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Biotic Stress Management in Agricultural Crops

Using Microbial Consortium
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R.S. Upadhyay, B.K. Sarma, and H.B. Singh

16.1 Introduction

The rhizosphere provides home to a large number of active microbial populations

capable of exerting beneficial, neutral or detrimental effects on plant growth.

Microbes in general live in a heterogeneous community bound to the root surfaces

and the plant–microbe signaling permits them to live and work as a community.

The majority of interactions studied so far were normally concerned with single

pathogen and a single biocontrol agent in the rhizosphere (Wilson and Backman

1999). But, this may sometimes account for the inconsistent performance as a single

agent is not active in all soil conditions or against all pathogens that attack the host

plant. Failure of the introduction of antagonistic microorganisms seems to be due to

environmental factors resulting in inadequate distribution, insufficient establish-

ment of rhizobacterial strains, poor expression of their antagonistic activity

(Schippers et al. 1987), or difficulty in attaining threshold population. Indeed,

variability is likely to be increased by numerous biotic and abiotic factors, and

among them fluctuations in antagonistic activity is the most important one.

Combining microbes as a control strategy may prove to be more relevant in the

long term to give better yield and quick results (Duffy and Weller 1995; Bashan

1998). On the other hand, mixtures of biocontrol agents (BCAs) may be useful

for biocontrol of different plant pathogens via different mechanisms of disease
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suppression. The recent focus on the use of multiple microorganisms with diverse

activities as consortium is thus gaining momentum. By combining microorganisms,

multiple antagonistic and stress tolerant traits can be combined and one may assume

that at least one biocontrol mechanism will be functional under the circumstances

faced by the released BCAs. Combinations of BCAs are, therefore, expected to result

in a higher level of protection (Dunne et al. 1998), through reduced variability of

biological control (Guetsky et al. 2001, 2002), and potentiality to suppress multiple

plant diseases (Jetiyanon and Kloepper 2002).

Enhanced disease suppression may indirectly result from the multiplicity of

interactions between the introduced strains which may positively influence growth,

root colonization, better substrate colonization, population, and activity of each

other. Combining microbial strains is not only advantageous because it can lead to

enhanced levels of disease suppression, but also beneficial when a single strain fails

to suppress a disease, the others in combination still may contribute to disease

suppression (de Boer et al. 2003; Jain et al., 2012 a, b; Singh et al., 2012). Mixing of

BCAs belonging to taxonomically different groups requires optimization of tem-

perature, moisture, and pH for imparting benefits to the host by aggressive root

colonization. Moreover, BCAs like fungi and bacteria may provide greater benefits

to the host plants by being operative under varied conditions at different times and

by occupying different or complementary niches.

16.2 Mechanisms of Biocontrol

Beneficial microorganisms may contribute either directly to the growth of plants

or indirectly by reducing plant disease incidence (Jetiyanon et al. 2003; Gray and

Smith 2005; Hass and Defago 2005). The antagonistic microorganisms exercise

various mechanisms to accomplish disease control viz., inhibition of the pathogen

by antimicrobial compounds (antibiosis); competition for iron through production of

siderophores; competition for colonization sites and nutrients supplied by seeds and

roots; induction of plant resistance mechanisms; inactivation of pathogen germina-

tion factors present in seed or root exudates; or degradation of pathogenicity factors

of the pathogen such as toxins and parasitism that may involve production of

extracellular cell wall-degrading enzymes like chitinase and b-1,3 glucanase that

degrades pathogen cell walls (Keel and Défago 1997; Whipps 1997). Several modes

of action can be exhibited by a single BCA, whereas microbial consortium can

guarantee different mechanisms or combinations of mechanisms in the suppression

of different plant diseases (Fig. 16.1). Most of the effects of the individual

microorganisms in mixture are additive, although synergistic effects have also been

reported in some cases (Ravnskov et al. 2006; Kohler et al. 2007).
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16.2.1 Antibiosis

Antibiotics are microbial toxins which at low concentrations poison or kill other

microorganisms. One of the important mode of disease suppression by BCAs

include production of one or more antibiotics (e.g., 2,4-diacetylphloroglucinol

(DAPG), viscosinamide, tensin, pyoluteorin (Plt), zwittermicin A, kanosamine,

phenazine-1-carboxylic acid (PCA), butyrolactones, oligomycin A, oomycin A,

pyrrolnitrin (Pln), xanthobaccin, or toxic substances like cyanide) (Milner et al.

1996; Keel and Défago 1997; Whipps 1997; Nielsen et al. 1998; Kang et al. 1998;

Kim et al. 1999; Nakayama et al. 1999; Thrane et al. 2000). Antibiotic synthesis is

very closely linked to the overall metabolic profile of the cell, which in turn is

governed by nutrient availability and other environmental factors like major and

minor minerals, type of carbon source and supply, pH, temperature, and other

parameters (Thomashaw and Weller 1996).

