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Abstract. For models of cell-to-cell communication, with many reac-
tions and species per cell, the computational cost of stochastic simulation
soon becomes intractable. Deterministic methods, while computationally
more efficient, may fail to contribute reliable approximations for those
models. In this paper, we suggest a reduction for models of cell-to-cell
communication, based on symmetries of the underlying reaction network.
To carry out a stochastic analysis that otherwise comes at an excessive
computational cost, we apply a moment closure (MC) approach. We il-
lustrate with a community effect, that allows synchronization of a group
of cells in animal development. Comparing the results of stochastic sim-
ulation with deterministic and MC approximation, we show the benefits
of our approach. The reduction presented here is potentially applicable
to a broad range of highly regular systems.

Keywords: model reduction, stochastic analysis, moment closure,
model symmetry, cell-to-cell communication, community effect.

1 Introduction

The dynamics of biochemical reaction systems are traditionally formalized as
systems of ordinary differential equations (ODEs), whose variables represent
concentrations of molecular species in a well-mixed solution. This assumes that
the inherent stochastic fluctuations are negligible. However, this assumption is
invalid for certain systems, such as gene regulatory networks [7]. Those systems
must be analyzed stochastically, accounting for randomness of biomolecular in-
teractions.

Exact solutions for the dynamics of most non-linear chemical systems are prac-
tically impossible to obtain. Various methods for approximate stochastic analysis
have been suggested: Monte Carlo sampling of probability density functions of
species’ counts over time, known as Gillespie’s algorithm [11]; approximations
of this sampling [4,20]; explicit treatment of fluctuations with stochastic differ-
ential equations [12]; consideration of subspace of system states with highest
probability mass [6,25]; aggregation of states [17].

� Corresponding author.

D. Gilbert and M. Heiner (Eds.): CMSB 2012, LNCS 7605, pp. 49–68, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

mailto:kirill.batmanov@lifl.fr


50 K. Batmanov et al.

Fig. 1. Symmetry in cell-to-cell communication: n cells with equal intracellular re-
action network, involving molecules A and B, interact through the exchange of the
extracellular molecule C

Moment closure. (MC) is a promising method for approximate analysis of the
behavior of stochastic systems. It allows efficient calculation of approximate dy-
namics of moments of random variables associated with the system under study.
MCs were successfully used in the fields of ecology [33], demographics [14], epi-
demiology [15] and statistical physics [22]. Traditionally they were derived man-
ually. Recently, methods for automatic MC derivation were proposed [10,18,32]
for biochemical reaction systems.

Because MC provides a system of ordinary differential equations, it allows
computing the approximate dynamics more efficiently than any of the previously
cited approaches to stochastic approximation. In particular, it relatively quickly
yields solutions for different parameter values, such as reaction rates and initial
conditions. This property has been exploited for efficient parameter estimation
[23], and can possibly be used for other tasks, such as real-time control [31]. A
disadvantage of the MC method is that the number of generated ODEs quickly
grows with the system size, making it potentially difficult to scale to larger
systems. Reduction techniques are needed to keep the analysis tractable.

In this work, we exploit symmetries in cell signaling to perform model re-
duction. Consider a pool of identical cells communicating over a short distance
through the exchange of molecules, which are released by one cell, then diffuse
and make contact with another cell. The reaction set

ri : Ai +Bi � C , for i ∈ {1 . . . n} (1)

describes such a system with n cells. Its symmetry is illustrated in Figure 1. A
reaction between a pair of A and B, within the ith cell, results in a C, which
is expelled to the extracellular medium. Note that the extracellular C lacks
a positional index, unlike the other molecules. C can migrate back from the
extracellular medium to any of the n cells. The symmetry of this minimal system
clearly appears, with C as the center, around which the n equal cells gather, and
through which they communicate. Our model reduction strategy uses a notion
of symmetry based on invariance under certain changes of the chemical reaction
network. Intuitively, we observe that the global dynamics of the system remains
invariant as we swap cell indices, because all cells are equal.
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Symmetries in cell-to-cell communication are widespread, going far beyond
the illustrative example of Figure 1. In bipartite bacterial communities, inter-
species exchange of metabolites can enable important metabolic functions, that
are not reached by either of the isolated species [29]. One can distinguish be-
tween different types of metabolic interaction, the mechanisms of which remain
under debate [34]. However, symmetries in the reaction network for cell-to-cell
communication are a common feature to most of them. A last prominent ex-
ample is the one considered by A. Turing in [30]: a ring of identical cells with
rotational symmetries.

The community effect is thought to be a widespread phenomenon in animal
development [2,5,16]. It allows a cell population within an embryo to forge a
common identity, that is, to express a common set of genes. This synchronization
is based on cell-to-cell communication, in which cells produce and exchange a
diffusible molecule, resembling C in (1). Only when the cell population exceeds
a critical number nc, the common gene expression is maintained over extended
periods of time. With fewer cells, after an initial induction, gene expression soon
ceases.

