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Abstract. Population Dynamics P systems (PDP systems, in short)
provide a new formal bio-inspired modeling framework, which has
been successfully used by ecologists. These models are validated using
software tools against actual measurements. The goal is to use P systems
simulations to adopt a priori management strategies for real ecosystems.

Software for PDP systems is still in an early stage. The simulation
of PDP systems is both computationally and data intensive for large
models. Therefore, the development of efficient simulators is needed for
this field. In this paper, we introduce a novel simulator for PDP systems
accelerated by the use of the computational power of GPUs. We discuss
the implementation of each part of the simulator, and show how to
achieve up to a 7x speedup on a NVIDA Tesla C1060 compared to an
optimized multicore version on a Intel 4-core i5 Xeon for large systems.
Other results and testing methodologies are also included.

Keywords: Ecological Modeling, Population Dynamics, Membrane
Computing, Parallel Simulation, GPU Computing, CUDA.

1 Introduction

Membrane Computing [19] is part of the broader field of natural or bio-inspired
computing. The related computational models are called P systems. They are
hierarchically distributed models inspired by how membranes compartmentalize
living cells into ”protected reactors”. The model consists of simultaneous
applications of rules (abstraction of chemical reactions) over multisets of objects
(abstraction of chemical compounds) [20]. Membrane Computing covers both
the study of the theoretical basis for the models as well as the applications of
the model to various fields including computational Systems Biology [7,22], and
Ecosystem Dynamics [3,4,8]. Population Dynamics P Systems, or PDP systems,
is a P system based framework for modeling population dynamics [3,17] . It
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enables simultaneous evolution of a high number of species, as well as the
management of a large number of auxiliary objects. It also facilitates model
development that can be easily interpreted by simulation software.

So far, several algorithms have been developed in order to capture the
semantics defined by the modeling framework. A comparison on the performance
of these algorithms can be found in [9]. These algorithms select rules according to
their associated probabilities, while keeping the maximal parallelism semantics of
P systems. In [17], a new simulation algorithm is presented, called DCBA (Direct
distribution based on Consistent Blocks Algorithm). It overcomes a common
problem on the previous algorithms, regarding a distorted selection of rules.
Furthermore, the DCBA was initially implemented and validated using the P-
Lingua software framework [11,24] which resulted in a simulation Java library
(pLinguaCore). However, the simulations were slow (taking hours to run a single
simulation), since the pLinguaCore library is not focused on efficiency.

A more efficient implementation based on C++ and OpenMP was presented
in [16], taking advantage of modern multicore architectures. These preliminary
results indicate that the simulation of PDP systems are memory bound. GPU
computing [15] has been successfully used to implement other P systems
simulators [2,5,6]. By using CUDA [13,23], the simulators are accelerated taking
advantage of the many-core GPU architecture.

This paper, introduces our new CUDA-optimized PDP systems simulator. We
describe how the data structures have been optimized, and how also the code
is adapted and restructured in different parts. A performance analysis is also
provided, comparing the results with further optimized sequential and multicore
versions written in C++/OpenMP.

This paper is structured as follows: Section 2 gives an overview of the P
systems based framework that our simulator implements. Section 3 explains
the simulation algorithm. Section 4 contains some concepts about the CUDA
programming model. Section 5 explains the details of the implementation using
CUDA. Section 6 shows some performance results by using a random generator
of PDP systems. Finally, conclusions and future work are discussed in Section 7.

2 The P Systems Based Framework

Definition 1. A PDP system of degree (q,m) & time T (q,m, T ≥ 1) is a tuple

Π = (G,Γ,Σ, T,RE , μ,R, {fr,j : r ∈ R, 1 ≤ j ≤ m}, {Mij : 1 ≤ i ≤ q, 1 ≤ j ≤ m})

where:

– G = (V, S) is a directed graph. Let V = {e1, . . . , em} whose elements are
called environments;

– Γ is the working alphabet and Σ � Γ is an alphabet representing the objects
that can be present in the environments;
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– T is a natural number that represents the simulation time of the system;

– RE is a finite set of communication rules between environments of the form
r ≡ (x)ej

pr−−−→(y1)ej1 · · · (yh)ejh , where x, y1, . . . , yh ∈ Σ, (ej , ejl) ∈ S
(1 ≤ l ≤ h) and pr is a computable function from {1, . . . , T } to [0, 1]
depending on x, j, j1, . . . , jh. If for any rule, pr is the constant function 1,
then we can omit it. These functions verify the following: for each ej ∈ V
and x ∈ Σ, the sum of functions associated with the rules whose left-hand
side is (x)ej is the constant function 1.

– μ is a membrane structure consisting of q membranes injectively labelled by
1, . . . , q. The skin membrane is labelled by 1. We also associate electrical
charges from the set {0,+,−} with membranes.

– R is a finite set of evolution rules of the form r ≡ u[ v ]αi → u′[ v′ ]α
′

i , where
u, v, u′, v′ ∈ Γ ∗, i (1 ≤ i ≤ q), u+ v �= λ and α, α′ ∈ {0,+,−}.
• If (x)ej is the left-hand side of a rule from RE, then none of the rules
of R has a left-hand side of the form u[v]α1 , having x ∈ u.

