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Abstract. We show that in the context of the Iyer et al. 67-variable car-
diac myocycte model (IMW), it is possible to replace the detailed 13-state
probabilistic model of the sodium channel dynamics with a much simpler
Hodgkin-Huxley (HH)-like two-state sodium channel model, while only
incurring a bounded approximation error. The technical basis for this re-
sult is the construction of an approximate bisimulation between the HH
and IMW sodium channel models, both of which are input-controlled
(voltage in this case) CTMCs.

The construction of the appropriate approximate bisimulation, as well
as the overall result regarding the behavior of this modified IMW model,
involves: (1) Identification of the voltage-dependent parameters of the
m and h gates in the HH-type channel via a two-step fitting process,
carried out over more than 22,000 representative observational traces of
the IMW channel. (2) Proving that the distance between observations of
the two channels is bounded. (3) Exploring the sensitivity of the overall
IMW model to the HH-type sodium-channel approximation. Our exten-
sive simulation results experimentally validate our findings, for varying
IMW-type input stimuli.

1 Introduction

The emergence of high throughput data acquisition equipment has changed cell
biology from a purely wet lab-based science to also an engineering and informa-
tion science. The identification of a mathematical model from cellular experi-
mental data, and the use of this model to predict and control the cell’s behavior,
are nowadays indispensable tools in cell biology’s arsenal [35,5].

Continual progress in data acquisition has also led to the creation of increas-
ingly sophisticated partial Differential Equations Models (DEMs) for cardiac
cells (myocytes). These are similar in spirit to the DEMs used in physics: their
main purpose is to elucidate the biological laws governing the electric behavior
of cardiac myocytes, i.e., their underlying cellular and ionic processes [9].
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Inspired by the squid-neuron DEM [19] developed by Hodgkin and Huxley
(HH), Luo and Rudy (LR) devised one of the first myocyte DEMs, for guinea
pig ventricular cells [29]. Adapting this model to human myocytes led to the
ten Tusscher-Noble2-Panfilov (TNNP) DEM [40], which has 17 state variables
and 44 parameters. Based on updated experimental data, Iyer, Mazhari and
Winslow (IMW) subsequently developed a DEM comprising of 67 state variables
and 94 parameters [20]. This DEM reflects a highly detailed physiological view
the electrochemical behavior of human myocytes.

From 17 to 67 variables, all such DEMs capture myocytic behavior at a par-
ticular level of abstraction, and hence all of them play an important role in the
modeling hierarchy. It is essential, however, to maintain focus on the purpose of
a particular DEM; that is, of the particular cellular and ionic processes whose
behavior the DEM is intended to capture. Disregarding this purpose may lead
to the use of unnecessarily complex DEMs, which may render not only analysis,
but also simulation, intractable.

If the only entity of interest is the myocyte’s transmembrane voltage, co-
authors Cherry and Fenton have experimentally shown that a minimal DEM
(MM) consisting of only 4 variables and 27 parameters can accurately capture
voltage propagation properties in 1D, 2D, and 3D networks of myocytes [4]. The
MM has allowed us to obtain dramatic simulation speedups [1], and to use its
linear hybridization as the basis for formal symbolic analysis [18].

Since new technological advances are expected to lead to further insights into
myocytic behavior, it is likely that the IMW model will be further refined by
adding new variables. As in model checking and controller synthesis, one would
therefore like to compute the smallest approximation of the State Of the Art
DEM (SOA) that is observationally equivalent to the SOA with respect to the
property of interest, modulo some bounded approximation error. This, however,
is not easily accomplished, as it implies the automatic approximation of very
large nonlinear DEMs.

A first step toward the desired automation is to identify a set of approxima-
tion techniques that allow one to systematically remove unobservable variables
from, say, the SOA to end up with the MM, if the only observable variable is
the voltage. This is one of the goals of the project Computational Modeling
and Analysis of Complex Systems (CMACS) [36]. A byproduct of this work is
to establish a long-missing formal relation among the existing myocyte DEMs,
facilitating the transfer of properties established at one layer of abstraction to
the other layers. Building such towers of abstraction is becoming increasingly
prevalent in systems biology [22,11].

The main focus of this paper is on sodium channel approximations. In the HH
DEM and Noble’s DEM of [37], the transmembrane sodium channel is assumed
to consist of four independent Markovian gates, whose opening and closing rates
depend on the transmembrane voltage. The probability of each of the three
identical activating (m-type) gates being open, i.e. a state favoring ion flow, is
denoted by m, and the probability of the fourth inactivating (h-type) gate being
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open is denoted by h. The sodium channel conducts when all the four gates are
in the open state.

The IMW model uses the formulation of Irvine et al. [28], where experimental
data is used to show the existence of five interdependent gates. This leads to a
considerably larger Markovian model for the sodium channel, consisting of 13
state variables.

The main question posed in this paper is the following: Assuming that the
conductance of the sodium channel is the only observable, is the behavior of the
HH channel equivalent to the behavior of the IMW channel, modulo a well-defined
approximation error? Rather than dealing with behavioral equivalence explicitly,
we ask if it is possible to construct an approximate bisimulation [12,14,13,15]
between the discrete-time versions of the HH and IMW channel models? This
notion of equivalence is stronger than the conventional behavioral equivalence,
which compares the observed behaviors (trajectories) of two systems.

Moreover, proving the two models to be approximately bisimilar ensures that
when the 13-state sodium channel model is replaced by the 2-state HH-type
abstraction in the overall IMW cardiac cell model, the modified IMW model
retains the properties of interest (in discrete time). Thus, the reduced 2-state
model is a valid reduction in the context of the whole-cell IMW model.

