
Parameter Identification

and Model Ranking of Thomas Networks�

Hannes Klarner1, Adam Streck2, David Šafránek2,
Juraj Kolčák2, and Heike Siebert1

1 Freie Universität Berlin,
Berlin, Germany

Hannes.Klarner@fu-berlin.de
2 Masaryk University,
Brno, Czech Republic
safranek@fi.muni.cz

Abstract. We propose a new methodology for identification and analy-
sis of discrete gene networks as defined by René Thomas, supported by a
tool chain: (i) given a Thomas network with partially known kinetic pa-
rameters, we reduce the number of acceptable parametrizations to those
that fit time-series measurements and reflect other known constraints
by an improved technique of coloured LTL model checking perform-
ing efficiently on Thomas networks in distributed environment; (ii) we
introduce classification of acceptable parametrizations to identify most
optimal ones; (iii) we propose two ways of visualising parametrizations
dynamics wrt time-series data. Finally, computational efficiency is eval-
uated and the methodology is validated on bacteriophage λ case study.

Keywords: Thomas network, parameter identification, model checking.

1 Introduction

Discrete modeling frameworks are commonly used in systems biology as a tool
that assists in revealing regulatory mechanisms found in biological networks
[14,11,20]. A widely used formalism for gene regulatory networks is that of
R. Thomas et al. [21] (see [9] for review). The formalism treats changes in gene
expression asynchronously, thus bringing a sort of conservatism into the discrete
abstraction at the price of large state spaces with many transitions. However,
the asynchronous semantics is a natural approach to formalization of concurrent
systems in computer science. This enables application of well-established formal
methods to Thomas networks [5,16,4,19].

Although discrete regulatorymodels are very abstract, parameters determining
the behavior of regulated components are often unknown. An important problem
is therefore inference of these parameters from biological hypotheses and wet-lab
measurements e.g. time series data. There is no reliable technique to reveal the
regulatory logic, and existing reverse engineering approaches are mostly based on
measurement clustering or information theory (see [15] for review).

� Thiswork has been supported by theCzechGrantAgency grantNo.GAP202/11/0312.

D. Gilbert and M. Heiner (Eds.): CMSB 2012, LNCS 7605, pp. 207–226, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

208 H. Klarner et al.

Formal methods have been employed to assist in identifying parameters for
Thomas networks, utilizing not only time series data but also arbitrary hypothe-
ses formalized in terms of a temporal logic. Naive (bottom-up) approaches [4,12]
repeat a procedure deciding for each parametrization whether it satisfies the
given temporal constraints or not. That way acceptable parametrizations are
found. Since the number of possible parametrizations increases exponentially
with the number of unknown parameters, such a procedure is intractable in
many real cases.

Barnat et al. [2] introduced technique of colored LTL model checking (CMC)
based on a heuristics reducing the computation effort by means of operating
on the parametrization space in a top-down manner. In particular, maximal
parametrization sets sharing a required behavior are inferred instead of analyz-
ing each possible parametrization individually. The technique was defined for
multi-affine abstractions of continuous models and was based on symbolic rep-
resentation of parametrization sets thus allowing effective realization of required
operations. When employed on Thomas networks, an ideal symbolic representa-
tion which would allow effective realization of all required set operations was not
found. Therefore the results obtained for Thomas networks were not optimal.

In [12], Klarner et al. developed a workflow for parameter identification of
Thomas networks exploiting time series data. Especially notions of edge con-
straints and expression monotonicity in between measurements were defined to
initially restrict acceptable parametrizations by preliminary known facts about
network dynamics.

In this paper, authors of both groups combine their approaches to obtain ef-
ficient methods for parameter identification using colored model checking. The
result of this collaboration is a comprehensive methodology that further extends
the workflow of [12] introducing a classification of acceptable parametrizations
based on optimal satisfaction of selected criteria. Our methodology guides users
towards selection of parametrizations complying with given hypotheses and time
series data, and proposes further filtering of obtained parameters based on crite-
ria such as low complexity. Moreover, visualization procedures are proposed that
allow a quick and intuitive understanding of the behavior generated by different
parametrizations allowing for easy identification of e.g. potential ranges of poor
measurement sampling. The workflow is depicted in Fig. 1.

To the best of our knowledge, the only work which attempts to employ some
criteria to select most plausible parametrizations in the context of Thomas net-
works is mentioned in [7]. The approach is a work in progress based entirely on
constraint programming. As there are no concrete criteria defined, we currently
cannot compare the methodological side.

On the computational side, our approach is supported by a prototype tool chain
consisting of three modules: static analyzer, model checker, and parametrization
filter. The static analyzer module solves constraints related to the network struc-
ture and is implemented on the top of themodel checkermodule.Themodel checker
module implements CMC including computation of compliant behaviors (inmodel
checking terms: generation of all counterexamples for a given time series formula)

Parameter Identification and Model Ranking of Thomas Networks 209

and parameter ranking. The parametrizationfilter allows browsing the parameters
and filtering them wrt several criteria. Moreover, the filter module gives graphical
feedback to the user.

Computational efficiency is obtained by direct distribution and shared enu-
meration of parametrization sets. To the best of our knowledge, there is only
one other efficient approach [3] targeting discrete gene dynamics. It employs a
more detailed model – the piece-wise affine framework. The representation of
parameter space is specific for the level of abstraction employed. Efficiency is
obtained by considering symbolic representation of parametrizations.

The paper, after introducing the basic notions in the next section, is struc-
tured according to the workflow mentioned above and depicted in Fig. 1. To
illustrate the approach a case study of the bacteriophage λ is considered in
Sect. 5. Further information on implementation and performance as well as final
remarks conclude the paper.

Fig. 1. Parameter identification workflow

2 Background

2.1 Thomas Networks

In the following we recall the logical modeling framework introduced by C. Cha-
ouiya et al. in [5, Section 2], which is a generalization of the formalism of
R. Thomas [21].

