
Chapter 13

Bacteria in the Management of Plant-Parasitic

Nematodes

Pravin C. Trivedi and Abhiniti Malhotra

13.1 Introduction

Nematodes are one of the most important constraints to crop productivity and cause

12 % annual loss in the yield of important food and fiber crops on a worldwide basis

(Sasser and Freckman 1987; Barker et al. 1994). The control of nematode is far

more difficult than any other kind of pest because they inhabit soil and usually

attack the underground parts of plants. On account of eco-friendly plant protection

drive, great emphasis has been given to the exploitation of potential bioagents for

controlling nematodes. Soils being a complex environment, housing various flora

and fauna, nematodes are generally exposed to many enemies. The most widely

found enemies are fungi and bacteria, of which bacteria as a bioagent have several

advantages, followed by fungi. Not only is bacterium eco-friendly, but it also takes

a long time to develop resistance. Besides, biotechnological interventions for

evolving efficient strains are possible in the organism as they possess a simple

genome.

Nematodes in soil are subject to infections by bacteria and fungi. This creates the

possibility of using soil microorganisms to control plant-parasitic nematodes

(Mankau 1980; Jatala 1986). Bacteria are numerically the most abundant organisms

in soil, and some of them, for example, members of the genera Pasteuria, Pseudo-
monas, and Bacillus (Emmert and Handelsman 1999; Siddiqui and Mahmood 1999;

Meyer 2003), have shown great potential for the biological control of nematodes.

Extensive investigations have been conducted over the last few years to assess their

potential to control plant-parasitic nematodes.
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13.2 Bacteria in Nematode Control

Bacterial antagonists of plant-parasitic nematodes are grouped under the following

categories: obligate parasites, antagonistic bacteria, and other soil bacteria.

13.2.1 Obligate Parasites

An obligate parasite is a parasitic organism that cannot live independently of its host.

Members of the genus Pasteuria are obligate parasites of plant-parasitic nematodes.

Pasteuria penetrans is a mycelial, endospore-forming, bacterial parasite that

has shown great potential as a biological control agent of root-knot nematodes.

Considerable progress has been made during the last 10 years in understanding its

biology and importance as an agent capable of effectively suppressing root-knot

nematodes in field soil. The biological control potential of Pasteuria spp. has been

demonstrated on 20 crops; host nematodes include Belonolaimus longicaudatus,
Heterodera spp.,Meloidogyne spp., and Xiphinema diversicaudatum. The potential
of predacious and nematoxic fungi and bacteria for the biological control of nema-

tode parasites may offer a cheaper and more sustainable approach to reducing the

damage caused by phytonematodes.

13.2.1.1 Pasteuria penetrans

Members of the genus Pasteuria are obligate, mycelial, endospore-forming bacterial

parasites of plant-parasitic nematodes and water fleas (Sayre and Starr 1985; Bekal

et al. 2001). A number of bacterial species in this genus have shown great potential

as biocontrol agents against plant-parasitic nematodes. They occur worldwide

and have been reported from at least 51 countries (Siddiqui and Mahmood 1999).

Taxonomy and Host Range of Pasteuria penetrans

Members of the genus have been reported to infect 323 nematode species belonging to

116 genera, including both plant-parasitic nematodes and free-living nematodes

(Chen and Dickson 1998). The majority of economically important plant-parasitic

nematodes have been observed to be parasitized (Bird et al. 2003). Pasteuriawas first
described as a protozoan and later classified into the bacterial genus Bacillus and then
into Pasteuria (Sayre and Starr 1985). At present, the taxonomy within the genus

Pasteuria is based mainly on morphological and pathological characteristics,

including the size and shape of sporangia and endospores, and ultrastructures, life

cycles, and host ranges (Atibalentja et al. 2000). Over the last few years, a number of

molecular biological analyses have been used in the identification and classification of

this genus. Recent analysis of a portion of the 16S rRNA gene showed that the genus
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Pasteuria is a deeply rooted member of the Clostridium–Bacillus–Streptococcus
branch of the Gram-positive Eubacteria (Anderson et al. 1999). Charles et al.

sequenced the genome of Pas. penetrans, performed amino-acid-level analysis

using concatenation of 40 housekeeping genes, and identified Pas. penetrans as

ancestral to Bacillus spp. The results suggested that Pas. penetrans might have

evolved from an ancient symbiotic bacteria associate of nematodes, possibly when

the root-knot nematode evolved to a highly specialized parasite of plants (Charles

2005; Charles et al. 2005). So far, four nominal Pasteuria species have been reported.
Among them, Pasteuria ramosa has been described from water fleas (Ebert et al.

1996). The other three nematode-infecting species are Pas. penetrans, which primar-

ily parasitizes root-knot nematodes such as Meloidogyne spp.; Pas. thornei, which
parasitizes root-lesion nematodes such as Pratylenchus spp.; and Pas. nishizawae,
which occurs on cyst nematodes of the generaHeterodera andGlobodera (Atibalentja
et al. 2000). Recently, based onmorphological characteristics, host specificity, and the

analysis of 16S rRNA gene Giblin-Davis et al. (2001, 2003) proposed that strain S-1,

which parasitizes the sting nematode Belonolaimus longicaudatus, represents a novel
Pasteuria species, Candidatus Pasteuria usgae.

Mechanisms of Infection

The life cycle of Pas. penetrans is completed in four stages, viz., spore germination,

vegetative growth, fragmentation, and sporogenesis. Pasteuria penetrans infects

the root-knot nematode Meloidogyne spp. Spores of Pasteuria can attach to the

cuticles of the second-stage juveniles and germinate about 8 days after the juvenile

has entered roots and begun feeding (Sayre and Wergin 1977). The germ tubes can

penetrate the cuticle, and vegetative microcolonies then form and proliferate

through the body of the developing female. Finally, the reproductive system of

the female nematode degenerates, and mature endospores are released into the soil

(Mankau et al. 1976; Sayre and Wergin 1977). Attachment of the spores to the

nematode cuticle is the first step in the infection process (Davies et al. 2001).

However, spores of individual Pasteuria populations do not adhere to or recognize

all species of nematode. The spores of each Pasteuria species usually have a narrow
host range. For example, Pas. penetrans infects Meloidogyne spp., Pas. thornei
infects Pratylenchus spp., and Pas. nishizawae infects the genera Heterodera and

Globodera (Gives et al. 1999; Atibalentja et al. 2000). The specificity of spore

attachment to the nematode cuticle has been intensively studied using biochemical

and immunological methods. Monoclonal antibody studies have revealed a high

degree of heterogeneity both within and among different populations of Pas.
penetrans (Davies and Redden 1997).