The answer to the above-posed question is of broad interest, as it reduces to
showing the existence of an approximate bisimulation between two Continuous-
Time Markov Decision Processes (CT-MDPs); that is, two input-controlled
(voltage in this case) continuous-time Markov chains (CTMCs). We answer this
question in the positive, by explicitly constructing such a bisimulation.

The construction involves: (1) The identification of the voltage-dependent
parameters of the m and h-type gates of the HH-type abstraction, based on the
observations of the IMW channel. (2) Proving that the distance between the ob-
servations of the two channels never exceeds a given error. (3) Exploring the sen-
sitivity of the overall IMW DEM to the HH-type sodium-channel approximation.

The identification of the voltage-dependent parameters is performed via a
two-step fitting process. In the first step, which we call Parameter Estimation
from Finite Traces, more than 22,000 observational traces of the IMW channel
are fit to obtain the parameter values at constant voltage. The second step,
which we call Rate Function Identification, combines the step-1 constant-voltage
parameter values to obtain the voltage-dependent parameters defining the HH-
type channel. Finally, the resulting two-state HH-type channel is proved to be
approximately bisimilar to the IMW channel and the error between the two
systems is bounded. See Fig. 1 for an overview of our approach.

The rest of the paper is organized as follows. Section 2 introduces the relevant
background for the HH and the IMW DEMs and their sodium-channel MDP
formulations. Section 3 presents our parameter identification technique and the
resulting HH-type MDP for the sodium channel. Section 4 proves the existence of
an approximate bisimulation between the HH and IMW sodium-channel MDPs.
Sections 5 and 6 discuss related work, our conclusions, and future directions.
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Fig. 1. A Labeled Transition System (LTS)-based view of the IMWDEM, composed of
various concurrently evolving subsystems corresponding to the different ionic currents.
We replace the 13-state INa subsystem with a 2-state HH-type abstraction. PEFT and
RFI are the two steps of identifying the abstract model. As the 2-state model is proved
to be approximately bisimilar (denoted by ∼=δ) to the detailed model, composing it
with the other concurrently evolving ionic current models (subsystems) retains the
cell-level behaviors of the IMW model. Note that the subsystems ignore the stimulus
input during their respective evolution and only depend upon the voltage input. The
LTS outputs the 13 currents in Eq. (1).

2 Background

The heart is the central organ of the circulatory system and is responsible for
pumping blood in the pulmonary and systemic circulation loops [8]. Pumping is
achieved through the synchronized contraction of around four billion myocytes,
which constitute the cardiac tissue. This is controlled in a distributed fashion,
through the propagation and reinforcement of an electric pulse (clock). The pulse
originates in the sino-atrial node of the heart and diffuses from one myocyte to
the other through a sophisticated communication infrastructure.

Cardiac myocytes belong to the class of excitable cells, which also includes
neurons. Such cells respond to an external electrical stimulus in the form of
an Action Potential (AP), which measures the change of the transmembrane
potential with time in response to the stimulus. A typical ventricular myocyte
AP and its associated phases are shown in Fig. 2(Right). Starting from the
resting state, a myocyte can either be excited by an external stimulus or by the
diffusing charge of the neighboring myocytes. In this paper, we will restrict our
focus on the upstroke phase of the AP.
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Fig. 2. (Left) Currents in IMW: Blue and brown arrows show ionic currents flowing
through channels. Blue circles and arrows correspond to ionic exchanger currents and
green circles denote ionic pumps. Intra-cellular currents are shown in Magenta. (Right)
The Action Potential (AP), its phases and associated currents. (Right-Inlay) Sodium
current in red, and the sum of all other currents in blue, in Upstroke Phase (UP).

2.1 The IMW Cellular Model

The IMW DEM is a physiologically detailed model capturing the ionic processes
responsible for the generation of an AP in human ventricular myocytes:

− CV̇ = INa+INab
+I
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Cab
+I
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+I
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+I
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+I

to1
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+

I
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CaK

+I
st

(1)

where V is the membrane’s potential, V̇ is its first-order time derivative, C is
the membrane’s capacitance, and Iv are the ionic currents shown in Fig. 2(Left),
except for Ist. This is the stimulus current, which could be either an external
stimulus or the diffused charge from neighboring cells.

The remaining currents are the result of the flow of the sodium (Na+), potas-
sium (K+) and calcium (Ca2+) ions, across the myocyte’s membrane. Three
types of transport mechanisms are responsible for the ion flows: channels, pumps
and exchangers. Channels are special proteins that penetrate the membrane’s
lipid bi-layer, and are selectively permeable to ions species. Depending on the
conformation of the constituent protein, the channel either allows or inhibits the
unidirectional movement of an ion specie.

The protein conformation is voltage dependent, thus the name voltage-gated
channels. All the transmembrane currents in Fig. 2 result from voltage-gated
ionic channels, except for INaK , INaCa and Ip(Ca), which are exchanger or pump
currents. The concentration of calcium is regulated by a sophisticated intracel-
lular mechanism, and is out of scope of this paper.

Fig. 2(Right-inlay) plots the sodium current INa and the sum of all the other
ionic currents during the upstroke phase (UP), of a typical AP of the IMW
DEM. The sodium current INa dominates all the other. The behavior of the
sodium channel, which regulates the flow of INa, chiefly contributes to the up-
stroke phase, and will be the focus in the remainder of the paper. In the HH DEM
the situation is similar, and in MM the role of INa is played by the abstract fast
inward current Jfi.
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Fig. 3. (Left-top) Sodium channel MDP in 8 states counting the number of indepen-
dent open/closed gates, and observation function O(t). (Left-bottom) The open-closed
MDPs for the m and h-type gates. The equivalent sodium channel behavior is obtained
as O(t) = m(V )3h(V ). (Right) The schematic representation of the sodium channel
with its associated independent gates.

