyzed distributed
scheduling techniques could substantially improve flow stability in heavy traffic
systems, such as data and video streaming under 802.11aa.

The Model. We consider the scenario where n nodes with pairwise disjoint ids
in {1, 2, . . . , n} broadcast packets and communicate through a multiple access
channel (MAC). Each node has a buffer, also called a queue, of potentially infinite
capacity. We assume slotted time, where times are numbered from 0. At time 0,
the adversary may inject arbitrary number of packets, each placed at an arbitrary
node. Then, for t = 1, 2, 3, . . ., the following happens:

– In round t, defined as an interval between times t− 1 and t, any node may
transmit a message containing at most one packet. A transmission is success-
ful if exactly one node transmits in the round; in such case, the transmitted
packet is removed from the queue of the transmitting node.

– Then, at time t, the adversary injects arbitrary number of packets, each
placed into an arbitrary node queue.

We assume Ethernet-like capabilities of MAC, i.e., each node can simultaneously
listen and transmit, and thus knows whether the transmission was successful
or not. However, our positive results work also in the model, where a station
sending a message cannot listen at the same time. We assume that nodes can
communicate only through MAC, but they are allowed to append control bits
to the sent packets. We do not impose any restriction on the number of such
bits, however we argue later that in a single message our algorithm appends
only O(log n) additional bits of information to a transmitted packet. Note that
control bits are inevitable in order to achieve competitiveness, as proved in [8]
even for restricted adversaries and n ≥ 3.

We consider two models of analysis of online queuing on a multiple access
channel: competitive and stochastic. The former approach is new, in the sense
that only bounded burst injection patterns have been considered so far, without
comparison to the optimal solution. We describe the competitive approach in
the remainder of this section. The detailed description of the stochastic queuing
setting is deferred to Section 3.

Competitive Ratio. For any algorithm Alg and a packet injection pattern I,
let QALG(I, t, i) denote the length of the queue (the number of pending packets)
at node i at time t. Let LALG(I, t) =

∑n
i=1 QALG(I, t, i); we call LALG(I, t) the

Distributed Online and Stochastic Queuing on a Multiple Access Channel 123

total load at time t under injection pattern I. Finally, let MALG(I, t) be the
maximum load under injection pattern I, i.e., MALG(I, t) = maxiQALG(I, t, i).

We call an online distributed algorithm (R,A)-competitive for minimizing the
total load if for any adversarial pattern of packet injections I and any time step
t it holds that LALG(I, t) ≤ R ·LOPT(I, t)+A where Opt is the optimal offline
centralized solution for injection pattern I until round t.

We call a randomized online distributed algorithm (R,A)-competitive for min-
imizing the total load if for any adversarial pattern of packet injections I and
any time step t it holds that E[LALG(I, t)] ≤ R · LOPT(I, t) + A, where the
expectation is taken over all random choices of the algorithm up to the step t.

For both deterministic and randomized algorithms we define competitiveness
for minimizing maximum load in analogous way. We emphasize that the relation
between Alg and Opt has to hold for any step t and any injection pattern I.
Note that, unlike in the traditional approach of competitive analysis [5], we
explicitly give the additive factor in the competitive ratio.

1.1 Previous and Related Work

To the best of our knowledge, this is the first work studying online distributed
queuing problem for unrestricted packet injection patterns. We analyze, in a
competitive way, two important complexity measures: total load and max-load.
In what follows, we describe a related work including online queuing in the
centralized model and queuing under restricted adversarial injection patterns.
Next we provide a summary of results for stochastic optimality of protocols, so
far obtained only for injection rates smaller than 1.

Online Queuing in the Centralized Model. The optimization problems
considered in this paper were also analyzed in the setting where central coordi-
nation is assumed and all nodes have global knowledge about all injected pack-
ets. Clearly, minimizing the total load is no longer a challenge in such setting,
as any work-conserving algorithm (i.e., transmitting packets from non-empty
queue whenever possible) is optimal with respect to the total load minimiza-
tion. However, minimizing the length of the maximal queue is non-trivial and
known in the literature under the name of balanced scheduling. In particular,
Fleischer and Koga [10], and independently Bar-Noy et al. [3], proved that any
algorithm serving always a longest nonempty queue achieves asymptotically op-
timal competitive ratio of Θ(log n), including also randomized solutions. Fleis-
cher and Koga [10] proved additionally that the popular round-robin algorithm
is Ω(m)-competitive, where m is the number of injected packets. Note that the
latter result qualifies as non-competitive in case of unbounded number of injected
packets. The comparison of results for the centralized model and the distributed
one, obtained in this work, is given in Table 1. In particular, the discrepancy be-
tween the results in these two models shows that the lack of central coordination
tremendously affects the performance of the whole system.

Online Queuing in the Distributed Setting under Restricted Adver-
saries. Inspired by adversarial queuing problems in store-and-forward packet

124 M. Bienkowski et al.

Table 1. The bounds on the competitiveness in the centralized and distributed settings,
for the two complexity measures: total load and max-load

centralized distributed

minimizing total load Opt (straightforward) Opt+Θ(n2) (this paper)

minimizing maximum load Θ(log n) ·Opt [3,10] n ·Opt+O(n) (this paper)

networks [2,6], several papers analyzed distributed queuing on a multiple ac-
cess channel under restricted adversarial injection patterns. Previous works by
Chlebus et al. [8] and Anantharamu et al. [1] considered adversaries that were
(ρ, b)-restricted, also called (ρ, b)-leaky-bucket, for ρ ≤ 1 and fixed b ≥ 1. The
restriction is that in each time interval I, the adversary may only inject ρ · |I|+b
packets into the system. Moreover, the solutions were analyzed in a worst-case
manner with respect to parameters n, ρ, b. Restricted adversaries were also used
for modelling jamming on a multiple access channel [14].

We emphasize that the unrestricted adversary considered in this work may
not only generate all injection patterns allowed for the restricted case, but also
patterns with some periods of “burstiness” growing arbitrarily large that were
not allowed by the restricted adversary. Moreover, the previous results for the
restricted adversary provided only global bounds on queue sizes in case they
were bounded, while competitive analysis provided in this work compares the
solution to the optimal algorithm at any single round. Although algorithms de-
signed and analyzed under the restricted adversarial injection patterns may not
imply similar results in more general competitive model considered in this work,
some lower bounds can be adopted. In particular, Chlebus et al. [8] proved that,
even in the (1, 1)-restricted setting, no algorithm achieves bounded latency. This
implies that no algorithm is competitive with respect to the latency measure,
and motivates our focus on the total and maximum load measures instead.

Stochastic Queuing. There is a rich history of research on stochastic queuing
on a multiple access channels, i.e., when packets are injected subject to statistical
constraints. See the surveys by Gallager [12] and Chlebus [7] for an overview of
early and middle-stage research. In particular, H̊astad et al. [13] proved stochas-
tic optimality of polynomial backoff protocols for any fixed injection rate smaller
than 1 and disproved it in case of exponential backoff. To the best of our knowl-
edge, all the previous results concerning stochastic optimality were proved for
expected fixed injection rates strictly smaller than 1. Ours is the first determinis-
tic distributed online algorithm achieving stochastic optimality also for (highest
possible) injection rate 1.

1.2 Our Results

We develop a deterministic distributed online algorithm Scat, whose compet-
itiveness is asymptotically optimal with respect to both the total number of
packets in the system and the maximum queue size.

Theorem 1. The algorithm Scat is (1, n2 + 4n)-competitive for the total load
measure and (n, 5n)-competitive for the maximum load measure.

Distributed Online and Stochastic Queuing on a Multiple Access Channel 125

That is, the total load of our algorithm is, in each round, larger by an additive
factor of O(n2) than the total load of the best offline algorithm (taken for the
same adversarial injection pattern). Moreover, the maximal queue size of our
algorithm is, in each round, at most n times larger than the maximal queue
size of the best offline algorithm, plus an additive factor O(n). The optimality
of both bounds is justified by the following results, the former holding even for
randomized algorithms.

Theorem 2. For any randomized algorithm Alg which is (R,A)-competitive
for maximum queue minimization, it holds that R ≥ n.

Theorem 3. For any deterministic algorithm Alg which is (R,A)-competitive
for total load minimization, it holds that R ≥ 1 and A ≥ (n/2− 1)2 − 1.

See Table 1 for a summary of results concerning competitiveness of distributed
online queuing on a multiple-access channel versus centralized online queuing.
Although one can argue that such big bounds on the optimal values of com-
petitiveness parameters diminish importance of our model, observe that these
bounds do not depend on time of an execution of a protocol (which might be
arbitrarily large).

Furthermore, we show efficiency of our algorithm with respect to the stochas-
tic queuing problem in a distributed setting for expected injection rate 1. More
precisely, we show that our algorithm reaches the state with empty queues in-
finitely many times with probability 1, regardless of the initial distribution of
packets, provided packets are injected to the system randomly according to the
Bernoulli distribution with the expected number of 1 packet per round. (Note
that rate 1 is the highest possible to obtain so defined stochastic optimality.)
All previous solutions to this variant of the problem guaranteed such property
only for the expected number of packets per round strictly smaller than 1. For
this case, we show even a stronger property: that the expected number of steps
needed to reach the state with empty queues is finite.

Due to space limit, omitted proofs will appear in the full version of the paper.

Distributed Online Solution: Challenges and Ideas. Our main online al-
gorithm Scat is designed to overcome two fundamental challenges imposed by
the shared channel: delay in updating information (there is at most one node
transmitting successfully at a time, therefore a common knowledge about ma-
jority of nodes come from Ω(n) rounds in the past), and waste (i.e., collision or
silence) caused during information gathering or otherwise by scheduling packets
without fairly accurate information.

To demonstrate these problems, consider the behavior of already studied pro-
tocols. Probably the simplest one is the round-robin protocol, in which nodes
transmit (and gather information) periodically according to some pre-defined
list. It generates an unbounded waste when the adversary injects all packets to a
single node, one packet per round. One could modify this protocol to empty the
whole queue where visiting a node, which would prevent such waste as considered
before. However, an unbounded waste is obtained in a slightly more sophisticated

126 M. Bienkowski et al.

scenario when the adversary injects one packet per round to a fixed node i until
this node starts to be processed; then packets are injected to the node preceding
i (again, one packet per round), and so on.

Another idea would be to use a buffer to amortize the waste generated by
checking the queues of potentially empty node: such an idea was introduced
by Chlebus et al. [8], who proposed algorithm Move-Big-To-Front (MBTF for
short). In this algorithm, the round robin procedure is applied until a node with
queue larger than n is found; in such case, the queue is moved into the beginning
of the round robin list and emptied in consecutive rounds down to the level of
exactly n pending packets. Then the round robin sub-routine is applied again,
and the whole process is repeated in a loop. Observe however that the adversary
can first fill each node to the level of at least n/2 packets, by injecting one packet
per round on average, and then—by injecting packets always to the last node on
the list—create queues of size Ω(n2), while the optimum solution has at most
one packet in the whole system at each round.

The above examples are token-based protocols. Bianchi [4] argued that ran-
domized backoff protocols are not stable under highly saturated injection pat-
terns. In general, as we also demonstrate in the proof of one of our lower bounds,
using ad hoc transmission pattern may cause even more waste comparing to the
best offline solution, as collisions may occur due to simultaneous transmissions.

Our solution introduces a specific potential function that efficiently trades
a delay in obtaining information about queue sizes for the waste caused by
silent rounds. More precisely, the algorithm runs in two modes: scanning and
trimming. The former is to update the information, the latter is to transmit
packets so to compete with the optimal solution. The potential function defines
the order of scanned and trimmed nodes, and conditions when to switch between
the two modes (i.e., efficiently between the progress in information update and
in keeping the queues balanced).

The result in the stochastic injection setting is obtained by proving (positive)
recurrence of the underlying Markov chains in two steps. First, we define and
analyze some idealistic Markov chains, corresponding to the behavior of offline
solutions. In particular, we prove that properties of these Markov chains imply
stability of the optimal offline protocol in the stochastic injection setting. Next,
by applying the competitiveness result from the worst-case online analysis, we
argue that the stochastic process corresponding to the execution of our online
algorithm satisfies stochastic optimality.

2 Competitive Algorithm SCAT

In this section, we show a protocol Scan-And-Trim (Scat) and prove that it
is (n,O(n))-competitive. We start with a high-level description, accompanied by
intuitions. Then, we provide the pseudo-code and a sketch of the analysis.

The number of nodes n and the id of a node are the only input parameters for
the algorithm executed by the node. The protocol is collision-avoiding: it sched-
ules transmissions in such a way that collisions never occur. To this end, it builds
on a token-passing paradigm, in which a unique node with the “token-holder”

Distributed Online and Stochastic Queuing on a Multiple Access Channel 127

status transmits a message. Recall that in the considered setting, a message con-
tains at most one packet and a number of additional bits of information. In our
protocol, the transmitting node attaches only the current size (i.e., the number
of packets) of its queue.

We assume that if in a round the token holder has no packet to transmit,
it still transmits a message, but it contains no packet, only the number zero
representing its empty queue. Such a round we call void. Note that this is for
notational simplicity, as we may assume that not transmitting anything has the
same semantics.

Our algorithm abstracts from the local queuing policy (such as Fifo, Lifo,
Sis, etc.) as it does not influence the considered measures of performance. In
practice, Fifo queue could be seen as the most “fair” queuing policy.

Global State. There is a certain number of variables stored by the algorithm
at each node. In particular, each node keeps information which node holds the
token, the current mode of operation, and the list of all the nodes augmented
with additional data. While the exact description of these variables is given later,
we emphasize that the values of these variables are the same for all nodes. This
is achieved by (i) initializing all these variables to the same values, (ii) ensuring
that their evolution is deterministic and depends solely on their current value
and the information transmitted in a given round. Recall that the protocol is
collision free, and therefore the information heard by all nodes is the same.

Hence, we call these variables global, keeping in mind that, in fact, they are
stored locally, but coherence between these variables’ values is ensured. We also
emphasize that except for its own packet queue, no node holds any other non-
global information.

The most important global variable is a list L of nodes. It contains ids of all
the nodes stored in a certain order; the positions of L are numbered from 1 to n.
Whenever we write “node j”, we mean the node with the j-th position on list L.
Additionally, L stores three pieces of information for each node q:

– Key, equal to the queue size of q attached to the last message transmitted by
q on the channel; the queue size is computed without the tranmitted packet.
If q has not yet transmitted, the key is set to zero;

– Threshold value for q, equal to a non-negative integer, whose value will
be determined later (and modified only at some particular rounds of the
protocol).

– Queue non-emptiness indicator equal to 1 when the queue of q was non-
empty when it transmitted its last message (i.e., the round was non-void
and an actual packet was sent) and 0 otherwise.

The key, the threshold, and the indicator of the i-th element on the list are de-
noted ki, ϕ(i), and pi, respectively. Apart from L, there are two global variables,
described in detail in the definition of the algorithm:

– token, a number i from [1, n] denoting that the current token holder is the
i-th node from L;

– mode, which can be either scanning or trimming;

128 M. Bienkowski et al.

The main problem the algorithm has to cope with is the information delay: the
keys stored in L are usually outdated: the nodes do not have the information
about the recent changes to the queues made by packet injections. Instead,
L contains information about the queue sizes of a specific node from the time this
node last transmitted. A great advantage of the global variables—representing
only a partial knowledge of the system—is that they allow for more coordinated
approach, which is easier to analyze. It appears that such approach is sufficient
to achieve good performance.

Potentials. For any n non-negative integers x1, x2, . . . , xn sorted in non-in-
creasing order, we define a potential function π : {1, . . . , n} → N∪{0}. Function π
is defined iteratively, from i = 1 up to i = n, as

π(i) = min
{
xi, Si −

∑i−1
j=1 π(j)

}
,

where Si =
∑i

j=1 2(n+1−j) = (2n+1−i) ·i. In particular, π(1) = min{x1, 2n}.
We also define the total potential as π =

∑n
i=1 π(i).

Fact 1. For the potential function π of any values, it holds that
1. 0 ≤ π(i) ≤ 2n for any i ∈ [1, n],
2. π(i) ≥ π(i + 1) for any i ∈ [1, n− 1],

3.
∑i

j=1 π(i) ≤ Si for any i ∈ [1, n].

Lemma 1. Let π be a potential function and 0 < i1 < . . . < i� = p, where
0 < p, � ≤ n. Then,

∑�
k=1 π(ik) ≤ S� + �− p− z, where z = |{j ≤ p |π(j) = 0}|.

Thresholds. The algorithm uses the potential function to compute thresholds.
Namely, at some points of the time (defined later; these points are the same
for all nodes), L is sorted in the non-increasing order of keys. Ties are broken
according to ids, which assures that the ordering computed locally is the same
for all the nodes. At this point k1, k2, . . . , kn denote the values of keys and they
are a non-increasing sequence. The potential π is computed on the values of
keys ki and is stored in the thresholds ϕ(i), i.e., we simply set ϕ(i) := π(i) for
all i ∈ [1, n]. Threshold values ϕ(1), . . . , ϕ(n) change only at those times. At any
time, the packets at node i above the threshold ϕ(i) are called overhead packets,
i.e., node i with � packets has max{�−ϕ(i), 0} overhead packets and min{ϕ(i), �}
non-overhead packets.

Algorithm Definition. At time 0, the algorithm initializes its global variables.
Namely, L is populated with ids of the nodes, sorted according to the values of
id. Thresholds and keys for all nodes are set to zero, token is set to 1, and
mode is set to scanning. Some packets may be already injected at time 0 by the
adversary. Then, for t = 1, 2, 3, . . ., the following happens (cf. Sect. 1 with the
description of the model).

– In round t, the processor whose position on L is equal to token transmits.
It transmits a message containing a packet from its queue (if it has any)
along with the size of its queue (computed after removing the transmitted
packet from the queue). All nodes, including the transmitting one receive
this message.

Distributed Online and Stochastic Queuing on a Multiple Access Channel 129

Algorithm 1. Update of global variables at time t

case mode = scanning

if
∑token

j=1 (kj + pj − ϕj) ≤ token and token < n then
token ← token+ 1

else
sort L in a non-increasing order of keys
ϕ ← the potential function of keys
if there exists i such that ki > ϕi then

token ← min{i | ki > ϕi}
mode ← trimming

else
token ← 1

case mode = trimming
if

∑n
j=1(kj − ϕj) > 0 then

if ktoken ≤ ϕtoken then
token ← min{� > token | k� > ϕ�}

else
token ← 1
mode ← scanning

– Round t is divided into three actions, executed w.l.o.g. in the following order:

1. All nodes update key ktoken on the list L as well as the value of the
variable ptoken on the basis of the message they heard in round t. Precisely,
if the message from the transmitting processor contains a packet, pi is set
to 1, otherwise the round is void (i.e., the transmitting processor’s queue is
empty and its message contains only the information that its queue size is
zero), both ktoken and ptoken are set to 0. That is, pi indicates whether the
node i had a nonempty queue when it held the token for the last time.
2. The adversary injects an arbitrary number of packets to the system; they
are appended to particular queues.
3. Each node executes Algorithm 1. Depending on the mode, all nodes exe-
cute the instructions from the corresponding case.

By this description, it is straightforward, that all nodes are capable of tracking
the values of global variables.

2.1 SCAT Analysis

Below, we show that the algorithm Scat is optimal with respect to both com-
plexity measures (maximum load and total load).

Consider an execution of algorithm Scat. Its rounds can be grouped into
scanning and trimming cycles in the following way. A trimming cycle is just
a contiguous sequence of rounds in which Scat is in trimming mode. On the
other hand, the contiguous sequence of rounds in which Scat is in scanning
mode consists of one or more consecutive scanning cycles. Precisely, in the first

130 M. Bienkowski et al.

round of the scanning cycle, the first node from L has the token, and the scanning
cycle ends when the outer else branch is executed, i.e., when either

∑token
j=1 (kj +

pj −ϕj) > token or token = n. If the former condition occurs, then we call such
scanning cycle balanced.

As described previously, all packets kept by the algorithm are classified either
as overhead or non-overhead packets. Intuitively, the total value of potential
(i.e., the number of non-overhead packets in the system) describes the number
of packets which are already “under control” of our algorithm (the values of the
potential are at most 2n, hence if the algorithm has only non-overhead packets it
would be trivially (0, 2n)-competitive for the maximum load measure). Thus, in
the remaining part of this section, we focus on bounding the number of overhead
packets. Two possible issues may occur. First, the number of overhead packets
may increase rapidly, because the adversary is allowed to inject arbitrary number
of packets in each round. However, in such case even Opt has these packets in its
queues. Second, when Scat recomputes thresholds at the end of some scanning
cycle, if a new total threshold is lower than the current one, some of the packets
may change their status from non-overhead to overhead. Showing that this occurs
very rarely poses the main difficulty in our analysis.1

Semi-potentials. By the algorithm definition, at some times the list L becomes
sorted according to the key values, and thresholds are set to the current values
of the potential function. To establish relation between the old and new values of
thresholds, we want to be able to compare these potential functions. As a direct
comparison might be infeasible, we introduce a helper concept: a semi-potential
function.

A function ψ is a semi-potential function with respect to non-negative integers
x1, x2, . . . , xn if for any 1 ≤ i ≤ n, the following two properties hold: (i) 0 ≤
ψ(i) ≤ xi, and (ii) the sum of any i values among ψ(1), . . . , ψ(n) is at most Si.
The total semi-potential is defined as ψ =

∑n
i=1 ψ(i).

Unlike in the definition of the potential function, we do not require that the
values of xi are sorted. Moreover, for a fixed sorted set of values, the potential
function is defined uniquely, while there might be various semi-potential func-
tions. Clearly, for sorted keys their potential function is also a semi-potential
function. Moreover, it is also the “largest” possible semi-potential, as stated next.

Lemma 2. Fix any non-negative integers x1, . . . , xn sorted in non-increasing
order and let π be their potential. For any semi-potential ψ of these integers,
ψ ≤ π.

1 It can be shown that when one simplifies the used potential function by choosing
Si =

∑i
j=1(n+1− j) instead of Si =

∑i
j=1 2(n+1− j), the adversary can create an

injection pattern causing the additional Ω(n) factor in the max-load competitiveness
(both in multiplicative and additive components). It demonstrates the subtlety of
the chosen potential function, which is essential to control scanning and trimming
processes.

Distributed Online and Stochastic Queuing on a Multiple Access Channel 131

Changes in the Potential. The following crucial lemma is the heart of our
analysis; it shows that it is possible to control the thresholds (potentials) for
balanced scanning cycles.

Lemma 3. Consider a balanced scanning cycle C in the execution of algorithm
Scat. Let π be the potential at the beginning of C. Then the total potential at
the end of C is at least π + y, where y is the number of void rounds during C.

Proof. Let k′1, . . . , k
′
n be the values of keys at the beginning of the cycle C.

Let k1, . . . , kn be the values of keys at the end of the cycle, before they are
sorted by Scat. Let p1, . . . , pn be the queue non-emptiness indicators at the
end of the cycle. Clearly, ki + pi ≥ k′i for any i. As π is the potential at the
beginning of the cycle, π(i) ≤ k′i and therefore, π is the semi-potential for values
k1+p1, . . . , kn+pn. Thus, π ≤

∑n
i=1(ki+pi). We show that there exists a semi-

potential function ψ with respect to k1, . . . , kn, such that ψ = π + y. This
will immediately conclude the proof as the total potential for the sorted values
k1, . . . , kn is at least ψ by Lemma 2.

Since we consider a balanced scanning cycle and the threshold values are equal
to the values of π, the following two properties hold

(P1)
∑�′

j=1(ki + pi − π(i)) ≤ �′ for each �′ < �, and

(P2)
∑�

j=1(ki + pi − π(i)) > �,
where � is the position (on the list L) of the last node which transmits during
the considered scanning cycle. We define the function:

ψ(i) =

⎧⎪⎨⎪⎩
ki for i < �,∑�

i=1 π(i)−
∑�−1

i=1 ki + y for i = �,

π(i) for i > �.

Observe that the relationship ψ = π+y follows directly from the definition of ψ,
thus it remains to show that ψ is indeed a semi-potential function for k1, . . . , kn.

The first property of the semi-potential function states that 0 ≤ ψ(i) ≤ ki for
all i. This condition holds trivially for i < �. For i ≥ � observe that the value of
key of the i-th element on the list was also ki at the beginning of the cycle, and
thus π(i) ≤ ki. Thus, it remains to verify that 0 ≤ ψ(l) ≤ kl. As

∑�
i=1 pi is the

number of non-void rounds of C,
∑�

i=1 pi + y = �. Applying this relation to the
definition of ψ(�), we obtain that

ψ(�) = �+
∑�

i=1 π(i)−
∑�−1

i=1 ki −
∑�

i=1 pi .

Thus, using Property (P2), we obtain that ψ(�) = ki+�+
∑�

i=1 (π(i)− ki − pi) >
k�. Furthermore, applying Property (P1) with �′ = �− 1,

ψ(l) = �+ π(�)− p� −
∑l−1

j=1 (kj + pj − π(j))

≥ �+ π(�)− p� − (�− 1) ≥ π(�) ≥ 0 .
(1)

The second property of the semi-potential function states that the sum of any m
values among ψ(1), . . . , ψ(n) is at most Sm. To show it, we fix a set

132 M. Bienkowski et al.

I = {i1, . . . , im}, where 1 ≤ i1 < i2 < . . . < im = r ≤ n and show that∑
j∈I ψ(j) ≤ Sm.

Let yr be the number of void rounds up to the position r, i.e., yr = r−
∑r

j=1 pj .
We observe that ∑r

j=1 ψ(j) ≤
∑r

j=1 π(j) + yr . (2)

Indeed, if r ≥ �, yr = y and the inequality follows directly from the definition
of ψ, and for r < �, we use Property (P2) obtaining

∑r
j=1 ψ(j) =

∑r
j=1 kj ≤

r +
∑r

j=1 π(j)−
∑r

j=1 pj =
∑r

j=1 π(j) + yr.
Observe that if a round j is void, then π(j) ≤ kj + pj = 0. Hence, yr ≤ |{j ≤

r |π(j) = 0}|, and thus by Lemma 1,∑
j∈I

π(j) ≤ Sm +m− r − |{j ≤ r |π(j) = 0}| ≤ Sm +m− r − yr . (3)

Let A< = {j ≤ r |ψ(j) < π(j)} and A> = {j ≤ r |ψ(j) > π(j)}. Observe
that ψ(j) ≥ π(j) − 1 for each j ∈ [1, n] which follows from the relationship
kj + pj ≥ π(j), the definition of ψ and (1). Therefore, ψ(j) = π(j) − 1 for any
j ∈ A<. Thus, using (2),

∑
j∈A>

(ψ(j)− π(j)) =

r∑
j=1

(ψ(j)− π(j))
∑
j∈A<

(π(j)− ψ(j)) ≤ yr + |A<| . (4)

Finally, combining (3) with (4), we get:∑
j∈I ψ(j) =

∑
j∈I π(j) +

∑
j∈I(ψ(j) − π(j))

=
∑

j∈I π(j) +
∑

j∈I∩A>
(ψ(j)− π(j))−

∑
j∈I∩A<

(π(j) − ψ(j))

≤ (Sm +m− r − yr) + (yr + |A<|)− |I ∩ A<|
≤ Sm + |I|+ |A<| − |I ∩ A<| − r ≤ Sm . ��

Using the crucial lemma above and applying a few observations, we may compare
the current number of overhead packets to the number of packets in queues of
Opt at any round. Given a particular adversarial pattern of packet injections up
to some fixed time t, we denote the (current) number of packets exceeding the
total value of threshold of the algorithm Scat by ovrt, and the number which
Opt has in queues at t by optt. Note that we compute these values after the
adversary injects packets at time t and after the algorithm computes new values
of thresholds (if it does so). Note that at time 0, all thresholds are equal to zero
and since the queues of Opt and Scat are equal, i.e. ovr0 = opt0.

Lemma 4. Fix any scanning or trimming cycle C starting at time t and ending
at time t+ r. Then ovrt+r − optt+r is at most
1. ovrt − optt + n if C is a non-balanced scanning cycle;
2. ovrt − optt if C is a balanced scanning cycle or a trimming cycle.

Using the lemma above, by a simple induction we obtain the following result,
stating that we may control the number of overhead packets.

Distributed Online and Stochastic Queuing on a Multiple Access Channel 133

Lemma 5. For any cycle C starting at time t, it holds that ovrt ≤ optt + 2n.

Finally, we prove upper bounds on competitiveness of Scat.

Proof (of Theorem 1). Fix any time t+r belonging to a cycle C starting at time t.
By Lemma 5, ovrt ≤ optt + 2n. Assume that at times t+ 1, t+ 2, . . . , t+ r, the
adversary injected in total j (overhead) packets. Hence, optt+r ≥ optt+ j− r. If
C is a trimming cycle, then Scat transmits an overhead packet in each step, i.e.,
ovrt+r = ovrt + j − r ≤ optt+r + 2n. If C is a scanning cycle, then its length is
at most n, and thus even if Scat does not transmit any overhead packets, then
ovrt+r ≤ ovrt + j and optt+r ≥ optt + j − n. In this case, ovrt+r ≤ optt+r + 3n.

In either case, ovrt+r ≤ optt+r + 3n. The number of non-overhead packets is
at most Sn = n(n+1). Therefore, the total number of packets at time t+ r is at
most optt+r + n2 + 4n, which shows the first part of the theorem. Furthermore,
the number of non-overhead packets at any node is at most 2n and hence the
maximum load at any time is at most optt+r + 3n+ 2n = n · (optt+r/n) + 5n.
As the maximum load of Opt at step t+ r is at least optt+r/n, the second part
of the theorem follows. ��

3 Stochastic Model

In this section we assume that packets are injected according to a random distri-
bution, defined by the sequence of numbers p1, . . . , pn ∈ (0, 1). In each step, for
each queue independently, one packet is injected into the queue j with probabil-
ity pj and no packet is injected with probability 1 − pj. Our goal is to analyze
the total load of deterministic distributed algorithms in such scenario.

Centralized Solution. First, we focus on the centralized algorithmOpt which
has the full knowledge on the queue sizes and chooses an arbitrary (and exactly
one) packet to be transmitted in each step, provided at least one queue is not
empty. As Opt is centralized, the actual distribution of packets is unimportant,
and we simply analyze its total load. We want to investigate the conditions suffi-
cient and necessary for reducing the total load to zero, i.e., emptying all queues.

The evolution of theOpt’s total load can be described by a time-homogeneous
Markov chain (also denoted Opt) whose states S0, S1, S2, . . . are non-negative
integers corresponding to the total load at consecutive times. In particular, S0

is the initial number of packets in all buffers. Let Yt be the random variable
denoting the number of packets injected in step t. Recall that by the definition
of our process, all Yt are identically and independently distributed, their support
is the set {0, . . . , n} and their mean is equal to

∑n
j=1 pj . The transitions between

consecutive states is then defined by

St =

{
St−1 + Yt − 1 if St−1 > 0

St−1 +max{Yt − 1, 0} if St−1 = 0

In the following, we restrict our attention to time-homogeneous Markov chains
only. For any such Markov chain C and any two states S and S′ we denote the

134 M. Bienkowski et al.

probability that C ever reaches state S′ when it starts from S by PC(S → S′)
and the expected number of steps to hit S′ for the first time by EC(S → S′). We
are interested in the event ofOpt reaching the empty queues state, and therefore
we concentrate on bounding the terms PC(S0 → 0) and EOpt(S0 → 0). Note
that the finiteness of EOpt(S0 → 0) trivially implies that POpt(S0 → 0) = 1.
The goal of this section is to present tight conditions on

∑n
j=1 pj which assure

that POpt(S0 → 0) = 1 or EOpt(S0 → 0) is finite.
Clearly the Markov chain Opt is irreducible as for any two states S and S′

and large enough τ , there is a positive probability that Opt changes state from
S to S′ within τ . Furthermore, as in each step there is a positive probability
that the number of packets remains the same (i.e., the state does not change),
Opt is aperiodic.

Lemma 6. Fix any starting state S0. If
∑n

j=1 pj < 1, then EOpt(S0 → 0) is
finite.

Lemma 7. Fix any starting state S0. If
∑n

j=1 pj = 1, then POpt(S0 → 0) = 1

By combining Lemmas 6 and 7, we immediately get the following corollary.

Corollary 1. Fix any starting state S0. It holds that POpt(S0 → 0) = 1, pro-
vided

∑n
j=1 pj ≤ 1. Furthermore, if

∑n
j=1 pj < 1, then EOpt(S0 → 0) is finite.

Distributed Solution. Now, we move our attention to on-line deterministic
algorithms. Since an online algorithm is not able to achieve better performance
than Opt, the properties of Opt motivate the following definition.

Definition 1. An algorithm Alg is stochastically optimal when both conditions
hold:
(i) PAlg(S → 0) = 1 for any S ≥ 0 if

∑n
i=1 pi ≤ 1,

(ii) EAlg(S → 0) is finite for any S ≥ 0 if
∑n

i=1 pi < 1.

Lemma 8. Fix any monotonic functions f, g : N → N. Assume that a deter-
ministic distributed on-line algorithm Alg is (1, f(n))-competitive with respect
to total load. Assume that given m packets in its queues, Alg transmits them
all in the next g(m) steps, provided no packet is injected in this period. Then,
Alg is stochastically optimal.

Corollary 2. Scat is stochastically optimal.

Proof. It is sufficient to fix the functions f and g satisfying the conditions of
Lemma 8. By Theorem 1, f(n) = O(n2). Now assume that Scat has m packets
in its queues and no subsequent packet is injected. Note that in a trimming cycle,
a packet is sent in each round. Furthermore, at least one packet is transmitted in
a scanning cycle (which consists of at most n rounds). Therefore, all m packets
are transmitted in at most g(m) = O(n ·m) rounds. ��

Distributed Online and Stochastic Queuing on a Multiple Access Channel 135

4 Conclusions and Open Problems

We studied competitiveness of deterministic distributed algorithms with respect
to two important performance measures: total and maximum load. Our solution
is asymptotically optimal with respect to both measures. All our competitive
results regarding distributed environment can be contrasted with centralized
online queuing, and the obtained picture suggests that there is no simple way
of transforming centralized online algorithms into distributed solutions. We also
show a transformation from the world of competitive analysis of distributed
online queuing into distributed stochastic queuing. An interesting open problem
is to analyze other measures of performance, e.g., related to timing or energy
efficiency, in similar online distributed frameworks.

A Remark on Message Size. In the algorithm Scat, a node holding a token
attaches the current number of packets in its queue to the transmitted packet.
In order to reduce the number of auxiliary bits to O(log n), the minimum of 2n
and the current size of the queue may be sent by the node holding a token.

References

1. Anantharamu, L., Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Deterministic
broadcast on multiple access channels. In: INFOCOM, pp. 146–150. IEEE (2010)

2. Andrews, M., Awerbuch, B., Fernández, A., Leighton, F.T., Liu, Z., Kleinberg,
J.M.: Universal-stability results and performance bounds for greedy contention-
resolution protocols. J. ACM 48(1), 39–69 (2001)

3. Bar-Noy, A., Freund, A., Landa, S., Naor, J.S.: Competitive on-line switching poli-
cies. In: ACM-SIAM SODA, pp. 525–534 (2002)

4. Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination
function. IEEE Journal on Selected Areas in Communications 18, 535–547 (2000)

5. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press (1998)

6. Borodin, A., Kleinberg, J.M., Raghavan, P., Sudan, M., Williamson, D.P.: Adver-
sarial queuing theory. J. ACM 48(1), 13–38 (2001)

7. Chlebus, B.: Randomized communication in radio networks. In: Pardalos, P.M.,
Rajasekaran, S., Reif, J.H., Rolim, J.D.P. (eds.) Handbook on Randomized Com-
puting, vol. I, pp. 401–456. Kluwer Academic (2001)

8. Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Maximum throughput of multiple ac-
cess channels in adversarial environments. Distributed Comp. 22(2), 93–116 (2009)

9. Chung, K.L., Fuchs, W.: On the distribution of values of sums of random variables.
Memoirs of the AMS 6, 1–12 (1951)

10. Fleischer, R., Koga, H.: Balanced scheduling toward loss-free packet queuing and
delay fairness. Algorithmica 38, 363–376 (2004)

11. Foster, F.G.: On the stochastic matrices associated with certain queueing processes.
Ann. Math Statist. 24, 355–360 (1953)

12. Gallager, R.G.: A perspective on multiaccess channels. IEEE Transactions on In-
formation Theory 31(2), 124–142 (1985)

13. H̊astad, J., Leighton, F.T., Rogoff, B.: Analysis of backoff protocols for multiple
access channels. SIAM J. Comput. 25(4), 740–774 (1996)

14. Richa, A.W., Scheideler, C., Schmid, S., Zhang, J.: Competitive and fair medium
access despite reactive jamming. In: ICDCS, pp. 507–516 (2011)

Fast Distributed Computation

in Dynamic Networks via Random Walks�

Atish Das Sarma1, Anisur Rahaman Molla2, and Gopal Pandurangan3

1 eBay Research Labs, eBay Inc., CA, USA
atish.dassarma@gmail.com

2 Division of Mathematical Sciences,
Nanyang Technological University, Singapore 637371

anisurpm@gmail.com
3 Division of Mathematical Sciences, Nanyang Technological University,

Singapore 637371 and Department of Computer Science, Brown University,
Providence, RI 02912, USA

gopalpandurangan@gmail.com

Abstract. The paper investigates efficient distributed computation in
dynamic networks in which the network topology changes (arbitrarily)
from round to round. Random walks are a fundamental primitive in a
wide variety of network applications; the local and lightweight nature
of random walks is especially useful for providing uniform and efficient
solutions to distributed control of dynamic networks. Given their appli-
cability in dynamic networks, we focus on developing fast distributed
algorithms for performing random walks in such networks.

Our first contribution is a rigorous framework for design and analysis
of distributed random walk algorithms in dynamic networks. We then
develop a fast distributed random walk based algorithm that runs in
Õ(

√
τΦ) rounds1 (with high probability), where τ is the dynamic mixing

time and Φ is the dynamic diameter of the network respectively, and
returns a sample close to a suitably defined stationary distribution of
the dynamic network.

Our next contribution is a fast distributed algorithm for the funda-
mental problem of information dissemination (also called as gossip) in
a dynamic network. In gossip, or more generally, k-gossip, there are k
pieces of information (or tokens) that are initially present in some nodes
and the problem is to disseminate the k tokens to all nodes. We present a
random-walk based algorithm that runs in Õ(min{n1/3k2/3(τΦ)1/3, nk})
rounds (with high probability). To the best of our knowledge, this is the
first o(nk)-time fully-distributed token forwarding algorithm that im-
proves over the previous-best O(nk) round distributed algorithm [Kuhn
et al., STOC 2010], although in an oblivious adversary model.

Keywords: Dynamic Network, Distributed Algorithm, Random walks,
Random sampling, Information Dissemination, Gossip.

� Supported in part by the following research grants: Nanyang Technological Univer-
sity grant M58110000, Singapore Ministry of Education Academic Research Fund
Tier 2 grant MOE2010-T2-2-082, and a grant from the US-Israel Binational Science
Foundation.

1 Õ hides polylog n factors where n is the number of nodes in the network.

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 136–150, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Fast Distributed Computation in Dynamic Networks via Random Walks 137

1 Introduction

Random walks play a central role in computer science spanning a wide range of
areas in both theory and practice. Random walks are used as an integral subrou-
tine in a wide variety of network applications ranging from token management
and load balancing to search, routing, information propagation and gathering,
network topology construction and building random spanning trees (e.g., see [11]
and the references therein). They are particularly useful in providing uniform
and efficient solutions to distributed control of dynamic networks [6,23]. Ran-
dom walks are local and lightweight and require little index or state maintenance
which make them especially attractive to self-organizing dynamic networks such
as peer-to-peer, overlay, and ad hoc wireless networks. In fact, in highly dynamic
networks, where the topology can change arbitrarily from round to round (as
assumed in this paper), extensive distributed algorithmic techniques that have
been developed for the last few decades for static networks (see e.g., [21,16,22])
are not readily applicable. On the other hand, we would like distributed al-
gorithms to work correctly and terminate even in networks that keep changing
continuously over time (not assuming any eventual stabilization). Random walks
being so simple and very local (each subsequent step in the walk depends only
on the neighbors of the current node and does not depend on the topological
changes taking place elsewhere in the network) can serve as a powerful tool
to design distributed algorithms for such highly dynamic networks. However,
it remains a challenge to show that one can indeed use random walks to solve
non-trivial distributed computation problems efficiently in such networks, with
provable guarantees. Our paper is a step in this direction.

A key purpose of random walks in many of the network applications is to per-
form node sampling. While the sampling requirements in different applications
vary, whenever a true sample is required from a random walk of certain steps,
typically all applications perform the walk naively — by simply passing a token
from one node to its neighbor: thus to perform a random walk of length � takes
time linear in �. In prior work [11,12], the problem of performing random walks
in time that is significantly faster, i.e., sublinear in �, was studied. In [12], a fast
distributed random walk algorithm was presented that ran in time sublinear in
�, i.e., in Õ(

√
�D) rounds (where D is the network diameter). This algorithm

used only small sized messages (i.e., it assumed the standard CONGEST model
of distributed computing [21]). However, a main drawback of this result is that
it applied only to static networks. A major problem left open in [12] is whether
a similar approach can be used to speed up random walks in dynamic networks.

The goals of this paper are two fold: (1) giving fast distributed algorithms for
performing random walk sampling efficiently in dynamic networks, and (2) ap-
plying random walks as a key subroutine to solve non-trivial distributed compu-
tation problems in dynamic networks. Towards the first goal, we first present a
rigorous framework for studying random walks in a dynamic network (cf. Sec-
tion 2). (This is necessary, since it is not immediately obvious what the output
of random walk sampling in a changing network means.) The main purpose of
our random walk algorithm is to output a random sample close to the “stationary

138 A. Das Sarma, A.R. Molla, and G. Pandurangan

distribution” (defined precisely in Section 2) of the underlying dynamic network.
Our randomwalk algorithmswork under an oblivious adversary that fully controls
the dynamic network topology, but does not know the random choicesmade by the
algorithms (cf. Section 3 for a precise problem statements and results).We present
a fast distributed random walk algorithm that runs in Õ(

√
τΦ) with high proba-

bility (w.h.p.) 2, where τ is (an upper bound on) the dynamic mixing time and Φ
is the dynamic diameter of the network respectively (cf. Section 5). Our algorithm
uses small-sized messages only and returns a node sample that is “close” to the
stationary distribution of the dynamic network (assuming the stationary distribu-
tion remains fixed even as the network changes). (The precise definitions of these
terms are deferred to Section 2). We further extend our algorithm to efficiently
perform and return k independent random walk samples in Õ(min{

√
kτΦ, k+τ})

rounds (cf. Section 6). This is directly useful in the applications considered in this
paper.

Towards the second goal, we present a key application of our fast random walk
sampling algorithm (cf. Section 7). We present a fast distributed algorithm for
the fundamental problem of information dissemination (also called as gossip) in
a dynamic network. In gossip, or more generally, k-gossip, there are k pieces of
information (or tokens) that are initially present in some nodes and the problem
is to disseminate the k tokens to all nodes. In an n-node network, solving n-
gossip allows nodes to distributively compute any computable function of their
initial inputs using messages of size O(log n + d), where d is the size of the
input to the single node [14]. We present a random-walk based algorithm that
runs in Õ(min{n1/3k2/3(τΦ)1/3, nk}) rounds with high probability (cf. Section
7). To the best of our knowledge, this is the first o(nk)-time fully-distributed
token forwarding algorithm that improves over the previous-best O(nk) round
distributed algorithm [14], albeit under an oblivious adversarial model. A lower
bound of Ω(nk/ logn) under the adaptive adversarial model of [14], was recently
shown in [13]; hence one cannot do substantially better than the O(nk) algorithm
in general under an adaptive adversary.

2 Network Model and Definitions

2.1 Dynamic Networks

We study a general model to describe a dynamic network with a fixed set of
nodes. We consider an oblivious adversary which can make arbitrary changes
to the graph topology in every round as long as the graph is connected. Such a
dynamic graph process (or dynamic graph, for short) is also known as an Evolving
Graph [3]. Suppose V = {v1, v2, . . . , vn} be the set of nodes (vertices) and G =
G1, G2, . . . be an infinite sequence of undirected (connected) graphs on V . We
write Gt = (V,Et) where Et ∈ 2V×V is the dynamic edge set corresponding
to round t ∈ N. The adversary has complete control on the topology of the

2 With high probability means with probability at least 1 − 1/nΩ(1), where n is the
number of nodes in the network.

Fast Distributed Computation in Dynamic Networks via Random Walks 139

graph at each round, however it does not know the random choices made by
the algorithm. In particular, in the context of random walks, we assume that
it does not know the position of the random walk in any round (however, the
adversary may know the starting position).3 Equivalently, we can assume that
the adversary chooses the entire sequence 〈Gt〉 of the graph process G in advance
before execution of the algorithm. This adversarial model has also been used in
[3] in their study of random walks in dynamic networks.

We say that the dynamic graph process G has some property when each Gt

has that property. For technical reasons, we will assume that each graph Gt is d-
regular and non-bipartite. Later we will show that our results can be generalized
to apply to non-regular graphs as well (albeit at the cost of a slower running
time). The assumption on non-bipartiteness ensures that the mixing time is well
defined, however this restriction can be removed using a standard technique:
adding self-loops on each vertices (e.g., see [3]). Henceforth, we assume that
the dynamic graph is a d-regular evolving graph unless otherwise stated (these
two terms will be used interchangeably). Also we will assume that each Gt is
non-bipartite (and connected).

2.2 Distributed Computing Model

We model the communication network as an n-node dynamic graph process
G = G1, G2, Every node has limited initial knowledge. Specifically, assume
that each node is associated with a distinct identity number (ID). (The node ids
are of size O(log n).) At the beginning of the computation, each node v accepts
as input its own identity number and the identity numbers of its neighbors
in G1. The node may also accept some additional inputs as specified by the
problem at hand (in particular, we assume that all nodes know n). The nodes
are allowed to communicate through the edges of the graph Gt in each round t.
We assume that the communication occurs in synchronous rounds. In particular,
all the nodes wake up simultaneously at the beginning of round 1, and from this
point on the nodes always know the number of the current round. We will use
only small-sized messages. In particular, at the beginning of each round t, each
node v is allowed to send a message of size B bits (typically B is assumed to
be O(polylogn)) through each edge e = (v, u) ∈ Et that is adjacent to v. The
message will arrive to u at the end of the current round. This is a standard model
of distributed computation known as the CONGEST(B) model [21,19] and has
been attracting a lot of research attention during last two decades (e.g., see [21]
and the references therein). For the sake of simplifying our analysis, we assume
that B = O(log2 n), although this is generalizable.4

3 Indeed, an adaptive adversary that always knows the current position of the random
walk can easily choose graphs in each step, so that the walk never really progresses
to all nodes in the network.

4 It turns out that the per-round congestion in any edge in our random walk algorithm
is O(log2 n) bits w.h.p. Hence assuming this bound for B ensures that the random
walks can never be delayed due to congestion. This simplifies the correctness proof
of our random walk algorithm (cf. Lemma 1).

140 A. Das Sarma, A.R. Molla, and G. Pandurangan

There are several measures of efficiency of distributed algorithms, but we will
focus on one of them, specifically, the running time, i.e. the number of rounds
of distributed communication. (Note that the computation that is performed by
the nodes locally is “free”, i.e., it does not affect the number of rounds.)

2.3 Random Walks in a Dynamic Graph

Throughout, we assume the simple random walk in an undirected graph: In each
step, the walk goes from the current node to a random neighbor, i.e., from the
current node v, the probability to move in the next step to a neighbor u is
Pr(v, u) = 1/d(v) for (v, u) ∈ E and 0 otherwise (d(v) is the degree of v).

A simple random walk on dynamic graph G is defined as follows: assume that
at time t the walker is at node v ∈ V , and let N(v) be the set of neighbors of v in
Gt, then the walker goes to one of its neighbors from N(v) uniformly at random.

Let πx(t) define the probability distribution vector reached after t steps when
the initial distribution starts with probability 1 at node x. We say that the
distribution πx(r) is stationary (or steady-state) for the graph process G if
πx(t + 1) = πx(t) for all t ≥ r. Let π denote the stationary distribution vec-
tor. It is known that for every (undirected) static graph G, the distribution
π(v) = d(v)/2m is stationary. In particular, for a regular graph the stationary
distribution is the uniform distribution. The mixing time of a random walk on a
static graph G is the time t taken to reach “close” to the stationary distribution
of the graph. Similar to the static case, for a d-regular evolving graph, it is easy
to verify that the stationary distribution is the uniform distribution. Also, for a
d-regular evolving graph, the notion of dynamic mixing time (formally defined
below) is similar to the static case and is well defined due to the monotonicity
property of distributions (||πx(t+ 1)− π|| ≤ ||πx(t)− π||, see full paper [10]).

Definition 1. [Dynamic mixing time] Define τx(ε) (ε-near mixing time for
source x) is τx(ε) = min t : ||πx(t) − π|| < ε. Note that πx(t) is the probabil-
ity distribution on the graph Gt in the dynamic graph process {Gt : t ≥ 1} when
the initial distribution (πx(1)) starts with probability 1 at node x on G1. Define
τxmix (mixing time for source x) = τx(1/2e) and τmix = maxx τ

x
mix. The dynamic

mixing time is upper bounded by τ = max{mixing time of all the static graph
Gt : t ≥ 1}. Notice that τ ≥ τmix in general.

We show the following theorem (proof is in the full version of the paper [10]) of
dynamic mixing time.

Theorem 1. For any d-regular connected non-bipartite evolving graph G, the
dynamic mixing time of a simple random walk on G is bounded by O(1

1−λ logn),
where λ is an upper bound of the second largest eigenvalue in absolute value of
any graph in G. Further, it is bounded by O(n2 logn).

Note that the dynamic mixing time is upper bounded by the worst-case mixing
time of any graph in G, which will be (henceforth) denoted by τ . Since the second
eigenvalue of the transition matrix of any regular graph is bounded by 1− 1/n2,
this implies that τ of a d-regular evolving graph is bounded by Õ(n2). In general,

Fast Distributed Computation in Dynamic Networks via Random Walks 141

the dynamic mixing time can be significantly smaller than this bound, e.g., when
all graphs in G have λ bounded from above by a constant (i.e., they are expanders
— such dynamic graphs occur in applications e.g., [2,14]), the dynamic mixing
time is O(log n).

Another parameter affecting the efficiency of distributed computation in a
dynamic graph is its dynamic diameter (also called flooding time, e.g., see [4,8]).
The dynamic diameter (denoted by Φ) of an n-node dynamic graph G is the
worst-case time (number of rounds) required to broadcast a piece of information
from any given node to all n-nodes. The dynamic diameter can be much larger
than the diameter (D) of any (individual) graph Gt.

3 Problem Statements and Our Results

The Single Random Walk Problem. Given a d-regular evolving graph G =
(V,Et) and a starting node s ∈ V , our goal is to devise a fast distributed random
walk algorithm such that, at the end, a destination node, sampled from a τ -length
walk, outputs the source node’s ID (equivalenty, one can require s to output the
destination node’s ID), where τ is (an upper bound on) the dynamicmixing time of
G, under the assumption that G is modified by an oblivious adversary (cf. Section
2). Note that this distribution will be “close” to the stationary distribution of G
(stationary distribution and τ are both well-defined— cf. Section 2). Since we are
assuming a d-regular evolving graph, our goal is to sample from (or close to) the
uniform distribution (which is the stationary distribution) using as few rounds as
possible. Note that we would like to sample fast via random walk — this is also
very important for the applications considered in this paper. On the other hand, if
one had to simply get a uniform random sample, it can be accomplished by other
means, e.g., it is easy to obtain it in O(Φ) rounds (by using flooding).

For clarity, observe that the following naive algorithm solves the above prob-
lem in O(τ) rounds: The walk of length τ is performed by sending a token for
τ steps, picking a random neighbor in each step. Then, the destination node v
of this walk outputs the ID of s. Our goal is to perform such sampling with
significantly less number of rounds, i.e., in time that is sublinear in τ , in the
CONGEST model, and using random walks rather than naive flooding tech-
niques. As mentioned earlier this is needed for the applications discussed in this
paper. Our result is as follows.

Theorem 2. The algorithm Single-Random-Walk (cf. Section 5) solves the
Single Random Walk problem in a dynamic graph and with high probability fin-
ishes in Õ(

√
τΦ) rounds.

The above algorithm assumes that nodes have knowledge of τ (or at least some
good estimate of it). (In many applications, it is easy to have a good estimate of τ
when there is knowledge of the structure of the individual graphs — e.g., each Gt

is an expanders as in [2,20].) Notice that in the worst case the value of τ is Θ̃(n2),
and hence this bound can be used even if nodes have no knowledge. Therefore
putting τ = Θ̃(n2) in the above Theorem 2, we see that our algorithm samples a

142 A. Das Sarma, A.R. Molla, and G. Pandurangan

node from the uniform distribution through a random walk in Õ(n
√
Φ) rounds

w.h.p. Our algorithm can also be generalized to work for non-regular evolving
graphs also (cf. Section 5.3).

We also consider the following extension of the Single Random Walk problem,
called the k Random Walks problem: We have k sources s1, s2, ..., sk (not
necessarily distinct) and we want each of the k destinations to output an ID
of its corresponding source, assuming that each source initiates an independent
random walk of length τ . (Equivalently, one can ask each source to output the
ID of its corresponding destination.) The goal is to output all the ID’s in as few
rounds as possible. We show that:

Theorem 3. The algorithm Many-Random-Walks (cf. Section 6) solves the
k Random Walks problem in a dynamic graph and with high probability finishes

in Õ
(
min(

√
kτΦ, k + τ)

)
rounds.

Information Dissemination (or k-Gossip) Problem. In k-gossip, initially
k different tokens are assigned to a set V of n(≥ k) nodes. A node may have more
than one token. The goal is to disseminate all the k tokens to all the n nodes.
We present a fast distributed randomized algorithm for k-gossip in a dynamic
network. Our algorithm uses Many-Random-Walks as a key subroutine; to
the best of our knowledge, this is the first sub-quadratic time fully-distributed
token forwarding algorithm.

Theorem 4. The algorithm K-Information-Dissemination (cf. Algorithm 1
in Section 7) solves k-gossip problem in a dynamic graph with high probability

in Õ(min{n 1
3 k

2
3 (τΦ)

1
3 , nk}) rounds.

4 Related Work and Technical Overview

Dynamic networks. As a step towards understanding the fundamental compu-
tational power in dynamic networks, recent studies (see e.g., [7,14,15,13] and the
references therein) have investigateddynamic networks inwhich the network topol-
ogy changes arbitrarily from round to round. In the worst-case model that was
studied byKuhn, Lynch, andOshman [14], the communication links for each round
are chosen by an online adversary, and nodes do not know who their neighbors for
the current round are before they broadcast their messages. Unlike priormodels on
dynamic networks, the model of [14] (like ours) does not assume that the network
eventually stops changing; therefore it requires that the algorithms work correctly
and terminate even in networks that change continually over time.

The work of [3] studied the cover time of random walks in an evolving graph
(cf. Section 2) in an oblivious adversarial model. Recently, the work of [9], stud-
ies the flooding time of Markovian evolving dynamic graphs, a special class of
evolving graphs.

Distributed Random Walks. Our fast distributed random walk algorithms are
based on previous such algorithms designed for static networks [11,12]. These
were the first sublinear (in the length of the walk) time algorithms for performing

Fast Distributed Computation in Dynamic Networks via Random Walks 143

random walks in graphs. The algorithm of [12] performed a random walk of
length � in Õ(

√
�D) rounds (with high probability) on an undirected network,

where D is the diameter of the network. (Subsequently, the algorithm of [12]
was shown to be almost time-optimal (up to polylogarithmic factors) in [18].)
The general high-level idea of the above algorithm is using a few short walks
in the beginning (executed in parallel) and then carefully concatenating these
walks together later as necessary. A main contribution of the present work is
showing that building on the approach of [12] yields speed up in random walk
computations even in dynamic networks. However, there are some challenging
technical issues to overcome in this extension given the continuous dynamic
nature (cf. Section 5). One key technical lemma (called the Random walk visits
Lemma) that was used to show the almost-optimal run time of Õ(

√
�D) does

not directly apply to dynamic networks. In the static setting, this lemma gives
a bound on the number of times any node is visited in an �-length walk, for any
length that is not much larger than the cover time. More precisely, the lemma
states that w.h.p. any node x is visited at most Õ(d(x)

√
�) times, in an �-length

walk from any starting node (d(x) is the degree of x). In this paper, we show that
a similar bound applies to an �-length random walk on any d-regular evolving
graph (cf. Lemma 4). A key ingredient in the above proof is showing that a
technical result due to Lyons [17] can be made to work on an evolving graph.
Other recent work involving multiple random walks in static networks, but in
different settings include Alon et. al. [1], Elsässer et. al. [5].

Information Spreading. The main application of our random walks algorithm
is an improved algorithm for information spreading or gossip in dynamic net-
works. To the best of our knowledge, it gives the first subquadratic, fully dis-
tributed, token forwarding algorithm in dynamic networks, partially answering
an open question raised in [13]. Information spreading is a fundamental primitive
in networks which has been extensively studied (see e.g., [13] and the references
therein). Information spreading can be used to solve other problems such as
broadcasting and leader election.

This paper’s focus is on token-forwarding algorithms, which do not manipulate
tokens in any way other than storing and forwarding them. Token-forwarding
algorithms are simple, often easy to implement, and typically incur low overhead.
[14] showed that under their adversarial model, k-gossip can be solved by token-
forwarding in O(nk) rounds, but that any deterministic online token-forwarding
algorithm needs Ω(n log k) rounds. In [13], an almost matching lower bound
of Ω(nk/ logn) is shown. The above lower bound indicates that one cannot
obtain efficient (i.e., subquadratic) token-forwarding algorithms for gossip in the
adversarial model of [14]. This motivates considering other weaker (and perhaps
more realistic) models of dynamic networks.

[13] presented a polynomial-time offline centralized token-forwarding algo-
rithm that solves the k-gossip problem on an n-node dynamic network in
O(min{nk, n

√
k logn}) rounds with high probability. This is the first known

subquadratic time token-forwarding algorithm but it is not distributed, and fur-
thermore, the centralized algorithm needs to know the complete evolution of

144 A. Das Sarma, A.R. Molla, and G. Pandurangan

the dynamic graph in advance. It was left open in [13] whether one can obtain
a fully-distributed and localized algorithm that also does not know anything
about how the network evolves. In this paper, we resolve this open question in
the affirmative. Our algorithm runs in Õ(min{n1/3k2/3(τΦ)1/3, nk}) rounds with
high probability. This is significantly faster than the O(nk)-round algorithm of
[14] as well as the above centralized algorithm of [13] when τ and Φ are not too
large. Note that Φ is bounded by O(n) and in regular graphs τ is O(n2) (O(n3)
in general graphs) and so in general, our bounds cannot be better than O(nk).

5 Algorithm for Single Random Walk

5.1 Description of the Algorithm

We develop an algorithm called Single-Random-Walk (for full pseudocode cf.
Algorithm 1 in the full version of the paper [10]) for d-regular evolving graph
(G = (V,Et)). The algorithm performs a random walk of length τ (the dynamic
mixing time of G — cf. Section 2.3) in order to sample a destination from (close
to) the uniform distribution on the vertex set V .

The high-level idea of the algorithm is to perform “many” short random walks
in parallel and later “stitch” the short walks to get the desired walk of length τ .
In particular, we perform the algorithm in two phases, as follows. For simplicity
we call the messages used in Phase 1 as “coupons” and in Phase 2 as “tokens”.
In Phase 1, we perform d (degree of the graph) “short” (independent) random
walks of length λ (to bound the running time correctly, we show later that we
do short walks of length approximately λ, instead of λ) from each node v, where
λ is a parameter whose value will be fixed in the analysis. This is done simply
by forwarding d “coupons” having the ID of v from v (for each node v) for λ
steps via random walks. In Phase 2, starting at source s, we “stitch” some of
short walks prepared in Phase 1 together to form a longer walk. The algorithm
starts from s and randomly picks one coupon distributed from s in Phase 1. We
now discuss how to sample one such coupon randomly and go to the destination
vertex of that coupon. This can be done easily as follows: In the beginning of
Phase 1, each node v assigns a coupon number for each of its d coupons. At
the end of Phase 1, the coupons originating at s (containing ID of s plus a
coupon number) are distributed throughout the network (after Phase 1). When
a coupon needs to be sampled, node s chooses a random coupon number (from
the unused set of coupons) and informs the destination node (which will be
the next stitching point) holding the coupon C through flooding. Let C be the
sampled coupon and v be the destination node of C. s then sends a “token”
to v (through flooding) and s deletes coupon C (so that C will not be sampled
again next time at s, otherwise, randomness will be destroyed). The process
then repeats. That is, the node v currently holding the token samples one of the
coupons it distributed in Phase 1 and forwards the token to the destination of
the sampled coupon, say v′. Nodes v, v′ are called “connectors” - they are the
endpoints of the short walks that are stitched. A crucial observation is that the
walk of length λ used to distribute the corresponding coupons from s to v and

Fast Distributed Computation in Dynamic Networks via Random Walks 145

from v to v′ are independent random walks. Therefore, we can stitch them to
get a random walk of length 2λ. We therefore can generate a random walk of
length 3λ, 4λ, . . . by repeating this process. We do this until we have completed
more than τ−λ steps. Then, we complete the rest of the walk by doing the naive
random walk algorithm.

To understand the intuition behind this algorithm, let us analyze its running
time. First, we claim that Phase 1 needs O(λ)(see Lemma 2) rounds with high
probability. Recall that, in Phase 1, each node prepares d independent random
walks of length λ (approximately). We start with d = deg(v) coupons from each
node v at the same time, each edge in the current graph should receive two
coupons in the average case. In other words, there is essentially no congestion
(i.e., not too many coupons are sent through the same edge). Therefore sending
out (just) d coupons from each node for λ steps will take O(λ) rounds in expec-
tation. This argument can be modified to show that we need O(λ) rounds with
high probability in our model. Now by the definition of dynamic diameter, flood-
ing takes Φ rounds. We show that sample a coupon can be done in O(Φ) rounds
(cf. Lemma 3) and it follows that Phase 2 needs Õ(Φ · τ/λ) rounds. Therefore,
the algorithm needs Õ(λ + Φ · τ/λ) which is Õ(

√
τΦ) when we set λ =

√
τΦ.

The reason the above algorithm for Phase 2 is incomplete is that it is possible
that d coupons are not enough: We might forward the token to some node v many
times in Phase 2 and all coupons distributed by v in the first phase are deleted.
(In other words, v is chosen as a connector node many times, and all its coupons
have been exhausted.) If this happens then the stitching process cannot progress.
To fix this problem, we will show (in the next section) an important property of
the random walk which says that a random walk of length O(τ) will visit each
node v at most Õ(

√
τd) times (cf. Lemma 4). But this bound is not enough to

get the desired running time, as it does not say anything about the distribution
of the connector nodes. We use the following idea to overcome it: Instead of nodes
performing walks of length λ, each such walk i do a walk of length λ+ ri where ri
is a random number in the range [0, λ − 1]. Since the random numbers are inde-
pendent for each walk, each short walks are now of a random length in the range
[λ, 2λ−1]. This modification is needed to claim that each node will be visited as a
connector only Õ(

√
τd/λ) times (cf. Lemma 5). This implies that each node does

not have to prepare too many short walks. It turns out that this aspect requires
quite a bit more work in the dynamic setting and therefore needs new ideas and
techniques. The compact pseudo code of the above algorithm including full proofs
can be found in the full version of the paper [10].

5.2 Analysis

We first show the correctness of the algorithm in the following lemma and then
analyze the time complexity.

Lemma 1. The algorithm Single-Random-Walk, with high probability, out-
puts a node sample that is close to the uniform probability distribution on the
vertex set V .

146 A. Das Sarma, A.R. Molla, and G. Pandurangan

Proof. (sketch) We know (from Theorem 1) that any random walk on a regular
evolving graph reaches “close” to the uniform distribution at step τ regardless of
any changes of the graph in each round as long as it is d-regular, non-bipartite
and connected. Therefore it is sufficient to show that Single-Random-Walk

finishes with a node v which is the destination of a true random walk of length
τ on some appropriate dynamic graph from the source node s. We show this
below in two steps.

First we show that each short walk (of length approximately λ) created in
phase 1 is a true random walk on a dynamic graph sequence G1, G2, . . . , Gλ̃ (λ̃
is some approximate value of λ). This means that in every step t, each walk
moves to some random neighbor from the current node on the graph Gt and
each walk is independent of others. The proof of the Lemma 2 shows that w.h.p
there is at most O(log2 n) bits congestion in any edge in any round in Phase 1.
Since we consider CONGEST(log2 n) model, at each round O(log2 n) bits can
be sent through each edge from each direction. Hence effectively there will be
no delay in Phase 1 and all walks can extend their length from i to i+ 1 in one
round. Clearly each walk is independent of others as every node sends messages
independently in parallel. This proves that each short walk (of a random length
in the range [λ, 2λ− 1]) is a true random walk on the graph G1, G2, . . . , Gλ̃.

In Phase 2, we stitch short walks to get a long walk of length τ . Therefore, the
τ -length random walk is not from the dynamic graph sequence G1, G2, . . . , Gτ ;
rather it is from the sequence:G1, G2, . . . , Gλ̃, G1, G2, . . . , Gλ̃, . . . , (τ/λ times ap-
proximately). The stitching part is done on the graph sequence from Gλ̃+1, Gλ̃+2,
. . . onwards. This does not affect the distribution of probability on the vertex set
in each step, since the graph sequence from Gλ̃+1, Gλ̃+2, . . . is used only for com-
munication. Also note that since we define τ to be the maximum of any static
graph Gt’s mixing time, it clearly reaches close to the uniform distribution after
τ steps of walk. in the graph sequence G1, G2, . . . , Gλ̃, G1, G2, . . . , Gλ̃, . . . , (τ/λ
times approximately).

Finally, when we stitch at a node v, we are sampling a coupon (short walk)
uniformly at random among many coupons (and therefore, short walks starting
at v) distributed by v. It is easy to see that this stitches short random walks
independently and hence gives a true random walk of longer length. Thus it
follows that the algorithm Single-Random-Walk returns a destination node
of a τ -length random walk (starting from s) on some evolving graph. ��
Time Analysis. We show the running time of algorithm Single-Random-

Walk (cf. Theorem 2) using the following lemmas. The full proofs can be found
in the full version of the paper [10].

Lemma 2. Phase 1 finishes in O(λ) rounds with high probability.

Lemma 3. Sample-Coupon always finishes within O(Φ) rounds.

We note that the adversary can force the random walk to visit any particular
vertex several times. Then we need many short walks from each vertex which
increases the round complexity. We show the following key technical lemma
(Lemma 4) that bounds the number of visits to each node in a random walk of

Fast Distributed Computation in Dynamic Networks via Random Walks 147

length �. In a d-regular dynamic graph, we show that no node is visited more
than Õ(

√
τd/λ) times as a connector node of a τ -length random walk. For this

we need a technical result on random walks that bounds the number of times
a node will be visited in a �-length (where � = O(τ)) random walk. Consider a
simple random walk on a connected d-regular evolving graphs on n vertices. Let
N t

x(y) denote the number of visits to vertex y by time t, given the walk started
at vertex x. Now, consider k walks, each of length �, starting from (not necessary
distinct) nodes x1, x2, . . . , xk.

Lemma 4. (Random Walk Visits Lemma). For any nodes x1, x2, . . . , xk,

Pr
(
∃y s.t.

∑k
i=1 N

xi

� (y) ≥ 32 d
√
k�+ 1 logn+ k

)
≤ 1/n .

This lemma says that the number of visits to each node can be bounded. How-
ever, for each node, we are only interested in the case where it is used as a
connector (the stitching points). The lemma below shows that the number of
visits as a connector can be bounded as well; i.e., if any node appears t times in
the walk, then it is likely to appear roughly t/λ times as connectors.

Lemma 5. For any vertex v, if v appears in the walk at most t times then it
appears as a connector node at most t(log n)2/λ times with probability at least
1− 1/n2.

Now we are ready to proof the main result (Theorem 2) of this section.

Proof (Proof of the Theorem 2). First, we claim, using Lemma 4 and 5, that each

node is used as a connector node at most 32 d
√
τ(logn)3

λ times with probability at
least 1− 2/n. To see this, observe that the claim holds if each node x is visited
at most t(x) = 32 d

√
τ + 1 logn times and consequently appears as a connector

node at most t(x)(log n)2/λ times. By Lemma 4, the first condition holds with
probability at least 1 − 1/n. By Lemma 5 and the union bound over all nodes,
the second condition holds with probability at least 1− 1/n, provided that the
first condition holds. Therefore, both conditions hold together with probability
at least 1− 2/n as claimed.

Now, we choose λ = 32
√
τΦ(log n)3. By Lemma 2, Phase 1 finishes in O(λ) =

Õ(
√
τΦ) rounds with high probability. For Phase 2, Sample-Coupon is invoked

O(τλ) times (only when we stitch the walks) and therefore, by Lemma 3, con-

tributes O(τΦλ) = Õ(
√
τΦ) rounds.

Therefore, with probability at least 1−2/n, the rounds are Õ(
√
τΦ) as claimed.

��
5.3 Generalization to Non-regular Evolving Graphs

By using a lazy random walk strategy, we can generalize our results to work for
a non-regular dynamic graph also. The detailed strategy and analysis can be
found in Section 6.3 in the full paper [10].

6 Algorithm for k Random Walks

The previous section was devoted to performing a single random walk of length
τ (mixing time) efficiently to sample from the stationary distribution. In many

148 A. Das Sarma, A.R. Molla, and G. Pandurangan

applications, one typically requires a large number of random walk samples. A
larger amount of samples allows for a better estimation of the problem at hand.
In this section we focus on obtaining several random walk samples. Specifically,
we consider the scenario when we want to compute k independent walks each of
length τ from different (not necessarily distinct) sources s1, s2, . . . , sk. We show
that Single-Random-Walk can be extended to solve this problem. In particu-
lar, the algorithm Many-Random-Walks (for full pseudocode cf. Algorithm 2
in the full version of the paper [10]) to compute k walks is essentially repeating
the Single-Random-Walk algorithm on each source with one common/shared
phase, and yet through overlapping computation, completes faster than k times
the previous bound. The crucial observation is that we have to do Phase 1 only
once and still ensure all walks are independent. The pseudo code of the algo-
rithm, analysis and proof of the main result is included in the full version of the
paper [10] due to space limitation.

7 Application: Information Dissemination (or k-Gossip)

We present a fully distributed algorithm for the k-gossip problem in d-regular
evolving graphs (for full pseudocode cf. Algorithm 1). Our distributed algorithm
is based on the centralized algorithm of [13] which consists of two phases. The
first phase consists of sending some f copies (the value of the parameter f will
be fixed in the analysis) of each of the k tokens to a set of random nodes. We use
algorithm Many-Random-Walks to efficiently do this. In the second phase we
simply broadcast each token t from the random places to reach all the nodes. We
show that if every node having a token t broadcasts it for O(n logn/f) rounds,
then with high probability all the nodes will receive the token t.

We show that our proposed k-gossip algorithm finishes in Õ(n1/3k2/3(τΦ)1/3)
rounds w.h.p. To make sure that the algorithm terminates in O(nk) rounds,
we run the above algorithm in parallel with the trivial algorithm (which is just
broadcast each of the k tokens sequentially; clearly this will take O(nk) rounds
in total) and stops when one of the two algorithm stop. Thus the claimed bound
in Theorem 4 holds. The formal proof is below.

Algorithm 1. K-Information-Dissemination

Input: An evolving graphs G : G1, G2, . . . and k token in some nodes.
Output: To disseminate k tokens to all the nodes.

Phase 1: (Send n
2
3 (k/τΦ)

1
3 copies of each token to random

places)

1: Every node holding token t, send f = n
2
3 (k/τΦ)

1
3 copies of each token to random

nodes using algorithm Many-Random-Walks.

Phase 2: (Broadcast each token for O(n log n
f

) rounds)

1: for each token t do
2: For the next 2n log n/f rounds, let all the nodes has token t broadcast the token.
3: end for

Fast Distributed Computation in Dynamic Networks via Random Walks 149

Proof (Proof of the Theorem 4). We are running both the trivial and our proposed
algorithm in parallel. Since the trivial algorithmfinishes inO(nk) rounds, therefore
we concentrate here only on the round complexity of our proposed algorithm.

We are sending f copies of each k token to random nodes which means we
are sampling kf random nodes from uniform distribution. So using the Many-

Random-Walks algorithm, phase 1 takes Õ(
√
kfτΦ) rounds.

Now fix a node v and a token t. Let S be the set of nodes which has the to-
ken t after phase 1. Since the token t is broadcast for 2n logn/f rounds, there is
a set St

v of at least 2n logn/f nodes from which v is reachable within 2n logn/f
rounds. This is follows from the fact that at any round at least one uninformed
node will be informed as the graph being always connected. It is now clear that
if S intersects St

v, v will receive token t. The elements of the set S were sampled
from the vertex set through the algorithm Many-Random-Walks which sam-
ple nodes from close to uniform distribution, not from actual uniform distribu-
tion. We can make it though very close to uniform by extending the walk length
multiplied by some constant. Suppose Many-Random-Walks algorithm sam-
ples nodes with probability 1/n ± 1/n2 which means each node in S is sampled
with probability 1/n± 1/n2. So the probability of a single node w ∈ S does not
intersect St

v is at most (1 − |St
v|(1

n ±
1
n2)) = (1 − 2n log n

f × n±1
n2). Therefore the

probability of any of the f sampled node in S does not intersect St
v is at most

(1 − 2(n±1) logn
nf)f ≤ 1

n2±2/n . Now using union bound we can say that every node
in the network receives the token t with high probability. This shows that phase 2
uses kn logn/f rounds and sends all k tokens to all the nodes with high probabil-
ity. Therefore the algorithm finishes in Õ(

√
kfτΦ+ kn/f) rounds. Now choosing

f = n2/3(k/τΦ)1/3 gives the bound as Õ(n1/3k2/3(τΦ)1/3). Hence, the k-gossip
problem solves with high probability in Õ(min{n1/3k2/3(τΦ)1/3, nk}) rounds. ��

Note that the mixing time τ of a regular dynamic graph is at most O(n2) (cf.
Theorem 1). Putting this in Theorem 4, yields a better bound for k-gossip prob-
lem in a regular dynamic graph.

8 Conclusion

We presented fast and fully decentralized algorithms for performing several ran-
dom walks in distributed dynamic networks. Our algorithms satisfy strong round
complexity guarantees and is the first work to present robust techniques for this
fundamental graph primitive in dynamic graphs. We further extend the work
to show how it can be used for efficient sampling and other applications such
as token dissemination. Our work opens several interesting research directions.
In the recent years, several fundamental graph operatives are being explored
in various distributed dynamic models, and it would be interesting to explore
further along these lines and obtain new approaches for identifying sparse cuts
or graph partitioning, and similar spectral quantities. Finally, these algorithmic
ideas may be useful building blocks in designing fully dynamic self-aware dis-
tributed graph systems. It would be interesting to additionally consider total
message complexity costs for these algorithms explicitly.

150 A. Das Sarma, A.R. Molla, and G. Pandurangan

References

1. Alon, N., Avin, C., Koucký, M., Kozma, G., Lotker, Z., Tuttle, M.R.: Many random
walks are faster than one. In: SPAA, pp. 119–128 (2008)

2. Augustine, J., Pandurangan, G., Robinson, P., Upfal, E.: Towards robust and effi-
cient computation in dynamic peer-to-peer networks. In: SODA (2012)

3. Avin, C., Koucký, M., Lotker, Z.: How to Explore a Fast-Changing World (Cover
Time of a Simple Random Walk on Evolving Graphs). In: Aceto, L., Damg̊ard, I.,
Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP
2008, Part I. LNCS, vol. 5125, pp. 121–132. Springer, Heidelberg (2008)

4. Baumann, H., Crescenzi, P., Fraigniaud, P.: Parsimonious flooding in dynamic
graphs. In: PODC, pp. 260–269 (2009)

5. Berenbrink, P., Czyzowicz, J., Elsässer, R., G ↪asieniec, L.: Efficient Information Ex-
change in the Random Phone-Call Model. In: Abramsky, S., Gavoille, C., Kirchner,
C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199,
pp. 127–138. Springer, Heidelberg (2010)

6. Bui, M., Bernard, T., Sohier, D., Bui, A.: Random Walks in Distributed Comput-
ing: A Survey. In: Böhme, T., Larios Rosillo, V.M., Unger, H., Unger, H. (eds.)
IICS 2004. LNCS, vol. 3473, pp. 1–14. Springer, Heidelberg (2006)

7. Casteigts, A., Flocchini, P., Quattrociocchi, W., Santoro, N.: Time-varying graphs
and dynamic networks. CoRR, abs/1012.0009 (2010)

8. Clementi, A., Macci, C., Monti, A., Pasquale, F., Silvestri, R.: Flooding time in
edge-markovian dynamic graphs. In: PODC, pp. 213–222 (2008)

9. Clementi, A., Silvestri, R., Trevisan, L.: Information spreading in dynamic graphs.
In: PODC (2012)

10. Das Sarma, A., Molla, A., Pandurangan, G.: Fast Distributed Computation in Dy-
namic Networks viaRandomWalks (May 2012), http://arxiv.org/abs/1205.5525

11. Das Sarma, A., Nanongkai, D., Pandurangan, G.: Fast distributed random walks.
In: PODC (2009)

12. Das Sarma, A., Nanongkai, D., Pandurangan, G., Tetali, P.: Efficient distributed
random walks with applications. In: PODC, pp. 201–210 (2010)

13. Dutta, C., Pandurangan, G., Rajaraman, R., Sun, Z.: Information spreading in
dynamic networks. CoRR, abs/1112.0384 (2011)

14. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks.
In: STOC (2010)

15. Kuhn, F., Oshman, R., Moses, Y.: Coordinated consensus in dynamic networks.
In: PODC, pp. 1–10 (2011)

16. Lynch,N.:DistributedAlgorithms.MorganKaufmannPublishers, SanMateo (1996)
17. Lyons, R.: Asymptotic enumeration of spanning trees. Combinatorics, Probability

& Computing 14(4), 491–522 (2005)
18. Nanongkai, D., Das Sarma, A., Pandurangan, G.: A tight unconditional lower

bound on distributed randomwalk computation. In: PODC, pp. 257–266 (2011)
19. Pandurangan, G., Khan, M.: Theory of communication networks. In: Algorithms

and Theory of Computation Handbook, 2nd edn. CRC Press (2009)
20. Pandurangan, G., Raghavan, P., Upfal, E.: Building low-diameter peer-to-peer net-

works. In: FOCS (2001)
21. Peleg, D.: Distributed computing: a locality-sensitive approach. SIAM, Philadelphia

(2000)
22. Tel, G.: Introduction to Distributed Algorithms. Cambridge University Press, UK

(1994)
23. Zhong, M., Shen, K.: Random walk based node sampling in self-organizing net-

works. Operating Systems Review 40(3), 49–55 (2006)

http://arxiv.org/abs/1205.5525

Dense Subgraphs on Dynamic Networks�

Atish Das Sarma1, Ashwin Lall2,
Danupon Nanongkai3, and Amitabh Trehan4,��

1 eBay Research Labs, San Jose, CA, USA
2 Department of Mathematics and Computer Science,

Denison University, Granville, OH, USA
3 University of Vienna, Austria, and Nanyang Technological University, Singapore
4 Information Systems group, Faculty of Industrial Engineering and Management,

Technion - Israel Institute of Technology, Haifa, Israel - 32000

Abstract. In distributed networks, it is often useful for the nodes to be
aware of dense subgraphs, e.g., such a dense subgraph could reveal dense
substructures in otherwise sparse graphs (e.g. the World Wide Web or so-
cial networks); these might reveal community clusters or dense regions for
possibly maintaining good communication infrastructure. In this work,
we address the problem of self-awareness of nodes in a dynamic network
with regards to graph density, i.e., we give distributed algorithms for
maintaining dense subgraphs that the member nodes are aware of. The
only knowledge that the nodes need is that of the dynamic diameter D,
i.e., the maximum number of rounds it takes for a message to traverse the
dynamic network. For our work, we consider a model where the number
of nodes are fixed, but a powerful adversary can add or remove a limited
number of edges from the network at each time step. The communication
is by broadcast only and follows the CONGEST model. Our algorithms
are continuously executed on the network, and at any time (after some
initialization) each node will be aware if it is part (or not) of a particular
dense subgraph. We give algorithms that (2+ε)-approximate the densest
subgraph and (3 + ε)-approximate the at-least-k-densest subgraph (for a
given parameter k). Our algorithms work for a wide range of parameter
values and run in O(D log1+ε n) time. Further, a special case of our re-
sults also gives the first fully decentralized approximation algorithms for
densest and at-least-k-densest subgraph problems for static distributed
graphs.

1 Introduction

Density is a very well studied graph property with a wide range of applications
stemming from the fact that it is an excellent measure of the strength of inter-
connectivity between nodes. While several variants of graph density problems
and algorithms have been explored in the classical setting, there is surprisingly
� Full version available as [13] at http://arxiv.org/abs/1208.1454

�� Supported in part by a Technion fellowship, the NetHD MAGNET consortium, and
the Technion TASP center.

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 151–165, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://arxiv.org/abs/1208.1454

152 A. Das Sarma et al.

little work that addresses this question in the distributed computing framework.
This paper focuses on decentralized algorithms for identifying dense subgraphs
in dynamic networks.

Finding dense subgraphs has received a great deal of attention in graph al-
gorithms literature because of the robustness of the property. The density of a
subgraph only gradually changes when edges come and go in a network, unlike
other graph properties such as connectivity that are far more sensitive to per-
turbation. Density measures the strength of a set of nodes by the graph induced
on them from the overall structure. The power of density lies in locally observ-
ing the strength of any set of nodes, large or small, independent of the entire
network.

Dense sugraphs often give key information about the network structure, its
evolution and dynamics. To quote [22]:“Dense subgraph extraction is therefore
a key primitive for any in-depth study of the nature of a large graph”. Often,
dense subgraphs may reveal information about community structure in other-
wise sparse graphs e.g. the World Wide Web or social networks. They are good
structures for studying the dynamics of a network and have been used, for ex-
ample, to study link spam [22]. It is also possible to imagine a scenario where
a dynamically evolving peer-to-peer network may want to route traffic through
the densest parts of its network to ease congestion; thus, these subgraphs could
form the basis of an efficient communication backbone (in combination with
other subgraphs selected using appropriate centrality measures).

In this paper, we expand the static CONGEST model [41] and consider a
dynamic setting where the graph edges may change continually. We present al-
gorithms for approximating the (at least size k) densest subgraph in a dynamic
graph model to within constant factors. Our algorithms are not only designed
to compute size-constrained dense subgraphs, but also track or maintain them
through time, thereby allowing the network to be aware of dense subgraphs
even as the network changes. They are fully decentralized and adapt well to
rapid network failures or modifications. This gives the densest subgraph prob-
lem a special status among global graph problems: while most graph problems
are hard to approximate in o(

√
n) time even on static distributed networks of

small diameters [12,38,20], the densest subgraph problem can be approximated
in polylogarithmic time (in terms of n) for small D, even in dynamic networks.

We now explain our model for dynamic networks, define density objectives
considered in this paper, and state our results.

Distributed Computing Model. Consider an undirected, unweighted, connected
n-node graph G = (V, E). Suppose that every node (vertex) hosts a processor
with unbounded computational power (though our algorithms only use time and
space polynomial in n at each vertex), but with only local knowledge initially. We
assume that nodes have unique identifiers. The nodes may accept some additional
inputs as specified by the problem at hand. The communication is synchronous,
and occurs in discrete pulses, called rounds. Further, nodes can send messages
to each of their neighbors in every round. In our model, all the nodes wake
up simultaneously at the beginning of round 1. In each round each node v is

Dense Subgraphs on Dynamic Networks 153

allowed to send an arbitrary message subject to the bandwidth constraint of
size O(log n) bits through any edge e = (v, u) that is adjacent to v, and these
messages will arrive at each corresponding neighbor at the end of the current
round. Our model is akin to the standard model of distributed computation
known as the CONGEST model [41]. The message size constraint of CONGEST
is very important for large-scale resource-constrained dynamic networks where
running time is crucial.

Edge-Dynamic Network Model. We use the edge deletion/addition model; i.e.,
we consider a sequence of (undirected) graphs G0, G1, . . . on n nodes, where, for
any t, Gt denotes the state of the dynamic network G(V, E) at time t, where
the adversary deletes and/or inserts upto r edges at each step, i.e., E(Gt+1) =
(E(Gt) \ EU) ∪ EV , where EU ⊆ E(Gt) and EV ⊆ E(Gt), |EU | + |EV | ≤ r
(where Gt is the complement graph of Gt). The edge change rate is denoted by
the parameter r.

Following the notion in [33], we define the dynamic diameter of the dynamic
network G(V, E), denoted by D, to be the maximum time a message needs to
traverse the network at any time. More formally, dynamic diameter is defined as
follows:

Definition 1 (Dynamic Diameter (Adapted from [33], Definition 3)).
We say that the dynamic network G = (V, E) has a dynamic diameter of D upto
time t if D is the smallest positive integer such that, for all t′ ≤ t and u, v ∈ V ,
we have (u, max{0, t′ − D}) � (v, t′), where, for each pair of vertices x, y and
times t1 ≤ t2, (x, t1) � (y, t2) means that at time t2 node y can receive direct
information, through a chain of messages, originating from node x at time t1.

Note that the nodes do not need to know the exact dynamic diameter D but
only a (loose) approximation to it. For simplicity, we assume henceforth that the
nodes know the exact value of D.

There are several measures of efficiency of distributed algorithms, but we will
concentrate on one of them, specifically, the running time, that is, the number
of rounds of distributed communication. (Note that the computation that is
performed by the nodes locally is “free”, i.e., it does not affect the number of
rounds.)

We are interested in algorithms that can compute and maintain an approx-
imate (at-least-k) densest subgraph of the network at all times, after a short
initialization time. We say that an algorithm can compute and maintain a solu-
tion P in time T if it can compute the solution in T rounds and can maintain a
solution at all times after time T , even as the network changes dynamically.

1.1 Problem Definition

Let G = (V, E) be an undirected graph and S ⊆ V be a set of nodes. Let us
define the following:

Graph Density. The density of a graph G(V, E) is defined as |E|/|V |.

154 A. Das Sarma et al.

Each node of G0 is a processor.
Each processor starts with a list of its neighbors in G0.
Pre-processing: Processors may exchange messages with their neighbors.
for t := 1 to T do

Adversary deletes and/or inserts upto r edges at each step i.e. E(Gt+1) =
(E(Gt) \EU)∪EV , where EU ⊆ E(Gt) and EV ⊆ E(Gt) (where Gt is the
complement graph of Gt).
if edge (u, v) is inserted or edge (u, v) is deleted then

Nodes u and v may update their information and exchange messages
with their neighbors.
Computation phase:
Nodes may communicate (synchronously, in parallel) with their immedi-
ate neighbors. These messages are never lost or corrupted, may contain
the names of other vertices, and are received by the end of this phase.

end if
At the end of this phase, we call the graph Gt.

end for
Success metrics:
1. Approximate Dense Subgraphs: Graph S′

T : The induced graph of a
set S′

T ⊆ VT , s.t., ρ(S′
T) ≥ ρ(S∗

T)
α , where S∗

T ⊆ V , s.t., ρ(S∗
T) = max ρ(ST)

over all ST ⊆ VT .
2. Approximate at-least-k-Dense Subgraphs: Graph Sk

T : The induced
graph of a set Sk ⊆ V, |Sk| ≥ k, s.t., ρ(Sk) ≥ ρ(Sk∗)

α , where Sk∗ ⊆
V, |Sk∗| ≥ k, s.t., ρ(Sk∗) = max ρ(S) over all S ⊆ V, |S| ≥ k.

3. Communication per edge. The maximum number of bits sent across
a single edge in a single recovery round. O(log n) in CONGEST model.

4. Computation time. The maximum total time (rounds) for all nodes
to compute their density estimations starting from scratch assuming it
takes a message no more than 1 time unit to traverse any edge and we
have unlimited local computational power at each node.

Fig. 1. The distributed Edge Insert and Delete Model

SubGraph Density. The density of a subgraph defined by a subset of nodes S
of V (G) is defined as the density of the induced subgraph. We will use ρ(S) to
denote the density of the subgraph induced by S. Therefore, ρ(S) = |E(S)|

|S| . Here
E(S) is the subset of edges (u, v) of E where u ∈ S and v ∈ S. In particular,
when talking about the density of a subgraph defined by a set of vertices S
induced on G, we use the notation ρG(S). We also use ρt(S) to denote ρGt(S).
When clear from context, we omit the subscript G.

The problem we address in this paper is to construct distributed algorithms
to discover the following:

– (Approximate) Densest subgraphs: The densest subgraph problem is to
find a set S∗ ⊆ V , s.t. ρ(S∗) = max ρ(S) over all S ⊆ V . A α-approximate
solution S′ will be a set S′ ⊆ V , s.t. ρ(S′) ≥ ρ(S∗)

α .
– (Approximate) At-least-k-densest subgraphs: The densest at-least-k-

subgraph problem is the previous problem restricted to sets of size at least
k, i.e., to find a set Sk∗ ⊆ V, |Sk∗| ≥ k, s.t. ρ(Sk∗) = max ρ(S) over all

Dense Subgraphs on Dynamic Networks 155

S ⊆ V, |S| ≥ k. A α-approximate solution Sk will be a set Sk ⊆ V, |Sk| ≥ k,
s.t. ρ(Sk) ≥ ρ(Sk∗)

α .

In the distributed setting, we require that every node knows whether it is in
the solution S′ or Sk or not. We note that the latter problem is NP-Complete,
and thus it is crucial to consider approximation algorithms. The former problem
can be solved exactly in polynomial time in the centralized setting, and it is an
interesting open problem whether there is an exact distributed algorithm that
runs in O(D poly log n) time, even in static networks.

1.2 Our Results

We give approximation algorithms for the densest and at-least-k-densest sub-
graph problems which are efficient even on dynamic distributed networks. In
particular, we develop an algorithm that, for a fixed constant c and any ε > 0,
(2 + ε)-approximates the densest subgraph in O(D log1+ε n) time provided that
the densest subgraph has high density, i.e., it has a density at least (cDr log n)/ε
(recall that r and D are the change rate and dynamic diameter of dynamic
networks, respectively). We also develop a (3 + ε)-approximation algorithm for
the at-least-k-densest subgraph problem with the same running time, provided
that the value of the density of the at-least-k-densest subgraph is at least
(cDr log n)/kε. We state these theorems in a simplified form and some corol-
laries below. Below, ε can be set as any arbitrarily small constant. We note
again that at the end of our algorithms, every node knows whether they are in
the returned subgraph or not.

Theorem 2. There exists a distributed algorithm that for any dynamic graph
with dynamic diameter D and parameter r returns a subgraph at time t such
that, w.h.p., the density of the returned subgraph is a (2 + ε)-approximation to
the density of the densest subgraph at time t if the densest subgraph has density
at least Ω(Dr log n).

Theorem 3. There exists a distributed algorithm that for any dynamic graph
with dynamic diameter D and parameter r returns a subgraph of size at least
k at time t such that, w.h.p., the density of the returned subgraph is a (3 + ε)-
approximation to the density of the densest at least k subgraph at time t if the
densest at least k subgraph has density at least Ω(Dr log n/k).

We mention two special cases of these theorems informally below. We prove
the most general theorem statements depending on the parameters r and D in
Section 3.

Corollary 4. Given a dynamic graph with dynamic diameter O(log n) and a
rate of change r = O(logα n) for some constant α (i.e. r is poly-logarithmic
in n), there is a distributed algorithm that at any time t can return, w.h.p., a
(2 + ε)-approximation of densest subgraph at time t if the densest subgraph has
density at time t at least Ω(logα+2 n).

156 A. Das Sarma et al.

Corollary 5. Given a dynamic graph with dynamic diameter O(log n) and a
rate of change r = O(logα n) for some constant α (i.e. r is poly-logarithmic
in n), there is a distributed algorithm that at any time t can return, w.h.p., a
(3 + ε)-approximation of k-densest subgraph at time t if the k-densest subgraph
has density at time t at least Ω(logα+2 n/k).

Our algorithms follow the main ideas of centralized approximation algorithms
[29,3,10]. These centralized algorithms cannot be efficiently implemented even
on static distributed networks. We show how some ideas of these algorithms
can be turned into time-efficient distributed algorithms with a small increase in
the approximation guarantees. Similar ideas have been independently discovered
and used to obtain efficient streaming and MapReduce algorithms by Bahmani
et al. [7].

Notice that this is already a wide range of parameter values for which our
results are interesting, since the density of densest subgraphs can be as large as
Ω(n) while the diameter in peer-to-peer networks is typically O(log n), and the
parameter r depends on the stability of the network. A caveat, though, is that in
the theorems above, D refers to the flooding time of the dynamic network, and
not the diameter of any specific snapshot - understanding a relationship between
these quantities remains open.

Further, our general theorems also imply the following for static graphs (by
simply setting r = 0). No such results were known in the distributed setting even
for static graphs.

Corollary 6. In a static graph, there is a distributed algorithm that obtains,
w.h.p., (2 + ε)-approximation to the densest subgraph problem in O(D log n)
rounds of the CONGEST model.

Corollary 7. In a static graph, there is a distributed algorithm that obtains,
w.h.p, (3 + ε)-approximation to the k-densest subgraph problem in O(D log n)
rounds of the CONGEST model.

Notice that this is an unconditional guarantee for static graphs (i.e. does not
require any bound on the density of the optimal) and is the first distributed
algorithm for these problems in the CONGEST model.

Back to dynamic graphs, in addition to computing the (2 + ε)-approximated
densest and (3 + ε)-approximated at-least-k-densest subgraphs, our algorithm
can also maintain them at all times with high probability. This means that, at
all times (except for a short initialization period), all nodes are aware of whether
they are part of the approximated at-least-k densest subgraphs, for all k.

Even though we assume that all the nodes know the value D, all our algorithms
work if some upper-bound D′ of D is known instead; all the algorithms and
analysis work identically using D′ rather than D.

Organization. Our algorithms are described in Section 2 and the approximation
guarantees are proved in Section 3. We mention related work at the end of the
paper in Section 4.

Dense Subgraphs on Dynamic Networks 157

2 Algorithm

2.1 Main Algorithm

The nature of our algorithm is such that we continuously maintain an approx-
imation to the densest subgraph in the dynamic network. At any time, after a
short initialization period, any node knows whether it is a member of the out-
put subgraph of our algorithm. In this section, we give the description of the
algorithm and fully specify the behavior of each of the nodes in the network.
The running time analysis and the approximation guarantees are deferred to the
following sections.

Our main protocol for maintaining a dense subgraph is given in Algorithm 1. It
maintains a family of p = O(log1+ε n) candidates for the densest subgraph F =
{V0, V1, . . . , Vp}, where V0 = V (G), Vi ⊆ Vi−1 for all i, along with an approxima-
tion of the number of nodes and edges in each graphR = {(m0, n0), . . . , (mp, np)},
where each mi and ni are the approximate number of edges and nodes, respec-
tively, of the subgraph of Gt (the current graph) induced by Vi. The algorithm
works in phases in which it estimates the size of the current subgraph Vj and the
number of edges in it using the algorithms discussed in the following subsection. At
the end of the phase it computes the next subgraph Vj+1 using a criterion in Line 9
of Algorithm 1 (explained further in Section 3). After p such rounds, the algorithm
has all the information it needs to output an approximation to the densest sub-
graph. This process is repeated continuously, and the solution is computed from
the last complete family of graphs (i.e., complete computation of p subgraphs).

At any time, the densest subgraph can be computed using the steps outlined
in Algorithm 2. This procedure works simply by picking the subgraph with the
highest density, even if the size of this subgraph is less than k. If the graph
turns out to be less than size k, we pad it by having the rest of the nodes run a
distributed procedure to elect appropriately many nodes to add to the subgraph
and get its size up to at least k.

Any time a densest subgraph query is initiated in the network, the nodes
simply run Algorithm 2 based on the subgraphs continuously being maintained
by Algorithm 1, and compute which of them are in the approximation solution.
At the end of this query, each node is aware of whether it is in the approximate
densest subgraph or not.

2.2 Approximating the Number of Nodes and Edges

Our algorithms make use of an operation in which the number of nodes and
edges in a given subgraph need to be computed. We just mention the algorithm
idea here and present the detailed algorithm in the full version [13].

Algorithm Approx-Size-Estimation. We achieve this in O(D) rounds using a
modified version of an algorithm from [32]. Their algorithm allows for approxi-
mate counting of the size of a dynamic network with high probability. We modify
it to work for any subgraph that we are interested in. We also show how it can

158 A. Das Sarma et al.

Input: 1 ≥ ε > 0
Output: The algorithm maintains a family of sets of nodes F = {V0, V1, . . . , Vp} and
induced graph sizes R = {(m0, n0), (m1, n1), . . . , (mp, np)}.
1: Let δ = ε/24.
2: Let j = 0. Let V0 = V (i.e., we mark every node as in V0).
3: repeat
4: Compute nj , a (1+ δ)-approximation of |Vj | (i.e., (1+ δ)|Vj | ≥ nj ≥ (1− δ)|Vj|).

At the end of this step every node knows nj . See the full version [13] for detailed
implementation.

5: if nj = 0 then
6: Let j = 0. (Note that we do not recompute n0.)
7: end if
8: Let Gt be the network at the beginning of this step. Let Ht be the subgraph of

Gt induced by Vj . We compute mj , the (1 + δ)-approximation of the number of
edges in Ht (i.e., (1 + δ)|E(Ht)| ≥ mj ≥ (1− δ)|E(Ht)|). At the end of this step
every node knows mj . See the full version [13] for detailed implementation.

9: Let Gt′ be the network at the beginning of this step. Let Ht′ be the subgraph
of Gt′ induced by Vj . Let Vj+1 be the set of nodes in Vj whose degree in Ht′ is
at least (1+ δ)mj/nj . At the end of this step, every node knows whether it is in
Vj+1 or not.

10: Let j = j + 1.
11: until forever

Algorithm 1. Maintain(ε)

be used to approximate the number of edges in this subgraph at a given time. In
the interest of space, these results can be found in the full version [13] described
under algorithms RandomixedApproximateCounting, Count Nodes, and
Count Edges.

3 Analysis

We analyze approximation ratios of the algorithm presented in Section 2, the
guarantee depending on parameters of the algorithm. We divide the analysis
into two parts: the first part is for the densest subgraph problem and the second
for the at-least-k densest subgraph problem. Although the second part subsumes
the first part (if we ignore the value of constant approximation ratio), we present
the first part since it has a simpler idea and a better approximation ratio.

3.1 Analysis for the Densest Subgraph Problem

Theorem 8. Let t be the time Algorithm 2 finishes, Vi be the output of the algo-
rithm, H∗ be the optimal solution and T be the time of one round of Algorithm 1
and 2 (i.e., T = cD log1+ε n for some constant c). If ρt(H∗) ≥ 24Tr/ε then
Algorithm 2 gives, w.h.p., a (2 + ε)-approximation, i.e.,

ρt(Vi) ≥ ρt(H∗)/(2 + ε) .

Dense Subgraphs on Dynamic Networks 159

Input: k, the parameter for the densest at-least-k subgraph problem, the algorithm
Maintain(ε) (cf. Algorithm 1), and its parameter notations.
Output: The algorithm outputs a set of nodes Vi ∪ V̂ (every node knows whether it
is in the set or not) such that |Vi ∪ V̂ | ≥ k.
1: Let i = maxi mi/ max(k, ni) .
2: if ni < (1 + δ)k then
3: Let Δ = (1 + δ)k − ni. (Every node can compute Δ locally.)
4: repeat
5: Every node not in Vi locally flips a coin which is head with probability Δ/n0.

6: Let V̂ be the set of nodes whose coins return heads.
7: Approximately count the number of nodes in V̂ using the algorithm Approx-

Size-Estimation discussed in Section 2.2 with error parameter δ passed to
Count Edges under it. Let Δ′ be the result returned. (Note that Δ′/(1+δ) ≤
|V̂ | ≤ (1 + δ)Δ′ w.h.p.)

8: until (1 + δ)Δ ≤ Δ′ ≤ (1 + 2δ)Δ
9: end if

10: return Vi ∪ V̂

Algorithm 2. Densest Subgraph(k)

The rest of this subsection is devoted to proving the above theorem. Let t, Vi

and H∗ be as in the theorem statement (note that V̂ in Algorithm 2 is empty
when k = 0). Let t′ be the time that Vi is last computed by Algorithm 1. Let
t′′ be the time Algorithm 1 starts counting the number of edges in Vi. We prove
the theorem using the following lemmas. The main idea is to first lower bound
ρt′′(Vi) using ρt′(H∗) and then use it to obtain a lower bound for ρt′(Vi) in terms
of ρt(H∗). Finally, the proof is completed by lower bounding ρt(Vi) in terms of
ρt′(Vi).

Lemma 9. ρt′′(Vi) > 1−δ
2(1+δ)2 ρt′(H∗).

Proof. Let H ′ be the densest subgraph of Gt′ . Note that

ρt′(H∗) ≤ ρt′(H ′) . (1)

Let i∗ be the smallest index such that V (H ′) ⊆ Vi∗ and V (H ′) �⊆ Vi∗+1. Note
that i∗ exists since the algorithm repeats until we get Vj = ∅. Let v be any vertex
in V (H ′) \ Vi∗ . Let Ht′,i be the subgraph of Gt′ induced by nodes in Vi. Note
that

ρt′(H ′) ≤ 2 degH′ (v) ≤ 2 degHt′,i
(v) . (2)

The first inequality is because we can otherwise remove v from H ′ and get a
subgraph of Gt′ that has a higher density than H ′. The second inequality is
because H ′ ⊆ Ht′,i. Since v is removed from Vi∗ ,

degHt′,i
(v) < (1 + δ)

mi∗

ni∗
, (3)

160 A. Das Sarma et al.

where δ = ε/24 as in Algorithm 1. By the definition of Vi,
mi∗

ni∗
≤ mi

ni
. (4)

Note that t − t′′ ≤ T by the definition of T . Note also that ni ≥ (1 − δ)|Vi| and
mi ≤ (1 + δ)|Et′′ (Vi)| with high probability. It follows that

mi

ni
≤ 1 + δ

1 − δ
ρt′′(Vi) . (5)

Combining Eq.(1)-(5), we get ρt′(H∗) < 2 (1+δ)2

1−δ ρt′′(Vi) and thus the lemma.

We now make the following observation:

Observation 10. ρt′(H∗) ≥ (1 − δ)ρt(H∗) .

Proof. Note that t − t′ ≤ T and thus Et(H∗) − Et′(H∗) ≤ Tr. Since ρt(H∗) ≥
Tr/δ, ρt′(H∗) ≥ ρt(H

∗)·|V (H∗)|−Tr
|V (H∗)| ≥ ρt(H∗) − Tr > (1 − δ)ρt(H∗) .

We now combine the above Lemma 9 and Observation 10 to obtain the following
lemma:

Lemma 11. ρt′(Vi) > ((1−δ)2

2(1+δ)2 − δ)ρt(H∗) .

Proof. By directly combining Lemma 9 and Observation 10 we get the following:

ρt′′(Vi) >
(1 − δ)2

2(1 + δ)2
ρt(H∗) ≥ (1 − δ)2

2(1 + δ)2δ
T r .

Moreover, observe that there are at most Tr edges removed from Vi in total, i.e.,
Et′′(Vi) − Et(Vi) ≤ Tr. Thus

ρt′(Vi) ≥ ρt′′(Vi) · |Vi| − Tr

|Vi| ≥ ρt′′(Vi) − Tr >

(
1 − 2(1 + δ)2δ

(1 − δ)2

)
ρt′′(Vi)

>

(
1 − 2(1 + δ)2δ

(1 − δ)2

)(
(1 − δ)2

2(1 + δ)2
ρt(H∗)

)
=
(

(1 − δ)2

2(1 + δ)2
− δ

)
ρt(H∗) .

We are now ready to prove the theorem.

Proof (Proof of Theorem 8). Note that t−t′ ≤ T and thus Et′(Vi)−Et(Vi) ≤ Tr.
Note that ρt′(Vi) > βρt(H∗) ≥ βTr/δ, where β = (1−δ)2

2(1+δ)2 − δ. We have

ρt(Vi) ≥ ρt′(Vi) · |Vi| − Tr

|Vi| ≥ ρt′(Vi) − Tr > (1 − δ

β
)ρt′(Vi).

Now using Lemma 11 and the value of β, we get the following:

ρt(Vi) > (1 − δ

β
)βρt(H∗) = (β − δ)ρt(H∗) =

(
(1 − δ)2

2(1 + δ)2
− 2δ

)
ρt(H∗).

The theorem follows by observing that (1−δ)2

2(1+δ)2 − 2δ ≥ 1
2+ε for any ε ≤ 1 and

δ ≥ ε/24.

Dense Subgraphs on Dynamic Networks 161

3.2 Analysis for the At-Least-k Densest Subgraph Problem

Theorem 12. Let t be the time Algorithm 2 finishes, Vi ∪ V̂ be the output of
the algorithm, H∗ be the optimal solution and T be the time of one iteration
of Algorithm 1 and Algorithm 2 (so T = O(D log1+ε n)). If kρt(H∗) ≥ 24Tr/ε

then Algorithm 2 returns a set Vi ∪ V̂ of size at least k that is, w.h.p., a (3 + ε)-
approximated solution, i.e.,

ρt(Vi ∪ V̂) ≥ ρt(H∗)/(3 + ε) .

The proof of this theorem is in the full version [13], and we just mention the
main idea here. The proof follows a similar framework as that of Theorem 8.

Let t, Vi and H∗ be as in the theorem statement. Let t′ be the time that Vi is
last computed by Algorithm 1. Let t′′ be the time Algorithm 1 starts counting
the number of edges in Vi. The crucial difference here is to obtain a strong lower
bound for ρt′′(Vi ∪ V̂) in terms of ρt′(H∗) and ρt(H∗). This is then translated
to a lower bound on ρt′(Vi ∪ V̂) and subsequently ρt(Vi ∪ V̂) to complete the
proof. The crucial lemma and its proof turn out to be more involved than that
of the densest subgraph theorem and the case-based analysis is detailed in the
full version [13].

3.3 Running Time Analysis

In this section we analyze the time that it takes for the nodes to generate an
approximation to the densest subgraph. Algorithm 1 continuously runs this pro-
cedure so that it always maintains an approximation that is guaranteed to be
near-optimal since we assume that the network does not change too quickly. The
time that it takes for Algorithm 1 to compute a complete family of subgraphs
is simply O(Dp) = O(D log1+ε n) since there are p = O(log1+ε n) rounds (Sec-
tion 2.1), each of which is completed in O(D) time (Section 2.2). Note that step
9 of Algorithm 1 can be done in a single round since every node already knows
mj/nj and can easily check, in one round, the number of neighbors in Gt′ that
are in Vj .

When the nodes need to compute an approximation to the at-least-k-densest
subgraph in Algorithm 2, they can do so by choosing the densest subgraph among
the last complete family of subgraphs found by Algorithm 1. Unfortunately, there
is no guarantee that the densest such graph has at least k nodes in it, so we fix
this via padding. The subgraph is padded to contain at least k nodes by having
each node that is not part of the subgraph attempt to join the subgraph with
an appropriate probability. It can be shown via Chernoff bounds that, with high
probability, within O(log n) such attempts there are enough nodes added to the
subgraph to get its size to at least k. As a result, Algorithm 2 runs in O(D log n)
time.

4 Related Work

The problem of finding size-bounded densest subgraphs has been studied ex-
tensively in the classical setting. Finding a maximum density subgraph in an

162 A. Das Sarma et al.

undirected graph can be solved in polynomial time [23,35]. However, the prob-
lem becomes NP-hard when a size restriction is enforced. In particular, finding
a maximum density subgraph of size exactly k is NP-hard [5,19] and no approx-
imation scheme exists under a reasonable complexity assumption [28]. Recently
Bhaskara et al. [9] showed integrality gaps for SDP relaxations of this problem.
Khuller and Saha [29] considered the problem of finding densest subgraphs with
size restrictions and showed that these are NP-hard. Khuller and Saha [29] and
also Andersen and Chellapilla [3] gave constant factor approximation algorithms.
Some of our algorithms are based on of those presented in [29].

Our work differs from the above mentioned ones in that we address the issues
in a dynamic setting, i.e., where edges of the network change over time. Dy-
namic network topology and fault tolerance have always been core concerns of
distributed computing [6,36]. There are many models and a large volume of work
in this area. A notable recent model is the dynamic graph model introduced by
Kuhn, Lynch and Oshman in [32]. They introduced a stability property called
T -interval connectivity (for T ≥ 1) which stipulates the existence of a stable
connected spanning subgraph for every T rounds. Though our models are not
fully comparable (we allow our networks to get temporarily disconnected as long
as messages eventually make their way through it), the graphs generated by our
model are similar to theirs except for our limited rate of churn. They show that
they can determine the size of the network in O(n2) rounds and also give a
method for approximate counting. We differ in that our bounds are sublinear in
n (when D is small) and we maintain our dense graphs at all times.

We work under the well-studied CONGEST model (see, e.g., [41] and the
references therein). Because of its realistic communication restrictions, there
has been much research done in this model (e.g., see [36,41,39]). In particular,
there has been much work done in designing very fast distributed approximation
algorithms (that are even faster at the cost of producing sub-optimal solutions)
for many fundamental problems (see, e.g., [17,16,26,27]). Among many graph
problems studied, the densest subgraph problem falls into the “global problem”
category where it seems that one needs at least Ω(D) rounds to compute or
approximate (since one needs to at least know the number of nodes in the graph
in order to compute the density). While most results we are aware of in this
category were shown to have a lower bound of Ω(

√
n/ logn), even on graphs with

small diameter (see [12] and references therein), the densest subgraph problem
is one example for which this lower bound does not hold.

Our algorithm requires certain size estimation algorithms as a subroutine.
An important tool that also addresses network size estimation is a Controller.
Controllers were introduced in [1] and they were implemented on ‘growing’ trees,
but this was later extended to a more general dynamic model [30,18]. Network
size estimation itself is a fundamental problem in the distributed setting and
closely related to other problems like leader election. For anonymous networks
and under some reasonable assumptions, exact size estimation was shown to be
impossible [11] as was leader election [4] (using symmetry concerns). Since then,

Dense Subgraphs on Dynamic Networks 163

many probabilistic estimation techniques have been proposed using exponen-
tial and geometric distributions [32,2,37]. Of course, the problem is even more
challenging in the dynamic setting.

Self-* systems [8,14,15,31,34,42,21,40,24,25,43] are worth mentioning here. Of-
ten, a crucial condition for such systems is the initial detection of a particular
state. In this respect, our algorithm can be viewed as a self-aware algorithm
where the nodes monitor their state with respect to the environment, and this
could be used for developing powerful self-* algorithms.

5 Future Work and Conclusions

We have presented efficient decentralized algorithms for finding dense subgraphs
in distributed dynamic networks. Our algorithms not only show how to com-
pute size-constrained dense subgraphs with provable approximation guarantees,
but also show how these can be maintained over time. While there has been
significant research on several variants of the dense subgraph computation prob-
lem in the classical setting, to the best of our knowledge this is the first formal
treatment of this problem for a distributed peer-to-peer network model.

Several directions for future research result naturally out of our work. The first
specific question is whether our algorithms and analyses can be improved to guar-
antee O(D + log n) rounds instead of O(D log n), even in static networks. Alter-
natively, can one show a lower bound of Ω(D log n) in static networks? Bounding
the value D in terms of the instantaneous graphs and change rate r would also be
an interesting direction of future work. It is also interesting to show whether the
densest subgraph problem can be solved exactly in O(D poly log n) or not in the
static setting, and to develop dynamic algorithms without density lower bound as-
sumptions. Another open problem (suggested to us by David Peleg) that seems to
be much harder is the at-most-k densest subgraph problem. One could also consider
various other definitions of density and study distributed algorithms for them, as
well as explore whether any of these techniques extend directly or indirectly to
specific applications. Finally, it would be interesting to extend our results from
the edge alteration model to allow node alterations as well.

