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Abstract. We develop and analyze a model of a minimal synthetic
gene circuit, that describes part of the gene expression machinery in
Escherichia coli, and enables the control of the growth rate of the cells
during the exponential phase. This model is a piecewise non-linear sys-
tem with two variables (the concentrations of two gene products) and an
input (an inducer). We study the qualitative dynamics of the model and
the bifurcation diagram with respect to the input. Moreover, an analytic
expression of the growth rate during the exponential phase as function
of the input is derived. A relevant problem is that of identifiability of
the parameters of this expression supposing noisy measurements of ex-
ponential growth rate. We present such an identifiability study that we
validate in silico with synthetic measurements.

1 Introduction

Synthetic biology has nearly emerged as a new engineering discipline. The goal
of synthetic biology [1,2,3] is to develop and apply engineering tools to control
cellular behavior—constructing novel biological circuits in the cell—to perform
new and desired functions.

Most recent synthetic designs have focused on the cell transcription machinery,
which includes the genes to be expressed, their promoters, RNA polymerase and
transcription factors, all serving as potential engineering components. Indeed,
synthetic bio-molecular circuits are typically fabricated in Escherichia coli (E.
coli), by cutting and pasting together coding regions and promoters (natural
and synthetic) according to designed structures and specific purposes ([4,5,6]).

Along these lines, synthetic biology ultimately aims at developing synthetic
bio-molecular circuitry that may help in producing bio-pharmaceuticals, bio-
films, bio-fuels, novel cancer treatments and novel bio-materials (see [2] for a
review on synthetic biology applications).

In the present work we focus on the gene expression machinery of the bac-
terium Escherichia coli, with the aim of controlling the growth rate of the cells.
E. coli is a model organism that is easy to manipulate and much knowledge is
available about its regulatory networks.
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In the presence of a carbon source—such as glucose—E. coli grows in an
exponential manner until it exhausts the nutrient sources, and then enters a
stationary phase with practically zero growth [7]. The wild-type (namely the
genetically unmodified) bacteria grow at different rates in the presence of carbon
sources of different types [8]. Notably, glucose is the preferred substrate because
it leads to a higher growth rate in wild type. Our control objective is to force
the bacterium to significantly modify its response to glucose so as to tune the
cells’ growth rates. To this end, we take into account the recent applications of
synthetic biology which allow us to fabricate engineered promoters which in turn
can be externally controlled by inducers [9].

Notably, we will study an open loop configuration of a bi-dimensional model
of a mutant E. coli inspired by the experiments in [10]. The two basic variables
of our model, which describe the gene expression machinery that is responsible
for bacterial growth are (see Fig.1):

1. the concentration of a Component of the Gene Expression Machinery
(CGEM), proteins responsible for global growth (ribosomes and RNA poly-
merase). Without this CGEM, the bacteria cannot produce any proteins and
thus cannot grow.

2. the concentration of CRP, a protein involved in the formation of the com-
plex cAMP-CRP whose level positively correlates with less preferred carbon
sources and slower growth [11].

We will assume that an engineered inducible-promoter is used to express the
CGEM. Moreover it is assumed that the mutant CGEM activates its own ex-
pression. The number and location of equilibria can thus be controlled by means
of an input control function of the inducer and, in particular, there can be regions
of bi-stability, as observed in [10].

The type of growth rate control we present—which directly acts upon the
GEM—could be useful in creating bacterial cells that divert resources used for
growth towards the production of a target compound. Thus, the analysis of the
simple model presented here is an attempt to help guide the construction of
synthetic gene networks, which improves product yield and productivity.

This paper is structured as follows: in Section 2 we describe the open-loop
model, providing some biological motivations for the terms forming the differen-
tial equations. Next, in Section 3 we qualitatively analyze the open-loop model
by means of phase-plane and bifurcation diagram, showing how the steady states
of the CGEM can be controlled by the external input (inducer). In Section 4
we derive a mathematical expression of the growth rate during the exponential
phase as a function of the amount of the inducer. Finally, in Section 5 we present
an in silico practical identifiability analysis of such expression.

2 The Open-Loop Model

The principal modeling challenges come from incomplete knowledge of the net-
works, and the dearth of quantitative data for identifying kinetic parameters
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Fig. 1. Regulatory network of the open-loop model in the mutant E. coli. The model
consists of genes crp and synthetic-cgem (modified promoter of a component of the gene
expression machinery (CGEM) in E. coli). The synthetic-cgem promoter is positively
regulated by the inducer I—according to the input function ν1 = h(I)—and CGEM.
CGEM, being responsible for the bacterial gene expression, positively regulates crp
gene too. Moreover, crp transcription is induced by cAMP-CRP, a metabolite whose
formation relies on CRP protein abundance and low level of bacterial growth rate μ.

required for detailed mathematical models. Qualitative methods overcome both
of these difficulties and are thus well-suited to the modeling and simulation of
genetic networks ([12,13]).

In this work we used a novel piecewise non-linear formalism—derived from
piece wise affine (PWA) systems (see [14,15,16,17,18] for more details)—to model
gene expression affected by dilution due to growth rate.

The open-loop model depicted in Fig. 1—similarly to PWA models of regu-
latory genetic networks—is built with discontinuous (step) functions. The use
of step functions has been motivated by the experimental observation that the
activity of certain genes changes in a switch-like manner at a threshold concentra-
tion of a regulatory protein [19]. The non linearity is concentrated in the removal
term of differential equations, which takes into account the protein degradation
and the dilution due to growth.