– For each r ∈ R and for each j (1 ≤ j ≤ m), fr,j : {1, . . . , T } −→ [0, 1] is a
computable function verifying the following: for each u, v ∈ Γ ∗, i (1 ≤ i ≤ q),
α, α′ ∈ {0,+,−} and j (1 ≤ j ≤ m) the sum of functions associated with
j and the rules whose left-hand side is u[v]αi and whose right-hand side has
polarization α′, is the constant function 1.

– For each j (1 ≤ j ≤ m), M1j, . . . ,Mqj are strings over Γ , describing
the multisets of objects initially placed in the q regions of μ, within
the environment ej. It is usual to manage multisets through strings. A

finite multiset m = {af(a1)
1 , . . . , a

f(ak)
k } can be represented by the string

a
f(a1)
1 . . . a

f(ak)
k over the alphabet {a1, . . . , ak}. Nevertheless, all permutations

of this string precisely identify the same multiset m. Throughout this paper,
we speak about “the finite multiset m” where m is a string, and meaning
“the finite multiset represented by the string m”.

That is, a system defined as above can be viewed as a set of m environments
e1, . . . , em interlinked by the edges from the directed graph G. Each environment
ej contains a P system, Πj = (Γ, μ,R,M1j , . . . ,Mq,j), of degree q, where
every rule r ∈ R has a computable function fr,j associated with it. For each
environment ej, we denote by RΠj the set of rules with probabilities obtained
by coupling each r ∈ R with the corresponding function fr,j.

A configuration of the system at any instant t is a tuple of multisets of objects
present in the m environments and at each of the regions of each Πj , together
with the polarizations of the membranes in each P system. We assume that all
environments are initially empty and that all membranes initially have a neutral
polarization. We assume a global clock exists, sychromnizing all membranes and
the application of all the rules (from RE and from RΠj in all environments).

The P system can pass from one configuration to another by using the rules
from

⋃m
j=1 RΠj ∪ RE as follows: at each transition step, the rules to be applied

are selected according to the probabilities assigned to them, and all applicable
rules are simultaneously applied in a maximal way.
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An evolution rule r ∈ R, of the form u[ v ]αi → u′[ v′ ]α
′

i , is applicable to each
membrane labelled by i, whose electrical charge is α, and it contains the multiset
v, and its father contains the multiset u. When such rule is applied, the objects of
the multisets u and v are removed from the father of membrane i and membrane
i, respectively. Simultaneously, the objects of the multiset u′ are added to the
father of membrane i, and objects of multisets v′ are introduced in membrane i.
The application also replaces the charge of membrane i to α′.

A rule r ∈ RE , of the form (x)ej
pr−−−→(y1)ej1 . . . (yh)ejh , is applicable to the

environment ej if it contains object x. When such rule is applied, object x passes
from ej to ej1 , . . . , ejh possibly modified into objects y1, . . . , yh respectively. At
any moment t (1 ≤ t ≤ T ) for each object x in environment ej , if there exist
communication rules whose left-hand side is (x)ej , then one of these rules will
be applied. If more than one such a rule can be applied to an object, the system
selects one randomly, according to their probability which is given by pr(t).

For each j (1 ≤ j ≤ m) there is just one further restriction, concerning the
consistency of charges: in order to apply several rules of RΠj simultaneously to
the same membrane, all the rules must have the same electrical charge on their
right-hand side.

Following the properties verified by the probabilistic functions, rules in R and
RE can be classified into blocks of rules, as showed in definitions 2, 3 and 4.

Definition 2. The left and right-hand sides of the rules are defined as follows:

(a) Given a rule r ∈ R of the form u[v]αi → u′[v′]α
′

i where 1 ≤ i ≤ q,
α, α′ ∈ {0,+,−} and u, v, u′, v′ ∈ Γ ∗:
– The left-hand side of r is LHS(r) = (i, α, u, v). The charge of LHS(r) is

charge(LHS(r)) = α. The length of LHS(r) is |u|+ |v|, what indicates
the cooperation degree of the rule.

– The right-hand side of r is RHS(r) = (i, α′, u′, v′). The charge of
RHS(r) is charge(RHS(r)) = α′. The length of RHS(r) is |u′|+ |v′|.

(b) Given a rule r ∈ RE of the form (x)ej
pr−−−→ (y1)ej1 · · · (yh)ejh , the left-

hand side of r is LHS(r) = (ej , x), and the right-hand side of r is
RHS(r) = (ej1 , y1) · · · (ejh , yh).

Definition 3. Rules from R can be classified into consistent blocks associated
with (i, α, α′, u, v) as follows:

Bi,α,α′,u,v = {r ∈ R : LHS(r) = (i, α, u, v) ∧ charge(RHS(r)) = α′}
Definition 4. Rules from RE can be classified into (consistent) blocks associated
with (ej , x) as follows: Bej ,x = {r ∈ RE : LHS(r) = (ej, x)}.

Recall that, according to the semantics of our model, the sum of probabilities of
all the rules belonging to the same block is always equal to 1; in particular, rules
with probability equal to 1 form individual blocks. Note that rules that have
exactly the same left-hand side (LHS) belongs to the same block, but rules with
overlapping (but different) left-hand sides are classified into different blocks. The
latter leads to object competition, what is a critical aspect to manage with the
simulation algorithms.
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Definition 5. Two blocks Bi1,α1,α′
1,u1,v1 and Bi2,α2,α′

2,u2,v2 are mutually consis-
tent with each other, if and only if (i1 = i2 ∧ α1 = α2) ⇒ (α′

1 = α′
2).

