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Preface

These proceedings contain the accepted contributions to the 10th International
Conference on Computational Methods in Systems Biology (CMSB 2012), held
at the Royal Society’s headquarters in central London, UK, 3–5 October 2012.

The conference was an opportunity to hear about the latest research on the
analysis of biological systems, networks, and data ranging from intercellular
to multiscale. Topics included high-performance computing, and for the first
time papers on synthetic biology. The conference brought together computer
scientists, biologists, mathematicians, engineers, and physicists interested in a
system-level understanding of biological processes. This was the first time that
short contributions were accepted in the form of ‘flash posters’ – four-page papers
published in the proceedings, together with a flash presentation advertising a
regular poster.

The submissions comprised 46 regular papers and 16 flash posters by a total
of 181 authors from 24 countries. All submitted papers were peer-reviewed by a
program committee of 40 members coming from 12 countries, supported by 33
external reviewers. There were 152 reviews, with a range of 3 to 4 reviews for
regular papers and 2 to 4 reviews for flash posters. The acceptance rate was 37%
(regular papers) and 50% (flash posters).

The final program consisted of 3 invited talks, 17 full-length papers, 8 flash
poster presentations, and a poster session.

We are delighted to acknowledge substantial support by the EasyChair man-
agement system, see http://www.easychair.org, during the reviewing process and
the production of these proceedings. We would like to thank Teresa Czachowska
for her help with the organization of the meeting, and Crina Grosan for her
assistance with the website and publicity.

October 2012 David Gilbert
Monika Heiner
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Differential and Integral Views
of Gene-Phenotype Relations:
A Systems Biological Insight

Denis Noble

Department of Physiology, Anatomy and Genetics,
Oxford University, UK

denis.noble@dpag.ox.ac.uk

Abstract. This lecture uses an integrative systems biological view of
the relationship between genotypes and phenotypes to clarify some con-
ceptual problems in biological debates about causality. The differential
(gene-centric) view is incomplete in a sense analogous to using differen-
tiation without integration in mathematics. Differences in genotype are
frequently not reflected in significant differences in phenotype as they
are buffered by networks of molecular interactions capable of substitut-
ing an alternative pathway to achieve a given phenotype characteristic
when one pathway is removed. Those networks integrate the influences
of many genes on each phenotype so that the effect of a modification
in DNA depends on the context in which it occurs. Mathematical mod-
elling of these interactions can help to understand the mechanisms of
buffering and the contextual-dependence of phenotypic outcome, and so
to represent correctly and quantitatively the relations between genomes
and phenotypes. By incorporating all the causal factors in generating a
phenotype, this approach also highlights the role of non-DNA forms of
inheritance, and of the interactions at multiple levels.

References

1. Noble, D.: Differential and Integral view of genetics in computational systems biol-
ogy. Interface Focus 1, 7–15 (2011)

2. Noble, D.: The Music of Life; Biology Beyond the Genome. Oxford University Press
(2008)

D. Gilbert and M. Heiner (Eds.): CMSB 2012, LNCS 7605, p. 1, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



 

D. Gilbert and M. Heiner (Eds.): CMSB 2012, LNCS 7605, pp. 2–16, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Resolving the Three-Dimensional Histology of the Heart 

Matthew Gibb1, Rebecca A.B. Burton2, Christian Bollensdorff 3, Carlos Afonso4,7,  
Tahir Mansoori1, Ulrich Schotten5, Davig J. Gavaghan 1, Blanca Rodriguez1,  

Jurgen E. Schneider6, Peter Kohl1,3, and Vicente Grau4,7 

1 Department of Computer Science, University of Oxford 
2 Department of Physiology, Anatomy and Genetics, University of Oxford 

3 The Heart Science Centre, National Heart and Lung Institute, Imperial College London 
4 Oxford e-Research Centre, University of Oxford  

5 Department of Physiology, Maastricht University 
6 British Heart Foundation Experimental MR Unit,  

Department of Cardiovascular Medicine, University of Oxford 
7 Institute of Biomedical Engineering,  

Department of Engineering Science, University of Oxford 

Abstract. Cardiac histo-anatomical structure is a key determinant in all aspects 
of cardiac function. While some characteristics of micro- and macrostructure 
can be quantified using non-invasive imaging methods, histology is still the 
modality that provides the best combination of resolution and identification of 
cellular/sub-cellular substrate identities. The main limitation of histology is that 
it does not provide inherently consistent three-dimensional (3D) volume repre-
sentations. This paper presents methods developed within our group to recon-
struct 3D histological datasets. It includes the use of high-resolution MRI and 
block-face images to provide supporting volumetric datasets to guide spatial 
reintegration of 2D histological section data, and presents recent developments 
in sample preparation, data acquisition, and image processing. 

Keywords: Cardiac imaging, cardiac microstructure, histology,  
three-dimensional reconstruction. 

1 Introduction 

Cardiac structure is a key determinant of all relevant aspects of cardiac function in 
health and in pathological states. This includes normal electrophysiological activity 
[1,2,3], as well as the initiation or termination of arrhythmias [4,5,6,7]. Similarly, 
mechanical activity [8,9] is fundamentally affected by cardiac structure. Importantly, 
the relation between structure and function is bi-directional: cardiac structure is af-
fected by the mechanical and electrophysiological environments as well. These 
processes occur at multiple spatial and temporal scales, from acute changes [10,11] to 
medium-term effects such as cardiac memory [12] and long-term tissue remodeling 
[13,14]. This structure-function cross-talk involves all cell populations in the heart, 
from myocytes to cells such as are contained in the cardiac connective tissue,  
vasculature, neurons, endothelium, etc., whose discrimination requires differential 
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approaches that are offered by ‘classical’ histology techniques. In short, there are 
multiple and dynamic interactions between cardiac structure and mechano-electrical 
function, and these are of crucial relevance for normal beat-by-beat activity of the 
heart, as well as for pathogenesis and therapy. The study of these interactions requires 
accurate knowledge of cardiac three-dimensional (3D) structure, at multiple scales 
from sub-cellular levels to whole organ. 

Computational models have been proposed, and are increasingly being applied, as 
a way to link spatio-temporal scales, complementing traditional “wet-lab” approaches 
and projecting between bench and bed-side [15,16]. State-of-the-art models link pro-
tein structures of ion-channels to cell electrophysiology, multi-cellular coupling, and 
representations of heart anatomy that take into account locally prevailing cell align-
ment (usually, if inaccurately in terms of the histological substrate, termed fiber orien-
tation), projecting through to clinical relevance, such as for drug actions [17,18,19].  

Initial descriptions of cardiac microstructure in general, and myocyte orientation in 
particular, have arisen from serial histological sectioning, usually of selected locations 
[20] rather than full hearts. Also important in this context is the calculation of  
deformation patterns: the analysis of motion can, in principle, provide indirect  
knowledge about the microstructure. Linking microstructure to motion is, however, a 
fundamental unresolved issue. Deformation patterns can be obtained by in vivo imaging 
modalities, including echocardiographic strain-rate monitoring [21], or tagged / phase 
contrast MRI [22,23]. These techniques have limited spatial resolution, precluding anal-
ysis of fiber directions. Diffusion Tensor-MRI (DT-MRI) has represented a break-
through in terms of non-invasive assessment of cell alignment in tissue, but again offers 
limited resolution, providing an indirect measure of the microstructure through the 
quantification of water diffusion patterns over volume-averaged locations. Diffusion 
Spectrum Imaging (DSI), however, resolves minute detail, including fibers crossing 
within an imaging volume unit (voxel), by increasing the number of directions in which 
the 3D diffusion function (i.e. q-space) is sampled. From this data, a probability density 
function of fiber orientation per voxel can be extracted for fiber tract construction. Re-
cent developments have also shown the possibility of quantifying structure in the myo-
cardium with para-cellular resolution, using contrast-enhanced MRI [24], in particular 
in the ex vivo setting. However, in contrast to histological approaches, this does not 
allow, at present, positive identification of cell-size and -type. 

Micro-computed tomography (µCT) is an emerging, non-invasive imaging modali-
ty that allows for non-destructive, high-resolution imaging of tissue. It has been 
shown that µCT is well-suited for imaging of bones and calcified structures, but it 
provides low soft tissue contrast. Tissue such as heart muscle therefore requires pre-
treatment with specific stains or contrast agents. While µCT provides superior spatial 
resolution, compared to MRI (typically <10 µm vs. >20 µm, respectively), it cannot 
resolve cellular composition of tissue. 

Histology, therefore, is still the only way to comprehensively characterize cardiac 
microstructure including identification of different cell types within the myocardium. 
But, it suffers from two fundamental drawbacks: first, it is an inherently ‘destructive’ 
technique and can thus be used only on explanted tissue fragments or organs; second, 
acquired histological section images do not form an inherently consistent 3D data set. 
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This limits the analysis to in-plane characteristics, a major limitation when dealing 
with complex, functionally relevant 3D structures, as is the case for myocardium. 
Methods have been proposed to reconstruct 3D volumes from histology sections, 
particularly for the brain [25,26,27], with leading examples projecting right through to 
mapping functional observations to structural substrates [28]. Other examples include 
skeletal muscle [29] and the atrio-ventricular node of rabbit heart [30]. To our know-
ledge, however, 3D reconstruction of a whole heart, or even of only the ventricles, 
from histology sections has not been implemented yet. This paper presents an update 
on recent methods developed in our group, combining improvements in sample 
processing, data acquisition, and image analysis. These have reached the point where 
3D histology of the heart is becoming a reality. 

2 3D Histology from Serial Sections 

2.1 Acquisition 

All 3D histology reconstruction methods are based on the acquisition of individual 2D 
histology images, whether as sections [1,33], or from scans of the un-cut surface of 
the embedded tissue (so-called block-face imaging) [31]. Here we summarize the 
main steps of our section-based protocol; a more detailed explanation can be found 
elsewhere [1,33]. The methods described (and the data used for illustration) in this 
paper are applicable independently of species (images include tissue from New Zeal-
and white rabbit, Wistar rat, and goat hearts).  

Excised hearts were perfused in a Langendorff system and fixed by coronary per-
fusion using Karnovsky’s fast-acting fixative (a paraformaldehyde-glutaraldehyde 
mix). Hearts were left in the fixative overnight, including gadodiamide as a contrast 
agent for anatomical MRI scanning (more detail is provided in Section 3.1). After 
MRI, hearts were prepared for paraffin wax embedding. This included the process of 
sequential dehydration in a series of alcohol concentration steps (20%-100%), clear-
ing in xylene, and impregnation with molten black paraffin wax (subsequently al-
lowed to solidify by cooling). Samples embedded in the wax block were mounted on 
a Leica SM2400 sledge-microtome, where 10 µm sections were cut. Sections were 
transferred to a water bath (Leica HI1210), allowing them to relax on the water sur-
face before they were collected onto glass slides and allowed to air-dry. After over-
night de-waxing at 60°C, slides were trichrome stained (labeling connective tissue 
blue-green, myocytes pink-red and nuclei blue-black; see Fig. 1) using an automated 
stainer (Leica Autostainer XL), mounted in DPX, and left overnight in a fume hood to 
dry. Sections were then imaged on a Leica DM4000B light microscope, fitted with an 
automated motorized platform for mosaic imaging. Individual image tiles were taken 
using a 3.3 megapixel camera (Leica DFC320) in 24-bit color mode, and either a x10 
or a x5 objective so that individual (square) voxels had an edge-length of either 
0.55 μm or 1.1 μm (respectively). Overall dataset sizes (up to 50 GB per rat heart; 
exceeding 1.5 TB per rabbit) pose significant challenges for subsequent visualization 
[32] and computational processing. Fig. 1 shows a sample long-cut section, obtained 
from a rabbit heart, and a zoomed-in illustration of inherent image resolution. 
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Fig. 1.  Illustration of extended-plane high-resolution histological image generation, here from 
a long-cut of rabbit whole-heart tissue. The image on the left covers an area of  
36 mm × 22 mm. It is mosaically assembled from individual microscopic image tiles (pixel size 
1.1 μm × 1.1 μm; see enlarged view of the aortic valve region on the right). A ‘live  
zoomable’ version of this image is available at http://gigapan.com/gigapans/ 
c9a83b097c274d94a8b3a59b955ec39b/ 

2.2 Section to Section Registration 

Even in the absence of 3D reference geometry it is possible, in principle, to produce a 
volumetric reconstruction by applying sequential, section-to-section registration (im-
age alignment). In this process, one of the sections is chosen as a reference, and the 
neighboring sections are registered sequentially to the previous one, until the whole 
volume is covered. Coherence of volume registration manifests itself in smooth con-
tours in the section-normal direction. It is clear, though, that section-to-section align-
ment will tend to reduce gradual inter-section differences, thus distorting the resulting 
volumetric shapes. To illustrate this artifact, one can think of the result of reconstruct-
ing a cross-sectioned banana-like shape by optimizing the alignment of each section 
to its neighbor: the reconstructed shape would be straightened, resembling a cylinder.  

Fig. 2 illustrates the relevance of this artifact for cardiac tissue reconstruction. A 
transversal cut through the volume obtained after section-to-section affine registration 
applied to a whole left ventricular histology data set is shown in Fig. 2 (left). For 
comparison, Fig. 2 (right) shows the same sections, reconstructed by registration with 
a corresponding block-face image-based volume, as detailed in Section 4. Structures 
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corresponding to histology sections, and a 2D registration (T2) between correspond-
ing slices is performed. This produces a stack of 2D MRI images that is roughly 
aligned with histology sections, and sections in the direction perpendicular to the 
slices begin to be coherent between MRI and histology data. 3D registration is per-
formed again to improve T1, and the process continues in an iterative loop until con-
vergence is achieved. At this point, each histology section is assigned a corresponding 
(re-sampled) slice from the MRI volume, and a non-rigid registration (T3) is per-
formed. This involves in-plane (2D) correction of histology sections to identified MRI 
reference slices. Quantitative validation shows that the procedure is successful in 
producing a coherent 3D histological volume, as shown in Fig. 4.  

 

 

Fig. 3.  Iterative algorithm for registration of serial 2D histology sections to a 3D MRI dataset, 
after [35]; see text for detail 

However, by performing non-rigid transformations only in the plane of histological 
sectioning, we assume that no 3D volume deformations have occurred. This is not a 
reasonable assumption: in addition to significant non-rigid deformation that occurs 
during tissue sectioning / relaxation / mounting, it is important to appreciate that the 
actual shape and size of the dehydrated wax-embedded heart prior to section is differ-
ent from the same ‘wet’ heart while it was agar-embedded for 3D MRI data acquisi-
tion. This means that even optimal registration of histology sections to MRI slices and 
in-plane non-rigid correction for deformation will miss any difference present be-
tween MRI data and the (un-cut) 3D cardiac anatomy in the section-normal direction. 

Fig. 5 shows examples of histology sections, side by side with best-match corres-
ponding MRI slices, resampled in the plane corresponding to the histology section 
after 3D alignment but prior to a final 2D non-rigid registration step. While the first 
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two rows show good overall correspondence, the third highlights the difficulty asso-
ciated with out-of-plane deformations.  

It is, of course, theoretically possible to extend the algorithm in Fig. 3 to allow 
non-rigid out-of-plane transformations. This requires true 3D co-registration which is 
a challenging task and which makes the iterative algorithm highly sensitive to the 
initial location of sections. Instead, we opted for the inclusion of an intermediate data-
set, obtained on the dehydrated wax-embedded tissue before slicing, as explained in 
Section 4. 

 

Fig. 4. Results of application of the 3D registration procedure depicted in Fig. 3 to a rabbit 
heart dataset. The two top rows show alignment in the section-normal direction before (left 
column) and after (middle column) registration with the corresponding (downsampled) MRI 
data (right column). The bottom row shows a 3D reconstruction of the volumes. 
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Fig. 5. Examples of histology sections and corresponding slices through the MRI data. While 
the two top rows show an apparently good match of key structures, the bottom row highlights 
significant differences present between images: a straight muscle structure, clearly visible in the 
MRI data, appears as two cross-cuts in the histology section, caused by out-of plane deforma-
tions that are not compensated by the registration algorithm shown in Fig. 3. 

4 3D Histology Using Block-Face Images for Intermediate 
Alignment  

4.1 Image Acquisition 

As highlighted above, the tissue anatomy scanned by MRI is inherently different from 
the dehydrated wax-embedded sample. In addition, as histology is an inherently de-
structive technique, it is associated not only with deformation, but also ‘irrecoverable’ 
damage. This can give rise to artifacts (folds, rips) which may be minimized by care-
ful processing, but not completely avoided (in particular when hundreds of sections 
are prepared, e.g. 1,800 per rabbit heart). Tissue deformation is non-linear, and tissue 
islands that are surrounded by wax (such as are generated when cutting across thin 
trabaeculae or free-running Purkinje fibers) may dislocate or even detach from the 
rest of the section. All of this will affect volumetric reconstructions and correspon-
dence between 3D histology and MRI data sets.  



10 M. Gibb et al. 

 

To compensate for this, 
surface of the wax block c
section. Images are acquire
CMOS sensor, 12.2 megapi
sion tube EF12 II (all Cano
true one-to-one correspond
requiring only 2D correctio
the block face images form
defined position for image
elevation as it is lifted by e
can be used to precede non-

4.2 Image Alignment 

As explained in Section 4.1
3D MRI and full-resolution
other hand, block face im
stained for discrimination 
black wax, tissue structure
shows a matching pair of bl
in resolution and definition 

Fig. 6. Diagram showing the 
tween the MRI volume and hig

 

Fig. 7.  Sample block face im

we introduce an additional step, acquiring images of 
containing the tissue, immediately before cutting the n
ed using a Canon EOS 450D camera (14.8 mm × 22.2 m
ixels) with an EFS 18-55 mm objective including an ext
n). Block-face imaging provides an in-plane reference w
dence to the subsequent high-resolution histology ima
on for sectioning- and processing-related deformations.

m a consistent 3D dataset (camera and tissue block are i
e acquisition, and the block surface is always at the sa
exactly the amount that will be cut, here 10 μm per step
-rigid registration with the MRI scan. 

1, block-face images provide an intermediate point betw
n serial 2D histology sections (as shown in Fig. 6). On 
ages are of lower resolution than histology, and are 
of different tissue components. In addition, even us

es from below the slicing plane will show through. Fig
lock-face and stained section images, where the differen
of contours are apparent. 

use of block face images as an intermediate reference point
gh-resolution 2D histology sections 

mage (left) and corresponding 10 μm section after staining (righ

the 
next 
mm 
ten-
with 
age, 
 As 
in a 
ame 

p), it 

ween 
the 
not 

sing 
g. 7 

nces 

 

t be-

 

ht) 



 Resolving the Three-Dimensional Histology of the Heart 11 

 

Section-to-section registration was performed between block-face and histology im-
ages. Fig. 8 (left column) shows the result of this registration using an affine transform 
and a cross-correlation similarity function. As illustrated, the algorithm is successful at 
aligning sections to their approximate pre-sectioning shape. However, misalignments 
between sections are still visible. These are due largely to i) the different resolution of 
block-face images, and ii) the presence of image boundary delineation errors caused by 
projection of tissue structures from deeper layers of the wax block.  

The cross-sections shown on the left hand column of Fig. 8 still show a certain dis-
continuity of the contours: this is particularly visible on the magnified image in the 
bottom row. To improve this we have developed a new algorithm for filtering the 
section-to-section alignment transformations. This technique is based in the idea that 
the transformation needed to align a section to the one immediately above it is ap-
proximately the inverse of the one needed to align it to the one immediately below. 
Mathematically, the algorithm works by simulating an isotropic diffusion process to 
guide the transformations applied to sections either side of a slice. The algorithm is 
applied repeatedly until high frequency transformational noise has been damped and 
the reconstructed volume is smooth. Results of this new technique, shown in the right 
hand column of Fig. 8, illustrate the improved smoothness of the contours, while 
overall tissue geometry is maintained. However, the limited accuracy of tissue boun-
dary outlines in the wax block image remains a constraining factor. 

 

 

Fig. 8. Results of 2D section to block-face image registration. Top and middle rows show re-
constructions orthogonal to the original sections; bottom row shows a close-up view of part of 
the left ventricular wall. The left column shows results from affine registration (see also Fig. 2). 
On the right, results after application of our new transformation diffusion step. The improve-
ment of section alignment is particularly visible in the close-up image at the bottom. 
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5 Discussion and Conclusions  

While non- or partially-invasive imaging modalities, such as MRI or µCT, are gaining 
importance for the analysis of cardiac structure at micro scales, histology still offers a 
unique combination of resolution and discrimination of structures at the cellular and 
sub-cellular levels. In order to improve our understanding of cardiac structure-
function relations, we need to resolve 3D histology of the heart in a manner that  
maximally preserves original histo-anatomical features. This continues to present 
substantial challenges for data acquisition and integration. 

Reconstruction based on 2D histological sections is burdened by a host of geome-
trical artifacts, including artificial straightening of structures (as illustrated in Fig. 2). 
This can be overcome by access to a supporting volumetric imaging modality. MRI 
scans are an excellent option (Fig. 3 and 4). However, as the actual organ geometry is 
altered during dehydration and wax embedding, there is no strict correspondence 
between 3D MRI data and stacked 2D-corrected histology sections. While several 
methods for histology-MRI alignment have been developed to provide visually satis-
factory result, the sequence of registration steps and regularization criteria affect the 
deformation field. A particularly difficult challenge for post-processing is the pres-
ence of out-of-plane deformation. This has significant implications for subsequent use 
in models of functional activity that span multiple scales of structural complexity (e.g. 
from cell to ECG) [36], in particular if they are designed to go ‘full circle’ from live-
tissue studies to simulation of observed behavior based on individual histo-anatomy. 

This calls for an intermediate reference data-set that is representative of the 3D 
state of the tissue when it is being sectioned for histology. Block-face images are 
naturally aligned at acquisition, since the spatial interrelation between sample and 
camera can be reproducibly defined. The use of high-resolution block-face imaging as 
a full substitute of single-section histology images is possible, for example by scan-
ning confocal microscopy [31]. However, block-face data gathering is restricted in the 
extent to which tissue can be histologically stained prior to imaging. We use block-
face imaging, therefore, as an intermediate reference point between MRI and full-
resolution histology sections. They provide a 3D-registered set of 2D images that 
have a one-to-one correspondence to 2D images from stained sections. This reduces 
the complexity of the transformations required to a series of 2D operations.  

Block-face imaging still presents inherent imaging challenges. To preserve align-
ment between adjacent sections, the system (camera, tissue block) needs to be kept 
aligned, ideally with an accuracy of a fraction of a pixel. In a working laboratory, 
with imaging spread over several days, this is not always possible. Small image misa-
lignments must be compensated, post-acquisition, by rigid alignment of imaged 
block-faces. In addition, variations in illumination should also be kept to a minimum 
to facilitate registration (but this can also be compensated for by post-processing). 
The most important requirement is to try and restrict imaging to the actual block sur-
face. Here, the challenge is related to transparency of the sample (both of the wax and 
the tissue), and this can only partially be addressed using deconvolution algorithms. 
The use of polarized light imaging, essentially taking a snapshot of the wax surface 



14 M. Gibb et al. 

 

(rather than the tissue), solves this problem to a large extent at the image acquisition 
stage, significantly facilitating the implementation of truly 3D histology of the heart. 
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Abstract. Bimodal distributions of protein activities in signaling sys-
tems are often interpreted as indicators of underlying switch-like re-
sponses and bistable dynamics. We investigate the emergence of bimodal
protein distributions by analyzing a less appreciated mechanism: oscillat-
ing signaling systems with varying amplitude, phase and frequency due to
cell-to-cell variability. We support our analysis by analytical derivations
for basic oscillators and numerical simulations of a signaling cascade,
which displays sustained oscillations in protein activities. Importantly,
we show that the time to reach the bimodal distribution depends on
the magnitude of cell-to-cell variability. We quantify this time using the
Kullback-Leibler divergence. The implications of our findings for single-
cell experiments are discussed.

Keywords: signaling networks, oscillations, bimodality, stochasticity,
protein distributions.

1 Introduction

Protein levels in cellular systems undergo constant changes due to varying extra-
and intracellular cues that are dynamically processed by cellularmachinery as well
as due to thermal noise – an inevitable factor affecting all biochemical reactions. It
is because of this variability that cells within a population, be it a bacterial colony
or tumor cells, at any given point in time exhibit a distribution of values rather than
a precise value of concentrations of its biochemical components, such as proteins or
mRNA.Suchdistributions canbe assessed as population snapshots in fluorescence-
activated assays using flow cytometry or cell imaging. In both cases the measure-
ment of fluorescence intensity in individual cells correlateswith protein abundance.
This starkly contrasts to bulk measurements such asWestern blots where proteins
are detected in cell lysates, which only estimates the average (per-cell) concentra-
tion of the entire population.

Of particular interest are bimodal protein distributions that indicate a tem-
poral or steady-state phenotypic division of an isogenic cellular population.
Bimodality often reflects the existence of two subpopulations, each capable of
performing a different task [2] or having an altered survival rate to stress [3] and
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drug treatment [15]. Bimodal distributions may arise in a number of situations:
a purely stochastic genetic switch [1], a bistable system with stochastically in-
duced transitions [11], or noisy networks with sigmoidal response function [8,9].
In this paper we address a much less appreciated mechanism: heterogeneous
oscillations. We show that cell-to-cell variability in protein abundances can re-
sult in bimodal distributions of concentrations of active (e.g. phosphorylated)
protein forms, although individual cells display solely deterministic oscillatory
dynamics. We examine analytically and numerically conditions under which this
phenomenon occurs.

2 Results

A single oscillating cell visits all intermediate levels between the low and the
high protein concentrations. A histogram, or a distribution, of concentrations
assumed over time can be constructed in the following manner. The range of
concentrations between oscillation extrema is divided into infinitesimally small
bins and the time the system spends in each of the bins is recorded. For deter-
ministic oscillations, a single period suffices to obtain such a distribution. De-
pending on the shape of these oscillations, a bimodal single-cell time-averaged
histogram of concentrations may arise (Fig. 1). The key question, however, is
whether in the presence of cell-to-cell variability which affects the amplitude,
phase and frequency of oscillations in individual cells, the described mechanism
can also evoke bimodality at the level of a cellular population? The question is
equivalent to asking about the ergodicity of such a system: does the distribution
of a population coincide with the distribution of an individual measured over
time? The disparity of the two has been recently demonstrated experimentally
for noisy cellular systems [14]. Protein fluctuations that are high in amplitude
and slow compared to cells lifetime may drive a number of cells to a range of
concentrations that is only a fraction of the entire concentration spectrum. This
condition may persist well over a cells generation thus rendering snapshots of
the population incapable of reflecting the underlying network dynamics.

Similar phenomenon may affect a population of oscillating cells. Even though
our analysis focuses on oscillations that are deterministic in individual cells, bio-
chemical noise manifests itself in cell-to-cell variability. As a result, oscillations
across the population differ in the amplitude, phase and frequency. If this vari-
ability is not large enough, a population might not cover the entire concentration
spectrum at a given point in time, and a bimodal distribution fails to emerge.
An additional condition is required to facilitate this emergence and relates to a
so-called mixing time – the time after which all individuals within the popula-
tion of cells assume all states of the asymptotic (stationary) protein distribution.
We therefore set out to answer following questions: (1) under what biochemi-
cal circumstances can a heterogeneous population of cells exhibiting oscillatory
dynamics give rise to bimodal protein distributions? (2) What is the time after
stimulus required to reach a time-independent bimodal distribution?
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Fig. 1. Protein distributions depend on the functional form of oscillations. Sample
time-courses of triangle wave, sinusoidal and step oscillations (left column) along with
corresponding time-averaged probability densities (“normalized histograms”) of protein
concentrations (right).

2.1 Sinusoidal Oscillations Give Rise to Bimodality

We consider an ensemble of cells, each displaying an oscillating level of active
protein concentration governed by the intracellular biochemical network dynam-
ics. Cell-to-cell heterogeneity that emerges due to varying gene expression levels
induces randomness in the concentration of network components. In an ensem-
ble of oscillating cells, this randomness translates to a distribution of amplitude
(A), phase shift (ϕ), and frequency (ω) of protein activity (y). In order to il-
lustrate the concept of mixing times, we first consider sinusoidal oscillations,
y = A sin (ωt+ϕ). The three random influences (phase, frequency and amplitude
variability) cause qualitatively different behavior with respect to the convergence
of the y-distribution in a heterogeneous ensemble of oscillators.

Phase shift variability reflects desynchronization of independent cells within
the population and can be quantified in a standard manner, for instance by
measuring variance. Narrow distribution of phase shifts compared to the oscil-
lation period, or small desynchronization, implicates that at any point in time
the protein levels assumed in the population do not cover the entire range of
concentrations. This restricted concentration diversity persists during the time
evolution (Fig. 2A, left panel). Stationary distribution emerges instantaneously
only when the range of variability uniformly spans the entire oscillation period
(Fig. 2A, right panel). In this regime, the probability density function (pdf )
can be obtained by considering a sine transformation of a uniformly distributed
random variable ϕ restricted to a single oscillation period (cf. Appendix) [6],

f(y) =
1

π
√
A2 − y2

. (1)
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The pdf is the arcsine distribution (Fig. 2, solid line in pdf plots). Notably, it
is independent of the time at which the measurement takes place, as well as
independent of the frequency of the underlying oscillations.

The variability of frequencies across cellular population stems from intrin-
sic biochemical noise that affects protein concentrations across the population.
Contrary to phase shift variability, an ensemble of sinusoidal oscillators with dis-
tributed frequencies reaches the asymptotic stationary distribution regardless of
the distribution width; the variance affects only the time to reach it and greater
variability accelerates the convergence (Fig. 2B). The asymptotic distribution
for uniformly distributed frequencies can be calculated analytically and equals
the (previous) result concerning phase-variability (Eq. 1). An intuitive explana-
tion follows from the functional form of the sinusoidal oscillation. The value of
random frequency ω is multiplied by time, t. Therefore, regardless of the ω distri-
bution shape, ω is scaled by the increasing time, which accordingly results in the
increasing range of frequencies. For large enough t, this range becomes sufficient
to facilitate mixing analogous to phase shifts that cover the entire oscillation
period.

If cells within the population oscillate with random amplitude only, no station-
ary distribution can emerge. Since no nonlinear transformation of the random
variable takes place, the pdf is merely a distribution of the random amplitude A
modulated by the sinusoidal wave. The resulting distribution of concentrations
cycles over the oscillation period (Fig. 2C).

2.2 Quantification of the Mixing Time

A real biological oscillatory network exhibits a combination of all three types of
variability discussed in the previous section. In a typical experimental scenario,
the measurement of oscillations is performed on a population of cells and is pre-
ceded by a period of starvation followed by addition of a stimulating agent that
evokes oscillations. The procedure corresponds to synchronization of cells such
that oscillations begin approximately at the same time. Variability among cells
still exists, albeit diminished. The emergence of a stationary population-wide
bimodal distribution such as the one depicted in Fig. 2D is therefore delayed.
The time to approach it, which we shall call the mixing time, depends on the
magnitude of contributions to oscillation variability between cells.

A mixing time larger than zero demonstrates a simple fact that the ensemble
of oscillators with small variability of frequencies, amplitudes and phase shifts
does not immediately reflect time-averaged statistics. As shown in the section
above, the system can reach the stationary distribution, provided variability of
frequencies exists.

As a quantification of the mixing time we use the Kullback-Leibler divergence
(KL), which, in simple terms, measures the divergence of two distributions [13,7].
Let P (y, t) be the probability density of the y concentration at time point t and
let further Q(y) be the asymptotic probability density of y for t→∞, then the
KL(t) is defined as
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Fig. 2. Approach to an asymptotic distribution. Time courses of oscillations mark the
25th and 75th percentile (dotted), 40th and 60th percentile (dashed), and 50th per-
centile (solid) of the corresponding parameter distribution. Protein probability density
functions (pdf ) are evaluated numerically at points indicated by arrows. Asymptotic
solution, Eq. 1, is marked by the solid line. (A) Phase shifts follow Gaussian distribu-
tion with zero mean and standard deviation σ = π/2 (left) and π (right). For large
σ, the pdf is time-independent and equals the asymptotic pdf. (B) Frequency follows
log-normal distribution with median 1 and σ = 0.2. (C) Amplitude follows Gaussian
distribution with mean 1 and σ = 1. The distribution cycles over the oscillation pe-
riod. (D) Sample stationary protein distribution when all three variability influences
are combined.
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Fig. 3. Kullback-Leibler divergence for a population of sinusoidal oscillators with ran-
dom frequencies drawn from normal, log-normal, uniform and arcsine distributions
(insets). All frequency distributions have the same mean, μ = π, and standard devi-
ation, σ = π/10. We calculate KL between numerically sampled protein distributions
(based on 100’000 points) at time t and the asymptotic distribution from Eq. 1.

KL(t) =

+∞∫
−∞
P (y, t) ln

P (y, t)

Q(y)
dy . (2)

Here, KL(t) measures the divergence rather than distance of the snapshot at
time t from the asymptotic true snapshot distribution. It is worth emphasizing
that KL is always non-negative but it is not a metric in the mathematical sense
for it is asymmetric and it does not satisfy triangle inequality.

Temporal behavior of KL(t) is shown in Fig. 3 where we measure the diver-
gence between the protein distribution in an ensemble of oscillators with random
frequencies and the asymptotic arcsine distribution. Regardless of the type of
frequency distribution, the KL divergence decays at an exponential rate as the
oscillating ensemble evolves in time.

2.3 Oscillations and Population Snapshots in a Two-Layer GTPase
System

To analyze how oscillations mix in a biologically realistic scenario, we numeri-
cally study a model of a generic two-layered GTPase system. Small GTPases can
cycle between an inactive GDP-bound state (G) and an active GTP-bound state
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Fig. 4. Dynamic model of GTPase cascade. (A) Interaction scheme. (B) Simulated
trajectories of three random cells. (C) Distribution of total GTPase concentrations
used for ensemble simulations. The resulting distributions of periods (D), extrema for
concentrations of g1p (E) and g2p (F). Note the logarithmic x-axis in panels E and F.
Parameters used in the simulation: maximal rates r1 = 10, r2 = 6.5, r3 = 1, r4 = 0.55;
half-activation constants m1 = 25, m2 = 0.09, m3 = 5, m4 = 14; positive interaction
G1 → G1, a11 = 200, m11 = 10; negative interaction G1 � G2, a12 = 0.005, m13 = 0.05;
positive interaction G2 → G1, a21 = 80, m21 = 20.

(GP). They are important transducers of cell signaling that regulate a wide
range of biological processes, for instance cell proliferation, cell morphology as
well as nuclear and vesicle transport. Individual GTPase are often interlinked,
thereby generating positive and negative feedback systems that are theoretically
capable of exhibiting rich dynamics including oscillations. Indeed oscillations
have been observed experimentally for several GTPases. For example, the small
Rho-GTPase cdc42 regulates polarized growth in fission yeast using oscillating
activity arising from both positive and negative feedback [4].

We consider the GTPase cascade depicted in Fig. 4A and let G1, G2 and
G1P, G2P denote the inactive and active form of the corresponding GTPase,
respectively. The system features a positive auto-regulatory loop in which G1P
enhances its own activation and a negative feedback loop in which G1P inhibits
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the activation of G2 and in turn G2P activates G1. The following ordinary
differential equations in normalized coordinates represent the system [16],

d

dt
g1p = α11α21

r1 g1
m1 + g1

− r2 g1p

m2 + g1p
, α11 =

m11 + a11 g1p

m11 + g1p
,

α21 =
m21 + a21 g2p

m21 + g2p
,

d

dt
g2p = α13

r3 g2
m3 + g2

− r4 g2p

m4 + g2p
, α13 =

m13 + a13 g1p

m13 + g1p
, (3)

with g1 = gtot1 − g1p, g2 = gtot2 − g2p, and where g1, g2 and g1p, g2p denote the
concentrations of inactive and active GTPases, respectively, and ri, mi, aij , mij

are kinetic parameters. The factors α11, α21, α13 model the described interactions
with the parameters a11 > 1, a21 > 1 (positive interactions) and 0 < a13 < 1
(negative interaction).

In accordance with the literature [12], we model a population of cells as an
ensemble [10,5] of single cells in which the total concentrations of both GTPases
are log-normally distributed with mean one and standard deviations consistent
with experimentally reported values ranging from 0.12 to 0.28 in human cells
[14] (Fig. 4C).

Fig. 4B illustrates the dynamics of the model with representative responses of
three random cells to a step input. The model exhibits switch-like G1P oscilla-
tions and triangle wave-like G2P oscillations, thus providing a convenient tool to
investigate how differentially shaped oscillations manifest in the distribution of
a population snapshots taken at a particular time point. Figs. 4D-F demonstrate
how the periods and the minima and maxima of the oscillations are distributed
in the population. Decreasing the variability of the total GTPase distribution
(from σ = 0.1 to 0.05) yields more narrowly distributed periods and extrema
while their means remain unchanged.

The distribution of g1p(t) and g2p(t) concentrations, in the following referred
to as a distribution snapshot, changes over time. For t < 0 the entire population
is synchronized; the phase of all oscillations is zero and the first peak occurs
roughly at the same time; at the initial time all cells exhibit zero GTPase ac-
tivity, while after 15 seconds most cells have progressed to the first peak. Over
time, the cell-to-cell variability has an increasing effect on the population snap-
shots; different periods shift the phases of subsequent peaks until the phases
are uniformly distributed. During this transition period, the snapshot distribu-
tion dynamically changes (Fig. 5). The evolution of the distribution crucially
depends on the shape of the underlying oscillations. For example, switch-like
G1P oscillations result in uni-modal (t = 5 s), bi-modal (t = 9 s) and even tri-
modal (t = 78 s) distributions. In contrast, the triangle wave G2P oscillations
yield uni-modal snapshot distributions at all times (Fig. 5B).

Next we sought to assess how quickly the snapshot distribution converges to
the asymptotic one using Kullback-Leibler divergence and asked whether it is pos-
sible to find the time point at which the oscillations are well mixed. The results
are shown in Fig. 5C and D. The snapshot distribution converges exponentially
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Fig. 5. Numerical simulations of time evolution of g1p (A) and g2p (B) protein distri-
bution for indicated time points. The distribution of total G1 and G2 concentrations is
normal with mean 1 and standard deviation 0.05. Panels C and D show a comparison of
Kullback-Leibler divergence for total G1 and G2 distributions with standard deviation
0.1 and 0.05. Simulation parameters same as described in caption of Fig. 4.

towards its asymptotic distribution. Further, the rate of convergence depends on
the cell-to-cell variability in the population; lower variability of the total GTPase
concentrations causes lower variability of periods and results in longermixing times.

3 Discussion

A stationary bimodal protein distribution may arise in a heterogeneous pop-
ulation of independent cells with sustained deterministic oscillations of active
protein levels. The emergence of population-level bimodality is inevitable in the
presence of cell-to-cell variability that affects oscillation frequency. Importantly,
the type of the frequency distribution across the population is irrelevant for the
emergence of bimodality; only the time of convergence is affected (Fig. 3).

Detecting the oscillatory nature of signaling networks with bulk measurements
(e.g. immunoblotting) is only possible for synchronized cells. This synchroniza-
tion, for instance, occurs at the point of stimulation preceded by a period of star-
vation. If this condition is not satisfied, cell-to-cell variability introduces phase
desynchronization and diversity in frequencies, which averages out the oscilla-
tions. On top of that, sampling frequency in the experiment should be sufficiently
higher than frequency of the oscillations. Otherwise the measurement captures
only the population mean, which does not oscillate. In this regime, single-cell
measurement methods can give an additional insight, for they record the amount
of protein in individual cells.
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A population snapshot obtained with flow cytometry or imaging is equivalent
to the probability density functions discussed throughout the paper. The time
dependence of such a distribution may become very intricate for realistic systems,
which we demonstrated in Fig. 5. Nonetheless, there exists a time scale – the
mixing time, which we estimated using Kullback-Leibler divergence – when the
stationary distribution emerges. If amplitude variability is smaller than the os-
cillation amplitude itself (cf. g1p and g2p oscillations in Fig. 4B), the distribution
may become bimodal. The time to converge to this distribution is independent
of the population size: as long as mixing of frequencies and phases in a popu-
lation has not commenced, the protein distribution remains different from the
asymptotic one. This behavior contrasts with other mechanisms that generate
bimodality where increasing the number of independent individuals results in a
better indication of the population-wide asymptotic distribution. Experimental
verification of sources of bimodality might benefit from this feature.

The second implication of our finding relates to mechanisms that preserve
synchronized population-wide oscillations generated by biochemical networks.
In the presence of frequency heterogeneity the mixing and eventual convergence
to the asymptotic distribution is only a matter of time. If oscillations are a
physiologically relevant trait, as is the case of circadian rhythms, the convergence
is undesirable because it would indicate that oscillations are out of sync and each
cell within an organ, for instance, has its own day and night pattern. This could
explain why biochemical coupling is present in such systems in order to facilitate
spontaneous synchronization across the population.
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Appendix

Asymptotic Protein Distribution

Consider an ensemble of cells with sinusoidal oscillations of protein levels. Vari-
ability of phases ϕ is accounted for by a random variable Φ uniformly distributed
on the range of an oscillation period, 2π. We set out to obtain a distribution
of protein levels y denoted by a random variable Y , which is the result of a
nonlinear transformation Y = A sin(ωt + Φ). Since the transformation is peri-
odic, without loss of generality we first set t = 0 and focus on the shorter range,
−π/2 < Φ < π/2, where sine function is monotonically increasing.

The cumulative distribution function (CDF) of Y is simply the probability
that the random variable Y takes on a value less than or equal y, FY (y) =
Pr(Y ≤ y). From this we obtain,

FY (y) = Pr [A sin(Φ) ≤ y] = Pr
[
Φ ≤ arcsin

( y
A

)]
, and |y| ≤ A . (4)

The CDF of Y can be therefore expressed in terms of the CDF of Φ. The prob-
ability density function (pdf ), denoted by fY (y), is CDF’s first derivative,

FY (y) = FΦ

(
arcsin

( y
A

))
,

d

dy
FY (y) = fY (y) = fΦ

(
arcsin

( y
A

)) 1√
A2 + y2

=
1

π

1√
A2 + y2

. (5)

The procedure can be repeated to yield the same result, the arcsine distribution,
for every range of length π, where the transformation is monotonic.
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Abstract. The recently introduced Hybrid Automata Stochastic Logic
(HASL) establishes a powerful framework for the analysis of a broad
class of stochastic processes, namely Discrete Event Stochastic Processes
(DESPs). Here we demonstrate the potential of HASL based verification
in the context of genetic circuits. To this aim we consider the analysis
of a model of gene expression with delayed stochastic dynamics, a class
of systems whose dynamics includes both Markovian and non-Markovian
events. We identify a number of relevant properties related to this model,
formally express them in HASL terms and, assess them with COSMOS, a
statistical model checker for HASL model checking. We demonstrate that
this allows assessing the “performances” of a biological system beyond
the capability of other stochastic logics.

Keywords: Statistical model checking, genetic networks, stochastic dy-
namics, stochastic petri nets.

1 Introduction

Biological systems are regulated by complex information processing mechanisms
which are at the basis of their survival and adaptation to environmental changes.
Despite the continuous advancements in experimental methods many of those
mechanisms remain little understood. The end goal of computational systems bi-
ology [26] is to help filling in such knowledge gap by developing formal methods
for rigorously representing and effectively analysing biological systems. Under-
standing what cells actually compute, how they perform computations and, even-
tually, how such computations can be modified/engineered are essential tasks
which computational modelling aims to. In this context, the ability to “interro-
gate” a model by posing relevant “questions”, referred to as model checking, is
critical. Model checking approaches have proved effective means to the analysis
of biological systems, both in the framework of non-probabilistic models [19,12]
and in that of stochastic models [28,23].

Our Contribution. We consider the application of a recently introduced
stochastic logic, namely the Hybrid Automata Stochastic Logic (HASL), to the
verification of biological systems. Our contribution is twofold. In the first part
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we demonstrate the effectiveness of HASL verification by developing a full case
study of gene expression, a relevant biological mechanism represented by means
of non-Markovian models, and which, therefore, cannot be analysed by means
of classical (Markovian) stochastic model checking. In the second part we in-
troduce preliminary results illustrating the effectiveness of HASL verification in
dealing with a rather relevant aspect of many biological mechanisms, namely:
the analysis of oscillatory trends in stochastic models of biological systems.

Paper Organization. In Section 2 we provide some backgrounds which put into
context the proposed approach. In Section 3 we introduce the gene expression
mechanism with stochastic delays we refer to in the remainder of the paper. In
Section 4 we recall the basics of the HASL formalism. In Section 5 we present
the formal analysis (by means of HASL) of the previously introduced single-gene
model. In section 6 we illustrate the application of HASL to measurements of
oscillations. Conclusive remarks are given in Section 7.

2 Background

Model Checking and Systems Biology. Model checking is a technique ad-
dressing the formal verification of discrete-event systems. Its success is mainly
due to the following points: (1) the ability to express specific properties by for-
mulas of an appropriate logic, (2) the firm mathematical foundations based on
automata theory and (3) the simplicity of the verification algorithms which has
led to the development of numerous tools. Initially [17] targeted to the verifi-
cation of functional qualitative properties of non-probabilistic models by means
of “classical” temporal logics (i.e. LTL, CTL), model checking has progressively
been extended toward the performance and dependability analysis realm (i.e.
quantitative verification) by adaptation of classical temporal logics to express
properties of Markov chains [21],[6]. In systems biology [26] two modelling al-
ternatives are typical: (1) the continuous-deterministic framework, whereby dy-
namics of biological agents are expressed in terms of (a system of) differential
equations (e.g. ODE, PLDE) and (2) the discrete-stochastic framework, whereby
dynamics are expressed in terms of a stochastic process (most often a continuous-
time Markov chain). The application of model checking to systems biology has
targeted both modeling frameworks. BIOCHAM [18], GNA [15], BioDIVINE [10]
are examples of tools providing LTL/CTL model-checking functionalities for the
verification of qualitative properties of biological models represented by means
of differential equations. Conversely, PRISM[31], MARCIE [35] are examples of
tools featuring Continuos Stochastic Logic (CSL) [6] model-checking for the ver-
ification of quantitative properties of continuous-time Markov chains (CTMC)
models of biological systems. Recently linear-time reasoning (as opposed to CSL
branching-time reasoning) has been extended to the probabilistic framework as
well. Examples are: the addition of LTL properties specifications in PRISM; the
introduction of the bounded LTL, i.e. BLTL [24].
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3 Genetic Networks with Delayed Stochastic Dynamics

Gene expression is the process by which proteins are synthesized from a sequence
in the DNA. It consists of two main phases: transcription and translation. Tran-
scription is the copying of a sequence in the DNA strand by an RNA polymerase
(RNAp) into an RNA molecule. This process takes place in three main stages:
initiation, elongation and termination. Initiation consists of the binding of the
RNAp to a promoter (Pro) region, unwinding the DNA and promoter escape.
Afterwards, elongation takes place, during which the RNA sequence is formed,
following the DNA code. Once the termination sequence is reached, both the
RNAp and the RNA are released. In prokaryotes, translation, the process by
which proteins are synthesized from the (transcribed) RNA sequence, can start
as soon as the Ribosome Binding Site (RBS) region of the RNA is formed.

The rate of expression of a gene is usually regulated at the stage of tran-
scription, by activator/repressor molecules that can bind to the operator sites
(generally located at the promoter region of the gene) and then promote/inhibit
transcription initiation. Evidence suggests that this is a highly stochastic process
(see, e.g. [4]), since usually, the number of molecules involved, e.g. transcription
factors and promoter regions, is very small, ranging from one to a few at a given
moment [37]. Due to that, stochastic modeling approaches were found to be more
appropriate than other strategies (e.g. ODE models or Boolean logic).

Stochastic Models of Gene Expression with Delayed Dynamics. The
first stochastic models of gene expression assumed that the process of gene ex-
pression, once initialized, is instantaneous [4]. Namely, each step was modeled
as a uni- or bi-molecular reaction and its kinetics was driven by the stochastic
simulation algorithm (SSA) [20]. These models do not account for one important
aspect of the kinetics of gene expression. Namely, that it consists, as mentioned,
of a sequential process whose intermediate steps take considerable time to be
completed once initiated (see e.g. [25]). This feature can be accounted for by
introducing ’time delays’ in the appearance of the products modeling the pro-
cess [13,34,32].

Biochemical reaction with stochastic delays can be generally denoted as:∑
niRi

k−→
∑
mjP

nd
j +

∑
m′

kP
d
k (distk)

where Ri, P
nd
j and P d

k denote, respectively, the i-th reactant, the j-th
non-delayed product and the k-th delayed product (ni, mj and m′

k being the
stoichiometric coefficients) and distk denotes the distribution for the delayed in-

troduction of k-th delayed product. For example, reaction A+B
k−→ A+C(δ(τ))

represents a reaction between molecules A and B, that produces molecule C from
B by a process that takes τ seconds to occur once initiated (i.e. δ(t) denotes a
delta dirac distribution centred in t). When this reaction occurs, the number
of molecules A is kept constant, a molecule B is immediately removed from the
system and a molecule C is introduced in the system τ seconds after the reaction
takes place.
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To deal with delayed reactions different adaptations of Gillespie’s SSA algo-
rithm (referred to as “delayed SSA”) have been introduced. Initially two methods
[13,11] were proposed for implementing reactions with delays. Then [34] intro-
duced, a generalization of the method proposed in [13], in that it allows multiple
time delays in a single reacting event. This algorithm allows implementing a
generalized modeling strategy of gene networks [32] and is the one which the
SGNSim [33] tool is based on.

3.1 Single Gene Expression Model

We consider a model of single gene expression that follows the approach proposed
in [32]. Our model differs in that transcription is modeled as a 2-step process so
as to accurately account for the open complex formation and promoter escape
[25]. Each of these processes duration follows an exponential distribution. The
gene expression system we refer to consists of the following reactions1:

R1 : Pro+ ∗RNAp
kt−→ Prox (1)

R2 : Prox
λ1−→ Pro+RBS +R(Γ (Glen, 0.09)) (2)

R3 : ∗Rib+RBS
ktr−→ RBS(δ(τ1)) +Rib(Γ (Glen, 0.06)) + P (Γ (τ5sh , τ5sc )) (3)

R4 : RBS
rbsd−→ ∅ (4)

R5 : Pro+Rep
kr−→ ProRep (5)

R6 : ProRep
kunr−→ Pro+Rep (6)

Reactions (1) and (2) model transcription. In (1), an RNAp binds to a promoter
(Pro), which remains unavailable for more reactions until reaction (2) occurs.
Following reaction (2), which models the promoter escape, both the promoter
and the RBS become available for reactions. Also from reaction (2), once tran-
scription is completed, at Γ (Glen, 0.09), a complete RNA (represented by R) is
released in the system. R will not be substrate to any reaction, and is only mod-
eled as a means to count the number of RNA molecules produced over a certain
period of time. In our model, according to the SSA, the time necessary for any
reaction to occur follows an exponential distribution whose mean is determined
by the product between the rate constant of the reaction with the number of each
of the reacting molecules present in the system at that moment. For simplicity,
we assume that the number of RNAPs is constant. In the case of reactions (1)
and (2), both kt and λ1 are set to 1/400 s [25], following measurements for the
lar promoter. Meanwhile, Glen is determined by the length of the gene, here set
to 1000 nucleotides, and the time spent by the RNAp at each nucleotide, which
follows an exponential distribution with a mean of 0.09 s [29].

1 Note that symbol ∗ prefixing a species name in the above reactions means that the
reactant is not consumed in the reaction. This is applied for simplicity to those
reactants such as ribosomes, which exists in large amounts, and thus fluctuations in
their numbers wont be significant in the propensity of reactions.
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In Prokaryotes, translation can begin as soon as the ribosome binding site
(RBS) region of the RNA is completed. In reaction (3), a ribosome (Rib) binds to
the RBS and translates the RNA. The RBS becomes available for more reactions
after τ1 s. The ribosome is released after Γ (Glen, 0.06) seconds. The initiation
rate, ktr is set to 0.00042 s−1 [38]. Following measurements from E. coli, we have
set τ3 = 2 s, and Γ (Glen, 0.06) to follow a gamma distribution dependent on the
gene’s length, where each codon is added following an exponential distribution
with a mean of 0.06 s [29]. Finally, Γ (τ5sh , τ5sc) is such that it accounts for the
time that translation elongation takes, as well as the time it takes for a protein
to fold and become active. In this case, we used the parameter values measured
from GFP mutants commonly used to measure gene expression in E. coli [30].
Finally we consider also three additional reactions representing, respectively:
RBS decay (equation 4) and promoter repression (equation (5)). Initially, the
system has 1 promoter and 100 ribosomes. In the remainder of the paper we
illustrate a thorough formal analysis of the above described single gene model
by means of HASL model checking.

4 HASL Model Checking

The Hybrid Automata Stochastic Logic (HASL) [8] is a novel formalism widening
the family of model checking approaches for stochastic models. Its main charac-
teristics are as follows: first the class of models it addresses are the so-called Dis-
crete Event Stochastic Processes (DESPs), a broad class of stochastic processes
which includes, but (unlike most stochastic logics) is not limited to, CTMCs.
Second the HASL logic turns out to be a powerful language through which tem-
poral reasoning is naturally blended with elaborate reward-based analysis. In
that respect HASL unifies the expressiveness of CSL[6] and its action-based [5],
timed-automata [16,14] and reward-based [22] extensions, in a single powerful
formalism. Third HASL model checking belongs to the family of statistical model
checking approaches (i.e. those that employ stochastic simulation as a means to
estimate a model’s property). More specifically HASL statistical model checking
employs confidence-interval methods to estimate the expected value of random
variables which may represent either a measure of probability or a generic real-
valued measure. In the following we recall the basics of the HASL formalism
i.e. the characterization of DESP and of HASL formula. We also quickly outline
COSMOS [7] the HASL model checker we employed for analysing the models con-
sidered in this paper. For a comprehensive and more formal treatment of HASL
we refer the reader to [8].

4.1 DESP

A DESP is a stochastic process consisting of a (possibly infinite) set S of states
and whose dynamic is triggered by a (finite) set E of (time-consuming) discrete
events. No restrictions are considered on the nature of the delay distribution
associated with events, thus any distribution with non-negative support may be
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considered. For the sake of space in this paper we omit the formal definition
of DESP and give an informal description of Generalised Stochastic Petri Nets
(GSPNs) [2] the high-level language adopted to characterise DESP in the context
of HASL model checking.

DESP in Terms of Generalised Stochastic Petri Nets. Accordind to its
definition the characterization of a DESP is a rather unpractical one, requiring
an explicit listing of all of its elements (i.e. states, transitions, delay distributions,
probability distribution governing concurrent events). However several high-level
formalisms commonly used for representing Markov chain models (e.g. Stochastic
Petri Nets, Stochastic Process Algebras), can straightforwardly be adapted to
represent DESPs. In the context of HASL model checking we consider GSPNs
as high level formalism for representing DESPs. The choice of GSPNs is due to
two factors: (1) they allow a flexible modeling w.r.t. the policies defining the
process (choice, service and memory) and (2) allow for efficient path generation
(due the simplicity of the firing rule which drives their dynamics). We quickly
recall the basics about GSPN models pointing out the correspondence with the
various parts of a DESP. A GSPN model (e.g. Figure 1) is a bi-partite graph
consisting of two classes of nodes, places (represented by circles) and transitions
(represented by bars). Places may contain tokens (e.g. representing the number
of molecules of a given species) while transitions (i.e. representing to the events)
indicate how tokens “flow” within the net. The state of a GSPN consists of a
marking indicating the distribution of tokens throughout the places. A transition
is enabled whenever all of its input places contains a number of tokens greater
than or equal to the multiplicity of the corresponding (input) arc. An enabled
transition may fire consuming tokens (in a number indicated by the multiplicity
of the corresponding input arcs) from all of its input places and producing tokens
(in a number indicated by the multiplicity of the corresponding output arcs) in
all of its output places. Transitions can be either timed (denoted by empty
bars, if exponential, or gray bars if non-exponential) or immediate (denoted by
black filled-in bars). Generally speaking transitions are characterized by: (1) a
distribution which randomly determines the delay before firing it (corresponding
to the DESP delay() function); (2) a priority which deterministically selects
among the transitions scheduled the soonest, the one to be fired; (3) a weight,
that is used in the random choice between transitions scheduled the soonest with
the same highest priority (corresponding to the DESP choice() function). With
the GSPN formalism [2] the delay of timed transitions is assumed exponentially
distributed, whereas with GSPN-DESP it can be given by any distribution. Thus
whether a GSPN timed-transition is characterized simply by its weight t≡w (w∈
R+ indicating an Exp(w) distributed delay), a GSPN-DESP timed-transition is
characterized by a triple: t≡ (Dist-t,Dist-p, w), where Dist-t indicates the type
of distribution (e.g. Unif), dist-p indicates the parameters of the distribution
(e.g [α, β]) and w ∈ R+ is used to probabilistically choose between transitions
occurring with equal delay.2

2 A possible condition in case of non-continuous distributions.
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RNAp RNA

ProxExp(0.25)

Γ(1000,0.09)
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Exp(1/400)

RBS

transc

_RNA

Fig. 1. Example of GSPN-DESP: model of reaction R1 and R2 of single-gene system

Example. The GSPN in Figure 1 encodes the transcription phase of the single-
gene model (i.e. reaction R1 and R2 in Section 3.1). The net has: a place for
each species involved in reactions R1 and R2 (i.e. Pro, RNAp, Prox, RBS, RNA)
plus an extra place (i.e. RNA) for capturing the intermediate delayed phase of
RNA formation; three timed-transition corresponding to the delayed phases of
reactions R1 and R2. Transitions init and transc are Exponentially distributed
with rate kt = 0.25, respectively λ1 = 1/400. Transition termin is Gamma dis-
tributed (with parameters, shape = 1000 and scale = 0.09 as from experimental
data) and represent the delayed termination of RNA formation as per R2. In
the initial marking M0 = (1, 2, 0, 0, 0, 0) we assume a molecule of Pro and two
molecules of RNAp are available. Thus in state M1 init is the only reaction
enabled, and when it fires it will remove one token from both Pro and RNAp
and add a token in each of its output places (i.e. RNAp and Prox), moving the
state of the system in marking M1 = (0, 2, 1, 0, 0, 0) whereby the only enabled
transition is transc, and so on.

4.2 Hybrid Automata Stochastic Logic

HASL is a logic designed to analyse properties of a DESP D. A HASL formula
is a pair (A, Z) where A is Linear Hybrid Automaton (i.e. a restriction of hybrid
automata [3]) and Z is an expression involving data variables of A. The goal of
HASL model checking is to estimate the value of Z by synchronisation of the
process D with the automaton A. This is achieved through stochastic simulation
of the synchronised process (D × A), a procedure by means of which, infinite
timed executions of process D are selected through automaton A until some
final state is reached or the synchronisation fails. During such synchronisation,
data variables evolve and the values they assume condition the evolution of the
synchronisation. The synchronisation stops as soon as either: a final location of
A is reached (in which case the values of the variables are considered in the
estimate of Z), or the considered trace of D is rejected by A (in which case
variables’ values are discarded).

Synchronised Linear Hybrid Automata. The first component of an HASL
formula is an LHA, which is formally defined as follows:

Definition 1. A synch. LHA is a tuple A = 〈E,L,Λ, Init ,Final , X,flow,→〉
where:
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– E, a finite alphabet of events;
– L, a finite set of locations;
– Λ : L → Prop, a location labelling function;
– Init , a subset of L called the initial locations;
– Final , a subset of L called the final locations;
– X = (x1, ...xn) a n-tuple of data variables;
– flow : L �→ Indn a n-tuple of indicators representing the rate of evolution

of each data variable in a location.
– →⊆ L × (

(Const× 2E) � (lConst × {�}))× Up × L, a set of edges

where an edge (l, γ, E′, U, l′) ∈→ (also denoted l
γ,E′,U−−−−→ l′), consists of: a con-

straint γ (i.e. a boolean combination of inequalities of the form
∑

1≤i≤n αixi+c ≺
0 where αi, c∈Ind are DESP indicators, ≺∈{=, <,>,≤,≥} and xi∈X ; we de-
note Const the set of such constraints and lConst ⊂ Const the set of left closed
constraints, i.e. constraints giving rise to left-closed enabling intervals); a set
E′ of labels of synchronising events (including the extra label � denoting au-
tonomous edges); a set U of updates (i.e. an n-tuple of functions u1, ..., un where
each uk is of the form xk =

∑
1≤i≤n αixi + c where the αi, c ∈ Ind are DESP

indicators; we denote Up the set of updates). by means of which new values are
assigned to variables of X on traversing of the edge).

Edges labelled with a set of events in 2E are called synchronized whereas those
labelled with � are called autonomous. Furthermore we impose the following (in-
formally described3) constraints for an automatonA: (c1) only one initial location
can be enabled; (c2) the same event cannot lead to different simultaneous synchro-
nisations; (c3) two autonomous transition cannot be fireable simultaneously (c4)
infinite loopswithout synchronisation are not possible. Informally the synchronisa-
tion between (D andA) works as follows: a synchronised transition of the product
process (D×A) is triggeredby the occurrence of a corresponding (time-consuming)
event of the DESP, whereas an autonomous transition occurs (without synchro-
nisation with a DESP event) as soon as the corresponding constraint is enabled
(i.e. the variables of the LHA assume values fulfilling the constraint). Note that
autonomous transitions may not consume time.

Example: Figure 2 depicts two variants of a simple two locations LHA defining
measures of the gene-transcription toy model of Figure 1. Location l0 is the initial
location while l1 the final location. The automaton employs two data-variables: t
registering the simulation-time (hence with flow ṫ = 1 in every location) and n1,
an event counter (hence with flow ṅ1 = 0 in every location), counting the occur-
rences of transition transcr. The automaton has two synchronising edges (the
self-loops on l0) and one autonomous edge (from l0 to l1). The top synchronising
edge allows to increment the counter n1 each time a transition transcr occurs
whereas the bottom synchronising edge, simply reads in all other transitions oc-
currence without performing any update. The autonomous edge instead leads to
acceptance location as soon as its constraint is fulfilled. The LHA in Figure 2(a)
represents time-bounded measures as the constraints on the edges (and notably

3 For the formal characterisation see [8].
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l0
ṫ:1

ṅ1:0

l1

{transc},(t<T ),{n1++}

E\{transc},(t<T ),∅

�,(t=T ),∅

(a) time-bounded measures

l0
ṫ:1

ṅ1:0

l1

{transc},(n1<N),{n1++}

E\{transc},(n1<N),∅

�,(n1=N),∅

(b) event-bounded measures

Fig. 2. Example of LHA for simple properties of the GSPN-DESP model of Figure 1

on the edge leading to the acceptance location) refers to the simulation time t,
thus: as soon as t = T the read in path is accepted. On the other hand the LHA
in Figure 2(b) represents event-bounded measures accepting paths as soon as
transition transc have occurred n1 = N times. In the following we provide few
simple examples of relevant measures referred to the LHA in Figure 2 in terms
HASL expressions.

HASL Expressions. The second component of an HASL formula is an expres-
sion, denoted Z and defined by the grammar:

Z ::= E(Y ) | Z + Z | Z × Z
Y ::= c | Y + Y | Y × Y | Y/Y | last(y) | min(y) | max(y) | int(y) | avg(y)
y ::= c | x | y + y | y × y | y/y

(7)

y is an arithmetic expression built on top of LHA data variables (x) and con-
stants (c). Y is a path dependent expression built on top of basic path ran-
dom variables such as last(y) (i.e. the last value of y along a synchronizing
path), min(y)(max(y)) the minimum (maximum), value of y along a synchro-
nizing path), int(y) (i.e. the integral over time along a path) and avg(y) (the
average value of y along a path). Finally Z, the target measure of an HASL
experiment, is an arithmetic expression built on top of the first moment of Y
(E[Y ]), and thus allowing to consider more complex measures including, e.g.
V ar(Y )≡E[Y 2]− E[Y ]2, Covar(Y1, Y2)≡E[Y1 ·Y2]− E[Y1] ·E[Y2].

The COSMOS Tool. Assessment of HASL formulae against a DESP model
is performed by means of the COSMOS [1,7] model checker. COSMOS employs
a confidence interval method to estimate the target expression Z. The desired
accuracy of the target estimation is then set by the end user in terms of confidence
level and interval width.

5 Analysis of SGN Models through HASL

We illustrate the application of HASL model checking to the analysis of a model
of gene expression with stochastic delayed dynamics. We (1) present the GSPN-
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Fig. 3. GSPN model of Single Gene system with delayed stochastic dynamics

DESP codification of the considered model; (2) introduce a number of relevant
properties/measures of a model first describing them informally and then pro-
viding their encoding in HASL terms; (3) discuss results obtained by evaluation
of the presented properties/measures by means of the COSMOS model checker.

5.1 Single Gene Model

The single-gene model described by equations (1) to (6) (Section 3.1) is encoded
in GSPN-DESP terms by the net depicted in Figure 3. The net includes a place
for each species of the model (i.e. Pro, RNAp, Prox, RNA, RBS, Rib P, Rep
and ProRep) plus a number of auxiliary places representing intermediate stages
of delayed reactions (i.e. RNA, RBS, P, relRib). Initial marking of the net is
set by means of parameters i rep, i rnap, i rib, which correspond to the chosen
initial population of the model (note that the promoter place, Pro, is initialized
with one token, as each gene has one promoter region).

Reactions {R1, . . . , R6} of the single gene model correspond to subnets (en-
closed in red-dashed rectangles) in Figure 3. Each such subnet contains either a
single exponentially-distributed transition (in case of reactions with non-delayed
products i.e. R1, R4, R5, R6) or a combination of exponential and non-exponential
transitions (in case of reactions with delayed products, i.e. R1 and R2). For exam-
ple subnet R3 in Figure 3 represents the encoding of the translation reaction. It
consists of: the translation-start event (i.e. exponentially distributed transition la-
beled s transl ; the RBS release event (i.e. deterministically distributed transition
clearRBS ); the ribosome releasing event (gamma distributed transition relRib);
the protein production event (i.e. gamma distributed transition prodP). Observe
that the effect of repressed gene-expression can be promptly analysed by setting
of the repressor initial population (parameter i rep= lr): unrepressed configura-
tions corresponds to lr = 0, whereas lr > 0 settings correspond to repressedmodel
where the level of repression is proportional to lr > 0.
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Table 1. Properties of the Single Gene model

performance of TRANSCRIPTION and TRANSLATION mechanisms

ID description
φ1a average num. of completed-transcriptions (within T )
φ1b

average num. of completed-translations (within T )

φ2a prob. density of the number of completed-transcriptions (within T )
φ2b

prob. density of the number of completed-translations (within T )
φ3a cumulative prob. of the number of completed-transcriptions (within T )
φ3b

cumulative prob. of the number of completed-translations (within T )

efficiency of TRANSLATION wrt TRANSCRIPTION

ID description
φ4 avg. num. of completed translations between two consecutive transcriptions
φ5 prob. of at least N completed translations between two consecutive transcriptions

REPRESSION related measures
φ6 percentage of time gene is repressed
φ7 how long does it take for translation to stop once a repression starts

(i.e. sustainment of translation under repression)

Properties of Single Gene Model. Table 1 depicts an excerpt of (informally
stated) relevant measures of the single-gene model. They are grouped according
to different aspects of gene-expression performance. The corresponding HASL
encoding is given in Table 2. We briefly illustrate the automata of Table 2 and
the associated HASL expressions:

A1 : it is designed for measures concerning the occurrences of transc and transl
events. It accepts all paths of duration T and uses variables, n1 and n2 to main-
tain the number of transc and transl transitions occurred along a path. Dif-
ferent measures can be assessed through different HASL expressions referred
to A1 including: φ1a = (A1, E[last(n1)]); φ1b = (A1, E[last(n2)]) and φ4 =
(A1, E[last(n2)/last(n1)]) (see Table 1).

A2 : it measures the probability that the number of transcriptions is n1 = C
(within time T ). On acceptance (i.e. duration t= T ), it distinguishes between
paths such that n1 = C (in which case the bernoulli variable OK is set to 1),
and paths such that n1 �= C (i.e. OK is set to 0). The probability density
of n1 is assessed by re-iterated evaluations of formula φ2a = (A2, last(OK))
corresponding to different values of C4.

A3 : for measures concerning the amount of time gene is repressed. Apart from
the usual global clock t it uses a timer tr registering the time gene is repressed,
hence it grows (ṫr = 1) only in location l1 (i.e. repression is ON, corresponding to
a marking of place ProRep > 0), while it is unchanged (ṫr = 0) in location l0 (i.e.
marking of place ProRep = 0). Also note that both l0 and l1 are initial locations,
which is perfectly legal as their constraints make them mutually exclusive (this
way A3 can be used to analyse both repressed and unrepressed configurations
of the model).

4 Note that simple variants of A2 can be used to assess the PDF of translations and
the CDFs of both transcription and translation.



40 P. Ballarini, J. Mäkelä, and A.S. Ribeiro

Table 2. LHA for various measures of the Single Gene model

legend of used variables:

t:total time n1:completed transcriptions n2:completed translations

tr :repressed time n3:� of transcr-intervals such that n2>N OK:bernoulli variable

to:sustain time no:� repress-intervals with died off transl

(inter-repression) p1:% of transcr-intervals such that n2>N

To:total sustain time

Expected completed transcriptions within T PDF of completed transcriptions within T

A1

l0
ṫ:1

ṅ1:0
ṅ2:0

l1

{transc},(t<T),{n1++}
{transl},(t<T),{n2++}

E\{transc,transl},(t<T),∅

�,(t=T),∅ A2

l0
ṫ:1

ṅ1:0
˙OK:0

l1

l2

{transc},(t<T ),{n1++}

E\{transc},(t<T),∅

�,(t=T∧n1=
C),

{OK:=1}
�,[t=T∧(n1<C∨n1>C)],{OK:=0}

φ1 ≡ (A1, E[last(n1)]) φ2a ≡ (A2, E[last(OK)])

proportion of repressed time within T prob. of at least N translations between

2 consecutive transcriptions for first N1 transcriptions

A3

l0
ṫ:1
˙tr :0ProRep=0

l1
ṫ:1
˙tr :1ProRep>0

l2

E,(t<T ),∅

E,(t<T ),∅

E
,(
t<

T
),∅

�,(t=T),∅

E
,(
t<

T
)
,∅

�,(t=
T),∅

A4

l0
ṅ1:0
ṅ2:0
ṅ3:0
ṗ1:0

l1

{transc},(n1<N1,n2≥N),{n1++,n3++,n2=0}
{transl},(n1<N1),{n2++}

E\{transc,transl},(n1<N1),∅
{transc},(n1<N1,n2<N),{n1++,n2=0}

�,(n1=N1),
{p1=n3/n1}

φ6 ≡ (A3, E[(100/T ) ∗ last(tr))]) φ5 ≡ (A4, E[last(p1)])

sustainment of translation under repression

A5

l0
ṫ:1
˙to:0

Ṫo:0
ṅo:0

ProRep=0

l1
ṫ:1
˙to:0

Ṫo:0
ṅo:0

ProRep>0∧
RBS=0∧
RBS=0∧
P=0∧
Rib=0

l2
ṫ:1
˙to:1

Ṫo:0
ṅo:0

ProRep>0∧
(RBS>0∨
RBS>0∨

P>0∨
Rib>0)

l3

E,(t<T ),∅

E,(t<T ),∅ E,(t<T ),∅

E,(t<T ),∅

E,(t<T ),∅

�,(
t=

T
),∅

E,(t<T ),∅

E,(t<T ),∅

�,(t=
T
),∅

�,
(t
=
T
),
∅

E,(t<T ),∅

E,(t<T ),{To:=to,to:=0,n0++}

φ7 ≡ (A6, E[last(To)/last(no)])

A4: it measures “how likely it is that within a transcription interval (i.e. the
interval between two occurrences of the transc event) at least N translations have
been completed”. It uses variables n1 and n2 (as above) and n3 to count how many
transcription intervals (along a path) contain n2 ≥ N translations. The result
is stored in p1 = n3/n1 on acceptance. Note that, in this case, we consider an
event-bounded observation window consisting of n1 = N1 transcription events.
Measure φ5 (Table 1) in HASL terms is φ5 = (A4, last(p1)).
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A5 : it is designed for measures of sustainment of translation activity under
repression (i.e. φ7 in Table 1). It uses the following variables: no counting the
number of repression intervals (interval between two repression events) in which
translation arrested; to: measuring the translation time-to-arrest in a repression
interval (given that translation arrested); To timer measuring the cumulated to.
Note that translation arrest corresponds to the absence of tokens in all transla-
tion related places of the GSPN model (Figure 3), corresponding to condition:
(RBS=0∧ RBS=0∧ P =0∧ Rib=0). Locations l0, l1 and l2 are then associated
to the following state conditions of the model: repression is off (l0), repression
is on and translation off (l1) and repression is on and translation ongoing (l2).
All paths of duration t=T are accepted and the target measure5 is be obtained
through expression Z = E[last(To)/Last(no)].

Remark. A formal assessment of HASL expressiveness is beyond the scope of this
paper however we make some considerations in that respect. The peculiarity of
HASL based reasoning is that any combination of state and/or transition and/or
reward conditions may be employed to characterise the paths of interests. This
is the main difference with other stochastic logics, ranging from those limited to
state-based reasoning (e.g. CSL, BLTL), to those featuring state/action based rea-
soning but not supporting rewards (e.g. asCSL [5]), up to the timed-automata ones
whichmix state/action-based reasoningwith (multiple) time-bounding [16,14]. So
far reward-based analysis has been added to logics featuring state-based reason-
ing. For example the rewards enriched version of CSL supported by PRISM [27]
allows for considering multiple (state and transition) reward structures and to as-
sess reward measures wrt paths of a given CTMC model. However, even with the
addition of rewards, CSL remains a language limited to state-based temporal rea-
soning, thus, differently from HASL, reward values do not play an active role in
characterising relevant paths. As a consequence several measures that can easily
be expressed with HASL, do not always have an equivalent in CSL terms (or if
they do they require hard wiring of extra information in the original CTMC). For
example, measuring the PDF (and CDF) of an event occurrences, is easily done
with HASL (e.g. LHA A2, of Table 2), whereas cannot be naturally achieved with
CSL, unless states of the original CTMC are enriched with variables counting the
occurrences of relevant events. Similarly, more complex measures involving com-
bination of elaborate conditions on rewards values (i.e. LHA variables) as the fac-
tors characterising the selected paths (e.g. those corresponding to automata A4

and A5, in Table 2) seem not to be expressible through CSL rewards.

Experiments. We assessed the previously described HASL measures through
experiments executed with the COSMOS model checker. For time-bounded

5 Note that with a time-bounded measurement, as with A5, measuring may stop in any
instant (not necessarily at the end) of a repression interval: this is not a problem as To

and no are updated only when translation arrests, thus if bound T is reached before
translation arrests, measure To/no will correctly refer to the duration of translation
sustainment over all completed repression cycles.
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Fig. 4. PDF and CDF of completed transcriptions within T

measures we have considered (following [33]) T = 2 ·105 as time horizon which
roughly corresponds to 60 cell cycles, considering an average a cell cycle period
of about 55 minutes (i.e. 3300s) in the case of E. coli. All experiments have
been run with the following setting concerning confidence interval estimation:
confidence-level: 99.99%; interval-width: 0.01.

Experiment 1. Figure 4 compares plots of the PDF (Figure 4(a)) and CDF (Fig-
ure 4(b)) of random variable n1: num. of completed transcription within T (query
φ2 and φ3) of unrepressed vs repressed configurations (i.e. rep(1), correspond-
ing to initial marking i rep = 1 and rep(2), corresponding to initial marking
i rep = 2). The effect of repression is evident as the bell-shaped probability
density of n1 is shifted toward lower values for increasing level of repression.

Experiment 2. Figure 5(a) compares the expected number of completed transcrip-
tions vs. translations within T in function of time for unrepressed and repressed
(rep(1)) configurations. Observe that the throughput of translation is roughly
twice as much as that of transcriptions, (both in unrepressed condition, as well
as, in presence of repression). This is due to the rates of RNA degradation and
translation initiation.

Experiment 3. Figure 5(b), plots two measures of timing: the percentage of time
gene is repressed (A3) and the percentage of time no translation activity is going
on (variant of A3) when system is observed for duration T and in function of
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the level of repression (num. of repressor molecules on the x-axis). To observe
also the trend of transcription and translation activity in function of repression
level Figure 5(b) also includes two curves referred to the expected number of
transcriptions, respectively translations, within T . Observe that the presence of
a single repressor is sufficient for the gene to remain repressed for 83% of the
time and, likewise, for translation to be non-existing for 85% of the observation
time (whereas in absence of repressor, translation activity is only non-existing
for about 4% of the time).

Experiment 4. Figure 6(a) compares the PDFs of random variable n2: num. of
completed transcription within a transcription interval (i.e. within two consecu-
tive transcription completions) (query φ4 : (A4, Last(p1)). This is computed for
the unrepressed model and for two configurations of the repressed model (rep(1)
and (rep(2)). Outcomes indicate that in presence of repression the probability
density is more “distributed”, than the bell shaped one corresponding to the un-
repressed configuration. Furthermore increasing the level of repression seems to
have no effect on the probability density (plots rep(1) and (rep(2) are essentially
identical).