2.2 The HH Sodium Current

The sodium current INa in the HH DEM is defined by the following equation:

INa = gNam
3(V )h(V ) (V − VNa)

where gNa is the maximum conductance of the sodium channel, VNa is the
sodium’s channel Nernst potential, m(V ) and h(V ) are the probabilities of
the voltage-dependent activation gate and the inactivation gates being open
respectively.

A graphic illustration of the sodium channel is given in Fig. 3 (Right). It
consists of four independent voltage-controlled gates, three of which are identical
activation gates (m-type), and one of which is an inactivation gate (h-type).

The activation and inactivation gates are shown in Fig. 3 (Left-bottom). They
are Continuous Time Markov Decision Processes (CT-MDP). Both CT-MDPs
have a closed and an open state, respectively, and the rates of transitioning
between these two states are given by the voltage-dependent parameters α(V )
and β(V ). The 8-state CT-MDP for the whole channel is shown in the left-half of
Fig. 3. Evolution of the state variables (occupancy probabilities of the 8 states)
of this model is governed by Kolmogorov equations[21], which form an 8-state
DEM. It turns out that any of the 8-variables can be observed using the two
gates m and h as they form a stable invariant manifold of the 8-state DEM [23].
At rest the m-gate is closed and the h-gate is open. Their DEM is as follows:

ṁ = αm(V )(1 −m)− βm(V )m, ḣ = αh(V )(1− h)− βh(V )h

We refer to this DEM asMH . The linear system obtained by fixing V = v will be
denoted asMv

H . At any point in time the occupancy probability of the open state
O in the 8-state DEM is given by m(V )3h(V ). Thus the observation function O
of this DEM will be m(V )3h(V ). We now introduce the following notation:

x = [m,h]′, A = diag(−(αm + βm),−(αh + βh)), B = [αm, αh]
′
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Fig. 4. Probability for the m-gate to be open in HH: a) Numerical integration of m
for different voltage changes; b) Analytical solution of m for different voltage changes;
c) Voltage changes applied for the analytical and the numerical integration solutions.

The independence of the gates also implies that the DEM is in diagonal form,
and it can be therefore written as follows:

ẋ = Ax+B, x0 = [m0, h0]
′

Despite the linear-looking form, this equation is nonlinear, as A and B depend
on the voltage. For example, Fig. 4(a) shows its numeric solution for the input
in Fig. 4(c). However, HH computed an approximate closed form solution as
follows. In the resting state, defined as V =0, and in the equilibrium state, for
a fixed V = v, the gates m and h, and the rates τ have the following values:

m0 = αm0/(αm0 + βm0), m∞ = αm/(αm + βm)
h0 = αh0/(αh0 + βh0), h∞ = αh/(αh + βh)
τm = 1/(αm + βm), τh = 1/(αh + βh)

Then solving the DEM above as if A and B were constant and the differential
equation therefore linear, Hodgkin and Huxley derived the following solution:

x = [m∞ − (m∞ −m0)e
−t/τm , h∞ − (h∞ − h0)e

−t/τh ]′

As shown in Fig. 4(b) this closed-form solution jumps for a changing input shown
in Fig. 4(c) between the solutions obtained for constant input. This behavior is
however not problematic when replaced in the cellular model, as the voltage
only jumps at the beginning, when the stimulus is applied, and then varies in a
continuous way.

2.3 The IMW Sodium Current

The sodium current INa in the IMW DEM is defined by the following equation:

INa = gNa (O1(V ) +O2(V )) (V − VNa) (2)

where gNa and VNa have the same meaning as in the HH DEM,O1(V ) andO2(V )
are occupancy probabilities of the two states of the MDP shown in Fig. 5.

The IMW view of the sodium channel is shown Fig. 5 [26,28], with transition
rates in Table 1. There are now four identical m-type gates, and the transition
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Fig. 5. The 13-variable MDP of the IMW model. The observation function is now
O = O1+O2, and the transition rates of the h-type gate are constants. However, they
depend on the number of open m-type gates through a. The transition rates are defined
in Table 1.

rates of the h-type gate are constant. However, these rates indirectly depend on
V through the number of open-closed m gates (encoded as powers of a).

Moreover, taking the path C0, C1, C1I, C0I is mathematically equivalent to
taking a voltage dependent h-transition C0, C0I. The longer the paths, the less
one can distinguish between the HH-type and the IMW-type transition. Note
also that two states O1 and O2 are now observable instead of one, and some
bookkeeping was also added.

Definition 1. Consider the 13-state model for sodium-channel dynamics shown
in Fig. 5. Let pj denote the jth state occupancy probability from the vector
p = (C0, C1, C2, C3, C4, O1, O2, C0I, C1I, C2I, C3I, C4I, I). The dynamics of
the model MI is described by the following system of differential equations :

dpj
dt

=
∑

i�=j

kij(V )pi −
∑

i�=j

kji(V )pj i, j = 1, . . . , 13 (3)

where V is the transmembrane potential and kij(V ) is the transition rate from
the ith to the jth state as defined in Table 1. This system can be re-written as:

dpj
dt

= A(V ).p, (4)

where A(V ) is a 13×13 matrix with Aj,i(V ) = kij(V ) i �= j, Aj,j(V ) = − ∑
i�=j

kji.

The linear system MIv is obtained from MI by fixing V = v in Eq. 4.