The open-loop model, expressed by (1), describes the qualitative dynamics of a
CGEM responsible for bacterial growth and another protein that reflects growth,
such as CRP. The CGEM is assumed to be externally controlled by an inducer I
(such as IPTG (Isopropyl β-D-1-thiogalactopyranoside), Tc (tetracycline) etc).
This model of ODE exhibits bi-stability in CGEM expression for some parameter
sets, as experimentally verified in [10]. We shall take into account this bi-stability
to control the model’s state to the “low” or to the ”high” CGEM stable steady
state. Let xc, xp ∈ R≥0 be the CRP and CGEM concentrations respectively.
Thus, the open-loop model graphically depicted in Fig. 1, can be mathematically
translated into:
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ẋc (t) = k0c s+(xp, θ
1
p) + k1c s+(xp, θ

2
p) s

+(xc, θ
1
c) s

−(xp, θμ̄)

− (μ̄ xp(t) + γc) xc(t)

ẋp (t) = ν1 k0p s+(xp, θ
1
p) + ν1 k1p s+(xp, θ

2
p)

− (μ̄ xp(t) + γp) xp(t)

(1)

where:

– k0i > 0 (i = c, p) is the basal synthesis rate constant;
– k1i > 0 (i = c, p) is the main synthesis rate constant;
– ν1 is a positive input accounting for the inducer I; it will be a function ν1(v),

v being the concentration of I;
– γi > 0 (i = c, p) is the degradation rate constant;
– θji > 0 (i = c, p; j = 1, 2) is the xi threshold concentration for activa-

tion/inhibition;
– θμ̄ > 0 is a growth threshold depending on which substrate is used;
– μ̄ > 0 is a growth constant depending on which substrate is used.

and s+, s− denote the step-like functions, defined as

s+(xi, θ
j
i ) =

{
1 if xi > θji
0 if xi < θji

; s−(xi, θ
j
i ) = 1− s+(xi, θ

j
i ) ,

which are used to model the switch-like promoters’ regulation carried out by the
generic protein xi. These s+, s− are not defined at the threshold values so, to
define solutions on the surfaces of discontinuity, i.e. xi = θji , we use the approach
of Filippov [20], which extends the vector field to a differential inclusion.

In what follows, we will explain the main assumptions adopted in building
the system equations (1), which were inspired by the models in [10,12] and the
literature on E. coli.

2.1 Growth Rate

In bacteria, growth rate is intimately interwined with gene expression ([21,22])
and with the type of substrate [8]. Hence, to keep model complexity to a mini-
mum, we assume growth rate μ to be proportional—with a constant μ̄ depending
on the quality of medium—to the concentration of the CGEM which is respon-
sible for bacterial growth:

μ(t) = μ̄ xp(t) . (2)

2.2 cAMP-CRP Activation

The cAMP-CRP complex is formed from cAMP, a small metabolite, which binds
the protein CRP. The cAMP concentration is higher at low growth rate and
rapidly decreases at high growth rate [11]. Thus, cAMP abundance in cells can
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be well captured by a negative step function of μ, i.e. s−(μ, θμ). Moreover, being
cAMP association with or dissociation from CRP much faster than the synthesis
and degradation of proteins [12], we have assumed that as soon as CRP reaches a
certain threshold, i.e. θc, CRP instantly binds to cAMP in a switch-like fashion.
For these reasons, the positive regulation carried out by cAMP-CRP reads as:

b+cAMP−CRP = s+(xc, θc) s
−(μ, θμ).

Focusing on the negative step function s−(μ, θμ) and taking into account the
expression of μ in (2), we can rewrite b+cAMP−CRP as:

b+cAMP−CRP (xc, xp) = s+(xc, θc) s
−(xp, θμ̄) (3)

where θμ̄ is a threshold concentration of CGEM which depends on the type of
carbon source.

2.3 CRP Synthesis

We have assumed that a lower value of xp, i.e. θ
1
p, induces the basal synthesis

(k0c s+(xp, θ
1
p)) of xc while a higher value of xp, i.e. θ

2
p, is needed to stimulate

its main expression (k1cs
+(xp, θ

2
p)). Moreover, the crp gene is regulated both

positively and negatively by cAMP-CRP. However, in order to simplify, we omit
the negative control of crp, because this mechanism only plays a role when the
CRP concentration is low [12]1. Thus, only one concentration threshold of CRP,
i.e. θ1c , is required in the model, to allow production of the cAMP-CRP complex.
In conclusion, taking into account the regulation function of cAMP-CRP in (3),
the CRP synthesis reads:

fc(x) = k0c s+(xp, θ
1
p) + k1c s+(xp, θ

2
p) b

+
cAMP−CRP (xc, xp), (4)

with
0 < θ1c < maxc, (5)

where maxc is the maximum concentration value for CRP.