Antibiotic production by bacteria, particularly by pseudomonads, seems to be

closely regulated by a two-component system involving an environmental sensor

and a cytoplasmic response factor (Keel and Défago 1997). By using P. aeruginosa
PAO1 mutant unable to produce HCN, it was confirmed that cyanide poisoning is

responsible for killing the nematode Caenorhabditis elegans (Gallagher andManoil

2001). Pseudomonas species can synthesize enzymes which may also modulate the

plant hormone levels and limit the available iron by production of siderophores

apart from killing the pathogen by producing antibiotics (Siddiqui 2006).

The extent of mechanisms for biocontrol and the effectiveness of many BCAs

are reported to depend on metabolites with antimicrobial activity in combination
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Fig. 16.1 Schematic representation of multiple interactions taking place in the rhizosphere and

multifacet benefits imparted to the plants
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with other mechanisms (Raaijmakers et al. 2002). For example, Bacillus
megaterium KL39, a BCA of red-pepper Phytophthora blight disease, produces

an antifungal antibiotic active against a broad range of plant pathogenic fungi (Jung

and Kim 2003). Similarly, B. subtilis also synthesizes an antifungal antibiotic that

inhibits Fusarium oxysporum f. sp. ciceri, the causal agent of wilt of chickpea

(Kumar 1999), and a strain of B. subtilis RB14 produces the cyclic lipopeptides

antibiotics iturin A and surfactin active against several phytopathogens. Rhizobium
spp. have also been reported to produce extracellular compounds (such as

trifolitoxin) with direct antimicrobial activities (Breil et al. 1996). Raaijmakers

et al. (2002) reviewed antibiotics produced by bacterial BCAs and their role in

microbial interaction. In the Phytophthora oligandrum/Trichoderma harzianum
interactions disintegration of cytoplasm and cell components and loss of turgidity

resulted when fungal cells were exposed to antibiotics (Floch et al. 2009). Enhanced

suppression of take-all of wheat by the consortium of a nonpathogenic isolate of

Gaeumannomyces graminis var. graminis and a mixture of pseudomonads was

reported to be the result of direct competition for substrates at favored sites in

combination with antibiotic production by the pseudomonads (Duffy and Weller

1995). The wide array of mode of action of these antibiotics obviously calls for

designing consortium with different sites of action.

16.2.2 Siderophore Production

Almost all the microorganisms require iron as an essential element in a variety of

metabolic and cellular pathways, and in most microbial habitats, Fe (II) is oxidized

to Fe (III) which forms stable complexes. When concentration of iron is too low

(10�6 M) to support the growth of the microorganisms, some organisms secrete

iron-binding ligands called siderophores which have high affinity to sequester iron

from the micro-environment. Antoun et al. (1998) determined that out of 196

Rhizobium spp. tested, 181 produced siderophores. Several evidences also indicate

that siderophore production under iron limiting condition is responsible for the

antagonism by some strains of P. aeruginosa against Pythium sp., the causal agent

of damping-off and root rot of many crops (Buyens et al. 1996; Charest et al. 2005).

The pseudobactin siderophore of P. putida WCS358 was found to increase the

intensity of antagonism of the F. oxysporum strain Fo47 against the pathogenic

F. oxysporum by making the pathogen more sensitive to competition for

carbohydrates by Fo47 (Lemanceau et al. 1993). The involvement of siderophores

in disease suppression by P. putida RE8 and WCS358 was investigated by de Boer

et al. (2003). The pseudobactin siderophore of strain WCS358 was found to inhibit

in vitro growth of RE8, whereas RE8 does not affect growth of WCS358.

The improved control of Fusarium wilt of carnation by the combination of a

nonpathogenic F. oxysporum strain Fo47 with P. putida WCS358 had indirect

effect on competition for iron that made the pathogenic F. oxysporum more

sensitive to competition for substrate with the nonpathogenic strain (Lemanceau

et al. 1992, 1993).
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16.2.3 Root Colonization

Root colonization is important being the first step in both infection by soil-borne

pathogens and beneficial associations withmicroorganisms. Rhizosphere competence

by BCAs is acquired by effective root colonization along with the ability to survive,

outcompete, and proliferate on growing plant roots over a considerable time period, in

the presence of indigenous microflora (Whipps 1997; Lugtenberg and Dekkers 1999).

The competitive exclusion of deleterious rhizosphere organisms is also directly linked

to the ability of BCAs to successfully colonize a root surface.Moreover, theO-antigen

chain of bacterial lipopolysaccharides contributes to root colonization, but in a strain-

dependent fashion. The O-antigenic side chain of P. fluorescens WCS374 does not

contribute to potato root adhesion (deWeger et al. 1989), whereas the O-antigen chain

of P. fluorescens PCL1205 is involved in tomato root colonization (Dekkers et al.