3 The DCBA

The goal of the DCBA (Direct distribution based on Consistent Blocks
Algorithm) [17] is to perform a proportional distribution of objects among
competing blocks (with overlapping LHS), determining in this way the number of
times that each rule in

⋃m
j=1 RΠj ∪RE is applied. I.e. the algorithm simulates the

computational steps of a PDP systems. Algorithm 3.1 describes the main loop
of the DCBA. It follows the same general scheme as its predecessors, DNDP
and BBB [18] where the simulation of a computing step is structured in two
stages: The first stage (selection), selects which rules are to be applied (and how
many times) on each environment. The second stage (execution), implements the
effects of applying the previously selected rules, yielding the next configuration
of the PDP system. Note that, although every Πj has the same set of rules R,
the probability functions may be different for each environment. See [17] for a
more detailed explanation and examples of how to apply this algorithm.

As shown in Algorithm 3.1, the selection stage consists of three phases: Phase
1 distributes objects to the blocks in a certain proportional way, Phase 2 assures
the maximality by checking the maximal number of applications of each block,
and Phase 3 translates block applications to rule applications by calculating
random numbers using the multinomial distribution.

Algorithm 3.1. DCBA MAIN PROCEDURE

Require: A Population Dynamics P system of degree (q,m), T ≥ 1 (time units), and
A ≥ 1 (Accuracy). The initial configuration is called C0.

1: INITIALIZATION � (Algorithm 3.2)
2: for t ← 1 to T do
3: Calculate probability functions fr,j(t) and p(t).
4: C′

t ← Ct−1

5: SELECTION of rules:
• PHASE 1 : distribution � (Algorithm 3.3)
• PHASE 2 : maximality � (Algorithm 3.4)
• PHASE 3 : probabilities � (Algorithm 3.5)

6: EXECUTION of rules. � (Algorithm 3.6)
7: Ct ← C′

t

8: end for

The INITIALIZATION procedure (Alg. 3.2) constructs a static distribution
table Tj for each environment. Two variables, Bj

sel and Rj
sel, are also initialized,

in order to store the selected multisets of blocks and rules, respectively.

Observation 1. Each column label of the tables Tj contains the information of
the corresponding block left-hand side.
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Observation 2. Each row of the tables Tj contains the information related to
the object competitions: for a given object, its row indicates which blocks are
competing for it (those columns having non-null values).

Algorithm 3.2. INITIALIZATION

1: Construction of the static distribution table T :
– Column labels: consistent blocks Bi,α,α′,u,v of rules from R.
– Row labels: pairs (o, i) and (x, 0), for all object o ∈ Γ , x ∈ Σ and membrane

i, being 0 the identifier of the environments of the P system.
– For each row labelled by (o, i) and column labelled by block Bi,α,α′,u,v: place

1
k
if o appears within i (0 ≤ i ≤ q) with multiplicity k in the LHS of Bi,α,α′,u,v.

2: for j = 1 to m do � (Construct the static expanded tables Tj)
3: Tj ← T . � (Initialize the table with the original T )
4: For each rule block Bej ,x from RE , add a column labelled by Bej ,x to the table

Tj ; place the value 1 at row (x, 0) for that column.
5: Initialize the multisets Bj

sel ← ∅ and Rj
sel ← ∅

6: end for

The distribution of objects among the blocks with overlapping LHS
(competing blocks) is performed in selection Phase 1 (Algorithm 3.3). The
expanded static tables Tj are used for this purpose in each environment, together
with three different filter procedures. Filter 1 discards the columns of the table
corresponding to non-applicable blocks due to mismatch charges in the LHS and
in the configuration C′

t. Then, Filter 2 discards the columns with objects in
the LHS not appearing in C′

t. Finally, in order to save space in the table, Filter
3 discards empty rows. These three filters are applied at the beginning of Phase
1, and the result is a dynamic table T t

j (for the environment j and time step t).
The semantics of the modeling framework requires a set of mutually consistent

blocks before distributing objects to the blocks. For this reason, after applying
Filters 1 and 2, the mutually consistency is checked. Note that this checking
can be easily implemented by a loop over the blocks. If it fails, meaning that
an inconsistency was encountered, the simulation process is halted, providing
a warning message to the user. Nevertheless, it could be interesting to find a
way to continue the execution by non-deterministically constructing a subset of
mutually consistent blocks. Since this method can be exponentially expensive in
time, it is optional for the user whether to activate it or not.

Once the columns of the dynamic table T t
j represent a set of mutually

consistent blocks, the distribution process starts. This is carried out by creating
a temporal copy of T t

j , called T Vt
j , which stores the following products:

– The normalized value with respect to the row: this is a way to proportionally
distribute the corresponding object along the blocks. Since it depends on the
multiplicities in the LHS of the blocks, the distribution, in fact, penalizes
the blocks requiring more copies of the same object. This is inspired in the
amount of energy required to gather individuals from the same species.

– The value in the dynamic table (i.e. 1
k ): this indicates the number of possible

applications of the block with the corresponding object.
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– The multiplicity of the object in the configuration C′
t: this performs the

distribution of the number of copies of the object along the blocks.

