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Abstract. Bimodal distributions of protein activities in signaling sys-
tems are often interpreted as indicators of underlying switch-like re-
sponses and bistable dynamics. We investigate the emergence of bimodal
protein distributions by analyzing a less appreciated mechanism: oscillat-
ing signaling systems with varying amplitude, phase and frequency due to
cell-to-cell variability. We support our analysis by analytical derivations
for basic oscillators and numerical simulations of a signaling cascade,
which displays sustained oscillations in protein activities. Importantly,
we show that the time to reach the bimodal distribution depends on
the magnitude of cell-to-cell variability. We quantify this time using the
Kullback-Leibler divergence. The implications of our findings for single-
cell experiments are discussed.
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1 Introduction

Protein levels in cellular systems undergo constant changes due to varying extra-
and intracellular cues that are dynamically processed by cellular machinery as well
as due to thermal noise — an inevitable factor affecting all biochemical reactions. It
is because of this variability that cells within a population, be it a bacterial colony
or tumor cells, at any given point in time exhibit a distribution of values rather than
a precise value of concentrations of its biochemical components, such as proteins or
mRNA. Such distributions can be assessed as population snapshots in fluorescence-
activated assays using flow cytometry or cell imaging. In both cases the measure-
ment of fluorescence intensity in individual cells correlates with protein abundance.
This starkly contrasts to bulk measurements such as Western blots where proteins
are detected in cell lysates, which only estimates the average (per-cell) concentra-
tion of the entire population.

Of particular interest are bimodal protein distributions that indicate a tem-
poral or steady-state phenotypic division of an isogenic cellular population.
Bimodality often reflects the existence of two subpopulations, each capable of
performing a different task [2] or having an altered survival rate to stress [3] and
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drug treatment [15]. Bimodal distributions may arise in a number of situations:
a purely stochastic genetic switch [I], a bistable system with stochastically in-
duced transitions [I1], or noisy networks with sigmoidal response function [8f9].
In this paper we address a much less appreciated mechanism: heterogeneous
oscillations. We show that cell-to-cell variability in protein abundances can re-
sult in bimodal distributions of concentrations of active (e.g. phosphorylated)
protein forms, although individual cells display solely deterministic oscillatory
dynamics. We examine analytically and numerically conditions under which this
phenomenon occurs.

2 Results

A single oscillating cell visits all intermediate levels between the low and the
high protein concentrations. A histogram, or a distribution, of concentrations
assumed over time can be constructed in the following manner. The range of
concentrations between oscillation extrema is divided into infinitesimally small
bins and the time the system spends in each of the bins is recorded. For deter-
ministic oscillations, a single period suffices to obtain such a distribution. De-
pending on the shape of these oscillations, a bimodal single-cell time-averaged
histogram of concentrations may arise (Fig. [[). The key question, however, is
whether in the presence of cell-to-cell variability which affects the amplitude,
phase and frequency of oscillations in individual cells, the described mechanism
can also evoke bimodality at the level of a cellular population? The question is
equivalent to asking about the ergodicity of such a system: does the distribution
of a population coincide with the distribution of an individual measured over
time? The disparity of the two has been recently demonstrated experimentally
for noisy cellular systems [I4]. Protein fluctuations that are high in amplitude
and slow compared to cells lifetime may drive a number of cells to a range of
concentrations that is only a fraction of the entire concentration spectrum. This
condition may persist well over a cells generation thus rendering snapshots of
the population incapable of reflecting the underlying network dynamics.