A recent model for the community effect in Xenopus laevis [27], detailing on
intracellular cascade of gene expression, mediated to intercellular communica-
tion, requires 17 reactions per cell. The community effect threshold nc is about a
hundred cells. Analysis of this model requires stochastic simulation over a wide
range of parameters, cell numbers, and over extended periods of time, in or-
der to yield realistic results, and namely to determine the critical number. The
computational cost for the stochastic simulation becomes intractable, due to the
multiplication of numbers of reactions per cell and numbers of cells. Determin-
istic approximations, on the other hand, do not provide precise predictions. The
model reduction technique in combination with MC, as presented in this paper,
provides a more convincing stochastic approximation of this model. Comparison
of the solution of the truncated moment ODEs with stochastic simulations shows
that MC is significantly closer to the stochastic dynamics than the deterministic
solution.

Related work. Various symmetries have been exploited previously to facilitate
finding the solutions of the biochemical models and to infer their properties.
In [26], results from group theory are applied to the analytical solution of a
simple model of gene expression, demonstrating how interesting properties of
the model follow from continuous symmetries. In [13], symmetrically connected
cell networks are considered, and some properties of them are shown in the
deterministic regime. In [3], a model reduction technique is presented, which
is based on particular kinds of symmetries expressed in Kappa language. That
model reduction is applicable either to the deterministic approximation or, in
fewer cases, to the stochastic semantics; the stochastic version of that reduction
is not applicable to the community effect model. Here we present a different
method, which provides a way to reduce higher order approximations (MC),
under a different set of assumptions.
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Paper outline. Section 2 reviews MC, Section 3 shows symmetry-based reduc-
tion, Section 4 applies our approach to a community effect model, and Section 5
concludes.

2 Approximate Stochastic Analysis

In this section we assume that the chemical reactions follow the mass action
law, the first discovered and widely used kinetic law. Therefore the kinetics of a
reaction can be described by a single parameter r, called rate constant, as well
as stoichiometric coefficients.

For a system of n chemical species A1, . . . , An, define tuples

(r,α,β) ∈ Reacts = R>0 × N
n × N

n

such that (r,α,β) represents the reaction

α1A1 + . . .+ αnAn
r−→ β1A1 + . . .+ βnAn

In the following, we index chemical species with i and reactions with j. A system
of k chemical reactions is a set R = {U1, . . . , Uk} of k tuples (r,α,β). For this
set, we define the reactant stoichiometric matrix R, the product stoichiometric
matrix P , and the vector of rate constants r such that:

∀Uj ∈ R : denote (r,α,β) = Uj :
rj = r, ∀i : Rij = αi, Pij = βi

so that a chemical system is fully determined by the tuple (r, R, P ).

Example 1. Given the 3 molecular species A, B and C, the tuple

((
0.1 0.3

)
,

⎛
⎝
1 0
1 0
0 1

⎞
⎠ ,

⎛
⎝
0 1
0 1
1 0

⎞
⎠)

represents the reactions

{
A+B

0.1−−→ C

C
0.3−−→ A+B

2.1 Deterministic Dynamics: The Coarser Approximation

The computational analysis of chemical reaction systems often assumes deter-
ministic behavior. Following the mass action law, at any given time t a system’s
dynamics is driven by the concentrations of the reacting chemical species. For
example, given some initial condition, the dynamics of Example 1 would be
described by a set of ordinary differential equations

d[A]

dt
=

d[B]

dt
= −0.1 [A][B] + 0.3 [C]

d[C]

dt
= 0.1 [A][B] − 0.3 [C] (2)

where [X ] denotes the concentration of the species X . Despite the fact that
concentrations of species can only assume discrete values, the deterministic ap-
proach is often justified by arguing that the high number of molecules usually
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present in a solution make these discrete values so close that continuous do-
mains for concentrations constitute a safe approximation. The corresponding
mathematical argument is that the limit behavior of the system of Example 1 is
exactly described by (2) when the volume of the system tends to infinity while
the concentrations remain the same.

Formally, given a system of chemical reactions (r, R, P ), its state space under
the deterministic assumption is the space of the concentrations of the chemical
species A1, . . . , An in the system. Concentration of every species is assumed to
be a non-negative real number. Its dynamics is defined, for a given initial state
ν0, by the function of time

x(t) : R≥0 → R
n
≥0, x is the solution of the ODE

{
ẋ = (P −R)λ

x(0) = ν0

where λ is the vector of reaction rate laws in state x(t), that is, for reaction
number j ∈ {1, . . . , k}, the rate law is λj = rj

∏
i xi

Rij .

Example 2. For the system of Example 1, we have

λ =

(
0.1x1x2

0.3x3

)
and P −R =

⎛
⎝
−1 1
−1 1
1 −1

⎞
⎠

leading to the system of ODEs
⎧
⎨
⎩

ẋ1 = 0.3 x3 − 0.1 x1x2

ẋ2 = 0.3 x3 − 0.1 x1x2

ẋ3 = 0.1 x1x2 − 0.3 x3

(3)

2.2 Stochastic Semantics

The deterministic assumption is often invalid at the cellular scale, where the
number of molecules per species and cell can be low – one for genes, or a few
for mRNA. In this case, it is preferable to formalize the stochastic behavior
of the system in terms of a continuous time Markov chain (CTMC), whose
states represent the different possible configurations of the system: each state is
determined by the number of molecules per chemical species. Formally, we can
define a CTMC as a collection {x(t) | t ∈ R≥0} of n time-dependent random
variables with state space in N

n.
The system’s evolution is then interpreted stochastically: at a given time t,

a probability is assigned to each state and its variation in time is governed
by a differential equation. The set of all such equations, one per state of the
system, constitutes the chemical master equation (CME), whose solution gives
the complete information about the system’s kinetics at any time. If πν(t) =
Pr(x(t) = ν) is the probability of being in the state ν at time t, the CME
becomes [32]:

π̇ν =
∑

(r,α,β)∈R
r

(
ν +α− β

α

)
πν−α+β − r

(
ν

α

)
πν (4)
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where
(
a
b

)
denotes the product

∏
i

(
ai

bi

)
.