Algorithm 3.3. SELECTION PHASE 1: DISTRIBUTION

1: for j = 1 to m do � (For each environment ej)
2: Apply filters to table Tj using C′

t, obtaining T t
j . The filters are applied as follows:

a. T t
j ← Tj

b. Filter 1 (T t
j , C

′
t).

c. Filter 2 (T t
j , C

′
t).

d. Check mutual consistency for the blocks remaining in T t
j . If there is at

least one inconsistency then report the information about the error, and
optionally halt the execution (in case of not activating step 3.)

e. Filter 3 (T t
j , C

′
t).

3: (OPTIONAL) Generate a set St
j of sub-tables from T t

j , formed by sets of
mutually consistent blocks, in a maximal way in T t

j (by the inclusion
relationship). Replace T t

j with a randomly selected table from St
j .

4: a← 1
5: repeat
6: for all rows X in T t

j do
7: RowSumX,t,j ← total sum of the non-null values in the row X.
8: end for
9: T Vt

j ← T t
j � (A temporal copy of the dynamic table)

10: for all non-null positions (X,Y ) in T t
j do

11: multX,t,j ← multiplicity in C′
t at ej of the object at row X.

12: T Vt
j(X,Y )← �multX,t,j ·

(T t
j (X,Y ))2

RowSumX,t,j
�

13: end for
14: for all not filtered column, labelled by block B, in T t

j do
15: Na

B ← minX∈rows(T t
j )(T Vt

j(X,B)) � (The minimum of the column)

16: Bj
sel ← Bj

sel + {BNa
B} � (Accumulate the value to the total)

17: C′
t ← C′

t − LHS(B) ·Na
B � (Delete the LHS of the block.)

18: end for
19: Filter 2 (T t

j , C
′
t)

20: Filter 3 (T t
j , C

′
t)

21: a← a+ 1
22: until (a > A) ∨ (all the selected minimums at step 15 are 0)
23: end for

Algorithm 3.4. SELECTION PHASE 2: MAXIMALITY

1: for j = 1 to m do � (For each environment ej)
2: Set a random order to the blocks remaining in the last updated table T t

j .
3: for all block B, following the previous random order do
4: NB ← number of possible applications of B in C′

t.
5: Bj

sel ← Bj
sel + {BNB} � (Accumulate the value to the total)

6: C′
t ← C′

t − LHS(B) ·NB � (Delete the LHS of block B, NB times.)
7: end for
8: end for
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After the object distribution process, the number of applications for each block
is calculated by selecting the minimum value in each column. This number is then
used for consuming the LHS from the configuration. However, this application
could be not maximal. The distribution process can eventually deliver objects
to blocks that are restricted by other objects. As this situation may occur
frequently, the distribution and the configuration update process is performed A
times, where A is an input parameter referring to accuracy. The more the process
is repeated, the more accurate the distribution becomes, but the performance of
the simulation decreases. We have experimentally checked that A = 2 gives the
best accuracy/performance ratio. In order to efficiently repeat the loop for A,
and also before going to the next phase (maximality), it is interesting to apply
Filters 2 and 3 again.

After phase 1, it may be the case that some blocks are still applicable to the
remaining objects. This may be caused by a low A value or by rounding artifacts
in the distribution process. Due to the requirements of P systems semantics, a
maximality phase is now applied (Algorithm 3.4). Following a random order, a
maximal number of applications is calculated for each block still applicable.

After the application of phases 1 and 2, a maximal multiset of selected
(mutually consistent) blocks has been computed. The output of the selection
stage has to be, however, a maximal multiset of selected rules. Hence, Phase
3 (Algorithm 3.5) passes from blocks to rules, by applying the corresponding
probabilities (at the local level of blocks). The rules belonging to a block are
selected according to a multinomial distribution M(N, g1, . . . , gl), where N is the
number of applications of the block, and g1, . . . , gl are the probabilities associated
with the rules r1, . . . , rl within the block, respectively.

Algorithm 3.5. SELECTION PHASE 3: PROBABILITY

1: for j = 1 to m do � (For each environment ej)
2: for all block BNB ∈ Bj

sel do
3: Calculate {n1, . . . , nl}, a random multinomial M(NB , g1, . . . , gl) with

respect to the probabilities of the rules r1, . . . , rl within the block.
4: for k = 1 to l do
5: Rj

sel ← Rj
sel + {rnk

k }.
6: end for
7: end for
8: Delete the multiset of selected blocks Bj

sel ← ∅. � (Useful for the next step)
9: end for

Finally, the execution stage (Algorithm 3.6) is applied. This stage consists
on adding the RHS of the previously selected multiset of rules, as the objects
present on the LHS of these rules have already been consumed. Moreover, the
indicated membrane charge is set.
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Algorithm 3.6. EXECUTION

1: for j = 1 to m do � (For each environment ej)
2: for all rule rn ∈ Rj

sel do � (Apply the RHS of selected rules)
3: C′

t ← C′
t + n · RHS(r)

4: Update the electrical charges of C′
t from RHS(r).