1998). Similarly, Enterobacter cloacae suppresses the infection of Pythium ultimum
by effective catabolism of the available nutrients in the spermosphere (van Dijk and

Nelson 2000; Kageyama and Nelson 2003).

The population dynamics of P. putida strains RE8 and WCS358 in the rhizo-

sphere were investigated by applying them either singly or in combination to assess

their ability to colonize roots. The population density of RE8 when combined with

WCS358r was significantly higher compared to its single inoculation (de Boer et al.

2003). These findings are of considerable significance and give proper insights into

the complementary/synergistic effect of the microbes in consortium for better

colonization of roots.

16.2.4 Influence of Organic and Inorganic Matter

Root exudates offer a carbon-rich food to the rhizospheric microorganisms and

provide them large amount of organic acids and sugars as well as variable amounts

of amino acids, nucleobases and vitamins. Sometimes exudates have a major share

of antimicrobial agents which give ecological niche advantage to organisms that

have ability and adequate enzymatic machinery to detoxify them (Bais et al. 2004).

Endophytic bacteria are shown to be selectively attracted more towards the rice

exudates compared to other microbes (Bacilio-Jiméne et al. 2003). Another recent

report says that root-secreted malic acid attracts beneficial soil bacteria like

B. subtilis FB17 towards the root (Rudrappa et al. 2008).

Similarly, studies on the influence of organic matter on AM fungi and soil

microbiota interactions are very limited (Green et al. 1999; Albertsen et al. 2006).

AM fungi are obligate biotrophic and they receive carbon from their host plant only,

whereas Clonostachys rosea relies on organic matter for carbon supply. The content

of organic matter in the environment may therefore influence the interaction

between these fungi. Thus, different types of organic matter affect the interactions

betweenAM fungi and other soil microorganisms differently (Ravnskov et al. 1999),

and the benefits derived by the host plants are highly dependent on these factors.
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16.2.5 Lytic Enzymes

Diverse microorganisms having biocontrol potential secrete and excrete various

metabolites that can interfere with pathogen growth or activities. Individual enzyme

activities involved in the antagonism can be exploited as indicators in microbial

screening to assess the antagonistic potential of strains for their precise use.

Chitinase produced by Serratia plymuthica C48 inhibited spore germination and

germ-tube elongation in Botrytis cinerea (Frankowski et al. 2001). Similarly,

extracellular chitinases are considered crucial for Serratia marcescens to act as

antagonist against Sclerotium rolfsii (Ordentlich et al. 1988), and for Paenibacillus
sp. strain 300 and Streptomyces sp. strain 385 against Fusarium oxysporum f. sp.

cucumerinum (Lim et al. 1991). An endophytic strain of P. fluorescens transformed

with the chiA gene encoding the major chitinase of the S. marcescens provided

effective control of Rhizoctonia solani on bean seedlings under growth chamber

conditions (Downing and Thomson 2000). Similarly, b-1,3-glucanase contributes

significantly to the biocontrol abilities of Lysobacter enzymogenes strain C3

(Palumbo et al. 2005). Bacterial chitinases and b-glucanases are involved in

biological control of various plant pathogenic or wood deteriorating fungi (Pleban

et al. 1995; Podile and Prakash 1996; Arora et al. 2007). Efforts are being made to

identify cell wall‐degrading enzymes produced by bacterial biocontrol strains, even

though relatively little direct evidence for their presence and activity in the rhizo-

sphere has been recorded. Micromonospora carbonacea, a cellulose producing

isolate, was found to control root rot caused by Phytophthora cinnamomi
(El-Tarabily et al. 1996) and actinomycete isolates that suppressed Phytophthora
fragariae were shown to produce b‐1,3‐, b‐1,4‐ and b‐1,6‐glucanases (Valois et al.
1996). Lytic enzyme regulation, especially proteases and chitinases particularly,

involves the GacA/GacS (Gaffney et al. 1994; Natsch et al. 1994; Sacherer et al.

1994; Corbell and Loper 1995) or GrrA/GrrS regulatory systems (Ovadis et al.

2004) and colony phase variation (Lugtenberg et al. 2001).

16.2.6 Plant Growth Promotion

The plant–microbe interactions can significantly influence plant growth and crop

yields. Plant growth-promoting rhizobacteria (PGPR) competitively colonize plant

roots, and stimulate plant growth and/or reduce the incidence of plant diseases

(Kloepper and Schroth 1978). Mechanisms of plant growth promotion include the

production of volatile compounds and phytohormones, lowering of the ethylene

level in plant, improvement of the plant mineral uptake, reduction of diseases,

encouragement of other beneficial symbiosis, protection against degrading

xenobiotics, and stimulation of disease-resistance mechanisms (ISR) (Jacobsen

1997). These PGPRs mostly belong to Pseudomonas and Bacillus spp., and are

antagonists of recognized root pathogens.
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Plant growth promoting microorganisms (PGPMs) such as Rhizobium and

Glomus spp. can promote plant growth and productivity as their primary effect,

but have also been shown to play a role in reducing disease as a secondary effect.