The number of states (and of corresponding differential equations in the mas-
ter equation) scales exponentially with the number of species and possible num-
ber of molecules per species. When some reaction creates unbounded numbers
of new molecules, it even becomes infinite (but countable). In this case, while
it is still possible to find solutions of the CME for some particular systems,
the general, automatic numeric solution of the CME becomes intractable. As a
consequence, one can only obtain partial or approximated information on the
CME’s solution.

2.3 Moments and Moments Calculation

A radically different perspective on a system is, instead of computing state prob-
abilities, to directly consider the time evolution of the moments of its variables.
Given a vector m ∈ N

n
≥0, the mixed moment μ(m) about zero (i.e. uncentred) of

a subset of variables defined by non-zero elements of m is

μ(m) :

{
R≥0 → R≥0

t �→ E[xm(t)]

where E denotes the expectation, and xm denotes a product
∏

i xi
mi . Therefore,

μ(1,0,...,0) denotes, for instance, the dynamics of the expectation of the random
variable x1. The order of moment μ(m) is the sum of the indices

∑
i mi.

This change of perspective arises when general characterizations of a model
matter more than the probability of each single state. For example, one may only
need to extract the average concentrations of species in time and their stochastic
noise. Those correspond to the first two (central) moments: mean and variance.

The moment-based analysis of a chemical system requires a preliminary step,
which is to replace the state-centric description of the dynamics given by the
CME with a new description directly focused on the evolution of the value of
moments in time. In practice, this corresponds to building a new set of differ-
ential equations, one for each moment, and can be performed in several ways.
For example, when the rate functions associated with chemical reactions are
polynomial, moment equations may be calculated using the moment-generating
function [10], or equivalently adopting a generator operator [18] or by a probabil-
ity generating function [32]. Extensions to more general cases may require more
sophisticated methods, e.g. when rational rate functions are considered [24].

Although the model reduction presented in this paper is valid for models with
kinetic laws of any kind, here we follow the method of moment generation pre-
sented in [32], which is reasonably simple and covers those kinetic laws needed for
Section 4 (the mass-action family). According to this method, moment equations
can be calculated thanks to the probability-generating function

φ(z, t) = E[zx(t)] =
∑
ν

πν(t)z
ν (5)

where z is a formal parameter consisting of a vector of variables (z1, . . . , zn).
The introduction of z allows the calculation of moments of any order by applying



Symmetry-Based Model Reduction for Approximate Stochastic Analysis 55

properly the operation of partial differentiation to φ with respect to the variables
z1, . . . , zn, and then by setting their value to 1. For example, the expectation of
x1 of Example 1 can be calculated by differentiating φ once with respect to z1,
and then by setting z = 1 = (1, 1, 1):

φz1(z, t)|z=1 =
(∑

ν

ν1πν(t)z
(ν−(1,0,0))

)
|z=1

=
∑
ν

ν1πν(t) = E[x1(t)] = μ(1,0,0)

where φz1 denotes the partial derivative ∂φ
∂z1

. The same procedure applies to
calculate the expectation of x2 (respectively x3), where one has to differentiate
with respect to z2 (respectively z3). Second order factorial moments can be
calculated by differentiating twice with respect to the corresponding variables,
from which the general (uncentred) moments can be obtained, for example:

(∂kφ

∂zk1

)
|z=1

= E[x1(t)(x1(t)− 1) . . . (x1(t)− k + 1)] = μ
(k,0,0)
F =

k∑
i=1

s(k, i)μ(i,0,0)

where μF is a factorial moment and s(k, i) = (−1)k−i
(
k
i

)
is the Stirling’s number

of the first kind. This procedure generalizes to any order, so that univariate
and multivariate higher order factorial moments are calculated by differentiating
the proper number of times with respect to each variable in z. Joint factorial
moments can be expressed in terms of general moments as follows:

∂mφ

∂zm |z=1
=

∂m1

∂zm1
1

. . .
∂mnφ

∂zmn
n |z=1

= μ
(m)
F =

m1∑
i1=1

· · ·
mn∑
in=1

μ(m)
n∏

j=1

s(mj , ij) (6)

From (4) and (5) it is possible to derive (see [8], (5.60) modified for Kurtz-type
combinatorial mass action model used here) the following partial differential
equation:

φt(z, t) = Hφ(z, t) (7)

where H is the so-called Hamiltonian operator, obtained by the stoichiometric
coefficients and the reaction rates of the chemical system:

H =
∑

(r,α,β)∈R

r

α!
(zβ − zα)

( ∂

∂z

)α

(8)

where α! denotes the product
∏

i αi!.
The procedure for calculating moment equations summarizes as follows:

1. Determine the Hamiltonian operator for the reaction system by (8).
2. Calculate the moment equation for any desired moment μ(m) = μ(m1,...,mn)

by applying the partial derivative ∂m

∂zm to both sides of equation (7) and
setting z to 1.
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3. Convert higher order factorial moments in the equation to general moments
using (6) (the first order factorial moments are equal to the general mo-
ments).