Experiment 5. Figure 6(b) refers to measurement of the translation sustainment
within a repression-interval (query φ5 : (A5, Last(noff)/Last(nrep)) in function
of the RBS decay rate (rbsd). We varied rbsd in the interval [0.001, 4] which
includes rbsd = 0.01 i.e. the value complying with experimental evidence used
in the“standard” model’s configuration. Obtained results indicate, quite sen-
sibly, that translation sustainment is inversely proportional to RBS decay. It
should be noted that with rbsd < 0.004 the translation sustainment is actually
increasing with rbsd (not very evident in plot of Figure 6(b)). This is because,
by definition, query φ5 : (A5, Last(noff)/Last(nrep)) measures the sustainment
of translation on condition that sustainment lasts lesser than repression. With
rbsd < 0.004, however, decay is so slow that with high probability sustainment
lasts longer than repression, while with low probability it lasts less. In this case
(rbsd < 0.004) it is sensible that the average value of (low-likely) translation
sustainment not exceeding repression duration increases with rbsd.
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6 Measuring Oscillations with HASL

Oscillatory trends are fundamental aspects of the dynamics of many biological
mechanisms, therefore the ability to detect/measure oscillations in biological
models is crucial. CSL-based characterisation of oscillations in CTMC models
of biochemical reactions have been considered in [9], with limited success, and
more comprehensively in [36]. Here we show preliminary results concerning the
application of HASL to the analysis of oscillations. Let σ be a (infinitely long)
simulation trace of an n-dimensional DESP model whose states’ form is s =
(s1, . . . sn)∈Nn , with si being the value along the ith dimension (e.g the number
of molecules of species i). Let σi(t) denote the i-projection of σ(t) the state σ is
at time t. Following the characterisation given in [36] σi can either be: convergent
(i.e. tending to a finite value), divergent (i.e. tending to infinity) or oscillating
(i.e. the lack of the previous two). Furthermore σi is periodic with period δ iff
∀t, σi(t) = σi(t + δ). Thus σ is periodic oscillatory along the i-th dimension iff
σi is both oscillating and periodic. Here, instead, we focus on a less restrictive
characterisation of oscillatory trends namely that of noisy periodicity [36]. Given
an upper and a lower bound bh, bl ∈ N (bh > bl), inducing intervals low =
(−∞, bl], mid = (bl, bh) and high = [bh −∞) (i.e. l,m and h), trace σi is said
noisy periodic iff it perpetually switches from low to high (passing throughmid)
and returning to low.Note that such trends corresponds to the following regular
expression: enp = l(l)∗m(ll∗m)∗h(mm∗h)∗m(mh∗m)∗l.

We illustrate preliminary results about application of HASL to oscillations
analysis by means of a simple example. Reactions (8) represent, the so called,
3-way doped oscillator, a systems consisting of three species A, B and C which
oscillate perpetually. Note that A, B and C form a loop of of dependency whereby
A is converted into B, which, in turns, is converted into C, which, in turns, is
converted into A. DA, DB and DC , are auxiliary species representing doping
substances which guarantees the liveness of the conversion loop. It can be easily
shown, (e.g. by application of stochastic simulation), that species A, B and C
oscillate (Figure 7(a)) with amplitude, period and “noisiness” dependent on the
initial population (a0, b0, c0) (by default we assume the population of doping
species to be 1).

A+B
rA−→ 2B B + C

rB−→ 2C C +A
rC−→ 2A

DA + C
rC−→ A+DA DB +A

rA−→ B +DB DC +B
rB−→ C +DC

(8)

An LHA to Measure Noisy Periodic Traces: the LHA Anp in Figure 8
is designed to measure the number of noisy periods of amplitude a≥ (bh − bl),
where bl and bh are the bounds inducing the low, mid and high (as above).
It consists of three locations l0, l1 and l2, associated to the low (i.e. A ≤ bl),
respectively the mid (i.e. bl<A<bh) and the high (i.e. A≥bh) interval.

It uses three variables: t (total time), n to count the com-
pleted noisy periods (i.e. corresponding to regular expression enp =
l(l)∗m(ll∗m)∗h(mm∗h)∗m(mh∗m)∗l), and top, a boolean flag used to condition
the increase of n on completion of a noisy period (i.e. top is set to 1 entering the
high interval and n is incremented on entering the low interval only if top = 1,
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ṫ:1
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ṫ:1
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Fig. 8. An LHA for measuring the number of periods of a periodic noisy oscillatory
trace of the 3-way oscillator

in which case top is reset). The average number of completed noisy periods with
time T can be assessed by means of HASL formula φnp = (Anp, E(last(n)).
Figure 7(b) depicts the outcome of assessment of φnp in function of time bound
T . Such results are in good agreement with simulated traces, a sample of which
is shown in Figure 7(a).

7 Conclusion

We presented some insights on the application of HASL statistical model check-
ing to the analysis of (non-necessarily Markovian) stochastic models of biological
systems. The most important feature of HASL model checking lays in its expres-
sive power: by employing LHA as machinery to characterise relevant trajectories
of a model it is possible to identify/assess elaborate measures which may not
be naturally accounted for with more popular stochastic logic, i.e. those fea-
turing state-based temporal reasoning, such as, for example, CSL and BLTL.
We demonstrated (part of) the potential of the HASL language by developing
and assessing a number of properties of a model of single-gene network with de-
layed non-Markovian dynamic. Although such model is a rather simple, it served
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well to our aim, which was to show the potential of HASL based analysis. Fur-
thermore we presented preliminary insights on the application of HASL to the
analysis of oscillatory trends. Future developments include: 1) the application of
HASL approach to more complex systems, such as, for example a model of the
P53-Mdm2 feedback loop with stochastic dynamics previously analysed with the
GNSim simulator but not yet formally model checked. 2) further development of
HASL based oscillation analysis (i.e. measurements of frequency, amplitude of
oscillatory trends). The main difficulty of the HASL approach is the technicality
of the formalism itself. In particular, specifying an HASL property boils down
to specifying an automata, something which may be far from intuitive for non-
expert users. Thus, a further direction of development regards working on the
definition of a more intuitive property specification language with an associated
translator to LHA specifications.
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ics of Single Cell Gene Expression in the Arabinose Utilization System. Biophys-
ical Journal 95, 2103–2115 (2008)



48 P. Ballarini, J. Mäkelä, and A.S. Ribeiro
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Abstract. For models of cell-to-cell communication, with many reac-
tions and species per cell, the computational cost of stochastic simulation
soon becomes intractable. Deterministic methods, while computationally
more efficient, may fail to contribute reliable approximations for those
models. In this paper, we suggest a reduction for models of cell-to-cell
communication, based on symmetries of the underlying reaction network.
To carry out a stochastic analysis that otherwise comes at an excessive
computational cost, we apply a moment closure (MC) approach. We il-
lustrate with a community effect, that allows synchronization of a group
of cells in animal development. Comparing the results of stochastic sim-
ulation with deterministic and MC approximation, we show the benefits
of our approach. The reduction presented here is potentially applicable
to a broad range of highly regular systems.

Keywords: model reduction, stochastic analysis, moment closure,
model symmetry, cell-to-cell communication, community effect.

1 Introduction

The dynamics of biochemical reaction systems are traditionally formalized as
systems of ordinary differential equations (ODEs), whose variables represent
concentrations of molecular species in a well-mixed solution. This assumes that
the inherent stochastic fluctuations are negligible. However, this assumption is
invalid for certain systems, such as gene regulatory networks [7]. Those systems
must be analyzed stochastically, accounting for randomness of biomolecular in-
teractions.

Exact solutions for the dynamics of most non-linear chemical systems are prac-
tically impossible to obtain. Various methods for approximate stochastic analysis
have been suggested: Monte Carlo sampling of probability density functions of
species’ counts over time, known as Gillespie’s algorithm [11]; approximations
of this sampling [4,20]; explicit treatment of fluctuations with stochastic differ-
ential equations [12]; consideration of subspace of system states with highest
probability mass [6,25]; aggregation of states [17].
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Fig. 1. Symmetry in cell-to-cell communication: n cells with equal intracellular re-
action network, involving molecules A and B, interact through the exchange of the
extracellular molecule C

Moment closure. (MC) is a promising method for approximate analysis of the
behavior of stochastic systems. It allows efficient calculation of approximate dy-
namics of moments of random variables associated with the system under study.
MCs were successfully used in the fields of ecology [33], demographics [14], epi-
demiology [15] and statistical physics [22]. Traditionally they were derived man-
ually. Recently, methods for automatic MC derivation were proposed [10,18,32]
for biochemical reaction systems.

Because MC provides a system of ordinary differential equations, it allows
computing the approximate dynamics more efficiently than any of the previously
cited approaches to stochastic approximation. In particular, it relatively quickly
yields solutions for different parameter values, such as reaction rates and initial
conditions. This property has been exploited for efficient parameter estimation
[23], and can possibly be used for other tasks, such as real-time control [31]. A
disadvantage of the MC method is that the number of generated ODEs quickly
grows with the system size, making it potentially difficult to scale to larger
systems. Reduction techniques are needed to keep the analysis tractable.

In this work, we exploit symmetries in cell signaling to perform model re-
duction. Consider a pool of identical cells communicating over a short distance
through the exchange of molecules, which are released by one cell, then diffuse
and make contact with another cell. The reaction set

ri : Ai +Bi � C , for i ∈ {1 . . . n} (1)

describes such a system with n cells. Its symmetry is illustrated in Figure 1. A
reaction between a pair of A and B, within the ith cell, results in a C, which
is expelled to the extracellular medium. Note that the extracellular C lacks
a positional index, unlike the other molecules. C can migrate back from the
extracellular medium to any of the n cells. The symmetry of this minimal system
clearly appears, with C as the center, around which the n equal cells gather, and
through which they communicate. Our model reduction strategy uses a notion
of symmetry based on invariance under certain changes of the chemical reaction
network. Intuitively, we observe that the global dynamics of the system remains
invariant as we swap cell indices, because all cells are equal.
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Symmetries in cell-to-cell communication are widespread, going far beyond
the illustrative example of Figure 1. In bipartite bacterial communities, inter-
species exchange of metabolites can enable important metabolic functions, that
are not reached by either of the isolated species [29]. One can distinguish be-
tween different types of metabolic interaction, the mechanisms of which remain
under debate [34]. However, symmetries in the reaction network for cell-to-cell
communication are a common feature to most of them. A last prominent ex-
ample is the one considered by A. Turing in [30]: a ring of identical cells with
rotational symmetries.

The community effect is thought to be a widespread phenomenon in animal
development [2,5,16]. It allows a cell population within an embryo to forge a
common identity, that is, to express a common set of genes. This synchronization
is based on cell-to-cell communication, in which cells produce and exchange a
diffusible molecule, resembling C in (1). Only when the cell population exceeds
a critical number nc, the common gene expression is maintained over extended
periods of time. With fewer cells, after an initial induction, gene expression soon
ceases.

A recent model for the community effect in Xenopus laevis [27], detailing on
intracellular cascade of gene expression, mediated to intercellular communica-
tion, requires 17 reactions per cell. The community effect threshold nc is about a
hundred cells. Analysis of this model requires stochastic simulation over a wide
range of parameters, cell numbers, and over extended periods of time, in or-
der to yield realistic results, and namely to determine the critical number. The
computational cost for the stochastic simulation becomes intractable, due to the
multiplication of numbers of reactions per cell and numbers of cells. Determin-
istic approximations, on the other hand, do not provide precise predictions. The
model reduction technique in combination with MC, as presented in this paper,
provides a more convincing stochastic approximation of this model. Comparison
of the solution of the truncated moment ODEs with stochastic simulations shows
that MC is significantly closer to the stochastic dynamics than the deterministic
solution.

Related work. Various symmetries have been exploited previously to facilitate
finding the solutions of the biochemical models and to infer their properties.
In [26], results from group theory are applied to the analytical solution of a
simple model of gene expression, demonstrating how interesting properties of
the model follow from continuous symmetries. In [13], symmetrically connected
cell networks are considered, and some properties of them are shown in the
deterministic regime. In [3], a model reduction technique is presented, which
is based on particular kinds of symmetries expressed in Kappa language. That
model reduction is applicable either to the deterministic approximation or, in
fewer cases, to the stochastic semantics; the stochastic version of that reduction
is not applicable to the community effect model. Here we present a different
method, which provides a way to reduce higher order approximations (MC),
under a different set of assumptions.
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Paper outline. Section 2 reviews MC, Section 3 shows symmetry-based reduc-
tion, Section 4 applies our approach to a community effect model, and Section 5
concludes.

2 Approximate Stochastic Analysis

In this section we assume that the chemical reactions follow the mass action
law, the first discovered and widely used kinetic law. Therefore the kinetics of a
reaction can be described by a single parameter r, called rate constant, as well
as stoichiometric coefficients.

For a system of n chemical species A1, . . . , An, define tuples

(r,α,β) ∈ Reacts = R>0 × Nn × Nn

such that (r,α,β) represents the reaction

α1A1 + . . .+ αnAn
r−→ β1A1 + . . .+ βnAn

In the following, we index chemical species with i and reactions with j. A system
of k chemical reactions is a set R = {U1, . . . , Uk} of k tuples (r,α,β). For this
set, we define the reactant stoichiometric matrix R, the product stoichiometric
matrix P , and the vector of rate constants r such that:

∀Uj ∈ R : denote (r,α,β) = Uj :
rj = r, ∀i : Rij = αi, Pij = βi

so that a chemical system is fully determined by the tuple (r, R, P ).

Example 1. Given the 3 molecular species A, B and C, the tuple

((
0.1 0.3

)
,

⎛⎝1 0
1 0
0 1

⎞⎠ ,
⎛⎝0 1
0 1
1 0

⎞⎠) represents the reactions

{
A+B

0.1−−→ C
C

0.3−−→ A+B

2.1 Deterministic Dynamics: The Coarser Approximation

The computational analysis of chemical reaction systems often assumes deter-
ministic behavior. Following the mass action law, at any given time t a system’s
dynamics is driven by the concentrations of the reacting chemical species. For
example, given some initial condition, the dynamics of Example 1 would be
described by a set of ordinary differential equations

d[A]

dt
=
d[B]

dt
= −0.1 [A][B] + 0.3 [C]

d[C]

dt
= 0.1 [A][B] − 0.3 [C] (2)

where [X ] denotes the concentration of the species X . Despite the fact that
concentrations of species can only assume discrete values, the deterministic ap-
proach is often justified by arguing that the high number of molecules usually
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present in a solution make these discrete values so close that continuous do-
mains for concentrations constitute a safe approximation. The corresponding
mathematical argument is that the limit behavior of the system of Example 1 is
exactly described by (2) when the volume of the system tends to infinity while
the concentrations remain the same.

Formally, given a system of chemical reactions (r, R, P ), its state space under
the deterministic assumption is the space of the concentrations of the chemical
species A1, . . . , An in the system. Concentration of every species is assumed to
be a non-negative real number. Its dynamics is defined, for a given initial state
ν0, by the function of time

x(t) : R≥0 → Rn
≥0, x is the solution of the ODE

{
ẋ = (P −R)λ

x(0) = ν0

where λ is the vector of reaction rate laws in state x(t), that is, for reaction
number j ∈ {1, . . . , k}, the rate law is λj = rj

∏
i xi

Rij .

Example 2. For the system of Example 1, we have

λ =

(
0.1x1x2
0.3x3

)
and P −R =

⎛⎝−1 1
−1 1
1 −1

⎞⎠
leading to the system of ODEs⎧⎨⎩

ẋ1 = 0.3 x3 − 0.1 x1x2
ẋ2 = 0.3 x3 − 0.1 x1x2
ẋ3 = 0.1 x1x2 − 0.3 x3

(3)

2.2 Stochastic Semantics

The deterministic assumption is often invalid at the cellular scale, where the
number of molecules per species and cell can be low – one for genes, or a few
for mRNA. In this case, it is preferable to formalize the stochastic behavior
of the system in terms of a continuous time Markov chain (CTMC), whose
states represent the different possible configurations of the system: each state is
determined by the number of molecules per chemical species. Formally, we can
define a CTMC as a collection {x(t) | t ∈ R≥0} of n time-dependent random
variables with state space in Nn.

The system’s evolution is then interpreted stochastically: at a given time t,
a probability is assigned to each state and its variation in time is governed
by a differential equation. The set of all such equations, one per state of the
system, constitutes the chemical master equation (CME), whose solution gives
the complete information about the system’s kinetics at any time. If πν(t) =
Pr(x(t) = ν) is the probability of being in the state ν at time t, the CME
becomes [32]:

π̇ν =
∑

(r,α,β)∈R
r

(
ν +α− β

α

)
πν−α+β − r

(
ν

α

)
πν (4)
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where
(
a
b

)
denotes the product

∏
i

(
ai

bi

)
.

The number of states (and of corresponding differential equations in the mas-
ter equation) scales exponentially with the number of species and possible num-
ber of molecules per species. When some reaction creates unbounded numbers
of new molecules, it even becomes infinite (but countable). In this case, while
it is still possible to find solutions of the CME for some particular systems,
the general, automatic numeric solution of the CME becomes intractable. As a
consequence, one can only obtain partial or approximated information on the
CME’s solution.

2.3 Moments and Moments Calculation

A radically different perspective on a system is, instead of computing state prob-
abilities, to directly consider the time evolution of the moments of its variables.
Given a vector m ∈ Nn

≥0, the mixed moment μ(m) about zero (i.e. uncentred) of
a subset of variables defined by non-zero elements of m is

μ(m) :

{
R≥0 → R≥0

t �→ E[xm(t)]

where E denotes the expectation, and xm denotes a product
∏

i xi
mi . Therefore,

μ(1,0,...,0) denotes, for instance, the dynamics of the expectation of the random
variable x1. The order of moment μ(m) is the sum of the indices

∑
imi.

This change of perspective arises when general characterizations of a model
matter more than the probability of each single state. For example, one may only
need to extract the average concentrations of species in time and their stochastic
noise. Those correspond to the first two (central) moments: mean and variance.

The moment-based analysis of a chemical system requires a preliminary step,
which is to replace the state-centric description of the dynamics given by the
CME with a new description directly focused on the evolution of the value of
moments in time. In practice, this corresponds to building a new set of differ-
ential equations, one for each moment, and can be performed in several ways.
For example, when the rate functions associated with chemical reactions are
polynomial, moment equations may be calculated using the moment-generating
function [10], or equivalently adopting a generator operator [18] or by a probabil-
ity generating function [32]. Extensions to more general cases may require more
sophisticated methods, e.g. when rational rate functions are considered [24].

Although the model reduction presented in this paper is valid for models with
kinetic laws of any kind, here we follow the method of moment generation pre-
sented in [32], which is reasonably simple and covers those kinetic laws needed for
Section 4 (the mass-action family). According to this method, moment equations
can be calculated thanks to the probability-generating function

φ(z, t) = E[zx(t)] =
∑
ν

πν(t)z
ν (5)

where z is a formal parameter consisting of a vector of variables (z1, . . . , zn).
The introduction of z allows the calculation of moments of any order by applying
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properly the operation of partial differentiation to φ with respect to the variables
z1, . . . , zn, and then by setting their value to 1. For example, the expectation of
x1 of Example 1 can be calculated by differentiating φ once with respect to z1,
and then by setting z = 1 = (1, 1, 1):

φz1(z, t)|z=1 =
(∑

ν

ν1πν(t)z
(ν−(1,0,0))

)
|z=1

=
∑
ν

ν1πν(t) = E[x1(t)] = μ
(1,0,0)

where φz1 denotes the partial derivative ∂φ
∂z1

. The same procedure applies to
calculate the expectation of x2 (respectively x3), where one has to differentiate
with respect to z2 (respectively z3). Second order factorial moments can be
calculated by differentiating twice with respect to the corresponding variables,
from which the general (uncentred) moments can be obtained, for example:

(∂kφ
∂zk1

)
|z=1

= E[x1(t)(x1(t)− 1) . . . (x1(t)− k + 1)] = μ
(k,0,0)
F =

k∑
i=1

s(k, i)μ(i,0,0)

where μF is a factorial moment and s(k, i) = (−1)k−i
(
k
i

)
is the Stirling’s number

of the first kind. This procedure generalizes to any order, so that univariate
and multivariate higher order factorial moments are calculated by differentiating
the proper number of times with respect to each variable in z. Joint factorial
moments can be expressed in terms of general moments as follows:

∂mφ

∂zm |z=1
=
∂m1

∂zm1
1

. . .
∂mnφ

∂zmn
n |z=1

= μ
(m)
F =

m1∑
i1=1

· · ·
mn∑
in=1

μ(m)
n∏

j=1

s(mj , ij) (6)

From (4) and (5) it is possible to derive (see [8], (5.60) modified for Kurtz-type
combinatorial mass action model used here) the following partial differential
equation:

φt(z, t) = Hφ(z, t) (7)

where H is the so-called Hamiltonian operator, obtained by the stoichiometric
coefficients and the reaction rates of the chemical system:

H =
∑

(r,α,β)∈R

r

α!
(zβ − zα)

( ∂
∂z

)α
(8)

where α! denotes the product
∏

i αi!.
The procedure for calculating moment equations summarizes as follows:

1. Determine the Hamiltonian operator for the reaction system by (8).
2. Calculate the moment equation for any desired moment μ(m) = μ(m1,...,mn)

by applying the partial derivative ∂m

∂zm to both sides of equation (7) and
setting z to 1.
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3. Convert higher order factorial moments in the equation to general moments
using (6) (the first order factorial moments are equal to the general mo-
ments).

Example 3. The Hamiltonian for Example 1 is

H = 0.1 (z3 − z1z2)
∂2

∂z1∂z2
+ 0.3 (z1z2 − z3)

∂

∂z3

To get the differential equation for μ(1,0,0), we first apply to (7) partial differen-
tiation with respect to z1 and then set z = 1:

φtz1(z, t)|z=1 = φz1t(z, t)|z=1 = μ̇(1,0,0)

The same procedure is applied to the r.h.s.:( ∂
∂z1
Hφ(z, t)

)
|z=1

=
( ∂
∂z1

(
0.1 (z3 − z1z2)φz1z2(z, t)

))
|z=1

+( ∂
∂z1

(
0.3 (z1z2 − z3)φz3(z, t)

))
|z=1

=
(
−0.1z2φz1z2(z, t) + 0.1 (z3 − z1z2)φz2

1z2
(z, t)

)
|z=1

+(
0.3 z2φz3(z, t) + 0.3 (z1z2 − z3)φz1z3(z, t)

)
|z=1

By applying the property of the probability-generating function, we obtain:

μ̇(1,0,0) =
( ∂
∂z1
Hφ(z, t)

)
|z=1

= −0.1 μ(1,1,0) + 0.3 μ(0,0,1)

Similarly, one finds that

μ̇(0,1,0) =− 0.1 μ(1,1,0) + 0.3 μ(0,0,1) (9)

μ̇(0,0,1) =+ 0.1 μ(1,1,0) − 0.3 μ(0,0,1) (10)

μ̇(1,1,0) =− 0.1 μ(2,1,0) + 0.3 μ(1,0,1) − 0.1 μ(1,2,0)+

0.3 μ(0,1,1) + 0.1 μ(1,1,0) + 0.3 μ(0,0,1) (11)

It is important to note that the moment equations are always linear, like those
of the CME (4).

The implementation of analysis tools based on moments usually relies on
libraries for symbolic computation that help to automate the calculation of mo-
ment equations explained above.

2.4 Moment Closure

Switching from a state-based description to a moment-based one seemingly hap-
pens without any particular gain (or loss). Indeed, given a system with a finite
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number n of states, the number of (independent) equations in the CME is n− 1.
Its characterization in terms of moment equations gives a different set of ODEs,
but with the same number n − 1 of (independent) equations. If the CME is
defined by an infinite (countable) number of equations, the same holds for the
corresponding system of moment equations. Mathematically, both descriptions
contain the same information: switching back and forth between them is fully re-
versible. Practically, the high number of equations renders both systems equally
intractable. However, information is differently distributed across the two ODE
systems, such that different approximation techniques can be applied.

Let us point out a dependency in the structure of equation systems associated
to moments: an mth order moment generally depends on moments of order at
most m + h, where h is a constant whose value depends on the stoichiometry
matrix. In Example 3 we have h = 1, so that each moment of order m depends
– besides lower and equal order moments – on some moment of order m + 1:
for example, the expectation values of the number of molecules per chemical
species μ(1,0,0), μ(0,1,0), μ(0,0,1) depend on the moment μ(1,1,0) of order two, which
in turn depends on some moments of order three, and so on. In cases when
we were only interested in the mean number per chemical species, we could
confine our attention to first order moments. If we also wanted information on
the stochastic noise, we could also consider second order moments (and so on:
the higher the order considered, the more complete the information about the
probability distribution of chemical species). The problem is then how to break
the previously described infinite cascade of dependencies.

Moment closure denotes a wide set of techniques allowing to effectively break
infinite cascades. The closure usually follows from some assumption on the proba-
bility distribution of chemical species: the closure of order m, for example, allows
rewriting mth order equations, such that they no longer depend on higher order
moments. Breaking the cascade comes at the cost of introducing an approxima-
tion error: the more faithful is the assumption allowing the closure, the closer to
the precise solution is the resulting set of equations.

Example 4. Assume the correlation between species A and B in Example 1,
given time, is negligible. Then the covariance of x1 and x2 is zero at any time t.
Thus,

0 = Cov(x1, x2) = E[(x1 − μ(1,0,0))(x2 − μ(0,1,0))]
= E[x1x2]− μ(1,0,0)μ(0,1,0)

and from this it follows that

μ(1,1,0) = E[x1x2] = μ
(1,0,0)μ(0,1,0) (12)

By applying (12) in (9)-(10), one obtains

μ̇(1,0,0) =− 0.1 μ(1,0,0)μ(0,1,0) + 0.3 μ(0,0,1)

μ̇(0,1,0) =− 0.1 μ(1,0,0)μ(0,1,0) + 0.3 μ(0,0,1)

μ̇(0,0,1) =+ 0.1 μ(1,0,0)μ(0,1,0) − 0.3 μ(0,0,1)
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so that equation (11) is no longer considered. Remarkably, the above set of closed
moment equations corresponds exactly to the ODE system (3). This simple re-
sult supports a different interpretation of the deterministic approximation intro-
duced with equation (2). Under this interpretation, the continuity of the domain
of species concentrations is fully justified without introducing any limit behav-
ior, because the “concentration” is instead thought as the expected value of the
number of molecules of chemical species. Moreover, the set of ODEs describing
the (approximate) evolution of expectations is not derived by the application of a
limit involving the number of molecules: it follows as a direct consequence of the
assumption of zero correlation between the species participating in higher-order
reactions. Although the concentration limit and the zero correlation assumptions
are inherently related, they lead to the same result through different mathemat-
ical procedures.

More interesting applications of moment closure are those where the determin-
istic approximation fails to capture the real behavior of the system. Here, higher
order closures may be applied in order to get better quantitative approximations,
as well as information about the stochasticity of the system under analysis. Im-
portant results in this direction are presented in [21] for the class of zero central
moment closures, where the closure of order m is obtained by setting to zero
all (m+ 1)th central moments. For this class, the approximation error has been
proven to decrease as the order of the closure increases. Similar results have
been shown in [28] for the first orders of another class of closures, obtained by a
procedure called derivative matching.

Remarkably, the first in the class of zero central moment closures is the de-
terministic approximation applied in Example 4, therefore it is usually regarded
as the coarsest among moment closure approximations.

Normal closure. The second closure of this class, one of the first to be applied
and still widely used, is the so called normal closure, consistent with the as-
sumption that the counts of all chemical species, at any time point, is jointly
normally distributed. This assumption is obviously wrong: first, the support of
a Gaussian distribution is continuous, while the probability distributions associ-
ated with chemical systems are discrete (in fact their support is given by the set
of reachable states). Moreover, the support of normal distributions also includes
negative values: in the context of chemical systems, this would correspond to
allowing states with a negative number of molecules, which is clearly impos-
sible. However, this assumption is one of the easiest to apply and works very
well in many practical cases, including the study of the community effect model
presented in Section 4.

Formally, the normal closure is obtained by setting to zero each central mo-
ment of order three. Given three random variables x1, x2, x3, the closure follows
by the equation
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0 = E
[
(x1 − E[x1])(x2 − E[x2])(x3 − E[x3])

]
= E[x1x2x3] + 2E[x1]E[x2]E[x3]

− E[x3]E[x1x2]− E[x2]E[x1x3]− E[x1]E[x2x3]

from which we get

E[x1x2x3] =E[x3]E[x1x2] + E[x2]E[x1x3]+

E[x1]E[x2x3]− 2E[x1]E[x2]E[x3] (13)

Example 5. In order to apply (13) to (11), we must calculate (13) for the mo-
ments μ(2,1,0) and μ(1,2,0):

μ(1,2,0) = E[x1x
2
2] =2 E[x2]E[x1x2] + E[x1]E[x

2
2]− 2E[x1]E[x2]

2

=2 μ(0,1,0)μ(1,1,0) + μ(1,0,0)μ(0,2,0) − 2 μ(1,0,0)μ(0,1,0)
2

μ(2,1,0) = E[x21x2] =2 μ(1,0,0)μ(1,1,0) + μ(0,1,0)μ(2,0,0) − 2 μ(0,1,0)μ(1,0,0)
2

By substituting in (11) we get

μ̇(1,1,0) = 0.3 μ(1,0,1) + 0.3 μ(0,1,1) + 0.1 μ(1,1,0) + 0.3 μ(0,0,1)

+ 0.1 (2 μ(0,1,0)μ(1,0,0)
2 − 2 μ(1,0,0)μ(1,1,0) − μ(0,1,0)μ(2,0,0))

+ 0.1 (2 μ(1,0,0)μ(0,1,0)
2 − 2 μ(0,1,0)μ(1,1,0) − μ(1,0,0)μ(0,2,0))

so that μ̇(1,1,0) no longer depends on third order moments. In order to eliminate
their dependencies on third order moments, the same steps apply to the equations
of any further moment of order two – including those of μ(2,0,0), μ(0,2,0), μ(1,0,1)

and μ(0,1,1) in the above equation.
The resulting system of ODEs, typically non-linear after the closure, can be

solved numerically. The initial values for the moments are usually given under
the zero-variance assumption, that is μ(m)(0) = xm(0).

3 Model Reduction Based on Symmetries

Moment closure of order m for a system with n species generates O(nm) ODEs,
because moments for all combinations of n species may be included. The equa-
tion system may thus become difficult to handle. Attempts were made to simplify
models based on various properties, e.g. conservation laws and bounds on num-
bers of species [32]. Here we present a model reduction method based on sym-
metries in the reaction set, which can reduce the model dramatically in some
cases.
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3.1 Reduction by Example

We demonstrate the idea by a simple example. Consider the set of p = 2n + 1
chemical species A1, . . . , An, B1, . . . , Bn, C associated with state random vari-
ables x(t) = (A1(t), . . . , An(t), B1(t), . . . , Bn(t), C(t)) and the following set of
reactions

R = {Ai +Bi

κ1

�
κ2

C | i ∈ {1, . . . , n}}

We assume that for any fixed time t, R and an initial state x(0) = ν0 ∈ Np

defines a probability distribution over x(t) with probability mass function πν(t).
For instance, considering combinatorial mass action kinetics, πν(t) will be the
solution of the CME (4).

We want to identify moment equalities from simple symmetries in the reac-
tion system. Since a moment is fully defined by the marginal distributions of the
variables composing it, we actually identify equal marginal distributions from
symmetries. The marginal distribution of the variables A1 and B1 is the proba-
bility distribution of this set of variables, ignoring the others. By symmetry of the
reaction set, we mean that the reaction set remains invariant under permutation
of the chemical species. An obvious permutation of this kind for R is swapping
A1 with A2 and B1 with B2. In that case, R remains unchanged. Suppose we
further assume that the initial state is invariant with respect to the same per-
mutation. That is, initial numbers of A1 and A2 are the same, as well as those
of B1 and B2. Because we consider probability distributions that are completely
defined by the reactions R and the initial state, the stochastic dynamics of the
variable set {A1, B1} cannot be distinguished from that of {A2, B2}. As proved
below, this means that their marginal distributions are equal

Pr(A1(t) = a,B1(t) = b) = Pr(A2(t) = a,B2(t) = b), ∀t ∈ R≥0, a, b ∈ N

Permuting of C with itself, we get

Pr(A1(t) = a,B1(t) = b, C(t) = c) = Pr(A2(t) = a,B2(t) = b, C(t) = c),

∀t ∈ R≥0, a, b, c ∈ N (14)

Importantly, this entails the moment equalities E[Ai
1B

j
1C

k] = E[Ai
2B

j
2C

k] for
any i, j, k ≥ 0. As another example of symmetry, assuming n ≥ 4 one can swap
A1 with A3, A2 with A4, B1 with B3, B2 with B4, C with itself. Again, also
assuming invariance of the initial state by this permutation, we have

Pr(A1(t) = a1, A2(t) = a2, B1(t) = b1, B2(t) = b2, C(t) = c) =

Pr(A3(t) = a1, A4(t) = a2, B3(t) = b1, B4(t) = b2, C(t) = c),

∀t ∈ R≥0, a1, a2, b1, b2, c ∈ N (15)

It is straightforward to use equalities of the form (14)-(15) to reduce a set of mo-
ment equations of the system. For example, the system considered above gener-
ates, among others, the following moment equations for second order
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moments:

dE[AiC]

dt
= κ1

( n∑
j=1

E[AiAjBj ]
)
− κ1(E[AiBi] + E[AiBiC]) −

κ2(E[C] − E[C2] + n · E[AiC]) i = 1 . . . n (16)

Using relations as (14), we can infer the following moment equalities: E[AiC] =
E[A1C], E[AiBi] = E[A1B1], E[AiBiC] = E[A1B1C], E[A

2
iBi] = E[A2

1B1],
and using equalities as (15) we have E[AiAjBj ] = E[A1A2B2], i = 1 . . . n, j =
1 . . . n, i �= j. Therefore we can equivalently rewrite all n equations in (16) into
one:

dE[A1C]

dt
= κ1((n− 1)E[A1A2B2] + E[A

2
1B1]) −

κ1(E[A1B1] + E[A1B1C]) −
κ2(E[C] − E[C2] + n · E[A1C]) (17)

We can’t exchange moments for Ai and Bi because they may have different initial
conditions in general. Using this approach, the system of moment equations up
to order two is reduced from 2n2+5n+2 to 11 ODEs for any n ≥ 2. The rest of
the equations are redundant and can be safely excluded. The transformation is
exact, and we can recover the dynamics of the original system from the reduced
one. In order to compute the moment dynamics, it is necessary to perform a
closure of the reduced system as described in Section 2.4.

3.2 Formal Reduction

We now formally define the previous notions. We however won’t make use of
marginal distributions, since equivalence of the full joint probability distribution
entails equivalence of its marginal distributions.

We consider permutations σ over the set of species indices {1, . . . , n}. Permu-
tations of vectors and reaction sets are defined as

aσ = (aσ(1), . . . , aσ(n))

Rσ = {(κ,ασ,βσ) | (κ,α,β) ∈ R}

We say that a vector a, resp. a reaction setR, is σ-invariant, iff a = aσ, resp.R =
Rσ. We denote P the function that, for a given set R of reactions, initial state
ν0 and time t, gives a probability distribution over the counts of the species with
probability mass function πν(t). Somehow P provides the stochastic semantics of
the reactions. For example, P could be the stochastic semantics of the reactions
(Section 2.2), or an approximation of it. We make the following assumption
about P .

Assumption 1. Let πν(t) = P(R,ν0, t) and π′ν(t) = P(Rσ,ν0σ, t), for some
reaction set R, initial state ν0, time t, and permutation σ of the species indices.
For any ν ∈ Nn, we have πν(t) = π

′
ν(t).
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This assumption relates permutations at the level of reactions to permutation
at the level of its stochastic semantics. It just states that the stochastic dynamics
of a species A provided by P does not depend on its position in the state vector.
Saying it differently, we assume that the stochastic semantics is insensitive to
species renaming, provided that this renaming doesn’t create name conflicts.
This is a reasonable assumption that is, for instance, satisfied by the master
equation.

Theorem 1. Let R be a set of k reactions of n species, ν0 ∈ Nn be an initial
state, and σ be a permutation over {1, . . . , n}. Let πν(t) = P(R,ν0, t), if R and
ν0 are σ-invariant, then, for any ν ∈ Nn, πν(t) = πνσ(t).

Proof. This theorem is a straightforward consequence of the above assumption.
Indeed, let πν(t) = P(R,ν0, t) and π′ν(t) = P(Rσ,ν0σ, t), since R = Rσ and
ν0 = ν0σ, we have πν(t) = π

′
ν(t). By the Assumption 1 it follows that πν(t) =

π′νσ
(t) = πνσ

(t). ��

Corollary 1. Let R be a set of k reactions of n species, ν0 ∈ Nn be an initial
state and σ a permutation of the species indices. If R and ν0 are σ-invariant,
then μ(m) = μ(mσ).

Proof. At any time t we have

μ(m)(t) = E[xm(t)]

=
∑

ν ν
mπν(t)

=
∑

ν ν
mσ
σ πν(t) by commutativity of multiplication

=
∑

ν ν
mσ
σ πνσ (t) by Theorem 1

= E[xmσ (t)] = μ(mσ)(t)

��

We denote by Σ(R,ν0) the set of permutations σ such that R and ν0 are σ-
invariant. By Corollary 1, this set defines equivalence classes [μ(m)]Σ of moments,
i.e. the set of moments μ(m

′) such that μ(m
′) = μ(mσ) for some σ ∈ Σ =

Σ(R,ν0). As usual, we also write [μ(m)]Σ for the representative moment of this
set that is, for instance, the smallest of those moments for the lexicographical
order on Nn. We denote μk a vector of all M moments up to order k. Let

M(R, k) = {μ̇(m) = L · μh | order(m) ≤ k, L ∈ RM}

be a set of moment equations obtained by some moment generation method,
with moments up to order k (recall that moment equations are always linear). h
is the maximum order of the moments in the equations, it can be greater than
k for systems of moment equations with an unclosed cascade of dependencies.

The reduced set of moment equations is defined by

Mred(R,ν0, k) = {ρ(μ̇(m)) = L · ρ(μh) | (μ̇(m) = L · μh) ∈M(R, k)}
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Fig. 2. Model of a community effect in Xenopus [27]. The extracellular molecule Bpout
mediates communication between n cells with identical intracellular reaction network.

where ρ is the substitution of moments for their representative

ρ = {μ(m) is substituted by [μ(m)]Σ | order (m) ≤ k and Σ = Σ(R,ν0)}

This transformation just excludes fromM(R, k) repeated equations for the vari-
ables which are provably equal, and therefore is exact.

4 Application to a Community Effect

We applied the analytical tools described in this paper to a model of a commu-
nity effect in Xenopus [27]. We derived a second order MC using normal approx-
imation for simplicity. In order to do that efficiently, we reduced the moment
equations as described in Section 3. Comparison of the solution of the truncated
moment ODEs with stochastic simulations shows that the MC is significantly
closer to the stochastic dynamics than the deterministic solution.

4.1 Community Effect Model

The model of a community effect in Xenopus [27] is summarized in Fig. 2. It
features the species Bpout for communication between n cells, each having the
same intracellular network: within a cell, Bpout triggers a cascade of two genes,
and results in more Bpout for cell-to-cell communication.

The intracellular details are: In the receiving cell, a signaling mechanism trans-
forms Bpout into the Cp protein, which binds to the first gene, and activates its
transcription into mRNA Ar, which in turn translates into the Ap protein. Ap
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activates the second gene, yielding mRNA Br, which translates into the Bpin
protein. The model distinguishes passive modes of genes (Agoff , Bgoff ) from ac-
tive (Agon, Bgon) – where genes are bound by their respective activator proteins,
and constantly produce mRNA.

Leaving its original cell, the protein Bpin becomes Bpout when joining the
common pool for cell-to-cell communication. From there, it can reach any cell in
the system, and activate the gene cascade there. This closes the positive feedback
loop of the community effect. Because diffusion is assumed infinitely fast, Bpout
equally likely reaches any of the n cells.

Finally, all species except the genes can degrade, yielding the pseudo species
φ. The complete model for n cells, with 17n + 1 reactions and the associated
rates, is provided in a supplementary file.

Studies of the deterministic approximation of this model have shown that
its behavior changes if the number of cells, n, exceeds a threshold nc, that we
call the critical number. If n > nc, all cells continuously express their genes,
otherwise all activity ceases after a short time.

Since gene and mRNA concentrations are always low in this system, stochastic
effects may play a significant role in its dynamics. Indeed, stochastic simulations
indicate that nc = 97 derived from the deterministic approximation in [27] may
be imprecise: at n = 100 we observed that in all 1000 simulations the gene
expression stopped early. We studied the stochastic behavior of this system with
the MC method.

4.2 Reduction of the Community Effect Model

The community effect model’s structure resembles a star, just as Figure 1 on
page 50 does. It is easy to see that the community effect model exhibits the
symmetries required by Theorem 1, which allows to reduce its moment equations
for any number of cells to a system of constant size, similar to the example in
Section 3.1.

The model contains 9 species per cell, and the procedure described in Sec-
tion 2.3 generates 40.5n2 + 22.5n+ 2 moment equations1 up to order two for n
cells. For 120 cells, which is near this system’s true nc, it would generate 585902
equations. This by far exceeds the processing capabilities of the software we
used. The reduced model contains 146 equations for any n. The deterministic
approximation, which is equivalent to the first order MC, can also be reduced
using the same method. This kind of reduction, among others, has been done in
[27], where the deterministic approximation consisted of only 8 ODEs for any n.
Our Maple2 implementation of the MC method and the reduction for this model
are available online3.

1 This is always an integer.
2 http://www.maplesoft.com/
3 http://www.lifl.fr/~batmanov/cmsb2012-files/

http://www.maplesoft.com/
http://www.lifl.fr/~batmanov/cmsb2012-files/
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Fig. 3. Traces of Bpout over time for systems of sizes below and above nc, computed
using stochastic simulations, deterministic approximation and second order MC using
normal approximation.

4.3 Comparison of the Approximations

Figure 3 plots the Bpout dynamics, computed by three different approximations.
First is a mean of many stochastic simulations. As the number of simulations in-
creases, this converges to the true mean - however it is noisy and the simulations
take very long time. The simulations were done using COPASI software [19].
Second is a (usual) deterministic approximation of the system, with one ODE
per species, which is the fastest in terms of computation. However, it tends to
diverge from the stochastic estimates. This indicates the presence of significant
stochastic effects in the model. Third is a reduced MC of order two, using the
normal approximation for truncation. The normal approximation is not the best
choice for chemical reaction systems generally, but it is simple to implement and
it gives good results in this case.

Due to the complexity of the resulting system of ODEs in the MC, we couldn’t
derive an analytical solution for nc. By examining the numerical solutions for
different values of n, we found that the MC gives nc = 117, the same as derived
from statistical analysis of stochastic simulations.

The deterministic approximation, on the other hand, predicts nc = 97, and
therefore miscalculates the qualitative behavior of the system for a range of
n. In addition, the deterministic estimate of Bpout strongly diverges from the
stochastic one, especially when the cell number n is close to nc.

5 Conclusion

The moment closure method reviewed here is a flexible tool for approximate
stochastic analysis. It allows manipulations of moment equations similar to those
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that can be done with deterministic ODEs, but including, approximately, the
stochastic effects.

Model reduction is one kind of such manipulations. It aims to eliminate re-
dundant variables from the system of ODEs, making it easier to solve. For MC,
which tend to generate a large number of ODEs, reductions are especially im-
portant. We have described a model reduction method based on symmetries,
which in case of MC is more complicated than what is used with deterministic
approximation.

Currently, the only way to exploit such symmetries while performing stochas-
tic analysis of a system is through MC: reduced models are not amenable to
Gillespie simulation. If the corresponding species in the cells are ”lumped” to-
gether, in the same way as in the deterministic approximation, the results diverge
quickly from the non-reduced system. Also note that, as the order of the closure
grows, the symmetric reduction can eliminate a smaller fraction of moments,
suggesting that for the limit case of the exact solution the gain from the re-
duction will be negligible. We believe that, for the community effect model, the
approach presented here provides the only tractable analysis.

Symmetry-based reduction is potentially applicable to many highly regular
systems. For example, in [3] a model reduction method for deterministic approx-
imation is applied to a system that contains a protein with symmetric activation
sites. That system is also symmetric in the sense described here, w.r.t. exchang-
ing activation states for different sites. Thus, its MC could be reduced with our
method as well. Another example is a discrete ring of identical cells, considered in
[30], which is symmetric under rotation of all cells. Many higher order moments
could be eliminated with our method using this property.

The approach presented here can be extended in a number of ways. Checking
and finding the required symmetric properties of a reaction set can be automated
rather easily. The symmetries considered here are just the automorphisms of the
reaction graph with the additional constraints that the initial conditions of the
corresponding species must be equal and the rates of the corresponding reactions
must be equal. The problem of finding all automorphisms belongs to the NP class
of complexity, however for real systems the requirement of having the same rates
and initial conditions restricts the number of possible symmetries. Verification
of a specified symmetry can be done in polynomial time.

One can also directly derive a reduced MC from a rule-based representation,
without expanding it to the full system. This becomes interesting if the expanded
system’s size is huge, but the system is highly symmetric and can be described
by a manageable set of moment equations. It resembles what is done in [3].

However, the current method is not applicable to spatial systems with borders.
By borders, we mean the outermost cells in a one dimensional row of cells, or
in a two-dimensional grid, those cells that frame the grid. In such system, a
distinct distance from the border(s) uniquely identifies each cell. For example,
one-dimensional spatial models of the community effect [1] can be reduced in half
by central symmetry. But, for a second order MC, the quadratic dependency of
number of equations on the system size remains. To deal with this, [1] constructed
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systems of partial differential equations (PDEs), as limit cases when the number
of cells tends to infinity and simultaneously their size goes to zero. While this
allows efficient treatment in the deterministic regime, stochastic analysis is still
required to run many long simulations.

Moment closures for spatial models have been previously derived in ecology
[9] and statistical physics [22], and it may be possible to infer them automatically
for chemical reaction systems as well.
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Abstract. Exploring the community structure of biological networks can reveal 
the roles of individual genes in the context of the entire biological system, so as 
to understand the underlying mechanism of interaction. In this study we explore 
the disjoint and overlapping community structure of an integrated network for a 
major fungal pathogen of many cereal crops, Fusarium graminearum. The 
network was generated by combining sequence, protein interaction and co-
expression data. We examine the functional characteristics of communities, the 
connectivity and multi-functionality of genes and explore the contribution of 
known virulence genes in community structure. Disjoint community structure is 
detected using a greedy agglomerative method based on modularity 
optimisation. The disjoint partition is then converted to a set of overlapping 
communities, where genes are allowed to belong to more than one community, 
through the application of a mathematical programming method. We show that 
genes that lie at the intersection of communities tend to be highly connected and 
multifunctional. Overall, we consider the topological and functional properties 
of proteins in the context of the community structure and try to make a 
connection between virulence genes and features of community structure.  Such 
studies may have the potential to identify functionally important nodes and help 
to gain a better understanding of phenotypic features of a system. 

Keywords: Community structure, overlapping communities, integrated networks, 
multi-functional genes, phytopathogenic fungi. 
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1 Introduction 

In addition to genome sequence data, a large amount of multiple complimentary types 
of biological data is available for many organisms, such as gene expression, protein 
interactions and phenotypic information. Integration of data from various sources 
gives rise to complex networks where nodes are proteins (or other gene products) and 
edges capture intricate associations between them [1, 2]. The analysis of topological 
features in these networks can not only uncover information about the underlying 
functional properties of individual nodes and relevant gene products, but it can also 
reveal the principles of how genes group to assemble entire cellular systems.  

Network analysis is therefore a popular means of investigating the link between 
topological and functional features in biological systems. Community structure 
detection in biological networks is widely employed to derive an understanding of 
molecular interactions. The standard community structure detection problem involves 
the identification of a partition of a complex network into disjoint communities (also 
sometimes known as modules or clusters) such that interactions within a community 
are maximised and interactions between communities are minimised. Many 
approaches exist, including divisive [3], agglomerative [4], spectral [5] and 
mathematical programming methods [6-8].  The communities detected represent 
semi-independent functional units of an entire system, where members are likely to 
share some common characteristic. The identification of such communities allows 
information on members with unknown functional properties to be inferred. 

However, the constraint of disjoint communities, where a node can only belong to 
one community, may not offer the most realistic abstraction of a system. For example, 
some proteins can carry out more than one task or belong to more than one protein 
complex [9, 10]. The identification of overlapping communities can reveal the multi-
functionality of nodes and determines which nodes act as bridges between different 
functional groups or co-ordinate multiple tasks so as to hold the system together. For 
example, such roles are important in social networks modelling the spread of disease, 
where potential immunisation targets are individuals that bridge communities [11].  
Moreover, in a biological system, a multi-clustered gene may act as a communicator, 
transferring biological information between functional units [12]. It is currently not 
well explored whether genes/proteins that have multiple community membership also 
possess particular functional and topological properties. Here we test such hypotheses 
in the case study of the plant pathogenic fungus Fusarium graminearum. 

Although a less well-covered area of research than standard community structure 
detection, several methods for the detection of overlapping communities have been 
proposed.  One of the first methods was the Clique Percolation method [13]. 
Subsequently, a wide range of approaches followed including spectral methods [14], 
non-negative matrix factorisation of various feature matrices [15, 16], local 
optimisation of a fitness function [17, 18], greedy agglomerative algorithms [19] and 
mathematical programming approaches [8]. 

Integrated functional networks can provide a framework to begin to explore 
genotype-phenotype relationships. For example if a gene disruption experiment of a 
given gene leads to a certain outcome (a given phenotype) the network may provide 
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clues to suggest the underlying mechanisms that are affected and may aid thereby 
hypothesis generation. Clustering such integrated networks into disjoint and 
overlapping communities can identify functional communities and give insight into 
higher levels of biological organisation [20, 21].  As proteins take part in multiple 
processes a better description of the underlying biological themes may be provided by 
consideration of the overlaps between communities.  

The Ascomycete fungus Fusarium graminearum is a major pathogen of wheat and 
other cereal crops. The complete genome sequence (with about 13,718 protein coding 
genes) of Fusarium graminearum has been determined [22] and additional data on 
gene expression [23] and predicted protein interactions [24] also exist.  Floral 
infections by Fusarium can have a significant impact on grain yield and quality. In 
addition, infection by the fungus leads to contamination of the grain by various 
mycotoxins including deoxynivalenol (DON), which makes the grain harmful for 
human consumption and also for animal feed.  In this study we explore the modular 
properties of an integrated network for Fusarium graminearum. Detection of disjoint 
and overlapping community structure is employed as a means of elucidating 
topological-functional relationships in the pathogen.  Additionally, we relate the 
modular organisation of the network to virulence genes known to be required for 
pathogen infection and disease formation.  Such an analysis may lead to better 
understanding of phenotypic features of the system, for example, potential insights 
into infection-related pathways.   

2 Methods 

An integrated network for Fusarium graminearum was constructed using information 
from sequence similarity, co-expression and predicted protein interactions (PPI).  The 
sequence similarity network was constructed from all-versus-all sequence matching of 
the proteins in version 3.2 of the Fusarium graminearum annotation (at 
ftp://ftpmips.gsf.de/FGDB/v32) implemented on a TimeLogic® Tera-BLAST™ 
(Active Motif Inc., Carlsbad, CA) system with a threshold E-value for bidirectional 
best hits of 10-6. Co-expression information was obtained from the publicly available 
set of Fusarium expression studies from PLEXdb [23] that used Fusarium Affymetrix 
GeneChip arrays. The similarity of expression profiles was measured using weighted 
Pearson correlation coefficient, according to the method in [25]. The PPI information 
was taken from the predicted core PPI of [26]. Two nodes are linked if any of the 
following properties is satisfied: (i) a bi-directional sequence similarity BLAST hit 
comprised of unidirectional hits with an expected value of less than 10-6, (ii) 
correlation of gene expression with an absolute value of Pearson correction greater 
than 0.88, or (iii) PPI link from the dataset from [26]. Integration of the various data 
sources was carried out using the Ondex data integration platform [27, 28].  

The community structure of this network was detected using the greedy 
agglomerative method known as Louvain [4], where nodes are allocated communities 
based on the maximum increase in the Newman modularity measure [29].  This 
results in a hard partition of the network into disjoint communities. The hard partition 
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can then be converted into a soft partition where communities are allowed to overlap, 
using the method described in [8]. This mathematical programming approach fixes 
the community membership of all nodes that only interact with nodes in their own 
community in the hard partition (isolated nodes), whereas nodes that form 
interactions across communities (border nodes) can belong to more than one 
community. A mixed integer non linear programming (MINLP) model, known as 
OverWeiMod, is formulated to optimise the sum of the community strength (CS) [18] 
across all communities according to node-community assignments.  

The inclusion of an overlapping parameter r allows the user to control the extent of 
overlapping, where the larger the value of r, the smaller the overlap. The choice of r is 
user-defined and we show here that certain topological and functional criteria can 
indicate a range of values. The output of OverWeiMod is a partition of the network 
nodes belonging to more than one community, which we define as multi-clustered 
nodes (as opposed to mono-clustered nodes).  The belonging coefficient (BC) gives a 
measure of strength of membership of a node to a community according to the 
community’s gain in CS with the presence of the node. For example, a node 
belonging to two communities with BC equal to 0.5 in both cases belongs equally to 
the two communities. However, if the node belongs to one community with a BC 
equal to 0.7 and to the other with a BC equal to 0.3, this indicates a stronger 
attachment to the first community over the second.  

3 Results 

3.1 Disjoint Community Structure Detection 

The integrated Fusarium graminearum network comprises 9521 nodes (proteins), 
80997 links and is made up of 439 disconnected components. Table 1 shows the 
distribution of sizes of the connected components. This analysis focuses on the largest 
connected component of 8364 nodes and 79931 links, as community structure of 
smaller components is of limited scope. 

Table 1. Connected components in the integrated network 

No. of nodes 2 3 4 5 6 7 9 10 11 16 8364 
No. of components 288 101 23 10 5 3 3 2 2 1 1 

 
The main component of the network is partitioned by Louvain [4], which detects a 

partition of 91 disjoint communities with modularity equal to 0.7973. The resultant 
community structure has an ‘uneven’ community size distribution, with 89 
communities of size <500 and 2 large communities with 1007 and 1951 nodes. The 
output of the Louvain method was compared with another well-known community 
structure method, QCUT [5], based on the spectral properties of the network 
Laplacian. QCUT finds a partition with 53 communities (modularity equal to 0.7665), 
51 of which have <500 nodes and two larger communities with 1198 and 2968 nodes. 
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This is in agreement with the ‘uneven’ community structure found by the Louvain 
method.  Based on Louvain finding the slightly larger value of modularity, we use this 
hard partition in the following analysis. 

The above disjoint community structure is illustrated by a ‘meta-view’ of the 
partition in Figure 1, with (i) the size of communities, (ii) the number of shared nodes 
across communities in the overlapping community structure (discussed in section 3.2) 
and (iii) their functional content. The functional coherence of a community was 
described by the Average Information Content of the Most Informative Common 
Ancestor set (AIC-MICA) a metric defined in [28], which can be used to gauge the 
degree of commonality of gene annotations in a particular set. This method works by 
identifying a set of representative Most Informative Common Ancestor (MICA) 
terms, where the information content (IC) is calculated based on how frequently a 
particular annotation is found in an annotation set for a given species. The MICA term 
is defined as a term in a hierarchically-organised ontology graph, which has the 
highest possible IC value whilst also acting as a subsumer for all terms in a particular 
set. The AIC-MICA approach takes as input a set of annotated entities and returns a 
non-redundant set of MICA terms that are applicable to at least a certain fraction of 
these entities, as specified by the user. The AIC-MICA statistic itself is an average of 
their IC values, which can serve as an indicator of annotation commonality within a 
set of entities. A higher value would indicate that most of the MICAs for the set are 
found lower in the ontology and therefore commonality in annotation is at a level with 
higher specificity. Here we have used the Gene Ontology (GO) [30] in which the 
functional role of a gene product is described at three levels: biological process (BP), 
molecular function (MF) and cellular component (CC). 

We looked at the annotation for all three aspects of GO for the communities in the 
Louvain partition with at least 5 annotated nodes and used the AIC-MICA approach 
to find the most specific terms applicable to at least 60% of the nodes. We find that 43 
communities are assigned a term from the BP aspect of the Gene Ontology, 52 are 
assigned a term from the MF aspect of GO and 35 are assigned a term from the CC 
aspect of GO. Figure 1 shows the corresponding MICA BP terms and their percentage 
of coverage for the largest communities. Some highly functionally coherent 
communities detected were “transport”, “blood vessel morphogenesis” and 
“carbohydrate metabolic process” (communities 3, 31 and 88 respectively, 100% 
coverage) and “oxidation-reduction process”, “transport” and “regulation of 
transcription, DNA-dependent” (communities 28, 60 and 76 respectively, coverage 
>90%). Other communities with a strong functional coherence point to ‘vitamin 
transport’ (community 78), ‘nucleotide biosynthetic process’ and ‘serine family 
amino acid metabolic process’. Expectedly, larger communities show less 
homogeneous functional content and therefore a broader GO term is assigned, e.g. 
community 79, the largest community is assigned “cellular process”. Overall, the hard 
partition detected by the Louvain method appears to find some biologically coherent 
communities.
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Fig. 1. The meta-view of the hard partition of the main component detected by the Louvain 
method, where nodes represent communities. The thickness of the links between the communities 
corresponds to the number of genes that are shared between communities in the overlapping 
community structure discussed in Section 3.2. For the larger communities, the MICA (BP) term is 
shown next to the corresponding community and the corresponding percentage of coverage 
(visualisation generated in Ondex [27, 28]). 

3.2 Overlapping Community Structure 

The hard partition of the main connected component is converted to a soft partition 
with overlapping communities using the mathematical programming method, 
OverWeiMod [8]. The hard partition results in 3877 border nodes, which are the 
potential multi-clustered nodes. As mentioned earlier, the community membership of 
4487 isolated nodes that are only associated to intra-community edges, are fixed and 
do not change in the course of the conversion procedure. In other words, the MINLP 
is solved with only border nodes allowed to be assigned to multiple communities. 
Figure 2 shows the results for r ranging from 0.4 to 1.1. The range of values of r is 
chosen to some extent arbitrarily and we discuss the suitability of the range in 
forthcoming sections. Table 2 shows how the number of communities that a multi-
clustered node belongs to changes with r. We find that for 0.4 ≤ r ≤ 0.5 the multi-
clustered nodes belong to up to 6 communities, but as r increases, and the extent of 
overlap decreases, this range also decreases. When  multi-clustered nodes only 
belong to two communities maximum.  

r = 1.1
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Fig. 2. The number of multi-clustered nodes detected by OverWeiMod for  

As previously mentioned, the overlapping community structure problem may be 
subject to multiple interpretations according to the underlying problem statement and 
user requirements.  Our approach is to consider a hard partition of a network and 
examine the nodes that form interactions across community borders, to assess their 
associations with communities other than their own according to the hard partition 
employed. As described in Section 1, many different approaches to the overlapping 
community structure detection problem exist and the variation in methodology can 
affect results considerably [8].  Consequently a direct comparison between methods 
may not be a fair evaluation of performance. In any case, for real life networks the ‘real’ 
cover is not known and so therefore the aim is to show that according to the user’s 
interpretation of the problem, the chosen method finds biologically relevant solutions.  

In order to explore the robustness of the approach implemented in OverWeiMod we 
consider the greedy agglomerative method, known as the Overlapping Cluster 
Generator (OCG) method which has been shown to identify multifunctional proteins in 
PPI networks [19]. OCG is based on an adapted modularity measure applicable to 
overlapping communities and bears a similar methodological framework to 
OverWeiMod. An initial partition of ‘centred cliques’ is generated.  Then, the elements 
are joined together iteratively in order of increasing average modularity gain, where 
modularity in this case is an overlapping equivalent of the Newman modularity [29]. 

OCG detects a soft partition of the main component of the integrated network with 
808 communities with 3877 multi-clustered nodes.  Of the 808 modules, 201 
comprise only 2 nodes, 47 have 3 nodes and 33 have 4 nodes and the remaining 
modules range from between 5 and 211 nodes.   Of the 3877 nodes, 1628 nodes 
belong to 2 communities, 692 belong to 3, 440 belong to 4 and the remaining multi-
clustered nodes belong to between 5 and 58 communities.  Figure 3 shows the 
breakdown of multi-clustered nodes according to the method they were detected by.  
In each case a considerable level of agreement can be seen between the two methods.  

 
0.4 ≤ r ≤ 1.1
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Table 2. Number of communities the multi-clustered nodes belong to ( ) 

 Number of communities  
r 2 3 4 5 6 
0.4 2297 804 263 96 29 
0.5 2330 718 208 66 4 
0.6 2354 512 106 22 0 
0.7 2305 319 59 14 0 
0.8 2135 217 14 0 0 
0.9 1868 138 1 0 0 
1 960 16 0 0 0 
1.1 601 0 0 0 0 

 
Variation in results is due to fundamental differences in methodology.  In 

particular, OCG starts its agglomerative procedure with an initial cover of the network 
comprising a large number of modules, which are subsequently fused until one of 
three stopping criteria are achieved.  Consequently, if the stopping criteria are met 
after relatively few iterations, the resulting number of modules is high.  The number 
of overlapping modules in the final cover of the network detected by OverWeiMod on 
the other hand depends on the method used to find the hard partition.  In this study we 
use a method based on modularity optimisation, a well-recognised approach to 
community structure detection, employed by many methods and that has been shown 
to find relevant solutions in bioinformatics applications [20, 31].  However, the debate 
about which is the most realistic partition of the network, is beyond the scope of this 
study. Our main aim being to show that our method assigns structurally and 
functionally important nodes with biological significance to multiple modules.  Here 
we put less importance on directly comparing methods in terms of the nodes they find 
to be multi-clustered and more on what ‘type’ of node is multi-clustered.  Such 
properties are discussed in the next section. 

Overall the results of OverWeiMod and OCG vary greatly in terms of (i) number 
of modules in each of the partitions of the network and (ii) the number of 
communities that the multi-clustered nodes can belong to.  Despite these differences, 
there are still a considerable number of proteins that are multi-clustered by both 
methods.

 

3.3 Evaluation of Multi-clustered Nodes 

If we consider genes that belong to more than one community as bridges, connectors 
between functional units, or communicators that spread information in a system, one 
would imagine them to exhibit properties that reflect such capabilities. In this section, 
we consider features that distinguish multi-clustered from mono-clustered genes and 
additionally show how these features can indicate an appropriate range of values for 
the overlapping parameter, r. 

 

 

0.4 ≤ r ≤ 1.1
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Fig. 3. Breakdown of multi-clustered proteins according to the methods they were found by.  
For each value of parameter r in the figure, the set of multi-clustered nodes detected by OCG 
remains constant. 

3.3.1    Node Degree 
We compare the average degree of the nodes with multiple community membership 
with the equivalent values for nodes that belong to only one community. For 

, the range of values of parameter r tested in section 3.2, multi-clustered 
nodes have a higher average degree than the mono-clustered nodes (Table 3).  We 
determine if the population means are statistically significantly different using the 
Mann–Whitney–Wilcoxon U test as implemented in the R statistical computing 
environment [32], where a p-value < 0.01 is significant. For all values of r tested, the 
average node degree of the multi-clustered nodes is significantly larger than the 
average degree of the mono-clustered nodes (Table 3). This result indicates that multi-
clustered genes tend to have a higher number of interactions than those that belong to 
only one community. This result is intuitive, since if proteins lying in the overlapping 
sections play a connector role in the system, interacting with two or more 
communities, then it reasonable that they are more likely to interact with more 
partners compared to isolated nodes. This result indicates that multi-clustered nodes 
are topologically significant, however more important perhaps is to establish the 
likely functional roles of such connector nodes, as described in section 3.3.2. 

It is also worth mentioning that, although the inclusion of parameter r is 
advantageous as it offers greater flexibility to the user, it is also necessary to 
determine a reasonable range of values for each network.  Node degree can be used as 
an indicator of such a range if we assume that nodes belonging to more than one 
community should have more interactions than those that do not. Therefore, in terms 
of node degree, these results indicate our range of values for r is reasonable for this 
network. In the next section we show that by looking at the functionality of the multi-
clustered proteins can be reduced the range of values. 

 

0.4 ≤ r ≤ 1.1
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Table 3. The average degree of multi- and mono-clustered nodes detected by OverWeiMod 

r Multi-clustered Mono-clustered p-value 
0.4 26.98 13.46 < 2.2e-16
0.5 27.37 13.66 < 2.2e-16
0.6 28.13 14.09 < 2.2e-16
0.7 28.33 14.73 < 2.2e-16
0.8 29.34 15.08 < 2.2e-16
0.9 28.91 16.02 < 2.2e-16

1 26.67 18.11 < 2.2e-16
1.1 31.95 18.12 < 2.2e-16

3.3.2    Gene Ontology Term Analysis 
Where node degree offers a topological measure for distinguishing between multi-
clustered and mono-clustered genes, GO annotations can offer a distinction based on 
functional features. As seen in [19], and in line with our interpretation of multi-
clustered nodes as bridges between multiple functions, one would expect multi-
clustered genes to be associated with a higher number of GO annotations than those 
belonging to only one community. 

To test this hypothesis, we compare the number of Gene Ontology terms annotated 
to multi-clustered and mono-clustered genes to determine which group has a 
significantly higher number of GO annotations. The annotations are taken from the 
MIPS Fusarium graminearum database [33]. The F. graminearum genome has 4915 
genes annotated with 13,883 GO terms from all three aspects of GO (molecular 
function (MF), biological process (BP) and cellular component (CC)). As the 
complete genome sequence comprises 13,718 protein coding genes, only roughly a 
third of the genome is annotated. In the integrated network, 4251 proteins have no 
annotations, 4311 are annotated with at least one GO term and when considering each 
GO category, there are more proteins unannotated than annotated in the network.  

Due to the high number of genes without GO annotations, we first consider all 
three aspects of GO terms together (ALL GO). Each gene in the main component of 
the Fusarium network is mapped to its GO terms where possible, and the average 
number of GO terms for all four categories (ALL GO, MF, BP and CC) is calculated. 
For ALL GO, BP and CC the multi-clustered proteins have a statistically significant 
higher average number of GO terms than the mono-clustered proteins, for 
0.4 ≤ r ≤ 0.9 . For MF, the average number of GO terms for the multi-clustered 
proteins is not significantly higher than mono-clustered nodes for all values of r. 
Overall, it seems that multi-functionality of multi-clustered nodes is better endorsed at 
the BP level (i.e. in terms of participation in multiple biochemical pathways), rather 
than the MF (i.e. the individual biochemical tasks) of the corresponding gene product. 
Future work to consolidate such observations by accounting for lack of 
comprehensive annotations for this genome would be recommended. 

Similar to the node degree analysis, we can use the number of GO terms assigned 
to genes to suggest a potential rage values for r where OverWeiMod detects multi-
clustered genes with desirable properties.  If we assume that multi-clustered nodes are 
multifunctional, we can use the ALL GO count as an indicator that considering values 
of r between 0.4 and 0.9 inclusive is reasonable for this network. 
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Table 4. The significance value of the difference between average number of GO annotations 
for multi- and mono-clustered nodes.  Significant p-values are shown in bold (<0.01). 

r ALL GO MF BP CC 
0.4 1.62E-04 2.31E-01 4.40E-06 1.06E-03 
0.5 1.95E-03 1.23E-01 2.09E-05 7.37E-04 
0.6 7.23E-03 5.35E-01 1.29E-03 5.33E-04 
0.7 7.74E-04 9.28E-01 5.96E-04 9.05E-04 
0.8 3.48E-04 3.95E-01 5.72E-05 1.84E-03 
0.9 4.92E-03 4.94E-01 4.91E-07 1.03E-04 

3.3.3    Functional Cartography of Multi-clustered Genes 
Throughout this study we hypothesise that multi-clustered nodes play an important 
role topologically and functionally in the network, considering them as bridges or 
communicators between functional units, helping to maintain the structure of the 
system. This idea has been reinforced by showing that (i) they are more connected 
than mono-clustered nodes and (ii) for some aspects of the Gene Ontology, they have 
more functional annotations that mono-clustered nodes.  We relate the overlapping 
community structure to a node role classification scheme proposed in [20]. Each node 
is assigned a role based on its position in the hard partition of the network.  A node’s 
role is characterised according to two measures: within-community degree z-score 
and participation coefficient (see [20] for details).  The within-community degree z-
score measures how well a node is connected with nodes in its own community and 
the participation coefficient measures how uniformly the nodes’ links are distributed 
among the other communities in the partition. 

The node classification scheme in [20] can be summarised as follows.  Based on 
the within-community degree z-score, nodes are classified as hubs and non-hubs, 
where hubs have a higher number of links with nodes in their own communities.  
Non-hubs are then classified into 4 roles: R1, ultra-peripheral nodes, R2, peripheral 
nodes, R3, non-hub connector nodes and R4, non-hub kinless nodes.  Hubs are also 
classified into 3 roles: R5, provincial hubs, R6, connector hubs and R7, global kinless 
hubs. Both R3 and R6 nodes are labelled ‘connector’ nodes according to the 
classification scheme as they have by definition a large participation coefficient, 
indicating a high distribution of links with communities other than their own.  
Consequently, the removal of these nodes may result in poorly connected 
communities or even the disconnection of communities and therefore having an 
impact on the global structure. On the application of the classification scheme to 
metabolic networks it is found that  R3 and R6 nodes are the most preserved across 
the species tested, suggesting that their role is more structurally relevant and similar 
results are predicted for other systems, including protein interaction and gene 
regulation networks [20]. 

We assign node roles to the Fusarium graminearum network.  The distribution of 
node role types is shown in Table 5. We determine whether the proportion of R3 and 
R6 nodes is significantly higher in multi-clustered than mono-clustered nodes 
indicating that the multi-clustered nodes do indeed have a bridge/connector role in  
the system. For r = 0.4 , all 165 R3 nodes and all 50 R6 nodes belong to the set of 
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multi-clustered nodes.  For 0.4 ≤ r ≤ 1, there is a higher proportion of R3 nodes in the 
multi-clustered set than the mono-clustered set, and for R6 nodes, the range is 
0.4 ≤ r ≤ 1.1.  We use the Fisher’s exact test to decide if any difference in proportions 
is significant. We find that there is a significantly higher proportion of R3 nodes in 
the multi-clustered nodes for 0.4 ≤ r ≤ 0.8  and similarly for R6 nodes for 
0.6 ≤ r ≤ 0.9 (results in Table 6). 

Table 5. Node role type distribution 

Role Types R1 R2 R3 R4 R5 R6 R7 
No. of nodes 4669 3323 165 0 157 50 0 

 
The node classification scheme is employed to help describe the type of node that 

lies within the intersections of communities, offering a more sophisticated topological 
description than node degree alone. We find that nodes described as connectors are 
significantly enriched in the multi-clustered nodes. These are node roles that have 
previously been shown to be more structurally relevant than other node roles in 
biological networks [20]. This goes some way to supporting our claims that multi-
clustered nodes play an important part in anchoring the communities of the network 
and thus contributing to the global functioning of the system.  Furthermore, 
OverWeiMod is successfully detecting such nodes. 

Table 6. The FDR-adjusted p-values for difference in proportion of R3 and R6 nodes in multi- 
and mono-clustered sets (significant values shown in bold) 

r 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 
R3 1.31E-07 1.61E-09 1.11E-07 1.08E-05 6.90E-05 3.96E-02 5.22E-01 1.38E-02 
R6 2.21E-02 1.19E-02 9.36E-05 1.08E-05 9.28E-07 3.74E-07 1.65E-01 1.41E-01 

4 Verified Virulence Genes 

The analysis described next is to try to link the modular structure of the integrated 
network to known virulence genes. The experimentally verified Fusarium 
graminearum virulence genes known to be required for different aspects of the 
infection and disease formation process, were extracted from the Pathogen-Host 
Interaction database [30-32] and others were manually obtained from the scientific 
literature.  We found that 79 out of 98 of the verified virulence proteins map to the 
integrated network of which 75 are in the main component. We also refer to the set of 
75 genes as the verified virulence (VV) nodes. 

First, the distribution of the VV nodes in the communities of the integrated 
network is considered. These nodes appear in only 15 of the 91 communities (Table 
7), with the largest community (community 79, Figure 1) containing over half of the 
VV nodes (39 out of 75). For each of the 15 communities, we test if the community 
has a statistically significant higher proportion of VV nodes than the rest of the 
network using Fisher’s exact test. Only the largest community and another of size 48 
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(community 80 in Figure 1), with 7 VV nodes, encompass a statistically significant 
high proportion of the proteins (FDR adjusted p-values 8.38E-07 and 1.35E-06 
respectively). Although community 79 does contain a significant number of VV 
nodes, the corresponding BP MICA term, “cellular process”, has an AIC of only 1.29, 
indicating that this is highly functionally diverse. Community 80 however is more 
coherent with an AIC of 4.88, and its BP MICA term is “regulation of metabolic 
process”.  The 7 VV genes in community 80 are all predicted to be transcription 
factors of the Zinc finger (Cys2His2) type [34].  

We observe here that the verified virulence nodes are concentrated in two 
communities, suggesting that pathogenicity processes may be linked to specific parts 
of the network. Even at this preliminary stage, such effects indicate that there is a 
clear link between functional features and related interactions at network level. 
Similar analyses of community structure can therefore support further reverse 
molecular genetics and biochemistry experiments and thereby determine how these 
communities relate to underlying biochemical pathways. 

We further partition community 79 and look at the distribution of the VV nodes in 
this new hard partition. The Louvain method detects a partition with 19 communities.  
The 39 VV nodes that are in community 79 in the hard partition of the main 
component are found in 8 of the communities of the re-partitioned community 79 
(Table 8). Again, checking for overrepresentation of VV nodes in the individual 
communities shows that no community is significantly enriched. This may reflect the 
fact that proteins involved in a wide range of processes have a role in virulence 
because of the overall complexity of the infection process. In PHI-base [35, 36], there 
are many proteins with a “general” functional role such in basic metabolism, signal 
transduction and transcription and far fewer with a specific function such as toxin 
biosynthesis or infection structure formation.  

Table 7. Distribution of the verified virulence (VV) nodes among communities and 
corresponding biological process average information content (BP AIC) 

Comm. no. 7 16 28 39 51 52 56 57 64 71 75 76 79 80 82 

No. VVs 1 1 5 1 1 3 2 1 1 2 4 6 39 7 1 

BP AIC - 27.5 3.62 2.07 4.48 1.2 2.07 3.62 - - 1.29 5.76 1.29 4.88 1.29 

Table 8. Distribution of verified virulence (VV) proteins in the hard partition of community 79 

Community number 1 5 7 9 14 15 16 17 
No. of VV proteins 9 3 2 2 5 12 5 1 

  
We next consider the connection between multiple community membership and the 

VV genes. For 0.4 ≤ r ≤ 1.1, we show the number of VV genes that are found by 
OverWeiMod to belong to more than one community in Table 9. The VV genes were 
not seen to be significantly overrepresented in either the multi-clustered genes or the 
mono-clustered genes for all values of r.  However we do note that nearly half 
(49.3%) of the VV genes belong to more than one community for r = 0.4, and these 
may still play an important role in the system.  
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As we have shown previously, the number of multi-clustered nodes detected by 
OverWeiMod decreases as r increases.  Nodes that remain multi-clustered for higher 
values of r may indicate cases that are more inclined to belong to multiple 
communities. We find 4 VV genes that are multi-clustered for r equal to 1 and 1.1. 
This may indicate that these proteins are more robustly multi-clustered than other 
pathogenicity-associated genes and therefore are more strongly inclined to belong to 
multiple communities.  These four genes are: FGSG_04104 (probable guanine 
nucleotide-binding protein beta subunit), FGSG_08028 (conserved hypothetical 
protein), FGSG_10142 (related to transcription factor atf1+) and FGSG_03747 (NPS6 
related to AM-toxin synthetase (AMT)). Probable guanine nucleotide-binding protein 
beta subunits are known to be part of a signalling process upstream of a range of 
biochemical pathways and therefore likely to be part of several communities. 
FGSG_03747 is a large protein with 7 predicted InterPro domains. It codes for a non-
ribosomal peptide synthetase (NRPS). In this case the product and its function is 
already known. It is an extracellular siderophore that is used by Fusarium to bring the 
essential nutrient iron into the fungal hyphae and to protect against the cellular 
damage caused by various reactive oxygen species [37].  This link to a transfer 
process from outside the hyphae cell to inside may indicate likely bridging functional 
roles, therefore justifying why this gene may belong to more than one community. 
Such results suggest that OverWeiMod has the potential to detect appropriate multi-
clustered nodes and therefore shows promise in predicting candidate multi-functional 
genes.  

It should be noted that there is currently a small number of experimentally verified 
virulence genes, and within the set of known genes there may be a bias in reflecting 
particular classes of proteins that have been investigated experimentally, for example 
intracellular signalling and transcription-associated proteins. Therefore, network 
analyses and systems biology strategies such as the one presented here, offer good 
potential to plan future experiments using a more rational basis. 

Table 9. The number of verified virulence (VV) seeds that belong to more than one community 
for  

r 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 
No. of VV proteins 37 35 32 26 25 24 3 1 

5 Discussion and Conclusions 

In this study we have explored the disjoint and overlapping community structure of an 
integrated network for the globally important plant pathogenic fungus, Fusarium 
graminearum. We have investigated the topological and functional properties of 
proteins that belong to more than one community compared with those that belong to 
only one. It is shown that proteins in the intersection between two or more 
communities tend to be more highly connected than mono-clustered proteins. 
Furthermore, topological description through node role classification scheme 
illustrates that multi-clustered nodes tend to be enriched with connector roles (hub 

0.4 ≤ r ≤ 1.1
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and non-hub connectors, roles R6 and R3 respectively) that are structurally important 
in biological networks [20]. Additionally, we consider the functional properties of the 
multi-clustered proteins in terms of number of GO annotations.  For all three aspects 
of the GO combined (ALL GO) and for BP and CC multi-clustered proteins tend to 
have a higher number of annotations, than proteins belonging to only one community, 
although the same trend is not seen for MF.  These results corroborate to some extent 
the idea that multi-clustered proteins are bridges between communities, which  
allow the semi-independent functional units to interact and regulate all functions 
required by the system.   