Similar phenomenon may affect a population of oscillating cells. Even though
our analysis focuses on oscillations that are deterministic in individual cells, bio-
chemical noise manifests itself in cell-to-cell variability. As a result, oscillations
across the population differ in the amplitude, phase and frequency. If this vari-
ability is not large enough, a population might not cover the entire concentration
spectrum at a given point in time, and a bimodal distribution fails to emerge.
An additional condition is required to facilitate this emergence and relates to a
so-called mixing time — the time after which all individuals within the popula-
tion of cells assume all states of the asymptotic (stationary) protein distribution.
We therefore set out to answer following questions: (1) under what biochemi-
cal circumstances can a heterogeneous population of cells exhibiting oscillatory
dynamics give rise to bimodal protein distributions? (2) What is the time after
stimulus required to reach a time-independent bimodal distribution?
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Fig. 1. Protein distributions depend on the functional form of oscillations. Sample
time-courses of triangle wave, sinusoidal and step oscillations (left column) along with
corresponding time-averaged probability densities (“normalized histograms”) of protein
concentrations (right).

2.1 Sinusoidal Oscillations Give Rise to Bimodality

We consider an ensemble of cells, each displaying an oscillating level of active
protein concentration governed by the intracellular biochemical network dynam-
ics. Cell-to-cell heterogeneity that emerges due to varying gene expression levels
induces randomness in the concentration of network components. In an ensem-
ble of oscillating cells, this randomness translates to a distribution of amplitude
(A), phase shift (¢), and frequency (w) of protein activity (y). In order to il-
lustrate the concept of mixing times, we first consider sinusoidal oscillations,
y = Asin (wt+¢). The three random influences (phase, frequency and amplitude
variability) cause qualitatively different behavior with respect to the convergence
of the y-distribution in a heterogeneous ensemble of oscillators.

Phase shift variability reflects desynchronization of independent cells within
the population and can be quantified in a standard manner, for instance by
measuring variance. Narrow distribution of phase shifts compared to the oscil-
lation period, or small desynchronization, implicates that at any point in time
the protein levels assumed in the population do not cover the entire range of
concentrations. This restricted concentration diversity persists during the time
evolution (Fig. A, left panel). Stationary distribution emerges instantaneously
only when the range of variability uniformly spans the entire oscillation period
(Fig. DA, right panel). In this regime, the probability density function (pdf)
can be obtained by considering a sine transformation of a uniformly distributed
random variable ¢ restricted to a single oscillation period (cf. Appendix) [6],
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The pdf is the arcsine distribution (Fig. [2 solid line in pdf plots). Notably, it
is independent of the time at which the measurement takes place, as well as
independent of the frequency of the underlying oscillations.

The variability of frequencies across cellular population stems from intrin-
sic biochemical noise that affects protein concentrations across the population.
Contrary to phase shift variability, an ensemble of sinusoidal oscillators with dis-
tributed frequencies reaches the asymptotic stationary distribution regardless of
the distribution width; the variance affects only the time to reach it and greater
variability accelerates the convergence (Fig. 2B). The asymptotic distribution
for uniformly distributed frequencies can be calculated analytically and equals
the (previous) result concerning phase-variability (Eq. [dl). An intuitive explana-
tion follows from the functional form of the sinusoidal oscillation. The value of
random frequency w is multiplied by time, ¢. Therefore, regardless of the w distri-
bution shape, w is scaled by the increasing time, which accordingly results in the
increasing range of frequencies. For large enough ¢, this range becomes sufficient
to facilitate mixing analogous to phase shifts that cover the entire oscillation
period.

If cells within the population oscillate with random amplitude only, no station-
ary distribution can emerge. Since no nonlinear transformation of the random
variable takes place, the pdf is merely a distribution of the random amplitude A
modulated by the sinusoidal wave. The resulting distribution of concentrations
cycles over the oscillation period (Fig. 2IC).

2.2 Quantification of the Mixing Time

A real biological oscillatory network exhibits a combination of all three types of
variability discussed in the previous section. In a typical experimental scenario,
the measurement of oscillations is performed on a population of cells and is pre-
ceded by a period of starvation followed by addition of a stimulating agent that
evokes oscillations. The procedure corresponds to synchronization of cells such
that oscillations begin approximately at the same time. Variability among cells
still exists, albeit diminished. The emergence of a stationary population-wide
bimodal distribution such as the one depicted in Fig. BID is therefore delayed.
The time to approach it, which we shall call the mixing time, depends on the
magnitude of contributions to oscillation variability between cells.