Regulatory Graphs. The structure of a system, i.e. the components (or species)
involved and the dependencies between them, can be captured in a graph. We
define an interaction graph (V,E) to be a directed graph consisting of n ∈ N1

vertices V = {v1, . . . , vn} called components and a set E ⊆ V × V of ordered
pairs of vertices called interactions. We use the notation uv ∈ E for interac-
tions and call u the regulator of uv and v the target of uv. The in-neighbors
N−

E (v) := {u ∈ V | uv ∈ E} of v are called regulators of v and the out-neighbors
N+

E (v) are called targets of v.
Since we are not only interested in the structure of the network but also in the

dynamics, we interpret the vertices as integer variables whose values signify e.g.
the level of concentration of the corresponding substance. Naturally, the impact
a regulator has on its target depends on the value of the corresponding variable.
This information about the interactions, i.e. the edges in the interaction graph,

210 H. Klarner et al.

is also needed to specify the dynamical behavior of the system. This leads to the
following definition.

A regulatory graph R = (V,E, ρ, θ) consists of an interaction graph (V,E)
and two functions ρ and θ. The function ρ : V → N1 assigns a non-zero natural
number ρ(v), called maximal activity level of v, to each component. For an
integer interval {k ∈ N | a ≤ k ≤ b} with boundaries a ≤ b ∈ N we use the
notation [a, b]. The interval [0, ρ(v)] is called activity interval of component v
and an element of the activity interval is called activity level of v.

To a regulatory graphR we thus associate the state space X :=
∏n

i=1[0, ρ(vi)].
An element x ∈ X is called a state of the regulatory graph and we use the
subscript notation xv to denote the activity of v ∈ V in state x.

The other function, θ, assigns interaction thresholds θ(uv) = (t1, . . . , tk) to
each interaction uv ∈ E. Each interaction may have a different number 1 ≤ k
of thresholds. The thresholds must be ordered: t1 < · · · < tk and within the
non-zero activities of the regulator: 1 ≤ t1 and tk ≤ ρ(u).

The interaction thresholds θ(uv) = (t1, . . . , tk) of an interaction uv divide the
activities of u into k + 1 intervals [0, t1 − 1], [t1, t2 − 1], . . . , [tk, ρ(u)] of different
regulation intensity. Activities of u that belong to the same interval are charac-
terized by being above the same number of thresholds of θ(uv). We denote the jth

interval by Iuvj . The different regulation intervals allow us to distinguish between
different effects an interaction between two components can have depending on
the activity of the regulator.

Parametrizations. In this subsection we discuss how to parametrize a reg-
ulatory graph. Basically, we need to provide all the information necessary to
determine effects of any regulators on its target in every state. The effect will
not necessarily depend on the exact state, but only on the regulation intervals
to which this state belongs. We formalize this idea in the following definitions.

A regulatory context ω of a component v assigns an intensity to every inter-
action uv ∈ E targeting v. For every regulator u ∈ N−(v), there is a regulation
intensity Iuvj , such that ω(u) = Iuvj . The set of all combinatorially possible
regulatory contexts of v is denoted by Cv.

A parametrization P assigns a target activity value Pω
v to every context ω ∈ Cv

of every component v ∈ V . A priori, the only condition on P is that Pω
v ∈ [0, ρ(v)]

is a valid activity of v. The set of all feasible parametrizations is denoted by P .
A parametrized regulatory graph (R, P) is called Thomas network or model.

Finally, a remark about the scope of the workflow we are going to propose: In
Sec. 2.3, we suggest colored model checking to solve the problem of identifying
feasible parametrizations. For computational reasons we will consider the values
of ρ and θ fixed in a particular problem.

Asynchronous Dynamics. The dynamics of a Thomas model (R, P) can be
captured in a so-called state transition graph, where the finite state space X
constitutes the vertex set and edges between states represent state transitions
as determined from the logical parameters in the following way.

Parameter Identification and Model Ranking of Thomas Networks 211

For every state x and every component v, there is a unique regulatory context
ω ∈ Cv, such that ∀u ∈ N−(v) : xu ∈ ω(u). To see this, recall that ω(u) is a
regulatory interval, and that these intervals form a partition of the activities
of u.

The parametrization P therefore defines a function F on the state space:

F : X → X, x �→ (Pω1
v1 , . . . , P

ωn
vn),

where ωi is the unique regulatory context of component vi in state x.
The function F can be interpreted as a finite dynamical system, i.e., the

dynamics can be derived by iterating an initial state using F . In the resulting
state transition graph, each state x has exactly one outgoing edge leading to
F (x). Clearly, the synchronicity of the involved processes is a strong idealization,
which we want to avoid here.

Instead, the representation should reflect that the time delays associated with
the different biological processes corresponding to the updates may vary greatly
depending on the corresponding network components. However, the experimen-
tal information to determine these time delays is often lacking. This leads to the
definition of a non-deterministic transition graph where each outgoing edge from
a state corresponds to one of the indicated updates.

The transitions TP of the asynchronous and unitary state transition graph
(X,TP) of a model (R, P) are derived from F by two rules. A loop xx ∈ TP exists,
iff F (x) = x. An edge xy ∈ TP , x �= y exists, if there is a component v, such that
xy is asynchronous : ∀u �= v : xu = yu and unitary: yv − xv = sign(F (x)v − xv).
Here sign denotes the sign function.

The state transition graph (X,TP) corresponds naturally to a Kripke structure
(KS) S(R, P) := (P,X,X0, TP , L), which is of interest for formal verification of
temporal logical properties. Here, S consists of states X , initial states X0, the
transition relation TP and a labeling function L over the atomic propositions
AP expressing inequalities

.
=∈ {=,≤,≥, <,>} with

AP := {v .
= k | v ∈ V, k ∈ [0, ρ(v)]}.

If not otherwise noted, all states are considered as initial states, i.e., X0 := X .
The labeling function is defined as L(x) := {v .

= k | v ∈ V, k ∈ [1, ρ(v)], xv
.
= k}.

Finally, the Kripke structure can be generalized to incorporate all possible
parametrizations P . For a given regulatory graph R we consider a parametrized
Kripke structure (PKS) to be a tuple S(R) := (P , X,X0, TP , L) where TP :=⋃

P∈P TP and all other elements are defined as above. The PKS S(R) thus
represents all possible behaviors that can be generated by R.