The distribution on the spore of any particular epitopes that are thought to be

involved in adhesion may differ among populations and species (Davies and

Redden 1997; Davies et al. 2001). The distribution of an adhesin-associated epitope

on polypeptides from different Pasteuria isolates provides an immunochemical

approach to differentiating species and biotypes with specific host preferences
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(Preston et al. 2003). The processes associated with the initial binding of the

endospores of Pasteuria spp. to their respective hosts have been explored by several
laboratories (Stirling et al. 1986; Persidis et al. 1991; Davies and Danks 1993;

Charnecki 1997). These studies have led to a model in which a carbohydrate ligand

on the surface of the endospore binds to a lectin-like receptor on the cuticle of the

nematode host (Persidis et al. 1991). The fibers surrounding the Pasteuria spore

core are thought to be responsible for the adhesion of the spore to the host cuticle

(Sayre and Wergin 1977; Stirling et al. 1986; Persidis et al. 1991). Sonication can

increase spore attachment by removing the sporangial wall and exposing the

parasporal fibers (Stirling et al. 1986).

13.2.1.2 Opportunistic Parasitic Bacteria

In 1946, Dollfus investigated and documented bacteria within the body cavity, gut,

and gonads of nematodes (Jatala 1986). Other reports have since suggested the

association of some bacteria with the nematode cuticle. However, these studies

were unable to specify whether these bacteria were parasites or saprophytes (Jatala

1986). In fact, most nematophagous bacteria, except for obligate parasitic bacteria,

usually live a saprophytic life, targeting nematodes as one possible nutrient

resource. They are, however, also able to penetrate the cuticle barrier to infect

and kill a nematode host in some conditions.

They are described as an opportunistic parasitic bacteria here, represented by

Brevibacillus laterosporus strain G4 and Bacillus sp. B16. As a pathogen,

Br. laterosporus has been demonstrated to have a very wide spectrum of biological

activities. So far, it has been reported that four nematode species (three parasitic

nematodes, namely, Heterodera glycines, Trichostrongylus colubriformis, and

Bursaphelenchus xylophilus, and the saprophytic nematode Panagrellus redivivus)
could be killed by various Br. laterosporus isolates (Oliveira et al. 2004; Huang et al.
2005). Among these isolates, Br. laterosporus strain G4, which was isolated from soil

samples in Yunnan province in China and parasitizes the nematodes Panagrellus
redivivus and Bursaphelenchus xylophilus, has been extensively studied (Huang et al.
2005). After attaching to the epidermis of the host body, Br. laterosporus can

propagate rapidly and form a single clone in the epidermis of the nematode cuticle.

The growth of a clone can result in a circular hole shaped by the continuous

degradation and digestion of host cuticle and tissue. Finally, bacteria enter the body

of the host and digest all the host tissue as nutrients for pathogenic growth (Huang

et al. 2005). During bacterial infection, the degradation of all the nematode cuticle

components around the holes suggests the involvement of hydrolytic enzymes (Cox

et al. 1981; Decraemer et al. 2003; Huang et al. 2005). At present, the majority of

research efforts on opportunistic nematode-parasitic bacteria have concentrated on

understanding pathogenesis using free-living nematodes as targets. Such studies

should allow us to identify new pathogenic factors and to learn more about

infectious processes in nematodes. It is important to understand the mechanism

that controls the switch from saprotrophy to parasitism in order to formulate

effective commercial nematode control agents.
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13.2.2 Antagonistic Soil Bacteria

Many species of soil bacteria are capable of decomposing plant and animal

residues. A succession of these bacteria facilitates stepwise degradation of soil

organic matter. The products released by the metabolic activity of the bacteria vary

from complex to the simplest molecules. Some of these products accumulate in the

soil and may be toxic, antibiotic, or inhibitory to plant-parasitic nematodes. During

natural decomposition of plant residues, ammonifying bacteria apparently produce

enough ammonia to influence nematodes.

Other compounds like hydrogen sulfate and ammonia produced by bacteria have

also been found to have deleterious effects on Hirschmanniella oryzae in rice fields

and root-knot nematodes (Jacq and Fortuner 1979; Zavalata 1985). Soil bacteria like

Bacillus thuringiensis var. thuringiensis (Prasad and Tilak 1972) producing butyric

acid, hydrogen sulfide, cyanide, and exotoxins, have been demonstrated to be antag-

onistic to nematodes. Ammonia produced by ammonifying bacteria during decom-

position of nitrogenous organic materials can result in reduced nematode populations

in soil (Rodriguez-Kabana 1986).

13.2.2.1 Cry-Protein-Forming Bacteria

Bacillus thuringiensis, a spore-forming aerobic, Gram-positive bacterium belonging

to the genus Bacillus, is considered a potential biocontrol agent. More than 200

isolates of B. thuringiensis have been grouped into more than 12 stereotypes. The

classification was done by combination of Heterodera antigens (stereotypes) and

biotypes, particularly the esterase types (Norris 1964). B. thuringiensis occurs in the

dead matter of insects, litter of sericulture form, and soils. Chahal and Chahal (1991)

perhaps for the first time investigated B. thuringiensis toxic to eggs and larvae of

Meloidogyne sp. Chahal and Chahal (1999) examined the effect of different strains of

B. thuringiensis on wheat galls and on egg masses of Meloidogyne incognita. The
result showed a drastic inhibition of egg masses and death of all J2S ofM. incognita.
The gelatinous matrix of egg mass was disintegrated due to bacterial action which

might be due to the ability of bacteria to produce enzyme chitinase (Chigaleichik

1976), an enzyme which hydrolyze chitin present in the egg shell and gelatinous

matrix of egg masses (Spiegel and Cohn 1985), thereby affecting the permeability.

Bird and McClure (1976) and Ignoffo and Dropkin (1977) reported that a

thermostable toxic of B. thuringiensis was found to be toxic to population

Meloidogyne, Panagrellus, and Aphelenchus and prevented M. incognita juveniles

from forming galls on tomato roots. B. thuringiensis (Bt) produces one or more

parasporal crystal inclusions (Cry or d-endotoxins), which are known to be toxic to

a wide range of insect species in the orders Lepidoptera (butterflies and moths),

Diptera (flies and mosquitoes), Coleoptera (beetles and weevils), andHymenoptera
(wasps and bees) (Schenpe et al. 1998; Maagd et al. 2001). Some Cry proteins are

also toxic to other invertebrates such as nematodes, mites, and protozoans
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(Feitelson et al. 1992). To date, there are six Cry proteins (Cry5, Cry6, Cry12,

Cry13, Cry14, Cry21) known to be toxic to larvae of a number of free-living or

parasitic nematodes (Alejandra et al. 1998; Crickmore et al. 1998; Marroquin et al.