A mixing time larger than zero demonstrates a simple fact that the ensemble
of oscillators with small variability of frequencies, amplitudes and phase shifts
does not immediately reflect time-averaged statistics. As shown in the section
above, the system can reach the stationary distribution, provided variability of
frequencies exists.

As a quantification of the mixing time we use the Kullback-Leibler divergence
(KL), which, in simple terms, measures the divergence of two distributions [I3/7].
Let P(y,t) be the probability density of the y concentration at time point ¢ and
let further @(y) be the asymptotic probability density of y for ¢ — oo, then the
KL(t) is defined as
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Fig. 2. Approach to an asymptotic distribution. Time courses of oscillations mark the
25" and 75" percentile (dotted), 40" and 60" percentile (dashed), and 50*" per-
centile (solid) of the corresponding parameter distribution. Protein probability density
functions (pdf) are evaluated numerically at points indicated by arrows. Asymptotic
solution, Eq. [0 is marked by the solid line. (A) Phase shifts follow Gaussian distribu-
tion with zero mean and standard deviation o = m/2 (left) and 7 (right). For large
o, the pdf is time-independent and equals the asymptotic pdf. (B) Frequency follows
log-normal distribution with median 1 and ¢ = 0.2. (C) Amplitude follows Gaussian
distribution with mean 1 and o = 1. The distribution cycles over the oscillation pe-

riod. (D) Sample stationary protein distribution when all three variability influences
are combined.
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Fig. 3. Kullback-Leibler divergence for a population of sinusoidal oscillators with ran-
dom frequencies drawn from normal, log-normal, uniform and arcsine distributions
(insets). All frequency distributions have the same mean, p = 7, and standard devi-
ation, o = w/10. We calculate KL between numerically sampled protein distributions
(based on 100’000 points) at time ¢ and the asymptotic distribution from Eq. [l

+o00o
KL(t) = / Py, )i’ é?y? dy . )

Here, K L(t) measures the divergence rather than distance of the snapshot at
time ¢ from the asymptotic true snapshot distribution. It is worth emphasizing
that KL is always non-negative but it is not a metric in the mathematical sense
for it is asymmetric and it does not satisfy triangle inequality.

Temporal behavior of K L(¢) is shown in Fig. 8] where we measure the diver-
gence between the protein distribution in an ensemble of oscillators with random
frequencies and the asymptotic arcsine distribution. Regardless of the type of
frequency distribution, the KL divergence decays at an exponential rate as the
oscillating ensemble evolves in time.

2.3 Oscillations and Population Snapshots in a Two-Layer GTPase
System

To analyze how oscillations mix in a biologically realistic scenario, we numeri-
cally study a model of a generic two-layered GTPase system. Small GTPases can
cycle between an inactive GDP-bound state (G) and an active GTP-bound state
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Fig. 4. Dynamic model of GTPase cascade. (A) Interaction scheme. (B) Simulated
trajectories of three random cells. (C) Distribution of total GTPase concentrations
used for ensemble simulations. The resulting distributions of periods (D), extrema for
concentrations of g1p (E) and g2p (F). Note the logarithmic x-axis in panels E and F.
Parameters used in the simulation: maximal rates r1 = 10, r2 = 6.5, r3 = 1, r4 = 0.55;
half-activation constants mi = 25, ma2 = 0.09, ms = 5, ma4 = 14; positive interaction
G1 — G1,a11 = 200, m11 = 10; negative interaction G1 4 G2, a12 = 0.005, m13 = 0.05;
positive interaction G2 — G1, a21 = 80, ma1 = 20.