Table 1. Rates of the 13-state CT-MDP MI shown in Fig. 5. c = 8.513 × 109. Values
instantiated from Table 6 of [20] at temperature T = 310K.

rate function rate function rate function

α(V ) c.e−19.6759+0.0113V δδ(V ) c.e−38.4839−0.1440V ε 0.0227

β(V ) c.e−26.2321−0.0901V γγ(V ) c.e−21.9493+0.0301V ω 1.0890

γ(V ) c.e−16.5359+0.1097V η(V ) c.e−19.6729+0.0843V cn 0.7470

δ(V ) c.e−27.0926−0.0615V On(V ) c.e−20.6726+0.0114V cf 0.2261

ν(V ) c.e−26.3585−0.0678V Of (V ) c.e−39.7449+0.0027V a 1.4004
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3 Abstraction of Sodium Channel Dynamics

We construct an HH-type DEM MH that can be substituted for MI within the
IMW cardiac-cell model. We perform the following abstractions in this process:

– We reduce the number of activating subunits to 3 and use a single inactivat-
ing subunit. This results in abstracting away the I, C3I, C4I, C3 and C4I,
states of 13-state CTMDP in Figure 5.

– We coalesce the two open states into a single open state O.
– We abstract away the conditional dependence between activating and inacti-

vating subunits of the 13-state model MI . This is done by abstracting away
the scaling factor a.

– With the above abstractions,MI reduces to the 8-state CTMDP. The 8-state
abstraction then reduces to the 2-state DEMMH model due to the invariant
manifold reduction.

Our approach to obtaining the 2-state HH-type abstraction MH from the 13-
state physiological model MI is summarized in Fig. 6 and described next.

Fig. 6. Abstraction process for sodium channel dynamics

1. Generating Representative Finite Traces of MI

The IMW model was simulated in FORTRAN for a single cell with an inte-
gration time step of 10−4 ms. Multiple MIv systems were simulated for the
values of V observed during the FORTRAN simulation. The linear system
MIv was simulated in MATLAB using the ODE45 solver [32]. The integra-
tion time step for these simulations was 10−2 ms. The simulations ran till the
steady state was reached. The initial condition for all the simulations were
taken to be the initial condition specified in Table 4 of [20]. The motivation
for these initial conditions lies in the voltage-clamp experiments performed
in [19]. In these experiments, the voltage was initially maintained at the rest-
ing potential, with the neuron conductance also being in the resting state.
The voltage was suddenly increased to a specified value and the evolution of
conductance was observed till steady state.
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The simulations resulted in a set B∗, of finite-length representative behaviors
(traces). Each member B∗(v) is the trajectory of the simulation of Mv

I .

2. Parameter Estimation from Finite Traces (PEFT)
This routine takes B∗ as the input and at each of the voltage values v,
estimates the parameters of MHv , the two-state HH model (MH) at V = v.
For each voltage v, the following optimization problem was solved to estimate
the parameters αv

m, βv
m, αv

h and βv
h of MHv :

minimize

tvS∑

t=0

[Ov(t)−mv(t)3hv(t)]2

subject to: αv
m, β

v
m, α

v
h, β

v
h ≥ 0

(5)

where
– t is the discrete-time step,
– tvS is the number of discrete-time steps taken by MIv to reach steady

state (MIv was simulated in MATLAB till steady-state),
– Ov(t) = Ov

1 (t)+O
v
2(t) is the sum of the occupancy probabilities of states

O1 and O2 in the trajectory B∗(v) and
– mv(t), hv(t) define a trajectory of Mv

H :

mv(t) =
αv
m

αv
m + βv

m

+

(
mv(0)− αv

m

αv
m + βv

m

)
exp (− (αv

m + βv
m) t)

hv(t) =
αv
h

αv
h + βv

h

+

(
hv(0)− αv

h

αv
h + βv

h

)
exp (− (αv

h + βv
h) t)

(6)

where mv(0) and hv(0) denote the initial conditions.

We used MATLAB’s constrained-optimization solver FMINCON [33] for
Eq. (5). Details of the active-set optimization algorithm implemented in the
function can be found in [30]. Three aspects of our implementation deserve
further elaboration:

– Choosing mv(0) and hv(0) - In [19], the authors choose the initial
conditions for all the voltages such that the inactivating gating variable
h is high and the activating gating variable m is low. We use the same
convention but ensure that the initial conductance (observation)
mv(0)3hv(0) = OVres , where OVres is the conductance O1 + O2 of MI

at the resting potential Vres. Specifically, we use mv(0) = 0.0026 and
hv(0) = 0.95 for all v.

– Providing seed-values - For each voltage-value v, FMINCON needs
seed values of αv

m, βv
m, αv

h and βv
h to start optimizing over the parameter

space. We implemented a local search strategy for this purpose. The
parameters estimated at vi were used as seed-values for vi+1. For the
resting potential, when i = 1, the seed values were taken by evaluating
Eq. (16)-(18) of [37] at V = −90.66mV (the resting potential).

– Local minima - The solver is guaranteed to provide parameter values
that locally minimize the objective function. FMINCON was run mul-
tiple times until the objective function was minimized to a value below
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a pre-defined threshold. The terminal values of an iteration were per-
turbed and used as seed-values for the next iteration. A maximum of
100 iterations were performed.

PEFT resulted in a table of parameters θ, again indexed by voltage, i.e. θv

contained the parameters of MHv .
3. Rate-Function Identification (RFI)

RFI combines the parameters θv of MHv and outputs the parameter func-
tions ofMH which are functions of V .This is done by identifying appropriate
forms for the parameter functions αm(V ), βm(V ), αh(V ) and βh(V ) and then
using MATLAB’s curve-fitting toolbox [31] to estimate the parameters of the
chosen form.