2000; Wei et al. 2003; Kotze et al. 2005).

On the basis of amino acid sequence homology, these nematode-affecting

Cry proteins (except for Cry6A) were assigned to a single cluster in the main

Cry lineage, parallel to other main groups (Bravo 1997; Marroquin et al. 2000).

Separate phylogenetic analysis of the three domains of Cry protein also generated a

consensus tree result. The domain I and domain II trees showed that nematode-

specific toxins (Cry5, Cry12, Cry13, Cry14, and Cry21) were arranged together in a

single branch (Bravo 1997). Domain III from all the nematode-specific toxin trees are

also clustered together (Bravo 1997). Nematicidal and insecticidal toxins of Bt are

believed to share similar modes of action. Cry toxicity is directed against the intestinal

epithelial cells of the midgut and leads to vacuole and pore formation, pitting, and

eventual degradation of the intestine (Marroquin et al. 2000). The binding of pore-

forming toxin to a receptor in the epithelial cell is a major event. In order to determine

host receptors, a mutagenesis screen was performed with the genetically well-

characterized nematode Caenorhabditis elegans. A detailed understanding of how

the Bt toxins interact with nematodes should facilitate the production of more

effective Bt biocontrol agents.

Other than Cry toxin, previous studies using B. thuringiensis israelensis,
B. thuringiensis kurstaki, and another parasporal-crystal-forming bacterium,

B. sphaericus, showed that some strains had significant activity on the eggs and

larvae of the parasitic nematode Trichostrongylus colubriformis (Bottjer et al. 1986;
Bowen et al. 1986a, b; Bowen and Tinelli 1987; Meadows et al. 1989). The

toxicities of these strains were inhibited by antibiotics and neither correspond to

the sporulation phase of the bacteria nor to their resistance to alkaline pH and heat,

demonstrating that the pathogenic factors were not the parasporal crystal (Bottjer

et al. 1986; Bowen et al. 1986a, b; Bowen and Tinelli 1987; Meadows et al. 1989).

Subsequently, an unknown Bt isolate was also reported to have toxicity to root-

lesion nematodes (Bradfish et al. 1991). However, the pathogenic factors of this

strain have not been discovered.

13.2.2.2 Rhizobacteria

Rhizospheric bacteria mainly fluorescent Pseudomonas (Oostendrop and Sikora

1989; Spiegel et al. 1991) and certain others like B. subtilis and B. cereus (Oka et al.
1993), B. sphaericus (Racke and Sikora 1992), Anthrobacter (Kloepper et al. 1988),
Scroratia (Kloepper et al. 1988), and Agrobacterium (Racke and Sikora 1992) play

an important role in biocontrol of plant-parasitic nematodes. The rhizobacteria

usually comprise a complex assemblage of species with many different modes of

action in the soil (Siddiqui and Mahmood 1999). Rhizobacteria reduce nematode

populations mainly by regulating nematode behavior (Sikora and Hoffmann-

Hergarten 1993), interfering with plant–nematode recognition (Oostendorp and
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Sikora 1990), competing for essential nutrients (Oostendorp and Sikora 1990),

promoting plant growth (El-Nagdi and Youssef 2004), inducing systemic resistance

(Hasky-Gunther et al. 1998), or directly antagonizing by means of the production of

toxins, enzymes, and other metabolic products (Siddiqui and Mahmood 1999).

Most rhizobacteria act against plant-parasitic nematodes by means of metabolic

by-products, enzymes, and toxins. The effects of these toxins include the suppres-

sion of nematode reproduction, egg hatching, and juvenile survival, as well as direct

killing of nematodes (Zuckerman and Jasson 1984; Siddiqui and Mahmood 1999).

There are two commercial bionematicidal agents based on Bacillus species.

Through a PGPR research program of the ARS (Agricultural Research Service,

USA), a commercial transplant mix (Bio Yield TM, Gustafson LLC) containing

Paenibacillus macerans and Bacillus amyloliquefaciens has been developed to

control plant-parasitic nematodes on tomato, bell pepper, and strawberry (Meyer

2003). Another product, used in Israel, is BioNem, which contains 3 % lyophilized

Bacillus firmus spores and 97 % nontoxic additives (plant and animal extracts) to

control root-knot nematodes as well as other nematodes (Giannakou and

Prophetou-Athanasiadou 2004). In extensive testing on vegetable crops (tomato,

cucumber, pepper, garlic, and herbs), BioNem preplant applications significantly

reduced nematode populations and root infestation (galling index), resulting in an

overall increase in yield (Giannakou and Prophetou-Athanasiadou 2004). BioNem

showed a higher effectiveness against root-knot nematodes in the field than did Pas.
penetrans.

However, the excellent biocontrol effects of BioNem can be partially attributed

to the stimulating effect that the animal and plant additives contained in the

bionematicide formulation have on the microbial community of the rhizosphere.

Previous studies have shown that the addition of manure or other organic

amendments stimulates the activity of the indigenous soil microbial community

(Giannakou and Prophetou-Athanasiadou 2004).

13.2.2.3 Pseudomonas fluorescens

In many crop–pathogen systems, the primary mechanism of biocontrol by

fluorescent pseudomonads is production of HCN and antibiotics such as 2,4-

diacetylphloroglucinol (2,4-DAPG), pyoluteorin, pyrrolnitrin, and phenazines,

playing an important role in biocontrol of pathogens (Défago et al. 1990). It is

not clear exactly how the plant-growth-promoting properties of P. fluorescens are
achieved; theories include that the bacteria might induce systemic resistance in the

host plant, so it can better resist attack by a true pathogen; the bacteria might

outcompete other (pathogenic) soil microbes, e.g., by siderophores giving a

competitive advantage at scavenging for iron; and the bacteria might produce

compounds antagonistic to other soil microbes, such as phenazine-type antibiotics

or hydrogen cyanide.