References

1. Afek, Y., Awerbuch, B., Plotkin, S.A., Saks, M.E.: Local management of a global
resource in a communication network. In: FOCS, pp. 347–357. IEEE Computer
Society (1987)

2. Aggarwal, S., Kutten, S.: Time Optimal Self-Stabilizing Spanning Tree Algo-
rithms. In: Shyamasundar, R.K. (ed.) FSTTCS 1993. LNCS, vol. 761, pp. 400–410.
Springer, Heidelberg (1993)

3. Andersen, R., Chellapilla, K.: Finding Dense Subgraphs with Size Bounds.
In: Avrachenkov, K., Donato, D., Litvak, N. (eds.) WAW 2009. LNCS, vol. 5427,
pp. 25–37. Springer, Heidelberg (2009)

164 A. Das Sarma et al.

4. Angluin, D.: Local and global properties in networks of processors (extended ab-
stract). In: Miller, R.E., Ginsburg, S., Burkhard, W.A., Lipton, R.J. (eds.) STOC,
pp. 82–93. ACM (1980)

5. Asahiro, Y., Hassin, R., Iwama, K.: Complexity of finding dense subgraphs. Dis-
crete Appl. Math. 121(1-3), 15–26 (2002)

6. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Ad-
vanced Topics. John Wiley & Sons (2004)

7. Bahmani, B., Kumar, R., Vassilvitskii, S.: Densest subgraph in streaming and
mapreduce. PVLDB 5(5), 454–465 (2012)

8. Berns, A., Ghosh, S.: Dissecting self-* properties. In: International Conference on
Self-Adaptive and Self-Organizing Systems, pp. 10–19 (2009)

9. Bhaskara, A., Charikar, M., Vijayaraghavan, A., Guruswami, V., Zhou, Y.: Poly-
nomial integrality gaps for strong sdp relaxations of densest k-subgraph. In: SODA,
pp. 388–405 (2012)

10. Charikar, M.: Greedy Approximation Algorithms for Finding Dense Components
in a Graph. In: Jansen, K., Khuller, S. (eds.) APPROX 2000. LNCS, vol. 1913,
pp. 84–95. Springer, Heidelberg (2000)

11. Cidon, I., Shavitt, Y.: Message terminating algorithms for anonymous rings of
unknown size. Inf. Process. Lett. 54(2), 111–119 (1995)

12. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G.,
Peleg, D., Wattenhofer, R.: Distributed verification and hardness of distributed
approximation. In: STOC, pp. 363–372 (2011)

13. Das Sarma, A., Lall, A., Nanongkai, D., Trehan, A.: Dense subgraphs on dynamic
networks. CoRR abs/1208.1454 (2012)

14. Dijkstra, E.W.: Self-stabilizing systems in spite of distributed control. Commun.
ACM 17(11), 643–644 (1974), http://dx.doi.org/10.1145/361179.361202

15. Dolev, S.: Self-stabilization. MIT Press, Cambridge (2000)
16. Dubhashi, D.P., Grandioni, F., Panconesi, A.: Distributed Algorithms via LP Du-

ality and Randomization. In: Handbook of Approximation Algorithms and Meta-
heuristics. Chapman and Hall/CRC (2007)

17. Elkin, M.: An overview of distributed approximation. ACM SIGACT News Dis-
tributed Computing Column 35(4), 40–57 (2004)

18. Emek, Y., Korman, A.: New Bounds for the Controller Problem. In: Keidar, I.
(ed.) DISC 2009. LNCS, vol. 5805, pp. 22–34. Springer, Heidelberg (2009)

19. Feige, U., Kortsarz, G., Peleg, D.: The dense k-subgraph problem. Algorithmica 29
(1999)

20. Frischknecht, S., Holzer, S., Wattenhofer, R.: Networks cannot compute their di-
ameter in sublinear time. In: SODA, pp. 1150–1162 (2012)

21. Ghosh, D., Sharman, R., Raghav Rao, H., Upadhyaya, S.: Self-healing systems -
survey and synthesis. Decis. Support Syst. 42(4), 2164–2185 (2007)

22. Gibson, D., Kumar, R., Tomkins, A.: Discovering large dense subgraphs in massive
graphs. In: Böhm, K., Jensen, C.S., Haas, L.M., Kersten, M.L., Larson, P.Å., Ooi,
B.C. (eds.) VLDB, pp. 721–732. ACM (2005)

23. Goldberg, A.V.: Finding a maximum density subgraph. Tech. Rep. UCB/CSD-84-
171, EECS Department, University of California, Berkeley (1984)

24. Hayes, T., Saia, J., Trehan, A.: The forgiving graph: a distributed data struc-
ture for low stretch under adversarial attack. Distributed Computing, 1–18,
http://dx.doi.org/10.1007/s00446-012-0160-1, 10.1007, doi:10.1007/s00446-
012-0160-1

http://dx.doi.org/10.1145/361179.361202
http://dx.doi.org/10.1007/s00446-012-0160-1

Dense Subgraphs on Dynamic Networks 165

25. Hayes, T.P., Saia, J., Trehan, A.: The forgiving graph: a distributed data structure
for low stretch under adversarial attack. In: PODC 2009: Proceedings of the 28th
ACM Symposium on Principles of Distributed Computing, pp. 121–130. ACM,
New York (2009)

26. Khan, M., Pandurangan, G.: A fast distributed approximation algorithm for min-
imum spanning trees. Distributed Computing 20, 391–402 (2008)

27. Khan, M., Kuhn, F., Malkhi, D., Pandurangan, G., Talwar, K.: Efficient distributed
approximation algorithms via probabilistic tree embeddings. In: PODC, pp. 263–
272 (2008)

28. Khot, S.: Ruling out PTAS for graph min-bisection, dense k-subgraph, and bipar-
tite clique. SIAM J. Computing 36(4), 1025–1071 (2006)

29. Khuller, S., Saha, B.: On Finding Dense Subgraphs. In: Albers, S., Marchetti-
Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.) ICALP 2009, Part
I. LNCS, vol. 5555, pp. 597–608. Springer, Heidelberg (2009)

30. Korman, A., Kutten, S.: Controller and estimator for dynamic networks. In: Gupta,
I., Wattenhofer, R. (eds.) PODC, pp. 175–184. ACM (2007)

31. Korman, A., Kutten, S., Masuzawa, T.: Fast and compact self stabilizing verifica-
tion, computation, and fault detection of an MST. In: Gavoille, C., Fraigniaud, P.
(eds.) PODC, pp. 311–320. ACM (2011)

32. Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic net-
works. In: STOC, pp. 513–522 (2010)

33. Kuhn, F., Oshman, R., Moses, Y.: Coordinated consensus in dynamic networks.
In: PODC, pp. 1–10 (2011)

34. Kuhn, F., Schmid, S., Wattenhofer, R.: A Self-repairing Peer-to-Peer System Re-
silient to Dynamic Adversarial Churn. In: van Renesse, R. (ed.) IPTPS 2005. LNCS,
vol. 3640, pp. 13–23. Springer, Heidelberg (2005)

35. Lawler, E.: Combinatorial optimization - networks and matroids. Holt, Rinehart,
and Winston (1976)

36. Lynch, N.: Distributed Algorithms. Morgan Kaufmann Publishers, San Mateo
(1996)

37. Matias, Y., Afek, Y.: Simple and Efficient Election Algorithms for Anonymous
Networks. In: Bermond, J.-C., Raynal, M. (eds.) WDAG 1989. LNCS, vol. 392, pp.
183–194. Springer, Heidelberg (1989)

38. Nanongkai, D., Das Sarma, A., Pandurangan, G.: A tight unconditional lower
bound on distributed randomwalk computation. In: PODC, pp. 257–266 (2011)

39. Pandurangan, G., Khan, M.: Theory of communication networks. In: Algorithms
and Theory of Computation Handbook, 2nd edn. CRC Press (2009)

40. Pandurangan, G., Trehan, A.: Xheal: localized self-healing using expanders.
In: Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing, PODC 2011, pp. 301–310. ACM (2011),
http://doi.acm.org/10.1145/1993806.1993865

41. Peleg, D.: Distributed computing: a locality-sensitive approach. Society for Indus-
trial and Applied Mathematics, Philadelphia (2000)

42. Poor, R., Bowman, C., Auburn, C.B.: Self-healing networks. Queue 1, 52–59 (2003),
http://doi.acm.org/10.1145/846057.864027

43. Trehan, A.: Algorithms for self-healing networks. Dissertation, University of New
Mexico (2010)

http://doi.acm.org/10.1145/1993806.1993865
http://doi.acm.org/10.1145/846057.864027

Lower Bounds on Information Dissemination
in Dynamic Networks

Bernhard Haeupler1 and Fabian Kuhn2

1 Computer Science and Artificial Intelligence Lab, MIT, USA
haeupler@mit.edu

2 Dept. of Computer Science, University of Freiburg, Germany
kuhn@cs.uni-freiburg.de

Abstract. We study lower bounds on information dissemination in adversarial
dynamic networks. Initially, k pieces of information (henceforth called tokens)
are distributed among n nodes. The tokens need to be broadcast to all nodes
through a synchronous network in which the topology can change arbitrarily from
round to round provided that some connectivity requirements are satisfied.

If the network is guaranteed to be connected in every round and each node can
broadcast a single token per round to its neighbors, there is a simple token dissem-
ination algorithm that manages to deliver all k tokens to all the nodes in O(nk)
rounds. Interestingly, in a recent paper, Dutta et al. proved an almost matching
Ω(n + nk/ log n) lower bound for deterministic token-forwarding algorithms
that are not allowed to combine, split, or change tokens in any way. In the present
paper, we extend this bound in different ways.

If nodes are allowed to forward b ≤ k tokens instead of only one token in ev-
ery round, a straight-forward extension of the O(nk) algorithm disseminates all k
tokens in time O(nk/b). We show that for any randomized token-forwarding al-
gorithm, Ω(n+nk/(b2 log n log log n)) rounds are necessary. If nodes can only
send a single token per round, but we are guaranteed that the network graph is c-
vertex connected in every round, we show a lower bound of Ω(nk/(c log3/2 n)),
which almost matches the currently best O(nk/c) upper bound. Further, if the
network is T -interval connected, a notion that captures connection stability over
time, we prove that Ω(n + nk/(T 2 log n)) rounds are needed. The best known
upper bound in this case manages to solve the problem in O(n+ nk/T) rounds.
Finally, we show that even if each node only needs to obtain a δ-fraction of all
the tokens for some δ ∈ [0, 1], Ω(nkδ3/ log n) are still required.

1 Introduction

The growing abundance of (mobile) computation and communication devices creates a
rich potential for novel distributed systems and applications. Unlike classical networks,
often the resulting networks and applications are characterized by a high level of churn
and, especially in the case of mobile devices, a potentially constantly changing topol-
ogy. Traditionally, changes in a network have been studied as faults or as exceptional
events that have to be tolerated and possibly repaired. However, particularly in mobile
applications, dynamic networks are a typical case and distributed algorithms have to
properly work even under the assumption that the topology is constantly changing.

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 166–180, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Lower Bounds on Information Dissemination in Dynamic Networks 167

Consequently, in the last few years, there has been an increasing interest in dis-
tributed algorithms that run in dynamic systems. Specifically, a number of recent pa-
pers investigate the complexity of solving fundamental distributed computations and
information dissemination tasks in dynamic networks, e.g., [2–5, 8, 9, 19, 11, 16–18].
Particularly important in the context of this paper is the synchronous, adversarial dy-
namic network model defined in [16]. While the network consists of a fixed set of
participants V , the topology can change arbitrarily from round to round, subject to the
restriction that the network of each round needs to be connected or satisfy some stronger
connectivity requirement.

We study lower bounds on the problem of disseminating a bunch of tokens (mes-
sages) to all the nodes in a dynamic network as defined in [16].1 Initially k tokens are
placed at some nodes in the network. Time is divided into synchronous rounds, the net-
work graph of every round is connected, and in every round, each node can broadcast
one token to all its neighbors. If in addition, all nodes know the size of the network n,
we can use the following basic protocol to broadcast all k tokens to all the nodes. The
tokens are broadcast one after the other such that for each token during n − 1 rounds,
every node that knows about the token forwards it. Because in each round, there has to
be an edge between the nodes knowing the token and the nodes not knowing it, at least
one new node receives the token in every round and thus, after n− 1 rounds, all nodes
know the token. Assuming that only one token can be broadcast in a single message,
the algorithm requires k(n− 1) rounds to disseminate all k tokens to all the nodes.

Even though the described approach seems almost trivial, as long as we do not con-
sider protocols based on network coding, O(nk) is the best upper bound known.2 In
[16], a token-forwarding algorithm is defined as an algorithm that needs to forward
tokens as they are and is not allowed to combine or change tokens in any way. Note
that the algorithm above is a token-forwarding algorithm. In a recent paper, Dutta et al.
show that for deterministic token-forwarding algorithms, the described simple strategy
indeed cannot be significantly improved by showing a lower bound of Ω(nk/ logn)
rounds [9]. Their lower bound is based on the following observation. Assume that ini-
tially, every node receives every token for free with probability 1/2 (independently for
all nodes and tokens). Now, with high probability, whatever tokens the nodes decide to
broadcast in the next round, the adversary can always find a graph in which new tokens
are learned across at most O(log n) edges. Hence, in each round, at most O(log n) to-
kens are learned. Because also after randomly assigning tokens with probability 1/2,
overall still roughly nk/2 tokens are missing, the lower bound follows. We extend the
lower bound from [9] in various natural directions. Specifically, we make the contribu-
tions listed in the following. All our lower bounds hold for deterministic algorithms and
for randomized algorithms assuming a strongly adaptive adversary (cf. Section 3). Our
results are also summarized in Table 1 which is discussed in Section 2.

Multiple Tokens Per Round: Assume that instead of forwarding a single token per
round, each node is allowed to forward up to 1 < b ≤ k tokens in each round. In

1 To be in line with [16] and other previous work, we refer to the information pieces to be
disseminated in the network as tokens.

2 In fact, if tokens and thus also messages are restricted to a polylogarithmic number of bits,
even network coding does not seem to yield more than a polylog. improvement [10, 11].

168 B. Haeupler and F. Kuhn

the simple token-forwarding algorithm that we described above, we can then forward a
block of b tokens to every node in n − 1 rounds and we therefore get an O

(
nk
b

)
round

upper bound. We show that every (randomized) token-forwarding algorithm needs at
least Ω

(
n+ nk

b2 log n log logn

)
rounds.

Interval Connectivity: It is natural to assume that a dynamic network cannot change
arbitrarily from round to round and that some paths remain stable for a while. This is
formally captured by the notion of interval connectivity as defined in [16]. A network
is called T -interval connected for an integer parameter T ≥ 1 if for any T consecutive
rounds, there is a stable connected subgraph. It is shown in [16] that in a T -interval
connected dynamic network, k-token dissemination can be solved in O

(
n+ nk

T

)
rounds.

In this paper, we show that every (randomized) token-forwarding algorithm needs at
least Ω

(
n+ nk

T 2 log n

)
rounds.

Vertex Connectivity: If instead of merely requiring that the network is connected in
every round, we assume that the network is c-vertex connected in every round for some
c > 1, we can also obtain a speed-up. Because in a c-vertex connected graph, every
vertex cut has size at least c, if in a round all nodes that know a token t broadcast it, at
least c new nodes are reached. The basic token-forwarding algorithm thus leads to an
O
(
nk
c

)
upper bound. We prove this upper bound tight up to a small factor by showing

an Ω
(

nk
c log3/2 n

)
lower bound.

δ-Partial Token Dissemination: Finally we consider the basic model, but relax the
requirement on the problem by requiring that every node needs to obtain only a δ-
fraction of all the k tokens for some parameter δ ∈ [0, 1]. We show that even then, at
least Ω

(
nkδ3

logn

)
rounds are needed. This also has implications for algorithms that use

forward error correcting codes (FEC) to forward coded packets instead of tokens. We

show that such algorithms still need at least Ω
(
n + k

(
n

logn

)1/3)
rounds until every

node has received enough coded packets to decode all k tokens. Due to lack of space,
the discussion of partial token dissemination, as well as some of the easier proofs for
the other cases are deferred to the full version of the paper.

2 Related Work

As stated in the introduction, we use the network model introduced in [16]. That paper
studies the complexity of computing basic functions such as counting the number of
nodes in the network, as well as the cost the token dissemination problem that we in-
vestigate in the present paper. Previously, some basic results of the same kind were also
obtained in [19] for a similar network model.

The token dissemination problem as studied here is first considered in [16] in a
dynamic network setting. The paper gives a variant of the distributed O(nk) token-
forwarding algorithm for the case when the number of nodes n is not known. It is
also shown that T -interval connectivity and always c-vertex connectivity are interest-
ing parameters that speed up the solution by factors of Θ(T) and Θ(c), respectively. In
addition, [16] gives a first Ω(n log k) lower bound for token-forwarding algorithms in
the centralized setting we study in the present paper. That lower bound is substantially

Lower Bounds on Information Dissemination in Dynamic Networks 169

Table 1. Upper and lower bounds for token forwarding (TF) algorithms and network coding (NC)
based solutions (bounds in bold are proven in this paper). All TF algorithms are distributed and
deterministic while all lower bounds are for centralized randomized algorithms and a strongly
adaptive adversary. The NC algorithms work either in the distributed setting against a (standard)
adaptive adversary (1) or in the centralized setting against a strongly adaptive adversary (2).

TF Alg. [16] NC Alg. [10–12] TF Lower Bound

always connected nk
O(nk

log n
) (1) Ω(n log k) [16]

O(n+ k) (2) Ω(nk
log n

) [9]
T -interval conn.+ nk

T
(+,*)

≈ O(n+ nk
T2) (1,*)

Ω(nk
T2 logn

) (+)
T -stability∗ O(n+ k) (2)

always c-connected nk
c

O(nk
c logn

) (1) Ω(nk

c log3/2 n
)

O(n+k
c

) (2) Ω(nk
c2 log n

)

b-token packets nk
b

≈ O(nk
b2 log n

) (1)
Ω(nk

b2 logn log log n
)

O(n+ k
b
) (2)

δ-partial token diss. δnk
O(δnk

log n
) (1)

Ω(δ3nk
logn

)
O(n+ δk) (2)

improved in [9], where an almost tight Ω(nk/ logn) lower bound is proven. As the
lower bound from [9] is the basis of our results, we discuss it in detail in Section 4.1.

The fastest known algorithms for token dissemination in dynamic networks are based
on random linear network coding. There, tokens are understood as elements (or vectors)
of a finite field and in every round, every node broadcasts a random linear combination
of the information it possesses. In a centralized setting, the overhead for transmitting
the coefficients of the linear combination can be neglected. For this case, it is shown in
[10] that in always connected dynamic networks, k tokens can be disseminated in opti-
mal O(n+k) time. If messages are large enough to store b tokens, this bound improves
to again optimal O(n + k/b) time. It is also possible to extend these results to always
c-connected networks and to the partial token dissemination problem. Note that one
possible solution for δ-partial token dissemination is to solve regular token dissemina-
tion for only δk tokens. If the overhead for coefficients is not neglected, the best known
upper bounds are given in [11]. The best bounds for tokens of size O(log n), as well
as the upper and lower bounds for the other scenarios are listed in Table 1. The given
bound for always c-vertex connected networks is not proven in [11], it can however be
obtained with similar techniques. Note also that instead of T -interval connectivity, [11]
considers a somewhat stronger assumption called T -stability. In a T -stable network, the
network remains fixed for intervals of length T .

Apart from token dissemination and basic aggregation tasks, other problems have
been considered in the same or similar adversarial dynamic network models. In [17],
the problem of coordinating actions in time is studied for always connected dynamic
networks. In a recent paper, bounds on what can be achieved if the network is not
always connected are discussed in [8]. For a model where nodes know their neighbors
before communicating, [2] studies the time to do a random walk if the network can
change adversarially. Further, the problem of gradient clock synchronization has been
studied for an asynchronous variant of the model [14]. In addition, a number of papers

170 B. Haeupler and F. Kuhn

investigate a radio network variant of essentially the dynamic network model studied
here [1, 5, 15]. Another line of research looks at random dynamic networks that result
from some Markov process, e.g., [3, 6, 7]. Mostly these papers analyze the time required
to broadcast a single message in the network. For a more thorough discussion of related
work, we refer to a recent survey [18].

3 Model and Problem Definition

In this section we introduce the dynamic network model and the token dissemination
problem.

Dynamic Networks: We follow the dynamic network model of [16]: A dynamic
network consists of a fixed set V of n nodes and a dynamic edge set E : N →
2{{u,v}|u,v∈V }. Time is divided into synchronous rounds so that the network graph of
round r ≥ 1 is G(r) = (V,E(r)). We use the common assumption that round r starts
at time r − 1 and it ends at time r. In each round r, every node v ∈ V can send a
message to all its neighbors in G(r). Note that we assume that v has to send the same
message to all neighbors, i.e., communication is by local broadcast. Also, we assume
that at the beginning of a round r, when the messages are chosen, nodes are not aware
of their neighborhood in G(r). We typically assume that the message size is bounded
by the size of a fixed number of tokens.

We say that a dynamic network G = (V,E) is always c-vertex connected iff G(r) is
c-vertex connected for every round r. If a network G is always 1-vertex connected, we
also say that G is always connected. Further, we use the definition for interval connec-
tivity from [16]. A dynamic network is T -interval connected for an integer parameter
T ≥ 1 iff the graph

(
V,
⋂r+T−1

r′=r E(r′)
)

is connected for every r ≥ 1. Hence, a graph
is T -interval connected iff there is a stable connected subgraph for every T consecutive
rounds. Note we do not assume that nodes know the stable subgraph. Also note that a
dynamic graph is 1-interval connected iff it is always connected.

For our lower bound, we assume randomized algorithms and a strongly adaptive
adversary which can decide on the network G(r) of round r based on the complete
history of the network up to time r − 1 as well as on the messages the nodes send in
round r. Note that the adversary is stronger than the more typical adaptive adversary
where the graph G(r) of round r is independent of the random choices that the nodes
make in round r.

The Token Dissemination Problem: We prove lower bounds on the following token
dissemination problem. There are k tokens initially distributed among the nodes in the
network (for simplicity, we assume that k is at most polynomial in n). We consider
token-forwarding algorithms as defined in [16]. In each round, every node is allowed
to broadcast b ≥ 1 of the tokens it knows to all neighbors. Except for Section 4.2, we
assume that b = 1. No other information about tokens can be sent, so that a node u
knows exactly the tokens u kept initially and the tokens that were included in some
message u received. In addition, we also consider the δ-partial token dissemination
problem. Again, there are k tokens that are initially distributed among the nodes in the
network. But here, the requirement is weaker and we only demand that in the end, every
node knows a δ-fraction of the k tokens for some δ ∈ (0, 1].

Lower Bounds on Information Dissemination in Dynamic Networks 171

We prove our lower bounds for centralized algorithms where a central scheduler can
determine the messages sent by each node in a round r based on the initial state of all the
nodes before round r. Note that lower bounds obtained for such centralized algorithms
are stronger than lower bounds for distributed protocols where the message broadcast
by a node u in round r only depends on the initial state of u before round r.

4 Lower Bounds

4.1 General Technique and Basic Lower Bound Proof

We start our description of the lower bound by outlining the basic techniques and by
giving a slightly polished version of the lower bound proof by Dutta et al. [9]. For the
discussion here, we assume that in each round, each node is allowed to broadcast a
single token, i.e., b = 1.

In the following, we make the standard assumption that round r lasts from time r−1
to time r. For each node, we maintain two sets of tokens. For a time t ≥ 0 and a node
u, let Ku(t) be the set of tokens known by node u at time t. In addition the adversary
determines a token set K ′

u(t) for every node, where K ′
u(t) ⊆ K ′

u(t + 1) for all t ≥ 0.
The sets K ′

u(t) are constructed such that under the assumption that each node u knows
the tokens Ku(t)∪K ′

u(t) at time t, in round t+1, overall the nodes cannot learn many
new tokens. Specifically, we define a potential function Φ(t) as follows:

Φ(t) :=
∑
u∈V

|Ku(t) ∪K ′
u(t)| . (1)

Note that for the token dissemination problem to be completed at time T it is necessary
that Φ(T) = nk. Assume that at the beginning, the nodes know at most k/2 tokens on
average, i.e.,

∑
u∈V |Ku(0)| ≤ nk/2. For always connected dynamic graphs, we will

show that there exists a way to choose the K ′-sets such that
∑

u∈V |K ′
u(0)| < 0.3nk

and that for every choice of the algorithm, a simple greedy adversary can ensure that
the potential grows by at most O(log n) per round. We then have Φ(0) ≤ 0.8nk and
since the potential needs to grow to nk, we get an 0.2nk

O(logn) lower bound.
In each round r, for each node u, an algorithm can decide on a token to send. We

denote the token sent by node u in round r by iu(r) and we call the collection of pairs
(u, iu(r)) for nodes u ∈ V , the token assignment of round r. Note that because a node
can only broadcast a token it knows, iu(r) ∈ Ku(r − 1) needs to hold. However, for
most of the analysis, we do not make use of this fact and just consider all the k possible
pairs (u, iu(r)) for a node u.

If the graph G(r) of round r contains the edge {u, v}, u or v learns a new token if
iv(r) 	∈ Ku(r − 1) or if iu(r) 	∈ Kv(r − 1). Moreover, the edge {u, v} contributes to
an increase of the potential function Φ in round r if iv(r) 	∈ Ku(r− 1)∪K ′

u(r− 1) or
if iu(r) 	∈ Kv(r − 1) ∪K ′

v(r − 1). We call an edge e = {u, v} free in round r iff the
edge does not contribute to the potential difference Φ(r) − Φ(r − 1). In particular, this
implies that an edge is free if(

iu(r) ∈ K ′
v(r − 1) ∧ iv(r) ∈ K ′

u(r − 1)
)
∨
(
iu(r) = iv(r)

)
. (2)

172 B. Haeupler and F. Kuhn

To construct the K ′-sets we use the probabilistic method. More specifically, for every
token i and all nodes u, we independently put i ∈ K ′

u(0) with probability p = 1/4. The
following lemma shows that then only a small number of non-free edges are required
in every graph G(r).

Lemma 1 (adapted from [9]). If each set K ′
u(0) contains each token i independently

with probability p = 1/4, for every round r and every token assignment {(u, iu(r))},
the graph F (r) induced by all free edges in round r has at most O(log n) components
with probability at least 3/4.

Proof. Assume that the graph F (r) has at least s components for some s ≥ 1. F (r)
then needs to have an independent set of size s, i.e., there needs to be a set S ⊆ V of
size |S| ≥ s such that for all u, v ∈ S, the edge {u, v} is not free in round r. Using (2)
and the fact that K ′

u(0) ⊆ K ′
u(t) for all u and t ≥ 0, an edge {u, v} is free in round r

if iu(r) ∈ K ′
v(0) and iv(r) ∈ K ′

u(0) or if iu(r) = iv(r).
To argue that s is always small we use a union bound over all

(
n
s

)
< ns ways to

choose a set of s nodes and all at most ks ways to choose the tokens to be sent out
by these nodes. Note that since two nodes sending out the same token induce a free
edge, all tokens sent out by nodes in S have to be distinct. Furthermore, for any pair
of nodes u, v ∈ S there is a probability of exactly p2 for the edge {u, v} to be free
and this probability is independent for any pair u′, v′ with {u′, v′} 	= {u, v} because
nodes in S send distinct tokens. The probability that all

(
s
2

)
> s2/4 node pairs of S are

non-free is thus exactly (1−p2)(
s
2) < e−p2s2/4. If s = 12p−2 lnnk > 4p−2(lnnk+2)

(assuming ln(nk) > 1), the union bound (nk)se−p2s2/4 is less than 1/4 as desired.
This shows that there is a way to choose the sets K ′

u(0) such that the greedy adversary
always chooses a topology in which the graph F (r) induced by all free edges has at
most 2s ≤ 24p−2 lnnk = O(log n) components. ��

Based on Lemma 1, the lower bound from [9] now follows almost immediately.

Theorem 1. In an always connected dynamic network with k tokens in which nodes ini-
tially know at most k/2 tokens on average, any centralized token-forwarding algorithm
takes at least Ω

(
nk

logn

)
rounds to disseminate all tokens to all nodes.

4.2 Sending Multiple Tokens Per Round

In this section we show that it is possible to extend the lower bound to the case where
nodes can send out b > 1 tokens in each round. Note that it is a priori not clear that
this can be done as for instance the related Ω(n log k) lower bound of [16] breaks down
completely if nodes are allowed to send two instead of one tokens in each round.

In order to prove a lower bound for b > 1, we generalize the notion of free edges.
Let us first consider a token assignment for the case b > 1. Instead of sending a single
token iu(r), each node u now broadcasts a set Iu(r) of at most b tokens in every round
r. Analogously to before, we call the collection of pairs

(
u, Iu(r)

)
for u ∈ V , the to-

ken assignment of round r. We define the weight of an edge in round r as the amount the

Lower Bounds on Information Dissemination in Dynamic Networks 173

edge contributes to the potential function growth in round r. Hence, the weight w(e) of
an edge e = {u, v} is defined as

w(e) := |Iv(r) \ (Ku(r−1) ∪K ′
u(r−1))|+ |Iu(r) \ (Kv(r−1) ∪K ′

v(r−1))| . (3)

As before, we call an edge e with weight w(e) = 0 free. Given the edge weights and the
potential function as in Section 4.1, a simple possible strategy of the adversary works
as follows. In each round, the adversary connects the nodes using an MST w.r.t. the
weights w(e) for all e ∈

(
V
2

)
. The total increase of the potential function is then upper

bounded by the weight of the MST.
For the MST to contain � or more edges of weight at least w, there needs to be set

S of � + 1 nodes such that the weight of every edge {u, v} for u, v ∈ S is at least
w. The following lemma bounds the probability for this to happen, assuming that the
K ′-sets are chosen randomly such that every token i is contained in every set K ′

u(0)
with probability p = 1− ε/(4eb) for some constant ε > 0.

Lemma 2. Assume that each set K ′
u(0) contains each token independently with prob-

ability 1 − ε/(4eb). Then, for every token assignment (u, Iu(r)), there exists a set S
of size � + 1 such that all edges connecting nodes in S have weight at least w with
probability at most

exp

(
(�+ 1) ·

(
lnn+ b lnk + �+ 1− �w

12
ln
(w
ε

)))
.

Proof. Consider an arbitrary (but fixed) set of nodes v0, . . . , v� and a set of token sets
T0, . . . , T� (we assume that the token assignment contains the � + 1 pairs (vi, Ti)).
We define Ei to be the event that

∣∣⋃
j �=i Tj \ K ′

vi(0)
∣∣ > �w/4. Note that whenever

|Kvi ∪K ′
vi | grows by more than �w/4, the event Ei definitely happens. In order to have

|Tj \K ′
vi(0)| + |Ti \ K ′

vj (0)| ≥ w for each i 	= j, at least (� + 1)/3 of the events Ei
need to occur. Hence, for all edges {vi, vj}, i, j ∈ {0, . . . , �}, to have weight at least
w, at least (� + 1)/3 of the events Ei have to happen. As the event Ei only depends
on the randomness used to determine K ′

vi(0), events Ei for different i are independent.
The number of events Ei that occur is thus dominated by a binomial random variable
Bin
(
�+1,maxi P[Ei]

)
variable with parameters �+1 and maxi P[Ei]. The probability

P[Ei] for each i can be bounded as follows:

P[Ei] ≤
(

�b

�w/4

)
·
(ε

4eb

)�w/4

≤
(
4e�b

�w

)�w/4

·
(ε

4eb

)�w/4

=
(ε

w

)�w/4

.

Let X be the number of events Ei that occur. We have

P

[
X ≥ �+ 1

3

]
≤
(

�+ 1

(�+ 1)/3

)
·
(ε

w

) �w
4 · �+1

3 ≤ 2�+1 ·
(ε

w

) �w
4 · �+1

3

.

The number of possible ways to choose �+1 nodes and assign a set of b tokens to each
node is (

n

�+ 1

)
·
(
k

b

)�+1

≤
(
nkb
)�+1

.

174 B. Haeupler and F. Kuhn

The claim of the lemma now follows by applying a union bound over all possible
choices v0, . . . , v� and T0, . . . , T�. ��

Based on Lemma 2, we obtain the following theorem.

Theorem 2. On always connected dynamic networks with k tokens in which nodes
initially know at most k/2 tokens on average, every centralized randomized token-
forwarding algorithm requires at least

Ω

(
nk

(log n+ b log k)b log log b

)
≥ Ω

(
nk

b2 logn log log n

)
rounds to disseminate all tokens to all nodes.

Proof. For wi = 2i, let �i + 1 be the size of the largest set Si, such that that edge
between any two nodes u, v ∈ Si has weight at least wi. Hence, in the MST, there are
at most �i edges with weight between wi and 2wi. The amount by which the potential
function Φ increases in round r can then be upper bounded by

log b∑
i=0

2wi · �i =
log b∑
i=0

2i+1 · �i.

By Lemma 2 (and a union bound over the log b different wi), for a sufficiently small
constant ε > 0,

�i = O

(
logn+ b log k

wi logwi

)
= O

(
logn+ b log k

2i · i

)
with high probability. The number of tokens learned in each round can thus be bounded
by

log b∑
i=0

O

(
logn+ b log k

i

)
= O

(
(log n+ b log k) log log b

)
.

By a standard Chernoff bound, with high probability, the initial potential is of the order
1 − Θ(nk/b). Therefore to disseminate all tokens to all nodes, the potential has to
increase by Θ(nk/b) and the claim follows. ��

4.3 Interval Connected Dynamic Networks

While allowing that the network can change arbitrarily from round to round is a clean
and useful theoretical model, from a practical point of view it might make sense to look
at dynamic graphs that are a bit more stable. In particular, some connections and paths
might remain reliable over some period of time. In [16], token dissemination and the
other problems considered are studied in the context of T -interval connected graphs. For
T large enough, sufficiently many paths remain stable for T rounds so that it is possible
to use pipelining along the stable paths to disseminate tokens significantly faster (note
that this is possible even though the nodes do not know which edges are stable). In the
following, we show that the lower bound described in Section 4.1 can also be extended
to T -interval connected networks.

Lower Bounds on Information Dissemination in Dynamic Networks 175

Theorem 3. On T -interval connected dynamic networks in which nodes initially know
at most k/2 of k tokens on average, every randomized token-forwarding algorithm re-
quires at least

Ω

(
nk

T (T log k + logn)

)
≥ Ω

(
nk

T 2 logn

)
rounds to disseminate all tokens to all nodes.

Proof. We assume that each of the sets K ′
u(0) independently contains each of the k

tokens with probability p = 1− ε/T for a sufficiently small constant ε > 0. As before,
we let iu(r) be the token broadcast by node u in round r and call the set of pairs
(u, iu(r)) the token assignment of round r. In the analysis, we will also make use of
token assignments of the form T = {(u, Iu) : u ∈ V }, where Iu is a set of tokens sent
by some node u.

Given a token assignment T = {(u, Iu)}, as in the previous subsection, an edge
{u, v} is free in particular if Iu ⊆ K ′

v(0) ∧ Iv ⊆ K ′
u(0). Let ET be the free edges

w.r.t. a given token assignment T . Further, we define ST = {ST ,1, . . . , ST ,�} to be the
partition of V induced by the components of the graph (V,ET).

Consider a sequence of 2T consecutive rounds r1, . . . , r2T . For a node vj and round
ri, i ∈ [2T], let Ii,j :=

{
ivj (r1), . . . , ivj(ri)

}
be the set of tokens transmitted by node

vj in rounds r1, . . . , ri and let Ti := {(v1, Ii,1), . . . , (vn, Ii,n)}. As above, let ETi be
the free edges for the token assignment Ti and let STi be the partition of V induced by
the components of the graph (V,ETi). Note that for j > i, ETj ⊆ ETi and STj is a
sub-division of STi .

We construct edge sets E1, . . . , E2T as follows. The set E1 contains |ST1 | − 1 edges
to connect the components of the graph (V,ET1). For i > 1, the edge set Ei is chosen
such that Ei ⊆ ETi−1 , |Ei| = |STi | − |STi−1 |, and the graph (V,ETi ∪ E1 ∪ · · · ∪ Ei)
is connected. Note that such a set Ei exists by induction on i and because STi is a
sub-division of STi−1 .

For convenience, we define E{r1,...,ri} := E1 ∪ · · · ∪Ei. By the above construction,
the number of edges in E{r1,...,ri} is |STi |−1, where |STi | is the number of components
of the graph (V,ETi). Because in each round, every node transmits only one token, the
number of tokens in each Ii,j ∈ Ti is at most |Ii,j | ≤ i ≤ 2T . By Lemma 2, if the
constant ε is chosen small enough, the number of components of (V,ET) and therefore
the size of E{r1,...,ri} is upper bounded by |ST | ≤ logn+ T log k, w.h.p.

We construct the dynamic graph as follows. For simplicity, assume that the first round
of the execution is round 0. Consider some round r and let r0 be the largest round
number such that r0 ≤ r and r0 ≡ 0 (mod T). The edge set in round i consists of the
the free edges in round i, as well as of the sets Ei0−T,...,i and Ei0,...,i. The resulting
dynamic graph is T -interval-connected. Furthermore, the number of non-free edges in
each round is O(log n+ T log k). Because in each round, at most 2 tokens are learned
over each non-free edge, the theorem follows. ��

4.4 Vertex Connectivity

Rather than requiring more connectivity over time, we now consider the case when
the network is better connected in every round. If the network is c-vertex connected for

176 B. Haeupler and F. Kuhn

some c > 1, in every round, each set of nodes can potentially reach c other nodes (rather
than just 1). In [16], it is shown that for the basic greedy token forwarding algorithm,
one indeed gains a factor of Θ(c) if the network is c-vertex connected in every round.
We first need to state two general facts about vertex connected graphs and a basic result
about weighted sums of Bernoulli random variables.

Proposition 1. If in a graph G there exists a vertex v with degree at least c such that
G− {v} is c-vertex connected then G is also c-vertex connected.

By specializing a much more powerful result of [13], we can characterize the minimum
number of edges needed to augment a graph to be c-vertex connected.

Lemma 3. For c, any n-node graph G = (V,E) with minimum degree at least 2c− 2
can be augmented by n edges to be c-vertex connected.

Lemma 4. For some c let �1, �2, . . . , �τ be positive integers with � =
∑

i �i > c. Fur-
thermore, let X1, X2, . . . , Xτ be i.i.d. Bernoulli variables with P[Xi = 1] = P[Xi =
0] = 1/2 for all i. For any integer x > 1 it holds that:

P

⎡⎣min

⎧⎨⎩|L| : L ⊆ [τ] ∧
∑

i∈{j|Xj=1}∪L

�i ≥ c

⎫⎬⎭ > x

⎤⎦ < 2−Θ(x�
c
).

That is, the probability that x of the random variables need to be switched to one after
a random assignment in order get

∑
iXi�i ≥ c is at most 2−Θ(x�

c).

To prove our lower bound for always c-connected graph, we initialize the K ′-sets as for
always connected graphs, i.e., each token i is contained in every set K ′

u(0) with constant
probability p (we assume p = 1/2 in the following). In each round, the adversary picks
a c-connected graph with as few free edges as possible. Using Lemmas 1 and 3, we will
show that a graph with a small number of non-free edges can be constructed as follows.
First, as long as we can, we pick vertices with at least c neighbors among the remaining
nodes. We then show how to extend the resulting graph to a c-connected graph.

Lemma 5. With high probability (over the choices of the sets K ′
u(0)), for every to-

ken assignment (u, Iu(r)), the largest set S for which no node u ∈ S has at least c
neighbors in S is of size O(c log n).

Proof. Consider some round r with token assignment
{(

u, iu(r)
)}

. We need to show
that for any set S of size s = αc log n for a sufficiently large constant α, at least one
node in S has at least c free neighbors in S (i.e., the largest degree of the graph induced
by the free edges between nodes in S is at least c).

We will use a union bound over all ns sets S and all ks possibilities for selecting the
tokens sent by these nodes. We want to show that if the constant α is chosen sufficiently
large, for each of these 2s lognk possibilities we have a success probability of at least
1− 2−2s lognk.

Lower Bounds on Information Dissemination in Dynamic Networks 177

We first partition the nodes in S according to the token sent out, i.e., Si is the subset
of nodes sending out token i. Note that if for some j we have Sj > c we are done since
all edges between nodes sending the same token are free. With this, let j∗ be such that∑

i<j∗ |Si| ≥ s/3 and
∑

i>j∗ |Si| ≥ s/3. We now claim that for every j < j∗, with

probability at most 2−6|Sj| lognk, there does not exist a node in Sj that has at least c free
edges to nodes in S′ =

⋃
i>j∗ Sj . Note that the events that a node from Sj has at least

c free edges to nodes in S′ are independent for different j as it only depends on which
nodes u in S′ have j in K ′

u(0) and on the K ′(0)-sets of the nodes in Sj . The claim that
we have a node with degree c in S with probability at least 1− 2−2s lognk then follows
from the definition of j∗.

Let us therefore consider a fixed value j. We first note that for a fixed j by standard
Chernoff bounds with probability at least 1 − 2−Θ(s), there at least s/3 · p/2 = s/12
nodes in S′ that have token j in their initial K ′-set. For α sufficiently large, this prob-
ability is at least 1 − 2−7c lognk ≥ 1 − 2−7|Sj| lognk. In the following, we assume that
there are at least s/12 nodes u in S′ for which j ∈ K ′

u(0).
Let sj,i for any i > j∗ denote the number of nodes in Si that have token j in the initial

K ′-set. The number of free edges to a node u in Sj is at least
∑

i>j∗ Xu,isi,j , where
the random variable Xu,i is 1 if node u initially has token i in K ′

u(0) and 0 otherwise
(i.e., Xu,i is a Bernoulli variable with parameter 1/2). Note that since

∑
i sj, i ≥ s/12,

the expected value of the number of free edges to a node u in Sj is at least s/24. By a
Chernoff bound, the probability that the number of free edges from a node u in Sj does
not deviate by more than a constant factor with probability 1−2−Θ(s/c). Note that sj,i ≤
c since |Sj | ≤ c. For α large enough this probability is at least 1 − 2−7 log nk. Because
the probability bound only depends on the choice of K ′

u(0), we have independence
for different u ∈ Sj . Therefore, given that at least s/12 nodes in S′ have token j, the
probability that no node in Sj has at least c neighbors in S′ can be upper bounded as(
1− 2−7|Sj| log nk

)
. Together with the bound on the probability that at least s/12 nodes

in S′ have token j in their K ′(0) set, the claim of the lemma follows. ��

Lemma 5 by itself directly leads to a lower bound for token forwarding algorithms in
always c-vertex connected graphs.

Corollary 1. Suppose an always c-vertex connected dynamic network with k tokens
in which nodes initially know at most a constant fraction of the tokens on average.
Then, any centralized token-forwarding algorithm takes at least Ω

(
nk

c2 logn

)
rounds to

disseminate all tokens to all nodes.

Proof. By Lemma 5, we know that there exists K ′(0)-sets such that for every token
assignment after adding all free edges, the size of the largest induced subgraph with
maximum degree less than c is O(c log n). By Lemma 1, it suffices to make the graph
induced by these O(c log n) nodes c-vertex connected to have a c-vertex connected
graph on all n nodes. To achieve this, by Lemma 3, it suffices to increase all degrees to
2c−2 and add anotherO(c log n) edges. Overall, the number of non-free edges we have
to add for this is therefore upper bounded by O(c2 logn). Hence, the potential function
increases by at most O(c2 logn) per round and since we can choose the K ′(0)-sets so
that initially the potential is at most λnk for a constant λ < 1, the bound follows. ��

178 B. Haeupler and F. Kuhn

As shown in the following, by using a more careful analysis, we can significantly im-
prove this lower bound for c = ω(logn). Note that the bound given by the following
theorem is at most an O(log3/2 n) factor away from the simple “greedy” upper bound.

Theorem 4. Suppose an always c-vertex connected dynamic network with k tokens
in which nodes initially know at most a constant fraction of the tokens on average.
Then, any centralized token-forwarding algorithm takes at least Ω

(
nk

c log3/2 n

)
rounds to

disseminate all tokens to all nodes.

Proof. We use the same construction as in Lemma 5 to obtain a set S of size |S| = s =
αc logn for a sufficiently large constant α > 0 such that S needs to be augmented to a
c-connected graph. Note that we want the set to be of size s and therefore we do not as-
sume that in the induced subgraph, every node has degree less than c. We improve upon
Lemma 5 by showing that it is possible to increase the potential function by adding a
few more tokens to the K ′-sets, so that afterwards it is sufficient to add O(s) additional
non-free edges to S to make the induced subgraph c-vertex connected. Hence, an im-
portant difference is that are not counting the number of edges that we need to add but
the number of tokens we need to give away (i.e., add to the existing K ′-sets).

We first argue that w.h.p., it is possible to raise the minimum degree of vertices in
the induced subgraph of S to 2c without increasing the potential function by too much.
Then we invoke Lemma 3 and get that at most O(s) more edges are then needed to
make S induce a c-connected graph as desired.

We partition the nodes in S according to the token sent out in the same way as in
the proof of Lemma 5, i.e., Si is the subset of nodes sending out token i. Let us first
assume that no set Si contains more than s/3 nodes. We can then divide the sets of the
partition into two parts with at least s/3 nodes each. To argue about the sets, we rename
the tokens sent out by nodes in S as 1, 2, . . . so that we can find a token j∗ for which∑j∗

j=1 |Sj | ≥ s/3 and
∑

j>j∗ |Sj | ≥ s/3. We call the sets Sj for j ≤ j∗ the left side of
S and the sets Sj for j > j∗ the right side of S. If there is a set Si with |Si| > s/3, we
define Si to be the right side and all other sets Sj to be the left side of S. We will show
that we can increase the potential function by at most O(s

√
logn) = O(c log3/2 n)

such that all the nodes on the left side have at least 2c neighbors on the right side. If all
sets Si are of size at most s/3, increasing the degrees of the nodes on the right side is
then done symmetrically. If the right side consists of a single set Si of size at least s/3,
for α large enough we have s/3 ≥ 2c+ 1 and therefore nodes on the right side already
have degree at least 2c by just using free edges.

We start out by adding some tokens to the sets K ′
u for nodes u on the right side such

that for every token j ≤ j∗ on the left side, there are at least s/
√
logn nodes u on

the right side for which j ∈ K ′
u. Let us consider some fixed token j ≤ j∗ from the

left side. Because every node u on the right side has j ∈ K ′
u(0) with probability 1/2,

with probability at least 1 − 2−Θ(s), at least s/
√
logn nodes u on the right side have

j ∈ K ′
u(0). For such a token j, we do not need to do anything. Note that the events that

j ∈ K ′
u(0) are independent for different j on the left side. Therefore, for a sufficiently

large constant β and a fixed collection of β logn tokens j sent by nodes on the left side,
the probability that none of these tokens is in at least s/

√
logn sets K ′

u(0) for u on the

Lower Bounds on Information Dissemination in Dynamic Networks 179

right side is at most 2−γs logn for a given constant γ > 0. As there are at most s tokens
sent by nodes on the left side, the number of collections of β logn tokens is at most(

s

β logn

)
≤
(

es

β logn

)β logn

=

(
eαc

β

)β logn

= 2Θ(log c logn),

which is less than 2s logn for sufficiently large α. Hence, with probability at least 1 −
2−(γ−1)s logn, for at most β logn tokens j on the left side there are less than s/

√
logn

nodes u on the right that have j ∈ K ′
u(0). For these O(log n) tokens j, we add to j

to K ′
u for at most s/

√
logn nodes u on the right side, such that afterwards, for every

token j sent by a node on the left side, there are at least s/
√
logn nodes u on the

right for which j ∈ K ′
u. Note that this increases the potential function by at most

O(s
√
logn) = O(c log3/2 n).

We next show that by adding anotherO(c log3/2 n) tokens to the K ′-sets of the nodes
on the left side, we manage to get that every node u on the left side has at least 2c free
neighbors on the right side. For a token j ≤ j∗ sent by some node on the left side and a
token i > j∗ sent by some node on the right side, let si,j be the number of nodes u ∈ Si

for which j ∈ K ′
u. Note that if token i is in K ′

v for some v ∈ Sj , v has si,j neighbors
in Si.

Using the augmentation of the K ′
u-sets for nodes on the right, we have that for every

j ≤ j∗,
∑

i>j∗ si,j ≥ s/
√
logn. For every i > j∗, with probability 1/2, we have

i ∈ K ′
v(0). In addition, we add tokens additional i to K ′

v for which i 	∈ K ′
v(0) such

that in the end,
∑

i>j∗,i∈K′
v
si,j ≥ 2c. By Lemma 4, the probability that we need to add

≥ x tokens is upper bounded by 2−Θ(xs/(c
√
logn)) = 2−Θ(x

√
logn). As the number

of tokens we need to add to K ′
v is independent for different v, in total we need to add

at most O
(
s logn√
log n

)
= O(c log3/2 n) tokens with probability at least 1 − 2−(γ−1)s logn.

Note that this is still true after a union bound over all the possible ways to distributed
the O(c log3/2 n) tokens among the ≤ s nodes. Using Lemma 3, we then have to add
at most O(s) = O(c log n) additional non-free edges to make the graph induced by S
c-vertex connected.

There are at most ns = 2s log n ways to choose the set S and ks = 2O(s log n) ways to
assign tokens to the nodes in S. Hence, if we choose γ sufficiently large, the probability
that we need to increase the potential by at mostO(c log3/2 n) for all sets S and all token
assignments is positive. The theorem now follows as in the previous lower bounds (e.g.,
as in the proof of Theorem 1). ��

Acknowledgments. We would like to thank Chinmoy Dutta, Gopal Pandurangan, Ra-
jmohan Rajaraman, and Zhifeng Sun for helpful discussions and for sharing their work
at an early stage.

References

1. Anta, A.F., Milani, A., Mosteiro, M.A., Zaks, S.: Opportunistic Information Dissemination
in Mobile Ad-hoc Networks: The Profit of Global Synchrony. In: Lynch, N.A., Shvartsman,
A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 374–388. Springer, Heidelberg (2010)

180 B. Haeupler and F. Kuhn

2. Avin, C., Koucký, M., Lotker, Z.: How to Explore a Fast-Changing World (Cover Time of
a Simple Random Walk on Evolving Graphs). In: Aceto, L., Damgård, I., Goldberg, L.A.,
Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008, Part I. LNCS,
vol. 5125, pp. 121–132. Springer, Heidelberg (2008)

3. Baumann, H., Crescenzi, P., Fraigniaud, P.: Parsimonious flooding in dynamic graphs. In:
Proc. 28th ACM Symp. on Principles of Distributed Computing (PODC), pp. 260–269
(2009)

4. Clementi, A., Macci, C., Monti, A., Pasquale, F., Silvestri, R.: Flooding time in edge-
markovian dynamic graphs. In: Proc. of 27th ACM Symp. on Principles of Distributed Com-
puting (PODC), pp. 213–222 (2008)

5. Clementi, A., Monti, A., Pasquale, F., Silvestri, R.: Broadcasting in dynamic radio networks.
Journal of Computer and System Sciences 75(4), 213–230 (2009)

6. Clementi, A., Pasquale, F., Monti, A., Silvestri, R.: Information spreading in stationary
markovian evolving graphs. In: Proc. of IEEE Symp. on Parallel & Distributed Processing,
IPDPS (2009)

7. Clementi, A., Silvestri, R., Trevisan, L.: Information spreading in dynamic graphs. In: Proc.
31st Symp. on Principles of Distributed Computing, PODC (2012)

8. Cornejo, A., Gilbert, S., Newport, C.: Aggregation in dynamic networks. In: Proc. 31st
Symp. on Principles of Distributed Computing, PODC (2012)

9. Dutta, C., Pandurangan, G., Rajaraman, R., Sun, Z.: Information spreading in dynamic net-
works. CoRR, abs/1112.0384 (2011)

10. Haeupler, B.: Analyzing network coding gossip made easy. In: Proc. 43nd Symp. on Theory
of Computing (STOC), pp. 293–302 (2011)

11. Haeupler, B., Karger, D.: Faster information dissemination in dynamic networks via network
coding. In: Proc. 30th Symp. on Principles of Distributed Computing (PODC), pp. 381–390
(2011)

12. Haeupler, B., Médard, M.: One packet suffices - highly efficient packetized network coding
with finite memory. In: 2011 IEEE International Symposium on Information Theory Pro-
ceedings (ISIT), pp. 1151–1155 (2011)

13. Jackson, B., Jordán, T.: Independence free graphs and vertex connectivity augmentation.
Journal of Combinatorial Theory, Series B 94(1), 31–77 (2005)

14. Kuhn, F., Lenzen, C., Locher, T., Oshman, R.: Optimal gradient clock synchronization in
dynamic networks. In: Proc. of 29th ACM Symp. on Principles of Distributed Computing
(PODC), pp. 430–439 (2010)

15. Kuhn, F., Lynch, N., Newport, C., Oshman, R., Richa, A.: Broadcasting in unreliable radio
networks. In: Proc. of 29th ACM Symp. on Principles of Distributed Computing (PODC),
pp. 336–345 (2010)

16. Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic networks. In: Proc.
42nd Symp. on Theory of Computing (STOC), pp. 557–570 (2010)

17. Kuhn, F., Moses, Y., Oshman, R.: Coordinated consensus in dynamic networks. In: Proc.
30th Symp. on Principles of Distributed Computing (PODC), pp. 1–10 (2011)

18. Kuhn, F., Oshman, R.: Dynamic networks: Models and algorithms. SIGACT News 42(1),
82–96 (2011)

19. O’Dell, R., Wattenhofer, R.: Information dissemination in highly dynamic graphs. In: Proc.
of Workshop on Foundations of Mobile Computing (DIALM-POMC), pp. 104–110 (2005)

No Sublogarithmic-Time Approximation Scheme

for Bipartite Vertex Cover

Mika Göös and Jukka Suomela

Helsinki Institute for Information Technology HIIT,
Department of Computer Science, University of Helsinki, Finland

{mika.goos,jukka.suomela}@cs.helsinki.fi

Abstract. König’s theorem states that on bipartite graphs the size of
a maximum matching equals the size of a minimum vertex cover. It is
known from prior work that for every ε > 0 there exists a constant-
time distributed algorithm that finds a (1+ ε)-approximation of a maxi-
mum matching on 2-coloured graphs of bounded degree. In this work, we
show—somewhat surprisingly—that no sublogarithmic-time approxima-
tion scheme exists for the dual problem: there is a constant δ > 0 so that
no randomised distributed algorithm with running time o(log n) can find
a (1+ δ)-approximation of a minimum vertex cover on 2-coloured graphs
of maximum degree 3. In fact, a simple application of the Linial–Saks
(1993) decomposition demonstrates that this lower bound is tight.

Our lower-bound construction is simple and, to some extent, inde-
pendent of previous techniques. Along the way we prove that a certain
cut minimisation problem, which might be of independent interest, is
hard to approximate locally on expander graphs.

1 Introduction

Many graph optimisation problems do not admit an exact solution by a fast dis-
tributed algorithm. This is true not only for most NP-hard optimisation prob-
lems, but also for problems that can be solved using sequential polynomial-time
algorithms. This work is a contribution to the distributed approximability of such
a problem: the minimum vertex cover problem on bipartite graphs—we call it
2-VC, for short.

Our focus is on negative results: We prove an optimal (up to constants) time
lower bound Ω(log n) for a randomised distributed algorithm to find a close-to-
optimal vertex cover on bipartite 2-coloured graphs of maximum degree Δ = 3.
In particular, this rules out the existence of a sublogarithmic-time approximation
scheme for 2-VC on sparse graphs.

Our lower bound result exhibits the following features:

– The proof is relatively simple as compared to the strength of the result; this
is achieved through an application of expander graphs in the lower-bound
construction.

– To explain the source of hardness for 2-VC we introduce a certain distributed
cut minimisation problem, which might have applications elsewhere.

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 181–194, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

182 M. Göös and J. Suomela

– Many previous distributed inapproximability results are based on the hard-
ness of local symmetry breaking. This is not the case here: the difficulty we
pinpoint for 2-VC is in the semi-global task of gluing together two different
types of local solutions.

– Our result states that König’s theorem is non-local—see Sect. 1.3.

1.1 The LOCAL Model

We work in the standard LOCAL model of distributed computing [10,17]. As
input we are given an undirected graph G = (V,E). We interpret G as defin-
ing a communication network: the nodes V host processors, and two proces-
sors can communicate directly if they are connected by an edge. All nodes
run the same distributed algorithm A. The computation of A on G starts out
with every node v ∈ V knowing an upper bound on n = |V | and possessing
a globally unique O(log n)-bit identifier ID(v); for simplicity, we assume that
V ⊆ {1, 2, . . . , poly(n)} and ID(v) = v. Also, we assume that the processors
have access to independent (and unlimited) sources of randomness. The compu-
tation proceeds in synchronous communication rounds. In each round, all nodes
first perform some local computations and then exchange (unbounded) messages
with their neighbours. After some r communication rounds the nodes stop and
produce local outputs. Here r is the running time of A and the output of v is
denoted A(G, v).

The fundamental limitation of a distributed algorithm with running time r
is that the output A(G, v) can only depend on the information available in the
subgraph G[v, r] ⊆ G induced on the vertices in the radius-r neighbourhood ball

BG(v, r) = {u ∈ V : distG(v, u) ≤ r}.

Conversely, it is well known that an algorithm A can essentially discover the
structure of G[v, r] in time r. Thus, A can be thought of as a function mapping
r-neighbourhoods G[v, r] (together with the additional input labels and random
bits on BG(v, r)) to outputs.

While the LOCAL model abstracts away issues of network congestion and
asynchrony, this only makes our lower-bound result stronger.

1.2 Our Result

Below, we concentrate on bipartite 2-coloured graphs G. That is, G is not only
bipartite (which is a global property), but every node v is informed of the bipar-
tition by an additional input label c(v), where c : V → {white, black} is a proper
2-colouring of G.

Definition 1. In the 2-VC problem we are given a 2-coloured graph G = (G, c)
and the objective is to output a minimum-size vertex cover of G.

A distributed algorithm A computes a vertex cover by outputting a single bit
A(G, v) ∈ {0, 1} on a node v indicating whether v is included in the solution.

No Sublogarithmic-Time Approximation Scheme for Bipartite Vertex Cover 183

This way, A computes the set A(G) := {v ∈ V : A(G, v) = 1}. Moreover, we
say that A computes an α-approximation of 2-VC if A(G) is a vertex cover of
G and

|A(G)| ≤ α ·OPTG,

where OPTG denotes the size of a minimum vertex cover of G.
Our main result is the following.

Theorem 1. There exists a δ > 0 such that no randomised distributed algorithm
with running time o(log n) can find a (1 + δ)-approximation of 2-VC on graphs
of maximum degree Δ = 3.

A matching time upper bound follows directly from the well-known network
decomposition algorithm due to Linial and Saks [11].

Theorem 2. For every ε > 0 a (1+ ε)-approximation of 2-VC can be computed
with high probability in time O(ε−1 logn) on graphs of maximum degree Δ =
O(1).

Proof. The subroutine Construct Block in the algorithm of Linial and Saks [11]
computes, in time r = O(ε−1 logn), a set S ⊆ V with the following properties.
Each component in the subgraph G[S] induced by S has weak diameter at most
r, i.e., distG(u, v) ≤ r for each pair u, v ∈ S belonging to the same component
of G[S]. Moreover, they prove that, w.h.p.,

|S| ≥ (1− ε)n.

Let C be a component of G[S]. Every node of C can discover the structure
of C in time O(r) by exploiting its weak diameter. Thus, every node of C can
internally compute the same optimal solution of 2-VC on C. We can then output
as a vertex cover for G the union of the optimal solutions at the components
together with the vertices V � S. This results in a solution of size at most

OPTG[S] + εn ≤ OPTG + εn.

But since OPTG ≥ |E|/Δ = Ω(n) for connected G, this is a (1 +O(ε))-approxi-
mation of 2-VC. ��

1.3 König Duality

The classic theorem of König (see, e.g., Diestel [3, §2.1]) states that, on bipartite
graphs, the size of a maximum matching equals the size of a minimum vertex
cover. A modern perspective is to view this result through the lens of linear pro-
gramming (LP) duality. The LP relaxations of these problems are the fractional
matching problem (primal) and the fractional vertex cover problem (dual):

maximise
∑
e∈E

xe minimise
∑
v∈V

yv

subject to
∑
e: v∈e

xe ≤ 1, ∀v ∈ V subject to
∑
v: v∈e

yv ≥ 1, ∀e ∈ E

x ≥ 0 y ≥ 0

184 M. Göös and J. Suomela

It is known from general LP theory (see, e.g., Papadimitriou and Steiglitz [15,
§13.2]) that on bipartite graphs the above LPs do not have an integrality gap:
among the optimal feasible solutions are integral vectors x ∈ {0, 1}E and y ∈
{0, 1}V that correspond to maximum matchings and minimum vertex covers.

In the context of distributed algorithms, the following is known on (bipartite)
bounded degree graphs :

1. Primal LP and dual LP admit local approximation schemes. As part of their
general result, Kuhn et al. [7] give a strictly local (1 + ε)-approximation
scheme for the above LPs. Their algorithms run in constant time independent
of the number of nodes.

2. Integral primal admits a local approximation scheme. Åstrand et al. [1] de-
scribe a strictly local (1+ε)-approximation scheme for the maximum match-
ing problem on 2-coloured graphs. Again, the running time is a constant
independent of the number of nodes.

3. Integral dual does not admit a local approximation scheme. The present work
shows—in contrast to the above positive results—that there is no local ap-
proximation scheme for 2-VC even when Δ = 3.

1.4 Related Lower Bounds

There are relatively few independent methods for obtaining negative results for
distributed approximation in the LOCAL model. We list three main sources.

Local Algorithms. Linial’s [10] lower bound Ω(log∗ n) for 3-colouring a cycle
together with the Ramsey technique of Naor and Stockmeyer [13] establish ba-
sic limitations on finding exact solutions strictly locally in constant time. These
impossibility results were later extended to finding approximate solutions on
cycle-like graphs by Lenzen and Wattenhofer [9] and Czygrinow et al. [2]. A
recent work [4] generalises these techniques even further and proves that deter-
ministic local algorithms in the LOCAL model are often no more powerful than
algorithms running on anonymous port numbered networks. For more informa-
tion on this line of research, see the survey of local algorithms [18].

Here, the inapproximability results typically exploit the inability of a local
algorithm to break local symmetries. By contrast, in this work, we consider the
case where the local symmetry is already broken by a 2-colouring.

KMW Bounds. Kuhn, Moscibroda andWattenhofer [6,7,8] prove that any ran-
domised algorithm for computing a constant-factor approximation of minimum
vertex cover on general graphs requires time Ω(

√
logn) and Ω(logΔ). Roughly

speaking, their technique consists of showing that a fast algorithm cannot tell
apart two adjacent nodes v and u, even though it is globally more profitable to
include v in the vertex cover and exclude u than conversely.

The lower-bound graphs of Kuhn et al. are necessarily of unbounded degree:
on bounded degree graphs the set of all non-isolated nodes is a constant factor
approximation of a minimum vertex cover. By contrast, our lower-bound graphs
are of bounded degree and they forbid close-to-optimal approximation of 2-VC.

No Sublogarithmic-Time Approximation Scheme for Bipartite Vertex Cover 185

Sublinear-Time Centralised Algorithms. Parnas and Ron [16] discuss how
a fast distributed algorithm can be used as solution oracle to a centralised al-
gorithm that approximates parameters of a sparse graph G in sublinear time
given a randomised query access to G. Thus, lower bounds in this model of
computation also imply lower bounds for distributed algorithms. In particular,
an argument of Trevisan (presented in [16]) implies that computing a (2 − ε)-
approximation of a minimum vertex cover requires Ω(logn) time on d-regular
graphs, where d = d(ε) is sufficiently large.

We note that 2-VC is easy to approximate in this model: Nguyen and Onak [14]
give a centralised constant-time algorithm to approximate the size of a maxi-
mum matching on a graph G. If we are promised that G is bipartite, a small
adaptation of this algorithm approximates the size of 2-VC by König duality.

2 Deterministic Lower Bound

To best explain the basic idea of our lower bound result, we first prove Theorem 1
for a toy model that we define in Sect. 2.1; in this model, we only consider a
certain class of deterministic distributed algorithms in anonymous networks.
Later in Sect. 3 we will show how to implement the same proof technique in a
much more general setting: randomised distributed algorithms in networks with
unique identifiers.

In the present section, we find a source of hardness for 2-VC as follows. First,
we argue that any approximation algorithm for the 2-VC problem also solves
a certain cut minimisation problem called Recut. We then show that Recut

is hard to approximate locally, which implies that 2-VC must also be hard to
approximate locally.

2.1 Toy Model of Deterministic Algorithms

Throughout this section we consider deterministic algorithms A running in time
r = o(log n) that operate on input-labelled anonymous networks (G, �), where
G = (V,E) and � is a labelling of V . More precisely, we impose the following
additional restrictions in the LOCAL model:

– The nodes of G are not given random bits as input.
– The output of A is invariant under reassigning node identifiers. That is, if

G′ = (V ′, E′) is isomorphic to G via a mapping f : V ′ → V , then the output
of a node v ∈ V agrees with the output of f−1(v) ∈ V ′:

A(G, �, v) = A(G′, � ◦ f, f−1(v)),

where � ◦ f denotes the composition of functions � and f .

Put otherwise, the only symmetry breaking information we supply A with is the
radius-r neighbourhood topology together with the input labelling—the nodes
are anonymous and do not have unique identifiers.

We will also consider graphs G that are directed. In this case, the directions
of the edges are merely additional symmetry-breaking information; they do not
restrict communication.

186 M. Göös and J. Suomela

2.2 Recut Problem

In the following, we consider partitions of V into red and blue colour classes as
determined by a labelling � : V → {red, blue}. We write ∂� for the fraction of
edges crossing the red/blue cut, i.e.,

∂� :=
e(�−1(red), �−1(blue))

|E| .

Definition 2. In the Recut problem we are given a labelled graph (G, �) as
input and the objective is to compute an output labelling (a recut) �out that
minimises ∂�out subject to the following constraints: (a) If �(V) = {red}, then
�out(V) = {red}. (b) If �(V) = {blue}, then �out(V) = {blue}.

In words, if we have an all-red input, we have to produce an all-red output, and
if we have an all-blue input, we have to produce an all-blue output. Otherwise
the output can be arbitrary. See Fig. 1 for an illustration.

RECUT input RECUT output

simple algorithm

optimum

Fig. 1. The Recut problem. In this example, we have used a simple distributed algo-
rithm A to find a recut �out with a small boundary ∂�out: a node outputs red iff there
is a red node within distance r = 3 in the input. While the solution is not optimal, in
a grid graph the boundary will be relatively small. However, our lower bound shows
that any fast distributed algorithm—including algorithm A—fails to produce a small
boundary in some graph.

Needless to say, the global optimum for an algorithmA would be to produce a
constant output labelling �A (either all red or all blue) having ∂�A = 0. However,

No Sublogarithmic-Time Approximation Scheme for Bipartite Vertex Cover 187

a distributed algorithm A can only access the values of the input labelling � in its
local radius-r neighbourhood: when encountering a neighbourhood v ∈ U ⊆ V
with �(U) = {red}, the algorithm is forced to output red at v to guarantee
satisfying the global constraint (a), and when encountering a neighbourhood
v ∈ U ⊆ V with �(U) = {blue}, the algorithm is forced to output blue at v
to satisfy (b). Thus, if a connected graph G has two disjoint r-neighbourhoods
U,U ′ ⊆ V with �(U) = {red} and �(U ′) = {blue} the algorithm A cannot avoid
producing at least some red/blue edge boundary. Indeed, the best we can hope
A to achieve is a recut �A of size ∂�A ≤ ε for some small constant ε > 0.

Discussion. The Recut problem models the following abstract high-level chal-
lenge in designing distributed algorithms: Each node in a local neighbourhood
U ⊆ V can, in principle, internally compute a completely locally optimal solution
for (the subgraph induced by) U , but difficulties arise when deciding which of
these proposed solution are to be used in the final distributed output. In par-
ticular, when the type of the produced solution changes from one (e.g., red) to
another (e.g., blue) across a graph G one might have to introduce suboptimal-
ities to the solution at the (red/blue) boundary in order to glue together the
different types of local solutions.

In fact, the Recut problem captures the first non-trivial case of this phe-
nomenon with only two solution types present. One can think of the input la-
belling � as recording the initial preferences of the nodes whereas the output
labelling �A records how an algorithm A decides to combine these preferences
into the final unified output. In the end, our lower-bound strategy will be to
argue that any A can be forced into producing too large an edge boundary ∂�A
resulting in too many suboptimalities in the produced output.

Next, we show how the above discussion is made concrete in the case of the
2-VC problem.

2.3 Reduction

We call a graph G tree-like if all the r-neighbourhoods in G are trees, i.e., G
has girth larger than 2r + 1. Furthermore, if G is directed, we say it is balanced
if in-degree(v) = out-degree(v) for all vertices v. We note that a deterministic
algorithm A produces the same output on every node of a balanced regular
tree-like digraph G, because such a graph is locally homogeneous : all the r-
neighbourhoods of G are pairwise isomorphic.

Using this terminology we give the following reduction.

Theorem 3. Suppose A (with run-time r) computes a (1 + ε)-approximation
of 2-VC on graphs of maximum degree Δ = 3. Then, there is an algorithm
(with run-time r) that finds a recut �A of size ∂�A = O(ε) on balanced 4-regular
tree-like digraphs.

The proof of Theorem 3 follows the usual route: We give a local reduction (i.e.,
one that can be computed by a local algorithm) that transforms an instance

188 M. Göös and J. Suomela

(G, �) of Recut into a white/black-coloured instance Π(G, �) of 2-VC. Then we
simulate A on the resulting instance and map the output of A back to a solution
of the Recut instance (G, �).

Let G = (V,E) be a balanced 4-regular tree-like digraph and let � : V →
{red, blue} be a labelling of G. The instance Π(G, �) is obtained by replacing
each vertex v ∈ V by one of two local gadgets depending on the label �(v). We
first describe and analyse simple gadgets yielding instances of 2-VC with Δ = 4;
the gadgets yielding instances with Δ = 3 are described later.

Red Gadgets. The red gadget replaces a vertex v ∈ V by two new vertices wv

(white) and bv (black) that share a new edge ev := {wv, bv}. The incoming edges
of v are reconnected to wv, whereas the outgoing edges of v are reconnected to bv.
See Fig. 2.

v

wv
bv

red node red gadget

v

wv
bv
w’v

blue node blue gadget

RECUT input 2-VC input RECUT input 2-VC input

Fig. 2. Gadgets for Δ = 4 (assuming an all-red input produces an all-white output)

The Case of All-Red Input. Note that the 2-VC instance Π(G, red) (where
we denote by red the constant labelling v "→ red) contains {ev : v ∈ V } as a per-
fect matching. Since (G, red) is locally homogeneous, in Π(G, red) the solutions
output by A on the endpoints of ev are isomorphic across all v. Assuming ε < 1
it follows that the algorithm A must output either the set of all white nodes or
the set of all black nodes on Π(G, red). Our reduction branches at this point: we
choose the structure of the blue gadget to counteract this white/black decision
made by A on the red gadgets. We describe the case that A outputs all white
nodes on Π(G, red); the case of black nodes is symmetric.

Blue Gadgets. The blue gadget replacing v ∈ V is identical to the red gadget
with the exception that a third new vertex w′

v (white) is added and connected
to bv. See Fig. 2.

Similarly as above, we can argue that A outputs exactly the set of all black
nodes on the instance Π(G, blue). This completes the description of Π .

Simulation. Next, we simulate A on Π(G, �). The output of A is then trans-
formed back to a labelling �A : V → {red, blue} by setting

�A(v) = blue ⇐⇒ the output of A contains only the black node bv
at the gadget at v.

No Sublogarithmic-Time Approximation Scheme for Bipartite Vertex Cover 189

See Fig. 3. Note that �A satisfies both feasibility constraints (a) and (b) of
Recut. It remains to bound the size ∂�A of this recut.

red output

blue outputonly black node

anything else

RECUT output2-VC output

Fig. 3. Mapping the output of A back to a solution of the Recut problem

Recut Analysis. Call a red vertex v in (G, �A) bad if v has a blue out-neighbour
u; see Fig. 4. By the definition of “�A(u) = blue”, the vertex cover produced
by algorithm A does not contain the white node wu. Thus to cover the edge
(bv, wu), the vertex cover has to contain the black node bv. But by the definition
of “�A(v) = red”, we must have wv or w′

v in the solution as well. Hence, at least
two nodes are used to cover the gadget at v, which is suboptimal as compared
to the minimum vertex cover {bv : v ∈ V }, which uses only one node per gadget.
This implies that we must have at most ε|V | bad vertices as A produces a (1+ε)-
approximation of 2-VC on Π(G, �).

v u

wv

bv

wu
bu

RECUT output2-VC output

node v is bad

Fig. 4. A bad node: v is red and its out-neighbour u is blue

190 M. Göös and J. Suomela

On the other hand, exactly half of the edges crossing the cut �A are oriented
from red to blue since G is balanced. Each bad vertex gives rise to at most two
of these edges, so we have that ∂�A · |E|/2 ≤ 2ε|V | which gives ∂�A ≤ 2ε, as
required. This proves Theorem 3 for Δ = 4.

Gadgets for Δ = 3. The maximum degree used in the gadgets can be reduced
to 3 by the following modification. The red gadget replaces a vertex v ∈ V by a
path of length 3; see Figure 5.

v

wv
bv

v

wv

w’v

bv

red node red gadget

blue node blue gadget

RECUT input 2-VC input

Fig. 5. Gadgets for Δ = 3

Again, to achieve a 1.499-approximation of 2-VC on Π(G, red) the algorithm
A has to make a choice: either leave out the middle black vertex or the middle
white vertex from the vertex cover. Supposing A leaves out the middle black,
the blue gadget is defined to be identical to the red gadget with an additional
white vertex connected to the middle black one.

After simulatingA on an instanceΠ(G, �) we define �A(v) = blue iffA outputs
only black nodes at the gadget at v. The recut analysis will then give ∂�A ≤ 4ε.

2.4 Recut Is Hard on Expanders

Intuitively, the difficulty in computing a small red/blue cut in the Recut prob-
lem stems from the inability of an algorithm A to overcome the neighbourhood
expansion of an input graph in r = o(log n) steps—an algorithm cannot hide the
red/blue boundary as the radius-r neighbourhoods themselves might have large
boundaries.

To formalise this intuition, we use as a basis for our lower-bound construction
an infinite family F of 4-regular δ-expander graphs, where each G = (V,E) ∈ F
satisfies the edge expansion condition

e(S, V � S) ≥ δ · |S| for all S ⊆ V, |S| ≤ n/2. (1)

No Sublogarithmic-Time Approximation Scheme for Bipartite Vertex Cover 191

Here, e(S, V � S) is the number of edges leaving S and δ > 0 is an absolute
constant independent of n = |V |.

To fool an algorithm A into producing a large recut on expanders it is enough
for us to force A to output a nearly balanced recut �A where both colour classes
have size n/2± o(n). This is because if the number of, say, the red nodes is

|�−1
A (red)| = n/2− o(n),

then the expansion property (1) implies that

∂�A ≥ δ/4− o(1).

That is, A computes a recut of size Ω(δ).
Indeed, the following simple fooling trick makes up the very core of our

argument.

Lemma 1. Suppose A produces a feasible solution for the Recut problem in
time r = o(logn). Then for each 4-regular graph G there exists an input labelling
for which A computes a nearly balanced recut.

Proof. Fix an arbitrary ordering v1, v2, . . . , vn for the vertices of G and define a
sequence of labellings �0, �1, . . . , �n by setting �i(vj) = blue iff j ≤ i. That is,
in �0 all nodes are red, in �n all nodes are blue, and �i is obtained from �i−1 by
changing the colour of vi from red to blue.

When we switch from the instance (G, �i−1) to (G, �i) the change of vi’s colour
is only registered by nodes in the radius-r neighbourhood of vi. This neighbour-
hood has size |BG(vi, r)| ≤ 5r = o(n), and so the number of red nodes in the
outputs �i−1

A and �iA of A can only differ by o(n). As, by assumption, we have
that A computes the labelling �0A = red on (G, �0) and the labelling �nA = blue on
(G, �n), it follows by continuity that some labelling in our sequence must force
A to output n/2− o(n) red nodes. ��

We now have all the ingredients for the lower-bound proof: We can take δ =
2 −

√
3 if we choose F to be the family of 4-regular Ramanujan graphs due to

Morgenstern [12]. These graphs are tree-like, as they have girth Θ(log n). They
can be made into balanced digraphs since a suitable orientation can always
be derived from an Euler tour. Thus, F consists of balanced 4-regular tree-
like digraphs. Lemma 1 together with the discussion above imply that every
algorithm for Recut produces a recut of size Ω(δ) on some labelled graph in F .
Hence, the contrapositive of Theorem 3 proves Theorem 1 for our deterministic
toy algorithms.

3 Randomised Lower Bound

Model. Even though our model of deterministic algorithms in Sect. 2 is an
unusually weak one, we can quickly recover the standard LOCAL model from it
by equipping the nodes with independent sources of randomness. In particular,

192 M. Göös and J. Suomela

as is well known, each node can choose an identifier uniformly at random from,
e.g., the set {1, 2, . . . , n3}, and this results in the identifiers being globally unique
with probability at least 1− 1/n.

For simplicity of analysis, we continue to assume

1. Deterministic run-time: each node runs for at most r = o(log n) steps.
2. Las Vegas algorithm: the algorithm always produces a feasible solution.

At a cost of only an additive o(1) term in the (expected) approximation ratio we
can easily modify a given algorithm that has expected running time r′ = o(log n)
and covers each edge with probability 1 − o(1) into an algorithm satisfying the
above properties:

1. Choose a slowly growing function t such that r := tr′ = o(logn). If a node
v runs longer than r steps, we stop v’s computation and output v into the
vertex cover. By Markov’s inequality, this modification interferes with the
computation of only o(n) nodes in expectation.

2. After r steps we finish by including both endpoints of each uncovered edge
in the output.

Overview. When discussing randomised algorithms many of the simplifying as-
sumptions made in Sect. 2 no longer apply. For example, a randomised algorithm
need not produce the same output on every node of a locally homogeneous graph.
Consequently, the homogeneous feasibility constraints in the Recut problem do
not strictly make sense for randomised algorithms.

However, we can still emulate the same proof strategy as in Sect. 2: we force
the randomised algorithm to output a nearly balanced recut with high proba-
bility. Below, we describe this strategy in case of the easy-to-analyse “Δ = 4”
gadgets with the understanding that the same analysis can be repeated for the
“Δ = 3” gadgets with little difficulty.

3.1 Repeating Sect. 2 for Randomised Algorithms

Fix a randomised algorithmA with running time r = o(log n) and letG = (V,E),
n = |V |, be a large 4-regular expander.

Again, we start out with the all-red instance. We denote by W and B the
number of black and white nodes output by A on Π(G, red). As each of the
edges ev must be covered, we have that

W +B ≥ n.

Hence, by linearity of expectation, at least one of E[W] ≥ n/2 or E[B] ≥ n/2
holds. We assume that E[W] ≥ n/2; the other case is symmetric.

In reaction to A preferring white nodes, the blue gadgets are now defined
exactly as in Sect. 2. Furthermore, for any input � : V → {red, blue} we interpret
the output of A on Π(G, �) as defining an output labelling �A of V , where, again,

No Sublogarithmic-Time Approximation Scheme for Bipartite Vertex Cover 193

�A(v) = blue iff A outputs only the black node at the gadget at v. This definition
translates our assumption of E[W] ≥ n/2 into

E[R(red)] ≥ n/2, (2)

where R(�) := |�−1
A (red)| counts the number of gadgets (i.e., vertices of G) rela-

belled red by A on Π(G, �).
If A relabels a blue gadget red, it must output at least two nodes at the

gadget. This means that the size of the solution output by A on Π(G, blue) is at
least n + R(blue). Thus, if A is to produce a 3/2-approximation on Π(G, blue)
in expectation, we must have that

E[R(blue)] ≤ n/2. (3)

The inequalities (2) and (3) provide the necessary boundary conditions (replacing
the feasibility constraints of Recut) for the argument of Lemma 1: by continu-
ously changing the instance (G, red) into (G, blue) we may find an input labelling
�∗ achieving

E[R(�∗)] = n/2− o(n). (4)

It remains to argue that A outputs a nearly balanced recut not only “in expec-
tation” but also with high probability.

3.2 Local Concentration Bound

Focusing on the instance Π(G, �∗) we write R = R(�∗) and

R =
∑
v∈V

Xv, (5)

where Xv ∈ {0, 1} indicates whether A relabels the gadget at v red.
The variables Xv are not too dependent: the 2rth power of G, denoted G2r,

where u, v ∈ V are joined by an edge iff BG(v, r)∩BG(u, r) 	= ∅, is a dependency
graph for the variables Xv. Every independent set I ⊆ V in G2r corresponds to
a set {Xv}v∈I of mutually independent random variables. Since the maximum
degree of G2r is at most maxv |BG(v, 2r)| = o(n), this graph can always be
partitioned into χ(G2r) = o(n) independent sets.

Indeed, Janson [5] presents large deviation bounds for sums of type (5) by
applying Chernoff–Hoeffding bounds for each colour class in a χ(G2r)-colouring
of G2r. For any ε > 0, Theorem 2.1 in Janson [5], as applied to our setting, gives

Pr(R ≥ E[R] + εn) ≤ exp

(
−2 (εn)2

χ(G2r) · n

)
→ 0, as n→∞, (6)

and the same bound holds for Pr (R ≤ E[R]− εn). That is, R is concentrated
around its expectation.

In conclusion, the combination of (4) and (6) implies that, for large n, the
algorithm A outputs a nearly balanced recut on Π(G, �∗) with high probability.
By the discussion in Sect. 2, this proves Theorem 1.

194 M. Göös and J. Suomela

Acknowledgements. Many thanks to Valentin Polishchuk for discussions, and
to anonymous reviewers for their helpful comments and suggestions. This work
was supported in part by the Academy of Finland, Grants 132380 and 252018.

References

1. Åstrand, M., Polishchuk, V., Rybicki, J., Suomela, J., Uitto, J.: Local algorithms
in (weakly) coloured graphs (2010) (manuscript, arXiv:1002.0125 (cs.DC))

2. Czygrinow, A., Hańćkowiak, M., Wawrzyniak, W.: Fast Distributed Approxima-
tions in Planar Graphs. In: Taubenfeld, G. (ed.) DISC 2008. LNCS, vol. 5218, pp.
78–92. Springer, Heidelberg (2008)

3. Diestel, R.: Graph Theory, 3rd edn. Springer, Berlin (2005)
4. Göös, M., Hirvonen, J., Suomela, J.: Lower bounds for local approximation. In:

Proc. 31st Symposium on Principles of Distributed Computing (PODC 2012), pp.
175–184. ACM Press, New York (2012)

5. Janson, S.: Large deviations for sums of partly dependent random variables. Ran-
dom Structures & Algorithms 24(3), 234–248 (2004)

6. Kuhn, F., Moscibroda, T., Wattenhofer, R.: What cannot be computed locally! In:
Proc. 23rd Symposium on Principles of Distributed Computing (PODC 2004), pp.
300–309. ACM Press, New York (2004)

7. Kuhn, F., Moscibroda, T., Wattenhofer, R.: The price of being near-sighted. In:
Proc. 17th Symposium on Discrete Algorithms (SODA 2006), pp. 980–989. ACM
Press, New York (2006)

8. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Local computation: Lower and upper
bounds (2010) (manuscript, arXiv:1011.5470 (cs.DC))

9. Lenzen, C., Wattenhofer, R.: Leveraging Linial’s Locality Limit. In: Taubenfeld,
G. (ed.) DISC 2008. LNCS, vol. 5218, pp. 394–407. Springer, Heidelberg (2008)

10. Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Comput-
ing 21(1), 193–201 (1992)

11. Linial, N., Saks, M.: Low diameter graph decompositions. Combinatorica 13, 441–
454 (1993)

12. Morgenstern, M.: Existence and explicit constructions of q+1 regular Ramanujan
graphs for every prime power q. Journal of Combinatorial Theory, Series B 62(1),
44–62 (1994)

13. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM Journal on Com-
puting 24(6), 1259–1277 (1995)

14. Nguyen, H.N., Onak, K.: Constant-time approximation algorithms via local im-
provements. In: Proc. 49th Symposium on Foundations of Computer Science
(FOCS 2008), pp. 327–336. IEEE Computer Society Press, Los Alamitos (2008)

15. Papadimitriou, C.H., Steiglitz, K.: Combinatorial Optimization: Algorithms and
Complexity. Dover Publications, Inc., Mineola (1998)

16. Parnas, M., Ron, D.: Approximating the minimum vertex cover in sublinear time
and a connection to distributed algorithms. Theoretical Computer Science 381(1-
3), 183–196 (2007)

17. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM Mono-
graphs on Discrete Mathematics and Applications. SIAM, Philadelphia (2000)

18. Suomela, J.: Survey of local algorithms. ACM Computing Surveys (to appear),
http://www.cs.helsinki.fi/local-survey/

http://www.cs.helsinki.fi/local-survey/

“Tri, Tri Again”: Finding Triangles

and Small Subgraphs in a Distributed Setting

(Extended Abstract)

Danny Dolev1, Christoph Lenzen2, and Shir Peled1

1 School of Engineering and Computer Science
Hebrew University of Jerusalem, Israel
{dolev,shir.peled}@cs.huji.ac.il

2 Department for Computer Science and Applied Mathematics
Weizmann Institute of Science, Israel

clenzen@cs.huji.ac.il

Abstract. Let G = (V,E) be an n-vertex graph and Md a d-vertex
graph, for some constant d. Is Md a subgraph of G? We consider this
problem in a model where all n processes are connected to all other pro-
cesses, and each message contains up toO(log n) bits. A simple determin-
istic algorithm that requires O(n(d−2)/d/ log n) communication rounds is
presented. For the special case that Md is a triangle, we present a prob-
abilistic algorithm that requires an expected O(n1/3/(t2/3 + 1)) rounds
of communication, where t is the number of triangles in the graph, and
O(min{n1/3 log2/3 n/(t2/3 + 1), n1/3}) with high probability.

We also present deterministic algorithms that are specially suited for
sparse graphs. In graphs of maximum degree Δ, we can test for arbitrary
subgraphs of diameter D in O(ΔD+1/n) rounds. For triangles, we devise
an algorithm featuring a round complexity of O((A2 log2+n/A2 n)/n),
where A denotes the arboricity of G.

1 Introduction

In distributed computing, it is common to represent a distributed system as a
graph whose nodes are computational devices (or, more generally, any kind of
agents) and whose edges indicate which pairs of devices can directly communicate
with each other. Since its infancy, the area has been arduously studying the so-
called local model (cf. [17]), where the devices try to jointly compute some
combinatorial structure, such as a maximal matching or a node coloring, of this
communication graph. In its most pure form, the local model is concerned with
one parameter only: the locality of a problem, i.e., the number of hops up to
which nodes need to learn the topology and local portions of the input in order
to compute their local parts of the output—for example this could be whether
or not an outgoing edge is in the maximal matching or the color of the node.

Considerable efforts have been made to understand the effect of bounding the
amount of communication across each edge. In particular, the congest model
that demands that in each time unit, at most O(log n) bits are exchanged over

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 195–209, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

196 D. Dolev, C. Lenzen, and S. Peled

each edge, has been studied intensively. However, to the best of our knowledge,
all known lower bounds rely on “bottlenecks” [10,12,18], i.e., small edge cuts
that severely constrain the total number of bits that may be communicated
between different parts of the graph. In contrast, very little is known about the
possibilities and limitations in case the communication graph is a clique, i.e., the
communication bounds are symmetric and independent of the structure of the
problem we need to solve. The few existing works show that, as one can expect,
such a distributed system model is very powerful: A minimum spanning tree
can be found in O(log logn) time [13], with randomization nodes can send and
receive up to O(n) messages of size O(log n) in O(1) rounds, without any initial
knowledge of which nodes hold messages for which destinations [11], and, using
the latter routine, they can sort n2 keys in O(1) rounds (where each node holds n
keys and needs to learn their index in the sorted sequence) [16]. In general, none
of these tasks can be performed fast in the local model, as the communication
graph might have a large diameter.

In the current paper, we examine a question that appears to be hard even
in a clique if message size is constrained to be O(log n). Given that each node
initially knows its neighborhood in an input graph, the goal is to decide whether
this graph contains some subgraph on d ∈ O(1) vertices. In the local model,
this can be trivially solved by each node learning the topology up to a constant
distance;1 in our setting, this simple strategy might result in a running time of
Ω(n/ logn), as some (or all) nodes may have to learn about the entire graph and
thus need to receive Ω(n2) bits. We devise a number of algorithms that achieve
much better running times. These algorithms illustrate that efficient algorithms
in the contemplated model need to strive for balancing the communication load,
and we show some basic strategies to do so. We will see as a corollary that it
is possible for all nodes to learn about the entire graph within O(|E|/n) rounds
and therefore locally solve any (computable) problem on the graph; this refines
the immediately obvious statement that the same can be accomplished within
Δ (where Δ denotes the maximum degree of G) rounds by each node sending
its complete list of neighbors to all other nodes. For various settings, we achieve
running times of o(|E|/n) by truly distributed algorithms that do not require
that (some) nodes obtain full information on the entire input.

Apart from shedding more light on the power of the considered model, the de-
tection of small subgraphs, sometimes referred to as graphlets or network motifs,
is of interest in its own right. Recently, this topic received growing attention due
to the importance of recurring patterns in man-made networks as well as nat-
ural ones. Certain subgraphs were found to be associated with neurobiological
networks, others with biochemical ones, and others still with human-engineered
networks [15]. Detecting network motifs is an important part of understanding
biological networks, for instance, as they play a key role in information pro-
cessing mechanisms of biological regulation networks. Even motifs as simple as

1 In the local model, one is satisfied with at least one node detecting a respective
subgraph. Requiring that the output is known by all nodes results in the diameter
being a trivial lower bound for any meaningful problem.

“Tri, Tri Again”: Finding Triangles and Small Subgraphs 197

triangles are of interest to the biological research community as they appear in
gene regulation networks, where what a graph theorist would call a directed tri-
angle is often referred to as a Feed-Forward Loop. In recent years, the network
motifs approach to studying networks lead to development of dedicated algo-
rithms and software tools. Being of highly applicative nature, algorithms used
in such context are usually researched from an experimental point of view, using
naturally generated data sets [9].

Triangles and triangle-free graphs also play a central role in combinatorics.
For example, it is long since known that planar triangle-free graphs are 3-
colorable [8]. The implications of triangle finding and triangle-freeness motivated
extensive research of algorithms, as well as lower bounds, in the centralized
model. Most of the work done on these problems falls into one of two categories:
subgraph listing and property testing. In subgraph listing, the aim is to list
all copies of a given subgraph. The number of copies in the graph, that may
be as high as Θ

(
n3
)
for triangles, sets an obvious lower bound for the run-

ning time of such algorithms, rendering instances with many triangles harder
in some sense [4]. Property testing algorithms, on the other hand, distinguish
with some probability between graphs that are triangle-free and graphs that are
far from being triangle-free, in the sense that a constant fraction of the edges
has to be removed in order for the graph to become triangle-free [1,2]. Although
soundly motivated by stability arguments, the notion of measuring the distance
from triangle-freeness by the minimal number of edges that need to be removed
seems less natural than counting the number of triangles in the graph. Consider
for instance the case of a graph with n nodes comprised of n − 2 triangles, all
sharing the same edge. From the property testing point of view, this graph is
very close to being triangle free, although it contains a linear number of tri-
angles. Some query-based algorithms were suggested in the centralized model,
where the parameter to determine is the number of triangles in the graph. The
lower bounds for such algorithms assume restrictions on the type of queries2 that
cannot be justified in our model [7].

Detailed Contributions. In Section 3, we start out by giving a family of deter-
ministic algorithms that decide whether the graph contains a d-vertex subgraph
within O(n(d−2)/d) rounds. In fact, these algorithms find all copies of this sub-
graph and therefore could be used to count the exact number of occurrences.
They split the task among the nodes such that each node is responsible for
checking an equal number of subsets of d vertices for being the vertices of a copy
of the targeted subgraph. This partition of the problem is chosen independently
of the structure of the graph. Note that even the trivial algorithm that lets each
node collect its D-hop neighborhood and test it for instances of the subgraph in
question does not satisfy this property. Still it exhibits a structure that is simple
enough to permit a deterministic implementation of running time O(ΔD+1/n),
where Δ is the maximum degree of the graph, given in Section 4. For the special
case of triangles, we present a more intricate way of checking neighborhoods that

2 For instance, in [7] the query model requires that edges are sampled uniformly at
random.

198 D. Dolev, C. Lenzen, and S. Peled

results in a running time of O(A2/n+log2+n/A2 n) ⊆ O(|E|/n+log n), where the
arboricity A of the graph denotes the minimal number of forests into which the
edge set can be decomposed. While always A ≤ Δ, it is possible that A ∈ O(1),
yet Δ ∈ Θ(n) (e.g. in a graph that is a star). Moreover, any family of graphs
excluding a fixed minor has A ∈ O(1) [5], demonstrating that the arboricity is a
much less restrictive parameter than Δ. Note also that the running time bound
in terms of |E| is considerably weaker than the one in terms of A; it serves to
demonstrate that in the worst case, the algorithm’s running time essentially does
not deteriorate beyond the trivial O(|E|/n) bound.

All our deterministic algorithms systematically check for subgraphs by either
considering all possible combinations of d nodes or following the edges of the
graph. If there are many copies of the subgraph, it can be more efficient to
randomly inspect small portions of the graph. In Section 5, we present a triangle-
finding algorithm that does just that, yielding that for every ε ≥ 1/nO(1) and
graph containing t ≥ 1 triangles, one will be found with probability at least 1−ε
within O((n1/3 log2/3 ε−1)/t2/3+logn) rounds; we show this analysis to be tight.

All our algorithms are uniform, i.e., they require no prior knowledge of pa-
rameters such as t or A. Interleaving them will result in an asymptotic running
time that is bounded by the minimum of all the individual results. Due to lack
of space, we only sketch most proof ideas; for details we refer to [6].

2 Model and Problem

Our model separates the computational problem from the communication model.
Let V = {1, . . . , n} represent the nodes of a distributed system. With respect
to communication, we adhere to the synchronous congest model as described
in [17] on the complete graph on the node set V , i.e., in each computational
round, each node may send (potentially different) O(log n) bits to each other
node. We do not consider the amount of computation performed by each node,
however, for all our algorithms it will be polynomially bounded. Instead, we
measure complexity in the number of rounds until an algorithm terminates.3

Let G = (V,E) be an arbitrary graph on the same vertex set, representing
the computational problem at hand. Initially, every node i ∈ V has the list
Ni := {j ∈ V | {i, j} ∈ E} of its neighbors in G, but no further knowledge of G.

The computational problem we are going to consider throughout this paper
is the following: Given a graph Md on d ∈ O(1) vertices, we wish to discover
whether Md is a subgraph of G.

3 Deterministic Algorithms for General Graphs

During our exposition, we will discuss the issues of what to communicate and
how to communicate it separately. That is, given sets of O(log n)-sized messages
at all nodes satisfying certain properties, we provide subroutines that deliver

3 Note that ensuring termination in the same round is easy due to the full connectivity.

“Tri, Tri Again”: Finding Triangles and Small Subgraphs 199

all messages quickly and then use these subroutines in our algorithms. We start
out by giving a very efficient deterministic scheme provided that origins and
destinations of all messages are initially known to all nodes. We then will show
that this scheme can be utilized to find all triangles or other constant-sized
subgraphs in sublinear time.

Full-Knowledge Message Passing. For a certain limited family of algorithms
whose communication structure is basically independent of the problem graph,
it is possible to exploit the full capacity of the communication system, i.e., pro-
vided that no node sends or receives more than n messages, all messages can be
delivered in two rounds.

Lemma 1. Given a bulk of messages, such that:

1. The source and destination of each message is known in advance to all nodes,
and each source knows the contents of the messages to sent.

2. No node is the source of more than n messages.
3. No node is the destination of more than n messages.

A routing scheme to deliver all messages within 2 rounds can be found efficiently.

To get some intuition on why Lemma 1 is true, observe that if every node initially
holds a single message for every other node, the task can clearly be completed
within a single round. This reduces our problem to finding a message passing
scheme such that, after one round, every node will hold a single message for every
other node. Now consider the bipartite multi-graph in which the vertices on the
left are the nodes in their role as sources, the vertices on the right are the nodes
in there role as destinations, and for each message whose source and destination
are nodes i and j, respectively, there is an edge from i (on the left hand side) to
j (on the right hand sight). Our desired scheme translates to finding n perfect
matchings in the graph, since we could have every source send the edge used
by it (i.e. the message) in the ith matching to the ith node, resulting in every
node holding a single message for every other node in the subsequent round. The
graph described is always a disjoint union of n perfect matchings, as a corollary
of Hall’s Theorem. The required matchings can be found before communication
commences, since all sources and destinations are known.

TriPartition - Finding Triangles Deterministically. We now present an
algorithm that finds whether there are triangles in G that has a better round
complexity than O(|E|/n) if |E| is large. Apart from a possible final broadcast
message informing other nodes of a discovered triangle, it exhibits the very simple
communication structure required by Lemma 1.

Let S ⊆ 2V be a partition of V into equally sized subsets of cardinality n2/3.
We write S = {S1, ..., Sn1/3}. To each node i ∈ V we assign a distinct triplet
from S denoted Si,1, Si,2, Si,3 (where repetitions are admitted). Clearly, for any
subset of three nodes there is a triplet such that each node is element of one
of the subsets in the triplet. Hence, for each triangle {t1, t2, t3} in G, there is
some node i such that t1 ∈ Si,1, t2 ∈ Si,2, and t3 ∈ Si,3. Each node checks for

200 D. Dolev, C. Lenzen, and S. Peled

Algorithm 1. TriPartition at node i

1 Ei := ∅
2 for 1 ≤ j < k ≤ 3 do
3 for l ∈ Si,j do
4 retrieve Nl ∩ Si,k

5 for m ∈ Nl ∩ Si,k do Ei := Ei ∪ {l,m}
6 if there exists a triangle in Gi := (V,Ei) then send “triangle” to all nodes
7 if received “triangle” from some node then return true
8 else return false

triangles that are contained in its triplet of subsets by executing TriPartition
(see Algorithm 1).

Theorem 1. TriPartition correctly decides whether there exists a triangle in G
and can be implemented within O(n1/3) rounds.

Remark 1. The fact that (except for the potential final broadcast) the entire
communication pattern of TriPartition is predefined enables to refrain from
including any node identifiers into the messages. That is, instead of encoding
the respective sublist of neighbors by listing their identifiers, nodes just send a
0 − 1 array of bits indicating whether a node from the respective set from S is
or is not a neighbor in G. The receiving node can decode the message because it
is already known in advance which bit stands for which pair of nodes. We may
hence improve the round complexity of TriPartition to O(n1/3/ logn).

Generalization for d-Cliques. TriPartition generalizes easily to an algorithm
we call dClique0 that finds d-cliques (as well as any other subgraph on d vertices).
We choose S to be a partition of V into equal size subsets of cardinality n(d−1)/d,
resulting in S = {S1, ..., Sn1/d}. Each node now examines the edges between all
pairs of some d-sized multisubset of S (as we did for d = 3 in TriPartition). Since
there are exactly |S|d = n such multisets, all possible d-cliques are examined.
Every node needs to receive the list of edges for all

(
d
2

)
pairs, each containing

at most (n(d−1)/d)2 edges, thus every node needs to send and receive at most
O(n(2d−2)/d) messages.

Theorem 2. dClique0 determines correctly whether there exists a d-clique (or
any given d-vertex graph) in G within O(n(d−2)/d/ logn) rounds.

4 Finding Triangles in Sparse Graphs

In graphs that have o(n2) edges, one might hope to obtain faster algorithms.
However, the algorithms from the previous section have congestion at the node
level, i.e., even if there are few edges in total, some nodes may still have to
send or receive lots of messages. Hence, we need different strategies for sparse
graphs. In this section, we derive bounds depending on parameters that reflect
the sparsity of graphs.

“Tri, Tri Again”: Finding Triangles and Small Subgraphs 201

Algorithm 2. TriNeighbors at node i

1 Ei := ∅
2 for j ∈ V s.t. (i, j) ∈ E do
3 retrieve Nj

4 for k ∈ Nj do Ei := Ei ∪ {j, k}
5 if there exists a triangle in Gi := (V,Ei) then send “triangle” to all nodes
6 if received “triangle” from some node then return true
7 else return false

Algorithm 3. Round-Robin-Messaging at node i

1 R := ∅ // collects output
2 S := ∅ // collects source nodes and #messages for i
3 for j ∈ V do
4 send mi,j mod k(i) to j
5 if j ∈ Di then send “notify k(i)” to j

6 for “notify k(j)” received from j do S := S ∪ (j, k(j))
7 l := 1
8 for (j, k(j)) ∈ S do
9 for k ∈ {1, . . . , k(j)} do

10 send “request message from j” to l
11 l := l + 1

12 for received “request message from j” do send mj,imod k(j) to j
13 for received message m do R := R ∪ {m}
14 return R

Bounded Degree. We start with a simple value, the maximum degree Δ :=
maxi∈V δi, where the degree of node i δi := |Ni|. If Δ is relatively small, then
every node can simply exchange its neighbors list with all its neighbors. We refer
to this as TriNeighbors algorithm, whose pseudo-code is given in Algorithm 2.
In a graph with bounded Δ, it will be much faster than dClique0 algorithm.

Since potentially all vertices may have degree Δ, the message complexity per
node is in O(Δ2 + n). We use an elegant message-passing technique, suggested
to us by Shiri Chechik [3]. Assuming that (i) no node is the source of more than
n messages in total, (ii) no node is the destination of more than n messages,
and (iii) every node sends the exact same messages to all of the destinations for
its messages, it delivers all messages in 3 rounds. This is done by first having
each node distribute its messages evenly, in a Round-Robin fashion, to all other
nodes in the graph. In the second phase, messages are retrieved in a similar
Round-Robin process. This divides the communication load evenly, resulting in
an optimal round complexity. Assuming that for each node i we have the set of
its k(i) messages Mi = {mi,1, . . . ,mi,k(i)}, let Di denote its recipients list. With
these notations, the code of Round-Robin Messaging is given in Algorithm 3.

Lemma 2. Given a bulk of messages in which:

202 D. Dolev, C. Lenzen, and S. Peled

1. Every node is the source of at most n messages.
2. Every node is the destination of at most n messages.
3. Every source node sends exactly the same information to all of its destination

nodes and knows the content of its messages.

Round-Robin-Messaging delivers all messages in 3 rounds.

Corollary 1. Using Round-Robin-Messaging, all nodes can learn the complete
structure of the graph in |E|/n rounds.

Algorithm TriNeighbors satisfies all the conditions of Lemma 2. We conclude
that, employing Round-Robin-Messaging, the round complexity of TriNeighbors
becomes O(Δ2/n). If Δ ∈ O(

√
n) then the round complexity is O(1), and clearly

optimal. More generally, any subgraph of diameter4 D ∈ O(1) can be detected
by each node exploring its D-hop neighborhood.

Corollary 2. We can test for subgraphs of diameter D in O(ΔD+1/n) rounds.

Bounded Arboricity. The arboricity A of G is defined to be the minimum
number of forests on V such that their union is G. Note that always A ≤ Δ,
and for many graphs A $ Δ. The arboricity bounds the number of edges in
any subgraph of G in terms of its nodes. We exploit this property to devise an
arboricity-based algorithm for triangle finding that we call TriArbor.

An overview of the TriArbor algorithm. We wish to employ the same strategy
used by the naive TriNeighbors, that is “asking neighbors for their neighbors”,
in a more careful manner, so as to avoid having high degree nodes send their
entire neighbor list to many nodes. This is achieved by having all nodes with
degree at most 4A send their neighbor list to their neighbors and then shut
down. In the next iteration, the nodes that have a degree at most 4A in the
graph induced by the still active nodes do the same and shut down. As 2An′

uniformly bounds the sum of degrees of any subgraph of G containing n′ nodes,
in each iteration at least half of the remaining nodes is shut down. Hence, the
algorithm will terminate within O(logn) iterations. To control the number of
messages, in each iteration we consider triangles involving at least one node of
low degree (in the induced subgraph of the still active nodes). This way, any
triangle will be found once any of its nodes’ degrees becomes smaller than 4A.

Obviously, no node of low degree will have to send more than 4A messages
in this scheme. However, it may be the case that a node receives more than 4A
messages in case it has many low-degree neighbors. To remedy that, low-degree
nodes avoid sending their neighbor list to their high-degree neighbors directly,
and instead send it to intermediate nodes we call delegates. The delegates share
the load of testing their associated high-degree node’s neighborhood for triangles
involving a low-degree node. We present the algorithm assuming that A is known
to the nodes; for details on how to remove this assumption, we refer to [6].

4 The diameter of a graph is the maximum shortest path length over all pairs of nodes.

“Tri, Tri Again”: Finding Triangles and Small Subgraphs 203

Algorithm 4. One iteration of TriArbor at node i

1 // compute delegates
2 send δ′i to all other nodes
3 compute assignment of delegates to high-degree nodes and neighbor sublists
4 // high-degree nodes distribute neighborhood
5 if δ′i > 4A then
6 partition N ′

i into �δ′i/4A� lists of length at most 4A
7 send each sublist to the computed delegate
8 for j ∈ N ′

i do notify j of delegate assigned to it // only i knows order of N ′
i

9 // let all delegates learn about N ′
j

10 if i is delegate of some node j then
11 denote by Dj the set of delegates of j
12 denote by Lj,i ⊂ N ′

j the sublist of neighbors received from j
13 for k ∈ Dj do send Lj,i to k
14 for received sublist Lj,k do N ′

j := N ′
j ∪ Lj,k

15 // low-degree nodes distribute neighborhoods
16 if δ′i ≤ 4A then
17 for j ∈ N ′

i do
18 if δ′j ≤ 4A then send N ′

i to j // low-degree nodes handle load alone
19 else send N ′

i to j’s delegate assigned to i

20 // check for triangles
21 for received N ′

j (from j with δ′j ≤ 4A) do
22 if N ′

i ∩ N ′
j �= ∅ then

23 send “triangle” to all nodes // triangles with two low-degree nodes
24 else if i is delegate of k and N ′

j ∩ N ′
k �= ∅ then

25 send “triangle” to all nodes // triangle with one low-degree node

26 if received “triangle” then return true
27 else return false

Choosing Delegates. In each iteration, every delegate node will be assigned to a
unique high-degree node, i.e., a node of degree larger than 4A in the subgraph
induced by the nodes that are still active. In the following, we will discuss a
single iteration of the algorithm. Denote by G′ := (V ′, E′) some subgraph of G
on n′ nodes, where WLOG V ′ = {1, . . . , n′}. Define δ′i, Δ

′, N ′
i , etc. analogously

to δi, Δ, Ni, etc., but with respect to G′ instead of G. We would like to assign
to each node i exactly �δ′i/(4A)� delegates such that each delegate is responsible
for up to 4A of the respective high-degree node’s neighbors.

This is feasible because the arboricity provides a bound of the number of nodes
having at least a certain degree that is inversely proportional to this threshold,
implying the following claim.

Claim. At least n′/2 of the nodes have degree at most 4A and the number of
assigned delegates is bounded by n′.

Moreover, the assignment of delegates to high-degree nodes can be computed
locally using a predetermined function of the degrees δ′i. Thus, if every node

204 D. Dolev, C. Lenzen, and S. Peled

communicates its degree δ′i, all nodes can determine locally the assignment of
delegates to high-degree nodes in a consistent manner.

The Algorithm. Algorithm 4 shows the pseudocode of one iteration of TriArbor.
The complete algorithm iterates until for all nodes δ′i = 0 and outputs “true” if
in one of the iterations a triangle was detected and “false” otherwise.

The following claim holds because we are certain that in each iteration half
of the nodes are of low degree and therefore eliminated.

Claim. TriArbor terminates within �logn� iterations.
Since triangles with a low-degree node are detected, correctness is immediate.

Lemma 3. TriArbor correctly decides whether the graph contains a triangle.

Round Complexity of TriArbor. We examine the round complexity of one
iteration of the algorithm. Obviously, announcing degrees takes a single round
only. The following claims can be veryfied by carefully applying the communi-
cation strategies we already established.

Claim. High-degree nodes’ neighborhoods can be distributed in two rounds.

Claim. Exchanging neighborhood sublists between delegates can be performed
in four rounds.

Claim. Low-degree nodes’ neighborhoods can be communicated in 3�32A2/n�
rounds.

Finally, announcing that a triangle is found takes one round. Recall that in each
iteration at least half of the nodes have low degree and are thus eliminated. All
in all, we get the following result.

Theorem 3. Algorithm TriArbor is correct. It can be implemented with a run-
ning time of O(�A2/n� logn) rounds.
The correctness here follows from the fact that eventually every node is elimi-
nated, and in the respective phase it has small degree. A triangle with at least
two low-degree nodes will be detected because these nodes will exchange their
neighborhoods. A triangle with only one low-degree node will be detected by at
least one delegate of each of its high-degree nodes.

We note that a more sophisticated implementation of the approach is uniform
and slightly faster.

Corollary 3. TriArbor can be modified to be uniform and run in O(A2/n +
log2+n/A2 n) rounds.

5 Randomization

Our randomized algorithm does not exhibit an as well-structured communication
pattern as the presented deterministic solutions, hence it is difficult to efficiently
organize the exchange of information by means of a deterministic subroutine.
Therefore, we make use of a randomized routine from [11].

“Tri, Tri Again”: Finding Triangles and Small Subgraphs 205

Algorithm 5. TriSample at node i

1 s :=
√
n while s < n1/3 do

2 choose uniformly random set of s nodes Ci

3 for j ∈ Ci do send the member list of Ci to j
4 for received member list Cj from j do send Ni ∩ Cj to j
5 Ei := ∅
6 for received Nj ∩ Ci from j do
7 for k ∈ Nj ∩ Ci do Ei := Ei ∪ {j, k}
8 if Gi := (V,Ei) contains a triangle then send “triangle” to all nodes
9 if received “triangle” then return true

10 else s := 2s

11 run TriPartition and return its output // switch to deterministic strategy

Theorem 4 ([11]). Given a bulk of messages such that:

1. No node is the source of more than n messages.
2. No node is the destination of more than n messages.
3. Each source knows the content of its messages.

For any predefined constant c > 0, all messages can be delivered in O(1) rounds
with high probability (w.h.p.), i.e., with probability at least 1− 1/nc.

The Algorithm. When sampling randomly for triangles, we would like to use the
available information as efficiently as possible. To this end, on the first iteration
of Algorithm 5 all nodes sample randomly chosen induced subgraphs of a certain
size and examine them for triangles. On subsequent iterations the size of the
checked subgraphs is increased. Checking a subgraph of size s requires to learn
about O(s2) edges, while it tests for Θ(s3) potential triangles. If s ∈ Θ(

√
n),

it thus takes a linear number of messages to collect such an induced subgraph
at a node. Using the subroutine from Theorem 4, each node can sample such a
graph in parallel in O(1) rounds. Intuitively, this means we can sample Θ(n5/2)
subsets of three vertices in constant time. As |

(
V
3

)
| ∈ Θ(n3), one therefore can

expect to find a triangle quickly if at least Ω(
√
n) triangles are present in G.

If less triangles are in the graph, we need to sample more. In order to do this
efficiently, it makes sense to increase s instead of just reiterating the routine
with the same set size: The time complexity grows quadratically, whereas the
number of sampled 3-vertex-subsets grows cubically. Finally, once the round
complexity of an iteration hits n1/3, we will switch to deterministic searching
to guarantee termination within O(n1/3) rounds. Interestingly, the set size of
s = n2/3 corresponding to this running time ensures that even a single triangle
in the graph is found with constant probability.

Round Complexity. The last iteration dominates the running time.

Lemma 4. If TriSample terminates after m iterations, the round complexity is
in O(22m) with high probability.

206 D. Dolev, C. Lenzen, and S. Peled

Our aim is to bound the number of iterations needed to detect a triangle with
probability at least 1− ε, as a function of the number of triangles in the graph.
Let T ⊂

(
V
3

)
denote the set of triangles in G, where |T | = t.

On an intuitive level, the triangles are either scattered (i.e., rarely share edges)
or clustered. If the triangles are scattered, then applying the inclusion-exclusion
principle of the second order will give us a sufficiently strong bound on the
probability of success. If the triangles are clustered, then there exists an edge
that many of them share. Finding that specific edge is more likely than finding
any specific triangle, and given this edge is found, the probability to find at least
one of the triangles it participates in is large.

Bounding the probability of success using the inclusion-exclusion principle. We
know by the inclusion-exclusion principle that

Pr[triangle found] ≥ t · Pr[specific triangle found] −
∑

a �=b∈T

Pr[a and b found].