2.4 CGEM Synthesis

In this bi-dimensional model, since the CGEM is the main factor which deter-
mines growth of the cell, it is also responsible for its own synthesis. We have
thus assumed that a low concentration (θ1p) is sufficient to stimulate its basal
production k0p s+(xp, θ

1
p) while its main production k1p s+(xp, θ

2
p) is stimulated

only above the θ2p threshold. Thus, we can order the thresholds for xp as:

0 < θ1p < θ2p < maxp, (6)

1 We found that a model involving the negative control of crp by cAMP-CRP does
not have any effect on the conclusion of this study.
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where maxp is the maximum concentration value.
Moreover, the inducer effect is modeled by input ν1. For a general formulation

of the activation of xp by an inducer I, we will later on assume that ν1 is a positive
increasing function of I. Consequently, xp synthesis reads:

fp(x) = ν1 k0p s+(xp, θ
1
p) + ν1 k1p s+(xp, θ

2
p). (7)

2.5 Proteins Removal

The negative terms in ẋc and ẋp of (1) take into account the fact that cells remove
proteins by two processes: degradation and dilution due to cell growth [23].
Notably, these terms can generally be expressed as (μ(t) + γi)xi (for i = c, p)
where μ(t) = μ̄ xp(t), which is the bacterial growth rate in (2), is responsible for
the proteins’ dilution while γi stands for protein’s degradation.

3 Qualitative Analysis of the Open-loop Model

In this section we will qualitatively study, by means of phase-planes and bifur-
cation diagrams, model (1) in the case that cells are grown in glucose. This will
elucidate how qualitative dynamics—in terms of equilibria’ location and their
stability—is intertwined with biological phenomena. Moreover, we shall show
how—through the external input ν1—the stability of equilibria in (1) can be
controlled, pointing out a reciprocal influence between growth rate and gene
expression.

3.1 Open-Loop Model in Glucose Growth

If cells are grown in glucose, then parameters depending on the substrate become
θμ̄ = θGp and μ̄ = μG in model (1). Moreover, in the presence of glucose or
other PTS sugars, adenylate cyclase2 activity decreases, leading to a drop in the
cellular level of cAMP [24,25]. Thus, we have modeled this effect assuming:

0 < θ1p < θGp < θ2p < maxp. (8)

Therefore, during growth on glucose, the state space of model (1) can be parti-
tioned into eight regular domains, where the vector field is uniquely defined:

DG
1 =

{
x ∈ R

2
≥0 : 0 ≤ xc < θ1c , 0 ≤ xp < θ1p

}

DG
2 =

{
x ∈ R

2
≥0 : θ1c < xc ≤ maxc, 0 ≤ xp < θ1p

}

DG
3 =

{
x ∈ R

2
≥0 : 0 ≤ xc < θ1c , θ1p < xp < θGp

}

DG
4 =

{
x ∈ R

2
≥0 : θ1c < xc ≤ maxc, θ1p < xp < θGp

}

DG
5 =

{
x ∈ R

2
≥0 : 0 ≤ xc < θ1c , θGp < xp < θ2p

}

DG
6 =

{
x ∈ R

2
≥0 : θ1c < xc ≤ maxc, θGp < xp < θ2p

}

DG
7 =

{
x ∈ R

2
≥0 : 0 ≤ xc < θ1c , θ2p < xp ≤ maxp

}

DG
8 =

{
x ∈ R

2
≥0 : θ1c < xc ≤ maxc, θ2p < xp ≤ maxp

}
.

2 Enzyme that catalyzes the conversion of ATP to cAMP and pyrophosphate.
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In addition, there are also switching domains, where the model is defined only
as a differential inclusion [20], corresponding to the segments where each of the
variables is at a threshold (xi = θi and xj ∈ [0,maxj ]).

In general, for any regular domain D, the synthesis rates (4) and (7) are
constant for all x ∈ D, and it follows that model (1) can be written as

⎧
⎨

⎩

ẋc (t) = fD
c − (μ̄ xp(t) + γc) xc(t)

ẋp (t) = fD
p − (μ̄ xp(t) + γp) xp(t)

(9)

with fD
c , fD

p , μ̄, γc, γp positive real constants. For any initial condition x(t0) ∈ D
the unique solution of (9) can be found explicitly by solving first the xp-equation
of (9), which is an autonomous differential equation, and then solving the xc-
equation, having substituted xp(t) into it. Thus, it can be shown that xc(t) is
given by:

xc(t) =
1

b(t)

(

b(t0)xc(t0) + fD
c

∫ t

t0

b(s)ds

)

where b(t) = exp
(∫ t

t0
(μ̄ xp(τ) + γp)dτ

)
. Moreover, defining Φ(D) = (x̄c, x̄p)

T

with

x̄c =
fD
c

μ̄x̄p + γc
,

x̄p =
−γp +

√
γ2
p + 4μ̄fD

p

2μ̄
,

(10)

(it is easy to check that x̄p—in (10)—is the only positive solution of ẋp = 0) it
turns out that either x(t) → Φ(D) as t → ∞ or x(t) reaches the boundary of D.

Definition 1. Given a regular domain D, the point Φ(D) = (x̄c, x̄p)
T (defined

by (10)) is called the focal point for the flow in D.

We will group into regions Rj those domains DG
i where model (1)—in glucose

growth— has the same dynamics and thus the same focal points. Considering
Definition 1, we have the following focal points:

– ∀x ∈ R1 =
{
x ∈ R

2
≥0 : x ∈ DG

1 ∪DG
2

}

xc → 0 ∧ xp → 0

Thus, ΦG
0 = (0, 0) is the focal point of region R1.