P. fluorescens produces some siderophores (iron-chelating substances) which act

as growth factors and disease-suppressive siderophores like pseudoactin which can
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presumably deliver iron to plants they benefit; otherwise, these plants would

develop iron chlorosis and become susceptible to pathogens (Leong 1986). Rhizo-

sphere Pseudomonas strains also exhibit diverse pathogenic mechanisms upon

interaction with nematodes (Spiegel et al. 1991; Kloepper et al. 1992; Kluepfel

et al. 1993; Westcott and Kluepfel 1993; Cronin et al. 1997a; Jayakumar et al. 2002;

Siddiqui and Shaukat 2002, 2003a, b; Andreogloua et al. 2003; Siddiqui and Singh

2005). The mechanisms employed by some Pseudomonas strains to reduce the

plant-parasitic nematode population have been studied. These mechanisms include

the production of antibiotics and the induction of systemic resistance (Spiegel et al.

1991; Cronin et al. 1997a; Siddiqui and Shaukat 2002, 2003a, b).

P. fluorescens controlled cyst nematode juveniles by producing several secondary

metabolites such as 2,4-diacetylphloroglucinol (DAPG) which reduces juvenile

mobility (Cronin et al. 1997a; Siddiqui and Shaukat 2003a, b). Additionally,

mortality of root-knot and cyst nematode juveniles in culture filtrates of

P. fluorescens has also been observed (Gokta and Swarup 1988). Mena and Pimentel

(2002) reported that Corynebacterium paurometabolum inhibited nematode egg

hatching by producing hydrogen sulfide and chitinase. Some other rhizobacteria

reduce deleterious organisms and create an environment more favorable for plant

growth by producing compounds such as antibiotics or hydrogen cyanide (Zuckerman

and Jasson 1984). Recently, rhizobacteria-mediated induced systemic resistance

(ISR) in plants has been shown to be active against nematode pests (Van Loon

et al. 1998; Ramamoorthy et al. 2001). Plant-growth-promoting rhizobacteria

(PGPR) can bring about ISR by fortifying the physical and mechanical strength of

the cell wall by means of cell wall thickening, deposition of newly formed callose,

and accumulation of phenolic compounds. They also change the physiological

and biochemical ability of the host to promote the synthesis of defense chemicals

against the challenge pathogen (e.g., by the accumulation of pathogenesis-related

proteins, increased chitinase and peroxidase activity, and synthesis of phytoalexin

and other secondary metabolites) (Van Loon et al. 1998; Siddiqui and Mahmood

1999; Ramamoorthy et al. 2001). Bacterial determinants of ISR include lipopolysac-

charides (LPSs), siderophores, and salicylic acid (SA) (Van Loon et al. 1998;

Ramamoorthy et al. 2001).

The mechanism involved in resistance development seems to be directly related

to nematode recognition and penetration of the root (Reitz et al. 2001; Mahdy et al.

2001). However, Siddiqui and Shaukat (2004) found that SA-negative or

SA-overproducing mutants induced systemic resistance to an extent similar to

that caused by the wild-type bacteria in tomato plants. They concluded that

fluorescent pseudomonads induced systemic resistance against nematodes by

means of a signal transduction pathway, which is independent of SA accumulation

in roots. Except for the nematophagous fungi and actinomycetes, rhizobacteria are

the only group of microorganisms in which biological nematicides have been

reported. Ganeshan and Kumar (2005) used Pseudomonas fluorescens as a potential
biopesticide for augmentative biological control of many diseases of agricultural

and horticultural importance. Biological control by plant-growth-promoting fluo-

rescent pseudomonads protects the plant from pathogens by activating defense
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genes encoding chitinase, 1,3 glucanase, and peroxidase (Chen et al. 2000).

P. fluorescens strain PF-1 was toxic to R. reniformis, with all tested concentration

exhibiting toxic effects (Jayakumar et al. 2002).

Plant growth promotion by rhizobacteria can effect directly (Glick 1995; Presello-

Cartieaux 2003) by fixation of nitrogen, solubilization of minerals, production of

siderophores that solubilize and sequester iron, or production of plant growth

regulators (auxin, cytokinin, gibberellins, ethylene, or abscisic acid) that enhance

plant growth at various stages of development, whereas indirect growth promotions

occur when PGPR promotes plant growth by improving growth restricting conditions

(Glick et al. 1995). Shanti et al. (1998) reported suppression in nematode multiplica-

tion (root-knot) in grapevine root even after 8 months (second-generation crop)

with application of P. fluorescens. Fluorescent pseudomonads have received much

attention as biocontrol agents because they generally act through direct antagonism to

pathogens, through antibiotic production, through competition with pathogen, or

more directly through plant growth promotion (Gamlial and Katan 1993).

13.2.2.4 Pseudomonas aeruginosa

Siddiqui and Shaukat (2003a, b) reported on biocontrol agents Pseudomonas
aeruginosa IE-6 and IE-6S+ (previously shown to suppress several soil-borne

plant pathogens) on soil microfungi and plant-parasitic nematodes as well as on

the root-knot development and growth of tomato (Lycopersicon esculentum). The
biocontrol agents significantly reduced root-knot development and enhanced shoot

growth of tomato over the controls.

Gulnaz et al. (2008) used P. aeruginosa and B. japonicum alone or with mineral

fertilizers significantly reduced infection of tomato roots by the root-rotting fungi

Macrophomina phaseolina, Rhizoctonia solani, and Fusarium solani. Use of

P. aeruginosa or B. japonicum alone or with mineral fertilizers suppressed the

root-knot nematode M. javanica by reducing numbers of galls on roots, nematode

establishment in roots, and nematode populations in soil. The tallest plants and

maximum shoot fresh weight occurred due to treatment with P. aeruginosa.
Siddiqui and Akhtar (2007) found that P. aeruginosa reduced galling and nematode

multiplication the most followed by A. awamori and G. intraradices. Combined

inoculation of these microorganisms caused the greatest increase in plant growth

and reduced the root-rot index more than individual inoculations. Pathogens

adversely effected root colonization by G. intraradices. However, root colonization
and root nodulation were increased when co-inoculated with P. aeruginosa and

A. awamori whether in the presence or absence of pathogens.

13.2.2.5 Bacillus subtilis

Numerous Bacillus strains can suppress pests and pathogens of plants and promote

plant growth. Some species are pathogens of nematodes (Gokta and Swarup 1988;
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Li et al. 2005). The most thoroughly studied is probably B. subtilis (Krebs et al.
1998; Siddiqui and Mahmood 1999; Siddiqui and Shaukat 2002). In addition, a

number of studies have reported direct antagonism by other Bacillus spp. towards
plant-parasitic nematode species belonging to the generaMeloidogyne,Heterodera,
and Rotylenchulus (Gokta and Swarup 1988; Kloepper et al. 1992; Madamba

et al. 1999; Siddiqui and Mahmood 1999; Insunza et al. 2002; Kokalis-Burelle et al.