As mentioned previously, the problem of detecting overlapping communities is not 
as well defined as the standard community structure detection problem, for example 
due to difficulties in conceptualising a uniform definition of overlapping properties 
and consequently methodological disparities. For this reason, methods and parameters 
used vary greatly and comparisons across different methods and benchmark examples 
are challenging. Therefore, the purpose of comparison of the multi-clustered nodes 
found by OverWeiMod with those found by OCG is not to assess prediction accuracy, 
but to demonstrate that OverWeiMod is in line with other methods in this context. In 
addition, the following characteristics render OverWeiMod a competitive method. 
First, OverWeiMod has the capability to define the strength of belonging of a node to 
a community, giving another level of understanding of the system. Future work 
includes (i) analysing how the belonging coefficients of a multi-clustered gene are 
distributed between communities and (ii) identifying genes that are more equally 
spread among functional communities than others. The authors of [20] propose that 
nodes with the same role should have similar topological properties, therefore an 
expansion of the functional cartography analysis, where we include all 7 node role 
types may offer insight into important properties of the nodes.  

Additionally, OverWeiMod is applicable to weighted networks making it 
conducive to further work in assessing the suitability of data sources in the integrated 
network.  The integrated Fusarium network contains information from multiple 
heterogeneous data sources and some of the data sources may be of better quality than 
others. The inclusion of weighted edges in the network might provide a more accurate 
and informative description of the community structure of the organism. A simple 
approach might be to weight the edges heuristically depending on the number of data 
sources that suggest an association subject to the various thresholds chosen, this can 
be regarded as an indication of reliability of an interaction.  Another approach would 
be to estimate the likelihood of a functional association between two proteins given 
evidence from each data source.  This procedure requires a benchmark such as 
proteins known to be functionally associated as determined from experiment or 
suggested by some measure (such as belonging to the same pathway) and is 
complicated if the different data sources are not independent (see for example [2]).  
As we have shown before, community structure detection of a weighted network may 
result in a different partition as compared to the equivalent binary network [8].  Such 
effects can be addressed in future work. 

Finally, the flexible nature of mathematical programming framework allows for the 
easy implementation of additional constraints and parameters, again leading to more 
accurate and detailed network representations.  For example, we can use prior 
knowledge such that nodes with similar functional annotations could be constrained to 
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be in the same community.  Furthermore, in terms of methodology, introducing 
symmetry constraints to as we have done in previous models [7] may improve the 
efficiency of OverWeiMod. 

The motivation behind this study was to gain a better understanding of the fungal 
pathogen, Fusarium graminearum.  We used network analysis tools to investigate the 
underlying mechanisms of the fungus from a community detection perspective. In 
particular we looked closely at the proteins taking part in more than one functional 
community in an attempt to identify those that may play a role in maintaining a 
structurally cohesive system. As the number of verified virulence proteins increases, 
analytical methods featured in this study could prove promising in the detection of 
relationships between the topological description and functional properties, 
potentially leading towards a better understanding of the pathogenicity process. 
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Abstract. We describe a modular modelling approach permitting cura-
tion, updating, and distributed development of modules through joined
community effort overcoming the problem of keeping a combinatorially
exploding number of monolithic models up to date. For this purpose, the
effects of genes and their mutated alleles on downstream components are
modeled by composable, metadata-containing Petri net models organized
in a database with version control, accessible through a web interface
(www.biomodelkit.org). Gene modules can be coupled to protein modules
through mRNA modules by specific interfaces designed for the automatic,
database-assisted composition. Automatically assembled executable mod-
els may then consider cell type-specific gene expression patterns and the
resulting protein concentrations. Gene modules and allelic interference
modules may represent effects of gene mutation and predict their
pleiotropic consequences or uncover complex genotype/phenotype rela-
tionships. Forward and reverse engineered modules are fully compatible.

Keywords: Biomodel engineering, formal language, data integration,
high-throughput, quantitative trait loci.

1 Introduction

Systems biology witnesses the evolution of experimental high-throughput me-
thods with steadily increasing power regarding the quantification of nucleic
acids, proteins, covalent modifications, and metabolites. Soon, these methods
will broadly allow omics scale analyses of molecules involved in cellular regula-
tory control that capture the time-resolved response to stimulation or (genetic)
network perturbation [22]. These advances challenge the development of inte-
grative and modular modelling frameworks that support the combination of
findings obtained through different, qualitative and quantitative experimental
approaches. To be useful, such models will need to be multi-level in terms of
integrating multiple levels of abstraction in causally connected and experimen-
tally well established processes at the molecular level with adjustable resolution
of details for higher level phenomena. These may include cell fate decisions for
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simulating the intrinsic heterogeneity of clonal populations of cells following in-
dividual trajectories during development. Petri nets are an ideal formalism for
the formal description of processes at multiple levels of abstraction for systems
biology purposes [13,17,18,28].

For the sake of creating realistic scenarios, it will presumably become in-
dispensable to compare, on a regular basis, simulation results on one and the
same network topology as obtained by employing continuous, stochastic, and
hybrid paradigms. In the software tool Snoopy, a given Petri net graph can be
interpreted and simulated as continuous (ODE), stochastic, hybrid, or simply as
qualitative model with export option to SBML [29]. Interpretation as coloured
Petri net, again in Snoopy, provides advanced options for biomodel engineer-
ing [19] as coloured Petri nets combine the formalism of Petri nets with the
expressive power of a programming language. For this reason, and because of
the intuitively accessible graphical representation, we have chosen Petri nets as
framework for modelling and simulation.

Repeated iterations of experimental data acquisition, modelling, and simula-
tion can evaluate the consistency of the interpretation of experimental results.
This is especially true when high-throughput data come into play. However, con-
ventional monolithic models usually represent certain aspects of a phenomenon
at a certain resolution in detail and are restricted to a certain mathematical
modelling paradigm. Such models can neither be easily combined with other
models nor can they be easily updated by persons other than the author of the
particular model. One solution to this limitation is to create a collection of Petri
net modules that can be automatically linked in order to obtain and to update
coherent models covering all or selected aspects of a biological process. Concep-
tually, such modules may be contributed, curated, and updated by individuals of
the community with special expertise in certain aspects. Being organized within
a database with version control, modules obtained by reverse engineering of
experimental data can also be integrated and, as we will show below, help to
import complex data sets into models that have been automatically generated
by composition of pre-existing modules.

This paper makes three major contributions which fundamentally enhance
the versatility of modular Petri net modelling by (1) linking regulated gene
expression to protein concentration, (2) allowing the fully automated generation
of models for the application in genome-wide (omics) approaches, and (3) linking
gene mutation to complex phenotypic consequences in generating predictable
models. Let us briefly elaborate on these claims.

1. The introduction of gene modules and mRNA modules allows to model reg-
ulated gene expression and protein biosynthesis. As the gene expression
pattern of a cell is not constant and can drastically change dependent on
cell type, physiological state, or experimental conditions, cells are definitely
equipped with specific sets of proteins of variable relative abundance. By
introducing gene modules into the model, differentially regulated gene activ-
ity and the resulting gene expression patterns translate into the marking of
places of the protein modules. As the rates of biochemical reactions always
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depend on both, the kinetic rate constants and the concentrations of the
reactants, changed gene expression will also change the rates of biochemi-
cal reactions, which in turn may drastically alter the dynamic behaviour of
a regulatory network. Moreover, changed concentrations in regulatory pro-
teins (e.g. transcription factors) may feed back in a complex manner onto the
gene level by changing gene expression profiles. This circuitry of interwoven
regulatory control becomes systematically accessible through the model.

2. Gene and mRNA module prototypes permit the fully automated generation
of modules by simply uploading lists of gene names. This allows the auto-
matic creation of models representing hundreds or even thousands of genes,
their mRNAs and the proteins they form. By importing transcriptomic or
proteomic data sets obtained in high throughput experiments [30], one can
infer rate constants and reverse engineer regulatory mechanisms with the
help of the model and predict changes in the proteome in response to differ-
ential gene regulation. Such models will also support the interpretation of
phenomena observed in systematic RNAi screens where individual genes are
knocked down [25,10,9].

3. Introduction of allelic influence modules extends the modelling of gene activ-
ity to the modelling of the regulatory consequences, which gene mutations
have on cellular processes. This sets the formal framework to reverse engi-
neer biomodels from complex phenotype data sets resulting from genotypic
variation e.g. by employing Petri net compatible algorithms [16,12,11]. It
is obvious that such type of models have a high potential for the applica-
tion to various areas from basic research to synthetic biology or personalized
medicine.

We are not aware of any modelling framework providing a comparable versatil-
ity and integrative power in terms of combining forward and reverse biomodel
engineering.

This paper is organised as follows. In the next section we briefly summarise
relevant own previous work on modular Petri net modelling and the automatic
composition of modules with the help of a module database. Then we will provide
the rules for the generation of modules and modular models and introduce gene
and mRNA modules in Section 3, the application of which is demonstrated by the
first case study in Section 4. Section 5 explains the specific features of gene and
mRNA modules required for modelling gene expression and its differential reg-
ulation in eukaryotes. We continue in Section 6 with a second case study on cell
differentiation and eukaryotic gene regulation, define allelic influence modules,
and explain how these work together with gene, mRNA, and protein modules
in generating models that integrate forward and reverse biomodel engineering
approaches. In Section 7 we conclude with discussing the versatility of our ap-
proach and provide future perspectives regarding the application to synthetic
biology and omics approaches.
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2 Previous Work

Initially, we developed our modular modelling approach to represent biochemi-
cal reaction networks made of protein-protein interactions. The core idea is to
take an object-oriented approach where the objects correspond to the natural
modular building blocks of life. We represent individual proteins as independent
and self-contained hierarchically structured Petri nets, called modules. Thus,
modules correspond to natural units, each of which comprises intramolecular
regulatory mechanisms of the respective protein and of all its interactions with
other molecules. Modules of interacting proteins can be coupled by logical nodes
of identical shared subnets describing their interaction with each other. The as-
sembly of models from a set of modules needs no further modifications at the
module level. An essential advantage of this approach is the reusability of all con-
structed modules in arbitrary combination to obtain models representing specific
pathways [4,5].

A crucial point of our modular modelling approach is that each module is self-
contained and can be evaluated on its own. Composed networks which in terms of
their behaviour correspond to the conventional, monolithic networks need never
to be explicitly shown. Their validity is entirely assessable by understanding the
individual modules and the connection rules.

Our modular modelling approach has been deployed to construct modular
Petri nets for two non-trivial case studies: (1) the JAK/STAT pathway in IL-6
signalling [4] and (2) nociceptive network in pain signalling [5]. The JAK/STAT
pathway is one of the major signalling pathways in multicellular organisms con-
trolling cell development, growth and homeostasis by regulating the gene ex-
pression. The modular network of the JAK/STAT pathway in IL-6 signalling
comprises 7 protein modules (IL6, IL6-R, gp130, JAK1, STAT3, SOCS3, and
SHP2). Overall, the model consists of 92 places, 102 transitions spread over
58 pages with a nesting depth of 4. The nociceptive network in pain signalling
consists of several crucial signalling pathways, which are hitherto not completely
revealed and understood. The latest version of the nociceptive network consists of
38 modules, among them are several membrane receptors, kinases, phosphatases
and ion-channels. So far, the model is made up by 713 places and 775 transitions
spread over 325 pages, again with a nesting depth of 4.

To support convenient module selection and network composition, we de-
veloped a database prototype, which is accessible by a web-interface [4,6], see
Figure 1. The database holds the qualitative Petri net structure of each module,
as well as the kinetic information assigned to each transition. In addition, the
database contains also meta-information about the corresponding proteins (ex-
tracted from UniProt) and information about the literature used to construct
the modules (extracted from PubMed), which can be associated with each mod-
ule. The organization of the modules in such a database enables the user to
(1) search for individual modules, places, transitions, etc., (2) store modules in
collections, and (3) assemble a modular network from a chosen collection.
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Fig. 1. Selected screenshots of the prototype database [6]. (a) The web-interface
enables the user to browse and/or search for modules of specific proteins. Modules can
be stored in collections by selecting them. (b) Detailed information about each module
can be shown on a separate page.

3 Petri Net Modules

3.1 How Modules Are Built and Composed

We use Petri nets structured in the form of modules that allow the automatic
composition of executable models [4,5] based on Snoopy [29]. The modules and
their associated metadata are organized in a database accessible through a web
interface designed to manage multiple versions of each module and supporting
the automatic composition of models from modules (interactively) selected from
a potentially rich collection [4]. Initially, the approach was designed to model
protein-protein interactions (see Section 2) in the context of signal transduction
networks [4,5]. In this paper we go one step further by defining gene modules,
mRNA modules and allelic influence modules which considerably enhance power
and versatility of our modelling approach.

A module in general is centred around one entity describing all its interactions
with other components to which the module can be linked. The entity can be
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a protein, an mRNA, a gene, or the specific allele of a gene. Conceptually, it is
possible to extend this definition to admit other entities as well. Before going into
detail, let us first briefly explain how the modular modelling approach technically
works and how modules are connected to each other.

The basic principle is explained taking the reaction of an autophosphorylating
kinase with its substrate as example (Figure 2). The kinase X autophosphory-
lates to give XP. XP transfers its phosphate group to the substrate Y. The
phosphate group of YP then hydrolyses spontaneously. The Petri net describing
these reactions (Figure 2a) can be decomposed into two modules each repre-
senting the reactions of one of the two proteins involved, X and Y, respectively
(Figure 2b, 2c). Places and transitions that occur in more than one module are
defined as so-called logical nodes. Logical nodes appear as multiple graphical
copies of a given place or transition. In this paper, logical nodes are shaded in
grey. Braking a Petri net up into modules introduces redundancy in terms of
the graphical display of nodes which might appear unnecessarily complicated
at first. For complex modules or when many modules are involved, the benefits
are indeed tremendous as we have previously shown ([4,5], and see Discussion).
The biosynthesis and the degradation of a protein or a nucleic acid are modelled
by separate biosynthesis or degradation modules, respectively. Accordingly, the
user can choose for each protein or mRNA whether or not its biosynthesis and
degradation should be considered in the assembled model.

Fig. 2. The principle of modular modelling based on the use of logical nodes
(connectors). (a) A Petri net model of the phosphorylation of protein Y by the
autophosphorylating kinase X is split into modules for (b) protein X and (c) protein Y,
respectively. Places and transitions that are shared by the two modules are implemented
as logical nodes shaded in grey.

3.2 Definition of Modules Representing the Function of Genes

We now extend the initial approach constrained to protein modules by defining
gene modules. A gene module considers the mechanisms of a gene being regulated
through the reversible transition between its on and off state. Assigned metadata
information includes the Genbank database accession number providing the DNA
sequence information as a cross-reference. Logical nodes of a gene module are
used to link the gene to other modules.

In general, multiple forms of each gene, so-called alleles, do exist that differ in
one or more base pairs. These differences are due to mutations. Mutations can
be silent in not altering the amino acid sequence of the encoded protein. Muta-
tions can also be neutral in not changing the properties of the encoded protein
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although its amino acid sequence is changed due to mutation. These sequence
polymorphisms are commonly found in wild-type populations. Alternatively, a
mutation can change the properties of the encoded protein due to its altered
amino acid sequence or it may even prevent the formation of the protein at
all, e.g. by introducing a stop codon. Following strictly the modularity principle
in designing Petri nets, a separate gene module is created for each allele of a
gene to represent mutations that change relevant properties of the gene prod-
ucts (RNAs and proteins) as compared to the wild-type. Entering a query for a
gene, the module database will list all modules corresponding to alleles of that
gene.

We will now use two case studies to demonstrate how gene modules work.
The first case study (see Section 4) concerns metabolic regulation in bacteria.
It is taken to explain the principle of gene modules with the help of a sim-
ple example. In Section 5, we explain the specific features of gene and mRNA
modules required for modelling gene expression and its differential regulation in
eukaryotes, which is the topic of our second case study (see Section 6). Here, we
show a more complex scenario involving multiple layers of regulatory control.
In addition, the second case study will provide an example of how modules can
be obtained through reverse engineering of experimental data, it will introduce
allelic influence modules and it will reveal the scalability of the approach.

4 Case Study: The Phosphate Regulatory Network

In the first case study, we consider the response of enteric bacteria like Es-
cherichia coli to the limitation in inorganic phosphate which is required for the
biosynthesis of nucleic acids and other cellular components (compare Figure 2).

When inorganic phosphate (Pi) becomes low in the environment, it may turn
into a growth-limiting factor even if sufficient nutrients are available [26]. When
present, inorganic phosphate is taken up from outside of the cell through an ABC
transporter system, the PstSCAB transmembrane complex (Figure 3 [21]). With
sufficient Pi outside, the PstSCAB complex actively pumps Pi across the cell
membrane into the cytoplasm. Under this condition, the PhoU protein forms,
according to the proposed mechanistic model [21], a complex with the pstSCAB
transporter system and the PhoR histidine kinase. Complex formation prevents
the kinase to autophosphorylate caused by the interaction with PhoU. PhoU is a
chaperone-like PhoR/PhoB inhibitory protein. When external Pi is low and the
PstSCAB complex is inactive, PhoU dissociates and allows the autophosphoryla-
tion of PhoR. PhoR then phosphorylates and thereby activates the transcription
factor PhoB. The phosphorylated form of PhoB, namely PhoBP, then activates
the transcription of at least 31 genes organised into 9 transcriptional units (eda,
phnCDEFGHIJKLMNOP, phoA, phoBR, phoE, phoH, psiE, pstSCAB-phoU, and
ugpBAECQ) [21]. One of the activated genes, phoA, encodes the PhoA protein
which is a bacterial alkaline phosphatase. PhoA is exported across the mem-
brane into the periplasm where it degrades organic phosphorous compounds
to liberate Pi which is then taken up into the cell to overcome the limitation.
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Fig. 3. Biochemical model for sensing extracellular inorganic phosphate (Pi)
and transduction of the signal to control gene expression. The PstSCAB trans-
membrane complex serves as an ABC transporter for the uptake of environmental Pi.
At high extracellular Pi concentration, the binding protein PstS is fully saturated and
this signal is relayed to the cytoplasmic part of the receptor that forms an inhibitory
complex with a second transmembrane protein, the PhoR kinase via the cytoplasmic
protein PhoU. If Pi is low, the complex dissociates and the autophosphorylating kinase
PhoR phosphorylates PhoB which, in its phosphorylated form, binds DNA to induce
gene expression. When i subsequently increases, the compex with PhoU is formed again
and PhoBP is dephosphorylated. The figure was redrawn from Hsieh and Wanner pub-
lished in Current Opinion in Microbiology [21].

When enough Pi has been formed, this system is switched off again and PhoBP
is dephosphorylated.

In [24], we gave a monolithic Petri net of a simplified version of the phos-
phate regulatory circuitry. To cover the entire functionality we now construct a
modular Petri net model which is composed of three types of modules: (1) one
protein module representing the reactions of the PhoB protein, (2) gene mod-
ules representing the regulated genes, and (3) mRNA modules representing the
transcription of the gene, the translation of mRNA into the protein, and the
degradation of mRNA. The degradation of the encoded proteins is represented
by degradation modules which have been introduced previously [4].

4.1 The PhoB Module

The PhoB module (Figure 4) represents the reactions of the PhoB protein in its
phosphorylated (PhoBP) and dephosphorylated (PhoB) states. It also represents
the complex formation of PhoB with its regulatory proteins as well as the binding
of PhoB to regulatory sequences in the DNA.
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Fig. 4. Petri net representation of the phosphate regulatory network. (a)
Top-leve presentation of the modules of the phosphate regulatory system in the form
of coarse places as they appear in Snoopy. (b) Protein module of the PhoB protein
displaying the direct interactions with binding partners.(BS, binding site).

The PhoB module models the regulatory mechanism schematically shown in
Figure 3. Binding and dissociation of PhoBP in its complex with PhoRP is repre-
sented separately for each transcriptional unit. Displaying the binding of PhoBP
to each regulatory site on the DNA separately, keeps the Petri net graph clearly
arranged and allows to reuse the structural motif of binding and unbinding reac-
tions via copy/paste for the various regulated transcriptional units. Accordingly,
PhoRP_PhoBP is declared as logical place.

To save space in Figure 4, we only show binding of PhoBP to one of the nine
transcriptional units.

4.2 The Gene Modules

A gene module represents the regulation of the gene by other factors (e.g. tran-
scription factors) through the transition between its on and off state (Figure 5).
In the quantitative interpretation of the Petri net (as stochastic, continuous, or
hybrid Petri net) the regulatory factors influence the equilibrium between the
on and the off state of the gene. The on state means that the gene is transcrip-
tionally active and that mRNA molecules can be accordingly formed as modeled
in the mRNA module.

In prokaryotes, several functionally related genes can be organized into a
single regulatory and transcriptional unit, a so-called operon. The genes of an
operon are transcribed in the form of a single mRNA molecule, called a poly-
cistronic message, which may encode several proteins at once. In the case of
the phnCDEFGHIJKLMNOP transcriptional unit (Figure 6), one polycistronic
message encoding 14 different proteins (PhoC to PhoP) is formed upon the
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Fig. 5. Prototype of a gene module. The module may represent the activation of any
gene responsive to the phosphorylated PhoB protein. Binding of PhoRP_PhoBP to the
promotor renders the gene active. These regulatory interactions are modeled through a
test arc activating transition T2 and an inhibitory arc blocking T4. The basal activity
of the gene in the absence of PhoRP_PhoBP is maintained by T1 and T3.

Fig. 6. mRNA module modelling the formation of the polycistronic message
synthesized by transcription of the active phnC-P gene. The mRNA is trans-
lated into the proteins PhnC . . . PhnP. For simplicity, the places for only five of the 14
proteins that are formed are shown.

initiation of transcription. The probability per unit of time for the initiation
of transcription to occur depends on binding of PhoRP_PhoBP to the regu-
latory region of the phnCDEFGHIJKLMNOP operon on the DNA. From the
biological point of view, polycistronic messages provide a simple mechanism for
co-regulation of genes encoding proteins that work together in a cellular pro-
cess. In order to obtain a model including the transcriptional regulation of all
31 genes organized into the 9 transcriptional units that are under control of the
PhoB protein, 9 gene modules (phoA, phoBR, phoE etc.) of analogous structure
(as shown in Figure 5) are required. For large scale modelling approaches, these
network structures could be generated automatically or semi-automatically.

4.3 The mRNA Modules

The mRNA modules models the reactions of the respective mRNA species,
namely its biosynthesis by transcription, its degradation, and its translation
into the encoded proteins (Figure 6). An mRNA module may in addition rep-
resent the binding of regulatory proteins to the RNA, the binding of antisense
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RNA influencing the stability of the message, or the processing (e.g. splicing)
of the transcript, as it occurs in eukaryotes (shown in Figure 8 and discussed in
Section 7.2). The transcription of the bacterial phnCDEFGHIJKLMNOP tran-
scriptional unit leads to the formation of a polycistronic message, which encodes
for 14 proteins (PhoC . . . PhoP). The reactions (e.g. the catalytic activity) of
the encoded proteins might then be considered in separate protein modules.

5 Modelling Eukaryotic Gene Regulation with Gene and
mRNA Modules

5.1 Eukaryotic Gene Modules

The gene modules designed to model the regulation of eukaryotic genes are very
similar to the models of prokaryotic genes as presented in the previous section for
the phosphate regulatory network. However, the regulation of eukaryotic genes
is typically more complex than in prokaryotes as more protein factors and more
binding sites for regulatory proteins on the DNA may be involved. All these
factors together may control the on state of a gene.

Gene regulation may involve protein binding sites on the DNA functioning
as enhancers or silencers that are located several thousand base pairs distant
from the genes they regulate. Proteins bound to these sites may influence the
probability for transcription to be initiated through physical interactions with
the protein complexes bound to the promotor of the regulated gene. These regu-
latory sites and the binding of regulatory proteins to these sites are represented
as part of the gene module.

A prototype of a module representing the regulatory control of a eukaryotic
gene is shown in Figure 7. Making regulatory sites part of the gene module comes
with the advantage that potentially cooperative effects in protein binding and
gene activation can be considered as part of the module.

5.2 Eukaryotic mRNA Modules

In addition to the biosynthesis of proteins there are several RNA-dependent
processes that may be of regulatory importance especially in eukaryotic cells.
Typically, the occurrence of these mechanisms depends on the considered RNA
species and may also depend on physiological conditions as well as on devel-
opmental states. Each of the mechanisms described in the following has been
implemented in a basic form using the mRNA module prototype shown in
Figure 8.

Alternative Splicing. Primary transcripts in eukaryotes are processed during
the maturation of the final protein-encoding mRNA. Processing includes the
splicing of the RNA where non-coding introns are excised from the primary
transcripts. Due to the occurrence of alternative splicing sites, it may be that
differently spliced mRNAs are formed from one and the same primary transcript
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Fig. 7. Prototype of a eurkaryotic gene module. The regulation of the eukary-
otic gene (a) depends on more protein factors than the regulation of the prokaryotic
gene shown in Figure 5 does. By binding to the promotor region of the gene, these
factors form a multimeric protein complex, as shown for transcription factors TF1
and TF2, both of which directly bind to the promotor (b). The third transcription
factor, TF3, binds first to an enhancer sequence distant from the promotor (c) and
subsequently can bind to the promotor-TF1-TF2 complex to form the gene activating
complex GeneX_AC (b) which switches the gene into its transcriptionally active state
(a). As in Figure 5, gene activation by protein binding to the promotor is modeled by
control arcs and the basal level of gene activity occurs through firing of transitions T1
and T3 (a). According to our module notion the gene module displays all direct molec-
ular interactions of GeneX with the proteins that bind to its regulatory sequences. Note
that binding of regulatory proteins may involve cooperative mechanisms which would
be represented accordingly in the context of the gene module.

giving rise to proteins of partially different amino acid sequence. This splicing
depends on protein factors that may be regulated depending on the physiological
or developmental state of the cell. When necessary, the biochemical reactions
of these slicing factors (like posttranslational modification or protein-protein
interaction) may be represented in the context of protein modules with the help
of logical places.

RNA-Binding Proteins. The half-life of mRNA species may vary between
minutes and months. This variation may have different reasons in addition to
the specific secondary structure of the RNA. One mechanism influencing the
half-life of a given mRNA species is the binding to specific RNA-binding pro-
teins that may store or degrade the RNA. Being bound to an RNA-binding
protein, like Pumilio for example, the mRNAs can be stored in the cell while
being translationally inactive. Upon release from the RNA-binding proteins the
mRNA may suddenly become translationally active and hence become available
at relatively high concentration [14].
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Fig. 8. Prototype of an eukaryotic mRNA module. Transcription of the active
Gene (GeneX) leads to the formation of a primary transcript which is processed. In
the example shown, the primary transcript is spliced into two alternative mRNAs,
GeneX_mRNA_1 and GeneX_mRNA_2, respectively that are subsequently trans-
lated into the corresponding proteins. The mature mRNAs may bind to RNA binding
proteins that regulate the stability of the mRNA and its availability for the transla-
tional maschinery. For simplicity, this reaction is shown for one of the two mRNAs
only.

RNA Interference. RNA interference is a natural mechanism for the specific
inactivation of the expression of eukaryotic genes, e.g. by small interfering RNAs
that bind to the target RNA. The degradation of the RNAs depends accordingly
on specific protein factors and on the availability of the interfering RNA [8,33].

These mechanisms may have to be considered in the context of mRNA mod-
ules and receive regulatory input from specific cellular proteins.

5.3 Why Is the Integration of Bottom-Up and Top-Down Models
Essential, Especially in Eukaryotes?

In some respects systems biology appears to be more difficult for eukaryotic
as compared to prokaryotic cells. This may in part be due to the occurrence
of fundamentally different regulatory processes in the two domains of life with
non-obvious consequences of certain eukaryotic regulatory phenomena.

There is indeed highly detailed knowledge on the canonic pathways of eukary-
otic signal transduction which allows the formulation of well-structured bottom-
up models representing the biochemical interactions of regulatory components
like e.g. the MAP kinase cascade. Such models can be tremendously useful in
understanding mechanisms in health and disease [23,27,31] and in finding new
and powerful drugs.

However, it is also true that many experimental findings on canonic pathway
components seem to be contradictory. This may in part be due to the fact that
gene expression patterns in different experimental systems and under different
physiological conditions are different leading to a different composition of bio-
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chemical reactants within the cell at a given time point or between replicas of a
particular experiment.

This certainly restricts the current practical value of bottom-up models with-
out disclaiming their general usefulness. When a certain cellular process, for
example the differentiation phenomenon in a eukaryotic cell or the progression
through the cell cycle, is to be rigorously analysed at the transcriptomic or the
proteomic level, the changes in many perhaps in most of the observed compo-
nents and their consequences can currently not be explained on the basis of the
established bottom-up models of the canonic pathways. This suggests that there
are tremendous gaps in our current understanding.

On the other hand, it seems for the time being impossible that the thousands
of components accessible through omics approaches can be analysed with such
experimental effort as invested for the exploration of canonic pathway compo-
nents. Therefore it seems self-evident that omics data are used to rigorously
reverse-engineer models. Then, a next and essential step is to integrate these
top-down models with relevant bottom-up models to obtain integrated models
with predictive power.

6 Case Study: The Sporulation Control Network in
Physarum polycephalum

6.1 Sporulation Is Controlled by a Gene Regulatory Network

Physarum polycephalum is a unicellular eukaryote belonging to the amoebozoa
group of organisms [1,2,15]. During its relatively complex and branched life cycle,
Physarum develops into various cell types. These cell types occur in temporal
order and differ in morphology (shape), molecular composition, and physiological
function ([7] and references therein).

One of these cell types is the plasmodium, a multinucleate macroscopic single
cell. Differentiation of the plasmodium can be easily studied under lab conditions
as the response can be experimentally triggered by applying a brief pulse of far-
red light. The light pulse sets a defined starting point on the time axis on which
subsequent events are observed. During about 18 hours after the trigger, the
entire plasmodial cell is extensively remodeled and fruiting bodies are formed
that give rise to mononucleate haploid spores that are precursor cells of amoebal
gamets which will develop at later stages of the cycle [7]. This process is called
sporulation. Please note that sporulation in bacteria, although the name is the
same, is biochemically a completely different process than in eukaryotic cells.

Five to six hours after an inductive far-red pulse, the cell is irreversibly com-
mitted to sporulation. The associated molecular events are of scientific interest
as the plasmodium loses some stem cell-like capabilities during commitment.
The expression pattern of hundreds of genes changes [15,7]. These changes in
gene expression that normally occur can be compared to the changes that are
seen in mutant cells that have lost their ability to be committed to sporulation
[3,20].
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A widely-used method in the biosciences is the genetic dissection of gene
regulatory networks by generating mutants which are altered in the regulatory
control and analysing the phenotype which a mutation produces. Mutants may
be produced through forward and/or reverse genetic approaches. In forward
genetics, randomly mutated cells or organisms are screened for phenotypes of
interest and the gene which causes the phenotype is identified subsequently. In
the reverse genetic approach, a gene of interest is mutated and the phenotypic
consequence of the generated mutation is analysed. Mutation of a gene, both
in forward and reverse genetics, may either cause the loss of a protein or a
change in its function. Mutation may change the activity of a protein (up or
down) or it may change the specificity of its catalytic activity. In many cases,
the molecular mechanisms of how a given mutation translates into the observed
phenotype remain unknown for a number of years. Despite this ambiguity, the
genetic approach is powerful as it rigorously establishes causal dependencies
within the living organism. In most cases biochemistry alone could not fulfill
this task.

A powerful way to employ genotype/phenotype relationships for modelling
and simulation is the reverse engineering of genetic data. Reverse engineering
of gene expression data provides a direct link to bottom-up models of protein-
protein interactions. By reverse engineering one can establish effects, which a
mutated gene (the allele of a gene) exerts on a cellular process. We define allelic
influence modules to represent these influences. We will now show how allelic
influence modules are built and how they are useful for the integration of top-
down and bottom-up model parts into one coherent model.

6.2 Linking Genotype to Phenotype: Allelic Influence Modules

As gene modules, allelic influence modules are centred around the allele of a given
gene. However, allelic influence modules differ from gene modules in represent-
ing the regulatory influences exerted by the allele on cellular processes by con-
trolling the firing activities of respective transitions through read or inhibitory
arcs. In reality, these influences can be rather indirect by involving numerous
other, potentially unknown components. Accordingly, the allelic influence mod-
ule may represent the control of molecular events like the biosynthesis of RNA
by transcription or even more complex processes of potentially unknown molec-
ular mechanism as inferred from functional studies. To make this more clear, let
us consider the case study.

In response to far-red light, Physarum plasmodia differentially express a large
number of genes several hours before the cell is irreversible committed to sporu-
lation [20]. Genes with both up- and down-regulated RNAs have been identified
at a genomic scale [15,3], and the precise expression kinetics of some of them
have been investigated in detail [20]. Currently, we do neither know the molecu-
lar mechanisms through which these genes are controlled nor do we know which
causal consequences the change in expression level in detail have. However, the
majority of the differentially expressed genes encodes proteins with high sequence
similarity to proteins of important regulatory function.
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Fig. 9. Allelic influence module. The module represents the differential regulation
of four genes, pcnA, pldA (down regulated), hcpA, and rsgA (up regulated) by the
spoN48 allele of the spoN gene in Physarum polycephalum. The logic transitions shown
here are also part of the gene modules of the four differentially regulated genes (not
shown). Genes and names of their orthologs in the UniProt database: pcnA, prolifer-
ating cell nuclear antigen; pldA, Phosphatidylinositol-glycan-specific phospholipase D;
hcpA, Histone chaperone ASF1A; rsgA, Regulator of G-protein signalling 2.

We have genetically dissected the underlying regulatory network with the help
of mutants that are altered in the photocontrol of sporulation, as isolated in phe-
notypic screens ([32]; Rätzel et al., unpublished results). Representatives of one
class of these mutants have lost their ability to be committed to sporulation and
remain forever in a proliferative state. Although these mutants do not respond
to far-red light by sporulation, they clearly respond at the transcriptional level.
However the pattern of genes that are differentially expressed in response to
the stimulus significantly differs in the mutants as compared to the wild-type
and also differs between mutants. The altered gene expression patterns clearly
reveal the regulatory influence of the mutated genes and can be used to infer
the network of regulatory control in which the different regulators inactivated
in each of the mutants are interwoven. The changed pattern of differentially
expressed genes can be used to reverse engineer the regulatory influence of the
gene mutations. In Figure 9 the allelic influence module obtained for the phoN48
allele of the phoN mutant gene is shown. The proteins encoded by some of the
differentially expressed genes have well-known biochemical functions in the de-
velopmental control of eukaryotic cells. In a bottom-up approach, these genes
can be linked to corresponding protein modules in terms of changed protein
concentrations as predicted by the model.

7 Versatility of the Approach and Future Perspectives

We have described a strictly modular approach to Petri net modelling based on
clearly defined types of modules corresponding to the different types of molecular
entities around which each module is centred: genes, RNAs, and proteins. The
small number of module types and the few easy-to-follow rules for creating a
module are expected to encourage community efforts in creating a collection of
modules in analogy to how Wikipedia collects pages. In Petri net modules, cross
references to other modules allow the automatic composition of large models
that are directly executable [4]. A web-accessible database was constructed to
manage different versions of each module which is available as a prototype [4]. It
allows that different explanations of molecular mechanisms directly translate into
alternative computational models that predict experimental findings. Moreover,
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working with modules provides several options for the engineering of biomodels
and their scalable application to systems and synthetic biology.

7.1 Regulatory Interactions Appear in Clear Graphical Structure

Because each module summarizes all functional interactions of a given molecular
component including its influences on other components, even complex regula-
tory interactions can be always displayed in the form of an easy to perceive
graphical layout. Certainly, not all of the functional interactions that appear in
a module necessarily have to be part of a composed model. With the support of
a database, modules can be selected according to user-defined criteria and then
automatically linked to give a functional model. Those interactions that do not
find a counterpart in one of the selected modules remain inactive because the
respective places remain unmarked in the composed Petri net.

7.2 Modules May Be Added, Removed, or Exchanged: in silico
Mutation of Networks

The modular structure allows to remove or exchange modules when automat-
ically composing a model without touching or even considering modules that
remain unchanged. This is a crucial advantage as compared to the manual re-
engineering of monolithic models which requires careful consideration of how the
components are wired up with each other since overlooking connections might
accidentally introduce modelling errors. With the modular approach and the
built-in version control of the database, different versions of a given module can
be easily exchanged. This can be very helpful to analyse how alternative kinetic
mechanisms of molecular interactions would influence the overall behaviour of
the system.

For example for the phosphate regulatory network, one might wish to anal-
yse whether or not different activation mechanisms of the PhoB protein would
change the gene expression response and the performance of the feed-back loop.
When working with really complex models, the modeller investigating a local
mechanism has not to care about the inner life of all the numerous modules, in
analogy to programming where the procedures of an approved library of subrou-
tines do not have to be reconsidered each time they are used for building a new
program.

At the moment where the database will contain a relatively high number of
modules, automatically generated models might reveal nonobvious regulatory
interactions of molecular components, bring them into a quantitative context
and predict nonobvious and eventually counterintuitive consequences of network
activation or perturbation. This will definitely be the case when regulatory in-
teractions at a genome-wide scale change gene expression levels that translate
into an updated marking of the places of protein modules due to the change in
cellular concentration of perhaps many proteins. Even without modelling, this
is already obvious by just looking at the gene expression data mentioned in the
Physarum case study.
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One might systematically probe components for their global role in the
biomolecular system by simply removing modules from a model. This is the
in silico complement to systematic mutant screens that are performed in genetic
model organisms. In silico mutational studies may turn out to be of great bene-
fit for synthetic biology in all cases where systematic mutant screens cannot be
applied for what reasons soever.

7.3 Modules Can Be Automatically Generated at Large Scale

For genome scale models where the regulatory control of hundreds or thousands
of genes or proteins is to be considered, automatic generation of models becomes
an issue. By creating multiple copies of the module prototypes described here,
modules can be generated fully automatically simply by assigning names to
places and transitions. This is especially straightforward for the gene and mRNA
modules but also for protein degradation modules. We expect that automatically
generated large scale Petri nets will transmute into helpful tools for the reverse
engineering of models from transcriptomic and proteomic data sets.

7.4 Allelic Influence Modules Integrate Forward and Reverse
Approaches to Biomodel Engineering

Allelic influence modules were designed to represent regulatory influences of mu-
tated genes (the alleles of a gene) onto the system. Unlike in the other module
types, these influences may be rather indirect and may involve a number of po-
tentially unknown components. As we have shown, defining these modules allows
to reverse engineer networks from data collected on mutants. These reverse engi-
neered networks are indeed fully compatible with the molecule-centred modules
through transitions that control the active states of a gene as shown in the case
study.
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Abstract. We develop and analyze a model of a minimal synthetic
gene circuit, that describes part of the gene expression machinery in
Escherichia coli, and enables the control of the growth rate of the cells
during the exponential phase. This model is a piecewise non-linear sys-
tem with two variables (the concentrations of two gene products) and an
input (an inducer). We study the qualitative dynamics of the model and
the bifurcation diagram with respect to the input. Moreover, an analytic
expression of the growth rate during the exponential phase as function
of the input is derived. A relevant problem is that of identifiability of
the parameters of this expression supposing noisy measurements of ex-
ponential growth rate. We present such an identifiability study that we
validate in silico with synthetic measurements.

1 Introduction

Synthetic biology has nearly emerged as a new engineering discipline. The goal
of synthetic biology [1,2,3] is to develop and apply engineering tools to control
cellular behavior—constructing novel biological circuits in the cell—to perform
new and desired functions.

Most recent synthetic designs have focused on the cell transcription machinery,
which includes the genes to be expressed, their promoters, RNA polymerase and
transcription factors, all serving as potential engineering components. Indeed,
synthetic bio-molecular circuits are typically fabricated in Escherichia coli (E.
coli), by cutting and pasting together coding regions and promoters (natural
and synthetic) according to designed structures and specific purposes ([4,5,6]).

Along these lines, synthetic biology ultimately aims at developing synthetic
bio-molecular circuitry that may help in producing bio-pharmaceuticals, bio-
films, bio-fuels, novel cancer treatments and novel bio-materials (see [2] for a
review on synthetic biology applications).

In the present work we focus on the gene expression machinery of the bac-
terium Escherichia coli, with the aim of controlling the growth rate of the cells.
E. coli is a model organism that is easy to manipulate and much knowledge is
available about its regulatory networks.
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In the presence of a carbon source—such as glucose—E. coli grows in an
exponential manner until it exhausts the nutrient sources, and then enters a
stationary phase with practically zero growth [7]. The wild-type (namely the
genetically unmodified) bacteria grow at different rates in the presence of carbon
sources of different types [8]. Notably, glucose is the preferred substrate because
it leads to a higher growth rate in wild type. Our control objective is to force
the bacterium to significantly modify its response to glucose so as to tune the
cells’ growth rates. To this end, we take into account the recent applications of
synthetic biology which allow us to fabricate engineered promoters which in turn
can be externally controlled by inducers [9].

Notably, we will study an open loop configuration of a bi-dimensional model
of a mutant E. coli inspired by the experiments in [10]. The two basic variables
of our model, which describe the gene expression machinery that is responsible
for bacterial growth are (see Fig.1):

1. the concentration of a Component of the Gene Expression Machinery
(CGEM), proteins responsible for global growth (ribosomes and RNA poly-
merase). Without this CGEM, the bacteria cannot produce any proteins and
thus cannot grow.

2. the concentration of CRP, a protein involved in the formation of the com-
plex cAMP-CRP whose level positively correlates with less preferred carbon
sources and slower growth [11].

We will assume that an engineered inducible-promoter is used to express the
CGEM. Moreover it is assumed that the mutant CGEM activates its own ex-
pression. The number and location of equilibria can thus be controlled by means
of an input control function of the inducer and, in particular, there can be regions
of bi-stability, as observed in [10].

The type of growth rate control we present—which directly acts upon the
GEM—could be useful in creating bacterial cells that divert resources used for
growth towards the production of a target compound. Thus, the analysis of the
simple model presented here is an attempt to help guide the construction of
synthetic gene networks, which improves product yield and productivity.

This paper is structured as follows: in Section 2 we describe the open-loop
model, providing some biological motivations for the terms forming the differen-
tial equations. Next, in Section 3 we qualitatively analyze the open-loop model
by means of phase-plane and bifurcation diagram, showing how the steady states
of the CGEM can be controlled by the external input (inducer). In Section 4
we derive a mathematical expression of the growth rate during the exponential
phase as a function of the amount of the inducer. Finally, in Section 5 we present
an in silico practical identifiability analysis of such expression.

2 The Open-Loop Model

The principal modeling challenges come from incomplete knowledge of the net-
works, and the dearth of quantitative data for identifying kinetic parameters
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Fig. 1. Regulatory network of the open-loop model in the mutant E. coli. The model
consists of genes crp and synthetic-cgem (modified promoter of a component of the gene
expression machinery (CGEM) in E. coli). The synthetic-cgem promoter is positively
regulated by the inducer I—according to the input function ν1 = h(I)—and CGEM.
CGEM, being responsible for the bacterial gene expression, positively regulates crp
gene too. Moreover, crp transcription is induced by cAMP-CRP, a metabolite whose
formation relies on CRP protein abundance and low level of bacterial growth rate μ.

required for detailed mathematical models. Qualitative methods overcome both
of these difficulties and are thus well-suited to the modeling and simulation of
genetic networks ([12,13]).

In this work we used a novel piecewise non-linear formalism—derived from
piece wise affine (PWA) systems (see [14,15,16,17,18] for more details)—to model
gene expression affected by dilution due to growth rate.

The open-loop model depicted in Fig. 1—similarly to PWA models of regu-
latory genetic networks—is built with discontinuous (step) functions. The use
of step functions has been motivated by the experimental observation that the
activity of certain genes changes in a switch-like manner at a threshold concentra-
tion of a regulatory protein [19]. The non linearity is concentrated in the removal
term of differential equations, which takes into account the protein degradation
and the dilution due to growth.

The open-loop model, expressed by (1), describes the qualitative dynamics of a
CGEM responsible for bacterial growth and another protein that reflects growth,
such as CRP. The CGEM is assumed to be externally controlled by an inducer I
(such as IPTG (Isopropyl β-D-1-thiogalactopyranoside), Tc (tetracycline) etc).
This model of ODE exhibits bi-stability in CGEM expression for some parameter
sets, as experimentally verified in [10]. We shall take into account this bi-stability
to control the model’s state to the “low” or to the ”high” CGEM stable steady
state. Let xc, xp ∈ R≥0 be the CRP and CGEM concentrations respectively.
Thus, the open-loop model graphically depicted in Fig. 1, can be mathematically
translated into:



110 A. Carta, M. Chaves, and J.-L. Gouzé

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ẋc (t) = k
0
c s

+(xp, θ
1
p) + k

1
c s

+(xp, θ
2
p) s

+(xc, θ
1
c) s

−(xp, θμ̄)

− (μ̄ xp(t) + γc) xc(t)

ẋp (t) = ν1 k
0
p s

+(xp, θ
1
p) + ν1 k

1
p s

+(xp, θ
2
p)

− (μ̄ xp(t) + γp) xp(t)

(1)

where:

– k0i > 0 (i = c, p) is the basal synthesis rate constant;
– k1i > 0 (i = c, p) is the main synthesis rate constant;
– ν1 is a positive input accounting for the inducer I; it will be a function ν1(v),
v being the concentration of I;

– γi > 0 (i = c, p) is the degradation rate constant;
– θji > 0 (i = c, p; j = 1, 2) is the xi threshold concentration for activa-

tion/inhibition;
– θμ̄ > 0 is a growth threshold depending on which substrate is used;
– μ̄ > 0 is a growth constant depending on which substrate is used.

and s+, s− denote the step-like functions, defined as

s+(xi, θ
j
i ) =

{
1 if xi > θ

j
i

0 if xi < θ
j
i

; s−(xi, θ
j
i ) = 1− s+(xi, θji ) ,

which are used to model the switch-like promoters’ regulation carried out by the
generic protein xi. These s

+, s− are not defined at the threshold values so, to
define solutions on the surfaces of discontinuity, i.e. xi = θ

j
i , we use the approach

of Filippov [20], which extends the vector field to a differential inclusion.
In what follows, we will explain the main assumptions adopted in building

the system equations (1), which were inspired by the models in [10,12] and the
literature on E. coli.

2.1 Growth Rate

In bacteria, growth rate is intimately interwined with gene expression ([21,22])
and with the type of substrate [8]. Hence, to keep model complexity to a mini-
mum, we assume growth rate μ to be proportional—with a constant μ̄ depending
on the quality of medium—to the concentration of the CGEM which is respon-
sible for bacterial growth:

μ(t) = μ̄ xp(t) . (2)

2.2 cAMP-CRP Activation

The cAMP-CRP complex is formed from cAMP, a small metabolite, which binds
the protein CRP. The cAMP concentration is higher at low growth rate and
rapidly decreases at high growth rate [11]. Thus, cAMP abundance in cells can
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be well captured by a negative step function of μ, i.e. s−(μ, θμ). Moreover, being
cAMP association with or dissociation from CRP much faster than the synthesis
and degradation of proteins [12], we have assumed that as soon as CRP reaches a
certain threshold, i.e. θc, CRP instantly binds to cAMP in a switch-like fashion.
For these reasons, the positive regulation carried out by cAMP-CRP reads as:

b+cAMP−CRP = s+(xc, θc) s
−(μ, θμ).

Focusing on the negative step function s−(μ, θμ) and taking into account the
expression of μ in (2), we can rewrite b+cAMP−CRP as:

b+cAMP−CRP (xc, xp) = s
+(xc, θc) s

−(xp, θμ̄) (3)

where θμ̄ is a threshold concentration of CGEM which depends on the type of
carbon source.

2.3 CRP Synthesis

We have assumed that a lower value of xp, i.e. θ
1
p, induces the basal synthesis

(k0c s
+(xp, θ

1
p)) of xc while a higher value of xp, i.e. θ

2
p, is needed to stimulate

its main expression (k1cs
+(xp, θ

2
p)). Moreover, the crp gene is regulated both

positively and negatively by cAMP-CRP. However, in order to simplify, we omit
the negative control of crp, because this mechanism only plays a role when the
CRP concentration is low [12]1. Thus, only one concentration threshold of CRP,
i.e. θ1c , is required in the model, to allow production of the cAMP-CRP complex.
In conclusion, taking into account the regulation function of cAMP-CRP in (3),
the CRP synthesis reads:

fc(x) = k
0
c s

+(xp, θ
1
p) + k

1
c s

+(xp, θ
2
p) b

+
cAMP−CRP (xc, xp), (4)

with
0 < θ1c < maxc, (5)

where maxc is the maximum concentration value for CRP.

2.4 CGEM Synthesis

In this bi-dimensional model, since the CGEM is the main factor which deter-
mines growth of the cell, it is also responsible for its own synthesis. We have
thus assumed that a low concentration (θ1p) is sufficient to stimulate its basal
production k0p s

+(xp, θ
1
p) while its main production k1p s

+(xp, θ
2
p) is stimulated

only above the θ2p threshold. Thus, we can order the thresholds for xp as:

0 < θ1p < θ
2
p < maxp, (6)

1 We found that a model involving the negative control of crp by cAMP-CRP does
not have any effect on the conclusion of this study.



112 A. Carta, M. Chaves, and J.-L. Gouzé

where maxp is the maximum concentration value.
Moreover, the inducer effect is modeled by input ν1. For a general formulation

of the activation of xp by an inducer I, we will later on assume that ν1 is a positive
increasing function of I. Consequently, xp synthesis reads:

fp(x) = ν1 k
0
p s

+(xp, θ
1
p) + ν1 k

1
p s

+(xp, θ
2
p). (7)

2.5 Proteins Removal

The negative terms in ẋc and ẋp of (1) take into account the fact that cells remove
proteins by two processes: degradation and dilution due to cell growth [23].
Notably, these terms can generally be expressed as (μ(t) + γi)xi (for i = c, p)
where μ(t) = μ̄ xp(t), which is the bacterial growth rate in (2), is responsible for
the proteins’ dilution while γi stands for protein’s degradation.

3 Qualitative Analysis of the Open-loop Model

In this section we will qualitatively study, by means of phase-planes and bifur-
cation diagrams, model (1) in the case that cells are grown in glucose. This will
elucidate how qualitative dynamics—in terms of equilibria’ location and their
stability—is intertwined with biological phenomena. Moreover, we shall show
how—through the external input ν1—the stability of equilibria in (1) can be
controlled, pointing out a reciprocal influence between growth rate and gene
expression.

3.1 Open-Loop Model in Glucose Growth

If cells are grown in glucose, then parameters depending on the substrate become
θμ̄ = θGp and μ̄ = μG in model (1). Moreover, in the presence of glucose or
other PTS sugars, adenylate cyclase2 activity decreases, leading to a drop in the
cellular level of cAMP [24,25]. Thus, we have modeled this effect assuming:

0 < θ1p < θ
G
p < θ

2
p < maxp. (8)

Therefore, during growth on glucose, the state space of model (1) can be parti-
tioned into eight regular domains, where the vector field is uniquely defined:

DG
1 =

{
x ∈ R2

≥0 : 0 ≤ xc < θ1c , 0 ≤ xp < θ1p
}

DG
2 =

{
x ∈ R2

≥0 : θ1c < xc ≤ maxc, 0 ≤ xp < θ1p
}

DG
3 =

{
x ∈ R2

≥0 : 0 ≤ xc < θ1c , θ1p < xp < θGp
}

DG
4 =

{
x ∈ R2

≥0 : θ1c < xc ≤ maxc, θ1p < xp < θGp
}

DG
5 =

{
x ∈ R2

≥0 : 0 ≤ xc < θ1c , θGp < xp < θ2p
}

DG
6 =

{
x ∈ R2

≥0 : θ1c < xc ≤ maxc, θGp < xp < θ2p
}

DG
7 =

{
x ∈ R2

≥0 : 0 ≤ xc < θ1c , θ2p < xp ≤ maxp
}

DG
8 =

{
x ∈ R2

≥0 : θ1c < xc ≤ maxc, θ2p < xp ≤ maxp
}
.

2 Enzyme that catalyzes the conversion of ATP to cAMP and pyrophosphate.
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In addition, there are also switching domains, where the model is defined only
as a differential inclusion [20], corresponding to the segments where each of the
variables is at a threshold (xi = θi and xj ∈ [0,maxj ]).

In general, for any regular domain D, the synthesis rates (4) and (7) are
constant for all x ∈ D, and it follows that model (1) can be written as⎧⎨⎩ ẋc (t) = f

D
c − (μ̄ xp(t) + γc) xc(t)

ẋp (t) = f
D
p − (μ̄ xp(t) + γp) xp(t)

(9)

with fDc , f
D
p , μ̄, γc, γp positive real constants. For any initial condition x(t0) ∈ D

the unique solution of (9) can be found explicitly by solving first the xp-equation
of (9), which is an autonomous differential equation, and then solving the xc-
equation, having substituted xp(t) into it. Thus, it can be shown that xc(t) is
given by:

xc(t) =
1

b(t)

(
b(t0)xc(t0) + f

D
c

∫ t

t0

b(s)ds

)
where b(t) = exp

(∫ t

t0
(μ̄ xp(τ) + γp)dτ

)
. Moreover, defining Φ(D) = (x̄c, x̄p)

T

with

x̄c =
fDc

μ̄x̄p + γc
,

x̄p =
−γp +

√
γ2p + 4μ̄fDp

2μ̄
,

(10)

(it is easy to check that x̄p—in (10)—is the only positive solution of ẋp = 0) it
turns out that either x(t)→ Φ(D) as t→∞ or x(t) reaches the boundary of D.

Definition 1. Given a regular domain D, the point Φ(D) = (x̄c, x̄p)
T (defined

by (10)) is called the focal point for the flow in D.

We will group into regions Rj those domains DG
i where model (1)—in glucose

growth— has the same dynamics and thus the same focal points. Considering
Definition 1, we have the following focal points:

– ∀x ∈ R1 =
{
x ∈ R2

≥0 : x ∈ DG
1 ∪DG

2

}
xc → 0 ∧ xp → 0

Thus, ΦG0 = (0, 0) is the focal point of region R1.
– ∀x ∈ R2 =

{
x ∈ R2

≥0 : x ∈ DG
3 ∪DG

4 ∪DG
5 ∪DG

6

}
xc →

k0c
μG x̄1p,G + γc

= x̄2c,G

xp →
−γp +

√
γ2p + 4 ν1 k0p μG

2μG
= x̄1p,G

Thus, ΦG1 = (x̄2c,G, x̄
1
p,G) is the focal point of region RG

2 .
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– ∀x ∈ R3 =
{
x ∈ R2

≥0 : x ∈ DG
7 ∪DG

8

}
xc →

k0c
μG x̄2p,G + γc

= x̄1c,G

xp →
−γp +

√
γ2p + 4 ν1(k0p + k

1
p)μG

2μG
= x̄2p,G

Thus, ΦG2 = (x̄1c,G, x̄
2
p,G) is the focal point of region R3.

The focal points ΦGi (i = 0, 1, 2) are equilibrium points of model (1) provided
that they belong to their respective regular domain, i.e. Φ(D) ∈ D. The local
stability of equilibrium points is given by the following theorem.

Theorem 1. Let D be a regular domain and Φ(D) be the focal point of D. If
Φ(D) ∈ D, then Φ(D) is a locally stable point of model (1).

Proof. Model (1) restricted to D is given by (9). In order to assess the stability
of Φ(D), we compute the Jacobian matrix of (9) calculated in Φ(D) = (x̄c, x̄p)

T :

J(x̄c, x̄p) =

(
−μ̄x̄c −(μ̄x̄p + γp)
0 −(2μ̄x̄p + γp)

)
.

Since all the eigenvalues of J , which are the diagonal entries as J is triangular,
are negative, Φ(D) turns out to be a locally stable point.

Hence, there can be at most three locally stable steady states during growth on
glucose.

Fig. 2 depicts the phase-plane of model (1). It can be seen that ΦG0 , Φ
G
1 ,

ΦG2 , (for the parameter values used) are locally stable steady states since they
are within their respective regular domains (Theorem 1). Notably, it is easy to
verify that ΦG0 is locally stable for any set of parameters. It represents absence of
growth and can happen when the initial condition xp(t0), is too low—specifically
xp(t0) < θ

1
p—to initiate gene transcription or when the control input ν1 does not

sufficiently induce CGEM expression, that is when x̄1p,G < θ
1
p. We refer to ΦG0 as

the trivial fixed point. ΦG1 represents CGEM basal level—leading to a low growth
rate (see (2))— while CRP is at a high level, which is in agreement with high
crp gene expression (by cAMP-CRP) at lower growth rate. Thus, because of the
low growth rate achieved, we refer to ΦG1 as the low fixed point. Conversely, at
ΦG2 , CRP is at low level while CGEM , as well as μ, have reached their highest
stable values. Thus, ΦG2 is named the high fixed point.

Since x̄1p,G(ν1) and x̄
2
p,G(ν1) are function of ν1, it turns out that the location of

focal points ΦG1 and ΦG2 , and thus the number of equilibria of model (1), depend
on the control input ν1. Hence, choosing appropriate values of ν1 it is possible
to control model (1) towards ΦG1 or ΦG2 . To illustrate this, we have depicted in
Fig. 3 the xp-bifurcation diagram when parameter ν1 varies from 0 to 1 while
the other parameter values are the same as those used in Fig. 2.
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0

Fig. 2. Phase plane of model (1) during growth in glucose. Parameter values used:
θ1c = 0.6, θ1p = 0.8, θGp = 2, θ2p = 3.5, k0

c = 7, k1
c = 10, k0

p = 40, k1
p = 50, γc = 1, γp = 1,

μG = 2 e ν1 = .5. The black curve is the xc-nullcline: xp =
k0
c

xc μG
− γc

μG
. Stable fixed

points: ΦG
0 , Φ

G
1 , Φ

G
2 .

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Fig. 3. Bifurcation diagram for model (1) during growth in glucose, showing the non
trivial locally stable steady states of xp as a function of the control input ν1. Other
parameter values used are the same as those in Fig. 2. See Proposition 1 for more
details.

We notice that Fig. 3 is divided into four parts in which xp stability changes
significantly. In part I, for those values of ν1 such that x̄1p,G < θ

1
p and x̄2p,G < θ

2
p,

neither ΦG1 nor ΦG2 are stable steady states. In this case, model (1) during growth
on glucose converges towards the only stable point ΦG0 (not depicted in Fig. 3).
So, in I, the control input is too small to allow CGEM to reach a basal level,
and prevents bacterial growth.

In part II, when x̄1p,G(ν1) > θ
1
p and x̄

2
p,G(ν1) < θ

2
p hold, onlyΦ

G
1 is a stable steady

state (besides the trivial one) according to Theorem 1. Hence, it turns out that
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choosing an initial condition of CGEM xp(t0) > θ
1
p and ν1 such that x̄1p,G(ν1) >

θ1p and x̄2p,G(ν1) < θ
2
p, we can control model (1) to the stable point ΦG1 .

In part III, characterized by θ1p < x̄
1
p,G(ν1) < θ

2
p and x̄2p,G(ν1) > θ

2
p, both Φ

G
1

and ΦG2 are stable steady states: this is a region of bi-stability. Moreover, the
phase plane corresponding to this configuration is depicted in Fig. 2, where we
can also observe the presence of two separatrices xp = θ1p and xp = θ2p. Is is clear

that, depending on xp(t0), the model can converge to ΦG1 (if θ1p < xp(t0) < θ
2
p)

or to ΦG2 (if xp(t0) > θ
2
p).

In part IV, when x̄1p,G(ν1) > θ
2
p holds, only ΦG2 is a stable steady state and

thus, whenever xp(t0) > θ
1
p, model (1) converges to ΦG2 .

The open-loop control in glucose growth can be summarized as follows.

Proposition 1. Consider model (1) with control input ν1 and initial condition
xp(t0) such that:

– if (x̄1p,G(ν1) < θ
1
p ∧ x̄2p,G(ν1) < θ2p) ∨ xp(t0) < θ1p, then model (1) converges

to the trivial focal point ΦG0 (region I in Fig. 3);
– if x̄1p,G(ν1) > θ

1
p ∧ x̄2p,G(ν1) < θ2p ∧ xp(t0) > θ1p, then model (1) converges

to the low focal point ΦG1 (region II in Fig. 3);
– if θ1p < x̄

1
p,G(ν1) < θ

2
p ∧ x̄2p,G(ν1) > θ2p ∧ xp(t0) > θ1p, then model (1) is

bistable (region III in Fig. 3) and notably:
• if θ1p < xp(t0) < θ

2
p, then model (1) converges to the low focal point ΦG1 ;

• if xp(t0) > θ
2
p, then model (1) converges to the high focal point ΦG2

– if x̄1p,G(ν1) > θ
2
p ∧ xp(t0) > θ1p, then model (1) converges to the high focal

point ΦG2 (region IV in Fig. 3).

4 Growth Rate Expression for Exponential Phase

Here, to account for varying dosage of inducer, we make an assumption to ana-
lytically characterize the function ν1 = h(v). Notably, to describe the regulation
of CGEM gene expression by the inducer, we employ a function typically used
in synthetic biology [9]:

ν1(v) = α+ (1 − α) vn

Kn
v + vn

(11)

where v denotes inducer concentration and α accounts for the basal transcrip-
tional activity. Controlled gene expression follows Hill-type dosage-response curve
with promoter-activator affinity Kv and cooperative (Hill) coefficient n. During
exponential phase—the period characterized by cell doubling— the bacterial cul-
ture shows a constant growth rate [7]. This means that, according to (2), a stable
fixed point of the CGEM has to be reached. Hence, our expression of growth
rate during exponential phase reads:
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μ = μGx̄p (12)

where x̄p is the CGEM concentration at steady state, which can be either x̄1p,G or

x̄2p,G—depending on the amount of inducer which determines the level of CGEM
expression. Thus, our expression of growth rate during exponential phase can
assume the two values below:

μ(v) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
μGx̄

1
p,G =

−γp +
√
γ2p + 4 ν1 k0p μG

2

μGx̄
2
p,G =

−γp +
√
γ2p + 4 ν1 (k0p + k

1
p) μG

2
.

(13)

Specifically, we assumed there is a particular value of inducer, i.e. v∗, such that
for an appropriate choice of initial condition and for all v ≤ v∗ the CGEM steady
state is x̄1p,G while for all v > v∗ the steady state is x̄2p,G. Thus, considering that,

and substituting (11) into (13) we obtain the theoretical expression for growth
rate during exponential phase:

μ(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−γp

2

[
1−

√
1 +

4k0pμGα

γ2
p

+
4k0pμG(1− α)

γ2
p

vn

Kn
v + vn

]
if, v ≤ v∗

−γp

2

[
1−

√
1 +

4(k0p + k1p)μGα

γ2
p

+
4(k0p + k1p)μG(1 − α)

γ2
p

vn

Kn
v + vn

]
if, v > v∗

(14)

It is worthy to notice that expression (14) directly relates the growth rate μ
during exponential phase to the amount of the inducer v. Hence, using (14) we
can fine tune—by means of appropriate level of the inducer—the growth rate of
the cells during the exponential phase.

5 In silico Identifiability Analysis of Growth Rate

Our collaborators (Jérôme Izard and Hans Geiselmann3) are currently perform-
ing an ongoing experiment on a synthetic E. coli – implementing the open-loop
model depicted Fig. 1 – which relates the level of growth rate during the expo-
nential phase to the amount of the inducer. In the future, these dose-response
curves will be useful to calibrate and validate the growth rate expression (during
exponential phase) (14).

Here, we used simulated data to fit the growth rate model (14) and to study
the identifiability of the parameters.

3 Laboratoire Adaptation et Pathogénie des Microorganismes, (CNRS UMR 5163), Uni-
versité Joseph Fourier, Bâtiment Jean Roget, Faculté de Médecine-Pharmacie, La
Tronche, France.
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5.1 Problem Statement

Given a parametric non-linear model, such as (14), the relationship between a
response variable (output) and one or more predictor variables (input) can be
represented by the expression:

y = η(v, p) + ε ,

where

– y is an n× 1 vector of observations of the response variable,
– v is an n×m matrix of predictors,
– p is a q × 1 vector of unknown parameters to be estimated,
– η is any function of v and p,
– ε is an n × 1 vector of independent, identically distributed random distur-

bances.

The nonlinear regression problem consists of finding a vector p̂ minimizing a
scalar cost function J(p), which is generally a measurement of the agreement of
experimental data with the outputs predicted by the model. The cost function
that we have considered in this work is a weighted least squares criterion:

J(p) =

n∑
i=1

(yi − η(vi, p))2

y2i
(15)

where yi denotes the i-th data-point of the observable y, measured at input-
points vi, and η(vi, p) the i-th observable as predicted by the parameters p. The
parameters can be estimated numerically by:

p̂ = argmin [J(p)] . (16)

Determining the parameter vector p̂ which minimizes J(p) is only a part of
the parameter estimation problem. In fact, when preparing to fit a mathemat-
ical model or expression to a set of experimental data, the prior assessment of
parameter identifiability is a crucial aspect [26]. However, the structural identi-
fiability analysis for non-linear models in systems biology is still a challenging
question [27]. Whether or not parameters can be estimated uniquely depends
on the model structure, the parameterization of the model and the experiment
used to get the data [28].

Regarding this problem, we briefly recall two important definitions on identi-
fiability [29]:

– the parameter pi, i = 1, ..., q is structurally globally identifiable if as-
suming ideal conditions (error-free model structure and unlimited noise-free
observations (v, y)) and if for almost any p∗ ∈ P (admissible parametric
space P),

y(p, v) = y(p∗, v), ∀v ⇒ pi = p∗i .



A Simple Model to Control Growth Rate of Synthetic E. coli 119

– the parameter pi, i = 1, ..., q is structurally locally identifiable if as-
suming ideal conditions (error-free model structure and unlimited noise-free
observations (v, y)) and if for almost any p∗ ∈ P (admissible parametric
space P), there exists a neighborhood V (p∗) such that

p ∈ V (p∗) ∧ y(p, v) = y(p∗, v), ∀v ⇒ pi = p∗i .

An important complement to the structural identifiability definitions is the no-
tion of practical identifiability. Practical identifiability is in fact related to
the quality of experimental data and their information content [30]. The ques-
tion raised by this notion is the following: in the presence of observation errors
and/or few data are reliable estimations of the parameters possible? Thus, once
having determined the value of p̂ minimizing the cost function J(p), it is very im-
portant to find a realistic measure of how p̂ is precise. To this end, the confidence
intervals4 of the estimated parameters have to be calculated.

It must be noted that, unlike for the linear case for which an exact theory
exists, there is no exact theory for the evaluation of confidence intervals for
systems which are nonlinear in the parameters. An approximate method based
on a local linearization of the output function η(v, p) is generally used [31,32],
thus the confidence region is evaluated as a function of the parameter covari-
ance matrix. The applicability of such approximate method requires that the
response function η(v, p) must be continuous in its arguments (v, p), the first
partial derivatives ∂

∂pi
η(v, p) must be continuous in its arguments (v, p), and

the second partial derivatives ∂2

∂pi∂pj
η(v, p) must be continuous in its arguments

(v, p), but our model (14) does not satisfy these conditions because of the dis-
continuity in v = v∗. Hence, in the remainder of the paper a computational
method, based on in silico generated data, is suggested to argue the practical
identifiability of non-linear discontinuous model such as (14).

5.2 Generation of Simulated Data Sets

In order to assess the quality of parameter estimation and thus the practical
identifiability of parameters in (14), artificial data were generated by simulation
of (14) from a set of pre-defined parameters (to be considered as true values).
The true parameter values (Tab. 5.2) were chosen from physiological parameters
of E.coli cells [21,33] and were based on similar studies of this type [10].

Thus, the artificial growth rate values have been simulated considering a mea-
surement error proportional to the nominal value of growth rate:

y = μ(v) + σμ(v)N (0, 1) (17)

where N (0, 1) is a normally distributed random variable with zero mean and
unit variance and σμ(v) is the standard deviation of the observation errors. Four
different types of data sets were considered to account for practical identifiability:

4 A confidence interval [σ−
i , σ+

i ] of a parameter estimate p̂i to a confidence level α
signifies that the true value p∗i is located within this interval with probability α.
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Table 1. Nominal parameter values

k0
p k1

p γp μG α Kv n v∗

[μM ·min−1] [μM ·min−1] [min−1] [(μM ·min)−1] [μM ] [μM ]

0.02 0.11 0.006 0.0014 0.1 30 2 50

– data set I, with v = [0, 5, 10, 15, ..., 295, 300, 1000] and σ = 10−2;
– data set II, with v = [0, 10, 20, 30, ..., 290, 300, 1000] and σ = 10−2;
– data set III, with v = [0, 5, 10, 15, ..., 295, 300, 1000] and σ = 5 · 10−2;
– data set IV, with v = [0, 10, 20, 30, ..., 290, 300, 1000] and σ = 5 · 10−2;

Notably, data sets I, II, III and IV, have been generated with different number of
points (Nexp) and different intensities of noise (σ) to study the practical identifi-
ability of the parameters in four realistic experimental conditions. In particular,
data sets I and III have the same number of data points, i.e. Nexp = 62, but
different noise, σ = 10−2 for data set I and σ = 5 · 10−2 for data set III. Data
set II and IV have less number of points, i.e. Nexp = 32, while the level of noise
considered is σ = 10−2 for data set II and σ = 5 · 10−2 for data set IV.

5.3 Model Parameterization and Global Optimization

First, to avoid evident structural identifiability problems we will group together
those parameters in (14) which appear as combinations of products and/or quo-
tients between parameters. Thus, after some algebraic manipulations expres-
sion (14) reads as:

μ(v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

−γp
2

[
1−

√
1 +

4k0
pμGα

γ2
p

(
1 +

(1− α)

α

vn

Kn
v + vn

) ]
if, v ≤ v∗

−γp
2

[
1−

√
1 +

4(k0
p + k1

p)μGα

γ2
p

(
1 +

(1− α)

α

vn

Kn
v + vn

) ]
if, v > v∗

(18)

Moreover, to avoid dependence on physical unit as well as to overcome possible
scaling problem and to reduce the number of parameters, we decided to calculate
a non-dimensional version of expression (18). Notably, the non-dimensional slope
μN (v) is obtained by dividing μ(v) in (18) for the minimal growth rate, which is
achieved at the minimum value of the inducer, i.e. at v = v0, which for our data
sets I, II, III, IV consists in v0 = 0. Thus, considering the necessary condition
v0 < v

∗, the non-dimensional growth rate during the exponential phase reads:
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μN (v) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1−

√
1 +

4k0
pμGα

γ2
p

(
1 +

(1− α)

α

vn

Kn
v + vn

)

1−

√
1 +

4k0
pμGα

γ2
p

if, v ≤ v∗

1−

√
1 +

4(k0
p + k1

p)μGα

γ2
p

(
1 +

(1− α)

α

vn

Kn
v + vn

)

1−

√
1 +

4k0
pμGα

γ2
p

if, v > v∗

(19)

Now, considering the following parameterization

p1 =
4k0pμGα

γ2p
; p2 =

(1− α)
α

; p3 = Kv; p4 = n; p5 =
4k1pμGα

γ2p
; p6 = v∗

the expression (19) can be rewritten as

μN (v, p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1−
√

1 + p1

(
1 + p2

vp4

pp43 + vp4

)
1−

√
1 + p1

if, v ≤ p6

1−
√

1 + (p1 + p5)

(
1 + p2

vp4

pp43 + vp4

)
1−

√
1 + p1

if, v > p6

(20)

where p = [p1, p2, p3, p4, p5, p6] and, considering the true parameters values in
Tab 5.2 we obtain the true vector of parameters p∗:

p∗ = [0.3033, 9, 30, 2, 1.6683, 50] . (21)

Similarly, the data sets I to IV will also be normalized to their minimal value, i.e.,
each output-point is divided by the minimal observation value, that is ymin =
μ(v0), where v0 = 0.

Our approach in identifying the unknown parameters of model (19) consists
in solving a non-linear least squares minimization problem, using a hybrid opti-
mization approach which makes use of the functions ga (Genetic Algorithm [34])
and GlobalSearch of theMATLAB R© Global Optimization ToolboxTM. To start,
we used the Genetic Algorithm (GA) for 104 generations to get near an opti-
mum point. The genetic algorithm does not use derivatives to detect descent in
its minimization steps. Hence, it is a good choice for non-differentiable and/or
discontinuous problems. Moreover, GA does not necessarily need an user sup-
plied initial guess, which in most case leads to local sub-optimal convergence if
the initial guess is far from the global optimum. The result obtained with the
genetic algorithm is then used as initial point of a hybrid function, to further
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improve the value of the cost function J(p). We decided to use the GlobalSearch5

command as hybrid function since it searches many basins of attraction near the
starting point given by GA, arriving faster at an even better solution.

5.4 In Silico Practical Identifiability Analysis

The practical identifiability of model (20) has been tested using data sets I, II,
III and IV, which have different values of errors’ measurement and different data
points. Hence, these artificial data are suitable to mimic realistic experimental
set-ups.

For each data set mentioned above, parameters’ confidence intervals have been
computed following a Monte Carlo-like approach.

Notably, Nsimul = 200 runs of the previously described hybrid optimization
were performed. Where, at each of the Nsimul runs, a new realization of the
artificial measurements—according to the inputs and noise statistic of each data
set—is considered. This optimization yields Nsimul estimated values for each
parameter pi, i = 1, . . . , 6. Then, for each i, an average value, m̂i, and a standard
deviation, ŝi, were computed by fitting a Gaussian distribution N (m̂i, ŝ

2
i ) to the

histogram of the Nsimul values of pi. Thus, the 95% confidence interval (CIi)
for the pi parameter is calculated as:

CIi = m̂i ± 1.96ŝi (22)

This leads to the confidence intervals listed in Table 2.
As we can see in Table 2, parameters pi for i ∈ {2, 3, 4, 6} do not show any

practical identifiability issues, as the true value is contained in the respective
CI with sufficiently precision. On the contrary, the CIs of parameters p̂1 and p̂5
tend to become very large at increasing values of the measurement’s errors (σ)
and at decreasing numbers of data points, indicating that in real experimental
conditions (that is, limited and noisy data), the precise identification of these
parameters might be impracticable. Moreover, we found that the correlation
coefficient (R) between the two vectors of estimated parameters parameters p̂1
and p̂5 is R = 0.99, for all data sets. Recall that the correlation coefficient
measures the interrelationship between p̂1 and p̂5 quantifying the compensation
effects of changes in the parameter values on the model output. In fact, when
two parameters are highly correlated, a change in the model output caused
by a change in a model parameter can be balanced by a appropriate change

5 GlobalSearch first runs fmincon from the start point you give. If this run converges,
GlobalSearch records the start point and end point for an initial estimate on the
radius of a basin of attraction. Then, GlobalSearch solver starts a local solver (fmin-
con) from multiple starting points and store local and global solutions found during
the search process. Notably, the GlobalSearch solver first uses a scatter-search al-
gorithm to randomly generate multiple starting points, then filters non-promising
start points based upon objective and constraint function values and local minima
already found, and finally runs a constrained nonlinear optimization solver to search
for a local minimum from the remaining start points.
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Table 2. Confidence intervals of estimated parameters p̂i when (20) is fitted to (non-
dimensionalized) data sets I, II,III,IV. The confidence intervals for parameters become
larger at increasing values of the measurement error and at decreasing numbers of data
points, indicating possible practical identifiability problems especially for p̂1 and p̂5.

DATA SET I DATA SET II DATA SET III DATA SET IV
σ = 102 σ = 10−2 σ = 5 · 10−2 σ = 5 · 10−2

Nexp = 62 Nexp = 32 Nexp = 62 Nexp = 32

CI1 0.3328 ± 0.4939 0.3738 ± 0.5441 0.2631 ± 0.4220 0.32 ± 0.49

CI2 9.23± 3.45 9.36± 3.88 8.63 ± 3.06 9.21 ± 4.67

CI3 30.16 ± 3.55 30.00 ± 3.55 29.39 ± 5.15 30.33 ± 7.52

CI4 2.002 ± 0.079 2.011 ± 0.089 2.006 ± 0.232 2.01 ± 0.33

CI5 2.053 ± 4.192 2.39± 4.51 1.53 ± 3.59 1.93 ± 3.99

CI6 53.32 ± 4.48 55.98 ± 6.99 53.06 ± 3.58 56.70 ± 6.79

Table 3. Confidence intervals of the ratio p̂5/p̂1 when (20) is fitted to (non-
dimensionalized) data sets I, II,III,IV

DATA SET I DATA SET II DATA SET III DATA SET IV
σ = 10−2 σ = 10−2 σ = 5 · 10−2 σ = 5 · 10−2

Nexp = 62 Nexp = 32 Nexp = 62 Nexp = 32

CIp̂5/p̂1 5.29 ± 2.39 5.54 ± 2.43 4.99 ± 1.15 5.2 ± 1.3
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Fig. 4. Fitting the growth rate function (20) using one realization of the non-dimensional
data set II. The blue points are the normalized artificial data generated according to
specification of data set II. The red curve is the function (20) when p̂ is used.

in the other parameter value. Thus, instead of considering the CIs of p̂1 and p̂5
separately—which are not significant—we have computed the confidence interval
of their ratio, i.e. p̂5/p̂1. These results are presented in Table 3. As we can notice
in Table 3, the CIs of p̂5/p̂1 are accurate, since they contain the true value of
the ratio p∗5/p∗1 = 5.5, and more precise since their relative width is smaller than
the relative width of CI1 and CI5.
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It must be noted that a further reduced model which takes into account the
correlation between p5 and p1 can not be achieved. This because expression (20)
can be rewritten in terms of the ratio and either p5 or p1. Fig 4 shows the fitting
of model (20) to one realization of data set II.