For every a 	= b ∈ T there are three cases to consider:

1. a and b are disjoint, that is a ∩ b = ∅.
2. a and b share a single vertex, |a ∩ b| = 1.
3. a and b share an edge, |a ∩ b| = 2.

Definition 1. For r ∈ {4, 5, 6}, Tr ⊆
(
T
2

)
is the set of pairs of distinct triangles

in G that have together exactly r vertices. Denoting tr = |Tr|, clearly t4+t5+t6 =(
t
2

)
= |
(
T
2

)
|.

We define that Pm = Pr[triangle found in iteration m] and also that pm =
Pr[node i found triangle in iteration m]. For symmetry reasons the latter prob-
ability is the same for each node i.

Claim. For 0 < ε < 2, if pm ≥ ln(2/ε)/n then Pm ≥ 1− ε/2.

With the above notations, from the inclusion-exclusion principle we infer that

pm ≥ t ·
(

sm
n− sm + 3

)3

−
6∑

k=4

tk ·
(

sm
n− sm

)k

. (1)

Recall that we distinguish between the cases of “scattered” and “clustered”
triangles.We now give these expressions a formal meaning by defining a threshold
for t4 in terms of t and a critical value s(ε) of sm. This value is defined as

s(ε) := max{2n2/3t−1/3 ln1/3(2/ε), 2
√
n ln(2/ε)}. The critical value stems from

either of the following cases:

1. Scattered triangles - we wish to sample as many triangles as possible, and the
number of triangles sampled grows cubically in sm. The n2/3 factor in the
numerator reflects the fact that sm = n2/3 would imply that each triangle
is sampled with constant probability.5 Clearly having a lot of triangles in
general improves the probability of success, hence the division by t1/3.

5 TriPartition selects O(n2/3) vertices per node so that all sets of 3 nodes are covered.

“Tri, Tri Again”: Finding Triangles and Small Subgraphs 207

2. Clustered triangles - it may be the case that all triangles share a single
edge, hence we must sample this edge with probability at least 1− ε/2. For
sm =

√
n each node samples Θ(n) edges, hence each edge is sampled with

constant probability.

The round complexity bound for the case of scattered triangles now follows by
an application of the inclusion-exclusion principle. The probability to find a pair
of triangles sharing an edge is considerably greater than finding other pairs, as
only 4 vertices need to be sampled (unlike 5 or 6 if they only share a vertex or are
disjoint, respectively), therefore it dominates the subtracted amount in Equality
(1). More specifically, the probability that some node samples k ∈ {3, . . . , 6}
fixed nodes is Θ((sm/n)k). Computations reveal that for the relevant values of
sm, t5 and t6 cannot be large enough to compensate for the factors of (sm/n)2

and (sm/n)3 by which these probabilities differ, respectively. With regard to t4,
we can give a threshold, below which the respective term can be neglected. This
is done by the following Lemma that provides a probabilistic guarantee to find
a triangle, assuming that there are not many pairs of triangles sharing an edge.

Lemma 5. If t4 ≤ tn/(2s(ε)) and n is sufficiently large, then a triangle will be
found with probability at least 1− ε/2 in any iteration where sm ≥ s(ε).

The strategy employed for clustered triangles is to show that due to the bound
on t4, there exists an edge shared by many triangles. An elegant proof for this
fact was given by Brendan McKay [14].

Definition 2. For each edge e ∈ E, define Δe = |{Ti : e ⊆ Ti}|. In other words,
Δe is the number of triangles that e participates in. Denote Δmax = maxe∈E Δe.

Lemma 6. Δmax ≥ 2t4/3t.

Proof. Consider a figure consisting of two triangles sharing an edge (this is ba-
sically K4 with one edge removed). We count the occurrences of this figure in G
in two different ways:

1. Observe that t4 counts just that.
2. Pick one of the t triangles from T , choose one of its 3 edges, denote it

e. Choose one of the other Δe − 1 triangles that share e to complete the
figure. Note that this counts every figure exactly twice, since we may pick
either of the two triangles in the figure to be the first one. By definition
Δe − 1 ≤ Δmax − 1, hence we count at most 3t(Δmax − 1)/2 occurrences.

By comparing 1. and 2., we conclude that indeed t4 ≤ 3t(Δmax − 1)/2. ��

Subsequently the analysis focuses on this special edge, showing that the proba-
bility to sample this edge and find a triangle containing it is sufficiently large.

Lemma 7. If t4 > tn/(2 · s(ε)) then a triangle will be found with probability at
least 1− ε/2 in any iteration where sm ≥ s(ε).

208 D. Dolev, C. Lenzen, and S. Peled

Theorem 5. If G contains at least t triangles, for any ε ≥ 1/nO(1) TriSample

terminates within O(min{n1/3t−2/3 ln2/3 ε−1 + ln ε−1, n1/3}) rounds with proba-
bility at least 1− ε. It always outputs the correct result.

Remark 2. The running time bound from Theorem 5 is asymptotically tight,
that is, there are graphs for which TriSample runs with probability at least ε
for Ω(n1/3t−2/3 ln2/3 ε−1) or Ω(ln ε−1) rounds, respectively.

6 Conclusions

In this work, we give a number of solutions for the task of checking a distributed
input graph for small subgraphs, under the assumption of an underlying fully
connected communication network with bandwidth of O(log n) per link. Our
results show that non-trivial running time bounds can be achieved and present
some communication strategies that are successful in deriving such bounds. How-
ever, we provide no insight on lower bounds for the problem, although during
our work we developed intuition that strong, i.e., super-polylogarithmic, bounds
might exist. Due to the very powerful model, we consider it a highly challeng-
ing task to devise such a bound. As a first step, we suggest examining the
class of oblivious algorithms, whose communication pattern is completely prede-
fined. Algorithm 1 is such an algorithm, and we conjecture that its running time
is essentially optimal, i.e., that any deterministic oblivious algorithm deciding
whether there is a triangle in the input graph must run for Ω̃(n1/3) rounds.

Acknowledgements. The authors would like to thank Shiri Chechik for sug-
gesting Algorithm 3, and Brendan McKay for his proof of Lemma 6. Danny
Dolev is incumbent of the Berthold Badler Chair in Computer Science. Christoph
Lenzen has been supported by the Swiss National Science Foundation and the
Society of Swiss Friends of the Weizmann Institute of Science. This research
project was supported in part by The Israeli Centers of Research Excellence (I-
CORE) program, (Center No. 4/11), by the Google Inter-university center for
Electronic Markets and Auctions, and by the Kabarnit Consortium, adminis-
tered by the office of the Chief Scientist of the Israeli ministry of Industry and
Trade and Labor.

References

1. Alon, N.: Testing subgraphs in large graphs. Random Structures and Algo-
rithms 21, 359–370 (2002)

2. Alon, N., Kaufman, T., Krivelevich, M., Ron, D.: Testing triangle-freeness in gen-
eral graphs. SIAM Journal on Discrete Math. 22(2), 786–819 (2008)

3. Chechik, S.: Message distribution technique (2011), private communication
4. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM Journal

on Computing 14, 210–223 (1985)
5. Deo, N., Litow, B.: A Structural Approach to Graph Compression. In: Proc.

23rd International Symposium on Mathematical Foundations of Computer Science
(MFCS), pp. 91–101 (1998)

“Tri, Tri Again”: Finding Triangles and Small Subgraphs 209

6. Dolev, D., Lenzen, C., Peled, S.: ”Tri, Tri again”.: Finding Triangles and Small Sub-
graphs in a Distributed Setting. Computing Research Repository abs/1201.6652
(2012)

7. Gonen, M., Ron, D., Shavitt, Y.: Counting Stars and Other Small Subgraphs in
Sublinear-Time. SIAM Journal on Discrete Mathematics 25(3), 1365–1411 (2011)

8. Grötzsch, H.: Zur Theorie der diskreten Gebilde, VII. Ein Dreifarbensatz für
dreikreisfreie Netze auf der Kugel. In: Math.-Nat. Reihe., vol. 8, pp. 109–120. Wiss.
Z. Martin-Luther-Univ. Halle-Wittenberg (1958/1959)

9. Kashtan, N., Itzkovitz, S., Milo, R., Alon, U.: Efficient sampling algorithm for
estimating subgraph concentrations and detecting network motifs. Bioinformat-
ics 20(11), 1746–1758 (2004)

10. Kothapalli, K., Scheideler, C., Onus, M., Schindelhauer, C.: Distributed Coloring
in Õ(

√
log n) Bit Rounds. In: IPDPS (2006)

11. Lenzen, C., Wattenhofer, R.: Tight Bounds for Parallel Randomized Load Bal-
ancing. In: Proc. 43rd Symposium on Theory of Computing (STOC), pp. 11–20
(2011)

12. Lotker, Z., Patt-Shamir, B., Peleg, D.: Distributed MST for Constant Diameter
Graphs. Distributed Computing 18(6) (2006)

13. Lotker, Z., Pavlov, E., Patt-Shamir, B., Peleg, D.: MST Construction in O(loglogn)
Communication Rounds. In: Proc. 15th Symposium on Parallel Algorithms and
Architectures (SPAA), pp. 94–100 (2003)

14. McKay (mathoverflow.net/users/9025), B.: If many triangles share edges, then
some edge is shared by many triangles. MathOverflow,
http://mathoverflow.net/questions/83939 (version: December 20, 2011)

15. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network
Motifs: Simple Building Blocks of Complex Networks. Science 298(5594), 824–827
(2002), http://dx.doi.org/10.1126/science.298.5594.824

16. Patt-Shamir, B., Teplitsky, M.: The Round Complexity of Distributed Sorting:
Extended Abstract. In: PODC, pp. 249–256 (2011)

17. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. Society for In-
dustrial and Applied Mathematics (2000)

18. Sarma, A.D., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G.,
Peleg, D., Wattenhofer, R.: Distributed Verification and Hardness of Distributed
Approximation. In: 43rd Symposium on Theory of Computing, STOC (2011)

http://mathoverflow.net/questions/83939
http://dx.doi.org/10.1126/science.298.5594.824

Distributed 2-Approximation Algorithm

for the Semi-matching Problem�

Andrzej Czygrinow1, Michal Hanćkowiak2,
Edyta Szymańska2, and Wojciech Wawrzyniak2

1 School of Mathematical and Statistical Sciences,
Arizona State University, Tempe, AZ,85287-1804, USA

andrzej@math.la.asu.edu
2 Faculty of Mathematics and Computer Science,
Adam Mickiewicz University, Poznań, Poland

{mhanckow,edka,wwawrzy}@amu.edu.pl

Abstract. In this paper we consider the problem of matching clients
with servers, each of which can process a subset of clients. It is known
as the semi-matching or load balancing problem in a bipartite graph
G = (V,U,E), where U corresponds to the clients, V to the servers, and
E is the set of available connections between them. The goal is to find
a set of edges M ⊆ E such that every vertex in U is incident to exactly
one edge in M. The load of a server v ∈ V is defined as

(
dM (v)+1

2

)
where

dM (v) is the degree of v in M , and the problem is to find an optimal semi-
matching, i.e. a semi-matching that minimizes the sum of the loads of the
servers. An optimal solution can be found sequentially in polynomial time
but the distributed complexity is not well understood. Our algorithm

yields (1+ 1
α
)-approximation (where α = max

{
1, 1

2

(
|U|
|V | + 1

)}
) and has

time complexity O
(
Δ5

)
, where Δ is the maximum degree of a vertex

in V. In particular, for Δ = O(1) it gives constant approximation with
constant time complexity. We also give a fast algorithm for the case when
Δ is large and the degrees in V and U satisfy some additional properties.
Both algorithms are deterministic.

1 Introduction

In this paper we restrict our attention to a bipartite graph G = (V, U,E) with
bipartition V ∪U and edge set E ⊆ V ×U. We denote |U | = n and |V | = m and
refer to the vertices of U as clients and to the vertices of V as servers. In what
follows we assume that vertices have unique identifiers from {1, . . . , n+m} and
know the maximum degree Δ = ΔV (G) of a vertex in V.

Recall that a matching in a bipartite graph G = (V, U,E) is a set M ⊆ E of
disjoint edges. A matching M is called maximal if there is no matching M ′ such
that M is a proper subset of M ′, and a matching M is called maximum if there
is no matching M ′ with |M ′| > |M |.
� The research supported by grant N N206 565740.

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 210–222, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Distributed 2-Approximation Algorithm for the Semi-matching Problem 211

We are interested in a relaxation of the maximum bipartite matching problem.
A semi-matching in a bipartite graph G = (V, U,E) is a set of edges M ⊆ E
such that every vertex u ∈ U is incident with exactly one edge in M. In this
way a semi-matching provides an assignment of each client to a server that it is
connected to. This also implies that for a semi-matching to exist each vertex in
U must have degree at least one in G. For a semi-matching M and every vertex
v ∈ V we denote by dM (v) the number of edges in M incident do v, which
corresponds to the number of clients that have to be processed by a server
associated with v. With this setting, the total completion time (including the
waiting time) of a server v for its dM (v) clients, which are served in an arbitrary

sequential order is equal to 1+2+ · · ·+dM (v) =
(
dM(v)+1

2

)
. Therefore, we define

the cost of a semi-matching M as

cost(M) =
∑
v∈V

(
dM (v) + 1

2

)
.

A semi-matching with minimum total cost is called an optimal semi-matching.
This, in turn, corresponds to the total completion time of serving all clients by
the servers.

An optimal solution to the problem can be found in polynomial time by
sequential algorithms (see Sec. 1.1 for more details). In this paper we analyze
the distributed complexity of the optimal semi-matching problem.

We consider a synchronous, message-passing model of computations (referred
to as LOCAL in [11]). In this model a graph is used to represent an underlying
network. The vertices of the graph correspond to computational units, and edges
represent communication links. The network is synchronized and in one round
a vertex can send and receive messages from all of its neighbors. In addition,
in the same round, a vertex can perform some local computations. The running
time of the algorithm is the number of rounds needed to solve a problem. We
restrict our attention to deterministic algorithms.

1.1 Related Work

The semi-matching problem known also as the load balancing problem has been
extensively studied under various names in the scheduling literature. Recently
it has received renewed attention after the paper by Harvey, Ladner, Lovász,
and Tamir [6], where the name semi-matching was introduced. In the same
paper the authors proposed two sequential polynomial time algorithms. The first
algorithm generalizes the Hungarian method for computing maximum bipartite
matchings, while the second is based on a notion of so called cost reducing paths.
The best running time of the latter algorithm is O(|E|

√
n+m log(n+m)) and

was obtained in [3]. Also, a new approach to this problem was recently proposed
in [7]. The weighted version of a related problem to find a semi-matching that
minimizes the maximum load among all vertices in V was considered in [3].

The problem, if solved in the distributed setting, can be used, for example,
to construct a load balanced data gathering tree in sensor networks [12]. All the

212 A. Czygrinow et al.

sequential algorithms improve an initial semi-matching to get an optimal one by
using some global structures such as cost reducing paths or breadth-first search
trees and cannot be applied in the LOCAL setting. At the same time, known
distributed algorithms for the matching problem are either randomized [9] or
rely on techniques that are specific to matchings [5].

As our first approach to the problem, we observed in [2] that in the dis-
tributed model of computation the optimal solution requires Ω(|V |) rounds, and
proposed a greedy algorithm which yields O(1)-approximation of an optimal
semi-matching in time O(Δ2). In this paper the approximation ratio is reduced
to two via a modification of both, the algorithm and its analysis. Moreover, we
give an alternative algorithm GreedySM (see Sec. 3), which is much faster in
the case when Δ is large, the degrees of vertices of V do not differ much from
each other, and the degrees on U are bounded from above.

1.2 Main Result

Our main result is summarized in the following theorem. Let M∗ denote an
optimal semi-matching in a bipartite graph G = (V, U,E).

Theorem 1. In every bipartite graph G = (V, U,E) with the maximum degree
in V equal to Δ the algorithm SemiMatch (described in Sec. 2.2) finds a semi-
matching M such that

cost(M) ≤
(
1 +

1

α

)
cost(M∗), where α = max

{
1,

1

2

(
|U |
|V | + 1

)}
,

and the time complexity of this algorithm is O
(
Δ5
)
.

1.3 Organization

The rest of the paper is structured as follows. The next section is devoted to the
main algorithm SemiMatch and its analysis for arbitrary bipartite graphs. In
the last section we give a fast algorithm in the case when Δ is large and some
additional conditions on the degrees of vertices of V and U are satisfied.

2 Main Algorithm

Before stating the main algorithm SemiMatch and proving Theorem 1 we need
to introduce some more notation.

2.1 Notation and Non-swappable Semi-matchings

The crucial role in our proof is played by semi-matchings which are called non-
swappable. This property is formally defined below. Observe that if for an arbi-
trary semi-matching M there exist two vertices v, w ∈ V connected by a path P
consisting of edges alternating between M and E\M and such that v is matched

Distributed 2-Approximation Algorithm for the Semi-matching Problem 213

by M and w is not, and, moreover, dM (v) ≥ dM (w) + 2 then we can lower the
cost of M by switching the non-matched edges of P to M and vice-versa, i.e. by
taking the symmetric difference of P and M. In such a case the path P is called
cost reducing. It was proved in [6] that if no cost reducing path exists for a given
semi-matching M then M is optimal. These paths, however, can be very long
and thus impossible to detect efficiently in the distributed setting. Therefore, we
restrict our attention to cost reducing paths of length two only. A semi-matching
is non-swappable if there is no cost reducing path of length two.

Definition 1. Let G = (V, U,E) be a bipartite graph and M be a semi-matching.
We say that M is non-swappable if for all v, w ∈ V, u ∈ U such that vu ∈M and
wu ∈ E \M it holds that dM (v) ≤ dM (w) + 1. A path P = vuw not satisfying
this condition, i.e. a cost reducing path of length two, is called a bad path.

Let M∗ be an optimal semi-matching in G = (V, U,E). Semi-matchings which
are non-swappable form a good approximation of the optimal solution as it is
indicated in Theorem 2 below.

Theorem 2. For any non-swappable semi-matching M in G = (V, U,E),

cost(M) ≤
(
1 + 1

α

)
cost(M∗), where α = max

{
1,

1

2

(
|U |
|V | + 1

)}
.

In order to prove Theorem 2 we need the following result.

Fact 1. For any semi-matching M in G = (V, U,E) it holds

cost(M) ≥ α|U |, where α = max

{
1,

1

2

(
|U |
|V | + 1

)}
.

Proof.

cost(M) =
∑
v∈V

(
dM (v) + 1

2

)
≥
∑
v∈V

dM (v) = |U |,

as well as, by Cauchy-Schwartz inequality

cost(M) =
∑
v∈V

(
dM (v) + 1

2

)
≥ |V |

(∑
v∈V dM (v)

|V | + 1

2

)
= 1

2 |U |
(

|U|
|V | + 1

)
.

Proof (Proof of Theorem 2.). Let M be a non-swappable semi-matching and let
M∗ be an optimal semi-matching in G. For any u ∈ U set vu, v

∗
u in such a way

that uvu ∈ M and uv∗u ∈ M∗. Define an auxiliary multi-digraph D such that
for any u ∈ U there is an arc (vu, v

∗
u) ∈ D if vu 	= v∗u. We assume that D is

connected, as otherwise we could analyze each component separately (note that
cost(M) is additive). Let d+D(v), d−D(v) denote the out-degree and the in-degree
of vertex v respectively. Consider two subsets of V , V + = {v ∈ V : d+D(v) >
d−D(v)}, V − = {v ∈ V : d−D(v) > d+D(v)}. Let d =

∑
v∈V +(d+(v) − d−(v)) =∑

v∈V −(d−(v)− d+(v)). Clearly, if V + = V − = ∅ then cost(M) = cost(M∗). In
the other case we use the following theorem(see [1], p. 84-85) about an Eulerian
cover by arc-disjoint open trails.

214 A. Czygrinow et al.

Theorem 3. For every connected directed multigraph D with d > 0 there exist
(edge disjoint) open trails P1, P2, . . . , Pd which cover D, i.e. D =

⋃d
j=1 Pj and

Pi ∩ Pj = ∅(edgewise), where the beginnings of P1, P2, . . . , Pd are in V +, while
the ends are in V −.

For every e = (v, v∗) ∈ D, let ue be such that v = vue , v
∗ = v∗ue

. Construct
a sequence of semi-matchings M1, . . . ,Md obtained by swapping the edges of
current semi-matching and the optimum M∗ corresponding to the arcs of the
trails. Thus, M1 = (M \ {{uevue} : e ∈ P1}) ∪ {{ue, v

∗
ue
} : e ∈ P1}, . . . ,Md =

(Md−1 \ {{uevue} : e ∈ Pd}) ∪ {{ue, v
∗
ue
} : e ∈ Pd} = M∗. Let v, w be the

beginning and end of P1, respectively. Then it holds dM (v′) = dM1 (v
′) for every

v′ 	= v, w but dM1 (v) = dM (v)− 1, dM1(w) = dM (w) + 1 and dM (w) ≥ dM (v)−
|P1| because M is non-swappable.

So, the cost changes as follows

cost(M)− cost(M1) =

(
dM (w) + 1

2

)
−
(
dM (w) + 2

2

)
+

+

(
dM (v) + 1

2

)
−
(
dM (v)

2

)
= 1

2 [−2(dM (w) + 1) + 2dM (v)]

= dM (v)− dM (w) − 1 ≤ |P1| − 1.

Note that M1 is also non-swappable as no new bad paths were formed. Anal-
ogously, cost(Mj−1) − cost(Mj) = (dMj−1 (v) − dMj−1 (w) − 1) ≤ (|Pj | − 1) for

every j = 2, . . . , d. In consequence, cost(M) − cost(M∗) ≤
∑d

j=1(|Pj | − 1) =
|D| − d ≤ |D| ≤ |U |. Further, by Fact 1, we obtain cost(M) ≤ cost(M∗) + |D| ≤(
1 + 1

α

)
cost(M∗).

For arbitrary, non-swappable semi-matching the above theorem yields the
following.

Corollary 1. For any non-swappable semi-matching M in G, cost(M) ≤ 2 ·
cost(M∗).

2.2 An Approximation Algorithm and Its Analysis

We are now ready to present the algorithm SemiMatch (see the pseudocode
below) returning a non-swappable semi-matching which, by Theorem 2, is a
(1+ 1/α)-approximation of the optimum. It starts by finding an arbitrary semi-
matching M in G = (V, U,E) (step 1) and systematically eliminating all cost
reducing paths of length two with respect to M (i.e. bad paths as in Def. 1) in
such a way that no new such paths are formed. This is quite a challenging task
and requires a systematic approach in which we consider bad paths that end
in vertices of degree 0, 1, . . .Δ in M (the loop in step 2) and remove them by
the swapping operation (step 7). As a result, M is modified and possibly new
bad paths are created (step 9) and are again eliminated (step 11). This process,
as we show below, ends after finitely many iterations. Unfortunately, we do not

Distributed 2-Approximation Algorithm for the Semi-matching Problem 215

know how to do it for bad paths of length greater than two, which could possibly
improve the approximation ratio.

To give a formal analysis we need some more notation. Let M be a semi-
matching in a bipartite graph G = (V, U,E). Then we set

Vk := Vk(M) = {v ∈ V |dM (v) = k}.

In addition, V≤k = {v ∈ V |dM (v) ≤ k} and V<k, V≥k, V>k are defined analo-
gously. Note that as M changes during the execution of the algorithm so do the
above sets. To keep track of the local values of the degrees of vertices in the
algorithm we also use the sets Lk corresponding to Vk.

Recall that an M -alternating path P = vuw with vu ∈M is bad (Def. 1) if it
is cost reducing, i.e. dM (v) − dM (w) ≥ 2. For every such P we set Start(P) =
{v}, End(P) = {w}. For two (not necessarily disjoint) sets A,B ⊂ V we use
Bad(A,B) to denote the set of all bad paths from some x ∈ A to some y ∈ B.Ob-
serve that in this setting the condition Bad(V, V) = ∅ with respect to a current
semi-matching implies that this semi-matching is non-swappable (Thm. 5). To
meet this condition the algorithm eliminates bad paths by swapping, in parallel,
bad paths which do not interfere with each other. Formally, we use a simple pro-
cedure denoted by Badind(A,B) to find a maximal set of paths from Bad(A,B)
such that for any two paths P, P ′ ∈ Badind(A,B), Start(P) ∩ Start(P ′) = ∅
and End(P)∩End(P ′) = ∅. Since M is a semi-matching, the paths constructed
by Badind(A,B) are also internally disjoint. What is more, since Δ(V) ≤ Δ,
Badind(A,B) can be performed easily in O(Δ) rounds for any A,B ⊆ V . Fi-
nally, if M is a semi-matching and Z is a set of bad paths, then Z ⊕M is the
semi-matching obtained from M by deleting the edge vu ∈ M and adding uv′

for every path vuv′ in Z. Clearly, Z ⊕M is a semi-matching as the degree of
every u stays one.

Algorithm 1. SemiMatch

1: ∀u ∈ U pick an arbitrary edge eu incident to u and let M =
⋃

u∈U eu.
2: for k = 0 to Δ− 2 do
3: for i = 0 to 2Δ do
4: ∀v∈V l(v) = dM (v), ∀t=0,...,Δ Lt = {v ∈ V |l(v) = t} � Layers
5: X = Badind(V>k+1, Vk) � Maximal set of disjoint paths
6: S = Ends(X), Sc = V \ S
7: M = M ⊕X � Applying X to M
8: for j = 0 to 2Δ2 do
9: Y =

⋃k
t=1 Badind(Lt ∩ S,Lt−1 ∩ Sc)

10: S = S ∪Ends(Y) \ Starts(Y), Sc = V \ S
11: M = M ⊕ Y � Applying Y to M
12: end for
13: end for
14: end for
15: return M

216 A. Czygrinow et al.

We now proceed with the analysis of SemiMatch. Our goal is to prove that
it terminates in O(Δ5) steps (via Thm. 4) and returns a semi-matching that
is non-swappable (via Thm. 5). At the end Theorems 4 and 5 together with
Theorem 2 will yield our main result, Theorem 1.

Fix n and let C(k, i) be the smallest integer C such that after C iterations of

the loop 8-12 the set Y :=
⋃k

t=1 Badind(Lt∩S,Lt−1∩Sc) is empty. The following
theorem provides an upper bound on the value of C(k, i). It can be easily proved
that C(k, i) is finite. Our next result provides a specific bound in terms of Δ.

Theorem 4. C(k, i) ≤ 2Δ2.

The next theorem guarantees that the algorithm returns a non-swappable semi-
matching after termination.

Theorem 5. After all iterations of the loop 2–14, Bad(V, V) = ∅. In particular,
the semi-matching returned in Step 15 is non-swappable.

First we show how the degree of a vertex in a semi-matching changes in the
course of the algorithm. Note that in SemiMatch the label l(v) of a vertex v
does not change during the execution of loop 8-12 but dM (v) may change.

Fix k, i and let dM (v) denote the degree of v (in M) at the beginning of the

i-th iteration (step 3) and let d
(j)
M (v) be the degree of v at the beginning of the

j-th iteration (step 8) (j = 0, . . . , C + 1, where j = 2Δ2 + 1 gives the degree
after all iterations). For T ∈ {S, Sc}, we say that a vertex v has state T at a
given time if v ∈ T at this time.

Fact 2. The following inequalities hold for every j.

a) If dM (v) ≥ k + 2, then −1 ≤ d
(j)
M (v)− dM (v) ≤ 0.

b) If dM (v) = k + 1, then d
(j)
M (v)− dM (v) = 0.

c) If dM (v) ≤ k, then 0 ≤ d
(j)
M (v) − dM (v) ≤ 1.

Proof. If dM (v) = k + 1, then v cannot be the beginning or the end of any
path in X or Y and its degree does not change. If dM (v) ≥ k + 2, then v can
be only the beginning of at most one path in X ∪ Y. Therefore, for every j,

dM (v) ≥ d
(j)
M (v) ≥ dM (v) − 1. Now assume that dM (v) ≤ k. First, note that if

v ∈ S in step 6, then its degree increases by exactly one in step 7. Finally, in
view of step 9, only paths from vertices in S to vertices in Sc are used. If P ∈ Y
and P = vuw, then w has state Sc, v has state S in step 9 and v ∈ Sc, w ∈ S in
step 10. Consequently, the degree of any vertex in V<k+1 cannot decrease and
can increase by at most one.

Next we show three lemmas determining the elimination of bad paths in the
execution of the algorithm, which are used in the proof of Theorem 5.

Lemma 1. For every k and i, if Bad(V, V<k) = ∅ at the beginning of the i-th
iteration (step 3), then Bad(V, V<k) = ∅ after this iteration.

Distributed 2-Approximation Algorithm for the Semi-matching Problem 217

Proof. Suppose, to the contrary, that there is a path vuv′ ∈ Bad(V, V<k) after
the i-th iteration. First note that v′ ∈

⋃
i≤k Li. Indeed, by Fact 2, every vertex

in V>k has degree at least k + 1 in all of the iterations of loop 8-12. Thus, we
shall consider two cases based on l(v).

– Case 1: l(v) ≥ k + 1. Then, in step 4, dM (v) ≥ k + 1 and vu ∈ M at the
beginning of the iteration as v cannot be the endpoint of any path in X
or Y . Thus vuv′ is in Bad(V, V<k) at the beginning of the i-th iteration
contradicting the assumption.

– Case 2: l(v) ≤ k. First suppose that vu /∈M at the beginning of the iteration.
Then, at the same time there must be another path wuv with wu ∈ M for
some w that satisfies l(w) > l(v). Since l(v) > l(v′), wuv′ ∈ Bad(V, V<k) at
the beginning of the iteration. Thus, we may assume that vu ∈ M at the
beginning of the iteration (step 9). Since there are no bad paths in step 5, we
have l(v) = l(v′)+1 and after all iterations v ∈ S, v′ ∈ Sc, that is vuv′ could
be added to Y , contradicting the fact that after C iterations Y is empty.

Lemma 2. Let Bad(V, V≤k−1) = ∅ at the beginning of the k-th iteration (step 2)
for some k. Then for every i ∈ {0, . . . , 2Δ} and every v ∈ Vk after steps 4-12 of
the i-th iteration at least one of the following conditions is satisfied.

a) Bad(V, v) = ∅.
b) |Bad(V, v)| decreases by at least one in the i-th iteration.
c) max{dM (w)|w ∈ Starts(Bad(V, v))} decreases by at least one in the i-th

iteration.

Proof. Fix k. First assume that v /∈ Lk at the beginning of the i-th iteration
(step 4) for some i. Fact 2 implies that l(v) = k − 1. If at the end of the i-th
iteration there exists a path wuv ∈ Bad(V, v), then l(w) > k+1 and so wu ∈M
in step 4 as w cannot be the endpoint of any bad path in the i-th iteration.
Thus wuv ∈ Bad(V, v) at the beginning of the k-th iteration contradicting the
assumption. Thus, Bad(V, v) = ∅ in the i-th iteration.

Now suppose that v ∈ Lk at the beginning of the i-th iteration (step 4). First,
we prove that no new paths are added to Bad(V, v) in the i-th iteration. Suppose,
to the contrary, that wuv is added to Bad(V, v). Since the degree of v has not
changed in this iteration, either wu is added to M in this iteration or the degree
of w (in M) increases by one. However, w ∈ V>k and no new edges incident to w
are added to M excluding both possibilities, so the path wuv cannot be added in
this iteration. Assume Bad(V, v) 	= ∅. If v ∈ Ends(X) after step 6, then at least
one path from Bad(V, v) is deleted in step 7. If v /∈ Ends(X), by maximality
of X , for every x ∈ Starts(Bad(V, v)), x ∈ Starts(X). Since l(x) > k + 1,
x /∈ Ends(Y) for any Y and so dM (x) decreases by at least one in this iteration.

Lemma 3. Let Bad(V, V≤k−1) = ∅ at the beginning of the k-th iteration for
some k. Then Bad(V, V≤k) = ∅ after the k-th iteration.

Proof. Assume Bad(V, V≤k−1) = ∅ at the beginning of the k-th iteration. In
view of Lemma 1, Bad(V, V≤k−1) = ∅ after the k-th iteration. Let v ∈ Vk

218 A. Czygrinow et al.

after the k-th iteration. By Lemma 2, in each of the iterations of the loop 3-
12 at least one of the conditions is satisfied and once Bad(V, v) = ∅, we cannot
add new bad paths to Bad(V, v). Since dG(w) ≤ Δ for every w ∈ V , 0 ≤
|Bad(V, v)| + max{dM (w)|w ∈ Starts(Bad(V, v))} ≤ 2Δ and so, by Lemma 2,
after 2Δ iterations Bad(V, v) = ∅.

Proof (Proof of Theorem 5). First note that after the k-th iteration,
Bad(V, V≤k) = ∅. Indeed, by induction on k, if k = 0, then Bad(V, V−1) = ∅
and so, by Lemma 3, Bad(V, V≤0) = ∅. For the inductive step, assume that
Bad(V, V≤k−1) = ∅ and thus, by Lemma 3, Bad(V, V≤k) = ∅. Since Δ(V) ≤ Δ
and there are no bad paths ending in vertices of degree at least Δ− 1, after all
iterations of the algorithm we have Bad(V, V) = Bad(V, V≤Δ−2) = ∅.

Next we establish some facts and lemmas necessary to prove Theorem 4. To prove
that C(k, i) ≤ 2Δ2 we will use the following auxiliary directed multigraph. Fix
k, i and assume that Bad(V, V<k) = ∅ at the beginning of the i-th iteration of 3-
13. Let H = Hi,k = (VH , EH) be defined as follows, VH = L≤k and for v, w ∈ VH

there is an arc from v to w (with label u) if the path vuw was is in Y in one
of the iterations 8-12. Note that if (v, w) ∈ EH , then l(v) > l(w) and vu ∈ M ,
uw /∈ M prior to applying vuw to M . We first state the following simple fact
about H .

Fact 3. The multigraph H is acyclic and the longest directed path in H has
length at most Δ−2. The maximum out-degree of H and the maximum in-degree
of H are at most Δ.

Proof. If (v, w) is an arc, then l(v) > l(w) and so there are no cycles and the
longest path in H has length at most Δ− 2 as k ≤ Δ− 2. There is at most one
arc in H from v to w which is labeled with u and since the maximum degree of
vertices in V is Δ, the max out-degree in H is at most Δ. The same applies to
the in-degree.

Recall that for T ∈ {S, Sc}, we say that a vertex v has state T at a given time
if v ∈ T at this time. For a directed path P in H , let q(P) be the sum of all
changes of states of all vertices in P . In view of Fact 3 we have

0 ≤ q(P) ≤ 2Δ2. (1)

Now consider the set S in step 6. In step 7 and step 11, if vuw ∈ X (or Y), then
w acquires the S-state that was previously on v and we say that S moves from
v to w. In addition, we say that we apply the path vuw. We need the following
important lemma.

Lemma 4. Fix k, i and assume that Bad(V, V<k) = ∅ at the beginning of the
i-th iteration (steps 3-13). If there exists a bad path vuv′ such that v ∈ S and
v′ ∈ Sc for some iteration j0 (of the loop 8-12) then vuv′ is a bad path in every
iteration j < j0 of the loop 8-12.

Distributed 2-Approximation Algorithm for the Semi-matching Problem 219

Proof. Fix j0 and suppose that vuv′ is a bad path such that v ∈ S and v′ ∈ Sc

in the iteration j0. Then, since vuv
′ is a bad path in one of the iterations, Fact 2

implies dM (v) ≥ dM (v′) + 2 in the iteration j0. If uv /∈M for some j < j0, then
there is w with l(w) > l(v) such that wu ∈M for all j < j0 and wuv′ is a path in
Bad(V, V<k) at the beginning of the i-th iteration contradicting the assumption
of the lemma.

Returning to the main line of reasoning towards the proof of Theorem 4 fix k
and i. Further, for a vertex v ∈ S in step 6, let P = v1 . . . vs be the path of
successive moves of the state S that was originally on v1 := v. Thus, in step 6,
v1 has S and in steps 8-12, S will move by applying bad paths viuivi+1 until
it reaches vs which is its final destination. To prove that in O(Δ2) steps S will
reach vs we extend P to P ′ = v1, . . . vs, . . . , vs+l using the following operation.
Let jp be the largest index j such that in the j-th iteration state S on vs+p is
moved to a vertex w and let vs+p+1 be this vertex w. Continue extending P ′ if
possible. Note that P ′ is a directed path in the multigraph H introduced earlier.
The following lemma holds for P ′.

Lemma 5. For every iteration of the loop 8 − 12 either at least one vertex on
P ′ changes its state or state S is on its final destination vs.

Proof. Consider an iteration of the loop 8-12 and suppose that at the beginning
of this iteration the state S that originated at v1 is on vi for some i ∈ {1, . . . , s−
1}. We prove that there exists a j > i such that vj ∈ P ′ has state Sc. (Note that
i, j have now nothing to do with the indices of the loops in the algorithm.) First
observe that if for every j ∈ {s+1, . . . , s+p}, the state of vj is S, then these are
final states of these vertices. By maximality of P ′, the vertex vs+p has its final
state. Now suppose, vs+i, . . . , vs+p have their final states (all S). If vs+i−1 ∈ S,
then the state S cannot move from vs+i−1 to vs+i and since, by definition of P ′,
the vertex vs+i was the last recipient of the S-state from vs+i−1. So vs+i−1 will
not change its state. Now, if all vs+1, . . . , vs+p are in state S, then vs is in Sc as
by definition of P ′, vs+1 was the last recipient of an S-state from vs.

Further, since i < j, vi has state S, and vj has state Sc, there is an index
i ≤ l < j such that vl ∈ S, vl+1 ∈ Sc. Thus, by Lemma 4, the path vlulvl+1 is a
bad path in this iteration. By maximality of Y in step 9, either vl or vl+1 is the
endpoint of a path from Y .

Proof (Proof of Theorem 4). For a fixed k, i and a vertex v ∈ S in step 6, let
P ′ be defined as before. By (1), q(P ′) ≤ 2Δ2 and, in view of Lemma 5, in 2Δ2

iterations the state originated at v will reach its final destination. Since every
bad path is obtained from some v ∈ S, after 2Δ2 iterations there will be no bad
paths in Y , that is Y = ∅.

3 Semi-matchings via the Minimum Sum Set Cover

In this section we present an alternative approach to the problem of computing a
semi-matching in a distributed setting. We give an algorithm for approximating

220 A. Czygrinow et al.

the optimal semi-matching with a slightly modified definition of the cost (see
the proof of Theorem 6 for details) in a graph G = (V, U,E) with degrees
on U bounded from above and with an additional assumption on degrees of
vertices in V . The method relies on a reduction to the Minimum Sum Set Cover
(MSSC) problem that we shall define next. Given a hypergraph H = (VH , EH),
a solution to the MSSC problem is a bijection φ : VH → {1, . . . , |VH |} and
the cost of φ, costMSSC(φ) =

∑
e∈EH

min{φ(v)|v ∈ e}. We let optMSSC(H) =
minφ costMSSC(φ) and call a solution φ optimal if costMSSC(φ) = optMSSC(H).
It is known (see [4]) that a greedy algorithm solving this problem yields a 4-
approximation. The algorithm in [4] works as follows. In the i-th (i = 1, . . . , |VH |)
iteration a vertex v of the maximum degree in the current hypergraph is selected,
φ(v) := i, and all edges containing v are removed from this hypergraph. By a
slight modification of the proof in [4] one can show that, if instead of selecting a
vertex with the maximum degree, the procedure picks a vertex v with dH(v) ≥
ΔH/2, then the approximation ratio is nine instead of four, that is the obtained
bijection φ satisfies

costMSSC(φ) ≤ 9 · optMSSC(H). (2)

Now we describe the reduction, which takes an instance G = (V, U,E) with
U = {u1, . . . , u|U|} of a semi-matching problem, and returns an MSSC instance
using f -matchings. Given f ∈ Z+, an f -matching in G is a set Q ⊆ E, such
that dQ(v) ≤ f for every v ∈ V and dQ(u) ≤ 1 for every u ∈ U . Formally,
given G = (V, U,E) construct a hypergraph H = H(G) = (VH , EH), where VH

is the set of all f -matchings in G and EH = {e1, . . . , e|U|}, where ei is the set
of all f -matchings Q ∈ VH with dQ(ui) = 1. Observe that, for ei ∈ EH , v ∈ VH

and an f -matching Q in G corresponding to v, the fact that v belongs to ei is
equivalent to dQ(ui) = 1, and, therefore dH(v) = |Q|. Moreover, the operation of
removing an edge ei from H is equivalent to removing the corresponding vertex
ui from U . As a result of this, the degrees of all vertices in ei decrease by one
and at the same time the sizes of all f -matchings containing ui decrease by one.
Notice also, that the set VH remains unchanged during such an operation while
its elements (f -matchings) might decrease in size.

The greedy algorithm finding an MSSC in H can be now rewritten as the
following procedureGreedySM in G: Find a maximal f -matchingQ inG, delete
from U all vertices u with dQ(u) = 1, and continue until G is empty. The result
of GreedySM is the union M of all maximal f -matchings Q computed in the
course of the procedure. Note that any maximal f -matching is a 1

2 -approximation
of a maximum f -matching in G.

Next we relate an arbitrary semi-matching in G with a solution to the MSSC
problem in H(G) using a labeling. For a semi-matching M in G let φM be a
solution to the MSSC problem in H defined as follows. Consider the sequence
s := 1, 1, . . . , 1, 2, 2 . . . , 2, 3, . . . where each i appears exactly f times. Every
vertex v ∈ V , in parallel, labels the edges of M incident to v by successive
numbers in s. Let k be the maximum label used in this process. Then, the edges
of M with label i form an f -matching Qi. Set φM (Qi) := i and for every other

Distributed 2-Approximation Algorithm for the Semi-matching Problem 221

f -matching Q in G let φM (Q) = j for some j > k. In addition, if M is obtained
by GreedySM and the labels of edges in M correspond to iterations (edges
added in the i-th iteration have label i), then φM obtained as above is said to
agree with GreedySM.

For a semi-matching M in G, p ∈ %, and v ∈ V , let kM (v) := p · dM (v) if
dM (v) < f and let kM (v) := p

f d
2
M (v) if dM (v) ≥ f . LetK(M,p) :=

∑
v∈V kM (v).

Lemma 6. For a semi-matching M , costMSSC(φM) ∈ [K(M, 1
2),K(M, 2)].

Proof. For an edge e = {u, v} ∈M , u ∈ U , let ψ(e) be the label of e assigned as
described before. Then Qψ(e) has the smallest value of φM from all f -matchings
containing u and therefore, costMSSC(φM) =

∑
e∈M ψ(e). Let v ∈ V . If dM (v) <

f , then the sum of ψ(e) over all e’s in M incident to v is dM (v) and otherwise it

is 1
2r(r+1)f +(r+1)(dM (v)− fr) = (r+1)(dM (v)− 1

2fr), where r = �dM (v)
f �.

Finally, we have
d2
M (v)
2f ≤ (r + 1)(dM (v)− 1

2fr) ≤
2d2

M(v)
f .

In the analysis of the algorithm GreedySM we use also the following fact.

Fact 4. Let M be a semi-matching such that for all v ∈ V it holds dM (v) ≥ t.
Then there exists an optimal semi-matching M∗ with dM∗(v) ≥ t for all v ∈ V .

Theorem 6. Let a, b ∈ Z+, Δ = ΔV (G) > ab. GreedySM finds a
36-approximation of the semi-matching problem in a graph G = (V, U,E) that
satisfies: d(v) ∈ [Δ/a,Δ] for every v ∈ V and d(u) ≤ b for every u ∈ U . The
algorithm runs in O(ab2) rounds.

Proof. Let f := �Δ/(ab)� and let M be obtained by GreedySM. Let φM be the
solution to the MSSC problem obtained from M that agrees with GreedySM.
Then, in view of the previous discussion and by (2), costMSSC(φM) ≤ 9 ·
optMSSC(H). To simplify computations we redefine

costSM (M) :=
2

f

∑
v∈V

d2M (v).

By Lemma 6, 1
4costSM (M) ≤ K(M, 1

2) ≤ costMSSC(φM) ≤ 9 ·optMSSC(H). On
the other hand, by Hall’s theorem there exists a semi-matchingM ′ with dM ′(v) ≥
f for all v ∈ V . By Fact 4 there also exists an optimal semi-matching M∗ with
the same property. From Lemma 6, costMSSC(φM∗) ≤ K(M∗, 2) = costSM (M∗)
and so optMSSC(H) ≤ costSM (M∗). Thus, costSM (M) ≤ 36 · costSM (M∗). The
number of iterations of GreedySM is O(ab) as in each iteration each vertex
from V looses f or all incident edges. Finding a maximal f -matching can be
done in O(b) rounds (using procedures similar to those computing a maximal
matching, see e.g. [13]).

Remark 1. If a = 1, b ∈ Z+, Δ > b, then the algorithm GreedySM finds a 36-
approximation of the semi-matching problem in every graph G = (V, U,E), which
is Δ-regular on V, in O(b2) rounds. In this case it outperforms the algorithm
SemiMatch, which has time complexity O(Δ5) independent of the value of b,
the upper bound on the degrees of vertices in U .

222 A. Czygrinow et al.

References

1. Andrasfai, B.: Introductory Graph Theory. Adam Hilger (1977)
2. Czygrinow, A., Hanćkowiak, M., Krzywdziński, K., Szymańska, E., Wawrzyniak,

W.: Brief Announcement: Distributed Approximations for the Semi-matching
Problem. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 200–201. Springer,
Heidelberg (2011)

3. Fakcharoenphol, J., Laekhanukit, B., Nanongkai, D.: Faster Algorithms for Semi-
matching Problems (Extended Abstract). In: Abramsky, S., Gavoille, C., Kirchner,
C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6198,
pp. 176–187. Springer, Heidelberg (2010)

4. Feige, U., Lovasz, L., Tetali, P.: Approximating Min Sum Set Cover. Algorith-
mica 40(4), 219–234 (2004)

5. Hanćkowiak, M., Karoński, M., Panconesi, A.: On the distributed complexity of
computing maximal matchings. In: Proc. 9th Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA, San Francisco, CA, USA, pp. 219–225 (January 1998)

6. Harvey, N.J.A., Ladner, R.E., Lovasz, L., Tamir, T.: Semi-matchings for bipartite
graphs and load balancing, J. Algorithms 59(1), 53–78 (2006)

7. Galč́ık, F., Katrenič, J., Semanǐsin, G.: On Computing an Optimal Semi-matching.
In: Kolman, P., Kratochv́ıl, J. (eds.) WG 2011. LNCS, vol. 6986, pp. 250–261.
Springer, Heidelberg (2011)

8. Linial, N.: Locality in distributed graph algorithms. SIAM Journal on Comput-
ing 21(1), 193–201 (1992)

9. Lotker, Z., Patt-Shamir, B., Rosén, A.: Distributed Approximate Matching. SIAM
J. Comput. 39(2), 445–460 (2009)

10. Low, C.P.: An approximation algorithm for the load-balanced semi-matching prob-
lem in weighted bipartite graphs. Information Processing Letters 100(4), 154–161
(2006)

11. Peleg, D.: Distributed Algorithms, A Locality-Sensitive Approach. SIAM Press
(2000)

12. Sadagopan, N., Singh, M., Krishnamachari, B.: Decentralized utility-based sensor
network design. Mob. Netw. Appl. 11(3), 341–350 (2006)

13. Suomela, J.: Survey of Local Algorithms (manuscript),
http://www.cs.helsinki.fi/u/josuomel/doc/local-survey.pdf

http://www.cs.helsinki.fi/u/josuomel/doc/local-survey.pdf

Bounds on Contention Management in Radio Networks

Mohsen Ghaffari1, Bernhard Haeupler1, Nancy Lynch1, and Calvin Newport2

1 Computer Science and Artificial Intelligence Lab, MIT
{ghaffari,haeupler,lynch}@csail.mit.edu

2 Department of Computer Science, Georgetown University
cnewport@cs.georgetown.edu

Abstract. The local broadcast problem assumes that processes in a wireless net-
work are provided messages, one by one, that must be delivered to their neigh-
bors. In this paper, we prove tight bounds for this problem in two well-studied
wireless network models: the classical model, in which links are reliable and
collisions consistent, and the more recent dual graph model, which introduces
unreliable edges. Our results prove that the Decay strategy, commonly used for
local broadcast in the classical setting, is optimal. They also establish a separation
between the two models, proving that the dual graph setting is strictly harder than
the classical setting, with respect to this primitive.

1 Introduction

At the core of every wireless network algorithm is the need to manage contention on
the shared medium. In the theory community, this challenge is abstracted as the local
broadcast problem, in which processes are given messages, one by one, that must be
delivered to their neighbors.

This problem has been studied in multiple wireless network models. The most com-
mon such model is the classical model, introduced by Chlamatac and Kutten [8], in
which links are reliable and concurrent broadcasts by neighbors always generate col-
lisions. The dominant local broadcast strategy in this model is the Decay routine in-
troduced by Bar-Yehuda et al. [9]. In this strategy, nodes cycle through an exponential
distribution of broadcast probabilities with the hope that one will be appropriate for
the current level of contention (e.g., [9, 11–17, 22]). To solve local broadcast with high
probability (with respect to the network size n), the Decay strategy requires O(Δ log n)
rounds, where Δ is the maximum contention in the network (which is at most the max-
imum degree in the network topology). It has remained an open question whether this
bound can be improved to O(Δ+polylog(n)). In this paper, we resolve this open ques-
tion by proving the Decay bound optimal (notice, throughout this paper, when we call
an upper bound “optimal” or a lower bound “matching,” we mean within poly-log log
factors). This result also proves for the first time that existing constructions of ad hoc
selective families [15, 16]—a type of combinatorial object used in wireless network
algorithms—are optimal.

We then turn our attention to the more recent dual graph wireless network model
introduced by Kuhn et al. [18,20,22,25]. This model generalizes the classical model by
allowing some edges in the communication graph to be unreliable. It was motivated by

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 223–237, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

224 M. Ghaffari et al.

Classical Model Dual Graph Model

Ack. Upper O(Δ log n)** O(Δ′ log n)*

Ack. Lower Ω

(
Δ log n

log2 log n

)
* Ω

(
Δ′ log n

log2 log n

)
*

Prog. Upper O(log Δ log n) O(min{k log k log n,Δ′ log n})*

Prog. Lower Ω(log Δ log n)** Ω

(
Δ′ log n

log2 log n

)
*

Fig. 1. A summary of our results for acknowledgment and progress for the local broadcast prob-
lem. Results that are new, or significant improvements over the previously best known result, are
marked with an “*” while a “**” marks results that where obtained from prior work via minor
tweaks.

the observation that real wireless networks include links of dynamic quality (see [22] for
more extensive discussion). We provide tight solutions to the local broadcast problem in
this setting, using algorithms based on the Decay strategy. Our tight bounds in the dual
graph model are larger (worse) than our tight time bounds for the classical model, for-
malizing a separation between the two settings (see Figure 1 and the discussion below
for result details). We conclude by proving another separation: in the classical model
there is no significant difference in power between centralized and distributed local
broadcast algorithms, while in the dual graph model the gap is exponential.

These separation results are important because most wireless network algorithm
analysis relies on the correctness of the underlying contention management strategy.
By proving that the dual graph model is strictly harder with respect to local broadcast,
we have established that an algorithm proved correct in the classical model will not
necessarily remain correct or might loose its efficiency in the more general (and more
realistic) dual graph model.

To summarize: This paper provides an essentially complete characterization of the lo-
cal broadcast problem in the well-studied classical and dual graph wireless network
models. In doing so, we: (1) answer the long-standing open question regarding the op-
timality of Decay in the classical model; (2) provide a variant of Decay and prove it
optimal for the local broadcast problem in the dual graph model; and (3) formalize the
separation between these two models, with respect to local broadcast.

Result Details: As mentioned, the local broadcast problem assumes processes are pro-
vided messages, one by one, which should be delivered to their neighbors in the com-
munication graph. Increasingly, local broadcast solutions are being studied separately
from the higher level problems that use them, improving the composability of solutions;
e.g., [18, 21, 23, 24]. Much of the older theory work in the wireless setting, however,
mixes the local broadcast logic with the logic of the higher-level problem being solved;
e.g., [9,11–17,22]. This previous work can be seen as implicitly solving local broadcast.

The efficiency of a local broadcast algorithm is characterized by two metrics: (1)
an acknowledgment bound, which measures the time for a sender process (a process
that has a message for broadcast) to deliver its message to all of its neighbors; and
(2) a progress bound, which measures the time for a receiver process (a process that
has a sender neighbor) to receive at least one message1. The acknowledgment bound is

1 Note that with respect to these definitions, a process can be both a sender and a receiver,
simultaneously.

Bounds on Contention Management in Radio Networks 225

obviously interesting; the progress bound has also been shown to be critical for analyz-
ing algorithms for many problems, e.g., global broadcast [18] where the reception of
any message is normally sufficient to advance the algorithm. The progress bound was
first introduced and explicitly specified in [18, 23] but it was implicitly used already in
many previous works [9, 11–14, 17]. Both acknowledgment and progress bounds typi-
cally depend on two parameters, the maximum contention Δ and the network size n. In
the dual graph model, an additional measure of maximum contention, Δ′, is introduced
to measure contention in the unreliable communication link graph, which is typically
denser than the reliable link graph. In our progress result for the dual graph model,
we also introduce k to capture the actual amount of contention relevant to a specific
message. These bounds are usually required to hold with high probability.

Our upper and lower bound results for the local broadcast problem in the classical
and dual graph models are summarized in Figure 1. Here we highlight three key points
regarding these results. First, in both models, the upper bounds are within O(log2 logn)
of the lower bounds. Second, we show that Ω(Δ logn

log2 logn
) rounds are necessary for ac-

knowledgment in the classical model. This answers in the negative the open question
of whether a O(Δ+ polylog(n)) solution is possible. Third, the separation between the
classical and dual graph models occurs with respect to the progress bound, where the
tight bound for the classical model is logarithmic with respect to contention, while in
the dual graph model it is linear—an exponential gap. Finally, in addition to the results
described in Figure 1, we also prove the following additional separation between the
two models: in the dual graph model, the gap in progress between distributed and cen-
tralized local broadcast algorithms is (at least) linear in the maximum contention Δ′,
whereas no such gap exists in the classical model.

Before starting the technical sections, we remark that due to space considerations,
the full proofs are omitted from the conference version and can be found in [27].

2 Model

To study the local broadcast problem in synchronous multi-hop radio networks, we use
two models, namely the classical radio network model (also known as the radio network
model) and the dual graph model. The former model assumes that all connections in
the network are reliable and it has been extensively studied since 1980s [8–18, 18, 23].
On the other hand, the latter model is a more general model, introduced more recently
in 2009 [18–20], which includes the possibility of unreliable edges. Since the former
model is simply a special case of the latter, we use dual graph model for explaining the
model and the problem statement. However, in places where we want to emphasize on a
result in the classical model, we focus on the classical model and explain how the result
specializes for this specific case.

In the dual graph model, radio networks have some reliable and potentially some
unreliable links. Fix some n ≥ 1. We define a network (G,G′) to consist of two undi-
rected graphs, G = (V,E) and G′ = (V,E′), where V is a set of n wireless nodes
and E ⊆ E′, where intuitively set E is the set of reliable edges while E′ is the set of
all edges, both reliable and unreliable. In the classical radio network model, there is no
unreliable edge and thus, we simply have G = G′, i.e., E = E′.

226 M. Ghaffari et al.

We define an algorithm A to be a collection of n randomized processes, described
by probabilistic automata. An execution of A in network (G,G′) proceeds as follows:
first, we fix a bijection proc from V to A. This bijection assigns processes to graph
nodes. We assume this bijection is defined by an adversary and is not known to the
processes. We do not, however, assume that the definition of (G,G′) is unknown to the
processes (in many real world settings it is reasonable to assume that devices can make
some assumptions about the structure of their network). In this study, to strengthen
our results, our upper bounds make no assumptions about (G,G′) beyond bounds on
maximum contention and polynomial bounds on size of the network, while our lower
bounds allow full knowledge of the network graph.

An execution proceeds in synchronous rounds 1, 2, ..., with all processes starting
in the first round. At the beginning of each round r, every process proc(u), u ∈ V
first receives inputs (if any) from the environment. It then decides whether or not to
transmit a message and which message to send. Next, the adversary chooses a reach
set that consists of E and some subset, potentially empty, of edges in E′ − E. Note
that in the classical model, set E′ − E is empty and therefore, the reach set is already
determined. This set describes the links that will behave reliably in this round. We
assume that the adversary has full knowledge of the state of the network while choosing
this reach set. For a process v, let Bv,r be the set all graph nodes u such that, proc(u)
broadcasts in r and {u, v} is in the reach set for this round. What proc(v) receives in
this round is determined as follows. If proc(v) broadcasts in r, then it receives only
its own message. If proc(v) does not broadcast, there are two cases: (1) if |Bv,r| = 0
or |Bv,r| > 1, then proc(v) receives ⊥ (indicating silence); (2) if |Bv,r| = 1, then
proc(v) receives the message sent by proc(u), where u is the single node in Bv,r. That
is, we assume processes cannot send and receive simultaneously, and also, there is no
collision detection in this model. However, to strengthen our results, we note that our
lower bound results hold even in the model with collision detection, i.e., where process
v receives a special collision indicator message ' in case |Bv,r| > 1. After processes
receive their messages, they generate outputs (if any) to pass back to the environment.

Distributed vs. Centralized Algorithms: The model defined above describes distributed
algorithms in a radio network setting. To strengthen our results, in some of our lower
bounds we consider the stronger model of centralized algorithms. We formally define
a centralized algorithm to be defined the same as the distributed algorithms above, but
with the following two modifications: (1) the processes are given proc at the beginning
of the execution; and (2) the processes can make use of the current state and inputs of
all processes in the network when making decisions about their behavior.

Notation and Assumptions: For each u ∈ V , the notationsNG(u) and NG′(u) describe,
respectively, the neighbors of u in G and G′. Also, we define N+

G (u) = NG(u) ∪ {u}
and N+

G′(u) = NG′(u)∪{u}. For any algorithmA, we assume that each processA has
a unique identifier. To simplify notation, we assume the identifiers are from {1, ..., n}.
We remark that our lower bounds hold even with such strong identifiers, whereas for
the upper bounds, we just need the identifiers of different processes to be different.
Let id(u), u ∈ V describe the id of process proc(u). For simplicity, throughout this
paper we often use the notation process u, or sometimes just u, for some u ∈ V , to

Bounds on Contention Management in Radio Networks 227

refer to proc(u) in the execution in question. Similarly, we sometimes use process i, or
sometimes just i, for some i ∈ {1, ..., n}, to refer to the process with id i. We sometimes
use the notation [i, i′], for integers i′ ≥ i, to indicate the sequence {i, ..., i′}, and the
notation [i] for integer i to indicate [1, i]. Throughout, we use the the notation w.h.p.
(with high probability) to indicate a probability at least 1 − 1

n . Also, unless specified,
all logarithms are natural log. Moreover, we ignore the integral part signs whenever it is
clear that omitting them does not effect the calculations more than a change in constants.

3 Problem

Our first step in formalizing the local broadcast problem is to fix the input/output inter-
face between the local broadcast module (automaton) of a process and the higher layers
at that process. In this interface, there are three actions as follows: (1) bcast(m)v , an
input action that provides the local broadcast module at process v with message m that
has to be broadcast over v’s local neighborhood, (2) ack(m)v , an output action that
the local broadcast module at v performs to inform the higher layer that the message m
was delivered to all neighbors of v successfully, (3) rcv(m)u, an output action that local
broadcast module at u performs to transfer the message m, received through the radio
channel, to higher layers. To simplify definitions going forward, we assume w.l.o.g. that
every bcast(m) input in a given execution is for a unique m. We also need to restrict the
behavior of the environment to generate bcast inputs in a well-formed manner, which
we define as strict alternation between bcast inputs and corresponding ack outputs at
each process. In more detail, for every execution and every process u, the environment
generates a bcast(m)u input only under two conditions: (1) it is the first input to u in
the execution; or (2) the last input or non-rcv output action at u was an ack.

We say an algorithm solves the local broadcast problem if and only if in every execu-
tion, we have the following three properties: (1) for every process u, for each bcast(m)u
input, u eventually responds with a single ack(m)u output, and these are the only ack
outputs generated by u; (2) for each process v, for each message m, v outputs rcv(m)v
at most once and if v generates a rcv(m)v output in round r, then there is a neighbor
u ∈ NG′(v) such that following conditions hold: u received a bcast(m)u input before
round r and has not output ack(m)u before round r (3) for each process u, if u re-
ceives bcast(m)u in round r and respond with ack(m)u in round r′ ≥ r, then w.h.p.:
∀v ∈ NG(u), v generates output rcv(m)v within the round interval [r, r′]. We call an
algorithm that solves the local broadcast problem a local broadcast algorithm.

Time Bounds: We measure the performance of a local broadcast algorithm with respect
to the two bounds first formalized in [18]: acknowledgment (the worst case bound on
the time between a bcast(m)u and the corresponding ack(m)u), and progress (infor-
mally speaking the worst case bound on the time for a process to receive at least one
message when it has one or more G neighbors with messages to send). The first bound
represents standard ways of measuring the performance of local communication. The
progress bound is crucial for obtaining tight performance bounds in certain classes of
applications. See [18, 23] for examples of places where progress bound proves cru-
cial explicitly. Also, [9, 11–14, 17] use the progress bound implicitly throughout their
analysis.

228 M. Ghaffari et al.

In more detail, a local broadcast algorithm has two delay functions which describe
these delay bounds as a function of the relevant contention: fack, and fprog, respec-
tively. In other words, every local broadcast algorithm can be characterized by these
two functions which must satisfy properties we define below. Before getting to these
properties, however, we first present a few helper definitions that we use to describe
local contention during a given round interval. The following are defined with respect
to a fixed execution. (1) We say a process u is active in round r, or, alternatively, active
with m, iff it received a bcast(m)u output in a round ≤ r and it has not yet generated
an ack(m)u output in response. We furthermore call a message m active in round r if
there is a process that is active with it in round r. (2) For process u and round r, con-
tention c(u, r) equals the number of active G′ neighbors of u in r. Similarly, for every
r′ ≥ r, c(u, r, r′) = maxr′′∈[r,r′]{c(u, r′′)}. (3) For process v and rounds r′ ≥ r,
c′(v, r, r′) = maxu∈NG(v){c(u, r, r′)}. We can now formalize the properties our delay
functions, specified for a local broadcast algorithm, must satisfy for any execution:

1. Acknowledgment bound: Suppose process v receives a bcast(m)v input in round
r. Then, if r′ ≥ r is the round in which process v generates corresponding output
ack(m)v , then with high probability we have r′ − r ≤ fack(c

′(v, r, r′)).
2. Progress bound: For any pair of rounds r and r′ ≥ r, and process u, if r′ − r >

fprog(c(u, r, r
′)) and there exists a neighbor v ∈ NG(u) that is active throughout

the entire interval [r, r′], then with high probability, u generates a rcv(m)u output
in a round r′′ ≤ r′ for a message m that was active at some round within [r, r′].

We use notation Δ′ (or Δ for the classical model) to denote the maximum contention
over all processes.2 In our upper bound results, we assume that processes are provided
with upper bounds on contention that are within a constant factor of Δ′ (or Δ for the
classical model). Also, for the sake of concision, in the results that follow, we some-
times use the terminology “has an acknowledgment bound of” (resp. progress bound)
to indicate “specifies the delay function fack” (resp. fprog). For example, instead of
saying “the algorithm specifies delay function fack(k) = O(k),” we might instead say
“the algorithm has an acknowledgment bound of O(k).”

Simplified One-Shot Setting for Lower Bounds: The local broadcast problem as just
described assumes that processes can keep receiving messages as input forever and in
an arbitrary asynchronous way. This describes the practical reality of contention man-
agement, which is an on going process. All our algorithms work in this general setting.
For our lower bounds, we use a setting in which we restrict the environment to only
issue broadcast requests at the beginning of round one. We call this the one-shot set-
ting. Also, in most of our lower bounds, we consider, G and G′ to be bipartite graphs,
where nodes of one part are called senders and they receive broadcast inputs, and nodes
of the other part are called receivers, and each have a sender neighbor. In this setting,
when referring to contention c(u), we furthermore mean c(u, 1). Note that in this set-
ting, for any r, r′, c(u, [r, r′]) is less than or equal to c(u, 1). The same holds for c′(u).
Also, in these bipartite networks, the maximum G′-degree (or G-degree in the classical

2 Note that since the maximum degree in the graph is an upper bound on the maximum con-
tention, this notation is consistent with prior work, see e.g. [18, 23, 24].

Bounds on Contention Management in Radio Networks 229

model) of the receiver nodes provides an upper bound on the maximum contention Δ′

(or Δ in the classical model). When talking about these networks, and when it is clear
from the context, we sometimes use the phrase maximum receiver degree instead of the
maximum contention.

4 Related Work

Chlamatac and Kutten [8] were the first to introduce the classical radio network model.
Bar-Yehuda et al. [9] studied the theoretical problem of local broadcast in synchronized
multi-hop radio networks as a submodule for the broader goal of global broadcast. For
this, they introduced Decay procedure, a randomized distributed procedure that solves
the local broadcast problem. Since then, this procedure has been the standard method
for resolving contention in wireless networks (see e.g. [17,18,23,24]). In this paper, we
prove that a slightly modified version of Decay protocol achieves optimal progress and
acknowledgment bounds in both the classical radio network model and the dual graph
model. A summary of these time bounds is presented in Figure 1.

Deterministic solutions to the local broadcast problem are typically based on com-
binatorial objects called Selective Families, see e.g. [12]- [16]. Clementi et al. [14]
construct (n, k)-selective families of size O(k logn) ([14, Theorem 1.3]) and show
that this bound is tight for these selective families ([14, Theorem 1.4]). Using these
selective families, one can get local broadcast algorithms that have progress bound of
O(Δ log n), in the classical model. These families do not provide any local broad-
cast algorithm in the dual graph model. Also, in the same paper, the authors construct
(n, k)-strongly-selective families of size O(k2 logn) ([14, Theorem 1.5]). They also
show (in [14, Theorem 1.6]) that this bound is also, in principle, tight for selective
families when k ≤

√
2n − 1. Using these strongly selective families, one can get lo-

cal broadcast algorithms with acknowledgment bound of O(Δ2 logn) in the classical
model and also, with acknowledgment bound of fack(k) = O((Δ′)2 logn) in the dual
graph model. As can be seen from our results (summarized in Figure 1), all three of the
above time bounds are far from the optimal bounds of the local broadcast problem. This
shows that when randomized solutions are admissible, solutions based on these notions
of selective families are not optimal.

In [15], Clementi et al. introduce a new type of selective families called Ad-Hoc
Selective Families which provide new solutions for the local broadcast problem, if we
assume that processes know the network. Clementi et al. show in [15, Theorem 1] that
for any given collection F of subsets of set [n], each with size in range [Δmin, Δmax],
there exists an ad-hoc selective family of size O((1 + log(Δmax/Δmin)) · log |F |).
This, under the assumption of processes knowing the network, translates to a determin-
istic local broadcast algorithm with progress bound of O(logΔ logn), in the classical
model. This family do not yield any broadcast algorithms for the dual graph model.
Also, in [16], Clementi et al. show that for any given collection F of subsets of set
[n], each of size at most Δ, there exists a Strongly-Selective version of Ad-Hoc Selec-
tive Families that has size O(Δ log |F |) (without using the name ad hoc). This result
shows that, again under the assumption of knowledge of the network, there exists a
deterministic local broadcast algorithms with acknowledgment bounds of O(Δ log n)

230 M. Ghaffari et al.

and O(Δ′ logn), respectively in the classical and dual graph models. Our lower bounds
for the classical model show that both of the above upper bounds on the size of these
objects are tight.

5 Upper Bounds for Both Classical and Dual Graph Models

In this section, we show that by slight modifications to Decay protocol, we can achieve
upper bounds that match the lower bounds that we present in the next sections. Due to
space considerations, the details of the related algorithms are omitted from the confer-
ence version and can be found in [27].

Theorem 5.1. In the classical model, there exists a distributed local broadcast algo-
rithm that gives acknowledgment bound of fack(k) = O(Δ log n) and progress bound
of fprog(k) = O(logΔ logn).

Theorem 5.2. There exists a distributed local broadcast algorithm that, in the classical
model, gives bounds of fack(k) = O(Δ log n) and fprog(k) = O(logΔ logn), and
in the dual graph model, gives bounds of fack(k) = O(Δ′ logn) and fprog(k) =
O(min{k logΔ′ logn,Δ′ logn}).
Theorem 5.3. In the dual graph model, there exists a distributed local broadcast algo-
rithm that gives acknowledgment bound of fack(k) = O(Δ′ logn) and progress bound
of fprog(k) = O(min{k log k logn,Δ′ logn}).

6 Lower Bounds in the Classical Radio Broadcast Model

In this section, we focus on the problem of local broadcast in the classical model and
present lower bounds for both progress and acknowledgment times. We emphasize that
all these lower bounds are presented for centralized algorithms and also, in the model
where processes are provided with a collision detection mechanism. Note that these
points only strengthen these results. These lower bounds prove, for the first time, that
the optimized decay protocol, as presented in the previous section, is optimal with re-
spect to progress and acknowledgment times in the classical model. These lower bounds
also show that the existing constructions of Ad Hoc Selective Families are optimal.
Moreover, in future sections, we use the lower bound on the acknowledgment time in
the classical model that we present here as a basis to derive lower bounds for progress
and acknowledgment times in the dual graph model.

6.1 Progress Time Lower Bound

In this section, we remark that following the proof of the lower bound of Alon et al. [10]
on the time needed for global broadcast of one message in radio networks, and with
slight modifications, one can get a lower bound ofΩ(logΔ logn) on the progress bound
in the classical model.

Lemma 6.1. For any n and any Δ ≤ n, there exists a one-shot setting with a bipartite
network of size n and maximum contention of at most Δ such that for any transmission
schedule, it takes at least Ω(logΔ logn) rounds till each receiver receives at least one
message.

Bounds on Contention Management in Radio Networks 231

6.2 Acknowledgment Time Lower Bound

In this section, we present the main technical result of the paper which is a lower bound
of Ω(Δ logn

log2 logn
) on the acknowledgment time in the classical radio broadcast model.

Theorem 6.2. In the classical radio broadcast model, for any large enough n and any
Δ ∈ [20 logn, n0.1], there exists a one-shot setting with a bipartite network of size n
and maximum receiver degree at most Δ such that it takes at least Ω(Δ logn

log2 logn
) rounds

until all receivers have received all messages of their sender neighbors.

In other words, in this one-shot setting, any algorithm that solves the local broadcast
problem has a acknowledgment bound of Ω(Δ log n

log2 logn
). To prove this theorem, in-

stead of showing that randomized algorithms have low success probability, we show
a stronger variant by proving an impossibility result: we prove that there exists a one-
shot setting with the above properties such that, even with a centralized algorithm, it is
not possible to schedule transmissions of nodes in o(Δ logn

log2 logn
) rounds such that each

receiver receives the message of each of its neighboring senders successfully. In partic-
ular, this result shows that in this one-shot setting, for any randomized local broadcast
algorithm, the probability that an execution shorter than o(Δ logn

log2 logn
) rounds success-

fully delivers message of each sender to all of its receiver neighbors is zero.
In order to make this formal, let us define a transmission schedule σ of length L(σ)

for a bipartite network to be a sequence σ1, . . . , σL(σ) ⊆ S of senders. Having a sender
u ∈ σr indicates that at round r the sender u is transmitting its message. For a network
G, we say that transmission schedule σ covers G if for every v ∈ S and u ∈ NG(v),
there exists a round r such that σr ∩NG(v) = {u}, that is using transmission schedule
σ, every receiver node receives all the messages of all of its sender neighbors. Also, we
say that a transmission schedule σ is short if L(σ) = o(Δ log n

log2 logn
). With these notations,

we are ready to state the main result of this section.

Lemma 6.3. For any large enough n and Δ ∈ [20 logn, n0.1], there exists a bipartite
network G with size n and maximum receiver degree at most Δ such that no short
transmission schedule covers G.

Proof (Proof Sketch for Theorem 6.3). Fix an arbitrary n and a Δ ∈ [20 logn, n0.1].
Also let η = n0.1, m = η9. We use the probabilistic method [7] to show the existence
of the network G with the aforementioned properties.

First, we present a probability distribution over a particular family of bipartite net-
works with maximum receiver degree Δ. To present this probability distribution, we
show how to draw a random sample from it. Before getting to the details of this sam-
pling, let us present the structure of this family. All networks of this family have a fixed
set of nodes V . Moreover, V is partitioned into two nonempty disjoint sets S and R,
which are respectively the set of senders and the set of receivers. We have |S| = η
and |R| = m. The total number of nodes in these two sets is η + m = n0.1 + n0.9.
We adjust the number of nodes to exactly n by adding enough isolated senders to the
graph. To draw a random sample from this family, each receiver node u ∈ R chooses
Δ random senders from S uniformly (with replacement) as its neighbors. Also, choices
of different receivers are independent of each other.

232 M. Ghaffari et al.

Having this probability distribution, we study the behavior of short transmission
schedules over random graphs drawn from this distribution. For each fixed transmis-
sion schedule σ, let P (σ) be the probability that σ covers a random graph G. Using a
union bound, we can infer that for a random graph G, the probability that there exists a
short transmission schedule that covers G is at most sum of the P (σ)-s, when σ ranges
over all the short transmission schedules. Let us call this probability the total coverage
probability. In order to prove the lower bound, we show that “the total coverage proba-
bility is in e−Ω(η)” and therefore, less than 1. Proving this claim completes the proof as
with this claim, using the probabilistic method [7], we can conclude that there exists a
bipartite network with maximum receiver degree of at most Δ such that no short trans-
mission schedule covers it. To prove that the total coverage probability is e−Ω(η), since
the total number of short transmission schedules is less than 2η

3

, it is enough to show
that for each short transmission schedule σ, P (σ) = e−Ω(η5).

Proving that for any fixed short schedule σ, P (σ) = e−Ω(η5) is the core part of the
proof and also the hardest one. For this part, we use techniques similar to those that
we are using in [26] for getting a lower bound for multicast in known radio networks.
Let us first present some definitions. Fix a short transmission schedule σ. For each
round r of σ, we say that this round is lightweight if |σ(r)| < η

2Δ log η . Since σ is
a short transmission schedule, i.e., L(σ) < Δ log η, the total number of senders that
transmit in at least one lightweight round of σ is less than η

2 . Therefore, there are at
least η

2 senders that never transmit in lightweight rounds of σ. We call these senders the
principal senders of σ.

Throughout the rest of the proof, we focus on the principal senders of σ. For this,
we divide the short transmission schedules into two disjoint categories, adequate and
inadequate. We say that σ is an adequate transmission schedule if throughout σ, each
principal node transmits in at least log η

log log η rounds. Otherwise we say that σ is an inade-
quate transmission schedule. We study inadequate and adequate transmission schedules
in two separate lemmas (Lemmas 6.4 and 6.5), and prove that in each case P (σ) =

e−Ω(η5).

Lemma 6.4. For each inadequate short transmission schedule σ, the probability that
σ covers a random graph is e−Ω(η5), i.e., P (σ) = e−Ω(η5).

Proof (Proof Sketch). Let σ be an arbitrary inadequate short transmission schedule.
Since σ is inadequate, there exists a principal sender node v that transmits in less than
log η

log log η rounds of σ. Also, since v is a principal sender, it does not transmit in any
lightweight round. That is, in each round that v transmits, the number of sender nodes
that transmit is at least η

2Δ log η . We show that in a random graph, v is unlikely to deliver

its message to all its neighbors, i.e., that in a random graph, with probability 1−e−Ω(η5),
there exists a receiver neighbor of v that does not receive the message of v.

A formal proof for this claim requires rather careful probability arguments but the
main intuition is as follows. In each round that v transmits, there is a high contention,
i.e., at least η

2Δ log η senders transmit. Thus, in a random graph, in most of those rounds,
neighbors of v receive collisions. On the other hand, the number of rounds that v trans-
mits in them is at most log η

log log η . These two observations suggest that it is unlikely for
all neighbors of v to receive its message.

Bounds on Contention Management in Radio Networks 233

Lemma 6.5. For each adequate short transmission schedule σ, the probability that σ
covers a random graph is e−Ω(η5), i.e., P (σ) = e−Ω(η5).

Proof (Proof Sketch). Let σ be an arbitrary adequate short transmission schedule. Re-
call that principal senders of σ are defined as senders that do not transmit in lightweight
rounds of σ. Let us say that a message is a principal message if its sender is a principal
sender. Note that in a random graph, in expectation, each receiver is adjacent to at least
Δ
2 principal senders. Therefore, if σ covers a random graph, each receiver should re-

ceive, in expectation, at least Δ
2 principal messages. Hence, since there are m different

receivers, if σ covers a random graph, there are, in expectation, at least mΔ
2 successful

deliveries. Then, using a Chernoff bound, we can infer that if σ covers a random graph,
with probability 1 − e−Ω(η9), there are at least mΔ

4 successful deliveries. To prove the
lemma, we show that the probability that for a random graph, σ has mΔ

4 successful

deliveries is e−Ω(η5). Then, a union bound completes the proof of lemma.
Hence, the remaining part of the proof is to show that on a random graph, with prob-

ability e−Ω(η5), σ has less than mΔ
4 successful deliveries. This part is the core part of

the proof of this lemma. The formal reasoning for this part requires a careful potential
argument but the intuition is based on the following simple observations. Suppose that σ
has at least mΔ

4 successful deliveries with probability e−Ω(η5). Since σ is an adequate
transmission schedule, each principal sender transmits in at least log η

log log η rounds and

because there are at least η
2 principal senders, there has to be at least η log η

2 log log η transmis-
sions by principal senders. Now in each round σ, the number of transmitting senders
should be at most Θ(η

Δ), or otherwise, the number of successful deliveries drops down
exponentially as a function of the multiplicative distance from η

Δ , and hence the total
sum of them over all the rounds would not accumulate to mΔ

4 . If we assume that in
each round roughly at most Θ(η

Δ) senders transmit, we directly get a lower bound of
η log η

2 log log η
η
Δ

= Θ(Δ log η
log log η) on the number of rounds of σ which is in contradiction with

the fact that σ is short. The formal proof of this part replaces this simplistic assumption
by a more careful argument that, essentially, takes all the possibilities of the number of
transmitters in each of the rounds into consideration, using a potential argument. This
formal argument is omitted due to the space considerations.

7 Lower Bounds in the Dual Graph Model

In this section, we show a lower bound of Ω(Δ′ logn
log2 logn

) on the progress time of cen-
tralized algorithms in the dual graph model with collision detection. This lower bound
directly yields a lower bound with the same value on the acknowledgment time in the
same model. Together, these two bounds show that the optimized decay protocol pre-
sented in section 5 achieves almost optimal acknowledgment and progress bounds in
the dual graph model. On the other hand, this result demonstrates a big gap between the
progress bound in the two models, proving that progress is unavoidably harder (slower)
in the dual graph model.

234 M. Ghaffari et al.

Theorem 7.1. In the dual graph model, for each n and each Δ′ ∈ [20 logn, n
1
11], there

exists a bipartite network H∗(n,Δ′) with n nodes and maximum receiver G′-degree at
most Δ′ such that no algorithm can have progress bound of o(Δ′ logn

log2 logn
) rounds. In the

same network, no algorithm can have acknowledgment bound of o(Δ′ logn
log2 logn

) rounds.

Proof (Proof Outline). In order to prove this lower bound, in Lemma 7.2, we show a
reduction from acknowledgment in the bipartite networks of the classical model to the
progress in the bipartite networks of the dual graph model. In particular, this means
that if there exists an algorithm with progress bound of o(Δ′ logn

log2 logn
) in the dual graph

model, then for any bipartite network H in the classical broadcast model, we have
a transmission schedule σ(H) with length o(Δ logn

log2 logn
) that covers H . Then, we use

Theorem 6.2 to complete the lower bound.

Lemma 7.2. Consider arbitrary n2 and Δ2 and let n1 = n2Δ2 and Δ′
1 = Δ2. Sup-

pose that in the dual graph model, for each bipartite network with n1 nodes and max-
imum receiver G′-degree Δ′

1, there exists a local broadcast algorithm A with progress
bound of at most f(n1, Δ

′
1). Then, for each bipartite network H with n2 nodes and

maximum receiver degree Δ2 in the classical radio broadcast model, there exists a
transmission schedule σ(H) with length at most f(n2Δ2, Δ2) that covers H .

Proof (Proof Sketch). Let H be a network in the classical radio broadcast model with
n2 nodes and maximum receiver degree at most Δ2. We use algorithm A to construct
a transmission schedule σH of length at most f(n2Δ2, Δ2) that covers H . We first
construct a new bipartite network, Dual(H) = (G,G′), in the dual graph model with at
most n1 nodes and maximum receiver G′-degree Δ′

1. The set of sender nodes in the
Dual(H) is equal to that in H . For each receiver u of H , let dH(u) be the degree of
node u in graph H . Let us call the senders that are adjacent to u ‘the associates of u’.
In the network Dual(H), we replace receiver u with dH(u) receivers and we call these
new receivers ‘the proxies of u’. In graph G of Dual(H), we match proxies of u with
associates of u, i.e., we connect each proxy to exactly one associate and vice versa. In
graph G′ of Dual(H), we connect all proxies of u to all associates of u. It is easy to
check that Dual(H) has the desired size and maximum receiver degree.

Now we present a special adversary for the dual graph model. Later we construct
transmission schedule σH based on the behavior of algorithm A in network Dual(H)
against this adversary. This special adversary activates the unreliable links using the
following procedure. Consider round r and receiver node w. (1) If exactly one G′-
neighbor of w is transmitting, then the adversary activates only the links from w to its
G-neighbors, (2) otherwise, adversary activates all the links from w to its G′-neighbors.

We focus on the executions of algorithm A on the network Dual(H) against the
above adversary. By assumption, there exists an execution α of A with length at most
f(n2Δ2, Δ2) rounds such that in α, every receiver receives at least one message. Let
transmission schedule σH be the transmission schedule of execution α. Note that be-
cause of the above choice of adversary, in the execution α, each receiver can receive
messages only from its G-neighbors. Suppose that w is a proxy of receiver u of H . Then
because of the construction of Dual(H), each receiver node has exactly one G-neighbor
and that neighbor is one of associates of u (the one that is matched to w). Therefore, in

Bounds on Contention Management in Radio Networks 235

execution α, for each receiver u of H , in union, the proxies of u receive all the mes-
sages of associates of u. On the other hand, because of the choice of adversary, if in
round r of σ a receiver w receives a message, then using transmission schedule σH in
the classical radio broadcast model, u receives the message of the same sender in round
r of σH . Therefore, using transmission schedule σH in the classical broadcast model
and in network H , every receiver receives messages of all of its associates. Hence, σH

covers H and we are done with the proof of lemma.

8 Centralized vs. Distributed Algorithms in the Dual Graph Model

In this section, we show that there is a gap in power between distributed and centralized
algorithms in the dual graph model, but not in the classical model—therefore highlight-
ing another difference between these two settings. Specifically, we produce dual graph
network graphs where centralized algorithms achieve O(1) progress while distributed
algorithms have unavoidable slow progress. In more detail, our first result shows that
distributed algorithms will have at least one process experience Ω(Δ′ logn

log2 log n
) progress,

while the second result shows the average progress is Ω(Δ′). Notice, such gaps do
not exist in the classical model, where our distributed algorithms from Section 5 can
guarantee fast progress in all networks.

Theorem 8.1. For any k and Δ′ ∈ [20 log k, k1/10], there exists a dual graph network
of size n, k < n ≤ k4, with maximum receiver degree Δ′, such that the optimal central-
ized local broadcast algorithm achieves a progress bound of O(1) in this network while
every distributed local broadcast algorithm has a progress bound of Ω(Δ′ logn

log2 logn
).

Our proof argument leverages the bipartite network proven to exist in Lemma 7.2 to
show that all algorithms have slow progress in the dual graph model. Here, we construct
a network consisting of many copies of this counter-example graph. In each copy, we
leave one of the reliable edges as reliable, but downgrade the others to unreliable edges
that act reliable. A centralized algorithm can achieve fast progress in each of these
copies as it only needs the processes connected to the single reliable edge to broadcast.
A distributed algorithm, however, does not know which edge is actually reliable, so it
still has slow progress. We prove that in one of these copies, the last message to be
delivered comes across the only reliable edge, w.h.p. This is the copy that provides the
slow progress needed by the theorem.

Notice, in some settings, practioners might tolerate a slow worst-case progress (e.g.,
as established in Theorem 8.1), so long as most processes have fast progress. In our
next theorem, we show that this ambition is also impossible to achieve. To do so, we
first need a definition that captures the intuitive notion of many processes having slow
progress. In more detail, given an execution of the one-shot local broadcast problem (see
Section 2), with processes in sender set S being passed messages, label each receiver
that neighbors S in G with the round when it first received a message. The average
progress of this execution is the average of these values. We say an algorithm has an
average progress of f(n), with respect to a network of size n and sender set S, if exe-
cuting that algorithm in that network with those senders generates an average progress
value of no more than f(n), w.h.p. We now bound this metric in the same style as above

236 M. Ghaffari et al.

Theorem 8.2. For any n, there exists a dual graph network of size n and a sender set,
such that the optimal centralized local broadcast algorithm has an average progress
of O(1) while every distributed local broadcast algorithm has an average progress of
Ω(Δ′).

Our proof uses a reduction argument. We show how a distributed algorithm that achieves
fast average progress in a specific type of dual graph network can be transformed to a
distributed algorithm that solves global broadcast fast in a different type of dual graph
network. We then apply a lower bound from [20] that proves no fast solution exists for
the latter—providing our needed bound on progress.

References

1. Bachir, A., Dohler, M., Wattayne, T., Leung, K.: MAC Essentials for Wireless Sensor Net-
works. IEEE Communications Surveys and Tutorials 12(2), 222–248 (2010)

2. Shan, H., Zhuang, W., Wand, Z.: Distributed Cooperative MAC for Multihop Wireless Net-
works. IEEE Communications Magazine 47(2), 126–133 (2009)

3. Sato, N., Fujii, T.: A MAC Protocol for Multi-Packet Ad-Hoc Wireless Network Utilizing
Multi-Antenna. In: Proceedings of the IEEE Conference on Consumer Communications and
Networking (2009)

4. Sayed, S., and Yand, Y.: BTAC: A Busy Tone Based Cooperative MAC Protocol for Wireless
Local Area Networks. In Proceedings of the Interneational Conference on Communications
and Networking in China (2008).

5. Sun, Y., Gurewitz, O., Johnson, D.B.: RI-MAC: a Receiver-Initiated Asynchronous Duty Cy-
cle MAC Protocol for Dynamic Traffic Loads in Wireless Sensor Networks. In: Proceedings
of the ACM Conference on Embedded Network Sensor Systems (2008)

6. Rhee, I., Warrier, A., Aia, M., Min, J., Sichitiu, M.L.: Z-MAC: a Hybrid MAC for Wireless
Sensor Networks. IEEE/ACM Trans. on Net. 16, 511–524 (2008)

7. Alon, N., Spencer, J.H.: The probabilistic method. John Wiley & Sons, New York (1992)
8. Chlamtac, I., Kutten, S.: On Broadcasting in Radio Networks–Problem Analysis and Protocol

Design. IEEE Trans. on Communications (1985)
9. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the time-complexity of broadcast in radio net-

works: an exponential gap between determinism randomization. In: PODC 1987: Proceed-
ings of the Sixth Annual ACM Symposium on Principles of Distributed Computing, pp.
98–108. ACM, New York (1987)

10. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A lower bound for radio broadcast. J. Comput.
Syst. Sci. 43(2), 290–298 (1991)

11. Chrobak, M., Gasieniec, L., Rytter, W.: Fast broadcasting and gossiping in radio networks.
J. Algorithms 43(2), 177–189 (2002)

12. Chlebus, B.S., Gasieniec, L., Gibbons, A., Pelc, A., Rytter, W.: Deterministic broadcasting
in unknown radio networks. In: Proceedings of the Eleventh Annual ACM-SIAM Sympo-
sium on Discrete algorithms (SODA 2000), pp. 861–870. Society for Industrial and Applied
Mathematics, Philadelphia (2000)

13. Chlebus, B.S., Gasieniec, L., Östlin, A., Robson, J.M.: Deterministic Radio Broadcasting.
In: Welzl, E., Montanari, U., Rolim, J.D.P. (eds.) ICALP 2000. LNCS, vol. 1853, p. 717.
Springer, Heidelberg (2000)

14. Clementi, A., Monti, A., Silvestri, R.: Selective families, superimposed codes, and broad-
casting on unknown radio networks. In: The Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pp. 709–718. Society for Industrial and Applied Mathematics, Philadel-
phia (2001)

Bounds on Contention Management in Radio Networks 237

15. Clementi, A., Crescenzi, P., Monti, A., Penna, P., Silvestri, R.: On Computing Ad-hoc Se-
lective Families. In: Proceedings of the 4th International Workshop on Approximation Al-
gorithms for Combinatorial Optimization Problems and 5th International Workshop on Ran-
domization and Approximation Techniques in Computer Science: Approximation, Random-
ization and Combinatorial Optimization, pp. 211–222 (2001)

16. Clementi, A., Monti, A., Silvestri, R.: Round robin is optimal for fault-tolerant broadcasting
on wireless networks. J. Parallel Distrib. Comput. 64(1), 89–96 (2004)

17. Gasieniec, L., Peleg, D., Xin, Q.: Faster communication in known topology radio networks.
In: Proceedings of the Twenty-Fourth Annual ACM Symposium on Principles of Distributed
Computing (PODC 2005), pp. 129–137. ACM, New York (2005)

18. Kuhn, F., Lynch, N., Newport, C.: The Abstract MAC Layer. Technical Report MIT-CSAIL-
TR-2009-009, MIT CSAIL, Cambridge, MA (February 20, 2009)

19. Kuhn, F., Lynch, N., Newport, C.: The Abstract MAC Layer. Distributed Computing 24(3),
187–296 (2011); Special issue from DISC 2009 23rd International Symposium on Dis-
tributed Computing

20. Kuhn, F., Lynch, N., Newport, C.: Brief Announcement: Hardness of Broadcasting in Wire-
less Networks with Unreliable Communication. In: Proceedings of the ACM Symposium on
the Principles of Distributed Computing (PODC), Calgary, Alberta, Canada (August 2009)

21. Cornejo, A., Lynch, N., Viqar, S., Welch, J.: A Neighbor Discovery Service Using an Ab-
stract MAC Layer. In: Forty-Seventh Annual Allerton Conference, Champaign-Urbana, IL
(October 2009) (invited paper)

22. Kuhn, F., Lynch, N., Newport, C., Oshman, R., Richa, A.: Broadcasting in unreliable radio
networks. In: Proceedings of the 29th ACM SIGACT-SIGOPS Symposium on Principles of
Distributed Computing (PODC 2010), pp. 336–345. ACM, New York (2010)

23. Khabbazian, M., Kuhn, F., Kowalski, D.R.: Lynch. N.: Decomposing broadcast algorithms
using abstract MAC layers. In: Proceedings of the 6th International Workshop on Founda-
tions of Mobile Computing (DIALM-POMC 2010), pp. 13–22. ACM, New York (2010)

24. Khabbazian, M., Kuhn, F., Lynch, N., Medard, M., ParandehGheibi, A.: MAC Design for
Analog Network Coding. In: FOMC 2011: The Seventh ACM SIGACT/SIGMOBILE Inter-
national Workshop on Foundations of Mobile Computing, San Jose, CA (June 2011)

25. Censor-Hillel, K., Gilbert, S., Kuhn, F., Lynch, N., Newport, C.: Structuring Unreliable Ra-
dio Networks. In: Proceedings of the 30th Annual ACM SIGACT-SIGOPS Symposium on
Principles of Distributed Computing, San Jose, California, June 6-8 (2011)

26. Ghaffari, M., Haeupler, B., Khabbazian, M.: The complexity of Multi-Message Broadcast in
Radio Networks with Known Topology (manuscript in preparation, 2012)

27. Ghaffari, M., Haeupler, B., Lynch, N., Newport, C.: Bounds on Contention Management in
Radio Networks, http://arxiv.org/abs/1206.0154

http://arxiv.org/abs/1206.0154

Efficient Symmetry Breaking
in Multi-Channel Radio Networks

Sebastian Daum1,�, Fabian Kuhn2, and Calvin Newport3

1 Faculty of Informatics, University of Lugano, Switzerland
sebastian.daum@usi.ch

2 Department of Computer Science, University of Freiburg, Germany
kuhn@cs.uni-freiburg.de

3 Department of Computer Science, Georgetown University, USA
cnewport@cs.georgetown.edu

Abstract. We investigate the complexity of basic symmetry breaking problems
in multihop radio networks with multiple communication channels. We assume
a network of synchronous nodes, where each node can be awakened individually
in an arbitrary time slot by an adversary. In each time slot, each awake node can
transmit or listen (without collision detection) on one of multiple available shared
channels. The network topology is assumed to satisfy a natural generalization of
the well-known unit disk graph model.

We study the classic wake-up problem and a new variant we call active wake-
up. For the former we prove a lower bound that shows the advantage of multiple
channels disappears for any network of more than one hop. For the active version
however, we describe an algorithm that outperforms any single channel solution.
We then extend this algorithm to compute a constant approximation for the min-
imum dominating set (MDS) problem in the same time bound. Combined, these
results for the increasingly relevant multi-channel model show that it is often pos-
sible to leverage channel diversity to beat classic lower bounds, but not always.

1 Introduction

An increasing number of wireless devices operate in multi-channel networks. In these
networks, a device is not constrained to use a single fixed communication channel.
Instead, it can choose its channel from among the many allocated to its operating band
of the radio spectrum. It can also switch this channel as needed. For example, devices
using the 802.11 standard have access to around a dozen channels [1], while devices
using the Bluetooth standard have access to around 75 [5].

In this paper, we prove new upper and lower bounds for symmetry breaking prob-
lems in multi-channel networks. Our goal is to use these problems to compare the com-
putational power of this model with the well-studied single channel wireless model
first studied by Chlamtac and Kutten [7] in the centralized setting and by Bar-Yehuda
et al. [3] in the distributed setting. In more detail, we look at the wake-up problem [8,9,
14, 15], a new variant of this problem we call active wake-up, and the minimum domi-
nating set (MDS) problem (see [16,20] for a discussion of MDS in single channel radio
networks). Our results are summarized in Figure 1.
� Supported by the Swiss National Science Foundation under grant n. 200021-135160.

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 238–252, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Efficient Symmetry Breaking in Multi-Channel Radio Networks 239

Single Channel Multi-Channel
Single Hop Wake-Up Θ(log2 n) O(log2 n/F + log n)

Multihop Wake-Up Ω(log2 n+D log (n/D)) Ω(log2 n+D)

Single Hop Active Wake-Up Θ(log2 n) O(log2 n/F + log n log log n)

Multihop Active Wake-Up Ω(log2 n+D log n/D) O(log2 n/F + log n log log n)

MDS Θ(log2 n) O(log2 n/F + log n log log n)

Fig. 1. Summary of the results we study in this paper. The single channel column contains the
existing results from the wireless algorithm literature, though we strengthen these results model-
wise in this paper. The multi-channel column contains our new results described for the first time
(the exception is the single hop wake-up result, which derives from our recent work [11]).

Result Details and Related Work. We model a synchronous multi-channel radio net-
work using an undirected graph G = (V,E) to describe the communication topology,
where G satisfies a natural geographic constraint (cf. Section 2). We assume F ≥ 1
communication channels. In each round, each node u chooses a single channel on which
to participate. Concurrent broadcasts on the same channel lead to collision and there is
no collision detection. For F = 1, the model is the classical multihop radio network
model [3, 7].

The wake-up problem assumes that all nodes in a network begin dormant. Each dor-
mant node can be awakened at the start of any round by an adversary. It will also awaken
if a single neighbor broadcasts on the same channel. To achieve strong multi-channel
lower bounds, we assume that dormant nodes can switch channels from round to round,
using an arbitrary randomized strategy. To achieve strong multi-channel upper bounds,
our algorithms assign the dormant nodes to a single fixed channel. In the single chan-
nel model, the best known lower bound is Ω(log2 n + D log (n/D)) (a combination
of the Ω(log2 n) wake-up bound of [13, 15] and the Ω(D log (n/D)) broadcast bound
of [19], which holds by reduction). The best known upper bound is the near-matching
O(D log2 n) randomized algorithm of [9], which generalizes the earlier single hop
O(log2 n) bound of [15]. In these bounds, as with all bounds presented here, n is the
network size and D the network diameter.

In Section 4.1, we prove our main lower bound result: in a multi-channel network
with diameter D > 1, Ω(log2 n+D) rounds are required to solve wake-up, regardless
of the size of F . This bound holds even if we restrict our attention to networks that
satisfy the strong unit disk graph (UDG) property.1

In other words, for multihop wake-up, the difficulty of the single channel and multi-
channel settings are (essentially) the same. This bound might be surprising in light of
our recent algorithm that solves wake-up in O(log2 n/F + logn) rounds in a multi-
channel network with diameter D = 1 [11]. Combined, our new lower bound and the
algorithm of [11] establish a gap in power between the single hop and multihop multi-
channel models.

1 Many radio network papers assume a geographic constraint on the network topology. The
UDG property is arguably the strongest of these constraints. More recently, the trend has been
toward looser constraints that generalize UDG (e.g., bounded independence or the clique graph
constraint assumed by the algorithms in this paper).

240 S. Daum, F. Kuhn, and C. Newport

The intuition behind our result is as follows: multiple channels help nearby awake
nodes efficiently reduce contention, but they do not help these nodes, in a multihop
setting, determine which node(s) must broadcast to awaken the dormant nodes at the
next hop. The core technical idea driving this bound is a reduction from an abstract
hitting game that we bound using a powerful combinatorial result proved by Alon et al.
in the early 1990s [2].

In Section 4.2, we are able to leverage this same hitting game to prove a stronger
version of the Ω(log2 n) bound of wake-up in single hop, single channel networks [13,
15]. The existing bound holds only for a restricted set of algorithms called uniform. Our
new bound holds for general algorithms. An immediate corollary is that the O(log2 n)
time, non-uniform MIS algorithm of Moscibroda and Wattenhoffer is optimal [20].

On the positive side, we consider the active wake-up problem, which is defined the
same as the standard problem except now nodes are only activated by the adversary.
The goal is to minimize the time between a node being activated and a node receiving
or successfully delivering a message. This problem is arguably better motivated than the
standard definition, as few real wireless devices are configured to allow nodes to moni-
tor a channel and then awaken on receiving a message. The active wake-up problem, by
contrast, uses activation to model a device being turned on or entering the region, and
bounds the time for every device to break symmetry, not just the first device.

In a single channel network, the Ω(log2 n) lower bound of standard wake-up still
applies to active wake-up. In Section 4.3, we describe a new algorithm that solves active
wake-up in a multi-channel network inO(log2 n/F+logn log logn) rounds—beating
the single channel lower bound for non-constantF .

We finally turn our attention to the minimum dominating set (MDS) problem. In the
single channel setting the Ω(log2 n) lower bound of [13,15] (and our own stronger ver-
sion from Section 4.2) applies via reduction. This is matched in UDGs by theO(log2 n)-
time MIS algorithm of [20].2 In Section 5, we describe our main upper bound result, a
O(log2 n/F + logn log logn)-time multi-channel algorithm that also provides a con-
stant approximation of a minimum dominating set (in expectation)—beating the single
channel bounds for non-constantF .

The key idea behind our algorithms is to leverage multi-channel diversity to filter
the number of awake nodes from a potential of up to n down to O(logk n), for some
constant k ≥ 1—allowing for more efficient subsequent contention management.

Note on Proofs. Due to lack of space we sometimes only provide proof sketches rather
than detailed proofs. We refer to [12] for the latter.

2 Model and Preliminaries

We model a synchronous multihop radio network with (potentially) multiple commu-
nication channels. We use an undirected graph G = (V,E) to represent the communica-
tion topology forn = |V |wireless nodes, one for each u ∈ V , and use [F] :={1, ...,F},
F ≥ 1, to describe the available communication channels. For each node u ∈ V we use
N(u) to describe the neighbors of u in G, and let Nk(u) be the set {v : dist(u, v) ≤ k}.

2 In UDGs, an MIS provides a constant-approximation of an MDS.

Efficient Symmetry Breaking in Multi-Channel Radio Networks 241

Nodes in our model are awakened asynchronously, in any round, chosen by an adver-
sary. At the beginning of each round, each awake node u selects a channel f ∈ [F] on
which to participate. It then decides to either broadcast a message or receive. A node’s
behavior can be probabilistic and based on its execution history up to this point. If u
receives and exactly one node from N(u) broadcasts on channel f during this round,
then u receives the message, otherwise, it detects silence. If u broadcasts, it can not
receive anything. That is, we assume concurrent broadcasts by neighbors on the same
channel lead to collision, and there is no collision detection. Notice that u gains no di-
rect knowledge of the behavior on other channels during this round (we assume that u
only has time to tune into and receive/broadcast on a single channel per round).

When analyzing algorithms, we will assume a global round counter that starts with
the first node waking up. This counter is only used for our analysis and is not known
to the nodes. Furthermore, we assume nodes know n (or, a polynomial upper bound
on n, which would not change our bounds), but do not have advanced knowledge of
the network topology. In Sections 4.3 and 5, we describe algorithms in which nodes
can be in many states, indicated: W, A, C, D, L and E. We also use this same notation
to indicate the set of nodes currently in that state. Finally, for ease of calculation we
assume that logn, log logn and logn/ log log n are all integers.

Graph Restrictions. When studying multihop radio networks it is common to assume
some type of geographic constraint on the communication topology. In this paper, we
assume a constraint that generalizes many of the constraints typically assumed in the
wireless algorithms literature, including unit ball graphs with constant doubling dimen-
sion [17], which was shown in [21] to generalize (quasi) UDGs [4, 18].

In more detail, letR = {R1, R2, ..., Rk} be a partition of the nodes in G into regions
such that the sub-graph of G induced by each region Ri is a clique. The corresponding
clique graph (or region graph) is a graph GR with one node ri for each Ri ∈ R, and
an edge between ri and rj iff ∃u ∈ Ri, v ∈ Rj such that u and v are connected in G;
we write R(u) for the region that contains u. In this paper, we assume that G can be
partitioned into cliques R such that the maximum degree of GR is upper bounded by
some constant parameter Δ.

Probability Preliminaries. In the following, if the probability that event A does not
occur is exponentially small in some parameter k—i.e., if P(A) = 1 − e−ck for some
constant c > 0—we say that A happens with very high probability w.r.t. k, abbreviated
as w.v.h.p.(k). We say that an event happens with high probability w.r.t. a parameter
k, abbreviated as w.h.p.(k), if it happens with probability 1 − k−c, where the constant
c > 0 can be chosen arbitrarily (possibly at the cost of adapting some other involved
constants). If an event happens w.h.p.(n), we just say it happens with high probability
(w.h.p.). Finally we define the abbreviation w.c.p. for with constant probability.

Our algorithm analysis makes use of the following lemma regarding very high prob-
ability, proved in our study of wake-up in single hop multi-channel networks [11]:

Lemma 1. Let there be k bins and n balls with non-negative weights w1, . . . , wn ≤ 1
4 ,

as well as a parameter q ∈ (0, 1]. Assume that
∑n

i=1 wi = c · k/q for some constant
c ≥ 1. Each ball is independently selected with probability q and each selected ball is
thrown into a uniformly random bin. With probability w.v.h.p.(k), there are at least k/4
bins in which the total weight of all balls is between c/3 and 2c.

242 S. Daum, F. Kuhn, and C. Newport

3 Problem

In this paper, we study two variants of the wake-up problem as well as the minimum
dominating set problem. In all cases, when we say that an algorithm solves one of these
problems in a certain number of rounds, then we assume this holds w.h.p.

Wake-Up: The standard definition of the wake-up problem assumes that in addition to
being awakened by the adversary, a dormant node u can be awakened whenever a sin-
gle neighbor broadcasts. In the multi-channel setting we assume that dormant nodes can
monitor an arbitrary channel each round and they awaken if a single neighbor broadcasts
on the same channel in the corresponding round. The goal of the standard wake-up prob-
lem is to minimize the time between the first and last awakening in the whole network.

Active Wake-Up: The active variant of the wake-up problem, which we are introducing
in this paper, eliminates the ability for nodes to be awakened by other nodes. We instead
focus on the time needed for an awaken node to successfully communicate with one of
its neighbors. In standard wake-up dormant nodes are limited to listening only and we
show that standard wake-up can be global in nature (it can take time for wake-up calls
to propagate over a multihop network). The motivation for active wake-up is to have
a similar problem, which allows to get past the limits imposed by the global nature of
standard wake-up and still capture the most basic need within solving graph problems:
communication. It turns out that active wake-up is inherently local, making it a good
candidate for capturing the symmetry breaking required of local graph problems.

More formally, we say an awake node u is completable if at least one of its neighbors
is also awake. We say a node u completes if it delivers a message to a neighbor or
receives a message from a neighbor. The goal of active wake-up is to minimize the
worst case time between a node becoming completable and subsequently completing.

Minimum Dominating Set: Given a graph G = (V,E), a set D ⊆ V is a dominating
set (DS) if every node in E := V \ D neighbors a node in D. A minimum dominating
set (MDS) is a dominating set of minimum cardinality over all dominating sets for the
graph. We say that a distributed algorithm solves the DS problem in time T if upon
waking up, within T rounds, w.h.p., every node (irrevocably) decides to be either in
D or in E such that at all times, all nodes in E have a neighbor in D. We say that the
algorithm computes a constant approximation MDS if at all times, the size of D is within
a constant factor of the size of an MDS of the graph induced by all awake nodes.

4 Wake-Up

In this section we prove bounds on both the standard and active versions of wake-up in
multi-channel networks.

4.1 Lower Bound for Standard Wake-Up

In the single channel model, there is a near tight bound of Ω(log2 n +D logn/D) on
the wake-up problem. We prove here that for D > 1 the (almost) same bound holds for
multi-channel networks.

Theorem 2. In a multi-channel network of diameter D = 1, the wake-up problem can
be solved in O(log2 n/F + logn), but requires Ω(log2 n + D) rounds for D > 1,

Efficient Symmetry Breaking in Multi-Channel Radio Networks 243

regardless of the size of F . The lower bound holds even if we restrict our attention to
network topologies satisfying the unit disk graph property.
To better capture what makes a multihop network so difficult (and for proving Theo-
rem 2), we reduce the following abstract game to the wake-up problem.

The Set Isolation Game. The set isolation game has a player face off against an adver-
sarial referee. It is defined with respect to some n > 1 and a fixed running time f(n),
where f maps to the natural numbers. At the beginning of the game, the referee secretly
selects a target set T ⊂ [n]. In each round, the player generates a proposal P ⊆ [n]
and passes it to the referee. If |P ∩ T | = 1, the player wins and the game terminates,
otherwise the referee informs the player it did not hit the set, and the game moves on
to the next round without the player learning any additional information about T . If the
player gets through f(n) rounds without winning, it loses the game. A strategy S for
the game is a randomized algorithm that uses the history of previous plays to proba-
bilistically select the new play. We call a strategy S an f(n) round solution to the set
isolation game, iff for every T , w.h.p., it guarantees a win within f(n) rounds.

Lemma 3. Let A be an algorithm that solves wake-up in f(n,F) rounds, for any n >
0 and F > 0, when executed in a multi-channel network with diameter at least 2
and a topology that satisfies the unit disk graph property. It follows that there exists a
gF(n) = f(n+ 1,F) round solution to the set isolation game.
Proof. Fix someF . Our set isolation solution simulatesA on a 2-hop network topology
of size n+1 and with F channels, as follows. Let u1, . . . , un+1 be the simulated nodes.
We arrange u1 to un in a clique C, and connect some subset C′ ⊆ C to un+1. Notice,
the resulting network topology satisfies the UDG property. In our simulation, the nodes
in C are activated in the first round, and the player proposes, in each round of the game,
the values from [n] corresponding to the subset of simulated nodes {u1, . . . , un} that
broadcast during the round on the same channel chosen by un+1. (Notice, the simulator
is responsible for simulating all communication and all channels.)

In this simulation, we want C′ to correspond to T in the isolation game. Of course,
the player simulating A does not have explicit knowledge of T . To avoid this problem,
our simulation always simulates un+1 as not receiving a message. This is valid behavior
in every instance except for the case where exactly one node in C′ broadcasts. This case,
however, defines exactly when the player wins the game. If A isolates a single player
in C′ in f(n+ 1,F) rounds (as is required to solve wake-up in this simulated setting),
then our set isolation solution solves the set isolation game in the same time. ��
To bound wake-up in multihop multi-channel networks, it is now sufficient to bound
the set isolation game. Notice that bounds for a deterministic variant of the game could
be derived from existing literature on selective families [6, 10], but we are interested
here in a randomized solution. To obtain this bound, we leverage the following useful
combinatorial result proved by Alon et al. in the early 1990s [2]:3

3 Our first idea was to try to adapt the strategy used in the existing Ω(log2 n) bound on wake-up
in single channel radio networks [13, 15]. This strategy, however, assumes a strong uniformity
condition among the nodes, which makes sense in a single channel world—where no nodes
can communicate until the problem is solved—but is too restrictive in our multi-channel world,
where nodes can coordinate on the non-wake-up channels, and therefore break uniformity in
their behavior.

244 S. Daum, F. Kuhn, and C. Newport

Lemma 4 (Adapted from [2]). Fix some n > 0. LetH and J be families of nonempty
subsets of [n]. We say that H hits J iff for every J ∈ J , there is an H ∈ H such that
|J ∩ H | = 1. There exists a constant c > 0 and family J , with |J | polynomial in n,
such that for every family H that hits J , |H| ≥ c log2 n.

The above lemma applies to the case where there are multiple sets to hit, but the sets are
known in advance. Here we translate the results to the case where there is a single set
to hit, but the set is unknown in advance, and a result must hold with high probability
(i.e., the exact setup of the set isolation game).

Lemma 5. Any set isolation game strategy S needs f(N) = Ω(log2 N) rounds.

Proof. Fix some n > 0. LetN = nk, where k > 1 is a constant we fix later. Consider an
execution of S with respect to the set [N]. Let HS = (HS(r))1≤r≤f(N) be a sequence
of subsets of [n] such thatHS(r) describes the values from [n] included in the proposal
of S in round r of the execution under consideration. Let J be the difficult family
identified by Lemma 4, defined with respect to n.

Assume for contradiction that f(N) = o(log2 N), i.e., f(N) < c log2 n. But then,
as a direct corollary of Lemma 4, there is at least one subset J ∈ J that is not hit by
HS . With this in mind, we define the follow referee strategy for the set isolation game.
Choose the target subset T fromJ uniformly at random. Any given execution of S fails
to hit T with probability at least 1/|J |. By Lemma 4, |J | is polynomial in n.

Therefore, we can choose our constant k such that 1/|J | > 1/nk.4 It follows that the
probability of failure to win the game in f(N) rounds is at least 1/|J | > 1/nk = 1/N ,
a contradiction to the definition of a set isolation game strategy. ��

The D > 1 term of Theorem 2 now follows from Lemmas 3 and 5, plus a straightfor-
ward argument that Ω(D) rounds are needed to propagate information D hops, while
the D = 1 term comes from [11].

4.2 A Stronger Single Channel Wake-Up Bound

Before continuing with our multi-channel results, we make a brief detour. By leverag-
ing our set isolation game and Lemma 5, we can prove a stronger version of the classic
Ω(log2 n) lower bound on wake-up in a single hop single channel network [13,15]. This
existing bound holds only for uniform algorithms (i.e., nodes use a uniform fixed broad-
cast probability in each round). The version proved here holds for general randomized
algorithms (i.e., each node’s probabilistic choices can depend on its IDs and its execution
history).

The argument is a variation on the simulation strategy used in Lemma 3.

Theorem 6. Let A be a general randomized algorithm that solves wake-up in f(n)
rounds in a single hop single channel network. It follows that f(n) = Ω(log2 n).

Proof. Here we follow the same general strategy exhibited by Lemma 3: showing how
to use A to solve set isolation. Though the idea of this reduction is the same, we must
alter the argument to deal with the fact that we are now in a single hop network.