Example 3. The Hamiltonian for Example 1 is

H = 0.1 (z3 − z1z2)
∂2

∂z1∂z2
+ 0.3 (z1z2 − z3)

∂

∂z3

To get the differential equation for μ(1,0,0), we first apply to (7) partial differen-
tiation with respect to z1 and then set z = 1:

φtz1(z, t)|z=1 = φz1t(z, t)|z=1 = μ̇(1,0,0)

The same procedure is applied to the r.h.s.:

( ∂

∂z1
Hφ(z, t)

)
|z=1

=
( ∂

∂z1

(
0.1 (z3 − z1z2)φz1z2(z, t)

))
|z=1

+

( ∂

∂z1

(
0.3 (z1z2 − z3)φz3(z, t)

))
|z=1

=
(
−0.1z2φz1z2(z, t) + 0.1 (z3 − z1z2)φz2

1z2
(z, t)

)
|z=1

+

(
0.3 z2φz3(z, t) + 0.3 (z1z2 − z3)φz1z3(z, t)

)
|z=1

By applying the property of the probability-generating function, we obtain:

μ̇(1,0,0) =
( ∂

∂z1
Hφ(z, t)

)
|z=1

= −0.1 μ(1,1,0) + 0.3 μ(0,0,1)

Similarly, one finds that

μ̇(0,1,0) =− 0.1 μ(1,1,0) + 0.3 μ(0,0,1) (9)

μ̇(0,0,1) =+ 0.1 μ(1,1,0) − 0.3 μ(0,0,1) (10)

μ̇(1,1,0) =− 0.1 μ(2,1,0) + 0.3 μ(1,0,1) − 0.1 μ(1,2,0)+

0.3 μ(0,1,1) + 0.1 μ(1,1,0) + 0.3 μ(0,0,1) (11)

It is important to note that the moment equations are always linear, like those
of the CME (4).

The implementation of analysis tools based on moments usually relies on
libraries for symbolic computation that help to automate the calculation of mo-
ment equations explained above.

2.4 Moment Closure

Switching from a state-based description to a moment-based one seemingly hap-
pens without any particular gain (or loss). Indeed, given a system with a finite
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number n of states, the number of (independent) equations in the CME is n− 1.
Its characterization in terms of moment equations gives a different set of ODEs,
but with the same number n − 1 of (independent) equations. If the CME is
defined by an infinite (countable) number of equations, the same holds for the
corresponding system of moment equations. Mathematically, both descriptions
contain the same information: switching back and forth between them is fully re-
versible. Practically, the high number of equations renders both systems equally
intractable. However, information is differently distributed across the two ODE
systems, such that different approximation techniques can be applied.

Let us point out a dependency in the structure of equation systems associated
to moments: an mth order moment generally depends on moments of order at
most m + h, where h is a constant whose value depends on the stoichiometry
matrix. In Example 3 we have h = 1, so that each moment of order m depends
– besides lower and equal order moments – on some moment of order m + 1:
for example, the expectation values of the number of molecules per chemical
species μ(1,0,0), μ(0,1,0), μ(0,0,1) depend on the moment μ(1,1,0) of order two, which
in turn depends on some moments of order three, and so on. In cases when
we were only interested in the mean number per chemical species, we could
confine our attention to first order moments. If we also wanted information on
the stochastic noise, we could also consider second order moments (and so on:
the higher the order considered, the more complete the information about the
probability distribution of chemical species). The problem is then how to break
the previously described infinite cascade of dependencies.

Moment closure denotes a wide set of techniques allowing to effectively break
infinite cascades. The closure usually follows from some assumption on the proba-
bility distribution of chemical species: the closure of order m, for example, allows
rewriting mth order equations, such that they no longer depend on higher order
moments. Breaking the cascade comes at the cost of introducing an approxima-
tion error: the more faithful is the assumption allowing the closure, the closer to
the precise solution is the resulting set of equations.

Example 4. Assume the correlation between species A and B in Example 1,
given time, is negligible. Then the covariance of x1 and x2 is zero at any time t.
Thus,

0 = Cov(x1, x2) = E[(x1 − μ(1,0,0))(x2 − μ(0,1,0))]

= E[x1x2]− μ(1,0,0)μ(0,1,0)

and from this it follows that

μ(1,1,0) = E[x1x2] = μ(1,0,0)μ(0,1,0) (12)

By applying (12) in (9)-(10), one obtains

μ̇(1,0,0) =− 0.1 μ(1,0,0)μ(0,1,0) + 0.3 μ(0,0,1)

μ̇(0,1,0) =− 0.1 μ(1,0,0)μ(0,1,0) + 0.3 μ(0,0,1)

μ̇(0,0,1) =+ 0.1 μ(1,0,0)μ(0,1,0) − 0.3 μ(0,0,1)
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so that equation (11) is no longer considered. Remarkably, the above set of closed
moment equations corresponds exactly to the ODE system (3). This simple re-
sult supports a different interpretation of the deterministic approximation intro-
duced with equation (2). Under this interpretation, the continuity of the domain
of species concentrations is fully justified without introducing any limit behav-
ior, because the “concentration” is instead thought as the expected value of the
number of molecules of chemical species. Moreover, the set of ODEs describing
the (approximate) evolution of expectations is not derived by the application of a
limit involving the number of molecules: it follows as a direct consequence of the
assumption of zero correlation between the species participating in higher-order
reactions. Although the concentration limit and the zero correlation assumptions
are inherently related, they lead to the same result through different mathemat-
ical procedures.