6 Conclusions

In this paper, a minimal model consisting of two variables (the concentrations
of two gene products) and an input (an inducer) was analyzed and used to
describe one possible mechanism to control the growth rate of E. coli cells during
exponential phase. This model is based on the piecewise affine formalism but a
new, non-linear, term was added to account for the dilution effect during growth.
The qualitative dynamics of the model can thus be studied, and the bifurcation
diagram with respect to the input is obtained. Moreover, this mathematical
formalism allows derivation of an analytic expression for the growth rate as
function of the input. This expression has two applications:

– it can be directly fitted to experimental data to estimate a set of parameters
(this is an advantage relative to the typical “indirect” parameter estimation
by fitting to the numerical solutions of the differential equations);

– it provides an indication of how to control the growth rate to a desired value
by adding a given quantity of inducer.

Finally, practical identifiability analysis based on numerical simulations is pre-
sented, which shows that some issues may arise with noisy measurements. In
this case, our analysis suggests that the original growth rates’ measurements
should be adimensionalized and unknown parameters grouped into a new set of
“lumped” parameters in order to obtain local identifiability. Notably, we found
that only the ratio between the estimated parameters p̂1 and p̂5 can be esti-
mated with sufficient precision in the case when only limited and noisy data are
available. This study and the conclusions on identifiability will be most useful
to help dealing with and solving parameter estimation problems with real data
sets.
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29. Walter, É., Pronzato, L.: Identification of parametric models from experimental
data. Communications and Control Engineering, Springer (1997)

30. Dochain, D., Vanrolleghem, P.: Dynamical Modelling and Estimation in Wastew-
ater Treatment Processes. IWA Publishing (2001)

31. Seber, G., Wild, C.: Nonlinear regression, vol. 503. Libre Digital (2003)
32. Gallant, A.: Nonlinear regression. The American Statistician 29(2), 73–81 (1975)
33. Bremer, H., Dennis, P., et al.: Modulation of chemical composition and other pa-

rameters of the cell by growth rate. Escherichia Coli and Salmonella: Cellular and
Molecular Biology 2, 1553–1569 (1996)

34. Goldberg, D.: Genetic algorithms in search, optimization, and machine learning.
Addison-Wesley (1989)



Multi-objective Optimisation, Sensitivity

and Robustness Analysis in FBA Modelling

Jole Costanza1, Giovanni Carapezza1, Claudio Angione2,
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Abstract. In this work, we propose a computational framework to de-
sign in silico robust bacteria able to overproduce multiple metabolites. To
this end, we search the optimal genetic manipulations, in terms of knock-
out, which also guarantee the growth of the organism. We introduce a
multi-objective optimisation algorithm, called Genetic Design through
Multi-Objective (GDMO), and test it in several organisms to maximise
the production of key intermediate metabolites such as succinate and
acetate. We obtain a vast set of Pareto optimal solutions; each of them
represents an organism strain. For each solution, we evaluate the fragility
by calculating three robustness indexes and by exploring reactions and
metabolite interactions. Finally, we perform the Sensitivity Analysis of
the metabolic model, which finds the inputs with the highest influence
on the outputs of the model. We show that our methodology provides ef-
fective vision of the achievable synthetic strain landscape and a powerful
design pipeline.

Keywords: Cell Metabolism, Biological CAD, Sensitive and Fragile
Pathways, Genetic Design, Multi-Objective optimisation, Flux balance
analysis, Sensitivity and Robustness Analysis.

1 Introduction

Metabolic engineering is central in Biotechnology and has impact also in basic
cellular biology. The aim of metabolic engineering is to direct specifically a flux
through a metabolic pathway, for instance a product made during the fermen-
tation. To this end, one needs a deep understanding not merely of the genetics
of a microorganism, but also of its metabolic capacity (i.e. the amount of all the
intermediates). Remarkably, through genetic manipulations (in terms of knock-
outs) carried out on bacteria, one can overproduce one or more metabolites of
interest. A gene knockout is a genetic technique in which one gene in an organ-
ism is made inoperative through a base mutation or a deletion. Sometime the
inactivation of one gene results in the inactivation of all the downstream genes
of the operon. These manipulations are very useful for classical genetic studies
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as well as for modern techniques including functional genomics. Recently, many
organisms have been used to analyse their metabolite production potential and
to identify the metabolic interventions to produce the metabolite of interest.
Indeed, strains have been systematically designed in vivo to overproduce target
metabolites such as lycopene [1], ethanol [2], isobutanol [3] and many others.

Metabolic engineering requires mathematical models for accurate metabolic
reconstruction of strains, as well as for seeking non-native synthesis pathways.
A recent research methodology, called Flux Balance Analysis (FBA) [4], studies
biochemical networks, in particular the genome-scale metabolic network recon-
structions. These network reconstructions contain all of the known metabolic
reactions in an organism and the genes that encode each enzyme. FBA calcu-
lates the flow of metabolites through this metabolic network, thereby making
it possible to predict the growth rate of an organism or the rate of production
of a biotechnologically important metabolite at steady state. Being at steady
state, FBA manages large networks very quickly, since it does not require ki-
netic parameters. This makes it well suited to research on perturbations and
genetic manipulations (knockouts) that bacteria might undergo. One of the ma-
jor advantages of performing computational analysis of stoichiometric models
is that the pathways are system proprieties emerging under particular genetic
background and nutritional conditions. In other words, the FBA provides bet-
ter treatment of metabolism than classical biochemistry drawings of metabolic
pathways.

By using computational metabolic engineering methods, it is possible to ex-
plore the reaction network and search for the genetic interventions to optimise
the objectives. By making inoperative the genes, the enzymes that are normally
synthesised by those genes are not present anymore in the biological system.
In this way, also the corresponding biochemical reactions, normally catalysed
by these enzymes, do not occur. Then, the chemical species that constitute the
reagents and products of these reactions do not undergo the transformations.
The aim is to find the genetic manipulations that change the metabolic pro-
cess in an organism, in order to increase the flow of desired metabolites, chosen
according to biotechnological purposes. Additionally, changing the natural ge-
netic function in an organism may cause the death of the growth cell. Therefore,
finding genetic manipulations is a hard problem of search and optimisation.

For all the above reasons and since designing gene knockout in laboratory is
very expensive and time-consuming, in the past years a variety of methods has
been implemented in order to predict in silico the best knockout strategies that
optimise a cellular function of interest. These methods are based on evolutionary
algorithms [5], simulated annealing [6], bi-level optimisation framework [7], and
mixed-integer linear programming (MILP) [8,9]. All have been tested in FBA or-
ganism models, but they require high computational efforts, since the execution
times grow exponentially [8,6,5] or linearly [7] as the number of manipulations
allowed in the final designs increases. Moreover, cellular metabolism is composed
of a large number of reactions, thus the dimension of the solution space is very
large and finding genetic manipulations is computationally expensive.
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In this work, we present a novel Multi-Objective optimisation algorithm de-
noted by Genetic Design through Multi-Objective (GDMO), in order to search
for the genetic manipulations that optimise multiple cellular functions of inter-
est. Our idea is to use the Pareto optimality to obtain not only a wide range
of Pareto optimal solutions, but also the best trade-off design. In this context,
the multiple biological functions are represented by desired productions, e.g., vi-
tamins, proteins, biofuel, biomass formation, antibodies, electron productivity,
or the energetic yield of the organism. For this application, a Pareto solution
represents a strain with a particular genetic manipulation (genotype), and that
is specialised to overproduce selected metabolites (phenotype), with respect to
the wild type (i.e., a strain with genes that are all operative). We test our
knockout-based multi-target optimisation on the most recent metabolic data
concerning Escherichia coli, Geobacter [10], Methanosarcina barkeri [11], and
Yersinia pestis [12]. We report that multi-objective optimisation provides more
insights than single optimisation on the capability of these organisms to adapt
to the simultaneous presence of different conditions and constraints. Further-
more, our method is able to explore effectively the whole space of knockouts.
We tested the performance of GDMO by maximising acetate and succinate pro-
duction rates, and other multiple biological functions in E. coli, iAF1260, and
comparing it against previous methods.

GDMO is accompanied by a robustness analysis that performs the local, global
robustness and the Normalised Feasible Parameter Volume of the genetic ma-
nipulation proposed by GDMO. For each strain, we compute the robustness
indexes, in order to estimate how robust is a strain obtained by GDMO when
it undergoes small perturbations, external (changes in the nutrients) or internal
(changes in the metabolism). This way, we are able to choose the most robust
strain proposed by GDMO. Finally, the Sensitivity Analysis investigates the
species solution space and determines the influence of each specie on the output
of the FBA model.

2 Methods

2.1 GDMO: Genetic Design through Multi-Objective Optimisation

GDMO is a combinatorial global search method that finds the genetic manipu-
lation strategies to simultaneously optimise multiple cellular functions (i.e., ob-
jective functions) in metabolic networks modelled with Flux Balance Analysis
(FBA) and Gene-Protein-Reaction (GPR) map. The simultaneous optimisation
of multiple objectives differs from the single-objective optimisation because the
solution is not unique when the objectives are in conflict with each other. In
a maximisation problem objectives are in conflict when the increment of an
objective, causes the decrement of at least another one.

The solution of a multi-objective problem is a potentially infinite set of points,
called non-dominated solutions or Pareto front. In a maximisation problem, a
solution is Pareto optimal if there exist no feasible solutions that increase some
objective without causing a simultaneous decrease in at least one other objective.
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In our problem, the genotype of a bacterium is mathematically represented by
a string of bits y ∈ {0, 1}L. Each bit in y is a gene set that distinguishes between
single and multi-functional enzymes, isozymes, enzyme complexes and enzyme
subunits; this way, it captures the complexity and diversity of the biological
relationships through a Boolean approach. For example, when the genes of the
l-th set are all necessary to catalyse the corresponding reactions (a single gene
set can linked to more reactions), genes are related by “AND”; otherwise if it is
necessary at least a gene, genes are linked by “OR”. When the l-th element of
y is set to 1, the corresponding gene set is inoperative. Therefore, y represents
the vector of decision variables to be found, in order to obtain the higher values
of objective functions, satisfying particular constraints (for instance a maximum
number of gene knockouts allowable). A point y∗ in the solution space is said
to be Pareto optimal if there does not exist a point y such that F (y) dominates
F (y∗), where F is the vector of r objective functions. The variable space, (i.e.,
the domain of y) is defined in a discrete space.

The method we present implements a genetic algorithm inspired by NSGA-
II [13] and is composed of 4 key steps. We start with the initialisation of the
population Pop and the computation of the fitness score. The population Pop
is a set of individuals, i.e., a set of feasible solutions. Pop is represented by a
I × (L+ r+2) matrix, where I is the number of individuals, L is the number of
the decision variables and r is the number of the objective functions, obtained
solving the problem (2). The last two columns are used to store two parameters
of the algorithm linked to each individual and useful to evaluate the quality of
the solution. Each individual is composed of the proposed knockout strategy ỹ
and the corresponding objective function values. Each generation select the indi-
viduals that are maximal with respect to the product ordering. The individuals
of the initial population can be initialised in different ways: either randomly,
assigning present status to all genes or selecting a set of knocked out genes.

Successively, three steps are iteratively carried out. In a binary tournament
selection process, two individuals are selected at random, and their fitness is
compared. The individual with the best fitness is selected as a parent. The
algorithm selects a number of parents (i.e. the best individuals) equal to the half
of the population. Parents are mutated using a combinatorial mutation operator
convenient to create an offspring population. Mutation represents a switch, from
0 to 1, or from 1 to 0 for the l-th gene set. The process is randomly executed
and for each parent individual ten offspring have been formed and only the best
is chosen. Mutation can achieve the maximum knockouts number equal to the
parameter C (fixed to 50 by default). A novel population of size Pop is formed
selecting the best individuals from the parents of the previously generation and
the current offspring. The new population undergoes a new round of evaluation.
For each generation of the algorithm, Pareto optimal solutions are provided.
Finally, a selection operator is performed in order to reach the last front.

This cycle is repeated until the solution set does not improve, or until an
individual with a desired phenotype is achieved or when the number of gen-
eration is bounded out. The number of generations D and individuals of the
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population I are parameters chosen by the user. The time-complexity of the
genetic algorithm is O(2DIr), where D is the number of generations, I is the
population size and r is the number of the objectives. GDMO finds a set of Pareto
optimal solutions (non-dominated solutions) for a combinatorial multi-objective
optimisation problem, which is also a NP-complete problem.

Pareto Optimality is very useful for the analysis of metabolism, as reported
in the previous works [14,15,16], where authors used multi-objective approaches
to evaluate the fluxes distributions and genetic manipulations in metabolic net-
works. In our work, we remark the usefulness of Pareto optimality and adopt an
effective and state-of-the-art algorithm to investigate the knockout space. Addi-
tionally, for the first time, we used the ε-dominance optimality, to do an accurate
search in a neighbourhood of the edge of the Pareto region.

2.2 Pareto ε-Dominance

Another analysis that we perform is inspired by the idea described in [17]. They
use a condition of approximated dominance for their evolutionarymulti-objective
algorithm with the aim of improving the diversity of solutions and convergence.
We, however, use this idea to perform a post-processing analysis in order to
calculate an approximated Pareto front. This calculation is designed to search
for new solutions and, in particular, solutions that may have been discarded,
but they are dominated by an amount that, for our purposes, can be consid-
ered negligible. Therefore, once the optimisation routine has been carried out,
all the sampled points are revisited. Then, a new set of solutions is built, called
“ε-non-dominated” set, by applying a “relaxed” condition of dominance, called
ε-dominance. Formally, assuming that all the objective functions must be max-
imised, given ε > 0, we seek all the points (solutions) belonging to the set:
{w : wz + ε ≥ uz, ∀ z = 1, ..., r}. Remarkably, this set contains both the new “ε-
non-dominated” solutions and the previous non-dominated ones.

2.3 FBA Modelling and the Combinatorial Optimisation Problem

FBA is a modelling framework used for studying biochemical networks and in
particular the m metabolites and n reactions that are involved (e.g., their for-
mation and degradation, transport and cellular utilisation). For each metabolite
Xi, i = 1, . . . ,m a material balance is dXi

dt =
∑n

j=1 Sijvj , where Sij is the stoi-
chiometric coefficient associated with each flux vj , j = 1, . . . , n. At steady state,∑n

j=1 Sijvj = 0 holds. This balance equation can be written in matrix form
Sv = 0, where S is the stoichiometric matrix of m rows and n columns, and
v is the vector of fluxes (metabolic and transport fluxes). The matrix S is not
square and n > m, so we have a plurality of solutions. Each solution is a flux
distribution representing a particular metabolic state, depending on the geno-
type and the transport fluxes. The FBA approach finds the metabolic state in
order to optimise a particular objective function, given as a linear combination
of fluxes (e.g., growth rate, ATP production). Consequently, the problem can be
formulated as a linear programming problem:
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Fig. 1. ε-dominance analysis results in E. coli network for acetate (A) and succinate
(C) multi-objective optimisation. Figures B and D report the knockout cost associated
with the solutions reported respectively in Figures A and C, and the dimension of
circles reflects the knockout cost associated with the solution point.

maximise (or minimise) f ′v
such that Sv = 0

vLj ≤ vj ≤ vUj , j = 1, . . . , n,

(1)

where f is a vector of weights (n dimensional). All the elements in f are either
0 or 1. In our work, fi is equal to 1 if vi is the biomass core, but it is possible
any combination of fluxes as an objective functions. vLj and vUj are the lower
and upper bound values (thermodynamic constraints) of the generic flux vj (in
our analysis, we consider vUj = 100 and vLj = −100 for the fluxes that represent
reversible reactions). The output of FBA is a particular distribution of fluxes,
denoted by v, which optimises the objective function. Remarkably, FBA does
not describe how a certain flux distribution is realised (by kinetics or enzyme
regulation), but which flux distribution is optimal for the cell.

We propose the gene-protein-reaction (GPR) mappings to allow our algorithm
to work at the genetic level. GPR mappings provide links between each gene and
all the reactions vj depending on it, and define how certain genetic manipulations
affect reactions in the metabolic network. For a set ofL genetic manipulations, the
GPR mappings are represented by a L× nmatrixG, where the (l,j)-th element is
1 if the l-th genetic manipulation maps onto the reaction j, and is 0 otherwise.

Our approach is based on the technique adopted in OptKnock [8], which
finds the fluxes distribution in the metabolic network in order to reproduce
the desired productions (synthetic objectives) and achieve the maximal growth.
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Unlike Optknock, we are able to optimise more than one objective. The bi-level
problem [8] is represented by the following formulation:

max g′v

such that

L∑
l=1

yl ≤ C

yl ∈ {0, 1}
max f ′v
such that Sv = 0

(1− y)′Gjv
L
j ≤ vj ≤ (1 − y)′Gjv

U
j ,

j = 1, . . . , n,

(2)

where g is a vector of weights (n dimensional) associated with the synthetic
objectives, and g′ is its transpose. For example, when the synthetic objectives
vj and vh have to be maximised, the weights gj and gh are equal to 1. y is
the knockout vector (L dimensional). If there are no impaired reactions in the
metabolic network, y contains only zeros. Conversely, when yl = 1, the gene set
involved in the manipulation l is turned off, and the corresponding reactions
are in the absent status (the lower and upper bounds are set to zero, resulting
in a modified metabolic network). C is an integer representing the maximum
number of knockouts allowed. The bi-level problem can be converted to a MILP
problem as described in [8] (for a detailed description, see the original work [8]).
We implemented and solved the problem using the GLPK solver.

2.4 Sensitivity Analysis

In modelling, Sensitivity Analysis (SA) is a method used to discover which inputs
play a key role on the output of the model. In the last years, scientists used SA
indexes in systems biology interrogating the reactions space (RoSA - Reactions
oriented Sensitivity Analysis) [18], [19] and species space (SoSA - Species oriented
Sensitivity Analysis) to find their influence on the outputs of the system [20].
We perform SA to find the most sensitive inputs in FBA model of E. coli using
the Matlab SensSB Toolbox [21].

The E. coli model analysed in this work contains 2382 fluxes, 299 of which
represent exchange fluxes, 2082 represent inner metabolic reactions, and 1 the
growth rate or biomass.

The nex exchange reactions ( nex < n ) described by the vector vex ⊂ v,
allowing nutrients to enter and leave the system, are unconstrained in the forward
direction (vUex, upper bound vector), while are constrained in reverse directions
(vLex, lover bound vector) to zeros when uptake rates is not allowed. Moreover,
the “EX glc” is an exchange reaction for glucose and has a lower bound of “-10”
indicating a potential glucose uptake rate of 10 mmol gDW−1 h−1.

We performed the SA method considering as inputs of the model the vLex lower
bound vector of exchange fluxes. For each of nex exchange fluxes we varied each
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element of vLex in the interval [-100, 0] of the region of interest Ω, nex-dimensional
unit hypercube.We adopted theMorris [22] method in order to identify the uptake
rates whose tuning results in a major system response. SA is based on the calcula-
tion of the elementary effect due to the variation of each input. For a given value of
vLex, we define the elementary effect of the h-th input as:

dh(v
L
ex) =

F (vLex(1), . . . , v
L
ex(h− 1), vLex(h) +Δ, vLex(h+ 1), . . . , vLex(nex))− F (vLex)

Δ
.

(3)

We considered the vector of fluxes v as output F (vLex) for E. coli model,
calculated by solving the problem (1). For each of the nex exchange fluxes, the at-
tention is restricted to a region of experimentation ω,
nex-dimensional k -level grid, where each vexh may take a value from ω ={
−100,−100k−2

k−1 , . . . ,−100
2

k−1 ,−100
1

k−1 , 0
}
. Δ is a predetermined multiple of

1
(k−1) and represents the perturbation of the input vexh . The distribution of ele-

mentary effects EEh for the input vexh is obtained by randomly sampling Q points
from ω. The estimation of the mean μ∗ and standard deviation σ∗ of those dis-
tributions EEh will be used as indicator of which inputs should be considered
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Fig. 2. Uptake Rate-oriented Sensitivity Analysis for the E. coli model iAF1260. In
this analysis we investigate the input fluxes of the model (299 nutrients) and evaluate
their sensitivity with respect to all fluxes of the model. We find that only 70 fluxes
(reported in the key) out of 299 are influent, the other ones have sensitivity indexes
equal to zero. Results have been obtained averaging over 3000 evaluates of function F .
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important. A high μ∗ mean indicates an input with an important “overall” in-
fluence on the output. A large measure of σ∗ variance indicates an input whose
influence is highly dependent on the values of the inputs.

2.5 Robustness Analysis

The ability of a system to adapt to perturbations due to internal or external
agents, aging, temperature, environmental changes and, in our case, also due
to molecular noise and mutation is one of evolutionism guidelines and should
also be a fundamental design principle. To optimise the production of a specific
metabolite (and simultaneously the formation of biomass, which is necessary to
maintain the survival of the bacteria), we used GDMO that obtain a strain that
maximises the feature required by us. At this point, the validity of the biological
strain, designed in-silico, must be tested as regards robustness and sensitivity
to endogenous and exogenous perturbations, and this is done by the robustness
analysis. In this way, we also know the ability of a strain to adapt to small
perturbations that can occur at any stage of the biochemical processes within the
bacterium, or caused by the environment in which it reproduces. As we shall see,
by the term “adaptive capacity” we mean the ability to maintain “acceptable”
the performances relative to the metabolite production and biomass formation
previously optimised.

There are numerous methods that can be used to fulfil this task. Among these,
in [23] the authors consider a big network (in this case, however, considered the
Internet network) and use the theory of percolation on random graphs to test
the robustness of the network in case of random or targeted node deletion, or in
case of random link deletion. They associate occupation of nodes or links with
their functioning, and for occupation probability they mean the probability of
operation of them. They consider that this probability is uniform or depends
on the degree of each node (that is the number of connections at that node)
distribution. So they analyse the robustness of the network connectivity as the
occupation probability is varied. Through this analysis, they highlight that a net-
work with these characteristics is robust to random removal of nodes or links,
but not if they are targeted nodes with highest degree. In another work [24], the
relationship between the general characteristics of a chemical reaction network
and the sensitivity of his equilibrium is investigated according to changes in the
overall supply of reagents. The authors define the sensitivity of a species as the
variation of it with respect to the element concentration one, and they find a
lower bound to such sensitivity that depends on the network structure alone. In
particular, they argue that a strong robustness of the equilibrium against ele-
ment variations is likely only if the various species are constructed from building
block highly gregarious (i.e. each one binds with many others) or present in
some species with high multiplicity. Finally, in [25] the authors use a combined
approach of global and local robustness that they call Glocal Robustness. The
global analysis investigates the parameter space with the aim of finding where
a circuit cell shows experimental observed features (global), while the local one
determines the robustness of parameter sets sampled during the previous phase.
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Similar work making use of the robustness analysis for parameter estimation are
also present in [26] and in [27]. In our work, however, we use very simple robust-
ness analysis that shows a high degree of transversality because easily applicable
in other fields, as was done in [28] and in [29].

The basic principle of this analysis is as follows. Firstly, we define the per-
turbation as a function τ = γ (Ψ, σ) where γ applies a stochastic noise σ to the
system Ψ and generates a trial sample τ . The γ-function is called γ-perturbation.
Without loss of generality, we assume that the noise is defined by a random dis-
tribution. In order to make statistically meaningful the calculation of robustness,
we generate a set T of trial samples τ . Each element τ of the set T is considered
robust to the perturbation, due to stochastic noise σ, for a given property (or
metric) φ if the following condition is verified:

ρ (Ψ, τ, φ, ε) =

{
1, if |φ (Ψ)− φ (τ) | ≤ ε
0, otherwise

(4)

where Ψ is the reference system, φ is a metric (or property), τ is a trial sample of
the set T and ε is a robustness threshold. The definition of this condition makes
no assumptions about the function φ. It can be anything (not necessarily related
to properties or characteristics of the system); however, it is implicitly assumed
that it is quantifiable. The robustness of a system Ψ is the number of robust
trials of T, with respect to the property φ, over the total number of trials (|T |).
In formal terms:

Γ (Ψ, T, φ, ε) =

∑
τ∈T ρ (Ψ, τ, φ, ε)

|T | (5)

where Γ is a dimensionless quantity that states, in general, the robustness of a
system and, in this case, of a strain.

Robustness index is a function of ε, so the choice of this parameter is crucial and
not a trivial task. Since we are interested in the behaviour of strain when subjected
to small perturbations andbecause thebehaviour is acceptablewhen thedeviations
from the original value is as small as possible, we choose the values of epsilon equal
to 1% of the metric and sigma equal 1% of the perturbed variable.

Based on this principle, we evaluate two values of robustness, the Global Ro-
bustness value (GR) and the Local Robustness value (LR). Also we evaluated
the Normalised Feasible parameter Volume ([25]) to give a comparison between
these results and the GR/LR values. The first two values only differ in the per-
turbation kind, in particular, chosen σ, it will differ the set of variables that will
be perturbed.

Global Robustness. As regards the Global Robustness of a strain, we per-
turbed the upper and lower bounds of each metabolic flux. Hence, a trial τ is
created by perturbing all the upper vUj and lower bounds vLj , j = 1, . . . , n of the
metabolic flux. We create a set Tτ of trials, and for each of them we perturb
all the bounds and evaluate the property φ(τ) (by flux balance analysis), which
in our case can be the value of acetate, succinate, biomass or a combination of
them; and then, we calculate the function ρ. Once a value of ρ is obtained for
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each of the trials, we compute the value of robustness (Equation 5), which in
this case we call Global Robustness because all the parameters are perturbed.

Local Robustness. In this case, we perturb again the upper vUj and lower

bounds vLj , j = 1, . . . , n, of a metabolic flux, but we create a sample trial per-
turbing a single flux, we evaluate the property φ(τ) and we calculate the func-
tion ρ. After creating a set Tτ of trials, we calculate the robustness (Equation
5), which in this case we call Local Robustness. Hence, we calculate a LR value
for each metabolic flux.

Normalised Feasible parameter Volume. We also implemented the anal-
ysis described in [25] to compare the results obtained by GR and LR. In this
analysis, the authors implement a procedure that calculates the volume occupied
by those parameters such that the system maintains the desired characteristics.
The volume is computed in the 2n-dimensional parameter space. In our case,
the volume is such that Equation 4 holds. Since this research requires a huge
computational effort, given the high number of dimensions (R2n, where 2n is the
number of parameters), it is guided by an iterative procedure that involves the
Principal Component Analysis (PCA). In the second part, they calculate local
coefficients, and from these they derive which parameters are influential on the
robustness (by Spearman’s partial correlation coefficient).

In particular, the first part requires two steps. The first is a Monte Carlo sam-
pling obtained with 2n-dimensional Gaussian random variations centred around
a parameter vector (known in advance). In our case this vector is represented by

the 2n parameters: vUj and vLj . Then a set T
(1)
τ , 2n×K is created, that contains

K parameter vectors. Among these, only a fraction will satisfy the Equation 4,
the set comprising this fraction is the set of the feasible parameter vectors V (1).
The second step begins with a principal component analysis of V (1); this analysis
allows to identify statistical linear structures within high-dimension data sets.
Here, instead, it is used to guide the sampling of the parameter vectors in subse-

quent iterations. In particular, T
(2)
τ and the subsequent sets T

(h)
τ are generated

from V (1) and, in general, from V (h−1), where h = 1, . . . , H are the iterations

number. In particular the generic element τj,k of T
(h)
τ is generated as:

τj,k =

T∗∑
t∗=1
V

(h−1)
j,t∗

|T ∗| + λ(h−1) · ξj,k,
(6)

where j = 1, . . . , 2n, since the columns of T
(h)
τ contain the perturbed values of

the parameters vUj and vLj , j = 1, . . . , n; k = 1, . . . ,K is the cardinality of T
(h)
τ ;

the first term, on the right side, is the average of the elements for each perturbed
parameter (that is the average for each row) of the set V (h−1) obtained in the
previous iteration; ξj,k is a Gaussian noise with zero mean and standard deviation
equals to the (j, k)th−element of the covariance matrix Σ(h−1), i.e. the pair wise
covariance calculated for all vectors τa and τb of V

(h−1) (the eigenvectors of this
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matrix are the principal axes of the V (h−1) set by PCA); finally, the real value
λ(h−1) guides the hth Gaussian process by scaling the standard deviations of the
distribution along the PCA directions. The purpose of Equation 6 is to avoid
unnecessary sampling in a parameter space region where there are no probably
feasible vectors. At the end of this procedure, a hyper-box B is constructed
in the parameter space, whose axes are parallel to the PCA axes of the last
iteration. The bounds of this box, for each direction, are given by the more
extreme elements in the set V H of the last iteration. Then B is uniformly sampled
constructing the final set Tτ ; a subset V of Tτ will verify the Equation 4. Finally,
the feasible parameter volume will be calculated as R2n = (|V | \ |Tτ |) ∗ V ol(B),
where |.| determines the cardinality. The logic of this measure is that as the value
of R2n increases as the likelihood that perturbing a parameter vector, another
feasible parameter vector is generated increases. Finally, for comparing systems
with different number of parameters the normalised feasible parameter volume
R is defined as R =

√2nR2n. R can be considered as the permissible average
variation per-parameter that leaves intact the system performance.

The second part of this analysis is connected to the global part. The authors
take into account the final set of the feasible parameter vectors V and for each
parameter vector produces Q sample trials perturbing the 2n parameters by
Gaussian noise with zero mean and sigma equal to 0.2; then, they calculate the
fraction of robust trials; after that, they repeat the calculations for all vectors.
Finally, for the 2n-parameters, they calculate the Spearman partial correlation
coefficient with respect to the robust trial fraction values and the different values
assumed by the parameters δj(V (j), X), where j = 1, . . . , 2n; V (j) is the jth

row of V (containing the observations of the jth-parameter) and X is a vector
(containing the values of the robust trial fractions).

3 Results

We tested the performance of GDMO to maximise the production of acetate and
succinate in the recent model of E. coli K-12 MG1655, iAF1260 [30], and we
compared it with GDLS [7], OptFlux [6] and OptGene [5]. In Table 1, we report
the productions in wild type, and the results obtained by previous methods and
in particular the greater level of acetate and succinate we reach. Pareto and
ε-optimality present several suitable solutions, which are reported in details in
Table 3. Our method reaches interesting results in terms of acetate, succinate,
biomass and, mostly, in knockout cost. The knockout cost is defined according to
the Boolean relationship between genes. For example, if a gene set is composed
by two genes linked by an “AND” relation, the cost to ensure the catalysis
of the corresponding reactions is 2, since both genes are necessary to turn on
the reactions. Instead, the cost to ensure the turning off of the corresponding
reactions (knockout cost) is 1. In our optimisation, indeed, we select as third
objective the minimisation of the knockout cost, since in vivo knockout is an
expensive and a difficult biotechnological procedure. In all the simulations we
initialised the network with an empty set of knockouts, in order to compare our
results with GDLS.
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Table 1. Comparison between GDMO and previously genetic design meth-
ods. We compare OptFlux [6], OptGene [5], GDLS [7], OptKnock [8] and our multi-
objective optimisation algorithm (GDMO) for maximising acetate (Ac) and succinate
(Suc) production [mmolh−1 gdW−1]. The third and fourth rows provide the biomass
(Bm) [h−1] and the knockout cost (kc). We report two candidate solutions for acetate
optimisation: the first strain, named A5 (Table 3), provides a low kc equal to 3, and
the second one (A2) reaches an elevated value of acetate, +130.7%, outperforming the
previous methods. For succinate production, we obtain +13659% with respect to wild
type, deleting only 8 genes (B3). The last three rows provide the robustness indexes.
R values [25] and GR values are global robustness indexes. For LR we report the min-
imum value found that is associated with the less robust flux (glucose uptake rate).
“n.a.” stands for not applicable.

Wilde Type OptFlux OptGene GDLS GDLS OptKnockOptKnock GDMO GDMO GDMO
Ac 8.30 15.129 15.138 15.914 n.a. n.a. 12.565 13.791 19.150 n.a.

(+82.3%) (+82.4%) (+91.7%) n.a. n.a. (+51.4%) (+66.13%) (+130.7%) n.a.
Suc 0.077 10.007 9.874 n.a. 9.727 9.069 n.a. n.a. n.a. 10.610

(+12877%)(+12704%) n.a. (+12514%) (+12362%) n.a. n.a. n.a. (+13659%)
Bm 0.23 n.a. n.a. 0.0500 0.0500 0.1181 0.1165 0.130 0.053 0.087

n.a. n.a. (-78.4%) (-78.4%) (-77.9%) (-49.6%) (-43.72%) (-77.10%) (-62%)

kc n.a. n.a. n.a. 14 26 54 53 3 10 8
GR 54.76% n.a. n.a. 13.76% 16.6% 43.24% 43.08% 45.32% 27.6% 40.40%
LR 54.0% n.a. n.a. 16.0% 21.33% 40.0% 40.60% 39.33% 24.0% 46.0%
R 1.30 n.a. n.a. 1.45 1.45 1.18 1.02 0.78 0.44 1.32

For each solution, we also calculate the Robustness indexes. In particular the
Global Robustness index (GR) can be seen as an index to discriminate a strain
from each other to choose the best, as regard the robustness with respect to
the selected metrics. Moreover, if GR is high, the likelihood of the strain to
maintain the performance increases, even if subjected to perturbations. R values
indicate the permissible average variation per-parameter that leaves intact the
system performance. Therefore, also these values can be seen as an index to
discriminate a strain from each other. If we consider the GR and R values, we
can see a similar behaviour in most cases. Local Robustness (LR) index represents
the absolute and relative minimum of the results obtained for each strain. Only
for the flux related to D-glucose exchange (Ex glc), we obtain LR values less
than 100%. Finally, we evaluated Spearman partial correlation coefficients. Since
this procedure requires a considerable computational effort, the results of this
analysis are calculated for only one strain (A4, Table 2). The results indicate
that the highest value is δi∗ = −0.24 (the other values are smaller at least by
one order of magnitude) that corresponds to the D-glucose exchange (EX glc)
reaction. It indicates that the Robustness of the strain is more correlated to this
reaction. The result is identical to that we obtained with the Local Robustness
analysis. Also in this case, the D-glucose exchange (EX glc) is the fragile reaction
of the strain. Results are shown in Table 2.

The study of genes and reactions of E. coli has involved inferring several
Pareto trade-offs in anaerobic and aerobic conditions (Figure 3 and Figure 4).
The experiments reported in Figure 3 show that GDMO overcomes all the above
mentioned methods, and in particular GDLS. The latter performs a single-
objective optimisation maximising the synthetic objective function acetate
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Fig. 3. Maximisation of biomass and acetate production in anaerobic and aerobic con-
ditions (A,B), and maximisation of biomass formation and succinate production in
anaerobic and aerobic Condition (C,D), with glucose uptake rate 10 mmolh−1 gDW−1

in iAF1260. In black the Pareto solutions obtained by GDMO, and in red the optimal
results obtained by GDLS [7].

production with knockout cost equal to 14, or optimising succinate production
with knockout cost 26, as shown in Table 1 and Figure 3.

The Pareto front strategy is useful to investigate the biological and statisti-
cal complexity in several organisms. Figure 5 reports four Pareto curves obtained
optimising the acetate/succinate production and the biomass formation in differ-
ent organisms: the E. coli [30], the Methanosarcina barkeri [11], Geobacter sul-
furreducens [10] and Yersinia pestis [12]. M. barkeri is an archaea able to live
in anaerobic condition and produce methane using three known metabolic path-
ways for methanogenesis. Geobacter species are of ecological importance due to
bioremediation capabilities. The organism can metabolise uranium, has the abil-
ity to generate electricity and can decompose petroleum contaminants in polluted
groundwater. For all the organisms, glucose uptake rate is fixed at a maximum
of 10 mmolh−1gDW−1 as a carbon source (except for M. barkery, which does
not features the glucose exchange flux in its metabolic network). Some external
metabolites (e.g., calcium, ammonia, sulfate, phosphate, oxygen, water, proton,
iron (II-III), potassium, sodium, copper, chloride and carbon dioxide) are allowed
to both enter and leave the system, while the others are allowed only to leave the
system. GDMO highlights the response of different systems and the ability of the
organisms to produce the desired metabolite. In the same conditions, M. barkeri
and G. sulfurreducens reach higher levels of acetate than E. coli.
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Table 2. Robustness analysis results. For each strain we report: the Global Ro-
bustness Value (GR), the normalised feasible parameter volume (R) and the Local
Robustness (LR) values. For the LR values are shown the minimum associated with
the glucose uptake rate. For all other fluxes, we obtained 100% of local robustness.

Strain GR(%) R LR(%)

A1 28.72 0.39 26.67
A2 27.60 0.44 24.00
A3 40.72 1.27 35.33
A4 41.52 1.74 36.0
A5 45.32 0.78 39.33

B1 44.60 0.15 44.67
B2 43.48 0.92 42.0
B3 40.40 1.32 46.0
B4 44.64 1.30 44.0
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Fig. 4. Pareto fronts for six optimisation problems. We simultaneously maximise
biomass formation [h−1] and A) ATP synthase rate, B) 1,2-propanediol, C) CO2, D)
ethanol, E) formate , F) lactate production rates [mmolh−1 gDW−1]. In blue we sim-
ulate aerobic conditions with O2=10 mmolh−1 gDW−1, in black anaerobic conditions.
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Table 3. We report some of the proposed solutions obtained by GDMO to maximise
acetate and succinate productions [mmolh−1 gDW−1] in E. coli network. For each
strategy, we report the biomass formation [h−1], the knockout cost (k cost) and the
corresponding genes and reactions switched off. The variation of acetate, succinate and
biomass in comparison with the wild type is enclosed in brackets.

Strain Acetate Biomass k cost Knocked out Genes Deleted Reactions

A1 19.198 0.052 12 (b0351) OR (b1241) acetaldehyde dehydrogenase (acetylating)
(131.26%) (-77.38%) (b0910) cytidylate kinase (CMP)

cytidylate kinase (dCMP)
(b2975) OR (b3603) D-lactate transport via proton symport

glycolate transport via proton symport, reversible
L-lactate reversible transport via proton symport

(b4381) deoxyribose-phosphate aldolase
(FdhF and Hyd4) or (FdhF and HycB)* Formate-hydrogen lyase
(b0243) glutamate-5-semialdehyde dehydrogenase
(b3617) glycine C-acetyltransferase
(b0963) methylglyoxal synthase
Nuo* NADH dehydrogenase

A2 19.150 0.053 10 (b0351) OR (b1241) acetaldehyde dehydrogenase (acetylating)
(130.7%) (-77.10%) (b3945) aldose reductase (acetol)

Glycerol dehydrogenase
D-Lactaldehyde:NAD+ 1-oxidoreductase

(b4381) deoxyribose-phosphate aldolase
(FdhF and Hyd4) or (FdhF and HycB)* Formate-hydrogen lyase
(b3617) glycine C-acetyltransferase
(b1380) OR (b2133) D-lactate dehydrogenase
(b3236) malate dehydrogenase

A3 18.532 0.096 9 (b0351) OR (b1241) acetaldehyde dehydrogenase (acetylating)
(123.2%) (-58.6%) (b0910) cytidylate kinase (CMP)

cytidylate kinase (dCMP)
(b2975) OR (b3603) D-lactate transport via proton symport

glycolate transport via proton symport, reversible
L-lactate reversible transport via proton symport

(b4381) deoxyribose-phosphate aldolase
(b3617) glycine C-acetyltransferase
(b0963) methylglyoxal synthase
Nuo NADH dehydrogenase

A4 14.046 0.104 5 (b0351) OR (b1241) acetaldehyde dehydrogenase (acetylating)
(69.20%) (-55.14%) (b3617) glycine C-acetyltransferase

(b4025) glucose-6-phosphate isomerase
(b3708) Tryptophanase (L-tryptophan)

A5 13.791 0.130 3 (b0351) OR (b1241) acetaldehyde dehydrogenase (acetylating)
(66.13%) (-43.72%) (b1539) L-allo-threonine dehydrogenase

D-serine dehydrogenase
L-serine dehydrogenase

Strain Succinate Biomass k cost Knocked out Genes Deleted Reactions

B1 12.012 0.055 15 (b0351) OR (b1241) acetaldehyde dehydrogenase (acetylating)
(15476%) (-76.33%) (b2587) 2-oxoglutarate reversible transport via symport

(b0870) OR (b2551) D-alanine transaminase
alanine transaminase
L-allo-Threonine Aldolase
Threonine aldolase

(b1852) glucose 6-phosphate dehydrogenase
(b1849) GAR transformylase-T
(b1380) OR (b2133) D-lactate dehydrogenase
(b2463) malic enzyme (NADP)
(b0963) methylglyoxal synthase
(b4388) phosphoserine phosphatase (L-serine)
(b2661) succinate-semialdehyde dehydrogenase (NADP)
(b1602 AND b1603) NAD(P) transhydrogenase (periplasm)
(b3708) Tryptophanase (L-tryptophan)

B2 11.530 0.070 10 (b0351) OR (b1241) acetaldehyde dehydrogenase (acetylating)
(14875%) (-69.3%) (b2587) 2-oxoglutarate transport via symport

(b3945) aldose reductase (acetol)
Glycerol dehydrogenase
D-Lactaldehyde:NAD+ 1-oxidoreductase

(b1852) glucose 6-phosphate dehydrogenase
(b1380) OR (b2133) D-lactate dehydrogenase
(b2463) malic enzyme (NADP)
(b2661) succinate-semialdehyde dehydrogenase (NADP)
(b1602 AND b1603) NAD(P) transhydrogenase

B3 10.610 0.087 8 ((b0351)OR(b1241)) acetaldehyde dehydrogenase (acetylating)
(13659%) (-62%) ((b3945)) aldose reductase (acetol)

Glycerol dehydrogenase
D-Lactaldehyde:NAD+ 1-oxidoreductase

((b1380)OR(b2133)) D-lactate dehydrogenase
(b2463) malic enzyme (NADP)
(b0767) 6-phosphogluconolactonase
((b1602ANDb1603)) NAD(P) transhydrogenase

B4 9.284 0.093 5 ((b0356) OR (b1241) OR (b1478)) alcohol dehydrogenase (ethanol)
(11939%) (-59.55%) (b4025) glucose-6-phosphate isomerase

(b2501) polyphosphate kinase
polyphosphate kinase

*We report the protein 1) “Nuo” associated to the gene set:(b2276 AND b2277 AND b2278 AND b2279 AND b2280 AND b2281 AND
b2282 AND b2283 AND b2284 AND b2285 AND b2286 AND b2287 AND b2288),
and 2) “(FdhF and Hyd4) or (FdhF and HycB)” associated to (b4079 AND (b2481 AND b2482 AND b2483 AND b2484
AND b2485 AND b2486 AND b2487 AND b2488 AND b2489 AND b2490) or (b4079 AND (b2719 AND b2720 AND b2721
AND b2722 AND b2723 AND b2724)))
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In order to study the favourable environmental conditions, i.e. nutrients for E.
coli, we performed the simultaneous optimisation of acetate, succinate and biomass
on the complete network, i.e. without knockouts. We consider the anaerobic and
aerobic condition (O2 uptake rate = 10 mmolh−1gDW−1) by keeping fixed the
glucose uptake rate to 10 mmolh−1gDW−1. We use the Non-Dominated Sort-
ing Genetic Algorithm II [13] to perform optimisation by exploring the contin-
uous space of exchange fluxes. The algorithm implements the Simulated Binary
Crossover operator for crossover and the polynomial mutation. In our analysis,
the decision variable vector is the lower bound vector of the flux values that con-
stitute the 297 exchange fluxes (glucose and oxygen are kept constant) in the FBA
model of E. coli. The decision variables are real values from 0 to -100 (0 when the
uptake is not allowed, -100 when the potential uptake rate is 100 mmol gDW−1

h−1). The algorithm parameters are the population size (set as 100 individuals)
and the generation number (set at 500).

Our method reaches the maximum value of acetate (+100 mmol gDW−1 h−1),
and highlights conflictive behaviour of biomass and succinate (see their maximi-
sation in the Pareto fronts of Figure 6). In anaerobic condition, we found 100
mmolh−1 gDW−1 h−1 of acetate, 42.918mmolh−1 gDW−1 of succinate and 3.6204
h−1 of biomass (the trade-off). In this condition, we individuated a significant
increment in the L-Aspartate, Citrate, Lactose, Fumarate and Malate uptake
rates. Instead, in aerobic condition, we found 100 mmolh−1 gDW−1 h−1 of ac-
etate, 21.889 mmolh−1 gDW−1 of succinate and 4.16 h−1 of biomass and a sig-
nificant increment in the L-Asparagine, 1, 4-alpha-D-glucan, Fe(III)dicitrate, 2-
Oxoglutarate uptake rates. In our analysis, we perturbed simultaneously almost
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Fig. 5. Pareto fronts obtained by optimising the acetate production [mmolh−1 gDW−1]
(A), succinate production (B) and the biomass formation [h−1] using GDMO algorithm
in four organisms models: E. coli, M. barkeri, G. sulfurreducens and Y. Pestis. For Y.
Pestis we consider two biomass compositions: at 24-28� and 37�. The significance of
these two temperatures stems from the two types of hosts that Y. Pestis infects in the
natural environment, namely insect vectors at ambient temperature and mammalian
hosts with regulated body temperatures of about 37�. In M. barkeri, G. sulfurreducens
and Y. Pestis, the yield of acetate and biomass is larger than E. coli due to the lower
number of reactions in the metabolic reconstructions.
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all the exchange fluxes, but it is possible to select a smaller set of nutrients to study
according to experimental requirement.

Sensitivity analysis results are shown in Figure 2, revealing that only 70 out
of 299 are influent in the output of the model, i.e., the remaining do not change
significantly the metabolic network. In particular, Chloride, Zinc, Co2+, L-
Glutamate exchanges are the most sensitive (the complete list is reported in
Figure 2).
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Fig. 6. Feasible regions for acetate production, succinate production (y axis) and
biomass formation (x axis). We consider the wild-type bacteria (i.e. knockout zero)
and perform the optimisation in aerobic (O2 = 10 mmolh−1 gDW−1, in blue) and
anaerobic (black) conditions on a basis of 10 mmolh−1 gDW−1 glucose fed to identify
favourable nutrients. In both conditions, the algorithm reaches the maximum produc-
tion of acetate (100 mmolh−1 gDW−1).

4 Conclusions

This paper highlights that the Pareto front has a close link with the biotechnol-
ogy productivity. For the biosynthesis, Pareto optimality is important to obtain
not only a wide range of Pareto optimal solutions, but also the best trade-off
design. Pareto front provides not merely the visualisation of the optimisation
process, but also significant information in metabolic design automation. For
instance, the size of non-dominated solutions, the first derivative and the area
under the Pareto curve could play a key role for the best design within the same
organism or between different organisms. Remarkably, the reduced size of the
Pareto front could indicate the incompleteness of the model in terms of the num-
ber of reactions modelled; in this case, the Pareto optimality could be thought
of as a parameter describing the improvement of a model for a bacterium with
respect to a previous model for the same bacterium.

Exploratory analysis and comparative metabolic models suggest that the area
underlying the Pareto provides an estimate of the number of intermediates which
may be exploited for biotechnological purposes (optimisation of an additional ob-
jective) or to build synthetic pathways (synthetic biology). Given two bacteria
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or two conditions for the same bacterium, a larger area under the Pareto front
probably represents the best conditions for adding or optimising pathways lead-
ing to new biotechnological products. The slope of the Pareto front reflects the
progressive lack of pathways able to sustain the production of one component
when we are optimising the metabolism to maximise the other. The anaerobic
Pareto front has also many more jumps (quick decreases) than the aerobic one.
Jumps mark the sudden loss of pathways due to the critical unavailability of
an enzymatic step. In other words they correspond to sudden decreases in the
availability of entire pathways and subnetworks when a crucial hub is eliminated
(e.g., the Krebs cycle). The region of the Pareto front nearby a jump suggests
that slight changes of conditions, or a handful of genetic mutations, may result in
a large change in the amount of product. Hence, the first derivative, and in par-
ticular its discontinuity, indicates the preferable conditions for the metabolites
production as highlighted in the Figure 3-C-D regarding succinate and biomass
optimisation. In fact, Pareto front in aerobic condition presents a wide jump,
confirming that anaerobic condition is favourable for succinate fermentation as
given in literature, while in aerobic condition succinate is used as intermediate to
produce energy and is totally consumed. GDMO scales effectively as the size of
the metabolic system and the number of genetic manipulations increase. More-
over, our results show that the multi-objective approach is very suitable for the
genetic design strategies (GDS) discovering. We believe that the algorithm could
be further extended and tuned to specific cases.

In the framework we propose in our work, the robustness analysis allows cur-
rently to discriminate the strains based on GR or R value: the higher these
values, the greater the possibility that bacteria, reproduced in laboratory, main-
tain the desired performance. In future works, the local robustness analysis and
other statistical connected analysis will enable us to reach a better understand-
ing of the metabolic network fragility and this could help the GDMO algorithm
to find more robust strains.
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mization of c3 photosynthetic carbon metabolism. In: Rigoutsos, I., Floudas, C.A.
(eds.) Proceedings of 10th IEEE International Conference on Bioinformatics and
Bioengineering (IEEE BIBE), Philadelphia, PA, USA, May 31-June 3, pp. 44–51.
IEEE Computer Society (2010)

19. Umeton, R., Stracquadanio, G., Papini, A., Costanza, J., Lio, P., Nicosia, G.: Iden-
tification of sensitive enzymes in the photosynthetic carbon metabolism. Advances
in Experimental Medicine and Biology 736, 441–459 (2012)

20. Zhang, H.X., Goutsias, J.: A comparison of approximation techniques for variance-
based sensitivity analysis of biochemical reaction systems. BMC Bioinformat-
ics 11(246) (2010)

21. Rodriguez-Fernandez, M., Banga, J.R.: Senssb: a software toolbox for the devel-
opment and sensitivity analysis of systems biology models. Bioinformatics 26(13),
1675–1676 (2010)



Multi-objective Optimisation, Sensitivity and Robustness for FBA 147

22. Morris, M.D.: Factorial sampling plans for preliminary computational experiments.
Technometrics 33(2), 161–175 (1991)

23. Callaway, D.S., Newman, M.E.J., Strogatz, S.H., Watts, D.J.: Network robustness
and fragility: Percolation on random graphs. Physical Review Letters 85, 5468–5471
(2000)

24. Shinar, G., Alon, U., Feinberg, M.: Sensitivity and robustness in chemical reaction
networks. SIAM Journal of Applied Mathematics 69(4), 977–998 (2009)

25. Hafner, M., Koeppl, H., Hasler, M., Wagner, A.: Glocal robustness analysis and
model discrimination for circadian oscillators. PLoS Comput. Biol. 5(10) (2009)

26. Donaldson, R., Gilbert, D.: A Model Checking Approach to the Parameter Esti-
mation of Biochemical Pathways. In: Heiner, M., Uhrmacher, A.M. (eds.) CMSB
2008. LNCS (LNBI), vol. 5307, pp. 269–287. Springer, Heidelberg (2008)

27. Lodhi, H., Gilbert, D.: Bootstrapping Parameter Estimation in Dynamic Systems.
In: Elomaa, T., Hollmén, J., Mannila, H. (eds.) DS 2011. LNCS, vol. 6926, pp.
194–208. Springer, Heidelberg (2011)

28. Umeton, R., Stracquadanio, G., Sorathiya, A., Papini, A., Lio, P., Nicosia, G.:
Design of robust metabolic pathways. In: Design Automation Conference (DAC),
2011 48th ACM/EDAC/IEEE, pp. 747–752 (June 2011)

29. Nicosia, G., Rinaudo, S., Sciacca, E.: An evolutionary algorithm-based approach
to robust analog circuit design using constrained multi-objective optimization.
Knowledge-Based Systems 21(3), 175 (2008), The 27th SGAI International Con-
ference on Artificial Intelligence

30. Feist, A.M., Henry, C.S., Reed, J.L., Krummenacker, M., Joyce, A.R., Karp, P.D.,
Broadbelt, L.J., Hatzimanikatis, V., Palsson, B.Ø.: A genome-scale metabolic re-
construction for escherichia coli k-12 mg1655 that accounts for 1260 orfs and ther-
modynamic information. Mol. Syst. Biol. 3(121), 291–301 (2007)



Analysis of Modular Organisation of Interaction

Networks Based on Asymptotic Dynamics	

Franck Delaplace1,��, Hanna Klaudel1,
Tarek Melliti1, and Sylvain Sené1,2
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Abstract. This paper investigates questions related to modularity in
biological interaction networks. We develop a discrete theoretical frame-
work based on the analysis of the asymptotic dynamics of biological
interaction networks. More precisely, we exhibit formal conditions un-
der which agents of interaction networks can be grouped into modules,
forming a modular organisation. Our main result is that the conventional
decomposition into strongly connected components fulfills the formal
conditions of being a modular organisation. We also propose a modu-
lar and incremental algorithm for an efficient equilibria computation.
Furthermore, we point out that our framework enables a finer analysis
providing a decomposition in elementary modules, possibly smaller than
strongly connected components.

Keywords: modularity, interaction networks, discrete dynamics, equi-
libria.

1 Introduction

The analysis of the relations between the structure of a biological system and
the related biological functions that identify specific states describing particu-
lar behaviours is among the most challenging problems [1] at the frontier of
theoretical computer science and biology. Let us introduce an illustration of
these structure/function relations. On the one hand, gene regulation may be
structured into a directed graph, called the interaction graph, from which a
dynamics is computed. On the other hand, the attractors (i.e., stable configu-
rations and/or sustained oscillations) of such a dynamics identify the functions
of the system. For instance, for the bacteriophage λ, the reciprocal regulations
between genes Cro and cI induce two biological functions, namely the lysis and
the lysogeny [2,3,4], each corresponding to a distinct attractor.
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Generally, studying complex biological functions relies on their decomposition
into sub-functions identifying some basic behaviours. Each sub-function is sup-
ported by a part of the structure. In the context of gene regulation, this part
corresponds to a sub-graph of the interaction graph. Thus, the whole system
can be viewed in a modular way, where modularity establishes the link between
the parts and their related sub-functions. The module composition refers to a
structural composition as well as a dynamical one.

In the literature, methods related to module discovery in interaction networks
are generally based on both the analysis of the network structures (a field close
to graph theory) and the study of their associated dynamics [5]. Structural anal-
ysis identifies sub-networks with specific topological properties motivated either
by a correspondence between topology and functionality [6,7] or by the existence
of statistical biases with respect to random networks [8]. Specific topologies like
cliques [9], or more generally strongly connected components (SCCs) are com-
monly used to reveal modules by structural analysis. Particular motifs [10,11]
may also be interpreted as modules viewed as basic components. They represent
over-represented biological sub-networks with respect to random ones. More-
over, dynamical analysis lays on the hypothesis that expression profiles provide
insights on the relations between regulators, modules being possibly revealed
from correlations between the expressions of biological agents. For instance, us-
ing yeast gene expression data, the authors of [12,13] inferred modules from
co-regulated genes and the condition under which the regulation occurs. As a
consequence, the discovery of a modular organisation in biological interaction
networks is closely related to the influence of agents on one another and needs
to investigate their expression dynamics [14,15].

In [16,17,18], the authors point out the need to relate structure and function
to deal with modular organisations. The objective of this article is to define for-
mally the notion of modular organisation as a list of modules together with a
composition operation so that the dynamics of the module composition meets
the global dynamics of the system. Indeed, modularity is somehow related to
an invariance property of module asymptotic dynamics against regulatory per-
turbations of other modules [19], which supports the idea of viewing the global
dynamics as the composition of the module’s dynamics. Thus, using a discrete
model of biological interaction networks [20,21], we propose an approach that
analyses the conditions of module formation and characterises the relations be-
tween the global behaviour of a network and the local behaviours of its com-
ponents. We show under which conditions interaction networks can be divided
into modules. As main results, we propose a modular and incremental algorithm
to compute equilibria and we show that the conventional structural decomposi-
tion into strongly connected components fulfils the formal conditions of being a
modular organisation. Furthermore, we show that our framework enables a finer
analysis providing a decomposition in elementary modules, possibly smaller than
strongly connected components.

The paper is structured as follows: First, Section 2 introduces the main defi-
nitions and notations used throughout the paper. Section 3 presents the central
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notion of a modular organisation of a network along with its structural and dy-
namical properties. Section 4 defines elementary modular organisation and the
conditions leading to obtain it. Some concluding remarks and perspectives are
provided in Section 5.

2 The Interaction Network and Its Associated Dynamics

This section introduces the discrete based asynchronous dynamics, modelling
the dynamics of biological networks.

Relation. First, we introduce basic notations. Let ⇀ ⊆ S × S be a binary
relation on a set S, given s, s′ ∈ S and S′ ⊆ S, we denote by s ⇀ s′ the fact
that (s, s′) ∈ ⇀, by (s ⇀) � {s′ | s ⇀ s′} the image of s by ⇀, and by (S′ ⇀)
its generalisation to the state set S′. Similarly, we denote by (⇀ s) and (⇀ S′)
the corresponding preimages. The composition of two binary relations will be
denoted by ⇀ ◦ ⇀′ and the reflexive and transitive closure by ⇀∗=

⋃
i∈IN ⇀

i,
with ⇀0 as the identity relation.

States and Operations on States. Given a set A = {a1, . . . , an} of agents
of interest, each ai ∈ A has a local state, denoted by sai , taking values in some
nonempty finite set Sai . In the examples, all Sai are Boolean sets {0, 1}, but
the proposed framework is not restricted to it. A state of A (or a configuration)
is defined as a vector s ∈ S associating to each ai ∈ A a value in Sai , where
S � Sa1 × . . . × San is the set of all possible states. For any X ⊆ A and
s ∈ S, we denote by s|X the restriction of s to the agents in X , and by s|X
the completion of s by all the values of agents in X ; these notations extend to
sets of states naturally. For example, the completion of the state sa2 = 0 by
the set of agents {a1, a3} is sa2 |{a1,a3} = {000, 001, 100, 101}, and the restriction
of s = 101, s ∈ Sa1 × Sa2 × Sa3 , on {a2} is 0. The X-equivalence defines an
equivalence relation on states with regard to the state restriction on the agent
set X .

Definition 1. Two states s1, s2 ∈ S are said to be X-equivalent and denoted by
s1 ∼X s2, for some X ⊆ A, if and only if s1|X = s2|X , i.e., if they cannot be
distinguished in S|X .

Evolution and Asynchronous Dynamics. An evolution is a relation on
states ⇀. Each s ⇀ s′ is a transition meaning that s evolves to s′ by ⇀. Thus,
the global evolution of η can be represented by a directed graph G = (S,⇀) called
the state graph. In this work, we pay particular attention to local evolutions,
since each agent a ∈ A has its own evolution ⇀a. The collection of all these
local evolutions results in the asynchronous view of the global evolution of η,
i.e., ⇀=

⋃
a∈A ⇀a.
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Definition 2. The asynchronous dynamics (or dynamics for short) of a net-
work η is the triple 〈A,S, (⇀a)a∈A〉, where A is a set of agents, S is a set of
states, and for each a ∈ A, ⇀a⊆ S × S is a total or empty relation characteris-
ing the evolution of agent a such that for any s ⇀a s

′, either s = s′ or s differs
from s′ only on the a-th component.

Interaction Network and Interaction Graph. We are now in a position to
introduce formally the interaction network as a family of functions η = {ηa}a∈A,
such that each ηa : S → Sa defines the next state ηa(s) with respect to the asyn-
chronous evolution of a from s. Network η allows to deduce a directed interaction
graph G � (A,−→) such that ai −→ aj if ai occurs in the definition of ηaj .
When ⇀a is empty for some a (i.e., the local state of a remains invariant), then
a plays the role of an input, which means that no other agents of A influence it
(i.e., there are no arcs towards a in G), see Figure 1.

Orbit and Equilibrium. Given a set S′ ⊆ S, we introduce the following no-
tions:
– an orbit of S′, Ω(S′), is the set of states comprising S′ and all the states

reachable from S′ by ⇀;
– an equilibrium e ∈ S is a state reachable infinitely often by⇀; Ψ(S′) denotes

the set of equilibria reachable from S′;
– an attractor is a set of equilibria E ⊆ S such that ∀e ∈ E : Ψ({e}) = E.

In a state graph, an attractor is the set of states comprised in one terminal
strongly connected component1 that can be of two kinds:
• a stable state is a singleton E ⊆ S;
• a limit set is an attractor E such that |E| > 1.

Moreover, the restriction of ⇀ to X ⊆ A is defined as: ⇀X=
⋃

a∈X ⇀a. Orbits
and equilibria are determined by two operators having two arguments, an agent
set and a state set.

Definition 3. The orbit operator Ω and the equilibrium operator Ψ , are defined
as follows for X ⊆ A and S′ ⊆ S:
– ΩX(S′) = (S′ ⇀∗

X);
– ΨX(S′) = {s ∈ ΩX(S′) | ∀s′ ∈ S : s ⇀∗

X s
′ =⇒ s′ ⇀∗

X s}.
The equilibrium operator ΨX is idempotent, upper-continuous and monotone
(see Proposition 2 in Appendix).

The example in Figure 1 illustrates the dynamics of an interaction network.
It is defined by η, each ηa being the local transition function of agent a. Given
a state s, the evolution s ⇀a s

′ means that s′ is obtained by applying ηa to s,
i.e., s ⇀a s

′ � s′a = ηa(s) ∧ (∀a′ ∈ A \ {a} : s′a′ = sa′). Let us remark that:

– the orbit of {1111} is Ω({1111}) = {1111, 1101, 1100};
– 1100 is an equilibrium, as well as 0101 and 0010 are;
– the set of equilibria reachable from 0000 is {0xyz | x, y, z ∈ {0, 1}};
– two attractors exist: a stable state {1100} and a limit set Ψ({0000}).

1 Recall that, in a terminal strongly connected component each path starting from a
vertex of the component remains in this component.
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η =

⎧⎪⎪⎨
⎪⎪⎩

ηa1(s) = sa1

ηa2(s) = sa1 ∨ sa3

ηa3(s) = ¬sa2

ηa4(s) = sa3

a1 a2 a3 a4
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a4

a4

a4

a4

a4

Fig. 1. An interaction network η (top left), its graphical representation (top right),
and the state graph G of η composed of two disconnected components (bottom). G
represents the dynamics of η for each state s ∈ {0, 1}4, in which by convention, self
loops are omitted, stable states are depicted in gray while limit sets are in black.

Regulation. The regulation is a sub-relation of the interaction specifying a
dynamics-based dependence between two agents. Agent ak regulates agent a�, if
at least one modification of a state of a� requires a modification of a state of ak.

Definition 4. an interaction, ak −→ a� is a regulation if and only if there
exist two states s, s′ ∈ S such that (s ∼A\{ak} s

′) ∧ ((s ⇀a�
) �a�

(s′ ⇀a�
)).

By extension, given Xi, Xj ⊆ A, Xi −→ Xj if and only if ∃ak ∈ Xi, ∃a� ∈ Xj :
ak −→ a�.

It may arise that the graph of interaction differs from the graph of regula-
tion because the interaction depends on the syntactic definition of a network
whereas the regulation relies on a property of the dynamics. In Figure 1, the
sets of regulators of agents a1, a2, a3 and a4 are respectively {a1}, {a1, a3}, {a2}
and {a3}. Notice also that there are the following relations on sets of agents:
{a1, a2} −→ {a3, a4}, {a3} −→ {a2, a4} and {a1} −→ {a2, a3} −→ {a4}. An-
other example of a regulation graph is given in Figure 2 (right). It shows that
interaction (a1, a2) in the interaction network is actually not a regulation be-
cause no modification of a1 influences the state of a2. All other interactions are
effective, meaning that the underlying regulation graph contains all interactions
from the network but (a1, a2).

η =

{
ηa1(s) = sa1 ∧ sa2

ηa2(s) = sa1 ∨ 1

a1 a2 00

01

10

11

a1

a2 a2 a1 a2

Fig. 2. An interaction network, its state graph and the corresponding regulation graph
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3 Composition of Equilibria

In this section, a relation between the equilibria of an interaction network and
that of its parts is presented. It allows to consider a modular view of the system
in which each part is seen as a module, i.e., a subset of agents. It means that
modules, which influence each other, reveal the underlying biological functions
materialised by their equilibria.

3.1 Modular Organisation

Our objective is to find a decomposition of the set of agents A into modules,
i.e., a partition2 of A, together with a composition operator � of the equilib-
ria of these modules, allowing to retrieve the global equilibria of the network.
Finding an adequate operator � is a challenging question. Basically, a modular
organisation (X1, . . . , Xm) should satisfy the following equation characterizing
the composition of the module equilibria:

ΨX1 � . . .� ΨXm = Ψ⋃m
i=1 Xi

. (1)

One can easily see that, in general, taking � = ∪ for example is not a solution.
If we consider the interaction network in Figure 3 and a partition into two
parts {a1, a2} and {a3}, then the corresponding sets of equilibria are respectively
{110, 111} and {000, 001, 100, 101, 011, 111}, while the set of global equilibria is
{111}, which is not the union of the previous ones. However, one may see that,
for the same parts, the computation of the equilibria of {a3} from the equilibria
of {a1, a2}, gives the expected property Ψ{a3} ◦ Ψ{a1,a2} = Ψ{a1,a2,a3}, whereas
Ψ{a1,a2} ◦ Ψ{a3} �= Ψ{a1,a2,a3}. This suggests that the order in which parts are
taken into account plays an important role in the definition of the composition
operator. Unfortunately, in general none of the usual operators such as ∪, ∩
and ◦ can be used as the modular composition operator as one can check in the
following network: {ηa1(s) = sa1 ∧¬sa3 , ηa2(s) = sa2 ∧¬sa3 , ηa3(s) = sa2}, while
a modular decomposition exists: {a1} followed by {a2, a3}.

Thus, we will focus on an ordered partition π = (X1, . . . , Xm) of A, i.e., a
partition of A provided with a strict total order and represented by a sequence,
called a modular organisation, preserving (1). Furthermore, we would like to be
able to “fold” contiguous modules in π in order to deal with them as with a
single module3, while preserving the result of the composition of equilibria. As
a consequence, we require a modular organisation to support folding and to be
such that the composition operator � is associative according to the order in π.

In order to form a modular organisation, the modules and their order in π
should satisfy some conditions related to their dynamics. Intuitively, two disjoint
sets of agentsXi andXj , i < j, can be modules in π, either if they do not regulate
each other, or ifXi regulatesXj . In both cases, we can remark that the equilibria
of Xi should embed the asymptotic evolution of Xj , which leads to encompass

2 A partition of a set A is a set of nonempty disjoint subsets of A which covers A.
3 The folding of modules corresponds to the union of these modules.
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η =

⎧⎨
⎩

ηa1(s) = ¬sa1 ∨ sa2

ηa2(s) = 1
ηa3(s) = sa2 ∨ ¬sa3

a1 a2 a3 000 001

010 011
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110

101

111
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a2

a3

a1

a2

a3

a1

a3
a1

a1

a2

a3
a1

a2

a3

a3

Fig. 3. An interaction network and its state graph

the equilibria of Xj in the equilibria of Xi. These conditions are expressed by
the modularity relation (M -relation).

Definition 5. The M -relation � ⊆ P(A)× P(A) is defined as:

Xi � Xj � ∀S′ ⊆ S : (ΨXi ◦ ΨXi∪Xj (S
′))⇀Xj ⊆ (ΨXi ◦ ΨXi∪Xj (S

′)).

Some fundamental properties of theM -relation can be found in Proposition 3 of
the Appendix. In this context, a modular organisation can be defined as follows.

Definition 6. A modular organisation (X1, . . . , Xm) is an ordered partition of

A such that for all 1 < i ≤ m: (
⋃i−1

j=1Xj) � Xi.

From Definition 6, Proposition 1 states that being a modular organisation is
preserved by any folding of its contiguous parts4.

Proposition 1. Let π = (X1, . . . , Xm) be a modular organisation. For all 1 ≤
i ≤ j ≤ m, (X1, . . . , Xi−1,

⋃j
k=iXk, Xj+1, . . . , Xm) is a modular organisation.

In the literature [6,10,11], modules are frequently assimilated to SCCs of inter-
action networks. Although these works focus on structural arguments only, it
turns out that they are compatible with Definition 6. Indeed, any topological
order5 of SCCs is actually a modular organisation. Notice that, a topological
order on the quotient graph of SCCs always exist since the graph is acyclic.
For instance, ({a1}, {a2, a3}, {a4}) is a modular organisation of the interaction
network presented in Figure 1. In what follows, we present an approach address-
ing formally this aspect. As a result, we show that, in particular, the structural
decomposition in SCCs makes sense and may be improved by a deeper analysis
leading to the decomposition of SCCs in elementary modules (see Section 4),
potentially smaller than those coming from SCCs.

3.2 Regulation and Modularity Relation

The regulation and the M -relation are related, as shown below.

Lemma 1. For any Xi, Xj subsets of A: ¬(Xj −→ Xi) =⇒ Xi � Xj.

4 Proofs are in Appendix.
5 A topological order is a total order obtained by topological sorting.
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[Ψ̃Xj ]⇀↽Xi
(S′)
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Fig. 4. Successive steps leading to the definition of the composition operator �. The
SCCs defined for ⇀Xi are in gray (a). The two terminal SCCs at the bottom correspond
to attractors of ⇀Xi (a). The equilibria ΨXi∪Xj (S

′) is computed from ⇀Xj (bold Xj

arrows) on these attractors (b).

According to Definition 6, Theorem 1 provides a connection between structural
properties of a regulation graph and the corresponding modular organisations
(possibly reduced to a single module).

Theorem 1. Any topological order of the SCC quotient graph of a regulation
graph is a modular organisation.

3.3 Composition Operator

In this section, we present the successive steps leading to the definition of the
composition operator �. From (1), � is a binary operator that applies on the
equilibria of parts Xi and Xj of π, with i < j. Thus, its definition is based on
the attractors of ⇀Xi which correspond to terminal nodes (terminal SCCs) of
the SCC quotient graph of ⇀Xi , namely G/�Xi

, where �Xi is the equivalence

relation identifying states belonging to the same SCC and defined as s�Xi s
′ �

(s ⇀∗
Xi
s′) ∧ (s′ ⇀∗

Xi
s). For any S′ ⊆ S, an attractor of ⇀Xi coincides with

[s]�Xi
⊆ ΨXi(S

′) (see Figure 4.a). Moreover, for all S′ ⊆ S, we denote by:

– [S′]�Xi
= {[s]�Xi

|s ∈ S′} the set of equivalence classes of �Xi in S′;
– [s]�Xi

[⇀Xj ]�Xi
[s′]�Xi

� ∃s ∈ [s]�Xi
, ∃s′ ∈ [s′]�Xi

: s ⇀Xj s
′ the

evolution by agents of Xj on these equivalence classes.

We define an operator [Ψ̃Xj ]�Xi
, similar to the equilibria operator, computing

the set of equilibria of [⇀Xj ]�Xi
in G/�Xi

(see Figure 4.b and Section 3.4 for
the algorithm) as follows:

[Ψ̃Xj ]�Xi
(S′) � {[s]�Xi

∈ [S′]�Xi
| (([s]�Xi

[⇀Xj ]
∗
�Xi

) ⊆ [S′]�Xi
) ∧

∀[s′]�Xi
∈ [S]�Xi

: [s]�Xi
[⇀Xj ]

∗
�Xi

[s′]�Xi
=⇒ [s′]�Xi

[⇀Xj ]
∗
�Xi

[s]�Xi
}.
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Operator � is thus defined as:

ΨXi � ΨXj � Flat ◦ [Ψ̃Xj ]�Xi
◦ ΨXi , (2)

where, for any set E ⊆ P(S), Flat(E) =
⋃

e∈E e flattens the set. Thus, if applied
to a set of attractors, Flat gives the underlying set of equilibria. For exam-
ple, Flat({{00, 01}, {10}}) = {00, 01, 10}. As a result, one can see that � does
compute the set of states belonging to the attractors of Xi which are also the
equilibria of ⇀Xj .

Lemma 2 below shows that the global equilibria of Xi∪Xj are obtained using
the composition ΨXi � ΨXj .

Lemma 2. For all Xi, Xj disjoint subsets of A:

Xi � Xj =⇒ ∀S′ ⊆ S : ΨXi∪Xj (S
′) = (ΨXi � ΨXj ) ◦ΩXi∪Xj (S

′).

As a main result, the computation of global equilibria of an interaction network
can be obtained modularly (Theorem 2).

Theorem 2. Let A′ =
⋃m

i=1Xi ⊆ A be a set of agents, if (X1, . . . , Xm) is a
modular organisation then we have:

ΨA′ = (ΨX1 � . . .� ΨXm) ◦ΩA′ .

3.4 Modular and Incremental Computation of Equilibria

Modularity allows an incremental and efficient computation of the equilibria
avoiding the generation of the complete state space S. The algorithm presented in
Figure 5 is an application of Theorem 2 introducing incremental processing based
on the fact that the evolution of an agent only depends on the current states of
its regulators. Indeed, the equilibria of a set of agents X in a state space S|X∪Y

whereX and Y are disjoint sets andX∪Y contains the regulatorsRX = (−→ X)
of X , can be computed from the restriction to X ∪RX completed by Y \RX . In
other words, the equilibria computation operator and the completion operator
commute for an appropriate selection of sets of agents, as shown by the following
lemma.

Lemma 3. ΨX(S|X∪Y ) = ΨX
(
S|X∪RX

)∣∣Y \RX
,

with RX = (−→ X), RX ⊆ X ∪ Y and X ∩ Y = ∅.

Each step of the algorithm is seen as the computation of equilibria for the fol-
lowing modular organisation (X,Xi) where X = X1∪ . . .∪Xi−1 is the folding of
the modules preceding Xi in the initial modular organisation and corresponds
to the following equation:

ΨX∪Xi(S) = Flat

([
Ψ̃Xi

]
�X

(
ΨX (S|X∪RX ) |Xi\RX

))
. (3)

The algorithm of Figure 5 is divided in two parts: part i corresponding to the
completion of states by Xi, and part ii corresponding to the computation of
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Input: (X1, . . . , Xm) a modular organisation of A.
Result: the set of equilibria, ΨA(S).
Function: TermSCCs (G) computes the set of terminal strongly

connected components of a graph G.
Variables:
– A′: set of agents already processed;
– RXi : regulators of Xi;
– N : set of new agents;
– ψ̃, ψ̃tmp : set of attractors;
– G : quotient graph with attractors as vertices.

States are encoded by words, with ε as the empty word.
// initialisation
A′ = ∅;
ψ̃ = {{ε}};
for i = 1 to m do

part i // Extension of attractor states
RXi = (−→ Xi); // regulators of Xi

N = (Xi ∪RXi) \ A′; // new agents for evolution computation

ψ̃tmp = ∅;
foreach Att ∈ ψ̃ do

// structure preserving completion of attractors ;
foreach sN ∈ S|N do
ψ̃tmp = ψ̃tmp ∪ {{s| s|A′ ∈ Att ∧ s|N = sN}};

end

ψ̃ = ψ̃tmp;
part ii // Attractors computation

part ii.1 // Quotient graph computation with attractors as vertices

ψ̃tmp = ∅ ;

foreach Att ∈ ψ̃ do
// computation of the core of attractors ;

if
(
Att [⇀Xi ]

∗
�A′

)
⊆ ψ̃ then ψ̃tmp = ψ̃tmp ∪ {Att};

end

G = (ψ̃tmp, [⇀Xi ]�A′ ); // quotient graph of ⇀Xi defined on the core

ψ̃G = TermSCCs(G); // equilibria computation on G
part ii.2 // Computation of the set of attractors for X1, . . . , Xi

ψ̃ = ∅ ;

foreach Att ∈ ψ̃G do ψ̃ = ψ̃ ∪ {Flat(Att)}; // flatten each attractor

→ ψ̃
A′ = A′ ∪Xi;

end

return Flat(ψ̃); // flatten the attractor set → equilibria set

Fig. 5. Algorithm of modular and incremental computation of equilibria
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the attractors taking into account ⇀Xi . In part i the attractors are duplicated
by completing their state values while preserving the structure of attractors.
part ii is divided into two subparts. part ii.1 computes the quotient graph
with attractors as vertices and the quotiented evolution by Xi as arcs. Notice
that some attractors are removed during this step. Indeed, from some states
belonging to attractors, ⇀Xi may reach states located outside the attractors
set. By definition of the M -relation (Definition 5), they cannot be considered
as equilibria and are not included. The remaining set of attractors, called the
core, is used in part ii.2 to compute the equilibria as the terminal SCCs of the
core graph. Since TermSCCs returns a set of “attractors of attractors”, they are
finally flattened to retrieve the structure of a set of equilibria.

The complexity of the algorithm in the product of the maximal number of
equilibria by the number of agents is exponential in general. It is however linear
for acyclic regulatory graphs. Let αi be the number of equilibria computed at
step i, and N the set of newly introduced agents. The computation time is
bounded by k ·

∑m
i=1 αi · 2|N |, for k ∈ IN. The exponential time corresponds to

the computation of the completion and of the quotient graph. |N | is bounded
by β, the number of agents in the greatest SCC, under the assumption that all
modular organisations are subdivisions of topological orders of the SCC quotient
graphs. Indeed, in the modular organisation the regulators of Xi always precede
Xi unless they are also regulated by Xi. Hence, the computation time is bounded
by k ·2β ·m ·α where α stands for the maximal number of equilibria for all steps,
leading to a complexity in O(2β ·m · α).