4 In the proof construction used in [2], the size J is bounded around n8.

Efficient Symmetry Breaking in Multi-Channel Radio Networks 245

In more detail, simulate all n wake-up nodes as awake and not receiving messages.
In each round, propose the set of simulated wake-up nodes that broadcast in that round.
Notice, if we knew T , the obvious thing to do would be to simulate only the nodes
corresponding to T , because by the definition of the wake-up problem, there would be
a round in which exactly one of those nodes broadcasts (as required to solve wake-up).
We are instead simulating all nodes. However, this does not cause a problem because
each node’s simulation looks the same regardless of the other nodes being simulated—
in the single channel wake-up problem, nodes do not communicate with each other
before the problem is solved. Consequently, for the nodes corresponding to T , this sim-
ulation is indistinguishable from one in which only these nodes were being simulated.
Therefore, in some round r ≤ f(|T |) ≤ f(n), exactly one of these nodes from T has to
broadcast. The resulting proposal set will contain only one element from T (potentially
in addition to some other elements from [n] \ T): solving set isolation. ��
The wake-up problem reduces to the MIS problem, so a bound on wake-up applies to
MIS. The best known MIS algorithm for single channel radio networks is theO(log2 n)-
time algorithm of Moscibroda and Wattenhoffer [20]. Because their algorithm is
non-uniform, we cannot reduce from the uniform wake-up bounds of [13, 15]. Using
Theorem 6, however, the reduction now holds, proving the conjecture that the result
of [20] is optimal.

4.3 Upper Bound for Active Wake-Up

In this section we present a O(log2 n/F + log n log logn) time solution to the ac-
tive wake-up problem in a multi-channel network. For non-constant F this beats the
Ω(log2 n) lower bound for this problem in the single channel setting.

Algorithm Description. Our algorithm, Algorithm 1, requires that F ≥ 9 and that
F = O(log n) (if F is larger we can simply restrict ourselves to use a subset of
the channels). It uses the first channel as a competition channel, and the remaining
F = F−1 channels for nodes in an active state (denoted A). Nodes begin the algorithm
in state A, during which they choose active state channels with uniform probability and
broadcast with a probability that increases exponentially from 1/n to 1/4, spending
onlyO(log n/F) rounds at each probability. During this state, if a node receives a mes-
sage it is eliminated (E), at which point it receives on the competition channel for the
remainder of the execution. A node that survives the active state moves on to the compe-
tition state (C) during which it broadcasts on the competition channel with probabilities
that exponentially increase from 1/ log2 n to 1/2, spending Θ(logn) rounds at each
probability. As before, receiving a message eliminates a node (E). Finally, a node that
survives the competition state advances to the leader state (L) where it broadcasts on
the competition channel with probability 1/2 in each round.

We analyze the algorithm below.

Theorem 7. Algorithm 1 solves the active wake-up problem in multi-channel networks
in O(log2 n/F + logn log logn) rounds.

As detailed in Section 2, we assume the graph can be partitioned into cliques with
certain useful properties. In this proof we refer to those cliques as regions, which we

246 S. Daum, F. Kuhn, and C. Newport

Algorithm 1. Active Wake-Up Algorithm

State description: A – active, C – competitor, L – leader, E – eliminated

begin
αA = Θ(log n/F); αC = Θ(log n)
set count := 0; phase := 0; state := A

while state �= E do
count := count + 1
uniformly at random pick: k ∈ {2, . . . ,F}; q ∈ [0, 1)
switch state do

case A

if q > 2phase

n
then listen on k else send on k

if count > αA then phase := phase + 1; count := 0
if phase > log (n/4) then phase := 0; state := C

case C

if q > 2phase

log2 n
then listen on 1 else send on 1

if count > αC then phase := phase + 1; count := 0
if phase > log ((log2 n)/2) then state := L

case L

if q ≥ 1/2 then listen on 1 else send on 1

Listen on 1 perpetually

Upon receiving a message:
if state �= L then state := E

label R1, R2, . . . , Rk, where k ≤ n. We also make use of the “very high probability”
notation, and corresponding Lemma 1, also presented in Section 2.

For a given round and node u, let p(u) be the probability that u broadcasts in that
round. Similarly, for a given round and region R, let PA(R) :=

∑
u∈A∩R p(u) and

PC(R) :=
∑

u∈(C∪L)∩R p(u). When it is clear which region is meant, we sometimes
omit the (R) in this notation. We begin by bounding PA for every region R. The fol-
lowing lemma is a generalization of Lemma 4.8 from [11], modified to now handle a
multihop network.

Lemma 8. W.h.p., for every round and region: PA = O(F) = O(F).

Proof Sketch. We assume that the lemma does not hold and get that in some region
R the probability mass (PM) is in Θ(F) for the length of one phase. We can apply
Lemma 1 to get Θ(F) channels with a Θ(1) PM each. The graph restrictions impose a
limit on the amount of interference from neighboring regions. On a single such channel
a successful broadcast now happens w.c.p. and it eliminates a Ω(1/F) fraction of the
total PM. Using Chernoff we get a constant fraction reduction on the PM w.v.h.p.(F).
Detailed analysis reveals that O(log n/F) rounds are sufficient to reduce the PM by an
arbitrary constant factor w.h.p., causing a contradiction. ��

Efficient Symmetry Breaking in Multi-Channel Radio Networks 247

Lemma 9. W.h.p., for every round and region R: PC = O(1).

Proof Sketch. With Lemma 8 we immediately get that, w.h.p., only O(F) = O(log n)
nodes move to C per round and region, thus at most O(log2 n) per phase in C. During
one phase the broadcasting probability mass (PM) in one region can at most double. At
the same time, continuously exceeding a certain constant threshold would imply that
during one phase, w.h.p., the PM shrinks by an arbitrary constant factor. (Note that
interference from neighboring regions is limited due to the graph restriction.) ��

Proof (of Theorem 7). In the following, let T = O(log2 n/F + logn log log n) be the
time required to get from waking up to L. Consider a node u that wakes up in region R
in round r. We consider two cases. In the first case, u is eliminated before it reaches L.
Therefore, u received a message in T rounds—satisfying the theorem statement.

In the second case, u reaches L without receiving a message. At this point T rounds
have elapsed. If u is not already completable, wait until it next becomes so. Let v be
the first node to make u completable. Within T rounds from waking up, v is either
eliminated or in C. In either case, it will remain on the competition channel for the
remainder of the execution, where it has a chance of receiving a message from u ∈ L,
which would complete u. In each such round, u broadcasts with constant probability.
We apply Lemma 9 to establish that the broadcast probability sum of interfering nodes
(both in R and neighboring regions) is constant. Combined, u has a constant probability
of delivering a message to v. For sufficiently large constant c, c logn additional rounds
are sufficient for u to complete with high probability. ��

5 Minimum Dominating Set

In this section, we present an algorithm that computes a constant-factor (in expectation)
approximation for the MDS problem in time O(log2 n/F + logn log logn). For F =
ω(1) this outperforms the fastest known algorithm to solve MDS in the single channel
model. For F = O(log n/ log logn) the speed-up is in the order of Θ(F).

Algorithm Description. Algorithm 2 builds on the ideas of the active wake-up algo-
rithm of the previous section as follows. For simplicity, we assume that F = O(log n),
as more frequencies are not exploited. For an easier handling of the analysis we partition
and rename the F available channels [F] into {A1, . . . ,AF}∪̇{D1, . . . ,DnD}∪̇{C},
such that F = Θ(F) and nD = O(min{log logn,F}).

After being woken up, a node u starts in the waiting state W, in which it listens
uniformly at random on channels D1, . . . ,DnD . Its goal is to hear from a potentially
already existing neighboring dominator before it moves on to the active state A. Once
in A node u starts broadcasting on the channels {A1, . . . ,AF} with probability 1/n in
each round. It acts in phases and at the beginning of each phase it doubles its broadcast-
ing probability until it reaches probability 1/4. As in the wake-up protocol, u chooses
its channel uniformly at random, allowing us to reduce the length of each phase from
the usual Θ(log n) in a single channel setting to Θ(log n/F), while still keeping the
broadcasting probability mass in each region bounded w.h.p.

Unlike the wake-up algorithm, a node is not done when it receives a message. Thus,
if a node receives a message in state A then it restarts with state W. If a node manages

248 S. Daum, F. Kuhn, and C. Newport

to broadcast in state A, it immediately moves on to the candidate state C. Because the
probability mass in A is bounded in every region, the number of nodes moving to the
candidate state can also be bounded by O(polylogn).

State C starts with a long sleeping phase (phase 0) in which nodes act as in state W,
i.e., they listen on channelsD1, . . . ,DnD : to find out about potential dominators created
while they were in state A. If a node u does not receive the message of a neighboring
dominator in that time it moves on to phases 1, 2, . . . , during which u tries to become a
dominator by broadcasting on channel C. Unlike in state A, u can start with broadcasting
probability 1/ log2 n, without risk of too much congestion. This allows us to reduce the
total number of phases to O(log logn). A candidate that manages to broadcast, imme-
diately moves on to the dominating state D, while candidates receiving a message from
another candidate move to the eliminated state E, because they know that the sender
of that message is now a dominator. Assuming that F = Ω(log logn), dominators run
the following protocol. In each round, they choose a channel Di uniformly at random
and broadcast on it with probability 2−i. We can show that the number of dominators
in each node v’s neighborhood is at most poly-logarithmic in n. Then, as soon as v has
at least one dominator in its neighborhood, there is always a channel Dλ on which v
can receive a message from a dominator with constant probability. On average v will
choose the right channel within O(log logn) rounds, so O(logn log logn) rounds are
enough to ensure high probability. In the case F = o(log logn) a constant number of
channels with appropriate broadcasting probabilities suffice to make a dominator heard
within O(log2 n/F + logn log logn) rounds.

We analyze the algorithm below.

Theorem 10. Algorithm 2 computes a constant approximation for the MDS problem in
time O(log2 n/F + logn log logn).

Let us start out with some definitions and notations. We define PA and PC analogously
to Section 4.3. Further, we call a node decided if it belongs to D or E. A region R is
called decided in round r, if no node in R is in A or C in any round r′ ≥ r. Hence,
in particular after a region R becomes decided, no dominators will be created in R.
Finally, we define T ′ := αW + αsleep + (αA + αC + 2) logn and T := 3(Δ2 + 1)T ′.

Lemma 11. W.h.p., at all times and for every region R, the probability mass PA in R
is bounded by O(F).

Proof. The proof is identical to the proof of Lemma 8 for the wake-up algorithm. ��

Lemma 12. W.h.p., at most O(F + logn) = O(logn) nodes switch to the candidate
phase in any region R in any round r.

Proof. By Lemma 11, w.h.p., the probability mass PA is always bounded by cF for
some constant c. For each node v in the region R, define Xv as the Bernoulli random
variable that indicates whether v moves to the candidate phase in round r and let X :=∑

v∈R Xv and μ := E[X] ≤ PA ≤ cF. For an arbitrary d > 0 let δ := μ−1(e2cF +
d logn)− 1. Then, applying a standard Chernoff bound, we get

P(X ≥ (1 + δ)μ) = P(X ≥ (e2cF + d logn)) ≤ e−μ(δ+1) ≤ e−d logn = n−d. ��

Efficient Symmetry Breaking in Multi-Channel Radio Networks 249

Algorithm 2. Dominating Set Algorithm

States: W – waiting, A – active, C – candidate, D – dominator, E – eliminated

Channels: A1, . . . ,AF – filtering, D1, . . . ,DnD – notification, C – competition

begin
αW = αsleep = Θ(log2 n/F+log n log log n); αA = Θ(log n/F); αC = Θ(log n)
set count := 0; state := W

if F = Ω(log log n) then nD := Θ(log log n) else nD := 4
while state �= E do

count := count + 1
uniformly at random pick: i ∈ {1, . . . , nD}; k ∈ {1, . . . ,F}; q ∈ [0, 1)
switch state do

case W

listen on Di

if count = αW then count := 0, state := A, phase := 0

case A

if count = αA then count := 0, phase := min{phase + 1, log(n/4)}
if q > 2phase

n
then listen on Ak

else send on Ak; count := 0, phase := 0, state := C

case C

if phase = 0 then
listen on Di

if count = αsleep then count := 0, phase := 1
else

if count = αC then count :=0, phase :=min{phase+1, 2 log log n}
if q > 2phase−1

log2 n
then listen on C else send on C; state := D

case D

if nD = 4 then p :=
(

F
logn

)i

else p := 2−i

with probability p send on Di

Upon receiving a message:
if state = A then count := 0, state := W else state := E

Lemma 13. W.h.p., at all times and for every region R, the probability mass PC in R
is bounded by O(1).

Proof. By Lemma 12, in no round more than O(log n) nodes move from state A to
state C. Thus at most O(log2 n) nodes do so within the length αC of one phase (not
phase 0) of state C. The claim then follows analogously to the proof of Lemma 9. ��

The purpose of the sleeping phases in state W and at the beginning of state C is for
nodes to detect if they have a dominator in their neighborhood and thus getting elim-
inated before going to A or to start competing in C. The following lemma shows that
both sleep phases do their job and that a full sleep phase is enough for a dominator to
eliminate a neighbor in state W or phase 0 of state C.

250 S. Daum, F. Kuhn, and C. Newport

Lemma 14. Assume that a node u starts with state W or phase 0 of state C in round r
and there is already a dominator in N(u). Further, assume that kt := |D∩ (N1(u))| =
O(log3 n/F + log2 n log logn) at all times t ∈ [r, r + αW] = [r, r + αsleep]. Then,
w.h.p., u switches to state E by round r + αW = r + αsleep.

Proof Sketch. First assume that nD = Ω(log logn). Because of kt being bounded as
demanded there is a ‘favored’ channelDλt on which the broadcasting probability mass
(PM) is in Θ(1). Thus, u has a Θ(1/ log logn) probability to hit that channel each
round. αsleep rounds suffice for u to receive a message w.h.p. If nD = o(log logn), then
4 channels suffice. The stated probabilities in Algorithm 2 ensure that on one of the
4 channels the PM is in Ω(F/ logn) ∩ O(1), i.e., O(log n/F) rounds per phase are
enough for receiving a message w.h.p. ��

The following lemma shows that the number of dominators in each region is bounded
and that as soon as there is a dominator in a region, the region also becomes decided
within bounded time.

Lemma 15. The lemma statement is in three parts:

(a) W.h.p., in every region R and round r: only O(log n) nodes move to state D.
(b) W.h.p., if there is a node u in state D, then all nodes that are already awake in

N1(u) ⊃ R(u) are decided within time T ′.
(c) W.h.p., in every region R: |D| = O(log3 n/F + log2 n log logn).

Proof Sketch. Part (a) is proven similar to Lemma 12 using the result of Lemma 13.
For (b) let v ∈ N(u). Due to (a) there are not too many dominators created in N(v),

so there is no congestion on channelsD1, . . . ,DnD . Lemma 14 then provides that nodes
in states A or W will get eliminated soon. Nodes in state C will be decided eventually
due to the algorithm construction.

Part (c) follows from combining (a), (b) and Lemma 14. ��

Lemma 16. W.h.p., each node u that wakes up is decided within T = O(log2 n/F +
logn log logn) rounds.

Proof Sketch. Note that if u leaves states W and A behind then it will get decided
within T ′ rounds. Thus, for not getting decided soon it has to be set back to state W

often. But every time this happens, a node v ∈ N(u) moves to state C, getting de-
cided eventually, implying the creation of a dominator w ∈ N1(v) ⊂ N2(u) within
T ′ rounds. Lemma 15 limits the time until R(w) is decided. Finally, this can happen at
most Δ2 + 1 = O(1) times. ��

Lemma 17. For each region R, the expected number of nodes that become dominators
in region R is bounded by O(1).

Proof. Consider some fixed region R and let t0 be the first time when a node becomes
a candidate in region R. For i = 1, 2, . . . , let PC,i be the sum of the broadcast proba-
bilities of all the candidates in region R on channel C in round t0 + i. As nodes have to
be candidates before becoming dominators, dominators in region R can only be created

Efficient Symmetry Breaking in Multi-Channel Radio Networks 251

after time t0. Let Xi be the number of dominators created in R in round t0 + i and let
X =

∑
i≥1 Xi. To prove the lemma, we have to show that E[X] = O(1).

We say that a newly created dominator v in round r clears its region R iff v is the
only dominator created in region R in round r and all candidates in region R hear v’s
message on channel C in round r. Clearly, all nodes that are candidates in region R in
round r switch to state E when this occurs. Therefore, the only nodes in R that can still
become dominators must either be in another state (W, A) or not yet awake. By Lemma
15, |D ∩ R| is always bounded such that by Lemma 14, w.h.p., the latter nodes also do
not become dominators.

Having established the power of clearing, we bound the probability of such events.
In more detail, let Ei be the event that in round t0+i some node v in regionR becomes a
dominator by clearing R. We next show that such a clearance happens with probability
at least δ · PC,i for some constant δ > 0. To see why, recall that by Lemma 13, we
know that for all i ≥ 1, PC,i as well as PC,i(R

′) in round t0 + i for every neighboring
region R′ are upper bounded by some constant P̂C. For each candidate v in region R
let p(v) be its broadcasting probability. Then the probability that exactly one candidate
from region R broadcasts on channel C in round t0 + i is lower bounded by∑

v∈R∩C

p(v)
∏

u∈R∩C, u�=v

(1− p(u)) ≥ PC,i4
−P̂C = Ω(PC,i).

The probability that no candidate from any neighboring region R′ (of which there are
at most Δ) broadcasts on channel C in round t0 + i is at least 4−ΔP̂C = Ω(1). Hence,
there exists a constant δ > 0 such that P(Ei) ≥ δPC,i.

In the following, we define Qi :=
∑i

j=1 PC,i. The probability that no node v clears
region R by some time t0 + τ can be upper bounded by

P
(⋂τ

i=1
Ei
)
≤
∏τ

i=1
(1− δPC,i) < e−δ

∑τ
i=1 PC,i = e−δQτ .

As discussed above, w.h.p., a clearance in R prevents new nodes from subsequently be-
coming dominators in this region. Let G be the event that this high probability property
holds. When we condition on G, it holds that a dominator can join a region in a given
round only if there have been no previous clearances in that region. Hence,

E [Xi|G] ≤ P

(⋂i−1

j=1
E i

)
· PC,i

and therefore
E [X |G] ≤

∑
i≥1

PC,i · e−δQi−1 = O(1).

Because G happens w.h.p., and |D| ≤ n, we get E[X] = O(1). ��

Proof (of Theorem 10). By Lemma 16, w.h.p., after it wakes up every node is decided
within O(log2 n/F + logn log logn) rounds. Since a node only goes to state E after
hearing from a neighboring dominator, the computed dominating set is valid. Finally,
by Lemma 17, in expectation, the algorithm computes a constant approximation of the
optimal MDS solution. ��

252 S. Daum, F. Kuhn, and C. Newport

References

1. I. 802.11. Wireless LAN MAC and Physical Layer Specifications (June 1999)
2. Alon, N., Bar-Noy, A., Linial, N., Peleg, D.: A Lower Bound for Radio Broadcast. Journal

of Computer and System Sciences 43(2), 290–298 (1991)
3. Bar-Yehuda, R., Goldreich, O., Itai, A.: On the Time-Complexity of Broadcast in Multi-Hop

Radio Networks: An Exponential Gap Between Determinism and Randomization. Journal of
Computer and System Sciences 45(1), 104–126 (1992)

4. Barriére, L., Fraigniaud, P., Narayanan, L.: Robust position-based routing in wireless ad
hoc networks with unstable transmission ranges. In: Proc. 5th Int. Workshop on Discrete
Algorithms and Methods for Mobile Computing and Communications (DIALM), pp. 19–27
(2001)

5. Bluetooth Consortium. Bluetooth Specification Version 2.1 (July 2007)
6. Bonis, A.D., Gasieniec, L., Vaccaro, U.: Generalized fFamework for Selectors with Appli-

cations in Optimal Group Testing. In: Proceedings of the International Colloquium on Au-
tomata, Languages and Programming (2003)

7. Chlamtac, I., Kutten, S.: On Broadcasting in Radio Networks–Problem Analysis and Protocol
Design. IEEE Transactions on Communications 33(12), 1240–1246 (1985)

8. Chlebus, B.S., Kowalski, D.R.: A Better Wake-Up in Radio Networks. In: Proceedings of the
ACM Symposium on Principles of Distributed Computing, pp. 266–274. ACM (2004)

9. Chrobak, M., Gasieniec, L., Kowalski, D.: The Wake-Up Problem in Multi-Hop Radio Net-
works. In: Proceedings of the Annual Symposium on Discrete Algorithms, pp. 992–1000.
Society for Industrial and Applied Mathematics (2004)

10. Clementi, A.E.F., Monti, A., Silvestri, R.: Distributed Broadcast in Radio Networks of Un-
known Topology. Theoretical Computer Science 302(1-3) (2003)

11. Daum, S., Gilbert, S., Kuhn, F., Newport, C.: Leader Election in Shared Spectrum Networks.
In: Proceedings of the Principles of Distributed Computing (to appear, 2012)

12. Daum, S., Kuhn, F., Newport, C.: Efficient Symmetry Breaking in Multi-Channel Radio Net-
works. Technical Report 271, University of Freiburg, Dept. of Computer Science (2012)

13. Farach-Colton, M., Fernandes, R.J., Mosteiro, M.A.: Lower Bounds for Clear Transmis-
sions in Radio Networks. In: Correa, J.R., Hevia, A., Kiwi, M. (eds.) LATIN 2006. LNCS,
vol. 3887, pp. 447–454. Springer, Heidelberg (2006)

14. Gasieniec, L., Pelc, A., Peleg, D.: The Wakeup Problem in Synchronous Broadcast Systems.
In: Proceedings of the ACM Symposium on Principles of Distributed Computing, pp. 113–
121 (2000)

15. Jurdzinski, T., Stachowiak, G.: Probabilistic Algorithms for the Wakeup Problem in Single-
Hop Radio Networks. In: Proceedings of the International Symposium on Algorithms and
Computation, pp. 535–549 (2002)

16. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Initializing Newly Deployed Ad Hoc and Sensor
Networks. In: Proceedings of International Conference on Mobile Computing and Network-
ing, pp. 260–274. ACM (2004)

17. Kuhn, F., Moscibroda, T., Wattenhofer, R.: On the locality of bounded growth. In: Proc. 24th
Symp. on Principles of Distributed Computing (PODC), pp. 60–68 (2005)

18. Kuhn, F., Wattenhofer, R., Zollinger, A.: Ad hoc networks beyond unit disk graphs. Wireless
Networks 14(5), 715–729 (2008)

19. Kushilevitz, E., Mansour, Y.: An (D log (N/D)) Lower Bound for Broadcast in Radio Net-
works. SIAM Journal on Computing 27(3), 702–712 (1998)

20. Moscibroda, T., Wattenhofer, R.: Maximal independent sets in radio networks. In: Proc. 24th
Symp. on Principles of Distributed Computing (PODC), pp. 148–157 (2005)

21. Schmid, S., Wattenhofer, R.: Algorithmic models for sensor networks. In: Proc. 14th Int.
Workshop on Parallel and Distributed Real-Time Systmes, pp. 1–11 (2006)

On Byzantine Broadcast

in Loosely Connected Networks

Alexandre Maurer and Sébastien Tixeuil

UPMC Sorbonne Universités, France
{Alexandre.Maurer,Sebastien.Tixeuil}@lip6.fr

Abstract. We consider the problem of reliably broadcasting informa-
tion in a multihop asynchronous network that is subject to Byzantine
failures. Most existing approaches give conditions for perfect reliable
broadcast (all correct nodes deliver the authentic message and nothing
else), but they require a highly connected network. An approach giving
only probabilistic guarantees (correct nodes deliver the authentic mes-
sage with high probability) was recently proposed for loosely connected
networks, such as grids and tori. Yet, the proposed solution requires
a specific initialization (that includes global knowledge) of each node,
which may be difficult or impossible to guarantee in self-organizing net-
works – for instance, a wireless sensor network, especially if they are
prone to Byzantine failures.

In this paper, we propose a new protocol offering guarantees for loosely
connected networks that does not require such global knowledge depen-
dent initialization. In more details, we give a methodology to determine
whether a set of nodes will always deliver the authentic message, in any
execution. Then, we give conditions for perfect reliable broadcast in a
torus network. Finally, we provide experimental evaluation for our so-
lution, and determine the number of randomly distributed Byzantine
failures than can be tolerated, for a given correct broadcast probability.

Keywords: Byzantine failures, Networks, Broadcast, Fault tolerance,
Distributed computing, Protocol, Random failures.

1 Introduction

In this paper, we study the problem of reliably broadcasting information in a
network that is subject to attacks or failures. Those are an important issue in a
context where networks grow larger and larger, making the possibility of failure
occurrences more likely. Many models of failures and attacks have been studied
so far, but the most general model is the Byzantine model [11]: some nodes in the
network may exhibit arbitrary behavior. In other words, all possible behaviors
must be anticipated, including the most malicious strategies. The generality of
this model encompasses a rich panel of security applications.

In the following, we assume that a correct node (the source) broadcasts a
message in a network that may contain Byzantine nodes. We say that a correct
node delivers a message, when it considers that this actually is the message
broadcasted by the source.

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 253–266, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

254 A. Maurer and S. Tixeuil

Related Works. Many Byzantine-robust protocols are based on cryptography
[3,5]: the nodes use digital signatures or certificates. Therefore, the correct nodes
can verify the validity of received informations and authenticate the sender across
multiple hops. However, this approach weakens the power of Byzantine nodes,
as they ignore some cryptographic secrets: their behavior is not totally arbitrary.
Moreover, in some applications such as sensor networks, the nodes may not have
enough resources to manipulate digital signatures. Finally, cryptographic oper-
ations require the presence of a trusted infrastructure, such as secure channels
to a key server or a public key infrastructure. In this paper, we focus on non-
cryptographic and totally distributed solutions: no element of the network is
more important than another, and all elements are likely to fail.

Cryptography-free solutions have first been studied in completely connected
networks [11,1,12,13,17]: a node can directly communicate with any other node,
which implies the presence of a channel between each pair of nodes. Therefore,
these approaches are hardly scalable, as the number of channels per node can
be physically limited. We thus study solutions in partially connected networks,
where a node must rely on other nodes to broadcast informations.

Dolev [4] considers Byzantine agreement on arbitrary graphs, and states that
for agreement in the presence of up to k Byzantine nodes, it is necessary and
sufficient that the network is (2k+1)-connected and the number of nodes in the
system is at least 3k+1. Also, this solution assumes that the topology is known to
every node, and that nodes are scheduled according to the synchronous execution
model. Nesterenko and Tixeuil [19] relax both requirements (the topology is
unknown and the scheduling is asynchronous) yet retain 2k + 1 connectivity
for resilience and k + 1 connectivity for detection (the nodes are aware of the
presence of a Byzantine failure). In sparse networks such as a grid (where a
node has at most four neighbors), both approaches can cope only with a single
Byzantine node, independently of the size of the grid. More precisely, if there
are two ore more Byzantine nodes anywhere in the grid, there always exists a
possible execution where no correct node delivers the authentic message.

Byzantine-resilient broadcast was also investigated in the context of radio
networks : each node is a robot or a sensor with a physical position. A node can
only communicate with nodes that are located within a certain radius. Broadcast
protocols have been proposed [10,2] for nodes organized on a grid. However, the
wireless medium typically induces much more than four neighbors per node,
otherwise the broadcast does not work (even if all nodes are correct). Both
approaches are based on a local voting system, and perform correctly if every
node has less than a 1/4π fraction of Byzantine neighbors. This criterion was
later generalized [20] to other topologies, assuming that each node knows the
global topology. Again, in loosely connected networks, the local constraint on
the proportion of Byzantine nodes in any neighborhood may be difficult to assess.

A notable class of algorithms tolerates Byzantine failures with either
space [15,18,21] or time [14,9,8,7,6] locality. Yet, the emphasis of space local
algorithms is on containing the fault as close to its source as possible. This
is only applicable to the problems where the information from remote nodes is

On Byzantine Broadcast in Loosely Connected Networks 255

unimportant (such as vertex coloring, link coloring or dining philosophers). Also,
time local algorithms presented so far can hold at most one Byzantine node and
are not able to mask the effect of Byzantine actions. Thus, the local containment
approach is not applicable to reliable broadcast.

All aforementioned results rely on strong connectivity and Byzantine propor-
tions assumptions in the network. In other words, tolerating more Byzantine
failures requires to increase the connectivity, which can be a heavy constraint in
a large network. To overcome this problem, a probabilistic approach for reliable
broadcast has been proposed in [16]. In this setting, the distribution of Byzantine
failures is assumed to be random. This hypothesis is realistic in various networks
such as a peer-to-peer overlays, where the nodes joining the network are not able
to choose their localization, and receive a randomly generated identifier that de-
termines their location in the overlay. Also, it is considered acceptable that a
small minority of correct nodes are fooled by the Byzantine nodes. With these
assumptions, the network can tolerate [16] a number of Byzantine failures that
largely exceeds its connectivity. Nevertheless, this solution requires to define
many sets of nodes (called control zones [16]) before running the protocol: each
node must initially know to which control zones it belongs. This may be diffi-
cult or impossible in certains types of networks, such as a self-organized wireless
sensor network or a peer-to-peer overlay.

Our Contribution. In this paper, we propose a broadcast protocol performing in
loosely connected networks subject to Byzantine failures that relaxes the afore-
mentioned constraint – no specific initialization is required for the nodes. This
protocol is described in Section 2. Further, we prove general properties on this
protocol, and use them to give both deterministic and probabilistic guarantees.

In Section 3, we give a sufficient condition for safety (no correct node delivers
a false message). This condition is not based on the number, but on the distance
(with respect to the number of hops) between Byzantine failures. Then, we give
a methodology to construct – node by node – a set of correct nodes that will
always deliver the authentic message, in any possible execution.

In Section 4, we consider a particular loosely connected network: the torus,
where each node has exactly four neighbors. We give a sufficient condition to
achieve perfect reliable broadcast on such a network (all correct nodes deliver
the authentic message).

In Section 5, we make an experimental evaluation of the protocol on grid
networks. We give a methodology to estimate the probability that a correct
node delivers the authentic message, for a given number of Byzantine failures.
This way, we can determine the maximal number of failures that the network
can hold, to achieve a given probabilistic guarantee.

2 Description of the Protocol

In this section, we provide an informal description of the protocol. Then, we
precise our notations and hypotheses, and give the algorithm that each correct
node must follow.

256 A. Maurer and S. Tixeuil

2.1 Informal Description

The network is described by a set of processes, called nodes. Some pairs of
nodes are linked by a channel, and can send messages to each other: we call
them neighbors. The network is asynchronous : the nodes can send and receive
messages at any time.

A particular node, called the source, wants to broadcast an information m
to the rest of the network. In the ideal case, the source would send m to its
neighbors, which will transmit m to their own neighbors – and so forth, until
every node receivesm. In our setting however, some nodes – except the source —
can be malicious (Byzantine) and broadcast false informations to the network.
Of course, a correct node cannot know whether a neighbor is Byzantine.

To limit the diffusion of false messages, we introduce a trigger mechanism:
when a node p receives a message m, it must wait the reception of a trigger
message to accept and retransmitm. The trigger message informs p that another
node, located at a reasonable distance, has already accepted m. This distance is
the number H of channels (or hops) that the trigger message can cross. This is
illustrated in Figure 1-a.

The underlying idea is as follows: if the Byzantine nodes are sufficiently
spaced, they will never manage to broadcast false messages. Indeed, to broad-
cast a false message, a Byzantine node requires an accomplice to broadcast the
corresponding trigger message (see Figure 1-b). However, if this accomplice is
distant from more than H + 1 hops, the trigger message will never reach its
target, and the false message will never be accepted (see Figure 1-c).

Fig. 1. Illustration of the trigger mechanism

2.2 Notations and Hypotheses

Let (G,E) be a non-oriented graph representing the topology of the network. G
denotes the nodes of the network. E denotes the neighborhood relationship. A
node can only send messages to its neighbors. Some nodes are correct and follow
the protocol described thereafter. We consider that all other nodes are totally
unpredictable (or Byzantine) and may exhibit an arbitrary behavior.

On Byzantine Broadcast in Loosely Connected Networks 257

Hypotheses. We consider an asynchronous message passing network: any message
sent is eventually received, but it can be at any time. We assume that, in an
infinite execution, any process is activated inifinitely often. However, we make
no hypothesis on the order of activation of the processes. Finally, we assume
local topology knowledge: when a node receives a message from a neighbor p, it
knows that p is the author of the message. Therefore, a Byzantine node cannot
lie about its identity to its direct neighbors. This model is referred to as the
“oral” model in the literature (or authenticated channels).

Messages Formalism. In the protocol, two types of messages can be exchanged:

– Standard messages, of the form (m): a message claiming that the source
broadcasted the information m.

– Trigger messages, of the form (m,S): a message claiming that a node has
delivered m. The set S should contain the identifiers of the nodes visited by
this message.

The protocol is characterized by a parameter H ≥ 1: the maximal number of
hops that a trigger message can cross. Typically, this limit is reached when S
contains more than H − 1 nodes. This parameter is known by all correct nodes.

Local Memories. Each correct node p maintains two dynamic sets, initially
empty:

– Wait: the set of standard messages received, but not yet accepted. When
(m, q) ∈ Wait, it means that p received a standard message (m) from a
neighbor q.

– Trig: set of trigger messages received. When (m,S) ∈ Trig, it means that p
received a trigger message (m,S − {q}) from a neighbor q.

Vocabulary. We will say that a node multicasts a message when it sends it to
all its neighbors. A node delivers a message m when its consider that it is the
authentic information broadcast by the source. In the remaining of the paper, we
call D the shortest number of hops between two Byzantine nodes. For instance,
D = 4 in Figure 1-b, and D = 5 in Figure 1-c.

2.3 Local Execution of the Protocol

Initially, the source multicasts m and (m, ø). Then, each correct node follows
these three rules:

– RECEPTION – When a standard message (m) is received from a neighbor
q: if q is the source, deliver m, then multicast (m) and (m, ø); else, add (m, q)
to the set Wait.

– TRANSMISSION – When a trigger message (m,S) is received from a neigh-
bor q: if q /∈ S and card(S) ≤ H − 1, add (m,S ∪ {q}) to the set Trig and
multicast (m,S ∪ {q}).

– DECISION – When there exists (m, q, S) such that (m, q) ∈ Wait, (m,S) ∈
Trig and q /∈ S: deliver m, then multicast (m) and (m, ø).

258 A. Maurer and S. Tixeuil

3 Protocol Properties

In this section, we give conditions about the placement of Byzantine nodes that
guarantee network safety (that is, no correct node ever delivers a false message).
Then, we give a methodology to compute a set of nodes that always delivers
authentic messages, in any possible execution. Remind that correct nodes do
not know the actual positions of Byzantine nodes.

3.1 Network Safety

The following theorem guarantees network safety, provided that Byzantine node
are sufficiently spaced. This condition depends on the parameter H of the pro-
tocol, and on the distance D (see 2.2). We also show that the condition on D is
tight for our protocol.

Notice that safety does not guarantee that correct nodes actually deliver the
authentic message. This aspect is studied in 3.2.

Theorem 1 (Network Safety). If D ≥ H + 2, no correct nodes delivers a
false message.

Proof. The proof is by contradiction. Let us suppose the opposite : D ≥ H + 2,
and at least one correct node delivers a false message. Let u be the first correct
node to deliver a false message, and let m′ be this message.

No correct node can deliver m′ in RECEPTION, as the source did not send
m′. So u delivered m′ in DECISION, implying that there exists q and S such
that (m′, q) ∈ u.Wait, (m′, S) ∈ u.T rig and q /∈ S.

The statement (m′, q) ∈ u.Wait implies that u received (m′) from a neighbor
q in RECEPTION. Let us suppose that q is correct. Then, q sent (m′) in DECI-
SION, implying that q delivered m′. This is impossible, as u is the first correct
node to deliver m′. So q is necessarily Byzantine.

Now, let us prove the following property Pi by recursion, for 1 ≤ i ≤ H + 1:
a correct node ui, at i hops or less from q, received a message (m′, Si), and
card(S) = card(Si) + i.

– First, let us show that P1 is true. The statement (m′, S) ∈ u.T rig implies
that u received (m′,X) from a neighbor x in TRANSMISSION, with S =
X ∪ {x} and x /∈ X , So card(S) = card(X) + 1. Therefore, P1 is true if we
take u1 = u and S1 = X . Besides, it is also necessary that card(X) ≤ H− 1,
so card(S) ≤ H .

– Let us suppose that Pi is true, with i ≤ H . The node ui received (m′, Si)
from a node x, so x is at i+ 1 hops or less from q. Let us suppose that x is
Byzantine. Then, according to the previous statement, D ≤ i + 1 ≤ H + 1,
contradicting our hypothesis. So x is necessarily correct.
Node x could not have sent (m′, Si) in RECEPTION or DECISION, as u is
the first correct node to deliver m′. So this happened in TRANSMISSION,
implying that x received (m′,Y) from a node y, with Si = Y∪{y} and y /∈ Y.
So card(Si) = card(Y) + 1, and card(S) = card(Y) + i+ 1. Therefore, Pi+1

is true if we take ui+1 = x and Si+1 = Y.

On Byzantine Broadcast in Loosely Connected Networks 259

Overall, PH+1 is true and card(S) = card(SH+1)+H+1 ≥ H+1. But, according
to a previous statement, card(S) ≤ H . This contradiction completes the proof.

As a complementary result, let us show that the bound D ≥ H + 2 is tight for
our protocol.

Theorem 2 (Tight bounds for safety). If D = H + 1, some correct nodes
may deliver a false message.

Proof. Let b and c be two Byzantine nodes distant from H + 1 hops. Let
(p0, ..., pH+1) be a path of H + 1 hops, with p0 = b and pH+1 = c. Then, b
can send a standard message (m′) to p1, and c can send the trigger message for
m′ trough H hops. Therefore, it is possible that p1 delivers the false message,
and the network is not safe.

3.2 Network Reliability

Here, we suppose that the safety conditions determined in Section 3.1 are satis-
fied: no correct node can deliver a false message. We now give a methodology to
construct a set S of nodes that always delivers the authentic message.

Definition 1 (Reliable node set). For a given source node and a given dis-
tribution of Byzantine nodes, a set of correct nodes S is reliable if all nodes in
S eventually deliver authentic messages in any possible execution.

Definition 2 (Correct path). A N -hops correct path is a sequence of distinct
correct nodes (p0, . . . , pN) such that, ∀i ≤ N − 1, pi and pi+1 are neighbors.

Notice that, according to RECEPTION (see 2.3), the set formed by the source
and its correct neighbors is reliable. The following theorem permits to decide
whether a given node p can be added to a reliable set S. So, a reliable set can be
extended node by node, and can potentially contain the majority or the totality
of the correct nodes.

Theorem 3 (Reliable set determination). Let us suppose that the hypothe-
ses of Theorem 1 (Network Safety) are all satisfied. Let S be a reliable node set,
and p /∈ S a node with a neighbor q ∈ S. If there exists a correct path of H hops
or less between p and a node v ∈ S (all nodes of the path being distinct from q),
then S ∪ {p} is also a reliable node set.

Proof. Let m be the message broadcast by the source. As the hypotheses of
Theorem 1 are satisfied, the correct nodes can only deliver m. As q and v are in
a reliable node set, there exists a configuration where q and v have delivered m.
This implies that q and v have multicast (m) and (m, ø).

So p eventually receives (m) from q. If q is the source, p deliversm, completing
the proof. Now, let us suppose that q is not the source. Then, p eventually adds
(m, q) to its set Wait in RECEPTION.

Let (v0, . . . , vN) be a N -hops correct path, with v0 = v, vN = p and N ≤ H .
Let Si be the set of nodes defined by S0 = ø and Si = {v0, . . . , vi−1} for 1 ≤
i ≤ N . Let us prove the following property Pi by induction, for 0 ≤ i ≤ N − 1:
Node vi eventually multicasts (m,Si).

260 A. Maurer and S. Tixeuil

– P0 is true, as v0 = v has multicast (m, ø).
– Let us suppose that Pi is true, with i ≤ N − 2. Let e be an execution where

vi has multicast (m,Si). Then, vi+1 eventually receives (m,Si). According
to TRANSMISSION, as card(Si) ≤ H − 1 and vi /∈ Si, vi+1 eventually
multicast (m,Si+1). Therefore, Pi+1 is true.

So PN−1 is true and vN−1 eventually multicasts (m,SN−1). Therefore, p eventu-
ally receives (m,SN−1). According to TRANSMISSION, as card(SN−1) ≤ H−1
and vN−1 /∈ SN−1, (m,SN−1) is eventually added to p.T rig. Thus, we eventu-
ally have (m, q) ∈ p.Wait, (m,SN−1) ∈ p.T rig and q /∈ SN−1. So according to
DECISION, p eventually delivers m.

4 A Reliable Torus Network

In this section, we refined the general conditions given in section 3 for the partic-
ular case of torus networks. Torus is good example of a multihop sparse topology,
as every node has exactly four neighbors, and is sufficiently regular to permit
analytical reasoning.

4.1 Preliminaries

We first recall the definition of the torus topology:

Definition 3 (Torus network). A N × N torus network is a network such
that:

– Each node has a unique identifier (i, j) with 1 ≤ i ≤ N and 1 ≤ j ≤ N .
– Two nodes (i1, j1) and (i2, j2) are neighbors if and only if one of these two

conditions is satisfied:
• i1 = i2 and |j1 − j2| = 1 or N .
• j1 = j2 and |i1 − i2| = 1 or N .

Fig. 2. Example of grid network: a 7× 7 grid

On Byzantine Broadcast in Loosely Connected Networks 261

Tori vs Grids. If we remove the “or N” from the previous definition, we obtain
an arguably more realistic topology: the grid. A grid network can easily be
represented in a bidimensional space (see Figure 2).

However, no general condition on the distance between Byzantine nodes can
guarantee reliable broadcast in the grid. Indeed, let us suppose that the node
(2, 2) is the source, and that the node (1, 2) is Byzantine. Then, the node (1, 1)
has no way to know which node tells the truth between (1, 2) and (2, 1).

To avoid such border effects, we consider a torus network in this part. The
grid will be studied in Section 5, with an experimental probabilistic study.

4.2 A Sufficient Condition for Reliable Broadcast

The main theorem of this section guarantees network safety, again in terms of
spacing Byzantine nodes apart. This condition depends on the parameter H of
the protocol, and on the distance D (see 2.2). We also show that the condition
on D is tight for our protocol.

Theorem 4 (Torus reliable broadcast). Let T be a torus network, and let
the parameter of the protocol be H = 2. If D ≥ 5, all correct nodes eventually
deliver the authentic message.

Proof. According to Theorem 1, as H = 2 and D ≥ 5, no correct node ever
delivers a false message. In the sequel, the expression proof by exhaustion desig-
nates a large number of trivial proofs that we do not detail, as they present no
particular interest.

If the dimensions of the torus are 5× 5 or less, the proof of reliable broadcast
is by exhaustion: we consider each possible distribution of Byzantine nodes, and
use Theorem 3 to show that all correct nodes eventually deliver the authentic
message. Now, let use suppose that the dimensions of the torus are greater than
5× 5.

Let v be any correct node. Let (u1, . . . , un) be a path between the source s
and v. If this path is not correct, we can easily construct a correct path between
s and v. Indeed, as D ≥ 5, there exists a square correct path of 8 hops around
each Byzantine node. So, for each Byzantine node ui from the path, we replace
ui by the correct path linking ui−1 and ui+1. Therefore, we can always construct
a correct path (p1, . . . , pn) between s and v.

For a given node p, we call G3×3(p) the 3× 3 grid from which p is the central
node (2, 2), and G5×5(p) the 5 × 5 grid from which p is the central node (3, 3).
We want to prove the following property Pi by induction: all correct nodes of
G3×3(pi) eventually deliver the authentic message.

– We prove P1 by exhaustion: we consider each possible distribution of Byzan-
tine nodes in G3×3(s) withD ≥ 5, and use Theorem 3 to show that all correct
nodes eventually deliver the authentic message.

– Let us suppose that Pi is true. G3×3(pi+1) contains pi and at least two of
its neighbors. As D ≥ 5, at least one on these neighbors q is correct. As pi
and q are also in G3×3(pi), they eventually deliver the authentic message,
according to Pi.

262 A. Maurer and S. Tixeuil

• Let us suppose that there is no Byzantine node in G3×3(pi+1). Then,
we prove Pi+1 by exhaustion: we consider each possible distribution of
Byzantine nodes in G3×3(pi+1) with D ≥ 5, and use Theorem 3 to show
that all correct nodes eventually deliver the authentic message.

• Let us suppose that there are some Byzantine node in G3×3(pi+1). Ac-
cording to our hypothesis, there is at most one Byzantine node b in
G3×3(pi+1). Then, all correct nodes of G3×3(pi+1) are in G5×5(b) – so,
in particular, pi and q. As D ≥ 5, b is the only Byzantine node in
G5×5(b). Then, we prove Pi+1 by exhaustion: we consider each possible
placement of pi and q in G5×5(b), and use Theorem 3 to show that all
correct nodes of G5×5(b) – and thus, all correct nodes of G3×3(pi+1) –
eventually deliver the authentic message.

So Pn is true, and v = pn eventually delivers the authentic message.

As a complementary result, let us show that the bound D ≥ 5 is tight for our
protocol.

Theorem 5 (Torus tight bounds). If D = 4, some correct nodes may never
deliver the authentic message.

Proof. Let T be a N×N torus network, with N ≥ 8. Let us consider the example
given in Figure 3, where D = 4. In this figure, the central node s is the source
node. As they are direct neighbors of the source, the node of type 1 eventually
deliver the authentic message. However, the nodes of type 2 never do so.

Fig. 3. Critical case in a torus network

Indeed, let us consider a node p of type 2, and its neighbor q of type 1. To
deliver the authentic message, p needs to receive a trigger message from another
node of type 1, by a correct path of H hops that does not contain q. But, as
H = 2, such a path does not exist. Besides, we cannot take H > 2, as it would

On Byzantine Broadcast in Loosely Connected Networks 263

enable some correct nodes to deliver a false message, according to Theorem 2.
Therefore, the nodes of type 2 – and thus, the other correct nodes – will never
deliver the authentic message.

Finally, let us discuss possible extensions to a grid-shaped network. We have seen
that perfect reliable broadcast was impossible in a grid, due to border effects.
However, it is actually possible in a sub-grid extracted from the grid.

More precisely, let G be a N × N grid, and G′ a sub-grid containing all the
nodes (i, j) of G such that 4 ≤ i ≤ N − 4 and 4 ≤ j ≤ N − 4. Then, the proof of
Theorem 4 is also valid for G′.

It is also the case if we consider any particular node in an infinite grid (but not
all nodes). In other words, a given correct node eventually delivers the authentic
message, even if the notion of perfect reliable broadcast does not make sense in
an infinite network.

5 Experimental Evaluation

In this section, we target quantitative Byzantine resilience evaluation when con-
sidering the case of randomly distributed Byzantine failures. We first give a
methodology to estimate the number of Byzantine failures that a particular
network can tolerate for a given probabilistic guarantee. Then, we present exper-
imental results for a grid topology.

Notice that only the placement of Byzantine failures is probabilistic: once this
placement is determined, we must assume that the Byzantine nodes adopt the
worst possible strategy, and that the worst possible execution may occur.

5.1 Methodology

Let nB be the number of Byzantine failures, randomly distributed on the network
(the distribution is supposed to be uniform). We would like to evaluate the
probability P (nB), for a correct node, to deliver the authentic message. For this
purpose, we use a Monte-carlo method:

– We generate several random distributions of nB Byzantine failures.
– For each distribution, we randomly choose a source node s and a correct node

v. Then, we use Theorem 3 to construct a reliable node set (see Definition 1).
If v is in the reliable node set, it eventually delivers the authentic message,
and the simulation is a success – else, it is a failure.

– With a large number of simulations, the fraction of successes will approxi-
mate P (nB).

More precisely, we approximate a lower bound of P (nB), as the reliable node set
constructed in not necessarily the best. Therefore, we can determine a maximal
number of Byzantine failures that can be tolerated for a given guarantee (for
instance: P (nB) ≥ 0.99).

264 A. Maurer and S. Tixeuil

5.2 Results

We run simulations on N × N grid networks, with a parameter H = 2 for the
protocol. The results are presented in Figure 4.

Fig. 4. Experimental evaluations on N ×N grid networks

As expected, a larger grid can tolerate more Byzantine failures, as they are
more likely to be sufficiently spaced.

To our knowledge, the only existing protocol working on such a sparse topol-
ogy – without specific initialization of the nodes – is Explorer [19]. This protocol
consists in a voting system on node-disjoint paths between the source and the
peers. However, as a node has at most 4 neighbors, 2 Byzantine failures can pre-
vent any correct node to deliver the authentic message. Therefore, no guarantee
can be given for more than 1 Byzantine failure.

As in [16], we could have modified Explorer and forced it to use predetermined
paths on the grid. However, this would require global topology knowledge. More
precisely, in order to use such a tweaked version of Explorer, a node must know
its position on the grid and, for a given neighbor, whether it is its upper, lower,
left or right neighbor. Those assumptions are not required with our protocol.

On this grid topology, our protocol enables to tolerate more than 1 Byzantine
failure with a good probability. For instance, for N = 500, we can tolerate up to
14 Byzantine failures with P (nB) ≥ 0.99 (see Figure 4).

6 Conclusion

In this paper, we proposed a Byzantine-resilient broadcast protocol for loosely
connected networks that does not require any specific initialization of the nodes,
nor global topology knowledge. We gave a methodology to construct a reliable
node set, then sufficient conditions for perfect reliable broadcast in a sparse

On Byzantine Broadcast in Loosely Connected Networks 265

topology: the torus. Finally, we presented a methodology to determine the num-
ber on randomly distributed Byzantine failures that a network can hold.

Several interesting open questions remain. First, we have the strong intu-
ition that the condition proved on the torus could be generalized to any net-
work topology. Another challenging problem is to obtain theoretical probabilistic
guarantees, based on global network parameters such as diameter, node degree
or connectivity. Third, the tradeoff between global knowledge and the number
of Byzantine nodes that can be tolerated requires further attention.

References

1. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations, and
Advanced Topics. McGraw-Hill Publishing Company, New York (1998)

2. Bhandari, V., Vaidya, N.H.: On reliable broadcast in a radio network. In: Aguilera,
M.K., Aspnes, J. (eds.) PODC, pp. 138–147. ACM (2005)

3. Castro, M., Liskov, B.: Practical byzantine fault tolerance. In: OSDI, pp. 173–186
(1999)

4. Dolev, D.: The Byzantine generals strike again. Journal of Algorithms 3(1), 14–30
(1982)

5. Drabkin, V., Friedman, R., Segal, M.: Efficient byzantine broadcast in wireless
ad-hoc networks. In: DSN, pp. 160–169. IEEE Computer Society (2005)

6. Dubois, S., Masuzawa, T., Tixeuil, S.: The Impact of Topology on Byzantine Con-
tainment in Stabilization. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010.
LNCS, vol. 6343, pp. 495–509. Springer, Heidelberg (2010)

7. Dubois, S., Masuzawa, T., Tixeuil, S.: On Byzantine Containment Properties of
the min + 1 Protocol. In: Dolev, S., Cobb, J., Fischer, M., Yung, M. (eds.) SSS
2010. LNCS, vol. 6366, pp. 96–110. Springer, Heidelberg (2010)

8. Dubois, S., Masuzawa, T., Tixeuil, S.: Bounding the impact of unbounded attacks
in stabilization. In: IEEE Transactions on Parallel and Distributed Systems, TPDS
(2011)

9. Dubois, S., Masuzawa, T., Tixeuil, S.: Maximum Metric Spanning Tree Made
Byzantine Tolerant. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 150–164.
Springer, Heidelberg (2011)

10. Koo, C.-Y.: Broadcast in radio networks tolerating byzantine adversarial behavior.
In: Chaudhuri, S., Kutten, S. (eds.) PODC, pp. 275–282. ACM (2004)

11. Lamport, L., Shostak, R.E., Pease, M.C.: The byzantine generals problem. ACM
Trans. Program. Lang. Syst. 4(3), 382–401 (1982)

12. Malkhi, D., Mansour, Y., Reiter, M.K.: Diffusion without false rumors: on propa-
gating updates in a Byzantine environment. Theoretical Computer Science 299(1-
3), 289–306 (2003)

13. Malkhi, D., Reiter, M., Rodeh, O., Sella, Y.: Efficient update diffusion in byzantine
environments. In: The 20th IEEE Symposium on Reliable Distributed Systems
(SRDS 2001), pp. 90–98. IEEE, Washington (2001)

14. Masuzawa, T., Tixeuil, S.: Bounding the Impact of Unbounded Attacks in Stabi-
lization. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp.
440–453. Springer, Heidelberg (2006)

15. Masuzawa, T., Tixeuil, S.: Stabilizing link-coloration of arbitrary networks with
unbounded byzantine faults. International Journal of Principles and Applications
of Information Science and Technology (PAIST) 1(1), 1–13 (2007)

266 A. Maurer and S. Tixeuil

16. Maurer, A., Tixeuil, S.: Limiting byzantine influence in multihop asynchronous
networks. In: IEEE International Conference on Distributed Computing Systems,
ICDCS (2012)

17. Minsky, Y., Schneider, F.B.: Tolerating malicious gossip. Distributed Comput-
ing 16(1), 49–68 (2003)

18. Nesterenko, M., Arora, A.: Tolerance to unbounded byzantine faults. In: 21st Sym-
posium on Reliable Distributed Systems (SRDS 2002), pp. 22–29. IEEE Computer
Society (2002)

19. Nesterenko, M., Tixeuil, S.: Discovering network topology in the presence of byzan-
tine nodes. IEEE Transactions on Parallel and Distributed Systems (TPDS) 20(12),
1777–1789 (2009)

20. Pelc, A., Peleg, D.: Broadcasting with locally bounded byzantine faults. Inf. Pro-
cess. Lett. 93(3), 109–115 (2005)

21. Sakurai, Y., Ooshita, F., Masuzawa, T.: A Self-stabilizing Link-Coloring Protocol
Resilient to Byzantine Faults in Tree Networks. In: Higashino, T. (ed.) OPODIS
2004. LNCS, vol. 3544, pp. 283–298. Springer, Heidelberg (2005)

RMR-Efficient Randomized Abortable Mutual

Exclusion�

(Extended Abstract)

Abhijeet Pareek and Philipp Woelfel

University of Calgary, Canada
{apareek,woelfel}@ucalgary.ca

Abstract. Recent research on mutual exclusion for shared-memory sys-
tems has focused on local spin algorithms. Performance is measured us-
ing the remote memory references (RMRs) metric. As common in recent
literature, we consider a standard asynchronous shared memory model
with N processes, which allows atomic read, write and compare-and-swap
(short: CAS) operations.

In such a model, the asymptotically tight upper and lower bounds on
the number of RMRs per passage through the Critical Section is Θ(logN)
for the optimal deterministic algorithms [6,22]. Recently, several random-
ized algorithms have been devised that break the Ω(logN) barrier and
need only o(logN) RMRs per passage in expectation [7, 13, 14]. In this
paper we present the first randomized abortable mutual exclusion algo-
rithm that achieves a sub-logarithmic expected RMR complexity. More
precisely, against a weak adversary (which can make scheduling decisions
based on the entire past history, but not the latest coin-flips of each
process) every process needs an expected number of O(logN/ log logN)
RMRs to enter end exit the critical section. If a process receives an abort-
signal, it can abort an attempt to enter the critical section within a finite
number of its own steps and by incurring O(logN/ log logN) RMRs.

Keywords: Abortable Mutual Exclusion, Remote Memory References,
RMRs, Weak Adversary, Randomization, Shared Memory.

1 Introduction

Mutual exclusion, introduced by Dijkstra [9], is a fundamental and well studied
problem. A mutual exclusion object (or lock) allows processes to synchronize
access to a shared resource. Each process obtains a lock through a capture pro-
tocol but at any time, at most one process can own the lock. The owner of a
lock can execute a release protocol which frees up the lock. The capture protocol
and release protocol are often denoted entry and exit section, and a process that
owns the lock is in the critical section.

In this paper, we consider the standard cache-coherent (CC) shared model
with N processes that supports atomic read, write, and compare-and-swap

� Supported in part by the Natural Sciences and Engineering Research Council of
Canada (NSERC) and by Alberta Innovates Technology Futures (AITF).

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 267–281, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

268 A. Pareek and P. Woelfel

(short: CAS) operations. In this model, all shared registers are stored in glob-
ally accessible shared memory. In addition, each process has a local cache and
a cache protocol ensures coherency. A Remote Memory Reference (short: RMR)
is a shared memory access of a register that cannot be resolved locally (i.e., a
cache miss). Mutual exclusion algorithms require processes to busy-wait, so the
traditional step complexity measure, which counts the number of shared memory
accesses, is not useful. Recent research [1, 2, 4, 6, 8, 16–19] on mutual exclusion
algorithms therefore focusses on minimizing the number of remote memory ref-
erences (RMR). The maximum number of RMRs that any process requires (in
any execution) to capture and release a lock is called the RMR complexity of
the mutual exclusion algorithm.

Algorithms that perform all busy-waiting by repeatedly reading locally ac-
cessible shared variables, achieve bounded RMR complexity and have practical
performance benefits [4]. Such algorithms are termed local spin algorithms. For
a comprehensive survey see [3]. Yang and Anderson presented the first O(logN)
RMRs mutual exclusion algorithm [22] using only reads and writes. Anderson
and Kim [1] conjectured that this was optimal, and the conjecture was proved
by Attiya, Hendler, and Woelfel [6].

Local spin mutual exclusion locks do not meet a critical demand of many
systems [21]. Specifically, the locks employed in database systems and in real
time systems must support a “timeout” capability which allows a process that
waits “too long” to abort its attempt to acquire the lock. Locks that allow
a process to abort its attempt to acquire the lock are called abortable locks.
Jayanti presented an efficient deterministic abortable lock [16] with worst-case
O(logN) RMR complexity, which is optimal for deterministic algorithms.

In this paper we present the first randomized abortable mutual exclusion
algorithm that achieves a sub-logarithmic RMR complexity. For randomized al-
gorithms, the influence of random choices made by processes on the scheduling is
modeled by an adversary. Adversaries of varying powers have been defined. The
most common ones are the oblivious, the weak, and the adaptive adversary [5].
An oblivious adversary makes all scheduling decisions in advance, before any
process flips a coin. This model corresponds to a system, where the coin flips
made by processes have no influence on the scheduling. A more realistic model
is the weak adversary, who sees the coin flip of a process not before that process
has taken a step following that coin flip. The adaptive adversary models the
strongest adversary with reasonable powers, and it can see every coin flip as it
appears, and can use that knowledge for any future scheduling decisions. Upper
bounds by Hendler and Woelfel [14] and matching lower bounds by Giakkoupis
and Woelfel [10] show that the expected RMR complexity of randomized mutual
exclusion against an adaptive adversary is Θ(logN/ log logN). Recently Bender
and Gilbert [7] presented a randomized lock that has amortized O(log2 logN)
expected RMR complexity against the oblivious adversary. Unfortunately, this
algorithm is not strictly deadlock-free (processes may deadlock with small prob-
ability, so deadlock has to be expected in a long execution). Our randomized
abortable mutual exclusion algorithm is deadlock-free, works against the weak

RMR-Efficient Randomized Abortable Mutual Exclusion 269

adversary and achieves the same epected RMR complexity as the algorithm
by Hendler and Woelfel, namely O(logN/ log logN) expected RMR complexity
against the weak adversary.

The randomized algorithm we present uses CAS objects and read-write reg-
isters. Recently in [12], Golab, Higham and Woelfel demonstrated that using
linearizable implemented objects in place of atomic objects in randomized al-
gorithms allows the adversary to change the probability distribution of results.
Therefore, in order to safely use implemented objects in place of atomic ones in
randomized algorithms, it is not enough to simply show that the implemented
objects are linearizable. Also in [12], it is proved that there exists no general cor-
rectness condition for the weak adversary, and that the weak adversary can gain
additional power depending on the linearizable implementation of the object.
Therefore, in this paper we assume that CAS operations are atomic.

Abortable Mutual Exclusion. We formalize the notion of an abortable lock
by specifying two methods, lock() and release(), that processes can use to
capture and release the lock, respectively. The model assumes that a process may
receive a signal to abort at any time during its lock() call. If that happens, and
only then, the process may fail to capture the lock, in which case method lock()

returns value ⊥. Otherwise the process captures the lock, and method lock()

returns a non-⊥ value, and the lock() call is deemed successful. Note that a
lock() call may succeed even if the process receives a signal to abort during a
lock() call.

Code executed by a process after a successful lock() method call and before
a subsequent release() invocation is defined to be its Critical Section. If a
process executes a successful lock() call, then the process’s passage is defined
to be the lock() call, and the subsequent Critical Section and release() call,
in that order. If a process executes an unsuccessful lock() call, then it does
not execute the Critical Section or a release() call, and the process’s passage
is just the lock() call. Code executed by a process outside of any passage is
defined to be its Remainder Section.

The abort-way consists of the steps taken by a process during a passage that
begins when the process receives a signal to abort and ends when the process
returns to its Remainder Section. Since it makes little sense to have an abort
capability where processes have to wait for other processes, the abort-way is
required to be bounded wait-free (i.e., processes execute the abort-way in a
bounded number of their own steps). This property is known as bounded abort.
Other properties are defined as follows. Mutual Exclusion: At any time there is
at most one process in the Critical Section; Deadlock Freedom: If all processes
in the system take enough steps, then at least one of them will return from
its lock() call; Starvation Freedom: If all processes in the system take enough
steps, then every process will return from its lock() call. The abortable mutual
exclusion problem is to implement an object that provides methods lock() and

270 A. Pareek and P. Woelfel

release() such that it that satisfies mutual exclusion, deadlock freedom, and
bounded abort.

Model. We use the asynchronous shared-memory model [15] with N processes
which communicate by executing operations on shared objects. We consider a
system that supports atomic read-write registers and CAS() objects. A CAS object
O stores a value from some set and supports two atomic operations O.CAS()
and O.Read(). Operation O.Read() returns the value stored in O. Operation
O.CAS(exp, new) takes two arguments exp and new and attempts to change the
value of O from exp to new. If the value of O equals exp then the operation
O.CAS(exp, new) succeeds, and the value of O is changed from exp to new, and
true is returned. Otherwise, the operation fails, and the value of O remains
unchanged and false is returned.

In addition, a process can execute local coin flip operations that returns an
integer value distributed uniformly at random from an arbitrary finite set of in-
tegers. The scheduling, generated by the adversary, can depend on the random
values generated by the processes and we assume the weak adversary model (see
for example [5]). We consider the cache-coherent (CC) model where each pro-
cessor has a private cache in which it maintains local copies of shared objects
that it accesses. The private cache can be accessed for free. The shared mem-
ory is considered remote to all processors. A hardware protocol ensures cache
consistency. A memory access to a shared object that requires access to remote
memory is called a remote memory reference (RMR). The RMR complexity of
a algorithm is the maximum number of RMRs that a process can incur during
any execution of the algorithm.

Results. We present several building blocks for our algorithm in Section 1. In
Sections 2 and 3 we give an overview of the randomized mutual exclusion algo-
rithm. Due to lack of space full proofs are omitted from this extended abstract.
A more precise description of our algorithms including pseudo code, as well as
a full analysis can be found in the full version of the paper [20]. Our results are
summarized by the following theorem.

Theorem 1. There exists a starvation-free randomized abortable N process lock
against the weak adversary, where a process incurs O(logN/ log logN) RMRs
in expectation per passage. The lock requires O(N) CAS objects and read-write
registers.

A Randomized CAS Counter. A CAS counter object with parameter k ∈
Z≥0 complements a CAS object by supporting an additional inc() operation
that increments the object’s value. The object takes values in {0, . . . , k}, and
initially the object’s value is 0. Operation inc() takes no arguments, and if the
value of the object is in {0, . . . , k − 1}, then the operation increments the value
and returns the previous value. Otherwise, the value of the object is unchanged
and the integer k is returned. We will use such an object for k = 2 to assign
three distinct roles to processes.

Our implementation of the inc() operation needs only O(1) RMRs in ex-
pectation. A deterministic implementation of a CAS counter for k = 2 and

RMR-Efficient Randomized Abortable Mutual Exclusion 271

constant worst-case RMR complexity does not exist: Replacing our random-
ized CAS counter with a deterministic one that has worst-case RMR complexity
T yields a deterministic abortable mutual exclusion algorithm with worst-case
RMR complexity O(T · logN/ log logN). From the lower bound for determinis-
tic mutual exclusion by Attiya etal. [6], such an algorithm does not exist, unless
T = Ω(log logN). (For the DSM model, a super-constant lower bound on the
RMR complexity of a CAS counter actually follows from an earlier result by
Golab, Hadzilacos, Hendler, and Woelfel [11].)

Our randomized CAS counter, which we call RCAScounterk, allows the inc()
method to fail. The idea is, that to increase the value of the object, a process
randomly guesses its current value, v, and then executes a CAS(v,v+1) operation.
An adaptive adversary could intervene between the steps involving the random
guess and the subsequent CAS operation, thereby affecting the failure probability
of an inc() method call, but a weak adversary cannot do so.

Lemma 1. Object RCAScounterk is a randomized wait-free linearizable CAS
Counter, where the probability that an inc() method call fails is k

k+1 against
the weak adversary, and each method has O(1) (worst-case) step complexity.

The Single-Fast-Multi-Slow Universal Construction. A universal con-
struction object provides a linearizable concurrent implementation of any object
with a sequential specification that can be given by deterministic code. We de-
vise a universal construction object SFMSUnivConst〈T〉 for N processes which
provides two methods, doFast(op) and doSlow(op), to perform any operation
op on an object of type T. The idea is that doFast() methods cannot be called
concurrently, but are executed very fast, i.e., they have O(1) step complexity.
On the other hand, doSlow() methods may need up to O(N) steps. Later, we
use the universal construction object for smaller sets of Δ = O(logN/ log logN)
processes, and then the step complexity of doSlow() is bounded by O(Δ). The
algorithm is based on a helping mechanism in which doSlow() methods help a
process that wants to execute a doFast() method.

Lemma 2. Object SFMSUnivConst〈T〉 is a wait-free universal construction that
implements an object O of type T, for N processes, and an operation op on
object O is performed by executing either method doFast(op) or doSlow(op),
and no two processes execute method doFast() concurrently. Methods doFast()
and doSlow() have O(1) and O(N) step complexity respectively.

The Abortable Promotion Array. An object O of type AbortableProArrayk
stores a vector of k integer pairs. It provides some specialized operations on
the vector, such as conditionally adding/removing elements, and earmarking a
process (associated with an element of the vector) for some future activity. Ini-
tially the value of O = (O[0], O[1], . . . , O[k−1]) is (〈0,⊥〉, . . . , 〈0,⊥〉). The object
supports operations collect(), abort(), promote(), remove() and reset().
Operation collect(X) takes as argument an arrayX [0 . . . k−1] of integers, and
is used to “register” processes into the array. The operation changes O[i], for all

272 A. Pareek and P. Woelfel

i in {0, . . . , k − 1}, to value 〈REG, X [i]〉 except if O[i] is 〈ABORT, s〉, for some
s ∈ Z. In the latter case the value of O[i] is unchanged. Process i is said to be
registered in the array if a collect() operation changes O[i] to value 〈REG, s〉,
for some s ∈ Z. The object also allows processes to “abort” themselves from the
array using the operation abort(). Operation abort(i, s) takes as argument the
integers i and s, where i ∈ {0, . . . , k − 1} and s ∈ Z. The operation changes O[i]
to value 〈ABORT, s〉 and returns true, only if O[i] is not equal to 〈PRO, s′〉, for
some s′ ∈ Z. Otherwise the operation returns false. Process i aborts from the
array if it executes an abort(i, s) operation that returns true. A registered pro-
cess in the array that has not aborted can be “promoted” using the promote()

operation. Operation promote() takes no arguments, and changes the value of
the element in O with the smallest index and that has value 〈REG, s〉, for some
s ∈ Z, to value 〈PRO, s〉, and returns 〈i, s〉, where i is the index of that element.
If there exists no element in O with value 〈REG, s〉, for some s ∈ Z, then O is un-
changed and the value 〈⊥,⊥〉 is returned. Process i is promoted if a promote()

operation returns 〈i, s〉, for some s ∈ Z. Operation reset() resets the entire
array to its initial state.

Note that an aborted process in the array, cannot be registered into the array
or be promoted, until the array is reset. If a process tries to abort itself from
the array but finds that it has already been promoted, then the abort fails. This
ensures that a promoted process takes responsibility for some activity that other
processes expect of it.

In our abortable lock, the i-th element of the array stores the current state of
process with ID i, and a sequence number associated with the state. Operation
collect() is used to register a set of participating processes into the array.
Operation abort(i, s) is executed only by process i, to abort from the array.
Operation promote() is used to promote an unaborted registered process from
the array, so that the promoted process can fulfill some future obligation.

In our abortable lock of Section 2, we need a wait-free linearizable implemen-
tation of type AbortableProArrayΔ, whereΔ is the maximum number of processes
that can access the object concurrently, and we achieve this by using object SFM-
SUnivConst〈AbortableProArrayΔ〉. We ensure that no two processes execute oper-
ations collect(), promote(), reset() or remove() concurrently, and therefore
by we get O(1) step complexity for these operations by using method doFast().
Operation abort() has O(Δ) step complexity since it is performed using method
doSlow(), which allows processes to call abort() concurrently.

2 The Tree Based Abortable Lock

As in the algorithm by Hendler and Woelfel [14], we consider a tree with N leafs
and where each non-leaf node has Δ children. Every non-leaf node is associated
with a lock. Each process is assigned a unique leaf in the tree and climbs up the
tree by capturing the locks on nodes on its path until it has captured the lock
at the root. Once a process locks the root, it can enter the Critical Section.

The main difficulty is that of designing the locks associated with the nodes of
the tree. A simple CAS object together with an “announce array” as used in [14]

RMR-Efficient Randomized Abortable Mutual Exclusion 273

does not work. Suppose a process p captures locks of several nodes on its path
up to the root and aborts before capturing the root lock. Then it must release
all captured node locks and therefore these lock releases cause other processes,
which are busy-waiting on these nodes, to incur RMRs. So we need a mechanism
to guarantee some progress to these processes, while we also need a mechanism
that allows busy-waiting processes to abort their attempts to capture node locks.
In [14] progress is achieved as follows: A process p, before releasing a lock on
its path, searches(with a random procedure) for other processes that are busy-
waiting for the node lock to become free. If p finds such a process, it promotes it
into the critical section. This is possible, because at the time of the promotion p
owns the root lock and can hand it over to a promoted process. Unfortunately,
this promotion mechanism fails for abortable mutual exclusion: When p aborts
its own attempt to enter the Critical Section, it may have to release node locks
at a time when it doesn’t own the root lock. Another problem is that if p finds
a process q that is waiting for p to release a node-lock, then q may have already
decided to abort. We use a carefully designed synchronization mechanism to deal
with such cases.

To ensure that waiting processes make some progress, we desire that p “col-
lect” busy-waiting processes (if any) at a node into an instance of an object
of type AbortableProArrayΔ, PawnSet, using the operation collect(). Once
busy-waiting processes are collected into PawnSet, p can identify a busy-waiting
process, if present, using the PawnSet.promote() operation, while busy-waiting
processes themselves can abort using the PawnSet.abort() operation. Note that
p may have to read O(Δ) registers just to find a single busy-waiting process at
a node, where Δ is the branching factor of the arbitration tree. This is problem-
atic since our goal is to bound the number of steps during a passage to O(Δ)
steps, and thus a process cannot collect at more than one node. For this rea-
son we desire that p transfer all unreleased node locks that it owns to the first
busy-waiting process it can find, and then it would be done. And if there are
no busy-waiting processes at a node, then p should somehow be able to release
the node lock in O(1) steps. Since there are at most Δ nodes on a path to
the root node, p can continue to release captured node locks where there are
no busy-waiting processes, and thus not incur more than O(Δ) overall. We use
an instance of RCAScounter2, Ctr, to help decide if there are any busy-waiting
processes at a node lock. Initially, Ctr is 0, and processes attempt to increase
Ctr using the Ctr.inc() operation after having registered at the node. Process
p attempts to release a node lock by first executing a Ctr.CAS(1, 0) operation.
If the operation fails then some process q must have further increased Ctr from
1 to 2, and thus p can transfer all unreleased locks to q, if q has not aborted
itself. If q has aborted, then q can perform the collect at the node lock for p,
since q can afford to incur an additional one-time expense of O(Δ) RMRs. If
q has not aborted then p can transfer its captured locks to q in O(1) steps,
and thus making sure some process makes progress towards capturing the root
lock. We encapsulate these mechanisms in a randomized abortable lock object,
ALockArrayΔ.

274 A. Pareek and P. Woelfel

More generally, we specify an object ALockArrayn for an arbitrary parameter
n < N . Object ALockArrayn provides methods lock() and release() that can
be accessed by at most n+1 processes concurrently. The object is an abortable
lock, but with an RMR complexity of O(n) for the abort-way, and constant
RMR complexity for lock(). The release() method is special. If it detects
contention (i.e., other processes are busy-waiting), then it takes O(n) RMRs,
but helps those other processes to make progress. Otherwise, it takes only O(1)
RMRs. Each non-leaf node u in our abritration tree will be associated with a
lock ALockArrayΔ and can only be accessed concurrently by the processes owning
locks associated with the children of u and one other process.

Method lock() takes a single argument, which we will call pseudo-ID, with
value in {0, . . . , n− 1}. We denote a lock() method call with argument i as
locki(), but refer to locki() as lock() whenever the context of the discussion
is not concerned with the value of i. Method lock() returns a non-⊥ value if
a process captures the lock, otherwise it returns a ⊥ value to indicate a failed
lock() call. A lock() by process p can fail only if p aborts during the method
call. Method release() takes two arguments, a pseudo-ID i ∈ {0, . . . , n− 1}
and an integer j. Method releasei(j) returns true if and only if there ex-
ists a concurrent call to lock() that eventually returns j. Otherwise method
releasei(j) returns false. The information contained in argument j determines
the transfered node locks. Process pseudo-IDs are passed as arguments to the
methods to allow the ability for a process to “transfer” the responsibility of
releasing the lock to another process. Specifically, we desire that if a process
p executes a successful locki() call and becomes the owner of the lock, then
p does not have to release the lock itself, if it can find some process q to call
releasei() on its behalf. In Section 3 we implement object ALockArrayn with
the properties described the following lemma. (The proof can be found in the
full version of this paper [20].)

Lemma 3. Object ALockArrayn can be implemented against the weak adversary
for the CC model with the following properties using only O(n) CAS objects and
read-write registers.

(a) Mutual exclusion, starvation freedom, bounded exit, and bounded abort.
(b) The abort-way has O(n) RMR complexity.
(c) If a process does not abort during a lock() call, then it incurs O(1) RMRs

in expectation during the call, otherwise it incurs O(n) RMRs in expectation
during the call.

(d) If a process’ call to release(j) returns false, then it incurs O(1) RMRs
during the call, otherwise it incurs O(n) RMRs during the call.

High Level Description. We use a complete Δ-ary tree T of depth Δ with
N leaves, called the arbitration tree. The height of node u is denoted hu (leafs
have height 0). Each process p is associated with a unique leaf leafp in the tree,
and pathp denotes the path from leafp up to the root, called root.

Each node of our arbitration tree T is a structure of type Node that contains
a single instance L of the abortable randomized lock object ALockArrayΔ. This

RMR-Efficient Randomized Abortable Mutual Exclusion 275

object enables processes to abort their attempt at any point during their ascent
to the root node. During lockp() a process p attempts to capture every node
on its path pathp that it does not own, as long as p has not received a signal to
abort. Process p attempts to capture a node u by executing a call to u.L.lock().
If p’s u.L.lock() call returns ∞ then p is said to have captured u, and if the
call returns an integer j, then p is said to have been handed over all nodes from
u to v on pathp, where hv = j. We ensure that j ≥ hu. Process p starts to own
node u when p captures u.L or when p is handed over node u from the previous
owner of node u. Process p can enter its Critical Section when it owns the root
node of T . Process p may receive a signal to abort during a call to u.L.lock()
as a result of which p’s call to u.L.lock() returns either ⊥ or a non-⊥ value.
In either case, p then calls releasep() to release all locks of nodes that p has
captured in its passage, and then returns from its lockp() call with value ⊥.

An exiting process p releases all nodes that it owns during releasep(). Pro-
cess p is said to release node u if p releases u.L (by executing u.L.release()
call), or if p hands over node u to some other process. Recall that p hands over
node u if p executes a v.L.release(j) call that returns true where hv ≤ hu ≤ j.
Let s be the height of the highest node p owns. During releasep(), p climbs up
T and calls u.L.releasep(s) at every node u that it owns, until a call returns
true. If a u.L.releasep(s) call returns false (process p incurs O(1) steps), then
p is said to have released lock u.L (and therefore released node u), and thus p
continues on its path. If a u.L.releasep(s) call returns true (process p incurs
O(Δ) steps), then p has handed over all remaining nodes that it owns to some
process that is executing a concurrent u.L.lock() call at node u, and thus p
does not release any more nodes.

Notice that our strategy to release node locks is to climb up the tree until all
node locks are released or a hand over of remaining locks is made. Climbing up
the tree is necessary (as opposed to climbing down) in order to hand over node
locks to a process, say q, such that the handed over nodes lie on pathq.

3 The Array Based Abortable Lock

We specified object ALockArrayn in Section 2 and now we describe and implement
it (see Figures 1 and 2). Let L be an instance of object ALockArrayn.

Registering and Roles at Lock L. At the beginning of a lock() call processes
register themselves in the apply array by swapping the value REG atomically
into their designated slots (apply[i] for process with pseudo-ID i) using a CAS

operation. The array apply of n CAS objects is used by processes to register and
“deregister” themselves from lock L, and to notify each other of certain events
at lock L.

On registering in the apply array, processes attempt to increase Ctr, an in-
stance of RCAScounter2, using operation Ctr.inc(). Recall that RCAScounter2
is a bounded counter, initially 0, and returns values in {0, 1, 2} (see Section 1).
Each of these values corresponds to a role that a processs can assume at lock
L. There are actually four roles, king, queen, pawn and promoted pawn, which

276 A. Pareek and P. Woelfel

Object ALockArrayn

shared:
Ctr: RCAScounter2 init 0;
PawnSet: Object of type AbortableProArrayn init ∅;
apply: array [0 . . . n− 1] of int pairs init all 〈⊥,⊥〉;
Role: array [0 . . . n− 1] of int init ⊥;
Sync1,Sync2: int init ⊥;
KING, QUEEN, PAWN, PAWN P, REG, PRO: const int 0, 1, 2, 3, 4, 5
respectively;
getSequenceNo(): returns integer k on being called for the k-th time from
a call to locki(). (Since calls to locki() are executed sequentially, a
sequential shared counter suffices to implement method getSequenceNo().)

local:
s, val, seq, dummy: int init ⊥;
flag, r: boolean init false;
A: array [0 . . . n− 1] of int init ⊥
// If process i satisfies the loop condition in line 2, 7,

or 14, and i has received a signal to abort, then i calls

aborti()

Method locki()

1 s ← getSequenceNo()

2 await (apply[i].CAS(〈⊥,⊥〉, 〈REG, s〉))
3 flag ← true
4 repeat
5 Role[i] ← Ctr.inc()
6 if (Role[i] = PAWN) then
7 await (apply[i] =

〈PRO, s〉 ∨ Ctr.Read() �= 2)
8 if (apply[i] = 〈PRO, s〉) then
9 Role[i] ← PAWN P

10 end

11 end

12 until
(Role[i] ∈ {KING,QUEEN,PAWN P})

13 if (Role[i] = QUEEN) then
14 await (Sync1 �= ⊥)

15 end
16 apply[i].CAS(〈REG, s〉, 〈PRO, s〉)
17 if Role[i] = QUEEN then return

Sync1 else return ∞

Method aborti()

18 if ¬flag then return ⊥
19 apply[i].CAS(〈REG, s〉, 〈PRO, s〉)

20 if Role[i] = PAWN then
21 if ¬PawnSet.abort(i, s)

then
22 Role[i] ← PAWN P
23 return ∞
24 end

25 else
26 if ¬Sync1.CAS(⊥,∞)

then
27 return Sync1

28 end
29 doCollecti()

30 helpReleasei()

31 end
32 apply[i].CAS(〈PRO, s〉, 〈⊥,⊥〉)

33 return ⊥

Method doCollecti()

51 for k ← 0 to n− 1 do
52 〈val, seq〉 ← apply[k]
53 if val = REG then A[k] ← seq else A[k] ← ⊥
54 end
55 PawnSet.collect(A)

Fig. 1. Implementation of Object ALockArrayn

RMR-Efficient Randomized Abortable Mutual Exclusion 277

Method releasei(int j)

34 r ← false
35 if Role[i] = KING then
36 if ¬Ctr.CAS(1, 0) then
37 r ← Sync1.CAS(⊥, j)
38 if r then

doCollecti()

39 helpReleasei()

40 end

41 end
42 if Role[i] = QUEEN then
43 helpReleasei()

44 end
45 if Role[i] = PAWN P then
46 doPromotei()

47 end
48 〈dummy, s〉 ← apply[i]
49 apply[i].CAS(〈PRO, s〉, 〈⊥,⊥〉)

50 return r

Method helpReleasei()

56 if ¬Sync2.CAS(⊥, i) then
57 j ← Sync1.Read()
58 Sync1.CAS(j,⊥)

59 j ← Sync2.Read()
60 Sync2.CAS(j,⊥)

61 PawnSet.remove(j)
62 doPromotei()

63 end

Method doPromotei()

64 PawnSet.remove(i)
65 〈j, seq〉 ← PawnSet.promote()
66 if j = ⊥ then
67 PawnSet.reset()
68 Ctr.CAS(2, 0)

69 else
70 apply[j].CAS(〈REG, seq〉, 〈PRO, seq〉)

71 end

Fig. 2. Implementation of Object ALockArrayn (continued)

define the protocols processes follow. During an execution, Ctr cycles from its
initial value 0 to non-0 values and then back to 0, multiple times, and we re-
fer to each such cycle as a Ctr-cycle. A process that increases Ctr from 0 to
1 becomes king. A process that increases Ctr from 1 to 2 becomes queen. All
processes that attempt to increase Ctr any further, receive the return value 2
and they become pawns. A pawn busy-waits until it gets “promoted” at lock
L (a process is said to be promoted at lock L if it is promoted in PawnSet), or
until it sees the Ctr value decrease, so that it can attempt to increase Ctr again.
The algorithm guarantees that a pawn process repeats an attempt to increase
Ctr at most once, before getting promoted. We also ensure that at any point in
time during the execution, the number of processes that have assumed the role
of a king, queen and promoted pawn at lock L, respectively, is at most one, and
thus we refer to them as kingL, queenL and ppawnL, respectively. We describe
the protocol associated with each of the roles in more detail shortly. An array
Role of n read-write registers is used by processes to record their role at lock L.

Busy-Waiting in Lock L. The king process, kingL, becomes the first owner of
lock L during the current Ctr-cycle, and can proceed to enter its Critical Section,
and thus it does not busy-wait during lock(). The queen process, queenL, must
wait for kingL for a notification of its turn to own lock L. Then queenL spins
on CAS object Sync1, waiting for kingL to CAS some integer value into Sync1.
Process kingL attempts to CAS an integer j into Sync1 only during its call to

278 A. Pareek and P. Woelfel

release(j), after it has executed its Critical Section. The pawn processes wait
on their individual slots of the apply array for a notification of their promotion.

A Collect Action at Lock L. A collect action is conducted by either kingL
during a call to release(), or by queenL during a call to abort(). A collect
action is defined as the sequence of steps executed by a process during a call
to doCollect(). During a call to doCollect(), the collecting process (say q)
iterates over the array apply reading every slot, and then creates a local array
A from the values read and stores the contents of A in the PawnSet object in
using the operation PawnSet.collect(A). A key point to note is that operation
PawnSet.collect(A) does not overwrite an aborted process’s value in PawnSet
(a process aborts itself in PawnSet by executing a successful PawnSet.abort()
operation).

A Promote Action at Lock L. Operation PawnSet.promote() during a call
to method doPromote() is defined as a promote action. The operation returns
the pseudo-ID of a process that was collected during a collect action, and has
not yet aborted from PawnSet. A promote action is conducted at lock L either
by kingL, queenL or ppawnL.

Lock Handover from kingL to queenL. As mentioned, process queenL waits
for kingL to finish its Critical Section and then call release(j). During kingL’s
release(j) call, kingL attempts to swap integer j into CAS object Sync1, that
only kingL and queenL access. If queenL has not “aborted”, then kingL success-
fully swaps j into Sync1, and this serves as a notification to queenL that kingL
has completed its Critical Section, and that queenL may now proceed to enter
its Critical Section.

Aborting an Attempt at Lock L by queenL. On receiving a signal to abort,
queenL abandons its lock() call and executes a call to abort() instead. queenL
first changes the value of its slot in the apply array from REG to PRO, to prevent
itself from getting collected in future collects. Since kingL and queenL are the
first two processes at L, kingL will eventually try to handover L to queenL. To
prevent kingL from handing over lock L to queenL, queenL attempts to swap a
special value ∞ into Sync1 in one atomic step. If queenL fails then this implies
that kingL has already handed over L to queenL, and thus queenL returns from
its call to abort() with the value written to Sync1 by kingL, and becomes the
owner of L. If queenL succeeds then queenL is said to have successfully aborted,
and thus kingL will eventually fail to hand over lock L. Since queenL has aborted,
queenL now takes on the responsibility of collecting all registered processes in
lock L, and storing them into the PawnSet object. After performing a collect,
queenL then synchronizes with kingL again, to perform a promote, where one
of the collected processes is promoted. After that, queenL deregisters from the
apply array by resetting its slot to the initial value 〈⊥,⊥〉.
Aborting an Attempt at Lock L by a Pawn Process. On receiving a
signal to abort a pawn process (say p) busy-waiting in lock L, abandons its
lock() call and executes a call to abort() instead. Process p first changes the

RMR-Efficient Randomized Abortable Mutual Exclusion 279

value of its slot in the apply array from REG to PRO, to prevent itself from
getting collected in future collects. It then attempts to abort itself in PawnSet
by executing the operation PawnSet.abort(p)). If p’s attempt is unsuccessful
then it implies that p has already been promoted in PawnSet, and thus p can
assume the role of a promoted pawn, and become the owner of L. In this case, p
returns from its abort() call with value ∞ and becomes the owner of L. If p’s
attempt is successful then p cannot be collected or promoted in future collects
and promotion events. In this case, p deregisters from the apply array by resetting
its slot to the initial value 〈⊥,⊥〉, and returns ⊥ from its call to abort().

Releasing Lock L. Releasing lock L can be thought of as a group effort between
the kingL, queenL (if present at all), and the promoted pawns (if present at all).
To completely release lock L, the owner of L needs to reset Ctr back to 0 for the
next Ctr-cycle to begin. However, the owner also has an obligation to hand over
lock L to the next process waiting in line for lock L. We now discuss the individual
strategies of releasing lock L, by kingL, queenL and the promoted processes. To
release lock L, the owner of L executes a call to release(j), for some integer j.

Synchronizing the Release of Lock L by kingL and queenL. Process kingL
first attempts to decrease Ctr from 1 to 0 using a CAS operation. If it is successful,
then kingL was able to end the Ctr-cycle before any process could increase Ctr
from 1 to 2. Thus, there was no queenL process or pawn processes waiting for
their turn to own lock L, during that Ctr-cycle. Then kingL is said to have released
lock L.

If kingL’s attempt to decrease Ctr from 1 to 0 fails, then kingL knows that
there exists a queenL process that increased Ctr from 1 to 2. Since queenL is
allowed to abort, releasing lock L is not as straight forward as raising a flag to
be read by queenL. Therefore, kingL attempts to synchronize with queenL by
swapping the integer j into the object Sync1 using a Sync1.CAS(⊥, j) operation.
Recall that queenL also attempts to swap a special value ∞ into object Sync1
using a Sync1.CAS(⊥, j) operation, in order to abort its attempt. Clearly only
one of them can succeed. If kingL succeeds, then kingL is said to have successfully
handed over lock L to queenL. If kingL fails, then kingL knows that queenL has
aborted and thus kingL then tries to hand over its lock to one of the waiting
pawn processes. The procedure to hand over lock L to one of the waiting pawn
processes is to execute a collect action followed by a promote action.

The collect action needs to be executed only once during a Ctr-cycle, and thus
we let the process (among kingL or queenL) that successfully swaps a value into
Sync1, execute the collect action.

If kingL successfully handed over L to queenL, it collects the waiting pawn
processes, so that eventually when queenL is ready to release lock L, queenL
can simply execute a promote action. Since there is no guarantee that kingL
will finish collecting before queenL desires to execute a promote action, the pro-
cesses synchronize among themselves again, to execute the first promote action
of the current Ctr-cycle. They both attempt to swap their pseudo-IDs into an
empty CAS object Sync2, and therefore only one can succeed. The process that is

280 A. Pareek and P. Woelfel

unsuccessful, is the second among them, and therefore by that point the collec-
tion of the waiting pawn process must be complete. Then the process that is
unsuccessful, resets Sync1 and Sync2 to their initial value ⊥, and then executes
the promote action, where a waiting pawn process is promoted and handed over
lock L. If no process were collected during the Ctr-cycle, or all collected pawn
processes have successfully aborted before the promote action, then the promote
action fails, and thus the owner process resets the PawnSet object, and then
resets Ctr from 2 to 0 in one atomic step, thus releasing lock L, and resetting the
Ctr-cycle.

The Release of Lock L by ppawnL. If a process was promoted by kingL or
queenL as described above, then the promoted process is said to be handed over
the ownership of L, and becomes the first promoted pawn of the Ctr-cycle. Since
a collect for this Ctr-cycle has already been executed, process ppawnL does not
execute any more collects, but simply attempts to hand over lock L to the next
collected process by executing a promote action. This sort of promotion and
handing over of lock L continues until there are no more collected processes to
promote, at which point the last promoted pawn resets the PawnSet object, and
then resets Ctr from 2 to 0 in one atomic step, thus releasing lock L, and resetting
the Ctr-cycle.

All owner processes also deregister themselves from lock L, by resetting their
slot in the apply array to the initial value 〈⊥,⊥〉. This step is the last step of
their release(j) calls, and processes return a boolean to indicate whether they
successfully wrote integer j into Sync1 during their release(j) call. Note that
only kingL could possibly return true since it is the only process that attempts
to do so, during its release(j) call.

4 Conclusion

We presented the first randomized abortable lock that achieves sub-logartihmic
expected RMR complexity. While the speed-up is only a modest O(log logn)
factor over the most efficient deterministic abortable mutual exclusion algo-
rithm, our result shows that randomization can help in principle, to improve
the efficiency of abortable locks. Unfortunately, our algorithm is quite compli-
cated; it would be nice to find a simpler one. It would also be interesting to
find an abortable algorithm with sub-logarithmic RMR complexity that works
against the adaptive adversary. In the weak adversary model, no non-trivial
lower bounds for mutual exclusion are known, but it seems hard to improve
upon O(log n/ log logn) RMR complexity, even without the abortability prop-
erty. As shown by Bender and Gilbert, [7], mutual exclusion can be solved much
more efficiently in the oblivious adversary model. However, their algorithm is
not lock-free with probability one.

Acknowledgement. We are indebted to Lisa Higham and Bill Sands for their
careful reading of an earlier version of the paper and their valuable comments.
We also thank the anonymous referees for their helpful comments.

RMR-Efficient Randomized Abortable Mutual Exclusion 281

References

1. Anderson, J.H., Kim, Y.-J.: Fast and Scalable Mutual Exclusion. In: Jayanti, P.
(ed.) DISC 1999. LNCS, vol. 1693, pp. 180–195. Springer, Heidelberg (1999)

2. Anderson, J.H., Kim, Y.-J.: An improved lower bound for the time complexity of
mutual exclusion. Dist. Comp. 15 (2002)

3. Anderson, J.H., Kim, Y.-J., Herman, T.: Shared-memory mutual exclusion: major
research trends since 1986. Dist. Comp. 16 (2003)

4. Anderson, T.: The performance of spin lock alternatives for shared-memory mul-
tiprocessors. IEEE Trans. Parallel Distrib. Syst. 1 (1990)

5. Aspnes, J.: Randomized protocols for asynchronous consensus. Dist. Comp. 16(2-3)
(2003)

6. Attiya, H., Hendler, D., Woelfel, P.: Tight RMR lower bounds for mutual exclusion
and other problems. In: 40th STOC (2008)

7. Bender, M.A., Gilbert, S.: Mutual exclusion with o(log2 log n) amortized work. In:
52nd FOCS (2011)

8. Danek, R., Golab, W.: Closing the complexity gap between mutual exclusion and
fcfs mutual exclusion. In: 27th PODC (2008)

9. Dijkstra, E.W.: Solution of a problem in concurrent programming control. Com-
munications of the ACM 8 (1965)

10. Giakkoupis, G., Woelfel, P.: Tight rmr lower bounds for randomized mutual exclu-
sion. In: 44th STOC (to appear, 2012)

11. Golab, W., Hadzilacos, V., Hendler, D., Woelfel, P.: Constant-rmr implementations
of cas and other synchronization primitives using read and write operations. In:
26th PODC (2007)

12. Golab, W., Higham, L., Woelfel, P.: Linearizable implementations do not suffice
for randomized distributed computation. In: 43rd STOC (2011)

13. Hendler, D., Woelfel, P.: Adaptive randomized mutual exclusion in sub-logarithmic
expected time. In: 29th PODC (2010)

14. Hendler, D., Woelfel, P.: Randomized mutual exclusion with sub-logarithmic rmr-
complexity. Dist. Comp. 24(1) (2011)

15. Herlihy, M., Wing, J.: Linearizability: a correctness condition for concurrent ob-
jects. ACM Trans. Program. Lang. Syst. 12 (1990)

16. Jayanti, P.: Adaptive and efficient abortable mutual exclusion. In: 22nd PODC
(2003)

17. Kim, Y.-J., Anderson, J.H.: A Time Complexity Bound for Adaptive Mutual Ex-
clusion (Extended Abstract). In: Welch, J.L. (ed.) DISC 2001. LNCS, vol. 2180, p.
1. Springer, Heidelberg (2001)

18. Kim, Y.-J., Anderson, J.H.: Adaptive mutual exclusion with local spinning. Dist.
Comp. 19 (2007)

19. Mellor-Crummey, J., Scott, M.: Algorithms for scalable synchronization on shared-
memory multiprocessors. ACM Trans. Comp. Syst. 9 (1991)

20. Pareek, A., Woelfel, P.: RMR-efficient randomized abortable mutual exclusion.
arXiv:1208.1723 (2012)

21. Scott, M.: Non-blocking timeout in scalable queue-based spin locks. In: 21st PODC
(2002)

22. Yang, J., Anderson, J.: A fast, scalable mutual exclusion algorithm. Dist. Comp. 9
(1995)

Abortable Reader-Writer Locks Are No More

Complex Than Abortable Mutex Locks

Prasad Jayanti and Zhiyu Liu

Department of Computer Science, Dartmouth College,
Hanover, New Hampshire

prasad@cs.dartmouth.edu, Zhiyu.Liu.GR@dartmouth.edu

Abstract. When a process attempts to acquire a mutex lock, it may
be forced to wait if another process currently holds the lock. In certain
applications, such as real-time operating systems and databases, indef-
inite waiting can cause a process to miss an important deadline [19].
Hence, there has been research on designing abortable mutual exclusion
locks, and fairly efficient algorithms of O(log n) RMR complexity have
been discovered [11,14] (n denotes the number of processes for which the
algorithm is designed).

The abort feature is just as important for a reader-writer lock as it
is for a mutual exclusion lock, but to the best of our knowledge there
are currently no abortable reader-writer locks that are starvation-free.
We show the surprising result that any abortable, starvation-free mutual
exclusion algorithm of RMR complexity t(n) can be transformed into
an abortable, starvation-free reader-writer exclusion algorithm of RMR
complexity O(t(n)). Thus, we obtain the first abortable, starvation-free
reader-writer exclusion algorithm of O(log n) RMR complexity. Our re-
sults apply to the Cache-Coherent (CC) model of multiprocessors.

Keywords: concurrent algorithm, synchronization, reader-writer exclu-
sion, mutual exclusion, abortability, RMR complexity, shared memory
algorithm.

1 Introduction

1.1 Reader-Writer Exclusion

Mutual Exclusion, where n asynchronous processes share a resource that can be
accessed by only one process at a time, is a fundamental problem in distributed
computing [7]. In the standard formulation of this problem, each process repeat-
edly cycles through four sections of code—the Remainder, Try, Critical, and Exit
Sections. The process stays in the Remainder Section as long as it is not inter-
ested in the resource. When it becomes interested, it executes the Try Section to
compete with other processes for the access to resource. The process then enters
the Critical Section (CS), where it accesses the resource. Finally, to relinquish
its right over the resource, the process executes the Exit Section and moves back
to the Remainder Section. The mutual exclusion problem is to design the Try

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 282–296, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Abortable Reader-Writer Locks Are No More Complex 283

and Exit Sections so that at most one process is in the CS at any time. The Try
and Exit Sections are normally thought of as the acquisition and the release of
an exclusive lock to the resource.

Reader-Writer Exclusion is an important and natural generalization of mutual
exclusion. This problem was first formulated and solved over forty years ago
by Courtois, Heymans, and Parnas [6] and continues to receive much research
attention [17,10,3,15,5,4]. Here the shared resource is a buffer and processes are
divided into readers and writers. If a writer is in the CS, no other process may
be in the CS at that time. However, since readers do not modify the buffer, the
exclusion requirement is relaxed for readers: any number of readers are allowed to
be in the CS simultaneously. A reader-writer exclusion algorithm takes advantage
of this relaxation in the exclusion requirement, besides satisfying several other
desirable properties, such as concurrent entering, first-in-first-enabled among
the readers, first-come-first-served among the writers, and bounded-exit. These
properties are defined later in Section 2.

When readers and writers compete for the CS, the algorithm has three natural
choices: (i) readers have higher priority, (ii) writers have higher priority, or (iii)
neither class has a higher priority and no reader or writer starves. In this paper
we consider only the last (starvation-free) case.

1.2 Remote Memory Reference (RMR) Complexity

In an algorithm that runs on a multiprocessor, if a processor p accesses a shared
variable that resides at p’s local memory module, the access will be fast, but if
p accesses a remote shared variable, the access can be extremely slow (because
of the delay in gaining exclusive access to the interconnection bus and the high
latency of the bus). Research in the last two decades has therefore been driven
by the goal to minimize the number of remote memory references (RMRs) (see
the survey [1]). (In Distributed Shared Memory (DSM) machines, a reference to a
shared variable X is considered remote if X is at a memory module of a different
processor; in Cache Coherent (CC) machines, a reference to X by a process p
is considered remote if X is not in p’s cache.) This goal implies that algorithms
should be designed to achieve local spinning, i.e., processes do not make any re-
mote references in busywait loops. The ideal goal is to design locking algorithms
whose RMR complexity–the worst case number of remote memory references
made by a process to enter and exit the CS once–is a constant, independent
of the number of processes executing the algorithm. This goal was achieved for
mutual exclusion over twenty years ago—Anderson’s algorithm achieves con-
stant RMR complexity for CC machines [2], and Mellor-Crummey and Scott’s
algorithm achieves constant RMR complexity for both CC and DSM machines
[16].

In contrast, for the reader-writer problem, constant RMR complexity is achiev-
able for CC machines [3,4], but is provably impossible for DSM machines: Danek
and Hadzilacos’ lower bound proof for 2-Session Group Mutual Exclusion im-
plies that a sublinear RMR complexity algorithm satisfying concurrent entering
is impossible for the reader-writer exclusion problem [10].

284 P. Jayanti and Z. Liu

1.3 Abortability

In certain applications, such as real-time operating systems and databases, indef-
inite waiting can cause a process to miss an important deadline [19]. Therefore,
there has been a lot of research on the design of exclusion algorithms that pro-
vide an extra feature—the Abort Section—that a busywaiting process in the Try
Section can execute if it wishes to quit the protocol [19,18,11,14]. Since a process
executes the Abort Section only when it cannot afford to wait any further, it is
imperative that this section of code be wait-free, i.e., a process completes the
Abort Section in a bounded number of its own steps, regardless of how its steps
interleave with the steps of other processes.

For the mutual exclusion problem, efficient abortable algorithms are known:
Jayanti’s algorithm has O(log n) RMR complexity, where n is the number of
processes [11]. Lee’s algorithm has the same worst-case complexity, but achieves
O(1) complexity for the case where no process aborts [14]. For the reader-writer
exclusion problem, Zheng designed an abortable algorithm of O(n) RMR com-
plexity, but this algorithm applies only for the reader-priority case [20]. To the
best of our knowledge, there is no abortable algorithm for the starvation-free
case, which is the focus of this paper.

1.4 The Main Result

We investigate the hardness of the abortable reader-writer exclusion problem
relative to the abortable mutual exclusion problem. Let me(n) and rw(n) de-
note the worst case RMR complexities of the abortable, starvation-free, mu-
tual exclusion problem and the abortable, starvation-free reader-writer exclusion
problem, respectively. Since mutual exclusion is a special case of reader-writer
exclusion where all processes act as writers, it follows that me(n) ≤ rw(n),
i.e., me(n) = O(rw(n)). Is the converse true? To our surprise, we found the
answer is yes. Specifically, we present a constant RMR complexity transforma-
tion that converts any abortable, starvation-free mutual exclusion algorithm into
an abortable, starvation-free reader-writer exclusion algorithm. This establishes
that rw(n) ≤ me(n) +O(1), and thus rw(n) = O(me(n)).

Our result has two significant implications:

– It establishes that rw(n) = Θ(me(n)), i.e., abortable, starvation-free, reader-
writer exclusion is exactly as hard as abortable, starvation-free, mutual ex-
clusion.

– Our transformation, when applied to the O(log n) abortable mutual exclu-
sion algorithm, gives rise to an abortable, starvation-free reader-writer exclu-
sion algorithm of O(log n) RMR complexity. To the best of our knowledge,
this is the first abortable, starvation-free reader-writer exclusion algorithm.

1.5 How the Transformation Is Structured

Our transformation is presented in two steps. First, in Section 3, we design an
abortable reader-writer algorithm A that supports only a single writer. Then, in

Abortable Reader-Writer Locks Are No More Complex 285

Section 5, we show how to combine A with an abortable mutual exclusion lock
M to obtain an abortable reader-writer algorithm that supports an arbitrary
number of writers (and readers). The design of A in the first step constitutes
the intellectual contribution of this paper. (The second step uses the simple idea
that multiple writers compete for the lock M and the successful one proceeds
to execute the single-writer algorithm A.)

2 The Abortable Reader-Writer Exclusion Problem

In this section we provide a clear statement of the abortable reader-writer ex-
clusion problem.

Each process has five sections of code—Remainder, Try, Critical, Exit, and
Abort Sections. A process executes its code in phases. In each phase, the process
does one of two things: (1) starts in the Remainder Section; then executes the Try
Section, the Critical Section (CS), and the Exit Section (in that order); and then
goes back to the Remainder Section, or (2) starts in the Remainder Section; then
executes the Try Section, possibly partially; then executes the Abort Section;
and then goes back to the Remainder Section.

The Try Section is divided into a doorway, followed by a waiting room [13].
It is required that the doorway be wait-free, i.e., each process completes the
doorway in a bounded number of its steps, regardless of how its steps interleave
with the steps of other processes.

We say a reader r in the Try Section is enabled if r will enter the CS in a
bounded number of its own steps, regardless of how its steps interleave with the
steps of other processes.

The reader-writer exclusion problem is to design the Try, Exit, and Abort
Sections of code for each process so that the following properties hold in all
runs:

– (P1) Reader-Writer Exclusion: If a writer is in the CS, then no other process
is in the CS at that time.

– (P2) Bounded Abort: Each process completes the Abort Section in a bounded
number of its steps, regardless of how its steps interleave with the steps of
other processes.

– (P3) Concurrent Entering: Since readers don’t conflict with each other, it
is desired that they do not obstruct each other from entering the CS. More
specifically, if all writers are in the Remainder Section and will remain there,
then every reader in the Try Section enters the CS in a bounded number of
its own steps [9,12].

– (P4) FIFE among readers: Unlike writers that may only access the CS one
at a time, any number of readers can cohabit the CS. Consequently, if a
reader r completes the doorway before another reader r′ enters the doorway,
there is no reason to delay the entry of r′ into the CS for the sake of r. We
use the First-In-First-Enabled (FIFE) property, first defined by Fischer et al
for the k-exclusion problem [8], to define fairness among readers, as follows:

286 P. Jayanti and Z. Liu

If a reader r in the Try Section completes the doorway before another reader
r′ enters the doorway, and r′ subsequently enters the CS, then one of the
following three conditions holds: (i) r enters the CS before r′ enters the CS,
or (ii) r begins executing the Abort Section before r′ enters the CS, or (iii)
r is enabled to enter the CS when r′ enters the CS.

– (P5) Starvation-Freedom: When readers and writers compete for the CS, the
algorithm has three natural choices: (i) give higher priority to readers, (ii)
give higher priority to writers, or (iii) treat both classes of processes fairly. In
this paper we consider only the third case and require the starvation-freedom
property: if a process in the Try Section does not abort, it will eventually
enter the CS, under the assumption that no process stops taking steps in
the Try, Exit, or Abort Sections and no process stays in the CS forever.

– (P6) Bounded Exit: Every process completes the Exit Section in a bounded
number of its own steps.

– (P7) FCFS among writers:We use theFirst-Come-First-Served (FCFS) prop-
erty, first defined by Lamport for the mutual exclusion problem [13], to define
fairness among writers, as follows: If a writer w completes the doorway before
a writer w′ enters the doorway and w does not abort, then w′ does not enter
the CS before w.

3 Single-Writer Multi-reader Algorithm

Figure 1 shows our abortable single-writer multi-reader algorithm. The subrou-
tine R-Abort is what readers execute when they abort from Line 2, while W-
Abort-L7 and W-Abort-L11 are what the writer executes when it aborts from
Line 7 and Line 11 respectively. W-Abort-L7 is empty, meaning the writer can
quit immediately if it aborts from Line 7. It is worth noting that this algorithm
works for any number of readers.

This algorithm employs four shared variables that support read/write and
fetch&add (F&A)1 operations. To fully understand the algorithm, we first need
to know the purposes of these shared variables.

– G: Intuitively, G is an entrance that has two “gates”, Gate 0 and Gate 1,
through which readers enter the CS. When the writer is requesting to enter
the CS or occupying the CS, the algorithm has either G = 0 or G = 1,
indicating either only Gate 0 or only Gate 1 is open. This “gates” idea
was proposed by Bhatt and Jayanti [3]. Here, in order to support aborting,
we make the following modification: if the writer is not requesting to or
occupying the CS, the algorithm has G ≥ 2, indicating both gates are open.

– X : X has two components. Let us call them X.1 and X.2 from left to right.
X.1 is a single bit read by readers to figure out which gate they should pass.
X.2 is a counter for the number of readers that are requesting to enter or

1 People usually assume that fetch&add returns the previous value of the variable. But
for convenience, we assume in this paper that it returns the new value: we assume
the operation F&A(X,a) returns (x+ a), not x, where x is the previous value of X.

Abortable Reader-Writer Locks Are No More Complex 287

G: integer
Flag: single bit
X: pair of integers, where the first component only consists of one bit
Y : integer
Initially, X = [0, 0], Y = 0, Flag = 0, G = 2

Reader Writer
1. [g,−] ← F&A(X, [0, 1]) 7. wait till Flag = 0
2. wait till G ≥ 2 ∨ G = g 8. F&A(G,−2)
3. CS 9. [s, r] ← F&A(X, [1, 0])

do R-Exit 10. c ← F&A(Y,−r)
if c �= 0

11. wait till Flag = 1
12. CS

do R-Exit

R-Exit W-Exit
4. [g′,−] ← F&A(X, [0,−1]) 13. G ← s + 2

if g′ �= g if (c �= 0)
5. a ← F&A(Y, 1) 14. F&A(Flag, 1)

if (a = 0)
6. F&A(Flag, 1)

W-Abort-L7
do nothing

R-Abort W-Abort-L11
do R-Exit do W-Exit

Fig. 1. Abortable Single-Writer Multi-Reader Algorithm

currently in the CS2: When a reader enters the Try Section, it first increments
X.2 by 1 at Line 1. When a reader exits, it first decrements X.2 by 1 at Line
4. Therefore, X.2 is equal to the number of readers that are requesting to
enter or currently in the CS. When the writer wants to access the CS, it reads
X.2 (i.e., increments X.2 by 0) at Line 9 to know the number of readers that
are in the CS or about to enter the CS. The writer then waits at Line 11
until all such readers have exited the CS.

– Y : Y is what the writer uses to communicate with readers about how many
readers it needs to wait for. Intuitively, −Y is the number of readers the
writer is waiting for when the writer is at Line 11. As we mentioned above,
when the writer executes Line 9, it gets from X.2 the number of readers that
are in the CS or about to enter the CS—the number of readers the writer has
to wait for. Then the writer writes this information into Y by subtracting
that number from Y at Line 10. We will explain later that only the readers

2 Our algorithm needs to do F&A on both components simultaneously. It is easy to
implement this operation in O(1) RMR. For example, to implement F&A(X, [a, b]),
we can simply do F&A(X,a ∗ 2k + b), where k is the length of X.2. X.1 is a single
bit in our algorithm. Hence, if X.1 = 1 and we increment it by 1, it will become 0.
This is also easy to implement. For example, we can set X.1 to be the rightmost bit
of X, or we can simply return the mod 2 value of X.1 when we read it.

288 P. Jayanti and Z. Liu

that the writer needs to wait for will find g′ 	= g at Line 4 and therefore go
to Line 5 to increment Y by 1 each time. Thus, −Y will always be equal to
the number of readers the writer is still waiting for. When the last of such
readers executes Line 5, it will find a = 0, i.e., Y = 0, indicating all the
readers the writer waits for have exited. Then this reader will wake up the
writer by executing Line 6.

– Flag: Flag is a single bit indicating what the writer should do. As we men-
tioned before, when the writer is waiting for some readers to leave the CS at
Line 11, the last of such readers will go to Line 6 to increment Flag. Thus,
when the writer finds Flag = 1, it knows that it can now enter the CS. When
the writer exits, it flips Flag back to 0 by executing Line 14. On the other
hand, if the writer does not want to wait any longer at Line 11, it can abort
and then execute Line 14 to increment Flag to 1. When the writer enters the
Try Section again, some slow readers may not have exited yet. In this case,
the writer will find Flag = 1 at Line 7 because of the previous increment
at Line 14, so the writer needs to wait at Line 7 until all such readers have
exited. When the last of such readers finally leaves, it increments Flag at
Line 6 so as to set Flag back to 0. Thus, the writer knows that it can now
move on to request its access to the CS.

With the above description of the shared variables, we can now explain the
details of the algorithm. We begin by describing how readers get permission to
enter the CS. Let us start with the initial configuration. Suppose a reader first
enters the Try Section. It first executes Line 1, reading the first component of
X by incrementing X.1 by 0. Since X.1 = 0, the reader needs to go through
Gate 0. Initially G = 2, which indicates both gates are open. Therefore, when
the reader executes Line 2, it will find G 2. Hence, the reader is enabled to enter
the CS.

If it is the writer that first enters the Try Section, it will find Flag = 0 at
Line 7, go to Line 8, and change G from 2 to 0. If a reader now enters the Try
Section and executes Line 1 and Line 2, it will find g = X.1 = G = 0. That is,
the reader needs to pass through Gate 0 and Gate 0 is open now. Therefore, the
reader can also enter the CS in this case.

If the writer executes Line 9 before a reader executes Line 1, the reader needs
to pass through Gate 1, since the operation of Line 9 flips X.1 to 1. Then, when
the reader goes to Line 2, it will find G = 0 and g = 1. Therefore, the reader has
to wait at Line 2. Hence, Line 9 becomes a critical point for synchronization: if
a reader executes Line 1 before the writer executes Line 9, it is enabled to enter
the CS; otherwise, the reader has to wait and let the writer enter the CS first.

Now suppose a reader executed Line 1 after the writer executed Line 9 and the
reader is waiting at Line 2. When the writer leaves the CS or aborts from the Try
Section (i.e., from Line 11), it executes Line 13, setting G = X.1+2 = 1+2 = 3
(since the writer stored X.1’s value in s). This implies that both gates are open
and the reader is enabled now.

Next time the writer enters the Try Section, it will change G from 3 to 1 at
Line 8 and hence X.1 = G = 1. Therefore, Line 9 is still a critical point for

Abortable Reader-Writer Locks Are No More Complex 289

synchronization: if a reader executes Line 1 before the writer executes Line 9, it
will find g = G = 1 and hence is enabled; otherwise, the reader will find g = 0
and G = 1, and it will wait at Line 2 until the writer executes Line 13. After
the writer executes Line 13, G = 2 and X.1 = 0. Then G and X.1 are not set
back to their initial value, and the scenario is now the same as that in the initial
configuration.