2002; Meyer 2003; Giannakou and Prophetou-Athanasiadou 2004; Li et al. 2005).

B. subtilis improved plant growth by inhibiting nonparasitizing root pathogens,

producing biologically active substances or by transforming unavailable minerals

and organic compounds into forms available to plants (Broadbent et al. 1997).

El-Hassan and Gowen (2006) found that the formulation of B. subtilis decreased the
severity by reducing colonization of plants by pathogen, promoting their growth,

and increasing the dry weight of lentil pea. B. subtilis is not a nematode parasite, but

it has a high degree of larvicidal property (Siddiqui and Mahmood 1995a), and it

produces many biological active substances. Gokta and Swarup (1988) also

reported that isolates of B. subtilis and B. pumiluswere found most effective against

M. incognita, H. cajani, H. zeae, and H. avenae.
Other rhizobacteria reported to show antagonistic effects against nematodes include

members of the genera Actinomycetes, Agrobacterium, Arthrobacter, Alcaligenes,
Aureobacterium, Azotobacter, Beijerinckia, Burkholderia, Chromobacterium,
Clavibacter, Clostridium, Comamonas, Corynebacterium, Curtobacterium,
Desulforibtio, Enterobacter, Flavobacterium, Gluconobacter, Hydrogenophaga,
Klebsiella, Methylobacterium, Phyllobacterium, Phingobacterium, Rhizobium,
Serratia, Stenotrotrophomonas, and Variovorax (Tables 13.1 and 13.2; Fig. 13.1)

(Jacq and Fortuner 1979; Kloepper et al. 1992; Racke and Sikora 1992; Guo et al.

1996; Cronin et al. 1997b;Duponnois et al. 1999;Neipp andBecker 1999; Siddiqui and

Mahmood 1999, 2001; Meyer et al. 2001; Mahdy et al. 2001; Hallmann et al. 2001;

Insunza et al. 2002; Khan et al. 2002; Mena and Pimentel 2002; Meyer 2003).

13.2.2.6 Azotobacter

Another bacterium, Azotobacter, is an aerobic, nonsymbiotic Gram-negative

nitrogen-fixing bacteria, which occurs in most of the cultivated soil, is gaining

importance in controlling phytoparasitic nematodes. Verma and Bansal (1996)

showed the inhibitory effect of A. chroococcum on hatching of M. javanica.
Racke and Sikora (1992) found that out of 179 bacterial isolates isolated from

roots and cysts, only six caused a significant reduction (>25 %) in Globodera
pallida penetration of potato roots. Six of these isolates caused significant

reductions in repeated greenhouse tests. The antagonistic activity was shown to

be directly correlated with the number of colony-forming units (cfu) present on the

tuber. The isolates Agrobacterium radiobacter and Bacillus sphaericus at densities
of 9.7 � 108 and 3.16 � 109 cfu ml�1, respectively, caused significant reductions

in root infection of 24–41 % in repeated experiments.
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Ali (1996) found that the population density of nematode species was reduced by

application of five bacterial isolates (Arthrobacterium spp., Bacillus spp., Coryne-
bacterium spp., Serratia spp., and Streptomyces spp.). Reductions of nematode

populations were ranged between 46 % and 100 %. Youssef et al. (1998) studied the

potential of A. chroococcum, Bacillus megaterium, and Rhizobium lupine for the

control ofM. incognita infecting cowpea and tomato plants. They noticed a number

of both root galls and egg masses ofM. incognitawere decreased in soil treated with
B. megatherium and A. chroococcum except R. lupine-treated soil. El-Sherif et al.

(1995) studied the effect of culture filtrates of 5 isolates for their nematotoxic effect

against plant-parasitic nematode (Bacillus spp., Corynebacterium spp., Serratia
spp., Arthrobacterium spp., and Streptomyces spp.). The authors determined the

culture filtrate concentration as 0.1 % to inhibit the hatching of the eggs and 0.6 %

to be highly toxic to the juveniles. The toxic effect of the filtrate varied with the

different nematode species.

Siddiqui and Futai (2009) studied the effects of antagonistic fungi (Aspergillus
niger v. Teigh,Paecilomyces lilacinus (Thom) Samson, andPenicillium chrysogenum

Table 13.1 Antagonistic rhizosphere for the control of phytonematodes

Biotic agent Nematode sp. Crop Reference

Bacillus licheniformis M. incognita – Siddiqui and Hussain

(1991)

Pseudomonas mendocina M. incognita – Siddiqui and Hussain

(1991)

Bacillus subtilis M. incognita – Gokta and Swarup (1988)

B. pumilus, B. cereus
Pseudomonas sp.

H. cajani, H. zeae,
H. avenae

P. fluorescens H. avenae Wheat Kamra and Dhawan

(1997)

P. fluorescens M. incognita Tomato Verma et al. (1999)

P. stutzeri M. incognita Tomato Khan and Tarannum

(1999)

B. subtilis, P. fluorescens M. incognita Tomato Santhi and Sivakumar

(1995)

P. fluorescens M. incognita Black pepper Eapen et al. (1997)

P. fluorescens H. cajani Pigeon pea Siddiqui and Mahmood

(1995a, b)

B. subtilis, Bradyrhizobium
japonicum

H. cajani Pigeon pea Siddiqui and Mahmood

(1995a)

P. fluorescens Hirschmanniella
gracilis

Paddy Ramakrishnan and

Sivakumar (1999)

B. subtilis M. incognita Chickpea Siddiqui and Mahmood

(1993)

P. fluorescens H. cajani Black gram Latha and Shivakumar

(1998)

P. fluorescens Tylenchulus
semipenetrans

Sweet orange

and lime

Santhi et al. (1999)

P. fluorescens Globodera sp. Potato Mani et al. (1998)
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Thom), and plant-growth-promoting rhizobacteria (PGPR) (A. chroococcum Beijer,

B. subtilis (Ehrenberg) Cohn, and Pseudomonas putida (Trev.) Mig.) were assessed

with cattle manure on the growth of tomato and on the reproduction ofM. incognita
(Kof. andWhite) Chitwood. Application of antagonistic fungi and PGPR alone and in

combination with cattle manure resulted in a significant increase in the growth of

nematode-inoculated plants. Siddiqui (2004) conducted glasshouse experiments to

assess the influence of P. fluorescens, A. chroococcum, and Azospirillum brasilense
and composted organic fertilizers (cow dung, horse dung, goat dung, and poultry

manure) alone and in combination on the multiplication of M. incognita and growth

of tomato.

