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Abstract. In this work, we propose a computational framework to de-
sign in silico robust bacteria able to overproduce multiple metabolites. To
this end, we search the optimal genetic manipulations, in terms of knock-
out, which also guarantee the growth of the organism. We introduce a
multi-objective optimisation algorithm, called Genetic Design through
Multi-Objective (GDMO), and test it in several organisms to maximise
the production of key intermediate metabolites such as succinate and
acetate. We obtain a vast set of Pareto optimal solutions; each of them
represents an organism strain. For each solution, we evaluate the fragility
by calculating three robustness indexes and by exploring reactions and
metabolite interactions. Finally, we perform the Sensitivity Analysis of
the metabolic model, which finds the inputs with the highest influence
on the outputs of the model. We show that our methodology provides ef-
fective vision of the achievable synthetic strain landscape and a powerful
design pipeline.

Keywords: Cell Metabolism, Biological CAD, Sensitive and Fragile
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analysis, Sensitivity and Robustness Analysis.

1 Introduction

Metabolic engineering is central in Biotechnology and has impact also in basic
cellular biology. The aim of metabolic engineering is to direct specifically a flux
through a metabolic pathway, for instance a product made during the fermen-
tation. To this end, one needs a deep understanding not merely of the genetics
of a microorganism, but also of its metabolic capacity (i.e. the amount of all the
intermediates). Remarkably, through genetic manipulations (in terms of knock-
outs) carried out on bacteria, one can overproduce one or more metabolites of
interest. A gene knockout is a genetic technique in which one gene in an organ-
ism is made inoperative through a base mutation or a deletion. Sometime the
inactivation of one gene results in the inactivation of all the downstream genes
of the operon. These manipulations are very useful for classical genetic studies
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as well as for modern techniques including functional genomics. Recently, many
organisms have been used to analyse their metabolite production potential and
to identify the metabolic interventions to produce the metabolite of interest.
Indeed, strains have been systematically designed in vivo to overproduce target
metabolites such as lycopene [1], ethanol [2], isobutanol [3] and many others.

Metabolic engineering requires mathematical models for accurate metabolic
reconstruction of strains, as well as for seeking non-native synthesis pathways.
A recent research methodology, called Flux Balance Analysis (FBA) [4], studies
biochemical networks, in particular the genome-scale metabolic network recon-
structions. These network reconstructions contain all of the known metabolic
reactions in an organism and the genes that encode each enzyme. FBA calcu-
lates the flow of metabolites through this metabolic network, thereby making
it possible to predict the growth rate of an organism or the rate of production
of a biotechnologically important metabolite at steady state. Being at steady
state, FBA manages large networks very quickly, since it does not require ki-
netic parameters. This makes it well suited to research on perturbations and
genetic manipulations (knockouts) that bacteria might undergo. One of the ma-
jor advantages of performing computational analysis of stoichiometric models
is that the pathways are system proprieties emerging under particular genetic
background and nutritional conditions. In other words, the FBA provides bet-
ter treatment of metabolism than classical biochemistry drawings of metabolic
pathways.

By using computational metabolic engineering methods, it is possible to ex-
plore the reaction network and search for the genetic interventions to optimise
the objectives. By making inoperative the genes, the enzymes that are normally
synthesised by those genes are not present anymore in the biological system.
In this way, also the corresponding biochemical reactions, normally catalysed
by these enzymes, do not occur. Then, the chemical species that constitute the
reagents and products of these reactions do not undergo the transformations.
The aim is to find the genetic manipulations that change the metabolic pro-
cess in an organism, in order to increase the flow of desired metabolites, chosen
according to biotechnological purposes. Additionally, changing the natural ge-
netic function in an organism may cause the death of the growth cell. Therefore,
finding genetic manipulations is a hard problem of search and optimisation.

For all the above reasons and since designing gene knockout in laboratory is
very expensive and time-consuming, in the past years a variety of methods has
been implemented in order to predict in silico the best knockout strategies that
optimise a cellular function of interest. These methods are based on evolutionary
algorithms [5], simulated annealing [6], bi-level optimisation framework [7], and
mixed-integer linear programming (MILP) [8,9]. All have been tested in FBA or-
ganism models, but they require high computational efforts, since the execution
times grow exponentially [8,6,5] or linearly [7] as the number of manipulations
allowed in the final designs increases. Moreover, cellular metabolism is composed
of a large number of reactions, thus the dimension of the solution space is very
large and finding genetic manipulations is computationally expensive.
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In this work, we present a novel Multi-Objective optimisation algorithm de-
noted by Genetic Design through Multi-Objective (GDMO), in order to search
for the genetic manipulations that optimise multiple cellular functions of inter-
est. Our idea is to use the Pareto optimality to obtain not only a wide range
of Pareto optimal solutions, but also the best trade-off design. In this context,
the multiple biological functions are represented by desired productions, e.g., vi-
tamins, proteins, biofuel, biomass formation, antibodies, electron productivity,
or the energetic yield of the organism. For this application, a Pareto solution
represents a strain with a particular genetic manipulation (genotype), and that
is specialised to overproduce selected metabolites (phenotype), with respect to
the wild type (i.e., a strain with genes that are all operative). We test our
knockout-based multi-target optimisation on the most recent metabolic data
concerning Escherichia coli, Geobacter [10], Methanosarcina barkeri [11], and
Yersinia pestis [12]. We report that multi-objective optimisation provides more
insights than single optimisation on the capability of these organisms to adapt
to the simultaneous presence of different conditions and constraints. Further-
more, our method is able to explore effectively the whole space of knockouts.
We tested the performance of GDMO by maximising acetate and succinate pro-
duction rates, and other multiple biological functions in E. coli, iAF1260, and
comparing it against previous methods.

GDMO is accompanied by a robustness analysis that performs the local, global
robustness and the Normalised Feasible Parameter Volume of the genetic ma-
nipulation proposed by GDMO. For each strain, we compute the robustness
indexes, in order to estimate how robust is a strain obtained by GDMO when
it undergoes small perturbations, external (changes in the nutrients) or internal
(changes in the metabolism). This way, we are able to choose the most robust
strain proposed by GDMO. Finally, the Sensitivity Analysis investigates the
species solution space and determines the influence of each specie on the output
of the FBA model.