– ∀x ∈ R2 =
{
x ∈ R

2
≥0 : x ∈ DG

3 ∪DG
4 ∪DG

5 ∪DG
6

}

xc → k0c
μG x̄1

p,G + γc
= x̄2

c,G

xp →
−γp +

√
γ2
p + 4 ν1 k0p μG

2μG
= x̄1

p,G

Thus, ΦG
1 = (x̄2

c,G, x̄
1
p,G) is the focal point of region RG

2 .
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– ∀x ∈ R3 =
{
x ∈ R

2
≥0 : x ∈ DG

7 ∪DG
8

}

xc → k0c
μG x̄2

p,G + γc
= x̄1

c,G

xp →
−γp +

√
γ2
p + 4 ν1(k0p + k1p)μG

2μG
= x̄2

p,G

Thus, ΦG
2 = (x̄1

c,G, x̄
2
p,G) is the focal point of region R3.

The focal points ΦG
i (i = 0, 1, 2) are equilibrium points of model (1) provided

that they belong to their respective regular domain, i.e. Φ(D) ∈ D. The local
stability of equilibrium points is given by the following theorem.

Theorem 1. Let D be a regular domain and Φ(D) be the focal point of D. If
Φ(D) ∈ D, then Φ(D) is a locally stable point of model (1).

Proof. Model (1) restricted to D is given by (9). In order to assess the stability
of Φ(D), we compute the Jacobian matrix of (9) calculated in Φ(D) = (x̄c, x̄p)

T :

J(x̄c, x̄p) =

(−μ̄x̄c −(μ̄x̄p + γp)
0 −(2μ̄x̄p + γp)

)

.

Since all the eigenvalues of J , which are the diagonal entries as J is triangular,
are negative, Φ(D) turns out to be a locally stable point.

Hence, there can be at most three locally stable steady states during growth on
glucose.

Fig. 2 depicts the phase-plane of model (1). It can be seen that ΦG
0 , ΦG

1 ,
ΦG
2 , (for the parameter values used) are locally stable steady states since they

are within their respective regular domains (Theorem 1). Notably, it is easy to
verify that ΦG

0 is locally stable for any set of parameters. It represents absence of
growth and can happen when the initial condition xp(t0), is too low—specifically
xp(t0) < θ1p—to initiate gene transcription or when the control input ν1 does not

sufficiently induce CGEM expression, that is when x̄1
p,G < θ1p. We refer to ΦG

0 as

the trivial fixed point. ΦG
1 represents CGEM basal level—leading to a low growth

rate (see (2))— while CRP is at a high level, which is in agreement with high
crp gene expression (by cAMP-CRP) at lower growth rate. Thus, because of the
low growth rate achieved, we refer to ΦG

1 as the low fixed point. Conversely, at
ΦG
2 , CRP is at low level while CGEM , as well as μ, have reached their highest

stable values. Thus, ΦG
2 is named the high fixed point.

Since x̄1
p,G(ν1) and x̄2

p,G(ν1) are function of ν1, it turns out that the location of

focal points ΦG
1 and ΦG

2 , and thus the number of equilibria of model (1), depend
on the control input ν1. Hence, choosing appropriate values of ν1 it is possible
to control model (1) towards ΦG

1 or ΦG
2 . To illustrate this, we have depicted in

Fig. 3 the xp-bifurcation diagram when parameter ν1 varies from 0 to 1 while
the other parameter values are the same as those used in Fig. 2.
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0

Fig. 2. Phase plane of model (1) during growth in glucose. Parameter values used:
θ1c = 0.6, θ1p = 0.8, θGp = 2, θ2p = 3.5, k0

c = 7, k1
c = 10, k0

p = 40, k1
p = 50, γc = 1, γp = 1,

μG = 2 e ν1 = .5. The black curve is the xc-nullcline: xp =
k0
c

xc μG
− γc

μG
. Stable fixed

points: ΦG
0 , Φ

G
1 , Φ

G
2 .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 3. Bifurcation diagram for model (1) during growth in glucose, showing the non
trivial locally stable steady states of xp as a function of the control input ν1. Other
parameter values used are the same as those in Fig. 2. See Proposition 1 for more
details.

We notice that Fig. 3 is divided into four parts in which xp stability changes
significantly. In part I, for those values of ν1 such that x̄1

p,G < θ1p and x̄2
p,G < θ2p,

neither ΦG
1 nor ΦG

2 are stable steady states. In this case, model (1) during growth
on glucose converges towards the only stable point ΦG

0 (not depicted in Fig. 3).
So, in I, the control input is too small to allow CGEM to reach a basal level,
and prevents bacterial growth.

In part II, when x̄1
p,G(ν1) > θ1p and x̄

2
p,G(ν1) < θ2p hold, onlyΦ

G
1 is a stable steady

state (besides the trivial one) according to Theorem 1. Hence, it turns out that
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choosing an initial condition of CGEM xp(t0) > θ1p and ν1 such that x̄1
p,G(ν1) >

θ1p and x̄2
p,G(ν1) < θ2p, we can control model (1) to the stable point ΦG

1 .

In part III, characterized by θ1p < x̄1
p,G(ν1) < θ2p and x̄2

p,G(ν1) > θ2p, both ΦG
1

and ΦG
2 are stable steady states: this is a region of bi-stability. Moreover, the

phase plane corresponding to this configuration is depicted in Fig. 2, where we
can also observe the presence of two separatrices xp = θ1p and xp = θ2p. Is is clear

that, depending on xp(t0), the model can converge to ΦG
1 (if θ1p < xp(t0) < θ2p)

or to ΦG
2 (if xp(t0) > θ2p).