5: end for
6: Delete the multiset of selected rules Rj

sel ← ∅. � (Useful for the next step)
7: end for

4 The CUDA Programming Model

With the commercial sector’s demands for video and gaming, it was foreseen
by Elster [10] and others that graphics processor development would lead
to devices suitable for High Performance Computing (HPC). With the
introduction of NVIDIA’s CUDA [13] and AMD’s Stream SDK environments
in 2007, the GPUs became more easily programmable and the era of GPGPU
(General-Purpose Computing on Graphics Processing Units) truly began.
GPUs can now be considered affordable computing solutions for speeding up
computationally demanding applications. GPUs today typically have several
hundred computational cores. By parallelizing and optimizing our codes for
these cores, we have shown that GPUs can speed up applications ranging from
smoothed hydrodynamics (SPH) [14] and real-time gradient vector flows to linear
programming [21] and can even be used as an accelerator to compress I/O data
for faster I/O speeds [1]. As was mentioned earlier, we have also successfully
used GPUs to implement other P systems simulators [2,5,6].

4.1 Compute Unified Device Architecture

NVIDIA’s CUDA (Compute Unified Device Architecture) provides developers
with a high-level programming model that allows developers to take full
advantage of the NVIDIA’s powerful GPU hardware. To a CUDA programmer
[23], the computing system is heterogeneous, consisting of a host (the CPU), and
one or more massively parallel many-core devices (GPU systems). In modern
software applications, there are often program sections that exhibit rich amount
of data parallelism, a property where many arithmetic operations can be safely
performed simultaneously on the program data structures. GPUs accelerate the
execution of these applications by harvesting a large amount of data parallelism.

CUDA is built around a scalable array of multithreaded Streaming Multi-
processors (SMs). The SM creates, manages, and executes concurrent threads
(extra light weight processes) in hardware with with virtually no overhead
[23]. This allows very fine-grained decomposition of problems by assigning, for
instance, one thread to each data element. Each threads has a unique threadIdx,
and is grouped in 1D, 2D, or 3D blocks which are organized in 1D or 2D grids.
All the threads execute the same code, called kernel.

Since all threads of a block are expected to reside on the same processor
core and must share the limited memory resources of that core, current GPUs,
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are limited to a maximum of 1024 threads. The number of thread blocks in a
grid is usually dictated by the size of the data being processed or the number
of processors in the system, which it can greatly exceed. These features make
CUDA an interesting choice for developing simulators for the area of Membrane
Computing, as previously demonstrated for active membranes [5], a P systems
based solution to SAT [6] and for spiking neural P systems [2].

5 DCBA Implementation on the GPU

The DCBA was first implemented inside the pLinguaCore framework [17,11,24].
This version (hereafter pdp-plcore-sim) was validated by a real ecosystem model
[17], reproducing the same data as the actual measurements. However, the
performance was slow since it as part of the pLinguaCore was written in Java.

Our first approach for making our implementation more efficient, was
to develope a stand alone simulator written in C++. We then improved
performance further by using OpenMP to take advantage of modern multi-core
architectures, such as the Intel’s i5 Nehalem and i7 Sandy (pdp-omp-sim). Pdp-
omp-sim achieved speedups of up to 2.5x on a 4-core Intel i7. These preliminary
results indicated that the simulations of PDP systems are memory bound.

Our previous simulator, pdp-omp-sim, is the starting point of the new
implementation using CUDA. In this new simulator (let call it pdp-gpu-sim),
the code and the data structures have been optimized, saving up to 27% of
memory. We have also adapted pdp-omp-sim to these, achieving better speedups
(1.25x for large systems).

Normally, the end user (i.e. ecological experts and model designers) runs
many simulations on each set of parameters to extract statistical information of
the probabilistic model. This can be automated by adding a outermost loop for
simulations in Algorithm 3.1. This loop is easily parallelized. Indeed, our tests
of pdp-omp-sim conclude that parallelizing by simulations or a hybrid technique
(simulations plus environments) yields the largest speedups.

At first glance, these two levels of parallelism (simulations and environments)
could fit the double parallelism of the CUDA architecture (thread blocks and
threads). For example, we could assign each simulation to a block of threads, and
each environment to a thread (since they require synchronization at each time
step). However, the number of environments depends inherently on the model.
Typically, 2 to 20 environments are considered, which is not enough for fulfilling
the GPU resources. Number of simulations typically range from 50 to 100, which
is sufficient for thread blocks, but still a poor number compared to the several
hundred cores available on modern GPUs.

We therefore also parallelize the execution of rule blocks. Our simulator can
hence utilize a huge number of thread blocks by distributing simulations (parallel
simulations, as memory can store them) and environments in each one, and
process each rule block by each thread. Since there are normally more rule blocks
(thousand of them) than threads per thread block (up to 512), we create 256
threads which iterate over the rule blocks in tiles. This design is graphically
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shown on Figure 1. Each phase of the algorithm has been designed following the
general CUDA design explained above, and implemented separately as individual
kernels. Thus, simulations and environments are synchronized by the successive
calls to the kernels.

Fig. 1. General design of our CUDA-based simulator: 2D grid, and 1D thread blocks.
Threads loop the rule blocks in tiles.

5.1 Implementation of Selection Phase 1

The main challenge at this phase is the construction of the expanded static table
Tj . The size of this table is of order O(|B|·|Γ |·(q+1)), where |B| is the number of
rule blocks, |Γ | is the size of the alphabet (amount of different objects), and q+1
corresponds to the number of membranes plus the space for the environment.