2 Methods

2.1 GDMO: Genetic Design through Multi-Objective Optimisation

GDMO is a combinatorial global search method that finds the genetic manipu-
lation strategies to simultaneously optimise multiple cellular functions (i.e., ob-
jective functions) in metabolic networks modelled with Flux Balance Analysis
(FBA) and Gene-Protein-Reaction (GPR) map. The simultaneous optimisation
of multiple objectives differs from the single-objective optimisation because the
solution is not unique when the objectives are in conflict with each other. In
a maximisation problem objectives are in conflict when the increment of an
objective, causes the decrement of at least another one.

The solution of a multi-objective problem is a potentially infinite set of points,
called non-dominated solutions or Pareto front. In a maximisation problem, a
solution is Pareto optimal if there exist no feasible solutions that increase some
objective without causing a simultaneous decrease in at least one other objective.
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In our problem, the genotype of a bacterium is mathematically represented by
a string of bits y ∈ {0, 1}L. Each bit in y is a gene set that distinguishes between
single and multi-functional enzymes, isozymes, enzyme complexes and enzyme
subunits; this way, it captures the complexity and diversity of the biological
relationships through a Boolean approach. For example, when the genes of the
l-th set are all necessary to catalyse the corresponding reactions (a single gene
set can linked to more reactions), genes are related by “AND”; otherwise if it is
necessary at least a gene, genes are linked by “OR”. When the l-th element of
y is set to 1, the corresponding gene set is inoperative. Therefore, y represents
the vector of decision variables to be found, in order to obtain the higher values
of objective functions, satisfying particular constraints (for instance a maximum
number of gene knockouts allowable). A point y∗ in the solution space is said
to be Pareto optimal if there does not exist a point y such that F (y) dominates
F (y∗), where F is the vector of r objective functions. The variable space, (i.e.,
the domain of y) is defined in a discrete space.

The method we present implements a genetic algorithm inspired by NSGA-
II [13] and is composed of 4 key steps. We start with the initialisation of the
population Pop and the computation of the fitness score. The population Pop
is a set of individuals, i.e., a set of feasible solutions. Pop is represented by a
I × (L+ r+2) matrix, where I is the number of individuals, L is the number of
the decision variables and r is the number of the objective functions, obtained
solving the problem (2). The last two columns are used to store two parameters
of the algorithm linked to each individual and useful to evaluate the quality of
the solution. Each individual is composed of the proposed knockout strategy ỹ
and the corresponding objective function values. Each generation select the indi-
viduals that are maximal with respect to the product ordering. The individuals
of the initial population can be initialised in different ways: either randomly,
assigning present status to all genes or selecting a set of knocked out genes.

Successively, three steps are iteratively carried out. In a binary tournament
selection process, two individuals are selected at random, and their fitness is
compared. The individual with the best fitness is selected as a parent. The
algorithm selects a number of parents (i.e. the best individuals) equal to the half
of the population. Parents are mutated using a combinatorial mutation operator
convenient to create an offspring population. Mutation represents a switch, from
0 to 1, or from 1 to 0 for the l-th gene set. The process is randomly executed
and for each parent individual ten offspring have been formed and only the best
is chosen. Mutation can achieve the maximum knockouts number equal to the
parameter C (fixed to 50 by default). A novel population of size Pop is formed
selecting the best individuals from the parents of the previously generation and
the current offspring. The new population undergoes a new round of evaluation.
For each generation of the algorithm, Pareto optimal solutions are provided.
Finally, a selection operator is performed in order to reach the last front.

This cycle is repeated until the solution set does not improve, or until an
individual with a desired phenotype is achieved or when the number of gen-
eration is bounded out. The number of generations D and individuals of the
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population I are parameters chosen by the user. The time-complexity of the
genetic algorithm is O(2DIr), where D is the number of generations, I is the
population size and r is the number of the objectives. GDMO finds a set of Pareto
optimal solutions (non-dominated solutions) for a combinatorial multi-objective
optimisation problem, which is also a NP-complete problem.

Pareto Optimality is very useful for the analysis of metabolism, as reported
in the previous works [14,15,16], where authors used multi-objective approaches
to evaluate the fluxes distributions and genetic manipulations in metabolic net-
works. In our work, we remark the usefulness of Pareto optimality and adopt an
effective and state-of-the-art algorithm to investigate the knockout space. Addi-
tionally, for the first time, we used the ε-dominance optimality, to do an accurate
search in a neighbourhood of the edge of the Pareto region.

2.2 Pareto ε-Dominance

Another analysis that we perform is inspired by the idea described in [17]. They
use a condition of approximated dominance for their evolutionarymulti-objective
algorithm with the aim of improving the diversity of solutions and convergence.
We, however, use this idea to perform a post-processing analysis in order to
calculate an approximated Pareto front. This calculation is designed to search
for new solutions and, in particular, solutions that may have been discarded,
but they are dominated by an amount that, for our purposes, can be consid-
ered negligible. Therefore, once the optimisation routine has been carried out,
all the sampled points are revisited. Then, a new set of solutions is built, called
“ε-non-dominated” set, by applying a “relaxed” condition of dominance, called
ε-dominance. Formally, assuming that all the objective functions must be max-
imised, given ε > 0, we seek all the points (solutions) belonging to the set:
{w : wz + ε ≥ uz, ∀ z = 1, ..., r}. Remarkably, this set contains both the new “ε-
non-dominated” solutions and the previous non-dominated ones.