Conversely, BCAs, such as Trichoderma and Pseudomonas spp., can control

disease as their primary effect but have recently demonstrated to be a stimulator

to plant growth additionally (Avis et al. 2008). Several microbes that have been

studied extensively as BCAs against various phytopathogens also showed plant

growth promotion activities (Singh et al. 2003; Srinivasan et al. 2009). The increase

in plant growth is mostly attributed to synthesis of phytohormones such as IAA,

cytokinins, and GA3 (Shanmugaiah et al. 2006; Srinivasan et al. 2009). Many

strains of fluorescent pseudomonads have shown to possess the ability to stimulate

germination of seeds as well as development of shoot and root in different crops

(Kloepper et al. 1988). The improvement in nutritional status of the plant has also

been recognized as a possible mode of resistance to various pathogens (Karagiannidis

et al. 2002; Sahni et al. 2008). Similarly, the combination of P. fluorescens strains
EBC 5 and EBC 6 was found to increase the germination percentage, shoot length,

and root length of chilli plants significantly (Muthukumar et al. 2010).

In a study on peas, three strains of T. harzianum increased fresh shoot weight,

root weight, and/or root length (Naseby et al. 2000). Tripartite interactions among

Paenibacillus lentimorbusNRRL B-30488 (B-30488), Piriformospora indicaDSM
11827 (DSM 11827), and their consortia with native rhizobial population in the

rhizosphere of Cicer arietinum L. was found to enhance nodulation and increase

plant growth (Nautiyal et al. 2010). In a separate study, Seneviratne (2003)

demonstrated that co-inoculation and coculture of microbes performed the tasks

better than the individual microbes. When microbes are mixed into an inoculum

consortium, each member of the consortium not only out-competed others for root

colonization, but also complemented functionally for plant growth promotion

(Shenoy and Kalagudi 2003).

16.2.7 Induced Systemic Resistance

PGPM and BCAs primarily affect plant productivity and health, but in addition to this

more recently discovered effects like ISR has sparked an interest among the plant

growers to use these beneficial microbes in the field (Vassilev et al. 2006). Plants

have evolved a number of inducible defense mechanisms against pathogen attack

(Durrant and Dong 2004). Use of microbial consortium would indirectly increase the

stimulation in the plant to activate its defense mechanisms when challenged by a

pathogen through strengthening of cell walls; deposition of callose and lignin (Singh

et al., 2012); and the production of plant defense compounds such as phenolics,

phytoalexins, and flavonoids, with simultaneous enhancement of enzyme activities

such as chitinase, peroxidase, polyphenol oxidase, ascorbate peroxidase and phenyl-

alanine ammonia lyase (Jain et al., 2012 a, b).
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Bacillus sp. strain mixtures IN937b þ SE49 and T4 þ INR7 suppressed mosaic

and anthracnose diseases in both winter and rainy seasons when compared with the

nonbacterized control (Jetiyanon et al. 2003). Plants treated with the bacterial

mixture of B. amyloliquefaciens strain IN937a and B. pumilus strain IN937b had

superoxide dismutase (SOD) and peroxidase (PO) activity levels 25–30 % greater

than the nonbacterized pathogen control. Additionally, significant disease protec-

tion in each plant pathosystem was observed with the bacterial mixture (Jetiyanon

2007). An increased level of defense-related enzymes viz., L-phenylalanine

ammonia lyase (PAL), peroxidases, and polyphenol oxidase (PPO), was recorded

on co-inoculation of rhizobia with Bacillus cereus strain BS 03 and a P. aeruginosa
strain RRLJ 04 under the stress generated by Fusarium wilt of pigeon pea (Dutta

et al. 2008). The expression of pathogenesis-related proteins (PR-proteins) can be

used as a marker of ISR (van Loon 1997). Whipps (2004) also indicated that the

plant defense responses occurring during Glomus spp. mycorrhization include

phenolic and phytoalexin production, formation of structural barriers, and produc-

tion of (PR) proteins and enzymes associated with plant defense mechanisms,

showing the ability of some useful microbes in inducing ISR (van Loon et al. 1998).

16.3 Development of a Microbial Consortium

A preliminary step before development of a consortium requires gaining insight

into the compatibility of the microorganisms used in vitro and to be used in the

rhizosphere of the concerned host plant. The combination of antagonists used should

be evaluated for their capacity to coexist in the rhizosphere. A successful and

consistent biocontrol requires compatibility among co-inoculated microorganisms,

their co-establishment in the rhizosphere, and the lack of competition among them.

Evaluation is arguably, therefore, the most important phase during development of

microbial consortium because it provides an understanding of its contribution in

decreasing disease severity and increasing plant growth. Attempts are being made to

develop microbial consortium for disease suppression and plant growth promotion

(Nautiyal et al. 2005, 2006; Singh et al. 2006).