A full implementation of Tj can be expensive for large PDP systems. Moreover,
it is a sparse matrix, having null values in the majority of the positions:
competitions for one object appears for a relatively small number of blocks.
This problem was overcome in the pdp-plcore-sim by using a hash table storing
only non-null values. For pdp-omp-sim, the idea was to avoid the construction
of Tj , by translating the operations over the table to operations directly to the
rule blocks information (using the observations made in section 3):

– Operations over columns: they can be transformed to operations for each
rule block and the objects appearing in the multisets of the LHS.

– Operations over rows: they can be translated similarly to operations over
rows, but the partial results into a global array (one position per row).

Phase 1 can be implemented as described in Algorithm 5.1. Note that Filter
3 is not needed any more. Although the full table is not created, some auxiliary
data structures are used to virtually simulate it (we say it uses a virtual table):
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– activationV ector: the information of filtered blocks is stored here as boolean
values. The full global size is of order O(|B| ∗ m ∗ nsim), where m is the
number of environments and nsim the number of simulations carried out in
parallel. This vector is actually implemented passing from boolean to bits.

– addition: the total calculated sums for rows are stored here, one number per
each pair object and region. Its size is of order O(|Γ | ∗ (q + 1) ∗m ∗ nsim).

– MinN : the minimum numbers calculated per column are stored here. This is
needed in order to substract the corresponding number of applications to C ′

t

in each loop for the A value. The full global size is of order O(|B|∗m∗nsim).
– BlockSel: the total number of applications for each rule block is stored here.

The full global size is of order O(|B| ∗m ∗ nsim).
– RuleSel: the total number of applications for each rule is stored here. The

full global size is of order O(((|R| ∗ m) + |RE |) ∗ nsim), where |R| is the
number of rules and |RE | the number of communication rules.

Algorithm 5.1. Implementation of selection Phase 1 with virtual table

1: for j = 1, . . . ,m do � For each environment
2: for all block B do
3: activationV ector[B]← true
4: if charge(LHS(B)) is different to the one presented C′

t then
5: activationV ector[B]← false � (Apply Filter 1)
6: else if one of the objects in LHS(B) does not exist in C′

t then
7: activationV ector[B]← false � (Apply Filter 2)
8: end if
9: end for
10: Check the mutually consistency of blocks.
11: repeat
12: for all block B having activationV ector[B] = true do � (Normalization 1)
13: for each object ok appearing in LHS(B), associated to region i do
14: addition[o, i]← addition[o, i] + k
15: end for
16: end for
17: for all block B having activationV ector[B] = true do � (Normalization 2)
18: MinN [B]←Min[ok]i∈LHS(B)(

1
k2 ∗ 1

addition[o,i]
∗ C′

t[o, i]).

19: BlockSel[B]← BlockSel[B] +MinN [B].
20: end for
21: for all block B having activationV ector[B] = true do � (Updating)
22: C′

t ← C′
t − LHS(B) ∗MinN [B]

23: end for
24: Apply Filter 2 again (as described in step 6).
25: a← a+ 1
26: until a = A or for each active block B, MinN [B] = 0
27: end for

The implementation on the device has been constructed directly from
Algorithm 5.1. Phase 1 has been implemented using several kernels, avoiding
the overload of only one:
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– Kernel for Filters (from line 2 to 10 in Algorithm 5.1): Filters 1 and 2 are
implemented here by using our general CUDA design (Figure 1).

– Kernel for Normalization (from line 11 to 20): the two parts (row additions
and minimum calculations) of the normalization step is implemented in a
kernel. The two parts are synchronized by synchtreads CUDA instruction.
The work assigned to threads is divergent; that is, each thread works with
one rule block, but writes information for each object appearing in the LHS.
Therefore, the writes to addition are carried out by atomic operations.

– Kernel for Updating and Filter 2 (from line 21 to 26). As before, the work
of each thread is divergent. Thus, the update of the configuration is also
implemented with atomic operations.

5.2 Implementation of Selection Phase 2

Phase 2 is the most challenging part when parallelizing by blocks. The selection
of blocks at this phase is performed in an inherently sequential way: we need to
know how many objects a block can consume before selecting the next one. In
our solution, Phase 2 is implemented by one kernel, using our general CUDA
design.

The random order to the blocks is simulated by the CUDA thread scheduler:
each thread calculates the position in the order of its rule block by using the
atomicInc operation. Since it does not perform a real random order, random
numbers are going to be used soon in next versions. Our first approach (let
designate it ph2-simorder-oneseq) for phase 2 was to launch 257 threads: 256
threads to calculate the “random” order, and an extra thread to iterate the
blocks in that order, selecting and consuming the LHS. Since this approach is
still sequentially executed in the GPU, an improved version was constructed.

Our new version (designated ph2-simorder-dyncomp) dynamically checks the
blocks that are really competing for objects, and calculates which blocks can be
selected in parallel, and which depend on the selection of the others. To do this,

Fig. 2. Sample of our ph2-simorder-dyncomp kernel execution
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some previous computations are needed. Two arrays are used, one for storing the
information of the LHS, and another to store the order of selection (rule blocks
having the same order number will be selected in parallel). Both of the arrays
are implemented using the GPUs shared memory to speedup this computation.
Shared memory on the GPU is one of the on-chip memory spaces which is shared
by all the SPs of a SM. Access times to the shared memory are comparable to
those of a L1-cache on a traditional CPU. (GPUs also feature high-speed DRAM
memory (device memory) with higher latency than on-chip memory (typically
hundreds of times slower). The device memory is subdivided in read-write, non-
cached (global and local) and read-only, cached (texture) areas.)