There is one risk for readers: when the writer is in the Remainder Section, a
reader R may execute Line 1 and fall asleep before executing Line 2. The writer
now enters the Try Section and aborts, making G ≥ 2 but G 	= R.g + 2. Then
the writer enters the Try Section again, executing Line 8 to make G < 2 and
G 	= R.g. If R now wakes up, it will be blocked from entering the CS, which
we do not expect to happen. However, this situation cannot happen: the second
time the writer enters the Try Section, it will find Flag = 1 at Line 7 and hence
it cannot execute Line 8 to cause that risk. We will explain the reason later.

When a reader aborts from Line 2, it simply does its Exit Section. If the writer
is still in the CS, or is in the Remainder Section after executing the Exit Section,
the aborting reader will find X.1 unchanged at Line 4 since it executed Line 1.
Thus, the reader has g = g′ and then leaves without executing Line 5, just like
it has not entered the Try Section. On the other hand, if the writer has exited,
entered the Try Section again, and changed X.1 at Line 9, then the aborting
reader will find g 	= g′ after executing Line 4. Hence, the reader just executes
Line 5 and probably Line 6, just as a non-aborting reader exits from the CS.
This is what we want the reader to do, since this is a situation where the writer
thinks the reader is enabled and the writer waits until the reader leaves.

Let us now explain how the writer gets access to the CS. Initially, Flag = 0.
Therefore, the writer will find Flag = 0 the first time it enters the Try section.
Then, the writer can execute Line 8 and Line 9, claiming its request to access
the CS. As we mentioned earlier, any readers that enter the Try Section after the
writer makes its request (at Line 9) will be blocked from getting into the CS. On
the other hand, that enter the Try Section before the writer makes its request
are already enabled, and the writer has to wait until all these readers exit. At
Line 9, the writer simultaneously gets from X.2 the number of the readers it
needs to wait for. Then, at Line 10, the writer subtracts from Y the number of
such readers, r. Note that all the readers that entered the Try Section before the
writer executed Line 9 have g 	= X.1 now because of the change on X.1 at Line
9. Therefore, if these readers exit or abort (these two subroutines are actually
the same), they will find g′ = X.1 	= g at Line 4 and hence execute Line 5 to
increment Y . On the other hand, if any blocked reader waiting at Line 2 aborts
(or finally enters and then leaves the CS after the writer has left), it will find
g′ = g because it executed Line 1 after the writer made the change to Y at Line
9. Therefore, this reader will leave without touching Y . That is, only the readers
that the writer needs to wait for can find g′ 	= g at Line 4 and increment Y at
Line 5.

Hence, when the writer gets the value c at Line 10 after subtracting r from Y ,
it knows that there are exactly −c readers it has to wait for. If c 	= 0, the writer

290 P. Jayanti and Z. Liu

will wait until the last of such readers increments Y to 0 at Line 5 and sets Flag
to 1 at Line 6. When the writer exits, it sets the single bit Flag back to 0 by
incrementing Flag by 1 at Line 14, so that it will find Flag = 0 to pass Line
7 next time it enters the Try Section. On the other hand, if the writer doesn’t
want to wait any longer and decides to abort from Line 11, it will also increment
Flag by 1. Thus, if the last of enabled readers has not exited or aborted yet to
execute Line 6, we have Flag = 1. Therefore, when the writer enters the Try
Section again, it has to wait at Line 7 until Flag = 0, implying the last reader
has finally executed Line 6 to flip Flag from 1 to 0.

If the writer finds c = 0 after executing Line 10, it knows that all enabled
readers have executed Line 5 before it executes Line 10. That is, all the reader
it needs to wait for have exited the CS. Hence, the writer can enter the CS
immediately. An important observation is that, if a reader executed Line 5 before
the writer executes Line 10 to decrement Y , it incremented Y to a positive value
and hence it would find a > 0 at Line 5. Therefore, in the case where the writer
has c = 0, i.e., all enabled readers have exited before the writer requests to access
the CS, no reader can get into Line 6 to change Flag. Hence, the writer can just
leave Flag = 0 unchanged by not executing Line 14 when it has c = 0. Thus, it
will find Flag = 0 at Line 7 next time it enters the Try Section.

Now consider that the writer aborted last time and comes into the Try Section
again and finds Flag = 1 at Line 7. As we discussed earlier, this implies that
some readers the writer needed to wait for last time have not exited yet. Thus,
the writer has to wait at Line 7 until all such readers have left. If the writer
wants to abort from Line 7, it does nothing and simply leaves. But next time it
enters the Try Section, it still needs to wait there until Flag = 0. It is easy to
figure out that, if any reader enters and then leaves during the period when the
writer is in the Remainder Section or waits at Line 7, it will find g = g′ at Line
4. Hence, such readers cannot change Y or Flag. Therefore, the writer does not
need to worry about the risk that some reader updates Y or Flag improperly.
After the writer passes Line 7, it can then request the CS by executing the Try
Section, just as it did for the first time.

4 Correctness of Single-Writer Multi-reader Algorithm

Our proof is invariant-based. In Figure 2, we present the invariant I that our
single-writer multi-reader algorithm satisfies. We prove I always holds by show-
ing that I holds in the initial configuration, and that, if I holds in any reachable
configuration C, it still holds after any process takes a step. Due to space con-
straints, we refer interested readers to the full version of the paper for the proof
of the invariant.

It is obvious that this single-writer multi-reader algorithm only employs O(1)
shared objects and satisfies Bounded Abort and Bounded Exit properties. In the
following, we prove that this algorithm satisfies properties P1 and P3–P5, and
that it achieves O(1) RMR complexity in CC models.

Abortable Reader-Writer Locks Are No More Complex 291

– Definitions:
1. R and W denote a reader and the writer, respectively.
2. Ii is a collection of predicates that are true when the writer’s program counter is at Line

i.
3. PCR = i states that reader R’s program counter is at Line i.
4. X.1 denotes the first field of X. Similar definitions for X.2, Y.1, etc.

– IG (global invariant):
1. ∀R,PCR ∈ {2, 3, 4, 5, 6} =⇒ (R.g = 1 ∨ R.g = 0)
2. X.2 = |{R| PCR ∈ {2, 3, 4}}|

– I7 :
1. G = X.1 + 2
2. Y = −|{R| PCR ∈ {2, 3, 4, 5} ∧ R.g �=

X.1}|
3. ∀R,PCR = 5 =⇒ R.g �= X.1
4. Y �= 0 =⇒ (Flag = 1∧|{R|PCR = 6}| =

0)
5. (Flag = 1 ∧ Y = 0) =⇒ |{R|PCR =

6}| = 1
6. Flag = 0 =⇒ (Y = 0∧|{R|PCR = 6}| =

0)
– I8 :

1. G = X.1 + 2
2. Y = 0
3. |{R| PCR ∈ {2, 3, 4} ∧ R.g �= X.1}| = 0
4. |{R| PCR ∈ {5, 6}}| = 0
5. Flag = 0

– I9 :
1. G = X.1
2. Y = 0
3. |{R| PCR ∈ {2, 3, 4} ∧ R.g �= X.1}| = 0
4. |{R| PCR ∈ {5, 6}}| = 0
5. Flag = 0

– I10 :
1. G = 1 − X.1
2. Y = W.r−|{R| PCR ∈ {2, 3, 4, 5}∧R.g �=

X.1}| ≥ 0
3. ∀R,PCR = 3 =⇒ R.g �= X.1
4. ∀R,PCR = 5 =⇒ R.g �= X.1
5. |{R| PCR ∈ 6}| = 0
6. Flag = 0
7. W.s = X.1

– I11 :
1. G = 1 − X.1
2. Y = −|{R| PCR ∈ {2, 3, 4, 5} ∧ R.g �=

X.1}| ≤ 0
3. ∀R,PCR = 3 =⇒ R.g �= X.1
4. ∀R,PCR = 5 =⇒ R.g �= X.1
5. Y �= 0 =⇒ Flag = 0 ∧ |{R|PCR = 6}| =

0

6. (Flag = 0 ∧ Y = 0) =⇒ |{R|PCR =
6}| = 1

7. Flag = 1 =⇒ (Y = 0∧|{R|PCR = 6}| =
0)

8. W.s = X.1
9. W.c �= 0

– I12 :
1. G = 1 − X.1
2. Y = |{R| PCR ∈ {2, 3, 4, 5} ∧ R.g �=

X.1}| = 0
3. |{R|PCR ∈ {3, 5, 6}}| = 0
4. Flag = 0 ⇐⇒ W.c = 0
5. W.s = X.1

– I13 :
1. G = 1 − X.1
2. Y = −|{R| PCR ∈ {2, 3, 4, 5} ∧ R.g �=

X.1}| ≤ 0
3. ∀R,PCR = 3 =⇒ R.g �= X.1
4. ∀R,PCR = 5 =⇒ R.g �= X.1
5. W.c = 0 =⇒ Y = 0
6. W.c = 0 =⇒ |{R| PCR = 6}| = 0
7. W.c = 0 =⇒ Flag = 0
8. Y �= 0 =⇒ (Flag = 0∧|{R|PCR = 6}| =

0)
9. (W.c �= 0 ∧ Flag = 0 ∧ Y = 0) =⇒

|{R|PCR = 6}| = 1
10. (W.c �= 0 ∧ Flag = 1) =⇒ (Y = 0 ∧

|{R|PCR = 6}| = 0)
11. W.s = X.1

– I14 :
1. G = X.1 + 2
2. Y = −|{R| PCR ∈ {2, 3, 4, 5} ∧ R.g �=

X.1}| ≤ 0
3. ∀R,PCR = 5 =⇒ R.g �= X.1
4. Y �= 0 =⇒ (Flag = 0∧|{R|PCR = 6}| =

0)
5. (Flag = 0 ∧ Y = 0) =⇒ |{R|PCR =

6}| = 1
6. Flag = 1 =⇒ (Y = 0∧|{R|PCR = 6}| =

0)

Fig. 2. Invariant I of the Abortable Single-Writer Multi-Reader Algorithm

Lemma 1. This algorithm satisfies reader-writer exclusion.

Proof of Lemma 1: I12 states that when the writer is in the CS (i.e., at Line
12), no reader is in the CS (i.e., at Line 3). Hence the proof. ��

Lemma 2. This algorithm satisfies starvation freedom.

292 P. Jayanti and Z. Liu

The proof of this lemma is based on the following claim.

Claim. If a reader R is in the Try Section and has G ≥ 2 ∨ G = R.g at some
time t, then R is enabled after t, and G ≥ 2∨G = R.g holds until R has exited.

Proof of Claim 4: Suppose we have G ≥ 2∨G = R.g at time t, for a reader R
with PCR = 2. If G remains unchanged, R will be able to get into the CS after
executing Line 2. Note that G’s value can only be changed at Line 8 and Line
13. According to I13, when W is about to execute Line 13, W.s = X.1 ∈ {0, 1}.
Hence, G ≥ 2 after Line 13 is executed. Thus, R can still get into the CS.
According to I9, we have |{R| PCR = 2 ∧ R.g 	= X.1}| = 0 and G = X.1 after
W executes Line 8. Therefore, we know the reader R must have R.g = X.1 = G.
Thus, R still satisfies G = R.g and hence can still get into the CS. Therefore, R is
enabled after t. Moreover, I9 also states that |{R| PCR ∈ {3, 4}∧R.g 	= X.1}| =
0 and |{R| PCR ∈ {5, 6}}| = 0. The former predicate implies that, if R is at
Lines 3–4, R.g = X.1 = G after W executes Line 8. The latter one implies that
W cannot execute Line 8 when R is at Lines 5–6. Therefore, G ≥ 2 ∨ G = R.g
always holds until R has exited. Hence the claim. ��
Proof of Lemma 2: First we prove the writer W will not starve. Since W can
wait at Line 7 and Line 11, we need to prove W will not wait forever at either
of these two lines. We will analyze all possibilities below.

1.1) Suppose W waits at Line 7 and Flag = 0. Then according to I7,
|{R| PCR = 6}| = 0 as long as W is at Line 7. Since the only way for readers to
change Flag is to execute Line 6, we know Flag will remain 0. Hence, W can
pass Line 7 after W takes a step at any time. 1.2) Suppose W waits at Line
7 and Flag = 1. 1.2.a) If Y = 0, then, by I7, we have |{R| PCR = 6}| = 1.
Therefore, after the only reader at Line 6 takes a step, we have Flag = 0 and
hence W can pass Line 7 by taking a step. 1.2.b) If Y 	= 0, then, by I7, we
have Y = −|{R| PCR ∈ {2, 3, 4, 5} ∧ R.g 	= X.1}|, |{R| PCR = 6}| = 0, and
G = X.1 + 2 ≥ 2. Since X.1 remains unchanged as long as W waits at Line 7,
any reader R ∈ {R| PCR ∈ {2, 3, 4, 5} ∧ R.g 	= X.1} will finally go to Line 5
and increment Y . I7 also states ∀R,PCR = 5 =⇒ R.g 	= X.1. This implies that
all readers R′ with R′.g = X.1 must be at Line 2–4. Hence, these readers will
find R′.g = R′.g′ after executing Line 4 and cannot get into Line 5 to change
Y . On the other hand, any new reader R′ will get R′g = X.1 after executing
Line 1. Therefore, we can conclude that all the readers that can affect Y must
be those that are already at Line 2–5 with R.g 	= X.1 until W waits at Line 7.
Since Y = −|{R| PCR ∈ {2, 3, 4, 5} ∧ R.g 	= X.1}|, Y will become 0 after all
these readers execute Line 5. Now, we get back to case 1.2.a) and know that W
can pass Line 7.

2) Suppose W waits at Line 11. By similar arguments, we can prove the
following facts based on the invariant I.

– 2.1) Once Flag becomes 1, it will remain 1 until W goes through Line 11.
Thus, W will not wait at Line 11 forever.

– 2.1.a) If Flag = 0 and Y = 0, then there is only one reader at Line 6 and
Flag will become 1 after that reader takes a step.

Abortable Reader-Writer Locks Are No More Complex 293

– 2.1.b) If Flag = 0 and Y 	= 0, then after all the current readers R’s with
R.g 	= X.1 finally execute Line 5, we have Y = 0 and know that Flag will
become 1.

According to these facts, we can conclude thatW will not wait at Line 11 forever.
Hence, W won’t starve.

Since W won’t starve, W can finally execute Line 13 and make G ≥ 2. Thus,
any reader R waiting at Line 2 will then find G ≥ 2 ∨ G = R.g. By Claim 4, R
is now enabled and hence won’t starve.

Lemma 3. This algorithm satisfies FIFE among readers.

Proof of Lemma 3: The doorway for the readers is line 1. Assume this algo-
rithm does not satisfy FIFE. That is, there exists a scenario where a reader R
executes Line 1 before another reader R′ does, and R′ is enabled earlier than
R. Since R comes into the Try Section before R′, at the moment R′ becomes
enabled, R and R′ must be both in the Try Section, i.e., PCR = PC′

R = 2.
If R.g = R′.g, then at the moment R′ is enabled, we know R′.g = R.g = G.

By Claim 4, this implies that R is also enabled at the same time, contradicting
the assumption that R′ is enabled earlier than R.

Suppose R.g 	= R′.g. Since R and R′ get the values of R.g and R′g respectively
from X.1 at Line 1, and X.1 can only be changed at Line 9, we can conclude
that the writer W executes line 9 to flip X.1 at a time t between the time
R executes line 1 and the time R′ executes line 1. Since X.1 is a two-valued
variable and G = X.1 holds when W is about to execute Line 9, this implies
that G = R.g holds either before t or after t. By Claim 4, R is enabled once
G ≥ 2∨G = R.g. Therefore, R is already enabled even before R′ enters the Try
Section, a contradiction.

Hence, this algorithm satisfies FIFE. ��

Lemma 4. This algorithm satisfies concurrent entering.

Proof of Lemma 4: If the writerW is in the Remainder Section, i.e., PCW = 7,
then, by I7, G = X.1+2 ≥ 2. Therefore, for all readers R at line 2, G ≥ 2∨G =
R.g. By Claim 4, This implies that all readers in the Try Section are enabled.
Therefore, if W stays in the Remainder Section, every reader can enter the CS
in a bounded number of its own steps. Hence, this algorithm satisfies concurrent
entering. ��

Lemma 5. This algorithm has O(1) RMR complexity in the CC model.

Proof of Lemma 5: As we argued in the proof of Lemma 2, if W spins at
Line 7 or Line 11, then Flag can be changed at most once by readers, and
after that change Flag will remain a value such that W can pass Line 7 or Line
11. Combining this and the fact that all other lines for the writer are executed
only once in a write attempt, we can conclude that the writer has O(1) RMR
complexity in the CC model.

Suppose a reader R spins at line 2. Since the writer cannot starve, it will
execute Line 13 to make G ≥ 2. As Claim 4 shows, R is now enabled and can

294 P. Jayanti and Z. Liu

get into the CS by taking one step. Moreover, G can only be updated by the
writer. Therefore, it only takes O(1) RMRs for R to spin at Line 2. Combining
this and the fact that all other lines for readers are executed only once in a read
attempt, we can conclude that the readers have O(1) RMR complexity.

Hence, this algorithm has O(1) RMR complexity in the CC model. ��

Theorem 1. (Abortable Single-WriterMulti-Reader Starvation-FreeAlgorithm)
The algorithm in Figure 1 satisfies properties P1–P6. The RMR complexity of this
algorithm in CC model is O(1). This algorithm employs O(1) number of shared
variables that support read, write, and fetch&add operations.

5 Transformation from Single-Writer Algorithm to
Multi-Writer Algorithm

We convert our single-writer algorithm into a multi-writer algorithm using a
simple transformation proposed by Bhatt and Jayanti [3](see Figure 3). Here
readers simply execute the Reader procedure of the underlying abortable single-
writer algorithm. Writers, on the other hand, first obtain an abortable mutex
lock M and only then execute the Writer procedure of the underlying abortable
single-writer algorithm.When a writer exits or aborts from the underlyingWriter
procedure, it releases the lock immediately after the last step of the Exit Section
or Abort Section, respectively.

M : abortable Mutex Lock

Reader Writer
SW -Reader() acquire(M)

SW -Writer()
release(M)

Fig. 3. Transforming a single-writer multi-reader algorithm SW to a multi-writer
multi-reader algorithm

If M is an abortable mutex lock satisfying starvation-freedom, like the one
in [11], we claim that the transformation in Figure 3 gives an abortable multi-
writer multi-reader algorithm that satisfies P1–P6. More generally, given any
abortable single-writer multi-writer algorithm, we can use this transformation
to construct an abortable multi-writer multi-reader algorithm. This is trivially
true because of two facts: (1) since the lock M ensures that only one writer
accesses the underlying writer procedure at any time, the underlying single-
writer multi-reader algorithm works as if it is in a single-writer multi-reader
system; and (2) when a writer leaves the underlying writer procedure, it always
releases the lock M so that the next writer can acquire M and then enter the

Abortable Reader-Writer Locks Are No More Complex 295

underlying writer procedure, and hence no writer can starve if it doesn’t abort.
A formal proof can be found in [3].

What’s more, if the lock M satisfies FCFS property, then it is obvious that
the abortable multi-writer multi-reader algorithm satisfies FCFS among writers.
Since our single-writer multi-reader algorithm only has O(1) RMR complexity
and employs O(1) shared space, the RMR and shared space complexities of the
multi-writer multi-reader algorithm depend on those of the abortable mutex lock
M .

Theorem 2. (Abortable Multi-Writer Multi-Reader Starvation-Free Algorithm)
The algorithm in Figure 3 satisfies properties P1–P6. The RMR and shared space
complexities of this algorithm are O(r(M)) and O(s(M)), where r(M) and s(M)
are the RMR and shared space complexities of the abortable starvation-free mutex
lock M used in this algorithm, respectively. If the M lock satisfies FCFS, then
this algorithm satisfies FCFS among writers (property P7).

Therefore, if the lockM used in Figure 3 is one of the O(log n)-RMR locks in [11]
and [14], we construct an abortable, starvation-free reader-writer lock of O(log n)
RMR complexity. To our knowledge, this is the first abortable, starvation-free
reader-writer lock.

References

1. Anderson, J.H., Kim, Y.-J., Herman, T.: Shared-memory mutual exclusion: major
research trends since 1986. Distrib. Comput. 16(2-3), 75–110 (2003)

2. Anderson, T.E.: The performance of spin lock alternatives for shared-memory mul-
tiprocessors. IEEE Trans. Parallel Distrib. Syst. 1(1), 6–16 (1990)

3. Bhatt, V., Jayanti, P.: Constant rmr solutions to reader writer synchronization.
In: PODC 2010: Proceedings of the 29th Annual ACM Symposium on Principles
of Distributed Computing, pp. 468–477. ACM, New York (2010)

4. Bhatt, V., Jayanti, P.: Specification and constant rmr algorithm for phase-fair
reader-writer lock. In: ICDCN 2011: Proceedings of the 12th International Confer-
ence on Distributed Computing and Networking, pp. 119–130 (2011)

5. Brandenburg, B.B., Anderson, J.H.: Reader-writer synchronization for shared-
memory multiprocessor real-time systems. In: ECRTS 2009: Proceedings of the
2009 21st Euromicro Conference on Real-Time Systems, pp. 184–193. IEEE Com-
puter Society, Washington, DC (2009)

6. Courtois, P.J., Heymans, F., Parnas, D.L.: Concurrent control with “readers” and
“writers”. Commun. ACM 14(10), 667–668 (1971)

7. Dijkstra, E.W.: Solution of a problem in concurrent programming control. Com-
mun. ACM 8(9), 569 (1965)

8. Fischer, M.J., Lynch, N.A., Burns, J.E., Borodin, A.: Resource allocation with
immunity to limited process failure. In: SFCS 1979: Proceedings of the 20th Annual
Symposium on Foundations of Computer Science, pp. 234–254. IEEE Computer
Society, Washington, DC (1979)

9. Hadzilacos, V.: A note on group mutual exclusion. In: PODC 2001: Proceedings of
the Twentieth Annual ACM Symposium on Principles of Distributed Computing,
pp. 100–106. ACM, New York (2001)

296 P. Jayanti and Z. Liu

10. Danek, R., Hadzilacos, V.: Local-Spin Group Mutual Exclusion Algorithms. In:
Guerraoui, R. (ed.) DISC 2004. LNCS, vol. 3274, pp. 71–85. Springer, Heidelberg
(2004)

11. Jayanti, P.: Adaptive and efficient abortable mutual exclusion. In: PODC 2003:
Proceedings of the Twenty-Second Annual Symposium on Principles of Distributed
Computing, pp. 295–304. ACM, New York (2003)

12. Joung, Y.-J.: Asynchronous group mutual exclusion (extended abstract). In: PODC
1998: Proceedings of the Seventeenth Annual ACM Symposium on Principles of
Distributed Computing, pp. 51–60. ACM, New York (1998)

13. Lamport, L.: A new solution of Dijkstra’s concurrent programming problem. Com-
mun. ACM 17(8), 453–455 (1974)

14. Lee, H.: Fast Local-Spin Abortable Mutual Exclusion with Bounded Space. In: Lu,
C., Masuzawa, T., Mosbah, M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 364–379.
Springer, Heidelberg (2010)

15. Lev, Y., Luchangco, V., Olszewski, M.: Scalable reader-writer locks. In: SPAA 2009:
Proceedings of the Twenty-First Annual Symposium on Parallelism in Algorithms
and Architectures, pp. 101–110. ACM, New York (2009)

16. Mellor-Crummey, J.M., Scott, M.L.: Algorithms for scalable synchronization on
shared-memory multiprocessors. ACM Trans. Comput. Syst. 9(1), 21–65 (1991)

17. Mellor-Crummey, J.M., Scott, M.L.: Scalable reader-writer synchronization for
shared-memory multiprocessors. In: PPOPP 1991: Proceedings of the Third ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp.
106–113. ACM, New York (1991)

18. Scott, M.L.: Non-blocking timeout in scalable queue-based spin locks. In: Proceed-
ings of the 21st Annual Symposium on Principles of Distributed Computing, pp.
31–40 (2002)

19. Scott, M.L., Scherer III, W.N.: Scalable queue-based spin locks with timeout. In:
Proceedings of the 8th Symposium on Principles and Practice of Parallel Program-
ming, pp. 44–52 (2001)

20. Zheng, N.: Constant-rmr abortable reader-priority reader-writer algorithm. Tech-
nical Report TR2011-685, Dartmouth College, Computer Science, Hanover, NH
(June 2011)

Pessimistic Software Lock-Elision

Yehuda Afek1, Alexander Matveev1, and Nir Shavit2

1 Tel-Aviv University
{afek,matveeva}@post.tau.ac.il

2 MIT and Tel-Aviv University
shanir@csail.mit.edu

Abstract. Read-write locks are one of the most prevalent lock forms in concur-
rent applications because they allow read accesses to locked code to proceed in
parallel. However, they do not offer any parallelism between reads and writes.

This paper introduces pessimistic lock-elision (PLE), a new approach for non-
speculatively replacing read-write locks with pessimistic (i.e. non-aborting) soft-
ware transactional code that allows read-write concurrency even for contended
code and even if the code includes system calls. On systems with hardware trans-
actional support, PLE will allow failed transactions, or ones that contain system
calls, to preserve read-write concurrency.

Our PLE algorithm is based on a novel encounter-order design of a fully pes-
simistic STM system that in a variety of benchmarks spanning from counters to
trees, even when up to 40% of calls are mutating the locked structure, provides
up to 5 times the performance of a state-of-the-art read-write lock.

Keywords: Multicore, Software Transactional memory, Locks, Lock-elision,
Wait-free.

1 Introduction

Many modern applications make extensive use of read-write locks, locks that separate
read-only calls from ones that can write. Read-write locks allow read-only calls, preva-
lent in many applications, to proceed in parallel with one another. However, read-write
locks do not offer any parallelism between reads and writes.

In a ground breaking paper, Rajwar and Goodman [18] proposed speculative lock-
elision (SLE), the automatic replacement of locks by optimistic hardware transactions,
with the hope that the transactions will not abort due to contention, and not fail to ex-
ecute due to system calls within the transaction. The SLE approach, which is set to
appear in Intel’s Haswell processors in 2013 [23], promises great performance benefits
for read-write locks when there are low levels of write contention, because it will allow
extensive concurrent reading while writing. It will of course also allow write-write par-
allelism that does not appear in locks. However, if transactions do fail, SLE defaults to
using the original lock which has no write-read parallelism.

A few years ago, Roy, Hand, and Harris [4] proposed an all software implementa-
tion of SLE, in which transactions are executed speculatively in software, and when they
fail, or if they cannot be executed due to system calls, the system defaults to the original

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 297–311, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

298 Y. Afek, A. Matveev, and N. Shavit

lock. In order to synchronize correctly and get privatization, their system uses Safe(..)
instrumentation for objects and a special signaling mechanism between the threads that
is implemented inside the kernel. In short, speculative lock-elision is complex and re-
quires OS patches or hardware support because one has to deal with the possible failure
of the speculative calls.

This paper introduces pessimistic software lock-elision (PLE), a new technique for
non-speculative replacement of read-write locks by software transactional code. At the
core of our PLE algorithm is a novel design of a fully pessimistic STM system, one
in which each and every transaction, whether reading or writing, is executed once and
never aborts. The fact that transactions are pessimistic means that one can simply re-
place the locks by transactions without the need, as in SLE [18, 4], to ever revert to
the original lock based code. In particular, PLE allows read-write concurrency even for
contended code and even if the code includes system calls. It provides only limited
write-write concurrency, but then again, read-write locks offer none.

All past STM algorithms (see [21]), including the TinySTM algorithm of Felber,
Fetzer, and Reigel [17] and the TL2 STM of Dice, Shalev, and Shavit [9], are optimistic
or partially optimistic: some transactions can run into inconsistencies and be forced to
abort and retry. Welc et al. [5] introduced the notion of irrevocable transactions. Their
system was the first to answer the need to execute systems calls within transactions, but
did not relieve the programmer from having to plan and be aware of which operations to
run within the specialized pessimistic transaction. Perelman et al. [7] showed a partially
pessimistic STM that can support read-only transactions by keeping multiple versions
of the transactions’ view during its execution. Attiya and Hillel [10] presented a par-
tially pessimistic STM that provides read-only transactions without multiple versions.
However, their solution requires acquiring a read-lock for every location being read.

Our new fully pessimistic STM design is an encounter-time variation of our earlier
commit-time pessimistic STM [3]. Our algorithm executes write transactions sequen-
tially in a manner similar to [5], yet allows concurrent wait-free read-only transac-
tions without using read-locks or multiple versions as in [10, 7]. We do so by using a
TL2/LSA [9, 22] style time-stamping scheme (we can reduce the time-stamp to two
bits) together with a new variation on the quiescence array mechanism of Matveev and
Shavit [2]. The almost sequential execution of the pessimistic write transactions is a
drawback relative to standard TL2, but also has some interesting performance advan-
tages. The most important one is that our STM transactions do not acquire or release
locks using relatively expensive CAS operations. Moreover, one does not need read-
location logging and revalidation or any bookkeeping for rollback in the case of aborts.
Our use of the Matveev and Shavit quiescence mechanism is a variation on the mech-
anism, which was originally used to provide privatization of transactions, in order to
allow write transactions to track concurrent read-only transactions with little overhead.
A side benefit of this mechanism is that our new fully pessimistic STM also provides im-
plicit privatization with very little overhead (achieving implicit privatization efficiently
in an STM is not an easy task and has been the subject of a flurry of recent research
[2, 6, 13–15, 19, 20]).

Pessimistic Software Lock-Elision 299

Though our pessimistic and privatizing STM does not provide the same perfor-
mance as the optimistic non-privatizing state-of-the-art TL2 algorithm, its performance
is comparable in many cases we tested. In particular, this is true when there is use-
ful non-transactional work between transactional calls. Our new pessimistic algorithm
is encounter-time, which means locations are updated as they are encountered. Our
benchmarks show this improves on our prior commit-time updating approach [3] both
in performance and in its suitability to handling system calls within lock code. Most
importantly, our new pessimistic STM offers a significant improvement over what, to
the best of our knowledge, is the state-of-the-art read-write lock: across the concurrency
scale and on NUMA machines, it delivers up to 5 times the lock’s throughput. The par-
allelism PLE offers therefore more than compensates for the overheads introduced by
its instrumentation.

Finally, we show how PLE fits naturally with future hardware lock-elision and trans-
actional memory support. We explain how to seamlessly integrate PLE into Intel’s
hardware lock-elision (HLE) or its restricted transactional memory (RTM) [23] mecha-
nisms, scheduled to appear in processors in 2013. In these mechanisms, transactions
cannot execute if they include system calls, and they can fail if there is read-write
contention on memory locations. The idea is to execute lock-code transactionally in
hardware, and use PLE as the default mechanism to be executed in software if the hard-
ware fails: in other words, elide to the better performing PLE instead of the original
read-write lock. Moreover, as we explain, PLE itself can run concurrently with hard-
ware transactions, allowing the user the benefit from both worlds: execute locks with
fast hardware transactions in the fast path, or with fast software transactions in the slow
path.

2 A Pessimistic Lock-Elision System

We begin by describing the new pessimistic STM algorithm at the core of our system.
We will then explain how it can be used to provide non-speculative lock-elision in
today’s systems that do not have HTM support, and how in the future, one will be able
to provide it in systems with HTM support.

2.1 Designing a Pessimistic STM

A typical transaction must read and write multiple locations. Its read-set and write-set
are the sets of locations respectively read and written during its execution. If a trans-
action involves only reads, we call it a read transaction, and otherwise it is a write
transaction. The transactional writes may be delayed until the commit phase, making
the STM commit-time style, or may be performed directly to the memory, making the
STM encounter-time. This paper presents a new encounter-time fully-pessimistic STM
implementation that is based on our previous commit-time fully-pessimistic STM [3], in
which we allow wait-free read transactions concurrently with a write transaction. Read
transactions run wait-free and are never aborted. Write transactions use a lightweight
signaling mechanism (instead of a mutex lock) to run one after the other, where a new
write transaction starts when the previous one begins its commit phase; this allows the

300 Y. Afek, A. Matveev, and N. Shavit

execution of one write transaction to be concurrent with the commit phase of the pre-
vious write transaction, which we show improves performance. To ensure that a read
transaction sees a snapshot view of memory, each write transaction logs the previous
value of the address, and at the beginning of the commit phase a write-transaction waits
until all the read transactions that have started before or during its execution phase (that
does not include the commit phase) have finished. To implement the synchronization
between the write and read transactions we use a variant of the quiescence array mech-
anism of Matveev and Shavit [2] (which in turn is based on epoch mechanisms such
as RCU [8]). Read transactions are made wait-free: locations being updated by a con-
current write transaction (there is only one such transaction at a time) are read from a
logged value, and otherwise are read directly from memory. In addition, as a side effect,
the quiescence operation provides us with an implicit privatization, which is critical for
preserving the read-write lock semantics of the program when replacing the locks with
transactions.

Section 2.2 presents the global variables and structures, and defines the API func-
tions of read and write transactions. To simplify the presentation, we first consider the
case of only one write transaction executing at a time with possible concurrent read
transactions. Section 2.3 presents this implementation, and presents the write transac-
tion commit that allows concurrent read transactions to complete without aborts in a
wait-free manner. Next, in Section 2.4, we consider the multiple writers case, where we
present a signaling mechanism between the write transactions that we found to be more
efficient than using a simple mutex, allowing concurrency between the current write
transaction’s commit and the next write transaction’s execution.

2.2 Global Structures

Our solution uses a version-number-based consistency mechanism in the style of the
TL2 algorithm of Dice, Shalev, and Shavit [9]. The range of shared memory is divided
into stripes, each with an associated local version-number (similar to [9, 17, 1]), initial-
ized to 0.

We use a shared global version number (as introduced by [9, 22]). The global ver-
sion and stripe versions are 64bit unsigned integers. Every transaction reads the global
version upon start, and determines each location’s validity by checking its associated
stripe’s version number relative to the global version.

Our quiescence mechanism uses a global activity array, that has an entry for every
thread in the system. The association between the threads and the activity array entries
is explained in detail later. For now assume that N threads have ids [0..N-1], and thread
K is associated with the entry activity array[K]. We later show how to reduce the array
size to be a function of the number of hardware cores. The entry for a specific thread
holds the context of the current transaction being executed by this thread. It includes the
transaction’s local variables, and shared variables; the ones accessed by other threads.

Figure 1 depicts the algorithm’s global variables and structures. They include the
stripe version array that has a version number per stripe, the global version number,
and the activity array that holds a context for every thread in the system. In addition,
Figure 1 shows the API of read and write transactions. Every API function gets ctx as
a first parameter the thread’s context, and the thread’s associated activity array entry
references the same context.

Pessimistic Software Lock-Elision 301

Every transaction’s context has a tx version variable that is used to hold the result
of sampling the global version number. The tx version’s initial value is the maximum
64bit value. When a transaction starts, the tx version is initialized to the current global
version value, and when it finishs, it is set back to the maximum 64bit value.

stripe 1

stripe 2

stripe 1 version

stripe 3

stripe N

memory

global version

.

.

.

stripe 2 version

stripe 3 version

stripe N version

.

.

.

thread 1
context

activity array:

Start TX
(thread 1)

Commit TX
(thread 1)

thread 2
context

Start TX
(thread 2)

Commit TX
(thread 2)

Start TX
(thread M)

Commit TX
(thread M)

thread M
context. . .

. . .

stripe version array:

read_tx_start(ctx)
read_tx_read(ctx , addr)
read_tx_commit(ctx)

Read Transaction Write Transaction

write_tx_start(ctx)
write_tx_read(ctx , addr)
write_tx_write(ctx , addr , val)
write_tx_commit(ctx)

Fig. 1. The algorithm’s variables and structures, and the API of a read and write transactions

2.3 The Core Algorithm

During the write transaction’s execution, the write operations are written directly in
memory and the overwritten values are logged to the log buffer. Algorithm 1 shows
the write transaction’s start, read, write and commit functions. A writer lock is used to
allow one write transaction at a time. It is acquired on start and released on commit.
The write operation logs the write location’s old value to the transaction’s log buffer,
updates the location’s stripe version to the next global version and writes the new value
to the memory. The order of these operations is important, because the update of the
location’s stripe version may require the concurrent reads of this location to snoop into
the log buffer of this write transaction in order to obtain the most up-to-date value.

When a write transaction commits, the global version is incremented (line 24). This
splits the transactions in the system into old transactions and new transactions: ones
started before the global version increment and ones that started after it.

It is consistent for new transactions to read the latest values written by the writer, be-
cause they started after the global version increment step, and can be serialized as being
executed after the writer. This is not the case for old transactions that may have read
old values of the locations overwritten by the writer. These transactions are not allowed
to read the new values and must continue to read the old values of the overwritten lo-
cations in order to preserve their consistent memory view. As a result, old transactions
perform a snoop into the concurrent writer’s log buffer when reading an overwritten
location.

Note that the log buffer values must be preserved as long as there are old read trans-
actions that may read them. Therefore, the writer executes a quiescence pass (line 26)

302 Y. Afek, A. Matveev, and N. Shavit

Algorithm 1. Write transaction

1: function WRITE TX START(ctx)
2: mutex acquire(writer lock)
3: g writer id = ctx.id
4: ctx.tx version ← global version
5: memory fence()
6: end function
7:
8: function WRITE TX WRITE(ctx, addr, val)

� log the old value
9: n ← ctx.log size

10: ctx.log buffer[n].addr ← addr
11: ctx.log buffer[n].val ← load(addr)
12: ctx.log size ← ctx.log size+ 1

� update the stripe version and write
the new value

13: s index ← get stripe index(addr)
14: s ver = stripe version array
15: s ver[s index] ← ctx.tx version+1
16: store(addr, val)

17: end function
18:
19: function WRITE TX READ(ctx, addr)
20: value ← load(addr)
21: return value
22: end function
23:
24: function WRITE TX COMMIT(ctx)

� allow new transactions to read the
new values

25: global version ← global version+1
26: memory fence()

� wait for the old transactions to fin-
ish

27: Quiescence(ctx)
� allow the next writer to proceed

28: mutex release(write lock)
29: end function

that waits for the old transactions to finish. These transactions have a tx version less
than the new global version (created by the global version increment) because they
started before this global version increment. Therefore, it would seem sufficient to scan
the activity array for entries having a tx version less than the new global version, and
spin-loop on each until this condition becomes false. But, in this way, the scan can miss
a transaction, because the tx version modification is implemented as a simple load of
the global version and store of the loaded value to the tx version. As a result, a read
transaction on start, might load a global version, the concurrent commit may perform
the global version increment, and then begin the activity array scan, bypassing the read
transaction, because it has not yet performed the store to its tx version. To overcome this
scenario, we introduce a special flag, called the update flag. The tx version, is set to this
flag value before the reading of global version to the tx version, indicating that a read
transaction is in the middle of tx version update. In this case, the writer will wait for
the update to finish by spin-looping on tx version until its value becomes different than
the update flag’s value. In Algorithm 2 we show the implementation of the quiescence
mechanism using this flag, including the read transaction start and commit procedures.

Algorithm 3 shows the implementation of the read transaction’s read operation. Upon
a read of a location, the transaction first validates that the location has not been over-
written by a concurrent writer by testing the location’s stripe version to be less than
the read transaction’s tx version (lines 2- 9). If validation succeeds, then the location’s
value is returned. Otherwise the location may have been overwritten and a snoop is
performed to the concurrent writer’s log buffer (lines 10-28). The snoop simply scans
the log buffer for the read location, and returns the location’s value from there (note
that the scan must start from a 0 index and up, because the location may be overwritten

Pessimistic Software Lock-Elision 303

Algorithm 2. Quiescence

1: function TX VERSION UPDATE(ctx)
2: ctx.tx version ← update flag
3: memory fence()
4: ctx.tx version ← global version
5: memory fence()
6: end function
7: function READ TX START(ctx)
8: tx version update(ctx)
9: end function

10:
11: function READ TX COMMIT(ctx)
12: ctx.tx version ← max 64bit value
13: end function
14:
15:

16: function QUIESCENCE(ctx)
17: for id = 0 → max threads− 1 do
18: if id = ctx.thread id then
19: continue � to next iteration - skip

this id
20: end if
21: cur ctx ← activity array[id]
22: while cur ctx.tx version =

update flag do
23: end while � spin-loop
24: while cur ctx.tx version <

global version do
25: end while � spin-loop
26: end for
27: end function

twice). If this location address is not found in the log, then it means it was not overwrit-
ten (the stripe version protects a memory range), and the location’s value that was read
before the snoop is returned. The relevant log buffer is accessed through the writer’s
context that is identified by a global index g writer id. This index is initialized upon
write transaction start.

To illustrate the synchronization between the write and read transactions, Figure 2
shows 3 stages of a concurrent execution. In stage 1, there is read of transaction 1 and
write of transaction 1; both of them read the global version on start, and proceed to
reading locations. The read transaction validates that the locations were not overwritten
and the writer reads them directly.

In stage 2, the writer performs two writes; (addr1, val1) and (addr2, val2). For every
write; (1) the old value is stored in the log buffer, (2) the stripe version is updated, and
(3) the new value is written. Then, read transaction 1 tries to read (addr1) from stripe
1 and identifies that the stripe was updated. As a result, it snoops into the concurrent
writer’s log buffer, searching for (addr1) old value and reading it from there. The second
read of (addr3) from stripe 1, also triggers the snoop procedure, but it does not find
addr3 in the log buffer and the value of (addr3) is read from the memory.

In stage 3, the writer arrives at the commit point, increments the global version and
begins the quiescence step; waiting for old transactions (ones started before the incre-
ment) to finish. Specifically, the quiescence waits for read transaction 1. Meanwhile, a
new read transaction 2 is started, which reads the new global version. This new transac-
tion can read the new values freely, since it is serialized after the writer. In contrast, read
transaction 2 continues to snoop into the concurrent writer log buffer until it is finished,
and only then the quiescence step of the writer will finish and the log buffer will be
reset. The old values are no longer required because there are no remaining active old
readers.

304 Y. Afek, A. Matveev, and N. Shavit

Algorithm 3. Read Operation

1: function READ TX READ(ctx, addr)
� Try to read the memory location

2: s index ← get stripe index(addr)
3: s ver ← stripe version array
4: ver before ← s ver[s index]
5: value ← load(addr)
6: ver after ← s ver[s index]
7: if ver before <= ctx.tx version and

ver before = ver after then
8: return value
9: end if

� The read location may had been
overwritten. Snoop into the concurrent
writer’s log buffer

10: wr ctx ← activity array[g writer id]

11: log size ← wr ctx.log size
12: is found ← False

13: i ← 0
14: while is found = False and i <

log size do
15: p buf ← wr ctx.log buffer
16: cur addr ← p buf [i].addr
17: cur val ← p buf [i].val
18: if cur addr = addr then
19: is found ← True
20: snoop value ← cur val
21: end if
22: i ← i+ 1
23: end while
24: if is found = False then
25: return value
26: else
27: return snoop value
28: end if
29: end function

2.4 The Signaling Mechanism for Write Transactions

In [5], the write transaction coordination is implemented using a global writer lock.
Every write transaction tries to acquire this global lock on start and release it upon fin-
ish. We have found that these lock acquire and release sequences can cause high cache
coherence traffic. To avoid this, we implement a different scheme using a combination
of a writer lock and a simple “pass the baton” style signaling mechanism in the activity
array.

We add to each context in the activity array a writer waiting flag. If a write trans-
action must wait for a concurrent writer, it sets this flag to True and spins on it until it
becomes False. The concurrent writer commit scans the activity array for entries hav-
ing the writer waiting set to True, and signals one of these entries, by changing this
entry’s writer waiting to False. The signals must be sent in a way that avoids starvation
of threads. To make the system fair we scan the activity array for an entry with a waiting
writer starting from thread id + 1 to the array end, and from 0 to thread id-1. In this
way every waiting writer will be signaled after at most max threads write transactions,
which is proportional to the activity array length.

In the common case, the write transactions will signal each other using the
writer waiting flags, and not by using the global lock acquire and release. That’s be-
cause usually there is some degree of concurrency between the write transactions. As a
result, usually during the commit of a write transaction there will be some entry in the
activity array with writer waiting set to True. By setting it to False, only one cache line
in a specific core is invalidated, avoiding the global lock release and acquire sequences
that invalidate the cache line in all of the cores.

Pessimistic Software Lock-Elision 305

read transaction 1 write transaction 1

1. read global version
(tx_version == 22)

2. read from stripe 3
(18 <= 22)

3. read from stripe 1
(22 <= 22)

3. read from stripe 3
(direct read)

1. read global version
(tx_version = 22)

2. read from stripe 1
(direct read)

STAGE 1: Reads

Stripe
1

Stripe
2

22

22

Stripe
3

Stripe
4

18

14

memoryversions

22global version:

emptyLog buffer:

read transaction 1

22global version:

write transaction 1

4. Write (addr1, val1) to
stripe 1
(1. log old value,
2. update the stripe version
3. write the new value)

5. Write (addr2, val2) to
stripe 2
(1. log old value,
2. update the stripe version
3. write the new value)

4. read (addr1)
from stripe 1
(23 > 22 -> snoop
Scan the log buffer
and return old_val1)

STAGE 2: Writes

Stripe
1

Stripe
2

23

23

Stripe
3

Stripe
4

18

14

memoryversions

Log buffer: addr1, old_val1 addr2, old_val2

5. read (addr3)
from stripe 1
(23 > 22 -> snoop
Scan the log buffer;
addr3 is not there;
return the value read
from memory)

read transaction 1

23global version:

write transaction 1

6. read (addr2)
from stripe 1
(23 > 22 -> snoop
Scan the log buffer
and return old_val2)

Stripe
1

Stripe
2

23

23

Stripe
3

Stripe
4

18

14

memoryversions

7. read from stripe 4
(14 <= 22)

6. Arrive commit

STAGE 3: Commit

7. Increment the
global version

read transaction 2

1. read global version
(tx_version == 23)

2. read (addr1)
from stripe 1
(23 <= 23)

3. read from stripe 4
(14 <= 23)

8. Quiescence
(Wait for
read transaction 1
to finish)

⋯ (wait)

⋯ (wait)

⋯ (wait)
8. Finish

9. Quiescence done

11. Finish

4. Finish

10. Reset log buffer

Log buffer: addr1, old_val1 addr2, old_val2

Fig. 2. Three different stages of concurrent execution between read and write transactions are
shown

Now the question is when to execute the signal procedure during the writer commit.
The simplest way is to signal the next writer after the commit is done. In general we
want to signal the next writer as soon as possible because of the writer’s serial bottle-
neck. The earliest point for the next writer signaling is after the global version incre-
ment; immediately before the quiescence step. In this case, the snoop procedure of the
read operation is complicated, because now we have the log buffer of the committing
writer and the log buffer of the next-started writer. The snoop procedure may need to
scan both of the log buffers for the read location. Therefore, we limit the number of log
buffers to only two, by not allowing the next writer to signal the following writer until
the current writer has finished its quiescence phase.

In summary, we have shown a pessimistic STM algorithm that allows concurrent
wait-free reading while writing. We note that there are various elements algorithm that
for lack of space we have not described. These include how our signaling mechanism
provides better locality of reference in the critical section execution and reduced NUMA
traffic by preferring to signal a transaction of a thread on the same chip to run next (up
to some threshold so as to maintain fairness). They also include a mechanism to reduce

306 Y. Afek, A. Matveev, and N. Shavit

the version numbers used to only two bits, allowing us to compress more of them into
a single cache line in the quiescence array.

3 How to Elide Locks

We present three ways in which PLE can be used to implement lock-elision: non-
speculative software-only lock elision, as a fall back (slow path) for the HLE (e.g.,
Intel’s hardware lock-elision [12]), and as a fall back using optimistic hardware TM
(e.g., Intel’s restricted transactional memory RTM [12]).

3.1 Non-speculative Software Lock-Elision

To perform non-speculative elision, for every RW-Lock code section, the RW-Lock ac-
quire and release calls are replaced with the PLE transaction start and commit calls (the
read acquisition with a read transaction start and write acquisition with a write trans-
action start). The loads and stores are instrumented according to our above pessimistic
STM algorithm with transactional read and write calls. We will denote each code sec-
tion transformed into a PLE based code section as the PLE code path of this segment.
This transformation introduces a read-write concurrency to the program that may result
in two special cases:

1. Conflicting I/O: The concurrently executing read and write critical sections may
invoke conflicting I/O requests, like a read and a write to the same file. In this
case, a simple solution is to mark the conflicting I/O read critical section as a write
critical section; resulting in the conflicting I/O serialization.

2. Private Operation: Inside the write critical section there may be a call for an op-
eration that requires privatization (mutual exclusion) on the data it accesses. For
example, a call for a free function on a shared memory. PLE provides privatiza-
tion only after the commit operation and therefore these kind of operations must be
moved to after the commit of the write critical section.

3.2 PLE as a Fall Back for HLE

In Intel’s HLE, lock-protected code sections typically execute without locking and with-
out interruption if they contain no system calls and if no conflicts are detected by the
cache coherence protocol (there may be various other spurious reasons). If the h/w
based speculation fails, it falls back to the software based locks that offer no read-write
concurrency.

While Intel’s HLE does not provide user specified software abort handlers, it does
provide an XTEST instruction which returns true if the thread is currently executing
in HLE (or RTM), and false otherwise – when an HLE or RTM transaction has been
aborted. Thus, by executing XTEST after the XACQUIRE instruction (the HLE transac-
tion start instruction), we can tell whether a fall-back to the hardware mechanism should
be executed, or HLE should continue. For this to work we need to prepare at compile
time a duplicate of each read-write lock protected code section where the duplicate is
transformed into the corresponding PLE code path, as in the previous subsection. If the
XTEST fails, then the duplicate PLE path is called.

Pessimistic Software Lock-Elision 307

3.3 PLE as a Fall Back for RTM

As before, each read-write lock-protected code segment is duplicated, one copy is trans-
formed into the corresponding PLE path, as in Subsection 3.1, and the other is converted
into an RTM code path as follows. Replace the acquire and release with XBEGIN and
XEND, the RTM transaction start and end calls, and specify the fall-back routine (a
parameter to XBEGIN) to be the matching PLE code path start. In addition, after the
XBEGIN, add a read (load) instruction of a shared variable, called is abort. We use
is abort to abort all of the hardware transactions currently executing if one of them has
transitioned to PLE.

By default, each read-write lock section is first attempted as an RTM code path trans-
action. If it fails, a jump to the PLE pessimistic transaction start routine is performed.
This routine first executes a small RTM transaction that updates the shared variable
is abort. This will cause all of the currently executing RTM transactions to fail. The
result is a shift of the whole system to PLE. Now the PLE execution proceeds normally.

If in the RTM design, a hardware transaction is aborted when its cache line is inval-
idated, then we can allow execution of RTM hardware read only transactions concur-
rently with PLE transactions (this assumes a specific implementation of RTM which at
this time we have no specfic information about [12]). This is because the PLE trans-
actions never abort, and the cache coherence ensures that RTM hardware read-only
transactions are atomic. In this case, we can avoid shifting the whole system from RTM
to PLE, and shift only the write transactions.

Finally, we note that a transition from PLE back to RTM is also possible, but do not
describe it here for lack of space.

4 Empirical Performance Evaluation

We empirically evaluated our algorithm on an Intel 40-way machine that includes 2
Intel Xeon E7-4870 chips on a NUMA interconnect. Each chip has 10 2.40GHz cores,
each multiplex- ing 2 hardware threads (HyperThreading), and each core has private
write-back L1 and L2 caches and the L3 cache is shared.

The algorithms we benchmarked are:

PLE. Pessimistic Lock Elision: our fully pessimistic encounter-time STM.
PTM. Pessimistic Transactional Memory: The commit-time variation of our fully pes-

simistic STM [3].
RW-Lock. An ingress-egress counter based reader-writer mutex implementation (in

general, it uses a two global counters. one for read acquires and one for read re-
leases. Writers compute the difference of these two counters to determine when
there are no more readers in the system). This is state-of-the-art RW Lock imple-
mentation for Intel platform.

MCS-Lock. Michael and Scott’s MCS Lock [16].

We present two standard synthetic microbenchmarks: a Red-Black Tree and a single
location counter (Counter-1).

The red-black tree implementation exposes a key-value pair interface of put, delete,
and get operations. The put operation installs a key-value pair, if the key is present, else

308 Y. Afek, A. Matveev, and N. Shavit

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

1.20E+04

1 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40

RW_Lock PLE MCS_Lock PTM

RB Tree, 10% mutations

0.00E+00

5.00E+02

1.00E+03

1.50E+03

2.00E+03

2.50E+03

3.00E+03

3.50E+03

1 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40

RW_Lock PLE MCS_Lock PTM

RB Tree, 40% mutations

0.00E+00

1.00E+03

2.00E+03

3.00E+03

4.00E+03

5.00E+03

6.00E+03

7.00E+03

1 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40

RW_Lock PLE MCS_Lock PTM

RB Tree, 10% mutations, Private Work L100

Fig. 3. Throughput of 200K sized Red-Black Tree with varying number of mutations; 10% and
40%, and varying amount of private work after the write transactions; 0 and L100 (100 dummy
memory fences). The Y-axis denotes operations per second and X-axis the number of threads.
Upto 10 threads every thread runs on its own core. Above 10 threads, the threads are being
multiplexed, and we have 2 threads per core. From 20 threads on the second chip is being used;
using the NUMA interconnect.

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

1 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40

RW_Lock PLE MCS_Lock PTM

COUNTER_1, 10% mutations

0.00E+00

5.00E+03

1.00E+04

1.50E+04

2.00E+04

2.50E+04

1 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40

RW_Lock PLE MCS_Lock PTM

COUNTER_1, 40% mutations,

0.00E+00

2.00E+03

4.00E+03

6.00E+03

8.00E+03

1.00E+04

1.20E+04

1 2 4 6 8 10 12 14 16 18 20 24 28 32 36 40

RW_Lock PLE MCS_Lock PTM

COUNTER_1, 10% mutations, Private Work L100

Fig. 4. Throughput of Counter-1 benchmark with varying number of mutations; 10% and 40%

updates the key’s node value. Delete removes the key’s node, if present, and get returns
the value associated with a key. We allow the tree to grow to a maximum of 200K
elements from an initial 100K elements. We vary the fraction of mutation operations and
the number of local private operations of threads after the write methods. For example,
10% mutations means we execute 5% puts and 5% deletes. We tested various rates and
also a Private Work L100 benchmark which executes 100 dummy memory fences after
the write transaction.

In all the presented graphs, up to a concurrency of 10, all threads are running on
separate cores on a single chip. From 11 to 20 they are being multiplexed on the 10
cores of the same chip, and from 21 to 40 they are multiplexed on the two NUMA cores
of the machine.

We began by testing the benefit of allowing write concurrency in PLE and PTM. We
noticed that in several benchmarks allowing write concurrency, even though it is mini-
mal and commits are still serialized, provides a 30% performance improvement. Next,
we added a priority to the signaling mechanism so that it will first try to signal write

Pessimistic Software Lock-Elision 309

transactions from the same chip so as to get better locality of reference in consecutive
critical section executions and avoid NUMA traffic (See [11]). We defined a constant
threshold value that will limit the number of signals in the same chip, in order to avoid
starvation.

As a reference point, we also compared our algorithms to the TL2 STM on the RB-
Tree, despite the fact that TL2 is optimistic and non-privatizing and cannot be used
to provide non-speculative lock-elision. The comparison shows that TL2 is better than
PLE above about 10 threads (not included in the graphs), because in TL2 we have
concurrency between the write transactions, and in the RB-Tree benchmark the number
of aborts is very low. For a high number of aborts, TL2 performance degrades. Also,
adding private work after the write transactions makes PLE performance similar to TL2
(upto 20 threads), because the contention is reduced.

We next ran the red-black tree benchmarks in Figure 3. Consider first the results for
10% mutations without private work (left graph) and with private work (L100 case -
middle graph). For the case without private work, the MCS-Lock does not scale and the
RW-Lock and PLE have similar performance until 4 threads. With more than 4 threads,
PLE runs 2 times faster than the RW-Lock until 20 threads is reached. After 20 threads,
we cross the boundary of one chip and start to use both of the Intel machine chips.
The communication between the chips is NUMA and it is expensive, therefore, we get
a performance drop in both the RW-Lock and PLE. Still, in the NUMA range (21-40
threads), PLE runs 4.5 times faster than the RW-Lock. In contrast to PLE, PTM’s per-
formance is close to that of the RW-Lock. PTM is a commit-time STM, executing more
expensive write transactions. Since writers are a bottleneck, the encounter-time order of
PLE makes a difference and runs faster than PTM. When there is private work, we can
see that the RW-Lock, PTM, and PLE, all have a similar performance until 10 threads.
Beyond 10 threads, the RW-Lock and PTM show a similar drop in the performance,
while PLE runs 2 times faster than both of them until 20 threads, and 4 times faster in
the NUMA range. Note, that all of the algorithms have a performance drop in the 12
threads range for the private work case. This is because the Intel machine we use starts
to multiplex (use HyperThreading) from 11 to 20 threads. Above 20 threads it starts
to use the second chip. We executed additional profiling analysis of the L1 cache miss
rate for the benchmarks and found that the MCS-Lock has the lowest number of cache
misses. Next is the RW-Lock and only then PLE. This means that a large part of PLE’s
performance gain is due to parallelism despite the overhead of its instrumentation and
its lesser locality of reference.

In Figure 3 (right graph) we benchmark the high mutation rate of 40%. In this case,
the MCS-Lock performs better than the RW-Lock above 8 threads, and PLE outper-
forms the RW-Lock and MCS-Lock after 4 threads and until we reach 20 threads; PLE
runs 1.4 times faster in this range. In the NUMA range the MCS-Lock outperforms
PLE. This is a result of a high mutation rate and lower possible concurrency between
the read and write transactions. The MCS lock causes cache lines to bounce from one
core to the other significantly less times.

In the Counter-1 benchmark we model an extreme contention situation, in which
every write transaction increments a shared counter and every read transaction reads
this shared counter. Also, we test the case of Private Work L100.

310 Y. Afek, A. Matveev, and N. Shavit

Results for Counter-1 are shown in Figure 4. For 10% mutations (write transactions)
PLE is 3 times faster than RW-Lock at up to 20 threads, and 4.5 times faster in the
NUMA range. For 40% mutations, the MCS-Lock outperforms both PLE and the RW-
Lock because of the extreme contention on the shared counter. Again, the MCS lock has
the lowest cache miss rate, though PLE’s rates are not as bad as in the red-black tree
benchmark. Perhaps the biased preference to signal a thread on the same node reduces
bouncing of the counter cache line in PLE. For 10% mutations with private work, PLE
and the RW-Mutex are similar until 8-10 threads. At 12 threads we see a performance
drop because of the HyperThreading, and then we see that PLE runs 1.4 times faster
until 20 threads, and 5 times faster in the NUMA range.

Acknowledgments. We thank Dima Perelman and two anonymous PODC referees for
inspiring this paper by suggesting that we compare our pessimistic STMs to read write
locks. This helped set us along the path of noticing that with pessimistic transactions
one could actually perform straightforward non-speculative elision of read-write locks.
This work was supported by the Israel Science Foundation under grant number 1386/11
and the US National Science Foundation under grant number 1217921.

References

1. Kapalka, M., Dragojevic, A., Guerraoui, R.: Stretching transactional memory. In: PLDI
2009: Proceedings of the 2009 ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, pp. 155–165. ACM, New York (2009)

2. Dice, D., Matveev, A., Shavit, N.: Implicit privatization using private transactions. In: Trans-
act 2010, Paris, France (2010)

3. Shavit, N., Matveev, A.: Towards a fully pessimistic stm model. In: TRANSACT 2012 Work-
shop, New Orleans, LA, USA (2012)

4. Harris, T., Roy, A., Hand, S.: A runtime system for software lock elision. In: Proceedings
of the 4th ACM European Conference on Computer Systems, EuroSys 2009, pp. 261–274.
ACM, New York (2009)

5. Adl-Tabatabai, A., Welc, A., Saha, B.: Irrevocable transactions and their applications. In:
SPAA 2008: Proceedings of the Twentieth Annual Symposium on Parallelism in Algorithms
and Architectures, pp. 285–296. ACM, New York (2008)

6. Attiya, H., Hillel, E.: The Cost of Privatization. In: Lynch, N.A., Shvartsman, A.A. (eds.)
DISC 2010. LNCS, vol. 6343, pp. 35–49. Springer, Heidelberg (2010)

7. Keidar, I., Perelman, D., Fan, R.: On maintaining multiple versions in stm. In: Proceeding of
the 29th ACM SIGACT-SIGOPS Symposium on Principles of Distributed computing, PODC
2010, pp. 16–25. ACM, New York (2010)

8. Desnoyers, M., Stern, A., McKenney, P., Walpole, J.: User-level implementations of read-
copy update. IEEE Transactions on Parallel and Distributed Systems (2009)

9. Dice, D., Shalev, O., Shavit, N.N.: Transactional Locking II. In: Dolev, S. (ed.) DISC 2006.
LNCS, vol. 4167, pp. 194–208. Springer, Heidelberg (2006)

10. Attiya, H., Hillel, E.: Single-Version STMs Can Be Multi-version Permissive (Extended Ab-
stract). In: Aguilera, M.K., Yu, H., Vaidya, N.H., Srinivasan, V., Choudhury, R.R. (eds.)
ICDCN 2011. LNCS, vol. 6522, pp. 83–94. Springer, Heidelberg (2011)

11. Herlihy, M., Shavit, N.: The art of multiprocessor programming. Morgan Kaufmann (2008)
12. Intel. Intel architecture instruction set extensions programming reference – ch. 8. Document

319433-012A (2012)

Pessimistic Software Lock-Elision 311

13. Lev, Y., Luchangco, V., Marathe, V., Moir, M., Nussbaum, D., Olszewski, M.: Anatomy of a
scalable software transactional memory. In: 4th ACM SIGPLAN Workshop on Transactional
Computing, TRANSACT 2009 (2009)

14. Machens, H., Turau, V.: Avoiding Publication and Privatization Problems on Software Trans-
actional Memory. In: Luttenberger, N., Peters, H. (eds.) 17th GI/ITG Conference on Com-
munication in Distributed Systems (KiVS 2011), Dagstuhl, Germany. OpenAccess Series in
Informatics (OASIcs), vol. 17, pp. 97–108. Schloss Dagstuhl–Leibniz-Zentrum fuer Infor-
matik (2011)

15. Marathe, V., Spear, M., Scott, M.: Scalable techniques for transparent privatization in soft-
ware transactional memory. In: International Conference on Parallel Processing, pp. 67–74
(2008)

16. Mellor-Crummey, J., Scott, M.: Algorithms for scalable synchronization on shared-memory
multiprocessors. ACM Transactions on Computer Systems 9(1), 21–65 (1991)

17. Fetzer, C., Felber, P., Riegel, T.: Dynamic performance tuning of word-based software trans-
actional memory. In: PPoPP 2008: Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pp. 237–246. ACM, New York (2008)

18. Rajwar, R., Goodman, J.: Speculative lock elision: enabling highly concurrent multithreaded
execution. In: MICRO, pp. 294–305. ACM/IEEE (2001)

19. Shpeisman, T., Menon, V., Adl-Tabatabai, A., Balensiefer, S., Grossman, D., Hudson, R.,
Moore, K., Saha, B.: Enforcing isolation and ordering in stm. SIGPLAN Not. 42, 78–88
(2007)

20. Spear, M., Marathe, V., Dalessandro, L., Scott, M.: Privatization techniques for software
transactional memory. In: Proceedings of the Twenty-Sixth Annual ACM Symposium on
Principles of Distributed Computing, PODC 2007, pp. 338–339. ACM, New York (2007)

21. Rajwar, R., Harris, T., Larus, J.: Transactional Memory, 2nd edn. Morgan and Claypool
Publishers (2010)

22. Riegel, T., Felber, P., Fetzer, C.: A Lazy Snapshot Algorithm with Eager Validation. In:
Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 284–298. Springer, Heidelberg (2006)

23. Web. Intel tsx (2012), http://software.intel.com/en-us/blogs/2012/02/
07/transactional-synchronization-in-haswell

http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell
http://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell

Asynchronous Pattern Formation

by Anonymous Oblivious Mobile Robots�

Nao Fujinaga, Yukiko Yamauchi,
Shuji Kijima, and Masafumi Yamashita

Department of Informatics, Kyushu University, Japan
{fuji,yamauchi,kijima,mak}@tcslab.csce.kyushu-u.ac.jp

Abstract. We present an oblivious pattern formation algorithm for
anonymous mobile robots in the asynchronous model. The robots obey-
ing the algorithm, starting from any initial configuration I , always form
a given pattern F , if I and F do not contain multiplicities and ρ(I)
divides ρ(F), where ρ(·) denotes the geometric symmetricity. Our algo-
rithm substantially outdoes an algorithm by Dieudonné et al. proposed
in DISC 2010, which is dedicated to ρ(I) = 1. Our algorithm is best
possible (as long as I and F do not contain multiplicities), since there is
no algorithm that always forms F from I when ρ(F) is not divisible by
ρ(I).

All known pattern formation algorithms are constructed from scratch.
We instead use a bipartite matching algorithm (between the robots and
the points in F) we proposed in OPODIS 2011 as a core subroutine, to
make the description of algorithm concise and easy to understand.

1 Introduction

Autonomy is a key property required for distributed systems such as mobile
sensor networks and mobile robot systems, since a huge number of inexpen-
sive and unreliable robots (or sensor nodes) need to cooperatively behave and
achieve a given task, tolerating possible failures, sometimes even without a global
system initialization, particularly in the case of random deployment. A sys-
tem is self-organizing if the robots autonomously deploy themselves to form
a predefined geometric pattern from any positions, and is self-stabilizing, if
they autonomously resume a legitimate computation, tolerating any finite num-
ber of transient failures [3]. The self-organization and the self-stabilization are
two of the fundamental concepts in autonomy. In this paper, we address the
problem of designing a self-stabilizing algorithm to solve the pattern forma-
tion problem for anonymous oblivious mobile robots under a fully asynchronous
setting.

We model a robot by a point in a two dimensional Euclidean space. Each
robot repeats a “Look-Compute-Move” cycle, where it observes the locations

� This work is supported in part by MEXT/IPSJ KAKENHI 21650002, 22300004,
23700019, 24104003 and 24650008.

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 312–325, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Asynchronous Pattern Formation by Anonymous Oblivious Mobile Robots 313

of all robots in its local coordinate system (Look phase), computes a track to
the next location using a given algorithm (Compute phase), and moves along
the track (Move phase). Our robots have very restrictive capabilities. They are
anonymous; they do not have identifiers, and they all execute the same algorithm.
In this paper, a robot always means an anonymous robot, unless we explicitly
state otherwise. They are oblivious; they have no memory to remember what
they have observed in the past, and the algorithm computes a track in a given
cycle from the observation result in this cycle. They are unaware of the global
coordinate system, and their local coordinate systems may not agree, although
all actions must be done in terms of their coordinate systems. Finally, their
Look-Compute-Move cycles are neither instantaneous nor synchronized. We call
this synchronization model the asynchronous (ASYNCH) model. Note that, even
in the ASYNCH model, the Look phase is assumed to be instantaneous, in the
sense that it returns the locations of all robots at a time.

Two stronger synchronization models are the semi-synchronous (SSYNCH)
and the fully-synchronous (FSYNCH) models. In the SSYNCH model, Look-
Compute-Move cycles are instantaneous, i.e., the time to execute a cycle is neg-
ligible, and in the FSYNCH model, all robots execute the i-th (instantaneous)
cycle simultaneously. An essential difference between the ASYNCH and the
SSYNCH models is that a robot may be observed while moving in the ASYNCH
model, which situation never occur in the SSYNCH model.

The pattern formation problem in the SSYNCH and the FSYNCH models
was first investigated by Suzuki and Yamashita [9]. They characterized the class
of patterns F formable by non-oblivious robots when their initial configuration is
I, and pointed out that every pattern formation algorithm for oblivious robots is
self-stabilizing, which motivates us to emphasize oblivious robots in this paper.
They [9] also showed that, in the SSYNCH model, the gathering problem for two
oblivious robots is unsolvable, despite that it is trivially solvable for non-oblivious
robots, which differentiates non-oblivious from oblivious robots. FSYNCH robots
have stronger formation power than SSYNCH robots by definition. What is
surprising is that all patterns formable by non-oblivious FSYNCH robots are
also formable by oblivious SSYNCH robots, except this gathering problem for
two robots [10].

The robots in [9,10] can count the number of robots at a position. Our robots
do not have this multiplicity test capability, like those in [4,6]. As a result, for
the formation to be possible, an initial configuration I and a target pattern F
cannot contain multiplicities. That is, throughout the paper, we assume that I
and F do not contain multiplicities.

Under this assumption, the set of patterns F formable by oblivious SSYNCH
robots when their initial configuration is I can be characterized as follows [10]:
Let P be a set of distinct points. The (geometric) symmetricity ρ(P) of P is
defined to be 1 if there is a point at the center c(P) of the smallest enclosing
circle C(P) of P , and otherwise if c(P) 	∈ P , it is the number of different angles

314 N. Fujinaga et al.

α (between [0, 2π)) such that rotating P by α around c(P) results in P . Then
F is formable from I if and only if ρ(I) divides ρ(F). 1

The ASYNCH model was introduced by Flocchini et al. [5]. There are only
a few works about the pattern formation besides the gathering. Every pattern
is formable if the robots have consistent local coordinate systems, but agreeing
on one axis is not enough (without chirality) [5]. Nagamochi et al. proposed
an algorithm for having all the non-oblivious robots agree on a common coor-
dinate system, if their initial configuration is not rotation symmetry [8]. This
result implies that any pattern F is formable by non-oblivious robots if their
initial configuration I holds ρ(I) = 1. But their formation algorithm is not
self-stabilizing. Dieudonné et al. [4] showed the same result for oblivious robots;
their formation algorithm is now self-stabilizing. Specifically, they showed that
the leader election problem is solvable starting from an initial configuration I,
if and only if any pattern is formable from I. Since the leader election problem
is solvable from I if and only if ρ(I) = 1, any pattern is formable from I if and
only if ρ(I) = 1.

An essential difficulty in solving the formation problem is the difficulty of
agreeing on a common coordinate system. For any coordinate system Z, let
Z(F) be the list of the coordinates Z(p) (in Z) for all p ∈ F . In the pattern
formation problem, a pattern F is given to the robots as Z0(F), where Z0 is the
global coordinate system (which the robots are not aware of). If Zi(F), instead
of Z0(F), was given to each robot ri, the difficulty of the problem would be
substantially reduced, where Zi is the local coordinate system of ri; for example,
the gathering problem becomes trivial. This variation of the pattern formation
problem is called the embedded pattern formation problem, and was discussed
by Fujinaga et al. [6]. They proposed an algorithm CWM for each robot ri to
find an optimum matching Mi between the robots and the points in F , and
showed that all robots ri compute the same matching M = Mi and M never
change no matter how each ri approaches straight to its matched point in M .
The embedded pattern formation problem is then solvable by letting each robot
move toward its matched point in M .

We in this paper show that a pattern F is formable from an initial config-
uration I, if and only if ρ(I) divides ρ(F); that is, oblivious ASYNCH robots
have exactly the same formation power as non-oblivious FSYNCH (and hence
SSYNCH) robots. Our result includes the one in [4] as a special case ρ(I) = 1.
Unlike the case ρ(I) = 1, in which a unique leader can determine a common
coordinate system and control (e.g. the move order of) the robots, our robots

1 A more formal definition of ρ is presented in Section 2. In [9,10], an (initial) configu-
ration I is defined so that it also contains, for each robot, the description of its local
coordinate system, not only its current location, and the symmetricity is defined in
a similar way, taking into account the local coordinate systems. Let σ(I) denote this
symmetricity. Then [10] shows that F is formable from I if and only if σ(I) divides
ρ(F). Let P (I) be the locations of the robots in configuration I . For any P (I), there
is a configuration I ′ such that P (I ′) = P (I) and ρ(P (I)) = σ(I ′). Thus, as claimed
here, F is formable from P (I) if and only if ρ(P (I)) divides ρ(F), in the sense that
if ρ(P (I)) does not divide ρ(F), then F may not be formable from I .

Asynchronous Pattern Formation by Anonymous Oblivious Mobile Robots 315

cannot take these advantages when ρ(I) > 1 (since for each robot there are other
ρ(I) − 1 robots indistinguishable from it and a unique leader is not electable).
This is the main contribution of this paper.

Unlike existing pattern formation algorithms, which are constructed from
scratch, our algorithm uses the CWM algorithm [6], after adjustment to our
problem, to make the description of our algorithm clear and concise. To invoke
the CWM, some robots ri first move to yield a “canonical” configuration so that
each robot ri can consistently “embed” F in Zi, with a help of an imaginary
coordinate system Z∗

i . Then we invoke the CWM. But some robots whose lo-
cations define Z∗

i ’s cannot move in this phase; they will move to their matched
points, after finishing this phase.

In the ASYNCH model, the gathering problem has been extensively investi-
gated. (Since we assume that F does not contain multiplicities, the gathering
problem is out of the scope.) See [1] for a survey of the gathering problem in
the ASYNCH and related models. The gathering problem is unsolvable for two
robots in the SSYNCH (and hence in the ASYNCH) model [9], and the problem
for more than two robots is solvable if and only if the robots have the multiplicity
test capability, in the ASYNCH [2] (and hence in the SSYNCH [9]) model.

Motivated by the fact that the gathering problem for two ASYNCH (and hence
SSYNCH) robots is trivially solvable if they have consistent local coordinate
systems (or reliable compasses), Izumi et al. [7] introduced unreliable compasses
and characterized the solvable cases in terms of the types of compasses and their
maximum deviation angles.

2 Robot Model and Pattern Formation

Robot System: Let R = {r1, r2, . . . , rn} be a set of n(≥ 3) ASYNCH robots
in a two-dimensional Euclidean space. Note that the pattern formation is trivial
if n ≤ 2, since F does not contain a multiplicity. Each robot ri does not have an
identifier, and i is used only for the purpose of description.

A target pattern F is given to every robot ri as a set Z0(F) = {Z0(p) : p ∈ F},
where ri does not have access to the global coordinate system Z0. We assume
that |Z0(F)| = n. In the following, as long as it is clear from the context, we
identify p with Z0(p), and write, e.g., “F is given to ri,” instead of “Z0(F) is
given to ri.”

We assume discrete time 0, 1, 2, . . . and denote by pi(t) the location (in Z0) of
ri at time t. P (t) = {p1(t), p2(t), . . . , pn(t))} is a configuration at t. The robots
initially occupy distinct locations, i.e., |P (0)| = n. |P (t)| < n can hold in general,
but every execution of our algorithm guarantees |P (t)| = n.

To define an execution of each robot ri obeying an algorithm ψ, suppose that
a Look-Compute-Move cycle of a robot ri starts at time t and let P (t) be the
configuration at t. Robot ri has a local coordinate system whose origin is always
the current position of ri. Let Zi(t) be the local coordinate system of ri at time
t. The local coordinate system Zi(t) never change in the cycle.

316 N. Fujinaga et al.

In the Look phase, ri observes rj in coordinates Zi(t)[pj(t)] (in Zi(t)), where
Zi(t)[pi(t)] = 0 by definition.2 The Look phase returns Zi(t)[P (t)]. In the Com-
pute phase, which starts at some time instant t′(> t), from Zi(t)[P (t)] and F ,
algorithm ψ computes a track X = ψ(Zi(t)[P (t)], F) to the next location (in
Zi(t)), which may not be a line segment like in [4]. The Move phase, which
starts at some time instant t′′(> t′), navigates ri to follow X , where it interprets
X in Zi(t). The Move phase may finish while ri is still on the way to the next
location. We however assume that ri always moves at least a constant distance
ε in (Z0), or reaches the next location if the length of X is shorter than ε.

We do not make any assumption when each of the phases starts. Thus the
execution P (0), P (1), . . . is not uniquely determined, even for a fixed initial con-
figuration I = P (0). Rather, there are many possible executions P (0), P (1), . . .,
depending not only on the times when the phases start but also on the distances
that the robots move in the Move phases.

Coordinate System: We assume that Z0 and Zi(t) are right-handed coor-
dinate systems, and let T be the set of all coordinate systems, which can be
identified with the set of all transformations consisting of translations, rotations,
and uniform scalings.

We may interpret the two-dimensional Euclidean space as the Gaussian plane,
to make use of the polar form. A point (x, y) is associated with a complex
number x + jy, which can also be represented by (r, θ) in polar form, since

x + jy = rejθ, where r =
√
x2 + y2 is the absolute value, θ = arctan(y/x) is

the argument, and j is the imaginary unit. For q = x + jy and q = x′ + jy′,
let d(p, q) =

√
|x− x′|2 + |y − y′|2 denote the Euclidean distance between p and

q. A curve connecting points p and q is a set X ⊂ C such that there exists a
continuous map f : [[0, 1]] "→ C, f([0, 1]) = X , f(0) = p, and f(1) = q, where
f [D] = {f(d) : d ∈ D} for a set D of points.

Pattern Formation: Let Pn be the set of all sets of n points in Z0. For any
P, P ′ ∈ Pn, P is similar to P ′, if there exists Z ∈ T such that Z[P] = P ′,
denoted by P) P ′. Let F, I ∈ Pn. We say that an algorithm ψ forms pattern F
from initial configuration I, if for any execution P (0)(= I), P (1), . . ., there is a
time instant t0 such that P (t)) F for all t0 < t. A pattern F is formable from
an initial configuration I, if there is an algorithm ψ that forms F from I.

For any P ∈ Pn, let c(P) be the center of the smallest enclosing circle C(P).
Formally, the symmetricity ρ(P) of P is defined by

ρ(P) =

{
1 if c(P) ∈ P,

|{Z ∈ T : P = Z[P]}| otherwise.

We can also define ρ(P) in the following way [9]: F can be divided into regular
k-gons with co-center c(P), and ρ(P) is the maximum of such k. Here, any point
is a regular 1-gon with an arbitrary center, and any pair of points {p, q} is a
regular 2-gon with its center (p+ q)/2 (Figure 1 (b)–(d)).

2 Note that ri cannot compute pj(t) from Zi(t)[pj(t)], since ri is not aware of Z0.

Asynchronous Pattern Formation by Anonymous Oblivious Mobile Robots 317

l(P)
r(P)

c(P)

(a) r(P) and l(P) (b) ρ(P) = 1 (c) ρ(P) = 2 (d) ρ(P) = 4

Fig. 1. Symmetricity and decomposition: Black dots represent the points in P

A point on the circumference of C(P) is said to be “on circle C(P)” and
“the interior of C(P)” does not include the circumference. The radius of C(P)
is denoted by r(P). We denote by l(P) the radius of the largest “empty” circle
L(P) with its center c(P), where L(P) is empty in the sense that its interior
does not include a point in P (Figure 1 (a)). Its circumference must include a
point. Let Circum(P) = C(P) ∩ P and Interior(P) = P \ Circum(P). The
cardinality of Circum(P) is denoted by �Circum(P).

3 Asynchronous Pattern Formation by Oblivious Robots

This section shows the following theorem.

Theorem 1. Let F, I ∈ Pn for any n ≥ 3. Then F is formable from an initial
configuration I, if and only if ρ(I) divides ρ(F).

It suffices to show that F is formable from an initial configuration I if ρ(I)
divides ρ(F), since F is not formable from initial configuration I if ρ(F) is not
divisible by ρ(I), even for SSYNCH robots [10]. We thus present an oblivious
pattern formation algorithm ψ for n(≥ 3) ASYNCH robots, provided that ρ(I)
divides ρ(F). The case n = 3 is trivial as the following property states.

Property 1. Let F, I ∈ P3. Then F is formable from an initial configuration I,
if ρ(I) divides ρ(F).

Proof. ρ(I) is either 3 or 1. If ρ(I) = 3, the problem is trivial, since ρ(F) must
be 3, which implies that I and F are both equilateral triangles.

If ρ(I) = 1, without loss of generality, let r1 and r2 be the furthest pair among
the three. If there are two furthest pairs, let r1 and r2 be the first pair in the
positive orientation. Then r3 moves straight to the corresponding point to form
F . Note that the furthest pair does not change during the formation. ��

In the following, we therefore assume n ≥ 4. As for F , if c(F) 	= 0 or r(F) 	= 1,
the robots can scale and translate it so that c(F) = 0 and r(F) = 1 hold. So we
assume c(F) = 0 and r(F) = 1 without loss of generality.

318 N. Fujinaga et al.

3.1 Outline of Algorithm

We would like to explain an outline of algorithm ψ. It uses the CWM algo-
rithm [6] as its component. Since ψ is an oblivious algorithm, it cannot dis-
tinguish a configuration P (t) from an initial configuration I. We thus use I to
denote an input to ψ.

If c(F) = 0 ∈ F , let F ′ be a pattern constructed from F by replacing point 0
with point f = (0, l(F)/2). Algorithm ψ first forms F ′, and then moves a robot
at f to 0 to complete F . Given an I, in ψ, if c(I) ∈ I, the robot at the center
moves away by distance l(I)/2 from the center whenever I) F , and no robots
move toward c(I), provided c(F) 	∈ F , which we assumed above. Obviously such
modifications of F and I do not change ρ(F) and ρ(I). In Subsection 3.4, we
will describe ψ assuming c(F) 	∈ F and c(I) 	∈ I, for the sake of simplicity; one
can reconstruct the complete ψ easily. Furthermore, we assume that ρ(F) < n
and F is not regular; the case ρ(F) = n is treated separately (see Subsection
3.4).

Algorithm ψ consists of four phases. The aim of Phase 1 is to “embed” F . Let
ρ(F) = mF < n. By definition, F can be partitioned into kF = n/mF regular
mF -gons Fi (0 ≤ i ≤ kF − 1) all with center c(F) = 0. Let ρ(I) = mI . Similarly
I can be partitioned into kI = n/mI regular mI -gons Ii (0 ≤ i ≤ kI − 1) all
with center c(F). A crucial observation here is that, as in [10, Sections 5.2 and
5.3], all robots that observe F even in its local coordinate system agree on an
order of Fi’s (resp. Ii’s), such that the distance of the points in Fi (resp. Ii)
from c(F) (resp. c(I)) is no greater than that of Fi+1 (resp. Ii+1), and that each
robot is conscious of the group Ii it belongs to. Note that r(F0) = l(F) > 0
(resp. r(I0) = l(I) > 0).

Recall that we assume that mI divides mF (< n). Phase 1 forms a regular
mF -gon H with a radius δ smaller than l(F)/2 and the center being c(I), by
sending mF robots in Ij(0 ≤ j ≤ mF /mI − 1), so that all robots can clearly
distinguish the robots in H . Roughly, we achieve this goal as follows; first, the
robots in I0 move straight to c(I) until the point whose distance from c(I) is δ,
then the robots in I1, I2, . . . , ImF /mI−1 move, group by group in this order, to
the adequate points.

Now, depending on the current configuration I, each robot ri can define
an imaginary coordinating system Z∗

i called the normalized coordinate system,
taking advantage of H , as we will explain in Subsection 3.3, and they embed
(roughly) F to start the CWM. Each coordinate system Z∗

i is determined by
r(I) and H , and is kept unchanged in Phases 2 and 3. The CWM thus enjoys
the stable Z∗

i ’s during the phases.
Let F ′ = F \H . The aim of Phases 2 and 3 is roughly to solve the formation

problem for F ′. In Phase 2, the CWM is invoked by the robots besides Circum(I)
and H , to move their matched points.

However, the CWM may order a robot to move straight to its matched point
traversing C(H), which could collapse the embedding by sending robots inside
H . To avoid this danger, we modify the CWM, as we will describe in Subsection
3.2.

Asynchronous Pattern Formation by Anonymous Oblivious Mobile Robots 319

In Phase 3, the robots in Circum(I) move to their matched points, by invoking
the modified CWM.

Finally in Phase 4, the robots in H resume their correct positions.
Most of the cases are described in a unifiedmanner, but the case �Circum(F) =

�Circum(I) = 2 needs a different treatment in Phase 1. We will present the whole
ψ in Subsection 3.4.

3.2 Clockwise Matching on a Cylinder

Let I = {p1(0), p2(0), . . . , pn(0)} and F = {f1, f2, . . . , fn} be an initial config-
uration and a target pattern, respectively. Suppose that each robot ri is given
Zi(0)[F] (not Z0[F] = F) as the description of F . Note that Zi(0)[I] is what ri
observes initially. If all ri can agree on a bipartite matching M between I and
F , that is, if each ri can compute an element Zi(0)(fM(i)) ∈ Zi(0)[F] in such
a way that M = {(pi(0), fM(i)) : 1 ≤ i ≤ n} forms a perfect matching between
I and F , and furthermore if M is optimum in the sense that the sum of the
Euclidean distances between pi(0) and fM(i) for all ri is minimized, then one
can expect that the robots can form F by having each robot ri move straight
to Zi(0)(fM(i)), since these moves would not change the optimum matching M .
Fujinaga et al. [6] proposed an algorithm CWM called the clockwise matching
that produces a matching satisfying these conditions and showed that the ex-
pectation above is indeed the case. That is, let P (0) = I, P (1), P (2), . . . be any
execution of the robots obeying CWM, then there is a t ≥ 0 such that P (t′)) F
holds for any t′ ≥ t. Note that the CWM can produce the whole M (in terms of
a matching between Zi(0)[I] and Zi(0)[F]) not only Zi(0)(fM(i)).

However, our algorithm requires robots for example to avoid moving in the
mF -gon H that defines the normalized coordinate system. That is, it may force
a robot to move along a curve (not only a line segment). We therefore extend
the matching algorithm so that it can handle these cases.

We introduce a bijective mapping g from C \ {0} to Cyl = R × S1, where
S1 = [0, 2π) is the unit circle, by

g(rejθ) = (log r, θ).

Cyl is a side surface of a cylinder with radius 1 and an infinite height (Fig-
ure 2). Given two points p = (hp, θp) and q = (hq, θq), define a metric dCyl by

dCyl(p, q) =
√
darg(θp, θq)2 + |hp − hq|2, where darg(θ, θ

′) = min{|θ − θ′|, 2π −
|θ − θ′|}. We denote by pq the (directed) line segment from p to q on Cyl. The

length of pq is dCyl(p, q). For p, q ∈ C, we define the arc
�
pq= g−1[g(p) g(q)].

We modify the clockwise matching CWM as follows: (i) For any p, q ∈ C, the
distance between p, q is measured by dCyl(g(p), g(q)), and (ii) for any p ∈ I and

f ∈ F , edge (p, f) ∈ I × F now abstracts arc
�
pf (not line segment pf).

The triangle inequality holds in Cyl, and this modification preserves the prop-

erties of the (original) clockwise matching. A notable property of
�
pf∈M is that

it does not enter the circle with radius min{rp, rf} and the center being the

320 N. Fujinaga et al.

hθ

0
1

height

Fig. 2. Point on a side surface of a cylinder

origin, where p = (log rp, θp) and f = (log rf , θf). Indeed, if p and f are on the

circumference of a circle,
�
pf is a part of the circumference.

3.3 Embedding a Target Pattern

Let q ∈ P ∈ Pn, and define a coordinate system Z(P, q) as described in Figure 3.
Its origin is c(P), the unit distance is r(P), and the directions of the axes are
defined by q. Observe that Z(P, q) depends only on c(P), r(P) and q.

q

1

r(P)c(P)

Fig. 3. Z(P, q)

Let F be a given pattern. Note that c(F) 	∈ F . Recall that F is partitioned
into kF = n/mF regular mF -gons Fi. For any i and f, f ′ ∈ Fi, Z(F, f)[F] =
Z(F, f ′)[F] holds, by the definition of symmetricity. Define F ∗ by Z(F, f)[F] =
F ∗, where f ∈ F0.

Let I be the current configuration. Recall again that I is partitioned into
kI = n/mI regular mI -gons Ii. Since Z(F, f) depends only on c(F), r(F) and
F0, if I satisfies that c(I) = c(F) and F0 = ∪0≤j≤mF /mI−1Ij , i.e., if I satisfies
the conditions satisfied when Phase 1 finishes, Z(I, q)[F] = Z(F, f) = F ∗ for
any q ∈ I0, since q ∈ F0.

In I, each robot ri selects (e.g., in terms of the alphabetic order over the set
of the coordinates in Zi(t)) a point q in I0 and define Z(I, q), which is called the
normalized coordinate system denoted by Z∗

i . By the definition, we observe the
following property, since Z∗

i is a bijective map.

Asynchronous Pattern Formation by Anonymous Oblivious Mobile Robots 321

(a) ρ(I) = ρ(F) = 4 (b) ρ(I) = 8 and ρ(F) = 4 (c) F ′

Fig. 4. Construction of mF : If we take H = F0 ((a)), ρ(I) becomes larger than ρ(F)
((b)). Instead, we scale down F0 ((c)).

Property 2. For any two robots ri and rj , if Z
∗
i [F

′] = Z∗
j [F

′′] = F ∗, then F ′ =
F ′′.

Now, each robot ri embeds F as the set of coordinates F ∗ in Z∗
i , when it invokes

the CWM in Phases 2 and 3. (And during Phases 2 and 3, Z∗
i is kept unchanged.)

3.4 Algorithm ψ

We now present algorithm ψ which forms a pattern F̃) F such that c(F̃) = c(I)

and r(F̃) = r(I), when starting from an initial configuration I, provided that

ρ(I) divides ρ(F). Note that F̃ 	= F may hold, but to save symbols, we use F to

denote F̃ . Indeed ψ forms F ∗ as F̃ .
As explained in Subsection 3.1, we assume (1) n ≥ 4, (2) c(I) 	∈ I, (3) c(F) 	∈

F , (4) c(F) = 0, and (5) r(F) = 1. The cases in which n = 4 and F is regular,
are exceptional cases and are explained later.

The algorithm consists of four phases, Phases 1–4. We explained that the
aim of Phase 3 is to move the robots in Circum(I) to the matched points,
while keeping r(I) unchanged, which may be impossible when �Circum(I) = 2.
Such a situation must occur if �Circum(F) = 2 since no robot comes to C(I)
in Phase 2. To treat the case, a more delicate implementation of Phase 1 is
requested. In the following, we first describe Phases 1–4 for I and F such that
�Circum(I) 	= 2 or �Circum(F) 	= 2 holds, and then show Phase 1 for the case
in which �Circum(I) = 2 and �Circum(F) = 2 hold.

Algorithm ψ for Case �Circum(I) > 2 ∨ �Circum(F) > 2:
(Phase 1). The mF -gon H is obtained by scaling down F0 with keeping c(F)
unchanged so that H is placed in the interior of L(F) and L(I), since we cannot
use F0 as H in general for our purpose. To see this, consider Figure 4 (a),
where r(F0) = r(F1) = l(F). If the four points in L(F0) are occupied by robots
(Figure 4 (b)), ρ(I) becomes larger than ρ(F), and violates our basic assumption
that ρ(F) is divisible by ρ(I).

322 N. Fujinaga et al.

We define the radius δ of H as follows: On I, let us draw circles all with
center c(I), whose radii are (r(I)l(F))/(r(F)2k) for all k = 1, 2, (If we place
F on I in such a way that r(I) = r(F), then the radii are l(F)/2k.) These
radii are candidates for δ. We select δ as follows: If more than ρ(I) robots are
on L(I), δ is the largest (r(I)l(F))/(r(F)2k) such that (r(I)l(F))/(r(F)2k) <
l(I), and otherwise if exactly ρ(I) robots are on L(I), then δ is the largest
(r(I)l(F))/(r(F)2k) such that (r(I)l(F))/(r(F)2k) ≤ l(I). Notice the difference
between < and ≤. Since l(I) > 0, δ is well defined, and δ < l(I) if there are
more than ρ(I) robots on L(I).

Intuitively, Phase 1 forms H with radius δ, by moving robots in I0, I1, . . . ,
ImF /mI−1, group by group. Formally, we implement this process as follows: Let
I be the configuration when a robot ri gets up. It calculates δ. Let q ∈ I0. It
defines Z∗

i (= Z(I, q)) and embeds F ′ = F \F0+F0/2
k, where k is an integer such

that δ = (r(I)l(F))/(r(F)2k) holds, and F0/2
k = {f/2k : f ∈ F} in terms of Z∗

i .
The points in I ∩ F0/2

k (where I is in Z∗
i) correspond to the robots already in

H . For each pattern points p ∈ F0/2
k \I, we calculate the nearest robot position

p′ ∈ I (ties are broken in a clockwise manner), and have each of them move

along the curve
�
p′p, if it belongs to the smallest j such that Ij 	⊆ F0/2

k.
If q ∈ H , Z∗

i does not change during Phase 1 (indeed until Phase 4), and it
works as the normalized coordinate system, since it will not move until Phase 4
starts. On the other hand, if q is on the way to the circle, since q ∈ I0, q moves
toward c(I), and hence Z∗

i never change by the move of q. Thus again Z∗
i can

work as the stable normalized coordinate system.

r1

r2

r3

r4

r1

r2

r3

r4

r1

r2

r3
r4

r1

r2

r3 r4

(a) (b) (c) (d)

Fig. 5. An example of an execution of Phase 1. In (a), I0 = {r1, r2} and they start
moving. In (b), I2 = {r3, r4} and they start moving. In (c), only r4 reached, and r3
starts moving. In (d), H ⊂ I and Phase 1 finished.

(Phase 2). A robot ri who notices that H has been formed, defines Z∗
i , embeds

F ′, and invokes the CWM, if ri is not on C(I).
(Phase 3). A robot ri at location p ∈ I on C(I) who notices that all robots in
Interior(I) have reached their destinations, calculates all the matching between
the robots on C(I) and the remaining points in F ′ as explained in Phase 1.
(Note that ri still keeps the embedding in terms of Z∗

i and this phase does not

change Z∗
i .) If its matched point f is in C(F), then it moves along the curve

�
pf .

Asynchronous Pattern Formation by Anonymous Oblivious Mobile Robots 323

(Since both p and f are on C(I)(= C(F)),
�
pf is a part of C(I).) It is important

to observe that there are no other robots in
�
pf , since it belongs to an optimum

matching.
However, all the robots cannot gather in a half side of C(I), since the size of

C(I) shrinks and the embedding changes. To keep C(I), each robot ri needs to
check if this move does not make it critical; if this move does not change C(P).

If there is a point p′ in
�
pf that makes it critical, ri moves up to the middle point

of the arc
�
pp′. Since �Circum(I) > 2 or �Circum(F) > 2, there are at least three

points on C(I), and ri eventually reaches its destination.
After all points in FmF−1 have received robots, the other robots in C(I),

which are matched with points in Interior(I), move to complete the formation
for F ′.
(Phase 4). Finally a robot in p/2k ∈ F0/2

k, when it notices that F ′ has been
formed, move to point p, to finally form F . Because this robot heads in a straight
line to p, the normalized coordinate system does not change. ��
Algorithm ψ for Case �Circum(I) = 2 ∧ �Circum(F) = 2:
As explained, Phase 3 above does not correctly work when �Cicum(I) = 2 and
�Cicum(F) = 2, since both of robots in C(I) are critical. That is, they cannot
change their positions in Phase 3. To remove the necessity of Phase 3, we adjust
the direction of H in Phase 1, by using the locations of the robots in the last
group In/mI−1, so that they will not change during the execution. Phase 2 and
Phase 4 are same as ψ, and we only explain Phase 1.

If ρ(F) = 1, then ρ(I) = 1. Let ri be the single robot in I0. The normalized
coordinate systems of all robots are identical. Then ri first forms H as in the
Phase 1 of ψ. H is on the largest empty circle L(I) centered at c(I). Then ri
moves along L(I) until it reaches a point p on L(I), where Z(I, p) embeds F in
such a way that the two robots in In/mI−1 do not move during the formation.

Otherwise, ρ(F) = 2, robot ri selects a point q from In/mI−1 to use Z(I, q) as
its imaginary coordinate system. Because ρ(F) = 2, the two points in In/mF−1

embeds F consistently. ��
We showed the algorithm ψ. Consequently, we have the following lemma.

Lemma 1. Let F, I ∈ Pn for any n ≥ 5. Then F is formable from an initial
configuration I, if and only if ρ(I) divides ρ(F).

The remaining cases are (i) F is a regular n-gon, and (ii) n = 4. These cases are
treated by slight modification to ψ.

Lemma 2. Let F, I ∈ Pn for any n ≥ 4 and ρ(F) = n. Then F is formable
from an initial configuration I, if and only if ρ(I) divides ρ(F).

Proof. If ρ(I) = n, the formation is completed. Otherwise, the n-gon is formed
with keeping I0 to fix the normalized coordinate systems. Let F ′′ be a subset of
F obtained by scaling up I0 by r(F)/l(I) with keeping the center at c(I). Each
robot defines Z∗

i and embeds F \F ′′ and moves in the same way as Phase 2 and

324 N. Fujinaga et al.

Phase 3 of ψ. After F \ F ′′ is formed, the robots in I0 move directly to their
destinations in F ′′. Because each robot ri ∈ I0 moves directly, the embedding of
F does not change. ��

Lemma 3. Let F, I ∈ P4. Then F is formable from an initial configuration I,
if and only if ρ(I) divides ρ(F).

Proof. By Lemma 2, we can assume ρ(F) = 1, 2. Hence, we have two cases. If
ρ(F) = 2, then �Circum(F/F0) = 2. Thus, all robots in Circum(I) are critical
in Phase 3 of algorithm ψ. In this case, we re-embed the target pattern by using
the locations of robots in In/mF−1 as in the case �Circum(I) = �Circum(F) = 2.
Then the robots in Interior(I) invoke the CWM algorithm and the formation
is completed.

If ρ(F) = 1, we have two cases. If �Circum(F) ≥ 3 or �Circum(I) ≥ 3, in
Phase 3 of ψ, all robots in Circum(I) are not critical and algorithm ψ forms
the target pattern. Otherwise, we re-embed the target pattern as in the previous
case and use the CWM algorithm to complete the formation. ��

Finally, we have the following corollary and complete the proof of Theorem 1.

Corollary 1. Let F, I ∈ Pn for any n ≥ 4. Then F is formable from an initial
configuration I, if and only if ρ(I) divides ρ(F).

4 Concluding Remark

In this paper, we investigated the pattern formation problem for anonymous
oblivious ASYNCH robots, and gave an algorithm ψ that forms a given pattern
F from any initial configuration I, if ρ(I) divides ρ(F), provided that both I and
F do not contain multiplicities. Since there is no pattern formation algorithm if
ρ(F) is not divisible by ρ(I), even for non-oblivious FSYNCH robots, we conclude
that oblivious ASYNCH robots have the same formation power as non-oblivious
FSYNCH robots (for robots without the multiplicity test capability). We have
used (a modified) clockwise matching algorithm CWM in [6] as a core procedure,
which makes the description and the verification of ψ simple and compact.

Compared with the results for SSYNCH robots [10], the one here is weaker
in two points; first our result does not cover patterns with multiplicities, and
second it does not take into account the local coordinate systems as a tool to
break a symmetric situation. Extending the result to these directions seems to
be challenging, although we conjecture:

Conjecture 1. Any pattern F is formable by anonymous oblivious ASYNCH
robots from an initial configuration I without multiplicities, if and only if σ(I)
divides ρ(F).

Finally, not only from the view of theory, but also from the view of practice, the
time necessary to form a pattern is an important performance measure. We leave
an analysis of the time complexity of formation problem as another challenging
open problem.

Asynchronous Pattern Formation by Anonymous Oblivious Mobile Robots 325

References

1. Bandettini, A., Luporini, F., Biglietta, G.: A survey on open problems for mobile
robots, arXiv:1111.2259v1 (2011)

2. Cieliebak, M., Flocchini, P., Prencipe, G., Santoro, N.: Solving the Robots Gather-
ing Problem. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.)
ICALP 2003. LNCS, vol. 2719, pp. 1181–1196. Springer, Heidelberg (2003)

3. Dijkstra, E.W.: Self stabilizing systems in spite of distributed control. Commu.
ACM 17, 643–644 (1974)

4. Dieudonné, Y., Petit, F., Villain, V.: Leader Election Problem versus Pattern For-
mation Problem. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS,
vol. 6343, pp. 267–281. Springer, Heidelberg (2010)

5. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation
by asynchronous, anonymous, oblivious robots. Theoretical Computer Science 407,
412–447 (2008)

6. Fujinaga, N., Ono, H., Kijima, S., Yamashita, M.: Pattern Formation through Op-
timum Matching by Oblivious CORDA Robots. In: Lu, C., Masuzawa, T., Mosbah,
M. (eds.) OPODIS 2010. LNCS, vol. 6490, pp. 1–15. Springer, Heidelberg (2010)

7. Izumi, T., Soussi, S., Katayama, Y., Inuzuka, N., Défago, X., Wada, K., Yamashita,
M.: The gathering problem for two oblivious robots with unreliable compasses.
SIAM J. of Comput. 41(1), 26–46 (2012)

8. Nagamochi, H., Yamashita, M., Ibaraki, T.: Distributed algorithm for cooperative
controlling of anonymous mobile robots. Technical Reports of IEICE, COMP95-24,
pp. 31–40 (1995) (in Japanese)

9. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM J. of Comput. 28(4), 1347–1363 (1999)

10. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious
anonymous mobile robots. Theoretical Computer Science 411, 2433–2453 (2010)

How to Gather Asynchronous Oblivious Robots

on Anonymous Rings

Gianlorenzo D’Angelo1, Gabriele Di Stefano2, and Alfredo Navarra3

1 MASCOTTE Project, INRIA/I3S(CNRS/UNSA), France
gianlorenzo.d angelo@inria.fr

2 Dipartimento di Ingegneria e Sceinze dell’Informazione e Matematica,
Università degli Studi dell’Aquila, Italy

gabriele.distefano@univaq.it
3 Dipartimento di Matematica e Informatica, Università degli Studi di Perugia, Italy

alfredo.navarra@unipg.it

Abstract. A set of robots arbitrarily placed on different nodes of an
anonymous ring have to meet at one common node and remain in there.
This problem is known in the literature as the gathering. Anonymous and
oblivious robots operate in Look-Compute-Move cycles; in one cycle,
a robot takes a snapshot of the current configuration (Look), decides
whether to stay idle or to move to one of its neighbors (Compute), and in
the latter case makes the computed move instantaneously (Move). Cycles
are asynchronous among robots. Moreover, each robot is empowered by
the so called multiplicity detection capability, that is, it is able to detect
during its Look operation whether a node is empty, or occupied by one
robot, or occupied by an undefined number of robots greater than one.

The described problem has been extensively studied during the last
years. However, the known solutions work only for specific initial configu-
rations and leave some open cases. In this paper, we provide an algorithm
which solves the general problem, and is able to detect all the ungather-
able configurations. It is worth noting that our new algorithm makes use
of a unified and general strategy for any initial configuration, even those
left open by previous works.

1 Introduction

We study one of the most fundamental problems of self-organization of mobile
entities, known in the literature as the gathering problem (see e.g., [8,10,14] and
references therein). In particular, we consider oblivious robots initially located
at different nodes of an anonymous ring that have to gather at a common node
and remain in there. Neither nodes nor links are labeled. Initially, each node
of the ring is either occupied by one robot or empty. Robots operate in Look-
Compute-Move cycles. In each cycle, a robot takes a snapshot of the current
global configuration (Look), then, based on the perceived configuration, takes
a decision to stay idle or to move to one of its adjacent nodes (Compute), and
in the latter case it moves to this neighbor (Move), eventually. Cycles are per-
formed asynchronously for each robot. This means that the time between Look,

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 326–340, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

How to Gather Asynchronous Oblivious Robots on Anonymous Rings 327

Compute, and Move operations is finite but unbounded, and it is decided by the
adversary for each robot. Hence, robots may move based on significantly out-
dated perceptions. Moves are instantaneous, and hence during a Look operation
robots are seen at nodes and not on edges. Robots are identical, execute the
same deterministic algorithm and are empowered by the so-called multiplicity
detection capability [15]. That is, a robot is able to perceive whether a node of
the network is empty, occupied by a single robot or by more than one (i.e., a
multiplicity occurs), but not the exact number. Without multiplicity detection
the gathering has been shown to be impossible on rings [20].

Related Work. The problem of let meet mobile entities on graphs [2,11,20] or
open spaces [5,10,22] has been extensively studied in the last decades. When
only two robots are involved, the problem is referred to as the rendezvous
problem [1,4,6,11,23]. Under the Look-Compute-Move model, many problems
have been addressed, like the graph exploration and the perpetual graph explo-
ration [3,12,13], while the rendezvous problem has been proved to be unsolvable
on rings [20].

Concerning the gathering, different types of robot disposals on rings (configura-
tions) have required different approaches. In particular, periodicity and symmetry
arguments have been exploited. A configuration is called periodic if it is invariable
under non-trivial (i.e., non-complete) rotation. A configuration is called symmet-
ric if the ring has a geometrical axis of symmetry, that reflects single robots into
single robots, multiplicities into multiplicities, and empty nodes into empty nodes.
A symmetric configuration with an axis of symmetry has an edge-edge symme-
try if the axis goes through two edges; it has a node-edge symmetry if the axis
goes through one node and one edge; it has a node-node symmetry if the axis goes
through two nodes; it has a robot-on-axis symmetry if there is at least one node on
the axis of symmetry occupied by a robot. In [20], it is proved that the gathering is
not solvable for periodic configurations, for those with edge-edge symmetry, and
if the multiplicity detection capability is removed. Then all configurations with an
odd number of robots, and all the asymmetric configurations with an even num-
ber of robots have been solved by different algorithms. In [19], the attention has
been devoted to the symmetric cases with an even number of robots, and the prob-
lem was solved when the number of robots is greater than 18. These left open the
gatherable symmetric cases of an even number of robots between 4 and 18. Most
of the cases with 4 robots have been solved in [21]. The remaining ones, referred
to as the set SP4, are symmetric configurations of type node-edge with 4 robots
and the odd interval cut by the axis bigger than the even one. They are ungather-
able, in general, as outlined in [19] for configurations of 4 robots on a five nodes
ring. Actually, specific configurations in SP4 could be gatherable but requiring
suitable strategies difficult to be generalized.

Finally, the case of 6 robots with an initial axis of symmetry of type node-
edge, or node-node has been solved in [8]. Besides the cases left open, a unified
algorithm that handles all the above cases is also missing.

Other interesting gathering results on rings concern the case of the so called local
weak multiplicity detection. That is, a robot is able to perceive themultiplicity only

328 G. D’Angelo, G. Di Stefano, and A. Navarra

if it is part of it. On this respect, our assumption in the rest of the paper concerns
the global weak multiplicity detection. Whereas, the strong version would provide
the exact number of robots on a node.

Using the local weak assumption, not all the cases has been addressed so
far. In [16], it has been proposed an algorithm for aperiodic and asymmetric
configurations with the number of robots k strictly smaller than

⌊
n
2

⌋
, with n

being the number of nodes composing the ring. In [17], the case where k is odd
and strictly smaller than n−3 has been solved. In [18], an algorithm for the case
where n is odd, k is even, and 10 ≤ k ≤ n− 5 is provided. The remaining cases
are still open and a unified algorithm like the one we are proposing here for the
global weak assumption is not known.

Without any multiplicity detection, in [7] the grid topology has been exhaus-
tively studied.

Our Results. In this paper, we present a new distributed algorithm for solving
all the gatherable configurations (but those potentially in SP4) by using the
(global weak) multiplicity detection. Our technique introduces a new approach
and for some special cases makes use of previous ones. In particular, existing
algorithms are used as subroutines for solving the basic gatherable cases with 4
or 6 robots from [21] and [8], respectively. Also, we exploit:

Property 1. [20] Let C be a symmetric configuration with an odd number of
robots, without multiplicities. Let C′ be the configuration resulting from C by
moving the unique robot on the axis to any of its adjacent nodes. Then C′

is either asymmetric or still symmetric but aperiodic. Moreover, by repeating
this procedure a finite number of times, eventually the configuration becomes
asymmetric (with possibly one multiplicity).

For all the other gatherable configurations, we design a new approach that has
been suitably unified with the used subroutines. Our result answers to the posed
conjectures concerning the gathering, hence closing all the cases left open, and
providing a general approach that can be applied to all the initial configurations.
The main result of this paper can be stated as follows.

Theorem 1. There exists a distributed algorithm for gathering k > 2 robots on
a ring, provided that the composed configuration does not belong to the set SP4,
it is aperiodic, it does not admit an edge-edge axis of symmetry. The algorithm
also allows robots to recognize whether a configuration is ungatherable.

2 Definitions and Preliminaries

We consider an n-nodes anonymous ring without orientation. Initially, k nodes
of the ring are occupied by k robots. During a Look operation, a robot perceives
the relative locations on the ring of multiplicities and single robots. The current
configuration of the system can be described in terms of the view of a robot r.
We denote a configuration seen by r as a tuple Q(r) = (q0, q1, . . . , qj), j ≤ k− 1,
that represents the sequence of the numbers of free consecutive nodes broken up

How to Gather Asynchronous Oblivious Robots on Anonymous Rings 329

a)

y′

x

z′

y

x′

z

b)

z

x

y

Fig. 1. a) The intervals between robots y, z and y′, z′ are the supermins, while the
supermin configuration view is (1, 2, 1, 2, 1, 3). b) Black nodes represent multiplicities.

by robots when traversing the ring in one direction, starting from r. Abusing
the notation, for any 0 ≤ i ≤ j, we refer by qi not only to the length of the
i-th interval but also to the interval itself. Unless differently specified, we refer
to Q(r) as the lexicographical minimum view among the two possibilities. For
instance, in the configuration of Fig. 1a, we have that Q(x) = (1, 2, 1, 3, 1, 2). A
multiplicity is represented as qi = −1 for some 0 ≤ i ≤ j, regardless the number
of robots in the multiplicity. For instance, in the configuration of Fig. 1b, Q(x) =
(1,−1, 0, 1, 0,−1, 1, 1, 3, 1). Given a generic configuration C = (q0, q1, . . . , qj), let
C = (q0, qj , qj−1, . . . , q1), and let Ci be the configuration obtained by reading C
starting from qi, that is Ci = (qi, q(i+1) mod j+1, . . . , q(i+j) mod j+1). The above
definitions imply:

Property 2. Given a configuration C,

i) there exists 0 < i ≤ j such that C = Ci iff C is periodic;
ii) there exists 0 ≤ i ≤ j such that C = (Ci) iff C is symmetric;
iii) C is aperiodic and symmetric iff there exists only one axis of symmetry.

The next definition represents the key feature for our algorithm since it has a
twofold advantage. In fact, based on it, a robot can distinguish if the perceived
configuration (during the Look phase) is gatherable and if it is one of the robots
allowed to move (during the Compute phase).

Definition 1. Given a configuration C = (q0, q1, . . . , qj) such that qi ≥ 0, for

each 0 ≤ i ≤ j, the view defined as CSM = min{Ci, (Ci), | 0 ≤ i ≤ j} is called
the supermin configuration view. An interval is called supermin if it belongs to
the set IC = {qi | Ci = CSM or (Ci) = CSM , 0 ≤ i ≤ j}.

The next lemma, based on Definition 1, is exploited to detect possible symmetry
or periodicity features of a configuration:

Lemma 1. Given a configuration C = (q0, q1, . . . , qj) with qi ≥ 0, 0 ≤ i ≤ j:

1. |IC | = 1 if and only if C is either asymmetric and aperiodic or it admits
only one axis of symmetry passing through the supermin;

2. |IC | = 2 if and only if C is either aperiodic and symmetric with the axis not
passing through any supermin or it is periodic with period n

2 ;
3. |IC | > 2 if and only if C is periodic, with period at most n

3 .

330 G. D’Angelo, G. Di Stefano, and A. Navarra

Proof. 1.⇒) If |IC | = 1, then if C is symmetric, there exists at least an axis of
symmetry. This axis must pass through the supermin, as otherwise there exists
another interval of the same size of supermin to which the supermin is reflected
with respect to the axis. However, the same should hold for every neighboring
interval of the supermin and so forth. Since by hypothesis, supermin is unique,
there must exist at least two intervals of different sizes that are reflected by the
supposed symmetry, and hence C results asymmetric.

If C is asymmetric then it must be aperiodic, as otherwise there exists 0 <
i ≤ j such that C = Ci and this implies more than one copy of the supermin.

1.⇐) If C is asymmetric and aperiodic, then Ci 	= (Ci), Ci 	= C� and Ci 	=
(C�), for each i and � 	= i and hence must exist a unique supermin. If C admits
only one axis of symmetry traversing the supermin, then there exists a unique
0 ≤ i ≤ j such that CSM = Ci = (Ci) as otherwise Property 2 would imply the
existence of other axes of symmetry, one for each supermin.