16.4 Microbial Consortium Comprising only Bacterial Strains

The use of combinations of antagonistic organisms may provide improved disease

control over the use of single bioinoculant (Srivastava et al. 2010). Biocontrol by

bacteria is mainly achieved through antibiosis, competition for space or nutrients in

the rhizosphere, and ISR. Successful application of Bacillus, Pseudomonas, and
Streptomyces spp. has already been reported for the control of various plant diseases
in different crops (Emmert and Handelsman 1999; Anjaiah et al. 2003; Chung et al.

2005; Hass and Defago 2005). Chilli seeds treated with endophytic strains of
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P. fluorescens in combination (EBC 5 and EBC 6) showed the lowest incidence

of pre- and postemergence damping-off caused by Pythium aphanidermatum
compared to individual treatment (Muthukumar et al. 2010). The combination of

P. putida strains WCS358 and RE8 also enhanced suppression of Fusarium wilt of

radish (de Boer et al. 2003). Combination of Paenibacillus sp. and a Streptomyces
sp. suppressed Fusarium wilt of cucumber effectively than when used alone (Singh

et al. 1999), and a combination of P. fluorescens and Stenotrophomonas maltophila
improved protection against Pythium-mediated damping-off in sugar beet

compared to when they were applied singly (Dunne et al. 1998). P. putida strains

WCS358 and RE8 have different disease-suppressive mechanisms: pseudobactin-

mediated competition for iron and/or another yet unknown disease suppressive trait

for WCS358, and ISR for RE8. Combining these mechanisms by applying a

mixture of the biocontrol strains leads to more effective, or at least more reliable,

biocontrol of Fusarium wilt of radish (de Boer et al. 2003). Another possible reason

of enhanced disease suppression may be induction in mutual population of the

microbes. The population densities of P. putida WCS358 that developed in the

presence of P. putida RE8 were above the threshold level required for disease

suppression (Raaijmakers et al. 1995a). Similarly, P. fluorescens NBRI-N6 and

P. fluorescens NBRI-N in a consortium controlled collar rot in betelvine caused by

S. rolfsii more than either of the strains did individually (Singh et al. 2003).

Rhizobium and P. striata when inoculated together improved growth and reduced

nematode multiplication more than each inoculated alone. This may be due to

increased availability of nitrogen (N) and phosphorus (P), as these nutrients have

been reported to have adverse effect on nematode multiplication (Pant et al. 1983).

Use of Rhizobium with P. striata has also been reported to reduce the multiplication

of Meloidogyne incognita on pea (Siddiqui and Singh 2005; Kumar et al. 2005).

Under severe disease pressure of dry bean root rot caused by Fusarium solani
f. sp. phaseoli, only co-inoculation with B. subtilis MBI600 (Epic) and Rhizobium
tropici significantly reduced disease severity and enhanced yield compared to

control and standard seed treatment (de Jensen et al. 2002). Some combinations

of fluorescent pseudomonad strains increased wheat yield compared to the same

strains used singly, and interestingly the best combinations did not always produce

the same results in different crops (Pierson and Weller 1994). In contrast Bacillus
strain mixture of IN937a and IN937b improved yield of all plants compared with

that of plants treated with individual strain IN937a, suggesting that the combination

could be useful on tomato, long cayenne pepper, and cucumber (Jetiyanon et al.

2003). Two species microbial consortium of Burkholderia sp. MSSP and

Sinorhizobium meliloti PP3 were found to promote growth of pigeon pea because

of increased IAA production and ability to solubilize phosphate (Pandey and

Maheshwari 2007). Similarly, Dutta et al. (2008) observed promising results on

combined use of B. cereus strain BS 03 and a P. aeruginosa strain RRLJ 04 with

rhizobia for induction of systemic resistance against fusarial wilt in pigeon pea.

A mixture of B. amyloliquefaciens strain IN937a and B. pumilus strain IN937b

has previously shown to consistently provide a broad spectrum of disease protection

against both soil- and air-borne pathogens, like Colletotrichum gloeosporioides,
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Ralstonia solanacearum, R. solani, S. rolfsii, and cucumber mosaic virus (Jetiyanon

and Kloepper 2002; Jetiyanon et al. 2003). The mixture was found to induce SOD

and PO activities and significant disease protection in four plant/pathosystems, viz.,

tomato with S. rolfsii and Ralstonia solanacearum and pepper with S. rolfsii
and C. gloeosporioides (Jetiyanon 2007). Similarly, combining proteolytic and

phloroglucinol-producing bacteria can improve biocontrol of Pythium-mediated

damping-off of sugar beet (Dunne et al. 1998). A mixture of bacteria producing

chitinases and antibiotics was found to effectively suppress rice sheath blight

caused by R. solani (Sung and Chung 1997). Thus to enhance biocontrol efficacy

and consistency in performance, use of several strains from the same antagonistic

microorganism, or combination of different biocontrol species should be

emphasized (Alabouvette and Lemanceau 1998; Guetsky et al. 2002).