2.2 Constraints

In the following we introduce several notions that allow us to restrict the pa-
rameter space to the parametrizations in agreement with all the information
we have on the system. We distinguish between static and dynamic constraints
as already indicated in Fig. 1. Static constraints refer to information related to

212 H. Klarner et al.

the regulatory graph, e.g. existence and character of interactions. In contrast,
dynamic constraints capture properties of state transition graphs such as reach-
ability requirements.

Static Constraints. Here we focus on edge labels, which are used to character-
ize the impact that a regulator has on its target. If there is an effect observable at
all, it can be either activating, i.e., causing an increase, or inhibiting, i.e., causing
a decrease in the activity of the target. Formally, several semantics result from
combinations of these effects (see [12, Def. 2.9]). Certain edge labels have already
been used successfully in case studies of D. Thieffry (see e.g. [18],[10]) and also
implemented in analysis tools [17, p. 6].

Since we are dealing with regulatory graphs, whose interactions may have
more than one threshold, the concept of edge label must be adjusted accordingly.
An edge label is therefore not assigned to a single edge uv, but to a tuple (uv, tj)
where uv ∈ E and tj ∈ θ(uv). In this paper, we restrict ourselves to unlabeled
edges and labels chosen from the set {+,−,mon+,mon−}, where the different
notions are defined as follows.

Assume a tuple (uv, tj) is labeled with mon+. A parametrization P satisfies
this label, if for all regulatory contexts ω ∈ Cv, such that ω(u) = Iuvj and ω′ ∈ Cv

such that

ω′(w) :=

{
Iuvj−1 if w = u

ω(w) else

the target value inequality Pω′
v ≤ Pω

v holds. If instead the label is mon−, then
P satisfies this label if for all ω, ω′ ∈ Cv as defined above Pω′

v ≥ Pω
v is true.

The labels + and − correspond to mon+ and mon−, but require observability
in addition. A parametrization P satisfies the observability of (uv, tj), if contexts

ω, ω′ ∈ Cv as defined above, exist, such that the target value inequality Pω′
v �= Pω

v

holds.

Dynamic Constraints. In this paper we focus on identifying parametrizations
that are in agreement with time series data, which can be interpreted as con-
ditions constraining the dynamical behavior of a system. A measurement is a
rectangular subset of the state space X . That is, we describe a measurement m
by assigning to each component v a measurement interval mv = [av, bv] ⊆ [0, ρv].
We then identify this description m with the set of all states x ∈ X , such that
∀v ∈ V, xv ∈ mv.

A time series is a sequence of measurements (m1, . . . ,mk). Notice that mea-
surements may intersect, i.e., there may be states x ∈ mi ∩mj for i �= j.

A state transition graph S = (X,T) reproduces a time series (m1, . . . ,mk),
if it contains a finite walk (xi)1≤i≤r, r ∈ N1, such that there is a mapping M :
[1, k] → [1, r] that is ordered : i < j =⇒ M(i) ≤ M(j) and correct : xM(i) ∈ mi.

We call such walk time series walk. Notice that we allow M(i) = M(j).
The walk can be thought of as a discrete simulation, and the mapping M as
describing at which simulation steps the measurements were recorded. We say
that a parametrization reproduces a time series, if its transition graph does.

Parameter Identification and Model Ranking of Thomas Networks 213

There may of course be multiple walks satisfying these properties. We will
discuss this in Section 3, where we introduce a ranking to capture how well a
model reproduces a time series.

The existence of a time series walk is determined by LTL model checking over
the Kripke structure (X,X0, T, L) associated with the state transition graph
(X,T) (see [1] for an introduction). The initial states are chosen in correspon-
dence with a time series (m1, . . . ,mk) by X0 := m1.

A measurement m is translated into the LTL specification

σ(m) :=
∧

v∈V

∨

k∈mv

v=̇k.

A state transition graph reproduces a time series (m1, . . . ,mk) if and only if
there is a state x ∈ X0, such that the LTL specification

F(σ(m2) ∧F(σ(m3) ∧ . . .F(σ(mk)) . . .) (1)

is satisfied in x.
Time series formulae of the form (1) constitute a specific class of properties

enabling our analysis method as developed in Section 3. More general LTL for-
mulae are used to specify, e.g., monotonicity of gene expression between two
adjacent measurements mi,mi+1 [12] or steady gene activity expected after the
last measurement.

2.3 Parameter Identification by LTL Model Checking

In this section we describe the technology of colored model checking used for
computing parametrizations satisfying constraints encoded in LTL. This tech-
nology is employed in the next sections as a cornerstone for identifying optimal
parametrizations. The central notion is the construction of a map (coloring) re-
lating each state x of a regulatory graph to the set of all those parametrizations
from P under which x is reachable.

For a parametrization P ∈ P and its corresponding Kripke structure S(R, P)
≡ (P,XS , X

0
S , TP , L), we define a run, denoted π, as an infinite path in S(R, P).

The notation π0 is used to denote a run whose first node is in X0
S . Since we aim

to explore parametrizations which are realizable, i.e. there exists at least one be-
havior that satisfies given LTL constraints, we consider existential interpretation
of LTL. We say that S(R, P) satisfies ϕ, written S(R, P) |= ϕ, if there exists a
run π0 in S(R, P) satisfying ϕ.

For a given regulatory graphR and an LTL formula ϕ, automata-based model
checking is employed on S(R) to identify all parametrizations satisfying ϕ. As
a prerequisite, we assume an alphabet Σ = 2AP . Then ϕ is represented by
means of a Büchi automaton over Σ, denoted BA(ϕ), and defined BA(ϕ) :=
(Σ,XA, X

0
A, δA, FA), where XA is a set of states, X0

A ⊆ XA is a set of initial
states, δA ⊆ XA × Σ × XA is a transition relation, and FA ⊆ XA is a set of
accepting states. See [1] for techniques of translating ϕ into BA(ϕ).