2.⇒) If |IC | = 2 and C is asymmetric, then by Property 2, it is periodic and
the period must be of n

2 . If |IC | = 2 and C is aperiodic and symmetric, the
axis of symmetry cannot pass through both the supermins. In fact, if it does,
CSM = (CSM) = (CSM)j/2 = (CSM)j/2 that implies (CSM)�j/4� = (CSM)�j/4�,
i.e., there exists another axis of symmetry orthogonal to the first one that reflects
the supermin into the other supermin. Hence, C would be periodic.

2.⇐) If C is aperiodic and symmetric with the unique axis not passing through
any supermin, then each supermin must be reflected by the axis to another one.
Moreover, there cannot be more than 2 supermins, as by definition of supermin,
these imply other axes of symmetry, i.e., by Property 2, C is periodic. If C is
periodic with period n

2 , then any supermin has an exact copy after n
2 intervals,

and there cannot be other supermins, as otherwise the period would be smaller.
3.⇒) If |IC | > 2, then there are at least 3 supermins, and hence C has a

period of at most n
3 .

3.⇐) If C has a period of at most n
3 , then a supermin is repeated at least 3

times in C. �

2.1 A First Look to the Algorithm

The above lemma already provides useful information for a robot when it wakes
up. In fact, during the Look operation, it can easily recognize if the configuration
contains only 2 robots, or if it belongs to the set SP4, or if |IC | > 2 (i.e., the
configuration is periodic), or in case |IC | = 2, if the configuration admits an edge-
edge axis of symmetry or it is again periodic. After this check, a robot knows
if the configuration is gatherable, and proceeds with its computations. Indeed,
we will show in the next section that all the other configurations are gatherable.
From now on, we do not consider the above ungatherable configurations.

The main strategy allows only movements that affect the supermin. In fact,
if there is only one supermin, and the configuration allows its reduction, the
subsequent configuration would still have only one supermin (the same as before
but reduced), or a multiplicity is created. In general, such a strategy would
lead asymmetric configurations or also symmetric ones with the axis passing

How to Gather Asynchronous Oblivious Robots on Anonymous Rings 331

through the supermin to create one multiplicity where the gathering will be
easily finalized by collecting at turn the closest robots to the multiplicity.

For gatherable configurations with |IC | = 2, our algorithm requires more
phases before creating the final multiplicity where the gathering ends. In this case
there are two supermins that can be reduced. If both are reduced simultaneously,
then the configuration is still symmetric and gatherable. Possibly, it contains
two symmetric multiplicities. In fact, this is the status that we want to reach
even when only one of the two supermins is reduced. In general, the algorithm
tries to preserve the original symmetry or to create a gatherable symmetric
configuration from an asymmetric one. It is worth to remark that in all symmetric
configurations with an even number of robots, the algorithm always allows the
movement of two symmetric robots. Then it may happen that, after one move,
the obtained configuration is either symmetric or it is asymmetric with a possible
pending move. In fact, if only one robot among the two allowed to move performs
its movement, it is possible that its symmetric one either has not yet started its
Look phase, or it is taking more time. If there might be a pending move, then
the algorithm forces it before any other decision.

In contrast, asymmetric configurations cannot produce pending moves as the
algorithm allows the movement of only one robot. In fact, we reduce the unique
supermin by deterministically distinguish among the two adjacent robots, until
one multiplicity is created. Finally, all the other robots will join the multiplicity
one-by-one. In some special cases, from asymmetric configurations at one “al-
lowed” move from symmetry (i.e., with a possible pending move), robots must
guess which move would have been realized from the symmetric configuration,
and force it in order to avoid unexpected behaviors. By doing this correctly,
the algorithm brings the configuration to have two symmetric multiplicities as
above, eventually. From here, a new phase that collects all the other robots but
two into the multiplicities starts. Still the configuration may move from sym-
metric configurations to asymmetric ones at one move from symmetry. Once the
desired symmetric configuration with two multiplicities and two single robots is
reached, a new phase starts and moves the two multiplicities to join each other.
The node where the multiplicities join represents the final gathering location.

3 Gathering Algorithm

The algorithm works in 5 phases that depend on the configuration perceived by
the robots, see Fig. 2. First, it starts from a configuration without multiplicities
and performs phase multiplicity-creation whose aim is to create one multi-
plicity, where all the robots will eventually gather, or a symmetric configuration
with two multiplicities. In the former case, phase convergence is performed
to gather all the robots into the multiplicity. In the latter case, phases collect
and then multiplicity-convergence are performed in order to first collect
all the robots but two into the two multiplicities and then to join the two multi-
plicities into a single one. After that, phase convergence is performed. Special
cases of 7 nodes and 6 robots are considered separately in phase seven-nodes.

332 G. D’Angelo, G. Di Stefano, and A. Navarra

multiplicity-creation collect

convergenceseven-nodes

mult.-convergence

Fig. 2. Phases interchanges

Due to space constraints, we do provide the details only for the first phase
multiplicity-creation. The formal descriptions of the other phases can be
found in the full version of the paper [9].

We can show how robots interchange from one phase to another until the final
gathering is achieved. In each phase we can distinguish the type of configuration
and provide the algorithm to be performed by robots for each of these types. The
way how a robot can identify the type of configuration will be outlined later.

3.1 Phase Multiplicity-Creation

The main idea is to reduce the supermin by enlarging the largest interval adjacent
to it as follows:

Definition 2. Let Q(r) = (q0, q1, . . . , qj) be a supermin configuration view, then
robot r performs the reduction if the obtained configuration after its move is
(q0 − 1, q1, . . . , qj + 1).

The pseudo-code of reduction is shown above. The procedure, first checks
whether the robot perceives the supermin configuration view by comparing the
configuration C perceived by the robot with CSM . Note that, in asymmetric
configurations, the robot that perceived CSM is the one among the two robots
at the sides of the supermin allowed to move. In fact, the robot on the other
side would perceive the configuration C and, by definition of CSM , we have
CSM = C < C, as the configuration is asymmetric. Then, the procedure moves
the robot towards the supermin. In symmetric configurations, the test at line 1
returns true for both robots adjacent to the unique supermin or for the two
symmetric robots that perceive CSM in case that |IC | = 2.

It is worth to note that, from a symmetric configuration, always two robots
can perform the reduction when it is possible to perform it. If only one of them
does it, the obtained configuration will contain exactly one supermin. However, if
the perceived configuration contains only one supermin and it is not symmetric,
the robots are able to understand whether there might be a pending move to

How to Gather Asynchronous Oblivious Robots on Anonymous Rings 333

Procedure: reduction
Input: C = (q0, q1, . . . , qj)

1 if C = CSM then move towards q0;

re-establish the original symmetry or not. This constitutes one of the main results
of the paper and it is obtained from the following lemma.

Lemma 2. Let C be a configuration with more than 2 single robots and let C′

be the one obtained from C after a reduction performed by a single robot. If C
is asymmetric then C′ is at least at two moves from a symmetric configuration;
if C is symmetric then C′ is at least at two moves from any other symmetric
configuration with an axis of symmetry different from that of C.

Proof. By Lemma 1, two cases may arise: there exists only one supermin in C
or the configuration is symmetric and contains exactly two supermins.

We now show that in the case that there exists only one supermin in C,
then C′ is at least two moves from any symmetric configuration with the
axis different from that passing through the supermin. By Lemma 1, it is
enough to show that C′ requires more than one move to create another super-
min different from that of C. Let us consider the supermin configuration view
CSM = (q0, q1, . . . , qj). For the sake of simplicity, let us assume that, for each

i = 1, 2, . . . , j, (CSM)i < (CSM)i, the case where, for some i, (CSM)i > (CSM)i
is similar. The case that (CSM)i = (CSM)i cannot occur as, otherwise, there
exists an axis of symmetry passing through qi, but, by Lemma 1, as |IC | = 1,
the possible axis of symmetry can only pass through q0. By definition of su-
permin, for each (CSM)i, i = 1, 2, . . . , j, there exists ki ∈ {0, 1, . . . , j} such
that: q� = q(i+�) mod j+1, for each � < ki; and qki < q(i+ki) mod j+1. Note that
(i + ki) mod j + 1 	= 0 as otherwise it contradicts the hypothesis of minimality

of q0. Moreover, ki 	= j as otherwise
∑j

�=0 q� =
∑ki

�=0 q� <
∑ki

�=0 q(i+�) mod j+1 =∑j
�=0 q(i+�) mod j+1, that is a contradiction. From C′, the supermin configuration

view is C′SM = (q′0, q
′
1, . . . , q

′
j) = (q0 − 1, q1, . . . , qj + 1) and we have that, for

each i = 1, 2, . . . , j, two cases may arise: if ki > 0, then q′0 = q0 − 1 < qi = q′i
and q′ki

= qki < q(i+ki) mod j+1 = q′(i+ki) mod j+1; if ki = 0, then q′0 = q0 − 1 <

qi − 1 = q′i − 1. In any case, C′SM differs from (C′SM)i by two units. It follows
that C′ is at least two moves from any symmetric configuration with the axis
different from that passing through the supermin. In fact, in order to obtain
another axis of symmetry by performing only one move on C′, (C′SM)i has to
differ from C′SM by at most one unit. This is enough to show the statement
for the case of symmetric configurations with exactly one supermin. Regarding
the asymmetric case, it remains to show that C′ is at least two moves from
any symmetric configuration with the axis passing through the supermin. In an
asymmetric configuration CSM = (q0, q1, . . . , qj) there exists a qk, 1 ≤ k ≤ j

2 ,
such that q� = q(j+1−�) mod j+1, for each � < k, and qk < qj+1−k. From C′, the
supermin configuration view is C′SM = (q′0, q

′
1, . . . , q

′
j) = (q0 − 1, q1, . . . , qj + 1)

334 G. D’Angelo, G. Di Stefano, and A. Navarra

Function: symmetric

Input : C = (q0, q1, . . . , qj)
Output: true if C is symmetric, false otherwise

1 for i = 0, 1, . . . , j do

2 if C = Ci then return true;

3 return false;

and two cases may arise: if k > 1, then q′1 = q1 = qj < qj + 1 = q′j and
q′k = qk < qj−1−k = q′j−1−k; if k = 1, then q′1 = q1 < qj = q′j − 1. It follows that
C′ is at least two moves from any symmetric configuration with the axis passing
through the supermin.

Regarding the case of symmetric configurations with exactly 2 supermins,
we use similar arguments as above. Let us consider the supermin configuration
view CSM = (q0, q1, . . . , qj) and let us assume that h is the index such that

CSM = (CSM)h. By definition, for each (CSM)i, i ∈ {1, 2, . . . , j} \ {h}, there
exists ki ∈ {0, 1, . . . , j} such that: q� = q(i+�) mod j+1, for each � < ki, and

qki < q(i+ki) mod j+1. As above we are assuming that (CSM)i < (CSM)i and
we can show that ki 	= j, ki 	= (j + h) mod j + 1, (ki + i) mod j + 1 	= 0, and
(ki + i) mod j + 1 	= h. From C′, the supermin configuration view is C′SM =
(q′0, q

′
1, . . . , q

′
j) = (q0−1, q1, . . . , qj+1) we have that, for each i ∈ {1, 2, . . . , j}\{h}

two cases may arise: if ki > 0, then q′0 = q0 − 1 < qi = q′i and q′ki
= qki <

q(i+ki) mod j+1 = q′(i+ki) mod j+1; if ki = 0, then q′0 = q0 − 1 < qi − 1 = q′i − 1.

In any case, C′SM differs from (C′SM)i by two units. Similar arguments to the
ones used for the asymmetric case can show that C′ is at least two moves from
any symmetric configuration with the axis passing through the supermin. �

It follows that we can derive C from C′ by enlarging the supermin of C′. This
equals to reduce the largest adjacent interval (i.e., by performing the reduc-

tion backwards) hence deducing the possible original axis of symmetry and then
performing the possible pending reduction. Before providing the designed pro-
cedures, we need the following definition:

Definition 3. Given a configuration C = (q0, q1, . . . , qj), the view defined as

CSSM = min{Ci, (Ci) | Ci 	= CSM and (Ci) 	= CSM , 0 ≤ i ≤ j} is called the
second supermin configuration view.

As shown above, Procedure symmetric checks whether a configuration C
is symmetric by exploiting Property 2. Procedure check reduction checks
whether an asymmetric configuration C has been obtained from some symmet-
ric configuration Ĉ by performing reduction. Procedure pending reduction

performs the pending reduction.
At line 1, Procedure check reduction looks for the index k such that qk

is the supermin, as it is the only candidate for being the interval that has
been reduced by a possible reduction. Then, at lines 2–4, it computes the

How to Gather Asynchronous Oblivious Robots on Anonymous Rings 335

Function: check reduction

Input : C = (q0, q1, . . . , qj)
Output: (true, Ĉ) if C is obtained from Ĉ by performing reduction, (false, ∅)

if C has not been obtained by performing reduction

1 Let k such that Ck = CSM or Ck = CSM ;
2 if q(k−1) mod j+1 > q(k+1) mod j+1 then

Ĉ := (q0, q1, . . . , q(k−1) mod j+1 − 1, qk + 1, . . . , qj);
3 else
4 if q(k−1) mod j+1 < q(k+1) mod j+1 then

Ĉ := (q0, q1, . . . , qk + 1, q(k+1) mod j+1 − 1, . . . , qj);
5 else return (false,∅);
6 if symmetric(Ĉ) then return (true, Ĉ);
7 return (false,∅);

Procedure: pending reduction

Input: C = (q0, q1, . . . , qj)

1 (b, Ĉ) = check reduction (C) ;

2 if b and (min{Ĉ, Ĉj} = ĈSM or min{Ĉ, Ĉj} = ĈSSM) and min{C,Cj} �= CSM

then move towards q0;

configuration Ĉ before the possible reduction. This is done by enlarging qk
and reducing the largest interval among q(k−1) mod j+1 and q(k+1) mod j+1. If

q(k−1) mod j+1 = q(k+1) mod j+1 or Ĉ is not symmetric, then C has not been ob-
tained by performing a reduction from a symmetric configuration. Then, the
procedure returns (false, ∅). If Ĉ is symmetric, then C has been obtained by
performing reduction on Ĉ and hence the procedure returns (true, Ĉ).

Procedure pending reduction uses check reduction to check whether
C has been obtained by performing reduction on a configuration Ĉ (lines 1
and 2). At line 2 the procedure checks whether the robot is at a side of one of

the two supermins of Ĉ (min{Ĉ, Ĉj} = ĈSM) and if it has not yet performed
reduction (min{C,Cj} 	= CSM). In the affirmative case, the robot has to move
towards the supermin (line 2). The robot moves towards q0 also if it is at the

side of the second supermin of Ĉ (min{Ĉ, Ĉj} = ĈSSM). This corresponds to a
move different from reduction that will be explained later in this section.

In general, it is not always possible to perform reduction. In fact, there
are cases where it may lead to ungatherable configurations. These cases will
be managed separately. However, we will show that a robot is always able to
understand that there might be a pending move also for the other moves allowed
by our algorithm from symmetric configurations.

When it is not possible to perform reduction, we either reduce the second
supermin or we perform the xn move that is defined in the following:

336 G. D’Angelo, G. Di Stefano, and A. Navarra

Definition 4. Let C be a configuration:
– If C is symmetric and there are no multiplicities, xn corresponds to moving

towards the axis the two symmetric robots closest to the axis of symmetry
that are divided by at most one robot and are not adjacent to a supermin;1

– If C is symmetric and there is only one multiplicity, xn corresponds to mov-
ing towards the multiplicity the two symmetric robots closest to the multi-
plicity;

– If C is asymmetric and it has been possibly obtained by applying xn from a
symmetric configuration C′ (that is, from C′ only one of the two robots on
the above cases has moved), then xn on C corresponds to moving the second
closest robot towards the axis/multiplicity;

– If C is asymmetric with a multiplicity and it cannot be obtained by applying
xn from a symmetric configuration, then xn corresponds to moving the robot
lexicographically closest to the multiplicity towards it.

Each time a robot wakes up, it needs to find out which kind of configuration it is
perceiving, and, if it is allowed to move, it needs to compute the right move to be
performed. We need to distinguish among several types of configurations, requir-
ing different strategies and moves. In this phase, as there are no multiplicities,
a robot must distinguish among the following configurations:

W1 Symmetric configurations with an odd number of robots;
W2 Configurations with 4 robots;
W3 Configurations with 6 robots;
W4 Symmetric configurations with an even number of robots greater than 6,

only 1 supermin of size 0 or with 2 supermins of size 0 divided by one
interval of even size with no other intervals of size 0;

W5 Symmetric configurations with an even number of robots greater than 6,
only 1 supermin of size 0 or with 2 supermins of size 0 divided by one
interval of even size, and other intervals of size 0;

W6 Asymmetric configurations with an even number of robots greater than 6
and:
a) only one interval of size 0, and it is in between two intervals of equal

size;
b) only two intervals of size 0, with only one in between two intervals of

equal size;
c) only two intervals of size 0, with one even interval in between;
d) only three intervals of size 0, with only two of them separated by an even

interval;
e) only three consecutive intervals of size 0;
f) only four intervals of size 0, with only three of them consecutive;

W7 Remaining gatherable configurations.

From configurations in W1, only the robot on the axis can move in one of the
two directions, arbitrarily. After this move either the configuration contains one

1 By Lemma 1, in gatherable configurations, the axis of symmetry cannot pass through
two supermins hence there are always two robots allowed to move.

How to Gather Asynchronous Oblivious Robots on Anonymous Rings 337

multiplicity or it belongs to W1 or W7. Configurations in W7 will be described
later in this section and the configurations with multiplicities will be described
within the other phases. Regarding configurations in W1, from Property 1, we
know that the number of times that the obtained configuration can belong again
to W1 after this move is bounded.

When the configuration is in W2 or W3, a modified version of algorithms
in [21] and [8] are performed, respectively. In particular, both the algorithms
are able to manage symmetric configurations and to check whether in an asym-
metric configuration there is a possible pending move. If the configuration is
not symmetric and there are no pending moves, then reduction is performed.
The resulting configuration is still in W2 or W3 or at least one multiplicity is
created. From the correctness of algorithms in [21] and [8] and from the fact
that performing reduction results in reducing the supermin, it follows that
eventually at least one multiplicity is created.

When the configuration is in W7 and it is symmetric, then the algorithm
performs reduction on two symmetric robots that leads to another symmetric
configuration in W7, or to a configuration with at least one multiplicity, or to an
asymmetric configuration with a pending move. In this latter case, by Lemma 2
the algorithm recognizes that the configuration is at one “allowed” move from
symmetry and performs the pending move (even though it was not pending,
indeed). When the configuration is asymmetric, again reduction is performed.
By performing the described movements, at least one multiplicity is created.

Configurations in W4–W6 correspond to the cases where reduction is not
allowed to be performed. In fact, if the configuration is symmetric and there
is only one supermin of size 0, then reduction may result in swapping the
robots at the borders of the supermin, hence obtaining infinitely many times
the same configuration. Similarly, if the configuration is symmetric and there
are two symmetric supermins of size 0 divided by one interval of even size, then
reduction would produce two multiplicities divided by the interval of even size
and we won’t be able to join such multiplicities afterwards.

From W4, the algorithm performs xn, hence leading to configurations in W4,
W6 or to configurations with one multiplicity on the axis.

From W5, the algorithm performs reduction on the configuration obtained
without considering the supermin (that is, it reduces the second supermin, ac-
cording to Definition 3). Note that, as in this case the second supermin has size
0, we obtain at least one multiplicity.

The asymmetric configurations in W6 are either asymmetric starting configu-
rations or are obtained from the symmetric configurations in W4 after perform-
ing xn. In this cases, the algorithm checks whether the configuration is obtained
after an xn move. This is realized by moving backward the robot closest to the
other pole of the axis of symmetry that is assumed to pass through: The super-
min in case a); The only interval of size 0 adjacent to two intervals of equal size
in case b); The even intervals mentioned in cases c) and d); the only interval of
size 0 in between other two intervals of size 0 in cases e) and f). If a backwards

338 G. D’Angelo, G. Di Stefano, and A. Navarra

W1 W3 W5W2W7 W6 W4

Fig. 3. Phase multiplicity-creation

xn produces a symmetric configuration, then the symmetric xn is performed,
otherwise, reduction is performed and this move creates a multiplicity.

For each configuration type, the algorithm checks whether the robot perceiv-
ing the configuration C is allowed to move and eventually, performs the move.

This phase of the algorithm is summarized in Fig. 3. The next lemma states
that such a phase eventually ends with at least one multiplicity and hence one
of the other phases starts.

Lemma 3. Phase multiplicity-creation terminates with at least one multi-
plicity after a finite number of moves.

Proof. From the description provided before this lemma, it follows that the graph
in Fig. 3 models the execution of phase multiplicity-creation. We now show
that all the cycles are traversed a finite number of times. This implies that
eventually at least one multiplicity is created.

From Property 1, and results in [21], and [8] follows that the self-loops in W1,
W2, and W3, respectively, are traversed a finite number of times.

The self-loop in W7 is traversed by performing reduction or pend-

ing reduction. Each time such moves are performed, the supermin decreases
until, after a finite number of moves, it either creates a multiplicity or leads to
configurations in W4 or W6. The number of moves is at most two times the size
of the initial supermin and this is obtained for symmetric configurations with
the axis not passing through the supermin.

The self-loop in W4 and the cycle between W4 and W6 are traversed by per-
forming xn. Each time this happens, the interval between the two symmetric
robots closest to the axis of symmetry (excluding those adjacent to the super-
min) is reduced until creating a multiplicity on the axis. The number of moves
performed equals the initial size of such an interval. �

3.2 Further Notes on the Algorithm

We can show (see [9]) that all the types of configurations defined for the 5 phases
are pairwise disjoint and that they cover all the possible configurations reachable
by the algorithm.

Given a configurationC, in order to distinguish among the types, it is sufficient
for a robot to compute simple parameters: number of nodes in the ring; number
of multiplicities; number of robots (if possible) or number of occupied nodes;
distances between robots and multiplicities; if C is symmetric; if C is at one
move from the symmetries allowed by the algorithm.

How to Gather Asynchronous Oblivious Robots on Anonymous Rings 339

The starting configuration can only belong to W1–W7. By Lemma 3, it follows
that after a finite number of moves any other phase can be reached. Moreover,
once reached a configuration with at least one multiplicity, the algorithm never
goes back to configurations without multiplicities, but for a bounded number of
times on some symmetric configurations with 6 robots.

The possible interactions among the phases are shown in Fig. 2, and we prove
that all the possible cycles can be traversed a limited number of times, until
reaching phase convergence without leaving it anymore.

4 Conclusion

The proposed algorithm answers to the posed conjectures concerning the gath-
ering on the studied model by providing a complete characterization for the
initial configurations. The obtained result is of main interest for robot-based
computing systems. In fact, it closes all the cases left open with the exception
of potentially gatherable configurations in SP4. Our technique, mostly based on
the supermin concept, may result as a new analytical approach for investigating
related distributed problems.

References

1. Alpern, S.: The rendezvous search problem. SIAM J. Control Optim. 33, 673–683
(1995)

2. Bampas, E., Czyzowicz, J., G ↪asieniec, L., Ilcinkas, D., Labourel, A.: Almost Opti-
mal Asynchronous Rendezvous in Infinite Multidimensional Grids. In: Lynch, N.A.,
Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 297–311. Springer, Hei-
delberg (2010)

3. Blin, L., Milani, A., Potop-Butucaru, M., Tixeuil, S.: Exclusive Perpetual Ring
Exploration without Chirality. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC
2010. LNCS, vol. 6343, pp. 312–327. Springer, Heidelberg (2010)

4. Chalopin, J., Das, S.: Rendezvous of Mobile Agents without Agreement on Local
Orientation. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide,
F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 515–526. Springer,
Heidelberg (2010)

5. Cord-Landwehr, A., Degener, B., Fischer, M., Hüllmann, M., Kempkes, B., Klaas,
A., Kling, P., Kurras, S., Märtens, M., Meyer auf der Heide, F., Raupach, C.,
Swierkot, K., Warner, D., Weddemann, C., Wonisch, D.: A New Approach for
Analyzing Convergence Algorithms for Mobile Robots. In: Aceto, L., Henzinger,
M., Sgall, J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 650–661. Springer,
Heidelberg (2011)

6. Czyzowicz, J., Labourel, A., Pelc, A.: How to meet asynchronously (almost) every-
where. In: Proc. of the 21st ACM-SIAM Symp. on Discrete Algorithms (SODA),
pp. 22–30 (2010)

7. D’Angelo, G., Di Stefano, G., Klasing, R., Navarra, A.: Gathering of Robots on
Anonymous Grids without Multiplicity Detection. In: Even, G., Halldórsson, M.M.
(eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 327–338. Springer, Heidelberg (2012)

340 G. D’Angelo, G. Di Stefano, and A. Navarra

8. D’Angelo, G., Di Stefano, G., Navarra, A.: Gathering of Six Robots on Anonymous
Symmetric Rings. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS,
vol. 6796, pp. 174–185. Springer, Heidelberg (2011)

9. D’Angelo, G., Di Stefano, G., Navarra, A.: How to gather asynchronous oblivious
robots on anonymous rings. Rapport de recherche RR-7963, INRIA (2012)

10. Degener, B., Kempkes, B., Langner, T., Meyer, F.: auf der Heide, P. Pietrzyk, and
R. Wattenhofer. A tight runtime bound for synchronous gathering of autonomous
robots with limited visibility. In: Proc. of the 23rd ACM Symp. on Parallelism in
Algorithms and Architectures (SPAA), pp. 139–148 (2011)

11. Dessmark, A., Fraigniaud, P., Kowalski, D., Pelc, A.: Deterministic rendezvous in
graphs. Algorithmica 46, 69–96 (2006)

12. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Computing without communicat-
ing: Ring exploration by asynchronous oblivious robots. Algorithmica (to appear)

13. Flocchini, P., Ilcinkas, D., Pelc, A., Santoro, N.: Remembering without memory:
Tree exploration by asynchronous oblivious robots. Theoretical Computer Sci-
ence 411(14-15), 1583–1598 (2010)

14. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
robots with limited visibility. Theor. Comput. Sci. 337, 147–168 (2005)

15. Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Randomized Gathering of Mobile
Robots with Local-Multiplicity Detection. In: Guerraoui, R., Petit, F. (eds.) SSS
2009. LNCS, vol. 5873, pp. 384–398. Springer, Heidelberg (2009)

16. Izumi, T., Izumi, T., Kamei, S., Ooshita, F.: Mobile Robots Gathering Algo-
rithm with Local Weak Multiplicity in Rings. In: Patt-Shamir, B., Ekim, T. (eds.)
SIROCCO 2010. LNCS, vol. 6058, pp. 101–113. Springer, Heidelberg (2010)

17. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Asynchronous Mobile Robot Gath-
ering from Symmetric Configurations without Global Multiplicity Detection. In:
Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 150–
161. Springer, Heidelberg (2011)

18. Kamei, S., Lamani, A., Ooshita, F., Tixeuil, S.: Asynchronous mobile robot gather-
ing from symmetric configurations without global multiplicity detection. In: Pro-
ceedings of the 37th International Symposium on Mathematical Foundations of
Computer Science (MFCS). Springer (to appear, 2012)

19. Klasing, R., Kosowski, A., Navarra, A.: Taking advantage of symmetries: Gathering
of many asynchronous oblivious robots on a ring. Theor. Comput. Sci. 411, 3235–
3246 (2010)

20. Klasing, R., Markou, E., Pelc, A.: Gathering asynchronous oblivious mobile robots
in a ring. Theor. Comput. Sci. 390, 27–39 (2008)

21. Koren, M.: Gathering small number of mobile asynchronous robots on ring. Zeszyty
Naukowe Wydzialu ETI Politechniki Gdanskiej. Technologie Informacyjne 18, 325–
331 (2010)

22. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of
geometric patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

23. Yamashita, M., Souissi, S., Défago, X.: Gathering two stateless mobile robots using
very inaccurate compasses in finite time. In: Proc. of the 1st int. Conf. on Robot
Communication and Coordination (RoboComm), pp. 48:1–48:4 (2007)

Position Discovery for a System
of Bouncing Robots

Jurek Czyzowicz1, Leszek Gąsieniec2, Adrian Kosowski3, Evangelos Kranakis4,
Oscar Morales Ponce4, and Eduardo Pacheco4

1 Université du Québec en Outaouais, Gatineau, Québec J8X 3X7, Canada
2 University of Liverpool, Liverpool L69 3BX, UK

3 INRIA Bordeaux Sud-Ouest, LaBRI, 33400 Talence, France
4 Carleton University, Ottawa, Ontario K1S 5B6, Canada

Abstract. A collection of n anonymous mobile robots is deployed on
a unit-perimeter ring or a unit-length line segment. Every robot starts
moving at constant speed, and bounces each time it meets any other
robot or segment endpoint, changing its walk direction. We study the
problem of position discovery, in which the task of each robot is to detect
the presence and the initial positions of all other robots. The robots
cannot communicate or perceive information about the environment in
any way other than by bouncing. Each robot has a clock allowing it to
observe the times of its bounces. The robots have no control on their
walks, which are determined by their initial positions and the starting
directions. Each robot executes the same position detection algorithm,
which receives input data in real-time about the times of the bounces,
and terminates when the robot is assured about the existence and the
positions of all the robots.
Some initial configuration of robots are shown to be infeasible — no

position detection algorithm exists for them. We give complete charac-
terizations of all infeasible initial configurations for both the ring and
the segment, and we design optimal position detection algorithms for all
feasible configurations. For the case of the ring, we show that all robot
configurations in which not all the robots have the same initial direction
are feasible. We give a position detection algorithm working for all feasi-
ble configurations. The cost of our algorithm depends on the number of
robots starting their movement in each direction. If the less frequently
used initial direction is given to k ≤ n/2 robots, the time until comple-
tion of the algorithm by the last robot is 1

2
�n
k
�. We prove that this time

is optimal. By contrast to the case of the ring, for the unit segment we
show that the family of infeasible configurations is exactly the set of so-
called symmetric configurations. We give a position detection algorithm
which works for all feasible configurations on the segment in time 2, and
this algorithm is also proven to be optimal.

1 Introduction

A mobile robot is an autonomous entity with the capabilities of sensing, i.e. abi-
lity to perceive some parameters of the environment, communication - ability to

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 341–355, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

342 J. Czyzowicz et al.

receive/transmit information to other robots, mobility - ability to move within
the environment, and computation - ability to process the obtained data. Mo-
bile robots usually act in a distributed way, i.e. a collection of mobile robots is
deployed across the territory and they collaborate in order to achieve a common
goal by moving, collecting and exchanging the data of the environment. The typ-
ical applications are mobile software agents (e.g. moving around and updating
information about a dynamically changing network) or physical mobile robots
(devices, robots or nano-robots, humans).
In many distributed applications, mobile robots operate in large collections

of massively produced, cheap, tiny, primitive entities with very restricted co-
mmunication, sensing and computational capabilities, mainly due to the lim-
ited production cost, size and battery power. Such groups of mobile robots,
called swarms, often perform exploration or monitoring tasks in hazardous or
hard to access environments. The usual swarm robot attributes assumed for dis-
tributed models include anonymity, negligible dimensions, no explicit communi-
cation, no common coordinate system (cf. [14]). Moreover, some of these models
may assume obliviousness, limited visibility of the surrounding environment and
asynchronous operation. In most situations involving such weak robots the fun-
damental research question concerns the feasibility of solving the given task (cf.
[7, 11, 14]). When the question of efficiency is addressed, the cost of the algo-
rithm is most often measured in terms of length of the robot’s walk or the time
needed to complete the task. This is also the case of the present paper, despite
the fact that the robot does not have any control on its walk. In our case, the
goal is to stop the robot’s walk, imposed by the adversary, at the earliest oppor-
tunity - when the collected information (or its absence) is sufficient to produce
the required solution.
Although the most frequently studied question for mobile robots is environ-

ment exploration, numerous papers related to such weak robots often study
more basic tasks, such as pattern formation ([11, 13–15]). Gathering or point
convergence ([5, 10]) and spreading (e.g. see [4]) also fall into this category. [14]
introduced anonymous, oblivious, asynchronous, mobile robots which act in a
so-called look-compute-move cycle. An important robot sensing capacity asso-
ciated with this model permits to perceive the entire ([11, 13, 14]) or partial
([1, 10]) environment.
Contrary to the above model, in our paper, the robot has absolutely no con-

trol on its movement, which is determined by the bumps against its neighbors or
the boundary points of the environment. In [2, 3] the authors introduced popula-
tion protocols, modeling wireless sensor networks by extremely limited finite-state
computational devices. The agents of population protocols also move according to
some mobility pattern totally out of their control and they interact randomly in
pairs. This is called passive mobility, intended to model, e.g., some unstable en-
vironment, like a flow of water, chemical solution, human blood, wind or unpre-
dictable mobility of agents’ carriers (e.g. vehicles or flocks of birds). In the recent
work [12], a coordination mechanism based on meetings with neighboring robots
on the ring was considered, also aiming at location discovery. The approach of [12]

Position Discovery for a System of Bouncing Robots 343

is randomized and the robots operate in the discrete environment in synchronous
rounds.
Pattern formation is sometimes considered as one of the steps of more complex

distributed task. Our involvement in the problem of this paper was motivated
by the patrolling problem [6], where spreading the robots evenly around the
environment may result in minimizing the idleness of patrolling, i.e., the time
interval during which environment points remain unvisited by any robot. Clearly,
position discovery discussed in the present paper is helpful in uniform spreading
of the collection. A related problem was studied in [4], where the convergence
rate of uniform spreading in one-dimensional environment in synchronous and
semi-synchronous settings was discussed. Previously, [8] studied the problem of
n robots {0, 1 . . . , n − 1}, initially placed in arbitrary order on the ring. It was
shown that the rule of each robot i moving to the middle point between i − 1
and i+ 1 may fail to converge to equal spreading (it was also shown in [8] that
the system would converge if a fair scheduler activates units sequentially).
The model adopted in our paper assumes robot anonymity, passive mobility

(similarly to that adopted in [2, 3]), restricted local sensing through bounce
perception with a neighbor robot only, no communication between the robots,
and continuous time. The only ability of the robot is the tacit observation of the
timing of bounces and the computation and reporting of robots’ locations. The
private clock of each robot turns out to be a very powerful resource permitting
to solve the problem efficiently in most cases.

2 The Model and Our Results

We consider a continuous, connected, one-dimensional universe in which the
robots operate, which is represented either by a unit-perimeter ring or by a
unit-length line segment. The ring is modeled by a real interval [0, 1] with 0 and
1 corresponding to the same point. A set of n robots r0, r1, . . . , rn−1 is deployed
in the environment and start moving at time t = 0 (where the indexing of the
robots is used for purposes of analysis, only). The robots are not aware of the
original positions and directions of other robots or the total number of robots in
the collection. The robots move at constant unit speed, each robot starting its
movement in one of the two directions. Each robot knows the perimeter of the
ring (or the length of the segment) and it has a clock permitting to register the
time of each of its bounces and store it in its memory. We assume that the time
and distance travelled are commensurable, so during time t each robot travels
distance t. Consequently, in the paper we compare distances travelled to time
intervals.
By ri(t) ∈ [0, 1] we denote the position of robot ri at time t. We suppose

that originally each robot ri occupies point ri(0) of the environment and that
0 ≤ r0(0) < r1(0) < . . . < rn−1(0) < 1. Each robot is given an initial di-
rection (clockwise or counterclockwise in the ring and left-to-right or right-to-
left on the segment) at which it starts its movement. By diri we denote the
starting direction of robot ri and we set diri = 1 if ri starts its movement

344 J. Czyzowicz et al.

in the counterclockwise direction around the ring or the left-to-right direction
along the segment. By diri = −1 we denote the clockwise starting direction
(on the ring) or right-to-left (on the segment). We call the sequence of pairs
(r0(0), dir0), . . . , (rn−1(0), dirn−1) the initial configuration of robots.
When two robots meet, they bounce, i.e., they reverse the directions of their

movements. We call the trajectory of a robot a bouncing walk. The robots have
no control on their bouncing walks, which depend only on their initial positions
and directions, imposed to them by an adversary, and the bounces caused by
meeting other robots. Each robot has to report the coordinates of all robots of
the collection, i.e., their initial positions and their initial directions. The robots
cannot communicate in any other way except for observing their meeting times.
Each robot is aware of the type of the environment (ring or segment). All robots
are anonymous, i.e. they have to execute the same algorithm. The only informa-
tion available to each robot is the bounce sequence, i.e. the series of time moments
t1, t2, . . ., corresponding to its bounces resulting from the meetings with other
robots.
By position detection algorithm we mean a procedure executed by each robot,

during which the robot performs its bouncing walk and uses its bounce sequence
as the data of the procedure, outputting the initial positions and directions of
all robots. By the cost CA(n) of algorithm A we understand the smallest value,
such that for any feasible initial configuration of n robots in the environment,
each robot executing A can report the initial configuration while performing a
bouncing walk of total distance CA(n). As in some cases the cost of the algorithm
varies, depending on the robot initial directions, we denote by CA(n, k) the cost
of A for the class of initial configurations such that 1 ≤ k ≤ n/2 robots start in
one direction and n− k start in the opposite one.

Question: Is it possible for each robot to find out, after some time of its move-
ment, what is the number of robots in the collection and their relative positions
in the environment? If not, what are the configurations of robots’ initial po-
sitions and directions for which a position detection algorithm exists (i.e. it is
possible to report the initial configuration after a finite time)? What is the small-
est amount of time after which a robot is assured to identify all other robots in
the collection?
Our goal is to propose an algorithm to be executed by any robot, which

computes the original positions of all other robots of the collection. We say that
such an algorithm is optimal if the time interval after which the robot is assured
to have the knowledge of the positions of all other robots is the smallest possible.
We characterize all the feasible configurations for the ring and the segment.

For both cases we give optimal position detection algorithms for all feasible
configurations. Our algorithm for the segment requires O(n) robot’s memory,
while constant size memory is sufficient for robots bouncing on the ring. [We
suppose that in one memory word we may store a real value representing the
robot’s position in segment [0, 1].]
For the case of the ring, we show that all robot configurations with not all

robots given the same initial direction are feasible. We give a position detection

Position Discovery for a System of Bouncing Robots 345

algorithm working for all feasible configurations. The cost of our algorithm is
not constant, but it depends on the number of robots starting their movement
in each direction. When k ≤ n/2 is the number of robots starting their walks in
one direction with n−k given the opposite direction we prove that our algorithm
has cost 1

2�
n
k �. We prove that this algorithm is optimal.

For the case of the segment we prove that no position detection algorithm
exists for symmetric initial configurations. Each symmetric configuration is a
configuration of a subset of robots on a subsegment, concatenated alternately
with its reflected copy and itself. We give a position detection algorithm of cost
2 working for all feasible (non-symmetric) configurations on the segment. This
algorithm is proven to be optimal.
In Section 3 we give the position detection algorithm for the ring and prove

its correctness for all feasible configurations. Section 4 analyses the cost of the
position detection algorithm for the ring and proves its optimality. The segment
environment is addressed in Section 5. The argument for the segment proceeds by
reduction to that for the ring, but the criteria for a feasible configuration on the
segment take a different form, dependent on the symmetry of the configuration.

3 The Algorithm on the Ring

As there is no system of coordinates on the ring common to all robots, each
robot must compute the relative positions of other robots with respect to its own
starting position. We may then infer that each robot assumes that its starting
position is the point 0. We then suppose that 0 = r0(0) < r1(0) < . . . <
rn−1(0) < 1 and it is sufficient to produce the algorithm for robot r0.
We assume in this paper that all robot indices are taken modulo n. When

two robots meet, they reverse the directions of their movements, so the circular
order of the robots around the ring never changes. When two robots ri and ri+1

meet at time t, we have ri(t) = ri+1(t), and ri(t) was moving counterclockwise
while ri+1(t) was moving clockwise just before the meeting time t.
We denote by dist(x, y) the distance that x has to traverse in the counter-

clockwise direction around the ring to reach the position of y (we call it the
counterclockwise distance from x to y. Note that the clockwise distance from x
to y equals 1− dist(x, y).
In order to analyze the ring movement of the robots we consider an infinite line

L = (−∞,∞) and for each robot ri, 0 ≤ i ≤ n− 1 we create an infinite number
of its copies r(j)i , all having the same initial direction, such that their initial
positions are r(j)i (0) = j + ri(0) for all integer values of j ∈ Z (see Fig. 1). We
show that, when all copies of robots move along the infinite line while bouncing
at the moments of meeting, all copies r(j)i of a robot ri bounce and reverse their
movements at the same time. More precisely we prove

Lemma 1. For all t ≥ 0, 0 ≤ i ≤ n−1 and j ∈ Z we have r(j+1)
i (t) = r

(j)
i (t)+1.

We use the concept of a baton, applied recently in [12]. Suppose that each robot
initially has a virtual object (baton), that the robot carries during its movement,

346 J. Czyzowicz et al.

0 1 2−1
r
(0)
0r

(−1)
1 r

(1)
2r

(1)
0 r

(2)
3r

(2)
2r

(2)
0r

(0)
1 r

(0)
2 r

(0)
3 r

(2)
1r

(−1)
0 r

(−1)
2 r

(1)
1r

(−1)
3 r

(1)
3

time

t = 2

Fig. 1. Example of a bouncing movement of four robots

but at the moment of meeting, two robots exchange their batons. By b
(j)
i we

denote the baton originally held by robot r(j)i and by b
(j)
i (t) we denote the

position of this baton on the infinite line at time t. We can easily show the
following lemma.

Lemma 2. For all t ≥ 0, 0 ≤ i ≤ n − 1 and j ∈ Z we have b(j)i (t) = b
(j)
i (0) +

diri · t = b
(0)
i (0) + j + diri · t.

Proof. Since the bouncing robots exchange the batons, the batons travel at
constant speed 1 in their original directions. Therefore, at time t each baton
travelled the distance t so we have b(j)i (t) = b

(j)
i (0)+ diri · t. On the other hand,

by construction we have b
(j+1)
i (0) = b

(j)
i (0) + 1 and both batons b(j)i , b

(j+1)
i

travel at unit speed in the same direction. Hence, we have by induction on j,
that b(0)i (t) = b

(j)
i (t) + j. The claim of the lemma follows.

In Fig. 1 the trajectories of all the batons held originally by the robots going in
direction dir are the lines of slope dir. Each robot ri bounces while its trajectory
intersects a trajectory of some baton, since this baton is then held by one of the
robots ri−1, ri+1. For example, the trajectory of robot r

(0)
0 , is represented by a

fat polyline on Fig. 1, while the trajectories of its neighbor robots r(−1)
3 and r(0)1

bouncing at r(0)0 are given by dashed polylines.

Lemma 3. Consider robot ra, which at the time moment t, while traveling in
direction dir, meets some other robot. Suppose that, at the time of this meeting,
ra travelled the total distance d in direction dir (hence the total distance of t−d in
direction −dir). Then there exists a robot rb, which was originally positioned at
distance (2d mod 1) in direction dir on the ring. More precisely, (2d mod 1) =

Position Discovery for a System of Bouncing Robots 347

dist(ra, rb) if dir = 1 and (2d mod 1) = dist(rb, ra) = 1 − dist(ra, rb) if dir =
−1. Moreover rb started its movement in direction −dir.

Proof idea: Robot ra and the baton of robot rb approach (at speed 2) only when
going in opposite directions, hence the time of this approach equals half of their
initial distance.

Remark 1. The value (2d mod 1) may sometimes be equal to zero which corres-
ponds to ra meeting the robot currently holding the original baton of ra (e.g. the
sixth bounce of r(0)0 on Fig. 1). On the other hand, some meetings of robots may
correspond to the same computed value of (2d mod 1) (e.g. all odd-numbered
bounces of r(0)0 on Fig. 1), so some bounces do not have a new informative value
about other robot positions.

The algorithm RingBounce executed by a robot, which reports initial positions
and directions of all other robots on the ring, uses Lemma 3. Each bounce results
in the output of information concerning one robot of the ring. In this way, a robot
running such an algorithm needs only a constant-size memory. An additional test
is made in line 10 to avoid outputting the same robot position more than once.
The robot’s memory consists of two real variables right and left in which the

robot will store the total distance travelled, respectively, in the counterclockwise
and clockwise direction. The robot also accesses its system variable clock which
automatically increases proportionally to the time spent while traveling (i.e. to
the distance travelled).

Algorithm RingBounce (dir : {−1, 1});
1. var left ← 0, right ← 0 : real;
2. reset clock to 0;
3. while true do
4. do walk in direction dir until
5. ((clock − left ≥ 1/2) and (clock − right ≥ 1/2)) or a meeting occurs;
6. if (clock − left ≥ 1/2) and (clock − right ≥ 1/2) then EXIT;
7. if dir = 1 then
8. right ← clock − left;
9. if (0 < right < 1/2) then
10. OUTPUT robot at original position 2 · right and direction −dir;
11. else
12. left ← clock − right;
13. if (0 < left < 1/2) then
14. OUTPUT robot at original position 1−2 · left and direction dir;
15. dir ← −dir;

Theorem 1. Suppose that among all robots bouncing on the ring there is at
least one robot having initial clockwise direction and at least one robot with the
initial counterclockwise direction. The algorithm RingBounce, executed by any

348 J. Czyzowicz et al.

robot of the collection, correctly reports the initial positions and directions of all
robots on the ring with respect to its initial position.

Proof. Suppose w.l.o.g., that the robot executing RingBounce is robot r0. Since
there exists at least one other robot starting in the direction different from dir0,
robot r0 will alternately travel in both directions, indefinitely bouncing against
its neighbors r1 and rn−1 on the ring. We show by induction, that at the start
of each iteration of the while loop from line 3, the variable left (resp. right)
equals to the total distance travelled by r0 clockwise (resp. counterclockwise).
Suppose, by symmetry, that r0 walks counterclockwise in the i-th iteration and
the inductive hypothesis is true at the start of this iteration. Since, by inductive
hypothesis, variable left keeps the correct value through i-th iteration, variable
right is correctly modified at line 8, as clock value equals the total distance
travelled in both directions. Consequently, the inductive claim is true in the
(i+ 1)-th iteration.
We prove now that positions and directions of all robots are correctly reported

before the algorithm ends. Take any robot ri, 1 ≤ i ≤ n−1. We consider first the
case when the initial direction of ri was clockwise. The trajectory of its original
baton b

(0)
i is then a line of slope 1 (cf. Fig. 1). Observe that robot r0 stays

at the same distance from baton bi when walking in the clockwise direction
and approaches it (reducing their counterclockwise distance dist(r0, bi)) when
walking counterclockwise. Since dist(r0, bi) ≤ 1, and r0 and bi walk towards
each other, they approach at speed 2 during the counterclockwise movement
of r0. Consequently, the trajectories of r0 and bi intersect and r0 eventually
meets robot r1 carrying baton bi. Indeed, in line 4 of algorithm RingBounce,
robot r0 continues its movement as long as its total distance travelled in the
counterclockwise direction is less than 1/2, which leads to the meeting of r0 and
r1 (carrying baton bi), before both robots finish their executions of the algorithm.
Consequently, at the moment of their meeting, r0 outputs at line 10 the initial
distance between r(0)0 and r

(0)
i on line L, which equals twice the time spent while

the robots were approaching each other. As r0 may obtain a copy of the same
baton more than once (cf. r0 intersecting several trajectories of batons b

(j)
2 on

Fig. 1), the condition (0 < right < 1/2) at line 9 permits to report the position
of each other robot once only. Indeed, only r

(0)
i - the copy of ri at the closest

counterclockwise distance to r0 verifies this condition.
Consider now the case when robot ri, 1 ≤ i ≤ n − 1, starts its walk on the

ring in the counterclockwise direction. Then r0 obtains baton bi while walking
clockwise, i.e. at the moment of some bounce at rn−1, while rn−1 holds baton
bi. In this case, robot r0 stays at the same distance from baton bi when walk-
ing in counterclockwise direction and approaches it (reducing their distance of
dist(bi, r0) = 1 − dist(r0, bi)) when walking clockwise. At the moment when r0
meets rn−1 holding baton bi (whose trajectory originates from segment [−1, 0]
of L) the value of variable left equals half the clockwise distance from r0(0) to
ri(0). Indeed, at the moment of the meeting, half of this distance was covered by
r0 walking clockwise (the value of left) and the other half was covered by the
counterclockwise move of baton bi. Consequently the clockwise distance from

Position Discovery for a System of Bouncing Robots 349

the initial position of r0 to the initial position of ri equals 1− 2 · left, correctly
output at line 14.

Observe that, once the original positions and directions of all robots are reported,
it is easy to monitor all further movements of all robots of the collection, i.e.
their relative positions at any moment of time. However, this would require a
linear memory of the robot performing such task.

4 The Execution Time of Bouncing on the Ring

As stated in the introduction, we look for the algorithm of the optimal cost,
i.e. the smallest possible total distance travelled, needed to correctly report any
initial configuration. We show that the algorithm RingBounce is the optimal one,
i.e. that the time moment, at which the robot can be sure that the positions of
all other robots have been reported, is the time when the robot stops executing
RingBounce. Observe that algorithm RingBounce has cost at least 1, i.e. a robot
executing it must travel at least distance 1. Indeed, the loop from lines 4-5
continues unless robot’s walk distance in each direction totals at least half the
size of the ring. On the other hand, the example from Fig. 1 shows, that if
the number of robots starting their walks in one direction is different from the
number of robots starting walking in the opposite direction, the total cost of
RingBounce may be higher. We have

Theorem 2. Consider a collection of n robots on the ring, such that k of them,
1 ≤ k ≤ n/2, have one initial direction and the remaining n− k robots have the
other initial direction. Then the cost of RingBounce is CRB(n, k) ≤ 1

2�
n
k �.

Proof idea: If there are more robots starting in one direction, say positive direc-
tion dir, than in direction −dir then ri gets more frequently dir-moving batons
(cf. Fig. 1). Since the route of ri, intersects the trajectory of each baton only
once, ri must meet copies of batons originating from other segments than [0, 1]
of line L. By counting we show that the last such segment is [�(n− k)/k� −
1, �(n− k)/k�]. Hence, in the worst case, ri walks distance 1/2 in direction dir
and distance �(n− k)/2k� in direction −dir.
From Theorem 2 we immediately have the following Corollary, which bounds

the worst-case walking time for a robot.

Corollary 1. Assuming that the collection of n robots admits robots starting
their movements in both directions around the ring, Then the cost of RingBounce
is CRB(n) ≤ n−1

2 .

The algorithm RingBounce continues until the total lengths of walks in both
directions reach the values of at least 1/2, since this guarantees that the presence
of each robot is eventually detected. The following theorem proves that the
cost of RingBounce algorithm is optimal even if the (a priori) knowledge of the
number of robots is assumed.

350 J. Czyzowicz et al.

Theorem 3. Suppose that there is a collection of n robots on the ring, such that
k of them, 1 ≤ k < n/2, have one initial direction and the remaining n−k robots
have the other initial direction. Then for every ε > 0 there exists a distribution
of such robots on the ring with their initial positions 0 ≤ r0 < r1 < . . . < rn−1 <
1, so that a position detection algorithm terminating at time 1

2�
n
k � − ε cannot

determine the initial positions of all robots on the ring, even if the values of n
and k are known in advance.

Proof idea: Following the argument from the proof of Theorem 2 we put in the
ring the last of the n − k agents starting in direction dir such that ri is forced
to get a baton originating arbitrarily close to point �(n− k)/k� of line L. This
requires ri to walk the total distance arbitrarily close to 1

2

⌈
k
n

⌉
.

Clearly each configuration of robots with the same initial direction of all robots
is infeasible, because no robot ever bounces. Consequently from Theorem 2 and
Theorem 3 follows

Corollary 2. The family of infeasible initial configurations of robots on the
ring contains all configurations with the same initial direction of all robots.
RingBounce is the optimal position detection algorithm for all feasible initial
configurations of robots on the ring. This algorithm assumes constant-size mem-
ory of the robot running it.

Clearly, we can easily adapt algorithm RingBounce, so for infeasible initial con-
figuration the algorithm stops and reports the infeasibility. It is sufficient to test
whether the very first walk of the robot ends with a bounce before the robot
traverses the distance of 1/2.

5 Bouncing on the Line Segment

In this section we show how the algorithm for bouncing robots may be used for
the case of a segment. We suppose that each robot walks along the unit segment
changing its direction when bouncing from another robot or from an endpoint of
the segment. Robots have the same capabilities as in the case of the ring and they
cannot distinguish between bouncing from another robot and bouncing from a
segment endpoint.
We consider the segment [0, 1) containing n robots, initially deployed at po-

sitions 0 ≤ r0(0) < r1(0), . . . , rn−1(0) < 1. Each robot ri, 0 ≤ i ≤ n − 1 is
given an initial direction diri, such that diri = 1 denotes the left to right initial
movement and diri = −1 denotes initial movement from right to left on segment
[0, 1). The robots start moving with unit speed at the same time moment t = 0
at the predefined directions and they change direction upon meeting another
robot or bumping at the segment endpoint. The main difficulty of the segment
case is that the robot r executing the position detection algorithm for the ring
has to report the relative locations of other robots, i.e. their distances to its own
initial position r(0), while in the segment case the absolute distance from r(0)
to the segment endpoint has to be found.

Position Discovery for a System of Bouncing Robots 351

We show in this section that the bouncing problem is feasible for all initial
robot configurations except a small set of symmetric ones. Intuitively, an initial
configuration of robots is symmetric if the unit segment may be partitioned into
k subsegments S0, S1, . . . , Sk−1, such that the positions and directions of robots
in each subsegment form a reflected copy of positions and directions of robots
in a neighboring subsegment (see Fig. 2). More formally we have the following

Definition 1. A configuration C = ((r0(0), dir0), . . . , (rn−1(0), dirn−1)) is sy-
mmetric if there exists a positive integer k < n, such that n mod k = 0 and the
partition of segment S = [0, 1) into subsegments S0 = [0, 1

k), S1 = [1k ,
2
k), . . . , S1 =

[k−1
k , 1) with the following property. For each robot ri, 0 ≤ i < n, if ri(0) = p

n +x,
for 0 ≤ x < 1

k , (i.e. ri(0) ∈ Sp), 0 ≤ p < n, then, if p > 0, there exists a robot ri′ ,
such that ri′(0) = p

n − x and diri′ = 1− diri and, if p < n− 1, there exists a robot
ri′′ , such that ri′′(0) = p+2

n − x and diri′′ = 1− diri.

S0 S1 S2

10
r0 r1 r2 r3 r8 r9 r10 r11r4 r6r5 r71

3
2
3

Fig. 2. Example of a symmetric initial configuration of n = 12 robots containing k = 3
subsegments

Theorem 4. Every symmetric initial configuration of robots is infeasible.

Proof. Let C1 = ((r0(0), dir0), . . . , (rn−1(0), dirn−1)) be a symmetric config-
uration and k the number of consecutive subsegments, each one being the re-
flected copy of its neighbor. Construct now configuration C2 = ((r′0(0), dir

′
0), . . . ,

(r′n−1(0), dir
′
n−1)) of n robots considering also a sequence of n equal size inter-

vals and swapping the roles of odd-numbered and even-numbered robots of C1.
More precisely for each robot ri, such that ri(0) ∈ Sp = [pn ,

p+1
n) there exists a

robot r′j such that r
′
j(0) =

2p+1
n − ri(0) and dir′j = 1 − diri. Observe that, no

robot ever crosses the boundary of any subsegment Sp, i.e. ri(0) ∈ Sp implies
ri(t) ∈ Sp, for any t ≥ 0. Indeed, by construction, for any robot reaching and
endpoint of Sp, different from points 0 and 1, at the same time moment there is
another robot approaching this endpoint from the other side within the reflected
copy of Sp provoking a bounce (cf. Fig. 3). Therefore, within each even-numbered

352 J. Czyzowicz et al.

subsegment S2n of a symmetric configuration the relative positions of robots and
their directions are the same (similarly within each odd-numbered subsegment).
Consequently, no robot can distinguish whether it is, say, in an even-numbered
segment of C1 or in an odd-numbered segment of C2 so its position in segment
[0, 1) is unknown.

We show now how the position detection algorithm for the ring may be used in
the case of the segment.
Let S be a unit segment containing n robots at initial positions r0(0)< r1(0) <

. . . < rn−1(0) and the initial directions dir0, . . . , dirn−1. Suppose that a segment
SR ⊂ [1, 2] is the reflected copy of S containing n robots rRn , . . . , r

R
2n−1 at the

initial positions rRn (0) = 2 − rn(0) < rRn−1(0) = 2 − rn−1(0) < . . . < rR0 (0) =
2− r0(0). The initial directions of each robot rRi is 1−diri for 0 ≤ i < n. Let R2

be the ring of perimeter 2 composed of segment S concatenated with segment
SR, with points 0 and 2 identified.

0
1

r0 rR2 rR0r1 r2 r3 rR1rR3rR4r4

2

t = 2

Fig. 3. Five robots on a segment [0, 1) and their reflected copy

Consider the walk of robots ri, for 0 ≤ i < n, within segment S and ring R2.
Let t0 = 0 and 0 ≤ t1 < t2 . . . be the sequence of time moments during which
some bounces occur. Each such bounce takes place either between some pair of
robots or when some robot bounces from an endpoint of S. It is easy to see by
induction on i that at any time moment t ∈ [ti, ti+1] each robot rj has the same
positions in S and R2 as well as the same direction of movement and that the SR

part of R2 is a reflected copy of S. Indeed, by construction, this condition is true
for the interval [t0, t1]. If robots rj , rj+1 bounce against each other in S at time
ti, at the same time robots rj , rj+1 bounce in R2, as well as, by symmetry rRj

Position Discovery for a System of Bouncing Robots 353

bounces against rRj+1. If in time ti robot r0 (or rn−1) bounce from an endpoint
of S, by inductive hypothesis r0 bounces against rR0 at point 0 ∈ R2 (or rn−1

bounces against rRn−1 at point 1 ∈ R2). In each case, the inductive condition
holds. We just showed

Lemma 4. The bounce sequence of any robot ri on segment S is the same as
the bounce sequence of ri on ring R2.

To prove that only symmetric configuration of robots on the segment are infea-
sible we need the following lemma.

Lemma 5. Suppose that the initial configuration of robots C = ((r0(0), dir0), . . . ,
(rn−1(0), dirn−1)) on a unit segment is not symmetric. Then no internal robot ri,
for 1 ≤ i ≤ n − 2, may have all its left bounces or all right bounces at the same
point of the unit segment.

Proof. Suppose, by contradiction that there exists an internal robot having all its
left bounces at the same point (the proof in the case of all right bounces falling at
the same point is similar, by symmetry). Let i be the smallest index 1 ≤ i ≤ n−2 of
a robot with this property and point x, 0 < x < 1, be the point of all left bounces of
ri. We show first that the initial configuration of robots belonging to segment [0, x]
is the reflected copy of the initial configuration of robots belonging to segment
[x, 2x] Then robot ri−1 has all its right bounces also at point x. Consequently, at
each moment of time after the first such bounce, the position and the direction
of robot ri−1 is a symmetric (reflected) copy of robot ri with respect to point x.
Then, if i ≥ 2, the trajectory of ri−2 is a reflected copy of the trajectory of ri+1.
By induction on i, for any q ≥ 0 the trajectory of rq is the reflected copy of the
trajectory of r2i−q−1 and finally the trajectory of r0 is the reflected copy of the
trajectory of r2i−1. Therefore, all right bounces of robot r2i−1 are at point 2x of the
unit segment, so initial configuration of robots belonging to segment [0, x] is the
reflected copy of the initial configuration of robots belonging to segment [x, 2x],
as needed.
By induction on j we prove that each subsegment [(j − 1)x, jx] is a reflected

copy of subsegment [jx, (j + 1)x]. By minimality of x, no such subsegment con-
tains a point which is never crossed by any robot, hence, for some value of j, we
have jx = 1, concluding the proof.

We can show now, that the set of configurations on the unit segment for which no
position detection algorithm exists is exactly the set of symmetric configurations.
For all other configurations we propose an optimal position detection algorithm.
We suppose that the robot assumes that its initial direction on the segment
is positive. Otherwise, the robot needs to be chirality aware, i.e. capable of
identifying the positive direction of the segment.

Theorem 5. For any collection of n robots not in a symmetric initial configu-
ration on the unit segment there exist a position detection algorithm A with cost
CA(n) = 2. For any ε > 0 there exist collections of robots, such that some of
them cannot terminate the execution of any position detection algorithm before
time 2− ε.

354 J. Czyzowicz et al.

Proof idea: To construct A we first adapt algorithm RingBounce by scaling up
by the factor of 2 all distance and time constants in order to make it work for
R2 - a ring of size 2. By Lemma 4 its output produces robots’ configuration on a
unit segment S and its reflected copy SR. By non-symmetricity of configuration
on [0, 1] the subdivision of R2 into S and SR is unique and the robot positions
within S are obtained (this needs 0(n) memory). Using Theorem 2 the total
cost is 2, since n robots walked in each direction and the ring was of size 2. To
prove cost optimality we take the two robots sufficiently close to point 0, walking
in positive direction and observe that the first of them must walk the distance
arbitrarily close to 1 in each direction, in order to find out that its first bounce
was against the second robot rather that against the right endpoint, in order to
identify the initial configuration.
As the algorithm for the segment, presented in the proof of Theorem 5 assumes

storing in robot’s memory the positions of all robots, from Theorems 4 and 5
follows

Corollary 3. The family of infeasible initial configurations of robots on the seg-
ment contains all symmetric initial configurations of robots. There exists an op-
timal position detection algorithm for all feasible initial configurations of robots
on the segment. This algorithm assumes O(n)-size memory of the robot executing
it.

6 Conclusion

The algorithms of the paper may be extended to the case when only one robot
r0 starts moving initially (while all other robot movements are triggered by
bounces) and r0 must report other robots’ initial positions. Indeed, observe that
all robots must be moving at no later than time 1 for the ring and at no later
than time 2 for the segment. Robot r0 may then compute the trajectories of
all other robots as if they started moving simultaneously and then successively
compute the sequence of motion triggering bounces of all robots.
One open problem is to determine whether there exists an optimal position

detection algorithm for the segment using a constant size memory. Another open
problem is whether the bouncing problem may be solved for the case of robots
having different initial speeds. If we assume the momentum conservation princi-
ple, so that the bouncing robots exchange their speeds, the baton trajectories still
remain semi-lines of constant slopes. Therefore, if each robot is always aware of
its current speed, perhaps it might be possible, that, after a finite time, it learns
the starting positions and initial speeds of all other robots.
The location discovery performed by the collection of robots, presented in

this paper, may be used for the equally-spaced self-deployment of the robots
around the environment (e.g. to perform optimal patrolling) or for some other
pattern formation task. However, such a task would require an additional robot
capacity besides passive mobility the way it is assumed in this paper. Once the
positions of the entire collection is known, the robots need to synchronize their
movements, e.g. by adding waiting periods.

Position Discovery for a System of Bouncing Robots 355

Acknowledgements. Research of J. Czyzowicz and E. Kranakis supported in
part by NSERC grants, L. Gąsieniec was sponsored by the Royal Society Grant
IJP - 2010/R2 , O. Morales by MITACS grant and E. Pacheco by CONACyT
and NSERC grant.

References

1. Ando, H., Oasa, Y., Suzuki, I., Yamashita, M.: Distributed memoryless point con-
vergence algorithm for mobile robots with limited visibility. IEEE Transactions on
Robotics and Automation 15(5), 818–828 (1999)

2. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. In: Distributed Computing, pp.
235–253 (2006)

3. Angluin, D., Aspnes, J., Eisenstat, D.: Stably computable predicates are semilinear.
In: Proc. of PODC, pp. 292–299 (2006)

4. Cohen, R., Peleg, D.: Local spreading algorithms for autonomous robot systems.
Theoretical Computer Science 399(1-2), 71–82 (2008)

5. Cohen, R., Peleg, D.: Convergence Properties of the Gravitational Algorithm in
Asynchronous Robot Systems. SIAM Journal on Computing 34(6), 1516–1528
(2005)

6. Czyzowicz, J., Gąsieniec, L., Kosowski, A., Kranakis, E.: Boundary Patrolling by
Mobile Agents with Distinct Maximal Speeds. In: Demetrescu, C., Halldórsson,
M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 701–712. Springer, Heidelberg (2011)

7. Das, S., Flocchini, P., Santoro, N., Yamashita, M.: On the Computational Power
of Oblivious Robots: Forming a Series of Geometric Patterns. In: Proc. of PODC,
pp. 267–276 (2010)

8. Dijkstra, E.W.: Selected Writings on Computing: Personal Perspective, pp. 34–35.
Springer, New York (1982)

9. Efrima, A., Peleg, D.: Distributed algorithms for partitioning a swarm of au-
tonomous mobile robots. Theoretical Computer Science 410, 1355–1368 (2009)

10. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Gathering of asynchronous
oblivious robots with limited visibility. Theor. Comput. Sci. 337(1-3), 147–168
(2005)

11. Flocchini, P., Prencipe, G., Santoro, N., Widmayer, P.: Arbitrary pattern formation
by asynchronous, anonymous, oblivious robots. Theor. Comput. Sci. 407(1-3), 412–
447 (2008)

12. Friedetzky, T., Gąsieniec, L., Gorry, T., Martin, R.: Observe and Remain Silent
(Communication-Less Agent Location Discovery). In: Rovan, B., Sassone, V., Wid-
mayer, P. (eds.) MFCS 2012. LNCS, vol. 7464, pp. 407–418. Springer, Heidelberg
(2012)

13. Sugihara, K., Suzuki, I.: Distributed algorithms for formation of geometric patterns
with many mobile robots. Journal of Robotic Systems 13(3), 127–139 (1996)

14. Suzuki, I., Yamashita, M.: Distributed Anonymous Mobile Robots: Formation of
Geometric Patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

15. Yamashita, M., Suzuki, I.: Characterizing geometric patterns formable by oblivious
anonymous mobile robots. Th. Comp. Science 411(26-28), 2433–2453 (2010)

Counting-Based Impossibility Proofs

for Renaming and Set Agreement�

Hagit Attiya and Ami Paz

Department of Computer Science, Technion

Abstract. Renaming and set agreement are two fundamental sub-
consensus tasks. In the M-renaming task, processes start with names
from a large domain and must decide on distinct names in a range of
size M ; in the k-set agreement task, processes must decide on at most
k of their input values. Renaming and set agreement are representatives
of the classes of colored and colorless tasks, respectively.

This paper presents simple proofs for key impossibility results for
wait-free computation using only read and write operations: n processes
cannot solve (n−1)-set agreement, and, if n is a prime power, n processes
cannot solve (2n− 2)-renaming.

Our proofs consider a restricted set of executions, and combine sim-
ple operational properties of these executions with elementary counting
arguments, to show the existence of an execution violating the task’s
requirements. This makes the proofs easier to understand, verify, and
hopefully, extend.

1 Introduction

In a basic shared-memory system, n asynchronous processes communicate with
each other by writing and reading from the memory. Solving a distributed task
requires processes, each starting with an input, to decide on outputs that satisfy
certain requirements. A wait-free algorithm for a task ensures that each process
decides within a finite number of its own steps. In this model, we can only solve
sub-consensus tasks, which are weaker than consensus but still provide some
nontrivial coordination among processes. Two prime examples of sub-consensus
tasks are renaming and set agreement.

In M -renaming [2], processes must choose distinct names in a range of size
M ≥ n. The range of new names, i.e., the value of M , determines the efficiency
of algorithms that rely on the new names [4], and hence, it is important to
minimize M . Clearly, n-renaming is trivial if processes may use their identifiers,
such that process pi chooses name i; to rule out such solutions, the algorithm is
required to be symmetric [10, 29]. There are wait-free algorithms for (2n − 1)-
renaming [2,4,9,21], and it has been argued that there is no wait-free algorithm
for (2n− 2)-renaming [5, 26–28].

� This research is supported in part by Yad-HaNadiv fund and the Israel Science
Foundation (grant number 1227/10).

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 356–370, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Counting-Based Impossibility Proofs for Renaming and Set Agreement 357

In k-set agreement [16], processes must decide on at most k of their input
values. Clearly, n processes can solve n-set agreement, by each deciding on its
input value; it has been proved that (n− 1)-set agreement cannot be solved by
a wait-free algorithm [8, 27, 32].

Our contribution: This paper presents simple proofs of the lower bounds for
renaming and set agreement; the proofs consider a restricted set of executions
and use counting arguments to show the existence of an execution violating
the task’s requirements. While there are several simple proofs for set agreement
[1, 3, 5], such proofs for renaming have eluded researchers for many years.

Our main result is a proof for the impossibility of (2n− 2)-renaming, when n
is a power of a prime number. The proof goes by considering the weak symmetry
breaking (WSB) task: in WSB, each process outputs a single bit, so that when all
processes participate, not all of them output the same bit. A (2n− 2)-renaming
algorithm easily implies a solution to WSB, by deciding 1 if the new name
decided by the process is strictly smaller than n, and 0 otherwise; therefore,
the impossibility of (2n − 2)-renaming follows from the impossibility of WSB.
(There is also a reduction in the opposite direction [22], but it is not needed for
the lower bound.)

We prove that WSB is unsolvable when n, the number of processes, is a power
of a prime number, by showing that every WSB algorithm for this number of
processes has an execution in which all processes output the same value. Since we
are proving a lower bound, it suffices to consider a restricted set of executions
(corresponding to immediate atomic snapshot executions [8, 9] or block execu-
tions [5]). The existence of a “bad” execution, violating the task’s requirements,
is proved by assigning a sign to each execution, counting the number of bad
executions by sign, and concluding that a “bad” execution exists.

Prior lower bound proofs for renaming [11–13] rely on concepts and results
from combinatorial and algebraic topology. Although our proof draws on ideas
from topology (see the discussion), it uses only elementary counting arguments
and simple operational properties of block executions. This makes the proof
easier to understand, verify, and hopefully, extend.

As a warm-up and to familiarize the reader with counting-based arguments,
we prove the impossibility of wait-free solutions for (n − 1)-set agreement, by
counting the bad executions in two complementary ways. We believe this proof
is interesting on its own due to its extreme simplicity.

Another intermediate result shows the impossibility of solving strong symme-
try breaking (SSB)—an adaptive variant of WSB, in which at least one process
outputs 1 in every execution. The impossibility proof for SSB is similar to the
proof for WSB, although it is simpler—it holds for non-symmetric algorithms
and for every value of n. SSB is closely related to an adaptive variant of
renaming, in which M , the range of new names, depends only on the number of

processes participating in the execution. Specifically, in
(
2p− � p

n−1�
)
-adaptive

renaming, if p < n processes participate in an execution, they choose distinct
names in 1, . . . , 2p − 1, and if all n processes participate they choose distinct

358 H. Attiya and A. Paz

names in 1, . . . , 2n− 2. This task solves SSB, by deciding on 1 if the output of(
2p− � p

n−1�
)
-adaptive renaming is strictly smaller than n and 0 otherwise.

Previous research: The impossibility of (2n−2)-renaming was proved by consid-
ering WSB [5, 26–28]. All these papers claim that no algorithm solves WSB for
any number of processes, using the same topological lemma. A few years ago,
however, Castañeda and Rajsbaum [12,13] proved that this lemma is incorrect,
and gave a different proof for the impossibility of WSB, which holds only if the
binomial coefficients

(
n
1

)
, . . . ,

(
n

n−1

)
are not relatively prime (see also [11]). It can

be shown that these values of n are precisely the prime powers, indicating that
the lower bound holds for a small fraction of the possible values of n.1 For the
other values of n, Castañeda and Rajsbaum gave a non-constructive proof, using
a subdivision algorithm, for the existence of a WSB algorithm [12,15]. The upper
and lower bound proofs use non-trivial topological tools on oriented manifolds.

The k-set agreement task is colorless, which intuitively means that the out-
put of one process can be adopted by another process. Colorless tasks have
been extensively studied: there is a complete characterization of their wait-free
solvability by simple topological conditions [27,28], which implies that wait-free
(n−1)-set agreement is impossible. Wait-free (n−1)-set agreement is also proved
impossible by topological methods [5,8,26,32], or graph theory [1,3]. Set agree-
ment and its variants have been studied in many other models as well, see, e.g.,
the survey in [31].

Clearly, renaming is not colorless, since the new name chosen by one process
cannot be adopted by another one; such tasks are called colored. Little is known
about colored tasks and only a few tasks were studied (e.g., [19, 29]). A good
survey of renaming can be found in [14]. We hope that our more direct treatment
will encourage the investigation of colored tasks.

2 Preliminaries

We use a standard model of an asynchronous shared-memory system [6]. There
is a set of n processes P = {p0, . . . , pn−1}, each of which is a (possibly infinite)
state machine. Processes communicate with each other by applying read and
write operations to shared registers. Each process pi has an unbounded single-
writer multi-reader register Ri it can write to, which can be read by all processes.

An execution of an algorithm is a finite sequence of read and write operations
by the processes. Each process pi starts the execution with an input value, de-
noted Ini, performs a computation and then terminates with an output value,
also called a decided value. Without loss of generality, assume that in the algo-
rithm, a process alternates between writing its complete state to its register and
reading all the registers (performing a scan).

1 Asymptotically, there are Θ
(

N
logN

)
primes, and Θ

(√
N logN

)
powers of primes

with exponent e ≥ 2 [23, pp. 27-28] in the interval [1, N]. Hence, the portion of

prime powers is Θ
(

1
logN

+ logN√
N

)
, which tends to 0 as N goes to ∞.

Counting-Based Impossibility Proofs for Renaming and Set Agreement 359

For a set of processes P , we say α is an execution of P if all processes in P
take steps in α, and only them; P is the participating set of α. Although any
process may fail during the execution, we restrict our attention to executions
where every participating process terminates (possibly by taking steps after all
other processes terminated).

For a process pi that terminates in an execution α, the output of pi in α is
denoted dec(α, pi). For a set of processes P , dec(α, P) is the set of outputs of
the processes in P that terminate in α, and dec(α) is the set of all outputs in α.

Two executions α, α′ are indistinguishable to process pi, denoted α
pi∼ α′, if

the state of pi after both executions is identical. We write α
P∼ α′, if α

pi∼ α′ for
every process pi ∈ P .

A block execution [5], or immediate atomic snapshot execution [8,9], is induced
by blocks, i.e., nonempty sets of processes. A block execution α is induced by
a sequence of blocks B1B2 · · ·Bh, if it begins with all processes in B1 writing
in an increasing order of identifiers and then performing a scan in the same
order, followed by all processes of B2 writing and then performing a scan, and
so on. Since we prove impossibility results, we can restrict our attention to block
executions. Note that given a block execution as a sequence of read and write
operations, there is a unique sequence of blocks inducing the execution: each
consecutive set of write operations determines a block.

We consider wait-free algorithms, in which each process terminates in a finite
number of its own steps, regardless of the steps taken by other processes. Since
only executions with a bounded set of inputs are considered, there is a common
upper bound on the number of steps taken in all these executions.2

3 Impossibility of (n − 1)-Set Agreement

The k-set agreement task is an extension of the consensus task, where processes
have to decide on at most k values. Process pi has an input value (not necessarily
binary), and it has to produce an output value satisfying:

k-Agreement: At most k different values are decided.
Validity: Every decided value is an input value of a participating process.

A process pi is unseen in an execution α if it takes steps in α only after all other
processes terminate. In this case, α is induced by B1 · · ·Bh{pi}{pi}∗, where
pi /∈ Bj , 1 ≤ j ≤ h, and {pi}∗ stands for a finite, nonnegative number of blocks
of the form {pi}.

A process pi is seen in an execution α if it is not unseen in it. A process
pi ∈ Bj is seen in Bj if pi is not the only process in Bj , or if there is a later
block with a process other than pi. The key property of block executions that
we use is captured by the next lemma (this is Lemma 3.4 in [5]).

2 In general, wait-freedom does not necessarily imply that the executions are
bounded [25]. However, with a bounded set of inputs, wait-freedom implies that
there is a bound on the number of steps taken by a process in any execution.

360 H. Attiya and A. Paz

Lemma 1. Let P be a set of processes, and let pi ∈ P . If pi is seen in an

execution α of P , then there is a unique execution α′ of P such that α′ P−pi∼ α
and α′ 	= α. Moreover, pi is seen in α′.

Sketch of proof. Let α be induced by B1 · · ·Bh {pi}∗, and let B� be the last block
in which pi is seen.

If B� = {pi}, define the new execution α′ by merging B� with the successive
block B�+1. That is, {pi}B�+1 is replaced with {pi}∪B�+1 (note that B�+1 does
not include pi), and all other blocks remain the same.

Otherwise, if B� 	= {pi}, define α′ by splitting pi before B�, with the opposite
manipulation. That is, B� is replaced with {pi}B� \ {pi}, and all other blocks
remain the same.

In both cases, it might be necessary to add singleton steps at the end of the
execution to ensure pi terminates. �

Assume, by way of contradiction, that there is a wait-free algorithm solving
(n− 1)-set agreement. Let Cm, 1 ≤ m ≤ n, be the set of all executions in which
only the first m processes, p0, . . . , pm−1, take steps, each process pi has an input
value i, and all the values 0, . . . ,m− 1 are decided. We prove that Cn 	= ∅, i.e.,
there is an execution in which n values are decided.

Lemma 2. For every m, 1 ≤ m ≤ n, the size of Cm is odd.

Proof. The proof is by induction on m. For the base case, m = 1, consider a solo
execution of p0. Since the algorithm is wait-free, p0 decides in h steps, for some
integer h ≥ 1. By the validity property, p0 decides on 0, so there is a unique
execution in C1, induced by {p0}h. Hence, |C1| = 1.

Assume the lemma holds for some m, 1 ≤ m < n. Let Xm+1 be the set of all
tuples of the form (α, pi), 0 ≤ i ≤ m, such that α is an execution where only
processes p0, . . . , pm take steps, and all the values 0, . . . ,m − 1 are decided by
processes other than pi; pi decides on an arbitrary value. We show that the sizes
of Xm+1 and Cm+1 have the same parity.

Let X ′
m+1 be the subset of Xm+1 containing all tuples (α, pi), such that all

values 0, . . . ,m are decided in α; we show that the size of X ′
m+1 is equal to the

size of Cm+1. Let (α, pi) be a tuple in X ′
m+1, so α is in Cm+1. Since m+1 values

are decided by m+ 1 processes in α, pi is the unique process that decides m in
α, so there is no other tuple (α, pj) in X ′

m+1 with the same execution α. For
the other direction, if α is an execution in Cm+1, then in α, m + 1 values are
decided by m+1 processes, and there is a unique process pi which decides m in
α. Hence, α appears in X ′

m+1 exactly once, in the tuple (α, pi).
We next argue that there is an even number of tuples in Xm+1, but not in

X ′
m+1. If (α, pi) is such a tuple, then pi decides v 	= m in α. Since (α, pi) ∈ Xm+1,

all values but m are decided in α by processes other than pi, so there is a unique
process pj 	= pi that decides v in α. Thus, (α, pi) and (α, pj) are both in Xm+1

but not in X ′
m+1, and these are the only appearances of α in Xm+1. Therefore,

there is an even number of tuples in Xm+1 but not in X ′
m+1, implying that the

Counting-Based Impossibility Proofs for Renaming and Set Agreement 361

sizes of Xm+1 and X ′
m+1 have the same parity, and hence, the sizes of Xm+1

and Cm+1 have the same parity.
To complete the proof and show that the size of Xm+1 is odd, partition the

tuples (α, pi) in Xm+1 into three subsets, depending on whether pi is seen in α
or not:

1. pi is seen in α: By Lemma 1, for each execution α in which only p0, . . . , pm
take steps, and pi is seen, there is a unique execution α′ 	= α with only
p0, . . . , pm taking steps, pi is seen, and all processes other than pi decide
on the same values. Hence, the tuples in Xm+1 in which pi is seen in the
execution can be partitioned into disjoint pairs of the form {(α, pi), (α′, pi)},
which implies that there is an even number of such tuples.

2. i �= m and pi is unseen in α: Since i ∈ {0 . . . ,m − 1} and all values
{0, . . . ,m − 1} are decided in α by processes other than pi, the value i is
decided in α by some process pj, j 	= i. But pi is unseen in α, so pj must
have decided on i before pi introduced i as an input value. Considering the
same execution without the steps of pi at the end, we conclude that the
fact that pj decides on i contradicts the validity property of the algorithm.
Hence, there are no such tuples in Xm+1.

3. i = m and pm is unseen in α: We show a bijection between this subset of
Xm+1 and Cm. Since pm is unseen in α, in the beginning of α all processes but
pm take steps and decide on all values 0, . . . ,m− 1, and then pm takes steps
alone. Consider the execution α̂ induced by the same blocks, but excluding
the steps of pm at the end, and note that α̂ is in Cm. On the other hand,
every α̂ in Cm can be extended to an execution α by adding singleton steps
of pm the its end, (α, pm) is in Xm+1 and pm is unseen in α.
By the induction hypothesis, the size of Cm is odd, so the bijection implies
that Xm+1 has an odd number of tuples (α, pm) in which pm is unseen in α.

Since the sizes of Cm+1 and Xm+1 have the same parity, and the latter size is
odd, then so is the former. ��

Taking m = n, we get that the size of Cn is odd, and hence, nonzero, implying
that there is an execution in which all n values are decided, contradicting the
(n− 1)-agreement property.

Theorem 1. There is no wait-free algorithm solving the (n− 1)-set agreement
task in an asynchronous shared memory system with n processes.

4 Impossibility of Symmetry Breaking (SSB and WSB)

In weak symmetry breaking (WSB), n inputless processes should each output a
single bit, satisfying:

Symmetry Breaking: If all processes output, then not all of them output the
same value.

362 H. Attiya and A. Paz

WSB is easily solvable when using the processes’ identifiers: p0, . . . , pn−2 output
1, and pn−1 outputs 0. To prevent such solutions, we assume processes does not
use their identifiers, and they all run the same algorithm. This restriction is
enforced by demanding that WSB algorithm is symmetric [5, 18, 29], formalized
as follows.

Let α be an execution prefix induced by a sequence of blocks B1 · · ·Bh, and
let π : {0, . . . , n−1} → {0, . . . , n−1} be a permutation. For a block Bj , let π(Bj)
be the block

{
pπ(i)

}
pi∈Bj

, and denote by π(α) the execution prefix induced by

π(B1) · · ·π(Bh).
A permutation π : {0, . . . , n− 1} → {0, . . . , n− 1} is order preserving on a set

of processes P , if for every pi, pi′ ∈ P , if i < i′ then π(i) < π(i′).

Definition 1. An algorithm A is symmetric if, for every execution prefix α of
A by a set of processes P , and for every permutation π : {0, . . . , n − 1} →
{0, . . . , n − 1} that is order preserving on P , if a process pi decides in α, then
pπ(i) decides in π(α), and on the same value.

An adaptive version of WSB is the strong symmetry breaking (SSB) task, where
n inputless processes should each output a single bit, satisfying the symmetry
breaking property, and the following property:

1-decision: In every execution, at least one participating process outputs 1.

SSB is unsolvable even if the processes are allowed to use their identifiers, so we
do not assume that algorithms are symmetric.

We can now explain the arguments used to prove the impossibility of both
symmetry breaking tasks. As in the set agreement proof, we analyze the set
of executions using counting arguments. Assume, towards a contradiction, that
there is an algorithm A solving the relevant task—SSB or WSB. We associate
A with a univalued signed count, a quantity that counts the executions of A
in which all processes output the same value; if the univalued signed count is
nonzero, then there is an illegal execution of A. We prove that for SSB, the
univalued signed count is always nonzero, whereas for WSB, it is nonzero if n is
a prime power.

To show that the univalued signed count is nonzero, we derive a trimmed
version of A, with the same univalued signed count. Counting the univalued
signed count is easier in the trimmed version: for SSB, it is immediate from the
1-decision property, and for WSB, the symmetric nature of the algorithm implies
that the same values are output in different partial executions. Together with
the fact that n is a prime power, this is used to show that the univalued signed
count of the trimmed algorithm is nonzero, which completes the proof.

Section 4.1 defines the sign of an execution and presents a way to measure the
size of a set of executions. Section 4.2 shows how to trim an algorithm in a way
the preserves the univalued signed count. These tools are used in Sections 4.3
and 4.4 to prove the impossibility results for SSB and WSB, respectively.

Counting-Based Impossibility Proofs for Renaming and Set Agreement 363

4.1 Counting Executions by Signs

The sign of a sequence of blocks B1 · · ·Bh is sign(B1 · · ·Bh) =
∏h

i=1(−1)|Bi|+1;
it is positive if and only if there is an even number of even-sized blocks. The
definition is crafted to obtain Proposition 1 and Lemma 3.

The sign of an execution α induced by B1 · · ·Bh is sign(α) = sign(B1 · · ·Bh).
If two executions (possibly of different algorithms) differ only in singleton steps
of a process at their end, then the difference is only in odd-sized blocks, which
do not change the sign, implying their signs are equal:

Proposition 1. If α is an execution induced by B1 · · ·Bh and α̂ is an execution
induced by B1 · · ·Bh{pi}m, then sign(α) = sign(α̂).

Since the indistinguishable execution constructed in the proof of Lemma 1 is
created by either pulling out or merging a singleton set, it must have an opposite
sign. This is stated in the next lemma, extending Lemma 1 to argue about signs.

Lemma 3. Let P be a set of processes, and let pi ∈ P . If pi is seen in an

execution α of P , then there is a unique execution α′ of P such that α′ P−pi∼ α
and α′ 	= α. Moreover, pi is seen in α′, and sign(α′) = − sign(α).

This lemma is used in an analogous way to the parity argument in the proof
of Lemma 2, except that here, we sum signs instead of checking the parity of a
size; as in Lemma 2, pairs of executions from Lemma 3 cancel each other.

From now on, we consider only executions by all processes. For an algorithm
A and for v = 0, 1, the set of executions of A in which only v is decided is CA

v =
{α | dec(α) = {v}}. These sets are defined for any algorithm, but the symmetry
breaking property implies that both sets are empty, since the executions in which
all processes decide on the same value, either 0 or 1, are prohibited. To prove that
no algorithm solves SSB, or solves WSB when n is a prime power, we measure
CA

0 and CA
1 and show they cannot both be empty.

The signed count of a set of executions S is μ (S) =
∑

α∈S sign(α). Clearly,
μ (∅) = 0, and for any two disjoint sets S, T , μ (S∪̇T) = μ (S) + μ (T).

The univalued signed count of an algorithm A is μ
(
CA

0

)
+ (−1)n−1 · μ

(
CA

1

)
.

Note that if the univalued signed count is nonzero, then A has an execution
with a single output value. (The converse is not necessarily true, but this does
not matter for the impossibility result.) We next define a trimmed version of A,
T(A), and show how this way of measuring CA

0 and CA
1 allows to prove that the

univalued signed counts of A and T(A) are equal (Lemma 4).

4.2 A Trimmed Algorithm

Let A be a wait-free algorithm which produces binary outputs. By assumption,
process pi alternates between write and scan operations:

364 H. Attiya and A. Paz

write(i) to Ri

while (1) do
v ← Scan (R0, . . . , Rn−1)
LocalA(v): [calculation on v

if cond then return x
else write(v) to Ri]

We derive from A a trimmed algorithm, T(A), that does not claim to solve any
symmetry breaking task. The code of T(A) for a process pi is:

boolean simulated = 0
write(i) to Ri

while (1) do
v ← Scan (R0, . . . , Rn−1)
if v contains all processes then return simulated
compute LocalA(v)
if A returns x then return the same value x
simulated← 1

In every execution of T(A), the last process to take a first step sees all other pro-

cesses in its first scan, takes no simulation steps and outputs 0; hence, C
T(A)
1 = ∅.

Every execution of A with an unseen process pi is also an execution of T(A),
up to the number of singleton steps of pi at the end of the execution. By Propo-
sition 1, changing the number of singleton steps does not affect the sign, so
counting executions with an unseen process by sign is the same for both algo-
rithms. This is used in the proof of the next lemma:

Lemma 4. A and T(A) have the same univalued signed count.

Proof. For each of the algorithms, we define an intermediate set of tuples in a
way similar to the one used in the proof of the (n−1)-set agreement impossibility
result (Lemma 1). These tuples contain executions spanning from the univalued
0 executions to the univalued 1 executions. More precisely, consider tuples of the
form (α, pi) such that in α, all processes with identifier smaller than i decide on
1, and all processes with identifier greater than i decide on 0. As in the proof of
Lemma 1, the output of pi does not matter. For an algorithm A, let:

XA = {(α, pi) | dec(α, {p0, . . . , pi−1}) = {1}; dec(α, {pi+1, . . . , pn−1}) = {0}} .

We abuse notation and define the signed count of the set of pairs XA to be
λ
(
XA
)
=
∑n−1

i=0 (−1)iμ(
{
α | (α, pi) ∈ XA

}
). Again, λ (∅) = 0, and for any two

disjoint sets S, T , λ (S∪̇T) = λ (S) + λ (T). Similar notations are used for T(A).
The (−1)i element in λ

(
XA
)
is used to cancel out pairs of tuples in XA with

the same execution and processes with consecutive identifiers. This is used in
the first case of the next claim:

Claim. The univalued signed count of an algorithm A equals λ
(
XA
)
.

Proof of claim. For every tuple (α, pi) ∈ XA there are three possibilities:

Counting-Based Impossibility Proofs for Renaming and Set Agreement 365

1. dec(α) = {0, 1}. If dec(α, pi) = 1 then

dec(α, {p0, . . . , pi−1, pi}) = {1}; dec(α, {pi+1, . . . , pn−1}) = {0},

so (α, pi+1) is also in XA. In λ
(
XA
)
, α appears exactly twice, for (α, pi)

and for (α, pi+1), and the corresponding summands cancel each other, since
(−1)i sign(α) = −(−1)i+1 sign(α).
If dec(α, pi) = 0 then, by a similar argument, (α, pi−1) is also in XA and the
appropriate summands cancel each other.

2. dec(α) = {0}. Then i = 0, α appears in XA once, as (α, p0), and its sign in
λ
(
XA
)
is sign(α), as in μ

(
CA

0

)
.

3. dec(α) = {1}. Then i = n − 1, α appears in XA once, as (α, pn−1), and its
sign in λ

(
XA
)
is (−1)n−1 sign(α), as in (−1)n−1μ

(
CA

1

)
.

Therefore, every tuple in XA implies either two summands in λ
(
XA
)
that

cancel each other, or a summand that appears in λ
(
XA
)
and in μ

(
CA

0

)
+

(−1)n−1μ
(
CA

1

)
with the same sign. On the other hand, every execution α ∈ CA

0

appears in XA in a pair (α, p0), as discussed in the second case, and every
α ∈ CA

1 appears in XA in a pair (α, pn−1), as discussed in the third case. Hence,
the sums are equal. �

It remains to show that λ
(
XA
)
= λ

(
XT(A)

)
.

For a tuple (α, pi) ∈ XA such that pi is unseen in α, consider the execution
ᾱ of T(A) with the same sequence of blocks, possibly omitting singleton steps
at the end; by Proposition 1, both executions have the same sign. Moreover, all
processes but pi complete the simulation of A and output the same values as in
α. Hence, (ᾱ, pi) ∈ XT(A) and the contribution of (α, pi) to λ

(
XA
)
equals the

contribution of (ᾱ, pi) to λ
(
XT(A)

)
.

The sum over tuples (α, pi) in which pi is seen in α is 0 in both cases: fix a
process pi, and consider all the tuples (α, pi) ∈ XA in which pi is seen in α. By

Lemma 3, for each α there is a unique execution α′ 	= α of A such that α
P−pi∼ α′,

hence for each pj 	= pi, dec(α, pj) = dec(α′, pj), and (α′, pi) ∈ XA. Moreover,
pi is also seen in α′, and sign(α) = − sign(α′). Hence, we can divide all these
tuples into pairs, (α, pi) and (α′, pi), so that sign(α) = − sign(α′), each of which
cancels out in λ

(
XA
)
. The same claim holds for T(A) as well. ��

4.3 Impossibility of Strong Symmetry Breaking

Let S be an SSB algorithm and consider its trimmed version, T(S). By Lemma 4,
the univalued signed count of S and T(S) is the same, so it suffices to prove:

Lemma 5. The univalued signed count of T(S) is nonzero.

Proof. In every execution of T(S), the last process to take a first step sees all

other processes in its first step and decides on simulated = 0, hence C
T(S)
1 = ∅.

There is a unique execution α of T(S) in which all processes take their first

step together, take no simulation steps and decide 0. So α ∈ C
T(S)
0 , and we claim

366 H. Attiya and A. Paz

there is no other execution in C
T(S)
0 . Consider another execution α′ of T(S). In

α′, there is a set of processes which does not see all other processes in their first
scan operation, and all of them set simulated = 1. If one of these processes sees
all other processes in a later scan, it decides 1. Otherwise, all these processes
decide in the simulation of S, and this simulation induces a legal execution of S.
By the 1-decision property of S, at least one of them decides 1 in S, and hence
in T(S).

Hence, C
T(S)
0 = {α}, and since C

T(S)
1 = ∅, the univalued signed count of T(S)

is sign(α) = (−1)n+1. ��

By Lemma 4, the univalued signed count of S is also nonzero. Hence, there is
an execution of S where all processes decide, and on the same value, so the
algorithm does not satisfy the symmetry breaking property.

Theorem 2. There is no wait-free algorithm solving SSB in an asynchronous
shared memory system with any number of processes.

4.4 Impossibility of Weak Symmetry Breaking

Let W be a symmetric WSB algorithm, and consider its trimmed version T(W).
In order to compute the univalued signed count of T(W), we use the fact

that W is symmetric to show that every execution α of T(W) where not all
processes participate has a set of executions with the same outputs as in α. This
is formalized by defining an equivalence relation on the executions of T(W) and
considering the equivalence classes it induces.

For an execution α of T(W), induced by the blocks B1 · · ·Bh, let � be the
index of the first block after all processes have taken a step, i.e., ∪j≤�Bj = P

and ∪j<�Bj 	= P. Pα is the set of all processes that set the simulated variable
to be 1, namely, took steps before the rest of the processes appear. Formally,
Pα = ∪j<�Bj , and Pα = ∅ if B1 = P; denote Pα = P \ Pα.

For an integer m, 0 ≤ m < n, let Sm be the set of executions α such that
|Pα| = m, i.e., in which exactly m processes take steps in W . Note that every
execution α is in some set Sm, since Pα is defined for every α, and |Pα| < n
since the last process to start does not simulate a step of W .

When m = 0, S0 is the set of executions in which all processes take steps
in the first block. In T(W), they all decide 0 and halt, so S0 contains only the
execution induced by the single block {p0, . . . , pn−1}. Hence, |S0| = 1.

Fix some m ≥ 0 and consider two executions α, α′ ∈ Sm, such that α is
induced by B1 · · ·Bh and α′ is induced by B′

1 · · ·B′
h′ . Define a relation) on

Sm, such that α) α′ if and only if h = h′, and there is a permutation π :
{0, . . . , n−1} → {0, . . . , n−1} that is order preserving on Pα and on Pα, such that
B′

j = π(Bj) for every j ∈ {1, . . . , h}. It is easy to check that) is an equivalence
relation. The equivalence class of an execution α is [α] = {α′ | α) α′}.

Since W is symmetric, it can be verified that the equivalence classes of) have
the following useful properties:

Counting-Based Impossibility Proofs for Renaming and Set Agreement 367

Proposition 2. If α ∈ Sm and α′) α, then sign(α) = sign(α′), α′ ∈ Sm, and
dec(α) = dec(α′).

Therefore, we can denote the sign of all the executions in [α] by sign([α]).
For two sets of equal sizes, P and P ′, note that there is a unique permutation

π : {0, . . . , n− 1} → {0, . . . , n− 1} that maps P to P ′ and P \P to P \P ′ and is
order preserving on P and on P\P . This is due to the fact that all identifiers are
distinct and hence, there is a single way to map P to P ′ in an order-preserving
manner, and a single way to map P \ P to P \ P ′ in such manner. This implies
that π is unique, which is used in the proof of the next lemma:

Lemma 6. For every m, 0 ≤ m < n, and for every execution α ∈ Sm, the size
of [α] is

(
n
m

)
.

Proof. Denote by
(
P
m

)
the set of all subsets of P of size m. Then

∣∣∣(Pm)∣∣∣ = (nm).
For α ∈ Sm, define f : [α] →

(
P
m

)
by f(α′) = Pα′ , which is well defined by

Proposition 2. We prove that f is a bijection.
Let α′, α′′ ∈ [α] satisfying f(α′) = f(α′′), and assume α′ = π(α) and α′′ =

ϕ(α), for two permutations π, ϕ that are order preserving on Pα and on Pα. Since
f(α′) = f(α′′), we have that Pα′ = Pα′′ , and hence, Pα′ = Pα′′ . Since there is a
unique permutation that maps Pα to Pα′ and Pα to Pα′ in an order-preserving
manner, it follows that π = ϕ, implying that α′ = α′′.

Let P ∈
(
P
m

)
, and denote by π the unique permutation that maps Pα to P

and Pα to P \P and is order preserving on both sets. Let α′ = π(α), so α′ ∈ Sm

and f(α′) = Pα′ = P . ��

Lemma 7. If n = qe for a prime number q and a positive integer e, then the
univalued signed count of T(W) is nonzero.

Proof. In every execution of T(W), at least one process sees all other processes in

its first scan and decides 0. Therefore, C
T(W)
1 = ∅ and μ

(
C

T(W)
1

)
= 0, implying

that the univalued signed count of T(W) is equal to μ
(
C

T(W)
0

)
. To show that

μ
(
C

T(W)
0

)
is nonzero, note that C

T(W)
0 is the disjoint union of C

T(W)
0 ∩ Sm for

0 ≤ m ≤ n− 1, since each execution is in some set Sm. Hence,

μ
(
C

T(W)
0

)
=

n−1∑
m=0

μ
(
C

T(W)
0 ∩ Sm

)
.

Fix m ≥ 0. By Proposition 2, if α is in C
T(W)
0 ∩ Sm then every α′) α is also

in C
T(W)
0 ∩Sm. Therefore, C

T(W)
0 ∩Sm consists of complete equivalence classes,

and can be rewritten as ∪
α∈C

T(W)
0 ∩Sm

[α]. Therefore,

μ
(
C

T(W)
0

)
=

n−1∑
m=0

∑
{[α]|α∈C

T(W)
0 ∩Sm}

μ ([α]) .

368 H. Attiya and A. Paz

By Lemma 6, the size of each equivalence class is
(
n
m

)
. Also, recall that all

executions in an equivalence class have the same sign. Note that S0 contains
only the execution α induced by the block {p0, . . . , pn−1}; for this execution,
Pα = ∅, and its sign is (−1)n+1. Therefore,

μ
(
C

T(W)
0

)
= (−1)n+1 +

n−1∑
m=1

∑
{[α]|α∈C

T(W)
0 ∩Sm}

(
n

m

)
· sign([α]).

The following basic result of number theory follows from Lucas’ Theorem.

Claim. If q is a prime number and e,m are positive integers such that 0 < m <
qe, then

(
qe

m

)
≡ 0 (mod q).

Therefore, all summands, except the first one, are 0 mod q, and hence,

μ
(
C

T(W)
0

)
≡ (−1)n+1 	≡ 0 (mod q),

hence, μ
(
C

T(W)
0

)
	= 0 and the univalued signed count of T(W) is nonzero. ��

Consider a WSB algorithm W for n processes, where n is a prime power. By
Lemma 7, the univalued signed count of T(W) is nonzero, and by Lemma 4,
the same holds for W . This implies that at least one of CW

0 and CW
1 is not

empty. Thus, there is an execution of W in which only 0 or only 1 is decided,
contradicting the symmetry breaking property of W .

Theorem 3. There is no wait-free algorithm solving WSB in an asynchronous
shared memory system if the number of processes is a prime power.

5 Discussion

Understanding wait-free solvable tasks is at the heart of distributed computing.
This paper suggests a new approach for studying wait-free solvability of sub-
consensus tasks. The novel ingredient in our approach is in counting (sometimes
by sign) the number of executions that violate the task’s requirements, as a way
to show that such executions exist. This yields simple impossibility proofs for
wait-free computation using only read and write operations: n processes cannot
solve (n − 1)-set agreement or SSB, and, if n is a prime power, they cannot
solve (2n − 2)-renaming. The simplicity of the proofs, and in particular, the
fact they use only elementary mathematics, should make them accessible to a
wider audience and increase confidence in their correctness. We hope this better
understanding of colored tasks will promote further investigation of them.

Prior approaches [3, 5, 12, 28] also consider a restricted subset of executions
in which all processes decide. Additionally, some parts of our proofs are anal-
ogous to known topological proofs [13, 28]. In these proofs, simplexes represent
executions, where each node represents the local view of a process. These papers

Counting-Based Impossibility Proofs for Renaming and Set Agreement 369

use variants of Lemma 1 to prove that the set of simplexes representing block
executions induces a manifold.

An execution α with the view of a process pi factored out is represented by the
pair (α, pi) in our proofs; this is the analogue of the face of the simplex of α that
is opposite to the node of pi. Thus, counting pairs is analogous to counting faces
of a simplex, as used in a classical proof of Sperner’s Lemma, and in the proof of
the Index lemma [24]. Indeed, Lemma 2 is analogous to Sperner’s Lemma, and
Lemma 4 corresponds to the use of the Index lemma in [12, 13].

The sign of an execution is used here instead of the topological notion of
defining an orientation on a manifold and comparing it with the orientation
of each simplex; univalued signed count is the counterpart of the topological
content. The trimmed algorithm T(W) is an algorithmic way to look at the cone
construction of [13]. Proposition 2 is proved there in a relatively complicated
manner, using i-corners or flip operations and paths in a subdivided simplex.

Simulations, like [7,17,20], can be used to translate the lower bounds to other
models, e.g., message-passing systems or models with fewer failures. More inter-
estingly, it should be possible to derive analogous lower bounds for other models,
by showing properties similar to Lemma 3. For example, in the message-passing
model, we can consider layered executions [30] and take the sign according to
the number of messages sent in the layers.

Finally, and perhaps most importantly, our simpler proofs may lead to the
discovery of matching upper bounds, for example, an explicit (2n− 2)-renaming
algorithm when n is not a prime power.

Acknowledgements. We would like to thank Maurice Herlihy for collaboration
in earlier stages of this research, Armando Castañeda, Keren Censor-Hillel, Faith
Ellen, Tal Horesh, Petr Kuznetsov, Sergio Rajsbaum, Mor Weiss and the referees
for valuable comments, and Amir Shpilka for discussions on number theory.

References

1. Attiya, H.: A direct lower bound for k-set consensus. In: PODC 1998, p. 314 (1998)
2. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an asyn-

chronous environment. J. ACM 37, 524–548 (1990)
3. Attiya, H., Castañeda, A.: A Non-topological Proof for the Impossibility of k-Set

Agreement. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976,
pp. 108–119. Springer, Heidelberg (2011)

4. Attiya, H., Fouren, A.: Polynomial and Adaptive Long-Lived (2k - 1)-Renaming. In:
Herlihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, pp. 149–163. Springer, Heidelberg
(2000)

5. Attiya, H., Rajsbaum, S.: The combinatorial structure of wait-free solvable tasks.
SIAM J. Comput. 31, 1286–1313 (2002)

6. Attiya, H., Welch, J.: Distributed computing: fundamentals, simulations, and ad-
vanced topics. Wiley series on parallel and distributed computing. Wiley (2004)

7. Borowsky, E., Gafni, E., Lynch, N., Rajsbaum, S.: The BG distributed simulation
algorithm. Distributed Computing 14, 127–146 (2001)

8. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t-resilient asyn-
chronous computations. In: STOC 1993, pp. 91–100 (1993)

370 H. Attiya and A. Paz

9. Borowsky, E., Gafni, E.: Immediate atomic snapshots and fast renaming. In: PODC
1993, pp. 41–51 (1993)

10. Castañeda, A.: A Study of the Wait-free Solvability of Weak Symmetry Breaking
and Renaming. PhD thesis, Universidad Nacional Autonoma de Mexico (2010)

11. Castañeda, A., Herlihy, M., Rajsbaum, S.: An Equivariance Theorem with Appli-
cations to Renaming. In: Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256,
pp. 133–144. Springer, Heidelberg (2012)

12. Castañeda, A., Rajsbaum, S.: New combinatorial topology upper and lower bounds
for renaming. In: PODC 2008, pp. 295–304 (2008)

13. Castañeda, A., Rajsbaum, S.: New combinatorial topology bounds for renaming:
the lower bound. Distributed Computing 22, 287–301 (2010)

14. Castañeda, A., Rajsbaum, S., Raynal, M.: The renaming problem in shared mem-
ory systems: An introduction. Computer Science Review 5(3), 229–251 (2011)

15. Castañeda, A., Rajsbaum, S.: New combinatorial topology bounds for renaming:
the upper bound. J. ACM 59(1) (2012)

16. Chaudhuri, S.: More choices allow more faults: set consensus problems in totally
asynchronous systems. Inf. Comput. 105(1), 132–158 (1993)

17. Gafni, E.: Round-by-round fault detectors: Unifying synchrony and asynchrony.
In: PODC 1998, pp. 143–152 (1998)

18. Gafni, E.: Read-write reductions. In: ICDCN 2006, pp. 349–354 (2006)
19. Gafni, E.: The 0–1-Exclusion Families of Tasks. In: Baker, T.P., Bui, A., Tixeuil,

S. (eds.) OPODIS 2008. LNCS, vol. 5401, pp. 246–258. Springer, Heidelberg (2008)
20. Gafni, E.: The extended BG-simulation and the characterization of t-resiliency. In:

STOC 2009, pp. 85–92 (2009)
21. Gafni, E., Rajsbaum, S.: Recursion in Distributed Computing. In: Dolev, S., Cobb,

J., Fischer, M., Yung, M. (eds.) SSS 2010. LNCS, vol. 6366, pp. 362–376. Springer,
Heidelberg (2010)

22. Gafni, E., Rajsbaum, S., Herlihy, M.P.: Subconsensus Tasks: Renaming Is Weaker
Than Set Agreement. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 329–338.
Springer, Heidelberg (2006)

23. Hardy, G.: Ramanujan: Twelve Lectures on Subjects Suggested by His Life and
Work. AMS Chelsea Publishing Series. AMS Chelsea Pub. (1999)

24. Henle, M.: A Combinatorial Introduction to Topology. Dover Books on Mathemat-
ics Series. Dover (1994)

25. Herlihy, M.: Impossibility results for asynchronous PRAM. In: SPAA 1991, pp.
327–336 (1991)

26. Herlihy, M., Rajsbaum, S.: Algebraic spans. Math. Struct. Comp. Sci. 10, 549–573
(2000)

27. Herlihy, M., Shavit, N.: The asynchronous computability theorem for t-resilient
tasks. In: STOC 1993, pp. 111–120 (1993)

28. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability.
J. ACM 46, 858–923 (1999)

29. Imbs, D., Rajsbaum, S., Raynal, M.: The Universe of Symmetry Breaking Tasks.
In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp.
66–77. Springer, Heidelberg (2011)

30. Moses, Y., Rajsbaum, S.: A layered analysis of consensus. SIAM J. Comput. 31(4),
989–1021 (2002)

31. Raynal, M., Travers, C.: Synchronous set agreement: a concise guided tour. In:
PRDC 2006, pp. 267–274 (2006)

32. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: The topology of
public knowledge. SIAM J. Comput. 29(5), 1449–1483 (2000)

Randomized Distributed Decision

Pierre Fraigniaud1, Amos Korman1,�, Merav Parter2, and David Peleg2,��

1 CNRS and University Paris Diderot, France
{pierre.fraigniaud,amos.korman}@liafa.jussieu.fr
2 The Weizmann Institute of Science, Rehovot, Israel

{merav.parter,david.peleg}@weizmann.ac.il

Abstract. The paper tackles the power of randomization in the context
of locality by analyzing the ability to “boost” the success probability of
deciding a distributed language. The main outcome of this analysis is
that the distributed computing setting contrasts significantly with the
sequential one as far as randomization is concerned. Indeed, we prove
that in some cases, the ability to increase the success probability for
deciding distributed languages is rather limited.

We focus on the notion of a (p, q)-decider for a language L, which
is a distributed randomized algorithm that accepts instances in L with
probability at least p and rejects instances outside of L with probability
at least q. It is known that every hereditary language that can be de-
cided in t rounds by a (p, q)-decider, where p2 + q > 1, can be decided
deterministically in O(t) rounds. One of our results gives evidence sup-
porting the conjecture that the above statement holds for all distributed
languages and not only for hereditary ones, by proving the conjecture
for the restricted case of path topologies.

For the range below the aforementioned threshold, namely, p2+q ≤ 1,
we study the class Bk(t) (for k ∈ N

∗ ∪ {∞}) of all languages decidable

in at most t rounds by a (p, q)-decider, where p1+
1
k + q > 1. Since ev-

ery language is decidable (in zero rounds) by a (p, q)-decider satisfying
p + q = 1, the hierarchy Bk provides a spectrum of complexity classes
between determinism (k = 1, under the above conjecture) and complete
randomization (k = ∞). We prove that all these classes are separated, in
a strong sense: for every integer k ≥ 1, there exists a language L satis-
fying L ∈ Bk+1(0) but L /∈ Bk(t) for any t = o(n). In addition, we show
that B∞(t) does not contain all languages, for any t = o(n). In other
words, we obtain the hierarchy B1(t) ⊂ B2(t) ⊂ · · · ⊂ B∞(t) ⊂ All.

Finally, we show that if the inputs can be restricted in certain ways,
then the ability to boost the success probability becomes almost null, and
in particular, derandomization is not possible even beyond the threshold
p2 + q = 1.

Keywords: Local distributed algorithms, local decision, randomized
algorithms.

� Supported by the ANR projects DISPLEXITY and PROSE, and by the INRIA
project GANG.

�� Supported in part by the Israel Science Foundation (grant 894/09), the US-Israel
Binational Science Foundation (grant 2008348), the Israel Ministry of Science and
Technology (infrastructures grant), and the Citi Foundation.

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 371–385, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

372 P. Fraigniaud et al.

1 Introduction

Background and Motivation. The impact of randomization on computation is
one of the most central questions in computer science. In particular, in the
context of distributed computing, the question of whether randomization helps
in improving locality for construction problems has been studied extensively.
While most of these studies were problem-specific, several attempts have been
made for tackling this question from a more general and unified perspective.
For example, Naor and Stockmeyer [26] focus on a class of problems called LCL
(essentially a subclass of the class LD discussed below), and show that if there
exists a randomized algorithm that constructs a solution for a problem in LCL
in a constant number of rounds, then there is also a constant time deterministic
algorithm constructing a solution for that problem.

Recently, this question has been studied in the context of local decision, where
one aims at deciding locally whether a given global input instance belongs to
some specified language [13]. The localities of deterministic algorithms and ran-
domized Monte Carlo algorithms are compared in [13], in the LOCAL model
(cf. [28]). One of the main results of [13] is that randomization does not help
for locally deciding hereditary languages if the success probability is beyond a
certain guarantee threshold. More specifically, a (p, q)-decider for a language L
is a distributed randomized Monte Carlo algorithm that accepts instances in L
with probability at least p and rejects instances outside of L with probability
at least q. It was shown in [13] that every hereditary language that can be de-
cided in t rounds by a (p, q)-decider, where p2 + q > 1, can actually be decided
deterministically in O(t) rounds. On the other hand, [13] showed that the afore-
mentioned threshold is sharp, at least when hereditary languages are concerned.
In particular, for every p and q, where p2 + q ≤ 1, there exists an hereditary
language that cannot be decided deterministically in o(n) rounds, but can be
decided in zero rounds by a (p, q)-decider.

In one of our results we provide evidence supporting the conjecture that the
above statement holds for all distributed languages and not only for hereditary
ones. This is achieved by considering the restricted case of path topologies. In
addition, we present a more refined analysis for the family of languages that can
be decided randomly but not deterministically. That is, we focus on the family
of languages that can be decided locally by a (p, q)-decider, where p2 + q ≤ 1,
and introduce an infinite hierarchy of classes within this family, characterized
by the specific relationships between the parameters p and q. As we shall see,
our results imply that the distributed computing setting contrasts significantly
with the sequential one as far as randomization is concerned. Indeed, we prove
that in some cases, the ability to increase the success probability for deciding
distributed languages is very limited.

Model. We consider the LOCAL model (cf. [28]), which is a standard distributed
computingmodel capturing the essence of spatial locality. In thismodel, processors
are woken up simultaneously, and computation proceeds in fault-free synchronous
rounds during which every processor exchangesmessages of unlimited size with its
neighbors, andperformsarbitrarycomputationson itsdata. It is important to stress

Randomized Distributed Decision 373

that all the algorithmic constructions that we employ in our positive results use
messages of constant size (some of which do not use any communication at all).
Hence,allour resultsapplynotonlytotheLOCALmodelofcomputationbutalso to
more restrictedmodels, for example, the CONGEST (B)model1, whereB = O(1).