13.2.3 Other Soil Bacteria: Rhizobia

Nodulation is a complex symbiotic process between host plant and Rhizobia. For
successful nodulation, the Rhizobia must multiply to a sufficient population level

Fig. 13.1 Mechanism of biocontrol by Pseudomonas fluorescens and Bacillus subtilis
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and colonize the rhizosphere before making contact with the legume roots. Subse-

quently, the bacteria attach themselves to roots and penetrate root hairs and

stimulate formation of nodules. This process can be disrupted by biotic stresses

on either host plant or Rhizobia. Survival and colonization of Rhizobia in the

rhizosphere are greatly influenced by root exudation of host plants (Bhagwat and

Thomos 1982). Carbohydrates, amino acids, and a variety of nutrients by soybean

roots as root exudates. Among amino acids, a variety of nutrients are released by

soybean roots as root exudates. Among amino acids, tryptophan is easily converted

by Rhizobium to indoleacetic acid that stimulates the formation and elongation of

root hairs. This facilitates the bacteria to enter soybean roots via epidermal cells of

root hairs and initiate the bacterial nodulation (Barker and Hussey 1976). However,

plant-parasitic nematodes have been shown to alter quality and quantity of root

exudates of infected plants (Wang and Bergeson 1974). These changes have an

impact on the efficacy of tryptophan in formation and elongation of root hairs.

Plant lectins are the specific carbohydrate-binding proteins, constituting approxi-

mately 10 % of the extractable nitrogen in the seeds of leguminous plants and have

been extensively used in the study of cell surface architecture. Earlier work on lectin

distribution in plant tissues as well as lectin-mediated cell–cell interactions provides

strong evidence for their involvement in the defense of plants against infection and

also in Rhizobium–legume symbiosis. During the symbiotic biological nitrogen

fixation, the bacteria of the genus Rhizobium living in the rhizospheric region of

the leguminous plants adhere to the legume roots and are subsequently internalized to

form nitrogen-fixing nodules. The Rhizobium–legume interactions are specific, and

the specificity is achieved through the action of plant lectins.

It has been demonstrated that the lectin in beans extract could help bind

the specific bacteria to the roots of Phaseolus vulgaris. Systematic studies in

this direction were subsequently made in soybean–Rhizobium japonicum and

clover–Rhizobium trifolii systems (Musarrat and Akhtar 2000). Plant lectins

extruded by soybean roots are proteins capable of binding sugar or sugar containing

proteins. Several studies suggest that Rhizobia bind to soybean roots via soybean

lectins on the root surface (Bohlool and Schimt 1974). Soybean cyst nematode

Heterodera glycines may affect the bacterial binding sites on the root to limit

bacterial establishment for nodulation. An interaction between root surface lectins

and surface carbohydrates of the nematode may be prerequisite for the nematode

penetration (Zuckerman and Jasson 1984). Rhizobium japonicum cells also bind

with soybean lectins (Balasubramanium 1971). Hence, there is a competition

between Meloidogyne spp. and R. japonicum for binding to soybean root surface

lectin. It also causes reduction of bacterial nodulation. Few studies have assessed

the effect of Meloidogyne infection on bacterial nodulation of legume crops, and

these studies have shown that Meloidogyne spp. have retarded the development of

root system and the bacterial nodulation of legume crops (Balasubramanium 1971;

Huang et al. 1984).

The presence of sugars such as N-acetylglucosamine, galactose, N-acetyl-
galactosamine, and mannose and/or glucose on the cuticle surface of plant-

parasitic nematodes may play an important role in the interaction between
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nematodes and their hosts. It has been demonstrated that the binding of Rhizobia to
nematode-free roots was inhibited only after pretreatment with certain sugars.

Studies on the interference of nematodes with soybean lectin metabolism showed

the reduced binding of Rhizobia toH. glycines-infected soybean roots, suppressing
the nodule formation. Furthermore, the root-knot nematodes M. incognita
infecting mungbean, chickpea, cowpea, wandopea, and green gram; M. hapla
infecting white clover; and Meloidogyne spp. infecting horsebean, lupin, clover,

and pea have been reported to inhibit nodulation. Interrelationship between

M. incognita, Heterodera cajani, and Rhizobium sp. on cowpea (Vigna sinensis)
has been investigated. Hussaini and Seshadri (1975) reported thatM. incognita and
H. cajani, singly or in concomitant inoculum, significantly reduce the growth of

cowpea; M. incognita reduced N-content to a greater extent than H. cajani.
Similarly, Hussaini and Seshadri (1975) reported that M. incognita inoculated

before and after or simultaneously with Rhizobium caused significant decrease in

plant height, fresh and dry weight of shoot and root, number of nodules on root, and

nitrogen content of root when compared to nematode-free plants. Presumably, the

common sugars on the cuticle surface of nematodes compete for the plant lectins,

resulting in reduced rhizobial binding sites (Musarrat and Akhtar 2000).

The association of rhizobia with legume hosts has a beneficial effect on plant

nutrition and growth. In contrast, the plant–nematode relationship has adverse

effects on plant growth. The role of plant-parasitic nematodes on rhizobial nodula-

tion and nitrogen fixation of host plants has been reviewed by a number of workers

(Huang 1987; Khan 1993). As a result of nematode infection, the nodulation and

nitrogen fixation has been reported to be suppressed (Hussaini and Seshadri 1975),

or stimulated (Hussey and Barker 1976), or remain unaffected (Taha and Raski

1969). The role of rhizobia in the control of plant diseases of various leguminous

crops has already been discussed (Sawada 1982), and biological control of plant

diseases is now increasingly capturing the imagination of plant pathologists

(Papavizas and Lumsden 1980). Some of the possible reasons for the reduced

nematode reproduction caused by root-nodule bacteria are physiological and

biochemical changes, change in host nutrition, and histopathological numbers.

13.2.3.1 Physiological and Biochemical Changes

The root-nodule bacteria which fix atmospheric nitrogen are reported to produce

toxic metabolites inhibitory to many plant pathogens (Haque and Gaffar 1993).

Rhizobium japonicum secretes rhizobitoxine, which is inhibitory to charcoal

root fungus Macrophomina phaseolina (Chakraborty and Purkayastha 1984).