2.3 FBA Modelling and the Combinatorial Optimisation Problem

FBA is a modelling framework used for studying biochemical networks and in
particular the m metabolites and n reactions that are involved (e.g., their for-
mation and degradation, transport and cellular utilisation). For each metabolite
Xi, i = 1, . . . ,m a material balance is dXi

dt =
∑n

j=1 Sijvj , where Sij is the stoi-
chiometric coefficient associated with each flux vj , j = 1, . . . , n. At steady state,∑n

j=1 Sijvj = 0 holds. This balance equation can be written in matrix form
Sv = 0, where S is the stoichiometric matrix of m rows and n columns, and
v is the vector of fluxes (metabolic and transport fluxes). The matrix S is not
square and n > m, so we have a plurality of solutions. Each solution is a flux
distribution representing a particular metabolic state, depending on the geno-
type and the transport fluxes. The FBA approach finds the metabolic state in
order to optimise a particular objective function, given as a linear combination
of fluxes (e.g., growth rate, ATP production). Consequently, the problem can be
formulated as a linear programming problem:
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Fig. 1. ε-dominance analysis results in E. coli network for acetate (A) and succinate
(C) multi-objective optimisation. Figures B and D report the knockout cost associated
with the solutions reported respectively in Figures A and C, and the dimension of
circles reflects the knockout cost associated with the solution point.

maximise (or minimise) f ′v
such that Sv = 0

vLj ≤ vj ≤ vUj , j = 1, . . . , n,

(1)

where f is a vector of weights (n dimensional). All the elements in f are either
0 or 1. In our work, fi is equal to 1 if vi is the biomass core, but it is possible
any combination of fluxes as an objective functions. vLj and vUj are the lower
and upper bound values (thermodynamic constraints) of the generic flux vj (in
our analysis, we consider vUj = 100 and vLj = −100 for the fluxes that represent
reversible reactions). The output of FBA is a particular distribution of fluxes,
denoted by v, which optimises the objective function. Remarkably, FBA does
not describe how a certain flux distribution is realised (by kinetics or enzyme
regulation), but which flux distribution is optimal for the cell.

We propose the gene-protein-reaction (GPR) mappings to allow our algorithm
to work at the genetic level. GPR mappings provide links between each gene and
all the reactions vj depending on it, and define how certain genetic manipulations
affect reactions in the metabolic network. For a set ofL genetic manipulations, the
GPR mappings are represented by a L× nmatrixG, where the (l,j)-th element is
1 if the l-th genetic manipulation maps onto the reaction j, and is 0 otherwise.

Our approach is based on the technique adopted in OptKnock [8], which
finds the fluxes distribution in the metabolic network in order to reproduce
the desired productions (synthetic objectives) and achieve the maximal growth.



Multi-objective Optimisation, Sensitivity and Robustness for FBA 133

Unlike Optknock, we are able to optimise more than one objective. The bi-level
problem [8] is represented by the following formulation:

max g′v

such that

L∑

l=1

yl ≤ C

yl ∈ {0, 1}
max f ′v
such that Sv = 0

(1− y)′Gjv
L
j ≤ vj ≤ (1 − y)′Gjv

U
j ,

j = 1, . . . , n,

(2)

where g is a vector of weights (n dimensional) associated with the synthetic
objectives, and g′ is its transpose. For example, when the synthetic objectives
vj and vh have to be maximised, the weights gj and gh are equal to 1. y is
the knockout vector (L dimensional). If there are no impaired reactions in the
metabolic network, y contains only zeros. Conversely, when yl = 1, the gene set
involved in the manipulation l is turned off, and the corresponding reactions
are in the absent status (the lower and upper bounds are set to zero, resulting
in a modified metabolic network). C is an integer representing the maximum
number of knockouts allowed. The bi-level problem can be converted to a MILP
problem as described in [8] (for a detailed description, see the original work [8]).
We implemented and solved the problem using the GLPK solver.

2.4 Sensitivity Analysis

In modelling, Sensitivity Analysis (SA) is a method used to discover which inputs
play a key role on the output of the model. In the last years, scientists used SA
indexes in systems biology interrogating the reactions space (RoSA - Reactions
oriented Sensitivity Analysis) [18], [19] and species space (SoSA - Species oriented
Sensitivity Analysis) to find their influence on the outputs of the system [20].
We perform SA to find the most sensitive inputs in FBA model of E. coli using
the Matlab SensSB Toolbox [21].

The E. coli model analysed in this work contains 2382 fluxes, 299 of which
represent exchange fluxes, 2082 represent inner metabolic reactions, and 1 the
growth rate or biomass.

The nex exchange reactions ( nex < n ) described by the vector vex ⊂ v,
allowing nutrients to enter and leave the system, are unconstrained in the forward
direction (vUex, upper bound vector), while are constrained in reverse directions
(vLex, lover bound vector) to zeros when uptake rates is not allowed. Moreover,
the “EX glc” is an exchange reaction for glucose and has a lower bound of “-10”
indicating a potential glucose uptake rate of 10 mmol gDW−1 h−1.

We performed the SA method considering as inputs of the model the vLex lower
bound vector of exchange fluxes. For each of nex exchange fluxes we varied each
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element of vLex in the interval [-100, 0] of the region of interest Ω, nex-dimensional
unit hypercube.We adopted theMorris [22] method in order to identify the uptake
rates whose tuning results in a major system response. SA is based on the calcula-
tion of the elementary effect due to the variation of each input. For a given value of
vLex, we define the elementary effect of the h-th input as:

dh(v
L
ex) =

F (vLex(1), . . . , v
L
ex(h− 1), vLex(h) +Δ, vLex(h+ 1), . . . , vLex(nex))− F (vLex)

Δ
.

(3)

We considered the vector of fluxes v as output F (vLex) for E. coli model,
calculated by solving the problem (1). For each of the nex exchange fluxes, the at-
tention is restricted to a region of experimentation ω,
nex-dimensional k -level grid, where each vexh may take a value from ω ={
−100,−100k−2

k−1 , . . . ,−100 2
k−1 ,−100 1

k−1 , 0
}
. Δ is a predetermined multiple of

1
(k−1) and represents the perturbation of the input vexh . The distribution of ele-

mentary effects EEh for the input vexh is obtained by randomly sampling Q points
from ω. The estimation of the mean μ∗ and standard deviation σ∗ of those dis-
tributions EEh will be used as indicator of which inputs should be considered

1e-018

1e-015

1e-010

1e-005

1

1e-018 1e-014 1e-010 1e-006 1

σ∗

μ∗
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Fig. 2. Uptake Rate-oriented Sensitivity Analysis for the E. coli model iAF1260. In
this analysis we investigate the input fluxes of the model (299 nutrients) and evaluate
their sensitivity with respect to all fluxes of the model. We find that only 70 fluxes
(reported in the key) out of 299 are influent, the other ones have sensitivity indexes
equal to zero. Results have been obtained averaging over 3000 evaluates of function F .
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important. A high μ∗ mean indicates an input with an important “overall” in-
fluence on the output. A large measure of σ∗ variance indicates an input whose
influence is highly dependent on the values of the inputs.