214 H. Klarner et al.

We utilize the approach of colored model checking (CMC) as introduced in [2].
CMC takes a PKS S(R), a parametrization space P , and a Büchi automaton
BA(ϕ). It returns a set of all acceptable parametrizations Pϕ := {P ∈ P |
S(R, P) |= ϕ}. The procedure takes the following steps:

– constructing product automaton BA(R, ϕ) := S(R) ∩BA(ϕ)
– computing Pϕ by executing colored model checking on BA(R, ϕ)

Product Automaton. BA(R, ϕ) is computed in the standard way [1] as a
product of a PKS S(R) ≡ (P , XS , X

0
S , TP , L) andBA(ϕ) ≡ (Σ,XA, X

0
A, δ̄A, FA):

BA(R, ϕ) := (P × Σ,X,X0, δ, F) where

X := XS ×XB, X
0 := X0

S ×X0
A, F := XS × FA and

((xs, xa), (P, α), (x
′
s, x

′
a)) ∈ δ iff xsx

′
s ∈ TP ∧ (xa, α, x

′
a) ∈ δA ∧ α ∈ L(x).

If there exists α ∈ L(x) such that (x, (P, α), x′) ∈ δ, we use the simplifying

notation x
P→ x′. Transitive and reflexive closure of the relation→ is denoted→∗.

BA(R, ϕ) accepts π0 - an infinite run through this product automaton - if
and only if there is an x ∈ F that occurs infinitely often on π0 (projection of
π0 to the second component is an accepting run in BA(ϕ)). Hence BA(R, ϕ)
accepts exactly the paths satisfying ϕ, and the acceptance is always caused by
a cycle in BA(R, ϕ) containing some state in F – therefore we are interested in
accepting cycles and their reachability from initial states.

Our interest is in paths that are realizable in a certain parametrization P ∈ P .
We denote by BA(R, ϕ)P the product automaton BA(R, ϕ) with the alphabet
{P} × Σ (restricted to the parametrization P). A run in BA(R, ϕ)P is de-
noted πP . We can conclude that S(R, P) satisfies ϕ iff there exists a run π0

P in
BA(R, ϕ)P that is accepted.

Colored Model Checking. Naive (bottom-up) computation of Pϕ by checking
each parametrization P ∈ P individually suffers from the exponential explosion
of |P| wrt number of unknown parameters. CMC [2] is a heuristic method based
on the idea that transitions within PKS are shared by many parametrizations,
therefore utilizing a single PKS for a check (top-down) is significantly faster than
doing a check on every single KS S(R, P).

An important notion is mapping clP̂
X̂

: X → 2P , X̂ ⊆ X, P̂ ⊆ P , called
coloring, in which each state x ∈ X is assigned a set of parametrizations for

which x is reachable from some state in X̂ , defined and denoted clP̂
X̂
(x) := {P ∈

P̂ | ∃x̂ ∈ X̂ : x̂
P→* x}. Using this mapping, the CMC procedure can be described

as follows:

For each x ∈ F :
(1) Compute coloring reachx ≡ clPX0(x) reaching accepting state x.

(2) Compute coloring cyclex ≡ clreachx

{x} (x) enabling (accepting) cycles on x.

Parameter Identification and Model Ranking of Thomas Networks 215

These two steps correspond to traditional LTL model checking [1], where we ask
if there exists (1) a path from an initial to a final state and (2) a cycle containing
this state, which implies existence of an accepting run. In our case, we do not
ask for an existence of a single accepting run for each KS, but directly build a
set of parametrizations that have an accepting run in PKS.

To obtain such a set, one has to perform a graph search, which can be done
in numerous ways - in Section 6 we explain how to do those steps efficiently.
Performance of the algorithm can be also greatly increased by omitting step
(2) when using time series formula. This property is within a set of so-called
reachability properties that can be computed without cycle detection [1].

3 Optimal Parametrizations

In the classical enumerative model checking approach to reverse engineering of
Thomas networks, that was introduced by G. Bernot et al. in [4], a given set of
parametrizations is divided into acceptable and unacceptable parametrizations
depending on whether the transition graph associated to a parametrization sat-
isfies the temporal logic specification or not.

From the perspective of the temporal specification, all acceptable parametriza-
tions are equally suitable and the parameter model checking process ends here.

For the particular class of LTL specifications that we are interested in – the
time series constraints as defined in Section 2.2, we introduce a method for
ranking acceptable parametrizations.

3.1 The Length Cost

This section starts with a regulatory graph R, a time series (m1, . . . ,mk) and a
non-empty set of parametrizations P ′ ⊆ P that all reproduce the time series.

Denote by WP the set of all time series walks of (m1, . . . ,mk) in the state
transition graph of a single parametrization P ∈ P ′. WP may in general be an
infinite set, but most of its walks are not relevant for our purposes. To impose
a ranking on the set of time series walks, and through that a ranking on the
set of parametrizations, we impose a preference for short walks. Since the walk
length can be seen as a measure for the complexity of the behavior in terms of
the number of processes that have to be executed to produce the desired result,
this approach favors models that provide simple explanations for the observed
behavior. In other words, we try to penalize unnecessarily complex realizations
of time series data in a model which might also be related to a higher energy
cost for the system.

We define the length cost of a parametrization P ∈ P ′ with respect to the time
series as Cost(P) := min{r ∈ N | ∃(xi)1≤i≤r ∈ WP }, and denote by

SWP = {(xi)1≤i≤r ∈ WP | r = Cost(P)} ⊆ WP

the set of shortest walks of P .
The length cost partitions P ′ into classes of equal cost, and we are particularly

interested in parametrizations with the minimum cost, denoted by min
Cost

(P ′) ⊆ P ′.

216 H. Klarner et al.

3.2 Robustness

Since the dynamics in the Thomas formalism are non-deterministic, several paths
may lead from one state to another and the path corresponding to the actual
behavior of the system depends on the time delays associated with the different
update processes. If these time delays change, maybe due to environmental in-
fluences, the system may follow a different trajectory even when considering the
same initial state. However, in some cases, namely when there is only one path
between two states in the state transition graph, the behavior of the system is
independent of the actual values of the time delays. This can be interpreted as
robustness of the system wrt perturbations of the time delays. In the following
we will formalize this idea as a property of a given parametrization. Since we are
interested in the realization of time series, we will focus our notion of robustness
on the time series walks.