A distributed algorithm A that runs on a graph G operates separately on each
connected component, and nodes of a component C of G cannot distinguish the
underlying graph G from C. Therefore, we consider connected graphs only.

We focus on distributed decision tasks. Such a task is characterized by a finite
or infinite setΣ of symbols (e.g.,Σ = {0, 1}, or Σ = {0, 1}∗), and by a distributed
language L defined on this set of symbols (see below). An instance of a distributed
decision task is a pair (G,x) where G is an n-node connected graph, and x ∈ Σn,
that is, every node v ∈ V (G) is assigned as its local input a value x(v) ∈ Σ.
(In some cases, the local input of every node is empty, i.e., Σ = {ε}, where ε
denotes the empty binary string.) We define a distributed language as a decidable
collection L of instances2.

In the context of distributed computing, each processormust produce a boolean
output, and the decision is defined by the conjunction of the processors outputs,
i.e., if the instance belongs to the language, then all processors must output “yes”,
and otherwise, at least one processormust output “no”. Formally, for a distributed
languageL, we say that a distributed algorithmA decides L if and only if for every
instance (G,x) and id-assignment Id, every node v of G eventually terminates
and produces an output denoted outA(G,x, Id, v), which is either “yes” or “no”,
satisfying the following decision rules:

• If (G,x) ∈ L, then outA(G,x, Id, v) = “yes” for every node v ∈ V (G) ;
• If (G,x) /∈ L, then outA(G,x, Id, v) = “no” for at least one node v ∈ V (G) .

Decision problems provide a natural framework for tackling fault-tolerance: the
processors have to collectively check if the network is fault-free, and a node
detecting a fault raises an alarm. Many natural problems can be phrased as
decision problems, for example: “is the network planar?” or “is there a unique
leader in the network?”. Moreover, decision problems occur naturally when one
aims at checking the validity of the output of a computational task, such as “is
the produced coloring legal?”, or “is the constructed subgraph an MST?”.

The class of decision problems that can be solved in at most t communication
rounds is denoted by LD(t), for local decision. More precisely, let t be a function
of triplets (G,x, Id), where Id denotes the identity assignment to the nodes of
G. Then LD(t) is the class of all distributed languages that can be decided
by a distributed algorithm that runs in at most t communication rounds. The
randomized (Monte Carlo 2-sided error) version of the class LD(t) is denoted
BPLD(t, p, q), which stands for bounded-error probabilistic local decision, and
provides an analog of BPP for distributed computing, where p and q respectively
denote the yes-error and the no-error guarantees. More precisely, a randomized

1 The CONGEST (B) model is similar to the LOCAL model, except that message size
is assumed to be bounded by B (cf. [28]).

2 Note that an undecidable collection of instances remains undecidable in the dis-
tributed setting too.

374 P. Fraigniaud et al.

distributed algorithm is a distributed algorithm A that enables every node v,
at any round r during its execution, to generate a certain number of random
bits. For constants p, q ∈ (0, 1], we say that a randomized distributed algorithm
A is a (p, q)-decider for L, or, that it decides L with “yes” success probability
p and “no” success probability q, if and only if for every instance (G,x) and
id-assignment Id, every node of G eventually terminates and outputs “yes” or
“no”, and the following properties are satisfied:

• If (G,x) ∈ L then Pr[∀v ∈ V (G), outA(G,x, Id, v) = “yes”] ≥ p ;
• If (G,x) /∈ L then Pr[∃v ∈ V (G), outA(G,x, Id, v) = “no”] ≥ q .

The probabilities in the above definition are taken over all possible coin tosses
performed by the nodes. The running time of a (p, q)-decider executed on a
node v depends on the triple (G,x, Id) and on the results of the coin tosses.
In the context of a randomized algorithm, Tv(G,x, Id) denotes the maximal
running time of the algorithm on v over all possible coin tosses, for the instance
(G,x) and id-assignment Id. Now, just as in the deterministic case, the running
time T of the (p, q)-decider is the maximum running time over all nodes. Note
that by definition of the distributed Monte-Carlo algorithm, both Tv and T are
deterministic. For constant p, q ∈ (0, 1] and a function t of triplets (G,x, Id),
BPLD(t, p, q) is the class of all distributed languages that have a randomized
distributed (p, q)-decider running in time at most t (i.e., can be decided in time
at most t by a randomized distributed algorithm with “yes” success probability
p and “no”success probability q).

Our main interest within this context is in studying the connections between
the classes BPLD(t, p, q). In particular, we are interested in the question of
whether one can “boost” the success probabilities of a (p, q)-decider. (Recall that
in the sequential Monte Carlo setting, such “boosting” can easily be achieved by
repeating the execution of the algorithm a large number of times.) Our starting
point is the recent result of [13] that, for the class of hereditary languages (i.e.,
closed under sub-graphs), the relation p2 + q = 1 is a sharp threshold for ran-
domization. That is, for hereditary languages,

⋃
p2+q>1 BPLD(t, p, q) collapses

to LD(O(t)), but for any p, q ∈ (0, 1] such that p2+q ≤ 1 there exists a language
L ∈ BPLD(0, p, q), while L /∈ LD(t) for any t = o(n). We conjecture that the
hereditary assumption can be removed and we give some evidence supporting this
conjecture. Aiming at analyzing the collection of classes

⋃
p2+q≤1 BPLD(t, p, q),

we consider the set of classes

B∞(t) =
⋃

p+q>1

BPLD(t, p, q), Bk(t) =
⋃

p1+1/k+q>1

BPLD(t, p, q) for any k ∈ ZZ+ .

Hence, our conjecture states that B1(t) = LD(O(t)). Note that the class⋃
p+q≥1 BPLD(0, p, q) contains all languages, using a (1, 0)-decider that system-

atically returns “yes” at every node (without any communication). Hence, the
classes Bk provide a smooth spectrum of randomized distributed complexity
classes, from the class of deterministically decidable languages (under our con-
jecture) to the class of all languages. The ability of boosting the success prob-
abilities of a (p, q)-decider is directly related to the question of whether these
classes are different, and to what extent.

Randomized Distributed Decision 375

Our Results. One of the main outcomes of this paper is a proof that boosting
success probabilities in the distributed setting appears to be quite limited. By
definition, Bk(t) ⊆ Bk+1(t) for any k and t. We prove that these inclusions are
strict. In fact, we prove a stronger separation result: there exists a language in
Bk+1(0) that is not in Bk(t) for any t = o(n), and moreover, Tree /∈ B∞(t) for
any t = o(n), where Tree = {(G, ε) : G is a tree}. Hence B∞(t) does not contain
all languages, even for t = o(n). In summary, we obtain the hierarchy

B1(t) ⊂ B2(t) ⊂ · · · ⊂ B∞(t) ⊂ All .

These results demonstrate that boosting the probability of success might be
doable, but only from a (p, q) pair satisfying p1+1/(k+1) + q > 1 to a (p, q) pair
satisfying p1+1/k + q > 1 (with the extremes excluded). It is an open question
whether Bk+1(t) actually collapses to BPLD(O(t), p, q), where p1+1/k + q = 1,
or whether there exist intermediate classes.

Recall that every hereditary language in B1(t) is also in LD(O(t)) [13]. We
conjecture that this derandomization result holds for all languages and not only
for hereditary ones. We give evidence supporting this conjecture by showing
that restricted to path topologies, finite input and constant running time t, the
statement B1(t) ⊆ LD(O(t)) holds without assuming the hereditary property.
This evidence seems to be quite meaningful especially since all our separation
results hold even if we restrict ourselves to decision problems on path topologies.

Finally, we show that the situation changes drastically if the distribution of
inputs can be restricted in certain ways. Indeed, we show that for every two reals
0 < r < r′, there exists a language in Cr′(0) that is not in Cr(t) for any t = o(n),
where the C-classes are the extension of the B-classes to decision problems in
which the inputs can be restricted.

All our results hold not only for the LOCAL model but also for more restric-
tive models of computation, such as the CONGEST (B) model (for B = O(1)).

Related Work. The notion of local decision and local verification of languages
has received quite a lot of attention recently. In the LOCAL model, solving
a decision problem requires the processors to independently inspect their lo-
cal neighborhood and collectively decide whether the global instance belongs to
some specified language. Inspired by classical computation complexity theory,
Fraigniaud et al. [13] suggested that the study of decision problems may lead to
new structural insights also in the more complex distributed computing setting.
Indeed, following that paper, efforts were made to form a fundamental com-
putational complexity theory for distributed decision problems in various other
aspects of distributed computing [13,14,15,16].

The classes LD, NLD and BPLD defined in [13] are the distributed analogues
of the classes P, NP and BPP, respectively. The contribution of [13] is threefold:
it establishes the impact of nondeterminism, randomization, and randomization
+ nondeterminism, on local computation. This is done by proving structural
results, developing a notion of local reduction and establishing completeness
results. One of the main results is the existence of a sharp threshold above which
randomization does not help (at least for hereditary languages), and the BPLD
classes were classified into two: below and above the randomization threshold.

376 P. Fraigniaud et al.

The current paper “zooms” into the spectrum of classes below the randomization
threshold, and defines a infinite hierarchy of BPLD classes, each of which is
separated from the class above it in the hierarchy.

The question of whether randomization helps in improving locality for con-
struction problems has been studied extensively. Naor and Stockmeyer [26] con-
sidered a subclass of LD(O(1)), called LCL3, and studied the question of how
to compute in O(1) rounds the constructive versions of decision problems in
LCL. The paper demonstrates that randomization does not help, in the sense
that if a problem has a local Monte Carlo randomized algorithm, then it also
has a local deterministic algorithm. There are several differences between the
setting of [26] and ours. First, [26] considers the power of randomization for
constructing a solution, whereas we study the power of randomization for decid-
ing languages4. Second, while [26] deals with constant time computations, our
separation results apply to arbitrary time computations, potentially depending
on the size of the instance (graph and input). The different settings imply dif-
ferent impacts for randomization: while the current paper and [13] show that
randomization can indeed help for improving locality of decision problems, [26]
shows that randomization does not help in constructing a solution for a problem
in LCL in constant time. The question of whether randomization helps in local
computations was studied for specific problems, such as MIS, (Δ + 1)-coloring,
and maximal matching [2,5,23,24,25,27,29]. Finally, the classification of decision
problems in distributed computing has been studied in several other models. For
example, [6] and [18] study specific decision problems in the CONGEST model.
In addition, decision problems have been studied in the asynchrony discipline
too, specifically in the framework of wait-free computation [15,16] and mobile
agents computing [14]. In the wait-free model, the main issues are not spatial
constraints but timing constraints (asynchronism and faults). The main focus of
[16] is deterministic protocols aiming at studying the power of the “decoder”, i.e.,
the interpretation of the results. While this paper essentially considers the AND-
checker, (as a global “yes” corresponds to all processes saying “yes”), [16] deals
with other interpretations, including more values (not only “yes” and “no”),
with the objective of designing checkers that use the smallest number of values.

Preliminaries. In the LOCAL (respectively CONGEST (B)) model, processors
perform in synchronous rounds, where in each round, every processor (1) sends
messages of arbitrary (resp., O(B) bits) size to its neighbors, (2) receives mes-
sages from its neighbors, and (3) performs arbitrary individual computations.
After a number of rounds (that may depend on the network G connecting
the processors, and may vary among the processors, since nodes have different

3 LCL is essentially LD(O(1)) restricted to languages involving graphs of constant
maximum degree and processor inputs taken from a set of constant size.

4 There is a fundamental difference between such tasks when locality is concerned.
Indeed, whereas the validity of constructing a problem in LCL is local (by definition),
the validity in our setting is “global”, in the sense that in an illegal instance, it is
sufficient that at least one vertex in the entire network outputs “no”.

Randomized Distributed Decision 377

identities, potentially different inputs, and are typically located at non-isomorphic
positions in the network), every processor v terminates and generates its output.

Consider a distributed (p, q)-decider A running in a network G with input x
and identity assignment Id (assigning distinct integers to the nodes of G). The
output of processor v in this scenario is denoted by outA(G,x, Id, v), or simply
out(v) when the parameters are clear from the context. In the case of decision
problem, out(v) ∈ {“yes”, “no”} for every processor v.

An n-node path P is represented as a sequence P = (1, . . . , n), oriented from
left to right. (Node i does not know its position in the path.) Given an instance
(P,x) with ID’s Id and a subpath S ⊂ P , let xS (respectively IdS) be the
restriction of x (resp., Id) to S. We may refer to subpath S = (i, . . . , j) ⊂ P as
S = [i, j]. For a set U ⊆ V (G), let E(G,x, Id, U) denote the event that, when
running A on (G,x) with id-assignment Id, all nodes in U output “yes”. Given
a language L, an instance (G,x) is called legal iff (G,x) ∈ L. Given a time
bound t, a subpath S = [i, j] is called an internal subpath of P if i ≥ t+ 2 and
j ≤ n− t− 1. Note that if the subpath S is internal to P , then when running a
t-round algorithm, none of the nodes in S “sees” the endpoints of P .

The following concept is crucial to the proofs of our separation results.

Definition 1. Let S be a subpath of P . For δ ∈ [0, 1], S is said to be a (δ, λ)-
secure subpath if |S| ≥ λ and Pr[E(P,x, Id, V (S))] ≥ 1− δ.

We typically use (δ, λ)-secure subpaths for values of λ ≥ 2t + 1 where t is the
running time of the (p, q)-decider A on (P,x) for some fixed identity assignment
Id. Indeed, it is known [13] that if (P,x) ∈ L, then every long enough subpath
S of P contains an internal (δ, λ)-secure subpath S′. More precisely, define

�(δ, λ) = 4(λ+ 2t)�log p/ log(1− δ)�. (1)

Fact 1 ([13]). Let (P,x) ∈ L, δ ∈ [0, 1], λ ≥ 1. Then for every �(δ, λ)-length
subpath S there is a subpath S′ (internal to S) that is (δ, λ)-secure.

To avoid cumbersome notation, when λ = 2t + 1, we may omit it and refer to
(δ, 2t+ 1)-secure subpaths as δ-secure subpaths. In addition, set

�(δ) := �(δ, 2t+ 1).

Let us next illustrate a typical use of Fact 1. Recall that t denotes the running
time of the (p, q)-decider A on (P,x) ∈ L with IDs Id. Let S be a subpath of
P of length �(δ). Denote by L (resp., R) the subpath of P to the “left” (resp.,
“right”) of S. Informally, if the length of S is larger than 2t+1, then S serves as
a separator between the two subpaths L and R. This follows since as algorithm
A runs in t rounds, each node in P is affected only by its t neighborhood. As
the t neighborhood of every node u ∈ L and v ∈ R do not intersect, the events
E(P,x, Id, L) and E(P,x, Id, R) are independent.

The security property becomes useful when upper bounding the probability
that at least some node in P says “no”, by applying a union bound on the events

378 P. Fraigniaud et al.

E (P,x, Id, V (L) ∪ V (R)) and E (P,x, Id, V (S)). Denoting the event complemen-
tary to E(P,x, Id, V (P)), by E ′ we have

Pr[E ′] = 1− Pr[E(P,x, Id, V (P))]

≤ (1 − Pr[E(P,x, Id, V (L))] · Pr[E(P,x, Id, V (R))])

+ (1− Pr[E(P,x, Id, V (S))])

≤ 1− Pr[E(P,x, Id, V (L))] · Pr[E(P,x, Id, V (R))] + δ .

The specific choice of λ and δ depends on the context. Informally, the guiding
principle is to set δ small enough so that the role of the central section S can
be neglected, while dealing separately with the two extreme sections L and R
become manageable for they are sufficiently far apart.

2 The Bk Hierarchy Is Strict

In this section we show that the classes Bk, k ≥ 1, form an infinite hierarchy of
distinct classes, thereby proving that the general ability to boost the probability
of success for a randomized decision problem is quite limited. In fact, we show
separation in a very strong sense: there are decision problems in Bk+1(0), i.e.,
that have a (p, q)-decider running in zero rounds with p1+1/(k+1) + q > 1, which
cannot be decided by a (p, q)-decider with p1+1/k + q > 1, even if the number of
rounds of the latter is as large as n1−ε for every fixed ε > 0.

Theorem 2. Bk+1(0) \Bk(t) 	= ∅ for every k ≥ 1 and every t = o(n).

Proof. Let k be any positive integer. We consider the following distributed lan-
guage, which is a generalized variant AMOS-k of the problem AMOS introduced
in [13]. As in AMOS, the input x of AMOS-k satisfies x ∈ {0, 1}n, i.e., each node v
is given as input a boolean x(v). The language AMOS-k is then defined by:

At-Most-k-Selected (AMOS-k) = {(G,x) s.t. ‖ x ‖
1
≤ k}.

Namely, AMOS-k consists of all instances containing at most k selected nodes
(i.e., at most k nodes with input 1), with all other nodes unselected (having
input 0). In order to prove Theorem 2, we show that AMOS-k ∈ Bk+1(0) \Bk(t)
for every t = o(n).

We first establish that AMOS-k belongs to Bk+1(0). We adapt algorithm A
presented in [13] for AMOS to the case of AMOS-k. The following simple randomized
algorithm runs in 0 time: every node v which is not selected, i.e., such that
x(v) = 0, says “yes” with probability 1; and every node which is selected, i.e.,
such that x(v) = 1, says “yes” with probability p1/k, and “no” with probability
1 − p1/k. If the graph has s ≤ k nodes selected, then all nodes say “yes” with
probability ps/k ≥ p, as desired. On the other hand, if there are s ≥ k + 1
selected nodes, then at least one node says “no” with probability 1 − ps/k ≥
1− p(k+1)/k = 1− p1+1/k. We therefore get a (p, q)-decider with p1+1/k + q ≥ 1,
that is, such that p1+1/(k+1) + q > 1. Thus AMOS-k ∈ Bk+1(0).

Randomized Distributed Decision 379

We now consider the harder direction, and prove that AMOS-k /∈ Bk(t), for any
t = o(n). To prove this separation, it is sufficient to consider AMOS-k restricted
to the family of n-node paths. Fix a function t = o(n), and assume, towards
contradiction, that there exists a distributed (p, q)-decider A for AMOS-k that
runs in O(t) rounds, with p1+1/k + q > 1. Let ε ∈ (0, 1) be such that p1+1/k+ε +
q > 1. Let P be an n-node path, and let S ⊂ P be a subpath of P . Let δ ∈ [0, 1]
be a constant satisfying

0 < δ < p1+1/k (1− pε) /k . (2)

Consider a positive instance and a negative instance of AMOS-k, respectively
denoted by I = (P,x) and I ′ = (P,x′) . Both instances are defined on the same
n-node path P , where n ≥ k (�(δ) + 1) + 1. Recall that �(δ) = �(δ, 2t + 1) (see
Eq. (1)). We consider executions of A on these two instances, where nodes are
given the same id’s. Both instances have almost the same input. In particular,
the only difference is that instance I contains k selected nodes, whereas I ′ has
the same selected nodes as I plus one additional selected node. Therefore I is
legal, while I ′ is illegal. In I ′, the path P is composed of k + 1 sections, each
containing a unique selected node, and where each pair of consecutive sections
separated by a δ-secure subpath. More precisely, let us enumerate the nodes of P
from 1 to n, with node v adjacent to nodes v− 1 and v+1, for every 1 < v < n.
Consider the k subpaths of P defined by: Si = [(i− 1)�(δ) + i+1, i · �(δ) + i] for
i = {1, . . . , k}. Let the selected nodes in I ′ be positioned as follows. Let u1 = 1
and let ui = (i− 1)�(δ) + i for i = 2, . . . , k + 1. Then set

x′(v) =

{
1, if v = ui for some i ∈ {1, ..., k + 1}
0, otherwise.

See Fig. 1(a) for a schematic representation of I ′.
Our next goal is to define the legal instance I = (P,x). To do so, we begin

by claiming that each Si contains a δ-secure internal subpath S′
i = [ai, bi]. Nat-

urally, we would like to employ Fact 1. However, Fact 1 refers to subpaths of
valid instances (P,x) ∈ L, and I ′ is illegal. So instead, let us focus on the in-
stance (Si,x

′
Si
). Since (Si,x

′
Si
) contains no leaders, ‖ x′

Si
‖1 = 0, it follows that

(Si,x
′
Si
) ∈ L, and Fact 1 can be applied on it. Subsequently, since |Si| > �(δ) it

follows that Si contains an internal δ-secure subpath S′
i = [ai, bi], whose t neigh-

borhood is strictly in Si. Therefore, when applying algorithm A on (Si,x
′
Si
, IdSi)

and on (P,x′, Id), the nodes in the (2t+ 1)-length segment S′
i behave the same,

thus Pr[E(P,x′, Id, V (S′
i))] = Pr[E(Si,x

′
Si
, IdSi , V (S′

i))]. Hence, S
′
i is a δ-secure

subpath in (P,x′, Id) as well, for every i ∈ {1, ..., k}, see Fig. 1(b).
The δ-secure subpaths S′

i’s are now used to divide P into 2k + 1 segments.
Specifically, there are k+1 segments Ti, i = 1, . . . , k+1, each with one selected
node. The δ-secure subpaths S′

i = [ai, bi] separate Ti from Ti+1. More precisely,
set T1 = [1, a1 − 1], Ti = [bi−1 + 1, ai − 1] for i ∈ 2, ..., k, and Tk+1 = [bk + 1, n],
getting P = T1◦S′

1◦T2◦S′
2◦. . .◦Tk◦S′

k◦Tk+1 where ◦ denotes path concatenation.
Let Ti = E(P,x′, Id, V (Ti)) be the event that all nodes in the subpath Ti say
“yes” in the instance I ′, for i ∈ {1, ..., k+1} and let pi = Pr[Ti] be its probability.
Let j be such that pj = maxi pi. We now define the valid instance I = (P,x):

380 P. Fraigniaud et al.

S1

… I’

l(δ) l(δ)

S2 u1 u2 u3

l(δ)

Sk
uk+1

S’1

…
l(δ) l(δ)

S’2 u1 u2 u3

l(δ)

S’k
uk+1

S’1

…
S’2 S’k T1

t t t

T2

t t t t t t

Tj

S’1

…
S’2 S’k T1

t t t

T2

t t t t t t

Tj

I

(a)

(b)

(c)

(d)

Fig. 1. Illustration of the constructions for Theorem 2. (a) The instance I ′ = (P,x′)
with k + 1 leaders separated by �(δ)-length segements, Si. (b) The δ-secure subpaths
S′
i in each Si are internal to Si. (c) The leader-segments Ti interleaving with δ-secure

subpaths S′
i. (d) The legal instance I = (P,x), the jth leader of I ′ is discarded, resulting

in a k leader instance.

x(v) =

{
1, if v = ui for some i ∈ {1, ..., k + 1}, i 	= j,
0, otherwise.

Note that ‖ x′ ‖1 = k + 1 and ‖ x ‖1 = k, thus I ∈ AMOS-k while I ′ /∈ AMOS-k.
See Fig. 1(c,d) for an illustration of I versus I ′.

We now make the following observation (the proof defer to full version).

Claim. ∀i 	= j, Pr[E(P,x, Id, V (Ti))] = pi.

Let N (resp., N ′) be the event that there exists at least one node in I (resp.,
I ′) that says “no” when applying algorithm A. Similarly, let Y (resp., Y ′) be
the event stating that all nodes in the configuration I (resp., I ′) say “yes”. Let

T =
⋃k+1

i=1 Ti be the event that all nodes in each subpaths Ti, for i ∈ {1, ..., k+1}
say “yes” in the instance I ′. For every i ∈ {1, ..., k}, let Si = E(P,x′, Id, V (S′

i))
be the event that all nodes in the δ-secure subpath S′

i say “yes” in the instance
I ′. We have Pr(Y) = Pr[E(P,x, Id, V (P))] and Pr(Y ′) = Pr[E(P,x′, Id, V (P)),
while Pr(N) = 1− Pr(Y) and Pr(N ′) = 1− Pr(Y ′).

Since A is a (p, q)-decider, as we assume by contradiction that AMOS-k in Bk,
we have Pr(N ′) ≥ q, and thus Pr(N ′) > 1 − p1+1/k+ε. Therefore, Pr(Y ′) <
p1+1/k+ε. Moreover, since I ∈ AMOS-k, we also have that Pr(Y) ≥ p. Therefore,
the ratio ρ̂ = Pr(Y ′)/Pr(Y) satisfies

ρ̂ < p1/k+ε . (3)

On the other hand, note that by applying the union bound to the k + 1 events
T ,
⋃k

i=1 Si, we get

Pr(N ′) ≤ (1− Pr[T]) +

(
k∑

i=1

(1− Pr[Si])
)
≤ 1− pj ·

∏
i�=j

pi + k · δ,

Randomized Distributed Decision 381

where the last inequality follows by the fact that each S′
i is a (δ, 2t + 1)-secure

subpath, thus the events Ti1 , Ti2 are independent for every i1, i2 ∈ {1, ..., k + 1}
(since the distance between any two nodes u ∈ Ti1 and v ∈ Ti2 is at least 2t+1).
This implies that Pr(Y ′) ≥ pj ·

∏
i�=j pi − k · δ . Since Pr(Y) ≤

∏
i�=j pi (by the

independence of the events Ti1 , Ti2 , for every i1, i2 ∈ {1, ...k+1}), it then follows
that the ratio ρ̂ satisfies

ρ̂ ≥
pj ·
∏

i�=j pi − k · δ∏
i�=j pi

≥ pj −
k · δ∏
i�=j pi

≥ pj − k · δ/p , (4)

where the last inequality follows by the fact that I ∈ AMOS-k and thus
∏

i�=j pi ≥
Pr(Y) ≥ p. Finally, note that pj ≥ p1/k. This follows since pj ≥ pi for every i ∈
{1, ..., k+1}, so pkj ≥

∏
i�=j pi ≥ p. By Eq. (4), we then have that ρ̂ ≥ p1/k−k·δ/p.

Combining this with Eq. (3), we get that p1/k − k · δ/p < p1/k+ε , which is in
contradiction to the definition of δ in Eq. (2).

Finally, we show that the Bk(t) hierarchy does not capture all languages even
for k = ∞ and t as large as o(n). Due to space limitations, the proof of the
following theorem is deferred to the full version of this paper.

Theorem 3. There is a language not in B∞(t), for every t = o(n).

3 A Sharp Determinism - Randomization Threshold

It is known [13] that beyond the threshold p2 + q = 1, randomization does not
help. This result however holds only for a particular type of languages, called
hereditary, i.e., closed under inclusion. In this section, we provide one more
evidence supporting our belief that the threshold p2 + q = 1 identified in [13]
holds for all languages, and not only for hereditary languages. Indeed, we prove
that, restricted to path topologies and finite inputs, every language L for which
there exists a (p, q)-decider running in constant time, with p2 + q > 1, can
actually be decided deterministically in constant time.

Theorem 4. Let L be a distributed language restricted to paths, with a finite
set of input values. If L ∈ B1(O(1)), then L ∈ LD(O(1)).

Proof. Let L ∈ B1(O(1)) be a distributed language restricted to paths, and
defined on the (finite) input set Σ. Consider a distributed (p, q)-decider A for
L that runs in t = O(1) rounds, with p2 + q > 1. Fix a constant δ such that
0 < δ < p2 + q − 1.

Given a subpath S of a path P , let us denote by Sl (respectively, Sr) the
subpath of P to the left (resp., right) of S, so that P = Sl ◦ S ◦ Sr.

Informally, a collection of three paths P, P ′, and P ′′ (of possibly different
lengths) is called a λ-path triplet if (1) the inputs of those paths agree on some
“middle” subpath of size at least λ, (2) paths P and P ′′ coincide on their cor-
responding “left” parts, and (3) paths P ′ and P ′′ coincide on their “right” parts.

382 P. Fraigniaud et al.

See Fig. 2. Formally, a λ-path triplet is a triplet [(P, S,x), (P ′, S′,x′), (P ′′, S′′,x′′)]
such that |P |, |P ′|, |P ′′| ≥ λ, x,x′,x′′ are inputs on these paths, respectively, and
S ⊂ P , S′ ⊂ P ′, S′′ ⊂ P ′′ are three subpaths satisfying (1) |S| = |S′| = |S′′| ≥ λ,
(2) xS = x′

S′ = x′′
S′′ , and (3) x′′

S′′
l
= xSl

and x′′
S′′
r
= x′

S′
r
.

����������

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

�����
�����
�����
�����

���
���
���
���

���
���
���

���
���
���

P’’

P’

P

Fig. 2. Example of a λ-path triplet (the red zone is of length at least λ)

Claim. Let [(P, S,x), (P ′, S′,x′), (P ′′, S′′,x′′)] be a λ-path triplet. If λ ≥ �(δ),

for � as defined in Eq. (1), then
(
(P,x) ∈ L and (P ′,x′) ∈ L

)
⇒ (P ′′,x′′) ∈ L.

Proof. Consider an identity assignment Id′′ for (P ′′,x′′). Let Id and Id′ be iden-
tity assignments for (P,x), and (P ′,x′), respectively, which agree with Id′′ on
the corresponding nodes. That is: (a) assignments Id, Id′, and Id′′ agree on the
nodes in S, S′ and S′′, respectively; (b) Id and Id′′ agree on the nodes in S� and
S′′
� , respectively; and (c) Id and Id′′ agree on the nodes in S′

r and S′′
r , respec-

tively. Since (P,x) ∈ L, and since |S| = λ ≥ �(δ), it follows from Fact 1 that S
contains an internal δ-secure subpath H . Then, let H ′ and H ′′ be the subpaths
of P ′ and P ′′ corresponding to H . Since S and S′′ coincide in their inputs and
identity assignments, then H,H ′, H ′′ have the same t-neighborhood in P, P ′, P ′′

respectively. Hence, H ′′ is also a δ-secure (when running algorithm A in instance
(P ′′,x′′)). Since both (P,x) and (P ′,x′) belong to L, we have

Pr[E(H ′′
� , Id

′′,x′′) = Pr[E(H�, Id,x)])] ≥ p

Pr[E(H ′′
r , Id

′′,x′′) = Pr[E(H ′
r, Id

′,x′)])] ≥ p.

Moreover, as |H ′′| ≥ 2t+1, the two events E(H ′′
� , Id

′′,x′′) and E(H ′′
r , Id

′′,x′′) are
independent. Hence Pr[E(H ′′

� ∪H ′′
r , Id

′′,x′′)] ≥ p2. In other words, the probability
that some node inH ′′

� ∪H ′′
r says “no” is at most 1−p2. It follows, by union bound,

that the probability that some node in H ′′ says “no” is at most 1 − p2 + δ < q.
Since A is a (p, q)-decider for L, it cannot be the case that (H ′′,x′′) /∈ L.

We now observe that, w.l.o.g., one can assume that in all instances (P,x) of L,
the two extreme vertices of the path P have a special input symbol ⊗. To see
why this holds, let ⊗ be a symbol not in Σ, and consider the following language
L′ defined over Σ ∪ {⊗}. Language L′ consists of instances (P,x) such that (1)
the endpoints of P have input ⊗, and (2) (P ′,x′) ∈ L, where P ′ is the path
resulting from removing the endpoints of P , and where x′

v = xv for every node v
of P ′. Any (p, q) decider algorithm for L (resp., L′), can be trivially transformed
into a (p, q) decider algorithm for L′ (resp., L) with the same success guarantees

Randomized Distributed Decision 383

and running time. Hence, in the remaining of the proof, we assume that in all
instances (P,x) ∈ L, the two extreme vertices of the path P have input ⊗.

A given instance (P,x) is extendable if there exists an extension of it in L,
i.e., if there exists an instance (P ′,x′) ∈ L such that P ⊆ P ′ and x′

P = x.

Claim. There exists a (centralized) algorithm X that, given any configuration
(P,x) with |P | ≤ 2�(δ) + 1, decides whether (P,x) is extendable. Moreover,
algorithm X uses messages of constant size.

We may assume, hereafter, that such an algorithm X , as promised by Claim 3,
is part of the language specification given to the nodes, each node then can ver-
ify by a local computation if the instance restricted to its �(δ) neighborhood is
extendable. We show that L ∈ LD(O(t)) by proving the existence of a determin-
istic algorithm D that recognizes L in O(t) rounds. Given a path P , an input
x over P , and an identity assignment Id, algorithm D applied at a node u of
P operates as follows. If xu = ⊗ then u outputs “yes” if and only if u is an
endpoint of P . Otherwise, i.e., if xu 	= {⊗}, then u outputs “yes” if and only
if (bu,xbu

) is extendable (using algorithm X), where bu = b(u, �(δ)) is the ball
centered at u, and of radius �(δ) in P .

Algorithm D is a deterministic algorithm that runs in �(δ) rounds. We claim
that Algorithm D recognizes L. To establish that claim, consider first an instance
(P,x) ∈ L. For every node u, (P,x) ∈ L is an extension of (bu,xbu

). Therefore,
every node u outputs “yes”, as desired. Now consider an instance (P,x) /∈ L.
Assume, for the purpose of contradiction, that there exists an identity assignment
Id such that, when applying D on (P,x, Id), every node u outputs “yes”.

Claim. In this case, |P | > 2�(δ) + 1.

Let S ⊆ P be the longest subpath of P such that there exists an extension
(P ′,x′) of (S,xS), with (P ′,x′) ∈ L. Since |P | > 2�(δ)+ 1, and since the middle
node of P outputs “yes”, we have |S| ≥ 2�(δ) + 1. The proof carries on by
distinguishing two cases for the length of S. If S = P , then (P,x) can be extended
to (P ′,x′) ∈ L. By the same arguments as above, since each extremity w of P
has input ⊗, we conclude that P = P ′, with x = x′. Contradicting the fact that
(P,x) /∈ L. Therefore 2�(δ) + 1 ≤ |S| < |P |. Let a and b be such that S = [a, b].
As S is shorter than P , it is impossible for both a and b to be endpoints of P .
Without loss of generality, assume that a is not an endpoint of P . Since a outputs
“yes”, there exists an extension (P ′′,x′′) ∈ L of (ba,xba

). In fact, (P ′′,x′′) is
also an extension of x[a,a+�(δ)]. Since x′ and x′′ agree on [a, a+ �(δ)], and since

both (P ′,x′), and (P ′′,x′′) are in L, we get from Lemma 3 that x[a−1,b] can
be extended to an input (P ′′′,x′′′) ∈ L, which contradicts the choice of S. The
theorem follows.

4 On the Impossibility of Boosting

Theorems 2 and 3 demonstrate that boosting the probability of success might
be doable, but only from (p, q) satisfying p1+1/(k+1) + q > 1 to (p, q) satisfying

384 P. Fraigniaud et al.

p1+1/k + q > 1 (with the extremes excluded). In this section, we prove that once
the inputs may be restricted in certain ways, the ability to boost the success
probability become almost null. More precisely, recall that so far we considered
languages as collections of pairs (G,x) where G is a (connected) n-node graph
and x ∈ Σn is the input vector to the nodes of G, in some finite of infinite
alphabet Σ, that is, x(v) ∈ Σ for all v ∈ V (G). An instance of an algorithm
A deciding a language L was defined as any such pair (G,x). We now consider
the case where the set of instances is restricted to some specific subset of inputs
I ⊂ Σn. That is, the distributed algorithm A has now the promise that in
the instances (G,x) admissible as inputs, the input vector x is restricted to
x ∈ I ⊂ Σn.

We define the classes Cr(t) in a way identical to the classes Bk(t), but gen-
eralized in two ways. First, the parameter r is not bounded to be integral, but
can be any positive real. Second, the decision problems under consideration are
extended to the ones in which the set of input vectors x can be restricted. So,
in particular, Bk(t) ⊆ Ck(t), for every positive integer k, and every function t.
The following theorem proves that boosting can made as limited as desired.

Theorem 5. Let r < r′ be any two positive reals. Then, Cr′(0) \ Cr(t) 	= ∅ for
every t = o(n).

Note that Theorem 5 demonstrates not only the (almost) inability of boosting
the probability of success when the inputs to the nodes are restricted to specific
kinds, but also the inability of derandomizing, even above the threshold p2+q =
1. Indeed, the following is a direct consequence of Theorem 5.

Corollary 1. For every positive real r, there is a decision problem in Cr(0)
which cannot be decided deterministically in o(n) rounds.

References

1. Afek, Y., Kutten, S., Yung, M.: The local detection paradigm and its applications
to self stabilization. Theoretical Computer Science 186(1-2), 199–230 (1997)

2. Alon, N., Babai, L., Itai, A.: A fast and simple randomized parallel algorithm for
the maximal independent set problem. J. Algorithms 7(4), 567–583 (1986)

3. Amit, A., Linial, N., Matousek, J., Rozenman, E.: Random lifts of graphs. In: Proc.
12th ACM-SIAM Symp. on Discrete Algorithms (SODA), pp. 883–894 (2001)

4. Awerbuch, B., Patt-Shamir, B., Varghese, G.: Self-Stabilization By Local Checking
and Correction. In: Proc. IEEE Symp. on the Foundations of Computer Science
(FOCS), pp. 268–277 (1991)

5. Barenboim, L., Elkin, M.: Distributed (Δ + 1)-coloring in linear (in delta) time.
In: Proc. 41st ACM Symp. on Theory of computing (STOC), pp. 111–120 (2009)

6. Das Sarma, A., Holzer, S., Kor, L., Korman, A., Nanongkai, D., Pandurangan, G.,
Peleg, D., Wattenhofer, R.: Distributed Verification and Hardness of Distributed
Approximation. In: Proc. 43rd ACM Symp. on Theory of Computing, STOC (2011)

7. Dereniowski, D., Pelc, A.: Drawing maps with advice. Journal of Parallel and
Distributed Computing 72, 132–143 (2012)

8. Dijkstra, E.W.: Self-stabilization in spite of distributed control. Comm.
ACM 17(11), 643–644 (1974)

Randomized Distributed Decision 385

9. Dolev, S., Gouda, M., Schneider, M.: Requirements for silent stabilization. Acta
Informatica 36(6), 447–462 (1999)

10. Fraigniaud, P., Gavoille, C., Ilcinkas, D., Pelc, A.: Distributed Computing with
Advice: Information Sensitivity of Graph Coloring. In: Arge, L., Cachin, C., Ju-
rdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 231–242.
Springer, Heidelberg (2007)

11. Fraigniaud, P.: D Ilcinkas, and A. Pelc. Communication algorithms with advice.
J. Comput. Syst. Sci. 76(3-4), 222–232 (2008)

12. Fraigniaud, P.: A Korman, and E. Lebhar. Local MST computation with short
advice. In: Proc. 19th ACM Symp. on Parallelism in Algorithms and Architectures
(SPAA), pp. 154–160 (2007)

13. Fraigniaud, P., Korman, A., Peleg, D.: Local Distributed Decision. In: Proc. 52nd
Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 708–
717 (2011)

14. Fraigniaud, P., Pelc, A.: Decidability Classes for Mobile Agents Computing. In:
Fernández-Baca, D. (ed.) LATIN 2012. LNCS, vol. 7256, pp. 362–374. Springer,
Heidelberg (2012)

15. Fraigniaud, P., Rajsbaum, S., Travers, C.: Locality and Checkability in Wait-Free
Computing. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 333–347. Springer,
Heidelberg (2011)

16. Fraigniaud, P., Rajsbaum, S., Travers, C.: Universal Distributed Checkers and
Orientation-Detection Tasks (submitted, 2012)

17. Göös, M., Suomela, J.: Locally checkable proofs. In: Proc. 30th ACM Symp. on
Principles of Distributed Computing, PODC (2011)

18. Kor, L., Korman, A., Peleg, D.: Tight Bounds For Distributed MST Verification. In:
Proc. 28th Int. Symp. on Theoretical Aspects of Computer Science, STACS (2011)

19. Korman, A., Kutten, S.: Distributed verification of minimum spanning trees. Dis-
tributed Computing 20, 253–266 (2007)

20. Korman, A., Kutten, S., Masuzawa, T.: Fast and Compact Self-Stabilizing Verifi-
cation, Computation, and Fault Detection of an MST. In: Proc. 30th ACM Symp.
on Principles of Distributed Computing, PODC (2011)

21. Korman, A., Kutten, S.: D Peleg. Proof labeling schemes. Distributed Comput-
ing 22, 215–233 (2010)

22. Korman, A., Sereni, J.S., Viennot, L.: Toward More Localized Local Algorithms:
Removing Assumptions Concerning Global Knowledge. In: Proc. 30th ACM Symp.
on Principles of Distributed Computing (PODC), pp. 49–58 (2011)

23. Kuhn, F.: Weak graph colorings: distributed algorithms and applications. In: Proc.
21st ACM Symp. on Parallel Algorithms and Architectures (SPAA), pp. 138–144
(2009)

24. Luby, M.: A simple parallel algorithm for the maximal independent set problem.
SIAM J. Comput. 15, 1036–1053 (1986)

25. Naor, M.: A Lower Bound on Probabilistic Algorithms for Distributive Ring Col-
oring. SIAM J. Discrete Math. 4(3), 409–412 (1991)

26. Naor, M., Stockmeyer, L.: What can be computed locally? SIAM J. Comput. 24(6),
1259–1277 (1995)

27. Panconesi, A., Srinivasan, A.: On the Complexity of Distributed Network Decom-
position. J. Algorithms 20(2), 356–374 (1996)

28. Peleg, D.: Distributed Computing: A Locality-Sensitive Approach. SIAM (2000)
29. Schneider, J., Wattenhofer, R.: A new technique for distributed symmetry break-

ing. In: Proc. 29th ACM Symp. on Principles of Distributed Computing (PODC),
pp. 257–266 (2010)

The Strong At-Most-Once Problem

Sotirios Kentros1,�, Chadi Kari2, and Aggelos Kiayias1,��

1 Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
skentros@engr.uconn.edu, aggelos@kiayias.com

2 Computer Science, Bridgewater State University, Bridgewater, MA, USA
celkari@bridgew.edu

Abstract. The at-most-once problem in shared memory asks for the
completion of a number of tasks by a set of independent processors while
adhering to “at most once” semantics. At-most-once algorithms are eval-
uated in terms of effectiveness, which is a measure that expresses the
total number of tasks completed at-most-once in the worst case. Moti-
vated by the lack of deterministic solutions with high effectiveness, we
study the feasibility of (a close variant of) this problem. The strong at
most once problem is solved by an at-most-one algorithm when all tasks
are performed if no participating processes crash during the execution
of the algorithm. We prove that the strong at-most-once problem has
consensus number 2. This explains, via impossibility, the lack of wait-
free deterministic solutions with high effectiveness for the at most once
problem using only read/write atomic registers. We then present the
first k-adaptive effectiveness optimal randomized solution for the strong
at-most-once problem, that has optimal expected work for a non-trivial
number of participating processes. Our solution also provides the first k-
adaptive randomized solution for the Write-All problem, a dual problem
to at-most-once.

1 Introduction

The at-most-once problem for asynchronous shared memory systems was intro-
duced by Kentros et al. [18] as the problem of performing a set of n jobs by m
fail-prone processes while maintaining at-most-once semantics.

The at-most-once semantic for object invocation ensures that an operation
accessing and altering the state of an object is performed no more than once.
This semantic is among the standard semantics for remote procedure calls (RPC)
and method invocations and it provides important means for reasoning about
the safety of critical applications. Uniprocessor systems may trivially provide
solutions for at-most-once semantics by implementing a central schedule for op-
erations. The problem becomes very challenging for autonomous processes in
a shared-memory system with concurrent invocations on multiple objects. At-
most-once semantics have been thoroughly studied in the context of at-most-once

� Research supported in part by the State Scholarships Foundation of Greece.
�� Research supported in part by NSF awards 0831304, 0831306 and and EU projects

RECUP and CODAMODA.

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 386–400, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

The Strong At-Most-Once Problem 387

message delivery [7,21,23]and at-most-once process invocation for RPC [6,22,28].
However, finding effective solutions for asynchronous shared-memory multipro-
cessors, in terms of how many at-most-once invocations can be performed by
the cooperating processes, is largely an open problem. Solutions for the at-most-
once problem, using only atomic read/write memory, and without specialized
hardware support such as conditional writing, provide a useful tool in reasoning
about the safety properties of applications developed for a variety of multi-
processor systems, including those not supporting bus-interlocking instructions
and multi-core systems. Specifically, in recent years, attention has shifted from
increasing clock speed towards chip multiprocessing, in order to increase the
performance of systems. Because of the differences in each multi-core system,
asynchronous shared memory is becoming an important abstraction for arguing
about the safety properties of parallel applications in such systems. In the next
years, we expect chip multiprocessing to appear in a wide range of applications,
many of which will have components that need to satisfy at-most-once semantics
in order to guarantee safety. Such applications may include autonomous robotic
devices, robotic devices for assisted living, automation in production lines or
medical facilities. In such applications performing specific tasks at-most-once
may be of paramount importance for safety of patients, the workers in a facility,
or the devices themselves. Such tasks could be the triggering of a motor in a
robotic arm, the activation of the X-ray gun in an X-ray machine, or supplying
a dosage of medicine to a patient.

The definition of the at-most-once problem by Kentros et al. [18] is general and
allows a variety of solutions, including trivial ones where all, or some processes
perform no jobs, or jobs are assigned to specific processes by the construction
of the algorithm, independently of whether these processes participate in an
execution of the algorithm. For example a solution where every process just
terminates at the beginning of the algorithm, without taking any steps, is a
correct solution for the at-most-once problem. Similarly, an algorithm where
jobs are split into n

m groups and each process performs the jobs in a specific
group, is also a correct solution for the at-most-once problem.

Motivated by the lack of deterministic solutions with high effectiveness, we
introduce in this paper the strong at-most-once problem and study its feasibil-
ity. The complexity measure of effectiveness [18] describes the number of jobs
completed (at-most-once) by an implementation, as a function of the overall
number of jobs n, the number of processes m, and the number of crashes f . The
strong at-most-once problem refers to the setting where effectiveness is a func-
tion of the jobs that need to be executed and the processes that took part in the
computation (took a least one step in the computation) and crashed. The strong
at-most-once problem demands solutions that are adaptive, in the sense that the
effectiveness depends only on the behavior of processes that participate in the
execution. Specifically, if no participating process crashes in an execution, then
an algorithm solving the strong at-most-once problem, will perform all tasks.
In this manner trivial solutions are excluded and, as we demonstrate herein,
processes have to solve an agreement primitive in order to make progress and

388 S. Kentros, C. Kari, and A. Kiayias

provide a solution for the problem. In the present work, we prove that the strong
at-most-once problem has consensus number 2 as defined by Herlihy [14]. As a
result, there exists no wait-free deterministic solution for the strong at-most-once
problem using atomic read/write registers only. This explains, via impossibility,
the lack of deterministic solutions with high effectiveness for the at most once
problem. Moreover we observe that the strong at-most-once problem belongs in
the Common2 class as defined by Afek et al. [2].

Subsequently, we present a randomized k-adaptive effectiveness optimal so-
lution for the strong at-most-once problem that has effectiveness of n− fk and
expected work complexity of O(n+ k2+ε logn) for any small constant ε. Some-
times k is called the contention of an execution and denotes the number of
processes that participate in an execution of the algorithm, fk denotes the num-
ber of participating processes that crash in an execution. Our solution is the
first fully adaptive randomized solution (both in terms of effectiveness and ex-
pected work complexity) for the strong at-most-once problem. Expected Work
complexity counts the expected total number of basic operations performed by
the processes. Moreover our solution is anonymous, in that it does not rely on
the names of processes.

Related Work: A wide range of works study at-most-once semantics in a vari-
ety of settings. At-most-once message delivery [7,21,23]and at-most-once seman-
tics for RPC [6,22,28], are two areas that have attracted a lot of attention. Both
in at-most-once message delivery and RPCs, we have two entities (sender/client
and receiver/server) that communicate by message passing. Any entity may fail
and recover and messages may be delayed or lost. In the first case one wants to
guarantee that duplicate messages will not be accepted by the receiver, while
in the case of RPCs, one wants to guarantee that the procedure called in the
remote server will be invoked at-most-once [28].

In Kentros et al. [18], the at-most-once problem for asynchronous shared mem-
ory systems and the correctness properties to be satisfied by any solution were
defined. The first wait-free deterministic algorithms that solve the at-most-once
problem were provided and analyzed. Specifically they presented two algorithms
that solve the at-most-once problem for two processes with optimal effectiveness
and a multi-process algorithm, that employs a two-process algorithm as a build-
ing block, and solves the at-most-once problem with effectiveness n− logm ·o(n)
and work complexity O(n +m logm). Subsequently Censor-Hillel [15] provided
a probabilistic algorithm in the same setting with optimal effectiveness and ex-
pected work complexity O(nm2 logm) by employing a probabilistic multi-valued
consensus protocol as a building block. It is easy to show that the probabilistic
solution of Censor-Hillel [15], is a solution for the strong at-most-once problem.
Note that the solution in [15] is not k-adaptive with respect to the expected
work complexity, since its work complexity depends on m and not k. Recently
Kentros and Kiayias [17] presented the first wait-free deterministic algorithm for
the at-most-once problem which is optimal up to additive factors of m. Specifi-
cally their effectiveness is n− (2m− 2) which comes close to an additive factor
of m to the known upper bound over all possible algorithms for effectiveness

The Strong At-Most-Once Problem 389

n−m+1(from [18]). They also demonstrate how to construct an algorithm which
has effectiveness n−O(m2 logn logm) and work complexity O(n+m3+ε logn),
and is both effectiveness and work optimal when m = O(3+ε

√
n/ logn), for any

constant ε > 0.
Di Crescenzo and Kiayias in [9] (and later Fitzi et al. [12]) demonstrate the

use of the semantic in message passing systems for the purpose of secure com-
munication. Driven by the fundamental security requirements of one-time pad
encryption, the authors partition a common random pad among multiple com-
municating parties. Perfect security can be achieved only if every piece of the pad
is used at most once. The authors show how the parties maintain security while
maximizing efficiency by applying at-most-once semantics on pad expenditure.

Ducker et al. [10] consider a distributed task allocation problem, where players
that communicate using a shared blackboard or an arbitrary directed commu-
nication graph, want to assign the tasks so that each task is performed exactly
once. They consider synchronous execution without failures and examine the
communication and round complexity required to solve the problem, providing
interesting lower and upper bounds. If crashes are introduced in their model,
then they will have an at-most-once version of their problem and the impossi-
bility results from Kentros et al. [18] will hold.

One can also relate the at-most-once problem to the consensus problem
[11,14,24,20]. Indeed, consensus can be viewed as an at-most-once distributed
decision. Another related problem is process renaming, see Attiya et al. [5] where
each process identifier should be assigned to at most one process.

The at-most-once problem has also many similarities with the Write-All prob-
lem for the shared memory model [4,8,13,16,19,25,26]. First presented by Kanel-
lakis and Shvartsman [16], the Write-All problem is concerned with performing
each task at-least-once. Most of the solutions for the Write-All problem, ex-
hibit super-linear work even when m$ n. Malewicz [25] was the first to present
a deterministic solution for the Write-All problem that has linear work for a
non-trivial number of processes (significantly less processes that the size of the
Write-All problem n). The algorithm presented by Malewicz [25] has work com-
plexity O(n + m4 logn) and uses test-and-set operations. Later Kowalski and
Shvartsman [19] presented a solution for the Write-All problem that for any con-
stant ε has work complexity O(n + m2+ε). Their algorithm uses a collection
of q permutations with contention O(q log q) for a properly choose constant q.
Kentros and Kiayias [17] demonstrate how to employ an iterative determinis-
tic at-most-once algorithm in order to solve the Write-All problem with work
complexity O(n + m3+ε logn) for any constant ε, whithout using test-and-set
operations on relying in permutations with low contention.

With respect to randomized solutions, Martel and Subramonian [26] present
a randomized solution for the Write-All problem that does optimal O(n) work
when the number of processes is less than n

logn . Their solution assumes an obliv-
ious adversary, which is a weaker adversary than the strong adaptive adversary
we use in this work. When it comes to a strong adaptive adversary, Anderson and
Woll [4] provide a O(n logm) solution for n = m2 write-all cells and m processes.

390 S. Kentros, C. Kari, and A. Kiayias

Contributions: We introduce the strong at-most-once problem, as the problem
of solving the at-most-once problem with effectiveness that is a function of the
jobs that need to be executed n and the processes that took part in the computa-
tion (took a least one step in the computation) and crashed fk. From the upper
bound on effectiveness for all algorithms (see [18]), we get that an effectiveness of
n− fk for the strong at-most-once problem is optimal. We show that the strong
at-most-once problem has consensus number 2 (see [14]), and thus there exists
no wait-free deterministic solution for the strong at-most-once problem using
read/write atomic registers. Moreover we observe that the strong at-most-once
problem belongs in the Common2 class as defined by Afek et al. [2].

We present and analyze a randomized algorithm, called RA, that solves the
strong at-most-once problem. The algorithm is anonymous, wait-free and k-
adaptive, in the sense that both effectiveness and work complexity depend on k,
the number of processes that participate in the execution. The algorithm uses
randomized test-and-set as a building block, both for guaranteeing the at-most-
once property and in order to facilitate the transfer of knowledge of which jobs
have already been performed. Algorithm RA uses the RatRace algorithm from
Alistarh et. al. [3] for the randomized test-and-set operations. It has optimal
effectiveness of n− fk and expected work complexity O(n+ k2+ε logn) for any
small constant ε. It improves over the solution of Censor-Hillel [15] which can be
shown to solve the strong at-most-once problem with optimal effectiveness n−fk
and expected work complexity O(nm2 logm). We note that combining the Write-
All solution from Martel and Subramonian [26] with the RatRace algorithm from
Alistarh et. al. may give an optimal effectiveness solution for the strong at-most-
once problem with expected work complexity O(n+m logn logm) for the weaker
oblivious adversary. However our proposed solution is for the stronger adaptive
adversary and its expected work is k-adaptive, meaning that it depends on the
number of participants k, not on the maximum number of processes m.

To our knowledge, algorithm RA provides also the first k-adaptive randomized
solution for the Write-All problem.

2 Model and Definitions

2.1 Model and Adversary

We consider a system of m asynchronous, shared-memory processors in the pres-
ence of crashes. We use the Input/ Output Automata formalism, and specifically
the asynchronous shared memory automaton that consists of a set of processes
that interact by means of a collection of shared variables that support atomic
read/write operations [24].

Each process has access to local random coin-flips. We consider a strong,
adaptive adversary as in [3,4,15] that has complete knowledge of the algorithm
executed by the processes. The adversary controls asynchrony and crashes. This
is modeled by allowing the adversary to make all scheduling decisions. The adver-
sary can base its next scheduling decisions on the local state of all the processes,
including the results of local coin-flips. Notice, however, that the adversary does

The Strong At-Most-Once Problem 391

not know the results of local coins that were not yet flipped. The adversary can
cause m− k (k > 1) crashes at the beginning of the execution (before processes
take any steps). From the k participating processes fk < k can crash during
the execution, after the process that crashes takes at least one step. The total
number of crashes allowed is f = (m−k)+ fk < m. We denote by fairexecsf (A)
all fair executions of A with f crashes and by fairexecsf,fk(A), where f ≥ fk,
all fair executions of A where k > fk processes take at least one step in the
execution and exactly fk of the k processes crash.

Note that since the processes can only communicate by accessing atomic
read/write operations in the shared memory, all the asynchronous executions are
linearizable. This means that concurrent actions can be mapped to an equiva-
lent sequence of transitions, where only one process performs an action in each
transition, and thus the model presented above is appropriate for the analysis
of concurrent multi-process systems.

2.2 Problem Definitions and Metrics

We consider algorithms that perform a set of tasks, called jobs. Let A be an
algorithm specified for m processes from set P , and for n jobs with unique ids
from set J = [1 . . . n]. We assume that there are at least as many jobs as there
are processes, i.e., n ≥ m. We model the performance of job j by process p by
means of action dop,j . For a sequence c, we let len(c) denote its length, and we
let c|π denote the sequence of elements π occurring in c. Then for an execution α,
len
(
α|dop,j

)
is the number of times process p performs job j. Finally we denote by

Fα = {p|stopp occurs in α} the set of crashed processes in execution α. We now
define the number of jobs performed in an execution, the at-most-once problem
and effectiveness (from Kentros et al. [18]).

Definition 1. For execution α let Jα = {j ∈ J |dop,j occurs in α for some p ∈
P}. The total number of jobs performed in α is defined to be Do(α) = |Jα|.

Definition 2. Algorithm A solves the at-most-once problem if for each execution
α of A we have ∀j ∈ J :

∑
p∈P len

(
α|dop,j

)
≤ 1.

Definition 3. EA(n,m, f) = minα∈fairexecsf (A)(Do(α)) is the effectiveness of
algorithm A , where m is the number of processes, n is the number of jobs,
and f is the number of crashes. An alternate definition is EA(n,m, f, fk) =
minα∈fairexecsf,fk

(A)(Do(α)), where fk ≤ f the number of processes that crashed

in an execution after taking at least one step.

A trivial algorithm can solve the at-most-once problem by splitting the n jobs
in groups of size n

m and assigning one group to each process. Such a solution has
effectiveness E(n,m, f) = (m− f) · n

m (consider an execution where f processes
fail at the beginning of the execution).

We also define the strong at-most-once problem. The strong at-most-once
problem, requires that only processes that participate in an execution and fail
can block an at-most-once job. Alternatively, the strong at-most-once problem

392 S. Kentros, C. Kari, and A. Kiayias

requires that all jobs are performed if no participating processes fail (fk = 0).
Trivial solutions for the at-most-once problem, such as the one described above
are not valid solutions for the strong at-most-once problem. We show that the
strong at-most-once problem has consensus number 2 as defined in [14] and
belongs in the Common2 class of objects as defined in [2].

Definition 4. Algorithm A solves the strong at-most-once problem if algo-
rithm A solves the at-most-once problem and there exists function ϕ(), such that
ϕ(0) = 0 and for all f, fk, with m > f ≥ fk, EA(n,m, f, fk) = n− ϕ(fk).

The difference between the at-most-once problem and the strong at-most-once
problem is that the latter requires that algorithms are implemented, such that
in all initial states of the algorithm, no job is preassigned to a process. In other
words, no process can start by performing a job, without first getting information
about the current state of the execution. Moreover any job, may be performed
by any process in some execution of the algorithm. In that sense, the 2-process
effectiveness optimal algorithm from Kentros et. al. [18], is not a solution for the
strong at-most-once problem, since the job with id 1 (resp. with id n) cannot be
performed by the process with pid 1 (resp. pid 0).

Expected work complexity measures the expected (over the coin flips of the
processes) total number of basic operations (comparisons, additions, multiplica-
tions, shared memory reads and writes) performed by an algorithm. We assume
that each internal or shared memory cell has size O(logn) bits and perform-
ing operations involving a constant number of memory cells costs O(1). This
is consistent with the way work complexity is measured in previous related
work [16,19,25]. We are interested in k-adaptive algorithms and thus we want
the expected work complexity to be expressed as a function of n the total num-
ber of jobs and k the number of processes that participate in an execution.

Definition 5. The expected work of algorithm A, denoted by WA, is the ex-
pected total number of basic operations performed by all the processes in A.

We will prove that the strong at-most-once problem has consensus number 2.
Informally a consensus protocol is a system of n processes that communicate
through a set of shared objects. Each process starts with an input value. Pro-
cesses communicate with one another by applying operations to the shared ob-
jects and eventually agree on a common input value and halt. A consensus
protocol is required to be a) consistent: distinct processes never decide on dis-
tinct values, b) wait-free: each non-failed process decides after a finite number
of steps, c) valid: the common decision value is the input to some process (from
Herlihy [14]). We say that an object X solves n-process consensus, if there exist
a consensus protocol for n-process that uses a set of objects X and read/write
registers, where X can be initialized in any state. We provide the definition of
consensus number form Herlihy [14].

Definition 6. The consensus number for X is the largest n for which X solves
n-process consensus. If no largest n exists, the consensus number is said to be
infinite.

The Strong At-Most-Once Problem 393

Moreover we observe that the strong at-most-once problem belongs in the
Common2 class of objects as defined by Afek et al. [2], since a wait-free im-
plementation for the m process strong at-most-once problem can be constructed
from read/write registers and 2-consensus objects (test-and-set). It is easy to
see that the strong at-most-once problem belongs in Common2 even in the un-
bounded concurrency model of [1,27].

Finally we repeat here the following upper bound on effectiveness from Ken-
tros et al. [18].

Theorem 1. [18] For all algorithms A that solve the at-most-once problem with
m processes and n ≥ m jobs in the presence of f < m crashes it holds that
EA(n,m, f) ≤ n− f .

From the upper bound we have that solutions for the strong at-most-once prob-
lem with effectiveness of n− fk are optimal.

3 Consensus Number and Common2

In this section, we show that the strong at-most-once problem has consensus
number 2 and belongs in Common2. As a result, we have from [14] that there
exists no wait-free deterministic algorithm that solves the strong at-most-once
problem, using only atomic read/write registers. Current deterministic solutions
for the at-most-once, as presented in [17,18], use only atomic read/write registers
and are wait-free, thus they do not offer a solution for the strong at-most-once
problem.

We need to prove that the strong at-most-once problem has consensus number
at least 2 (Lemma 1). The intuition behind the proof is the following; because
the effectiveness of strong at-most-once solutions is n− φ(fk), where φ(0) = 0,
a job is not completed if and only if a process that participated in the execution
of the strong at-most-once algorithm crashes. If no process crashes, the job is
performed and this can break symmetry. If one of the processes crashes, the
other will not (at least one process does not crash). Moreover the fact that some
job has not been performed by process p, reveals that the other process has
participated in the protocol. Process p can use this knowledge in order to safely
decide some value. To show that the strong at-most-once problem has consensus
number at most 2, we construct a solution for the strong at-most-once problem
using test-and-set operations.

Lemma 1. The strong at-most-once problem has consensus number at least 2.

Proof. In order to prove that the strong at-most-once problem has consensus
number at least 2, we assume that there exists a wait-free algorithm A that
solves the strong at-most-once problem for 2 processes. We demonstrate how
to implement a wait-free algorithm A’ that solves consensus for 2 processes,
using algorithm A and atomic read/write shared memory registers. Since the
nature of the jobs performed by algorithm A are external to the problem and
the algorithm, we treat algorithm A as a black box implementation, and define

394 S. Kentros, C. Kari, and A. Kiayias

the jobs algorithm A is performing so that when process p performs job i, it
writes its identifier p in the i−th position of an array W . Algorithm A’ works
for 2 processes p, q and uses an array C of size 2 and an array W of size n where
n the size of the strong at-most-once problem algorithm A solves. Array W has
its cells initialized to the ⊥ value. Since algorithm A solves the at-most-once
problem only one process may write its identifier in any single position of the
array W . Algorithm A’ works as follows:
Process p writes its proposed input value in position p of the array C and then
invokes A. After process p terminates the execution of A, process p reads the
value stored in position 0 of the array W . If the value it reads is its process
identifier, it decides the value it proposed, otherwise it decides on the value
proposed by the other process that participates in algorithm A’.

Since algorithm A is wait-free A’ is also wait-free. Now we need to prove
consistency and validity, namely that distinct processes never decide on distinct
values and that the common decision value is the input to some process.

For process p we have 2 cases, process p either decides the value stored in Cp, or
the value stored in Cq. Case 1: Process p decides Cp. The value it decides can only
be the input value of process p, since from A’ only p may write in Cp and process
p first writes its input value in Cp, then participates in algorithm A and from the
outcome ofA, it either readsCp orCq and decides on the value it read. Since process
p readsCp it follows that it reads in positionW0 its process id, and thus p performed
job 0. Moreover if process q participated in A, q did not perform job 0 (at-most-
once property). So from A’ it follows that q decided on Cp. Now we only need to
prove that the value q read in Cp is the input of p. If q read a value different than
the input of p, it follows that when q returned from the invocation of A, p had not
yet written its input value in Cp, and consequently had not invoked A. This is a
contradiction, since A solves the strong at-most-once problem. If process q is the
only process invoking A and q does not fail, then the effectiveness of A should be
n, which implies that process q performed job 0, a contradiction.

Case 2: Process p decides Cq. This means that process p invoked A, algo-
rithm A returned and process p did not perform job 0. Since A solves the strong
at-most-once problem, it means that process q invoked A before process p termi-
nated (otherwise process p would be executing A alone and thus p should have
performed all the at-most-once jobs), which from A’ implies that Cq contains
the input value of process q. Process q either terminates A without crashing, or
crashes before completing A. In the first case, since process p terminated and did
not crash while executing algorithm A, we have that A should have effectiveness
n, which implies that process q executed job 0, and if process q decides, it decides
on the value of Cq, the input of q. Otherwise process q has crashed and p is the
only process that decides the input of q. This completes the proof.

It is easy to see that by associating each at-most-once job with one test-and-
set object and having the process that succeeds in the test-and-set perform the
at-most-once job before accessing a new test-and-set, we have an effectiveness
optimal strong at-most-once solution for an unbounded number of processes
using only read/write registers and consensus 2 objects.

The Strong At-Most-Once Problem 395

Theorem 2. The strong at-most-once problem has consensus number 2.

Corollary 1. The strong at-most-once problem belongs in the Common2 class
of objects.

4 Algorithm RA

In Algorithm RA (Fig. 1) jobs are grouped in super-jobs. Each super-job con-
tains logn at-most-once jobs. Every job is associated with a shared memory
element of matrix W . The matrix W has size n

logn x (logn + 1). The row 0 of

matrix W is associated with the n
logn super-jobs, while the rows {1, . . . , logn}

are associated with the n jobs. Super-job i consists of the logn jobs that are
associated with elements W [i][j] for all j ∈ {1, . . . , logn}. Each element of the
matrix W supports a randomized wait-free atomic test-and-set operation. The
job test-and-set operations are used in order to guarantee at-most-once seman-
tics while the super-jobs test-and-set operations are used to detect and resolve
collisions between processes.

Processes in Algorithm RA create intervals of super-jobs. The main idea is
that every process p picks a random super-job i as a candidate starting point
for its interval. Process p calls all the test-and-set operations related with the
jobs grouped under i. For each test-and-set operation p wins, it performs the

RA for process p:

1. FREE ← {0, . . . , n
log n

− 1}
2. size ← n

log n

3. while(size > 0)
4. next ← FREE.random()
5. for(i ← 1, i ≤ log n, i++)
6. if W[next][i].tas() then
7. j = next · log n+ i
8. doj,p
9. endif

10. endfor
11. flag ← W [next][0].tas()
12. if(flag) then
13. head ← next
14. tail ← next
15. while(flag)
16. W [next][0].setHead(head)
17. W [head][0].setTail(tail)
18. next++
19. if(next < n

log n
)then

20. tail ← next
21. for(i ← 1, i ≤ log n, i++)
22. if W[next][i].tas() then
23. j = next · log n+ i

24. doj,p
25. endif
26. endfor
27. flag ← W [next][0].tas()
28. else
29. flag ← FALSE
30. endif
31. endwhile
32. size ← FREE.remove(head, tail)
33. else
34. head ← next
35. tail ← next
36. tmp ← W [next][0].getHead()
37. if(tmp ! = ⊥)&&(tmp < head) then
38. head ← tmp
39. endif
40. tmp ← W [head][0].getTail()
41. if(tmp ! = ⊥)&&(tmp > tail) then
42. tail ← tmp
43. endif
44. size ← FREE.remove(head, tail)
45. endif
46. endwhile

Fig. 1. Algorithm RA: pseudocode

396 S. Kentros, C. Kari, and A. Kiayias

corresponding job. When done, it calls the test-and-set operation of the super-
job i. If the procedure described above takes place in an execution α of algorithm
RA, we say that process p has performed super-job i, or that super-job i has
been performed. This is independent of whether process p won the test-and-
set operation for super-job i. If there exists no process p that has performed
super-job i in execution α, we say that the super-job i is still available in α.

If process p wins the test-and-set operation for super-job i, it marks i as
the starting point of its working interval, then performs super-job i + 1 and
keeps moving, one super-job at a time in a rightward direction, until it loses a
super-job test-and-set operation. As long as p wins test-and-set operations on
the super-jobs it performs, it adds the super-jobs to its current interval. If it
fails this means that some other process has marked the specific super-job as the
beginning of its working interval. In this case, p stops working on the interval
and picks randomly a new super-job in order to start a new working interval.

The key idea behind this approach is that a process p keeps expanding a
working interval that started at some super-job i until it loses a test-and-set
operation at some super-job j (j > i). This means that some other process q
won that test-and-set for j and thus q continues expanding the interval that
started at i. This leads to the observation that if k processes are participating
in an execution of the algorithm RA, there exist at most k + 1 intervals of
performed super-jobs, from which, at any given point of the execution, at most
k are being expanded from the right end. As long as the available super-jobs
are significantly more than the k processes participating in an execution of the
algorithm, we can show from the above discussion (see Section 5) that processes
that need a new random starting point, will likely be positioned far enough from
the endpoints of the existing intervals of performed super-jobs. This results in
substantial progress being done before a process working on an interval loses
a test-and-set operation and thus has to start a new interval. The latter will
allow us to show that if a process has an outdated estimation of the available
super-jobs, by colliding with large intervals of performed super-jobs, it will be
able to learn fast about super-jobs that have been completed.

Next we present the shared memory variables, internal variables and the steps
a process p has to take in algorithm RA in more detail:

Shared Variables. Algorithm RA uses matrix W of size n
log n x (logn+1). The

matrix is stored in shared memory. Each element of the matrix is initially set to 0
and supports, through function tas(), a randomized wait-free test-and-set oper-
ation. The tas() function, when invoked on element W [i][j] of the matrix, tests if
W [i][j] is 0 and sets W [i][j] to 1. If element W [i][j] is 0, function W [i][j].tas() re-
turns TRUE and we say that the process p that called W [i][j].tas() wins or suc-
ceeds in the test-and-set operation. If element W [i][j] is 1, function W [i][j].tas()
returns FALSE and we say that the process p that called W [i][j].tas() loses
the test-and-set operation. There are various randomized implementations for
test-and-set on asynchronous shared memory. We use the RatRace algorithm
from Alistarh et. al. [3]. Since RatRace is anonymous and RA does not rely on
process identifiers, RA is also anonymous.

The Strong At-Most-Once Problem 397

Each of the n elements of the rows {1, . . . , logn} of matrix W corresponds to
one at-most-once job. Moreover, each of the n

log n elements of row 0 of matrix W
is associated with a super-job of logn jobs. In addition, each element of row 0 has
two pointers: head and tail. The pointers are initially set to ⊥. When their value
is different from ⊥ they point to elements of row 0. These elements correspond
to the beginning and the end (respectively) of an interval of super-jobs that
some process p has been working on. A process may access pointers head and
tail through the getHead(), getHead(), setTail() and getTail() functions. Note
that in RA an element of row 0 of matrixW is only set to 1 through an invocation
of the test-and-set function associated with it. Moreover, if W [i][0] is set to 1 for
some i ∈ {0, . . . , n

logn − 1}, then for all j ∈ {1, . . . , logn} we have that W [i][j] is

set to 1 through an invocation of the W [i][j].tas() test-and-set function.

Internal Variables of Process p. The variable FREE keeps the set of super-
jobs that process p has not verified as performed. The variable FREE is a tree
structure that keeps track of intervals of available super-jobs. Each interval of
available jobs is stored in a leaf node as two pointers (beginning and ending
of the interval). Initially the FREE set has only 1 leaf node that contains two
pointers to 0 and n

log n − 1. Process p interacts with FREE using 2 functions.

The function random() returns an element from the FREE set uniformly at
random. Since the set FREE is stored in a tree structure, retrieval of a random
element can be done in O(log l) where l the number of leaves of the tree. The
function remove(head, tail) removes from the set FREE the interval of elements
beginning in head and ending in tail, or the subset of elements of the interval
{head, . . . , tail} that intersects with the set FREE. The function returns as
output the number of elements left in set FREE.

The variable size stores the number of elements in the set FREE. It is initially
set to n

logn and it is only updated when the function remove() is called on
variable FREE.

The variables head and tail hold the endpoints of the current working interval
of super-jobs of process p or the endpoints of the interval of super-jobs that
process p has learned to have been performed.

The variable next holds the next super-job process p is performing.
The variable tmp holds values of pointers fetched from the shared memory

through the getHead() or getTail() functions.
The variable flag normally holds the output of the latest test-and-set function

called on a location of the 0 row and is used for exiting the inner while loop.
Finally variable i is used as index in for loops and j as index for at-most-once

jobs, in the do action.

Description of Algorithm RA for Process p. Initially process p sets the
FREE set to contain all super-jobs and sets the size variable to n

log n which
is the number of super-jobs. As long as there are more super-jobs to perform
(size > 0) process p executes the following:

Process p picks a super-job to perform uniformly at random from set FREE.
For each job grouped under the selected super-job, p calls the job’s test-and-set

398 S. Kentros, C. Kari, and A. Kiayias

operation and performs the job if it wins the associated test-and-set operation.
Independently of whether the test-and-set operation was successful, p proceeds
to the next job until all the test-and-set operations associated with the jobs
under the super-job have been called.When all the test-and-set operations have
been called, process p calls the test-and-set operation associated with the selected
super-job.

If process p wins the test-and-set operation on the randomly selected super-
job, process p starts working on an interval of super-jobs. The interval starts at
the randomly selected super-job and moves to the right. Process p peforms one
super-job at a time,moving rightwards. As long as process p wins the test-and-set
operations associated with the super-jobs, p keeps expanding the interval from
the right side.The interval ends when the first super-job test-and-set operation
fails. When this happens, process p removes the interval from the FREE set
and as long as there are still super-jobs left in set FREE, picks a new random
starting point and repeats the process. Note also that process p keeps the shared
memory updated with the interval it is currently working at (or has just finished
working), through the head and tail pointers of the row 0 of the W matrix.

If the test-and-set operation on the randomly selected super-job fails, process
p reads the head pointer of the respective shared memory location and if it
contains a valid value, it reads the tail pointer from the W [head][0] location of
the shared memory. Then it removes from the FREE set, the interval indicated
by the head and tail pointers, and picks a new super-job at random. Essentially
process p detects that it collided in the specific super-job with another process
and attempts to increase the knowledge it has about jobs that have already
been performed, by learning the interval of super-jobs that have been completed
around the position of collision.

5 Analysis of Algorithm RA

Here we provide the intuition behind the proofs of correctness, effectiveness and
expected work complexity.

In order to show that algorithm RA solves the strong at-most-once problem,
we prove that RA solves the at-most-once problem (no job is executed more than
once), it has effectiveness n−fk and is wait-free. The first two parts are straight
forward. Based on the correctness properties of the test-and-set operations, it is
easy to see that a job cannot be performed more than once. Moreover, in order to
prove effectiveness of n− fk, we need to observe that in RA, a job is performed,
unless some process p wins the test-and-set operation associated with it, and
then crashes before it performs the job. After this observation, we only need
to show that all test-and-set operations are invoked by some process before RA
terminates, and that after winning a test-and-set operation, a process does not
call another test-and-set operation before it completes the job associated with
the test-and-set it has already won. We still need to show the wait-free property.
The proof is based on the observation that every time the main loop is executed
by process p, at least one element will be removed from the local FREE set of

The Strong At-Most-Once Problem 399

p. The set has a finite number of elements and thus process p has to terminate
if it does not fail. Following the strategy above we can prove Theorem 3.

Theorem 3. Algorithm RA is wait-free and solves the strong at-most-once prob-
lem with effectiveness n− fk.

In order to prove that the expected work complexity of the algorithm is O(n+
k2+ε logn), for any constant ε, we use the following strategy. We first observe
that at any point of the execution, the set of available super-jobs is split into at
most k+1 intervals. We then show that when a process samples a new super-job
i to start a new interval; if i belongs to the set of available super-jobs then i
belongs to one of the k+1 intervals and the expected distance separating i from
the endpoints of the intervals is large enough to allow significant progress before
the process needs to sample again. Using the same strategy, we can also show
that when a process stops working in an interval of super-jobs, the expected size
of the completed interval it leaves behind is significant. Based on the above, we
prove that whenever the process samples an element, it is either able to perform
significant work before it needs to sample again or it updates its knowledge about
performed super-jobs with significant information. Using the above, we first show
that for performing n− k2 super-jobs and learning that those super− jobs have
been performed, algorithm RA needs expected work O(n). At this point k2

super-jobs still need to be performed. Next we show that for any constant ε, RA
needs expected work O(k1+ε logn) in order to perform the next k2−k1+ε super-
jobs. It is easy to see that for the last k1+ε super-jobs, RA needs expected work
O(k1+ε logn). With the above strategy, we get the expected work complexity in
Theorem4.

Theorem 4. Algorithm RA has expected work complexity O(n+ k2+ε logn) for
any constant ε.

If in algorithm RA we replace the job test-and-set operations with Write-All
cells, RA solves the Write-All problem with work complexity O(n+ k2+ε logn).

References

1. Afek, Y., Gafni, E., Morrison, A.: Common2 extended to stacks and unbounded
concurrency. In: PODC, pp. 218–227. ACM (2006)

2. Afek, Y., Weisberger, E., Weisman, H.: A completeness theorem for a class of
synchronization objects. In: PODC, pp. 159–170. ACM (1993)

3. Alistarh, D., Attiya, H., Gilbert, S., Giurgiu, A., Guerraoui, R.: Fast Randomized
Test-and-Set and Renaming. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010.
LNCS, vol. 6343, pp. 94–108. Springer, Heidelberg (2010)

4. Anderson, R.J., Woll, H.: Algorithms for the certified write-all problem. SIAM J.
Computing 26(5), 1277–1283 (1997)

5. Attiya, H., Bar-Noy, A., Dolev, D., Peleg, D., Reischuk, R.: Renaming in an asyn-
chronous environment. J. ACM 37(3), 524–548 (1990)

6. Birrell, A.D., Nelson, B.J.: Implementing remote procedure calls. ACM Trans.
Comput. Syst. 2(1), 39–59 (1984)

400 S. Kentros, C. Kari, and A. Kiayias

7. Chaudhuri, S., Coan, B.A., Welch, J.L.: Using adaptive timeouts to achieve at-
most-once message delivery. Distrib. Comput. 9(3), 109–117 (1995)

8. Chlebus, B.S., Kowalski, D.R.: Cooperative asynchronous update of shared mem-
ory. In: STOC, pp. 733–739 (2005)

9. Di Crescenzo, G., Kiayias, A.: Asynchronous Perfectly Secure Communication over
One-Time Pads. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung,
M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 216–227. Springer, Heidelberg (2005)

10. Drucker, A., Kuhn, F., Oshman, R.: The communication complexity of distributed
task allocation. In: PODC, pp. 67–76. ACM (2012)

11. Fischer, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

12. Fitzi, M., Nielsen, J.B., Wolf, S.: How to share a key. In: Allerton Conference on
Communication, Control, and Computing (2007)

13. Groote, J., Hesselink, W., Mauw, S., Vermeulen, R.: An algorithm for the
asynchronous write-all problem based on process collision. Distributed Comput-
ing 14(2), 75–81 (2001)

14. Herlihy, M.: Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems 13, 124–149 (1991)

15. Hillel, K.C.: Multi-sided shared coins and randomized set-agreement. In: Proc. of
the 22nd ACM Symp. on Parallel Algorithms and Architectures (SPAA 2010), pp.
60–68 (2010)

16. Kanellakis, P.C., Shvartsman, A.A.: Fault-Tolerant Parallel Computaion. Kluwer
Academic Publishers (1997)

17. Kentros, S., Kiayias, A.: Solving the At-Most-Once Problem with Nearly Optimal
Effectiveness. In: Bononi, L., Datta, A.K., Devismes, S., Misra, A. (eds.) ICDCN
2012. LNCS, vol. 7129, pp. 122–137. Springer, Heidelberg (2012)

18. Kentros, S., Kiayias, A., Nicolaou, N., Shvartsman, A.A.: At-Most-Once Semantics
in Asynchronous Shared Memory. In: Keidar, I. (ed.) DISC 2009. LNCS, vol. 5805,
pp. 258–273. Springer, Heidelberg (2009)

19. Kowalski, D.R., Shvartsman, A.A.: Writing-all deterministically and optimally us-
ing a nontrivial number of asynchronous processors. ACM Transactions on Algo-
rithms 4(3) (2008)

20. Lamport, L.: The part-time parliament. ACM Trans. Comput. Syst. 16(2), 133–169
(1998)

21. Lampson, B.W., Lynch, N.A., S-Andersen, J.F.: Correctness of at-most-once mes-
sage delivery protocols. In: FORTE, pp. 385–400 (1993)

22. Lin, K.-J., Gannon, J.D.: Atomic remote procedure call. IEEE Trans. Softw.
Eng. 11(10), 1126–1135 (1985)

23. Liskov, B., Shrira, L., Wroclawski, J.: Efficient at-most-once messages based on
synchronized clocks. ACM Trans. Comput. Syst. 9(2), 125–142 (1991)

24. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers (1996)
25. Malewicz, G.: A work-optimal deterministic algorithm for the certified write-all

problem with a nontrivial number of asynchronous processors. SIAM J. Com-
put. 34(4), 993–1024 (2005)

26. Martel, C., Subramonian, R.: On the complexity of certified write-all algorithms.
J. Algorithms 16, 361–387 (1994)

27. Merritt, M., Taubenfeld, G.: Computing with Infinitely Many Processes. In: Her-
lihy, M.P. (ed.) DISC 2000. LNCS, vol. 1914, pp. 164–178. Springer, Heidelberg
(2000)

28. Spector, A.Z.: Performing remote operations efficiently on a local computer net-
work. Commun. ACM 25(4), 246–260 (1982)

Brief Announcement:

Wait-Free Gathering of Mobile Robots

Zohir Bouzid1, Shantanu Das2, and Sébastien Tixeuil1

1 University Pierre et Marie Curie - Paris 6, LIP6-CNRS 7606, France
2 Ben-Gurion University & Technion - Israel Institute of Technology, Israel

Robot Systems.This paper considers distributed systems of autonomous robots
that can move freely on the two-dimensional Euclidean space, have visibility sen-
sors (to see other robots, obstacles etc.) and can perform computations. One of
the fundamental problems in distributed coordination of robots is to gather the
robots at a single location. The gathering problem has been studied under various
models with the objective of determining the minimal set of assumptions that
still allows the robots to gather successfully within a finite time. For example,
it is known that gathering can be solved even if the robots are anonymous (in-
distinguishable from each-other), oblivious (no persistent memory of the past),
and cannot communicate explicitly with each other (except for indirect signaling
using movement). Further, the robots may not share a common sense of direc-
tion. Robots operate in cycles that comprise look, compute, and move phases.
The look phase consists in taking a snapshot of the other robots positions. In
the compute phase, a robot computes a target destination, based on the pre-
vious observation, using a deterministic algorithm and in the move phase, the
robot moves toward the computed destination (although the move may end be-
fore reaching the target destination). We consider the semi-synchronous ATOM
model [4], where each cycle is considered to be atomic but only a subset of the
robots may be active in each cycle. The robots are modeled as points on the
Euclidean plane and the objective is to gather all robots at a single point.

In this model, the gathering problem can be solved for any n > 2 robots
starting from distinct locations and cannot be solved deterministically for n = 2
robots [4]. Since the robots are assumed to be oblivious, the algorithms are robust
against memory corruption. However, none of the known solutions for gathering
of robots consider more severe and permanent faults, except for the seminal
results of Agmon and Peleg [1] who solved gathering in the presence of crash
faults (i.e. when some of the robots may arbitrarily stop moving). That paper
provided an algorithm for gathering all non-faulty robots when at most one robot
may crash, assuming that the robots are initially in distinct locations. On the
other hand, Dieudonné and Petit [3] solved gathering starting from arbitrary
configuration of robots (possibly with multiple robots at the same location),
while assuming that there are an odd number of robots and no robot fails. We
consider the gathering problem in presence multiple crash faults and starting
from any arbitrary configuration of robots. Note that if the robots are initially
located in exactly two distinct points with an equal number of robots in each
location (we call this the bivalent configuration) then gathering is not possible

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 401–402, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

402 Z. Bouzid, S. Das, and S. Tixeuil

even in the fault-free case1. In fact, this is the only scenario where gathering
is not possible and we show how to solve gathering (of correct robots) starting
from any other configuration, even if up to f < n robots crash. To achieve these
results, we introduce the additional capability of strong multiplicity detection
(i.e. our robots can sense the exact number of robots at any point, unlike in
[1,4]) and chirality (i.e. our robots share a common handedness). The former
capability is essential for gathering from arbitrary configurations, while it not
know whether the latter capability is also necessary.

Symmetric Configurations and Weber Points. Given any set of points C
on the plane, a Weber-point minimizes the sum of distances from the points in
C. The Weber-point is unique for any non-collinear set of points and remains
invariant under the movement of any point in C towards it. However it is difficult
to compute such a point and only for certain configurations that are symmetric
or regular, there exist algorithms to compute the Weber-point. In this paper we
define a larger class of configurations called quasi-regular, and provide algorithms
to (i) detect if a given configuration C is quasi-regular and (ii) compute the
Weber-point of any configuration that is quasi-regular and not collinear.

Gathering Algorithm. Our algorithm classifies the configuration of robots at
any time to one of the following types: B,M,L,QR,A. A configuration of type
M contains a point u whose multiplicity is greater than that of any other robot
location and all robots simply move to u (while avoiding the creation of another
point of multiplicity). For any collinear (L) or quasi-regular (QR) configura-
tion that has a unique Weber-point, the robots move towards that point. For
collinear configurations that do not have a unique Weber-point, the robots move
to form either a non-collinear configuration or a typeM configuration. All other
configurations that are not B, M, L, or, QR, must be asymmetric (of type A)
and in such configurations, it is possible to uniquely order the robot locations.
The robots select one of these locations u which is also a safe point (i.e. move-
ment towards u may never create a bivalent configuration) and the robots move
towards this point u. We show that starting from any configuration that is not
bivalent (B), the algorithm succeeds in gathering all non-faulty robots at a single
location within a finite time. The complete algorithm and proof of correctness
can be found in the full version of the paper [2].

References

1. Agmon, N., Peleg, D.: Fault-tolerant gathering algorithms for autonomous mobile
robots. SIAM Journal of Computing 36(1) (2006)

2. Bouzid, Z., Das, S., Tixeuil, S.: Wait-Free Gathering of Mobile Robots. ArXiv e-
prints:1207.0226 (2012)

3. Dieudonné, Y., Petit, F.: Self-stabilizing Deterministic Gathering. In: Dolev, S. (ed.)
ALGOSENSORS 2009. LNCS, vol. 5804, pp. 230–241. Springer, Heidelberg (2009)

4. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of ge-
ometric patterns. SIAM Journal of Computing 28(4), 1347–1363 (1999)

1 This is a simple extension of the impossibility result from [4].

Brief Announcement: Distributed Exclusive

and Perpetual Tree Searching�

Lélia Blin1,��, Janna Burman2, and Nicolas Nisse3,���

1 Univ. d’Evry Val d’Essone, et LIP6, Univ. Pierre et Marie Curie, Paris, France
2 Grand Large, INRIA, LRI, Orsay, France

3 MASCOTTE, INRIA, I3S(CNRS/UNS), Sophia Antipolis, France

Abstract. We tackle a version of the well known graph searching prob-
lem where a team of robots aims at capturing an intruder in a graph. The
robots and the intruder move between the graph nodes. The intruder is
invisible, arbitrary fast, and omniscient. It is caught whenever it stands
on a node occupied by a robot, and cannot escape to a neighboring node.
We study graph searching in the CORDA model of mobile computing:
robots are asynchronous and perform cycles of Look-Compute-Move ac-
tions. Moreover, motivated by physical constraints and similarly to some
previous works, we assume the exclusivity property, stating that no two
or more robots can occupy the same node at the same time. In addition,
we assume that the network and the robots are anonymous. Finally,
robots are oblivious, i.e., each robot performs its move actions based
only on its current “vision” of the positions of the other robots. Our
objective is to characterize, for a graph G, a set of integers such that for
every integer k in the set, perpetual graph searching can be achieved by
a team of k robots starting from any k distinct nodes in G. One of our
main results is a full characterization of this set, for any asymmetric tree.
Towards providing a characterization for all trees, including trees with
non-trivial automorphisms, we have also provided a set of positive and
negative results, including a full characterization for any line. All our
positive results are based on the design of graph searching algorithms.

1 Introduction

This BA announces a work that aims at understanding the algorithmic power and
limitation of computing with autonomous mobile robots. The literature dealing
with this objective has considered different kinds of coordination tasks, including
pattern formation, robot gathering, and graph exploration. Each of these tasks in-
volves complex coordination protocols for the robots, whose complexity depends
on the capabilities of the robots in terms of perception of their environment, in-
dividual computational power, and communication. The CORDAmodel has been
introduced for capturing the essence of mobile computing. It focusses on the asyn-
chronous nature of the actions performed by the robots, and on the limitations

� Based on: L. Blin, J. Burman, and N. Nisse: Perpetual Graph Searching, Research
Report INRIA-RR-7897, Sophia-Antipolis, France, Feb. 2012.

�� Additional support from the ANR project “SHAMAN”.
��� Partially supported by FP7 STREP EULER (N.N.).

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 403–404, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

404 L. Blin, J. Burman, and N. Nisse

caused by the absence of communication between them. In this model, robots are
endowed with visibility sensors allowing each robot to perceive the positions of all
the other robots.Theyoperate in asynchronousLook-Compute-Move action cycles.
During its look action, a robot perceives the relative positions of the other robots;
during the compute action, it executes some individual deterministic computation
whose input is the set of the latest perceived positions of the other robots (which
may have changed since they were measured); finally, during themove action, the
robot changes its position according to its computation.

The coordination of autonomous deterministicmobile robots hasbeenfirst stud-
ied in continuous environments (e.g., the 2-dimensional Euclidean space). In the
discrete CORDA model, it is not clear whether even simple coordination tasks
can be achieved. As a consequence, most of the literature on robot computing as-
sumeadditional hypotheses, includingpresence of identities enabling todistinguish
robots, capacity to store the sequence of all previous perceivedpositions andmoves,
sense of direction, and the ability to construct towers of robots (i.e., to bring several
robots at a node). We have proved that a very complex task, like graph searching,
can be solved without any of these assumptions. We assume that the robots have
no identities, they are memoryless (i.e., stateless), have no sense of direction, and
two or more robots cannot occupy the same position at the same time (exclusivity
property). We callmin-CORDA this essential CORDA model.

2 Contributions

For any graph G, let fs(G) denote the set of robot team sizes such that k ∈
fs(G) if and only if distributed graph searching in G can be achieved by a team
of k robots starting from any k (distinct) nodes. Our main result consists in
a characterization of fs(T), for any asymmetric tree T . Let xs(T) denote the
exclusive search number, i.e., the minimum number of robots to be used for
capturing the intruder in a centralized setting satisfying the exclusivity property.
By definition, k ∈ fs(T) implies that k ≥ xs(T). We have proved that, when T
possesses no symmetries (i.e., has no non-trivial automorphisms), then k ∈ fs(T)
for all k ≥ xs(T) + 1. This result is based on the explicit design of a distributed
protocol enabling perpetual graph searching by k robots, for any k ≥ xs(T) + 1.

When T possesses symmetries, the computation of fs(T) becomes more com-
plex. In this case, we have shown that fs(T) depends on the set ST of isomorphic
nodes of T separated by a path of even length. In particular, k /∈ fs(T) for any
k ∈ [|ST |, |ST | + xs(T0)], where T0 results from T after removing all nodes ap-
pearing in ST . Our impossibility results are not based on the perpetual nature of
graph searching in min-CORDA, but on the exclusivity property. For the simpler
case of a line, we have fully characterized fs(L) for any n-node line L. All our
positive results are constructive.

We note that exclusive graph searching behaves very different from the clas-
sical one. As a result and due to min-CORDA, the proofs and the algorithms
we propose are very different and more involved than in the classical case. Our
proofs introduce several techniques that may prove useful also in future studies
of exclusive graph-searching and min-CORDA.

Brief Announcement:

Reaching Approximate Byzantine Consensus
in Partially-Connected Mobile Networks�

Chuanyou Li1, Michel Hurfin2, and Yun Wang1

1 School of Computer Science and Engineering, Southeast University, Nanjing, China
Key Lab of Computer Network & Information Integration, Ministry of Education

2 INRIA Rennes Bretagne Atlantique, Campus de Beaulieu, Rennes, France
chuanyou.li@gmail.com, Michel.Hurfin@inria.fr, yunwang@seu.edu.cn

Abstract. We consider the problem of approximate consensus in mobile
ad hoc networks in the presence of Byzantine nodes. Due to nodes’ mobil-
ity, the topology is dynamic and unpredictable. We propose an approxi-
mate Byzantine consensus protocol which is based on the linear iteration
method. In this protocol, nodes are allowed to collect information dur-
ing several consecutive rounds: thus moving gives them the opportunity
to gather progressively enough values. A novel sufficient and necessary
condition guarantees the final convergence of the consensus protocol. At
each stage of the computation, a single correct node is concerned by the
requirement expressed by this new condition.

1 Context and Overview of the Proposed Protocol

We consider an ad hoc network composed of n nodes. When a node changes
its physical location, it also changes the set of its neighbors. The system is
unreliable. At most f nodes may suffer from Byzantine faults and messages may
be lost. The parameter f is known by all correct nodes while the value of n
is unknown. Among the variants of the consensus problem, one is called the
Approximate consensus problem and has been presented for the first time in [1].
Each node begins to participate by providing a real value called its initial value.
Eventually all correct nodes must obtain final values that are different from each
other within a maximum value denoted ε (convergence property) and must be
in the range of initial values proposed by the correct nodes (validity property).

To solve this problem in the presence of Byzantine nodes, some protocols [1]
assume that the network is fully connected. Other protocols [2] consider partially
connected networks but require an additional constraint: any correct node must
know the whole topology. Based on the linear iterative consensus strategy, recent
protocols [3,4] also assume that the network is partially connected but do not
require any global information. At each iteration, a correct node broadcasts its

� This work is partially supported by Natural Science Foundation, China under grant
60973122, by National 863 Hi-Tech Program, China under grant 2011AA040502 and
by the ANR INS French program (grant #ANR-11-INSE-010, project AMORES).

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 405–406, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

406 C. Li, M. Hurfin, and Y. Wang

value, gathers values from its neighborhood and updates its own value. Its new
value is an average of its own previous value and those of some of its neighbors.
Like in [1], before computing its new value, a correct node must ignore some of
the values it has collected (usually the f smallest and the f largest ones). These
removed values may have been proposed by Byzantine nodes and may invalidate
the validity property. In order to achieve convergence, the proposed solutions
rely on additional conditions that have to be satisfied by the topology. In [3,4],
the proposed conditions are proved to be sufficient and necessary in the case of
an arbitrary directed graph. Yet in all these works, the condition refers only to
the topology and is ”universal”: each node must always have enough neighbors
(robustness of the network topology) and so none can be temporarily isolated.

Our protocol (described in [5]) is designed to cope with mobility. Each node
follows an iteration scheme and repeatedly executes rounds. During a round, a
node moves to a new location, broadcasts its current value, gathers values from
its neighbors, and possibly updates its value. Our protocol differs from previous
works for two main reasons. First, at the end of a round, the values used by a
node to compute its new value are not only those that have been received during
the current round. A node can take into account values contained in messages
sent during some previous rounds. An integer parameter Rc is used to define the
maximal number of rounds during which values can be gathered and stored while
waiting to be used. Thanks to this flexibility, a node can use its ability to travel
to collect step by step enough values. The second main difference is related to the
sufficient and necessary condition used by our protocol. The proposed condition
focuses on the dynamic subset of nodes that have currently either the minimal
or the maximal value. Every Rc rounds at least one of these nodes must receive
enough messages (quantity requirement) with values different from its current
value (quality requirement). The condition is not universal (a single node is
concerned) and considers both the topology and the values proposed by correct
nodes. If n ≥ 3f +1, the condition can be satisfied. We are working on mobility
scenarios (random trajectories, predefined trajectories, meeting points) to assert
that the condition can be satisfied for reasonable values of Rc.

References

1. Dolev, D., Lynch, A.N., Pinter, S., Stark, W.E., Weihl, E.W.: Reaching approximate
agreement in the presence of faults. In: Proc. of 3rd IEEE Symp. on Reliability in
Distributed Software and Database Systems, pp. 145–154 (1983)

2. Sundaram, S., Hadjicostis, C.N.: Distributed function calculation via linear itera-
tions in presence of malicious agents - part i: Attacking the networks. In: Proc. of
the American Control Conference, pp. 1350–1355 (2008)

3. Vaidya, N., Tseng, L., Liang, G.: Iterative approximate byzantine consensus in ar-
bitrary directed graphs. In: Proc. of 31st Symp. on PODC (2012)

4. Le Blanc, H., Zhang, H., Sundaram, S., Koutsoukos, X.: Consensus of multi-agent
networks in the presence of adversaries using only local information. In: Proc. of the
1st Int. Conf. on High Confidence Networked Systems, pp. 1–10 (2012)

5. Li, C., Hurfin, M., Wang, Y.: Reaching approximate byzantine consensus in
partially-connected mobile networks. Technical Report 7985, INRIA (May 2012)

Brief Announcement: Distributed Algorithms
for Maximum Link Scheduling

in the Physical Interference Model

Guanhong Pei1 and Anil Kumar S. Vullikanti2

1 Dept. of Electrical and Computer Engineering, and Virginia Bioinformatics Institute,
Virginia Tech, USA
somehi@vt.edu

2 Dept. of Computer Science, and Virginia Bioinformatics Institute, Virginia Tech, USA
akumar@vbi.vt.edu

Abstract. We develop distributed algorithms for the maximum independent link
set problem in wireless networks in a distributed computing model based on the
physical interference model with SINR constraints — this is more realistic and
more challenging than the traditional graph-based models. Our results give the
first distributed algorithm for this problem with polylogarithmic running time
with a constant factor approximation guarantee, matching the sequential bound.

The Physical Interference Model. Graph-based interference models are widely used
in wireless networking due to their simplicity, but have several limitations. A more real-
istic model is the physical interference model is based on SINR (Signal to Interference
and Noise Ratio) constraints, referred to as the SINR model: a subset L′ ⊆ L of links
can make successful transmission simultaneously if and only if the following condition
holds for each l ∈ L′: P (l)/dα(l)∑

l′∈L′\{l} P (l′)/dα(l′,l)+N ≥ β, where α > 2 is the “path-loss

exponent”, β > 1 is the minimum SINR required, N is the background noise, and
φ > 0 is a constant (note that α, β, φ and N are all constants). Here, P (l) denotes the
transmission power and d(l) denotes the length of l, and d(l′, l) denotes the distance
between the sender of l′ and the receiver of l.

The Maximum Link Scheduling Problem (MAXLSP). Given a set L of communi-
cation requests on wireless links, the goal is to find a maximum independent subset
of links that can transmit successfully at the same time in the SINR model. We study
MAXLSPU, an instance of MAXLSP with uniform power level for data transmission.

Problem Background. The physical interference model is deemed as more realistic
and much more challenging than graph-based ones for research in wireless networks.
Under this model, MAXLSPU is NP-Complete [1]; constant-approximation centralized
algorithms have been proposed [2, 3]. The only known distributed algorithm achieving
constant approximation is [4] with long running time of Θ(m logm) (where m = |L|).
The difficulties of algorithm design lies in the following aspects: (1) the sender-receiver
separation in the distributed setting, because the interference affects the reception on
the receivers while it is the senders that decide whether to be included in S; (2) while
we want to remove all the links that may either cause “large” interference on selected
links or be “largely” interfered by the selected links, we also need to ensure this is done

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 407–408, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

408 G. Pei and A.K.S. Vullikanti

in an accurate fashion, so that the selected set of links is not over-trimmed; and (3) the
interference is non-local, non-linear and cumulative.

Link Diversity and Link Classes. We define link diversity g(L) � �log2 dmax

dmin
�, where

dmax and dmin denote the maximum and minimum link lengths; in practical instances,
g(L) is a constant. Partition L into a set {Li} (i = 1, 2, . . . , g(L)) of link classes, so
that Li = {l | 2i−1dmin ≤ d(l) < 2idmin} is the set of links of roughly similar lengths.

SINR-Based Distributed Computing Model. The distributed model in the context of
physical interference has not been studied extensively. We clearly summarize the main
aspects as follows: (1) The network is synchronized and has time slots of unit length;
(2) Nodes have a common estimate of m, within a polynomial factor; (3) Nodes share a
common estimate of dmin and dmax; (4) We use only RSSI measurement from carrier
sensing in our algorithm as a way of communication such that nodes gain information
by only “listening” the channel rather than understanding messages. Thus, in our algo-
rithm nodes transmit only “dumb” signals, which simplifies and speeds-up the process.

(ω1, ω2)-Ruling. Let W,W ′ denote two node sets. We say a nodeu is ω-covered byW ′,
if and only if ∃u′ ∈ W ′, d(u, u′) ≤ ω. An (ω1, ω2)-ruling (where ω1 < ω2) of W is
a node set denoted by Rω1,ω2(W), such that (1) Rω1,ω2(W) ⊆ W ; (2) all the nodes in
Rω1,ω2(W) are at least ω1-separated; that is, ∀u, u′ ∈ Rω1,ω2(W), d(u, u′) ≥ ω1; and
(3) W is ω2-covered by Rω1,ω2(W).

Distributed Algorithm for MAXLSPU. We design an algorithm sweeping through all
link classes in g(L) phases, each of which consists of two steps. In the ith phase, at
the first step, all previously selected links transmit and let the senders of the links in
Li sense and estimate the interference from all smaller link classes. If the interference
exceeds a threshold on a link, the link quits. For the second step, we design a ran-
domized distributed algorithm to find an (ω1, ω2)-ruling Ri of the set of senders of the
remaining links of Li in Θ(log3 m) time and select all links with their senders in Ri

(where m = |L|); we embed in the ruling construction the removal of nearby links from
∪j≥iLj to control interference from all remaining link classes. The details and analysis
can be found in [5]. Theorem 1 summarizes the performance of our algorithm.

Theorem 1. There exists a distributed algorithm that computes an O(1)-approximation
for MAXLSPU in O(g(L) log3 m) time in the pysical interference model, w.h.p.

References

1. Goussevskaia, O., Oswald, Y.A., Wattenhofer, R.: Complexity in geometric sinr. In: ACM
MobiHoc (2007)

2. Goussevskaia, O., Halldórsson, M., Wattenhofer, R., Welzl, E.: Capacity of arbitrary wireless
networks. In: IEEE INFOCOM (2009)

3. Wan, P.-J., Jia, X., Yao, F.: Maximum Independent Set of Links under Physical Interference
Model. In: Liu, B., Bestavros, A., Du, D.-Z., Wang, J. (eds.) WASA 2009. LNCS, vol. 5682,
pp. 169–178. Springer, Heidelberg (2009)

4. Ásgeirsson, E., Mitra, P.: On a game theoretic approach to capacity maximization in wireless
networks. In: IEEE INFOCOM (2011)

5. Pei, G., Kumar, V.S.A.: Distributed algorithms for maximum link scheduling under the phys-
ical interference model (2012), http://arxiv.org/abs/1208.0811

http://arxiv.org/abs/1208.0811

Brief Announcement: A Fast Distributed
Approximation Algorithm for Minimum Spanning Trees

in the SINR Model

Maleq Khan1, Gopal Pandurangan3, Guanhong Pei1, and Anil Kumar S. Vullikanti1,2

1 Virginia Bioinformatics Institute, Virginia Tech, USA
{maleq,somehi,akumar}@vbi.vt.edu

2 Dept. of Computer Science, Virginia Tech, USA
3 Division of Mathematical Sciences, Nanyang Technological University, Singapore, and

Department of Computer Science, Brown University, USA
gopalpandurangan@gmail.com

Abstract. We study the minimum spanning tree (MST) construction problem
in wireless networks under the physical interference model based on SINR con-
straints. We develop the first distributed (randomized) O(μ)-approximation al-
gorithm for MST, with the running time of O(D log n) (with high probability)
where D denotes the diameter of the disk graph obtained by using the maximum
possible transmission range, and μ = log dmax

dmin
denotes the “distance diversity”

w.r.t. the largest and smallest distances between two nodes. (When dmax
dmin

is n-
polynomial, μ = O(log n).)

The Physical Interference Model. In recent years, the physical interference model
based on SINR (Signal to Interference and Noise Ratio) constraints, referred to as the
SINR model, has been found to be a more realistic model of wireless interference. In
this model, a subset L′ ⊆ L of links can make successful transmission simultaneously if
and only if the following condition holds for each l ∈ L′: P (l)/dα(l)∑

l′∈L′\{l} P (l′)/dα(l′,l)+N ≥
β, where α > 2 is the “path-loss exponent”, β > 1 is the minimum SINR required,
N is the background noise, and φ > 0 is a constant (note that α, β, φ and N are all
constants). Here, P (l) denotes the transmission power and d(l) denotes the length of l,
and d(l′, l) denotes the distance between the sender of l′ and the receiver of l.

MST-SINR: The Minimum Spanning Tree Problem under the SINR Model. Given
a set V of wireless nodes with a sink node s, the goal is to find a spanning tree T which
minimizes cost(T) =

∑
(u,v)∈T d(u, v), in a distributed manner. In particular, we are

interested in ensuring that the communication at each step can be implemented in the
SINR model. The spanning tree needs to be constructed implicitly, so that each node
u ∈ V only needs to find and know the id of its parent node par(u).

Problem Background. The physical interference model is deemed as more realistic and
much more challenging than graph-based ones for research in wireless networks. In re-
cent years, distributed algorithms have been developed for a few fundamental “local”
problems under this model, such as for maximum independent set, coloring, maximum
dominating set problems. However, classical “global” problems such as minimum span-
ning tree, shortest path problems require an algorithm to “traverse” the entire network,

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 409–410, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

410 M. Khan et al.

and therefore more challenging for distributed solutions. Such problems remain open
in a distributed setting, where the network diameter D is an inherent lower bound.

SINR-Based Distributed Computing Model. Let rmax = (Pmax/c)
1/α denote the

maximum transmission range of any node at the maximum power level. We sum-
marize the main aspects of our distributed model in the context of physical interfer-
ence as follows: (1) The network is synchronized with unit slots. (2) The network
is connected w.r.t. a range rmax/c for some constant c; (3) Nodes have a common
estimate of n, within a polynomial factor. (4) Nodes share a common estimate of
dmin = 1 and dmax, the minimum and maximum distances between nodes. (5) We
assume nodes are equipped with software-defined radios and can transmit at any power
level P ∈ [1, Pmax]. (6) The success of communication is determined by SINR.

Distributed Algorithm for MST. Our distributed algorithm is based on the Near-
est Neighbor Tree (NNT) scheme [1] which consists of two steps: (1) each node first
chooses a unique rank; (2) each node connects to the nearest node of higher rank. Our
algorithm involves two stages: “bottom-up” and “top-down.”

(1) During the bottom-up stage of Θ(μ log n) slots, for some range r′max < rmax, we
run log r′max ≤ μ phases, ranging from i = 1, . . . , log r′max. In the ith phase,

(i) a subset Si of nodes participate, and the edges chosen so far form a forest
rooted at nodes in Si. The nodes in Si transmit at power level of c · dαi for a
constant c, where di = 2i.

(ii) each node v ∈ Si approximates the NNT scheme by connecting to a “close-
by” node in Si within distance c′ · di of higher rank, if there exists one, for a
constant c′. The nodes which are not able to connect continue to phase i+ 1.

At the end of the bottom-up stage, we obtain a forest.
(2) During the top-down stage of Θ(D logn) slots, we first form a constant-density

dominating set Dom with some range so that
(i) each node v 	∈ Dom is within distance r′max of some node in Dom, and

(ii) for each node u ∈ Dom, the number of nodes within range r′max is “small”.
We then assign ranks from the sink to the periphery of the network using local
broadcast at each step (taking advantage of the constant density). This leads to
connecting all the forests produced in the first stage.

The details and analysis can be found in the full paper [2]. Theorem 1 summarizes the
performance of our algorithm. Our algorithm’s running time is essentially optimal (upto
a logarithmic factor), since computing any spanning tree takes Ω(D) time.

Theorem 1. There exists a distributed algorithm that produces a spanning tree of cost
O(μ) times the optimal in time Θ(D logn), w.h.p., in the SINR model.

References

1. Khan, M., Pandurangan, G., Kumar, V.S.A.: Distributed algorithms for constructing approxi-
mate minimum spanning trees in wireless sensor networks. IEEE Transactions on Parallel and
Distributed Systems 20(1), 124–139 (2009)

2. Khan, M., Kumar, V.S.A., Pandurangan, G., Pei, G.: A fast distributed approximation algo-
rithm for minimum spanning trees in the sinr model (2012),
http://arxiv.org/abs/1206.1113

http://arxiv.org/abs/1206.1113

Brief Announcement: Deterministic Protocol

for the Membership Problem in Beeping Channels

Bojun Huang

Microsoft Research Asia
bojhuang@microsoft.com

The beeping channel model is a multiple access channel (MAC) model where
active nodes can only send/hear a “jamming” signal (i.e. a beep) through the
communication channel in each time slot [2]. A listening node hears a beep signal
if at least one node is beeping; otherwise it hears nothing. The beeping model
was recently proposed to model carrier-sensing-based wireless communication
[2], and the Delta-Notch signalling mechanism between biological cells [1]. The
motivation of our work, however, is to design efficient digital circuits. It turns
out that the beeping channel model well characterizes the behaviors of a group of
sequential logic modules connected by a logical-OR gate. A strictly synchronized
global clock is available in such a circuit. In a clock cycle, a high electrical level
in each input wire of the OR gate corresponds to the choice to beep made by
the module connecting to this input wire while a low level corresponds to the
choice not to beep. The output of the OR gate is wired back to each module as
the source signal in the next cycle. We focus on deterministic protocols, which is
preferred in hardware design and other applications requiring safety guarantee.

The membership problem is a re-formuation of the classic conflict resolution
problem under the beeping channel model. Suppose n nodes connect to a beeping
channel. An active node can choose to either listen or beep in each time slot, while
an inactive node can only listen to the channel. The activeness of every node does
not change over time. Each node is assumed to know its identifier i ∈ {1, ..., n},
its activeness status, and the values of k and n. A (n, k)-membership problem
asks to let the n nodes (including the inactive ones) agree on the identifiers of the
at most k active nodes, using as few time slots as possible. Sometimes, parallel
access to multiple independent channels is possible, such as in 64-bit circuits. In
this case, the performance of a membership protocol is measured by the number
of stages, where a stage is defined as a batch of consecutive time slots that can
run in parallel. The number of stages corresponds to the number of time slots
when an unlimited number of channels are available.

The membership problem can be solved by reducing to group testing [3], a fa-
mous combinatorial searching problem that asks to identify the set of positive in-
dividuals from a large population, using as few tests as possible. A test is a query
to a subset of the individuals, which returns positive if there is at least one in the
subset queried. One test in group testing corresponds to the running of the beeping
channel in one time slot. The main difference between the two problems is that a
node in the beeping channels has the additional information of its local activeness
status, while the tester in group testing knows nothing about the population to
be tested. Group testing is known to have a Ω(k log n

k) lower bound in tests, and

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 411–412, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

412 B. Huang

several adaptive algorithms have matched this lower bound [3]. However, when
equivalently rewriting these adaptive group testing algorithms into membership
protocols, the resulting protocols will also require Ω(k log n

k) stages, which is not
efficient in the multi-channel scenario. Therefore, it remains open to design a prac-
tical deterministic membership protocol that is efficient both in time and in stage.

Our Contributions. We first rigorously prove the equivalence between the
(n, k)-membership problem in beeping channels and group testing, which leads
to a tight lower bound of Ω(k log n

k) time slots for the former. Especially, we
prove that it’s impossible to utilize the activeness information of each node for
any deterministic membership protocol in the beeping channels.