In the worst case, notably corresponding to a regulatory graph reduced to a
single SCC, the complexity is the same as the brute-force algorithm computing
equilibria from the whole state graph (i.e., π = {A}, β = |A|). The algorithm is
more efficient in practice. In particular, for networks whose interaction graph is
acyclic, each module corresponds to a single agent (β = 1) leading to a complex-
ity in O(|A| ·α) with α ≤ 2Δ0 where Δ0 is the number of all input agents having
no regulators but possibly themselves. Hence, for regulatory path-graphs, the
algorithm is linear in the number of agents because Δ0 = 1.

A modular organisation based on SCCs is computed by first identifying the
quotient graph of SCCs and then obtaining a topological order, whose complexity
is in O(|A|2).

4 Elementary Modular Organisation

Informally, a module is elementary if it is not separable, i.e., if the equilibria of
each of its agents depend entirely on the equilibria of all the others. For instance,
consider negative circuits that lead to asymptotic sustained oscillations [21]. In
such regulation patterns, the equilibria of an agent cannot be encompassed into
that of the others because, in order to reach its own equilibria, each agent evolves
from the equilibria of all the others.

In this context, a modular organisation provided by some topological orders of
the SCC quotient graph (see Theorem 1) does not always provide an elementary
decomposition.
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Figure 6 depicts an interaction network η composed of three agents a1, a2 and
a3 with the associated strongly connected regulation graph. Its underlying state
graph shows that the global dynamics of η leads to two attractors, stable state
{111} and limit set {000, 100, 101, 001}. It is easy to see that {a2}� {a1, a3} and
that this M -relation is (obviously) preserved by folding, because there are only
two modules. Hence, ordered partition ({a2}, {a1, a3}) is a modular organisation
of η. However, separability is not possible in general as illustrated in Figure 7.

η =

⎧⎨
⎩

ηa1(s) = (sa1 ∧ sa2) ∨ ¬sa3

ηa2(s) = sa1 ∧ sa2 ∧ sa3

ηa3(s) = sa1

a1 a2 a3
000 001

010 011

100

110

101

111

a1

a1

a1

a2 a2a2

a3

a3

a3

a3

Fig. 6. A separable network with modular organisation ({a2}, {a1, a3})

Indeed, starting from modular organisation π = ({a1}, {a2, a3}) obtained from
the SCCs, the separation of {a2, a3} should lead to one of the ordered partitions
π′ = ({a1}, {a2}, {a3}) and π′′ = ({a1}, {a3}, {a2}). The condition for π′ to be
a modular organisation is that {a1, a2} � {a3}, i.e., the evolution by a3 from
the equilibria of {a1, a2} has to be included in the equilibria of {a1, a2}. We can
observe that the attractors for {a1, a2} are {001, 101} and {010, 110}, while the
evolution by a3 from either 101 or 110 leaves the attractors of {a1, a2}, which
means that π′ is not a modular organisation. As a consequence, {a2, a3} cannot
be separated. Indeed, here, although agents a2 and a3 are together M -related
and thus can be separated a priori, they cannot be in the context of agent a1.
The same reasoning applies for π′′.

Hence, the separation condition of a module Xi in π is not local to this
module but depends on the module “context”, that is the global equilibria (i.e.,
Ψ⋃i−1

k=1 Xk
) of the modules that precede. Deciding the separability of Xi into X

1
i

and X2
i implies checking two conditions:

⋃i−1
k=1Xk � X1

i and
⋃i−1

k=1Xk ∪X1
i �

η =

⎧⎨
⎩

ηa1(s) = ¬sa1

ηa2(s) = (sa1 ∧ sa2) ∨ (sa1 ∧ ¬sa3) ∨ (sa2 ∧ ¬sa3)
ηa3(s) = (sa1 ∧ sa2) ∨ (¬sa1 ∧ sa3) ∨ (sa2 ∧ sa3)

a1 a2 a3

000 100

001 101

010 110

011 111

a1a1

a1a1

a1a1

a1a1

a2

a2

a3 a3

Fig. 7. Example of non-separability of {a2, a3} in π = ({a1}, {a2, a3})
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X2
i . Of course, the complexity of the underlying computation is exponential in

the size of π and also depends on the position of Xi in π. Nevertheless, brute-
force computation may be used in practice for small interaction networks (of
about 15 agents). A more efficient method allowing to go beyond this limitation
is, for the moment, an open question.

5 Conclusion

We developed a formal framework for the analysis of the modularity in inter-
action networks assuming asymptotic dynamics of modules and enabling their
composition. We exhibited modularity conditions governing the composition of
modules and an efficient computation method such that the global equilibria
of interaction networks are obtained from the local ones, leading to an efficient
algorithm. Moreover, we confirmed that usual assumptions identifying modules
with SCCs have a strong motivation coming from theory.

The next step should be identifying a characteristic property for finding ele-
mentary modular organisations. Then, since this work provides a rigorous setting
for studying other questions around modularity. For example, a success factor
of synthetic biology is to ensure the safety of modular design [22] which in our
theoretical framework is guaranteed by construction through the concept of mod-
ular organisation. Also, questions related to robustness and evolution could be
tackled thanks to the modular knowledge of interaction networks.
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Appendix

Proposition 2 (Properties of Ψ). Let 〈A,S, (⇀a)a∈A〉 be an asynchronous
dynamics and X ⊆ A be a subset of agents. ΨX has the following properties, for
all sets S′, S′′ subsets of states:

a. Idempotency: ΨX ◦ ΨX(S′) = ΨX(ΨX(S′)) = ΨX(S′);
b. Upper-continuity: ΨX(S′ ∪ S′′) = ΨX(S′) ∪ ΨX(S′′);
c. Monotony (order-preserving) : S′ ⊆ S′′ =⇒ ΨX(S′) ⊆ ΨX(S′′).

Proof (Proposition 2). Let EqX(s) be the predicate meaning that s is an equi-
librium for ⇀X .

a. By expanding ΨX(ΨX(S′)), we have:

ΨX(ΨX(S′)) = {s ∈ ΩX(ΨX(S′)) | EqX(s)}
= {s ∈ ΨX(S′) | EqX(s)}
= ΨX(S′).
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b. By definition,ΨX(S′ ∪ S′′) = {s ∈ ΩX(S′ ∪ S′′) | EqX(s)}, whereΩX(S′ ∪ S′′)
= (S′ ∪ S′′)⇀∗

X . Since⇀∗
X is upper-continuous on the lattice of state sets, we

have:

ΨX(S′ ∪ S′′) = {s ∈ ΩX(S′) ∪ΩX(S′′) | EqX(s)}
= {s ∈ ΩX(S′) | EqX(s)} ∪ {s ∈ ΩX(S′′) | EqX(s)}
= ΨX(S′) ∪ ΨX(S′′).

c. An upper-continuous function is monotone. �

Proposition 3 (Properties of the modularity relation). Let S′ be a subset
of S. For all Xi, Xj subsets of A, we have the following properties:

1. Xi � Xj ⇐⇒ ΨXi∪Xj (S
′) ⊆ (ΨXi ◦ΩXi∪Xj (S

′));
2. Xi � Xj ⇐⇒ ΨXi∪Xj (S

′) = ΨXi ◦ ΨXi∪Xj (S
′).

Proof. 1. (⇒) Let S′ ⊆ S, s ∈ ΨXi∪Xj (S
′) and s /∈ ΨXi(ΩXi∪Xj (S

′)), and
s′ ∈ ΨXi(ΩXi∪Xj ({s})). By definition of equilibrium, s′ ⇀∗

Xi∪Xj
s. Now, we

have:
– ∀s′′ ∈ (s′ ⇀Xi) : s

′′ ∈ ΨXi ◦ ΨXi∪Xj ({s′}), by definition of equilibria;
– ∀s′′ ∈ (s′ ⇀Xj ) : s

′′ ∈ ΨXi ◦ ΨXi∪Xj ({s′}), by definition of �.
As a consequence, s′ �⇀∗

Xi∪Xj
s, which leads to a contradiction.

(⇐) Let S′ ⊆ S, s ∈ ΨXi∪Xj (S
′), and ΨXi∪Xj (S

′) ⊆ ΨXi(ΩXi∪Xj (S
′)). Then,

by hypothesis, we have:
∀s′′ ∈ (s ⇀Xj ) : s

′′ ∈ ΨXi∪Xj (S
′) ∧ s′′ ∈ ΨXi(ΩXi∪Xj (S

′)),
which means that s, s′′ ∈ ΨXi ◦ ΨXi∪Xj (S

′). Thus, Xi � Xj.

2. From Proposition 3.1 and since ΨXi∪Xj (S
′) = ΩXi∪Xj (ΨXi∪Xj (S

′)). �

Proof (Proposition 1). Let π = (X1, . . . , Xi−1, Xi, Xi+1, . . . , Xm) be a modular

organisation and let X =
⋃i−1

k=1Xk. We want to show that (X1, . . . , Xi−1, Xi ∪
Xi+1, . . . , Xm) is a modular organisation. By definition 6, we have:

(X ∪Xi) � Xi+1 (4)

and:
X � Xi. (5)

We want to show that: (4)∧(5) =⇒ X � (Xi∪Xi+1). First, by Proposition 3.2,
we can write:

ΨX∪Xi ◦ ΨX∪Xi∪Xi+1 = ΨX∪Xi∪Xi+1 by (4), (6)

ΨX ◦ ΨX∪Xi = ΨX∪Xi by (5). (7)

Thus:

ΨX ◦ ΨX∪Xi∪Xi+1 = ΨX ◦ (ΨX∪Xi ◦ ΨX∪Xi∪Xi+1) by (6)

= (ΨX ◦ ΨX∪Xi) ◦ ΨX∪Xi∪Xi+1

= ΨX∪Xi ◦ ΨX∪Xi∪Xi+1 by (7)

= ΨX∪Xi∪Xi+1 by (6),
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which is the expected result. From Proposition 3.2, we can deduce that: X �
(Xi∪Xi+1). Iteratively, we show that X �

⋃j
k=iXk. As a result, (X1, . . . , Xi−1,⋃j

k=iXk, Xj+1, . . . , Xm) is a modular organisation. �

Proof (Lemma 1). By Definition 4, for any Xi, Xj ⊆ A and for any s, s′ ∈ S,
we have ¬(Xj −→ Xi) ∧ (s ∼A\Xj

s′) =⇒ (s ⇀Xi) ∼Xi (s′ ⇀Xi). This
property is obviously preserved at equilibria. Indeed, for any s, s′ ∈ S, we have
¬(Xj −→ Xi) ∧ (s ∼A\Xj

s′) =⇒ ΨXi(s) ∼Xi ΨXi(s
′). Thus, the restrictions

ΨXi(s) and ΨXi(s
′) to Xi are identical. Then, the evolution by Xj from the

equilibria of Xi remains in the equilibria of Xi. Hence, we get that ¬(Xj −→
Xi) =⇒ Xi � Xj . �

Proof (Theorem 1). Observe that, in the SCC quotient graph G of a regulation
graph, Xi −→ Xj always implies that ¬(Xj −→ Xi), because of the acyclicity of
G. Thus, folding contiguous modules with respect to any topological order pre-
serves the absence of regulation. As a consequence, if (X1, . . . , Xm) is a topolog-
ical order of G, for all i, j ∈ IN such that 1 ≤ i ≤ j ≤ m, we have ¬(Xj −→ Xi),
and by Lemma 1, Xi � Xj . �

Proof (Lemma 2). Let Xi, Xj ⊆ A such that Xi � Xj and S′ a subset of S.
(⊆) First, let us show ΨXi∪Xj (S

′) ⊆ (ΨXi � ΨXj ) ◦ ΩXi∪Xj (S
′). From Proposi-

tion 3.2, we know that ΨXi ◦ ΨXi∪Xj (S
′) = ΨXi∪Xj (S

′). Thus, ∀s ∈ ΨXi∪Xj (S
′),

we have [s]�Xi
⊆ ΨXi∪Xj (S

′). Similarly, an evolution by Xi ∪ Xj from an at-
tractor of Xi remain in the same attractor except potentially with evolutions by
Xj . We have then, for all s, s′ ∈ ΨXi∪Xj (S

′):

[s]�Xi
[⇀Xi∪Xj ]

∗
�Xi

[s′]�Xi
⇐⇒

([s]�Xi
[⇀Xj ]

∗
�Xi

[s′]�Xi
) ∨ ([s]�Xi

= [s′]�Xi
).

Now, since both s and s′ belong to attractors of Xi∪Xj (by hypothesis), if there
exists an evolution by Xj from [s]�Xi

to [s′]�Xi
, there exists obviously another

path labelled by Xj from [s′]�Xi
to [s]�Xi

. Hence, for all s, s′ ∈ ΨXi∪Xj (S
′), we

have:

([s]�Xi
[⇀Xj ]

∗
�Xi

[s′]�Xi
) = ([s]�Xi

[⇀Xi∪Xj ]
∗
�Xi

[s′]�Xi
) =⇒

([s′]�Xi
[⇀Xi∪Xj ]

∗
�Xi

[s]�Xi
) = ([s′]�Xi

[⇀Xj ]
∗
�Xi

[s]�Xi
).

As a result, we have [s]�Xi
∈ [Ψ̃Xj ]�Xi

(ΨXi∪Xj (S
′)), for all s ∈ ΨXi∪Xj (S

′).

Moreover, since from Proposition 2, operator [Ψ̃Xj ]�Xi
(S′) is monotone and

since ΨXi∪Xj (S
′) ⊆ ΩXi∪Xj (S

′), for all s ∈ ΨX∪Y (S
′), we can write that [s]�Xi

∈
[Ψ̃Xj ]�Xi

(ΩXi∪Xj (S
′)). Now, since s ∈ [s]�Xi

, ∀s ∈ ΨXi∪Xj (S
′), we have s ∈

Flat ◦ [Ψ̃Xj ]�Xi
(ΩXi∪Xj (S

′)). From (2) and Proposition 3.2, we can write:

ΨXi � ΨXj ◦ΩXi∪Xj (S
′) = Flat ◦ [Ψ̃Xj ]�Xi

◦ ΨXi ◦ΩXi∪Xj (S
′)

= Flat ◦ [Ψ̃Xj ]�Xi
◦ΩXi∪Xj (S

′).
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Hence, for all s ∈ ΨX∪Y (S
′), we have: s ∈ ΨX�ΨY ◦ΩX∪Y (S

′), which corresponds
to the following inclusion:

ΨX∪Y (S
′) ⊆ ΨX � ΨY ◦ΩX∪Y (S

′).

(⊇) Now, let us show (ΨXi � ΨXj ) ◦ΩXi∪Xj (S
′) ⊆ ΨXi∪Xj (S

′). To do so, let us
consider a state s ∈ (ΨXi � ΨXj ) ◦ ΩXi∪Xj (S

′). From (2) and Proposition 3.2,
we have [s]�Xi

∈ [ΨXj ]�Xi
◦ [ΨXi ◦ΩXi∪Xj (S

′)]�Xi
. Now, consider [[s]�Xi

]�Xj
.

By definition of attractors, for all s1, s2 ∈ Flat ◦ Flat([[s]�Xi
]�Xj

), we have

s1 ⇀
∗
Xi∪Xj

s2. This means that [[s]�Xi
]�Xj

= [s]�Xi∪Xj
and, as a consequence,

that s ∈ ΨX∪Y (S
′). As a result, the inclusion (ΨX�ΨY )◦ΩX∪Y (S

′) ⊆ ΨX∪Y (S
′)

holds. �

Proof (Theorem 2). This proof is made directly by induction on the modular
organisation, using Definition 6 and Lemma 2. Since π = (X1, . . . , Xm) is a

modular organisation, it is folding preserving and
⋃m−1

i=1 Xi � Xm. Then, using
(2) and Lemma 2, we have:

ΨA′ = (Ψ⋃m−1
i=1 Xi

� ΨXm) ◦ΩA′

= Flat ◦ [Ψ̃Xm ]�⋃m−1
i=1

Xi

◦ Ψ⋃m−1
i=1 Xi

◦ΩA′

= Flat ◦ [Ψ̃Xm ]�⋃m−1
i=1

Xi

◦ (Ψ⋃m−2
i=1 Xi

� ΨXm−1) ◦Ω⋃m−1
i=1 Xi

◦ΩA′

= Flat ◦ [Ψ̃Xm ]�⋃m−1
i=1

Xi

◦ (Ψ⋃m−2
i=1 Xi

� ΨXm−1) ◦ΩA′

= Flat ◦ [Ψ̃Xm ]�⋃m−1
i=1

Xi

◦ [Ψ̃Xm−1 ]�⋃m−2
i=1

Xi

◦ Ψ⋃m−2
i=1 Xi

◦ΩA′

= . . .

= Flat ◦ [Ψ̃Xm ]�⋃m−1
i=1

Xi

◦ . . . ◦ [Ψ̃X2 ]�X1
◦ ΨX1 ◦ΩA′ .

As a result, we obtain: ΨA′(S′) = (ΨX1 � . . . � ΨXm) ◦ ΩA′(S′), which is the
expected result. �

Proof (Lemma 3). The evolution is governed by the values of the regulators and
the evolution concerns the states of agents ofX only. Under the assumptions that
X and Y are two disjoint sets and that RX ⊆ X∪Y , the following property holds
by definition of the evolution: ∀s1, s2 ∈ S|X∪Y : (s1 ⇀X s2) ⇐⇒ (s1|X∪RX ⇀X

s2|X∪RX ∧ s1|Y \RX
= s2|Y \RX

). This property extends to the transitive closure
by induction:

∀s1, s2 ∈ S|X∪Y :

(s1 ⇀
∗
X s2) ⇐⇒ (s1|X∪RX ⇀

∗
X s2|X∪RX ∧ s1|Y \RX

= s2|Y \RX
). (8)

First we prove that:

∀s ∈ S|X∪Y : s ∈ ΨX(S|X∪Y ) ⇐⇒ s|X∪RX ∈ ΨX(S|X∪RX ).
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Let s ∈ ΨX(S|X∪Y ). By definition of the equilibrium operator (Definition 3), s
complies with the following equivalent property:
⇐⇒ ∀s′ ∈ S|X∪Y : s ⇀∗

X s
′ =⇒ s′ ⇀∗

X s.
By application of Equation 8, we derive:
⇐⇒ ∀s′ ∈ S|X∪Y : (s|Y \RX

= s′|Y \RX
) =⇒

(s|X∪RX ⇀
∗
X s

′|X∪RX =⇒ s′|X∪RX ⇀
∗
X s|X∪RX ) .

Since s ⇀∗
X s

′ insures that s|X∪RX = s′|X∪RX , by Equation 8, we simplify
and obtain:
⇐⇒ ∀s′ ∈ S|X∪Y : s|X∪RX ⇀

∗
X s

′|X∪RX =⇒ s′|X∪RX ⇀
∗
X s|X∪RX .

By definition of the equilibrium operator, this equivalently leads to:
⇐⇒ s|X∪RX ∈ ΨX(S|X∪RX ).

Now, by definition of the completion, any state s complies with the following
property: s ∈ (s|X∪RX )|Y \RX . Since s|X∪RX ∈ ΨX(S|X∪RX ), we deduce that
s ∈ ΨX(S|X∪RX )|Y \RX . Hence, we conclude that:

∀s ∈ S|X∪Y : s ∈ ΨX(S|X∪Y ) ⇐⇒ s ∈ ΨX(S|X∪RX )|Y \RX .

�
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Abstract. The Process Hitting (PH) is a recently introduced framework
to model concurrent processes. Its major originality lies in a specific re-
striction on the causality of actions, which makes the formal analysis of
very large systems tractable. PH is suitable to model Biological Regula-
tory Networks (BRNs) with complete or partial knowledge of coopera-
tions between regulators by defining the most permissive dynamics with
respect to these constraints.

On the other hand, the qualitative modeling of BRNs has been widely
addressed using René Thomas’ formalism, leading to numerous theoret-
ical work and practical tools to understand emerging behaviors.

Given a PH model of a BRN, we first tackle the inference of the
underlying Interaction Graph between components. Then the inference
of corresponding Thomas’ models is provided using Answer Set Pro-
gramming, which allows notably an efficient enumeration of (possibly
numerous) compatible parametrizations.

In addition to giving a formal link between different approaches for
qualitative BRNs modeling, this work emphasizes the ability of PH to
deal with large BRNs with incomplete knowledge on cooperations, where
Thomas’ approach fails because of the combinatorics of parameters.

1 Introduction

As regulatory phenomena play a crucial role in biological systems, they need to
be studied accurately. Biological Regulatory Networks (BRNs) consist in sets
of either positive or negative mutual effects between the components. With the
purpose of analyzing these systems, they are often modeled as graphs which make
it possible to determine the possible evolutions of all the interacting components
of the system. Indeed, besides continuous models of physicists, often designed
through systems of ordinary differential equations, a discrete modeling approach
was initiated by René Thomas in 1973 [1].
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In this approach, the different levels of a component, such as concentration
or expression levels, are abstractly represented by (positive) integer values and
transitions between these levels may be considered as instantaneous. Hence,
qualitative state graphs may be derived from which we are able to formally find
out all the possible behaviors expressed as sequences of transitions between these
states. Nevertheless, these dynamics can be precisely established only with regard
to some discrete parameters, hereafter called “Thomas’ parameters”, which stand
for kinds of “focal points”, i.e. the evolutionary tendency from each state and
depending on the set of the other currently interacting components.

Thomas’ modeling has motivated numerous works around the link between
the Interaction Graph (IG) (summarizing the global influences between compo-
nents) and the possible dynamics (e.g., [2,3]), model reduction (e.g., [4]), formal
checking of dynamics (e.g., [5,6]), and the incorporation of time (e.g., [7,8]) and
probability (e.g., [9]) dimensions, to name but a few. While the formal checking
of dynamical properties is often limited to small networks because of the state
graph explosion, the main drawback of this framework is the difficulty to specify
Thomas’ parameters, especially for large networks.

In order to address the formal checking of dynamical properties within very
large BRNs, we recently introduced in [10] a new formalism, named the “Process
Hitting” (PH), to model concurrent systems having components with a few qual-
itative levels. A PH describes, in an atomic manner, the possible evolutions of a
process (representing one component at one level) triggered by the hit of at most
one other process in the system. This framework can be seen as a special class
of formalisms like Petri Nets or Communicating Finite State Machines, where
the causality between actions is restricted. Thanks to the particular structure of
interactions within a PH, very efficient static analysis methods have been devel-
oped to over- and under-approximate reachability properties making tractable
the formal analysis of BRNs with hundreds of components [11].

PH is suitable to model BRNs with different levels of abstraction in the speci-
fication of cooperations (associated influences) between components. This allows
to model BRNs with a partial knowledge on precise evolution functions for com-
ponents by capturing the largest (the most general) dynamics.

The objectives of the work presented in this paper are the following. Firstly,
we show that starting from one PH model, it is possible to find back the under-
lying IG. We perform an exhaustive search for the possible interactions on one
component from all the others, consistently with the knowledge of the dynamics
that these interactions lead to and that are expressed in PH. The second phase of
our work concerns the Thomas’ parameters inference. It consists in determining
the nesting set (possibly too large) of the parameters which necessarily lead to
the satisfaction of the known cooperating constraints. The resulting BRN dy-
namics is ensured to respect the PH dynamics, i.e. no spurious transitions are
made possible by the inference. Answer Set Programming (ASP) [12] turns out
to be effective for these enumerative searches.

The outcome of this work is twofold. The first benefit is that such an ap-
proach makes it possible to refine the construction of BRNs with a partial and
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progressively brought knowledge in PH, while being able to export such models
in the Thomas’ framework. This work thus strengthens the formal link between
both modelings. The second feature of our method is that it can be applied on
very large BRNs.

Finally, it must be noticed that we are not interested in this paper in the
derivation of one PH from a BRN (which was previously described in [10]) but,
on the contrary, to finding out a set of BRNs from one PH.

Our work is related to the approach of [13] which relies on temporal logic,
and [14,15] which also uses constraint programming. Both aim at determining a
class of models which are consistent with available partial data on the regulatory
structure and dynamical properties. Our method is based on a model rather than
on constraints, which allows to define some properties on the system structure
(such as cooperations). Furthermore, we claim that we are able to deal with
larger biological networks.

Outline. Sect. 2 recalls the PH and Thomas frameworks; Sect. 3 defines the IG
inference from PH; Sect. 4 details the enumeration of Thomas parametrizations
compatible with a PH and discuss its implementation in ASP. Sect. 5 illustrates
the applicability of our method on simple examples and large biological models.

Notations. [i; j] is the set of integers {i, i+1, . . . , j}; we note [i1; j1] ≤[] [i2; j2]
Δ⇔

(i1 ≤ i2∧j1 ≤ j2) and [i1; j1] <[] [i2; j2]
Δ⇔ (i1 < i2∧j1 ≤ j2)∨(i1 ≤ i2∧j1 < j2).

Given an integer k, k < [i; j] Δ⇔ k < i and k > [i; j] Δ⇔ k > j.

2 Frameworks

2.1 The Process Hitting Framework

We recall here the definition and semantics of the Process Hitting (PH), and
its usage to model cooperation between concurrent components. Two examples
of PH modeling a BRN at different abstraction levels are given. They serve as
running examples in the rest of this article.

A PH (Def. 1) gathers a finite number of concurrent processes grouped into
a finite set of sorts. A process belongs to a unique sort and is noted ai where a
is the sort and i the identifier of the process within the sort a. At any time, one
and only one process of each sort is present; a state of the PH thus corresponds
to the set of such processes.

The concurrent interactions between processes are defined by a set of actions.
Actions describe the replacement of a process by another of the same sort con-
ditioned by the presence of at most one other process in the current state of
the PH. An action is denoted by ai → bj � bk where ai, bj , bk are processes of
sorts a and b. It is required that bj �= bk and that a = b ⇒ ai = bj . An action
h = ai → bj � bk is read as “ai hits bj to make it bounce to bk”, and ai, bj, bk are
called respectively hitter, target and bounce of the action, and can be referred
to as hitter(h), target(h), bounce(h), respectively.
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Definition 1 (Process Hitting). A Process Hitting is a triple (Σ, L,H):

– Σ
Δ= {a, b, . . . } is the finite set of sorts;

– L
Δ=

∏
a∈Σ La is the set of states with La = {a0, . . . , ala} the finite set of

processes of sort a ∈ Σ and la a positive integer with a �= b ⇒ ∀(ai, bj) ∈
La × Lb, ai �= bj;

– H Δ= {ai → bj � bk, · · · | (a, b) ∈ Σ2 ∧ (ai, bj, bk) ∈ La × Lb × Lb

∧bj �= bk ∧ a = b ⇒ ai = bj} is the finite set of actions.

P denotes the set of all processes (P Δ= {ai | a ∈ Σ ∧ ai ∈ La}).
The sort of a process ai is referred to as Σ(ai) = a and the set of sorts present
in an action h ∈ H as Σ(h) = {Σ(hitter(h)), Σ(target(h))}. Given a state s ∈ L,
the process of sort a ∈ Σ present in s is denoted by s[a], that is the a-coordinate
of the state s. If ai ∈ La, we define the notation ai ∈ s

Δ⇔ s[a] = ai.
An action h = ai → bj � bk ∈ H is playable in s ∈ L if and only if s[a] = ai

and s[b] = bj. In such a case, (s · h) stands for the state resulting from the play
of the action h in s, that is (s · h)[b] = bk and ∀c ∈ Σ, c �= b, (s · h)[c] = s[c]. For
the sake of clarity, ((s · h) · h′), h′ ∈ H is abbreviated as (s · h · h′).

Example. Fig. 1 represents a PH (Σ, L,H) with Σ = {a, b, c}, La = {a0, a1, a2},
Lb = {b0, b1}, Lc = {c0, c1}, and

H = {a2 → b1 � b0, b0 → a2 � a1, c0 → a2 � a1,

b0 → a1 � a0, c0 → a1 � a0,

b1 → a0 � a1, c1 → a0 � a1,

b1 → a1 � a2, c1 → a1 � a2} .

The action h = b1 → a1 � a2 is playable in the state s = 〈b1, a1, c0〉; and
s · h = 〈b1, a2, c0〉.

This PH example actually models a BRN where the component a has three
qualitative levels and components b and c are boolean. In this BRN, b and c
activate a, while a inhibits b. The inhibition of b by a is only effective when a is
at level 2; in the other cases, b cannot evolve in any direction. The activation of a
by b (c) is encoded by the actions making the level of a increase (resp. decrease)
when b (c) is present (resp. absent). It is worth noticing that the activation of a
by b (c) is independent from c (b). This may express a lack of knowledge on the
cooperation between these two regulators: we thus model an over-approximation
of the possible actions.

Modeling cooperation. As described in [10], the cooperation between processes
to make another bounce can be expressed in PH by building a cooperative sort.
Fig. 2 shows an example of cooperation between processes b1 and c1 to make
a1 bounce to a2: a cooperative sort bc is defined with 4 processes (one for each
sub-state of the presence of processes b1 and c1). For the sake of clarity, the bc
processes are indexed using the sub-state they represent. Hence, bc01 represents
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2b
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Fig. 1. A Process Hitting (PH) example. Sorts are represented by labeled boxes, and
processes by circles (ticks are the identifiers of the processes within the sort, for in-
stance, a0 is the process ticked 0 in the box a). An action (for instance b1 → a1 � a2)
is represented by a pair of directed arcs, having the hit part (b1 to a1) in plain line and
the bounce part (a1 to a2) in dotted line. Actions involving b1 or c1 are in thick lines.

b

0 1

c

0 1

a

0

1

2

bc

00 01 10 11

Fig. 2. A PH modeling a cooperativity between b1 and c1 to make a1 bounce to a2.
Actions involving b1 or c1 are in thick lines.

the sub-state 〈b0, c1〉, and so on. Each process of sort b and c hit bc to make it
bounce to the process reflecting the status of the sorts b and c (e.g., b1 → bc00 �
bc10 and b1 → bc01 � bc11). Then, it is the process bc11 which hits a1 to make it
bounce to a2 instead of the independent hits from b1 and c1.

We note that cooperative sorts are standard PH sorts and do not involve any
special treatment regarding the semantics of related actions.
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Fig. 3. PH resulting from the refinement of the one in Fig. 1 by the specification of
several cooperations. The actions from b and c to the cooperative sort bc are identical
to those defined in Fig. 2 and are represented here by a single dashed arc.

When the number of cooperating processes is large, it is possible to chain
several cooperative sorts to prevent the combinatoric explosion of the number
of processes created within cooperative sorts. For instance, if b1, c1, and d1

cooperate, one can create a cooperative sort bc with 4 processes reflecting the
presence of b1 and c1, and a cooperative sort bcd with 4 processes reflecting
the presence of bc11 and d1. Such constructions are helpful in PH as the static
analysis of dynamics developed in [11] does not suffer from the number of sorts,
but on the number of processes within a single sort.

While the construction of cooperation in PH allows to encode any boolean
functions between cooperating processes [10], it is worth noticing they introduce
a temporal shift in their application. This allows the existence of interleaving
of actions leading to a cooperative sort representing a past sub-state of the
presence of the cooperative processes. The resulting behavior is then an over-
approximation of the realization of an instantaneous cooperation.

Example. The PH in Fig. 3 results from the refinement of the PH in Fig. 1 where
several cooperations have been specified. In particular, the bounce to a2 is the
result of a cooperation between b1 and c1; and the bounce to a0 of a cooperation
between b0 and c0. Hence, this PH expresses a BRN where a requires both b and
c active to reach its highest level, and a does not become inactive unless both b
and c are inactive.
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2.2 Thomas’ Modeling

We concisely present the Thomas’ modeling of BRNs dynamics, merely inspired
by [5,16]. In order to enlarge the class of Thomas’ models compatible with PH
dynamics (w.r.t. the presented inference), we extend the classical formalism by
setting parameters to intervals of values instead of single values, and briefly
discuss this addition.

Thomas’ formalism lies on two complementary descriptions of the system.
First, the Interaction Graph (IG) models the structure of the system by defining
the components’ mutual influences. The parametrization then specifies the levels
to which tends a component when a given configuration of its regulators applies.

The IG is composed of nodes that represent components, and edges labeled
with a threshold that stand for either positive or negative regulations (Def. 2).
For such a regulation to take place, the expression level of its head component has
to be higher than its threshold; otherwise, the opposite influence is expressed.
The uniqueness of these regulations makes the following sections simpler. We
call levels+(a → b) (resp. levels−(a → b)) the levels of a where it is an activator
(resp. inhibitor) of b (Def. 3); la denotes the maximum level of a.

Definition 2 (Interaction Graph). An Interaction Graph (IG) is a triple
(Γ, E+, E−) where Γ is a finite number of components, and E+ (resp. E−)
⊂ {a t−→ b | a, b ∈ Γ ∧ t ∈ [1; la]} is the set of positive (resp. negative) regulations
between two nodes, labeled with a threshold.

A regulation from a to b is uniquely referenced: if a
t−→ b ∈ E+ (resp. E−),

�a
t′−→ b ∈ E+ (resp. E−), t′ �= t and �a

t′−→ b ∈ E− (resp. E+), t′ ∈ N.

Definition 3 (Effective levels (levels)). Let (Γ, E+, E−) be an IG and a, b ∈ Γ
two of its components:

– if a
t−→ b ∈ E+, levels+(a → b) Δ= [t; la] and levels−(a → b) Δ= [0; t − 1];

– if a
t−→ b ∈ E−, levels+(a → b) Δ= [0; t − 1] and levels−(a → b) Δ= [t; la];

– otherwise, levels+(a → b) Δ= levels−(a → b) Δ= ∅.
For all component a ∈ Γ , Γ−1(a) Δ= {b ∈ Γ | ∃b

t−→ a ∈ E+ ∪ E−} is the set
of its regulators. We allow any number of levels for the components, without
considering the number of outgoing edges, as the number of processes in a PH
sort is not constrained in any way.

Example. Fig. 4(left) represents an Interaction Graph (Γ, E+, E−) with Γ =
{a, b, c}, E+ = {b 1−→ a, c

1−→ a} and E− = {a 2−→ b}; hence Γ−1(a) = {b, c}.
A state s of an IG (Γ, E+, E−) is an element in

∏
a∈Γ [0; la]. s[a] refers to the

level of component a in s. The specificity of Thomas’ approach lies in the use
of discrete parameters to represent the focal level interval towards which the
component will evolve in each configuration of its regulators (Def. 4). Indeed,
for each possible state of a BRN, all regulators of a component a can be divided
into activators and inhibitors, given their type of interaction and expression level,
referred to as the resources of a in this state (Def. 5).
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ab

c

+1

+1−2
Ka,{b,c},∅ = [2; 2] Kb,{a},∅ = [0; 1]

Ka,{b},{c} = [1; 1] Kb,∅,{a} = [0; 0]

Ka,{c},{b} = [1; 1]

Ka,∅,{b,c} = [0; 0] Kc,∅,∅ = [0; 1]

Fig. 4. (left) IG example. Regulations are represented by the edges labeled with their
sign and threshold. For instance, the edge from b to a is labeled +1, which stands for:
b

1−→ a ∈ E+. (right) Example parametrization of the left IG.

Definition 4 (Discrete parameter Ka,A,B and Parametrization K). For
a given component a ∈ Γ and A (resp. B) ⊂ Γ−1(a) a set of its activators (resp.
inhibitors) such that A ∪ B = Γ−1(a) and A ∩ B = ∅, the discrete parameter
Ka,A,B = [i; j] is a non-empty interval towards which a will tend in the states
where its activators (resp. inhibitors) are the regulators in set A (resp. B). The
complete map K of discrete parameters for G is called a parametrization of G.

Definition 5 (Resources Resa(s)). For a given state s of a BRN, we define
the activators A and inhibitors B of a in s as Resa(s) = A, B, where:

A = {b ∈ Γ | s[b] ∈ levels+(b → a)}
B = {b ∈ Γ | s[b] ∈ levels−(b → a)}

We also denote: Resa = {(A; B) | ∃s ∈ ∏
a∈Γ [0; la], Resa(s) = A, B}

At last, Def. 6 gives the asynchronous dynamics of a BRN using Thomas’
parameters. From a given state s, a transition to another state s′ is possible
provided that only one component a will evolve of one level towards Ka,Resa(s).

Definition 6 (Asynchronous dynamics). Let s be a state of a BRN using
Thomas’ parameters (G, K) where G = (Γ, E+, E−). The state that succeeds to
s is given by the indeterministic function f(s):

f(s) = s′ ⇔ ∃a ∈ Γ, s′[a] = fa(s) ∧ ∀b ∈ Γ, b �= a, s[b] = s′[b] , with

fa(s) =

⎧⎪⎨⎪⎩
s[a] + 1 if s[a] < Ka,A,B

s[a] if s[a] ∈ Ka,A,B

s[a] − 1 if s[a] > Ka,A,B

, where A, B = Resa(s).

While the use of intervals as parameter values does not add expressivity in
boolean networks, it allows to specify a larger range of dynamics in the general
case (w.r.t. the above definitions). Indeed, assume that Ka,A,B = [i; i + 2]; we
aim at obtaining three different parameters Ka,A1,B1 = i, Ka,A2,B2 = i + 1,
Ka,A3,B3 = i+2. The only possible modification in resources is to add a as a self-
regulator. However, because resources have a boolean definition (a component
is either an activator or an inhibitor of a), it is not possible to differentiate the
3 values. We also remark that the use of intervals makes optional some explicit
auto-activations in the IG (as for b in Fig. 4, for instance).
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Example. In the BRN that consists of the IG and parametrization of Fig. 4,
the following transitions are possible given the semantics defined in Def. 6:
〈a0, b1, c1〉 → 〈a1, b1, c1〉 → 〈a2, b1, c1〉 → 〈a2, b0, c1〉 → 〈a1, b0, c1〉, ending in
a steady state, where ai is the component a at level i. As Kb,{a},∅ = [0; 1], no
auto-regulation on b is needed to prevent its evolution when a is not at level 2.

3 Interaction Graph Inference

In order to infer a complete BRN, one has to find the Interaction Graph (IG)
first, as some constraints on the parametrization rely on it. Inferring the IG is an
abstraction step which consists in determining the global influence of components
on each of its successors.

This section first introduces the notion of focal processes within a PH (Sub-
sect. 3.1) which is used to characterize well-formed PH for IG inference in Sub-
sect. 3.2, and as well used by the parametrization inference presented in Sect. 4.
Finally, the rules for inferring the interactions between components from a PH
are described in Subsect. 3.3. We consider hereafter a global PH (Σ, L,H) on
which the IG inference is to be performed.

3.1 Focal Processes

Many of the inferences defined in the rest of this paper rely on the knowledge
of focal processes w.r.t. a given context (a set of processes that are potentially
present). When such a context applies, we expect to (always) reach one focal
process in a bounded number of actions.

For Sa ⊆ La and a context (set of processes) ς, let us define as H(Sa, ς) the
set of actions on the sort a having their hitter in ς and target in Sa (Eq. (1));
and the digraph (V, E) where arcs are the bounces within the sort a triggered
by actions in H(Sa, ς) (Eq. (2)). focals(a, Sa, ς) denotes the set of focal processes
of sort a in the scope of H(Sa, ς) (Def. 7).

H(Sa, ς) Δ= {bi → aj � ak ∈ H | bi ∈ ς ∧ aj ∈ Sa} (1)

E
Δ= {(aj , ak) ∈ (Sa × La) | ∃bi → aj � ak ∈ H(Sa, ς)}

V
Δ= Sa ∪ {ak ∈ La | ∃(aj , ak) ∈ E}

(2)

Definition 7 (focals(a, Sa, ς)). The set of processes that are focal for processes
in Sa in the scope of H(Sa, ς) are given by:

focals(a, Sa, ς) Δ=

{
{ai ∈ V | �(ai, aj) ∈ E} if the digraph (V, E) is acyclic,
∅ otherwise.

We note L(ς) the set of states s ∈ L such that ∀a ∈ Σ(ς), s[a] ∈ ς, where Σ(ς)
is the set of sorts with processes in ς. We say a sequence of actions h1, . . . , hn

is bounce-wise if and only if ∀m ∈ [1; n − 1], bounce(hm) = target(hm+1). From
Def. 7, it derives that:
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1. if focals(a, Sa, ς) = ∅, there exists a state s ∈ L(ς ∪ Sa) such that ∀n ∈ N
there exists a bounce-wise sequence of actions h1, . . . , hn+1 in H(Sa, ς) with
target(h1) ∈ s.

2. if focals(a, Sa, ς) �= ∅, for all state s ∈ L(ς∪Sa), for any bounce-wise sequence
of actions h1, . . . , hn in H(Sa, ς) where target(h1) ∈ s, either bounce(hn) ∈
focals(a, Sa, ς), or ∃hn+1 ∈ H(a, ς) such that bounce(hn) = target(hn+1).
Moreover n ≤ |H(Sa, ς)| (i.e. no cycle of actions possible).

It is worth noticing that those bounce-wise sequences of actions may not be
successively playable in a state s ∈ L(ς ∪ Sa). Indeed, nothing impose that the
hitters of actions are present in s. In the general case, the playability of those
bounce-wise sequences, referred to as focals reachability may be hard to prove.
However, in the scope of this paper, the particular contexts used with focals
ensure this property. Notably, the rest of this section uses only strict contexts
(Def. 8) which allow at most one hitter per sort in the bounce-wise sequences
(and thus are present in s).

Definition 8 (Strict context for Sa). A context (set of processes) ς is strict
for Sa ⊆ La if and only if {bi, bj} ⊂ ς ∧ b �= a ⇒ i = j.

In other words, assuming focals reachability, if focals(a, Sa, ς) is empty, there
exists a sequence of actions that may be played an unbound number of times
(cycle); if it is non-empty, it is ensured that any state in L(ς ∪Sa) converges, in
a bounded number of steps, either to a process in Sa that is not hit by processes
in ς, or to a process in La \ Sa.

Example. In the PH of Fig. 1, we obtain:

focals(a, La, {b0, c0}) = {a0} focals(a, La, {b1, c1}) = {a2}
focals(a, La, {b1, c0}) = ∅ focals(a, {a1}, {b1, c0}) = {a0, a2}

3.2 Well-Formed Process Hitting for Interaction Graph Inference

The inference of an IG from a PH assumes that the PH defines two types of
sorts: the sorts corresponding to BRN components, and the cooperative sorts.
This leads to the characterization of a well-formed PH for IG inference.

The identification of sorts modeling components relies on the observation that
their processes represent (ordered) qualitative levels. Hence an action on such a
sort cannot make it bounce to a process at a distance more than one. The set of
sorts satisfying such a condition is referred to as Γ (Eq. (3)). Therefore, in the
rest of this paper, Γ denotes the set of components of the BRN to infer.

Γ
Δ= {a ∈ Σ | �bi → aj � ak ∈ H, |j − k| > 1} (3)

Any sort that does not act as a component should then be treated as a coop-
erative sort. As explained in Subsect. 2.1, the role of a cooperative sort υ is
to compute the current state of set of cooperating processes. Hence, for each
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sub-state σ formed by the sorts hitting υ, υ should converge to a focal process.
This is expressed by Property 1, where the set of sorts having an action on a
given sort a is given by Σ−1(a) (Eq. (4)) and P(σ) is the set of processes that
compose the sub-state σ.

∀a ∈ Σ, Σ−1(a) Δ= {b ∈ Σ | ∃bi → aj � ak ∈ H} (4)

Property 1 (Well-formed cooperative sort). A sort υ ∈ Σ is a well-formed coop-
erative sort if and only if each configuration σ of its predecessors leads υ to a
unique focal process, denoted by υ(σ):

∀σ ∈ ∏
a∈Σ−1(υ)∧a�=υLa, focals(υ, Lυ,P(σ) ∪ Lυ) = {υ(σ)}

Such a property allows a large variety of definitions of a cooperative sort, but for
the sake of simplicity, does not allow the existence of multiple focal processes.
While this may be easily extended to (the condition becomes focals(υ, Lυ,P(σ)∪
Lυ) �= ∅), it makes some hereafter equations a bit more complex to read as they
should handle a set of focal processes instead of a unique focal process.

Finally, Property 2 sums up the conditions for a Process Hitting to be suitable
for IG inference. In addition of having either component sorts or well-formed
cooperative sorts, we also require that there is no cycle between cooperative
sorts, and that sorts being never hit (i.e. serving as an invariant environment)
are components.

Property 2 (Well-formed Process Hitting for IG inference). A PH is well-formed
for IG inference if and only if the following conditions are verified:

– each sort a ∈ Σ either belongs to Γ , or is a well-formed cooperative sort;
– there is no cycle between cooperative sorts (the digraph (Σ, {(a, b) ∈ (Σ ×

Σ) | ∃ai → bj � bk ∈ H ∧ a �= b ∧ {a, b} ∩ Γ = ∅}) is acyclic);
– sorts having no action hitting them belong to Γ ({a ∈ Σ | �bi → aj � ak ∈

H} ⊂ Γ ).

Example. In the PH of Fig. 3, bc is a well-formed cooperative sort as defined in
Property 1, because:

focals(bc, Lbc, {b0, c0} ∪ Lbc) = {bc00} focals(bc, Lbc, {b0, c1} ∪ Lbc) = {bc01}
focals(bc, Lbc, {b1, c0} ∪ Lbc) = {bc10} focals(bc, Lbc, {b1, c1} ∪ Lbc) = {bc11}

Hence, both Fig. 1 and Fig. 3 are well-formed PH for IG inference with Γ =
{a, b, c}.

3.3 Interaction Inference

At this point we can divide the set of sorts Σ into components (Γ , see Eq. (3))
and cooperative sorts (Σ\Γ ) that will not appear in the IG. We define in Eq. (5)
the set of predecessors of a sort a, that is, the sorts influencing a by considering
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direct actions and possible intermediate cooperative sorts. The predecessors of
a that are components are the regulators of a, denoted reg(a) (Eq. (6)).

∀a ∈ Σ, pred(a) Δ= {b ∈ Σ | ∃n ∈ N∗, ∃(ck)k∈[0;n] ∈ Σn+1,

c0 = b ∧ cn = a

∧ ∀k ∈ �0; n − 1�, ck ∈ Σ−1(ck+1) ∩ (Σ \ Γ )}
(5)

∀a ∈ Σ, reg(a) Δ= pred(a) ∩ Γ (6)

Given a set g of components and a configuration (i.e. a sub-state) σ, ςg(σ) refers
to the set of processes hitting a regulated by any sort in g (Eq. (7)). If g = {b},
we simple note ςb(σ). This set is composed of the active processes of sorts in
g, and the focal process (assumed unique) of the cooperative sorts υ hitting a
that have a predecessor in g. The evaluation of the focal process of υ in context
σ, denoted υ(σ), relies on Property 1, which gives its value when all the direct
predecessors of υ are defined in σ. When a predecessor υ′ is not in σ, we extend
the evaluation by recursively computing the focal value of υ′ is σ, as stated
in Eq. (8). Because there is no cycle between cooperative sorts, this recursive
evaluation of υ(σ) always terminates.

∀g ⊂ Γ, ςg(σ) Δ= {σ[b] | b ∈ g} ∪ {υ(σ) | υ ∈ Σ−1(a) \ Γ ∧ g ∩ reg(υ) �= ∅} (7)

υ(σ) Δ= υ(σ � 〈υ′(σ) | υ′ ∈ Σ−1(υ) ∧ υ′ ∈ Σ \ Γ 〉) (8)

We aim at inferring that b activates (inhibits) a if there exists a configuration
where increasing the level of b makes possible the increase (decrease) of the level
of a. This is analogous to standard IG inferences from discrete maps [2].

This reasoning can be straightforwardly applied to a PH when inferring the
influence of b on a when b �= a (Eq. (11)). Let us define γ(b → a) as the set
of components cooperating with b to hit a, including b and a (Eq. (9)). Given
a configuration σ ∈ ∏

c∈γ(b→a) Lc, focals(a, {ai}, ςb(σ)) gives the bounces that a
given process ai can make in the context ςb(σ). We note σ{bi} the configuration
σ where the process of sort b has been replaced by bi. If there exists bi, bi+1 ∈ Lb

such that one bounce in focals(a, {σ[a]}, ςb(σ{bi})) has a lower (resp. higher)
level that one bounce in focals(a, {σ[a]}, ςb(σ{bi+1})), then b as positive (resp.
negative) influence on a with a maximum threshold l = i + 1.

γ(b → a) Δ= {a, b} ∪ {c ∈ Γ | ∃υ ∈ Σ \ Γ, υ ∈ pred(a) ∧ {b, c} ⊂ pred(υ)} (9)

Then, we infer that a has a self-influence if its current level can have an impact on
its own evolution at a given configuration σ. We consider here a configuration
σ of a group g of sorts having a cooperation on a. This set of sort groups
is given by X(a) (Eq. (10)) which returns the set of connected components
(noted C) of the graph linking two regulators b, c of a if there is a cooperative
sort hitting a regulated by both of them. Given ai, ai+1 ∈ La, we pick aj ∈
focals(a, {ai}, ςg(σ{ai})) and ak ∈ focals(a, {ai+1}, ςg(σ{ai+1})). If k = j + 1,
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we can not conclude as there is no difference in the evolution of both levels. If
k �= j + 1 and k − j �= 0, then ai and ai+1 have divergent evolutions: we infer
an influence of sign of k − j at threshold i + 1. We note that some aspects of
this inference are arbitrary and may impact the number of parameters to infer
in the next section. In particular, in some cases, the use of intervals for Thomas’
parameters drops the requirement of inferring a self-activation.

X(a) = C ((reg(a), {{b, c} | ∃υ ∈ Σ−1(a) \ Γ, {b, c} ⊂ reg(υ)})) (10)

Proposition 1 details the inference of all existing influences between components
occurring with a threshold l. These influences are split into positive and negative
ones, and represent possible edges in the final IG. We do not consider the cases
where a component has no visible influence on another.

Proposition 1 (Edges inference). We define the set of positive (resp. nega-
tive) influences Ê+ (resp. Ê−) for any a ∈ Γ by:

∀b ∈ reg(a), b �= a,

b
l−→ a ∈ Ês ⇐⇒ ∃σ ∈ ∏

c∈γ(b→a) Lc, ∃bi, bi+1 ∈ Lb,

∃aj ∈ focals(a, {σ[a]}, ςb(σ{bi})),
∃ak ∈ focals(a, {σ[a]}, ςb(σ{bi+1})),

s = sign(k − j) ∧ l = i + 1

(11)

a
l−→ a ∈ Ês ⇐⇒ ∃g ∈ X(a), σ ∈ La × ∏

b∈g Lb, ∃ai, ai+1 ∈ La,

∃aj ∈ focals(a, {ai}, ςg(σ{ai})),
∃ak ∈ focals(a, {ai+1}, ςg(σ{ai+1})),

k �= j + 1 ∧ s = sign(k − j) ∧ l = i + 1

(12)

where s ∈ {+,−}, s̄ = + Δ⇔ s = −, s̄ = − Δ⇔ s = +, sign(n) = + Δ⇔ n > 0,
sign(n) = − Δ⇔ n < 0, and sign(0) Δ= 0.

We are now able to infer the edges of the final IG by considering positive and
negative influences (Proposition 2). We infer a positive (resp. negative) edge if
there exists a corresponding influence with the same sign. If an influence is both
positive and negative, we infer an unsigned edge. In the end, the threshold of
each edge is the minimum threshold for which the influence has been found. As
unsigned edges represent ambiguous interactions, no threshold is inferred.

Proposition 2 (Interaction Graph inference). We infer G = (Γ, E+, E−,
E±) from Proposition 1 as follows:

E+ = {a t−→ b | �a
t′−→ b ∈ Ê− ∧ t = min{l | a

l−→ b ∈ Ê+}}
E− = {a t−→ b | �a

t′−→ b ∈ Ê+ ∧ t = min{l | a
l−→ b ∈ Ê−}}

E± = {a → b | ∃a
t−→ b ∈ Ê+ ∧ ∃a

t′−→ b ∈ Ê−}
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Example. The IG inference from the PH of Fig. 3 gives Ê+ = {b 1−→ a, c
1−→ a}

and Ê− = {a 2−→ b}, corresponding to the IG of Fig. 4. No self-influence are
inferred (X(a) = {{b, c}}, X(b) = {{a}}, and X(c) = ∅).

4 Parametrization Inference

Given the IG inferred from a PH as presented in the previous section, one can
find the discrete parameters that model the behavior of the studied PH using
the method presented in the following. It relies on an exhaustive enumeration
of all predecessors of each component in order to find attractor processes and
returns a possibly incomplete parametrization, given the exhaustiveness of the
cooperations. The last step consists of the enumeration of all compatible com-
plete parametrizations given this set of inferred parameters, the PH dynamics
and some biological constraints on parameters.

4.1 Parameters Inference

This subsection presents some results related to the inference of independent
discrete parameters from a given PH. These results are equivalent to those pre-
sented in [10], with notation adapted to be shared with the previous section.
In addition, we introduce the well-formed PH for parameter inference property
(Property 3), which implies that the inferred IG does not contain any unsigned
interactions, and thus can be seen as the regular IG (Γ, E+, E−), and that any
processes in levels+(b → a) (resp. levels−(b → a)) share the same behavior re-
garding a.

Property 3 (Well-formed PH for parameter inference). A PH is well-formed for
parameter inference if and only if it is well-formed for IG inference, and the IG
(Γ, E+, E−, E±) inferred by Proposition 2 verifies E± = ∅ and if the following
property holds:

∀b ∈ Γ−1(a), ∀(i, j ∈ levels+(b → a) ∨ i, j ∈ levels−(b → a)),

∀c, ((b �= a ∧ c = a) ∨ (c ∈ pred(a) ∧ b ∈ Σ−1(c))),
bi → ck � cl ∈ H ⇔ bj → ck � cl ∈ H

(13)

Let Ka,A,B be the parameter we want to infer for a given component a ∈ Γ and
A ⊂ Γ−1(a) (resp. B ⊂ Γ−1(a)) a set of its activators (resp. inhibitors). This
inference, as for the IG inference, relies on the search of focal processes of the
component for the given configuration of its regulators.

For each sort b ∈ Γ−1(a), we define a context Cb
a,A,B in Eq. (14) that contains

all processes representing the influence of the regulators in the configuration
A, B. The context of a cooperative sort υ that regulates a is given in Eq. (15)
as the set of focal processes matching the current configuration. Ca,A,B refers to
the union of all these contexts (Eq. (16)).
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∀b ∈ Γ, Cb
a,A,B

Δ=

⎧⎪⎨⎪⎩
levels+(b → a) if b ∈ A,
levels−(b → a) if b ∈ B,
Lb otherwise;

(14)

∀υ ∈ pred(a) \ Γ, Cυ
a,A,B

Δ= {υ(σ) | σ ∈ ∏
c∈Σ−1(υ) Cc

a,A,B} (15)

Ca,A,B
Δ=
⋃

b∈pred(a) Cb
a,A,B (16)

The parameter Ka,A,B specifies to which values a eventually evolves as long as
the context Ca,A,B holds, which is precisely the definition of the focals function
(Def. 7 in Subsect. 3.1), where the focals reachability property can be derived
from Property 3 and Eq. (15). Hence Ka,A,B = focals(a, Ca

a,A,B, Ca,A,B) if this
latter is a non-empty interval (Proposition 3).

Proposition 3 (Parameter inference). Let (Σ, L,H) be a Process Hitting
well-formed for parameter inference, and G = (Γ, E+, E−) the inferred IG. Let
A (resp. B) ⊆ Γ be the set of regulators that activate (resp. inhibit) a sort a. If
focals(a, Ca

a,A,B, Ca,A,B) = [ai; aj ] is a non-empty interval, then Ka,A,B = [i; j].

Example. Applied to the PH in Fig. 1, we obtain, for instance, Kb,{a},∅ = [0; 1]
and Ka,{b,c},∅ = [2; 2], while Ka,{b},{c} can not be inferred. For the PH in Fig. 3,
this latter is evaluated to [1; 1].

Given the Proposition 3, we see that in some cases, the inference of the tar-
geted parameter is impossible. This can be due to a lack of cooperation between
regulators: when two regulators independently hit a component, their actions can
have opposite effects, leading to either an indeterministic evolution or to oscilla-
tions. Such an indeterminism is not possible in a BRN as in a given configuration
of regulators, a component can only have an interval attractor, and eventually
reaches a steady-state. In order to avoid such inconclusive cases, one has to en-
sure that no such behavior is allowed by either removing undesired actions or
using cooperative sorts to prevent opposite influences between regulators.

4.2 Admissible Parametrizations

When building a BRN, one has to find the parametrization that best describes
the desired behavior of the studied system. Complexity is inherent to this process
as the number of possible parametrizations for a given IG is exponential w.r.t. the
number of components. However, the method of parameters inference presented
in this section gives some information about necessary parameters given a certain
dynamics described by a PH. This information thus drops the number of possible
parametrizations, allowing to find the desired behavior more easily.

We first delimit the validity of a parameter (Property 4) in order to ensure
that any transition in the resulting BRN is allowed by the studied PH. This
is verified by the existence of a hit making the concerned component bounce
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into the direction of the value of the parameter in the matching context. Thus,
assuming Property 3 holds, any transition in the inferred BRN corresponds to
at least one transition in the PH, proving the correctness of our inference. We
remark that any parameter inferred by Proposition 3 satisfies this property.

Property 4 (Parameter validity). A parameter Ka,A,B is valid w.r.t. the PH iff
the following equation is verified:

∀ai ∈ Ca
a,A,B, ai /∈ Ka,A,B =⇒ (∃ck → ai � aj ∈ H,ck ∈ Cc

a,A,B

∧ai < Ka,A,B ⇒ j > i ∧ ai > Ka,A,B ⇒ j < i)

Then, we use some additional biological constraints on Thomas’ parameters
given in [16], that we sum up in the following three properties:

Property 5 (Extreme values assumption). Let G = (Γ, E+, E−) be an IG. A
parametrization K on G satisfies the extreme values assumption iff:

∀b ∈ Γ, Γ−1(b) �= ∅ ⇒ 0 ∈ Kb,∅,Γ−1(b) ∧ lb ∈ Kb,Γ−1(b),∅

Property 6 (Activity assumption). Let G = (Γ, E+, E−) be an IG. A parametri-
zation K on G satisfies the activity assumption iff:

∀b ∈ Γ, ∀a ∈ Γ−1(b), ∃(A; B) ∈ Resa, Kb,A,B <[] Kb,A∪{b},B\{b}
∀b ∈ Γ, ∀a ∈ Γ−1(b), ∃(A; B) ∈ Resa, Kb,A\{b},B∪{b} <[] Kb,A,B

Property 7 (Monotonicity assumption). Let G = (Γ, E+, E−) be an IG. A para-
metrization K on G satisfies the monotonicity assumption iff:

∀b ∈ Γ, ∀(A; B), (A′; B′) ∈ Resb, A ⊂ A′ ∧ B′ ⊂ B ⇒ Kb,A,B ≤[] Kb,A′,B′

4.3 Answer Set Programming Implementation Concepts

Answer Set Programming (ASP) [12] has been chosen to address the enumeration
of all admissible parametrizations. The motivations are following:

– ASP efficiently tackles the inherent complexity of the models we use, thus
allowing a fast execution of the formal tools defined in this paper,

– it is convenient to enumerate a large set of possible answers,
– it allows us to easily constrain the answers according to some properties.

We now synthesize some key points to better make the reader understand our
ASP implementation with the enumeration example.

All information describing the studied model (PH and inferred IG & param-
eters) are expressed in ASP using facts. For functional purposes, we assign a
unique label to each couple A, B of activators and inhibitors of a given compo-
nent, and in the following we note Kp

a,A,B the parameter of component a whose
regulators A, B are assigned to the label p. Then, to state the existence of a
parameter K

p
a ,A,B, we use an atom named param_label in the following fact:
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param_label(a, p ).

Defining a set in ASP is equivalent to defining the rule for belonging to this
set. For example, we define an atom param_act that describes the set of active
regulators of a given a parameter. Describing the activators of K

p
a ,{b ,c},{d} gives:

param_act(a, p , b ).
param_act(a, p , c ).

The absence of such a fact involving d with label p indicates that d is an
inhibitor in the configuration of regulators related to this parameter.

Rules allow more detailed declarations than facts as they have a body (right-
hand part below) containing constraints and allowing to use variables, while
facts only have a head (left-hand part). For instance, in order to define the set
of expression levels of a component, we declare:

component_levels(X, 0..M) :- component(X, M).

where the component(X, M) atom stands for the existence of a component X
with a maximum level M. Considering this declaration, any possible answer for
the atom component_levels will be found by binding all possible values of
its two terms with all existing component facts: the existence of an answer
component_levels(a, k ) will depend on the existence of a term a , which
is bound with X, and an integer k , constrained by: 0 ≤ k ≤ M.

Cardinalities are convenient to enumerate all possible parametrizations by cre-
ating multiple answer sets. A cardinality (denoted hereafter with curly brackets)
gives any number of possible answers for some atoms between a lower and upper
bounds. For example,

1 { param(X, P, I) : component_levels(X, I) } :-
param_label(X, P), not infered_param(X, P).

where param(X, P, I) stands for: I ∈ KP
X,A,B, means that any parameter of

component X and label P must contain at least one level value (I) in the possible
expression levels of X. Indeed, the lower bound is 1, forcing at least one element
in the parameter, but no upper bound is specified, allowing up to any number of
answers. The body (right-hand side) of the rule also checks for the existence of
a parameter of X with label P, and constrains that the parametrization inference
was not conclusive for the considered parameter (not stands for negation by
failure: not L becomes true if L is not true). Such a constraint gives multiple
results as any set of param atoms satisfying the cardinality will lead to a new
global set of answers. In this way, we enumerate all possible parametrizations
which respects the results of parameters inference, but completely disregarding
the notion of admissible parametrizations given in Subsect. 4.2.

We rely on integrity constraints to filter only admissible parametrizations. An
integrity constraint is a rule with no head, that makes an answer set unsatisfiable
if its body turns out to be true. Hence, if we suppose that:

– the less_active(a, p , q ) atom means that K
p
a ,A,B stands for a configu-

ration with less activating regulators than K
q
a ,A′,B′ (i.e. A ⊂ A′),
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– the param_inf(a, p , q ) atom means: Kp
a ,A,B ≤[] Kq

a ,A′,B′ ,

the monotonicity assumption is formulated as the following integrity constraint:

:- less_active(X, P, Q), not param_inf(X, P, Q).

which removes all parametrization results where parameters KP
X,A,B and KQ

X,A′,B′

exist such that A ⊂ A′ and KQ
X,A′,B′ <[] KP

X,A,B, thus violating the monotonicity
assumption. Of course, other assumptions can be formulated in the same way.

This subsection succinctly described how we write ASP programs to represent
a model and solve all steps of Thomas’ modeling inference. It finds a particularly
interesting application in the enumeration of parameters: all possible parame-
trizations are generated in separate answer sets, and integrity constraints are
formulated to remove those that do not fit the assumptions of admissible pa-
rametrizations, thus reducing the number of interesting parametrizations to be
considered in the end.

5 Examples

The inference method described in this paper has been implemented as part of
Pint1, which gathers PH related tools. Our implementation mainly consists in
ASP programs that are solved using Clingo2. The IG and parameters inference
can be performed using the command ph2thomas -i model.ph --dot ig.dot
where model.ph is the PH model in Pint format and ig.dot is an output of the
inferred IG in DOT format. The (possibly partial) inferred parametrization will
be returned on the standard output. The admissible parametrizations enumera-
tion is performed when adding the --enumerate parameter to the command.

Applied to the example in Fig. 3 where cooperations have been defined, our
method infers the IG and parametrization given in Fig. 4. Regarding the example
in Fig. 1, the same IG is inferred, as well as for the parametrization except for the
parameters Ka,{b},{c} and Ka,{c},{b} which are undefined (because of the lack of
cooperativity between b and c). In such a case, this partial parametrization allows
36 admissible complete parametrizations, as two parameters with 3 potential
values could not be inferred. If we constrain these latter parameters so that they
contain exactly one element, we obtain only 9 admissible parametrizations.

The current implementation can successfully handle large PH models of BRNs
found in the literature such as an ERBB receptor-regulated G1/S transition
model from [17] which contains 20 components and 15 cooperative sorts, and
a T-cells receptor model from [18] which contains 40 components and 14 co-
operative sorts3. For each model, IG and parameters inferences are performed
together in less than a second on a standard desktop computer. After removing
the cooperations from these models (leaving only raw actions), the inferences
allow to determine 40 parameters out of 195 for the 20 components model, and
1 Available at http://process.hitting.free.fr
2 Available at http://potassco.sourceforge.net
3 Both models are available as examples distributed with Pint.

http://process.hitting.free.fr
http://potassco.sourceforge.net
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77 out of 143 for the 40 components model. As we thus have an order of mag-
nitude of respectively 1031 and 1073 admissible parametrizations, these models
would therefore be more efficiently studied as PH than as BRNs. We note that
the complexity of the method is exponential in the number of regulators of one
component and linear in the number of components.

A PH model can be built based on information found in the literature about
the local influences between components. The precision of this knowledge will
determine the precision of the modeled activations and inhibitions, and some
information is likely to help in the representation of cooperations.

6 Conclusion and Discussion

This work establishes the abstraction relationship between PH and Thomas’
approaches for qualitative BRN modeling. The PH allows an abstract represen-
tation of BRNs dynamics (allowing incomplete knowledge on the cooperation
between components) that can not be exactly represented in René Thomas’
formalism by a single instance of BRN parametrization. This motivates the con-
cretization of PH models into a set of compatible Thomas’ models in order to
benefit of the complementary advantages of these two formal frameworks.

We first propose an original inference of the Interaction Graph (IG) from a
BRN having its dynamics specified in the PH framework. An IG gives a com-
pact abstract representation of the influence of the components between each
others. Then, based on a prior inference of René Thomas’ parametrization for
BRNs from a PH model, we delimit the set of compatible Thomas’ parametriza-
tions that are compatible with the PH dynamics, and give arguments for their
correctness. A parametrization is compatible with the PH if its dynamics (in
terms of possible transitions) is included in the PH dynamics. The enumeration
of such parametrizations is efficiently tackled using Answer Set Programming.
We illustrate the overall method on simple examples and large biological models.

Several extensions of the presented work are now to be considered. First, we
now plan to explore the inference of Thomas’ parameters when the inferred IG in-
volves unsigned interactions, as some particular cases having such IGs are known
to have correct Thomas’ parametrization (not respecting some assumptions im-
posed in Subsect. 4.2, however). Second, the inference of BRN multiplexes [19]
may be of practical interest as they allow to implicitly reduce the possible para-
metrizations by making cooperations appear in the IG. Because of its atomicity,
the PH allows to specify a range of cooperations that can not be completely cap-
tured by a single instance of BRN multiplexes, then encouraging the inference
of a set of compatible ones. Finally, in order to improve the performances in the
IG inference, we will consider projection operations on the PH structure to undo
cooperations between components and reduce the cardinality of configurations
to explore by making the interactions independent.

Acknowledgement. This work was partially supported by the Fondation Cen-
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Abstract. We propose a technique to simulate molecular reaction sys-
tems efficiently by abstracting graph models. Graphs (or networks) and
their transitions give rise to simple but powerful models for molecules
and their chemical reactions. Depending on the purpose of a graph-based
model, nodes and edges of a graph may correspond to molecular units
and chemical bonds, respectively. This kind of model provides naive sim-
ulations of molecular reaction systems by applying chemical kinetics to
graph transition. Such naive models, however, can immediately cause
a combinatorial explosion of the number of molecular species because
combination of chemical bonds is usually unbounded, which makes sim-
ulation intractable. To overcome this problem, we introduce an abstrac-
tion technique to divide a graph into local structures. New abstracted
models for simulating DNA hybridization systems and RNA interference
are explained as case studies to show the effectiveness of our abstrac-
tion technique. We then discuss the trade-off between the efficiency and
exactness of our abstracted models from the aspect of the number of
structures and simulation error. We classify molecular reaction systems
into three groups according to the assumptions on reactions. The first
one allows efficient and exact abstraction, the second one allows efficient
but approximate abstraction, and the third one does not reduce the num-
ber of structures by abstraction. We conclude that abstraction is a useful
tool to analyze complex molecular reaction systems and measure their
complexity.

1 Introduction

Developing models to describe bio-molecular reaction systems is important to
analyze and predict biological phenomena. Models are also useful for design-
ing complex artificial machines that are composed of bio-molecules such as
DNA [32,27,15] and RNA [30,29]. Graphs (or networks) are often used to model
such bio-molecules and their reactions. Systems biology methods using graphs
have been commonly applied to analyze dynamic biological phenomena at a
system level [20]. In such graph-based models, nodes and edges correspond to
biological components (mRNA and proteins for example) and reactions
(enzymatic reactions for example), respectively.

D. Gilbert and M. Heiner (Eds.): CMSB 2012, LNCS 7605, pp. 187–206, 2012.
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To focus on a rather smaller level of chemical reactions such as hybridization
of complementary DNA and the phosphorylation cascade of proteins, graph-
based models are also useful to represent bio-molecular components. In this
kind of naive graph-based models, nodes correspond to molecular groups such
as nucleotides and polypeptides, while edges correspond to chemical connections
such as hydrogen and covalent bonds. Chemical reactions among components
are represented as transitions of a graph from one state to another. By ap-
plying chemical kinetics and either solving differential equations or performing
stochastic analysis, naive graph-based models provide simulations that predict
how bio-molecular systems behave. Provided that transition rules are thoroughly
defined, whole reaction pathways are automatically searched because transition
rules are iteratively applied. In this paper, we are interested in simulating reac-
tion networks by solving numerical ODEs rather than stochastic analysis.

When combinations of chemical connections generate an exponential or
unbounded number of molecules, simulating systems by graph-based models be-
comes intractable. To overcome this problem, models that focus on local con-
nections of molecules have recently been investigated. For example, enumeration
technique to calculate the equilibrium state of hybridization reaction systems was
introduced by focusing on the locality of the hybridization of nucleotides [22,21].
Calculating an equilibrium state is to find the distribution of states that is en-
ergetically stable. The proposed method defines an enumeration graph, whose
nodes correspond to local hydrogen bonds, and the structures of hybridization
reaction system are encoded in paths that are defined as combinations of nodes.
The distribution of states are calculated from the weights on edges, which can be
efficiently determined because the number of local hydrogen bonds are limited
even if the number of paths is exponentially big.

For another example, a graph rewriting system that represents protein interac-
tions was proposed to overcome biological combinatorial explosion [10,13,9,16].
The graph rewriting system defines a graph-based model that focuses on the
features of proteins that can modify or bind to other proteins. Because com-
binations of the features are kept implicit in the model, description of protein
interactions becomes compact.

In this paper, we propose an abstraction technique which focuses on the local
structures of DNA and RNA to overcome the combinatorial explosion problem
of bio-molecules. Although the motivation of this paper is similar to the related
work in the previous paragraph, we show an original abstraction technique for
nucleic acid reactions. We also explain models and simulation results of DNA
hybridization and RNAi as case studies to discuss the efficiency and exactness
of our abstraction. We will conclude that abstraction is a useful tool to analyze
complex molecular reaction systems and measure their complexity.

The organization of this paper is as follows. Section 2 reviews our previous work
[18,19] about a naive graph-based model of DNA hybridization systems and the
abstraction of it. Section 3 explains the efficiency and exactness of the abstracted
model for DNA hybridization systems. Section 4 illustrate the naive graph-based
model and the abstraction of the model of RNAi. Section 5 also explains the
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efficiency and exactness of the abstracted model for RNAi. Section 6 contains re-
lated work and section 7 is the discussion and the conclusion of this paper.

2 Naive Graph-Based Model and Abstraction of DNA
Hybridization Systems

2.1 DNA Hybridization System

Recently, various kinds of reaction systemsusingDNAascomponents havebeende-
veloped [1,33,26]. In those systems, a simple base paring ability of complementary
sequences is thoroughly utilized. Along with experimental investigations, theoret-
ical models to represent and design such systems have been investigated [32,31,23].
To simulate and automatically design DNA logic gates by evolutionary computa-
tion, we previously defined a model of DNA hybridization systems [18]. Although
detail explanations are given in our previous work [19], we briefly explain the naive
graph-based model and its abstraction in this section.

2.2 Naive Model

The way we model DNA hybridization systems is shown in Fig. 1 using the DNA
logic gate, which comes from [28], as an example. DNA is chemically a double
helical structure composed of two strands of nucleotide bases (the left-most in
Fig. 1). Because a nucleotide base is one of adenine (A), thymine (T), gua-
nine (G), and cytosine (C), a DNA strand can be represented as a sequence of
‘A’, ‘T, ‘G’, and ‘C’. Hydrogen bonds between complementary bases and phos-
phate backbones that run in antiparallel directions are preserved as undirected
and directed edges, respectively (the second left in Fig. 1).

Fig. 1. Model of DNA

Sequences of nucleotides are divided into segments that are reaction units of
hybridization (the second right in Fig. 1). We allocate lowercase and uppercase
letters to the segments, where lowercase and uppercase of the same letter are
complementary to each other. Finally we model the system by a graph data
structure, whose nodes represent segments, whose undirected edges represent
hydrogen bonds, and whose directed edges represent phosphate backbones (the
right-most in Fig. 1).

2.3 Kinetic Simulation

We define three kinds of graph transitions (hybridization, denaturation, and
branch migration) to represent the chemical reactions of DNA hybridization
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Fig. 2. Reaction rules

systems. An undirected edge between lowercase and uppercase of the same letter
is generated by a hybridization reaction (transition from the left to the center in
Fig. 2). Inversely, an undirected edge disappears from a graph by a denaturation
reaction (transition from the center to the left in Fig. 2). Exchange of undirected
edges occurs by a branch migration reaction (transition from the center to the
right in Fig. 2).

The above naive graph-based model of DNA hybridization systems allows
straight forward simulation by applying chemical kinetics and solving ordinary
differential equations. First, we assign variables to all molecular species in the
system to represents their concentrations. After we formalize differential equa-
tions of all reaction rules by applying chemical kinetics, we solve them to ob-
tain concentration changes as functions of time. Kinetic speeds of reactions are
defined by rule of thumb, and unit of concentration and time are arbitrary. Al-
though the kinetic speeds of hybridization and branch migration are fixed, that
of denaturation depends on the length of segments that are separating. We actu-
ally used a common numerical analysis called Runge-Kutta-Fehlberg-4,5 method
to solve ordinary differential equations [12].

2.4 Combinatorial Explosion Problem

Hybridization chain reaction (HCR) is a typical example that generates an un-
bounded number of structures in the naive model [11]. HCR has two hairpin
DNA strands and one initiator strand that starts the cascade of hybridization
reactions (Fig. 3). Initiator will first hybridize to Hairpin 1 and branch migra-
tion opens the hairpin. After that, hybridization and branch migration occur
alternately between Hairpins 1 and 2. Because these reactions continue until
the hairpins are thoroughly consumed, the number of structures is essentially
unbounded (Fig. 4).

2.5 Abstraction by Local Structure

To avoid the unbounded number of structures, we propose an original abstrac-
tion technique [19]. By the abstraction, variables are allocated to local struc-
tures (Fig. 5), where the number of local structures is finite. A local structure
has some information about the strand it belongs to and the information about
how each segment is connected. If a segment is not connected to any other seg-
ments, its connectivity is defined null. Otherwise its connectivity must identify
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Fig. 3. Components of HCR Fig. 4. Structures in HCR

Fig. 5. Local structures

both the strand and the position of complementary segment although this infor-
mation is omitted in the figure. We can efficiently enumerate the total number
of local structures (details are found in [19]).

2.6 Reactions among Local Structures

Three reactions among local structures are defined as transitions from local
structures to local structures in a similar way as that of the naive model. For
example, the branch migration reaction that exchanges the undirected edge be-
tween ‘a’ of “ac” and ‘A’ of “BA” to that between ‘a’ of “ac” and ‘A’ of “CA””
is shown in Fig. 6. C1 · · ·C8 in the figure are the variables that represent the
concentrations of corresponding local structures. For convenience, we call a local
structure with the variable Ci just structure i. Structures 7 and 8 shown in Fig. 7
are the other possible neighbors that can connect to structure 2.

We assume that a local structure proportionally connects to a neighbor local
structure. The ratio of each connection is calculated by dividing the concentra-
tion of the corresponding neighbor local structure by the sum of all the concen-
trations of possible neighbor local structures. For example, the concentration of
a structure that connects the local structures 1 and 2 is calculated by

C2 ×
C1

C1 + C7
.

C1/(C1 + C7) is the ratio of the concentration of structure 2 connecting to
structure 1 against the whole connections of structure 2. We call this assumption
ratio assumption (the same concept appears in section 4.6).
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Fig. 6. Branch migration reaction in the
local model

Fig. 7. Possible neighbor local structures

Because the branch migration reactions is originally unimolecular in the naive
model, differential equations of the figure are formed as follows:

Δ = kb × C2 ×
C1

C1 + C7
× C3

C3 + C8

d

dt
C1 = −Δ, d

dt
C2 = −Δ, d

dt
C3 = −Δ

d

dt
C4 = Δ,

d

dt
C5 = Δ,

d

dt
C6 = Δ,

where kb is the kinetic speed of the branch migration reaction. This ratio as-
sumption is also applied to the denaturation reaction because the reaction is
originally unimolecular. In contrast, the differential equations of the hybridiza-
tion are formed as bimolecular, because the local structures are not connected
before the reactions. Because these variables can be affected by other reactions,
the final form of the differential equations sums up the expressions of all involved
reactions.

3 Efficiency and Exactness of Abstracted Model for DNA
Hybridization Systems

3.1 Efficient and Approximate Abstraction

Although the number of local structures also increases exponentially as the model
becomes bigger because of the combinatorial explosion of connections, it is much
smaller than that of the global structures of the naive model [19]. This abstrac-
tion is approximate because the ratio assumption is not always satisfied and
intra-molecular hybridization is also ignored. Even with these disadvantages, the
abstracted simulation is useful for our design purpose because of its efficiency.