In part IV, when x̄1
p,G(ν1) > θ2p holds, only ΦG

2 is a stable steady state and

thus, whenever xp(t0) > θ1p, model (1) converges to ΦG
2 .

The open-loop control in glucose growth can be summarized as follows.

Proposition 1. Consider model (1) with control input ν1 and initial condition
xp(t0) such that:

– if (x̄1
p,G(ν1) < θ1p ∧ x̄2

p,G(ν1) < θ2p) ∨ xp(t0) < θ1p, then model (1) converges

to the trivial focal point ΦG
0 (region I in Fig. 3);

– if x̄1
p,G(ν1) > θ1p ∧ x̄2

p,G(ν1) < θ2p ∧ xp(t0) > θ1p, then model (1) converges

to the low focal point ΦG
1 (region II in Fig. 3);

– if θ1p < x̄1
p,G(ν1) < θ2p ∧ x̄2

p,G(ν1) > θ2p ∧ xp(t0) > θ1p, then model (1) is
bistable (region III in Fig. 3) and notably:
• if θ1p < xp(t0) < θ2p, then model (1) converges to the low focal point ΦG

1 ;

• if xp(t0) > θ2p, then model (1) converges to the high focal point ΦG
2

– if x̄1
p,G(ν1) > θ2p ∧ xp(t0) > θ1p, then model (1) converges to the high focal

point ΦG
2 (region IV in Fig. 3).

4 Growth Rate Expression for Exponential Phase

Here, to account for varying dosage of inducer, we make an assumption to ana-
lytically characterize the function ν1 = h(v). Notably, to describe the regulation
of CGEM gene expression by the inducer, we employ a function typically used
in synthetic biology [9]:

ν1(v) = α+ (1 − α)
vn

Kn
v + vn

(11)

where v denotes inducer concentration and α accounts for the basal transcrip-
tional activity. Controlled gene expression follows Hill-type dosage-response curve
with promoter-activator affinity Kv and cooperative (Hill) coefficient n. During
exponential phase—the period characterized by cell doubling— the bacterial cul-
ture shows a constant growth rate [7]. This means that, according to (2), a stable
fixed point of the CGEM has to be reached. Hence, our expression of growth
rate during exponential phase reads:
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μ = μGx̄p (12)

where x̄p is the CGEM concentration at steady state, which can be either x̄1
p,G or

x̄2
p,G—depending on the amount of inducer which determines the level of CGEM

expression. Thus, our expression of growth rate during exponential phase can
assume the two values below:

μ(v) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

μGx̄
1
p,G =

−γp +
√
γ2
p + 4 ν1 k0p μG

2

μGx̄
2
p,G =

−γp +
√
γ2
p + 4 ν1 (k0p + k1p) μG

2
.

(13)

Specifically, we assumed there is a particular value of inducer, i.e. v∗, such that
for an appropriate choice of initial condition and for all v ≤ v∗ the CGEM steady
state is x̄1

p,G while for all v > v∗ the steady state is x̄2
p,G. Thus, considering that,

and substituting (11) into (13) we obtain the theoretical expression for growth
rate during exponential phase:

μ(v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−γp

2

[

1−
√

1 +
4k0pμGα

γ2
p

+
4k0pμG(1− α)

γ2
p

vn

Kn
v + vn

]

if, v ≤ v∗

−γp

2

[

1−
√

1 +
4(k0p + k1p)μGα

γ2
p

+
4(k0p + k1p)μG(1 − α)

γ2
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vn

Kn
v + vn

]

if, v > v∗

(14)

It is worthy to notice that expression (14) directly relates the growth rate μ
during exponential phase to the amount of the inducer v. Hence, using (14) we
can fine tune—by means of appropriate level of the inducer—the growth rate of
the cells during the exponential phase.

5 In silico Identifiability Analysis of Growth Rate

Our collaborators (Jérôme Izard and Hans Geiselmann3) are currently perform-
ing an ongoing experiment on a synthetic E. coli – implementing the open-loop
model depicted Fig. 1 – which relates the level of growth rate during the expo-
nential phase to the amount of the inducer. In the future, these dose-response
curves will be useful to calibrate and validate the growth rate expression (during
exponential phase) (14).

Here, we used simulated data to fit the growth rate model (14) and to study
the identifiability of the parameters.

3 Laboratoire Adaptation et Pathogénie des Microorganismes, (CNRS UMR 5163), Uni-
versité Joseph Fourier, Bâtiment Jean Roget, Faculté de Médecine-Pharmacie, La
Tronche, France.
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5.1 Problem Statement

Given a parametric non-linear model, such as (14), the relationship between a
response variable (output) and one or more predictor variables (input) can be
represented by the expression:

y = η(v, p) + ε ,

where

– y is an n× 1 vector of observations of the response variable,
– v is an n×m matrix of predictors,
– p is a q × 1 vector of unknown parameters to be estimated,
– η is any function of v and p,
– ε is an n × 1 vector of independent, identically distributed random distur-

bances.