2.5 Robustness Analysis

The ability of a system to adapt to perturbations due to internal or external
agents, aging, temperature, environmental changes and, in our case, also due
to molecular noise and mutation is one of evolutionism guidelines and should
also be a fundamental design principle. To optimise the production of a specific
metabolite (and simultaneously the formation of biomass, which is necessary to
maintain the survival of the bacteria), we used GDMO that obtain a strain that
maximises the feature required by us. At this point, the validity of the biological
strain, designed in-silico, must be tested as regards robustness and sensitivity
to endogenous and exogenous perturbations, and this is done by the robustness
analysis. In this way, we also know the ability of a strain to adapt to small
perturbations that can occur at any stage of the biochemical processes within the
bacterium, or caused by the environment in which it reproduces. As we shall see,
by the term “adaptive capacity” we mean the ability to maintain “acceptable”
the performances relative to the metabolite production and biomass formation
previously optimised.

There are numerous methods that can be used to fulfil this task. Among these,
in [23] the authors consider a big network (in this case, however, considered the
Internet network) and use the theory of percolation on random graphs to test
the robustness of the network in case of random or targeted node deletion, or in
case of random link deletion. They associate occupation of nodes or links with
their functioning, and for occupation probability they mean the probability of
operation of them. They consider that this probability is uniform or depends
on the degree of each node (that is the number of connections at that node)
distribution. So they analyse the robustness of the network connectivity as the
occupation probability is varied. Through this analysis, they highlight that a net-
work with these characteristics is robust to random removal of nodes or links,
but not if they are targeted nodes with highest degree. In another work [24], the
relationship between the general characteristics of a chemical reaction network
and the sensitivity of his equilibrium is investigated according to changes in the
overall supply of reagents. The authors define the sensitivity of a species as the
variation of it with respect to the element concentration one, and they find a
lower bound to such sensitivity that depends on the network structure alone. In
particular, they argue that a strong robustness of the equilibrium against ele-
ment variations is likely only if the various species are constructed from building
block highly gregarious (i.e. each one binds with many others) or present in
some species with high multiplicity. Finally, in [25] the authors use a combined
approach of global and local robustness that they call Glocal Robustness. The
global analysis investigates the parameter space with the aim of finding where
a circuit cell shows experimental observed features (global), while the local one
determines the robustness of parameter sets sampled during the previous phase.
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Similar work making use of the robustness analysis for parameter estimation are
also present in [26] and in [27]. In our work, however, we use very simple robust-
ness analysis that shows a high degree of transversality because easily applicable
in other fields, as was done in [28] and in [29].

The basic principle of this analysis is as follows. Firstly, we define the per-
turbation as a function τ = γ (Ψ, σ) where γ applies a stochastic noise σ to the
system Ψ and generates a trial sample τ . The γ-function is called γ-perturbation.
Without loss of generality, we assume that the noise is defined by a random dis-
tribution. In order to make statistically meaningful the calculation of robustness,
we generate a set T of trial samples τ . Each element τ of the set T is considered
robust to the perturbation, due to stochastic noise σ, for a given property (or
metric) φ if the following condition is verified:

ρ (Ψ, τ, φ, ε) =

{
1, if |φ (Ψ)− φ (τ) | ≤ ε

0, otherwise
(4)

where Ψ is the reference system, φ is a metric (or property), τ is a trial sample of
the set T and ε is a robustness threshold. The definition of this condition makes
no assumptions about the function φ. It can be anything (not necessarily related
to properties or characteristics of the system); however, it is implicitly assumed
that it is quantifiable. The robustness of a system Ψ is the number of robust
trials of T, with respect to the property φ, over the total number of trials (|T |).
In formal terms:

Γ (Ψ, T, φ, ε) =

∑
τ∈T ρ (Ψ, τ, φ, ε)

|T | (5)

where Γ is a dimensionless quantity that states, in general, the robustness of a
system and, in this case, of a strain.

Robustness index is a function of ε, so the choice of this parameter is crucial and
not a trivial task. Since we are interested in the behaviour of strain when subjected
to small perturbations andbecause thebehaviour is acceptablewhen thedeviations
from the original value is as small as possible, we choose the values of epsilon equal
to 1% of the metric and sigma equal 1% of the perturbed variable.

Based on this principle, we evaluate two values of robustness, the Global Ro-
bustness value (GR) and the Local Robustness value (LR). Also we evaluated
the Normalised Feasible parameter Volume ([25]) to give a comparison between
these results and the GR/LR values. The first two values only differ in the per-
turbation kind, in particular, chosen σ, it will differ the set of variables that will
be perturbed.

Global Robustness. As regards the Global Robustness of a strain, we per-
turbed the upper and lower bounds of each metabolic flux. Hence, a trial τ is
created by perturbing all the upper vUj and lower bounds vLj , j = 1, . . . , n of the
metabolic flux. We create a set Tτ of trials, and for each of them we perturb
all the bounds and evaluate the property φ(τ) (by flux balance analysis), which
in our case can be the value of acetate, succinate, biomass or a combination of
them; and then, we calculate the function ρ. Once a value of ρ is obtained for
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each of the trials, we compute the value of robustness (Equation 5), which in
this case we call Global Robustness because all the parameters are perturbed.