Chakraborty and Chakraborty (1989) reported an increased level of phytoalexin

(4-hydroxy-2,3,9-trimethoxypterocarpan) when pea seeds were bacterized with

R. leguminosarum prior to inoculation with Fusarium solani f. sp. pisi. This

phytoalexin may have an important role in cross-protection against many

pathogens. Siddiqui and Mahmood (1994) observed higher activity of peroxidase,

nitrate reductase, and catalase in pigeon pea plants inoculated with Bradyrhizobium
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japonicum than in plants without B. japonicum. An increase in peroxidase activity

due to B. japonicum inoculation indicates increasing resistance of the plant because

it catalyzes the polymerization of phenolic compounds and forms cross-links

between extensin, lignin, and feruloylated polysaccharides (Siddiqui and Mahmood

1994). An increase in nitrate reductase and catalase may be correlated with the rate

of protein synthesis and resistance of the plant to pathogens, respectively (Siddiqui

and Mahmood 1994). Roslycky (1967) reported production of an antibiotic

bacteriocin by rhizobia bacteria. Some properties of antibiotics of rhizobia bacteria

have also been reported by others (Drapeau et al. 1973; Schwinghamer and

Belkengren 1968; Tu 1978, 1988). Antibiotics and phytoalexin produced by

rhizobia bacteria probably reduce damage from nematodes and other pathogens.

13.2.3.2 Change in Host Nutrition

Damage to plant growth by nematodes can be lessened by the application of

nitrogen fertilizer (NH4, NO3) (Ross 1969), indicating that combined nitrogen

can improve growth of diseased plants. Combined nitrogen, such as nitrate, at a

high level is a powerful inhibitor of nodulation (Dart 1977) and also has an adverse

effect on the development of nematodes (Barker et al. 1972). Barker and Huisingh

(1970) observed necrosis in nodular tissues following invasion by nematodes; this

may in part account for reduced nematode development. All this suggests that

application of rhizobia bacteria which increase nitrogen content and plant growth

can also reduce nematode populations.

13.2.3.3 Histopathological Changes

Endo (1964) indicated that nematodes, especially males, often caused plant necrosis

and degeneration of syncytia as the nematodes matured. Endo (1965) found that

nematodes induced much necrosis in resistant plants. Some reactions that he

observed were very similar to those of nodular tissues where the surrounding

tissues, as well as the nematode, died. This type of reaction may partially explain

the reduced number of nematodes obtained when nematodes and Rhizobium were

added simultaneously to soybean (Barker et al. 1971). Sharma and Sethi (1976)

reported that both the nematodes, namely,M. incognita and H. cajani, either singly
or in combination, significantly reduced the growth of cowpea and addition of

Rhizobia tended to reduce this damage to some extent.

Mishra et al. (1994) reported improved plant growth in R. leguminosarum-
inoculated Phaseolus aureus L. plant as compared to reniform-nematode-infected

plant. Datal and Bhatti (2002) studied the interaction between H. cajani and

Rhizobium in different combinations and revealed that alone or prior addition of

Rhizobium enhanced nodulation but reduced multiplication on mungbean and
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cluster bean. Sharma and Sethi (1976) and Khan and Hussain (1990) reported that

the addition of rhizobia tends to reduce the damage caused to the host plant in

combined inoculation of phtyoparasitic nematodes.

Siddiqui and Singh (2005) conducted glasshouse experiments to assess the ash

amendments (0, 20, and 40 % with soil), a phosphate-solubilizing microorganism

Pseudomonas striata and a root-nodule bacterium Rhizobium species on the repro-

duction of root-knot nematodeM. incognita alongwith the growth and transpiration of
pea. Amendments of fly ash with soil had no effect on transpiration. However,

M. incognita reduced the rate of transpiration fromfirst week onward after inoculation,

while inoculation of Rhizobium sp and P. striata increased transpiration from first

week onward after their inoculation both in nematode-inoculated and nematode

uninoculated plants.Rhizobium sp. had greater adverse effect on galling and nematode

multiplication than P. striata. Use of both organisms together had greater adverse

effect on galling and nematode multiplication than caused by either of them alone.

Highest reduction in galling and nematode multiplication was observed when both

organisms were used in 40 % fly-ash-amended soil.

13.2.4 Other Nematophagous Bacterial Groups: Endophytic
Bacteria

Endophytic bacteria have been found internally in root tissue, where they persist in

most plant species. They have been found in fruits and vegetables, and are present

in both stems and roots, but do no harm to the plant (McInory and Kloepper 1995;

Hallmann et al. 1997, 1999; Azevedo et al. 2000; Hallmann 2001; Surette et al.

2003). They have been shown to promote plant growth and to inhibit disease

development and nematode pests (Sturz and Matheson 1996; Hallmann et al.

1999; Azevedo et al. 2000; Munif et al. 2000; Shaukat et al. 2002; Sturz and

Kimpinski 2004). For example, Munif et al. (2000) screened endophytic bacteria

isolated from tomato roots under greenhouse conditions. They found antagonistic

properties towards M. incognita in 21 out of 181 endophytic bacteria. Several

bacterial species have also been found to possess activity against root-lesion

nematode (Pratylenchus penetrans) in soil around the root zone of potatoes.

Among them, Microbacterium esteraomaticum and Kocuria varians have been

shown to play a role in root-lesion nematode suppression through the attenuation

of host proliferation, without incurring any yield reduction (Munif et al. 2000).

Despite their different ecological niches, rhizobacteria and endophytic bacteria

display some of the same mechanisms for promoting plant growth and controlling

phytopathogens, such as competition for an ecological niche or a substrate,

production of inhibitory chemicals, and induction of systemic resistance (ISR) in

host plants (Hallmann 2001; Compant et al. 2005).
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Symbionts of entomopathogenic nematodes Xenorhabdus spp. and Photorhabdus
spp. are bacterial symbionts of the entomopathogenic nematodes Steinernema spp.

and Heterorhabdus spp., respectively (Paul et al. 1981). They have been thought to

contribute to the symbiotic association by killing the insect and providing a suitable

nutrient environment for nematode reproduction (Boenare et al. 1997). In recent years,

a potentially antagonistic effect of the symbiotic complex on plant-parasitic

nematodes has been reported (Bird and Bird 1986; Grewal et al. 1997, 1999; Perry

et al. 1998; Lewis et al. 2001). Further investigation demonstrated that the symbiotic

bacteria seemed to be responsible for the plant-parasitic nematode suppression via the

production of defensive compounds (Samaliev et al. 2000). To date, three types of

secondary metabolites from symbiotic bacteria have been identified as nematicidal

agent: ammonia, indole, and stilbene derivatives (Hu et al. 1995, 1996, 1997, 1999).