We use the standard notion of probability for a finite walk, as defined in [1],
where each successor of a node is chosen with equal probability. Then, we say
that the probability of a finite time series walk w of length l is

Prob(w) :=

l−1∏

i=1

1

deg+(xi)
,

where deg+(xi) is the out-degree of the state xi of the walk.
We now define robustness of a parametrization wrt time series as the sum of

probabilities of all distinctive time series walks. For set SWP and set m1 of all
states that fit the first measurement, we set

Robustness(P) :=

∑
w∈SWP

(Prob(w))

|m1| .

For example, if the time series and the parametrization only allows for a single
shortest time series walk, the robustness will be high if the states of the walk
have low out-degree. In case the initial measurement has some unknown values,
we take the average robustness of walks from all states that fit the measurement.

This notion of robustness is a good starting point for analysis since it distin-
guishes parametrizations that reproduce the time series with low ambiguity. In
addition, it is easy to formalize and compute. A more involved definition should
be based not only on the out-degree of a state of a time series walk, but differ-
entiate and weight whether the different successors of the state are themselves
states of a time series walk. This would extend the notion of robustness, taking
into account not only perturbations of the time delays but also of the states, and
will be investigated in future work.

3.3 Computing Optimal Parametrizations

The set of optimal parametrizations is obtained in the following manner:

1. Describe the set P of all possible parametrizations.
2. Remove parametrizations that do not satisfy edge constraints.

Parameter Identification and Model Ranking of Thomas Networks 217

3. Compute the set of acceptable parametrizations using model checking.
4. Take the subset of those that have minimal Cost.
5. Finally, select parametrizations with maximal Robustness.

This way we obtain only parametrizations we have identified to be optimal,
whose number is usually significantly smaller then the size of P .

Such a procedure can be done automatically. Interpretation and further anal-
ysis of the results is left to the user. To support this step, in the following section
we suggest two methods for visualization of results.

4 Visualization

In this section we present methods to visualize differences and similarities of
parametrizations. To our knowledge, two automated lines of analysis of a set of
parametrizations exist. In [8, Sec. 3.2], consensus target value inequalities are
derived, while in [12, Sec. 5.1] the focus is on deriving consensus edge labels.

Here we present a novel approach that visualizes the transitions of a set of
acceptable parametrizations in between measurements, highlighting agreement
between parametrizations. We propose, firstly, behavior maps that represent
state transitions according to the considered parametrizations, and, secondly,
expression profiles that focus on the activity of a single component.

4.1 Behavior Maps

There is no reason to expect that the time series walks of different parametriza-
tions coincide. However, the information whether certain state transitions are
shared by the walks can be immediately exploited for experimental design. For
example, new measurements would be most useful if placed between two original
measurements that generated many different walks leading from one to the other
across the valid parametrizations, since the additional information would then
enable us to distinguish between them. The plots proposed in this section aim
at making this information about the distribution of state transitions of time
series walks easy to assess.

Let W be any finite set of time series walks of (m1, . . . ,mk). In each walk
we mark the measurements 1, . . . , k. We lay out all walks horizontally and align
for every 1 ≤ i ≤ k, the states marked as the ith measurement vertically. If a
measurement is realized by several states in the walk, we choose the state with
the smallest index within the walk to represent this measurement. This way we
can interpret the horizontal axis as a discrete time axis, progressing from earlier
(left) to later (right).

Notice that a state may of course appear in more than one walk, but also
multiple times within a single walk. Behavior maps are an attempt to find a
compact representation, by removing some of these duplicates, while keeping the
acyclic progression from earlier to later states. Therefore we are not interested
in the graph defined as the union of walks in W , because it may destroy this
progression (by creating cycles).

218 H. Klarner et al.

We treat each pair of successive measurements mi,mi+1 independently and
partition the walks into classes of equal length in between mi and mi+1. Two
states are identified as one if they represent the same state of the KS and appear
in equal number of steps since last measurement.

We scale the size of a node and width of a transition by the number of
parametrizations that produce a walk passing through it. The gray scale shading
of a transition is determined by the class it belongs to. Black transitions belong
to the overall shortest walks, light gray transitions to the longest walks. E.g.,
consider following regulatory graph:

The behaviour map of this graph wrt time series m1 = {(0, 0)},m2 = {(2, 0)} is:

The blue vertical boxes represent measurements. Black transitions belong to
length class 3, gray transitions to length class 5. The wider the stroke of a
transition or the larger a node, the more walks in W pass through them. Note
that the state ‘10’ appears three times. Once in length class 3, and twice in the
class with length 5, because it can be visited either early or late in discrete time.
State ‘11’ has only one node because it always appears after two transitions.

4.2 Expression Profiles

Behavior maps visualize possible model behaviors in accordance with a time
series. For a more refined analysis aiming at experimental design, it is helpful
to focus on the behavior of the separate components. The plot of all the ways
a component may change its level alongside all time series walks can highlight
which components are responsible for differences between walks. In addition, as
in the case of behavior maps, we can easily pinpoint for each component between
which measurements the component behavior is the most ambiguous.

For single components we suggest to plot sigmoid expression profiles. The
transparency of a curve is proportional to the number of shortest walks that
share the corresponding transition. Below are the profiles of x and y of the
example structure presented in Section 4.1. The most opaque line in the profile
of x shows that along most walks it increases evenly from 0 to 2.

Parameter Identification and Model Ranking of Thomas Networks 219

Profile of x Profile of y

The profile of y indicates that its activity along most walks is constant at 0.
In contrast to x, some ambiguity is present here - if this was a real system,
experiments should focus on y.

5 Case Study

In this section we apply our workflow to the gene regulatory network of bacterio-
phage λ. Its discrete version was formulated by Thieffry and Thomas in [20]. The
authors also discuss two time series, the lytic (Fig. 5) and lysogenic (Fig. 5) fate
of bacteria infected by the bacteriophage (see [20, p.290]). Finally, for compari-
son, a realistic parametrization denoted R is considered (taken from [20, p.291]).
We will judge our results by how close our optimal parametrizations are to R.