αm(V ) = −0.6 +
16.31

1 + exp(−0.05(V + 19.67))
(7)

αh(V ) =

{
0.07 + 0.11

1+exp(0.2495(V +53.01)) V ≤ −32.00

0.07− 0.06
1+exp(−0.07(V −6.73)) V > −32.00

(8)

βh(V ) = −4.8 +
145.1

1 + exp(−0.013(V − 179))
(9)

βm(V ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

9.92− 4.575
1+exp(−73.73(V +63.78)) V ≤ −60.28

2.32 + 2.512
1+exp(0.2173(V +50.69)) −60.28 < V ≤ −33.04

2.26 + 1.63
1+exp(−0.2(V +20.72)) −33.04 < V ≤ −1.823

−2.57 + 6.73
1+exp(0.07(V−40.23)) V > −1.823

(10)

Empirical Validation of the Reduced Model MH

The 13-state modelMI was substituted byMH in the IMWmodel. The modified
IMW model was simulated in FORTRAN. This modified model used MH to
produce the sodium current INa. Both supra and sub-threshold stimuli, lasting
for 0.5ms, were used to excite the cardiac cell. S1 and S2 denote supra-threshold
stimuli of -100 pA/pF and -120 pA/pF respectively. S3 and S4 denote sub-
threshold stimuli of -10 pA/pF and -20 pA/pF.

The results plotted in Fig. 7 show the behavioral equivalence of MH and MI .
The model retains both normal and anomalous cell-level behaviors on replacing
the 13-state sodium-channel component with the 2-state abstraction within the
complete cell model.2

4 Approximate Bisimulation Equivalence of MI and MH

We use PEFT and RFI to obtain MH , the two-state HH-type abstraction of the
13-state model for sodium-channel dynamicsMI . We formalize the discrete-time
equivalence of MH and MI using approximate bisimulation [15].

The approximate bisimulation relation between the state-spaces of the systems
can be utilized for gaining physiological insights from formal analysis. Analysis
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Fig. 7. Comparison of MI and MH when used for INa in the IMW model. We do not
show the currents and conductances for sub-threshold stimuli as they are negligible.
Mean L2 errors over the duration of an AP for all stimuli: Conductance: 3.2 × 10−5,
Current: 0.1249 pA/pF, V: 0.12mV.

can be done on the abstract model MH and the results can be interpreted in the
state-space of the physiological model MI .

In [15], Pappas et al. define approximate bisimulation equivalence of Labeled
Transition Systems (LTS), a generic modeling framework. We cast the models
MH and MI as LTSs and prove approximate bisimulation equivalence of their
discrete time versions. First we will establish stability properties of MIv . We use
Vres and Vmax to denote the resting potential and maximum potential attained
at the end of the upstroke (UP) phase.

Definition 2. A m×m square matrix M is called a closed compartmental ma-
trix if the the following two properties are satisfied:

1. Mij ≥ 0 for i �= j - Non-diagonal entries are non-negative.

2.
n∑

j=1

Mji = 0, 1 ≤ i ≤ m - sum of the entries in each column is 0.
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Lemma 1. Let Av be the constant matrix obtained by fixing V = v in Eq. (4),
where v ∈ [Vres, Vmax]. A

v is a closed compartmental matrix for all v ∈ [Vres,
Vmax].

Proof. The first condition in Lemma 1 is met by construction.
For every column i, for i �= j, Aji is to the outgoing transition rate from state

i to state j: kji(V ). The diagonal entry in the ith column is the negated sum of
all these outgoing rates, which satisfies the second condition. ��
Lemma 2. The matrix Av, obtained by fixing V = v, is irreducible for all pos-
sible voltage values v ∈ [Vres, Vmax].

Proof. A graph-theoretic proof can be made by first inducing a graph from the
matrix Av. Let Gv(N,E) be the graph such that there is a node in the graph for
each of the 13 states in the stochastic model in Fig. 5 and an edge (ni, nj) ∈ E
if and only if Av

ij �= 0.
Proving that Gv remains connected at all values of V, amounts to proving

irreducibility of Av. This is indeed true because of the exponential functions in
Table 1. The graph Gv remains connected for all values v ∈ [Vres, Vmax]. ��
Theorem 1. The model MIv has a stable equilibrium for v ∈ [Vres, Vmax].

Proof. It follows from Proposition 4 in [21]. The prerequisites for the result are:

1. The matrix Av must be a closed compartmental matrix.
2. The entries in Av must be constant.
3. The matrix Av must be irreducible.

The first condition was proved in lemma 1. The second condition holds because
the rates in Table 1 are either constants or functions of V (which is fixed). We
proved the third prerequisite in Lemma 2.

Proposition 4 in [21] proves that the real part of all eigenvalues of Av is non-
positive. This guarantees stability of the equilibrium. ��
Theorem 1 guarantees the existence of tS , the time taken to reach a stable steady
state for V = v by MIv . We proceed to cast MI , MH , MIv and MHv as LTSs.

Definition 3. The LTS corresponding to MI is the sextuple I = (XI ,V ,→I ,
X0

I , ΠI , 〈〈.〉〉I ):
– XI ⊆ R

13 is the set of states denoting the occupancy probabilities from the
vector p in Def. 1.

– V is a family of curves (signals) of the form [t0, t0 + APD] → R denoting
inputs to the LTS. The lower limit t0 is the time at which the AP commences
and APD is the Action Potential Duration. V represents different temporal
patterns by which the transmembrane potential V can be applied (fed back)
to MI, guaranteeing a solution to it. They are dictated by Eq. 1.