Theywere toxic to second-stage juveniles of root-knot nematode (M. incognita) and to
fourth-stage juveniles and adults of pinewood (Bursaphelenchus xylophilus) and

inhibited egg hatching ofM. incognita (Hu et al. 1999).

13.3 Some Important Molecular Genetic Techniques Used

in Studying Bacterial Pathogenesis in Nematodes

A number of bacteria have been shown to exhibit a variety of effects on nematodes

in natural environments and laboratory conditions. However, studies on the

mechanisms of bacterial pathogenicity have lagged behind those assessing their

roles in biological control and resource potential. Over the past few years, a number

of molecular genetic methods in bacterial pathogenicity have been developed, and

it is now possible to introduce these successful techniques to the study of bacterial

pathogenesis in plant-parasitic nematodes (Hensel and Holden 1996; Aballav and

Ausube 2002; Tan 2002; Barker 2003). Although some technologies have been

reported not to be successful in studying plant-parasitic nematodes, knowledge

from studying bacterial pathogens of C. elegans and other animal pathogens may

enhance knowledge of bacterial pathogenesis in plant-parasitic nematodes and

provide a basic methodology for studies on plant-parasitic nematodes.

Reverse genetics is a common approach in identifying and determining

functions of virulence determinants. This method involves the isolation of virulence

proteins involved in pathogenicity and cloning of the corresponding genes.

Mutational analysis, this tool can be divided into directed and random mutagenesis.

In directed mutagenesis, a putative virulence determinant encoding a gene

postulated to be responsible for a certain pathogenic trait is disrupted or replaced

to construct a mutant strain. Comparative genomics, this technique can identify

pathogenic genes by comparing genomic sequences of pathogenic and nonpatho-

genic strains or other sequences from strains of interest of the same genus.
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13.4 Conclusion and Future Perspectives

Over the past 20 years, a large number of studies have been undertaken to investigate

the use of microorganisms as biocontrol agents against nematode pests. All these

groups of bacteria have undoubtedly generated a lot of interest in acting as natural

enemies and for their role in biological control of phytoparasitic nematodes. How-

ever, the major constraints in the development of effective biocontrol agents have

been the mass production, storage and distribution of fresh materials, and effect of

abiotic factors like pH, moisture, and soil types which influence the activities of these

microbial biopesticides, host range, and virulence of the inoculum. For instance, the

major attributes which favor Pas. penetrans as a successful biocontrol agent are

long viability of spores, resistance to heat and desiccation, persistence in soil,

compatibility with chemical nematicides, nontoxicity to plants and other soil biota,

and easy storage, but major hurdles are the following: lack of a technique enabling

culture of the bacterium in vitro on any of standard biological media; neither

vegetative cells nor spores of the organism can be harvested in sufficient numbers

to test extensively in laboratory conditions or to infest soil in large-scale field tests

to determine its influence; and with the currently available methods of mass multi-

plication, its commercial use may be limited to glasshouse crops or horticultural

crops only, and more research is required to be conducted in order to exploit

important aspects of bacterium–nematode interaction with particular emphasis on

the mechanism of action for the control of plant pathogens and nematodes.

Only a few commercial biocontrol products from the bacteria with nematicidal

potentials have been developed and used in the agriculture system (Whipps and

Davies 2000; Gardener 2004; Schisler et al. 2004). The development of biocontrol

agents is often unpredictable and too variable for large-scale implementation

(Meyer 2003). No matter how well suited a commercial nematode antagonist is to

a target host in a laboratory test, in order to realize ideal biocontrol effects in

practice, an intensive exploration of the mechanisms of the antagonist against

nematode populations and a thorough understanding of the interactions among

biocontrol strains, nematode target, soil microbial community, plant, and environ-

ment must be developed.

An increased understanding of the molecular basis of the various bacterial

pathogenic mechanisms on nematodes not only will lead to a rational nematode

management decision but also could potentially lead to the development of new

biological control strategies for plant-parasitic nematodes. For example, it has been

recognized that the attraction between bacteria and their hosts is governed by

chemotactic factors emanating from the hosts or pathogens (Zuckerman and Jasson

1984). Knowledge of these mechanisms could be used to attract or target nematodes

intentionally by modified nematicidal bacteria or to regulate nematode populations

by the chemotactic factors produced by these nematophagous bacteria.

Advances in molecular biology have allowed us to obtain important information

concerning molecular mechanisms of action, such as the production of nematotoxins,

the signaling pathways that induce the host-plant defense mechanism, and the
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infection process. Such information should provide novel approaches to improve the

efficacy of nematophagous bacteria for biological control applications, to increasing

the expression of toxins or enzymes from the microorganisms, and for formulation of

commercial nematicidal agents. For example, the developing genomic–bioinformatic

approachmay help to solve the difficulty of culturing the nematode parasitePasteuria
in vitro. This may allow mass production of spores for commercial use.

Microorganisms as biocontrol agents have a relatively narrow spectrum of

activity compared with synthetic pesticides (Barker 1991; Janisiewicz 1996) and

often exhibit inconsistent performance in practical agriculture. Application of a

mixture of inoculated biocontrol agents would more closely mimic the natural

situation and might broaden the spectrum of biocontrol activity. A good coloniza-

tion capacity and compatibility of inoculated microorganisms constitutes an impor-

tant prerequisite for successful development of biocontrol (Barker 1990).

Phosphate-solubilizing microorganisms improved the growth of plants possibly

through an inhibitory effect on nematode development as reported by Becker

et al. (1988), Kloepper et al. (1992) and Hasseb et al. (2005). Pseudomonads may

improve plant growth by suppressing parasitic and nonparasitic root pathogens

(Oostendorp and Sikora 1990) by the production of biologically active substances

(Gamlial and Katan 1993) or by converting unavailable minerals and organic

compounds into forms available to plants (Broadbent et al. 1997; Siddiqui and

Mahmood 1999). Bacillus and Pseudomonas are known to suppress diseases by

inhibition of pathogens by competition of Fe (III), inhibition of pathogen by

diffusible or volatile products, induction of resistance in plants, and aggressive

root colonization and stimulation of plant growth (Kloepper et al. 1988; Weller

1988; Siddiqui and Mahmood 1999). Similarly, the presence of rhizobia in the

rhizosphere presumably protects the host roots from pathogens, besides fixing

atmospheric nitrogen. The use of these symbionts will reduce the damage without

use of chemical pesticides, which are costly and have health hazards. Therefore,

using a consortium of rhizobia and other phosphate-solubilizing microorganisms

such as fluorescent Pseudomonas and Bacillus species could provide a better

solution against phytonematodes.
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