The nonlinear regression problem consists of finding a vector p̂ minimizing a
scalar cost function J(p), which is generally a measurement of the agreement of
experimental data with the outputs predicted by the model. The cost function
that we have considered in this work is a weighted least squares criterion:

J(p) =

n∑

i=1

(yi − η(vi, p))
2

y2i
(15)

where yi denotes the i-th data-point of the observable y, measured at input-
points vi, and η(vi, p) the i-th observable as predicted by the parameters p. The
parameters can be estimated numerically by:

p̂ = argmin [J(p)] . (16)

Determining the parameter vector p̂ which minimizes J(p) is only a part of
the parameter estimation problem. In fact, when preparing to fit a mathemat-
ical model or expression to a set of experimental data, the prior assessment of
parameter identifiability is a crucial aspect [26]. However, the structural identi-
fiability analysis for non-linear models in systems biology is still a challenging
question [27]. Whether or not parameters can be estimated uniquely depends
on the model structure, the parameterization of the model and the experiment
used to get the data [28].

Regarding this problem, we briefly recall two important definitions on identi-
fiability [29]:

– the parameter pi, i = 1, ..., q is structurally globally identifiable if as-
suming ideal conditions (error-free model structure and unlimited noise-free
observations (v, y)) and if for almost any p∗ ∈ P (admissible parametric
space P),

y(p, v) = y(p∗, v), ∀v ⇒ pi = p∗i .
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– the parameter pi, i = 1, ..., q is structurally locally identifiable if as-
suming ideal conditions (error-free model structure and unlimited noise-free
observations (v, y)) and if for almost any p∗ ∈ P (admissible parametric
space P), there exists a neighborhood V (p∗) such that

p ∈ V (p∗) ∧ y(p, v) = y(p∗, v), ∀v ⇒ pi = p∗i .

An important complement to the structural identifiability definitions is the no-
tion of practical identifiability. Practical identifiability is in fact related to
the quality of experimental data and their information content [30]. The ques-
tion raised by this notion is the following: in the presence of observation errors
and/or few data are reliable estimations of the parameters possible? Thus, once
having determined the value of p̂ minimizing the cost function J(p), it is very im-
portant to find a realistic measure of how p̂ is precise. To this end, the confidence
intervals4 of the estimated parameters have to be calculated.

It must be noted that, unlike for the linear case for which an exact theory
exists, there is no exact theory for the evaluation of confidence intervals for
systems which are nonlinear in the parameters. An approximate method based
on a local linearization of the output function η(v, p) is generally used [31,32],
thus the confidence region is evaluated as a function of the parameter covari-
ance matrix. The applicability of such approximate method requires that the
response function η(v, p) must be continuous in its arguments (v, p), the first
partial derivatives ∂

∂pi
η(v, p) must be continuous in its arguments (v, p), and

the second partial derivatives ∂2

∂pi∂pj
η(v, p) must be continuous in its arguments

(v, p), but our model (14) does not satisfy these conditions because of the dis-
continuity in v = v∗. Hence, in the remainder of the paper a computational
method, based on in silico generated data, is suggested to argue the practical
identifiability of non-linear discontinuous model such as (14).

5.2 Generation of Simulated Data Sets

In order to assess the quality of parameter estimation and thus the practical
identifiability of parameters in (14), artificial data were generated by simulation
of (14) from a set of pre-defined parameters (to be considered as true values).
The true parameter values (Tab. 5.2) were chosen from physiological parameters
of E.coli cells [21,33] and were based on similar studies of this type [10].

Thus, the artificial growth rate values have been simulated considering a mea-
surement error proportional to the nominal value of growth rate:

y = μ(v) + σμ(v)N (0, 1) (17)

where N (0, 1) is a normally distributed random variable with zero mean and
unit variance and σμ(v) is the standard deviation of the observation errors. Four
different types of data sets were considered to account for practical identifiability:

4 A confidence interval [σ−
i , σ+

i ] of a parameter estimate p̂i to a confidence level α
signifies that the true value p∗i is located within this interval with probability α.
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Table 1. Nominal parameter values

k0
p k1

p γp μG α Kv n v∗

[μM ·min−1] [μM ·min−1] [min−1] [(μM ·min)−1] [μM ] [μM ]

0.02 0.11 0.006 0.0014 0.1 30 2 50

– data set I, with v = [0, 5, 10, 15, ..., 295, 300, 1000] and σ = 10−2;
– data set II, with v = [0, 10, 20, 30, ..., 290, 300, 1000] and σ = 10−2;
– data set III, with v = [0, 5, 10, 15, ..., 295, 300, 1000] and σ = 5 · 10−2;
– data set IV, with v = [0, 10, 20, 30, ..., 290, 300, 1000] and σ = 5 · 10−2;

Notably, data sets I, II, III and IV, have been generated with different number of
points (Nexp) and different intensities of noise (σ) to study the practical identifi-
ability of the parameters in four realistic experimental conditions. In particular,
data sets I and III have the same number of data points, i.e. Nexp = 62, but
different noise, σ = 10−2 for data set I and σ = 5 · 10−2 for data set III. Data
set II and IV have less number of points, i.e. Nexp = 32, while the level of noise
considered is σ = 10−2 for data set II and σ = 5 · 10−2 for data set IV.