Parameter Set Reduction. First, we compute the initial parametrizations
with the edge labels of the regulatory graph in Fig. 5. The self-activation of cI
at threshold 2 is not observable in R. Since we want R to belong to the initial
parametrizations, we also relax this constraint and assign the label mon+ to
(cI cI, 2). These static constraints reduce the set of feasible parametrizations
from 6, 879, 707, 136 to 82, 008.

Now, we execute the CMC procedure for both time series. The lytic time
series is reproduced by 28, 043 parametrizations. Of these, 537 also reproduce
the lysogenic time series. During this step we also compute Cost and Robustness
functions.

(a)

cI cII cro N

1. 0 0 0 0
2. 2 1 0 1
3. 2 0 0 0

(b)

cI cII cro N

1. 0 0 0 0
2. 0 0 2 1
3. 0 0 2 0
4. 0 0 3 0
5. 0 0 2 0

(c)

Fig. 2. (a) Regulatory graph of bacteriophage λ with edge constraints. (b) Lysogenic
time series. (c) Lytic time series. The last three measurements indicate an oscillation.

220 H. Klarner et al.

Optimal Parametrizations. To illustrate the two step model ranking by Cost
and Robustness, we have to focus on one of the time series. We pick the lysogenic
series. The theoretical minimum Cost, required to execute the 6 activity changes
of the lysogenic series (Fig. 5), is 7. The actual minimum Cost among the 537
feasible parametrizations is 9, and 28 parametrizations contain a walk of this
length.

Among those 28, the maximum Robustness is 9.72% and there are 3 param-
etrizations that attain it. In comparison,R also has a Cost of 9 but its Robustness
is only 0.54%.

These 3 parametrizations are equal in all target values except for a single
context of cro: If the only regulator acting above its threshold is cro itself, the
target value may be any of 0, 1 or 2 (giving us the 3 remaining parametrizations).
Since the threshold of the self-regulation is θ(cro cro) = 3, all target values
below 3 cause this inhibition to stop itself, giving us identical state transition
graphs. Hence the remaining 3 parametrizations agree with R on that the target
value must be below 3. Any of the 3 parametrizations is optimal wrt Cost and
Robustness, and we denote all of them by O.

We compare the target values of the parametrizations R and O in the table
below. Values that differ between the two are bold. The component name in
the first row of each column denotes the target component. Each successive row
contains a list of regulators that are above their (unique) interaction thresholds.
The corresponding target values are in the columns R and O.

cI R O cII R O cro R O N R O
∅ 2 1 ∅ 0 1 ∅ 3 3 ∅ 1 1
cI 2 2 cI 0 0 cI 0 0 cI 0 0
cro 0 0 cro 0 0 cro 2 <3 cro 0 0
cII 2 2 N 1 1 cI, cro 0 0 cI, cro 0 0
cI, cII 2 2 cI, cro 0 0
cI, cro 0 2 cI,N 0 0
cII, cro 2 2 cro,N 0 1
cI, cII, cro 2 2 cI, cro,N 0 0

Note that each of the disagreements for cI causes the interaction cI cI, that is
not observable in R, to be observable in O.

Visualization. Using a behavior map including all the shortest time series
walks of every acceptable parametrization, we obtain the following graph:

Parameter Identification and Model Ranking of Thomas Networks 221

As before, blue boxes mark measurements. The map indicates many possibili-
ties in ordering of activations which always lead from state (0, 0, 0, 0) to state
(1, 1, 1, 1), suggesting that it would be reasonable to measure activity levels be-
tween these two states.

Number of steps between measurements m2 and m3 corresponds to their dis-
tance, but for walk from m1 to m2 it is not the case.

In the cII expression profile above we can see that alongside every path cII is
activated and inhibited between measurements m1 and m2 – this also explains
why in O this component can be activated more often, as this step is necessary
for the model to be able to reproduce the time series.

6 Implementation and Evaluation

In this section we briefly describe methodology of synthesis and analysis together
with tools deployed for these tasks. Further we focus on description of a time
and space-efficient computation of acceptable parametrizations and evaluate it
using two different models.

6.1 Usage Description

Our current workflow of analysis is divided into following steps:

1. Creation of a model - regulatory network is described in a single XML file
using our own syntax designed for this purpose. In a future work we expect
to implement an option to import models from standard formats.

2. Specification of the property - the property (most usually a time series) is
currently specified within a model file in the form of Büchi automaton, also
using an XML-based syntax.

3. Synthesis - the model is analyzed using the colored model checker Parsy-
bone 1, implemented in C++. The tool works in two steps. First, reduction
of parametrization space is conducted if there are any initial constrains spec-
ified. The reduced parameter space than undergoes the process of parameter
synthesis. By default, this step produces only enumeration of acceptable
parametrizations. However, for each of the parametrizations we can option-
ally compute and output its shortest paths or the robustness value.

1 Parsybone – http://github.com/sybila/Parsybone

http://github.com/sybila/Parsybone

222 H. Klarner et al.

4. Filtering - the amount of data produced by synthesis is vast in most cases,
therefore we usually employ a second tool, ParameterFilter 2, implemented
in C�. It is a GUI elaborating on the output from the synthesis step allowing
to select and compare parametrizations based on their ranking.

5. Plotting - finally, for parametrizations chosen during the previous step we
plot their expression profiles (using ParameterFilter) or their behavior map
which is produced from the synthesis output using our converter, imple-
mented in Java. The converter creates a behaviour map for a given
parametrization and allows its visualization using Cytoscape [6].

6.2 CMC Procedure Implementation

Algorithm for colored model checking as presented in [2] does not specify, how
distinct parametrizations should be stored and manipulated. For continuous
models, we have used bounded intervals of values for each component, creat-
ing a parametrization space as a Cartesian product of those. We have later
employed this approach for discrete models as well, but it turned out that in
this case it suffers from high complexity of often performed operations like set
intersection (for more information about the algorithm, see [13]). To tackle this
problem, we have moved to explicit representation where all parametrizations
are enumerated. We will show that this approach provides numerous advantages
and allows for analysis of large parametrization sets.