Local Robustness. In this case, we perturb again the upper vUj and lower

bounds vLj , j = 1, . . . , n, of a metabolic flux, but we create a sample trial per-
turbing a single flux, we evaluate the property φ(τ) and we calculate the func-
tion ρ. After creating a set Tτ of trials, we calculate the robustness (Equation
5), which in this case we call Local Robustness. Hence, we calculate a LR value
for each metabolic flux.

Normalised Feasible parameter Volume. We also implemented the anal-
ysis described in [25] to compare the results obtained by GR and LR. In this
analysis, the authors implement a procedure that calculates the volume occupied
by those parameters such that the system maintains the desired characteristics.
The volume is computed in the 2n-dimensional parameter space. In our case,
the volume is such that Equation 4 holds. Since this research requires a huge
computational effort, given the high number of dimensions (R2n, where 2n is the
number of parameters), it is guided by an iterative procedure that involves the
Principal Component Analysis (PCA). In the second part, they calculate local
coefficients, and from these they derive which parameters are influential on the
robustness (by Spearman’s partial correlation coefficient).

In particular, the first part requires two steps. The first is a Monte Carlo sam-
pling obtained with 2n-dimensional Gaussian random variations centred around
a parameter vector (known in advance). In our case this vector is represented by

the 2n parameters: vUj and vLj . Then a set T
(1)
τ , 2n×K is created, that contains

K parameter vectors. Among these, only a fraction will satisfy the Equation 4,
the set comprising this fraction is the set of the feasible parameter vectors V (1).
The second step begins with a principal component analysis of V (1); this analysis
allows to identify statistical linear structures within high-dimension data sets.
Here, instead, it is used to guide the sampling of the parameter vectors in subse-

quent iterations. In particular, T
(2)
τ and the subsequent sets T

(h)
τ are generated

from V (1) and, in general, from V (h−1), where h = 1, . . . , H are the iterations

number. In particular the generic element τj,k of T
(h)
τ is generated as:

τj,k =

T∗∑

t∗=1
V

(h−1)
j,t∗

|T ∗| + λ(h−1) · ξj,k,
(6)

where j = 1, . . . , 2n, since the columns of T
(h)
τ contain the perturbed values of

the parameters vUj and vLj , j = 1, . . . , n; k = 1, . . . ,K is the cardinality of T
(h)
τ ;

the first term, on the right side, is the average of the elements for each perturbed
parameter (that is the average for each row) of the set V (h−1) obtained in the
previous iteration; ξj,k is a Gaussian noise with zero mean and standard deviation
equals to the (j, k)th−element of the covariance matrix Σ(h−1), i.e. the pair wise
covariance calculated for all vectors τa and τb of V

(h−1) (the eigenvectors of this
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matrix are the principal axes of the V (h−1) set by PCA); finally, the real value
λ(h−1) guides the hth Gaussian process by scaling the standard deviations of the
distribution along the PCA directions. The purpose of Equation 6 is to avoid
unnecessary sampling in a parameter space region where there are no probably
feasible vectors. At the end of this procedure, a hyper-box B is constructed
in the parameter space, whose axes are parallel to the PCA axes of the last
iteration. The bounds of this box, for each direction, are given by the more
extreme elements in the set V H of the last iteration. Then B is uniformly sampled
constructing the final set Tτ ; a subset V of Tτ will verify the Equation 4. Finally,
the feasible parameter volume will be calculated as R2n = (|V | \ |Tτ |) ∗ V ol(B),
where |.| determines the cardinality. The logic of this measure is that as the value
of R2n increases as the likelihood that perturbing a parameter vector, another
feasible parameter vector is generated increases. Finally, for comparing systems
with different number of parameters the normalised feasible parameter volume
R is defined as R =

√2nR2n. R can be considered as the permissible average
variation per-parameter that leaves intact the system performance.

The second part of this analysis is connected to the global part. The authors
take into account the final set of the feasible parameter vectors V and for each
parameter vector produces Q sample trials perturbing the 2n parameters by
Gaussian noise with zero mean and sigma equal to 0.2; then, they calculate the
fraction of robust trials; after that, they repeat the calculations for all vectors.
Finally, for the 2n-parameters, they calculate the Spearman partial correlation
coefficient with respect to the robust trial fraction values and the different values
assumed by the parameters δj(V (j), X), where j = 1, . . . , 2n; V (j) is the jth

row of V (containing the observations of the jth-parameter) and X is a vector
(containing the values of the robust trial fractions).

3 Results

We tested the performance of GDMO to maximise the production of acetate and
succinate in the recent model of E. coli K-12 MG1655, iAF1260 [30], and we
compared it with GDLS [7], OptFlux [6] and OptGene [5]. In Table 1, we report
the productions in wild type, and the results obtained by previous methods and
in particular the greater level of acetate and succinate we reach. Pareto and
ε-optimality present several suitable solutions, which are reported in details in
Table 3. Our method reaches interesting results in terms of acetate, succinate,
biomass and, mostly, in knockout cost. The knockout cost is defined according to
the Boolean relationship between genes. For example, if a gene set is composed
by two genes linked by an “AND” relation, the cost to ensure the catalysis
of the corresponding reactions is 2, since both genes are necessary to turn on
the reactions. Instead, the cost to ensure the turning off of the corresponding
reactions (knockout cost) is 1. In our optimisation, indeed, we select as third
objective the minimisation of the knockout cost, since in vivo knockout is an
expensive and a difficult biotechnological procedure. In all the simulations we
initialised the network with an empty set of knockouts, in order to compare our
results with GDLS.
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Table 1. Comparison between GDMO and previously genetic design meth-
ods. We compare OptFlux [6], OptGene [5], GDLS [7], OptKnock [8] and our multi-
objective optimisation algorithm (GDMO) for maximising acetate (Ac) and succinate
(Suc) production [mmolh−1 gdW−1]. The third and fourth rows provide the biomass
(Bm) [h−1] and the knockout cost (kc). We report two candidate solutions for acetate
optimisation: the first strain, named A5 (Table 3), provides a low kc equal to 3, and
the second one (A2) reaches an elevated value of acetate, +130.7%, outperforming the
previous methods. For succinate production, we obtain +13659% with respect to wild
type, deleting only 8 genes (B3). The last three rows provide the robustness indexes.
R values [25] and GR values are global robustness indexes. For LR we report the min-
imum value found that is associated with the less robust flux (glucose uptake rate).
“n.a.” stands for not applicable.