5.3 Model Parameterization and Global Optimization

First, to avoid evident structural identifiability problems we will group together
those parameters in (14) which appear as combinations of products and/or quo-
tients between parameters. Thus, after some algebraic manipulations expres-
sion (14) reads as:

μ(v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−γp
2

[

1−
√

1 +
4k0

pμGα

γ2
p

(

1 +
(1− α)

α

vn

Kn
v + vn

) ]

if, v ≤ v∗

−γp
2

[

1−
√

1 +
4(k0

p + k1
p)μGα

γ2
p

(

1 +
(1− α)

α

vn

Kn
v + vn

) ]

if, v > v∗

(18)

Moreover, to avoid dependence on physical unit as well as to overcome possible
scaling problem and to reduce the number of parameters, we decided to calculate
a non-dimensional version of expression (18). Notably, the non-dimensional slope
μN (v) is obtained by dividing μ(v) in (18) for the minimal growth rate, which is
achieved at the minimum value of the inducer, i.e. at v = v0, which for our data
sets I, II, III, IV consists in v0 = 0. Thus, considering the necessary condition
v0 < v∗, the non-dimensional growth rate during the exponential phase reads:
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μN (v) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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4k0

pμGα
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if, v > v∗

(19)

Now, considering the following parameterization

p1 =
4k0pμGα

γ2
p

; p2 =
(1− α)

α
; p3 = Kv; p4 = n; p5 =

4k1pμGα

γ2
p

; p6 = v∗

the expression (19) can be rewritten as

μN (v, p) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1−
√

1 + p1

(

1 + p2
vp4

pp43 + vp4

)

1−√
1 + p1

if, v ≤ p6

1−
√

1 + (p1 + p5)

(

1 + p2
vp4

pp43 + vp4

)

1−√
1 + p1

if, v > p6

(20)

where p = [p1, p2, p3, p4, p5, p6] and, considering the true parameters values in
Tab 5.2 we obtain the true vector of parameters p∗:

p∗ = [0.3033, 9, 30, 2, 1.6683, 50] . (21)

Similarly, the data sets I to IV will also be normalized to their minimal value, i.e.,
each output-point is divided by the minimal observation value, that is ymin =
μ(v0), where v0 = 0.

Our approach in identifying the unknown parameters of model (19) consists
in solving a non-linear least squares minimization problem, using a hybrid opti-
mization approach which makes use of the functions ga (Genetic Algorithm [34])
and GlobalSearch of the MATLAB R© Global Optimization ToolboxTM. To start,
we used the Genetic Algorithm (GA) for 104 generations to get near an opti-
mum point. The genetic algorithm does not use derivatives to detect descent in
its minimization steps. Hence, it is a good choice for non-differentiable and/or
discontinuous problems. Moreover, GA does not necessarily need an user sup-
plied initial guess, which in most case leads to local sub-optimal convergence if
the initial guess is far from the global optimum. The result obtained with the
genetic algorithm is then used as initial point of a hybrid function, to further
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improve the value of the cost function J(p). We decided to use the GlobalSearch5

command as hybrid function since it searches many basins of attraction near the
starting point given by GA, arriving faster at an even better solution.

5.4 In Silico Practical Identifiability Analysis

The practical identifiability of model (20) has been tested using data sets I, II,
III and IV, which have different values of errors’ measurement and different data
points. Hence, these artificial data are suitable to mimic realistic experimental
set-ups.

For each data set mentioned above, parameters’ confidence intervals have been
computed following a Monte Carlo-like approach.

Notably, Nsimul = 200 runs of the previously described hybrid optimization
were performed. Where, at each of the Nsimul runs, a new realization of the
artificial measurements—according to the inputs and noise statistic of each data
set—is considered. This optimization yields Nsimul estimated values for each
parameter pi, i = 1, . . . , 6. Then, for each i, an average value, m̂i, and a standard
deviation, ŝi, were computed by fitting a Gaussian distribution N (m̂i, ŝ

2
i ) to the

histogram of the Nsimul values of pi. Thus, the 95% confidence interval (CIi)
for the pi parameter is calculated as:

CIi = m̂i ± 1.96ŝi (22)

This leads to the confidence intervals listed in Table 2.
As we can see in Table 2, parameters pi for i ∈ {2, 3, 4, 6} do not show any

practical identifiability issues, as the true value is contained in the respective
CI with sufficiently precision. On the contrary, the CIs of parameters p̂1 and p̂5
tend to become very large at increasing values of the measurement’s errors (σ)
and at decreasing numbers of data points, indicating that in real experimental
conditions (that is, limited and noisy data), the precise identification of these
parameters might be impracticable. Moreover, we found that the correlation
coefficient (R) between the two vectors of estimated parameters parameters p̂1
and p̂5 is R = 0.99, for all data sets. Recall that the correlation coefficient
measures the interrelationship between p̂1 and p̂5 quantifying the compensation
effects of changes in the parameter values on the model output. In fact, when
two parameters are highly correlated, a change in the model output caused
by a change in a model parameter can be balanced by a appropriate change

5 GlobalSearch first runs fmincon from the start point you give. If this run converges,
GlobalSearch records the start point and end point for an initial estimate on the
radius of a basin of attraction. Then, GlobalSearch solver starts a local solver (fmin-
con) from multiple starting points and store local and global solutions found during
the search process. Notably, the GlobalSearch solver first uses a scatter-search al-
gorithm to randomly generate multiple starting points, then filters non-promising
start points based upon objective and constraint function values and local minima
already found, and finally runs a constrained nonlinear optimization solver to search
for a local minimum from the remaining start points.
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Table 2. Confidence intervals of estimated parameters p̂i when (20) is fitted to (non-
dimensionalized) data sets I, II,III,IV. The confidence intervals for parameters become
larger at increasing values of the measurement error and at decreasing numbers of data
points, indicating possible practical identifiability problems especially for p̂1 and p̂5.