Encoding. Our approach is based on a computationally efficient encoding of
parametrization space. We encode each parametrization set P ′ ⊆ P as a word of
length |P| over alphabet Σ = {0, 1}. Such a word naturally corresponds to a bit
vector of the same length and allows fast computation using bitwise operations.

We consider lexicographical ordering of the set P . We denote P i ∈ P an i-th
parametrization in P . Now to encode an ordered set P ′ ⊆ P , we use the encoding
function Code : 2P → {0, 1}|P| where Code(P ′) = b1b2...b|P|, ∀i(bi = 1 ⇔ P i ∈
P ′). This way we encode a coloring of every state as a single word of length |P|.

The encoding function is of a crucial importance, because the idea of the CMC
and its main performance improvement lies in the option to create only a single
PKS for the whole parametrization space. To create such a structure, we need
to be able to label edges of the PKS with transitive parametrizations. This can
be done using the encoding function by which we label every transition x → x′

with a word Code({P |x P→ x′}).
In general, by using such an encoding we reduce the CMC problem to a

sequence of bitwise operations.

Splitting. Our coloring algorithm is based on an iterative computation of a
fixed point. Complexity of this computation can be improved using multiple
heuristics, for complete information we refer to [13]. The most important is the
procedure of splitting.

2 ParameterFilter – http://github.com/sybila/ParameterFilter

http://github.com/sybila/ParameterFilter

Parameter Identification and Model Ranking of Thomas Networks 223

Our idea is based on the assumption that similar parametrizations generate
similar KSs [2]. When computing a coloring of a PKS we split its parametrization
space to multiple neighbouring regions and work only with a single region at a
time. Most of parametrizations within a single region are likely to be either all
accepted or all rejected, allowing us to quickly reach the fixed point.

Due to lexicographical ordering of possible parametrizationswithin a bit vector,
we already have similar parametrizations in the neighbouring positions. During
the computation we then split the parametrization space by working always with
nextm bits of the bit vector. Each region is stored within a single integer variable,
thereforem is equal to size of an integer in bits on a target platform.Note that usage
of integers also ensures quick computation of bitwise operations.With this region,
we go through the whole process of analysis, output the data, free the memory and
continue with another round (ensuring low memory requirements).

Distribution. When using the split parameter space (which we can do only
when using explicit data representation), we can easily distribute the compu-
tation. This is because every parametrization is completely independent on all
others, giving us great potential for a data-parallel distribution. Therefore, we
distribute regions of parametrization space between non-communicating pro-
cesses differing only in their ID.

Each independent worker does its own parsing and pre-computation and
then goes through the procedure of parameter identification with a subset of
parametrization space that is disjunctive with subsets of other workers.

To achieve as optimal load balance as possible, distribution of regions is inter-
laced, meaning that in computation of n processes, process with ID i, 1 ≤ i ≤ n
is assigned only regions i + k · n, k ∈ N. This method is again based on the
assumption that similar parametrizations generate similar behaviour, causing
acceptable parametrizations to cluster. This way we ensure that such clusters
are distributed evenly between processes.

6.3 Evaluation

Mammalian Cell Cycle. To test capabilities of our algorithm, we had it ana-
lyze a model of mammalian cell cycle [10] with 9 components. For this model we
have defined partial specification, reducing size of parametrization space to final
number of 675, 584, 064 parametrizations. As a guide for the analysis we have
used time series with 8 measurements. More detailed information are presented
in Technical report [13].

Parametrization space was evenly distributed between 8 independent process,
each one of them having initial set of size 84, 448, 008. Computation was run on
a Linux server using two processors with four 2.27 GHz cores and took roughly
a day with 308, 180, 639 acceptable parametrizations computed. During compu-
tation each of the processes used less than 15 MB of RAM. Exact results for
each process are presented in the Figure 6.3. As can be seen, parametrizations
space has been partitioned to sets with almost identical numbers of acceptable
parametrizations.

224 H. Klarner et al.

Process ID Runtime Result set size Process ID Runtime Result set size

1 29.07 h 38,522,403 5 29.70 h 38,523,691
2 31.08 h 38,521,943 6 28.81 h 38,523,255
3 27.22 h 38,521,656 7 29.55 h 38,522,328
4 32.32 h 38,522,343 8 28.83 h 38,523,020

Fig. 3. Results of distributed analysis of Mammalian cell cycle

Bacteriophage. As a main benchmark we have employed the bacteriophage λ
network. Minor utilization was necessary mainly because our old tool (which
is employed for comparison) is not able to work with edge labels. We have
therefore created unlabelled and partially specified version of the model with
|P| = 589, 824 out of which 90, 112 parametrizations are acceptable. We ran the
analysis five times using each tool. Analysis using the old version took on the
average 967 seconds and used at max 50 MB of RAM, analysis using the new
version took always less than 6 seconds and did not use more than 3 MB RAM.

To demonstrate scalability we analyze the bacteriophage model using up to 8
independent processes. In Fig. 4 we show average runtime of all processes used.
Resulting numbers are taken as an average of three independent experiments
on the same platform as in case of mammalian cell cycle. As can be seen from
the graph, scaling of our algorithm is roughly linear. This result suggests that
in every case where distribution of computation seems sensible, it is possible to
achieve almost a linear speedup and therefore we can extend a set of models that
can be practically analyzed by using high-performance computational platforms.

Process count Average runtime
1 5.315 s
2 2.634 s
3 1.767 s
4 1.332 s
5 1.048 s
6 0.884 s
7 0.754 s
8 0.657 s

0 1 2 3 4 5 6 7 8
0
2
4
6
8

Number of processes

S
p
ee
d
u
p

Fig. 4. Scalability of algorithm on bacteriophage λ

7 Conclusions

We have contributed to solving the parameter identification problem for Thomas
networks in three aspects. First, we have proposed a new methodology based on
a colored model checking approach extended with parametrization ranking pro-
cedures. Second, we have introduced a new idea of parametrization encoding that
allows us to synthesize parametrizations in an efficient manner on distributed
platforms. Third, we have implemented a prototype tool chain that supports all
steps of our methodology including feasible visualization of obtained results.