Another main result of this work is to propose and analyze a practical mem-
bership protocol, called the funnel protocol, which is efficient both in time and in
stage. The basic idea is to iteratively reduce the problem size n in each stage by
renaming the active nodes based on a smaller name space. Specifically, in each
stage, an active node encodes its current identifier into a binary string and beeps
out the codeword (it takes l time slots to beep a l-bit codeword). A candidate
set of the “possibly” active nodes can be determined by analyzing the channel
feedback, and then each active node renames itself according to the order of its
current identifier in this candidate set. All inactive nodes are filtered out when
the protocol terminates, and each node can locally recover the original identifiers
of all the active nodes from the channel feedback history. We use the standard
identity code to encode identifiers in the funnel protocol. The iteration reduces
a (n, k)-membership problem to a (kd, k)-membership problem within dn

1
d + d

time slots and 1 stage, where d ∈ Z
+ is a controlling factor and always equals

1 in the last stage. The choices for d at each and every stage form an iteration
schedule, which finally determines the performance of the funnel protocol. By
analytically solving the discrete Bellman equation defined in Eq. (1), we show
that the optimal iteration schedule of the funnel protocol uses O(k log n

k + k2)
time slots and O(log k log logn) stages, which requires exponentially fewer stages
than existing adaptive protocols. The funnel protocol can be further combined
with an adaptive protocol to form a hybrid protocol with O(k log n

k) time slots
and O(log k log logn + k(log k)2) stages. All constant factors hidden in the big-
O’s above are small. Moreover, the funnel protocol can always identify all the
nodes remaining active when it terminates even if the nodes crash arbitrarily.

fk(n) = min
1≤d≤logkn

{dn 1
d + d+ fk(k

d)} n, k, d ∈ Z
+, fk(k) = 0 (1)

References

1. Afek, Y., Alon, N., Barad, O., Hornstein, E., Barkai, N., Bar-Joseph, Z.: A Biological
Solution to a Fundamental Distributed Computing Problem. Science 331(6014),
183–185 (2011)

2. Cornejo, A., Kuhn, F.: Deploying Wireless Networks with Beeps. In: Lynch, N.A.,
Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 148–162. Springer, Hei-
delberg (2010)

3. Du, D., Hwang, F.: Combinatorial Group Testing and Its Applications (2000)

Brief Announcement: Probabilistic Stabilization

under Probabilistic Schedulers�

Yukiko Yamauchi1, Sébastien Tixeuil2, Shuji Kijima1,
and Masafumi Yamashita1

1 Kyushu University, Japan
{yamauchi,kijima,mak}@inf.kyushu-u.ac.jp

2 UPMC Sorbonne Universites, France
Sebastien.Tixeuil@lip6.fr

Motivation. Roughly speaking, a weakly stabilizing system S executed under
a probabilistic scheduler ρ is probabilistically self-stabilizing, in the sense that
any execution eventually reaches a legitimate execution with probability 1 [1–3].
Here ρ is a set of Markov chains, one of which is selected for S by an adversary
to generate as its evolution an infinite activation sequence to execute S. The
performance measure is the worst case expected convergence time τS,M when S
is executed under a Markov chain M ∈ ρ. Let τS,ρ = supM∈ρ τS,M . Then S can
be “comfortably” used as a probabilistically self-stabilizing system under ρ only
if τS,ρ < ∞. There are S and ρ such that τS,ρ = ∞, despite that τS,M < ∞
for any M ∈ ρ. Somewhat interesting is that, for some S, there is a randomised
version S∗ of S such that τS∗,ρ <∞, despite that τS,ρ =∞, i.e., randomization
helps. This motivates a characterization of S that satisfies τS∗,ρ <∞.

Model. A distributed system is defined by a pair S = (N,A) of a communication
graph N and a distributed algorithm A. A communication graph N = (P,L) is a
directed graph, where P is the set of processes and L is the set of communication
links. Here (p, q) ∈ L means that the local variables of p are visible from q.
A = {Ap : p ∈ P} is a set of local algorithms Ap for p ∈ P . Ap specifies
the set of local variables and their ranges, and hence defines the set of local
configurations Γp. Then Γ = Πp∈PΓp is the set of all global configurations. If S
is in γ ∈ Γ and the processes in W ⊆ P are activated, then in each p ∈ W , Ap

is invoked to update its local variables (based on the values of variables visible
from p, including those in p), to yield a configuration δ(γ,W) ∈ Γ . Without
loss of generality, we may assume that Ap updates at least one variable, so that
δ(γ,W) 	= δ(γ,W ′) if and only if W 	= W ′. We identify S with a directed graph
(Γ, T) with edge labels W , where T = {(γ, δ(γ,W),W) : γ ∈ Γ,W ⊆ P}. By
definition two edges leaving from the same configuration have different labels.

A probabilistic scheduler ρF is the set of all finite state Markov chains M aug-
mented by edge labels from 2P in such a way that two edges (i.e., two transitions
with positive transition probabilities) leaving from the same state have different
labels. An execution of S under ρF is a sequence E = γ0, γ1, . . . of random vari-
ables γt representing the configuration at time t for any t ≥ 0, and is defined

� This work is supported in part by MEXT/IPSJ KAKENHI (21650002, 22300004,
23700019, 24104003, and 24650008), ANR project SHAMAN and JSPS fellowship.

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 413–414, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

414 Y. Yamauchi et al.

as follows: An adversary first selects a Markov chain M ∈ ρF . Let Zt ⊆ P be
the random variable to represent the label attached to the t-th transition of M .
Let Wt = Zt ∩ Yt, where Yt represents the set of enabled processes at γt. Then
γt+1 is the unique configuration such that (γt, γt+1,Wt) ∈ T . We also denote the
conventional (deterministic strongly) fair scheduler by σF .

This paper considers only a simple randomization of A. In a randomised
version A∗, whenever Ap is invoked, p renounces the privilege to execute it with
some prespecified probability, which may depend on p and the current values
of variables visible from p. Letting this probability D, we denote A∗ by 〈A,D〉,
and the corresponding randomized system S∗ by 〈S,D〉. Note that if D = 0 then
A∗ = A and S∗ = S, and that if D = 1 then no progress is made.

A specification SP for S is the set of correct executions. A configuration
γ ∈ Γ is legitimate for SP , if any execution starting from γ is in SP . S is weakly
stabilizing for SP under σF , if any γ ∈ Γ has at least one execution starting
from γ under σF that reaches a legitimate configuration. 〈S,D〉 is probabilisti-
cally stabilizing for SP under ρF if any execution under ρF reaches a legitimate
configuration with probability 1.

Theorem 1. S is weakly stabilizing for SP under σF , if and only if 〈S,D〉 is
probabilistically self-stabilizing for SP under ρF provided 0 < D < 1.

Indeed, we can show that τS∗,M <∞ for any M ∈ ρF if S is weakly stabilizing
for SP under σF . However it does not necessarily mean τS∗,ρF < ∞. Given S
and SP , we contract all the legitimate states of S into a newly introduced state
γL and let Ŝ be the result. Next let Ŝp be the graph constructed from Ŝ by
removing all edges whose labels are not p ∈ P . S is said to be regular for SP if
Ŝp is a spanning in-tree rooted γL for each p ∈ P .

Theorem 2. S is regular for SP, if and only if τS∗,ρF <∞.

Note that the same property holds even for some restricted classes of probabilistic
schedulers, such as the probabilistic central scheduler (which activates only a
singleton), and the probabilistic memory-less scheduler (which consists of all
single state Markov chains).

Finally, we implicitly assumed |Γ | < ∞ in above. When |Γ | = ∞, we have
the following theorem. Let hp be the height of Ŝp when S is regular.

Theorem 3. Suppose that |Γ | = ∞. S is regular for SP and hp < ∞ for all
p ∈ P , if and only if τS∗,ρF <∞.

References

1. Devismes, S., Tixeuil, S., Yamashita, M.: Weak vs. self vs. probabilistic stabilization.
In: Proc. of ICDCS 2008, pp. 681–688 (2008)

2. Gouda, M.G.: The Theory of Weak Stabilization. In: Datta, A.K., Herman, T. (eds.)
WSS 2001. LNCS, vol. 2194, pp. 114–123. Springer, Heidelberg (2001)

3. Herman, T.: Probabilistic self-stabilization. IPL 35(2), 63–67 (1990)

Brief Announcement: An Analysis Framework
for Distributed Hierarchical Directories

Gokarna Sharma and Costas Busch

School of Electrical Engineering and Computer Science, Louisiana State University
Baton Rouge, LA 70803, USA

{gokarna,busch}@csc.lsu.edu

Distributed hierarchical directories are data structures that enable one to access
shared objects whenever needed. These directories are used to implement fundamental
coordination problems in distributed systems, including distributed transactional mem-
ory [4,5], distributed queues [2], and mobile object tracking [1]. These directories sup-
port access to the shared objects in a network through three basic operations: (i) publish,
allowing a shared object to be inserted in the directory so that other nodes can find it;
(ii) lookup, providing a read-only copy of the object to the requesting node; and (iii)
move, allowing the requesting node to write the object locally after getting it.

The hierarchical structure is constructed based on some well-known clustering tech-
niques (e.g., sparse covers, maximal independent sets) which organize the nodes in
multiple level clusters and the cluster sizes grow exponentially towards the root level.
Hierarchical directories provide a better approach than pre-selected spanning tree based
implementations, e.g. [2], which do not scale well, since the stretch of the spanning tree
can be as much as the diameter of the network, e.g. in ring networks.

We present a novel analysis framework for distributed hierarchical directories for an
arbitrary set of dynamic (online) requests. In our analysis, the goal is to minimize the to-
tal communication cost for the request set. Previous dynamic analysis approaches were
only for spanning tree based implementations (e.g., Arrow [3]), and they can not be
directly extended to analyze hierarchical directories. To the best of our knowledge, ours
is the first formal dynamic performance analysis of distributed hierarchical directories
which are designed to implement a large class of fundamental coordination problems.

In order to analyze distributed hierarchical directories, we model the network as a
weighted graph, where graph nodes correspond to processors and graph edges corre-
spond to communication links between processors. The network nodes are organized
into h + 1 levels. In every level, we select a set of leader nodes; higher level leaders
coarsen the lower level set of leaders. At the bottom level (level 0) each node is a leader,
while in the top level (level h) there is a single special leader node called the root.

We consider an execution of an arbitrary set of dynamic (online) requests, e.g. pub-
lish, lookup, and move, which arrive at arbitrary moments of time at any (bottom level)
node. We bound the competitive ratio (i.e., stretch), which is the ratio of the total com-
munication cost (measured with respect to the edge weights) of serving the set of dy-
namic requests over the hierarchy to the optimal communication cost of serving them
over the original network. In the analysis, we focus only the move requests since they
are the most costly operations. Further, we consider only one shared object as in [3].

A node u in each level k has a write set of leaders which helps to implement the move
requests. Let η be a write size related parameter which expresses what is the maximum

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 415–416, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

416 G. Sharma and C. Busch

size of the write set of leaders of the node u among all the levels in the hierarchy, ϕ be
a stretch related parameter which expresses how far the leaders in the write set of u can
appear beyond a minimum radius around u, and σ be a growth related parameter which
expresses the minimum radius growth ratio on the hierarchy. We prove:

Theorem 1. Any distributed hierarchical directory is O(η · ϕ · σ3 · h)-competitive for
any arbitrary set of (online) move requests in dynamic executions.

We apply our framework to analyze three variants of distributed hierarchical
directory-based protocols, Spiral [5], Ballistic [4], and Awerbuch and Peleg’s track-
ing a mobile user [1] (hereafter AP-algorithm), and we obtain the following results.

– Spiral:O(log2 n·logD) competitive ratio in general networks, where n is the num-
ber of nodes and D is the diameter, respectively, of the network. Spiral is designed
for the data-flow distributed implementation of software transactional memory [4].

– AP-algorithm: O(log2 n · logD) competitive ratio in general networks. The AP-
algorithm is appropriate for a general mobile user tracking problem that arises in
many applications in the distributed setting, e.g. sensor networks.

– Ballistic: O(logD) competitive ratio in constant-doubling networks. It is also for
the data-flow distributed implementation of software transactional memory.

These bounds subsume the previous bounds for these protocols [1,4,5] on both sequen-
tial executions which consist of non-overlapping sequence of requests and one-shot
concurrent executions where all requests appear simultaneously.

Our analysis framework captures both the time and the distance restrictions in order-
ing dynamic requests through a notion of time windows. For obtaining an upper bound,
we consider a synchronous execution where time is divided into windows of appropri-
ate duration for each level. For obtaining a lower bound, given an optimal ordering of
the requests, we consider the communication cost provided by a Hamiltonian path that
visits each request node exactly once according to their order. The lower bound holds
also for any asynchronous execution of the requests. We perform the analysis level by
level. The main idea is to analyze separately the windows which contain many requests,
the dense windows, and the windows which contain few requests, the sparse windows.
In summary, the time window notion combined with a Hamiltonian path allows to an-
alyze the competitive ratio for the requests that reach some level. After combining the
competitive ratio of all the levels, we obtain the overall competitive ratio.

References

1. Awerbuch, B., Peleg, D.: Concurrent online tracking of mobile users. SIGCOMM Comput.
Commun. Rev. 21(4), 221–233 (1991)

2. Demmer, M.J., Herlihy, M.P.: The Arrow Distributed Directory Protocol. In: Kutten, S. (ed.)
DISC 1998. LNCS, vol. 1499, pp. 119–133. Springer, Heidelberg (1998)

3. Herlihy, M., Kuhn, F., Tirthapura, S., Wattenhofer, R.: Dynamic analysis of the arrow dis-
tributed protocol. Theor. Comp. Sys. 39(6), 875–901 (2006)

4. Herlihy, M., Sun, Y.: Distributed transactional memory for metric-space networks. Distributed
Computing 20(3), 195–208 (2007)

5. Sharma, G., Busch, C., Srinivasagopalan, S.: Distributed transactional memory for general
networks. In: IPDPS, pp. 1045–1056 (2012)

Brief Announcement: Flooding in Dynamic

Graphs with Arbitrary Degree Sequence�

Hervé Baumann1, Pierluigi Crescenzi2, and Pierre Fraigniaud1

1 CNRS and Univ. Paris Diderot
2 Università degli Studi di Firenze, Italy

1. Introduction. The simplest communication mechanism that implements the
broadcast operation is the flooding protocol, according to which the source node is
initially informed, and, when a not informed node has an informed neighbor, then
it becomes informed at the next time step. In this paper we study the flooding
completion time in the case of dynamic graphs with arbitrary degree sequence,
which are a special case of random evolving graphs. A random evolving graph is a
sequence of graphs (Gt)t≥0 with the same set of nodes, in which, at each time step
t, the graph Gt is chosen randomly according to a probability distribution over a
specified family of graphs. A special case of random evolving graph is the edge-
Markovian model (see the definition below), for which tight upper bounds on the
flooding completion time have been obtained by using a so-called reduction lemma,
which intuitively shows that the flooding completion time of an edge-Markovian
evolving graph is equal to the diameter of a suitably defined weighted random
graph. In this paper, we show that this technique can be applied to the analysis
of the flooding completion time in the case of a random evolving graph based on
the following generative model. Given a sequencew = w1, . . . , wn of non-negative
numbers, the graph Gw is a random graph with n nodes in which each edge (i, j)
exists with probability pi,j =

wiwj∑
n
k=1 wk

(independently of the other edges). It is

easy to see that the expected degree of node i is wi: hence, if we choose w to be a
sequence satisfying a power law, then Gw is a power-law graph, while if we choose
wi = pn, then Gw is the Gn,p Erdös-Rényi random graph.

2. Our Results. Let f(S, i) denote the number of steps it takes for the flooding
protocol to propagate a message initiated at node i in a sequence S of random
graphs picked in Gw, and let f(S) = maxi∈[n] f(S, i). We define the randomly-
weighted graphH , called the weighted representative graph of Gw, as follows.H is
the n-node clique whose edges have weights. The weight weight(ei,j) ≥ 1 of edge
ei,j between node i and node j is drawn at random according to the geometric
distribution of parameter pi,j (that is, Pr {weight(ei,j) = k} = pi,j(1− pi,j)

k−1).
For k ∈ N+ ∪ {∞}, we define the (random) weighted graph H(k), obtained
from H by removing all edges with weights greater than k (note that H(1) is
distributed identically as any of the graphs in the sequence generated according
to Gw, and that H(∞) = H). Let C be a connected component of H(k), and let
i /∈ C. We define connect(i, C) as the random variable equal to the smallest h

� The first and third authors received additional supports from the ANR projects
“DISPLEXITY” and “PROSE”, and from the INRIA project “GANG”. The second
author was supported in part by funds of the “DISCO” National Research Project.

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 417–418, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

418 H. Baumann, P. Crescenzi, and P. Fraigniaud

such that there is an edge from i to C in H(h), and we define connect(C) =
maxi/∈C connect(i, C). Moreover, let diam(C) be the weighted diameter of C,
and let diam1(C) be the diameter of C when one ignores the weights.

Lemma 1. For any k ≥ 1, and any connected component C of H(k), f(S) ≤
diam(C) + 2 connect(C). Hence, f(S) ≤ k diam1(C) + 2 connect(C).

One can identify three scenarios of applications for Lemma 1, which provide a
methodology for the analysis of flooding in dynamic networks.

- Scenario 1 H(1) is connected. Then, f(S) is upper bounded by diam(H(1)).
- Scenario 2 H(1) is not connected, but has a giant component C. Then, f(S)
is upper bounded by diam(C) plus 2 connect(C).
- Scenario 3 H(1) has no giant component. Then upper bounding the flooding
time can be achieved by searching for the smallest value k such that H(k) has a
giant component C. Once this is done, the diameter of C is upper bounded by
k times the (unweighted) diameter of the giant component in an appropriately
defined random graph model G′

w related to k and Gw. Finally, we upper bound
the flooding time by adding the bound on the diameter of C to the value of
connect(C) computed as in the second scenario.

By applying this methodology, we can prove that, in the case of a power-law
degree sequence, the flooding completion time is almost surely logarithmic in n,
and we can show several bounds on the flooding completion time, in the case of
evolving graphs with an arbitrary given degree distribution w.

3. Our Main Open Problem. As we already mentioned, Lemma 1 applies in
the more general context of sequences of edge-Markovian graphs, where Gt+1 is
depending on Gt according to the following rule depending on two parameters,
the birth rate pi,j , and the death rate qi,j , for every edge ei,j , 1 ≤ i, j ≤ n.
Every edge ei,j not present in Gt appears in Gt+1 with probability pi,j , while
every edge ei,j present in Gt disappears in Gt+1 with probability qi,j , in a way
mutually independent from the behavior of all the other edges. For instance, in
the case pi,j = p and qi,j = q for all i, j, the steady state of this Markovian
process is a random graph in Gn,p̂ where p̂ = p/(p + q). Our results raise the
issue of designing a “natural” Markovian process guiding the appearance and
disappearance of edges so that to produce a sequence of graphs whose steady
state is Gw, for every given w. Of course, setting pi,j =

wiwj∑n
k=1 wk

, and setting

qi,j = 1−pi,j provides such a sequence, but it does not include time-dependencies,
for the graph Gt+1 is actually independent of Gt. In “practice”, dynamic net-
works enjoy time-dependencies, and thus the design of a tractable and realistic
model for a Markovian sequence of graphs with, e.g., power-law distribution is
highly desirable. It is not clear whether the design of such a model is doable
without introducing also some spatial-dependencies (i.e., dependencies between
edges). The edge-Markovian model restricts the dynamic to be free of spatial
dependencies. Whether this restriction prevents one from the ability of design-
ing a model of dynamic graphs with given expected degree-distribution is an
intriguing question.

Brief Announcement:
Node Sampling Using Centrifugal Random Walks�

Andrés Sevilla1, Alberto Mozo2, and Antonio Fernández Anta3

1 Dpto Informática Aplicada, U. Politécnica de Madrid, Madrid, Spain
2 Dpto Arquitectura y Tecnología de Computadores, U. Politécnica de Madrid, Madrid, Spain

3 Institute IMDEA Networks, Madrid, Spain
{asevilla,amozo}@eui.upm.es antonio.fernandez@imdea.org

Abstract. We propose distributed algorithms for sampling networks based on a
new class of random walks that we call Centrifugal Random Walks (CRW). A
CRW is a random walk that starts at a source and always moves away from it. We
propose CRW algorithms for connected networks with arbitrary probability dis-
tributions, and for grids and networks with regular concentric connectivity with
distance based distributions. All CRW sampling algorithms select a node with the
exact probability distribution, do not need warm-up, and end in a number of hops
bounded by the network diameter.

1 Introduction

Sampling the nodes of a network is the building block of epidemic information spread-
ing [3], and can be used to construct small world network topologies [1]. A classical
technique to implement distributed sampling is to use gossiping among network nodes
[2]. A second popular distributed technique is the use of random walks [5]. Unfortu-
nately, in these approaches, the desired probability distribution is reached when the
stationary distribution of a Markov process is reached. The number of iterations (or
hops of a random walk) required to reach this situation (the warm-up time) depends on
the parameters of the network and the desired distribution, but it is not negligible.

We present efficient distributed algorithms to implement a sampling service. The basic
technique used for sampling is a new class of random walks that we call Centrifugal Ran-
dom Walks (CRW). A CRW starts at a network node, called the source, and always moves
away from it. The sampling process in a CRW algorithm works essentially as follows.
A CRW always starts at the source node. When the CRW reaches a node x (initially the
source s), the CRW stops and selects that node with a given stay probability. If the CRW
does not stop at x, it jumps to a neighbor of x that is farther away from the source than
x. (The probability of jumping to each of these neighbors is not necessarily the same.)

Using this general approach, we firstly propose a CRW algorithm that samples any
connected network with any probability distribution (given as nodes’ weights). Before
starting the sampling, a preprocessing phase is required. This preprocessing involves
building a minimum distance spanning tree (MDST) in the network, and using this tree
for efficiently aggregating the nodes’ weights. Once the preprocessing is completed, any
node in the network can be the source of a sampling process, and multiple independent

� Work partially supported by Comunidad de Madrid (S2009TIC-1692) and Spanish MICINN
(TEC2011-29688-C02-01). Thanks to Husain Ibraheem for useful suggestions.

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 419–420, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

420 A. Sevilla, A. Mozo, and A. Fernández Anta

samplings with the exact desired distribution can be efficiently performed. Since the
CRW used for sampling follow the MDST, they take at most D hops (where D is the
network diameter).

Secondly, CRW algorithms without preprocessing are proposed when the probability
distribution is distance-based (i.e., all the nodes at the same distance in hops from the
source are selected with the same probability). The first distance-oriented CRW algo-
rithm we propose samples with a distance-based distribution in a grid. In this network,
the source node is at position (0, 0) and the grid contains all the nodes that are at a
distance no more than the radius R from the source. The algorithm we derive assigns a
stay probability to each node that only depends on its distance from the source. How-
ever, the hop probabilities depend on the position (i, j) of a node and the position of the
neighbor to which the CRW can jump. Since every jump of the CRW in the grid moves
one hop away from the source, the sampling is completed after at most R hops.

For the general case of any connected network, we can picture nodes at each distance
k from the source as positioned on a ring. The center of all the rings is the source, and
the radius of each ring is one unit larger than the previous one. Using this graphical
image, we refer the networks of this family as concentric rings networks. We have pro-
posed a CRW algorithm that samples with distance-based distributions in concentric
rings networks with uniform connectivity. These are networks in which all the nodes in
each ring k have the same number of neighbors in ring k − 1 and the same number in
ring k + 1. Like the grid algorithm, this one samples in at most R hops, where R is
the number of rings. To deal with concentric rings networks with no uniform connec-
tivity, we propose a distributed algorithm that, if it completes successfully, builds an
overlay network that has uniform connectivity. In the resulting network, the algorithm
for uniform connectivity can be used. We have found via simulations that this algorithm
succeeds in building the desired overlay network in a significant number of cases.

In summary, CRW algorithms can be used to implement an efficient sampling service
because, unlike previous Markovian, (e.g., random walks and gossiping) approaches,
(1) they always finish in a number of hops bounded by the network diameter, (2) select a
node with the exact probability distribution, and (3) do not need warm-up (stabilization)
to converge to the desired distribution. Additionally, in the case that preprocessing is
needed, this only has to be executed once, independently on the number of sources and
the number of samples taken from the network. More details can be found at [4].

References

1. Bonnet, F., Kermarrec, A.-M., Raynal, M.: Small-World Networks: From Theoretical Bounds
to Practical Systems. In: Tovar, E., Tsigas, P., Fouchal, H. (eds.) OPODIS 2007. LNCS,
vol. 4878, pp. 372–385. Springer, Heidelberg (2007)

2. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.-M., van Steen, M.: Gossip-based peer
sampling. ACM Trans. Comput. Syst. 25(3) (2007)

3. Kempe, D., Kleinberg, J.M., Demers, A.J.: Spatial gossip and resource location protocols. J.
ACM 51(6), 943–967 (2004)

4. Sevilla, A., Mozo, A., Fernández Anta, A.: Node sampling using drifting random walks.
CoRR, abs/1107.1089v2 (2012)

5. Zhong, M., Shen, K.: Random walk based node sampling in self-organizing networks.
SIGOPS Oper. Syst. Rev. 40, 49–55 (2006)

Brief Announcement:

Concurrent Wait-Free Red-Black Trees�

Aravind Natarajan, Lee Savoie, and Neeraj Mittal

The University of Texas at Dallas, Richardson TX 75080, USA
{aravindn@,lee.savoie@alumnimail,neerajm}@utdallas.edu

Motivation: With the prevalence of multi-core multi-processor systems, concur-
rent data structures are becoming increasingly important. Concurrency is most
often managed through locks. However, lock-based implementations of concur-
rent data structures are vulnerable to problems such as deadlock, priority inver-
sion and convoying. Non-blocking algorithms avoid the pitfalls of locks by using
hardware-supported read-modify-write instructions such as load-linked/store-
conditional (LL/SC) and compare-and-swap (CAS). In this announcement, we
focus on a non-blocking concurrent red-black tree. Red-black tree is a type of self-
balancing binary search tree that provides good worst-case time complexity for
search and modify (insert, update and delete) operations. However, red-black
trees have been remarkably resistant to parallelization using both lock-based
and lock-free techniques. The tree structure causes the root and high level nodes
to become the subject of high contention and thus become a bottleneck. This
problem is only exacerbated by the introduction of balancing requirements. We
present a suite of wait-free algorithms for concurrently accessing an external
red-black tree, obtained through a progressive sequence of modifications to an
existing general framework. In all our algorithms, search operations only execute
read and write instructions on shared memory.

A Wait-Free Framework for Tree Based Data Structures: Tsay and Li described a
framework in [1], henceforth referred to as the TL-framework, that can be used to
develop wait-free operations for a tree-based data structure provided operations
traverse (and modify) the tree in a top-down manner. The TL-framework is
based on the concept of a window, which is simply a rooted subtree of the tree
structure, that is, a small, contiguous piece of the tree. This window slides down
the tree as the operation proceeds, and can dynamically change size. For an
algorithm to fit into the TL-framework, it must operate on consecutive windows
along a simple path from the root node toward a leaf node. An operation makes
a local copy of all nodes within its current window and makes changes to the
local copy. The current window is then replaced atomically by the local copy. If
any node in the window is owned by another operation, that operation is moved
out of the way by recursive helping. We refer to nodes reachable from the root
of the tree as active nodes, while those no longer reachable as passive nodes.

In the TL-framework, every operation including search operation: (i) only
“acts” on active nodes, (ii) needs to make a copy of every node that it encounters,

� This work was supported in part by the NSF Grant CNS-1115733.

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 421–422, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

422 A. Natarajan, L. Savoie, and N. Mittal

and (iii) needs to help every stalled operation on its path before it can advance
further. This copying and helping makes operations expensive to execute. We now
summarize our contributions that aim at reducing the overhead of operations.

Reducing the Overhead of a Search Operation: Our first contribution is showing
that search operations can simply traverse the tree, without copying nodes. Such
fast search operations traverse the tree unaware of other operations, and without
helping other operations complete. Note that a search operation can now access
passive nodes, and make its decision based on “old” information. We prove that,
even when this happens, the algorithm still generates linearizable executions.

Reducing the Overhead of a Modify Operation: The overhead of a modify oper-
ation can be reduced in practice by first using the fast search operation to de-
termine whether the tree contains the key, and depending on the result, execute
the modify operation using the TL-framework. In the case of an insert/update
operation, if the search operation finds the key in the tree, then the value as-
sociated with the key is changed outside the TL-framework. Note that, in this
case, the value has to be stored outside the node as a separate record, whose
address is stored in the node. The value is then updated in a wait-free man-
ner using the algorithm proposed by Chuong et al. [2]. We further reduce the
overhead of a modify operation by copying nodes within a window only if the
window is changed in some way. Note that in this case, a search operation may
be overtaken by concurrent modify operations. To ensure wait-freedom, modify
operations now need to help search operations complete.

A Customized Wait-Free Garbage Collector: As modify operations traverse the
tree, they replace existing nodes with new copies. The replaced nodes are no
longer accessible to any operation that starts thereafter. To ensure that the
system does not run out of memory, we have designed a customized wait-free
garbage collection scheme, that is based on the notion of hazard pointers [3].
Every process maintains its own hazard pointer list, that is manipulated using
simple read and write instructions. Before reclaiming a node, a process scans the
list of hazard pointers of each process to ensure that the address is not present.
However, since search operations can access passive nodes in our algorithm,
a process performing garbage collection must help all other concurrent search
operations complete to ensure that they do not access a garbage collected node.

References

1. Tsay, J.J., Li, H.C.: Lock-Free Concurrent Tree Structures for Multiprocessor Sys-
tems. In: Proceedings of the International Conference on Parallel and Distributed
Systems (ICPADS), pp. 544–549 (December 1994)

2. Chuong, P., Ellen, F., Ramachandran, V.: A universal construction for wait-free
transaction friendly data structures. In: Proceedings of the 22nd ACM Symposium
on Parallelism in Algorithms and Architectures (SPAA), pp. 335–344 (2010)

3. Michael, M.M.: Hazard Pointers: Safe Memory Reclamation for Lock-Free Objects.
IEEE Transactions on Parallel and Distributed Systems (TPDS) 15(6), 491–504
(2004)

Brief Announcement:
A Contention-Friendly, Non-blocking Skip List

Tyler Crain1, Vincent Gramoli2, and Michel Raynal1,3

1 IRISA, Campus de Beaulieu, 35042 Rennes Cedex, France
2 The University of Sydney, NSW 2006, Australia

3 Institut Universitaire de France

A skip list is a probabilistic data structure to store and retrieve in-memory data in an
efficient way. In short, it is a linked structure that diminishes the linear big-oh com-
plexity of a linked list with elements having additional shortcuts pointing towards other
elements located further in the list [7]. These shortcuts allow operations to complete
in O(logn) steps in expectation. The drawback of employing shortcuts is however to
require additional maintenance each time some data is stored or discarded.

Non-blocking skip lists are increasingly popular alternatives to B-trees in main-
memory databases, like memsql1, as they are latch-free and can be traversed in sorted
order. By being non-blocking, a skip list ensures that the system as a whole always
makes progress. However, in a highly concurrent context the additional maintenance
causes contention overheads on existing skip lists [3, 4, 8] by increasing the probabil-
ity of multiple threads (or processes) interfering on the same shared element. Such
contention could translate into performance losses in multicore applications, like in-
memory key-value store.

We recently observed a similar issue in concurrent trees that led us to derive a binary
search tree algorithm especially suited for transactional memory [2]. Our contention-
friendly non-blocking skip list demonstrates that these algorithmic concepts can be
adapted to improve the performance of a different data structure relying exclusively
on compare-and-swap, which makes it inherently non-blocking. In addition, our skip
list guarantees the atomicity of insertions, deletions and lookups of key-value pairs as
shown in the companion technical report [1]:

Theorem 1. Each of the contains, insert, delete operations implemented by the
contention-friendly non-blocking skip list satisfy linearizability.

The contention-friendly non-blocking skip list aims at accommodating contention of
modern multicore machines. To this end, it exploits a genuine decoupling of each up-
dating access into an eager abstract modification and a lazy and selective structural
adaptation.

Eager Abstract Modification. The eager abstract modification consists in modifying
the abstraction while minimizing the impact on the skip list itself and returning as soon

 A full version is available in [1]. The research leading to these results has received fund-
ing from the European Union Seventh Framework Programme (FP7/2007-2013) under grant
agreement number 238639, ITN project TransForm.

1 http://developers.memsql.com/docs/1b/indexes.html

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 423–424, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

424 T. Crain, V. Gramoli, and M. Raynal

as possible for the sake of responsiveness. Existing skip lists typically maintain a precise
distribution of nodes per level, hence each time the abstraction is updated, the invariant
is checked and the structure is accordingly adapted as part of a single operation. While
an update to the abstraction may only need to modify a single location to become vis-
ible, its associated structural adaptation is a global modification that could potentially
conflict with any concurrent update. In order to avoid these additional conflicts, when
a node is inserted in the contention-friendly skip list only the bottom level is modified
and the additional structural modification is postponed until later. When an element is
removed the operation is separated into a logical deletion marking phase followed by
physical removal and garbage collection phases.

Lazy Selective Adaptation. The lazy selective adaptation, which can be deferred until
later, aims at adapting the skip list structure to the abstract changes by re-arranging
elements or garbage collecting deleted ones. To guarantee the logarithmic complexity of
accesses when there is no contention in the system, the structure is adapted by updating
the upper levels of the skip list when contention stops.

The structural adaptation is lazy because it is decoupled from the abstract modifica-
tions and executed by one or multiple independent thread(s). Hence many concurrent
abstract modifications may have accessed the skip list while no adaptations have com-
pleted yet. We say that the decoupling is postponed from the system point of view.

This postponement has several advantages whose prominent one is to enable merging
of multiple adaptations in one simplified step: only one traversal is sufficient to adapt
the structure after a bursts of abstract modifications. Another interesting aspect is that
it gives a chance to insertions to execute faster: if the element to be inserted is marked
as logically deleted, then the insertion simply needs to logically insert by unmarking it.
This avoids the insertion to allocate a new node and to write its value in memory.

Performance. Our preliminary evaluations on a 24-core machine show that a Java im-
plementation of the contention-friendly non-blocking skip list can improve the perfor-
mance of one of the mostly used non-blocking skip lists, the JDK adaptation by Lea of
the Harris and Michael’s lists [5, 6], by a multiplying factor of 2.5.

References

1. Crain, T., Gramoli, V., Raynal, M.: A contention-friendly, non-blocking skip list. Technical
Report RR-7969, IRISA (May 2012)

2. Crain, T., Gramoli, V., Raynal, M.: A speculation-friendly binary search tree. In: PPoPP
(2012)

3. Fomitchev, M., Ruppert, E.: Lock-free linked lists and skip lists. In: PODC (2004)
4. Fraser, K.: Practical lock freedom. PhD thesis. Cambridge University (September 2003)
5. Harris, T.L.: A Pragmatic Implementation of Non-blocking Linked-Lists. In: Welch, J.L.

(ed.) DISC 2001. LNCS, vol. 2180, p. 300. Springer, Heidelberg (2001)
6. Michael, M.M.: High performance dynamic lock-free hash tables and list-based sets.

In: SPAA, pp. 73–82 (2002)
7. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Commun. ACM 33 (June

1990)
8. Sundell, H., Tsigas, P.: Scalable and lock-free concurrent dictionaries. In: SAC (2004)

Brief Announcement:

Consensus and Efficient Passive Replication

Flavio Junqueira and Marco Serafini

Yahoo! Research, Barcelona, Spain
{fpj,serafini}@yahoo-inc.com

Passive replication is a popular practical approach to fault tolerance [1]. Using
the Paxos consensus protocol [4] to implement it is seeing a growing popularity
lately, but requires taking care of peculiar constraints. State updates must be
applied using the same sequence of generation: if a primary is in state A and
executes an operation making it transition to state B, the resulting state update
δAB must be applied to the state A. Applying it to a different state C 	= A is
not safe because it might lead to an incorrect state, which is inconsistent with
the history observed by replicas and clients. Paxos does not necessarily preserve
the dependency between A and the delivery of δAB, as observed in [3].

A general approach to implement passive replication on top of consensus is
semi-passive replication. With semi-passive replication, replicas execute sequen-
tial, non-overlapping consensus instances [2]. Our evaluation using Paxos indi-
cates that running pipelined consensus instances, which is the default behavior of
Paxos state machine replication, increases saturated system throughput by 60%.

Several practical systems implement passive replication using Paxos together
with system-specific serialization techniques that limit concurrency: for example,
they may lock resources or abort concurrent and conflicting state updates.

Existing consensus-based implementations of passive replication restrict par-
allelism. In this work, we consequently seek to answer the question of whether
consensus is a fundamental building block for efficient passive replication. We
answer this question in the positive with three key observations.

First, we observe that using the primary order atomic broadcast (POabcast)
primitive defined by Junqueira et al. [3] leads to a straightforward implementa-
tion of passive replication that satisfies linearizability. When a process is (un-
reliably) elected primary by the POabcast layer, it starts executing operations
tentatively, broadcasting the resulting state updates with POabcast. Processes
commit state updates when they are delivered by POabcast, and reply to clients.

Second, we note that executing sequential consensus instances, as in semi-
passive replication, can be seen as a simple way to implement POabcast, but this
implementation does not admit pipelining.

Third, we derive the first implementation of POabcast on top of pipelined con-
sensus instances and an Ω leader elector. Our implementation does not need
the explicit synchronization phase that differentiates Paxos and Zab. In Zab,
before becoming a primary and starting to propose new values, a new leader
must make sure that a quorum of replicas agree on the sequence of delivered val-
ues sent by the previous leaders. Processes participating to this synchronization

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 425–426, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

426 F. Junqueira and M. Serafini

suspend regular agreement on values. Our implementation achieves synchroniza-
tion implicitly through the use of a sequence of pipelined consensus instances.
Consensus instances are never suspended; the same instance can be used by
a process to elect itself as a new primary and by another process to agree on
a value. This enables using consensus as an underlying building block without
modifying the consensus algorithm itself.

We now briefly describe how our algorithm implements the broadcast and de-
liver primitives of POabcast using the underlying propose and decide primitives
of consensus. When a process p is elected leader by the underlying Ω leader elec-
tion module, it chooses a unique epoch number e and proposes a (NEW-EPOCH, e)
value in the smallest consensus instance i where p has not yet reached a decision.
If this NEW-EPOCH value is decided, we say that e is established and p is elected
as new primary; in this case, p proposes locally broadcasted values in the next
consensus instances, in a pipelined manner, using WRITE values. Synchronization
upon primary election is implicit: all processes establishing e in consensus in-
stance i have decided and delivered the same sequence of values in the instances
preceding i. Processes deliver WRITE values of epoch e when they are decided in
instances following i, until a different epoch is established.

WRITE values of an epoch are not necessarily decided in the same order as
they are proposed by the primary. If an epoch e′ was established before e, WRITE
values of e′ may be decided in instances following i. This interleaving occurs
due to pipelining: the primary of e′ may have proposed a value for an instance
following i before establishing e in instance i. If a WRITE value of e was proposed,
but not decided, in an instance j > i, it needs to be proposed again by p in a
consensus instance k > j. Primaries keep track of values that were proposed but
not yet decided, and backups keep track of values that have been decided but
cannot be delivered due to gaps in the order proposed the primary of e.

Our results show that consensus-based implementations can have the same
performance, in stable periods, as direct implementations of POabcast that are
not based on consensus, like the Zab algorithm [3], at the cost of higher space
complexity for keeping out-of-order values.

Acknowledgement. This work has been partially supported by the INNCOR-
PORA - Torres Quevedo Program and the EU SRT-15 project (ICT-257843).

References

1. Budhiraja, N., Marzullo, K., Schneider, F.B., Toueg, S.: The primary- backup ap-
proach, pp. 199–216. ACM Press/Addison-Wesley (1993)

2. Défago, X., Schiper, A., Sergent, N.: Semi-passive replication. In: IEEE SRDS, pp.
43–50 (1998)

3. Junqueira, F., Reed, B., Serafini, M.: Zab: High-performance broadcast for primary-
backup systems. In: IEEE DSN, pp. 245–256 (2011)

4. Lamport, L.: The part-time parliament. ACM Trans. on Comp. Sys (TOCS) 16(2),
133–169 (1998)

Brief Announcement:

Anonymity, Failures, Detectors and Consensus

Zohir Bouzid1,� and Corentin Travers2,��

1 University Pierre et Marie Curie - Paris 6, LIP6, France
zohir.bouzid@lip6.fr

2 University Bordeaux 1, LaBRI, France
corentin.travers@labri.fr

Abstract. The paper determines the weakest failure detector for consen-
sus in asynchronous, crash prone and anonymousmessage passing systems.

Anonymous Systems. A common, often implicit, assumption in distributed com-
puting is that the system is eponymous : each process is provided with an unique
identifier. On the other hand, in anonymous systems, processes have no identity
and are programmed identically. When provided with the same input, processes
in such systems are indistinguishable. Anonymity adds a new, challenging, diffi-
culty to distributed computing.

Consensus and Failure Detectors. Besides anonymity, a major difficulty is cop-
ing with failures and asynchrony. Many simple problems cannot be solved in
asynchronous and failures-prone distributed systems. A prominent example is
consensus, which plays a central role in fault-tolerant distributed computing. In-
formally, n processes, each starting with a private value, are required to agree on
one value chosen among their initial values. It is well known that asynchronous
fault tolerant consensus is impossible even if processes have unique identifiers as
soon as at least one process may fail by crashing [7]. Consensus is thus impossible
in anonymous, asynchronous and failure-prone message passing system.

A failure detector [5] is a distributed device that provides processes with pos-
sibly unreliable information about failures. According to the quality of the in-
formation, several classes of failure detectors can be defined. Given a distributed
problem P , a natural question is to determine the weakest failure detector for P ,
that is a failure detector D which is both sufficient to solve the problem – there
is an asynchronous, algorithm that uses D to solve P – and necessary, in the
sense that any failure detector D′ that allows solving P can be used to emulate
D. For consensus in eponymous system, it has been shown that the combination
of failure detectors Ω and Σ is both sufficient and necessary [4,6].

The failure detector based approach has been investigated recently in anony-
mous systems [1,2]. In particular, [1] presents several anonymous variants of
standard failure detectors and study their relative power. Anonymous variants
of Ω and Σ, called AΩ and AΣ are defined, and a consensus algorithm based
on these two failure detectors is described.
� Supported by DIGITEO project PACTOLE.

�� Supported in part by the ANR project DISPLEXITY.

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 427–428, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

428 Z. Bouzid and C. Travers

Contributions of thePaper. The paper generalizes the tight bound on failure detec-
tion for consensus in eponymous systems of [4,6] to the case of anonymous systems.

It first introduces two new classes of failure detectors, calledAΩ′ andAΣ′, that
generalizeΩ andΣ and shows that they are both necessary and sufficient to solve
consensus in anonymous systems subject to anynumber of crash failures.AΩ′ even-
tually distinguishes a set L of non-faulty, possibly identical, processes. For pro-
cesses in L, the output AΩ′ eventually converges to the same value, from which
the size of L can be inferred. Each other process is eventually informed that it is
not part of this set. The output of AΣ′ has two components: a label and a set of
quorums, each quorum being a multi-set of labels. At each process, both compo-
nents may never stabilize. Labels may be seen as temporary identifiers assigned
to the processes by the failure detector. The label component allows to map each
quorumsQ to a collection of sets of processes (we call such a set an instance ofQ).
Instances of quorums have similar properties as the set of processes identities out-
put byΣ: every two instances intersect and eventually each quorumhas an instance
that contains only correct processes. Although similar to the classes AΩ and AΣ
introduced in [1], AΩ′ and AΣ′ are strictly weaker.

An (AΣ′×AΩ′)-based consensus algorithm for anonymous and asynchronous
system is then presented. The algorithm tolerates an arbitrary number of failures
and is “genuinely anonymous” [1], as processes are not required to be aware of
the total number n of processes. Finally, the paper shows how to emulate AΩ′

and AΣ′ from any pair (A, D), where A is a consensus algorithm that uses
failure detector D. A standard procedure in extracting weakest failure detectors
is the construction of a precedence graph that describes temporal relationships
as well as ownership between failure detector outputs. The main challenge lies
in extending the precedence graph construction to the anonymous case. Once
this difficulty is resolved, the proof strives to reuse the extraction of Ω and Σ
in eponymous systems. See [3] for more details.

References

1. Bonnet, F., Raynal, M.: Anonymous Asynchronous Systems: The Case of Failure
Detectors. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343,
pp. 206–220. Springer, Heidelberg (2010)

2. Bonnet, F., Raynal, M.: Consensus in anonymous distributed systems: Is there a
weakest failure detector? In: AINA 2010, pp. 206–213. IEEE (2010)

3. Bouzid, Z., Travers, C.: Anonymity, failures, detectors and consensus. Technical
report, http://hal.inria.fr/hal-00723309

4. Chandra, T.D., Hadzilacos, V., Toueg, S.: The weakest failure detector for solving
consensus. J. ACM 43(4), 685–722 (1996)

5. Chandra, T.D., Toueg, S.: Unreliable failure detectors for reliable distributed sys-
tems. J. ACM 43(2), 225–267 (1996)

6. Delporte-Gallet, C., Fauconnier, H., Guerraouip, R.: Tight failure detection bounds
on atomic object implementations. J. ACM 57(4) (2010)

7. Fischer, M.J., Lynch, N.A., Paterson, M.: Impossibility of distributed consensus
with one faulty process. J. ACM 32(2), 374–382 (1985)

http://hal.inria.fr/hal-00723309

Brief Announcement: Do VNet Embeddings Leak
Information about ISP Topology?

Yvonne-Anne Pignolet1, Stefan Schmid2, and Gilles Tredan3

1 ABB CRC, Switzerland
2 TU Berlin & T-Labs, Germany

3 CNRS-LAAS, France

Abstract. This paper initiates the study of adversarial topology inference with
virtual network (VNet) embeddings in ISP networks. As an example, we sketch
how to infer cactus graphs with VNet request complexity O(n).

Contribution Sketch

An Internet Service Provider’s (ISP) network infrastructure properties often constitute
a business secret, not only for a competitive advantage, but also because the discovery
of, e.g., bottlenecks, may be exploited for attacks or bad publicity. Hence, providers
are often reluctant to open the infrastructure to novel technologies and applications that
might leak information. We raise the question whether today’s trend of network virtu-
alization [1], can be exploited to obtain information about the infrastructure. Network
virtualization allows customers to request virtual networks (VNets) on demand. A VNet
defines a set of virtual nodes (e.g., virtual machines) interconnected via virtual links
according to the specified VNet topology over a substrate network. In this paper we
consider VNet requests which do not impose any location constraints on where the vir-
tual nodes are mapped to. This flexibility in the VNet specification can be used by the
operator to optimize the VNet embedding. Thus the VNet can be realized on arbitrary
substrate nodes and paths. We assume that as long as a network provider has sufficient
resources available to embed a VNet, it will always accept the request. We study how
this behavior can be exploited to infer the full topology of the substrate.

Model. Our setting comprises two entities: a customer (adversary) issuing VNet requests
and a provider that performs access control and embeddings of VNets (e.g., [2]). We
model VNet requests as simple, undirected, weighted graphs G = (V,E) where V de-
notes the virtual nodes and E denotes the virtual edges connecting nodes in V . Both sets
can be weighted to specify requirements, e.g., computation or storage resources at nodes
or bandwidth of edges. The infrastructure network (substrate) is a weighted undirected
graph H = (V,E), with V denoting the substrate nodes, E the substrate links, and the
weights describe the capacity of nodes and edges. Without loss of generality, we assume
that there are no parallel edges or self-loops either in VNet requests or in the substrate,
and thatH is connected. In order to focus on topological aspects, we assume the substrate
graph elements in H to have a constant capacity of one unit and the requested nodes and
links to come with a demand of one unit as well. A virtual link which is mapped to more
than one substrate link, i.e., forms a path, uses resources of ε > 0 at the relay nodes, the
substrate nodes which do not constitute endpoints of the virtual link and merely serve for
forwarding. As a performance measure, we introduce the notion of request complexity,

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 429–430, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

430 Y.-A. Pignolet, S. Schmid, and G. Tredan

i.e., the number of VNet requests which have to be issued until a given network is fully
known to the adversary. Thus we study algorithms that “guess” the substrate topology
H among the set H of possible topologies allowed by the model. Given a VNet request
G, the provider always responds with an honest binary reply informing the customer
whether the requested VNet is embeddedable on the substrate. Hence we assume that the
provider does not use any means to conceal its network, e.g., by randomizing its binary
replies. Based on the reply, the customer may then decide to ask the provider to embed
the corresponding VNet G on H , or to continue asking for other VNet embeddings.

Cactus Graph Inference Algorithm. Cactus graphs are particularly interesting in
the networking context (cf e.g., Rocketfuel networks, www.cs.washington.edu/
research/networking/rocketfuel/).Formally, a cactus is a connected graph
in which any two simple cycles have at most one node in common. Or equivalently, ev-
ery edge in the cactus graph belongs to at most one 2-connected component, i.e., cactus
graphs do not contain diamond graph minors. The cactus discovery algorithm CACTUS

is based on the idea of incrementally growing the request graph and adding longest se-
quences of cycles (in our case triangle graphs consisting of three virtual nodes, short:
Y) and chains (in our case two connected virtual nodes, short C) recursively. We first
try to find the basic “knitting” of the “branches” of the given cactus. Only once such a
maximal sequence is found for a branch, the algorithm discovers the detailed structure
of the chain/cycle sequence by inserting as many nodes on the chains and cycles as pos-
sible. Intuitively, the nodes of a longest sequence of virtual cycles and chains will serve
as an “anchor” for extending further branches in future requests: since the sequence is
maximal and no more nodes can be embedded, the number of virtual nodes along the
sequence must equal the number of substrate nodes on the corresponding substrate path.
The endpoints of the sequence thus cannot have any additional neighbors, and we can
recursively explore the longest branches of nodes discovered along the sequence.

Theorem 1. CACTUS discovers any cactus with optimal request complexity Θ(n).

Proof Sketch: The correctness of the algorithm follows from the fact that requesting a
cyclic “motif” Y saturates a corresponding 2-connected component of the cactus graph,
and k consecutive triangles (triangles having one common vertex, Y k) can only be
embedded on � consecutive 2-connected components if k ≤ � (i.e., they constitute
anchors). Once we have identified the maximal k, j such that (Y kC)j can be embedded
in H , we know that each of these Y k motifs capture the basic “knitting” of the part
of the cactus branch and for each C of this knitting the next requests find the maximal
k′, j′ to replace it by C(Y k′

C)j
′
. The time complexity then follows from assigning

request costs to the cactus edges. The lower bound and asymptotic optimality is due to
the number of possible cactus graphs and the binary reply scheme. ��

References
1. Chowdhury, M.K., Boutaba, R.: A survey of network virtualization. Elsevier Computer Net-

works 54(5) (2010)
2. Even, G., Medina, M., Schaffrath, G., Schmid, S.: Competitive and Deterministic Embeddings

of Virtual Networks. In: Bononi, L., Datta, A.K., Devismes, S., Misra, A. (eds.) ICDCN 2012.
LNCS, vol. 7129, pp. 106–121. Springer, Heidelberg (2012)

Brief Announcement:

Efficient Private Distributed Computation
on Unbounded Input Streams�

Shlomi Dolev1, Juan Garay2, Niv Gilboa3, Vladimir Kolesnikov4,
and Yelena Yuditsky1

1 Dept. of Computer Science, Ben-Gurion University of the Negev, Israel
{dolev,yuditsky}@cs.bgu.ac.il

2 AT&T Labs – Research, Florham Park, NJ
garay@research.att.com

3 Dept. of Communication Systems Engineering,
Ben-Gurion University of the Negev, Israel

niv.gilboa@gmail.com
4 Bell Laboratories, Murray Hill, NJ
kolesnikov@research.bell-labs.com

We consider a distributed computation setting in which a party, whom we refer to
as the dealer, has a finite state automaton (FSA)Awithm states, which accepts an
(a priori unbounded) stream of inputs x1, x2, . . . received from an external source.
The dealer delegates the computation to agents A1, . . . , An, by furnishing them
with an implementation ofA. The input stream x1, x2, . . . is delivered to all agents
in a synchronized manner during the online input-processing phase. Finally, given
a signal from the dealer, the agents terminate the execution, submit their internal
state to the dealer, who computes the state ofA and returns it as output.

We consider an attack model where an entitiy, called the adversary,Adv, is able
to adaptively “corrupt” agents (i.e., inspect their internal state) during the online
execution phase, up to a threshold1 t < n. We do not aim at maintaining the pri-
vacy of the automaton A; however, we wish to protect the secrecy of the state of
A and the inputs’ history.We note that Adv may have external information about
the computation, such as partial inputs or length of the input sequence, state in-
formation, etc. This auxiliary information, together with the knowledge ofA, may
exclude the protection of certain configurations, or even fully determineA’s state.
Westress that this cannotbeavoided inany implementation,andwedonotconsider
this an insecurity. Thus, our goal is to prevent the leakage or derivation by Adv of
any knowledge from seeing the execution traces whichAdv did not already possess.

� This research has been supported by the Ministry of Science and Technology, the
Institute for Future Defense Technologies Research named for the Medvedi, Shwartz-
man and Gensler Families, the Israel Internet Association, the Lynne and William
Frankel Center for Computer Science at Ben-Gurion University, Rita Altura Trust
Chair in Computer Science, Israel Science Foundation (grant number 428/11),
Cabarnit Cyber Security MAGNET Consortium and MAFAT. Extended version
can be found in the Computing Research Repository (CoRR), August 2012.

1 We note that more general access structures may be naturally employed with our
constructions.

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 431–432, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

432 S. Dolev et al.

Dolev et al. [1] were able to provide very strong (unconditional, or information-
theoretic) security for computations performed by a finite-state machine (FSA),
at the price however of the computation being efficient only for a small set of
functions, as in general the complexity of the computation is exponential in the
size (number of states) of the FSA computing the function.

In this work, we minimally2 weaken the original model by additionally as-
suming the existence of one-way functions (and hence consider polynomial-time
adversaries—in the security parameter κ), and in return achieve very high ef-
ficiency as a function of the size of the FSA. We stress that we still consider
computation on a priori unbounded number of inputs, moreover, the size of the
agents’ state is independent of it, and where the online (input-processing) phase
incurs no communication.

Our work extends the work of [1]. Towards our goal of making never-ending
and private distributed computation practical, we introduce an additional (min-
imal) assumption of existence of one-way functions (and hence pseudo-random
number generators [PRGs]), and propose the following constructions:

– A scheme with (n, n) reconstruction (where all n agents participate in re-
construction), where the storage and processing time per input symbol is
O(mn) for each agent. The reconstruction complexity is O(mn).

– A scheme with (t + 1, n) reconstruction (where t corrupted agents do not
take part in the reconstruction), where the above costs are O(m

(
n−1
t−1

)
). 3

The reconstruction complexity is O(m(t + 1)).

Regarding tools and techniques, the carefully orchestrated use of PRGs and
secret-sharing techniques [2] allows our protocols to hide the state of the compu-
tation against an adaptive adversary by using share re-randomization. Typically,
in the context of secret sharing, this is simply done by the addition of a suitable
(i.e., passing through the origin) random polynomial. However, due to the no-
communication requirement, share re-randomization is a lot more challenging
in our setting. This is particularly so in the more general case of the (t + 1, n)-
reconstruction protocol. We achieve share re-randomization by sharing PRG
seeds among the players in a manner which allows players to achieve sufficient
synchronization of their randomness, which is resilient to t corruptions.

References

1. Dolev, S., Garay, J., Gilboa, N., Kolesnikov, V.: Secret Sharing Krohn-Rhodes:
Private and Perennial Distributed Computation. In: ICS (2011)

2. Shamir, A.: How to Share a Secret. CACM 22(11), 612–613 (1979)

2 Indeed, the existence of one-way functions is considered a minimal assumption in
contemporary cryptography. In particular, we do not allow the use of public-key
cryptography.

3 For some values of t, e.g. t = n
2
, this quantity would be exponential in n. This

does not contradict our assumption on the computational power of the participants;
it simply means that, given κ, for some values of n and t this protocol cannot be
executed in the allowed time.

Brief Announcement:

Fast Travellers: Infrastructure-Independent
Deadlock Resolution in Resource-restricted

Distributed Systems

Sebastian Ertel1, Christof Fetzer1, and Michael J. Beckerle2

1 Technische Universität Dresden
Dresden, Germany

firstname.lastname@tu-dresden.de
2 Waltham, MA, USA

michael.beckerle@alum.mit.edu

Introduction. In the area of data integration and middleware, distributed
data processing systems create directed workflows to perform data cleansing,
consolidation and calculations before emitting results to targets such as data
warehouses. To provide fault tolerance, expensive system-wide checkpoints of
distributed workflows want to be performed on the level of seconds while com-
mits to transactional target resources must happen much more frequently to
satisfy near real-time result latency [1] and small transaction size requirements.
When there exists non-determinism in the workflow, the commit against a trans-
actional target is allowed to be issued only when the determinants were saved to
stable storage and deterministic replay can assure exactly-once result delivery.
That is, there exists a dependency: the process q (a.k.a. operator or component in
the context of data integration) executing the transaction is not allowed to make
forward progress unless it has received the notification of the non-deterministic
process p stating that the results to be committed can be replayed determinis-
tically in the event of a crash.

The Deadlock Problem. Two challenges exist: 1) the limited system view
of the processes and 2) their resource limitations. The first challenge requires a
process to have no knowledge about the workflow it is contained in; a common
distributed system model aspect [2]. Therewith, creating new connections espe-
cially for the above dependency is neither favourable nor possible. A solution
based on already existing FIFO channels defined and maintained by the system
is desirable. Respectively, the distributed algorithm to coordinate the commits,
sends the notification, a marker m, in-order with the data. But in between p and
q, the data stream can be enriched with a theoretically unbounded number of
new messages. In contrast to that, the second challenge refers to the fact that
a transaction at q is restricted to a maximum size, modelled by input buffer Iq,
while process p only has a limited output buffer Qp to fulfil latency requirements.
Hence, it can not be assured that m arrives at q in the interval |Iq|.
Fast Travellers. We solve the above Deadlock Problem by extending our
system model such that a channel supports out-of-band message transmission,

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 433–434, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

434 S. Ertel, C. Fetzer, and M.J. Beckerle

as known from TCP out-of-band. Respectively, we classify markers with respect
to their channel transmission characteristics.

– Slow Travellers (ST) are markers in the classical sense that travel through
the channels in-order with all other messages (as described in the distributed
snapshot algorithm [3]).

– Fast Travellers (FT) are markers that are transmitted out-of-band with re-
spect to all messages among a channel.

To always enable the receipt of a Fast Traveller, we state that every process leaves
one spot available in its input buffer at any time. The solution for our deadlock
problem obviously suggests that the marker m has to be a Fast Traveller.

Assuring Correctness. But as a matter of fact, it is essential to the correctness
of most marker-based algorithms that the marker actually travels in-order with
the data/messages. For example, the deterministic replay algorithm requires
that no messages that can not be replayed deterministically are committed to
the transactional resource. This reasoning is based on the ”happened before”
relationship of message arrivals in the distributed snapshot algorithm [3]. There,
the receipt of a Slow Traveller at any two processes p and q with state sp and
sq marks these states as computationally equivalent; sp ≡ sq. We also define the
state sq of process q when the marker was not received yet as computationally
before (sq < sp) A distributed algorithm is correct iff the delivery of a message,
sent by p after the m was sent in state sp, is disabled at state sq, where sq � sp.

Marker Pairs. Therefore, we combine the two traveller types such that the
creation of a marker at process p produces two messages: 1) a Fast Traveller ft to
resolve deadlocks and optimize the resource usage among a target process q and
2) a Slow Traveller st to preserve the correctness of the algorithms. Whenever
process q receives ft and adds it to Iq, it holds that q’s current state sq < sp due
to transmission of the messages among channel c. Furthermore, it holds that q’s
subsequent states up until the arrival of st are computationally in the past of
sp and therewith actions in q depending on ft are enabled. The receipt of st,
where sp ≡ sq, only evicts ft from Iq in order to disable actions depending on
ft again and assure correctness of the marker algorithm.

We used our Marker Pair Algorithm to efficiently solve the above deadlock
problem in our data integration system1 and are convinced that there exist many
more use cases for Fast Travellers in a variety of different distributed algorithms.

References

1. Polyzotis, N., Skiadopoulos, S., Vassiliadis, P., Simitsis, A., Frantzell, N.: Supporting
streaming updates in an active data warehouse. In: ICDE (2007)

2. Lynch, N.A.: Distributed Algorithms. Morgan Kaufmann Publishers Inc., San Fran-
cisco (1996)

3. Chandy, K.M., Lamport, L.: Distributed snapshots: determining global states of
distributed systems. ACM Trans. Comput. Syst. 3, 63–75 (1985)

1 http://ohua.sourceforge.net

http://ohua.sourceforge.net

Brief Announcement: Hashed Predecessor

Patricia Trie - A Data Structure for Efficient
Predecessor Queries in Peer-to-Peer Systems

Sebastian Kniesburges and Christian Scheideler

Department of Computer Science
University of Paderborn

D-33102 Paderborn
Germany

{seppel,scheideler}@upb.de

Abstract. The design of efficient search structures for peer-to-peer sys-
tems has attracted a lot of attention in recent years. In this announce-
ment we address the problem of finding the predecessor in a key set and
present an efficient data structure called hashed Predecessor Patricia trie.
Our hashed Predecessor Patricia trie supports PredecessorSearch(x) and
Insert(x) in O(log log u) and Delete(x) in O(1) hash table accesses when
u is the size of the universe of the keys. That is the costs only depend on
u and not the size of the data structure. One feature of our approach is
that it only uses the lookup interface of the hash table and therefore hash
table accesses may be realized by any distributed hash table (DHT).

1 Introduction

In this brief announcement we consider the predecessor problem in peer-to-peer
systems. We present a data structure that efficiently supports the predecessor
problem with the help of any common DHT, e.g. Chord or Pastry. We define
the predecessor in the following way: Given a key set S with a total order and
a search key x, find max {y ∈ S|y ≤ x}. We interpret z ≤ x as z is lexicographi-
cally smaller than x. In the following we only consider binary strings. The pre-
decessor problem has many applications ranging from string matching problems,
IP lookup in Internet routers and computational geometry to range queries in
distributed file-sharing applications. Our data structure supports the following
operations: Insert(x): this adds the key x to the set S. If x already exists in S,
it will not be inserted a second time. Delete(x): this removes the key from the
set S, i.e., S := S − {x}. PredecessorSearch(x): this returns a key y ∈ S that
is the predecessor of x. Related data structures include trie hashing [2] and the
popular x- and y-fast tries [3] other related work is mentioned in our previous
paper [1]. We think that our solution using only a single Patricia trie is intuitive
and simple to understand. Furthermore it is applicable to any hash table and
thus also DHTs.

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 435–436, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

436 S. Kniesburges and C. Scheideler

2 Our Results

The hashed Predecessor Patricia trie is based on the hashed Patricia we intro-
duced in [1]. This is constructed by adding some additional nodes to the Patricia
trie to allow a binary search on the prefix lengths. For details of this construc-
tion see [1]. In our extended approach, the hashed Predecessor Patricia trie, we
assume that all inserted keys have the same length log u and modify the hashed
Patricia trie by adding some further pointers to enable an efficient predecessor
search. All leaves form a sorted doubly-linked list. Differing from the hashed
Patricia trie we store for each node v a pointer to the largest key lmax(v) in its
left subtrie instead of an arbitrary key in its subtries. To ensure efficient updates
all the pointers are undirected, i.e. each leaf stores the start nodes of the point-
ers pointing to it. The basic idea to find the predecessor for a search key x is
to use two consecutive binary searches according to [1]. The first binary search
finds the node u such that u’s identifier is the largest prefix of x among all node
identifiers. The second binary search then looks for the ancestor w of u such that
lmax(w) is the predecessor of x. Each binary search needs O(log log u) hashtable
lookup (HT-Lookup) operations. By this construction it follows that each inner
node stores at most O(1) pointers, and at most O(1) pointers point to the same
leaf. Then the following theorem holds.

Theorem 1. An execution of PredecessorSearch(x) needs O(log log u) hashtable
lookup (HT-Lookup) operations, an execution of Insert(x) needs O(log log u) HT-
Lookup and O(1) HT-Write operations and an execution of and Delete(x) needs
O(1) HT-Lookup and O(1) HT-Write operations. The hashed Predecessor Patri-
cia trie needs Θ(

∑
k∈S log u) memory space, where

∑
k∈S log u is the sum of the

bit lengths of the stored keys.

References

1. Kniesburges, S., Scheideler, C.: Hashed Patricia Trie: Efficient Longest Prefix Match-
ing in Peer-to-Peer Systems. In: Katoh, N., Kumar, A. (eds.) WALCOM 2011.
LNCS, vol. 6552, pp. 170–181. Springer, Heidelberg (2011)

2. Ramabhadran, S., Ratnasamy, S., Hellerstein, J.M., Shenker, S.: Brief announce-
ment: prefix hash tree. In: PODC, p. 368 (2004)

3. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space
theta(n). Inf. Process. Lett. 17(2), 81–84 (1983)

Brief Announcement: Naming and Counting

in Anonymous Unknown Dynamic Networks�

Othon Michail, Ioannis Chatzigiannakis, and Paul G. Spirakis

Computer Technology Institute & Press “Diophantus” (CTI), Patras, Greece
{michailo,ichatz,spirakis}@cti.gr

Contribution. We study the fundamental naming and counting problems in
networks that are anonymous, unknown, and possibly dynamic. Network dy-
namicity is modeled by the 1-interval connectivity model [KLO10]. We first
prove that on static networks with broadcast counting is impossible to solve
without a leader and that naming is impossible to solve even with a leader and
even if nodes know n. These impossibilities carry over to dynamic networks as
well. With a leader we solve counting in linear time. Then we focus on dynamic
networks with broadcast. We show that if nodes know an upper bound on the
maximum degree that will ever appear then they can obtain an upper bound on
n. Finally, we replace broadcast with one-to-each, in which a node may send a
different message to each of its neighbors. This variation is then proved to be
computationally equivalent to a full-knowledge model with unique names.

The Model. A dynamic network is modeled by a dynamic graph G = (V,E),
where V is a static set of n nodes and E : IN≥1 → P({{u, v} : u, v ∈ V }) is a
function mapping a round number r ∈ IN≥1 to a set E(r) of bidirectional links.
A dynamic graph/network G = (V,E) is said to be 1-interval connected, if, for
all rounds r ∈ IN≥1, the static graph G(r) is connected [KLO10]. Note that this
allows the connected network to change arbitrarily from round to round.

Nodes are anonymous, that is they do not initially have any ids, and they
do not know the topology or the size of the network, apart from some mini-
mal knowledge when necessary. However, nodes have unlimited local storage.
Communication is synchronous message passing. We focus on the one-to-each
message transmission model in which, in every round r, each node u generates
a different message mu,v(r) to be delivered to each current neighbor v.

Naming Protocols.We first present a terminating protocol that assigns unique
(consecutive if needed) ids to the nodes and informs them of n in O(n)-time and
then refine the size of its messages. We assume that there is a unique leader l
with id 0 (as without it naming is impossible) while all other nodes have id ⊥.

Main Idea: All already named nodes assign unique ids and acknowledge their
id to the leader. All nodes constantly forward all received ids so that they even-
tually reach the leader. So, at some round r, the leader knows a set of assigned
ids K(r). We describe now the termination criterion. If |K(r)| 	= |V | then in at
most |K(r)| additional rounds the leader must hear from a node outside K(r).
On the other hand, if |K(r)| = |V | no new info will reach the leader in the future
and the leader may terminate after the |K(r)|-round waiting period ellapses.

� Supported in part by the EU (ESF) and Greek national funds, project FOCUS.

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 437–438, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

438 O. Michail, I. Chatzigiannakis, and P.G. Spirakis

Protocol Dynamic Naming. Initially, every node has three variables count←
0, acks ← ∅, and latest unassigned ← 0 and the leader additionally has
latest new ← 0, time bound ← 1, and known ids ← {0}. A node with id 	=⊥
for 1 ≤ i ≤ k sends assign (id, count + i) message to its ith neighbor and sets
count← count+ k. In the first round, the leader additionally sets known ids←
{0, (0, 1), (0, 2), . . . , (0, k)}, latest new ← 1, and time bound← 1+ |known ids|.
Upon receipt of l assignmessages (ridj), a node with id =⊥ sets id← minj{ridj}
(in number of bits), acks ← acks ∪ id, sends an ack (acks) message to all
its k current neighbors, for 1 ≤ i ≤ k sends assign (id, count + i) message
to its ith neighbor, and sets count ← count + k. Upon receipt of l ack mes-
sages (acksj),a nonleader sets acks ← acks ∪ (

⋃
j acksj) and sends ack (acks).

A node with id =⊥ sends unassigned (current round). Upon receipt of l ≥ 0
unassigned messages (valj), a node with id /∈ {0,⊥} sets latest unassigned ←
max{latest unassigned,maxj{valj}} and sendsunassigned (latest unassigned).
Upon receipt of l ack messages (acksj), the leader if (

⋃
j acksj)\known ids 	= ∅

sets known ids ← known ids ∪ (
⋃

j acksj), latest new ← current round and
time bound ← current round + |known ids| and upon receipt of l unassigned
messages (valj), it sets latest unassigned← max{latest unassigned,maxj{valj
}}. If, at some round r, it holds at the leader that r > time bound and latest un-
assigned < latest new, the leader sends a halt (|known ids|) message for
|known ids|−1 rounds and then outputs id and halts. Any node that receives a
halt (n) message, sends halt (n) for n− 2 rounds and then outputs id and halts.

A drawback of Dynamic Naming is its Θ(n2) bits/message. We now refine
it to reduce the message size to Θ(log n) paying in O(n3) termination-time.

Protocol Individual Conversations [Main Idea]. To reduce the size of the
messages (i) the assigned names are now of the form k ·d+id, where id is the id of
the node, d is the number of unique consecutive ids that the leader knows so far,
and k ≥ 1 is a name counter (ii) Any time that the leader wants to communicate
to a remote node that has obtained a unique id it sends a message with the id of
that node and a timestamp equal to the current round. The timestamp allows
all nodes to prefer this message from previous ones so that the gain is twofold:
the message is delivered and no node ever issues a message containing more than
one id. The remote node then can reply in the same way. For the assignment
formula to work, nodes that obtain ids are not allowed to further assign ids until
the leader freezes all named nodes and reassigns to them unique consecutive ids.
During freezing, the leader is informed of any new assignments by the named
nodes and terminates if all report that no further assignments were performed.
A full version of this paper is available at http://arxiv.org/abs/1208.0180
[MCS12].

References

[KLO10] Kuhn, F., Lynch, N., Oshman, R.: Distributed computation in dynamic net-
works. In: Proceedings of the 42nd ACM Symposium on Theory of Comput-
ing, STOC 2010, pp. 513–522. ACM (2010)

[MCS12] Michail, O., Chatzigiannakis, I., Spirakis, P.G.: Naming and counting in
anonymous unknown dynamic networks. CoRR, abs/1208.0180 (2012)

http://arxiv.org/abs/1208.0180

Brief Announcement: SplayNets
Towards Self-Adjusting Distributed Data Structures

Stefan Schmid1, Chen Avin2, Christian Scheideler3,
Bernhard Haeupler4, and Zvi Lotker2

1 TU Berlin & T-Labs, Germany; 2 BGU, Israel; 3 U. Paderborn, Germany; 4 MIT, USA

Abstract. This paper initiates the study of self-adjusting distributed data struc-
tures or networks. In particular, we present SplayNets: a binary search tree based
network that is self-adjusting to the routing requests. We derive entropy bounds
on the amortized routing cost and show that our splaying algorithm has some
interesting properties.

1. Distributed Splay Trees. In the mid 80s, Sleator and Tarjan [1] introduced an ap-
pealing new paradigm to design efficient data structures: rather than optimizing tra-
ditional metrics such as the search tree depth in the worst-case, the authors proposed
to make data structures self-adjusting and considered the amortized cost as the perfor-
mance metric—the “average cost” per operation for a given sequence s of lookups. The
authors described splay trees, self-adjusting binary search trees in which frequently
accessed elements are moved closer to the root, improving the average access times
weighted by the elements’ popularity. The popularity distribution must not be known
in advance and may even change over time. We, in this paper, initiate the study of a
distributed generalization of splay trees as a network. We consider a distributed data
structure, e.g., a structured peer-to-peer (p2p) system or Distributed Hash Table (DHT),
where nodes (i.e., “peers”) that communicate more frequently should become topolog-
ically closer to each other (i.e., reducing the routing distance). This contrasts with most
of today’s structured peer-to-peer overlays whose topology is often optimized in terms
of static global properties only, such as the node degree or the longest routing path.

2. Model and Problem Definition. Given an arbitrary and unknown pattern of com-
munication (or routing) requests σ between a set of nodes V = {1, . . . , n}, we attend
to the problem of finding good communication networks G out of a family of allowed
networks G. Each topology G ∈ G is a graph G = (V,E), and we define a set of local
transformations on graphs in G to transform one member G′ ∈ G to another member
G′′ ∈ G. We seek to adapt our topologies smoothly over time, i.e., a changing com-
munication pattern leads to “local” changes of the communication graph over time.
We focus on the special case where G is the set of binary search trees (BST), hence-
forth simply called BST networks. Besides their simplicity, such networks are attrac-
tive for their low node degree and the possibility to route locally: given an destination
identifier (or address), each node can decide locally whether to forward the packet to
its left child, its right child, or its parent. The local transformations of BST networks
are called rotations. Let σ = (σ0, σ1 . . . σm−1) be a sequence of m communication
requests where σt = (u, v) ∈ V × V denotes that a packet needs to be sent from a
source u to a destination v. The cost of the network transformations at time t is de-
noted by ρ(A, Gt, σt) (or simply ρt) and captures the number of rotations performed to

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 439–440, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

440 S. Schmid et al.

change Gt to Gt+1. We denote with dG(·) the distance function between nodes in G,
i.e., for two nodes v, u ∈ V we define dG(u, v) to be the number of edges of a shortest
path between u and v in G. For a given sequence of communication requests, the cost
for an algorithm is given by the number of transformations and the distance of the com-
munication requests plus one. For an algorithmA and given an initial network G0 with
node distance function d(·) and a sequence σ = (σ0, σ1 . . . σm−1) of communication
requests over time, we define the (average) cost of A as: Cost(A, G0, σ) =

1
m

∑m−1
t=0

(dGt(σt) + 1+ ρt). The amortized cost of A is defined as the worst possible cost of A,
i.e., maxG0,σ Cost(A, G0, σ).

3. SplayNets: Algorithm and Analysis. The main idea of our double splay
algorithm DS is to perform splay tree operations in subtrees covering the different
communication partners. Concretely, consider a communication request (u, v) from
node u to node v, and let αT (u, v) denote the least common ancestor of u and v in the
current BST network T . Furthermore, for an arbitrary node x, let T (x) denote the sub-
tree rooted at x. The formal listing of DS is shown in Algorithm 1:

Algorithm 1 Double Splay Algorithm DS

1: (* upon request (u, v) in T *)

2: w := αT (u, v)
3: T ′ := splay u to root of T (w)
4: splay v to the child of T ′(u)

Fig. 1. Double Splay Algorithm DS

When a request (u, v) occurs, DS first
simply splays u to the least common an-
cestor αT (u, v) of u and v, using the
classic splay operations Zig, ZigZig,
ZigZag from [1]. Subsequently, the
idea is to splay the destination node v to
the child of the least common ancestor
αT ′(u, v) of u and v in the resulting tree
T ′. The communication cost of DS can be upper bounded by the empirical entropy of
the sources and destinations of the requests. We can also provide a lower bound for any
BST network based on the conditional empirical entropy.

Theorem 1. Let σ be an arbitrary sequence of communication requests, then for any
initial BST T0, Cost(DS, T0, σ) ∈ O(H(X̂) +H(Ŷ)) where H(X̂) and H(Ŷ) are the
empirical entropies of the sources and the destinations in σ, respectively.

Theorem 2. Given a request sequence σ, for any optimal BST network T :
Cost(⊥, T, σ) ∈ Ω(H(Ŷ |X̂) +H(X̂ |Ŷ)).

A simple corollary of the above results can be obtained when σ follows a product dis-
tribution (i.e., H(X̂|Ŷ) = H(X̂)): DS is asymptotically optimal if σ follows a product
distribution. In our full paper, we will show that DS features several other desirable
properties and that it is optimal in some special cases like when σ forms a laminated set
or a BST. In addition we extend Theorem 2 to give more sophisticated lower bounds.

4. Discussion. We regard our work as a first step towards the design of novel distributed
data structures and networks which adapt dynamically to the demand.

Reference

1. Sleator, D., Tarjan, R.: Self-adjusting binary search trees. JACM 32(3), 652–686 (1985)

Brief Announcement: Semantics of Eventually
Consistent Replicated Sets �

Annette Bieniusa1, Marek Zawirski1,2, Nuno Preguiça3,1, Marc Shapiro1,
Carlos Baquero4, Valter Balegas3, and Sérgio Duarte3

1 INRIA/LIP6, Paris, France
2 UPMC, Paris, France

3 CITI, Universidade Nova de Lisboa, Portugal
4 HASLab, INESC Tec and Universidade do Minho, Portugal

This paper studies the semantics of sets under eventual consistency. The set is a
pervasive data type, used either directly or as a component of more complex data
types, such as maps or graphs. Eventual consistency of replicated data supports
concurrent updates, reduces latency and improves fault tolerance, but forgoes
strong consistency (e.g., linearisability). Accordingly, several cloud computing
platforms implement eventually-consistent replicated sets [2,4].

The sequential semantics of a set are well known, and are defined by in-
dividual updates, e.g., {true}add(e){e ∈ S} (in “{pre-condition} computation
{post-condition}” notation), where S denotes its abstract state. However, the
semantics of concurrent modifications is left underspecified or implementation-
driven.

We propose the following Principle of Permutation Equivalence to express
that concurrent behaviour conforms to the sequential specification: “If all se-
quential permutations of updates lead to equivalent states, then it should also
hold that concurrent executions of the updates lead to equivalent states.” It im-
plies the following behavior, for some updates u and u′:

{P }u; u′{Q} ∧ {P }u′; u{Q′} ∧ Q ⇔ Q′ ⇒ {P }u ‖ u′{Q}
Specifically for replicated sets, the Principle of Permutation Equivalence requires
that {e �= f}add(e) ‖ remove(f){e ∈ S ∧ f /∈ S}, and similarly for opera-
tions on different elements or idempotent operations. Only the pair add(e) ‖
remove(e) is unspecified by the principle, since add(e); remove(e) differs from
remove(e); add(e). Any of the following post-conditions ensures a deterministic
result:

{⊥e ∈ S} – Error mark
{e ∈ S} – add wins
{e /∈ S} – remove wins

{add(e) >CLK remove(e) ⇔ e ∈ S} – Last Writer Wins (LWW)

where <CLK compares unique clocks associated with the operations. Note that
� This research is supported in part by ANR project ConcoRDanT (ANR-10-BLAN

0208), by ERDF, COMPETE Programme, by Google European Doctoral Fellow-
ship in Distributed Computing received by Marek Zawirski, and FCT projects
#PTDC/EIA-EIA/104022/2008 and #PTDC/EIA-EIA/108963/2008.

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 441–442, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://concordant.lip6.fr/

442 A. Bieniusa et al.

(a) Dynamo shopping
cart

(b) C-Set (c) OR-Set

Fig. 1. Examples of anomalies and a correct design

not all concurrency semantics can be explained as a sequential permutation; for
instance no sequential execution ever results in an error mark.

A Study of Existing Replicated Set Designs. In the past, several designs
have been proposed for maintaining a replicated set. Most of them violate the
Principle of Permutation Equivalence (Fig. 1). For instance, the Amazon Dy-
namo shopping cart [2] is implemented using a register supporting read and write
(assignment) operations, offering the standard sequential semantics. When two
writes occur concurrently, the next read returns their union. As noted by the
authors themselves, in case of concurrent updates even on unrelated elements, a
remove may be undone (Fig. 1(a)).

Sovran et al. and Asian et al. [4,1] propose a set variant, C-Set, where for
each element the associated add and remove updates are counted. The element
is in the abstraction if their difference is positive. C-Set violates the Principle
of Permutation Equivalence (Fig. 1(b)). When delivering the updates to both
replicas as sketched, the add and remove counts are equal, i.e., e is not in the
abstraction, even though the last update at each replica is add(e).

Shapiro et al. propose a replicated set design, called OR-Set, [3] that ensures
that concurrent add/remove operations commute. Unlike the others, it satisfies
the Principle of Permutation Equivalence, as illustrated in Figure 1(c). Hidden
unique tokens distinguish between different invocations of add, making it possible
to to precisely track which add operations are affected by a remove.

References
1. Aslan, K., Molli, P., Skaf-Molli, H., Weiss, S.: C-Set: a commutative replicated data

type for semantic stores. In: Int. W. on REsource Discovery, RED (2011)
2. DeCandia, G., Hastorun, D., et al.: Dynamo: Amazon’s highly available key-value

store. In: Symp. on Op. Sys. Principles, SOSP (2007)
3. Shapiro, M., Preguiça, N., Baquero, C., Zawirski, M.: Conflict-Free Replicated Data

Types. In: Défago, X., Petit, F., Villain, V. (eds.) SSS 2011. LNCS, vol. 6976, pp.
386–400. Springer, Heidelberg (2011)

4. Sovran, Y., Power, R., Aguilera, M.K., Li, J.: Transactional storage for geo-
replicated systems. In: Symp. on Op. Sys. Principles, SOSP (2011)

Brief Announcement:

Decoupled and Consensus-Free Reconfiguration
for Fault-Tolerant Storage

Eduardo Alchieri1, Alysson Bessani2, Fab́ıola Greve3, and Joni Fraga4

1 University of Braśılia - Brazil
2 University of Lisbon - Portugal

3 Federal University of Bahia - Brazil
4 Federal University of Santa Catarina - Brazil

1 Motivation and Prior Work

Quorum systems are constructions used to ensure consistency and availability
of data stored in replicated servers. These systems usually comprise a static set
of servers that provide a fault-tolerant read/write (r/w) register accessed by a
set of clients. This approach is not adequate for long lived systems since, given a
sufficient amount of time, there might be more faulty servers than the threshold
tolerated, affecting the system correctness. Moreover, this approach does not
allow a system administrator to deploy new machines or replace old ones at
runtime and cannot be applied in many systems where, by their very nature, the
set of processes that compose the system changes during its execution.

Reconfiguration is the process of changing the set of nodes that comprise the
system. Previous works proposed solutions for reconfigurable storage by imple-
menting dynamic quorum systems [2, 3], which rely on consensus for reconfig-
urations in a way that processes agree on the set of servers to represent the
system. However, consensus is not solvable in asynchronous environments and
atomic shared memory emulation can be implemented without agreement in
static asynchronous systems. Recently, Aguilera et al [1] showed that it is pos-
sible to implement reconfigurations without agreement presenting DynaStore, a
set of algorithms that implements dynamic storage and does not rely on consen-
sus for reconfigurations, that are strongly tied with the r/w protocols. It means
that DynaStore r/w protocols explicitly deal with reconfigurations.

2 Contributions

We propose FreeStore, a consensus-free system that implements a fault-toler-
ant atomic and wait-free register, allowing the servers set (system view) to change
at runtime. When compared with DynaStore [1], FreeStore implements a
rather different reconfiguration protocol more simple, modular and completely
decoupled from r/w protocols.

View generator. FreeStore makes use of a new abstraction called view gen-
erator. This abstraction aims to capture the agreement requirements of the re-
configuration protocol, being distributed oracles used by servers to generate new

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 443–444, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

444 E. Alchieri et al.

system views. Each view installed in the system has an associated view generator
to generate a succeeding view.

Definition 1 (View Generator). A view generator is defined by the following
properties:

– Accuracy: a view generator associated with a view v produces the same view
w in all correct processes.

– Termination: a started view generator eventually generates a new view.
– Non-triviality: for each view w generated by the view generator associated

with a view v, w is more updated than v.

Non-triviality must be satisfied by any view generator to ensure that updated
views are always generated. The satisfaction of Accuracy (A) and Termination
(T) properties lead to the definition of four classes of view generators: Perfect (P)
– satisfies A and T; Live (L) – satisfies T; Strong (S) – satisfies A; and Weak
(W) – does not satisfy neither A or T. FreeStore reconfiguration protocol
implements safe and live reconfigurations using a generator as weak as L, a
consensus-free generator that does not satisfy Accuracy, i.e., it can generate
different views at different processes.

FreeStore reconfiguration. FreeStore is composed by two decoupled pro-
tocols. The reconfiguration protocol is modular and implemented through the
periodically (assuming that there are reconfiguration requests to be processed)
starting the view generator associated with the system current view.

The protocol ensures the system convergence to a single sequence of installed
views, even using L. The key idea of the protocol is to choose only some of
the generated views produced by L and define a sequence of (consistent) views
to be installed until a single final view containing all reconfiguration requests
is activated. Since this protocol does not rely on consensus for agreement on a
single sequence of views, two or more sequences may be generated in different
servers. However, the quorum intersection property ensures that any generated
sequence will be a subsequence of any other posterior sequence, what is enough
to preserve the reconfiguration safety properties. It is important to mention that
FreeStore reconfiguration protocol works with any view generator class.

R/w protocol. The reconfiguration protocol is completely independent from the
r/w protocol employed for accessing the register. In consequence, any classical
static r/w protocol can be adapted to be used with the system.

References

[1] Aguilera, M., Keidar, I., Malkhi, D., Shraer, A.: Dynamic Atomic Storage Without
Consensus. Journal of the ACM 58(2) (2011)

[2] Gilbert, S., Lynch, N., Shvartsman, A.: RAMBO: A Robust, Reconfigurable Atomic
Memory Service for Dynamic Networks. Distributed Computing 23(4) (2010)

[3] Martin, J., Alvisi, L.: A Framework for Dynamic Byzantine Storage. In: Proc. of
the 34th International Conference on Dependable Systems and Networks (2004)

Brief Announcement: Atomic Consistency and

Partition Tolerance in Scalable Key-Value Stores

Cosmin Arad, Tallat M. Shafaat, and Seif Haridi

KTH Royal Institute of Technology, Sweden

Abstract. We propose consistent quorums to achieve linearizability in
scalable and self-organizing key-value stores based on consistent hashing.

Key-value stores based on consistent hashing [5] provide scalable and self-
organizing storage for modern web applications. Simply applying quorum-based
read and write operations [3] within replication groups dictated by consistent
hashing, fails to achieve atomic consistency in a partially synchronous system
prone to network partitions [2]. Given the advantages of consistent hashing (sim-
plicity, incremental scalability, self-organization) and the realities of data-center
environments (partial synchrony, node dynamism, and the possibility of net-
work partitions) we set out to achieve linearizability in a dynamic and scalable
key-value storage system governed by consistent hashing. We apply results from
reconfigurable atomic storage, within dynamic replication groups where node
membership is automatically dictated by the principle of consistent hashing.

A näıve approach to achieving consistency is to use quorum-based read/write
operations within every replication group. This will not work as false failure sus-
picions, along with consistent hashing, may lead to non-intersecting quorums [2].
Any quorum-based algorithm, such as ABD [3] and Paxos [6], will suffer from
the problem of non-intersecting quorums when used with consistent hashing. We
propose consistent quorums as a solution. Each node has a view 〈v, i〉, where v
is the set of nodes in the replication group and i is the version number of the
view. A consistent quorum is a quorum of nodes that are in the same view when
the quorum is assembled. When a node replies to a request it stamps its reply
with its current view. A quorum-based operation (e.g. ABD, Paxos) will succeed
only if it finds a quorum of nodes with the same view, i.e., a consistent quorum.

Changes to replication group 〈v, i〉 are proposed as a new view 〈v′, i+ 1〉 via
Paxos augmented with consistent quorums. The decision is installed on all nodes
in v ∪ v′. In spite of reconfigurations, it can be shown that any two consistent
quorums will always intersect [2]. This implies that ABD writes and reads will
satisfy linearizability in the presence of reconfigurations and concurrent recon-
figuration operations will be applied in a total order [2].

Paxos and ABD are intrinsically partition-tolerant; since they depend on quo-
rums, operations in any partition that contains a quorum will succeed. To main-
tain partition tolerance when Paxos and ABD are applied within consistent
hashing replication groups, we use consistent quorums. We employ a ring unifi-
cation algorithm [7] that repairs the ring topology of consistent hashing, hence

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 445–446, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

446 C. Arad, T.M. Shafaat, and S. Haridi

fixing node responsibilities, after a transient network partition. This enables our
overall key-value store to be tolerant to network partitions.

A linearizable read/write register in a fully asynchronous system model was
implemented by the ABD algorithm [3] which used majority replication within
a static set of nodes. Atomic registers were extended to dynamic networks with
protocols like RAMBO and RDS [4] which used consensus to coordinate the
sequence of system reconfigurations. DynaStore [1] showed that reconfigurable
atomic registers can be implemented without consensus in a fully asynchronous
system. To enable linearizability at large scale, we turn every consistent hashing
replication group into a set of reconfigurable atomic registers, one for each key-
value object, maintaining a consistent mapping of objects to replication groups.

Similar to previous work on reconfigurable atomic storage [4,1], our approach
decouples reconfiguration from register operations, allowing operations to exe-
cute concurrently with reconfigurations. While in RDS and DynaStore all oper-
ations are forced to contact quorums in all active configurations, with consistent
quorums, operations optimistically contact only a single quorum. Only opera-
tions that get different consistent quorums between their read and write phases
need to repeat the read phase in the new configuration.

Like in RDS [4], we use consensus only for reconfiguration, but more gener-
ally, consistent quorums could be used to transform any static quorum-based
protocol to be dynamically reconfigurable, while paying for consensus only on
reconfiguration, and otherwise maintaining the original protocol’s complexity.

The design, implementation, and evaluation of a scalable key-value store based
on consistent hashing and consistent quorums, as well as the algorithms and
correctness proofs are available in a separate technical report [2].

References

1. Aguilera, M.K., Keidar, I., Malkhi, D., Shraer, A.: Dynamic atomic storage without
consensus. In: Proceedings of the 28th ACM Symposium on Principles of Distributed
Computing, PODC 2009, pp. 17–25. ACM, New York (2009)

2. Arad, C., Shafaat, T., Haridi, S.: CATS: Linearizability and partition tolerance in
scalable and self-organizing key-value stores. SICS Technical Report T2012:04

3. Attiya, H., Bar-Noy, A., Dolev, D.: Sharing memory robustly in message-passing
systems. J. ACM 42, 124–142 (1995)

4. Chockler, G., Gilbert, S., Gramoli, V., Musial, P.M., Shvartsman, A.A.: Reconfig-
urable distributed storage for dynamic networks. J. Parallel Distrib. Comput. 69,
100–116 (2009)

5. Karger,D., Lehman,E., Leighton,T.,Panigrahy,R., Levine,M., Lewin,D.:Consistent
hashing and random trees: distributed caching protocols for relieving hot spots on the
world wide web. In: Proceedings of the Twenty-Ninth Annual ACM Symposium on
Theory of Computing, STOC 1997, pp. 654–663. ACM, New York (1997)

6. Lamport,L.:Thepart-timeparliament.ACMTrans.Comput.Syst. 16, 133–169 (1998)
7. Shafaat, T., Ghodsi, A., Haridi, S.: Dealing with bootstrapping, maintenance, and

network partitions and mergers in structured overlay networks. In: Sixth IEEE In-
ternational Conference on Self-Adaptive and Self-Organizing Systems, SASO 2012.
IEEE Computer Society, Washington, DC (2012)

Brief Announcement: Weighted Partial Message

Matching for Implicit Multicast Systems�

William Culhane1, K.R. Jayaram2, and Patrick Eugster1

1 Purdue University
{wculhane,peugster}@purdue.edu

2 HP Labs
jayaramkr@hp.com

In implicit multicast, receiving processes delineate the messages they wish to
receive by specifying predicates, also called filters, on the message’s content.
In weighted partial message matching, distributed applications using implicit
multicast protocols do not require that a message match all the elementary con-
straints constituting the filter. Typically, receiving processes in such applications
associate a non-negative weight to each constraint and require that the match
score, i.e., sum of the weights of matching constraints, exceeds a threshold value.
In this paper, we consider top-k weighted partial matching, where a process is
interested in multicasting a message only to k < n other processes correspond-
ing to the top-k match scores. This is a fundamental problem underlying online
advertising platforms, mobile social networks, online dating, etc.

A messagem is a set of attribute/interval pairs {a1 : [v1, v′1], . . . , ak : [vk, v
′
k]}.

We consider filters to be conjunctions of interval constraints, each of which has
an associated weight. A filter with n constraints on n attributes is represented
as a predicate φ = a1 ∈ [v1, v

′
1] : w1 ∧ . . . ∧ an ∈ [vn, v

′
n] : wn. Interval

filters are as expressive as regular filters, e.g., x>1000 where x is an integer
attribute can be expressed as x∈ [1001, MAX_INT] and equalities like x=1000 can
be modeled as x∈ [1000, 1000]. We use interval filters because they increase
efficiency (as we demonstrate in this paper). Given a message m and a filter
φ=

∧n
i=1 δi : wi, where δi = ai ∈ [vi, v

′
i], the match score score(φ,m) =∑m

i=1 wi | δi(m) = true. Given a set of filters Θ, and a message m, the top-k
weighted partial matching set Φ ⊆ Θ is defined as Φ = {φ | score(φ,m) >
0 ∧ score(φ,m) > score(φ′,m) ∀ φ′ ∈ Θ \ Φ} and |Φ| = k.

The key strategy adopted by our matching algorithm is to consider filters per
attribute. A broker in an implicit multicast system receives filters from senders and
other brokers connected to it. We assume that an incoming filter from client ci is
uniquely identifiable by an identifier denoted by fid. We consider the cases where
weights are (1) specified by receivers and are associated with the elementary con-
straints of a filter, and (2) specified by the sender and attached to themessage over-
riding anyweights associatedby receiverswithfilters (shown inLine 24ofFigure 1).

Our algorithm uses a two-level index for filters. Constraints on attributes
are indexed at the attribute-level in interval trees, which are in turn indexed by

� Funded by US NSF grants 0644013 and 0834529, DARPA grant N11AP20014, and
by Purdue Research Foundation grant 205434.

M.K. Aguilera (Ed.): DISC 2012, LNCS 7611, pp. 447–448, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

448 W. Culhane, K.R. Jayaram, and P. Eugster

attribute name in a “master index” hash map (Line 1). An incoming filter is split
by attribute name. The constraint for each attribute is added to its respective
interval tree (Line 7). If no interval tree exists for an attribute, a new interval
tree with the new constraint is created for that attribute (Line 9) and inserted
into the master index (Line 11). Removing filters requires removing constraints
from their interval trees and removing empty trees from the master index.

1: mIndex ← new hashmap
2: upon receive(φ) do
3: fid ← new filter id
4: for (ai ∈ [vi, v

′
i] : wi) ∈ φ do

5: treei ← hmap-get(mIndex, ai)
6: if treei �= ⊥ then
7: insert(treei, [vi, v

′
i], wi, fid)

8: else
9: treei ←new interval tree

10: insert(treei, [vi, v
′
i], wi, fid)

11: hmap-put(mIndex,ai, treei)

12: upon receive(msg) do
13: smap ← new hashmap
14: topscores ← new treeset
15: min ← 0
16: for ai : [vi, v

′
i] : wi ∈ msg do

17: treei ← hmap-get(master, ai)
18: matches ← intersect(treei, [vi, v

′
i])

19: if wj = 0 ∀ aj ∈ msg then
20: for all 〈fid, [vr , v′r], wr〉 ∈ matches do
21: score ← hmap-get(smap, fid)
22: hmap-put(smap, fid, score+wr)
23: else
24: hmap-put(smap, fid, score+ wi)
25: for all fid ∈ get-all-keys(smap) do
26: if sizeof(topscores) < k then
27: treeset-add(topscores, fid, w)
28: if w < min ∨min = 0 then
29: min ← w
30: else if min < w then
31: treeset-remove-min(topscores)
32: treeset-add(topscores, fid, w)
33: min ← treeset-find-min(topscores)
34: for all fid ∈ get-keys(topscores) do
35: send(msg) to receiver-of(fid)

Fig. 1. Algorithm for weighted partial matching
of messages to filters

Our algorithm tracks fil-
ters’ match scores via a hash
map called smap (Line 13).
For matching, it retrieves the
identifiers and weights for each
attribute’s filter matching
constraints (Line 18). The fil-
ters’ aggregate scores are up-
dated in smap by adding the
weight of the matched con-
straint (Lines 22 and 24). If
senders specify weights on at-
tributes, the weights retrieved
from the interval tree are dis-
carded (Line 24). After calculat-
ing the scores using all filters on
the message, the entries in smap
are inserted into the tree set
topscores for pruning the top-k.
Entries from smap are inserted
into topscores ordered by their
scores, and topscores is main-
tained so that its size never ex-
ceeds k (Lines 25–33).

Our companion technical re-
port 1 presents our model, algo-
rithm and related work in more
detail. We prove that the time
complexity of our algorithm for
top-k weighted partial match-
ing based on interval trees is
O(M log N + S log k) and space
complexity is O(M N +k) where
N is the number of filters, M
is the number of attributes in a
message and S is the number of
matching constraints.

1 Purdue Computer Science TR # 12-009. See
http://docs.lib.purdue.edu/cstech/

http://docs.lib.purdue.edu/cstech/

Author Index

Afek, Yehuda 1, 297
Alchieri, Eduardo 443
Anaya, Julian 46
Arad, Cosmin 445
Attiya, Hagit 356
Avin, Chen 439

Balegas, Valter 441
Baquero, Carlos 441
Baumann, Hervé 417
Beckerle, Michael J. 433
Bessani, Alysson 443
Bieniusa, Annette 441
Bienkowski, Marcin 121
Blin, Lélia 403
Bouzid, Zohir 401, 427
Burman, Janna 403
Busch, Costas 415

Censor-Hillel, Keren 91
Chalopin, Jérémie 46
Chatzigiannakis, Ioannis 437
Chen, Chen 76
Crain, Tyler 423
Crescenzi, Pierluigi 417
Culhane, William 447
Czygrinow, Andrzej 210
Czyzowicz, Jurek 46, 341

D’Angelo, Gianlorenzo 326
Das, Shantanu 401
Das Sarma, Atish 136, 151
Daum, Sebastian 238
Di Stefano, Gabriele 326
Dolev, Danny 195
Dolev, Shlomi 431
Duarte, Sérgio 441

Ellen, Faith 16
Ertel, Sebastian 433
Eugster, Patrick 447

Feinerman, Ofer 61
Fernández Anta, Antonio 419
Fetzer, Christof 433

Fraga, Joni 443
Fraigniaud, Pierre 371, 417
Fujinaga, Nao 312

Garay, Juan 431
G ↪asieniec, Leszek 341
Ghaffari, Mohsen 223
Gilboa, Niv 431
Göös, Mika 181
Gotsman, Alexey 31
Gramoli, Vincent 423
Greve, Fab́ıola 443

Haeupler, Bernhard 91, 166, 223, 439
Hanćkowiak, Michal 210
Haridi, Seif 445
Huang, Bojun 411
Hurfin, Michel 405

Jacobsen, Hans-Arno 76
Jayanti, Prasad 282
Jayaram, K.R. 447
Junqueira, Flavio 425
Jurdzinski, Tomasz 106, 121

Kaplan, Haim 1
Kari, Chadi 386
Kentros, Sotirios 386
Khan, Maleq 409
Kiayias, Aggelos 386
Kijima, Shuji 312, 413
Kniesburges, Sebastian 435
Kolesnikov, Vladimir 431
Korenfeld, Boris 1
Korman, Amos 61, 371
Korzeniowski, Miroslaw 121
Kosowski, Adrian 341
Kowalski, Dariusz R. 106, 121
Kranakis, Evangelos 341
Kuhn, Fabian 166, 238

Labourel, Arnaud 46
Lall, Ashwin 151
Lenzen, Christoph 195
Li, Chuanyou 405

450 Author Index

Liu, Zhiyu 282
Lotker, Zvi 439
Lynch, Nancy 91, 223

Matveev, Alexander 297
Maurer, Alexandre 253
Médard, Muriel 91
Michail, Othon 437
Mittal, Neeraj 421
Molla, Anisur Rahaman 136
Morrison, Adam 1
Mozo, Alberto 419
Musuvathi, Madanlal 31

Nanongkai, Danupon 151
Natarajan, Aravind 421
Navarra, Alfredo 326
Newport, Calvin 223, 238
Nisse, Nicolas 403

Pacheco, Eduardo 341
Pandurangan, Gopal 136, 409
Pareek, Abhijeet 267
Parter, Merav 371
Paz, Ami 356
Pei, Guanhong 407, 409
Pelc, Andrzej 46
Peled, Shir 195
Peleg, David 371
Pignolet, Yvonne-Anne 429
Ponce, Oscar Morales 341
Preguiça, Nuno 441

Ramachandran, Vijaya 16
Raynal, Michel 423

Savoie, Lee 421
Scheideler, Christian 435, 439
Schmid, Stefan 429, 439
Serafini, Marco 425
Sevilla, Andrés 419
Shafaat, Tallat M. 445
Shapiro, Marc 441
Sharma, Gokarna 415
Shavit, Nir 297
Spirakis, Paul G. 437
Suomela, Jukka 181
Szymańska, Edyta 210

Tarjan, Robert E. 1
Tixeuil, Sébastien 253, 401, 413
Travers, Corentin 427
Tredan, Gilles 429
Trehan, Amitabh 151

Vaxès, Yann 46
Vitenberg, Roman 76
Vullikanti, Anil Kumar S. 407, 409

Wang, Yun 405
Wawrzyniak, Wojciech 210
Woelfel, Philipp 16, 267

Yamashita, Masafumi 312, 413
Yamauchi, Yukiko 312, 413
Yang, Hongseok 31
Yuditsky, Yelena 431

Zawirski, Marek 441

	Title
	Preface
	Symposium Organization
	Table of Contents
	Shared Memory I
	CBTree: A Practical Concurrent Self-Adjusting Search Tree
	Introduction
	Related Work
	The CBTree and Its Analysis
	Splaying Analysis Background
	The Sequential CBTree
	Analysis

	The Concurrent CBTree
	Optimistic Concurrent BSTs
	Concurrent CBTree Walk-Through
	Single Adjuster
	The Lazy CBTree

	Experimental Evaluation
	Realistic Workloads

	References

	Efficient Fetch-and-Increment*
	Introduction
	The First Implementation
	The Second Implementation
	Compression
	Status-Units
	Reusable Progress Trees
	Deletion Tree Dv
	Recycling
	Overall Algorithm

	Extensions
	References

	Show No Weakness: Sequentially Consistent Specifications of TSO Libraries
	Introduction
	TSO Semantics
	TSO-to-SC Linearizability
	TSO-to-SC Linearizability and Robustness
	Conditions for Correct Compilation
	Using Robustness Criteria More Flexible Than DRF
	Related Work
	References

	Mobile Agents and Overlay Networks
	Collecting Information by Power-Aware Mobile Agents*
	Introduction
	Centralized Convergecast on Lines
	Properties of a Convergecast Strategy
	=.24em plus .1em minus .1em A Linear Algorithm to Compute the Optimal Power Needed for Convergecast

	Distributed Convergecast on Trees
	Centralized Convergecast on Trees and Graphs
	Conclusion and Open Problems
	References

	Memory Lower Bounds for Randomized Collaborative Search and Implications for Biology
	Introduction
	Preliminaries
	Lower Bounds on the Advice
	Upper Bound
	Implications for Biology
	References

	A Generalized Algorithm for Publish/Subscribe Overlay Design and Its Fast Implementation
	Introduction
	Related Work
	Background
	Generalized Overlay Design Algorithm
	Fast Implementation of TCO Algorithms
	An Indexing Data Structure
	A Common Template for Implementations
	Finding Edge for MinAvg-TCO
	Finding Edge for MinMax-TCO
	Finding Edge for Low-TCO
	Running Time for Gen-ODA

	Evaluation
	F-MinMax-ODA for MinMax-TCO
	F-Low-ODA for Low-TCO

	Conclusions
	References

	Wireless and Multiple Access Channel Networks
	Bounded-Contention Codingfor Wireless Networks in the High SNR Regime
	Introduction
	Our Contributions
	Related Work

	Network Abstraction
	Bounded-Contention Codes
	Local Broadcast
	Global Broadcast
	Random Linear Network Coding
	Reducing the Overhead of Random Linear Network Coding via BCC-Codes

	Dynamic Networks
	Estimating the Contention
	Discussion
	References

	Distributed Backbone Structure for Algorithms in the SINR Model of Wireless Networks*
	Introduction
	Previous and Related Results
	Our Results

	Model and Notation
	Technical Preliminaries and SINR-Selectors
	Backbone Structure and Algorithm
	Applications of Backbone
	Final Remarks and Extensions
	References

	Distributed Online and Stochastic Queuing on a Multiple Access Channel*
	Introduction
	Previous and Related Work
	Our Results

	Competitive Algorithm SCAT
	SCAT Analysis

	Stochastic Model
	Conclusions and Open Problems
	References

	Dynamic Networks
	Fast Distributed Computation in Dynamic Networks via Random Walks*
	Introduction
	Network Model and Definitions
	Dynamic Networks
	Distributed Computing Model
	Random Walks in a Dynamic Graph

	Problem Statements and Our Results
	Related Work and Technical Overview
	Algorithm for Single Random Walk
	Description of the Algorithm
	Analysis
	Generalization to Non-regular Evolving Graphs

	Algorithm for k Random Walks
	Application: Information Dissemination (or k-Gossip)
	Conclusion
	References

	Dense Subgraphs on Dynamic Networks*
	Introduction
	Problem Definition
	Our Results

	Algorithm
	Main Algorithm
	Approximating the Number of Nodes and Edges

	Analysis
	Analysis for the Densest Subgraph Problem
	Analysis for the At-Least-k Densest Subgraph Problem
	Running Time Analysis

	Related Work
	Future Work and Conclusions
	References

	Lower Bounds on Information Dissemination in Dynamic Networks
	Introduction
	Related Work
	Model and Problem Definition
	Lower Bounds
	General Technique and Basic Lower Bound Proof
	Sending Multiple Tokens Per Round
	Interval Connected Dynamic Networks
	Vertex Connectivity

	References

	Distributed Graph Algorithms
	No Sublogarithmic-Time Approximation Schemefor Bipartite Vertex Cover
	Introduction
	The LOCAL Model
	Our Result
	König Duality
	Related Lower Bounds

	Deterministic Lower Bound
	Toy Model of Deterministic Algorithms
	Recut Problem
	Reduction
	Recut Is Hard on Expanders

	Randomised Lower Bound
	Repeating Sect. 2 for Randomised Algorithms
	Local Concentration Bound

	References

	“Tri, Tri Again”: Finding Triangles and Small Subgraphs in a Distributed Setting
	Introduction
	Model and Problem
	Deterministic Algorithms for General Graphs
	Finding Triangles in Sparse Graphs
	Randomization
	Conclusions
	References

	Distributed 2-Approximation Algorithm for the Semi-matching Problem*
	Introduction
	Related Work
	Main Result
	Organization

	Main Algorithm
	Notation and Non-swappable Semi-matchings
	An Approximation Algorithm and Its Analysis

	Semi-matchings via the Minimum Sum Set Cover
	References

	Wireless and Loosely Connected Networks
	Bounds on Contention Management in Radio Networks
	Introduction
	Model
	Problem
	Related Work
	Upper Bounds for Both Classical and Dual Graph Models
	Lower Bounds in the Classical Radio Broadcast Model
	Progress Time Lower Bound
	Acknowledgment Time Lower Bound

	Lower Bounds in the Dual Graph Model
	Centralized vs. Distributed Algorithms in the Dual Graph Model
	References

	Efficient Symmetry Breaking in Multi-Channel Radio Networks
	Introduction
	Model and Preliminaries
	Problem
	Wake-Up
	Lower Bound for Standard Wake-Up
	A Stronger Single Channel Wake-Up Bound
	Upper Bound for Active Wake-Up

	Minimum Dominating Set
	References

	On Byzantine Broadcast in Loosely Connected Networks
	Introduction
	Description of the Protocol
	Informal Description
	Notations and Hypotheses
	Local Execution of the Protocol

	Protocol Properties
	Network Safety
	Network Reliability

	A Reliable Torus Network
	Preliminaries
	A Sufficient Condition for Reliable Broadcast

	Experimental Evaluation
	Methodology
	Results

	Conclusion
	References

	Shared Memory II
	RMR-Efficient Randomized Abortable Mutual Exclusion*
	Introduction
	The Tree Based Abortable Lock
	The Array Based Abortable Lock
	Conclusion
	References

	Abortable Reader-Writer Locks Are No More Complex Than Abortable Mutex Locks
	Introduction
	Reader-Writer Exclusion
	Remote Memory Reference (RMR) Complexity
	Abortability
	The Main Result
	How the Transformation Is Structured

	The Abortable Reader-Writer Exclusion Problem
	Single-Writer Multi-reader Algorithm
	Correctness of Single-Writer Multi-reader Algorithm
	Transformation from Single-Writer Algorithm to Multi-Writer Algorithm
	References

	Pessimistic Software Lock-Elision
	Introduction
	A Pessimistic Lock-Elision System
	Designing a Pessimistic STM
	Global Structures
	The Core Algorithm
	The Signaling Mechanism for Write Transactions

	How to Elide Locks
	Non-speculative Software Lock-Elision
	PLE as a Fall Back for HLE
	PLE as a Fall Back for RTM

	Empirical Performance Evaluation
	References

	Robots
	Asynchronous Pattern Formation by Anonymous Oblivious Mobile Robots*
	Introduction
	Robot Model and Pattern Formation
	Asynchronous Pattern Formation by Oblivious Robots
	Outline of Algorithm
	Clockwise Matching on a Cylinder
	Embedding a Target Pattern
	Algorithm

	Concluding Remark
	References

	How to Gather Asynchronous Oblivious Robots on Anonymous Rings
	Introduction
	Definitions and Preliminaries
	A First Look to the Algorithm

	Gathering Algorithm
	Phase Multiplicity-Creation
	Further Notes on the Algorithm

	Conclusion
	References

	Position Discovery for a System of Bouncing Robots
	Introduction
	The Model and Our Results
	The Algorithm on the Ring
	The Execution Time of Bouncing on the Ring
	Bouncing on the Line Segment
	Conclusion
	References

	Lower Bounds and Separation
	Counting-Based Impossibility Proofsfor Renaming and Set Agreement�
	Introduction
	Preliminaries
	Impossibility of (n-1)-Set Agreement
	Impossibility of Symmetry Breaking (SSB and WSB)
	Counting Executions by Signs
	A Trimmed Algorithm
	Impossibility of Strong Symmetry Breaking
	Impossibility of Weak Symmetry Breaking

	Discussion
	References

	Randomized Distributed Decision
	Introduction
	The Bk Hierarchy Is Strict
	A Sharp Determinism - Randomization Threshold
	On the Impossibility of Boosting
	References

	The Strong At-Most-Once Problem
	Introduction
	Model and Definitions
	Model and Adversary
	Problem Definitions and Metrics

	Consensus Number and Common2
	Algorithm RA
	Analysis of Algorithm RA
	References

	Brief Announcements I
	Brief Announcement: Reaching Approximate Byzantine Consensus �in Partially-Connected Mobile Networks
	Context and Overview of the Proposed Protocol
	References

	Brief Announcement: Distributed Algorithmsfor Maximum Link Scheduling in the Physical Interference Model
	References

	Brief Announcement: A Fast Distributed Approximation Algorithm for Minimum Spanning Trees in the SINR Model
	References

	Brief Announcement: Deterministic Protocol for theMembership Problem in Beeping Channels
	References

	Brief Announcement: Probabilistic Stabilization under Probabilistic Schedulers*
	References

	Brief Announcement: An Analysis Framework for Distributed Hierarchical Directories
	References

	Brief Announcement: Flooding in Dynamic Graphs with Arbitrary Degree Sequence*
	Introduction.
	Our Results
	Our Main Open Problem

	Brief Announcement: Node Sampling Using Centrifugal Random Walks*
	Introduction
	References

	Brief Announcement: Concurrent Wait-Free Red-Black Trees*
	References

	Brief Announcement: A Contention-Friendly, Non-blocking Skip List*
	References

	Brief Announcement: Consensus and Efficient Passive Replication
	References

	Brief Announcement: Anonymity, Failures, Detectors and Consensus
	References

	Brief Announcement: Do VNet Embeddings Leak Information about ISP Topology?
	References

	Brief Announcement: Efficient Private Distributed Computation on Unbounded Input Streams*
	References

	Brief Announcement: Fast Travellers: Infrastructure-Independent Deadlock Resolution in Resource-restricted Distributed Systems
	References

	Brief Announcement: Hashed Predecessor Patricia Trie - A Data Structure for Efficient Predecessor Queries in Peer-to-Peer Systems
	Introduction
	OurResults
	References

	Brief Announcement: Naming and Counting in Anonymous Unknown Dynamic Networks*
	References

	Brief Announcement: SplayNets Towards Self-Adjusting Distributed Data Structures
	Reference

	Brief Announcement: Semantics of Eventually Consistent Replicated Sets *
	References

	Brief Announcement: Decoupled and Consensus-Free Reconfiguration for Fault-Tolerant Storage
	Motivation and Prior Work
	Contributions
	References

	Brief Announcement: Atomic Consistency and Partition Tolerance in Scalable Key-Value Stores
	References

	Brief Announcement: Weighted Partial Message Matching for Implicit Multicast Systems*

	Author Index