16.5 Microbial Consortium Comprising Fungal

and Bacterial Strains

The use of bacterial and fungal strain mixtures is a promising way to improve

efficacy of biocontrol strains. Pseudomonas and Trichoderma strains are the most

commonly studied BCAs for developing consortium and they have been reported to

improve overall plant growth and suppress disease incidence in different crops

(Mathivanan et al. 2000; Thirup et al. 2003). Also, a positive synergistic combina-

tion of Trichoderma spp. and bacterial antagonists P. syringae has been reported to
control plant pathogens (Whipps 1997). Similarly, certain reports have shown

that carbon from Arbuscular Mycorrhiza mycelium is rapidly incorporated into

microbial biomass (Paterson et al. 2008) and therefore, these fungi have the

potential to be important conduits of energy into rhizosphere bacteria like

P. fluorescens for biocontrol. Brulé et al. (2001) selected a mycorrhiza helper

bacterial strain P. fluorescens BBc6 to improve the efficiency of Laccaria bicolor
S238N inoculation in French nurseries.

Similarly, synergistic effect has been obtained in controlling F. oxysporum f. sp.

radicis-lycopersici by combining a fluorescent Pseudomonas sp. with a nonpathogenic
F. oxysporum (Alabouvette et al. 1996) where the nonpathogenic F. oxysporum
competes for carbon sources and the bacterial antagonist produces a siderophore to

fulfill its nutritional requirement of iron (Lemanceau et al. 1993). Effective control of

F. oxysporum f. sp. cucumerinumwas achieved by the interactive effect of the bacterium

P. putida with saprophytic strains of F. oxysporum (Park et al. 1988). Application of

P. fluorescens and T. viride also significantly reduced sheath blight disease incidence

compared to control (Mathivanan et al. 2005). In a similar way, root rot of pea caused by

Aphanomyces euteiches f. sp. pisiwas significantly reduced by the combined application

of T. harzianum and phenazine antibiotic producing P. fluorescens strain 2-79RN10,

compared to T. harzianum treatment alone (Dandurand and Knudsen 1993). The ability

of Bacillus mycoides and Pichia guilermondii has also been found successful in
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suppressing Botrytis cinerea infection on strawberry (Guetsky et al. 2001). In this case,
the yeast effectively competed with B. cinerea for nutrients, whereas the Bacillus
secreted inhibitory compounds and activated the defense systems of the host (Guetsky

et al. 2002). Combined use ofRhizobium andGlomus intraradices had adverse effect on
the pathogens by increasing the availability of N and P to plants and thus limiting it for

pathogens (Akhtar and Siddiqui 2008). By combining the nonpathogenic F. oxysporum
strain Fo47 with the bacterial strain P. putida WCS358, two different disease-

suppressivemechanismswere noted to act together to enhance suppression of Fusarium

wilt of carnation and flax (Lemanceau et al. 1992, 1993; Duijff et al. 1999). Overlap

between fungi and bacteria in utilization of root exudates can result in selective

competitive pressure and therefore have an additional impact in tackling different

pathogens at the same time.

16.6 Consortium Having more than Two Microbial

Components

For better and consistent performance of BCAs, it is a prerequisite to identify strains

of BCAs with diverse activities. A consortium of four different PGPMs, namely,

Bacillus licheniformis strainMML2501, Bacillus sp. strainMML2551,P. aeruginosa
strainMML2212, and Streptomyces fradiae strainMML1042, was highly effective in

reducing the sunflower necrosis virus disease (SNVD) and increased the plant growth

(Srinivasan et al. 2009). Use of the consortium comprising of bioagents T. harzianum,
fluorescent Pseudomonas, and G. intraradices against Fusarium wilt not only

suppressed disease incidence but also helped in sustenance and growth promotion

of crop through mechanisms like enhanced plant growth promotion and nutrient

uptake (Srivastava et al. 2010). Similarly, reduced disease intensity in combined

application of G. intraradices with Rhizobium and P. striata was observed in a study
conducted on root disease complex of chickpea (Akhtar and Siddiqui 2008). The

synergism between various bacterial genera such as Bacillus, Pseudomonas, and
Rhizobium has also been demonstrated to promote plant growth and development

(Halverson and Handelsman 1991; Vessey and Buss 2002). Kandan et al. (2005)

observed increased leaf area and shoot length, in tomato plants treated with a

consortium of three different P. fluorescens strains, CHA0, CoT1, and CPO1. In a

similar way combination of three PGPRs, B. pumilus, B. subtilis, and Curtobacterium
flaccumfaciens provided greater control of several pathogens on cucumber than they

were inoculated individually (Raupach and Kloepper 1998). Pythium oligandrum
inoculum containing three strains with different biological traits was proved to be

greatly strain-dependent (Vallance et al. 2008). Floch et al. (2009) observed that close

contact between the hyphae of Fusarium oxysporum Schltdl. strain Fo47 with

Trichoderma harzianum, and P. oligandrum cells, caused the destruction to the latter.