Wilde Type OptFlux OptGene GDLS GDLS OptKnockOptKnock GDMO GDMO GDMO
Ac 8.30 15.129 15.138 15.914 n.a. n.a. 12.565 13.791 19.150 n.a.

(+82.3%) (+82.4%) (+91.7%) n.a. n.a. (+51.4%) (+66.13%) (+130.7%) n.a.
Suc 0.077 10.007 9.874 n.a. 9.727 9.069 n.a. n.a. n.a. 10.610

(+12877%)(+12704%) n.a. (+12514%) (+12362%) n.a. n.a. n.a. (+13659%)
Bm 0.23 n.a. n.a. 0.0500 0.0500 0.1181 0.1165 0.130 0.053 0.087

n.a. n.a. (-78.4%) (-78.4%) (-77.9%) (-49.6%) (-43.72%) (-77.10%) (-62%)

kc n.a. n.a. n.a. 14 26 54 53 3 10 8
GR 54.76% n.a. n.a. 13.76% 16.6% 43.24% 43.08% 45.32% 27.6% 40.40%
LR 54.0% n.a. n.a. 16.0% 21.33% 40.0% 40.60% 39.33% 24.0% 46.0%
R 1.30 n.a. n.a. 1.45 1.45 1.18 1.02 0.78 0.44 1.32

For each solution, we also calculate the Robustness indexes. In particular the
Global Robustness index (GR) can be seen as an index to discriminate a strain
from each other to choose the best, as regard the robustness with respect to
the selected metrics. Moreover, if GR is high, the likelihood of the strain to
maintain the performance increases, even if subjected to perturbations. R values
indicate the permissible average variation per-parameter that leaves intact the
system performance. Therefore, also these values can be seen as an index to
discriminate a strain from each other. If we consider the GR and R values, we
can see a similar behaviour in most cases. Local Robustness (LR) index represents
the absolute and relative minimum of the results obtained for each strain. Only
for the flux related to D-glucose exchange (Ex glc), we obtain LR values less
than 100%. Finally, we evaluated Spearman partial correlation coefficients. Since
this procedure requires a considerable computational effort, the results of this
analysis are calculated for only one strain (A4, Table 2). The results indicate
that the highest value is δi∗ = −0.24 (the other values are smaller at least by
one order of magnitude) that corresponds to the D-glucose exchange (EX glc)
reaction. It indicates that the Robustness of the strain is more correlated to this
reaction. The result is identical to that we obtained with the Local Robustness
analysis. Also in this case, the D-glucose exchange (EX glc) is the fragile reaction
of the strain. Results are shown in Table 2.

The study of genes and reactions of E. coli has involved inferring several
Pareto trade-offs in anaerobic and aerobic conditions (Figure 3 and Figure 4).
The experiments reported in Figure 3 show that GDMO overcomes all the above
mentioned methods, and in particular GDLS. The latter performs a single-
objective optimisation maximising the synthetic objective function acetate
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Fig. 3. Maximisation of biomass and acetate production in anaerobic and aerobic con-
ditions (A,B), and maximisation of biomass formation and succinate production in
anaerobic and aerobic Condition (C,D), with glucose uptake rate 10 mmolh−1 gDW−1

in iAF1260. In black the Pareto solutions obtained by GDMO, and in red the optimal
results obtained by GDLS [7].

production with knockout cost equal to 14, or optimising succinate production
with knockout cost 26, as shown in Table 1 and Figure 3.

The Pareto front strategy is useful to investigate the biological and statisti-
cal complexity in several organisms. Figure 5 reports four Pareto curves obtained
optimising the acetate/succinate production and the biomass formation in differ-
ent organisms: the E. coli [30], the Methanosarcina barkeri [11], Geobacter sul-
furreducens [10] and Yersinia pestis [12]. M. barkeri is an archaea able to live
in anaerobic condition and produce methane using three known metabolic path-
ways for methanogenesis. Geobacter species are of ecological importance due to
bioremediation capabilities. The organism can metabolise uranium, has the abil-
ity to generate electricity and can decompose petroleum contaminants in polluted
groundwater. For all the organisms, glucose uptake rate is fixed at a maximum
of 10 mmolh−1gDW−1 as a carbon source (except for M. barkery, which does
not features the glucose exchange flux in its metabolic network). Some external
metabolites (e.g., calcium, ammonia, sulfate, phosphate, oxygen, water, proton,
iron (II-III), potassium, sodium, copper, chloride and carbon dioxide) are allowed
to both enter and leave the system, while the others are allowed only to leave the
system. GDMO highlights the response of different systems and the ability of the
organisms to produce the desired metabolite. In the same conditions, M. barkeri
and G. sulfurreducens reach higher levels of acetate than E. coli.
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Table 2. Robustness analysis results. For each strain we report: the Global Ro-
bustness Value (GR), the normalised feasible parameter volume (R) and the Local
Robustness (LR) values. For the LR values are shown the minimum associated with
the glucose uptake rate. For all other fluxes, we obtained 100% of local robustness.

Strain GR(%) R LR(%)

A1 28.72 0.39 26.67
A2 27.60 0.44 24.00
A3 40.72 1.27 35.33
A4 41.52 1.74 36.0
A5 45.32 0.78 39.33

B1 44.60 0.15 44.67
B2 43.48 0.92 42.0
B3 40.40 1.32 46.0
B4 44.64 1.30 44.0
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Fig. 4. Pareto fronts for six optimisation problems. We simultaneously maximise
biomass formation [h−1] and A) ATP synthase rate, B) 1,2-propanediol, C) CO2, D)
ethanol, E) formate , F) lactate production rates [mmolh−1 gDW−1]. In blue we sim-
ulate aerobic conditions with O2=10 mmolh−1 gDW−1, in black anaerobic conditions.
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Table 3. We report some of the proposed solutions obtained by GDMO to maximise
acetate and succinate productions [mmolh−1 gDW−1] in E. coli network. For each
strategy, we report the biomass formation [h−1], the knockout cost (k cost) and the
corresponding genes and reactions switched off. The variation of acetate, succinate and
biomass in comparison with the wild type is enclosed in brackets.