3.2 Exact Abstraction

We can develop an exact abstraction for the HCR under some appropriate as-
sumptions. In the naive model, variables are allocated to all the structures de-
pending on the number of opened hairpins (Fig. 8). We allocate C0, Ch1, Ch2,
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and Ci to the initiator strand, Hairpin 1, Hairpin 2, and a structure that has
i opened hairpins, respectively. We ignore the denaturation reactions and also
assume that hybridization and branch migration occur together. The differential
equations for the naive model are formed as follows:

d

dt
C0 = −kb × C0 × Ch1

d

dt
C2n+1 = kb × C2n × Ch1 − kb × C2n+1 × Ch2 (n ∈ N)

d

dt
C2n+2 = kb × C2n+1 × Ch2 − kb × C2n+2 × Ch1 (n ∈ N)

d

dt
Ch1 =

∑
i∈N

−kb × C2i × Ch1

d

dt
Ch2 =

∑
i∈N

−kb × C2i+1 × Ch2

where N denotes the set of nonnegative integers. By ignoring Ci for i > 5 to
limit the number of structures in the naive model, we obtained the concentration
changes from C1 to C5 shown in Fig. 10. The initial values for C0, Ch1, and Ch2

are 0.01, 1.0, and 1.0, respectively (0 for other structures).

Fig. 8. Variable allocation of the naive
model

Fig. 9. Local structures for Codd and Ceven

We then regard all the opened hairpins that can bind to the next hairpin as
one local structure, and allocate Codd and Ceven for Hairpin 1 and Hairpin 2,
respectively (Fig. 9). C0, Ch1, and Ch2 are allocated as before.

The differential equations for these variables in the local model are formed as
follows:

d

dt
C0 = −kb × C0 × Ch1

d

dt
Codd = kb × C0 × Ch1 + kb × Ceven × Ch1 − kb × Codd × Ch2

d

dt
Ceven = kb × Codd × Ch2 − kb × Ceven × Ch1

d

dt
Ch1 = −kb × C0 × Ch1 − kb × Ceven × Ch1
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d

dt
Ch2 = −kb × Codd × Ch2.

We can recover each Ci by assuming Possion distribution of the global structures:

Ci = (Codd + Ceven)×
λi exp−λ

i!
,

where λ is a function of time. After simulation of T time units, λ is calculated
by

kb ×
∫ T

0

(Ch1 + Ch2)dt,

which denotes the average number of the occurrences of the branch migration
reaction. The simulation result by recovering the concentrations of global struc-
tures is shown in Fig. 11. The concentration of local structures are exactly cal-
culated because of the definition of Codd and Ceven. We can understand the
exactness from the property of Codd and Ceven. Because the local structures
with Codd and Ceven appears only once at the right most position of each global
structure of the naive model (Fig. 8), they satisfy the following expressions:

Codd =
∑
i∈N

C2i+1

Ceven =
∑
i∈N

C2i+2.

In contrast, the recovered simulation result is not exact because of the approxi-
mation under the assumption of Possion distribution.
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4 Models for RNAi

4.1 RNAi

In this section, we apply our graph-based model and abstraction technique to
RNA interference (RNAi). RNAi, also known as RNA silencing, is an internal
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cell mechanism commonly seen in both plants and animals to moderate gene
expression [5,2,25]. In this mechanism, small RNAs produced from a double
stranded RNA directly control gene expression. Our purpose is to observe the
distribution of concentrations of small RNAs as well as the concentration of
double stranded RNA. These topics are of importance for experimental biology
and some mathematical models can be found in [3,24,14,8]. Because these models
are phenomenological and are not based on chemical reactions, it is difficult to
understand how each molecular species behaves in RNAi. In contrast, our model
is directly based on chemical reactions, hence it clarifies the behavior of each
molecular species. This model explains typical phenomena of RNAi and also
allows us to apply our abstraction technique.

4.2 Naive Graph-Based Model

Our original naive graph-based model for representing RNAi based on chemical
reactions is shown in Fig. 12. In the figure, thin directed arrows represent RNA
and short thin undirected lines between them represent hydrogen bonds between
complementary bases. Chemical reactions are drawn by box-shaped arrows with
their name, which show the changes of molecules from one state to another. Φ
is an arbitrary species which may be a waste or constant value for decay and
transcription reactions.

In our model, transcription has a continuous activation and generates mes-
senger RNA (mRNA) as in the middle of the figure. Input of double stranded
RNA (dsRNA) initiates the cascades of reactions from the top of the figure.
DsRNA is first cleaved into smaller segments called small interference RNA (si-
RNA) by the enzyme called Dicer. As in the case of DNA hybridization systems,
sequences of nucleotides are regarded as segments that are reaction units. Be-
cause siRNAs have a smaller number of hydrogen bonds, denaturation reactions
occur to break the hydrogen bonds and split siRNAs to upper “right-pointing”
single stranded RNAs (ssRNAs) and lower “left-pointing” ssRNAs. Upper and
lower ssRNAs can hybridize together to compose siRNAs. They can also decay
and become wastes. Note that we use the term siRNA only for double stranded
small segments, while single stranded sense or anti-sense RNA is simply called
upper or lower ssRNA.

Some of the remaining lower ssRNAs are recruited to form RNA-induced
silencing complexes (RISCs), which will eventually break down the mRNA by
identifying the complementary sequences. Because lower ssRNAs and mRNA
have complementary sequences, they hybridize and compose partially double-
helical structures. This structure can also denature because of the assumption
that denaturation can occur only when the length of hydrogen bonds is one
segment long. After hybridization, polymerization reactions will extend the lower
part of the double-helical structures and synthesize longer (but still partial)
double-helical structures. If the right-most lower ssRNA is used as a primer,
polymerization can reproduce the complete dsRNA which can initiate the whole
reaction again.
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Φ

Fig. 12. Schematic explanation of RNAi

There is also another pathway to reproduce complete dsRNA from aberrant
RNAs, as seen in plant cells [5]. For the pathway, a target mRNA is aberrated
by RISC, and the aberrant RNA is eventually duplicated to reproduce complete
dsRNA. Note that because we distinguish all ssRNAs, siRNAs and RISCs based
on the original position in dsRNA, we distinguish all double-helical structures
based on the positions of double-helices.

4.3 Simulation by Chemical Kinetics

The naive graph-basedmodel of RNAi also provides a straight forward simulation
in a similar way as the DNA hybridization systems. The number of segments that
is cleaved by the Dicer reaction is a variable of our RNAimodel.We assigned initial
concentrations of mRNA and dsRNA to be 1.0, where units of concentration and
time are arbitrary.To show the advantages of ourmodel, we focus on the concentra-
tion change of the complete dsRNA and the concentration distribution of siRNAs
among their positions. The concentrations of siRNAs are expected to have a distri-
butionwhere they gradually decrease from left to right because the polymerization
reaction extends lower RNA only toward the left direction.

We carefully decided default kinetic speeds as in Table 1 by checking the pa-
rameters of previous investigations [3,24,14,8]. By changing the kinetic speeds of
the Dicer and duplication reactions, we successfully obtained three types of be-
haviors of dsRNA (Fig. 13). x and y-axes of the graph are time and concentration
of dsRNA, respectively. For simplicity, we ignore RISC, break down, aberrant,
and duplication reactions for the rest of this paper. Formal and detailed defini-
tions of the ODE of RNAi are explained in the supplementary document [17].

4.4 Assumption on Polymerization and Combinatorial Explosion

Assumptions on the polymerization reaction are important because they have a
strong influence on the number of molecular species. We assume that the poly-
merization reaction extends the primer strand for only one segment long though
the reaction may happen repeatedly. We also assume that polymerization reac-
tion has neither exonclease nor strand displacement activities. Although the first
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Table 1. Kinetics parameters

Reaction Speed

Hybridization 0.1

Denaturation 0.0078

Polymerization 1.0

Dicer 0.01

Transcription 0.05

Decay 0.01

RISC 0.01

Break down 0.005

Aberrant 0.01

Duplication 0.01

 0.1

 1

 10

 100

 0  1000  2000  3000  4000  5000  6000  7000  8000  9000 10000

C
on

ce
nt

ra
tio

n 
of

 d
sR

N
A

Time units

0.001:0.0001
0.01:0

0.0001:0.0001

Fig. 13. Concentration change of dsRNA.
First and second values in the legend are
kinetic speeds of Dicer and duplication,
respectively.

Fig. 14. Combinatorial explosion of RNA structures

one is essential, these assumptions produce an exponential number of partially
double-helical structures as illustrated in Fig. 14.

Because for this exponential increase of the number of structures, the number
of segments into which the Dicer reaction can cleave dsRNA was limited to
9 segments under our simulations. The number was not enough to verify the
expected distribution of siRNAs [25].

4.5 Abstraction by Local Structures

To avoid the exponential increase of the number of structures, we propose an
efficient abstraction that is based on the locality of RNA structures. We di-
vide global structures of the naive model into local RNA structures according
to their connectivity to theirs neighbor structures. In other word, each global
structure in the naive model is represented by a set of local RNA structures. A
local RNA structure contains the information about the position of its segment,
the presence of a double-helix, and the connections with neighbor local RNA
structures. We index the position of a segment from the left-most part of the
dsRNA. The presence of a double-helix denotes whether a local structure has
complementary RNA hybridized to its position or not. The connections with
neighbor structures restrict the local structures in the previous or next position,
because information about the presence of a double-helix and the presence of
nick of lower RNA are included. If we list all the local structures, there are 26
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types for each position (except for the left-most and right-most positions) as in
Fig. 15. For example, the upper global structure in Fig. 16 is represented by four
local structures at the bottom of the figure. This local RNA structure is for-
mally modeled as a subgraph with annotation that represents the connectivity,
the detail of which is explained in the supplementary document [17].

Fig. 15. Local RNA structures for one position in the local model

Fig. 16. Example of abstraction by local model

In order to observe the concentration of dsRNA, we refine the local model.
Three of the local structures (Fig. 17) are divided into two structures each,
depending on the position of the primer of polymerization reaction. If the double-
helix of a local structure is extended from the right-most primer, the local struc-
ture is distinguished from the others. For example, upper global structure in
Fig. 18 is represented by the five local structures at the bottom of the figure.
Only the second from the right local structure is extended from the right-most
primer. This refined abstraction has 29 types of local structures for each posi-
tion. By this division, we can distinguish the local structures that are parts of
the complete dsRNA. We call this model as the refined local model to distinguish
it from the unrefined local model.

Fig. 17. Three structures
that are divided

Fig. 18. Example of abstraction by the refined local
model
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4.6 Local Reactions

As global structures are abstracted based on local structures, all reaction rules are
also abstracted. Fig. 19 shows an example of three local structures becoming four
other local structures by a denaturation reaction. Other reactions are similarly
modeled as reactions among local structures. Polymerization of the refined local
model is carefully defined to preserve the concentration of complete dsRNA.

Fig. 19. Example of local reaction Fig. 20. Possible neighbor local structures

Similar to the section 2.6, we assume the proportional connections between
local structures. Possible local structures are shown in Fig. 20 and variables
C1,1, C2,1, · · · are allocated to the corresponding structures. For convenience, we
call a local structure with the variable Ci,j just structure (i, j). In the figure,
local structure (1, 1) whose segment position is i − 1 can connect to various
kinds of local structures such as (2, 1), (2, 2), · · · whose segment position is i.
Similarly, local structure (2, 1) can connect to local structures (3, 1), (3, 2), · · ·.
The ratio of each connection is calculated by dividing the concentration of the
corresponding neighbor local structure by the sum of all the concentrations of
possible neighbor local structures. For example, the concentration of structure
that connects between the structures (1, 1) and (2, 1) is recovered by

C1,1 ×
C2,1

C2,1 + C2,2 + C2,3 + · · ·
.

C2,1/(C2,1 +C2,2 +C2,3 + · · ·) is the ratio of the connection that connects local
structures from 1.1 to 2.2. Though the local models are different from DNA
hybridization systems, this assumption is also a ratio assumption.

Differential equation for denaturation reaction is formed as follows.

Δ = kd × C1,1 ×
C2,1

C2,1 + C2,2 + C2,3 + · · ·
× C3,1

C3,1 + C3,2 + C3,3 + · · ·
d

dt
C1,1 = −Δ, d

dt
C2,1 = −Δ, d

dt
C3,1 = −Δ

d

dt
C′

1,1 = Δ,
d

dt
C′

2,1 = Δ,
d

dt
C′

3,1 = Δ,
d

dt
C′ = Δ,

where kd is the kinetic speed of denaturation reaction. The concentration of a
structure that connects three local structure is recovered by the ratio assumption.
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4.7 Simulation Result

Because the local model enables to increase the number of segments, we obtained
an expected concentration distribution of siRNA (Fig. 21). x, y, and z-axes of
the figure correspond to the total number of segments, the position of ssRNA,
and the concentration of lower ssRNAs, respectively. For each total number
of segments, we simulated 500 time units, and obtained the three-dimensional
figure by plotting all distributions. Concentrations of ssRNAs are used because
the distribution of ssRNAs are experimentally observed as a clue of siRNAs [25].
We cannot obtain such a distribution with the naive model, because the number
of segments that can be simulated was limited by the combinatorial explosion. In
the figure, we draw a line to emphasize the distribution of the concentrations for
24-segment simulation. As supported in the supplementary document [17], this
simulation is considered to give a good approximation of the naive simulation.

Fig. 21. Distribution of siRNA

5 Efficiency and Exactness of Local Models

5.1 Efficiency

The number of structures and the number of reactions increased exponentially
for the naive model (Fig. 22 and Fig. 23). Simulation with more than 9 segments
was impossible because of an out-of-memory error (the number of structures
and that of reactions exceed 10000 and 800000, respectively). This was the main
reason why simulation became intractable by combinatorial explosion. With our
abstraction, the number of structures and that of reactions increased linearly,
which made the abstract simulation much more efficient. Computation time also
decreased dramatically in both local models (Fig. 24).

5.2 Approximation

The difference between exact and approximate abstractions are explained for-
mally by the following diagram [9].
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.....

Q

.................................
.....
.......
.....α
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N and A represent the set of naive models and abstract models, respectively,
both of which are sets of maps from molecular species to their concentration.
To be more formal, N is the set of maps from G to R, where G denotes the set
of global structures and R the set of non-negative real numbers, while A is the
set of maps from L to R, where L denotes the set of local structures. R and Q
denote temporal evolution by ODE of naive and abstracted models, respectively.
We prepare a function c(g, l) for g ∈ G and l ∈ L which denotes the number of
occurrences of local structure l in global structure g. The abstraction α, which is
a map from N to A, is then defined as α(n)(l) =

∑
g∈G c(g, l)n(g), where n ∈ N

and l ∈ L.
The abstraction α is called exact if and only if α(R(n)) = Q(α(n)). Other-

wise, the abstraction is called approximate. In the case of HCR, where G and L
correspond to structures explained in section 2.2 and 2.5, respectively, α is exact
although the inverse function to obtain N from A is approximate. In the case of
RNAi, where G and L correspond to structures explained in section 4.2 and 4.5,
α is approximate, which can be understood from the experimental results in the
supplementary document [17]. Note that the abstraction in the next section is
exact.

5.3 Exact Abstraction

As far as we have considered, it seems impossible to define an exact abstraction
in the current model. An important aspect to define an exact abstraction is to
make each reaction satisfy the ratio assumption after the reaction. The ratio
assumption is easily broken when a reaction requires particular connection of
local structures to occur (polymerization and denaturation are typical examples).
In contrast, if a reaction is unimolecular in the local model, it does not break
the ratio assumption (decay is a typical example). Moreover, if a bimolecular
reaction occurs between any combinations of local structures, the reaction does
not break the assumption (hybridization is a typical example).

To define an exact abstraction, some assumptions that restrict the polymerase
reaction are required. One assumption is that the reaction speed of polymeriza-
tion is very fast compared to others. By this assumption, we can define bigger
local structures (Fig. 25), which give a new and exact abstraction for RNAi. In
this model, all the local structures have one of the two form in the figure, both
of which have multiple (or no) short (one segment-long) lower RNA from the
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Fig. 25. Model of RNA for exact abstraction

left part of the structure. One form has a long (bigger than one-segment long)
lower RNA at the right part. The other does not have any complementary RNA
at the right part. A global structure of the naive model is then represented as a
set of these local structures.

Reaction rules are also redefined for this model. A denaturation example that
separates the third (from the left) short lower RNA is shown in Fig. 26. Even
though an intermediate structure is produced (shown in the right side of the
figure), it can be ignored because the polymerization reaction occurs immedi-
ately. Eventually the reaction is defined as a transition between new local struc-
tures. Another denaturation example that separates the second RNA is shown in
Fig. 27. After polymerization, the intermediate structure will split into two local
structures, which also result in a transition among new local structures. Because
these reactions are unimolecular, they do not require the ratio assumption. By
similarly defining other reactions, it is possible to define an exact abstraction.

Fig. 26. Reaction rule for exact abstrac-
tion

Fig. 27. Another reaction rule for exact
abstraction

We can also take into account exonuclease or displacement activities as other
assumptions. By these assumptions, only one lower RNA can hybridize to mRNA
because polymerization reaction immediately extends the lower RNA toward
the left-end of mRNA. The number of structures in the naive model is strongly
restricted because combination of lower RNAs is eliminated completely.

5.4 Classification of RNAi Systems

The number of local structures in each exact abstraction can be a measure of
computational complexity of a reaction system. According to the abstractions
we have explained, we summarize the complexity of RNAi (Table 2) where n de-
notes the total number of segments. As shown in the table, there are three groups
of systems of RNAi. Without any assumption (first group), it seems impossible
to define an exact abstraction to allow simulation with polynomial complexity.
However, we can efficiently simulate this system by approximate abstraction.
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Table 2. Summary of complexity of RNAi. n denotes the number of segments of RNAi
explained in 4.3.

Speed of polymerase reaction Number of structures Number of local structures
and its activity in naive model by exact abstraction

Slow Exponential Seems exponential

Fast Exponential O(n3)

Fast
Exonuclease/displacement activity O(n3) O(n3)

With one assumption (second group), it is still impossible to efficiently simulate
the system by a naive original model because the number of structures is expo-
nentially big. By the exact abstraction in the previous subsection, however, we
can efficiently simulate the system because the number of structures becomes of
a polynomial size. If we assume too much on the polymerization reaction (third
group), the system becomes simple enough to simulate by a naive model. The
number of structures does not decrease by abstraction.

From the aspect of the number of structures, it is possible to compare the
computational complexity of bio-molecular reaction systems. As an example of
RNAi, we have shown that a system without any assumptions is considered
computationally more complex than the systems with assumptions.

6 Related Work

Various approaches for abstracting ODE systems derived from rule-based de-
scriptions of biochemical reaction networks have been studied [7,6,4,13,9]. The
domain-oriented approach [7,6,4] introduces a state space transformation that
reduces the microscopic model by employing descriptions of macroscopic vari-
ables. This approach does not directly apply to our model, due to the presence of
feedback in RNAi through which new agents of siRNAs are born by a triggered
siRNA.

Since our modelling is based on graphs with annotations, the examples in this
paper can be directly encoded in κ-calculus [13,9]. Under the framework of κ,
abstraction is defined in terms of fragmentation by local structures, in which the
LHS of each rule should not overlap with a local structure or should be entirely
contained in a local structure. On the other hand, our fragmentation for DNA
and RNA violates this condition for the sake of obtaining smaller local structures.
As a trade-off of the violation, our fragmentation imposes the ratio assumption,
which is satisfied in HCR and in the abstraction of RNAi in section 5.3. In
these two examples, which satisfy the ratio assumption, fragmentation under
the framework of κ is also possible by enlarged local structures and results in
exact abstraction.
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7 Conclusion

To overcome the combinatorial explosion of structures of bio-molecules, we in-
troduced an abstraction technique by presenting the case studies of DNA hy-
bridization systems and RNAi. We succeeded in efficient simulations by reducing
the number of structures in both case studies. Simulation becomes approximate
when connections among local structures are calculated by the ratio assumption
or when intra-molecular reactions are ignored. Although we investigated the er-
rors from approximation by comparing the ratios of connections, it is left as
future work to estimate the degree of approximation.

To define an exact abstraction, local structures and reactions must be carefully
defined. Unimolecular reactions among local structures provide an exact abstrac-
tion because they are not affected by other local structures that are not involved.
To satisfy the ratio assumption, multi-molecular reactions must uniformly oc-
cur among all the combinations of local structures, otherwise modifications of
reactions are required. It is also future work to investigate and develop an exact
abstraction technique that can be applied to general graphs because we have
shown two case studies in this paper.

Systems of RNAi are classified into three groups according to the number
of structures created by abstraction. DNA hybridization systems can also be
classified into two groups, both of which allow efficient abstraction. Systems
in first group allow only approximate abstraction because of the denaturation
and branch migration reactions. In contrast, HCR with appropriate assumptions
belongs to the other group, which allows exact abstraction.

Acknowledgment. The author appreciates Richard Potter and anonymous
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Grant-in-Aid for JSPS Fellows (11J09247), Exploratory Research (11015189),
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Abstract. We propose a new methodology for identification and analy-
sis of discrete gene networks as defined by René Thomas, supported by a
tool chain: (i) given a Thomas network with partially known kinetic pa-
rameters, we reduce the number of acceptable parametrizations to those
that fit time-series measurements and reflect other known constraints
by an improved technique of coloured LTL model checking perform-
ing efficiently on Thomas networks in distributed environment; (ii) we
introduce classification of acceptable parametrizations to identify most
optimal ones; (iii) we propose two ways of visualising parametrizations
dynamics wrt time-series data. Finally, computational efficiency is eval-
uated and the methodology is validated on bacteriophage λ case study.

Keywords: Thomas network, parameter identification, model checking.

1 Introduction

Discrete modeling frameworks are commonly used in systems biology as a tool
that assists in revealing regulatory mechanisms found in biological networks
[14,11,20]. A widely used formalism for gene regulatory networks is that of
R. Thomas et al. [21] (see [9] for review). The formalism treats changes in gene
expression asynchronously, thus bringing a sort of conservatism into the discrete
abstraction at the price of large state spaces with many transitions. However,
the asynchronous semantics is a natural approach to formalization of concurrent
systems in computer science. This enables application of well-established formal
methods to Thomas networks [5,16,4,19].

Although discrete regulatorymodels are very abstract, parameters determining
the behavior of regulated components are often unknown. An important problem
is therefore inference of these parameters from biological hypotheses and wet-lab
measurements e.g. time series data. There is no reliable technique to reveal the
regulatory logic, and existing reverse engineering approaches are mostly based on
measurement clustering or information theory (see [15] for review).
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Formal methods have been employed to assist in identifying parameters for
Thomas networks, utilizing not only time series data but also arbitrary hypothe-
ses formalized in terms of a temporal logic. Naive (bottom-up) approaches [4,12]
repeat a procedure deciding for each parametrization whether it satisfies the
given temporal constraints or not. That way acceptable parametrizations are
found. Since the number of possible parametrizations increases exponentially
with the number of unknown parameters, such a procedure is intractable in
many real cases.

Barnat et al. [2] introduced technique of colored LTL model checking (CMC)
based on a heuristics reducing the computation effort by means of operating
on the parametrization space in a top-down manner. In particular, maximal
parametrization sets sharing a required behavior are inferred instead of analyz-
ing each possible parametrization individually. The technique was defined for
multi-affine abstractions of continuous models and was based on symbolic rep-
resentation of parametrization sets thus allowing effective realization of required
operations. When employed on Thomas networks, an ideal symbolic representa-
tion which would allow effective realization of all required set operations was not
found. Therefore the results obtained for Thomas networks were not optimal.

In [12], Klarner et al. developed a workflow for parameter identification of
Thomas networks exploiting time series data. Especially notions of edge con-
straints and expression monotonicity in between measurements were defined to
initially restrict acceptable parametrizations by preliminary known facts about
network dynamics.

In this paper, authors of both groups combine their approaches to obtain ef-
ficient methods for parameter identification using colored model checking. The
result of this collaboration is a comprehensive methodology that further extends
the workflow of [12] introducing a classification of acceptable parametrizations
based on optimal satisfaction of selected criteria. Our methodology guides users
towards selection of parametrizations complying with given hypotheses and time
series data, and proposes further filtering of obtained parameters based on crite-
ria such as low complexity. Moreover, visualization procedures are proposed that
allow a quick and intuitive understanding of the behavior generated by different
parametrizations allowing for easy identification of e.g. potential ranges of poor
measurement sampling. The workflow is depicted in Fig. 1.

To the best of our knowledge, the only work which attempts to employ some
criteria to select most plausible parametrizations in the context of Thomas net-
works is mentioned in [7]. The approach is a work in progress based entirely on
constraint programming. As there are no concrete criteria defined, we currently
cannot compare the methodological side.

On the computational side, our approach is supported by a prototype tool chain
consisting of three modules: static analyzer, model checker, and parametrization
filter. The static analyzer module solves constraints related to the network struc-
ture and is implemented on the top of themodel checkermodule.Themodel checker
module implements CMC including computation of compliant behaviors (inmodel
checking terms: generation of all counterexamples for a given time series formula)
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and parameter ranking. The parametrizationfilter allows browsing the parameters
and filtering them wrt several criteria. Moreover, the filter module gives graphical
feedback to the user.

Computational efficiency is obtained by direct distribution and shared enu-
meration of parametrization sets. To the best of our knowledge, there is only
one other efficient approach [3] targeting discrete gene dynamics. It employs a
more detailed model – the piece-wise affine framework. The representation of
parameter space is specific for the level of abstraction employed. Efficiency is
obtained by considering symbolic representation of parametrizations.

The paper, after introducing the basic notions in the next section, is struc-
tured according to the workflow mentioned above and depicted in Fig. 1. To
illustrate the approach a case study of the bacteriophage λ is considered in
Sect. 5. Further information on implementation and performance as well as final
remarks conclude the paper.

Fig. 1. Parameter identification workflow

2 Background

2.1 Thomas Networks

In the following we recall the logical modeling framework introduced by C. Cha-
ouiya et al. in [5, Section 2], which is a generalization of the formalism of
R. Thomas [21].

Regulatory Graphs. The structure of a system, i.e. the components (or species)
involved and the dependencies between them, can be captured in a graph. We
define an interaction graph (V,E) to be a directed graph consisting of n ∈ N1

vertices V = {v1, . . . , vn} called components and a set E ⊆ V × V of ordered
pairs of vertices called interactions. We use the notation uv ∈ E for interac-
tions and call u the regulator of uv and v the target of uv. The in-neighbors
N−

E (v) := {u ∈ V | uv ∈ E} of v are called regulators of v and the out-neighbors
N+

E (v) are called targets of v.
Since we are not only interested in the structure of the network but also in the

dynamics, we interpret the vertices as integer variables whose values signify e.g.
the level of concentration of the corresponding substance. Naturally, the impact
a regulator has on its target depends on the value of the corresponding variable.
This information about the interactions, i.e. the edges in the interaction graph,
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is also needed to specify the dynamical behavior of the system. This leads to the
following definition.

A regulatory graph R = (V,E, ρ, θ) consists of an interaction graph (V,E)
and two functions ρ and θ. The function ρ : V → N1 assigns a non-zero natural
number ρ(v), called maximal activity level of v, to each component. For an
integer interval {k ∈ N | a ≤ k ≤ b} with boundaries a ≤ b ∈ N we use the
notation [a, b]. The interval [0, ρ(v)] is called activity interval of component v
and an element of the activity interval is called activity level of v.

To a regulatory graphR we thus associate the state space X :=
∏n

i=1[0, ρ(vi)].
An element x ∈ X is called a state of the regulatory graph and we use the
subscript notation xv to denote the activity of v ∈ V in state x.

The other function, θ, assigns interaction thresholds θ(uv) = (t1, . . . , tk) to
each interaction uv ∈ E. Each interaction may have a different number 1 ≤ k
of thresholds. The thresholds must be ordered: t1 < · · · < tk and within the
non-zero activities of the regulator: 1 ≤ t1 and tk ≤ ρ(u).

The interaction thresholds θ(uv) = (t1, . . . , tk) of an interaction uv divide the
activities of u into k + 1 intervals [0, t1 − 1], [t1, t2 − 1], . . . , [tk, ρ(u)] of different
regulation intensity. Activities of u that belong to the same interval are charac-
terized by being above the same number of thresholds of θ(uv). We denote the jth

interval by Iuvj . The different regulation intervals allow us to distinguish between
different effects an interaction between two components can have depending on
the activity of the regulator.

Parametrizations. In this subsection we discuss how to parametrize a reg-
ulatory graph. Basically, we need to provide all the information necessary to
determine effects of any regulators on its target in every state. The effect will
not necessarily depend on the exact state, but only on the regulation intervals
to which this state belongs. We formalize this idea in the following definitions.

A regulatory context ω of a component v assigns an intensity to every inter-
action uv ∈ E targeting v. For every regulator u ∈ N−(v), there is a regulation
intensity Iuvj , such that ω(u) = Iuvj . The set of all combinatorially possible
regulatory contexts of v is denoted by Cv.

A parametrization P assigns a target activity value Pω
v to every context ω ∈ Cv

of every component v ∈ V . A priori, the only condition on P is that Pω
v ∈ [0, ρ(v)]

is a valid activity of v. The set of all feasible parametrizations is denoted by P .
A parametrized regulatory graph (R, P ) is called Thomas network or model.

Finally, a remark about the scope of the workflow we are going to propose: In
Sec. 2.3, we suggest colored model checking to solve the problem of identifying
feasible parametrizations. For computational reasons we will consider the values
of ρ and θ fixed in a particular problem.

Asynchronous Dynamics. The dynamics of a Thomas model (R, P ) can be
captured in a so-called state transition graph, where the finite state space X
constitutes the vertex set and edges between states represent state transitions
as determined from the logical parameters in the following way.
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For every state x and every component v, there is a unique regulatory context
ω ∈ Cv, such that ∀u ∈ N−(v) : xu ∈ ω(u). To see this, recall that ω(u) is a
regulatory interval, and that these intervals form a partition of the activities
of u.

The parametrization P therefore defines a function F on the state space:

F : X → X, x �→ (Pω1
v1 , . . . , P

ωn
vn ),

where ωi is the unique regulatory context of component vi in state x.
The function F can be interpreted as a finite dynamical system, i.e., the

dynamics can be derived by iterating an initial state using F . In the resulting
state transition graph, each state x has exactly one outgoing edge leading to
F (x). Clearly, the synchronicity of the involved processes is a strong idealization,
which we want to avoid here.

Instead, the representation should reflect that the time delays associated with
the different biological processes corresponding to the updates may vary greatly
depending on the corresponding network components. However, the experimen-
tal information to determine these time delays is often lacking. This leads to the
definition of a non-deterministic transition graph where each outgoing edge from
a state corresponds to one of the indicated updates.

The transitions TP of the asynchronous and unitary state transition graph
(X,TP ) of a model (R, P ) are derived from F by two rules. A loop xx ∈ TP exists,
iff F (x) = x. An edge xy ∈ TP , x �= y exists, if there is a component v, such that
xy is asynchronous : ∀u �= v : xu = yu and unitary: yv − xv = sign(F (x)v − xv).
Here sign denotes the sign function.

The state transition graph (X,TP ) corresponds naturally to a Kripke structure
(KS) S(R, P ) := (P,X,X0, TP , L), which is of interest for formal verification of
temporal logical properties. Here, S consists of states X , initial states X0, the
transition relation TP and a labeling function L over the atomic propositions
AP expressing inequalities

.
=∈ {=,≤,≥, <,>} with

AP := {v .= k | v ∈ V, k ∈ [0, ρ(v)]}.

If not otherwise noted, all states are considered as initial states, i.e., X0 := X .
The labeling function is defined as L(x) := {v .= k | v ∈ V, k ∈ [1, ρ(v)], xv

.
= k}.

Finally, the Kripke structure can be generalized to incorporate all possible
parametrizations P . For a given regulatory graph R we consider a parametrized
Kripke structure (PKS) to be a tuple S(R) := (P , X,X0, TP , L) where TP :=⋃

P∈P TP and all other elements are defined as above. The PKS S(R) thus
represents all possible behaviors that can be generated by R.

2.2 Constraints

In the following we introduce several notions that allow us to restrict the pa-
rameter space to the parametrizations in agreement with all the information
we have on the system. We distinguish between static and dynamic constraints
as already indicated in Fig. 1. Static constraints refer to information related to
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the regulatory graph, e.g. existence and character of interactions. In contrast,
dynamic constraints capture properties of state transition graphs such as reach-
ability requirements.

Static Constraints. Here we focus on edge labels, which are used to character-
ize the impact that a regulator has on its target. If there is an effect observable at
all, it can be either activating, i.e., causing an increase, or inhibiting, i.e., causing
a decrease in the activity of the target. Formally, several semantics result from
combinations of these effects (see [12, Def. 2.9]). Certain edge labels have already
been used successfully in case studies of D. Thieffry (see e.g. [18],[10]) and also
implemented in analysis tools [17, p. 6].

Since we are dealing with regulatory graphs, whose interactions may have
more than one threshold, the concept of edge label must be adjusted accordingly.
An edge label is therefore not assigned to a single edge uv, but to a tuple (uv, tj)
where uv ∈ E and tj ∈ θ(uv). In this paper, we restrict ourselves to unlabeled
edges and labels chosen from the set {+,−,mon+,mon−}, where the different
notions are defined as follows.

Assume a tuple (uv, tj) is labeled with mon+. A parametrization P satisfies
this label, if for all regulatory contexts ω ∈ Cv, such that ω(u) = Iuvj and ω′ ∈ Cv

such that

ω′(w) :=

{
Iuvj−1 if w = u

ω(w) else

the target value inequality Pω′
v ≤ Pω

v holds. If instead the label is mon−, then
P satisfies this label if for all ω, ω′ ∈ Cv as defined above Pω′

v ≥ Pω
v is true.

The labels + and − correspond to mon+ and mon−, but require observability
in addition. A parametrization P satisfies the observability of (uv, tj), if contexts

ω, ω′ ∈ Cv as defined above, exist, such that the target value inequality Pω′
v �= Pω

v

holds.

Dynamic Constraints. In this paper we focus on identifying parametrizations
that are in agreement with time series data, which can be interpreted as con-
ditions constraining the dynamical behavior of a system. A measurement is a
rectangular subset of the state space X . That is, we describe a measurement m
by assigning to each component v a measurement interval mv = [av, bv] ⊆ [0, ρv].
We then identify this description m with the set of all states x ∈ X , such that
∀v ∈ V, xv ∈ mv.

A time series is a sequence of measurements (m1, . . . ,mk). Notice that mea-
surements may intersect, i.e., there may be states x ∈ mi ∩mj for i �= j.

A state transition graph S = (X,T ) reproduces a time series (m1, . . . ,mk),
if it contains a finite walk (xi)1≤i≤r, r ∈ N1, such that there is a mapping M :
[1, k]→ [1, r] that is ordered : i < j =⇒ M(i) ≤M(j) and correct : xM(i) ∈ mi.

We call such walk time series walk. Notice that we allow M(i) = M(j).
The walk can be thought of as a discrete simulation, and the mapping M as
describing at which simulation steps the measurements were recorded. We say
that a parametrization reproduces a time series, if its transition graph does.
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There may of course be multiple walks satisfying these properties. We will
discuss this in Section 3, where we introduce a ranking to capture how well a
model reproduces a time series.

The existence of a time series walk is determined by LTL model checking over
the Kripke structure (X,X0, T, L) associated with the state transition graph
(X,T ) (see [1] for an introduction). The initial states are chosen in correspon-
dence with a time series (m1, . . . ,mk) by X0 := m1.

A measurement m is translated into the LTL specification

σ(m) :=
∧
v∈V

∨
k∈mv

v=̇k.

A state transition graph reproduces a time series (m1, . . . ,mk) if and only if
there is a state x ∈ X0, such that the LTL specification

F(σ(m2) ∧F(σ(m3) ∧ . . .F(σ(mk)) . . . ) (1)

is satisfied in x.
Time series formulae of the form (1) constitute a specific class of properties

enabling our analysis method as developed in Section 3. More general LTL for-
mulae are used to specify, e.g., monotonicity of gene expression between two
adjacent measurements mi,mi+1 [12] or steady gene activity expected after the
last measurement.

2.3 Parameter Identification by LTL Model Checking

In this section we describe the technology of colored model checking used for
computing parametrizations satisfying constraints encoded in LTL. This tech-
nology is employed in the next sections as a cornerstone for identifying optimal
parametrizations. The central notion is the construction of a map (coloring) re-
lating each state x of a regulatory graph to the set of all those parametrizations
from P under which x is reachable.

For a parametrization P ∈ P and its corresponding Kripke structure S(R, P )
≡ (P,XS , X

0
S , TP , L), we define a run, denoted π, as an infinite path in S(R, P ).

The notation π0 is used to denote a run whose first node is in X0
S . Since we aim

to explore parametrizations which are realizable, i.e. there exists at least one be-
havior that satisfies given LTL constraints, we consider existential interpretation
of LTL. We say that S(R, P ) satisfies ϕ, written S(R, P ) |= ϕ, if there exists a
run π0 in S(R, P ) satisfying ϕ.

For a given regulatory graphR and an LTL formula ϕ, automata-based model
checking is employed on S(R) to identify all parametrizations satisfying ϕ. As
a prerequisite, we assume an alphabet Σ = 2AP . Then ϕ is represented by
means of a Büchi automaton over Σ, denoted BA(ϕ), and defined BA(ϕ) :=
(Σ,XA, X

0
A, δA, FA), where XA is a set of states, X0

A ⊆ XA is a set of initial
states, δA ⊆ XA × Σ × XA is a transition relation, and FA ⊆ XA is a set of
accepting states. See [1] for techniques of translating ϕ into BA(ϕ).
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We utilize the approach of colored model checking (CMC) as introduced in [2].
CMC takes a PKS S(R), a parametrization space P , and a Büchi automaton
BA(ϕ). It returns a set of all acceptable parametrizations Pϕ := {P ∈ P |
S(R, P ) |= ϕ}. The procedure takes the following steps:

– constructing product automaton BA(R, ϕ) := S(R) ∩BA(ϕ)
– computing Pϕ by executing colored model checking on BA(R, ϕ)

Product Automaton. BA(R, ϕ) is computed in the standard way [1] as a
product of a PKS S(R) ≡ (P , XS , X

0
S , TP , L) andBA(ϕ) ≡ (Σ,XA, X

0
A, δ̄A, FA):

BA(R, ϕ) := (P × Σ,X,X0, δ, F ) where

X := XS ×XB, X
0 := X0

S ×X0
A, F := XS × FA and

((xs, xa), (P, α), (x
′
s, x

′
a)) ∈ δ iff xsx′s ∈ TP ∧ (xa, α, x

′
a) ∈ δA ∧ α ∈ L(x).

If there exists α ∈ L(x) such that (x, (P, α), x′) ∈ δ, we use the simplifying

notation x
P→ x′. Transitive and reflexive closure of the relation→ is denoted→∗.

BA(R, ϕ) accepts π0 - an infinite run through this product automaton - if
and only if there is an x ∈ F that occurs infinitely often on π0 (projection of
π0 to the second component is an accepting run in BA(ϕ)). Hence BA(R, ϕ)
accepts exactly the paths satisfying ϕ, and the acceptance is always caused by
a cycle in BA(R, ϕ) containing some state in F – therefore we are interested in
accepting cycles and their reachability from initial states.

Our interest is in paths that are realizable in a certain parametrization P ∈ P .
We denote by BA(R, ϕ)P the product automaton BA(R, ϕ) with the alphabet
{P} × Σ (restricted to the parametrization P ). A run in BA(R, ϕ)P is de-
noted πP . We can conclude that S(R, P ) satisfies ϕ iff there exists a run π0P in
BA(R, ϕ)P that is accepted.

Colored Model Checking. Naive (bottom-up) computation of Pϕ by checking
each parametrization P ∈ P individually suffers from the exponential explosion
of |P| wrt number of unknown parameters. CMC [2] is a heuristic method based
on the idea that transitions within PKS are shared by many parametrizations,
therefore utilizing a single PKS for a check (top-down) is significantly faster than
doing a check on every single KS S(R, P ).

An important notion is mapping clP̂
X̂

: X → 2P , X̂ ⊆ X, P̂ ⊆ P , called
coloring, in which each state x ∈ X is assigned a set of parametrizations for

which x is reachable from some state in X̂ , defined and denoted clP̂
X̂
(x) := {P ∈

P̂ | ∃x̂ ∈ X̂ : x̂
P→* x}. Using this mapping, the CMC procedure can be described

as follows:

For each x ∈ F :
(1) Compute coloring reachx ≡ clPX0(x) reaching accepting state x.

(2) Compute coloring cyclex ≡ clreachx

{x} (x) enabling (accepting) cycles on x.
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These two steps correspond to traditional LTL model checking [1], where we ask
if there exists (1) a path from an initial to a final state and (2) a cycle containing
this state, which implies existence of an accepting run. In our case, we do not
ask for an existence of a single accepting run for each KS, but directly build a
set of parametrizations that have an accepting run in PKS.

To obtain such a set, one has to perform a graph search, which can be done
in numerous ways - in Section 6 we explain how to do those steps efficiently.
Performance of the algorithm can be also greatly increased by omitting step
(2) when using time series formula. This property is within a set of so-called
reachability properties that can be computed without cycle detection [1].

3 Optimal Parametrizations

In the classical enumerative model checking approach to reverse engineering of
Thomas networks, that was introduced by G. Bernot et al. in [4], a given set of
parametrizations is divided into acceptable and unacceptable parametrizations
depending on whether the transition graph associated to a parametrization sat-
isfies the temporal logic specification or not.

From the perspective of the temporal specification, all acceptable parametriza-
tions are equally suitable and the parameter model checking process ends here.

For the particular class of LTL specifications that we are interested in – the
time series constraints as defined in Section 2.2, we introduce a method for
ranking acceptable parametrizations.

3.1 The Length Cost

This section starts with a regulatory graph R, a time series (m1, . . . ,mk) and a
non-empty set of parametrizations P ′ ⊆ P that all reproduce the time series.

Denote by WP the set of all time series walks of (m1, . . . ,mk) in the state
transition graph of a single parametrization P ∈ P ′. WP may in general be an
infinite set, but most of its walks are not relevant for our purposes. To impose
a ranking on the set of time series walks, and through that a ranking on the
set of parametrizations, we impose a preference for short walks. Since the walk
length can be seen as a measure for the complexity of the behavior in terms of
the number of processes that have to be executed to produce the desired result,
this approach favors models that provide simple explanations for the observed
behavior. In other words, we try to penalize unnecessarily complex realizations
of time series data in a model which might also be related to a higher energy
cost for the system.

We define the length cost of a parametrization P ∈ P ′ with respect to the time
series as Cost(P ) := min{r ∈ N | ∃(xi)1≤i≤r ∈WP }, and denote by

SWP = {(xi)1≤i≤r ∈WP | r = Cost(P )} ⊆WP

the set of shortest walks of P .
The length cost partitions P ′ into classes of equal cost, and we are particularly

interested in parametrizations with the minimum cost, denoted by min
Cost

(P ′) ⊆ P ′.
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3.2 Robustness

Since the dynamics in the Thomas formalism are non-deterministic, several paths
may lead from one state to another and the path corresponding to the actual
behavior of the system depends on the time delays associated with the different
update processes. If these time delays change, maybe due to environmental in-
fluences, the system may follow a different trajectory even when considering the
same initial state. However, in some cases, namely when there is only one path
between two states in the state transition graph, the behavior of the system is
independent of the actual values of the time delays. This can be interpreted as
robustness of the system wrt perturbations of the time delays. In the following
we will formalize this idea as a property of a given parametrization. Since we are
interested in the realization of time series, we will focus our notion of robustness
on the time series walks.

We use the standard notion of probability for a finite walk, as defined in [1],
where each successor of a node is chosen with equal probability. Then, we say
that the probability of a finite time series walk w of length l is

Prob(w) :=

l−1∏
i=1

1

deg+(xi)
,

where deg+(xi) is the out-degree of the state xi of the walk.
We now define robustness of a parametrization wrt time series as the sum of

probabilities of all distinctive time series walks. For set SWP and set m1 of all
states that fit the first measurement, we set

Robustness(P ) :=

∑
w∈SWP

(Prob(w))

|m1| .

For example, if the time series and the parametrization only allows for a single
shortest time series walk, the robustness will be high if the states of the walk
have low out-degree. In case the initial measurement has some unknown values,
we take the average robustness of walks from all states that fit the measurement.

This notion of robustness is a good starting point for analysis since it distin-
guishes parametrizations that reproduce the time series with low ambiguity. In
addition, it is easy to formalize and compute. A more involved definition should
be based not only on the out-degree of a state of a time series walk, but differ-
entiate and weight whether the different successors of the state are themselves
states of a time series walk. This would extend the notion of robustness, taking
into account not only perturbations of the time delays but also of the states, and
will be investigated in future work.

3.3 Computing Optimal Parametrizations

The set of optimal parametrizations is obtained in the following manner:

1. Describe the set P of all possible parametrizations.
2. Remove parametrizations that do not satisfy edge constraints.
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3. Compute the set of acceptable parametrizations using model checking.
4. Take the subset of those that have minimal Cost.
5. Finally, select parametrizations with maximal Robustness.

This way we obtain only parametrizations we have identified to be optimal,
whose number is usually significantly smaller then the size of P .

Such a procedure can be done automatically. Interpretation and further anal-
ysis of the results is left to the user. To support this step, in the following section
we suggest two methods for visualization of results.

4 Visualization

In this section we present methods to visualize differences and similarities of
parametrizations. To our knowledge, two automated lines of analysis of a set of
parametrizations exist. In [8, Sec. 3.2], consensus target value inequalities are
derived, while in [12, Sec. 5.1] the focus is on deriving consensus edge labels.

Here we present a novel approach that visualizes the transitions of a set of
acceptable parametrizations in between measurements, highlighting agreement
between parametrizations. We propose, firstly, behavior maps that represent
state transitions according to the considered parametrizations, and, secondly,
expression profiles that focus on the activity of a single component.

4.1 Behavior Maps

There is no reason to expect that the time series walks of different parametriza-
tions coincide. However, the information whether certain state transitions are
shared by the walks can be immediately exploited for experimental design. For
example, new measurements would be most useful if placed between two original
measurements that generated many different walks leading from one to the other
across the valid parametrizations, since the additional information would then
enable us to distinguish between them. The plots proposed in this section aim
at making this information about the distribution of state transitions of time
series walks easy to assess.

Let W be any finite set of time series walks of (m1, . . . ,mk). In each walk
we mark the measurements 1, . . . , k. We lay out all walks horizontally and align
for every 1 ≤ i ≤ k, the states marked as the ith measurement vertically. If a
measurement is realized by several states in the walk, we choose the state with
the smallest index within the walk to represent this measurement. This way we
can interpret the horizontal axis as a discrete time axis, progressing from earlier
(left) to later (right).

Notice that a state may of course appear in more than one walk, but also
multiple times within a single walk. Behavior maps are an attempt to find a
compact representation, by removing some of these duplicates, while keeping the
acyclic progression from earlier to later states. Therefore we are not interested
in the graph defined as the union of walks in W , because it may destroy this
progression (by creating cycles).
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We treat each pair of successive measurements mi,mi+1 independently and
partition the walks into classes of equal length in between mi and mi+1. Two
states are identified as one if they represent the same state of the KS and appear
in equal number of steps since last measurement.

We scale the size of a node and width of a transition by the number of
parametrizations that produce a walk passing through it. The gray scale shading
of a transition is determined by the class it belongs to. Black transitions belong
to the overall shortest walks, light gray transitions to the longest walks. E.g.,
consider following regulatory graph:

The behaviour map of this graph wrt time series m1 = {(0, 0)},m2 = {(2, 0)} is:

The blue vertical boxes represent measurements. Black transitions belong to
length class 3, gray transitions to length class 5. The wider the stroke of a
transition or the larger a node, the more walks in W pass through them. Note
that the state ‘10’ appears three times. Once in length class 3, and twice in the
class with length 5, because it can be visited either early or late in discrete time.
State ‘11’ has only one node because it always appears after two transitions.

4.2 Expression Profiles

Behavior maps visualize possible model behaviors in accordance with a time
series. For a more refined analysis aiming at experimental design, it is helpful
to focus on the behavior of the separate components. The plot of all the ways
a component may change its level alongside all time series walks can highlight
which components are responsible for differences between walks. In addition, as
in the case of behavior maps, we can easily pinpoint for each component between
which measurements the component behavior is the most ambiguous.

For single components we suggest to plot sigmoid expression profiles. The
transparency of a curve is proportional to the number of shortest walks that
share the corresponding transition. Below are the profiles of x and y of the
example structure presented in Section 4.1. The most opaque line in the profile
of x shows that along most walks it increases evenly from 0 to 2.
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Profile of x Profile of y

The profile of y indicates that its activity along most walks is constant at 0.
In contrast to x, some ambiguity is present here - if this was a real system,
experiments should focus on y.

5 Case Study

In this section we apply our workflow to the gene regulatory network of bacterio-
phage λ. Its discrete version was formulated by Thieffry and Thomas in [20]. The
authors also discuss two time series, the lytic (Fig. 5) and lysogenic (Fig. 5) fate
of bacteria infected by the bacteriophage (see [20, p.290]). Finally, for compari-
son, a realistic parametrization denoted R is considered (taken from [20, p.291]).
We will judge our results by how close our optimal parametrizations are to R.

Parameter Set Reduction. First, we compute the initial parametrizations
with the edge labels of the regulatory graph in Fig. 5. The self-activation of cI
at threshold 2 is not observable in R. Since we want R to belong to the initial
parametrizations, we also relax this constraint and assign the label mon+ to
(cI cI, 2). These static constraints reduce the set of feasible parametrizations
from 6, 879, 707, 136 to 82, 008.

Now, we execute the CMC procedure for both time series. The lytic time
series is reproduced by 28, 043 parametrizations. Of these, 537 also reproduce
the lysogenic time series. During this step we also compute Cost and Robustness
functions.

(a)

cI cII cro N

1. 0 0 0 0
2. 2 1 0 1
3. 2 0 0 0

(b)

cI cII cro N

1. 0 0 0 0
2. 0 0 2 1
3. 0 0 2 0
4. 0 0 3 0
5. 0 0 2 0

(c)

Fig. 2. (a) Regulatory graph of bacteriophage λ with edge constraints. (b) Lysogenic
time series. (c) Lytic time series. The last three measurements indicate an oscillation.
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Optimal Parametrizations. To illustrate the two step model ranking by Cost
and Robustness, we have to focus on one of the time series. We pick the lysogenic
series. The theoretical minimum Cost, required to execute the 6 activity changes
of the lysogenic series (Fig. 5), is 7. The actual minimum Cost among the 537
feasible parametrizations is 9, and 28 parametrizations contain a walk of this
length.

Among those 28, the maximum Robustness is 9.72% and there are 3 param-
etrizations that attain it. In comparison,R also has a Cost of 9 but its Robustness
is only 0.54%.

These 3 parametrizations are equal in all target values except for a single
context of cro: If the only regulator acting above its threshold is cro itself, the
target value may be any of 0, 1 or 2 (giving us the 3 remaining parametrizations).
Since the threshold of the self-regulation is θ(cro cro) = 3, all target values
below 3 cause this inhibition to stop itself, giving us identical state transition
graphs. Hence the remaining 3 parametrizations agree with R on that the target
value must be below 3. Any of the 3 parametrizations is optimal wrt Cost and
Robustness, and we denote all of them by O.

We compare the target values of the parametrizations R and O in the table
below. Values that differ between the two are bold. The component name in
the first row of each column denotes the target component. Each successive row
contains a list of regulators that are above their (unique) interaction thresholds.
The corresponding target values are in the columns R and O.

cI R O cII R O cro R O N R O
∅ 2 1 ∅ 0 1 ∅ 3 3 ∅ 1 1
cI 2 2 cI 0 0 cI 0 0 cI 0 0
cro 0 0 cro 0 0 cro 2 <3 cro 0 0
cII 2 2 N 1 1 cI, cro 0 0 cI, cro 0 0
cI, cII 2 2 cI, cro 0 0
cI, cro 0 2 cI,N 0 0
cII, cro 2 2 cro,N 0 1
cI, cII, cro 2 2 cI, cro,N 0 0

Note that each of the disagreements for cI causes the interaction cI cI, that is
not observable in R, to be observable in O.

Visualization. Using a behavior map including all the shortest time series
walks of every acceptable parametrization, we obtain the following graph:
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As before, blue boxes mark measurements. The map indicates many possibili-
ties in ordering of activations which always lead from state (0, 0, 0, 0) to state
(1, 1, 1, 1), suggesting that it would be reasonable to measure activity levels be-
tween these two states.

Number of steps between measurements m2 and m3 corresponds to their dis-
tance, but for walk from m1 to m2 it is not the case.

In the cII expression profile above we can see that alongside every path cII is
activated and inhibited between measurements m1 and m2 – this also explains
why in O this component can be activated more often, as this step is necessary
for the model to be able to reproduce the time series.

6 Implementation and Evaluation

In this section we briefly describe methodology of synthesis and analysis together
with tools deployed for these tasks. Further we focus on description of a time
and space-efficient computation of acceptable parametrizations and evaluate it
using two different models.

6.1 Usage Description

Our current workflow of analysis is divided into following steps:

1. Creation of a model - regulatory network is described in a single XML file
using our own syntax designed for this purpose. In a future work we expect
to implement an option to import models from standard formats.

2. Specification of the property - the property (most usually a time series) is
currently specified within a model file in the form of Büchi automaton, also
using an XML-based syntax.

3. Synthesis - the model is analyzed using the colored model checker Parsy-
bone 1, implemented in C++. The tool works in two steps. First, reduction
of parametrization space is conducted if there are any initial constrains spec-
ified. The reduced parameter space than undergoes the process of parameter
synthesis. By default, this step produces only enumeration of acceptable
parametrizations. However, for each of the parametrizations we can option-
ally compute and output its shortest paths or the robustness value.

1 Parsybone – http://github.com/sybila/Parsybone

http://github.com/sybila/Parsybone
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4. Filtering - the amount of data produced by synthesis is vast in most cases,
therefore we usually employ a second tool, ParameterFilter 2, implemented
in C�. It is a GUI elaborating on the output from the synthesis step allowing
to select and compare parametrizations based on their ranking.

5. Plotting - finally, for parametrizations chosen during the previous step we
plot their expression profiles (using ParameterFilter) or their behavior map
which is produced from the synthesis output using our converter, imple-
mented in Java. The converter creates a behaviour map for a given
parametrization and allows its visualization using Cytoscape [6].

6.2 CMC Procedure Implementation

Algorithm for colored model checking as presented in [2] does not specify, how
distinct parametrizations should be stored and manipulated. For continuous
models, we have used bounded intervals of values for each component, creat-
ing a parametrization space as a Cartesian product of those. We have later
employed this approach for discrete models as well, but it turned out that in
this case it suffers from high complexity of often performed operations like set
intersection (for more information about the algorithm, see [13]). To tackle this
problem, we have moved to explicit representation where all parametrizations
are enumerated. We will show that this approach provides numerous advantages
and allows for analysis of large parametrization sets.

Encoding. Our approach is based on a computationally efficient encoding of
parametrization space. We encode each parametrization set P ′ ⊆ P as a word of
length |P| over alphabet Σ = {0, 1}. Such a word naturally corresponds to a bit
vector of the same length and allows fast computation using bitwise operations.

We consider lexicographical ordering of the set P . We denote P i ∈ P an i-th
parametrization in P . Now to encode an ordered set P ′ ⊆ P , we use the encoding
function Code : 2P → {0, 1}|P| where Code(P ′) = b1b2...b|P|, ∀i(bi = 1 ⇔ P i ∈
P ′). This way we encode a coloring of every state as a single word of length |P|.

The encoding function is of a crucial importance, because the idea of the CMC
and its main performance improvement lies in the option to create only a single
PKS for the whole parametrization space. To create such a structure, we need
to be able to label edges of the PKS with transitive parametrizations. This can
be done using the encoding function by which we label every transition x→ x′

with a word Code({P |x P→ x′}).
In general, by using such an encoding we reduce the CMC problem to a

sequence of bitwise operations.

Splitting. Our coloring algorithm is based on an iterative computation of a
fixed point. Complexity of this computation can be improved using multiple
heuristics, for complete information we refer to [13]. The most important is the
procedure of splitting.

2 ParameterFilter – http://github.com/sybila/ParameterFilter

http://github.com/sybila/ParameterFilter
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Our idea is based on the assumption that similar parametrizations generate
similar KSs [2]. When computing a coloring of a PKS we split its parametrization
space to multiple neighbouring regions and work only with a single region at a
time. Most of parametrizations within a single region are likely to be either all
accepted or all rejected, allowing us to quickly reach the fixed point.

Due to lexicographical ordering of possible parametrizationswithin a bit vector,
we already have similar parametrizations in the neighbouring positions. During
the computation we then split the parametrization space by working always with
nextm bits of the bit vector. Each region is stored within a single integer variable,
thereforem is equal to size of an integer in bits on a target platform.Note that usage
of integers also ensures quick computation of bitwise operations.With this region,
we go through the whole process of analysis, output the data, free the memory and
continue with another round (ensuring low memory requirements).

Distribution. When using the split parameter space (which we can do only
when using explicit data representation), we can easily distribute the compu-
tation. This is because every parametrization is completely independent on all
others, giving us great potential for a data-parallel distribution. Therefore, we
distribute regions of parametrization space between non-communicating pro-
cesses differing only in their ID.

Each independent worker does its own parsing and pre-computation and
then goes through the procedure of parameter identification with a subset of
parametrization space that is disjunctive with subsets of other workers.

To achieve as optimal load balance as possible, distribution of regions is inter-
laced, meaning that in computation of n processes, process with ID i, 1 ≤ i ≤ n
is assigned only regions i + k · n, k ∈ N. This method is again based on the
assumption that similar parametrizations generate similar behaviour, causing
acceptable parametrizations to cluster. This way we ensure that such clusters
are distributed evenly between processes.

6.3 Evaluation

Mammalian Cell Cycle. To test capabilities of our algorithm, we had it ana-
lyze a model of mammalian cell cycle [10] with 9 components. For this model we
have defined partial specification, reducing size of parametrization space to final
number of 675, 584, 064 parametrizations. As a guide for the analysis we have
used time series with 8 measurements. More detailed information are presented
in Technical report [13].

Parametrization space was evenly distributed between 8 independent process,
each one of them having initial set of size 84, 448, 008. Computation was run on
a Linux server using two processors with four 2.27 GHz cores and took roughly
a day with 308, 180, 639 acceptable parametrizations computed. During compu-
tation each of the processes used less than 15 MB of RAM. Exact results for
each process are presented in the Figure 6.3. As can be seen, parametrizations
space has been partitioned to sets with almost identical numbers of acceptable
parametrizations.
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Process ID Runtime Result set size Process ID Runtime Result set size

1 29.07 h 38,522,403 5 29.70 h 38,523,691
2 31.08 h 38,521,943 6 28.81 h 38,523,255
3 27.22 h 38,521,656 7 29.55 h 38,522,328
4 32.32 h 38,522,343 8 28.83 h 38,523,020

Fig. 3. Results of distributed analysis of Mammalian cell cycle

Bacteriophage. As a main benchmark we have employed the bacteriophage λ
network. Minor utilization was necessary mainly because our old tool (which
is employed for comparison) is not able to work with edge labels. We have
therefore created unlabelled and partially specified version of the model with
|P| = 589, 824 out of which 90, 112 parametrizations are acceptable. We ran the
analysis five times using each tool. Analysis using the old version took on the
average 967 seconds and used at max 50 MB of RAM, analysis using the new
version took always less than 6 seconds and did not use more than 3 MB RAM.

To demonstrate scalability we analyze the bacteriophage model using up to 8
independent processes. In Fig. 4 we show average runtime of all processes used.
Resulting numbers are taken as an average of three independent experiments
on the same platform as in case of mammalian cell cycle. As can be seen from
the graph, scaling of our algorithm is roughly linear. This result suggests that
in every case where distribution of computation seems sensible, it is possible to
achieve almost a linear speedup and therefore we can extend a set of models that
can be practically analyzed by using high-performance computational platforms.

Process count Average runtime
1 5.315 s
2 2.634 s
3 1.767 s
4 1.332 s
5 1.048 s
6 0.884 s
7 0.754 s
8 0.657 s
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Fig. 4. Scalability of algorithm on bacteriophage λ

7 Conclusions

We have contributed to solving the parameter identification problem for Thomas
networks in three aspects. First, we have proposed a new methodology based on
a colored model checking approach extended with parametrization ranking pro-
cedures. Second, we have introduced a new idea of parametrization encoding that
allows us to synthesize parametrizations in an efficient manner on distributed
platforms. Third, we have implemented a prototype tool chain that supports all
steps of our methodology including feasible visualization of obtained results.
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By evaluating our algorithms on several biological models, we have demon-
strated that the computation achieves good scaling, and moreover, that it copes
with larger parameter spaces. Comparing these results with our previous achieve-
ments [2,12], possibilities of parameter identification solved by model checking
have been significantly improved.

On the methodological side, our achievement brings new insights into applying
discrete modeling frameworks to gene networks. The case study has shown that
the approach is can help modelers to identify reasonable parametrizations and
derive supported suggestions for experimental design.

On the computational side, improving the efficiency of the parameter filtering
and visualization part of the tool chain will be a focus of future work.
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Abstract. Process algebras are an effective method for defining models
of complex interacting biological processes, but defining a model requires
expertise from both modeller and domain expert. In addition, even with
the right model, tuning parameters to allow model outputs to match ex-
perimental data can be difficult. This is the well-known parameter fitting
problem. Evolutionary algorithms provide effective methods for finding
solutions to optimisation problems with large search spaces and are well
suited to investigating parameter fitting problems. We present the Evolv-
ing Process Algebra (EPA) framework which combines an evolutionary
computation approach with process algebra modelling to produce param-
eter distribution data that provides insight into the parameter space of
the biological system under investigation. The EPA framework is demon-
strated through application to a novel example: T helper cell activation
in the immune system in the presence of co-infection.

1 Introduction

Process Algebra [2] (PA) is one of a range of formal methods adopted for compu-
tational biology [7,27]. The goal is to use models and experimental data together
to develop understanding of a given system. This approach relies heavily on the
ability to create models which reproduce the behaviour shown in experimental
data, despite sensitivity to particular parameter choices. The parameter fitting
problem is well known [5]: evolutionary computation approaches provide a po-
tential solution to this problem for models defined using process algebras.

Evolutionary Algorithms (EAs) are an established concept in computing, orig-
inally made popular by the work of Fraser [12], Holland [19] and Goldberg [15].
EAs are a class of optimisation algorithm that draw on concepts from evolu-
tionary theory to search for optimal solutions in complex search spaces. They
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generally use a population-based approach where each individual in the popu-
lation defines a different possible solution for the given problem. The strengths
of an EA approach lie in the ability of parallel candidate solutions to a problem
to share information and combine it with the results of other solutions. This ap-
proach tends to locate useful solutions in less time than running a similar number
of trials in sequential order: sharing of information found by one individual will
tend to lead to the population as a whole benefitting.

In common with Ross and Imada [28] and Prandi [26], we propose that process
algebras and evolutionary algorithms have complementary strengths for mod-
elling bioscience systems [23]. Although evolutionary algorithms are powerful
methods for finding solutions to optimisation problems with large search spaces,
they require an accurately defined fitness function to provide valid results. By
defining the fitness function with respect to a process algebra model, all the ad-
vantages of using abstract, modular, individual-based modelling techniques are
enhanced with the ability to find suitable parameters for that model. Our focus
is on the joint benefits to be gained: the ability to match process algebra models
to experimental data, benefitting the systems biology community, and the ability
to use the performance of individual-based models to define fitness functions in
an EA setting, benefitting the evolutionary computation community.

This paper presents an early step in that work: a framework in which nu-
meric rate parameters for predefined process algebra models are explored using
evolutionary computation. The system output is a set of suitable parameters
which will cause the behaviour of the model to match target data, together with
distribution data on parameter variance, indicating where the model is robust
and where it is sensitive to particular parameter values.

The technique can be applied in many domains: our main target is biological
problems, due to the wealth of experimental data and the interest in systems
biology. To illustrate our approach we choose a topic of current interest in Im-
munology. Immunological systems are ideally suited to modelling using process
algebra. In many ways the immune system is a black box; although many of its
inputs and outputs are known, exactly how the system achieves its function is
the subject of much investigation. Laboratory experiments have provided large
quantities of data, allowing components within the black box to be identified,
but there remain many details to be uncovered about the exact nature of how
components carry out their functions, or on the behaviour of interactions be-
tween components. There are so many potential variables in such systems that
exhaustive testing to establish these details is not feasible. The focus of this work
is on a particular aspect of how specific components of the immune system, the
T helper cell populations, respond to co-infections with parasites making con-
flicting immunological demands [22].

The paper is organised as follows. In Section 2 we provide background infor-
mation on process algebra, and more extensive, introductory background on evo-
lutionary computation, together with details of related work. Section 3 presents
the Evolving Process Algebra (EPA) framework. This combines process alge-
bra modelling with an evolutionary computation approach. The framework is
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demonstrated via a novel Bio-PEPA [6] model concerning co-infection in the
immune system, presented in Section 4. Details of the experimental method,
and results of applying the EPA framework also appear in this section. Finally,
Section 5 contains some concluding remarks and thoughts on future work.

2 Background

There are many valuable approaches to formalising models of biology: see [21]
for an overview. We adopt process algebra because of its ability to define systems
as compositions of individual interacting agents, its concise syntax, the range of
analytic techniques available, and for its suitability for other parts of our research
programme in evolving the models, not just the parameters [24]. Justification
for the use of Bio-PEPA in particular is given, together with an introduction
to its syntax. The basic principles of evolutionary computation are presented,
particularly those of genetic algorithms. Lastly, details of related work in the
area of combining process algebra and evolutionary computation, are presented.

2.1 Process Algebra

For a historical overview of the development of process algebra, see Baeten [2].
The goal behind the development of process algebras was to model distributed
computation. To this end, process algebras allow the description of agents, called
processes, which can carry out modeller-defined actions. Choices between ac-
tions can be made in a variety of ways: deterministically, probabilistically or
non-deterministically. Systems are built in a modular and compositional way by
combining multiple instances of processes in parallel. Processes may run inde-
pendently from each other, but, more often, some synchronisation between pro-
cesses is required. This is achieved through communicating actions. This simple
approach to complex systems gives process algebras power and flexibility. These
features are also highly suitable for modelling of biological systems [3,7,25,27].

Process algebra is used in this work in two roles. First, process algebra is
used to describe the model under investigation, and for which we wish to evolve
suitable parameters. There are a wide range of process algebras, any of which
would be suitable for this investigation. Earlier work [23] successfully evolved
numeric rate parameters for PEPA [17] models. Here we extend that work to
accept Bio-PEPA, developed by Ciochetta and Hillston [6], as an input language.
In addition to the usual core features (processes, actions, choice and interaction),
Bio-PEPA attaches rates to actions which are described by potentially complex
algebraic expressions. This facilitates easy description of the collective dynamics
of a system, specifically biological models.

Second, process algebras are mathematically based and allow rigorous analy-
sis, meaning it is possible to use process algebra tools for simulation to generate
time series data which can then be used in calculating the quality of proposed
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parameter sets (the fitness of the current solution). The tool used here is the Bio-
PEPA Plug-in [9]. This tool automates a range of analyses, including a variety of
simulation algorithms, interpretation of models as a set of Ordinary Differential
Equations (ODE), inference of invariants, calculation of cumulative distribution
function for a given variable, model checking in PRISM, and export to Systems
Biology Markup Language (SBML) format.

Bio-PEPA. Bio-PEPA models describe agents, the activities in which they
may participate, and the paths they may follow as they execute, focussing on
the changing concentrations, or population levels, of those agents. Consider the
model in Figure 1 which is a simplified part of the model of Section 4.2. The
ASCII notation for Bio-PEPA used by the Bio-PEPA Plug-in is adopted here to
facilitate reproduction of our experiments.

divide Th1 rate = 0.01;
divide Th2 rate = 0.05;

death rate = 0.015;

kineticLawOf div1 : (divide Th1 rate ∗ Th1 ∗ (2 ∗ Th1/(Th1+Th2)));
kineticLawOf div2 : (divide Th2 rate ∗ Th2 ∗ (2 ∗ Th2/(Th1+Th2)));
kineticLawOf die1 : fMA (death rate);
kineticLawOf die2 : fMA (death rate);

Th1 = (div1, 1) � Th1+ (die1, 1) � Th1;
Th2 = (div2, 1) � Th2+ (die2, 1) � Th2;

Th1[1000] <> Th2[1000]

Fig. 1. Simple T helper cell growth Bio-PEPA Model

A system modelled in Bio-PEPA will have numeric rates (at the top here, e.g.
death rate), functional rates (introduced next, by kineticLawOf ) and agent def-
initions (Th1 and Th2)1. There are two cell populations (T helper (Th)1 and T
helper (Th)2 cell types). The activities of the Th1 and Th2 agents are division
(div1, div2) and death (die1, die2). Division leads to an increase (operator �)
in cell numbers (by 1 each time), and death leads to a decrease (operator �)
in cell numbers (also by 1 each time). Each agent has a simple choice in each
step between the division action and the death action) shown by the choice op-
erator (a plus: ‘+’). Which path is chosen is dictated by the rates of each ac-
tion involved: actions with faster rates are more likely to occur, assuming the

1 Bio-PEPA was developed for biochemical systems, therefore uses kinetic laws to de-
scribe the interaction of molecular species. We use agent here for species to avoid
confusion with the biological definition of species. Kinetic laws in our model relate to
the interaction of cells rather than molecules.
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activities in which they take part are both enabled. That is, if the action requires
a partner then there is a partner available to participate in the action.

The key abstraction tool in Bio-PEPA lies in the kinetic laws defining rates
of activity for a given action based on numeric rates, stoichiometry coefficient,
and potentially also agent concentration. Here the rates for division depend on
the populations of both cell types, using an arithmetic expression. Trigonometric
functions are also available. The rates for death show the use of the built-in mass
action law. Other built-in laws include Hill and Michaelis-Menten kinetics.

The last line of the model is the model component, defining communication
paths and initial population sizes. In this example, there are one thousand cells
of each type, and the cells do not communicate over any action. Interaction is
via their influence on the kinetic rate for division.

Bio-PEPA supports compartments: these allow a notion of separate spaces
for agents. Agents may move between compartments if desired. Compartments
may be used to indicate physical space, but may also represent different kinds
of structure (e.g. age). Time and timed events are also supported by Bio-PEPA.
These will all be seen in the model of Section 4.2.

2.2 Evolutionary Computation

Evolutionary algorithms have been successfully used in a broad range of areas in-
cluding determination of protein folding processes, modelling of metabolic path-
ways [11] and construction of ecological niche models [29]. Different evolutionary
approaches are available: the standardGeneticAlgorithm(GA)approachfirstpop-
ularised by Holland [19] is used here. This allows us to demonstrate the principle
of using an Evolutionary Computation (EC) approach with process algebras.

Genetic algorithms are one of the earlier approaches to using evolutionary
computation for optimisation. They start with an initially random set of solu-
tions to a problem. In this case, the problem is expressed as a process algebra
model, and each solution is a particular set of numeric values of the parameters
to be fitted for this model. Each of these solutions is scored by noting the differ-
ence between the desired behaviour and the behaviour produced by the model
with those parameters. Note that the concept of desired behaviour can be more
complex than simply a target time series trace, and therefore more difficult to
capture: the effective use of evolutionary computation can often be determined
by the definition of an appropriate fitness function. For example, in biological
systems replication of episodic behaviour may be more significant than an exact
match to a particular time series trace.

Once we have determined a method for measuring the effectiveness of a given
set of parameter values and scored our population of potential solutions using
it, we move to the process of selecting individuals as parents for a breeding pro-
cess. There are a range of different approaches to choose from but they share
a common theme of balancing exploration of the search space (via selection
of less fit parents) with exploitation of promising leads (e.g. increased tendency
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to pick relatively good solutions in the current population). For example, we
may simply select the best two individuals in the population, or we may just
pick two at random. The first choice is effectively a form of “hill climbing”
where we follow the current best trend but this has a tendency to get caught in
local maxima if the solution surface is deceptive. A random choice of parent will
tend to ignore potentially good solutions and effectively leads to a random walk
through solution space, hoping to get lucky. An effective and efficient selection
method for GAs is Tournament selection which enables us to balance these two
approaches via the choice of a tournament size.

Tournament selection reflects the concept of competition between individuals
in the population. A group or “tournament” of randomly selected individuals is
chosen and the fittest individual from this tournament is put forward for breeding
with another similarly chosen individual. A large tournament size relative to the
population size increases the odds of high fitness solutions being selected. Thus
the best solutions in the population are selected for breeding and dominate future
generations (an exploitative effect). Conversely, a small tournament size leads to
weaker solutions getting through that may contain useful parameter values that
are being masked by poor choices for other variables (an explorative approach).

Having obtained two parents, they are bred to produce offspring, combining
the “genetic material” (parameter settings) of the two individuals to produce
a new individual. Typical approaches include one point crossover and uniform
crossover. One point crossover selects an initial section of parameter values from
one parent and the remaining set of parameter values from the second parent;
effectively producing new offspring by crossing over parameter information at
a single point in the set of parameter values. Uniform crossover considers each
parameter value in turn and selects at random a value from either the first
parent or the second parent. One point crossover is most effective when there is
some inter-dependence in parameter values since it tends to preserve blocks of
parameter values. Uniform crossover is a more effective mixing strategy and is
most useful when parameters are less tightly coupled.

On completion of the crossover process, a new offspring is produced that is
derived entirely from its two parents. In order to inject new “genetic material”
into the population pool, an element of mutation is also introduced. If this were
not the case, the GA would be limited to the initial parameter values set at the
start of the evolutionary process. With low probability (usually less than 0.05),
individuals are determined to have mutated or not and if so, randomly selected
parameter values are reinitialised. This will have the tendency to weaken the
performance of mutated individuals (hence the low probability of performing
this operation) but occasionally the random change will place the individual in
a new promising location in the parameter search space.

Finally, the new individual is inserted into the population pool. Either the old
population pool is completely replaced with new offspring (known as generational
replacement) or just one offspring is added at a time (steady state replacement)
replacing a weaker individual selected using the inverse of the selection process.
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Generational replacement tends to operate more quickly provided we also ensure
that the best solution from the previous generation is allowed to go through.

Once a new population pool is produced, the whole process is repeated: the
new individuals are scored by running them through the process algebra model
with the new crossed-over, and potentially mutated, parameter values. This pro-
cess is repeated over many generations where an improvement in population
fitness is generally observed. The process is stopped when either an acceptable
fitness tolerance is reached or a time limit is exceeded. One can also measure
the relative change in fitness between generations and decide to stop if minimal
improvements have been observed over a given time window.

Further detail on EA approaches may be found in Bäck et al [1] and De Jong [8].
A general discussion of its relevance and application to Bioinformatics is avail-
able in Fogel and Corne [11].

2.3 Related Work

There is substantial prior work in applying evolutionary approaches to biological
systems. See e.g. Fogel and Corne [11]. We do not review that here, focussing
instead on the more novel application to process algebra modelling. Relatively
few researchers are exploring this promising combination of techniques. The
work of Ross and Imada [28] applies a genetic approach to time series data
and a subset of the stochastic π-calculus to evolve process algebra models. Their
focus is on the best suite of statistical tests to use to measure fitness of candidate
solutions. Their method is applied to a chemical reaction, a genetic circuit, and
a cyclic process, evolving both parameters and the model itself. Prandi [26] uses
Particle Swarm Optimisation (PSO) inside the R system with BlenX to optimise
parameter fitting. Prandi demonstrates his system on an idealised ecological food
web, matching to a synthetic oscillatory behaviour.

In our previous work we have successfully evolved numeric rate parameters for
PEPA models for simple benchmark examples from the literature in computer
science and in epidemiology [23]. A genetic algorithm was used and the PEPA
Eclipse Plug-in provided the simulated time series data with which to evaluate
fitness of solutions. The present paper provides an extension on that work by
extending the framework to accept Bio-PEPA, and also through application
to a more substantial example. Our work, with that above [26,28], follows the
same basic approach of EA applied to process algebra. We all use different EA
frameworks and process algebras, and apply our work to quite different examples.

There is a large body of work in applying evolutionary approaches to ODE or
CTMC (Continuous Time Markov Chain) models, both of which can be derived
from Bio-PEPA models, preserving the semantics of the overall system dynam-
ics. We believe process algebra offers an advantage in model expression. Both
ODE and CTMC are more suited to describing general system behaviour with a
high level of abstraction. With process algebra the focus is on the many individ-
uals comprising the system, and their interactions. This approach allows for the
subtle interaction of a small number of individuals to act as a tipping point for the



234 D. Marco et al.

emergent behaviour of the whole system. This is a behaviour that can be hard
to capture in equivalent ODE models. Moreover, our long term goal is to use
the framework presented in Section 3 as the core of a system to evolve not
just the parameters but the process algebra models themselves [24]. This is a
more specialised target than that allowed by more general systems for simulation
and optimisation for multiple input languages. See for example the JAMES II
system of Himmelspach et al [18], or the use of SBSI tool [4] for Bio-PEPA
(via translation to SBML) in which parameter estimation is carried out using a
parallelised genetic algorithm.

3 The EPA Framework

We envisage the EPA framework as an experimental system in which process al-
gebras can be combined with a range of evolutionary techniques. This first step
combines process algebra with a GA [15,19] for parameter fitting. This has been
carried out both with PEPA [23] and with Bio-PEPA (described here). EPA
combines the ECJ evolutionary computing framework [20] and the Bio-PEPA
Eclipse Plug-in developed at the University of Edinburgh [9]. ECJ is designed
for large and complex experimental systems and supports many different evolu-
tionary computing approaches. The Bio-PEPA Plug-in allows direct access to,
and control of, Bio-PEPA models and their evaluation.