However, in the rhizosphere, hyphae are frequently separated by a certain distance

and this allows the coexistence and persistence of the three microorganisms on the

root systems.
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Tomato and leek plants grown in the presence of Glomus mosseae along

with genetically modified strains of P. fluorescens CHA96 and CHA0 pME3424

produced enhanced levels of antifungal compounds and had a significantly higher

shoot dry weight than those grown in the absence of G. mosseae. Colonization and

activity of G. mosseae was found to be unaltered in the presence of P. fluorescens
isolates and presence of G. mosseae increased the population of P. fluorescens in
the rhizosphere (Edwards et al. 1998). Inoculation ofG. intraradices, P. striata, and
Rhizobium caused a significant increase in plant growth, number of pods, and

chlorophyll, nitrogen, phosphorus, and potassium contents of pathogen-inoculated

chickpea plants (Akhtar and Siddiqui 2008).

Combined inoculation of Rhizobium, a phosphate-solubilizing B. megaterium
sub sp., Phospaticum strain-PB, and a biocontrol fungus Trichoderma sp. showed

increased germination, nutrient uptake, plant height, number of branches, nodula-

tion, pod yield, and total biomass of chickpea compared to either individual

inoculations or an uninoculated control (Rudresh et al. 2005). B. licheniformis
MML2501, Bacillus spp. strain MML2551, P. aeruginosaMML2212, and Strepto-
myces fradiaeMML1042 were evaluated against SNVD as consortia in all possible

combinations under greenhouse conditions (Srinivasan 2007) and found that they

effectively improved plant growth and reduced SNVD incidence under greenhouse

conditions (Srinivasan et al. 2009). Apart from the positive results, there are reports

on adverse effects of some isolates of Trichoderma and Streptomyces griseoviridis
on arbuscular mycorrhiza formation (Wyss et al. 1992; McAllister et al. 1994)

limiting the possibility of using microbes for developing consortia without

thorough screening.

16.7 Shortcomings

Various reports indicate that use of beneficial microbial mixtures generally increase

plant growth and/or decrease plant disease relative to inoculation with a single

beneficial organism (Chandanie et al. 2006; Raimam et al. 2007). However, some

authors have pointed out that this beneficial effect was not always observed. For

example, a combination of Bacillus subtilis and nonpathogenic Fusarium oxysporum
did not provide control over Fusarium wilt of chickpea (F. oxysporum f. sp. ciceri),
whereas either applied singly did (Hervas et al. 1997). It indicates that the results of

co-inoculation of these microorganisms on plant health and productivity should be

determined on the basis of the case under study (Siddiqui and Shaukat 2002;

Whipps 2004).

de Boer and coworkers (2003) documented that at the most, only limited

competition for iron occurred between the strains of P. putida strains WCS358

and RE8. A possible explanation may be that WCS358 and RE8 colonize different

niches, and therefore, no competition recorded for iron. In a mixture of microbes,

one may negatively influence root colonization of others. Sometime interactions

between an introduced microbial mixture can also negatively influence disease

control. For instance, siderophore-mediated competition for iron or competition
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for substrate may limit the colonization or activity of introduced biocontrol strains

(Raaijmakers et al. 1995b; Kragelund and Nybroe 1996). Even strains of the same

species can exhibit significant differences. Natural microbial communities are more

closely mimicked through application of a microbial mixture comprising of several

species, and therefore this control strategy may prove to be more relevant in the

long term. A prerequisite for successful and consistent biocontrol is to identify

different BCAs with diverse activities, which can collectively increase the crop

performance. The compatibility of microbes used in microbial mixture, their

co-establishment in the rhizosphere of plants, and the lack of competition among

them are compulsory requirements for a microbial mixture to qualify the eligibility

criteria. The complexity of the interactions taking place in the rhizosphere between

BCA used in the mixture among themselves and the indigenous microbiota needs to

be considered and studied deeply during development of a successful microbial

consortium.