Strain Acetate Biomass k cost Knocked out Genes Deleted Reactions

A1 19.198 0.052 12 (b0351) OR (b1241) acetaldehyde dehydrogenase (acetylating)
(131.26%) (-77.38%) (b0910) cytidylate kinase (CMP)

cytidylate kinase (dCMP)
(b2975) OR (b3603) D-lactate transport via proton symport

glycolate transport via proton symport, reversible
L-lactate reversible transport via proton symport

(b4381) deoxyribose-phosphate aldolase
(FdhF and Hyd4) or (FdhF and HycB)* Formate-hydrogen lyase
(b0243) glutamate-5-semialdehyde dehydrogenase
(b3617) glycine C-acetyltransferase
(b0963) methylglyoxal synthase
Nuo* NADH dehydrogenase

A2 19.150 0.053 10 (b0351) OR (b1241) acetaldehyde dehydrogenase (acetylating)
(130.7%) (-77.10%) (b3945) aldose reductase (acetol)

Glycerol dehydrogenase
D-Lactaldehyde:NAD+ 1-oxidoreductase

(b4381) deoxyribose-phosphate aldolase
(FdhF and Hyd4) or (FdhF and HycB)* Formate-hydrogen lyase
(b3617) glycine C-acetyltransferase
(b1380) OR (b2133) D-lactate dehydrogenase
(b3236) malate dehydrogenase

A3 18.532 0.096 9 (b0351) OR (b1241) acetaldehyde dehydrogenase (acetylating)
(123.2%) (-58.6%) (b0910) cytidylate kinase (CMP)

cytidylate kinase (dCMP)
(b2975) OR (b3603) D-lactate transport via proton symport

glycolate transport via proton symport, reversible
L-lactate reversible transport via proton symport

(b4381) deoxyribose-phosphate aldolase
(b3617) glycine C-acetyltransferase
(b0963) methylglyoxal synthase
Nuo NADH dehydrogenase

A4 14.046 0.104 5 (b0351) OR (b1241) acetaldehyde dehydrogenase (acetylating)
(69.20%) (-55.14%) (b3617) glycine C-acetyltransferase

(b4025) glucose-6-phosphate isomerase
(b3708) Tryptophanase (L-tryptophan)

A5 13.791 0.130 3 (b0351) OR (b1241) acetaldehyde dehydrogenase (acetylating)
(66.13%) (-43.72%) (b1539) L-allo-threonine dehydrogenase

D-serine dehydrogenase
L-serine dehydrogenase

Strain Succinate Biomass k cost Knocked out Genes Deleted Reactions

B1 12.012 0.055 15 (b0351) OR (b1241) acetaldehyde dehydrogenase (acetylating)
(15476%) (-76.33%) (b2587) 2-oxoglutarate reversible transport via symport

(b0870) OR (b2551) D-alanine transaminase
alanine transaminase
L-allo-Threonine Aldolase
Threonine aldolase

(b1852) glucose 6-phosphate dehydrogenase
(b1849) GAR transformylase-T
(b1380) OR (b2133) D-lactate dehydrogenase
(b2463) malic enzyme (NADP)
(b0963) methylglyoxal synthase
(b4388) phosphoserine phosphatase (L-serine)
(b2661) succinate-semialdehyde dehydrogenase (NADP)
(b1602 AND b1603) NAD(P) transhydrogenase (periplasm)
(b3708) Tryptophanase (L-tryptophan)

B2 11.530 0.070 10 (b0351) OR (b1241) acetaldehyde dehydrogenase (acetylating)
(14875%) (-69.3%) (b2587) 2-oxoglutarate transport via symport

(b3945) aldose reductase (acetol)
Glycerol dehydrogenase
D-Lactaldehyde:NAD+ 1-oxidoreductase

(b1852) glucose 6-phosphate dehydrogenase
(b1380) OR (b2133) D-lactate dehydrogenase
(b2463) malic enzyme (NADP)
(b2661) succinate-semialdehyde dehydrogenase (NADP)
(b1602 AND b1603) NAD(P) transhydrogenase

B3 10.610 0.087 8 ((b0351)OR(b1241)) acetaldehyde dehydrogenase (acetylating)
(13659%) (-62%) ((b3945)) aldose reductase (acetol)

Glycerol dehydrogenase
D-Lactaldehyde:NAD+ 1-oxidoreductase

((b1380)OR(b2133)) D-lactate dehydrogenase
(b2463) malic enzyme (NADP)
(b0767) 6-phosphogluconolactonase
((b1602ANDb1603)) NAD(P) transhydrogenase

B4 9.284 0.093 5 ((b0356) OR (b1241) OR (b1478)) alcohol dehydrogenase (ethanol)
(11939%) (-59.55%) (b4025) glucose-6-phosphate isomerase

(b2501) polyphosphate kinase
polyphosphate kinase

*We report the protein 1) “Nuo” associated to the gene set:(b2276 AND b2277 AND b2278 AND b2279 AND b2280 AND b2281 AND
b2282 AND b2283 AND b2284 AND b2285 AND b2286 AND b2287 AND b2288),
and 2) “(FdhF and Hyd4) or (FdhF and HycB)” associated to (b4079 AND (b2481 AND b2482 AND b2483 AND b2484
AND b2485 AND b2486 AND b2487 AND b2488 AND b2489 AND b2490) or (b4079 AND (b2719 AND b2720 AND b2721
AND b2722 AND b2723 AND b2724)))



Multi-objective Optimisation, Sensitivity and Robustness for FBA 143

In order to study the favourable environmental conditions, i.e. nutrients for E.
coli, we performed the simultaneous optimisation of acetate, succinate and biomass
on the complete network, i.e. without knockouts. We consider the anaerobic and
aerobic condition (O2 uptake rate = 10 mmolh−1gDW−1) by keeping fixed the
glucose uptake rate to 10 mmolh−1gDW−1. We use the Non-Dominated Sort-
ing Genetic Algorithm II [13] to perform optimisation by exploring the contin-
uous space of exchange fluxes. The algorithm implements the Simulated Binary
Crossover operator for crossover and the polynomial mutation. In our analysis,
the decision variable vector is the lower bound vector of the flux values that con-
stitute the 297 exchange fluxes (glucose and oxygen are kept constant) in the FBA
model of E. coli. The decision variables are real values from 0 to -100 (0 when the
uptake is not allowed, -100 when the potential uptake rate is 100 mmol gDW−1

h−1). The algorithm parameters are the population size (set as 100 individuals)
and the generation number (set at 500).