Parameter Identification and Model Ranking of Thomas Networks 225

By evaluating our algorithms on several biological models, we have demon-
strated that the computation achieves good scaling, and moreover, that it copes
with larger parameter spaces. Comparing these results with our previous achieve-
ments [2,12], possibilities of parameter identification solved by model checking
have been significantly improved.

On the methodological side, our achievement brings new insights into applying
discrete modeling frameworks to gene networks. The case study has shown that
the approach is can help modelers to identify reasonable parametrizations and
derive supported suggestions for experimental design.

On the computational side, improving the efficiency of the parameter filtering
and visualization part of the tool chain will be a focus of future work.

References

1. Baier, C., Katoen, J.-P.: Principles of Model Checking. The MIT Press (2008)
2. Barnat, J., Brim, L., Krejci, A., Streck, A., Safranek, D., Vejnar, M., Vejpustek,

T.: On Parameter Synthesis by Parallel Model Checking. IEEE/ACM Transactions
on Computational Biology and Bioinformatics 9(3), 693–705 (2012)

3. Batt, G., Page, M., Cantone, I., Goessler, G., Monteiro, P., de Jong, H.: Efficient
parameter search for qualitative models of regulatory networks using symbolic
model checking. Bioinformatics 26(18), i603–i610 (2010)

4. Bernot, G., Comet, J.-P., Richard, A., Guespin, J.: Application of formal methods
to biological regulatory networks: Extending Thomas’ asynchronous logical ap-
proach with temporal logic. Journal of Theoretical Biology 229(3), 339–347 (2004)

5. Chaouiya, C., Remy, E., Mossé, B., Thieffry, D.: Qualitative Analysis of Regula-
tory Graphs: A Computational Tool Based on a Discrete Formal Framework. In:
Benvenuti, L., De Santis, A., Farina, L. (eds.) Positive Systems. LNCIS, vol. 294,
pp. 119–126. Springer, Heidelberg (2003)

6. Cline, M., et al.: Integration of biological networks and gene expression data using
Cytoscape. Nat. Protocols 2(10), 2366–2382 (2007)

7. Corblin, F., Fanchon, E., Trilling, L., Chaouiya, C., Thieffry, D.: Automatic In-
ference of Regulatory and Dynamical Properties from Incomplete Gene Interac-
tion and Expression Data. In: Lones, M.A., Smith, S.L., Teichmann, S., Naef,
F., Walker, J.A., Trefzer, M.A. (eds.) IPCAT 2012. LNCS, vol. 7223, pp. 25–30.
Springer, Heidelberg (2012)

8. Corblin, F., et al.: A declarative constraint-based method for analyzing discrete
genetic regulatory networks. Biosystems 98(2), 91–104 (2009)

9. de Jong, H.: Modeling and Simulation of Genetic Regulatory Systems: A Literature
Review. Journal of Computational Biology 9(1), 67–103 (2002)

10. Fauré, A., Naldi, A., Chaouiya, C., Thieffry, D.: Dynamical analysis of a generic
boolean model for the control of the mammalian cell cycle. In: ISMB (Supplement
of Bioinformatics) 2006, pp. 124–131 (2006)

11. Helikar, T., Konvalina, J., Heidel, J., Rogers, J.A.: Emergent decision-making in
biological signal transduction networks. Proceedings of the National Academy of
Sciences 105(6), 1913–1918 (2008)

12. Klarner, H., Siebert, H., Bockmayr, A.: Time series dependent analysis of un-
parametrized thomas networks. IEEE/ACM Transactions on Computational Biol-
ogy and Bioinformatics 99(PrePrints) (2012)

226 H. Klarner et al.

13. Klarner, H., Streck, A., Safranek, D., Kolcak, J., Siebert, H.: Parameter identifica-
tion and model ranking of Thomas networks. Technical Report FIMU-RS-2012-03,
Masaryk University (2012)

14. Laubenbacher, R., Mendes, P.: A discrete approach to top-down modeling of bio-
chemical networks. In: Kriete, A., Eils, R. (eds.) Computational Systems Biology,
pp. 229–247. Elsevier Academic Press (2005)

15. Lee, W.-P., Tzou, W.-S.: Computational methods for discovering gene networks
from expression data. Briefings in Bioinformatics 10(4), 408–423 (2009)

16. Naldi, A., Remy, E., Thieffry, D., Chaouiya, C.: Dynamically consistent reduction
of logical regulatory graphs. Theor. Comput. Sci. 412(21), 2207–2218 (2011)

17. Richard, A.: SMBioNet-1.4 User manual (2005)
18. Sánchez, L., Thieffry, D.: A logical analysis of the drosophila gap-gene system.

Journal of Theoretical Biology 211(2), 115–141 (2001)
19. Siebert, H., Bockmayr, A.: Incorporating Time Delays into the Logical Analysis

of Gene Regulatory Networks. In: Priami, C. (ed.) CMSB 2006. LNCS (LNBI),
vol. 4210, pp. 169–183. Springer, Heidelberg (2006)

20. Thieffry, D., Thomas, R.: Dynamical behaviour of biological regulatory networks II.
Immunity control in bacteriophage lambda. Bulletin of Mathematical Biology 57,
277–297 (1995)

21. Thomas, R.: Regulatory networks seen as asynchronous automata: A logical de-
scription. Journal of Theoretical Biology 153(1), 1–23 (1991)

	Parameter Identificationand Model Ranking of Thomas Networks
	Introduction
	Background
	Thomas Networks
	Constraints
	Parameter Identification by LTL Model Checking

	Optimal Parametrizations
	The Length Cost
	Robustness
	Computing Optimal Parametrizations

	Visualization
	Behavior Maps
	Expression Profiles

	Case Study
	Implementation and Evaluation
	Usage Description
	CMC Procedure Implementation
	Evaluation

	Conclusions
	References