– →I⊆ XI ×V×XI is the transition relation that captures the dynamics of
MI such that (xI , v,x

′
I) ∈→I , written as xI

v−→I x′
I , holds when there exist

V � v : [0, τ ] → R and ξ : [0, τ ] → R
13 satisfying Eq. 4 with ξ(0) = xI and

ξ(τ) = xI
′. The time taken to transit from xI to xI

′ is τ .
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– X0
I ⊆ R

13, a singleton consisting of the initial condition for MI, is speci-
fied in Table 4 of [20] and acts as the initial state for I.

– ΠI ⊆ R, the set of outputs, denotes the observable values of MI , i.e. all
possible values of O(V ) = O1(V )+O2(V ), the sum of occupancy probabilities
of states O1 and O2.

– 〈〈.〉〉I : R13 → R is the output map, which given a state xI ∈ XI , maps it
to its corresponding output π6(xI) + π7(xI)

1, the sum of O1 and O2.

Definition 4. The LTS corresponding to MH is the sextuple H = (XH ,V ,→H ,
X0

H , ΠH , 〈〈.〉〉H ):

– XH ⊆ R
2 is the set of states denoting the values of m and h in MH .

– V, the input set is the same as in Def. 3. The curves v ∈ V guarantee a
solution to MH .

– →H⊆ XH ×V ×XH is the transition relation that captures the dynamics
of MH such that (xH , v,x

′
H) ∈→H , written as xH

v−→H x′
H , holds when

there exists curves V � v : [0, τ ] → R and ψ : [0, τ ] → R
2 satisfying MH ,

with ψ(0) = xH and ψ(τ) = x′
H .

– X0
H ⊆ R

2 is a singleton consisting of the initial condition identified by
PEFT for MHVres .

– ΠH ⊆ R is the set of outputs of the LTS denoting the observables from
MH . As INa current depends on the conductance m3h of MH , the set ΠH

contains all possible values of m3h.
– 〈〈.〉〉H : R2 → R is the output map, which given a state xH ∈ XH , maps it

to its corresponding output (π1(xH))3π2(xH), the conductance m3h.

Definition 5. The LTS corresponding to MIv is the sextuple Iv = (XIv , T,
→Iv , X0

Iv , ΠIv , 〈〈.〉〉Iv ). The states XIv , outputs ΠIv and output map 〈〈.〉〉Iv are
the same as in Def. 3.

– T ⊆ R≥0 is the input, denoting time.

– →Iv is the transition relation such that xIv
t−→Iv x′

Iv holds if there exists
a solution ξv to MIv satisfying ξv(0) = xIv and ξv(t) = x′

Iv .
– X0

Iv denotes the initial condition used in step 1 of the three-step procedure
in Section 3.

Definition 6. The LTS corresponding to MHv is the sextuple Hv = (XHv , T,
→Hv , X0

Hv , ΠHv , 〈〈.〉〉Hv ). The states XHv , outputs ΠHv and output map 〈〈.〉〉Hv

are the same as in Def. 4. The input set T is the same as in Def. 5.

– →Hv is the transition relation such that xHv
t−→Hv x′

Hv holds if there
exists a solution ψv to Mv

H satisfying ψv(0) = xHv and ψv(t) = x′
Hv .

– X0
Hv is the initial condition determined by PEFT in Sec 3 for V = v.

Definition 7. The two LTSs T1(Q1, Σ,→1, Q
0
1, Π, 〈〈.〉〉1) and T2(Q2, Σ,→2,

Q0
2, Π, 〈〈.〉〉2) are approximately bisimilar, with precision δ, denoted as T1 ∼=δ T2,

if there exists a relation Bδ ⊆ Q1 ×Q2 such that:
1 πj(x) is the projection function that projects the jth element from the vector x.
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1. For every q1 ∈ Q0
1, there exists a q2 ∈ Q0

2 such that (q1, q2) ∈ Bδ and
conversely.

2. For every (q1, q2) ∈ Bδ, dΠ(〈〈q1〉〉1, 〈〈q2〉〉2) ≤ δ, where dΠ is some distance
metric defined on the output set Π shared by the two LTS.

3. For every (q1, q2) ∈ Bδ:

(a) q1
σ−→1 q

′
1, σ ∈ Σ, implies the existence of q2

σ−→2 q
′
2 such that (q′1, q

′
2) ∈

Bδ.
(b) q2

σ−→2 q
′
2, σ ∈ Σ, implies the existence of q1

σ−→1 q
′
1 such that (q′1, q

′
2) ∈

Bδ.
The relation Bδ is called the approximate bisimulation relation.

In the case of deterministic systems, such as I, H, Iv and Hv, proving two LTSs
approximately bisimilar is equivalent to proving that the distance between the
unique trajectories (behaviors) of the systems is bounded. Next, we state a simple
lemma relating finite-length trajectories of two Linear Autonomous Dynamical
Systems (LADS)2, whose proof follows from the uniqueness and continuity of
the trajectories.

Lemma 3. Consider two LADSs {ẋ1 =M1.x1, x1(0) = x0
1} and {ẋ2 =M2.x2,

x2(0) = x0
2} where x1,x2,x

0
1,x

0
2 ∈ R

n and M1 and M2 are n× n matrices. Let
x1(t) and x2(t) be the respective solution trajectories. Let I1[t1, t2] and I2[t2, t3]
be two time intervals of arbitrary lengths such that:

– |x1(t)− x2(t)| ≤ δ for t ∈ I1, and
– |x1(t)− x2(t)| ≤ δ for t ∈ I2,

where |.| denotes the L2 norm. Then |x1(t)− x2(t)| ≤ δ for t ∈ I12[t1, t3].