More interesting applications of moment closure are those where the determin-
istic approximation fails to capture the real behavior of the system. Here, higher
order closures may be applied in order to get better quantitative approximations,
as well as information about the stochasticity of the system under analysis. Im-
portant results in this direction are presented in [21] for the class of zero central
moment closures, where the closure of order m is obtained by setting to zero
all (m+ 1)th central moments. For this class, the approximation error has been
proven to decrease as the order of the closure increases. Similar results have
been shown in [28] for the first orders of another class of closures, obtained by a
procedure called derivative matching.

Remarkably, the first in the class of zero central moment closures is the de-
terministic approximation applied in Example 4, therefore it is usually regarded
as the coarsest among moment closure approximations.

Normal closure. The second closure of this class, one of the first to be applied
and still widely used, is the so called normal closure, consistent with the as-
sumption that the counts of all chemical species, at any time point, is jointly
normally distributed. This assumption is obviously wrong: first, the support of
a Gaussian distribution is continuous, while the probability distributions associ-
ated with chemical systems are discrete (in fact their support is given by the set
of reachable states). Moreover, the support of normal distributions also includes
negative values: in the context of chemical systems, this would correspond to
allowing states with a negative number of molecules, which is clearly impos-
sible. However, this assumption is one of the easiest to apply and works very
well in many practical cases, including the study of the community effect model
presented in Section 4.

Formally, the normal closure is obtained by setting to zero each central mo-
ment of order three. Given three random variables x1, x2, x3, the closure follows
by the equation
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0 = E
[
(x1 − E[x1])(x2 − E[x2])(x3 − E[x3])

]

= E[x1x2x3] + 2E[x1]E[x2]E[x3]

− E[x3]E[x1x2]− E[x2]E[x1x3]− E[x1]E[x2x3]

from which we get

E[x1x2x3] =E[x3]E[x1x2] + E[x2]E[x1x3]+

E[x1]E[x2x3]− 2E[x1]E[x2]E[x3] (13)

Example 5. In order to apply (13) to (11), we must calculate (13) for the mo-
ments μ(2,1,0) and μ(1,2,0):

μ(1,2,0) = E[x1x
2
2] =2 E[x2]E[x1x2] + E[x1]E[x2

2]− 2E[x1]E[x2]
2

=2 μ(0,1,0)μ(1,1,0) + μ(1,0,0)μ(0,2,0) − 2 μ(1,0,0)μ(0,1,0)2

μ(2,1,0) = E[x2
1x2] =2 μ(1,0,0)μ(1,1,0) + μ(0,1,0)μ(2,0,0) − 2 μ(0,1,0)μ(1,0,0)2

By substituting in (11) we get

μ̇(1,1,0) = 0.3 μ(1,0,1) + 0.3 μ(0,1,1) + 0.1 μ(1,1,0) + 0.3 μ(0,0,1)

+ 0.1 (2 μ(0,1,0)μ(1,0,0)2 − 2 μ(1,0,0)μ(1,1,0) − μ(0,1,0)μ(2,0,0))

+ 0.1 (2 μ(1,0,0)μ(0,1,0)2 − 2 μ(0,1,0)μ(1,1,0) − μ(1,0,0)μ(0,2,0))

so that μ̇(1,1,0) no longer depends on third order moments. In order to eliminate
their dependencies on third order moments, the same steps apply to the equations
of any further moment of order two – including those of μ(2,0,0), μ(0,2,0), μ(1,0,1)

and μ(0,1,1) in the above equation.
The resulting system of ODEs, typically non-linear after the closure, can be

solved numerically. The initial values for the moments are usually given under
the zero-variance assumption, that is μ(m)(0) = xm(0).

3 Model Reduction Based on Symmetries

Moment closure of order m for a system with n species generates O(nm) ODEs,
because moments for all combinations of n species may be included. The equa-
tion system may thus become difficult to handle. Attempts were made to simplify
models based on various properties, e.g. conservation laws and bounds on num-
bers of species [32]. Here we present a model reduction method based on sym-
metries in the reaction set, which can reduce the model dramatically in some
cases.
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3.1 Reduction by Example

We demonstrate the idea by a simple example. Consider the set of p = 2n + 1
chemical species A1, . . . , An, B1, . . . , Bn, C associated with state random vari-
ables x(t) = (A1(t), . . . , An(t), B1(t), . . . , Bn(t), C(t)) and the following set of
reactions

R = {Ai +Bi

κ1

�
κ2

C | i ∈ {1, . . . , n}}

We assume that for any fixed time t, R and an initial state x(0) = ν0 ∈ N
p

defines a probability distribution over x(t) with probability mass function πν(t).
For instance, considering combinatorial mass action kinetics, πν(t) will be the
solution of the CME (4).