The main execution loop for the EPA process will now be described. There
is much discussion in the literature about the particular choices for the GA
parameters mentioned here. It is not our goal to explore the nuances of these
choices: the particular settings used for this example are given in Section 4.3.

1. Model. The input to the system is a Bio-PEPA model developed and refined
within the Bio-PEPA Plug-in. The user specifies which parameters in the
model are fixed and which are to be optimised, with relevant constraints set
for each parameter indicating a suitable range of values for these parameters.
A population of candidate individuals is generated where each individual is
expressed as a set of potential parameter values for the Bio-PEPA model,
chosen from within the specified constraints.

2. Evaluate. A time series trace is produced for each candidate solution. The
Bio-PEPA Plug-in generates an average time series trace from a number of
stochastic simulations, or a time series trace from an ODE interpretation.
Currently, we use multiple stochastic simulations, where the duration and
granularity of the simulation is fixed by the user. This is because our example
models have often not been amenable to ODE analysis: this seems to be
linked to the inclusion of events. It would be desirable to offer a choice to
the user since when ODE analysis does work it is usually much faster than
simulation: this is being considered for future work.
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3. Score. A fitness score is assigned to each individual according to a notion of
desired behaviour. For example, in cases where the model should produce a
set of fixed output values, a simple distance measure (e.g. Euclidean) between
the generated time series and the desired time series can be used. We favour
a simple fitness measure while the framework is under initial development.
More complex fitness measures are part of future planned work. The precise
fitness function for this example is presented in Section 4.3.

4. Select. Individuals from the current population are chosen to breed the next
generation using a combination of elitism and tournament selection.

5. Breed. A new generation of individuals is produced using one-point crossover
and mutation, with a generational approach to population replacement.

6. Finish. Steps 2 to 5 are repeated until either an ideal solution has been
found (within some small percentage of fitness to the target data), or a fixed
number of generations have been completed, whichever comes first. Note
that it is often possible to specify the total range of fitness values, therefore
it can be easily decided what “good” fitness means.

The above execution run is repeated a number of times (dependent upon fitness
evaluation time and degrees of freedom in the problem) to ensure a proper sample
of fitness scores and potential parameter values are obtained for a given model.

4 T Helper Cell Activation

The basic utility of the EPA framework has been previously demonstrated through
simple examples from biology and computer science [23]. For this paper we present
a more significant challenge through a novel example: modelling components of
the immune system, the T helper cell populations, and their response to
co-infections with parasites making conflicting immunological demands.

4.1 Biological Background

T helper cells, also known as CD4+ T cells, are central to the modulation of
the adaptive immune response. Adaptive immunity is the ability to recognise
a pathogen, generate an antigenically tailored response, and remember that
pathogen (for a better response next time). There are known to be many differ-
ent CD4+ cells [30]; here the focus is on T helper (Th)1 and Th2 cell types. It
is now well recognised that the control of helminth (parasitic worm) infections
depends on the presence of CD4+ T cells with a Th2 cytokine profile [10,14],
while most microbial infection is controlled by Th1 CD4+ cells [30]. These con-
trasting immune responses can interact in helminth-microparasite co-infection
and can affect severity and the outcome of disease as Th1 and Th2 responses
are mutually inhibitory [16].

Laboratory experiments [22] explore the relationship between Th2 responses
induced by immunisation with filarial (worm) antigen and Th1 responses induced
by infection with malaria in rodents. One of the questions addressed is the effect
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of malaria on pre-existing responses to filarial antigens. Three different experi-
mental treatments were designed to expose the behaviour of the Th1 and Th2
populations, as shown in Table 1. Essentially, cells may be “primed” by expo-
sure to worm antigen and transferred (on Day 0 of the experiment) to a congenic
mouse. The use of congenic mice allows the behaviour of the transferred CD4+
cells to be tracked in isolation from the rest of the mouse immune system.This
mouse might then be exposed to malarial infection (day 3), and/or given an in-
jection of worm antigen (day 16). At the end of the experiment (day 19) cytokine
levels are obtained via ex vivo intracellular cytokine staining and flow cytome-
try. The final two columns of Table 1 give the average cytokine measurements
on day 19. These values indicate the final Th1 population sizes (defined by the
cytokine interferon (IFN)-γ), and Th2 population sizes (defined by the cytokine
interleukin (IL)-4). The figures are scaled to treat E1 results as 100% and E2
and E3 in relation to that baseline. Experimental results [22] show there is a
statistically significant switch from Th2 to Th1 cytokine profiles.

Table 1. Experimental timeline with treatment variants and final cytokine proportions

Experiment Label Day -7 Day 3 Day 16 Day 19
Immunisation: Malaria Challenge: IFNγ IL-4

Worm Ag Worm Ag

E1: Worm-primed ✔ ✘ ✔ 100.0% 100.0%
E2: Worm-primed + Malaria ✔ ✔ ✔ 161.0% 115.1%
E3: Unprimed + Malaria ✘ ✔ ✔ 122.4% 43.7%

The goal of this work is to establish an initial model of Th1 and Th2 popula-
tions and their growth in response to different stimuli, matching the outputs of
Table 1. This example throws up considerable problems of modelling which are
common to all realistic case studies concerning assumptions which can be made,
and values to attach to numeric parameters. Further modelling can then be used
to investigate hypotheses about the causes behind the change in Th1 and Th2
behaviour noted above.

4.2 Modelling the Immune System in Bio-PEPA

The three experimental treatments of Table 1 could be represented as three sep-
arate models expressing the different behaviours of the Th1 and Th2 populations
in response to different stimuli; however, this fails to capitalise on the similarities
between the experimental treatments. Instead, we make use of compartments to
separate experimental treatments within a single Bio-PEPA model. Each com-
partment represents one experimental treatment (E1, E2, E3 of Table 1). This
allows us to link shared rate parameters affecting behaviour across experimental
treatments in the model, instead of having to link rate parameters inside the
EPA framework, or worse, to link them manually outside the EPA framework.
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We present the whole model here, interspersed with explanatory comments
on the basic rates for the model, the specific rates for each compartment, the
functional rates and the agent definitions. The complete model can be down-
loaded from our website http://www.cs.stir.ac.uk/SystemDynamics.

compsize = 10000;
location world : size = 30000, type = compartment ;

location E1 in world : size = compsize, type = compartment;
location E2 in world : size = compsize, type = compartment;
location E3 in world : size = compsize, type = compartment;

We assume a base recruitment rate for each of Th1 and Th2, and a boosted re-
cruitment rate for Th1 and Th2 when challenged by Malaria or Worm Antigen
respectively, possibly modified by some additional factor in a particular exper-
imental treatment. The numeric rates for cell division and death can be taken
from the literature. The other rate parameters are not known (indicated by ?
below). We fix the division and death rates, to preserve homeostasis in the ab-
sence of worm or malaria challenges. Timed events (the injection of malaria and
helminths) are modelled by the variables malariaI and helminthI, occurring at
day 3 (hour 72) and day 16 (hour 384) respectively. These are used in the ki-
netic laws to activate either the base recruitment rate or the boosted recruitment
rate for that T helper cell type. The Heaviside function (H) is used to give a
binary valued function from time. This is used in the definitions below to switch
customised behaviours on or off in the kinetic laws.

// Basic constants
recruit Th1 rate = ?;

boost recruit Th1 rate = ?;
inhibition Th1 rate = 0.1;

recruit Th2 rate = ?;
boost recruit Th2 rate = ?;

inhibition Th2 rate = 0.1;
divide Th1 rate = 0.006;
divide Th2 rate = 0.006;

death rate = 0.00694;
malariaI = H(time − 72);
helminthI = H(time − 384);

The basic constants of the model are common to all compartments. We fix
the inhibition rate, and use the EPA framework to find the others in relation
to that arbitrarily chosen fixed rate. The differences between the experimental
treatments are largely explained by the customised rates for each compartment.
Note that for example, in compartment E1 the boost rate for Th1 is the same as
the base rate: this is because there is no malaria injection in that experimental
treatment. In addition, note that in compartment E3 the boost rate of Th1 is
suppressed because there is no worm-priming in that experimental treatment.
Three parameters are specific to their compartment: E2 mal Th2, E3 mal Th2,
and E3 mal suppress.
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// First compartment is worm-primed + worm boost (E1)
E1 rec Th1 = recruit Th1 rate ;

E1 boost Th1 = recruit Th1 rate ;
E1 inhibit Th1 = inhibition Th1 rate ;

E1 rec Th2 = recruit Th2 rate ;
E1 boost Th2 = boost recruit Th2 rate ;

E1 inhibit Th2 = inhibition Th2 rate ;
E1 Th1 div = divide Th1 rate ;
E1 Th2 div = divide Th2 rate ;
E1 Th1 die = death rate ;
E1 Th2 die = death rate ;

// Second compartment is worm-primed + malaria + worm boost (E2)
E2 rec Th1 = recruit Th1 rate;

E2 boost Th1 = boost recruit Th1 rate;
E2 inhibit Th1 = inhibition Th1 rate;

E2 rec Th2 = recruit Th2 rate;
E2 mal Th2 = ?;

E2 boost Th2 = boost recruit Th2 rate;
E2 inhibit Th2 = inhibition Th2 rate;

E2 Th1 div = divide Th1 rate;
E2 Th2 div = divide Th2 rate;
E2 Th1 die = death rate;
E2 Th2 die = death rate;

// Third compartment is unprimed + malaria + worm boost (E3)
E3 rec Th1 = 0;

E3 mal suppress Th1 = ?;
E3 boost Th1 = boost recruit Th1 rate ∗E3 mal suppress Th1 ;

E3 inhibit Th1 = inhibition Th1 rate;
E3 rec Th2 = recruit Th2 rate;
E3 mal Th2 = ?;

E3 boost Th2 = boost recruit Th2 rate;
E3 inhibit Th2 = inhibition Th2 rate;

E3 Th1 div = divide Th1 rate;
E3 Th2 div = divide Th2 rate;
E3 Th1 die = death rate;
E3 Th2 die = death rate;

The core of the model is the agent descriptions for Th1 and Th2 and kinetic
laws. These describe how the populations grow through division, shrink through
natural cell death, grow through recruitment from the Naive pool (not modelled
directly, and assumed to be infinite for this time-limited set of experiments),
and inhibit the recruitment of the other T helper cell type. The kinetic laws
describe the rates at which these activities occur. Most of these are simple mass
action terms (e.g. division and death), but recruitment is complex, requiring an
inhibition term which is scaled by the ratio of the T helper populations to each
other. Also, recruitment varies in each compartment, to incorporate the effects
of the malaria injection and worm challenge. Observe that this affects only the
laws for recruitment of Th2 ; the laws for recruitment of Th1 are all the same
(modulo compartment name).
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// Functional rates division and death same for all compartments
// Rates shown only for compartment E1
kineticLawOf E1 div1 : (E1 Th1 div ∗ Th1@E1);
kineticLawOf E1 div2 : (E1 Th2 div ∗ Th2@E1);
kineticLawOf E1 die1 : (E1 Th1 die ∗ Th1@E1);
kineticLawOf E1 die2 : (E1 Th2 die ∗ Th2@E1);

kineticLawOf E1 rec1 : (1 −malariaI ) ∗ (E1 rec Th1 ∗ Th1@E1
−E1 inhibit Th1 ∗ (Th2@E1 + 1)/(Th1@E1 + 1))
+(malariaI ) ∗ (E1 boost Th1 ∗ Th1@E1
−E1 inhibit Th1 ∗ (Th2@E1 + 1)/(Th1@E1 + 1));

kineticLawOf E1 rec2 : (1 − helminthI ) ∗ (E1 rec Th2 ∗ Th2@E1
−E1 inhibit Th2 ∗ (Th1@E1 + 1)/(Th2@E1 + 1))
+(helminthI ) ∗ (E1 boost Th2 ∗ Th2@E1
−E1 inhibit Th2 ∗ (Th1@E1 + 1)/(Th2@E1 + 1));

kineticLawOf E2 rec1 : (1 −malariaI ) ∗ (E2 rec Th1 ∗ Th1@E2
−E2 inhibit Th1 ∗ (Th2@E2 + 1)/(Th1@E2 + 1))
+(malariaI ) ∗ (E2 boost Th1 ∗ Th1@E2
−E2 inhibit Th1 ∗ (Th2@E2 + 1)/(Th1@E2 + 1));

kineticLawOf E2 rec2 : (1 − helminthI ) ∗ (((1 −malariaI ) ∗ (E2 rec Th2 ∗ Th2@E2
−E2 inhibit Th2 ∗ (Th1@E2 + 1)/(Th2@E2 + 1)))
+(malariaI ∗ (E2 rec Th2 ∗ E2 mal Th2 ∗ Th2@E2
−E2 inhibit Th2 ∗ (Th1@E2 + 1)/(Th2@E2 + 1))))
+(helminthI ) ∗ (E2 boost Th2 ∗ Th2@E2
−E2 inhibit Th2 ∗ (Th1@E2 + 1)/(Th2@E2 + 1));

kineticLawOf E3 rec1 : (1 −malariaI ) ∗ (E3 rec Th1 ∗ Th1@E3
−E3 inhibit Th1 ∗ (Th2@E3 + 1)/(Th1@E3 + 1))
+(malariaI ) ∗ (E3 boost Th1 ∗ Th1@E3
−E3 inhibit Th1 ∗ (Th2@E3 + 1)/(Th1@E3 + 1));

kineticLawOf E3 rec2 : (1 − helminthI ) ∗ (((1 −malariaI ) ∗ (E3 rec Th2 ∗ Th2@E3
−E3 inhibit Th2 ∗ (Th1@E3 + 1)/(Th2@E3 + 1)))
+(malariaI ∗ (E3 rec Th2 ∗ E3 mal Th2 ∗ Th2@E3
−E3 inhibit Th2 ∗ (Th1@E3 + 1)/(Th2@E3 + 1))))
+(helminthI ) ∗ (E3 boost Th2 ∗ Th2@E3
−E3 inhibit Th2 ∗ (Th1@E3 + 1)/(Th2@E3 + 1));

Th1 = (E1 div1, 1) � Th1@E1 + (E1 die1, 1) � Th1@E1
+(E1 rec1, 1) � Th1@E1 + (E1 rec2, 1)(−)Th1@E1
+(E2 div1, 1) � Th1@E2 + (E2 die1, 1) � Th1@E2
+(E2 rec1, 1) � Th1@E2 + (E2 rec2, 1)(−)Th1@E2
+(E3 div1, 1) � Th1@E3 + (E3 die1, 1) � Th1@E3
+(E3 rec1, 1) � Th1@E3 + (E3 rec2, 1)(−)Th1@E3;

Th2 = (E1 div2, 1) � Th2@E1 + (E1 die2, 1) � Th2@E1
+(E1 rec2, 1) � Th2@E1 + (E1 rec1, 1)(−)Th2@E1
+(E2 div2, 1) � Th2@E2 + (E2 die2, 1) � Th2@E2
+(E2 rec2, 1) � Th2@E2 + (E2 rec1, 1)(−)Th2@E2
+(E3 div2, 1) � Th2@E3 + (E3 die2, 1) � Th2@E3
+(E3 rec2, 1) � Th2@E3 + (E3 rec1, 1)(−)Th2@E3;

Th1@E1[200] <> Th2@E1[800] <>
Th1@E2[200] <> Th2@E2[800] <> Th1@E3[200] <> Th2@E3[200]



240 D. Marco et al.

The final numeric detail of the model relates to initial populations of T helper
cells: these are not available experimentally. Instead, two different proportions
of initial T helper cell populations are used. These distinguish the worm-primed
cases (20:80 ratio of Th1:Th2) from the unprimed case (50:50 ratio of Th1:Th2).

4.3 Experimental Method: Target Data and Fitness Function

The objective of our experiment was to determine if the EPA framework can
be used to find rates for the above model so that simulated data is produced to
match the experimental data. The cell numbers in the model are a proxy for the
actual cell numbers (which at 106 are too large to be simulated in reasonable
time in the Bio-PEPA Plug-in). The E1: Worm-primed experiment population
results are used as the baseline against which we measure the increase/decrease
in population of T helper cells in the other experimental treatments.

The particular GA parameters used here are as follows: we give these to aid
reproducibility. The choices are reasonably standard. A population of 100 indi-
viduals is used with generational replacement. Selection for breeding is enforced
via tournament selection with a tournament of size 10. This is a relatively low
selection pressure given that there is only approximately 10% chance of compet-
ing with the best individual in the current population in a given tournament.
One point crossover is used to produce new offspring from two selected parents
and mutation of the offspring parameters is limited to 5% chance of occurrence.
Elitism is used to preserve the current best solution across generations.

Evaluation of a given offspring’s parameter values is achieved by setting them
in the Bio-PEPA model and then simulating the model via the Gibson-Bruck
algorithm [13] for the 19 day experiment. Due to the stochastic nature of Bio-
PEPA, this is repeated over 20 simulations and the results averaged across the
simulations. Ideally, more simulations would be used to give better accuracy, but
this is a trade-off with computation time. The final data points of this averaged
performance are then compared against the target outcomes and a fitness score
calculated based on the difference between the two sets of values according to the
fitness function f of Equation (1), where t and s are target and simulated data
respectively, and i ranges across Th1@E2..Th2@E3. In this study, a low value
for the fitness score equates to a high level of fitness since it indicates minimal
difference between the target and the simulated result. A score of zero is the
best fitness possible. The fitness function also includes preference for solutions
in which the boosted recruitment rate is further away from the base recruitment
rate (i.e. minimising the terms c1 and c2 thus pushing the base and boosted
recruitment rates further apart). This constraint is imposed by our biological
understanding of the system. The “1 + ” appears in Equation (1) to avoid this
term dominating fitness.

f =
√
Σ(ti − si)2 . (1 + c1 + c2) (1)

where c1 = recruit Th1 rate/boost recruit Th1 rate

c2 = recruit Th2 rate/boost recruit Th2 rate
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One might expect to execute such a framework, with a given model and target
experimental data, to produce a single set of ideal matching parameters. How-
ever, it is often the case that different combinations of parameter values will
produce identical matches to the target data and the difficulty then becomes
the identification of the correct set of values. Biological expertise is crucial, but
statistics can assist. In our study, the process was repeated 64 times to establish
the robustness of the results and gain an insight into the potential variance of
both fitness scores and parameter values. The outcome is a range of parameter
values that are equally valid: we know this is the case because the evolved output
accurately matches experimental data as expressed by the fitness function.

4.4 Results

The performance of the optimisation process across 64 runs can be seen in Fig-
ure 4(a). This graph shows the distribution of best fitness scores within popula-
tions across the multiple runs with generations used as a measure of time. The
graph has been cropped to 0..200 on the y-axis to better show the interesting
behaviour. Fitness scores rapidly improve from the initial random starting point
(fitness 611) while maintaining a degree of variability (as indicated by the upper
and lower quartile ranges). After around 70 generations, the fitness scores have
converged with diminishing returns on further computation. At the end of the
100 generations, the median fitness score across the 64 runs is 6.56 with an upper
and lower quartiles of 8.97 and 5.50, indicating a very high level of fit to the
target data. This is approximately 1% of the original average fitness for the first
generation. This, and the convergence shown in the graph of Figure 4(a), give
an indication of the success of the optimisation process.

In any EA there is a tradeoff between various factors. For example, the fitness
function could be made more complex to include variance of the 20 simulations
in each evaluation as well as the mean. This would result in more computations
in each evaluation and potentially require more generations to converge to an
acceptably fit level. Here, we have chosen a very simple fitness function, which
converges quickly (100 generations). The fact that variance of the fitness across
EA runs is low by 100 generations suggests that the generated parameter values
are robust to the noise of the genetic process and fitness measure.

Given the above performance, the sets of parameter values that are obtained
as a result of these runs can all be considered to be valid solutions for the model
to fit the target data. The spread of parameter values obtained at the end of
the 64 runs, with median values below each histogram, can be seen in Figures 2
and 3. Each variable is presented with the x-axis showing the full range of per-
mitted values to better illustrate the clustering of fit values. In the majority of
cases, they do not conform to a normal distribution, therefore if selecting a par-
ticular parameter set, it is preferable to use the medians (as shown), or to choose
the set with the best fitness (not shown). This ability to inspect the parame-
ter distribution values provides a form of sensitivity analysis and indicates that
the Bio-PEPAmodel is not driven by a single set of parameters. This information
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Fig. 2. Histograms for Mouse model recruitment parameters

Fig. 3. Histograms for Mouse model scaling parameters

is of value to the modeller since it can offer an insight on the model dynamics,
the validity of the model, and potentially the biological system being studied.

For example, from Figures 2 and 3 it can be seen that the fittest values for
each parameter cluster at particular points, despite there being a wide range of
permitted values for the optimisation algorithm to try. This particularly shows
that the scaling variables (E2 mal Th2, E3 mal Th2, and E3 mal suppress) are
necessary to explain the experimental data, since their values are not 1. This
quantifies the effect of the experimental treatments.

Further analysis (examples shown in Figure 4 (b, c, d)) is to consider vari-
able dependencies: correlations between two or more variables. These are most
fruitfully considered for variables showing more variance as indicated in the
histograms of Figures 2 and 3. For example, Figure 4(b) shows inverse cor-
relations between the scaling factors E2 mal Th2 and E3 mal Th2 and the
base recruitment rate recruit Th2 rate. This is as expected, since these vari-
ables are associated with controlling the growth of Th2. In contrast, Figure 4(c)
shows these scaling factors against the base recruitment rate for Th1 cells
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Fig. 4. Evolution of fitness, and correlation between selected evolved variables. Scal-
ing factors: E2 mal Th2 is shown as empty circles, E3 mal Th2 as solid circles,
E3 mal suppress Th1 as solid triangles.

recruit Th1 rate. While there is some clustering, there is no apparent correlation.
Figure 4(d) shows the relation between the three scaling factors: E3 mal Th2
and E3 mal suppress Th1 plotted against E2 mal Th2. E3 mal Th2 grows as
E2 mal Th2 grows, but E3 mal suppress Th1 is relatively static (as it has less
variance, see the histogram of Figure 3).

5 Conclusions and Future Work

We have presented a novel framework in which a standard genetic algorithm is
used for parameter estimation of numeric rate parameters in a hand-built Bio-
PEPA model. This method was applied to an original immunological example
to demonstrate the validity of the modelling choices and to obtain values for
parameters not available from wet lab experimentation. While this is a partic-
ularly fruitful approach for biological systems (where ample experimental data
exists), it can be equally well applied in other application domains. The process
of evolutionary parameter fitting allows a modeller to gain an understanding of
the overall stability of the solution space. In particular, indications are given as
to which parameters the model is sensitive to and which have little or no effect.
Such robustness may be expected for aspects of biological systems: if they were
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sensitive to all parameters the system would fail rather easily. Computing the
distribution data in Figures 2 and 3 requires considerable computational effort:
the EPA framework ran approximately 13 million simulations (20*100*100*64)
to obtain these figures. This takes in the order of 36 hours on a computing cluster
of 100 nodes. Compare this with the computational effort required to perform a
full parameter sweep (for seven parameters in this case): at least 77 billion sim-
ulations (using the same granularity produced by the EPA). A key advantage of
the EPA approach is better targeting of our computational resource, focussing
on the parameter values of most relevance.

The framework will be useful to systems biology modellers working with exper-
imentalists on systems displaying the following features: the system is amenable
to description as a network of interacting components modelled at an individual
level, there are several parameters of that model which are difficult to measure in
experiments, and there is experimental data for system output which will allow
those parameters to be tuned. Having obtained suitable parameter values, and
with a greater understanding of the behaviour of the model, these can then be
used in further predictive experiments. Different scenarios can be investigated
with the confidence that the parameters were well chosen. There is a risk that
larger and more realistic examples become intractable. Computation time in the
EPA system is related to the time for a single simulation: modellers can em-
ploy many abstraction strategies to keep simulation time down, even for larger,
complex examples. If this is not possible, the EPA system parameters can be ad-
justed to bring overall computation time down: there is a trade-off to be made
between simulation time and the number of repeated simulations carried out,
the numbers of generations evolved, and the required robustness of the results.
These can all be customised as required by the example.

There is ample scope for further development of this work, both in the direc-
tion of the particular immunological example, and in further development of the
EPA framework.

For the immunological model, the first step is to enhance the biological realism
of the models, e.g. through direct modelling of the mutually inhibitory effects
of Th1 and Th2 via explicit inclusion of cytokine expression. Other lines of
inquiry may be to construct process algebra models following completely different
experimental design. Results obtained from modelling could then be confirmed
by further wet lab experiments, supporting our aim that models are a true
representation of the behaviour and function of the immune system.

For the EPA framework, one direction is to explore more fully the additional
information gained from the performance of the EA and its implications for
parameter sensitivity. There is also potentially much work to be done in ex-
tending the flexibility of the framework to utilise other forms of analysis in the
Plug-in (most obviously, ODE analysis, but also cumulative distribution function
analysis), or in the form of the fitness function in incorporating additional in-
formation from simulations (such as variance of multiple simulations). Ross and
Imada [28] have already investigated a range of criteria which could be added
to the fitness evaluation. Another direction is to explore other EA approaches
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within the framework, not just the GA approach used here. Lastly, promising
new research has shown that rather than just evolve parameters it is possible
to evolve the model itself. This development would further integrate the pro-
cess algebra modelling with the evolutionary approach. The EPA framework has
been extended to apply genetic programming techniques to evolving the agent
definitions while keeping all other information fixed [24], but much remains to
be done.
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Abstract. Population Dynamics P systems (PDP systems, in short)
provide a new formal bio-inspired modeling framework, which has
been successfully used by ecologists. These models are validated using
software tools against actual measurements. The goal is to use P systems
simulations to adopt a priori management strategies for real ecosystems.

Software for PDP systems is still in an early stage. The simulation
of PDP systems is both computationally and data intensive for large
models. Therefore, the development of efficient simulators is needed for
this field. In this paper, we introduce a novel simulator for PDP systems
accelerated by the use of the computational power of GPUs. We discuss
the implementation of each part of the simulator, and show how to
achieve up to a 7x speedup on a NVIDA Tesla C1060 compared to an
optimized multicore version on a Intel 4-core i5 Xeon for large systems.
Other results and testing methodologies are also included.

Keywords: Ecological Modeling, Population Dynamics, Membrane
Computing, Parallel Simulation, GPU Computing, CUDA.

1 Introduction

Membrane Computing [19] is part of the broader field of natural or bio-inspired
computing. The related computational models are called P systems. They are
hierarchically distributed models inspired by how membranes compartmentalize
living cells into ”protected reactors”. The model consists of simultaneous
applications of rules (abstraction of chemical reactions) over multisets of objects
(abstraction of chemical compounds) [20]. Membrane Computing covers both
the study of the theoretical basis for the models as well as the applications of
the model to various fields including computational Systems Biology [7,22], and
Ecosystem Dynamics [3,4,8]. Population Dynamics P Systems, or PDP systems,
is a P system based framework for modeling population dynamics [3,17] . It

D. Gilbert and M. Heiner (Eds.): CMSB 2012, LNCS 7605, pp. 247–266, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



248 M.A. Mart́ınez-del-Amor et al.

enables simultaneous evolution of a high number of species, as well as the
management of a large number of auxiliary objects. It also facilitates model
development that can be easily interpreted by simulation software.

So far, several algorithms have been developed in order to capture the
semantics defined by the modeling framework. A comparison on the performance
of these algorithms can be found in [9]. These algorithms select rules according to
their associated probabilities, while keeping the maximal parallelism semantics of
P systems. In [17], a new simulation algorithm is presented, called DCBA (Direct
distribution based on Consistent Blocks Algorithm). It overcomes a common
problem on the previous algorithms, regarding a distorted selection of rules.
Furthermore, the DCBA was initially implemented and validated using the P-
Lingua software framework [11,24] which resulted in a simulation Java library
(pLinguaCore). However, the simulations were slow (taking hours to run a single
simulation), since the pLinguaCore library is not focused on efficiency.

A more efficient implementation based on C++ and OpenMP was presented
in [16], taking advantage of modern multicore architectures. These preliminary
results indicate that the simulation of PDP systems are memory bound. GPU
computing [15] has been successfully used to implement other P systems
simulators [2,5,6]. By using CUDA [13,23], the simulators are accelerated taking
advantage of the many-core GPU architecture.

This paper, introduces our new CUDA-optimized PDP systems simulator. We
describe how the data structures have been optimized, and how also the code
is adapted and restructured in different parts. A performance analysis is also
provided, comparing the results with further optimized sequential and multicore
versions written in C++/OpenMP.

This paper is structured as follows: Section 2 gives an overview of the P
systems based framework that our simulator implements. Section 3 explains
the simulation algorithm. Section 4 contains some concepts about the CUDA
programming model. Section 5 explains the details of the implementation using
CUDA. Section 6 shows some performance results by using a random generator
of PDP systems. Finally, conclusions and future work are discussed in Section 7.

2 The P Systems Based Framework

Definition 1. A PDP system of degree (q,m) & time T (q,m, T ≥ 1) is a tuple

Π = (G,Γ,Σ, T,RE , μ,R, {fr,j : r ∈ R, 1 ≤ j ≤ m}, {Mij : 1 ≤ i ≤ q, 1 ≤ j ≤ m})

where:

– G = (V, S) is a directed graph. Let V = {e1, . . . , em} whose elements are
called environments;

– Γ is the working alphabet and Σ � Γ is an alphabet representing the objects
that can be present in the environments;
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– T is a natural number that represents the simulation time of the system;

– RE is a finite set of communication rules between environments of the form
r ≡ (x)ej

pr−−−→(y1)ej1 · · · (yh)ejh , where x, y1, . . . , yh ∈ Σ, (ej , ejl) ∈ S
(1 ≤ l ≤ h) and pr is a computable function from {1, . . . , T } to [0, 1]
depending on x, j, j1, . . . , jh. If for any rule, pr is the constant function 1,
then we can omit it. These functions verify the following: for each ej ∈ V
and x ∈ Σ, the sum of functions associated with the rules whose left-hand
side is (x)ej is the constant function 1.

– μ is a membrane structure consisting of q membranes injectively labelled by
1, . . . , q. The skin membrane is labelled by 1. We also associate electrical
charges from the set {0,+,−} with membranes.

– R is a finite set of evolution rules of the form r ≡ u[ v ]αi → u′[ v′ ]α
′

i , where
u, v, u′, v′ ∈ Γ ∗, i (1 ≤ i ≤ q), u+ v �= λ and α, α′ ∈ {0,+,−}.
• If (x)ej is the left-hand side of a rule from RE, then none of the rules
of R has a left-hand side of the form u[v]α1 , having x ∈ u.

– For each r ∈ R and for each j (1 ≤ j ≤ m), fr,j : {1, . . . , T } −→ [0, 1] is a
computable function verifying the following: for each u, v ∈ Γ ∗, i (1 ≤ i ≤ q),
α, α′ ∈ {0,+,−} and j (1 ≤ j ≤ m) the sum of functions associated with
j and the rules whose left-hand side is u[v]αi and whose right-hand side has
polarization α′, is the constant function 1.

– For each j (1 ≤ j ≤ m), M1j, . . . ,Mqj are strings over Γ , describing
the multisets of objects initially placed in the q regions of μ, within
the environment ej. It is usual to manage multisets through strings. A

finite multiset m = {af(a1)
1 , . . . , a

f(ak)
k } can be represented by the string

a
f(a1)
1 . . . a

f(ak)
k over the alphabet {a1, . . . , ak}. Nevertheless, all permutations

of this string precisely identify the same multiset m. Throughout this paper,
we speak about “the finite multiset m” where m is a string, and meaning
“the finite multiset represented by the string m”.

That is, a system defined as above can be viewed as a set of m environments
e1, . . . , em interlinked by the edges from the directed graph G. Each environment
ej contains a P system, Πj = (Γ, μ,R,M1j , . . . ,Mq,j), of degree q, where
every rule r ∈ R has a computable function fr,j associated with it. For each
environment ej, we denote by RΠj the set of rules with probabilities obtained
by coupling each r ∈ R with the corresponding function fr,j.

A configuration of the system at any instant t is a tuple of multisets of objects
present in the m environments and at each of the regions of each Πj , together
with the polarizations of the membranes in each P system. We assume that all
environments are initially empty and that all membranes initially have a neutral
polarization. We assume a global clock exists, sychromnizing all membranes and
the application of all the rules (from RE and from RΠj in all environments).

The P system can pass from one configuration to another by using the rules
from

⋃m
j=1 RΠj ∪ RE as follows: at each transition step, the rules to be applied

are selected according to the probabilities assigned to them, and all applicable
rules are simultaneously applied in a maximal way.
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An evolution rule r ∈ R, of the form u[ v ]αi → u′[ v′ ]α
′

i , is applicable to each
membrane labelled by i, whose electrical charge is α, and it contains the multiset
v, and its father contains the multiset u. When such rule is applied, the objects of
the multisets u and v are removed from the father of membrane i and membrane
i, respectively. Simultaneously, the objects of the multiset u′ are added to the
father of membrane i, and objects of multisets v′ are introduced in membrane i.
The application also replaces the charge of membrane i to α′.

A rule r ∈ RE , of the form (x)ej
pr−−−→(y1)ej1 . . . (yh)ejh , is applicable to the

environment ej if it contains object x. When such rule is applied, object x passes
from ej to ej1 , . . . , ejh possibly modified into objects y1, . . . , yh respectively. At
any moment t (1 ≤ t ≤ T ) for each object x in environment ej , if there exist
communication rules whose left-hand side is (x)ej , then one of these rules will
be applied. If more than one such a rule can be applied to an object, the system
selects one randomly, according to their probability which is given by pr(t).

For each j (1 ≤ j ≤ m) there is just one further restriction, concerning the
consistency of charges: in order to apply several rules of RΠj simultaneously to
the same membrane, all the rules must have the same electrical charge on their
right-hand side.

Following the properties verified by the probabilistic functions, rules in R and
RE can be classified into blocks of rules, as showed in definitions 2, 3 and 4.

Definition 2. The left and right-hand sides of the rules are defined as follows:

(a) Given a rule r ∈ R of the form u[v]αi → u′[v′]α
′

i where 1 ≤ i ≤ q,
α, α′ ∈ {0,+,−} and u, v, u′, v′ ∈ Γ ∗:
– The left-hand side of r is LHS(r) = (i, α, u, v). The charge of LHS(r) is
charge(LHS(r)) = α. The length of LHS(r) is |u|+ |v|, what indicates
the cooperation degree of the rule.

– The right-hand side of r is RHS(r) = (i, α′, u′, v′). The charge of
RHS(r) is charge(RHS(r)) = α′. The length of RHS(r) is |u′|+ |v′|.

(b) Given a rule r ∈ RE of the form (x)ej
pr−−−→ (y1)ej1 · · · (yh)ejh , the left-

hand side of r is LHS(r) = (ej , x), and the right-hand side of r is
RHS(r) = (ej1 , y1) · · · (ejh , yh).

Definition 3. Rules from R can be classified into consistent blocks associated
with (i, α, α′, u, v) as follows:

Bi,α,α′,u,v = {r ∈ R : LHS(r) = (i, α, u, v) ∧ charge(RHS(r)) = α′}
Definition 4. Rules from RE can be classified into (consistent) blocks associated
with (ej , x) as follows: Bej ,x = {r ∈ RE : LHS(r) = (ej, x)}.

Recall that, according to the semantics of our model, the sum of probabilities of
all the rules belonging to the same block is always equal to 1; in particular, rules
with probability equal to 1 form individual blocks. Note that rules that have
exactly the same left-hand side (LHS) belongs to the same block, but rules with
overlapping (but different) left-hand sides are classified into different blocks. The
latter leads to object competition, what is a critical aspect to manage with the
simulation algorithms.
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Definition 5. Two blocks Bi1,α1,α′
1,u1,v1 and Bi2,α2,α′

2,u2,v2 are mutually consis-
tent with each other, if and only if (i1 = i2 ∧ α1 = α2)⇒ (α′1 = α′2).

3 The DCBA

The goal of the DCBA (Direct distribution based on Consistent Blocks
Algorithm) [17] is to perform a proportional distribution of objects among
competing blocks (with overlapping LHS), determining in this way the number of
times that each rule in

⋃m
j=1 RΠj∪RE is applied. I.e. the algorithm simulates the

computational steps of a PDP systems. Algorithm 3.1 describes the main loop
of the DCBA. It follows the same general scheme as its predecessors, DNDP
and BBB [18] where the simulation of a computing step is structured in two
stages: The first stage (selection), selects which rules are to be applied (and how
many times) on each environment. The second stage (execution), implements the
effects of applying the previously selected rules, yielding the next configuration
of the PDP system. Note that, although every Πj has the same set of rules R,
the probability functions may be different for each environment. See [17] for a
more detailed explanation and examples of how to apply this algorithm.

As shown in Algorithm 3.1, the selection stage consists of three phases: Phase
1 distributes objects to the blocks in a certain proportional way, Phase 2 assures
the maximality by checking the maximal number of applications of each block,
and Phase 3 translates block applications to rule applications by calculating
random numbers using the multinomial distribution.

Algorithm 3.1. DCBA MAIN PROCEDURE

Require: A Population Dynamics P system of degree (q,m), T ≥ 1 (time units), and
A ≥ 1 (Accuracy). The initial configuration is called C0.

1: INITIALIZATION � (Algorithm 3.2)
2: for t ← 1 to T do
3: Calculate probability functions fr,j(t) and p(t).
4: C′

t ← Ct−1

5: SELECTION of rules:
• PHASE 1 : distribution � (Algorithm 3.3)
• PHASE 2 : maximality � (Algorithm 3.4)
• PHASE 3 : probabilities � (Algorithm 3.5)

6: EXECUTION of rules. � (Algorithm 3.6)
7: Ct ← C′

t

8: end for

The INITIALIZATION procedure (Alg. 3.2) constructs a static distribution
table Tj for each environment. Two variables, Bj

sel and R
j
sel, are also initialized,

in order to store the selected multisets of blocks and rules, respectively.

Observation 1. Each column label of the tables Tj contains the information of
the corresponding block left-hand side.
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Observation 2. Each row of the tables Tj contains the information related to
the object competitions: for a given object, its row indicates which blocks are
competing for it (those columns having non-null values).

Algorithm 3.2. INITIALIZATION

1: Construction of the static distribution table T :
– Column labels: consistent blocks Bi,α,α′,u,v of rules from R.
– Row labels: pairs (o, i) and (x, 0), for all object o ∈ Γ , x ∈ Σ and membrane

i, being 0 the identifier of the environments of the P system.
– For each row labelled by (o, i) and column labelled by block Bi,α,α′,u,v: place

1
k
if o appears within i (0 ≤ i ≤ q) with multiplicity k in the LHS of Bi,α,α′,u,v.

2: for j = 1 to m do � (Construct the static expanded tables Tj)
3: Tj ← T . � (Initialize the table with the original T )
4: For each rule block Bej ,x from RE , add a column labelled by Bej ,x to the table

Tj ; place the value 1 at row (x, 0) for that column.
5: Initialize the multisets Bj

sel ← ∅ and Rj
sel ← ∅

6: end for

The distribution of objects among the blocks with overlapping LHS
(competing blocks) is performed in selection Phase 1 (Algorithm 3.3). The
expanded static tables Tj are used for this purpose in each environment, together
with three different filter procedures. Filter 1 discards the columns of the table
corresponding to non-applicable blocks due to mismatch charges in the LHS and
in the configuration C′

t. Then, Filter 2 discards the columns with objects in
the LHS not appearing in C′

t. Finally, in order to save space in the table, Filter
3 discards empty rows. These three filters are applied at the beginning of Phase
1, and the result is a dynamic table T t

j (for the environment j and time step t).
The semantics of the modeling framework requires a set of mutually consistent

blocks before distributing objects to the blocks. For this reason, after applying
Filters 1 and 2, the mutually consistency is checked. Note that this checking
can be easily implemented by a loop over the blocks. If it fails, meaning that
an inconsistency was encountered, the simulation process is halted, providing
a warning message to the user. Nevertheless, it could be interesting to find a
way to continue the execution by non-deterministically constructing a subset of
mutually consistent blocks. Since this method can be exponentially expensive in
time, it is optional for the user whether to activate it or not.

Once the columns of the dynamic table T t
j represent a set of mutually

consistent blocks, the distribution process starts. This is carried out by creating
a temporal copy of T t

j , called T Vt
j , which stores the following products:

– The normalized value with respect to the row: this is a way to proportionally
distribute the corresponding object along the blocks. Since it depends on the
multiplicities in the LHS of the blocks, the distribution, in fact, penalizes
the blocks requiring more copies of the same object. This is inspired in the
amount of energy required to gather individuals from the same species.

– The value in the dynamic table (i.e. 1
k ): this indicates the number of possible

applications of the block with the corresponding object.
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– The multiplicity of the object in the configuration C′
t: this performs the

distribution of the number of copies of the object along the blocks.

Algorithm 3.3. SELECTION PHASE 1: DISTRIBUTION

1: for j = 1 to m do � (For each environment ej)
2: Apply filters to table Tj using C

′
t, obtaining T t

j . The filters are applied as follows:
a. T t

j ← Tj

b. Filter 1 (T t
j , C

′
t).

c. Filter 2 (T t
j , C

′
t).

d. Check mutual consistency for the blocks remaining in T t
j . If there is at

least one inconsistency then report the information about the error, and
optionally halt the execution (in case of not activating step 3.)

e. Filter 3 (T t
j , C

′
t).

3: (OPTIONAL) Generate a set St
j of sub-tables from T t

j , formed by sets of
mutually consistent blocks, in a maximal way in T t

j (by the inclusion
relationship). Replace T t

j with a randomly selected table from St
j .

4: a ← 1
5: repeat
6: for all rows X in T t

j do
7: RowSumX,t,j ← total sum of the non-null values in the row X.
8: end for
9: T Vt

j ← T t
j � (A temporal copy of the dynamic table)

10: for all non-null positions (X,Y ) in T t
j do

11: multX,t,j ← multiplicity in C′
t at ej of the object at row X.

12: T Vt
j(X,Y ) ← �multX,t,j ·

(T t
j (X,Y ))2

RowSumX,t,j
�

13: end for
14: for all not filtered column, labelled by block B, in T t

j do
15: Na

B ← minX∈rows(T t
j )(T Vt

j(X,B)) � (The minimum of the column)

16: Bj
sel ← Bj

sel + {BNa
B} � (Accumulate the value to the total)

17: C′
t ← C′

t − LHS(B) ·Na
B � (Delete the LHS of the block.)

18: end for
19: Filter 2 (T t

j , C
′
t)

20: Filter 3 (T t
j , C

′
t)

21: a ← a+ 1
22: until (a > A) ∨ (all the selected minimums at step 15 are 0)
23: end for

Algorithm 3.4. SELECTION PHASE 2: MAXIMALITY

1: for j = 1 to m do � (For each environment ej)
2: Set a random order to the blocks remaining in the last updated table T t

j .
3: for all block B, following the previous random order do
4: NB ← number of possible applications of B in C′

t.
5: Bj

sel ← Bj
sel + {BNB} � (Accumulate the value to the total)

6: C′
t ← C′

t − LHS(B) ·NB � (Delete the LHS of block B, NB times.)
7: end for
8: end for
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After the object distribution process, the number of applications for each block
is calculated by selecting the minimum value in each column. This number is then
used for consuming the LHS from the configuration. However, this application
could be not maximal. The distribution process can eventually deliver objects
to blocks that are restricted by other objects. As this situation may occur
frequently, the distribution and the configuration update process is performed A
times, where A is an input parameter referring to accuracy. The more the process
is repeated, the more accurate the distribution becomes, but the performance of
the simulation decreases. We have experimentally checked that A = 2 gives the
best accuracy/performance ratio. In order to efficiently repeat the loop for A,
and also before going to the next phase (maximality), it is interesting to apply
Filters 2 and 3 again.

After phase 1, it may be the case that some blocks are still applicable to the
remaining objects. This may be caused by a low A value or by rounding artifacts
in the distribution process. Due to the requirements of P systems semantics, a
maximality phase is now applied (Algorithm 3.4). Following a random order, a
maximal number of applications is calculated for each block still applicable.

After the application of phases 1 and 2, a maximal multiset of selected
(mutually consistent) blocks has been computed. The output of the selection
stage has to be, however, a maximal multiset of selected rules. Hence, Phase
3 (Algorithm 3.5) passes from blocks to rules, by applying the corresponding
probabilities (at the local level of blocks). The rules belonging to a block are
selected according to a multinomial distributionM(N, g1, . . . , gl), where N is the
number of applications of the block, and g1, . . . , gl are the probabilities associated
with the rules r1, . . . , rl within the block, respectively.

Algorithm 3.5. SELECTION PHASE 3: PROBABILITY

1: for j = 1 to m do � (For each environment ej)
2: for all block BNB ∈ Bj

sel do
3: Calculate {n1, . . . , nl}, a random multinomial M(NB , g1, . . . , gl) with

respect to the probabilities of the rules r1, . . . , rl within the block.
4: for k = 1 to l do
5: Rj

sel ← Rj
sel + {rnk

k }.
6: end for
7: end for
8: Delete the multiset of selected blocks Bj

sel ← ∅. � (Useful for the next step)
9: end for

Finally, the execution stage (Algorithm 3.6) is applied. This stage consists
on adding the RHS of the previously selected multiset of rules, as the objects
present on the LHS of these rules have already been consumed. Moreover, the
indicated membrane charge is set.
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Algorithm 3.6. EXECUTION

1: for j = 1 to m do � (For each environment ej)
2: for all rule rn ∈ Rj

sel do � (Apply the RHS of selected rules)
3: C′

t ← C′
t + n · RHS(r)

4: Update the electrical charges of C′
t from RHS(r).

5: end for
6: Delete the multiset of selected rules Rj

sel ← ∅. � (Useful for the next step)
7: end for

4 The CUDA Programming Model

With the commercial sector’s demands for video and gaming, it was foreseen
by Elster [10] and others that graphics processor development would lead
to devices suitable for High Performance Computing (HPC). With the
introduction of NVIDIA’s CUDA [13] and AMD’s Stream SDK environments
in 2007, the GPUs became more easily programmable and the era of GPGPU
(General-Purpose Computing on Graphics Processing Units) truly began.
GPUs can now be considered affordable computing solutions for speeding up
computationally demanding applications. GPUs today typically have several
hundred computational cores. By parallelizing and optimizing our codes for
these cores, we have shown that GPUs can speed up applications ranging from
smoothed hydrodynamics (SPH) [14] and real-time gradient vector flows to linear
programming [21] and can even be used as an accelerator to compress I/O data
for faster I/O speeds [1]. As was mentioned earlier, we have also successfully
used GPUs to implement other P systems simulators [2,5,6].

4.1 Compute Unified Device Architecture

NVIDIA’s CUDA (Compute Unified Device Architecture) provides developers
with a high-level programming model that allows developers to take full
advantage of the NVIDIA’s powerful GPU hardware. To a CUDA programmer
[23], the computing system is heterogeneous, consisting of a host (the CPU), and
one or more massively parallel many-core devices (GPU systems). In modern
software applications, there are often program sections that exhibit rich amount
of data parallelism, a property where many arithmetic operations can be safely
performed simultaneously on the program data structures. GPUs accelerate the
execution of these applications by harvesting a large amount of data parallelism.

CUDA is built around a scalable array of multithreaded Streaming Multi-
processors (SMs). The SM creates, manages, and executes concurrent threads
(extra light weight processes) in hardware with with virtually no overhead
[23]. This allows very fine-grained decomposition of problems by assigning, for
instance, one thread to each data element. Each threads has a unique threadIdx,
and is grouped in 1D, 2D, or 3D blocks which are organized in 1D or 2D grids.
All the threads execute the same code, called kernel.

Since all threads of a block are expected to reside on the same processor
core and must share the limited memory resources of that core, current GPUs,
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are limited to a maximum of 1024 threads. The number of thread blocks in a
grid is usually dictated by the size of the data being processed or the number
of processors in the system, which it can greatly exceed. These features make
CUDA an interesting choice for developing simulators for the area of Membrane
Computing, as previously demonstrated for active membranes [5], a P systems
based solution to SAT [6] and for spiking neural P systems [2].

5 DCBA Implementation on the GPU

The DCBA was first implemented inside the pLinguaCore framework [17,11,24].
This version (hereafter pdp-plcore-sim) was validated by a real ecosystem model
[17], reproducing the same data as the actual measurements. However, the
performance was slow since it as part of the pLinguaCore was written in Java.

Our first approach for making our implementation more efficient, was
to develope a stand alone simulator written in C++. We then improved
performance further by using OpenMP to take advantage of modern multi-core
architectures, such as the Intel’s i5 Nehalem and i7 Sandy (pdp-omp-sim). Pdp-
omp-sim achieved speedups of up to 2.5x on a 4-core Intel i7. These preliminary
results indicated that the simulations of PDP systems are memory bound.

Our previous simulator, pdp-omp-sim, is the starting point of the new
implementation using CUDA. In this new simulator (let call it pdp-gpu-sim),
the code and the data structures have been optimized, saving up to 27% of
memory. We have also adapted pdp-omp-sim to these, achieving better speedups
(1.25x for large systems).

Normally, the end user (i.e. ecological experts and model designers) runs
many simulations on each set of parameters to extract statistical information of
the probabilistic model. This can be automated by adding a outermost loop for
simulations in Algorithm 3.1. This loop is easily parallelized. Indeed, our tests
of pdp-omp-sim conclude that parallelizing by simulations or a hybrid technique
(simulations plus environments) yields the largest speedups.

At first glance, these two levels of parallelism (simulations and environments)
could fit the double parallelism of the CUDA architecture (thread blocks and
threads). For example, we could assign each simulation to a block of threads, and
each environment to a thread (since they require synchronization at each time
step). However, the number of environments depends inherently on the model.
Typically, 2 to 20 environments are considered, which is not enough for fulfilling
the GPU resources. Number of simulations typically range from 50 to 100, which
is sufficient for thread blocks, but still a poor number compared to the several
hundred cores available on modern GPUs.

We therefore also parallelize the execution of rule blocks. Our simulator can
hence utilize a huge number of thread blocks by distributing simulations (parallel
simulations, as memory can store them) and environments in each one, and
process each rule block by each thread. Since there are normally more rule blocks
(thousand of them) than threads per thread block (up to 512), we create 256
threads which iterate over the rule blocks in tiles. This design is graphically
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shown on Figure 1. Each phase of the algorithm has been designed following the
general CUDA design explained above, and implemented separately as individual
kernels. Thus, simulations and environments are synchronized by the successive
calls to the kernels.

Fig. 1. General design of our CUDA-based simulator: 2D grid, and 1D thread blocks.
Threads loop the rule blocks in tiles.

5.1 Implementation of Selection Phase 1

The main challenge at this phase is the construction of the expanded static table
Tj . The size of this table is of order O(|B|·|Γ |·(q+1)), where |B| is the number of
rule blocks, |Γ | is the size of the alphabet (amount of different objects), and q+1
corresponds to the number of membranes plus the space for the environment.

A full implementation of Tj can be expensive for large PDP systems. Moreover,
it is a sparse matrix, having null values in the majority of the positions:
competitions for one object appears for a relatively small number of blocks.
This problem was overcome in the pdp-plcore-sim by using a hash table storing
only non-null values. For pdp-omp-sim, the idea was to avoid the construction
of Tj , by translating the operations over the table to operations directly to the
rule blocks information (using the observations made in section 3):

– Operations over columns: they can be transformed to operations for each
rule block and the objects appearing in the multisets of the LHS.

– Operations over rows: they can be translated similarly to operations over
rows, but the partial results into a global array (one position per row).

Phase 1 can be implemented as described in Algorithm 5.1. Note that Filter
3 is not needed any more. Although the full table is not created, some auxiliary
data structures are used to virtually simulate it (we say it uses a virtual table):
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– activationV ector: the information of filtered blocks is stored here as boolean
values. The full global size is of order O(|B| ∗ m ∗ nsim), where m is the
number of environments and nsim the number of simulations carried out in
parallel. This vector is actually implemented passing from boolean to bits.

– addition: the total calculated sums for rows are stored here, one number per
each pair object and region. Its size is of order O(|Γ | ∗ (q + 1) ∗m ∗ nsim).

– MinN : the minimum numbers calculated per column are stored here. This is
needed in order to substract the corresponding number of applications to C ′

t

in each loop for the A value. The full global size is of order O(|B|∗m∗nsim).
– BlockSel: the total number of applications for each rule block is stored here.

The full global size is of order O(|B| ∗m ∗ nsim).
– RuleSel: the total number of applications for each rule is stored here. The

full global size is of order O(((|R| ∗ m) + |RE |) ∗ nsim), where |R| is the
number of rules and |RE | the number of communication rules.

Algorithm 5.1. Implementation of selection Phase 1 with virtual table

1: for j = 1, . . . ,m do � For each environment
2: for all block B do
3: activationV ector[B] ← true
4: if charge(LHS(B)) is different to the one presented C′

t then
5: activationV ector[B] ← false � (Apply Filter 1)
6: else if one of the objects in LHS(B) does not exist in C′

t then
7: activationV ector[B] ← false � (Apply Filter 2)
8: end if
9: end for
10: Check the mutually consistency of blocks.
11: repeat
12: for all block B having activationV ector[B] = true do � (Normalization 1)
13: for each object ok appearing in LHS(B), associated to region i do
14: addition[o, i] ← addition[o, i] + k
15: end for
16: end for
17: for all block B having activationV ector[B] = true do � (Normalization 2)
18: MinN [B] ← Min[ok]i∈LHS(B)(

1
k2 ∗ 1

addition[o,i]
∗ C′

t[o, i]).

19: BlockSel[B] ← BlockSel[B] +MinN [B].
20: end for
21: for all block B having activationV ector[B] = true do � (Updating)
22: C′

t ← C′
t − LHS(B) ∗MinN [B]

23: end for
24: Apply Filter 2 again (as described in step 6).
25: a ← a+ 1
26: until a = A or for each active block B, MinN [B] = 0
27: end for

The implementation on the device has been constructed directly from
Algorithm 5.1. Phase 1 has been implemented using several kernels, avoiding
the overload of only one:
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– Kernel for Filters (from line 2 to 10 in Algorithm 5.1): Filters 1 and 2 are
implemented here by using our general CUDA design (Figure 1).

– Kernel for Normalization (from line 11 to 20): the two parts (row additions
and minimum calculations) of the normalization step is implemented in a
kernel. The two parts are synchronized by synchtreads CUDA instruction.
The work assigned to threads is divergent; that is, each thread works with
one rule block, but writes information for each object appearing in the LHS.
Therefore, the writes to addition are carried out by atomic operations.

– Kernel for Updating and Filter 2 (from line 21 to 26). As before, the work
of each thread is divergent. Thus, the update of the configuration is also
implemented with atomic operations.

5.2 Implementation of Selection Phase 2

Phase 2 is the most challenging part when parallelizing by blocks. The selection
of blocks at this phase is performed in an inherently sequential way: we need to
know how many objects a block can consume before selecting the next one. In
our solution, Phase 2 is implemented by one kernel, using our general CUDA
design.

The random order to the blocks is simulated by the CUDA thread scheduler:
each thread calculates the position in the order of its rule block by using the
atomicInc operation. Since it does not perform a real random order, random
numbers are going to be used soon in next versions. Our first approach (let
designate it ph2-simorder-oneseq) for phase 2 was to launch 257 threads: 256
threads to calculate the “random” order, and an extra thread to iterate the
blocks in that order, selecting and consuming the LHS. Since this approach is
still sequentially executed in the GPU, an improved version was constructed.

Our new version (designated ph2-simorder-dyncomp) dynamically checks the
blocks that are really competing for objects, and calculates which blocks can be
selected in parallel, and which depend on the selection of the others. To do this,

Fig. 2. Sample of our ph2-simorder-dyncomp kernel execution
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some previous computations are needed. Two arrays are used, one for storing the
information of the LHS, and another to store the order of selection (rule blocks
having the same order number will be selected in parallel). Both of the arrays
are implemented using the GPUs shared memory to speedup this computation.
Shared memory on the GPU is one of the on-chip memory spaces which is shared
by all the SPs of a SM. Access times to the shared memory are comparable to
those of a L1-cache on a traditional CPU. (GPUs also feature high-speed DRAM
memory (device memory) with higher latency than on-chip memory (typically
hundreds of times slower). The device memory is subdivided in read-write, non-
cached (global and local) and read-only, cached (texture) areas.)

Figure 2 shows a sample ph2-simorder-dyncomp kernel execution. We iterate
for each rule block (using the pre-calculated random order). First, the rule blocks
check if they have common objects with block B0. In the example, block B1 has
object A, and block B3 has objects A and B. They annotate this competition
with the pair (block, object), using the indexes of the array. The current block
also calculates the selection order by checking if it has some depending objects.
If so, the order is increased by one. For the first iteration, block B0 is assigned
order 0, but in iteration 1, block B1 is assigned order 1 (competing with block
B0). The rest of the iteration can be seen in Figure 2.

Our experiments shows that ph2-simorder-dyncomp, that includes extra
computations but allows to execute independent blocks in parallel, achieves up
to 20% of performance improvement from ph2-simorder-oneseq.

5.3 Implementation of Selection Phase 3

Phase 3 calculates the number of times a rule is applied using a binomial
distribution, and the selected block number, both implemented in one kernel.

For random binomial number generation, we have made a CUDA library
based on CuRAND, called curng binomial. This module implements the BINV
algorithm proposed by Voratas Kachitvichyanukul and Bruce W. Schmeiser [12].
Algorithm BINV executes with speed proportional to n·p and has been improved
by exploiting properties listed in the paper [12]. Also, it has got the best results
assuming a normal probability approximation when n · p > 10.

In depth, the library implements an inline device function which executes
binomial randomization (BINV) when n · p ≤ 10 and normal randomization
(CuRAND) otherwise. Our implementation generates binomial random numbers
while running the kernel; thus, they are not generated previously.

The implementation of the phase is directly translated from the pseudocode of
the DCBA. Also, it has got the best parallelism exploiting until now, comparing
to other phases of the algorithm.

5.4 Implementation of Execution (Phase 4)

Phase 4 is implemented as directly shown in the DCBA pseudocode using our
general CUDA design. In this case, we go to another level of parallelism for
threads, that now works with each rule. As before, threads iterate the rules by
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tiles, and adding the corresponding RHS (if it has a number of applications
Nr > 0). Finally, since this operation is divergent (from rules to add objects),
we use atomic operations again to update the configuration of the system.

6 Performance Results

In order to test the performance of our simulators, we constructed a random
generator of PDP systems (designated pdps-rand). These randomly created PDP
systems have no biological meaning. The purpose is to stress the simulator in
order to analyze the implemented designs with different topologies. pdps-rand is
parametrized in such a way that it can create PDP systems of a desired size.

We benchmark our pdp-gpu-sim and pdp-omp-sim (for 1, 2 and 4 cores) by
first analyzing the scalability when increasing the size of the system in several
ways. We then profile the simulators, showing the percentage of time taken by
each phase separately. All experiments are run on a Linux 64-bit server, with
a 4-core (2 GHz) dual socket Intel i5 Xeon Nehalem processor, 12 GBytes of
DDR3 RAM and two NVIDIA Tesla C1060 graphics cards (240 cores at 1.30
GHZ , 4 GBytes of memory). GPU cores are typically slower than CPU cores.

Figure 3 shows the scalability of the simulator when the number of different
objects appearing in the LHS (cooperation degree (see Definition 2)) increases.
We can assume that, the greater the cooperation degree, the greater the number
of competing blocks generated by pdps-rand. The figure shows the simulation
time (in milliseconds) for one computation step running 50 simulations of PDP
systems with 10 environments, 50000 rule blocks and 5000 different objects. The
randomly generated PDP systems are sorted by the mean LHS length, showing
that pdp-gpu-sim works better for lengths smaller than 3. The speedup achieved
by pdp-gpu-sim is 6.6x and 2.3x for lengths of 1 and 2 against pdp-omp-sim with
one core, and 4.5x and 1.9x against pdp-omp-sim with 4 cores, respectively.

Fig. 3. Scalability when increasing the mean LHS length of rules
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The second test analyses the performance when increasing the parallelism
level of the CUDA threads within thread blocks, that is, the number of rule
blocks. The speedup achieved by pdp-gpu-sim versus pdp-omp-sim is showed in
Figure 4. The number of simulations is fixed to 50, and the environments to 20
(hence, a total of 1000 thread blocks). The number of objects is proportionally
increased together with the number of rule blocks, in such a way that the ratio
for number of rule blocks and number of objects is always 2. The mean LHS
length is 1.5 (this is typical for many real ecosystem models, as seen in the
literature). The speedup gets stable to around 7x on the number of rule blocks
for the GPU versus CPU. For the multicore versions with 2 and 4 CPUs, the
speedups are maintained to 4.3x and 3x, respectively. In our experiments, this
number is also achieved when running with 1000000 rule blocks.

Fig. 4. Scalability of the simulators when increasing the number of rule blocks

The third test is for the second parallelism level in CUDA, concerning thread
blocks. It is directly related with the number of environments and simulations.
The result is shown in Figure 5. In this experiment, the number of rule blocks
is fixed to 10000, the number of objects to 7024 and the mean LHS length is 2.
The number of environments is fixed to 1 when increasing the simulations, and
vice versa. As it can be seen, for low values, the speedup is demoted below 1.
These values come from the fact of insufficient number of thread blocks to fulfill
the GPU resources. Another trend shown is that as the number of simulations
increases, the advantage of parallelizing by simulations increases. The same effect
is observed for environments. This trend is stabilized to 3.5x for high values.
However the parallelism over simulations is better carried out by the GPU,
giving lower speedups for environments.

As stated in [16], parallelizing by simulations yields the largest speedups on
multicore platforms. Therefore, we finalize the first benchmark by comparing
these results with the GPU. Rule blocks are fixed to 50000, environments to
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Fig. 5. Scalability – increasing the number of simulations and environments

Fig. 6. Scalability of the simulators when increasing the number of simulations

20, objects to 5000 and mean LHS length to 1.5. As shown in Figure 6, the
GPU achieves better runtime than the multicore implementations. The speedup
is maintained to 4.5x using one core, 3.5x for 2 cores, and 2.7x for 4 cores.

The results of the second benchmark are shown in Table 1. This profile has
been calculated running the simulator with 10000 rule blocks, 20 environments,
50 simulations, 5000 objects and two different mean LHS lengths, 1.5 (test A)
and 3 (test B). Phase 1 is the most complex part in the simulation (taking more
than 50% of the runtime on the CPU). In test A, the GPU implementation offers
for phase 1 up to 14x of speedup. Therefore, the percentage of the execution time
is decreased to 30%.

Following with Test A, Phase 2 takes only the 12% of the execution time
on CPU. However, the GPU can only accelerate this phase by 2x. Therefore,
this phase becomes the most expensive when executing the simulator on the
GPU (47%). Our novel implementation, ph2-simorder-dyncomp, is close (time-
wise) to the sequential implementation. Indeed, as mentioned above, this phase
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Table 1. Profiling the simulators for GPU and 1 core CPU

Test A (mean LHS length 1.5) Test B (mean LHS length 3)
% CPU % GPU Speedup % CPU % GPU Speedup

Phase 1 53.7% 30.1% 14.23x 55.3% 12% 8.52x

Phase 2 12.6% 47% 2.13x 18.4% 82.8% 0.4x

Phase 3 22.6% 13.7% 13.2x 14% 2.2% 11.72x

Phase 4 11.1% 9.2% 9.7x 12.3% 3% 7.43x

is the most challenging to parallelize. Special efforts have to be considered
here. On the other side, Phases 3 and 4 are relatively lightweight, and are
successfully accelerated (up to 13x and 9.7x, respectively). Hence, our library
random binomial generation based on CuRAND is well suited for Phase 3.

Finally, as shown in Figure 3, the performance of pdp-gpu-sim decreases as the
mean LHS length is increased. For Test B, the overall speedup decreases from
7.9x (Test A) to 1.8x (Test B). The percentage of time consumed by Phase 2 is
dramatically increased for the GPU, taking up to 83%. Thus, the competition
degree of rule blocks is a limiting factor in performance, which fully correlates
with the achieved results.

7 Conclusions and Future Work

In this paper we have presented the first GPU-based version of a simulator
for PDP systems with CUDA. We improved the memory utilization of both
our GPU-based version and our previous OpenMP-based version that we
benchmarked against. We benchmarked a set of randomly generated PDP
systems (without biological meaning), achieving speedups of up to 7x for large
sizes on NVIDIA Tesla C1060 GPU over our multi-core version.

We used a general CUDA design for the GPU part of our simulator:
environments and simulations are distributed through thread blocks, and rule
blocks among threads. Phases 1, 3 and 4 were efficiently executed on the GPU,
however Phase 2 was poorly accelerated, since it is inherently sequential.

For future work, the simulator is going to be reconnected with the P-Lingua
framework. The pLinguaCore library is able to parse P-Lingua files, simulate
P systems computations, and translate P-Lingua files to other file formats. In
this respect, a new file format is going to be designed to become the input of
our simulator. That way, the same P-Lingua files can contain the input data for
the Java simulator inside pLinguaCore and the CUDA simulator. Moreover, we
would like to validate our simulator with real ecosystems models. This would
also help us to adopt model-oriented heuristics to improve the CUDA design.
Finally, it would be useful to design a communication protocol and a Graphics
User Interface in order to connect the simulation pipeline with the end-user.

This simulator represents our first attempt on simulating PDP systems using
the GPU. Hence, improvements can be done to our new CUDA designs (i.e.
iterating from objects to blocks (gather strategy)), optimizing the code, and/or
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making more efforts on Phase 2. Future work will also take advantage of the new
GPU architectures, such as the NVIDIA Kepler, and AMD APU, which deliver
better performance than the Tesla C1060 we used for our experiments here.
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Abstract. We show that in the context of the Iyer et al. 67-variable car-
diac myocycte model (IMW), it is possible to replace the detailed 13-state
probabilistic model of the sodium channel dynamics with a much simpler
Hodgkin-Huxley (HH)-like two-state sodium channel model, while only
incurring a bounded approximation error. The technical basis for this re-
sult is the construction of an approximate bisimulation between the HH
and IMW sodium channel models, both of which are input-controlled
(voltage in this case) CTMCs.

The construction of the appropriate approximate bisimulation, as well
as the overall result regarding the behavior of this modified IMW model,
involves: (1) Identification of the voltage-dependent parameters of the
m and h gates in the HH-type channel via a two-step fitting process,
carried out over more than 22,000 representative observational traces of
the IMW channel. (2) Proving that the distance between observations of
the two channels is bounded. (3) Exploring the sensitivity of the overall
IMW model to the HH-type sodium-channel approximation. Our exten-
sive simulation results experimentally validate our findings, for varying
IMW-type input stimuli.

1 Introduction

The emergence of high throughput data acquisition equipment has changed cell
biology from a purely wet lab-based science to also an engineering and informa-
tion science. The identification of a mathematical model from cellular experi-
mental data, and the use of this model to predict and control the cell’s behavior,
are nowadays indispensable tools in cell biology’s arsenal [35,5].

Continual progress in data acquisition has also led to the creation of increas-
ingly sophisticated partial Differential Equations Models (DEMs) for cardiac
cells (myocytes). These are similar in spirit to the DEMs used in physics: their
main purpose is to elucidate the biological laws governing the electric behavior
of cardiac myocytes, i.e., their underlying cellular and ionic processes [9].
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Inspired by the squid-neuron DEM [19] developed by Hodgkin and Huxley
(HH), Luo and Rudy (LR) devised one of the first myocyte DEMs, for guinea
pig ventricular cells [29]. Adapting this model to human myocytes led to the
ten Tusscher-Noble2-Panfilov (TNNP) DEM [40], which has 17 state variables
and 44 parameters. Based on updated experimental data, Iyer, Mazhari and
Winslow (IMW) subsequently developed a DEM comprising of 67 state variables
and 94 parameters [20]. This DEM reflects a highly detailed physiological view
the electrochemical behavior of human myocytes.

From 17 to 67 variables, all such DEMs capture myocytic behavior at a par-
ticular level of abstraction, and hence all of them play an important role in the
modeling hierarchy. It is essential, however, to maintain focus on the purpose of
a particular DEM; that is, of the particular cellular and ionic processes whose
behavior the DEM is intended to capture. Disregarding this purpose may lead
to the use of unnecessarily complex DEMs, which may render not only analysis,
but also simulation, intractable.

If the only entity of interest is the myocyte’s transmembrane voltage, co-
authors Cherry and Fenton have experimentally shown that a minimal DEM
(MM) consisting of only 4 variables and 27 parameters can accurately capture
voltage propagation properties in 1D, 2D, and 3D networks of myocytes [4]. The
MM has allowed us to obtain dramatic simulation speedups [1], and to use its
linear hybridization as the basis for formal symbolic analysis [18].

Since new technological advances are expected to lead to further insights into
myocytic behavior, it is likely that the IMW model will be further refined by
adding new variables. As in model checking and controller synthesis, one would
therefore like to compute the smallest approximation of the State Of the Art
DEM (SOA) that is observationally equivalent to the SOA with respect to the
property of interest, modulo some bounded approximation error. This, however,
is not easily accomplished, as it implies the automatic approximation of very
large nonlinear DEMs.

A first step toward the desired automation is to identify a set of approxima-
tion techniques that allow one to systematically remove unobservable variables
from, say, the SOA to end up with the MM, if the only observable variable is
the voltage. This is one of the goals of the project Computational Modeling
and Analysis of Complex Systems (CMACS) [36]. A byproduct of this work is
to establish a long-missing formal relation among the existing myocyte DEMs,
facilitating the transfer of properties established at one layer of abstraction to
the other layers. Building such towers of abstraction is becoming increasingly
prevalent in systems biology [22,11].

The main focus of this paper is on sodium channel approximations. In the HH
DEM and Noble’s DEM of [37], the transmembrane sodium channel is assumed
to consist of four independent Markovian gates, whose opening and closing rates
depend on the transmembrane voltage. The probability of each of the three
identical activating (m-type) gates being open, i.e. a state favoring ion flow, is
denoted by m, and the probability of the fourth inactivating (h-type) gate being
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open is denoted by h. The sodium channel conducts when all the four gates are
in the open state.

The IMW model uses the formulation of Irvine et al. [28], where experimental
data is used to show the existence of five interdependent gates. This leads to a
considerably larger Markovian model for the sodium channel, consisting of 13
state variables.

The main question posed in this paper is the following: Assuming that the
conductance of the sodium channel is the only observable, is the behavior of the
HH channel equivalent to the behavior of the IMW channel, modulo a well-defined
approximation error? Rather than dealing with behavioral equivalence explicitly,
we ask if it is possible to construct an approximate bisimulation [12,14,13,15]
between the discrete-time versions of the HH and IMW channel models? This
notion of equivalence is stronger than the conventional behavioral equivalence,
which compares the observed behaviors (trajectories) of two systems.

Moreover, proving the two models to be approximately bisimilar ensures that
when the 13-state sodium channel model is replaced by the 2-state HH-type
abstraction in the overall IMW cardiac cell model, the modified IMW model
retains the properties of interest (in discrete time). Thus, the reduced 2-state
model is a valid reduction in the context of the whole-cell IMW model.

The answer to the above-posed question is of broad interest, as it reduces to
showing the existence of an approximate bisimulation between two Continuous-
Time Markov Decision Processes (CT-MDPs); that is, two input-controlled
(voltage in this case) continuous-time Markov chains (CTMCs). We answer this
question in the positive, by explicitly constructing such a bisimulation.

The construction involves: (1) The identification of the voltage-dependent
parameters of the m and h-type gates of the HH-type abstraction, based on the
observations of the IMW channel. (2) Proving that the distance between the ob-
servations of the two channels never exceeds a given error. (3) Exploring the sen-
sitivity of the overall IMW DEM to the HH-type sodium-channel approximation.

The identification of the voltage-dependent parameters is performed via a
two-step fitting process. In the first step, which we call Parameter Estimation
from Finite Traces, more than 22,000 observational traces of the IMW channel
are fit to obtain the parameter values at constant voltage. The second step,
which we call Rate Function Identification, combines the step-1 constant-voltage
parameter values to obtain the voltage-dependent parameters defining the HH-
type channel. Finally, the resulting two-state HH-type channel is proved to be
approximately bisimilar to the IMW channel and the error between the two
systems is bounded. See Fig. 1 for an overview of our approach.

The rest of the paper is organized as follows. Section 2 introduces the relevant
background for the HH and the IMW DEMs and their sodium-channel MDP
formulations. Section 3 presents our parameter identification technique and the
resulting HH-type MDP for the sodium channel. Section 4 proves the existence of
an approximate bisimulation between the HH and IMW sodium-channel MDPs.
Sections 5 and 6 discuss related work, our conclusions, and future directions.
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Fig. 1. A Labeled Transition System (LTS)-based view of the IMWDEM, composed of
various concurrently evolving subsystems corresponding to the different ionic currents.
We replace the 13-state INa subsystem with a 2-state HH-type abstraction. PEFT and
RFI are the two steps of identifying the abstract model. As the 2-state model is proved
to be approximately bisimilar (denoted by ∼=δ) to the detailed model, composing it
with the other concurrently evolving ionic current models (subsystems) retains the
cell-level behaviors of the IMW model. Note that the subsystems ignore the stimulus
input during their respective evolution and only depend upon the voltage input. The
LTS outputs the 13 currents in Eq. (1).

2 Background

The heart is the central organ of the circulatory system and is responsible for
pumping blood in the pulmonary and systemic circulation loops [8]. Pumping is
achieved through the synchronized contraction of around four billion myocytes,
which constitute the cardiac tissue. This is controlled in a distributed fashion,
through the propagation and reinforcement of an electric pulse (clock). The pulse
originates in the sino-atrial node of the heart and diffuses from one myocyte to
the other through a sophisticated communication infrastructure.

Cardiac myocytes belong to the class of excitable cells, which also includes
neurons. Such cells respond to an external electrical stimulus in the form of
an Action Potential (AP), which measures the change of the transmembrane
potential with time in response to the stimulus. A typical ventricular myocyte
AP and its associated phases are shown in Fig. 2(Right). Starting from the
resting state, a myocyte can either be excited by an external stimulus or by the
diffusing charge of the neighboring myocytes. In this paper, we will restrict our
focus on the upstroke phase of the AP.
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Fig. 2. (Left) Currents in IMW: Blue and brown arrows show ionic currents flowing
through channels. Blue circles and arrows correspond to ionic exchanger currents and
green circles denote ionic pumps. Intra-cellular currents are shown in Magenta. (Right)
The Action Potential (AP), its phases and associated currents. (Right-Inlay) Sodium
current in red, and the sum of all other currents in blue, in Upstroke Phase (UP).

2.1 The IMW Cellular Model

The IMW DEM is a physiologically detailed model capturing the ionic processes
responsible for the generation of an AP in human ventricular myocytes:

− CV̇ = INa+INab
+I

Ca
+I

Cab
+I

Kr
+I

Ks
+I

K1
+I

to1
+I

p(Ca)
+

I
NaCa

+I
NaK

+I
CaK

+I
st

(1)

where V is the membrane’s potential, V̇ is its first-order time derivative, C is
the membrane’s capacitance, and Iv are the ionic currents shown in Fig. 2(Left),
except for Ist. This is the stimulus current, which could be either an external
stimulus or the diffused charge from neighboring cells.

The remaining currents are the result of the flow of the sodium (Na+), potas-
sium (K+) and calcium (Ca2+) ions, across the myocyte’s membrane. Three
types of transport mechanisms are responsible for the ion flows: channels, pumps
and exchangers. Channels are special proteins that penetrate the membrane’s
lipid bi-layer, and are selectively permeable to ions species. Depending on the
conformation of the constituent protein, the channel either allows or inhibits the
unidirectional movement of an ion specie.

The protein conformation is voltage dependent, thus the name voltage-gated
channels. All the transmembrane currents in Fig. 2 result from voltage-gated
ionic channels, except for INaK , INaCa and Ip(Ca), which are exchanger or pump
currents. The concentration of calcium is regulated by a sophisticated intracel-
lular mechanism, and is out of scope of this paper.

Fig. 2(Right-inlay) plots the sodium current INa and the sum of all the other
ionic currents during the upstroke phase (UP), of a typical AP of the IMW
DEM. The sodium current INa dominates all the other. The behavior of the
sodium channel, which regulates the flow of INa, chiefly contributes to the up-
stroke phase, and will be the focus in the remainder of the paper. In the HH DEM
the situation is similar, and in MM the role of INa is played by the abstract fast
inward current Jfi.
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Fig. 3. (Left-top) Sodium channel MDP in 8 states counting the number of indepen-
dent open/closed gates, and observation function O(t). (Left-bottom) The open-closed
MDPs for the m and h-type gates. The equivalent sodium channel behavior is obtained
as O(t) = m(V )3h(V ). (Right) The schematic representation of the sodium channel
with its associated independent gates.

2.2 The HH Sodium Current

The sodium current INa in the HH DEM is defined by the following equation:

INa = gNam
3(V )h(V ) (V − VNa)

where gNa is the maximum conductance of the sodium channel, VNa is the
sodium’s channel Nernst potential, m(V ) and h(V ) are the probabilities of
the voltage-dependent activation gate and the inactivation gates being open
respectively.

A graphic illustration of the sodium channel is given in Fig. 3 (Right). It
consists of four independent voltage-controlled gates, three of which are identical
activation gates (m-type), and one of which is an inactivation gate (h-type).