16.8 Future Prospects

Our increasing knowledge on the beneficial effects of microbial consortium would

most likely enhance the usefulness of these microorganisms regardless of their sole

function in agricultural management practices. Mixtures of microorganisms may

increase the genetic diversity of biocontrol systems which may persist longer in the

rhizosphere and utilize a wider array of mechanisms for disease control (Pierson

and Weller 1994). Further studies require focus on their additive and synergistic

mode of actions. Additional information would assist us in appropriate application

of these organisms in improving agricultural management practices. More focus

should be paid on assessing the added value of the microbial consortium in

comparison to a single bioinoculant. Moreover, crop-based microbial consortium

may be developed to meet the specific requirements. With the advent of functional

genomics and proteomics studies of these microorganisms (Marra et al. 2006;

Chacón et al. 2007), work on genes and gene products would provide more precise

information on modes of action. Statistical procedures have been devised using

which separation of direct growth promotion effects of a biocontrol agent from the

effect obtained by disease control is possible, using data from factorial experiments

in which BCA were applied in the presence or absence of pathogens (Larkin and

Fravel 1999; Ryder et al. 1999). Mathematical modeling can also help us predict the

results of interactions among consortium microbes and pathogen in the rhizosphere.

Future relies on the application of modern molecular techniques and along with

conventional experimental procedures to understand and utilize plant–microbe

interactions occurring in soil. Its application would increase our knowledge about

their combined mode of action, particularly with induced resistance in plants.

Formulation also plays a significant role in determining the final efficacy of the

mixture. A large number of microbial mixtures have been reported till date

(Table 16.1), but further studies are needed to explore interactions between

microbial agents to get maximum benefits out of them.
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Table 16.1 Microbial consortium reported for the management of various plant diseases

Microbial mixture Disease/pathogen

Mechanisms

involved Reference

Rhiozobim and P. straita Nematode

multiplication

Increased N and P

availability

Pant et al. (1983)

P. putida, Fusarium
oxysporum strain F047

Fusarium oxysporum Siderophore-

mediated

competition for

carbohydrate

Lemanceau et al.

(1993)

T. harzianum and P.
fluorescens strain 2-
79RN10

Aphanomyces
euteiches f. sp. pisi

Siderophore, ISR,

and plant growth

promotion

Dandurand and

Knudsen

(1993)

Gaemannomyces graminis
var. graminis þ mixture

of pseudomonads

Take-all disease of

wheat

(Gaemannomyces
graminis var. tritici)

Antibiosis Duffy and Weller

(1995)

P. fluorescens and
Stentrophomonas
maltophila

Pythium-mediated

damping-off in

sugarbeet

ISR Dunne et al.

(1998)

P. putida RE8 and WCS358 Fusarium wilt of radish Siderophore and ISR,

Mutual increase

in population

de Boer et al.

(2003)

Pichia guilermondii and
B. mycoies

B. cinera Competition for

nutrients and

secretion of

inhibitory

compound

Guetsky et al.

(2001, 2002)

P. fluorescens NBRI-N6 and

P. fluorescens NRI-N
Sclerotium rolfsii ISR Singh et al.

(2003)

Rhizobium and P. straita M. incognita Plant growth

promotion

Siddiqui and

Singh (2005)

Bacillus sp. strain mixture

IN937b þ SE49 and

T4 þ INRN

Cucumber mosaic virus

and Colletotrichum
gloeosporioides

ISR Jetiyanon et al.

(2003)

P. fluorescens and T. viride Sheath blight ISR and plant growth

promotion

Mathivanan et al.

(2005)

B. amyloliquefaciens IN937a
and B. plumilus IN937b

S. rolfsii, Ralstonia
solanacearum and

Colletotrichum
gloeosporioides

Increased SOD and

PO activity

Jetiyanon (2007)

Rhizobia with B. cerus strain
BS03 and P. aeruginosa
RRLJ04

Fusarium udum Increased PAL, PO,

and PPO activity

Dutta et al.

(2008)

Bacillus licheniformis strain
MML2501, Bacillus sp.
strain MML2551,

P. aeruginosa strain

MML2212 and

Streptomyces fradiae
strain MML1042

SNVD ISR and plant growth

promotion

Srinivasan and

Mathivanan

(2009)

(continued)
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16.9 Conclusions

The increased growth and reduced intensity of disease by using microbial consortium

may be attributed to a combination of mechanisms acting in an additive manner.

Microorganisms in a cocktail may enhance the level and consistency of performance

of biocontrol by increasing effectiveness over a wide array of biotic and abiotic

stresses and proving to be more stable by mimicking natural communities. In

particular, combinations may provide protection at different times and under different

conditions, by occupying different or complementary niches, supplementing each

other’s requirements. The present chapter on microbial consortium emphasizes their

potential role in plant growth promotion and disease control. By using microbial

cocktails, we can make sure that atleast one organism used in the mixture is

functional under a particular stress and in a particular environmental niche. Additive

and synergistic effects of mode of actions in combination would increase their

potential as a BCA and would serve us with better disease control, higher yield,

and improve soil quality results. However, precise knowledge of their mode of action

and plant–microbe interactions would help us in their appropriate release and multi-

faceted uses in managing plant health. The potential increase in use of these cocktail

microorganisms along with their ability to impart multiple benefits may further help

in reducing problems associated with the use of synthetic chemicals in agriculture and

managing biotic stress in crop plant in an ecologically acceptable way.
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