(GP). They are important transducers of cell signaling that regulate a wide
range of biological processes, for instance cell proliferation, cell morphology as
well as nuclear and vesicle transport. Individual GTPase are often interlinked,
thereby generating positive and negative feedback systems that are theoretically
capable of exhibiting rich dynamics including oscillations. Indeed oscillations
have been observed experimentally for several GTPases. For example, the small
Rho-GTPase cdcd?2 regulates polarized growth in fission yeast using oscillating
activity arising from both positive and negative feedback [4].

We consider the GTPase cascade depicted in Fig. @A and let G1, G2 and
G1P, G2P denote the inactive and active form of the corresponding GTPase,
respectively. The system features a positive auto-regulatory loop in which G1P
enhances its own activation and a negative feedback loop in which G1P inhibits
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the activation of G2 and in turn G2P activates G1. The following ordinary
differential equations in normalized coordinates represent the system [16],

g1p = o101 101 T2 91D an = mi1 + a1 g1p
1P = 011 — 11 =
dt mi+g1 me+gip’ mi1 + g1p
mo1 + a21 g2p
Q21 =
ma1 + g2p
d gop = r3 92 T4 gop e — my3 + @13 g1ip 3)
2P = 013 - ) 13 =
dt m3+gas M4+ gop my3 + g1p

with g1 = g{ — g1p, g2 = ¢5”" — gop, and where g1, g2 and g1p, gop denote the
concentrations of inactive and active GTPases, respectively, and r;, m;, a;;, my;
are kinetic parameters. The factors a1, as1, a3 model the described interactions
with the parameters a;; > 1, ag; > 1 (positive interactions) and 0 < a3 < 1
(negative interaction).

In accordance with the literature [12], we model a population of cells as an
ensemble [T0/5] of single cells in which the total concentrations of both GTPases
are log-normally distributed with mean one and standard deviations consistent
with experimentally reported values ranging from 0.12 to 0.28 in human cells
[14] (Fig. HC).

Fig. @B illustrates the dynamics of the model with representative responses of
three random cells to a step input. The model exhibits switch-like G1P oscilla-
tions and triangle wave-like G2P oscillations, thus providing a convenient tool to
investigate how differentially shaped oscillations manifest in the distribution of
a population snapshots taken at a particular time point. Figs. HID-F demonstrate
how the periods and the minima and maxima of the oscillations are distributed
in the population. Decreasing the variability of the total GTPase distribution
(from 0 = 0.1 to 0.05) yields more narrowly distributed periods and extrema
while their means remain unchanged.

The distribution of g1p(t) and gap(t) concentrations, in the following referred
to as a distribution snapshot, changes over time. For ¢ < 0 the entire population
is synchronized; the phase of all oscillations is zero and the first peak occurs
roughly at the same time; at the initial time all cells exhibit zero GTPase ac-
tivity, while after 15 seconds most cells have progressed to the first peak. Over
time, the cell-to-cell variability has an increasing effect on the population snap-
shots; different periods shift the phases of subsequent peaks until the phases
are uniformly distributed. During this transition period, the snapshot distribu-
tion dynamically changes (Fig. Bl). The evolution of the distribution crucially
depends on the shape of the underlying oscillations. For example, switch-like
G1P oscillations result in uni-modal (¢t = 5s), bi-modal (¢ = 9s) and even tri-
modal (¢t = 78s) distributions. In contrast, the triangle wave G2P oscillations
yield uni-modal snapshot distributions at all times (Fig. BB).

Next we sought to assess how quickly the snapshot distribution converges to
the asymptotic one using Kullback-Leibler divergence and asked whether it is pos-
sible to find the time point at which the oscillations are well mixed. The results
are shown in Fig. BIC and D. The snapshot distribution converges exponentially
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Fig. 5. Numerical simulations of time evolution of gip (A) and g2p (B) protein distri-
bution for indicated time points. The distribution of total G1 and G2 concentrations is
normal with mean 1 and standard deviation 0.05. Panels C and D show a comparison of
Kullback-Leibler divergence for total G1 and G2 distributions with standard deviation
0.1 and 0.05. Simulation parameters same as described in caption of Fig. [l

towards its asymptotic distribution. Further, the rate of convergence depends on
the cell-to-cell variability in the population; lower variability of the total GTPase
concentrations causes lower variability of periods and results in longer mixing times.