Definition 8. The LTSs Id, Hd, Iv
d and Hv

d denote discrete time equivalents of
the LTSs I, H, Iv and Hv respectively such that:

– The input curves v for Id and Hd are discrete time signals of voltage of the
the form [v1, v2, . . . , vi, . . .], where vi is the voltage at the ith time step. The
inputs to Iv

d and Hv
d are integral multiples of the time step.

– The transition relations of the LTSs respect the transitions of the corre-
sponding continuous time ones, except that the dynamics are now defined in
discrete time. Chapter 11 of [27] provides details about converting contin-
uous time models to discrete time versions via techniques like sample and
hold.

Note: Discrete time arguments can be justified because the LADS resulting
at constant voltages are band-limited as they attain steady state in finite time
for all voltages (see Theorem 1). For such systems, the Sampling theorem [27]
guarantees the existence of a Digital to Analog Converter (DAC) that can recover
the continuous time behaviors from discrete time samples, if a small-enough
discretization of time is used. This sampling frequency is determined by the
maximum frequency component in the continuous-time behaviors. Theorem 1
ensures that the maximum frequency component of the trajectories is bounded
for all voltages.

2 See Lecture 9 of [3] for a formal definition of LADS.
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Theorem 2. The PEFT procedure can ensure that Iv
d

∼=δv Hv
d for any v ∈

[Vres, Vmax]. The precision δ
v is the maximum L2 error incurred by the optimizer

while solving Eq. (5).

Proof The approximate bisimulation relation Bδv ⊆ XIv × XHv can be con-
structed as follows.
1. The initial condition in x0

Iv ∈ X0
Iv is paired with the initial condition x0

Hv ∈
X0

Hv .

2. Consider a state xIv ∈ XIv such that x0
Iv

t−→Iv xIv , t ∈ T . Also say xHv ∈
XHv such that x0

Hv

t−→Hv xHv . Then, (xIv ,xHv ) ∈ Bδv . The existence of
states xIv and xHv satisfying the conditions is guaranteed due to uniqueness
and existence of solutions to LADS.

The relation Bδv is a valid approximate bisimulation relation. Condition 1 of

Def. 7 is satisfied by construction. Suppose we have (xIv ,xHv ) ∈ Bδv , xIv
t′−→Iv

x′
Iv , and xHv

t′−→Hv x′
Hv , then we have x0

Iv

t+t′−−−→Iv x′
Iv and x0

Hv

t+t′−−−→Hv x′
Hv ,

due to the uniqueness of the trajectories, where t is the time required to transit
from x0

Iv to xIv and from x0
Hv to xHv in Iv

d and Hv
d respectively. This ensures

that (x′
Iv ,x′

Hv ) ∈ Bδv , thus satisfying condition 2 of Def. 7. Condition 3 is
satisfied due to Lemma 3, which also holds for discrete time trajectories. ��

We now define perturbed LADS. Then we outline the approximate bisimilarity
of Id and Hd.

Definition 9. Consider an LADS {ẋ =M.x, x(0) = x0}, where x,x0 ∈ R
n, M

is a n×n matrix and x(0) is the initial condition. An ε-perturbation of the LADS
is obtained by perturbing any of the entries in M or x(0) by at-most ε ∈ R.

Theorem 3. The three-step abstraction process explained in Section 3 ensures
that Hd

∼=δ Id with δ ≤ 7.58× 10−4.

Proof sketch: In discrete time, the evolution of MH (MI) can be modeled as a
series of one-step evolutions of MHv (MIv ) i.e. when the input signal is of the
form [v1, . . . , vi, vi+1 . . .], at the i

th step, the LADS MHvi (MIvi ) evolves for one
time step, followed by MHvi+1 (MIvi+1 ) and so on. This idea is also illustrated
in Fig. 4(b).

For some voltage V = v, the distance between the trajectories of MIv and
MHv can be bound in terms of the trajectories ofMIv∗ and MHv∗ , where v∗ is a
voltage that was processed by PEFT andMIv is a minimal perturbation ofMIv∗ .
At the ith step, the perturbation is the least for M

Iv∗
i
among all the voltages

that were processed by PEFT. We first bound the corresponding perturbation
of MHvi∗ , ε, and then use a similar approach for M

Iv∗
i

ε = max(ε1, ε2),where

ε1 = max
1≤j≤n

[max{|αm(vj)− αm(vj+1)|, |βm(vj)− βm(vj+1)|, |αh(vj)− αh(vj+1)|,
|βh(vj)− βh(vj+1)|}],
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ε2 =max[|αm(vΔ)− αm(vΔ+1)|, |βm(vΔ)− βm(vΔ+1)|, |αh(vΔ)− αh(vΔ+1)|,
|βh(vΔ)− βh(vΔ+1)|]

and Δ = argmax
1≤j≤n

[
|vj−vj+1|

2 ]

The limit n is the total number of voltages processed by PEFT. The term ε1
accounts for sharp changes in the rate functions αm(V ), αh(V ), βm(V ), βh(V )
and ε2 accounts for sparsity in the voltages processed by PEFT. Given the input
signal v, the ith step vi may be at most Δ mV away from a voltage processed
by PEFT.

At the ith step, let MHvi be an ε-perturbation of M
Hv∗

i
and at the (i + 1)th

step, let MHvi+1 be an ε-perturbation of M
H

v∗
i+1

. We can always ensure that
v∗i �= v∗i+1. This can be done by first bounding the time-scale, which determines
the maximum change in V that can occur over one time step, (|vi− vi+1|). Once
we know the least value of |vi − vi+1|, we can perform the PEFT procedure for
voltages that satisfy Δ ≤ |vi − vi+1|. Thus, we can ensure that at the ith step,
the perturbed-system MHvi (MIvi ) diverges from M

Hv∗
i
(M

Iv∗
i
) for at most one

time step.
We first bound the one-step divergence between the trajectories of MHvi and

M
Hv∗

i
. We calculate the sensitivity of the variable m to an ε change in the

parameters and the initial conditions below.