Our method reaches the maximum value of acetate (+100 mmol gDW−1 h−1),
and highlights conflictive behaviour of biomass and succinate (see their maximi-
sation in the Pareto fronts of Figure 6). In anaerobic condition, we found 100
mmolh−1 gDW−1 h−1 of acetate, 42.918mmolh−1 gDW−1 of succinate and 3.6204
h−1 of biomass (the trade-off). In this condition, we individuated a significant
increment in the L-Aspartate, Citrate, Lactose, Fumarate and Malate uptake
rates. Instead, in aerobic condition, we found 100 mmolh−1 gDW−1 h−1 of ac-
etate, 21.889 mmolh−1 gDW−1 of succinate and 4.16 h−1 of biomass and a sig-
nificant increment in the L-Asparagine, 1, 4-alpha-D-glucan, Fe(III)dicitrate, 2-
Oxoglutarate uptake rates. In our analysis, we perturbed simultaneously almost
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Fig. 5. Pareto fronts obtained by optimising the acetate production [mmolh−1 gDW−1]
(A), succinate production (B) and the biomass formation [h−1] using GDMO algorithm
in four organisms models: E. coli, M. barkeri, G. sulfurreducens and Y. Pestis. For Y.
Pestis we consider two biomass compositions: at 24-28� and 37�. The significance of
these two temperatures stems from the two types of hosts that Y. Pestis infects in the
natural environment, namely insect vectors at ambient temperature and mammalian
hosts with regulated body temperatures of about 37�. In M. barkeri, G. sulfurreducens
and Y. Pestis, the yield of acetate and biomass is larger than E. coli due to the lower
number of reactions in the metabolic reconstructions.
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all the exchange fluxes, but it is possible to select a smaller set of nutrients to study
according to experimental requirement.

Sensitivity analysis results are shown in Figure 2, revealing that only 70 out
of 299 are influent in the output of the model, i.e., the remaining do not change
significantly the metabolic network. In particular, Chloride, Zinc, Co2+, L-
Glutamate exchanges are the most sensitive (the complete list is reported in
Figure 2).
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Fig. 6. Feasible regions for acetate production, succinate production (y axis) and
biomass formation (x axis). We consider the wild-type bacteria (i.e. knockout zero)
and perform the optimisation in aerobic (O2 = 10 mmolh−1 gDW−1, in blue) and
anaerobic (black) conditions on a basis of 10 mmolh−1 gDW−1 glucose fed to identify
favourable nutrients. In both conditions, the algorithm reaches the maximum produc-
tion of acetate (100 mmolh−1 gDW−1).

4 Conclusions

This paper highlights that the Pareto front has a close link with the biotechnol-
ogy productivity. For the biosynthesis, Pareto optimality is important to obtain
not only a wide range of Pareto optimal solutions, but also the best trade-off
design. Pareto front provides not merely the visualisation of the optimisation
process, but also significant information in metabolic design automation. For
instance, the size of non-dominated solutions, the first derivative and the area
under the Pareto curve could play a key role for the best design within the same
organism or between different organisms. Remarkably, the reduced size of the
Pareto front could indicate the incompleteness of the model in terms of the num-
ber of reactions modelled; in this case, the Pareto optimality could be thought
of as a parameter describing the improvement of a model for a bacterium with
respect to a previous model for the same bacterium.

Exploratory analysis and comparative metabolic models suggest that the area
underlying the Pareto provides an estimate of the number of intermediates which
may be exploited for biotechnological purposes (optimisation of an additional ob-
jective) or to build synthetic pathways (synthetic biology). Given two bacteria
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or two conditions for the same bacterium, a larger area under the Pareto front
probably represents the best conditions for adding or optimising pathways lead-
ing to new biotechnological products. The slope of the Pareto front reflects the
progressive lack of pathways able to sustain the production of one component
when we are optimising the metabolism to maximise the other. The anaerobic
Pareto front has also many more jumps (quick decreases) than the aerobic one.
Jumps mark the sudden loss of pathways due to the critical unavailability of
an enzymatic step. In other words they correspond to sudden decreases in the
availability of entire pathways and subnetworks when a crucial hub is eliminated
(e.g., the Krebs cycle). The region of the Pareto front nearby a jump suggests
that slight changes of conditions, or a handful of genetic mutations, may result in
a large change in the amount of product. Hence, the first derivative, and in par-
ticular its discontinuity, indicates the preferable conditions for the metabolites
production as highlighted in the Figure 3-C-D regarding succinate and biomass
optimisation. In fact, Pareto front in aerobic condition presents a wide jump,
confirming that anaerobic condition is favourable for succinate fermentation as
given in literature, while in aerobic condition succinate is used as intermediate to
produce energy and is totally consumed. GDMO scales effectively as the size of
the metabolic system and the number of genetic manipulations increase. More-
over, our results show that the multi-objective approach is very suitable for the
genetic design strategies (GDS) discovering. We believe that the algorithm could
be further extended and tuned to specific cases.

In the framework we propose in our work, the robustness analysis allows cur-
rently to discriminate the strains based on GR or R value: the higher these
values, the greater the possibility that bacteria, reproduced in laboratory, main-
tain the desired performance. In future works, the local robustness analysis and
other statistical connected analysis will enable us to reach a better understand-
ing of the metabolic network fragility and this could help the GDMO algorithm
to find more robust strains.
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