DATA SET I DATA SET II DATA SET III DATA SET IV
σ = 102 σ = 10−2 σ = 5 · 10−2 σ = 5 · 10−2

Nexp = 62 Nexp = 32 Nexp = 62 Nexp = 32

CI1 0.3328 ± 0.4939 0.3738 ± 0.5441 0.2631 ± 0.4220 0.32 ± 0.49

CI2 9.23± 3.45 9.36± 3.88 8.63 ± 3.06 9.21 ± 4.67

CI3 30.16 ± 3.55 30.00 ± 3.55 29.39 ± 5.15 30.33 ± 7.52

CI4 2.002 ± 0.079 2.011 ± 0.089 2.006 ± 0.232 2.01 ± 0.33

CI5 2.053 ± 4.192 2.39± 4.51 1.53 ± 3.59 1.93 ± 3.99

CI6 53.32 ± 4.48 55.98 ± 6.99 53.06 ± 3.58 56.70 ± 6.79

Table 3. Confidence intervals of the ratio p̂5/p̂1 when (20) is fitted to (non-
dimensionalized) data sets I, II,III,IV

DATA SET I DATA SET II DATA SET III DATA SET IV
σ = 10−2 σ = 10−2 σ = 5 · 10−2 σ = 5 · 10−2

Nexp = 62 Nexp = 32 Nexp = 62 Nexp = 32

CIp̂5/p̂1 5.29 ± 2.39 5.54 ± 2.43 4.99 ± 1.15 5.2 ± 1.3
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Fig. 4. Fitting the growth rate function (20) using one realization of the non-dimensional
data set II. The blue points are the normalized artificial data generated according to
specification of data set II. The red curve is the function (20) when p̂ is used.

in the other parameter value. Thus, instead of considering the CIs of p̂1 and p̂5
separately—which are not significant—we have computed the confidence interval
of their ratio, i.e. p̂5/p̂1. These results are presented in Table 3. As we can notice
in Table 3, the CIs of p̂5/p̂1 are accurate, since they contain the true value of
the ratio p∗5/p∗1 = 5.5, and more precise since their relative width is smaller than
the relative width of CI1 and CI5.
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It must be noted that a further reduced model which takes into account the
correlation between p5 and p1 can not be achieved. This because expression (20)
can be rewritten in terms of the ratio and either p5 or p1. Fig 4 shows the fitting
of model (20) to one realization of data set II.

6 Conclusions

In this paper, a minimal model consisting of two variables (the concentrations
of two gene products) and an input (an inducer) was analyzed and used to
describe one possible mechanism to control the growth rate of E. coli cells during
exponential phase. This model is based on the piecewise affine formalism but a
new, non-linear, term was added to account for the dilution effect during growth.
The qualitative dynamics of the model can thus be studied, and the bifurcation
diagram with respect to the input is obtained. Moreover, this mathematical
formalism allows derivation of an analytic expression for the growth rate as
function of the input. This expression has two applications:

– it can be directly fitted to experimental data to estimate a set of parameters
(this is an advantage relative to the typical “indirect” parameter estimation
by fitting to the numerical solutions of the differential equations);

– it provides an indication of how to control the growth rate to a desired value
by adding a given quantity of inducer.

Finally, practical identifiability analysis based on numerical simulations is pre-
sented, which shows that some issues may arise with noisy measurements. In
this case, our analysis suggests that the original growth rates’ measurements
should be adimensionalized and unknown parameters grouped into a new set of
“lumped” parameters in order to obtain local identifiability. Notably, we found
that only the ratio between the estimated parameters p̂1 and p̂5 can be esti-
mated with sufficient precision in the case when only limited and noisy data are
available. This study and the conclusions on identifiability will be most useful
to help dealing with and solving parameter estimation problems with real data
sets.
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18. Grognard, F., De Jong, H., Gouzé, J.: Piecewise-linear models of genetic regulatory
networks: theory and example. Biology and Control Theory: Current Challenges,
137–159 (2007)

19. Yagil, G., Yagil, E.: On the relation between effector concentration and the rate of
induced enzyme synthesis. Biophysical Journal 11(1), 11–27 (1971)

20. Filippov, A., Arscott, F.: Differential equations with discontinuous righthand sides.
In: Mathematics and its Applications Series. Kluwer Academic Publishers (1988)

21. Klumpp, S., Zhang, Z., Hwa, T.: Growth rate-dependent global effects on gene
expression in bacteria. Cell 139(7), 1366–1375 (2010)

22. Scott, M., Gunderson, C.W., Mateescu, E.M., Zhang, Z., Hwa, T.: Interdependence
of cell growth and gene expression: Origins and consequences. Science 330(6007),
1099–1102 (2010)

23. Eden, E., Geva-Zatorsky, N., Issaeva, I., Cohen, A., Dekel, E., Danon, T., Co-
hen, L., Mayo, A., Alon, U.: Proteome half-life dynamics in living human cells.
Science 331(6018), 764–768 (2011)



126 A. Carta, M. Chaves, and J.-L. Gouzé
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