ṁv∗
i = α

v∗
i

m (1−m) + β
v∗
i

mm

mv∗
i [1] = m

v∗
i

0 + [α
v∗
i

m (1 −m
v∗
i

0 ) + β
v∗
i

mm
v∗
i

0 ] (one time step)

mvi [1] = m
v∗
i

0 + ε+ [(α
v∗
i

m + ε)(1 −m
v∗
i

0 ) + (β
v∗
i

m + ε)m
v∗
i

0 ](perturbed)

|mv∗
i [1]−mvi [1]| = |ε[1 + (1− 2m− αvi

m − 2ε− βvi
m)]| (divergence)

≤ |2ε|

The divergence is maximized when m = 0 and the transition rates α, β = 0.
Thus given an initial separation of ε, the trajectories diverge by at most 2ε in
one time-step. The same calculation can be repeated independently for h.

Theorem 2 dictates that the trajectories of M
Iv∗

i
and M

Hv∗
i
may not diverge

beyond δv
∗
i . This is implied by their approximate bisimulation equivalence.

Using a similar approach as taken for MHvi , we now bound the divergence of
trajectories of MIvi from M

Iv∗
i
. At V = vi, the maximum possible perturbation

μ of MIvi from M
Iv∗

i
, where v∗i is the nearest voltage processed by PEFT, can

be bound as was done for ε, by considering the rate functions of MI . The solu-
tion trajectory of M

Iv∗
i
is given by the matrix exponential eA(v∗

i )t, where A is
the matrix in Eq.(4). An arbitrary voltage vi in the input-signal presents a μ-
perturbation of the entries in A(v∗i ). The evolution ofMIvi is then approximated
by the corresponding perturbation of eA(v∗

i )t.
The matrix exponential is determined by the eigenvalues of A(v∗i ). Bauer-Fike

theorem [2] bounds the spectral perturbation caused due to a perturbation of
the original matrix. It ensures that the eigenvalues of A(vi) are μ-perturbations
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of the eigenvalues of A(v∗i ). Thus, the maximum divergence3 of Mvi
I from M

v∗
i

I

in one time-step is at most eμ.
Thus, δ ≤ 16ε4 + argmax

1≤i≤n
[δv

∗
i ] + eμ, sum of the following quantities:

– Maximum divergence of MHvi from M
Hv∗

i
over one time-step: 16ε4. This is

due to the conductance being m3h. We bound the divergence of m and h
individually at 2ε.

– Maximum divergence of any M
Hv∗

i
from M

Iv∗
i
over all n voltages processed

during PEFT: argmax
1≤i≤n

[δv
∗
i ]. This was estimated to be 2.79× 10−4.

– Maximum divergence of MIvi from M
Iv∗

i
over one time step: eμ. ��

5 Related Work

Singular perturbation [24,34] and invariant manifold reduction [6,16] are two
popular approaches to reducing multi-scale state-space models of chemical re-
action kinetics [7,17,38]. The quasi steady state assumption is central to singu-
lar perturbation techniques used in [38]. The derivative of fast variables, which
evolve on relatively short time scales, is approximated to be zero, resulting in
model reduction. Despite being successful for chemical kinetics models, such
techniques are not well-suited for Markovian ion channel models. The former
involves a constant rate matrix A that renders the system linear, where as in
our Markovian models, the rate matrix A is a function of the transmembrane
voltage V . The voltage V is itself dependent on the evolution of the Markovian
model and this circular dependency causes the overall model to be nonlinear.

Reduction of Markovian ion-channel models, which is the central topic of this
paper, has been explored in [41,42]. The focus is on reducing the simulation
time, rather than obtaining a formal reduction. In [39] Smith et al. reduce a
stochastic model for the sodium-potassium pump by lumping the states of their
model. In [10], Fink et al. use mixed formulations of an HH-type model and a
Markovian model to reduce the number of state variables for the calcium current.
In this paper, we provide a systematic reduction of the sodium channel. Con-
ventional approaches like [25] use behavioral equivalence to validate the reduced
models. Approximate bisimulation, used in this paper, formalize equivalence in
a compositional setting and also help in insightful analysis.

6 Conclusions and Future Work

We constructed a two-state Hodgkin-Huxley-type model MH that can replace
the 13-state CT-MDPMI for sodium-channel dynamics, within the IMW model
for ventricular myocytes. The open state of MI being the only observable was
an underlying assumption in the reduction. It should be noted that this is not
very restrictive. Any observable state occupancy probability can be handled by

3 A tighter bound can be found, as was done for MHvi , by projecting the error onto
the O1 and O2 dimensions.
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modifying Eq. (5). Currently we map the open state probabilities of MI and the
8-state CT-MDP in Fig. 3 to each other. Once such a mapping is established
between any two states of the two models, Eq. (5) can then be modified to fit the
trajectories of the states of MI that one is interested in. The invariant manifold
of the m and h is related to all the 8 states.

The reduction was formalized by proving the abstract and the concrete models
to be approximately bisimilar. This notion of system equivalence can be used
for compositional reasoning. When H is appropriately composed with the rest
of the larger whole-cell IMW model, approximate bisimulation guarantees that
the newly composed-system retains the properties of the original system. The
original system can be modeled as an appropriate composition of I and rest of the
IMW model. In the future, further complicated non-deterministic models will be
explored and reduced. Tighter bounds will also be pursued for the precision of the
bisimulation relation. We then plan to use the towers of abstraction constructed
from the strategy outlined in the paper, for insightful analysis of cardiac models.
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