We want to identify moment equalities from simple symmetries in the reac-
tion system. Since a moment is fully defined by the marginal distributions of the
variables composing it, we actually identify equal marginal distributions from
symmetries. The marginal distribution of the variables A1 and B1 is the proba-
bility distribution of this set of variables, ignoring the others. By symmetry of the
reaction set, we mean that the reaction set remains invariant under permutation
of the chemical species. An obvious permutation of this kind for R is swapping
A1 with A2 and B1 with B2. In that case, R remains unchanged. Suppose we
further assume that the initial state is invariant with respect to the same per-
mutation. That is, initial numbers of A1 and A2 are the same, as well as those
of B1 and B2. Because we consider probability distributions that are completely
defined by the reactions R and the initial state, the stochastic dynamics of the
variable set {A1, B1} cannot be distinguished from that of {A2, B2}. As proved
below, this means that their marginal distributions are equal

Pr(A1(t) = a,B1(t) = b) = Pr(A2(t) = a,B2(t) = b), ∀t ∈ R≥0, a, b ∈ N

Permuting of C with itself, we get

Pr(A1(t) = a,B1(t) = b, C(t) = c) = Pr(A2(t) = a,B2(t) = b, C(t) = c),

∀t ∈ R≥0, a, b, c ∈ N (14)

Importantly, this entails the moment equalities E[Ai
1B

j
1C

k] = E[Ai
2B

j
2C

k] for
any i, j, k ≥ 0. As another example of symmetry, assuming n ≥ 4 one can swap
A1 with A3, A2 with A4, B1 with B3, B2 with B4, C with itself. Again, also
assuming invariance of the initial state by this permutation, we have

Pr(A1(t) = a1, A2(t) = a2, B1(t) = b1, B2(t) = b2, C(t) = c) =

Pr(A3(t) = a1, A4(t) = a2, B3(t) = b1, B4(t) = b2, C(t) = c),

∀t ∈ R≥0, a1, a2, b1, b2, c ∈ N (15)

It is straightforward to use equalities of the form (14)-(15) to reduce a set of mo-
ment equations of the system. For example, the system considered above gener-
ates, among others, the following moment equations for second order
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moments:

dE[AiC]

dt
= κ1

( n∑
j=1

E[AiAjBj ]
)− κ1(E[AiBi] + E[AiBiC]) −

κ2(E[C] − E[C2] + n · E[AiC]) i = 1 . . . n (16)

Using relations as (14), we can infer the following moment equalities: E[AiC] =
E[A1C], E[AiBi] = E[A1B1], E[AiBiC] = E[A1B1C], E[A2

iBi] = E[A2
1B1],

and using equalities as (15) we have E[AiAjBj ] = E[A1A2B2], i = 1 . . . n, j =
1 . . . n, i �= j. Therefore we can equivalently rewrite all n equations in (16) into
one:

dE[A1C]

dt
= κ1((n− 1)E[A1A2B2] + E[A2

1B1]) −
κ1(E[A1B1] + E[A1B1C]) −
κ2(E[C] − E[C2] + n · E[A1C]) (17)

We can’t exchange moments for Ai and Bi because they may have different initial
conditions in general. Using this approach, the system of moment equations up
to order two is reduced from 2n2+5n+2 to 11 ODEs for any n ≥ 2. The rest of
the equations are redundant and can be safely excluded. The transformation is
exact, and we can recover the dynamics of the original system from the reduced
one. In order to compute the moment dynamics, it is necessary to perform a
closure of the reduced system as described in Section 2.4.

3.2 Formal Reduction

We now formally define the previous notions. We however won’t make use of
marginal distributions, since equivalence of the full joint probability distribution
entails equivalence of its marginal distributions.

We consider permutations σ over the set of species indices {1, . . . , n}. Permu-
tations of vectors and reaction sets are defined as

aσ = (aσ(1), . . . , aσ(n))

Rσ = {(κ,ασ,βσ) | (κ,α,β) ∈ R}
We say that a vector a, resp. a reaction setR, is σ-invariant, iff a = aσ, resp.R =
Rσ. We denote P the function that, for a given set R of reactions, initial state
ν0 and time t, gives a probability distribution over the counts of the species with
probability mass function πν(t). Somehow P provides the stochastic semantics of
the reactions. For example, P could be the stochastic semantics of the reactions
(Section 2.2), or an approximation of it. We make the following assumption
about P .

Assumption 1. Let πν(t) = P(R,ν0, t) and π′
ν(t) = P(Rσ,ν0σ, t), for some

reaction set R, initial state ν0, time t, and permutation σ of the species indices.
For any ν ∈ N

n, we have πν(t) = π′
ν(t).
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This assumption relates permutations at the level of reactions to permutation
at the level of its stochastic semantics. It just states that the stochastic dynamics
of a species A provided by P does not depend on its position in the state vector.
Saying it differently, we assume that the stochastic semantics is insensitive to
species renaming, provided that this renaming doesn’t create name conflicts.
This is a reasonable assumption that is, for instance, satisfied by the master
equation.

Theorem 1. Let R be a set of k reactions of n species, ν0 ∈ N
n be an initial

state, and σ be a permutation over {1, . . . , n}. Let πν(t) = P(R,ν0, t), if R and
ν0 are σ-invariant, then, for any ν ∈ N

n, πν(t) = πνσ(t).