Figure 2 shows a sample ph2-simorder-dyncomp kernel execution. We iterate
for each rule block (using the pre-calculated random order). First, the rule blocks
check if they have common objects with block B0. In the example, block B1 has
object A, and block B3 has objects A and B. They annotate this competition
with the pair (block, object), using the indexes of the array. The current block
also calculates the selection order by checking if it has some depending objects.
If so, the order is increased by one. For the first iteration, block B0 is assigned
order 0, but in iteration 1, block B1 is assigned order 1 (competing with block
B0). The rest of the iteration can be seen in Figure 2.

Our experiments shows that ph2-simorder-dyncomp, that includes extra
computations but allows to execute independent blocks in parallel, achieves up
to 20% of performance improvement from ph2-simorder-oneseq.

5.3 Implementation of Selection Phase 3

Phase 3 calculates the number of times a rule is applied using a binomial
distribution, and the selected block number, both implemented in one kernel.

For random binomial number generation, we have made a CUDA library
based on CuRAND, called curng binomial. This module implements the BINV
algorithm proposed by Voratas Kachitvichyanukul and Bruce W. Schmeiser [12].
Algorithm BINV executes with speed proportional to n·p and has been improved
by exploiting properties listed in the paper [12]. Also, it has got the best results
assuming a normal probability approximation when n · p > 10.

In depth, the library implements an inline device function which executes
binomial randomization (BINV) when n · p ≤ 10 and normal randomization
(CuRAND) otherwise. Our implementation generates binomial random numbers
while running the kernel; thus, they are not generated previously.

The implementation of the phase is directly translated from the pseudocode of
the DCBA. Also, it has got the best parallelism exploiting until now, comparing
to other phases of the algorithm.

5.4 Implementation of Execution (Phase 4)

Phase 4 is implemented as directly shown in the DCBA pseudocode using our
general CUDA design. In this case, we go to another level of parallelism for
threads, that now works with each rule. As before, threads iterate the rules by
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tiles, and adding the corresponding RHS (if it has a number of applications
Nr > 0). Finally, since this operation is divergent (from rules to add objects),
we use atomic operations again to update the configuration of the system.

6 Performance Results

In order to test the performance of our simulators, we constructed a random
generator of PDP systems (designated pdps-rand). These randomly created PDP
systems have no biological meaning. The purpose is to stress the simulator in
order to analyze the implemented designs with different topologies. pdps-rand is
parametrized in such a way that it can create PDP systems of a desired size.

We benchmark our pdp-gpu-sim and pdp-omp-sim (for 1, 2 and 4 cores) by
first analyzing the scalability when increasing the size of the system in several
ways. We then profile the simulators, showing the percentage of time taken by
each phase separately. All experiments are run on a Linux 64-bit server, with
a 4-core (2 GHz) dual socket Intel i5 Xeon Nehalem processor, 12 GBytes of
DDR3 RAM and two NVIDIA Tesla C1060 graphics cards (240 cores at 1.30
GHZ , 4 GBytes of memory). GPU cores are typically slower than CPU cores.

Figure 3 shows the scalability of the simulator when the number of different
objects appearing in the LHS (cooperation degree (see Definition 2)) increases.
We can assume that, the greater the cooperation degree, the greater the number
of competing blocks generated by pdps-rand. The figure shows the simulation
time (in milliseconds) for one computation step running 50 simulations of PDP
systems with 10 environments, 50000 rule blocks and 5000 different objects. The
randomly generated PDP systems are sorted by the mean LHS length, showing
that pdp-gpu-sim works better for lengths smaller than 3. The speedup achieved
by pdp-gpu-sim is 6.6x and 2.3x for lengths of 1 and 2 against pdp-omp-sim with
one core, and 4.5x and 1.9x against pdp-omp-sim with 4 cores, respectively.

Fig. 3. Scalability when increasing the mean LHS length of rules
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The second test analyses the performance when increasing the parallelism
level of the CUDA threads within thread blocks, that is, the number of rule
blocks. The speedup achieved by pdp-gpu-sim versus pdp-omp-sim is showed in
Figure 4. The number of simulations is fixed to 50, and the environments to 20
(hence, a total of 1000 thread blocks). The number of objects is proportionally
increased together with the number of rule blocks, in such a way that the ratio
for number of rule blocks and number of objects is always 2. The mean LHS
length is 1.5 (this is typical for many real ecosystem models, as seen in the
literature). The speedup gets stable to around 7x on the number of rule blocks
for the GPU versus CPU. For the multicore versions with 2 and 4 CPUs, the
speedups are maintained to 4.3x and 3x, respectively. In our experiments, this
number is also achieved when running with 1000000 rule blocks.