3 Discussion

A stationary bimodal protein distribution may arise in a heterogeneous pop-
ulation of independent cells with sustained deterministic oscillations of active
protein levels. The emergence of population-level bimodality is inevitable in the
presence of cell-to-cell variability that affects oscillation frequency. Importantly,
the type of the frequency distribution across the population is irrelevant for the
emergence of bimodality; only the time of convergence is affected (Fig. B).

Detecting the oscillatory nature of signaling networks with bulk measurements
(e.g. immunoblotting) is only possible for synchronized cells. This synchroniza-
tion, for instance, occurs at the point of stimulation preceded by a period of star-
vation. If this condition is not satisfied, cell-to-cell variability introduces phase
desynchronization and diversity in frequencies, which averages out the oscilla-
tions. On top of that, sampling frequency in the experiment should be sufficiently
higher than frequency of the oscillations. Otherwise the measurement captures
only the population mean, which does not oscillate. In this regime, single-cell
measurement methods can give an additional insight, for they record the amount
of protein in individual cells.



26 M. Dobrzynski et al.

A population snapshot obtained with flow cytometry or imaging is equivalent
to the probability density functions discussed throughout the paper. The time
dependence of such a distribution may become very intricate for realistic systems,
which we demonstrated in Fig. Bl Nonetheless, there exists a time scale — the
mixing time, which we estimated using Kullback-Leibler divergence — when the
stationary distribution emerges. If amplitude variability is smaller than the os-
cillation amplitude itself (cf. g1p and gap oscillations in Fig.dB), the distribution
may become bimodal. The time to converge to this distribution is independent
of the population size: as long as mixing of frequencies and phases in a popu-
lation has not commenced, the protein distribution remains different from the
asymptotic one. This behavior contrasts with other mechanisms that generate
bimodality where increasing the number of independent individuals results in a
better indication of the population-wide asymptotic distribution. Experimental
verification of sources of bimodality might benefit from this feature.

The second implication of our finding relates to mechanisms that preserve
synchronized population-wide oscillations generated by biochemical networks.
In the presence of frequency heterogeneity the mixing and eventual convergence
to the asymptotic distribution is only a matter of time. If oscillations are a
physiologically relevant trait, as is the case of circadian rhythms, the convergence
is undesirable because it would indicate that oscillations are out of sync and each
cell within an organ, for instance, has its own day and night pattern. This could
explain why biochemical coupling is present in such systems in order to facilitate
spontaneous synchronization across the population.
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Appendix

Asymptotic Protein Distribution

Consider an ensemble of cells with sinusoidal oscillations of protein levels. Vari-
ability of phases ¢ is accounted for by a random variable @ uniformly distributed
on the range of an oscillation period, 27. We set out to obtain a distribution
of protein levels y denoted by a random variable Y, which is the result of a
nonlinear transformation ¥ = Asin(wt 4+ ®). Since the transformation is peri-
odic, without loss of generality we first set ¢ = 0 and focus on the shorter range,
—7/2 < ® < /2, where sine function is monotonically increasing.

The cumulative distribution function (CDF) of Y is simply the probability
that the random variable Y takes on a value less than or equal y, Fy(y) =
Pr(Y <y). From this we obtain,

Fy(y) = Pr[Asin(®) < y] = Pr [@ < arcsin (Z)] ,and |y < A. (4)

The CDF of Y can be therefore expressed in terms of the CDF of ¢. The prob-
ability density function (pdf), denoted by fy (y), is CDF’s first derivative,

Fy(y) = Fo (arcsin (i)) ,

diFy(y) = fy(y) = fo (arcsin (i)) \/A21+ ;
_L (5)
T \/AQ + 2

The procedure can be repeated to yield the same result, the arcsine distribution,
for every range of length 7, where the transformation is monotonic.
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