Proof. This theorem is a straightforward consequence of the above assumption.
Indeed, let πν(t) = P(R,ν0, t) and π′

ν(t) = P(Rσ,ν0σ, t), since R = Rσ and
ν0 = ν0σ, we have πν(t) = π′

ν(t). By the Assumption 1 it follows that πν(t) =
π′

νσ
(t) = πνσ

(t). �	
Corollary 1. Let R be a set of k reactions of n species, ν0 ∈ N

n be an initial
state and σ a permutation of the species indices. If R and ν0 are σ-invariant,
then μ(m) = μ(mσ).

Proof. At any time t we have

μ(m)(t) = E[xm(t)]

=
∑

ν ν
mπν(t)

=
∑

ν ν
mσ
σ πν(t) by commutativity of multiplication

=
∑

ν ν
mσ
σ πνσ (t) by Theorem 1

= E[xmσ (t)] = μ(mσ)(t)

�	
We denote by Σ(R,ν0) the set of permutations σ such that R and ν0 are σ-
invariant. By Corollary 1, this set defines equivalence classes [μ(m)]Σ of moments,
i.e. the set of moments μ(m′) such that μ(m′) = μ(mσ) for some σ ∈ Σ =
Σ(R,ν0). As usual, we also write [μ(m)]Σ for the representative moment of this
set that is, for instance, the smallest of those moments for the lexicographical
order on N

n. We denote μk a vector of all M moments up to order k. Let

M(R, k) = {μ̇(m) = L · μh | order(m) ≤ k, L ∈ R
M}

be a set of moment equations obtained by some moment generation method,
with moments up to order k (recall that moment equations are always linear). h
is the maximum order of the moments in the equations, it can be greater than
k for systems of moment equations with an unclosed cascade of dependencies.

The reduced set of moment equations is defined by

Mred(R,ν0, k) = {ρ(μ̇(m)) = L · ρ(μh) | (μ̇(m) = L · μh) ∈ M(R, k)}
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Fig. 2. Model of a community effect in Xenopus [27]. The extracellular molecule Bpout
mediates communication between n cells with identical intracellular reaction network.

where ρ is the substitution of moments for their representative

ρ = {μ(m) is substituted by [μ(m)]Σ | order (m) ≤ k and Σ = Σ(R,ν0)}

This transformation just excludes from M(R, k) repeated equations for the vari-
ables which are provably equal, and therefore is exact.

4 Application to a Community Effect

We applied the analytical tools described in this paper to a model of a commu-
nity effect in Xenopus [27]. We derived a second order MC using normal approx-
imation for simplicity. In order to do that efficiently, we reduced the moment
equations as described in Section 3. Comparison of the solution of the truncated
moment ODEs with stochastic simulations shows that the MC is significantly
closer to the stochastic dynamics than the deterministic solution.

4.1 Community Effect Model

The model of a community effect in Xenopus [27] is summarized in Fig. 2. It
features the species Bpout for communication between n cells, each having the
same intracellular network: within a cell, Bpout triggers a cascade of two genes,
and results in more Bpout for cell-to-cell communication.

The intracellular details are: In the receiving cell, a signaling mechanism trans-
forms Bpout into the Cp protein, which binds to the first gene, and activates its
transcription into mRNA Ar, which in turn translates into the Ap protein. Ap
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activates the second gene, yielding mRNA Br, which translates into the Bpin
protein. The model distinguishes passive modes of genes (Agoff , Bgoff ) from ac-
tive (Agon, Bgon) – where genes are bound by their respective activator proteins,
and constantly produce mRNA.

Leaving its original cell, the protein Bpin becomes Bpout when joining the
common pool for cell-to-cell communication. From there, it can reach any cell in
the system, and activate the gene cascade there. This closes the positive feedback
loop of the community effect. Because diffusion is assumed infinitely fast, Bpout
equally likely reaches any of the n cells.

Finally, all species except the genes can degrade, yielding the pseudo species
φ. The complete model for n cells, with 17n + 1 reactions and the associated
rates, is provided in a supplementary file.

Studies of the deterministic approximation of this model have shown that
its behavior changes if the number of cells, n, exceeds a threshold nc, that we
call the critical number. If n > nc, all cells continuously express their genes,
otherwise all activity ceases after a short time.

Since gene and mRNA concentrations are always low in this system, stochastic
effects may play a significant role in its dynamics. Indeed, stochastic simulations
indicate that nc = 97 derived from the deterministic approximation in [27] may
be imprecise: at n = 100 we observed that in all 1000 simulations the gene
expression stopped early. We studied the stochastic behavior of this system with
the MC method.

4.2 Reduction of the Community Effect Model

The community effect model’s structure resembles a star, just as Figure 1 on
page 50 does. It is easy to see that the community effect model exhibits the
symmetries required by Theorem 1, which allows to reduce its moment equations
for any number of cells to a system of constant size, similar to the example in
Section 3.1.

The model contains 9 species per cell, and the procedure described in Sec-
tion 2.3 generates 40.5n2 + 22.5n+ 2 moment equations1 up to order two for n
cells. For 120 cells, which is near this system’s true nc, it would generate 585902
equations. This by far exceeds the processing capabilities of the software we
used. The reduced model contains 146 equations for any n. The deterministic
approximation, which is equivalent to the first order MC, can also be reduced
using the same method. This kind of reduction, among others, has been done in
[27], where the deterministic approximation consisted of only 8 ODEs for any n.
Our Maple2 implementation of the MC method and the reduction for this model
are available online3.