Fig. 4. Scalability of the simulators when increasing the number of rule blocks

The third test is for the second parallelism level in CUDA, concerning thread
blocks. It is directly related with the number of environments and simulations.
The result is shown in Figure 5. In this experiment, the number of rule blocks
is fixed to 10000, the number of objects to 7024 and the mean LHS length is 2.
The number of environments is fixed to 1 when increasing the simulations, and
vice versa. As it can be seen, for low values, the speedup is demoted below 1.
These values come from the fact of insufficient number of thread blocks to fulfill
the GPU resources. Another trend shown is that as the number of simulations
increases, the advantage of parallelizing by simulations increases. The same effect
is observed for environments. This trend is stabilized to 3.5x for high values.
However the parallelism over simulations is better carried out by the GPU,
giving lower speedups for environments.

As stated in [16], parallelizing by simulations yields the largest speedups on
multicore platforms. Therefore, we finalize the first benchmark by comparing
these results with the GPU. Rule blocks are fixed to 50000, environments to
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Fig. 5. Scalability – increasing the number of simulations and environments

Fig. 6. Scalability of the simulators when increasing the number of simulations

20, objects to 5000 and mean LHS length to 1.5. As shown in Figure 6, the
GPU achieves better runtime than the multicore implementations. The speedup
is maintained to 4.5x using one core, 3.5x for 2 cores, and 2.7x for 4 cores.

The results of the second benchmark are shown in Table 1. This profile has
been calculated running the simulator with 10000 rule blocks, 20 environments,
50 simulations, 5000 objects and two different mean LHS lengths, 1.5 (test A)
and 3 (test B). Phase 1 is the most complex part in the simulation (taking more
than 50% of the runtime on the CPU). In test A, the GPU implementation offers
for phase 1 up to 14x of speedup. Therefore, the percentage of the execution time
is decreased to 30%.

Following with Test A, Phase 2 takes only the 12% of the execution time
on CPU. However, the GPU can only accelerate this phase by 2x. Therefore,
this phase becomes the most expensive when executing the simulator on the
GPU (47%). Our novel implementation, ph2-simorder-dyncomp, is close (time-
wise) to the sequential implementation. Indeed, as mentioned above, this phase
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Table 1. Profiling the simulators for GPU and 1 core CPU

Test A (mean LHS length 1.5) Test B (mean LHS length 3)
% CPU % GPU Speedup % CPU % GPU Speedup

Phase 1 53.7% 30.1% 14.23x 55.3% 12% 8.52x

Phase 2 12.6% 47% 2.13x 18.4% 82.8% 0.4x

Phase 3 22.6% 13.7% 13.2x 14% 2.2% 11.72x

Phase 4 11.1% 9.2% 9.7x 12.3% 3% 7.43x

is the most challenging to parallelize. Special efforts have to be considered
here. On the other side, Phases 3 and 4 are relatively lightweight, and are
successfully accelerated (up to 13x and 9.7x, respectively). Hence, our library
random binomial generation based on CuRAND is well suited for Phase 3.

Finally, as shown in Figure 3, the performance of pdp-gpu-sim decreases as the
mean LHS length is increased. For Test B, the overall speedup decreases from
7.9x (Test A) to 1.8x (Test B). The percentage of time consumed by Phase 2 is
dramatically increased for the GPU, taking up to 83%. Thus, the competition
degree of rule blocks is a limiting factor in performance, which fully correlates
with the achieved results.

7 Conclusions and Future Work

In this paper we have presented the first GPU-based version of a simulator
for PDP systems with CUDA. We improved the memory utilization of both
our GPU-based version and our previous OpenMP-based version that we
benchmarked against. We benchmarked a set of randomly generated PDP
systems (without biological meaning), achieving speedups of up to 7x for large
sizes on NVIDIA Tesla C1060 GPU over our multi-core version.

We used a general CUDA design for the GPU part of our simulator:
environments and simulations are distributed through thread blocks, and rule
blocks among threads. Phases 1, 3 and 4 were efficiently executed on the GPU,
however Phase 2 was poorly accelerated, since it is inherently sequential.

For future work, the simulator is going to be reconnected with the P-Lingua
framework. The pLinguaCore library is able to parse P-Lingua files, simulate
P systems computations, and translate P-Lingua files to other file formats. In
this respect, a new file format is going to be designed to become the input of
our simulator. That way, the same P-Lingua files can contain the input data for
the Java simulator inside pLinguaCore and the CUDA simulator. Moreover, we
would like to validate our simulator with real ecosystems models. This would
also help us to adopt model-oriented heuristics to improve the CUDA design.
Finally, it would be useful to design a communication protocol and a Graphics
User Interface in order to connect the simulation pipeline with the end-user.

This simulator represents our first attempt on simulating PDP systems using
the GPU. Hence, improvements can be done to our new CUDA designs (i.e.
iterating from objects to blocks (gather strategy)), optimizing the code, and/or
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making more efforts on Phase 2. Future work will also take advantage of the new
GPU architectures, such as the NVIDIA Kepler, and AMD APU, which deliver
better performance than the Tesla C1060 we used for our experiments here.
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5. Cecilia, J.M., Garćıa, J.M., Guerrero, G.D., Mart́ınez-del-Amor, M.A., Pérez-
Hurtado, I., Pérez-Jiménez, M.J.: Simulation of P systems with Active Membranes
on CUDA. Briefings in Bioinformatics 11(3), 313–322 (2010)
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A., Sancho-Caparrini, F.: A simulation algorithm for multienvironment probabilis-
tic P systems: A formal verification. International Journal of Foundations of Com-
puter Science 22(1), 107–118 (2011)
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