1 This is always an integer.
2 http://www.maplesoft.com/
3 http://www.lifl.fr/~batmanov/cmsb2012-files/

http://www.maplesoft.com/
http://www.lifl.fr/~batmanov/cmsb2012-files/


Symmetry-Based Model Reduction for Approximate Stochastic Analysis 65

0 500 1000 1500
0

100

200

300

400

500

Time (min.)

N
um

be
r 

of
 B

p ou
t m

ol
ec

ul
es

100 cells

Mean of 100 simulations
Deterministic approximation
Normal approximation

(a) n < nc

0 500 1000 1500
50

100

150

200

250

300

350

400

450

500

Time (min.)

N
um

be
r 

of
 B

p ou
t m

ol
ec

ul
es

120 cells

Mean of 200 simulations
Deterministic approximation
Normal approximation

(b) n > nc

Fig. 3. Traces of Bpout over time for systems of sizes below and above nc, computed
using stochastic simulations, deterministic approximation and second order MC using
normal approximation.

4.3 Comparison of the Approximations

Figure 3 plots the Bpout dynamics, computed by three different approximations.
First is a mean of many stochastic simulations. As the number of simulations in-
creases, this converges to the true mean - however it is noisy and the simulations
take very long time. The simulations were done using COPASI software [19].
Second is a (usual) deterministic approximation of the system, with one ODE
per species, which is the fastest in terms of computation. However, it tends to
diverge from the stochastic estimates. This indicates the presence of significant
stochastic effects in the model. Third is a reduced MC of order two, using the
normal approximation for truncation. The normal approximation is not the best
choice for chemical reaction systems generally, but it is simple to implement and
it gives good results in this case.

Due to the complexity of the resulting system of ODEs in the MC, we couldn’t
derive an analytical solution for nc. By examining the numerical solutions for
different values of n, we found that the MC gives nc = 117, the same as derived
from statistical analysis of stochastic simulations.

The deterministic approximation, on the other hand, predicts nc = 97, and
therefore miscalculates the qualitative behavior of the system for a range of
n. In addition, the deterministic estimate of Bpout strongly diverges from the
stochastic one, especially when the cell number n is close to nc.

5 Conclusion

The moment closure method reviewed here is a flexible tool for approximate
stochastic analysis. It allows manipulations of moment equations similar to those



66 K. Batmanov et al.

that can be done with deterministic ODEs, but including, approximately, the
stochastic effects.

Model reduction is one kind of such manipulations. It aims to eliminate re-
dundant variables from the system of ODEs, making it easier to solve. For MC,
which tend to generate a large number of ODEs, reductions are especially im-
portant. We have described a model reduction method based on symmetries,
which in case of MC is more complicated than what is used with deterministic
approximation.

Currently, the only way to exploit such symmetries while performing stochas-
tic analysis of a system is through MC: reduced models are not amenable to
Gillespie simulation. If the corresponding species in the cells are ”lumped” to-
gether, in the same way as in the deterministic approximation, the results diverge
quickly from the non-reduced system. Also note that, as the order of the closure
grows, the symmetric reduction can eliminate a smaller fraction of moments,
suggesting that for the limit case of the exact solution the gain from the re-
duction will be negligible. We believe that, for the community effect model, the
approach presented here provides the only tractable analysis.

Symmetry-based reduction is potentially applicable to many highly regular
systems. For example, in [3] a model reduction method for deterministic approx-
imation is applied to a system that contains a protein with symmetric activation
sites. That system is also symmetric in the sense described here, w.r.t. exchang-
ing activation states for different sites. Thus, its MC could be reduced with our
method as well. Another example is a discrete ring of identical cells, considered in
[30], which is symmetric under rotation of all cells. Many higher order moments
could be eliminated with our method using this property.

The approach presented here can be extended in a number of ways. Checking
and finding the required symmetric properties of a reaction set can be automated
rather easily. The symmetries considered here are just the automorphisms of the
reaction graph with the additional constraints that the initial conditions of the
corresponding species must be equal and the rates of the corresponding reactions
must be equal. The problem of finding all automorphisms belongs to the NP class
of complexity, however for real systems the requirement of having the same rates
and initial conditions restricts the number of possible symmetries. Verification
of a specified symmetry can be done in polynomial time.

One can also directly derive a reduced MC from a rule-based representation,
without expanding it to the full system. This becomes interesting if the expanded
system’s size is huge, but the system is highly symmetric and can be described
by a manageable set of moment equations. It resembles what is done in [3].

However, the current method is not applicable to spatial systems with borders.
By borders, we mean the outermost cells in a one dimensional row of cells, or
in a two-dimensional grid, those cells that frame the grid. In such system, a
distinct distance from the border(s) uniquely identifies each cell. For example,
one-dimensional spatial models of the community effect [1] can be reduced in half
by central symmetry. But, for a second order MC, the quadratic dependency of
number of equations on the system size remains. To deal with this, [1] constructed
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systems of partial differential equations (PDEs), as limit cases when the number
of cells tends to infinity and simultaneously their size goes to zero. While this
allows efficient treatment in the deterministic regime, stochastic analysis is still
required to run many long simulations.

Moment closures for spatial models have been previously derived in ecology
[9] and statistical physics [22], and it may be possible to infer them automatically
for chemical reaction systems as well.
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