The activation and inactivation gates are shown in Fig. 3 (Left-bottom). They
are Continuous Time Markov Decision Processes (CT-MDP). Both CT-MDPs
have a closed and an open state, respectively, and the rates of transitioning
between these two states are given by the voltage-dependent parameters α(V )
and β(V ). The 8-state CT-MDP for the whole channel is shown in the left-half of
Fig. 3. Evolution of the state variables (occupancy probabilities of the 8 states)
of this model is governed by Kolmogorov equations[21], which form an 8-state
DEM. It turns out that any of the 8-variables can be observed using the two
gates m and h as they form a stable invariant manifold of the 8-state DEM [23].
At rest the m-gate is closed and the h-gate is open. Their DEM is as follows:

ṁ = αm(V )(1 −m)− βm(V )m, ḣ = αh(V )(1− h)− βh(V )h

We refer to this DEM asMH . The linear system obtained by fixing V = v will be
denoted asMv

H . At any point in time the occupancy probability of the open state
O in the 8-state DEM is given by m(V )3h(V ). Thus the observation function O
of this DEM will be m(V )3h(V ). We now introduce the following notation:

x = [m,h]′, A = diag(−(αm + βm),−(αh + βh)), B = [αm, αh]
′
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Fig. 4. Probability for the m-gate to be open in HH: a) Numerical integration of m
for different voltage changes; b) Analytical solution of m for different voltage changes;
c) Voltage changes applied for the analytical and the numerical integration solutions.

The independence of the gates also implies that the DEM is in diagonal form,
and it can be therefore written as follows:

ẋ = Ax+B, x0 = [m0, h0]
′

Despite the linear-looking form, this equation is nonlinear, as A and B depend
on the voltage. For example, Fig. 4(a) shows its numeric solution for the input
in Fig. 4(c). However, HH computed an approximate closed form solution as
follows. In the resting state, defined as V =0, and in the equilibrium state, for
a fixed V = v, the gates m and h, and the rates τ have the following values:

m0 = αm0/(αm0 + βm0), m∞ = αm/(αm + βm)
h0 = αh0/(αh0 + βh0), h∞ = αh/(αh + βh)
τm = 1/(αm + βm), τh = 1/(αh + βh)

Then solving the DEM above as if A and B were constant and the differential
equation therefore linear, Hodgkin and Huxley derived the following solution:

x = [m∞ − (m∞ −m0)e
−t/τm , h∞ − (h∞ − h0)e−t/τh ]′

As shown in Fig. 4(b) this closed-form solution jumps for a changing input shown
in Fig. 4(c) between the solutions obtained for constant input. This behavior is
however not problematic when replaced in the cellular model, as the voltage
only jumps at the beginning, when the stimulus is applied, and then varies in a
continuous way.

2.3 The IMW Sodium Current

The sodium current INa in the IMW DEM is defined by the following equation:

INa = gNa (O1(V ) +O2(V )) (V − VNa) (2)

where gNa and VNa have the same meaning as in the HH DEM,O1(V ) andO2(V )
are occupancy probabilities of the two states of the MDP shown in Fig. 5.

The IMW view of the sodium channel is shown Fig. 5 [26,28], with transition
rates in Table 1. There are now four identical m-type gates, and the transition
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Fig. 5. The 13-variable MDP of the IMW model. The observation function is now
O = O1+O2, and the transition rates of the h-type gate are constants. However, they
depend on the number of open m-type gates through a. The transition rates are defined
in Table 1.

rates of the h-type gate are constant. However, these rates indirectly depend on
V through the number of open-closed m gates (encoded as powers of a).

Moreover, taking the path C0, C1, C1I, C0I is mathematically equivalent to
taking a voltage dependent h-transition C0, C0I. The longer the paths, the less
one can distinguish between the HH-type and the IMW-type transition. Note
also that two states O1 and O2 are now observable instead of one, and some
bookkeeping was also added.

Definition 1. Consider the 13-state model for sodium-channel dynamics shown
in Fig. 5. Let pj denote the jth state occupancy probability from the vector
p = (C0, C1, C2, C3, C4, O1, O2, C0I, C1I, C2I, C3I, C4I, I). The dynamics of
the model MI is described by the following system of differential equations :

dpj
dt

=
∑
i�=j

kij(V )pi −
∑
i�=j

kji(V )pj i, j = 1, . . . , 13 (3)

where V is the transmembrane potential and kij(V ) is the transition rate from
the ith to the jth state as defined in Table 1. This system can be re-written as:

dpj
dt

= A(V ).p, (4)

where A(V ) is a 13×13 matrix with Aj,i(V ) = kij(V ) i �= j, Aj,j(V ) = −
∑
i�=j

kji.

The linear system MIv is obtained from MI by fixing V = v in Eq. 4.

Table 1. Rates of the 13-state CT-MDP MI shown in Fig. 5. c = 8.513 × 109. Values
instantiated from Table 6 of [20] at temperature T = 310K.

rate function rate function rate function

α(V ) c.e−19.6759+0.0113V δδ(V ) c.e−38.4839−0.1440V ε 0.0227

β(V ) c.e−26.2321−0.0901V γγ(V ) c.e−21.9493+0.0301V ω 1.0890

γ(V ) c.e−16.5359+0.1097V η(V ) c.e−19.6729+0.0843V cn 0.7470

δ(V ) c.e−27.0926−0.0615V On(V ) c.e−20.6726+0.0114V cf 0.2261

ν(V ) c.e−26.3585−0.0678V Of (V ) c.e−39.7449+0.0027V a 1.4004
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3 Abstraction of Sodium Channel Dynamics

We construct an HH-type DEM MH that can be substituted for MI within the
IMW cardiac-cell model. We perform the following abstractions in this process:

– We reduce the number of activating subunits to 3 and use a single inactivat-
ing subunit. This results in abstracting away the I, C3I, C4I, C3 and C4I,
states of 13-state CTMDP in Figure 5.

– We coalesce the two open states into a single open state O.
– We abstract away the conditional dependence between activating and inacti-

vating subunits of the 13-state model MI . This is done by abstracting away
the scaling factor a.

– With the above abstractions,MI reduces to the 8-state CTMDP. The 8-state
abstraction then reduces to the 2-state DEMMH model due to the invariant
manifold reduction.

Our approach to obtaining the 2-state HH-type abstraction MH from the 13-
state physiological model MI is summarized in Fig. 6 and described next.

Fig. 6. Abstraction process for sodium channel dynamics

1. Generating Representative Finite Traces of MI

The IMW model was simulated in FORTRAN for a single cell with an inte-
gration time step of 10−4 ms. Multiple MIv systems were simulated for the
values of V observed during the FORTRAN simulation. The linear system
MIv was simulated in MATLAB using the ODE45 solver [32]. The integra-
tion time step for these simulations was 10−2 ms. The simulations ran till the
steady state was reached. The initial condition for all the simulations were
taken to be the initial condition specified in Table 4 of [20]. The motivation
for these initial conditions lies in the voltage-clamp experiments performed
in [19]. In these experiments, the voltage was initially maintained at the rest-
ing potential, with the neuron conductance also being in the resting state.
The voltage was suddenly increased to a specified value and the evolution of
conductance was observed till steady state.
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The simulations resulted in a set B∗, of finite-length representative behaviors
(traces). Each member B∗(v) is the trajectory of the simulation of Mv

I .

2. Parameter Estimation from Finite Traces (PEFT)
This routine takes B∗ as the input and at each of the voltage values v,
estimates the parameters of MHv , the two-state HH model (MH) at V = v.
For each voltage v, the following optimization problem was solved to estimate
the parameters αvm, βvm, αvh and βvh of MHv :

minimize

tvS∑
t=0

[Ov(t)−mv(t)3hv(t)]2

subject to: αvm, β
v
m, α

v
h, β

v
h ≥ 0

(5)

where
– t is the discrete-time step,
– tvS is the number of discrete-time steps taken by MIv to reach steady

state (MIv was simulated in MATLAB till steady-state),
– Ov(t) = Ov

1 (t)+O
v
2(t) is the sum of the occupancy probabilities of states

O1 and O2 in the trajectory B∗(v) and
– mv(t), hv(t) define a trajectory of Mv

H :

mv(t) =
αvm

αvm + βvm
+

(
mv(0)− αvm

αvm + βvm

)
exp (− (αvm + βvm) t)

hv(t) =
αvh

αvh + βvh
+

(
hv(0)− αvh

αvh + βvh

)
exp (− (αvh + βvh) t)

(6)

where mv(0) and hv(0) denote the initial conditions.

We used MATLAB’s constrained-optimization solver FMINCON [33] for
Eq. (5). Details of the active-set optimization algorithm implemented in the
function can be found in [30]. Three aspects of our implementation deserve
further elaboration:

– Choosing mv(0) and hv(0) - In [19], the authors choose the initial
conditions for all the voltages such that the inactivating gating variable
h is high and the activating gating variable m is low. We use the same
convention but ensure that the initial conductance (observation)
mv(0)3hv(0) = OVres , where OVres is the conductance O1 + O2 of MI

at the resting potential Vres. Specifically, we use mv(0) = 0.0026 and
hv(0) = 0.95 for all v.

– Providing seed-values - For each voltage-value v, FMINCON needs
seed values of αvm, βvm, αvh and βvh to start optimizing over the parameter
space. We implemented a local search strategy for this purpose. The
parameters estimated at vi were used as seed-values for vi+1. For the
resting potential, when i = 1, the seed values were taken by evaluating
Eq. (16)-(18) of [37] at V = −90.66mV (the resting potential).

– Local minima - The solver is guaranteed to provide parameter values
that locally minimize the objective function. FMINCON was run mul-
tiple times until the objective function was minimized to a value below
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a pre-defined threshold. The terminal values of an iteration were per-
turbed and used as seed-values for the next iteration. A maximum of
100 iterations were performed.

PEFT resulted in a table of parameters θ, again indexed by voltage, i.e. θv

contained the parameters of MHv .
3. Rate-Function Identification (RFI)

RFI combines the parameters θv of MHv and outputs the parameter func-
tions ofMH which are functions of V .This is done by identifying appropriate
forms for the parameter functions αm(V ), βm(V ), αh(V ) and βh(V ) and then
using MATLAB’s curve-fitting toolbox [31] to estimate the parameters of the
chosen form.

αm(V ) = −0.6 + 16.31

1 + exp(−0.05(V + 19.67))
(7)

αh(V ) =

{
0.07 + 0.11

1+exp(0.2495(V +53.01)) V ≤ −32.00
0.07− 0.06

1+exp(−0.07(V −6.73)) V > −32.00
(8)

βh(V ) = −4.8 +
145.1

1 + exp(−0.013(V − 179))
(9)

βm(V ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
9.92− 4.575

1+exp(−73.73(V +63.78)) V ≤ −60.28
2.32 + 2.512

1+exp(0.2173(V +50.69)) −60.28 < V ≤ −33.04
2.26 + 1.63

1+exp(−0.2(V +20.72)) −33.04 < V ≤ −1.823
−2.57 + 6.73

1+exp(0.07(V−40.23)) V > −1.823

(10)

Empirical Validation of the Reduced Model MH

The 13-state modelMI was substituted byMH in the IMWmodel. The modified
IMW model was simulated in FORTRAN. This modified model used MH to
produce the sodium current INa. Both supra and sub-threshold stimuli, lasting
for 0.5ms, were used to excite the cardiac cell. S1 and S2 denote supra-threshold
stimuli of -100 pA/pF and -120 pA/pF respectively. S3 and S4 denote sub-
threshold stimuli of -10 pA/pF and -20 pA/pF.

The results plotted in Fig. 7 show the behavioral equivalence of MH and MI .
The model retains both normal and anomalous cell-level behaviors on replacing
the 13-state sodium-channel component with the 2-state abstraction within the
complete cell model.2

4 Approximate Bisimulation Equivalence of MI and MH

We use PEFT and RFI to obtain MH , the two-state HH-type abstraction of the
13-state model for sodium-channel dynamicsMI . We formalize the discrete-time
equivalence of MH and MI using approximate bisimulation [15].

The approximate bisimulation relation between the state-spaces of the systems
can be utilized for gaining physiological insights from formal analysis. Analysis
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Fig. 7. Comparison of MI and MH when used for INa in the IMW model. We do not
show the currents and conductances for sub-threshold stimuli as they are negligible.
Mean L2 errors over the duration of an AP for all stimuli: Conductance: 3.2 × 10−5,
Current: 0.1249 pA/pF, V: 0.12mV.

can be done on the abstract model MH and the results can be interpreted in the
state-space of the physiological model MI .

In [15], Pappas et al. define approximate bisimulation equivalence of Labeled
Transition Systems (LTS), a generic modeling framework. We cast the models
MH and MI as LTSs and prove approximate bisimulation equivalence of their
discrete time versions. First we will establish stability properties of MIv . We use
Vres and Vmax to denote the resting potential and maximum potential attained
at the end of the upstroke (UP) phase.

Definition 2. A m×m square matrix M is called a closed compartmental ma-
trix if the the following two properties are satisfied:

1. Mij ≥ 0 for i �= j - Non-diagonal entries are non-negative.

2.
n∑

j=1

Mji = 0, 1 ≤ i ≤ m - sum of the entries in each column is 0.



Approximate Bisimulations for Sodium Channel Dynamics 279

Lemma 1. Let Av be the constant matrix obtained by fixing V = v in Eq. (4),
where v ∈ [Vres, Vmax]. A

v is a closed compartmental matrix for all v ∈ [Vres,
Vmax].

Proof. The first condition in Lemma 1 is met by construction.
For every column i, for i �= j, Aji is to the outgoing transition rate from state

i to state j: kji(V ). The diagonal entry in the ith column is the negated sum of
all these outgoing rates, which satisfies the second condition. ��

Lemma 2. The matrix Av, obtained by fixing V = v, is irreducible for all pos-
sible voltage values v ∈ [Vres, Vmax].

Proof. A graph-theoretic proof can be made by first inducing a graph from the
matrix Av. Let Gv(N,E) be the graph such that there is a node in the graph for
each of the 13 states in the stochastic model in Fig. 5 and an edge (ni, nj) ∈ E
if and only if Av

ij �= 0.
Proving that Gv remains connected at all values of V, amounts to proving

irreducibility of Av. This is indeed true because of the exponential functions in
Table 1. The graph Gv remains connected for all values v ∈ [Vres, Vmax]. ��

Theorem 1. The model MIv has a stable equilibrium for v ∈ [Vres, Vmax].

Proof. It follows from Proposition 4 in [21]. The prerequisites for the result are:

1. The matrix Av must be a closed compartmental matrix.
2. The entries in Av must be constant.
3. The matrix Av must be irreducible.

The first condition was proved in lemma 1. The second condition holds because
the rates in Table 1 are either constants or functions of V (which is fixed). We
proved the third prerequisite in Lemma 2.

Proposition 4 in [21] proves that the real part of all eigenvalues of Av is non-
positive. This guarantees stability of the equilibrium. ��

Theorem 1 guarantees the existence of tS , the time taken to reach a stable steady
state for V = v by MIv . We proceed to cast MI , MH , MIv and MHv as LTSs.

Definition 3. The LTS corresponding to MI is the sextuple I = (XI ,V ,→I ,
X0

I , ΠI , 〈〈.〉〉I ):

– XI ⊆ R13 is the set of states denoting the occupancy probabilities from the
vector p in Def. 1.

– V is a family of curves (signals) of the form [t0, t0 + APD] → R denoting
inputs to the LTS. The lower limit t0 is the time at which the AP commences
and APD is the Action Potential Duration. V represents different temporal
patterns by which the transmembrane potential V can be applied (fed back)
to MI, guaranteeing a solution to it. They are dictated by Eq. 1.

– →I⊆ XI ×V×XI is the transition relation that captures the dynamics of
MI such that (xI , v,x

′
I) ∈→I , written as xI

v−→I x′
I , holds when there exist

V $ v : [0, τ ] → R and ξ : [0, τ ] → R13 satisfying Eq. 4 with ξ(0) = xI and
ξ(τ) = xI

′. The time taken to transit from xI to xI
′ is τ .



280 A. Murthy et al.

– X0
I ⊆ R13, a singleton consisting of the initial condition for MI, is speci-

fied in Table 4 of [20] and acts as the initial state for I.
– ΠI ⊆ R, the set of outputs, denotes the observable values of MI , i.e. all

possible values of O(V ) = O1(V )+O2(V ), the sum of occupancy probabilities
of states O1 and O2.

– 〈〈.〉〉I : R13 → R is the output map, which given a state xI ∈ XI , maps it
to its corresponding output π6(xI) + π7(xI)

1, the sum of O1 and O2.

Definition 4. The LTS corresponding to MH is the sextuple H = (XH ,V ,→H ,
X0

H , ΠH , 〈〈.〉〉H ):

– XH ⊆ R2 is the set of states denoting the values of m and h in MH .
– V, the input set is the same as in Def. 3. The curves v ∈ V guarantee a

solution to MH .
– →H⊆ XH ×V ×XH is the transition relation that captures the dynamics

of MH such that (xH , v,x
′
H) ∈→H , written as xH

v−→H x′
H , holds when

there exists curves V $ v : [0, τ ] → R and ψ : [0, τ ] → R2 satisfying MH ,
with ψ(0) = xH and ψ(τ) = x′

H .
– X0

H ⊆ R2 is a singleton consisting of the initial condition identified by
PEFT for MHVres .

– ΠH ⊆ R is the set of outputs of the LTS denoting the observables from
MH . As INa current depends on the conductance m3h of MH , the set ΠH

contains all possible values of m3h.
– 〈〈.〉〉H : R2 → R is the output map, which given a state xH ∈ XH , maps it

to its corresponding output (π1(xH))3π2(xH), the conductance m3h.

Definition 5. The LTS corresponding to MIv is the sextuple Iv = (XIv , T,
→Iv , X0

Iv , ΠIv , 〈〈.〉〉Iv ). The states XIv , outputs ΠIv and output map 〈〈.〉〉Iv are
the same as in Def. 3.

– T ⊆ R≥0 is the input, denoting time.

– →Iv is the transition relation such that xIv
t−→Iv x′

Iv holds if there exists
a solution ξv to MIv satisfying ξv(0) = xIv and ξv(t) = x′

Iv .
– X0

Iv denotes the initial condition used in step 1 of the three-step procedure
in Section 3.

Definition 6. The LTS corresponding to MHv is the sextuple Hv = (XHv , T,
→Hv , X0

Hv , ΠHv , 〈〈.〉〉Hv ). The states XHv , outputs ΠHv and output map 〈〈.〉〉Hv

are the same as in Def. 4. The input set T is the same as in Def. 5.

– →Hv is the transition relation such that xHv
t−→Hv x′

Hv holds if there
exists a solution ψv to Mv

H satisfying ψv(0) = xHv and ψv(t) = x′
Hv .

– X0
Hv is the initial condition determined by PEFT in Sec 3 for V = v.

Definition 7. The two LTSs T1(Q1, Σ,→1, Q
0
1, Π, 〈〈.〉〉1) and T2(Q2, Σ,→2,

Q0
2, Π, 〈〈.〉〉2) are approximately bisimilar, with precision δ, denoted as T1 ∼=δ T2,

if there exists a relation Bδ ⊆ Q1 ×Q2 such that:
1 πj(x) is the projection function that projects the jth element from the vector x.



Approximate Bisimulations for Sodium Channel Dynamics 281

1. For every q1 ∈ Q0
1, there exists a q2 ∈ Q0

2 such that (q1, q2) ∈ Bδ and
conversely.

2. For every (q1, q2) ∈ Bδ, dΠ(〈〈q1〉〉1, 〈〈q2〉〉2) ≤ δ, where dΠ is some distance
metric defined on the output set Π shared by the two LTS.

3. For every (q1, q2) ∈ Bδ:

(a) q1
σ−→1 q

′
1, σ ∈ Σ, implies the existence of q2

σ−→2 q
′
2 such that (q′1, q

′
2) ∈

Bδ.
(b) q2

σ−→2 q
′
2, σ ∈ Σ, implies the existence of q1

σ−→1 q
′
1 such that (q′1, q

′
2) ∈

Bδ.
The relation Bδ is called the approximate bisimulation relation.

In the case of deterministic systems, such as I, H, Iv and Hv, proving two LTSs
approximately bisimilar is equivalent to proving that the distance between the
unique trajectories (behaviors) of the systems is bounded. Next, we state a simple
lemma relating finite-length trajectories of two Linear Autonomous Dynamical
Systems (LADS)2, whose proof follows from the uniqueness and continuity of
the trajectories.

Lemma 3. Consider two LADSs {ẋ1 =M1.x1, x1(0) = x0
1} and {ẋ2 =M2.x2,

x2(0) = x0
2} where x1,x2,x

0
1,x

0
2 ∈ Rn and M1 and M2 are n× n matrices. Let

x1(t) and x2(t) be the respective solution trajectories. Let I1[t1, t2] and I2[t2, t3]
be two time intervals of arbitrary lengths such that:

– |x1(t)− x2(t)| ≤ δ for t ∈ I1, and
– |x1(t)− x2(t)| ≤ δ for t ∈ I2,

where |.| denotes the L2 norm. Then |x1(t)− x2(t)| ≤ δ for t ∈ I12[t1, t3].
Definition 8. The LTSs Id, Hd, Ivd and Hv

d denote discrete time equivalents of
the LTSs I, H, Iv and Hv respectively such that:

– The input curves v for Id and Hd are discrete time signals of voltage of the
the form [v1, v2, . . . , vi, . . .], where vi is the voltage at the ith time step. The
inputs to Ivd and Hv

d are integral multiples of the time step.
– The transition relations of the LTSs respect the transitions of the corre-

sponding continuous time ones, except that the dynamics are now defined in
discrete time. Chapter 11 of [27] provides details about converting contin-
uous time models to discrete time versions via techniques like sample and
hold.

Note: Discrete time arguments can be justified because the LADS resulting
at constant voltages are band-limited as they attain steady state in finite time
for all voltages (see Theorem 1). For such systems, the Sampling theorem [27]
guarantees the existence of a Digital to Analog Converter (DAC) that can recover
the continuous time behaviors from discrete time samples, if a small-enough
discretization of time is used. This sampling frequency is determined by the
maximum frequency component in the continuous-time behaviors. Theorem 1
ensures that the maximum frequency component of the trajectories is bounded
for all voltages.

2 See Lecture 9 of [3] for a formal definition of LADS.
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Theorem 2. The PEFT procedure can ensure that Ivd ∼=δv Hv
d for any v ∈

[Vres, Vmax]. The precision δ
v is the maximum L2 error incurred by the optimizer

while solving Eq. (5).

Proof The approximate bisimulation relation Bδv ⊆ XIv × XHv can be con-
structed as follows.
1. The initial condition in x0

Iv ∈ X0
Iv is paired with the initial condition x0

Hv ∈
X0

Hv .

2. Consider a state xIv ∈ XIv such that x0
Iv

t−→Iv xIv , t ∈ T . Also say xHv ∈
XHv such that x0

Hv

t−→Hv xHv . Then, (xIv ,xHv ) ∈ Bδv . The existence of
states xIv and xHv satisfying the conditions is guaranteed due to uniqueness
and existence of solutions to LADS.

The relation Bδv is a valid approximate bisimulation relation. Condition 1 of

Def. 7 is satisfied by construction. Suppose we have (xIv ,xHv ) ∈ Bδv , xIv
t′−→Iv

x′
Iv , and xHv

t′−→Hv x′
Hv , then we have x0

Iv

t+t′−−−→Iv x′
Iv and x0

Hv

t+t′−−−→Hv x′
Hv ,

due to the uniqueness of the trajectories, where t is the time required to transit
from x0

Iv to xIv and from x0
Hv to xHv in Ivd and Hv

d respectively. This ensures
that (x′

Iv ,x′
Hv ) ∈ Bδv , thus satisfying condition 2 of Def. 7. Condition 3 is

satisfied due to Lemma 3, which also holds for discrete time trajectories. ��
We now define perturbed LADS. Then we outline the approximate bisimilarity

of Id and Hd.

Definition 9. Consider an LADS {ẋ =M.x, x(0) = x0}, where x,x0 ∈ Rn, M
is a n×n matrix and x(0) is the initial condition. An ε-perturbation of the LADS
is obtained by perturbing any of the entries in M or x(0) by at-most ε ∈ R.

Theorem 3. The three-step abstraction process explained in Section 3 ensures
that Hd

∼=δ Id with δ ≤ 7.58× 10−4.

Proof sketch: In discrete time, the evolution of MH (MI) can be modeled as a
series of one-step evolutions of MHv (MIv ) i.e. when the input signal is of the
form [v1, . . . , vi, vi+1 . . .], at the i

th step, the LADS MHvi (MIvi ) evolves for one
time step, followed by MHvi+1 (MIvi+1 ) and so on. This idea is also illustrated
in Fig. 4(b).

For some voltage V = v, the distance between the trajectories of MIv and
MHv can be bound in terms of the trajectories ofMIv∗ andMHv∗ , where v∗ is a
voltage that was processed by PEFT andMIv is a minimal perturbation ofMIv∗ .
At the ith step, the perturbation is the least for M

Iv∗
i
among all the voltages

that were processed by PEFT. We first bound the corresponding perturbation
of MHvi∗ , ε, and then use a similar approach for M

Iv∗
i

ε = max(ε1, ε2),where

ε1 = max
1≤j≤n

[max{|αm(vj)− αm(vj+1)|, |βm(vj)− βm(vj+1)|, |αh(vj)− αh(vj+1)|,

|βh(vj)− βh(vj+1)|}],
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ε2 =max[|αm(vΔ)− αm(vΔ+1)|, |βm(vΔ)− βm(vΔ+1)|, |αh(vΔ)− αh(vΔ+1)|,
|βh(vΔ)− βh(vΔ+1)|]

and Δ = argmax
1≤j≤n

[
|vj−vj+1|

2 ]

The limit n is the total number of voltages processed by PEFT. The term ε1
accounts for sharp changes in the rate functions αm(V ), αh(V ), βm(V ), βh(V )
and ε2 accounts for sparsity in the voltages processed by PEFT. Given the input
signal v, the ith step vi may be at most Δ mV away from a voltage processed
by PEFT.

At the ith step, let MHvi be an ε-perturbation of M
Hv∗

i
and at the (i + 1)th

step, let MHvi+1 be an ε-perturbation of M
H

v∗
i+1

. We can always ensure that
v∗i �= v∗i+1. This can be done by first bounding the time-scale, which determines
the maximum change in V that can occur over one time step, (|vi− vi+1|). Once
we know the least value of |vi − vi+1|, we can perform the PEFT procedure for
voltages that satisfy Δ ≤ |vi − vi+1|. Thus, we can ensure that at the ith step,
the perturbed-system MHvi (MIvi ) diverges from MHv∗

i
(M

Iv∗
i
) for at most one

time step.
We first bound the one-step divergence between the trajectories of MHvi and

M
Hv∗

i
. We calculate the sensitivity of the variable m to an ε change in the

parameters and the initial conditions below.

ṁv∗
i = α

v∗
i

m (1−m) + β
v∗
i

mm

mv∗
i [1] = m

v∗
i

0 + [α
v∗
i

m (1 −mv∗
i

0 ) + β
v∗
i

mm
v∗
i

0 ] (one time step)

mvi [1] = m
v∗
i

0 + ε+ [(α
v∗
i

m + ε)(1 −mv∗
i

0 ) + (β
v∗
i

m + ε)m
v∗
i

0 ](perturbed)

|mv∗
i [1]−mvi [1]| = |ε[1 + (1− 2m− αvim − 2ε− βvim)]| (divergence)

≤ |2ε|

The divergence is maximized when m = 0 and the transition rates α, β = 0.
Thus given an initial separation of ε, the trajectories diverge by at most 2ε in
one time-step. The same calculation can be repeated independently for h.

Theorem 2 dictates that the trajectories of M
Iv∗

i
and M

Hv∗
i
may not diverge

beyond δv
∗
i . This is implied by their approximate bisimulation equivalence.

Using a similar approach as taken for MHvi , we now bound the divergence of
trajectories of MIvi from M

Iv∗
i
. At V = vi, the maximum possible perturbation

μ of MIvi from M
Iv∗

i
, where v∗i is the nearest voltage processed by PEFT, can

be bound as was done for ε, by considering the rate functions of MI . The solu-
tion trajectory of M

Iv∗
i
is given by the matrix exponential eA(v∗

i )t, where A is
the matrix in Eq.(4). An arbitrary voltage vi in the input-signal presents a μ-
perturbation of the entries in A(v∗i ). The evolution ofMIvi is then approximated
by the corresponding perturbation of eA(v∗

i )t.
The matrix exponential is determined by the eigenvalues of A(v∗i ). Bauer-Fike

theorem [2] bounds the spectral perturbation caused due to a perturbation of
the original matrix. It ensures that the eigenvalues of A(vi) are μ-perturbations



284 A. Murthy et al.

of the eigenvalues of A(v∗i ). Thus, the maximum divergence3 of Mvi
I from M

v∗
i

I

in one time-step is at most eμ.
Thus, δ ≤ 16ε4 + argmax

1≤i≤n
[δv

∗
i ] + eμ, sum of the following quantities:

– Maximum divergence of MHvi from M
Hv∗

i
over one time-step: 16ε4. This is

due to the conductance being m3h. We bound the divergence of m and h
individually at 2ε.

– Maximum divergence of any M
Hv∗

i
from M

Iv∗
i
over all n voltages processed

during PEFT: argmax
1≤i≤n

[δv
∗
i ]. This was estimated to be 2.79× 10−4.

– Maximum divergence of MIvi from M
Iv∗

i
over one time step: eμ. ��

5 Related Work

Singular perturbation [24,34] and invariant manifold reduction [6,16] are two
popular approaches to reducing multi-scale state-space models of chemical re-
action kinetics [7,17,38]. The quasi steady state assumption is central to singu-
lar perturbation techniques used in [38]. The derivative of fast variables, which
evolve on relatively short time scales, is approximated to be zero, resulting in
model reduction. Despite being successful for chemical kinetics models, such
techniques are not well-suited for Markovian ion channel models. The former
involves a constant rate matrix A that renders the system linear, where as in
our Markovian models, the rate matrix A is a function of the transmembrane
voltage V . The voltage V is itself dependent on the evolution of the Markovian
model and this circular dependency causes the overall model to be nonlinear.

Reduction of Markovian ion-channel models, which is the central topic of this
paper, has been explored in [41,42]. The focus is on reducing the simulation
time, rather than obtaining a formal reduction. In [39] Smith et al. reduce a
stochastic model for the sodium-potassium pump by lumping the states of their
model. In [10], Fink et al. use mixed formulations of an HH-type model and a
Markovian model to reduce the number of state variables for the calcium current.
In this paper, we provide a systematic reduction of the sodium channel. Con-
ventional approaches like [25] use behavioral equivalence to validate the reduced
models. Approximate bisimulation, used in this paper, formalize equivalence in
a compositional setting and also help in insightful analysis.

6 Conclusions and Future Work

We constructed a two-state Hodgkin-Huxley-type model MH that can replace
the 13-state CT-MDPMI for sodium-channel dynamics, within the IMW model
for ventricular myocytes. The open state of MI being the only observable was
an underlying assumption in the reduction. It should be noted that this is not
very restrictive. Any observable state occupancy probability can be handled by

3 A tighter bound can be found, as was done for MHvi , by projecting the error onto
the O1 and O2 dimensions.
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modifying Eq. (5). Currently we map the open state probabilities ofMI and the
8-state CT-MDP in Fig. 3 to each other. Once such a mapping is established
between any two states of the two models, Eq. (5) can then be modified to fit the
trajectories of the states of MI that one is interested in. The invariant manifold
of the m and h is related to all the 8 states.

The reduction was formalized by proving the abstract and the concrete models
to be approximately bisimilar. This notion of system equivalence can be used
for compositional reasoning. When H is appropriately composed with the rest
of the larger whole-cell IMW model, approximate bisimulation guarantees that
the newly composed-system retains the properties of the original system. The
original system can be modeled as an appropriate composition of I and rest of the
IMW model. In the future, further complicated non-deterministic models will be
explored and reduced. Tighter bounds will also be pursued for the precision of the
bisimulation relation. We then plan to use the towers of abstraction constructed
from the strategy outlined in the paper, for insightful analysis of cardiac models.
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Abstract. Considering the logical (Boolean or multi-valued) asyn-
chronous framework, we delineate a reduction strategy for large signalling
and regulatory networks. Consequently, focusing on the core network
that drives the whole dynamics, we can check which attractors are reach-
able from given initial conditions, under fixed or varying environmental
conditions.

More specifically, the dynamics of logical models are represented by
(asynchronous) state transition graphs that grow exponentially with the
number of model components. We introduce adequate reduction meth-
ods (preserving reachability of the attractors) and proceed with model-
checking approaches.

Input nodes (that generally represent receptors) and output nodes
(that constitute readouts of network behaviours) are each specifically
processed to reduce the state space. The proposed approach is made
available within GINsim, our software dedicated to the definition and
analysis of logical models. The new GINsim functionalities consist in a
proper reduction of output components, as well as the corresponding
symbolic encoding of logical models for the NuSMV model checker. This
encoding also includes a reduction over input components (transferring
their values from states to transitions labels). Finally, we demonstrate the
interest of the proposed methods through their application to a published
large scale model of the signalling pathway involved in T cell activation.

Keywords: Qualitative modelling, Logical modelling, Model checking,
Regulatory networks, Signalling networks.

1 Introduction

As ever larger signalling and regulatory maps are being identified, there is a grow-
ing need for efficient computational means to analyse the behaviours induced by
these networks. Among the numerous existing modelling approaches (see e.g., re-
views [4,18]), the logical framework provides a convenient way to convey current
qualitative knowledge and proved useful to study a significant number of pub-
lished models. Here, we rely on the formalism initially proposed by R. Thomas

D. Gilbert and M. Heiner (Eds.): CMSB 2012, LNCS 7605, pp. 288–306, 2012.
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and co-workers [20], where discrete (Boolean or multi-valued) dynamics are rep-
resented as (asynchronous) state transition graphs (STG). For such models, the
number of states grows exponentially with the number of regulatory compo-
nents. We propose to tackle this combinatorial explosion, by applying adequate
reduction methods and by proceeding with model-checking approaches.

This manuscript focuses on signalling-regulatory networks that encompass
large numbers of input components (denoting external stimuli) and output
components (used as readouts of network behaviours). In concrete biological
networks, input components vary, often being externally controlled (e.g., light
availability, presence of nutrients, heat shock, etc.). It is thus relevant to con-
sider that input components freely vary (i.e., are under no specific control) and
to slightly extend the current definition of logical regulatory graphs. Then, the
STG encompasses transitions between all the states that share the same values
for internal components, denoting the sole changes of the input components.

For these signalling-regulatory networks, our rationale is to reduce the com-
plexity of the corresponding models, while ensuring the full preservation of the
properties of interest. These relate to asymptotical behaviours embodied in ter-
minal strongly components of the state transition graphs (referred to as attrac-
tors) as well as the reachability of those attractors from given initial conditions.
Moreover, we analyse the possible switches between attractors, upon variations
of the input components.

The reduction method presented in [11] possibly leads to the loss of some
trajectories. Here, we show that when applied to output cascades, this reduction
has no impact on reachability properties. However, it cannot be applied to input
cascades if attractor reachability is to be preserved. Hence, we propose another
strategy to lessen the size of the state space, by transferring the values of input
nodes to transition labels, thus reducing the state space by at least 2n (for n
input Boolean nodes). Furthermore, we discuss the nature of stable states in
these labelled state transition graphs, in the case of varying input components.
Finally, we resort to model-checking to analyse these complex dynamics.

We demonstrate the potential of this approach on the large scale Booleanmodel
that accounts for T cell activation as defined by Saez-Rodriguez et al. [16].

In [1], the authors introduce a “decimation algorithm“, which amounts to re-
moving variables that have no impact on the long-term behaviour. While similar
to ours, their method is valid for deterministic Boolean networks (with syn-
chronous updates). Indeed, for such models, the reduction method presented in
[11] has clearly different impacts on the dynamics. Considering asynchronous
Boolean dynamics, Saadatpour et al. recently proposed a reduction strategy for
large signalling transduction networks, relying on the fact that input cascades
stabilise under constant input conditions [15]. Here, we aim at going further,
first by ensuring that all the asynchronous dynamics is preserved (reducing only
output cascades), second by considering varying input conditions.

The paper is organised as follows. First, we recall the basics of the logical
formalism and of the model reduction method in Section 2. Section 3 presents the
method that allows us to focus on the core network, reducing the output cascades
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and projecting the dynamics over the input components. Implementation aspects
are discussed in Section 4. The proposed method is then applied to further
analyse a published model of the signalling pathway involved in T cell activation
[16]. The paper ends with some conclusions and prospects.

2 Background

In this section, we recapitulate (and extend) essential definitions concerning the
logical formalism. Then, we recall the basics of the model reduction as defined
in [11].

Definition 1. A logical signalling-regulatory graph (LSRG) R = (G,K) is de-
fined by:

– G a set of n components partitioned into three subsets: I = {gj}j=1...ni ,
the set of input components, P = {gj}j=(ni+1)...(ni+np), the set of proper
components, and O = {gj}j=(ni+np+1)...n, the set of output components.

– Discrete variables denoting the levels of the components: ∀givi ∈ Di =
{0 . . .Mi}. Then v = (vi)gi∈G is a state and S =

∏
gi∈G Di is the state space.

– Logical functions defining the behaviours of the components:
- For gi ∈ P ∪O, Ki is a multi-valued function that specifies the (unique)
target value Ki(v) of gi, given the current state v: Ki : S → Di.

- Input components gi ∈ I are either set to constant values in their do-
mains (Ki : S → Di):

∀v ∈ S,Ki(v) = vi,

or freely vary (Ki : S → Di ∪D2
i ):

∀v ∈ S,

⎧⎨⎩
if vi = 0, Ki(v) = vi + 1,
if vi =Mi, Ki(v) = vi − 1,
if Mi > 1 and 0 < vi < Mi, Ki(v) = (vi + 1, vi − 1).

This definition slightly extends the classical definition of Logical Regulatory
Graphs as introduced in e.g., [11], since it specifically distinguishes input com-
ponents, which account for environmental conditions and are either strictly con-
trolled (i.e., kept constant to their current values) or not (i.e., freely vary).

The partition of G, the set of regulatory components, will be useful in what
follows. Note however that it could be partially derived from the logical functions
K. Indeed, given a proper or output component gi ∈ P ∪ O, one can define
the set of nodes that influence gi, denoted Reg(gi): ∀gk ∈ G, gk ∈ Reg(gi) iff
∃v ∈ S,Ki(v) �= Ki(v

′), where vk = v′k± 1 and vj = v
′
j , ∀j �= k. If gk ∈ Reg(gi),

then there is an interaction from gk to gi and its sign can also be deduced from
the logical function Ki (see e.g., [11] for further detail). Moreover, we have

g ∈ O ⇔ � ∃g′ ∈ G, g ∈ Reg(g′),
g ∈ P ⇔ Reg(g) �= ∅ and ∃g′ ∈ G, g ∈ Reg(g′),
g ∈ I ⇔ g �∈ P ∪ O.
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2.1 State Transition Graphs Representing LSRGs Dynamics

The behaviours of LSRGs are represented as State Transition Graphs, defined
below. For proper and output components, we denote Δi(v) the “direction“ of
the update of gi in state v:

Δi(x) =

{
0 if Ki(v) = vi,
|Ki(v)−vi|
Ki(v)−vi

otherwise.

Definition 2. Given a LSRG R = (G,K), its full, asynchronous State Transi-
tion Graph (STG) is a graph E(R) = (S, T ) where:

– the nodes are the states in S,
– the arcs denote transitions between states,

- transitions over proper and output components are such that:

(v, w) ∈T ⊂ S2 ⇐⇒
∃gi ∈ P ∪ O s.t. Ki(v) �= vi, wi = vi +Δi(v) and wj = vj ∀j �= i,

- transitions over a varying input component gi are as follows (depending
on vi and Mi, there is a transition increasing vi, a transition decreasing
vi or both):{

(v, w) ∈ T , with wi = vi + 1, wj = vj ∀j �= i,⇐⇒ vi < Mi,
(v, w) ∈ T , with wi = vi − 1, wj = vj ∀j �= i⇐⇒ vi > 0.

We denote Ecste(R) (or simply Ecste), the STG where input components are kept
constant, and Evar the STG where input components freely vary. The STG Ecste
is made of at least as many disconnected sub-graphs as the number of fixed
input combinations (see Section 3.3 and Figure 1). In Evar these sub-graphs are
connected through transitions over varying inputs, connecting all states that
differ only in their values of input components.

Note that one can consider a sub-graph of the full STG, by defining initial
state(s). This graph can be constructed by visiting all successors of the initial
state(s) and proceeding with the exploration until no new state is encountered.

The main relevant properties to be analysed relate to LSRGs asymptotical
behaviours that are called attractors. In STGs, they correspond to terminal
Strongly Connected Components (SCCs). When input components are main-
tained constant, we have:

– Stable states (i.e., terminal SCCs reduced to a unique state);
– Complex attractors (i.e., terminal SCCs encompassing at least two states).

Within these complex attractors, we can further distinguish elementary ter-
minal cycles, in which all states have a unique outgoing transition.

In Evar, there is no stable state (as defined above) and we need to revisit the
definition of these attractors (see Figure 1 and Section 3.3).
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Beside the identification of attractors, it is often important to check reachability
properties, e.g., which attractors are reachable from an initial condition, what are
the properties of all trajectories leading to those reachable attractors, etc.

As already mentioned, we face a combinatorial explosion of the number of
states that hampers efficient analysis of STGs. The consideration of priority
classes, based on well-founded assumptions, amounts to choose between concur-
rent transitions and thus constitutes a convenient way of reducing the size of a
STG (see [5]). Another approach, yet related, consists in reducing the size of the
model (the number of its components). The method is briefly described below,
a full description being available in [11].

2.2 Model Reduction

The reduction method presented in [11] consists in iteratively taking components
off the model, which is adequately modified. The intuitive idea is to transfer
the role of the reduced component to its regulators. Importantly, reduction of
auto-regulated components is not allowed, to ensure that essential dynamical
properties are preserved. Indeed, regulatory circuits are known to be at the origin
of multi-stability (for positive circuits) and of stable oscillations (for negative
circuits) [19]. In the same way, with our extended definition of logical models,
where input components may freely vary, we will not allow reduction of these
input nodes.

More precisely, taking a (non-autoregulated) component gr off a LSRG R =
(G,K) leads to a new LSRG Rr = (Gr,Kr) with a reduced state space denoted
Sr =

∏
gi∈Gr=G\{gr}Di. It is useful to define:

– The projection πr : S → Sr such that ∀v ∈ S, ∀gi �= gr, πr(v)i = vi;
– The “retrieval“ function sr : Sr → S such that ∀x ∈ Sr, ∀gi �= gr, sr(x)i = xi

and sr(x)r = Kr(v), for v ∈ S such that πr(v) = x. We say that sr(x) is the
representative state of the equivalence class [sr(x)]∼r containing the states
that are projected on x ∈ Sr (all these states differ solely in their values for
the component gr).

Furthermore, the reduction of gr consists in modifying the logical functions (more
precisely, the functions of those components gi such that gr ∈ Reg(gi)):

∀x ∈ Sr , Kr
i (x) = Ki(s

r(x)).

Note that excluding auto-regulated and input components as candidates for
reduction ensures the existence and uniqueness of the representative state. We
recapitulate a number of properties concerning the dynamical behaviour of a
reduced LSRG (details and proofs can be found in [11]). Let consider R = (G,K)
a LSRG and Rr = (Gr,Kr) its reduced version (taking off gr). Let denote
E = (S, T ) and Er = (Sr, T r) their STGs. We have,

1. ∀u, v ∈ S, if u is a representative state (ur = Kr(u)), then: (u, v) ∈ T ⇒
(πr(u), πr(v)) ∈ T r;
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Fig. 1. (A) Simple example of a (Boolean) LSRG, with two proper components, one in-
put and one output, and the associated logical functions. (B) The corresponding (full)
STG Ecste, when the input component g3 is kept constant (states denote the values of g0,
g1, g2 and g3 in this order). There are 3 stable states. (C) The (full) STG Evar, consid-
ering a free variation of g3. (D) The labelled STG E |{g3}, resulting from the projection
over g3 and the labelling of the transitions with its values (see Section 3.3).

2. a transition (u, v) ∈ T is not preserved (i.e., (πr(u), πr(v)) �∈ T r and πr(u) �=
πr(v)) iff the following conditions are fulfilled:
– u is not a representative state (ur �= Kr(u)),
– ∃i �= r, vi �= ui, i.e., u and v differ on their values for a component gi,

which is not gr, hence (u, v) ∈ T is a transition over gi,
– and Δi(u) �= Δi(s

r(πr(u))) (the updating call on gi in state u is not
preserved in the representative state sr(πr(u)));

3. Stable states in E are conserved in Er: u stable in E implies that u is a
representative state and πr(u) is stable. Moreover, if z is stable in Er, then
sr(z) is stable in E ;
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4. If (u1 . . . up) is a elementary terminal cycle in E then (πr(u1) . . . π
r(up)) is a

elementary terminal cycle in Er;
5. If C ∈ S is a complex attractor in E , πr(C) contains at least one complex

attractor in Er.
Summarising, stable states and elementary attractive cycles are preserved by the
reduction (they only occur for constant input components). Complex attractors
may appear as the result of an SCC disconnection provoked by the loss of tran-
sitions. Note that, all transitions over varying input components are preserved
in T r (since, for any state v ∈ S, they equally exist in T for all states in the
equivalence class [v]∼r).

3 Focusing on Core Networks in LSRGs

In this section, based on topological considerations, we define three set of compo-
nents, each playing a distinct role in the dynamics of a LSRG. We then describe
the reduction of output cascades and projection over input components as rele-
vant means to reduce the size of the dynamics, yet keeping all its properties.

3.1 Splitting the Set of Components into Three Relevant Subsets

Given an LSRG R = (G,K), its set of components is defined as the union of the
set of inputs I, the set of output O and the set of proper components P . Here,
still on topological considerations, we define another partition of G in three sets
that play different role in the emergence of the dynamical properties.

The set of input and pseudo-input components, denoted Ĩ is recursively defined
as follows:

– I ⊂ Ĩ (all input components are in Ĩ);
– ∀gi ∈ G, if Reg(gi) ⊂ Ĩ then gi ∈ Ĩ (if all regulators of gi are inputs or

pseudo-inputs, then gi is a pseudo-input).

Similarly, the set of output and pseudo-output components, denoted Õ, is defined
as follows:

– O ⊂ Õ (all output components are in Õ);
– ∀gi ∈ G, if ∀gk ∈ G s.t. gi ∈ Reg(gk) we have gk ∈ Õ, then gi ∈ Õ (if all

targets of gi are outputs or pseudo-outputs, then gi is a pseudo-output).

Finally, Core, the set of core components of a LSRG is defined as the set of
components that are neither in Ĩ nor in Õ:

Core = G \ (Ĩ ∪ Õ)
When input components (elements of I) are maintained constant, for any at-

tractor made up of a set of states A, we have: ∀gi ∈ Ĩ, ∀v, v′ ∈ A, vi = v′i
(pseudo-input components are stable).

Moreover, while input and pseudo-input components transmit external stimuli
to the core components, these drive the dynamics of output and pseudo-output
components. We also refer to the sets Õ as output cascades, and Ĩ as input
cascades.
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3.2 Reduction of Output Cascades

Since an output has no effect on other components, output components can be
removed from a LSRG, with no impact on the behaviour. This is formalised by
the following property.

Property 1. Let R = (G,K) a LSRG, gr ∈ O an output component of R and
E = (S, T ) the associated STG. Then Er = (Sr, T r) the STG of the LSRG Rr

resulting from the reduction of gr, verifies:

∀u, v ∈ S, (u, v) ∈ T =⇒ (πr(u), πr(v)) ∈ T r or πr(u) = πr(v), (1)

∀x, y ∈ Sr, (x, y) ∈ T r =⇒ (sr(x), sr(y)) ∈ T . (2)

Proof. We only prove the first point that corresponds to the preservation of all
the transitions, the proof of Eq. 2 can be found in [11], lemma 1. Let us consider
(u, v) ∈ T , then,
– if transition (u, v) involves gr (the reduced component), u and v are in the

same equivalence class [u]∼r = [v]∼r (they only differ in their values of gr),
therefore their projection is equal: πr(u) = πr(v);

– if transition (u, v) involves gi ∈ I, an input component, which freely varies,
then, this transition is obviously preserved: (πr(u), πr(v)) ∈ T ;

– if transition (u, v) involves gi ∈ P ∪ O, a proper or an output component
(different from gr), then vi = Ki(u) + Δi(u) and, because gr is an output
component, we have also Kr

i (π
r(u)) = Ki(u), hence this transition is pre-

served: (πr(u), πr(v)) ∈ T .
As a consequence, attractors are fully preserved in Er, including complex ones,
and more than that, reachability of these attractors is conserved. This follows
from the fact that a path in E is preserved if the reduction preserves all its
transitions (see [11]). We say that the reduction of an output component is
lossless.

As mentioned before, output components often serve as readouts of a model.
Hence it is important to retrieve their values (typically in a stable state or in
a complex attractor). This is easily done because the behaviour of an output
component is fully described by the sole representative states in the original
STG. Hence retrieving the behaviours of output components only requires to
store their logical functions (see Section 4).

Since the reduction of an output component is lossless, it is obviously also the
case for the reduction of several output components.

Following the reduction of an output component, some of its former regulators
become output components. These are the pseudo-outputs (that only regulate
outputs or other pseudo-outputs). As such pseudo-outputs become outputs af-
ter reduction of their targets, they can be reduced as well, still preserving the
dynamical behaviour. Therefore, the reduction of the whole set Õ of output and
pseudo-output components does not affect the dynamics.

To be able to recover the values of the components in Õ, we need to keep
trace of the reduction of pseudo-outputs, redefining the logical functions of the
targets of previously reduced components (see Section 4).
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3.3 Input Components

Regulatory functions of proper and output components define their behaviours,
depending on the current state of their regulators. An input component has no
regulator and its function is thus assumed to be either constant or to freely
vary as specified in Definition 1. For a LSRG with constant input values, its
STG is composed by a set of disconnected graphs, one for each combination
of input values (see Figure 1, panel B). Given an initial value of all the input
variables, the behaviour is thus restricted to a sub-graph, easing the analysis
of large systems. However, when input components freely vary (i.e., are under
no specific control), the STG encompasses transitions between all the states
that have the same values of the internal components, denoting the sole changes
of the input components. Considering that states are characterised by proper
and output components values, the whole behaviour can be represented by a
STG, with transitions labelled by the values of the input variables, yielding a
compacted, labelled STG (see Figure 1). Below, we define such a projection over
the input variables.

Definition 3. Given R = (G = I∪P∪O,K), a LSRG and E = (S, T ) its STG.
The corresponding labelled STG E |I = (S|I , T |I) is defined as follows:

– S|I =
∏

gi∈P∪ODi,

– ∀v|I , w|I ∈ S|I , (v|I , L, w|I) ∈ T |I iff ∃v, w ∈ S with (v, w) ∈ T such that

∀gi ∈ P∪O, v|Ii = vi and w
|I
i = wi, with L the label of this transition defined

as the set of all the values of the input components for which this transition
is observed in E:

L = {u ∈ Πgi∈IDi s.t. ∀gi ∈ I, vi = ui(= wi)} .

When a LSRG has a significant number of input components, this represen-
tation may presents a true gain in the number of states (Πgi∈G\I |Di| instead
of Πgi∈G |Di|), still keeping all the information regarding the input components.
Such a graph structure combining labels on both states and transitions is already
used by the formal verification community, and is called a Kripke Transition Sys-
tem (KTS) [7].

By definition, stable states in a STG have no output transitions (see Figure 1,
panel B). However, when using model checking techniques, states of the system
to be verified must give rise to at least one transition. Notably, a self-loop must
be added to each stable state when translating the system into a KTS (e.g., the
implemented export to NuSMV). This is particularly useful to represent labelled
STGs (Definiton 3).

Definition 4. Given a labelled STG E|I = (S|I , T |I), a state v ∈ S|I is:

a strong stable state iff ∀w ∈ S|I , ∀L ∈ Πgi∈IDi, w �= v ⇒ (v, L, w) �∈ T |I,
a weak stable state iff ∀w ∈ S|I , ∃L ∈ Πgi∈IDi, w �= v ⇒ (v, L, w) �∈ T |I.
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Fig. 2. (A) Simple example of a (Boolean) LSRG, with two proper components, an

input and a pseudo-input, and the associated logical functions. Here Ĩ = {g3, g2}. (B)
The labelled STG E |{g3}, resulting from the projection over the input component g3
and the labelling of the transitions with its values. The states 000, 110 and 111 are weak
stable states. The last two states constitute a strong stable core ensemble (see text).
(C) The labelled STG of the model where g2 has been reduced. Here, the previous
core ensemble {110, 111} can be recovered from the strong stable state 11.

These definitions are sufficient for fixed input components and also cover
all the cases observed in our toy example (Figure 1, panel D), and in the T
cell activation model described in Section 5. They are however not sufficient in
other situations, where signalling cascades do vary upon input variations and
the “core“ network remains stable. This is illustrated in Figure 2.

It is thus necessary to better classify stable patterns, and identify what we
would call stable core patterns (see states 110 and 111 in Figure 2). To assess
pattern stability over input component variations, we rely on the behaviour of
the components in Core, the set of components that belong to the core network
(see Section 3.1).

Let Stable ⊂ S be the set of stable states for constant input compo-
nents: Stable = {v ∈ S, Ki(v) = vi, ∀i ∈ G}. It is worth noting that GINsim
provides a very efficient algorithm to determine this set [9,12]. Then, for all
v ∈ Stable, we define Core(v) = {v′ ∈ Stable, ∀gi ∈ Core, v′i = vi}, the set
of stable states that have the same values for the core components. Then, for
varying inputs, we classify the stable states as follows,

– if |Core(v)| = 1, then v is a weak stable state (there is a unique input
configuration for which this state is stable);

– if ∀v′ ∈ Core(v), ∀gi ∈ P , vi = v′i, then v is a strong stable state (since all
these stable states only differ in their input component values);

– otherwise (|Core(v)| > 1 and ∃v′ ∈ Core(v), ∃gi ∈ P \ Core, vi �= v′i), v
defines what we could call a stable core ensemble. Then, similarly to the sta-
ble states, we could define strong stable core ensembles (such that |Core(v)|
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equals the number of configurations of the input values) and weak stable core
ensembles.

Note that if v′ ∈ Core(v) ⊂ Stable, states v and v′ necessarily share the same
values on their output (and pseudo-output) components.

Another method to assess the stability of patterns upon input variations,
would consist in reducing the input cascades (iteratively all the pseudo-input

components in Ĩ \ I). Then, the strong stable states and core ensembles of
the original model are recovered from the (strong) stable states of this reduced
model (see Figure 2, panel C). Similarly, weak stable states and core ensembles
are recovered from the weak stable states of the reduced model. However, it is
important to recall here that this reduction, although it conserves the number
of stable states, could modify their reachability. This method is rather similar
to that described by Saadatpour et al. who, for constant input values, consider
the components that will reach stable values and propose to reduce them [15].

Although such considerations on stability upon input variations could also
apply to complex attractors, we leave this extension for future work.

4 Implementation

The software GINsim is dedicated to the definition and analysis of logical mod-
els [9]. It provides, among a variety of functionalities, the reduction method
presented in Section 2 [11]. Here, we briefly describe implementation aspects
of the methodology presented in this paper. First, the reduction of the out-
put cascades is implicitly made in GINsim. The model is then exported to
be verified using the model-checker NuSMV. A new stable release of GINsim
is expected in the near future. Meanwhile, a beta version of the tool with
these new functionalities is available, along with supplementary material, at
http://compbio.igc.gulbenkian.pt/nmd/node/46.

4.1 Output Nodes Manipulation in GINsim

GINsim [9] has been extended to automatically annotate output nodes based
on the structure of the LSRG. We have added an internal method that identi-
fies the pseudo-outputs and turns them into output components. For this, we
apply the reduction method to remove references to pseudo-outputs from the
logical functions of their targets. This trick ensures that all outputs can be de-
fined as depending only on core components, their values can thus be computed
independently. This is supported by the argument below.

Considering gi an output and gj a pseudo-output regulating gi (gj ∈ Reg(gi)).
Kj , the logical function of gj, is not modified, whereas Ki, the logical function

of gi, is replaced by Kj
i its new function obtained by the reduction of gj .

Note that, for the time being, the LSRG obtained through this manipulation
is used only for the NuSMV export, where outputs are defined as macros, not
characterising a state.

http://compbio.igc.gulbenkian.pt/nmd/node/46
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4.2 NuSMV Model Encoding and Verification

In [8], we have implemented an export functionality in the context of GINsim,
making possible the use of the NuSMV symbolic model-checker [2]. This NuSMV
model description enabled the consideration of the following updating policies:
synchronous, asynchronous or priority classes. This export also permitted to
distinguish between input and non-input components, enabling the reduction of
the state space over input components (described in section 3.3).

Here, this GINsim export functionality is extended with the capability to
distinguish between proper and output components (Section 3.2), containing
only the logical rules governing the proper components. The input valuations
are still projected over the transitions where they are valid, and the output
valuations are computed as macros depending on the state (defined only by the
proper components), permitting a reduction of the state space proportional to
the number of (pseudo-)output components. Pseudo-outputs are tackled through
the previously discussed method: from the NuSMV export point of view, they
are treated just like outputs.

As mentioned earlier, to be able to represent information both on states
(proper components) and on transitions (input components), we consider a graph
structure known in the formal verification community as Kripke Transition Sys-
tem (KTS) [7]. The main version of NuSMV supports the verification of temporal
logic properties over KTSs, but only when these properties do not make a ref-
erence to input components, i.e., do not impose restrictions on the transitions
of the KTS. This version only permit us to verify properties considering varying
inputs, with no query on their values.

In order to perform verifications over KTSs with properties imposing re-
strictions on transitions, we consider a particular NuSMV extension, denoted
NuSMV-ARCTL-TLACE [6]. This extension supports the ARCTL temporal
logic [13], an extension of CTL [3], which adds action-restricted operators
through an additional argument allowing the specification of restrictions on tran-
sitions over KTSs. Through the use of the ARCTL temporal logic, it is then
possible to perform verifications over reduced models of signalling-regulatory
networks, considering restrictions on their input components. These restrictions
thus allow the verification of a property with specific (combinations of) values
of the input components, or a chaining of CTL and ARCTL operators to ver-
ify reachability properties over KTS paths with unrestricted and specific input
values, respectively.

A CTL temporal logic operator accepts as argument a set of restrictions over
non-input components, e.g., EF(var1 & !var2), exploring each transition inde-
pendently of the value of the input components. On the other hand, an ARCTL
temporal logic operator accepts an additional argument defining a restriction
over input components, e.g., EAF(inp4 & !inp7)(var1 & !var2), exploring
only the transitions satisfying inp4 & !inp7 (without imposing restrictions on
other input components that might exist).
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5 Application to the Model of T Cell Activation

T cells (or T lymphocytes) are immune cells reacting to the presence of specific
antigens in the organism and playing a key role in the selection of the immune
response. The T cell family is divided into several subfamilies, each with a spe-
cific role. Their antigen specificity arises from a randomly-generated membrane
receptor: the T cell receptor (TCR). New T cells are continuously generated,
then undergo a selection mechanism to avoid self-immunity before circulating
in the organism. In the absence of their specific antigen, these cells will enter
apoptosis after a few days. However, when it encounters its specific antigen, a T
cell is activated and elicits the corresponding immune response. This activation
is triggered by binding of the antigen on their T cell Receptor (TCR). Cells are
kept alive as long as they receive TCR stimulation. The TCR activation path-
way is thus a crucial part of the initiation and maintenance of a specific immune
response.

The TCR recognises specific antigens (peptides) associated to the Major His-
tocompatibility Complex (MHC) on the surface of Antigen Presenting Cells. This
recognition also involves TCR co-receptor (CD4 for T helper cells, CD8 for cyto-
toxic T cells) and is accompanied by CD28 co-stimulation. Saez-Rodriguez et al.
[17] proposed a comprehensive logical model of the TCR activation pathway, tak-
ing into account the CD4 co-receptor and the action of the CD28 co-stimulatory
molecule. This TCR activation model encompasses 94 components, including 35
proper components (see Figure 3).

The dynamical analysis performed in [17] focuses on short-term effects thus
studying the states reached by signal propagation. This is done by impeding the
feedback loops to function through the definition of slow events. Here, we are
interested in the more complex behaviours that arise when feedback loops are
taken into account. Firstly, we have defined a GINsim version of this model and
confirmed that we obtain the same stable states in absence of the feedback loops,
both in the wild-type condition and after applying model perturbations.

For the full model (with feedback loops), we observe that stable states only ex-
ist in the absence of TCR stimulation (with or without CD4 and CD28). Indeed,
the TCR signal triggers oscillations, embodied in complex attractors. Note that
such oscillations will be transient by nature as the TCR signal is not a stable
stimulation. In what follows, we start by identifying the attractors (stable states
in the absence of TCR signal and oscillations when TCR is present) using GIN-
sim capabilities. We then resort to model checking to gain further insights into
long term behaviours upon changes of the input signals; in particular, switches
from one attractor to another.

5.1 Attractor Identification

To study the reachability of attractors by model-checking, we first need to iden-
tify these attractors, which is easy for stable states but more challenging for
complex attractors as shown hereafter.
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Fig. 3. TCR activation model proposed in [17]. This model encompasses 94 compo-
nents: 3 inputs (blue), 14 fixed components (green for active and grey for inactive),
and 14 outputs (orange), 28 pseudo-outputs (yellow), 35 proper components (white).
Green arrows denote activations, while red T-arrows denote inhibitions.

Using the stable state search tool available in GINsim [12], we have identified
all the stable states and, using the STG construction, we have checked their
reachability from the initial state defined in [16]. This initial state comprises all
components set to zero, except the three repositories lckr, ccblr, rac1r and
five fixed components cd45, gadd45, bcl10, card11 and malt1.

We have then identified the complex attractors by performing simulations
in the presence of the TCR ligand. In this case, the computation of the STG
is not tractable on the full model, even after the reduction of the output cas-
cades. We have thus considered a further reduced model in which 10 internal
components have been manually selected for reduction (aiming for a minimal
impact of this reduction on the dynamical behaviour, we selected: cblb, cblbp1,
cblbp2, sos, lckp1, lckp2, mek, raf, ras, and X). We recall that this reduction
of core components ensures that no attractor can be lost, but may impede their
reachability. We thus use this technic to identify complex attractors before using
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model-checking on the full model to assess their reachability. Using this simpli-
fied model, we could identify its complex attractors. Starting from states within
these sets of states, we could further refine the descriptions of these attractors
for the full model (without output cascades, though).

Table 1 illustrates the identified attractors. We named these attractors SSxxx
or SCCxxx to represent weak stable states or strongly connected components,
respectively. Additionally, we specified the name of each attractor according to
the (set of) input combination(s) for which each attractor is stable, following
the order cd28, cd4 and tcrlig.

The set of states composing each complex attractor is covered by a schema,
or pattern (see Table 1). For each complex attractor, we specify an ARCTL
property and use the NuSMV-ARCTL-TLACE model-checker to verify that,
for each of these patterns, no state covered by the pattern enables a transi-
tion leaving that set of states. The following property exemplifies the case of
the pattern SCC001 corresponding to complex attractor that arises in the ab-
sence of both cd28 and cd4 and the presence of tcrlig: INIT SCC001; SPEC

EAF(!cd28 & !cd4 & tcrlig)(!SCC001). All the equivalent properties defined
for each complex attractor (see Supplementary files) returned false, ensuring
that each pattern indeed captures the terminal SCC, containing at most some
states belonging to its (strict) basin of attraction. The patterns describing the
attractors given in Table 1, show that the weak stable state SS0*0, where cd28
is absent, is part of the complex attractor SCC001, which in turn is part of the
complex attractor SCC011. The analogous occurs when cd28 is present in the
case of the remaining attractors.

In the attractor summary of Table 1, considering the wild-type condition, we
can observe that the tcrlig input variable is responsible for the existence (resp.
absence) of oscillations, whenever it is present (resp. absent). This is confirmed
by a circuit analysis, which provides the conditions under which the existing
negative circuits are functional (see [12,14,19]). Here, the main functional neg-
ative circuit, zap70 ccbblp1, depends on the presence of tcrp, which in turn
depends on the presence of tcrb, which is directly controlled by the value of the
tcrlig input variable. The other negative circuit, shp1 lckp1, depends on the
absence of csk, therefore on the presence of tcrb, but also directly depends on
the cd4 input variable.

While the other input components alone are not capable to trigger oscillations,
we can note that in absence of tcrlig,cd4 has no effect on the stable state identity,
while cd28 changes the activity of some proper and output components. In partic-
ular, cd28 activates pkb, which triggers anti-apoptotic signals. This role of cd28 is
maintained in the presence of tcrlig, while cd4 increases the number of oscillating
components, dramatically increasing the number of states in the attractor.

If we consider more closely the activation pattern of some crucial output com-
ponents, we can observe that ap1, nfat and nfkb share a pattern: their activation
requires both tcrlig and one of the other inputs (cd4 or cd28). This result is con-
sistent with the fact that the TCR activation is crucial for the activity (through
nfat) and survival (through nfkb and pkb in presence of cd28) of T cells.
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Table 1. List of patterns for the wild-type, for the single mutant Δfyn and double
mutant Δfyn-lckr. Two weak stable states (SS0*0 and SS1*0) are shared by all con-
ditions: wild-type, single Δfyn mutant and double Δfyn-lckr mutant. Light and dark
grey cells, highlight the values for the proper and output variables, which depend on
cd28 and cd4 input variables, respectively. The tcrlig input variable discriminates
between the weak stable states and the complex attractors. Some proper and output
variables are omitted for sake of space, their values being easily deduced from those
listed in the table.
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We further performed the attractor search for a given set of perturbations and
we observed that some of the complex attractors are replaced by stable states in
theΔfyn single mutant, as well as in theΔfyn-lckr double mutant (see Table 1).
In the Δfyn single mutant, we observe that most of the proper components that
underwent oscillations in the wild-type condition are now fixed at zero in the stable
states SS001 and SS101, while a small subset of them becomes tightly dependent
on the presence of tcrlig (dgk, lckp2 and tcrb).However, the remaining complex
attractors SCC011 and SCC111 differ from the wild-type condition by having fyn

and ccblp2 not expressed, and lckp1, jnk and nfat dependent on the presence
of cd28. The Δfyn-lckr double mutant, additionally prevents the expression of
lckp2,making the attractors SS001and SS101no longer dependent on the absence
of cd4. It is worth remembering that Saez-Rodriguez et al. [17] performed the mu-
tant simulations focusing only on “slow” events, thus breaking the feedback loops,
which allows the activation of pkb. In this paper, considering the full model, we
observe that pkb becomes tightly dependent on the presence of cd28 due to the
influence of cblb upon pi3k.

5.2 Reachability Analysis

After the identification and characterisation of the attractors, we have analysed
their reachability, assessing which input conditions permit to reach (or leave)
each attractor.
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This is done by first encoding the patterns given in Table 1 in the NuSMV
model description. The characterisation of the complex attractors considers only
a restriction on the fixed variables (described by the corresponding pattern).
Then, for each of the attractors, we specify a set of ARCTL temporal logic
reachability properties, testing the existence of a path from each stable/complex
attractor to every other attractor, for all the combinations of (varying or fixed)
input components. These combinations of input components are obtained by fix-
ing some of them using ARCTL temporal operators, possibly leaving the others
to freely vary (see Supplementary files).
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cd4=1

cd4=* cd4=*

cd4=1

cd28=1

cd28=0

InitState

cd28=1

cd4=*

SCC101 SCC111SCC001SCC011

cd28=0

cd4=*cd4=1
tcrlig=1 tcrlig=1 tcrlig=1

tcrlig=0

SS0*0

tcrlig=0

tcrlig=0

tcrlig=0

SS1*0

Fig. 4. State space characterization, of the necessary input conditions to switch be-
tween the stable and complex attractors specified in Table 1, with respect to the input
variables valuation. It is worth noting that the SS0*0 stable state is included in the
SCC001 complex attractor, and this is itself included in the SCC011 complex attractor.
The transitions between these attractors are then dependent on value restrictions of
the cd4 and tcrlig input variables. The analogy is valid for the SS1*0.

Figure 4 presents the verification results, indicating the necessary input con-
ditions to switch between attractors. First, we confirm that the input component
cd28 divides the state space in half, setting the dynamics to focus on one group
of attractors or the other. These are mirroring each other, where each is com-
posed by a stable state and two complex attractors. Like previously mentioned,
the presence of tcrlig controls the exit from a stable state towards its corre-
sponding complex attractor and vice-versa. Finally, within each group of complex
attractors, the presence (resp. absence) of the cd4 input variable allows (resp.
restricts) the dynamics to evolve to a larger (resp. smaller) set of states, SCC011
or SCC111 (resp SCC001 or SCC101).

6 Conclusions and Prospects

The analysis of qualitative models of large signalling-regulatory networks is ham-
pered by a combinatorial explosion of their state spaces. This is particularly true
when properties of interest relate to reachability that often requires extensive
search of the state transition graphs. Here, we propose to lessen this problem by
a specific handling of input and output components. For the input components,
their values are taken into account by proper labels on the transitions. This leads
to a significant reduction when the model encompasses a large number of input
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components (as it is the case, for instance, in the model accounting for T cell
differentiation defined in [10], which includes 13 inputs for a total number of 65
components). Furthermore, we used the reduction method as defined in [11] to
get rid of output components and of what we called pseudo-output components.
We prove that this reduction is lossless, in the sense that it preserves all the
attractors and their reachability.

We aim at using the methodology presented here to revisit the T cell differen-
tiation model [10]. In particular, we can now systematically analyse the impacts
of input variations on attractor switches (accounting for a possible plasticity of
the T cells), as well as mutant conditions.

In the near future, we will make the reduction of output cascades fully func-
tional in GINsim. More precisely, upon user request, output cascades will be
reduced and made implicit, STGs will be computed disregarding the correspond-
ing variables, which values will be possibly recovered for given set of states (e.g.,
in attractors).

In Section 3.3, we have discussed the determination of stable patterns, includ-
ing in the case of varying input components. When inputs freely vary, pseudo-
inputs also vary, but these variations may not affect the stability of the core
network. We thus introduced the notions of (strong or weak) stable states and
stable core ensembles. While GINsim implements an efficient algorithm to iden-
tify all stable states (for constant input components), we still need to delineate
a method to determine the complex attractors. Indeed, for large models (as it
is the case for the TCR model revisited in Section 5), the full characterisation
of all the complex attractors is often difficult or even intractable. We then could
extend the concepts of strong and weak stability to these complex attractors.
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Abstract. The sequence of a gene determines the protein sequence and
structure, but to some extent also the kinetics of protein production.
Namely, the DNA and the codon sequence affect the kinetics of tran-
scription and translation elongation, respectively. Here, using a stochas-
tic model of transcription and translation at the nucleotide and codon
levels, we investigate the effects of the codon sequence on the dynam-
ics of single gene expression and of a genetic switch. We find that the
ribosome binding site region sequence affects mean expression rates. In
the genetic toggle switch, the sequence is shown to affect the switching
frequency.

Keywords: gene expression, codon sequence, dynamics, genetic switch.

1 Introduction

The dynamics of gene expression has an essential effect on the prokaryotic phe-
notype. Given that these organisms have a short life time and most genes are
transcribed only a few times in a cell’s lifetime [1], the moment when genes are
transcribed, the mean frequency of transcription and the variability in the inter-
vals between transcription events are relevant in determining how a cell behaves
and responds, for example, to environmental changes.

The kinetics of gene expression is subject to multiple regulatorymechanisms at
various stages. Some of these mechanisms and their effects have been studied by
measurements and models. For example, several studies characterized how the ki-
netics of transcription initiation affects both mean and fluctuations in RNA and
protein numbers [2, 3]. The effects of other sequence dependent events and mecha-
nisms on gene expression dynamics still require much study. One example of such
a mechanism is transcriptional pausing, which has been suggested to be an impor-
tant regulator of transcription in both prokaryotes and eukaryotes [4–6].

There are several sequence dependent events in translation elongation whose
effects on the kinetics of protein production, and possible regulatory roles, still re-
quire much study. In [7] different mutants of the LacZ gene were used to study the
kinetics of translation of individual codons. The sequences were designed so as to
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enhance queue formation and traffic in elongation. One sequence corresponded to
the wild-type lacZ while the other two differed in that a region of slow-to-translate
codons was inserted. The speed of protein chain elongation was measured by sub-
jecting the cells to a pulse of radioactive methionines and measuring the level of
radioactivity in cells of each population, every 10 s after the pulse. Each strand
contained 23 methionines, spread out unevenly on the DNA sequence, causing the
incorporation curve to be non-linear. The study revealed that the translation elon-
gation speed of these strands differed, as the speed of incorporation of an aminoacid
depends on which synonymous codon is coding for it.

These studies allowed the development of realistic kinetic models of tran-
scription at the nucleotide level [8, 9] and translation at the codon level [10, 11].
In [10] it was shown that measurements of sequence dependent translation rates
of synonymous codons cannot be modeled by neither deterministic nor uniform
stochastic models. For proper mimicking of the kinetics, the models need to in-
clude explicit translation elongation. Another study [11] showed that the degree
of coupling between fluctuations in RNA and protein numbers is sequence de-
pendent and that events in elongation, such as sequence-specific transcriptional
pauses, affects the temporal levels of proteins.

Here, using a detailed stochastic model of transcription and translation in
bacteria [11], we investigate how the codon sequence of a gene affects the dy-
namics of expression of proteins. The codon sequences are randomly generated
according the natural codons frequency of occurrence in E. coli.

We first study how the protein numbers differ between models with randomly
generated codon sequences and the underlying causes. Next, we compare the
kinetics of the model with measured mean expression levels of genes differing
only in synonymous codon usage [12]. After, we introduce sequences of codons
at the start and at the end of the RNA sequence, known as ‘slow ramps’, as
these are found in many genes in E. coli [13]. We compare the kinetics of protein
production of these sequences with those of ‘null models’ with uniform codons
translation efficiencies. Finally, we investigate whether codons translation effi-
ciencies affect the kinetics of genetic circuits, namely, genetic switches [14].

2 Methods

In prokaryotes, gene expression comprises several events that cannot be modeled
as common bimolecular chemical reaction since they take a relevant time to be
completed once initiated and the chemical species involved exist in very small
numbers in the cell. Thus, to model the dynamics of gene expression we use the
delayed Stochastic Simulation Algorithm (delayed SSA) [9], which while with
stochastic kinetics, it allows delaying the release of products of a reaction in
the system following the reactive event. For that, it stores products in a waitlist
and release them after enough time has elapsed. The delayed SSA is based on
the SSA, a method for the exact numerical simulation of well-stirred chemically
reacting systems [15]. In both methods, each chemical species is a variable of
integer value and time advances in discrete steps. Each time a reaction occurs,
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the number of molecules of the species involved is updated according to the
reaction’s formula. All simulations throughout the work were performed using
the simulator for stochastic gene networks “SGNSim” [16].

The model of gene expression used [11] is at the nucleotide and codon level. By
modeling transcription and translation elongation at this level it allows starting
translation as soon as the ribosome binding site region of the RNA is formed,
which was found to be necessary to accurately account for the fluctuations in
RNA and protein numbers in bacterial gene expression [11]. Further, it allows
including events at each elongation step, such as transcriptional pauses in tran-
scription elongation and back-translocation in translation elongation.

The reactions modeling transcription and the stochastic rate constants are
shown in Table 1. The model of transcription at the nucleotide level [8] in-
cludes transcription initiation (1), promoter occupancy time (τoc in (1)), and
promoter clearance (2) [2]. It follows elongation, which includes nucleotide ac-
tivation (3) [17] and stepwise elongation (4) [17]. At the end of this process,
a complete RNA molecule and the RNA polymerase (Rp) are released in the
system (12) [18].

Several events compete with elongation at each nucleotide, such as transcrip-
tional pauses (5) [19]. These can end spontaneously (5) or by collisions with
preceding Rp’s (6) [20]. Collisions can also induce pauses (7). There are ubiqui-
tous arrests and release from arrest (8) [8], misincorporation and editing (9) [19],
premature terminations (10) [21], and pyrophosphorolysis (11) [22]. The model
accounts for the nucleotides occupied by an Rp on the DNA strand. Finally,
two RNA polymerases can never occupy simultaneously the same nucleotide.
Reaction (13) models RNA degradation [23].

The reactions modeling translation and the stochastic rate constants are
shown in Table 2. The delayed stochastic model of translation at the codon
level includes initiation (14) [10], and ribonucleotide activation (15) [24] followed
by stepwise translocation (16–18) [10]. Reactions competing with translocation
are back-translocation (19) [25], ribosome drop-off (20) [26], and transtransla-
tion (21) [27]. It ends with elongation completion [10] followed by protein fold-
ing (22) [28]. The model accounts for the ribonucleotides occupied by a ribosome
when on the RNA. Also accounted for are codon-specific translation rates [7],
implying that each codon has a specific translocation rate. While, in general, this
rate is either ktrA, ktrB or ktrC , in some models we introduce other rates so as to
model the slow ramps. Finally, proteins undergo degradation (23) [28]. Finally,
the time for a ribosome to move from the Ribosome Binding Site (RBS) region
to the start codon [10, 29] is accounted in the kinetic rate of the translation
initiation chemical rate constant ktl.

Ribosomes on the mRNA strand occupy 31 nucleotides, covering ΔR (=15)
nucleotides upstream and ΔR nucleotides downstream from the nucleotide be-
ing processed. This region cannot be occupied by other ribosomes. Initiation
proceeds as follows. A ribosome binds to the first nucleotide of the growing
mRNA strand, occupying ΔR nucleotides downstream. The first nucleotide only
becomes available for the next ribosome to bind when the previous ribosome
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Table 1. Chemical reactions, rate constants (in s−1), and delays (in s) used to model
transcription. Pro — promoter, Rp — RNA polymerase, U — unoccupied nucleotide
and O — nucleotide occupied by Rp, A — activated nucleotide (after processing by
Rp), n denotes the number of a nucleotide in the sequence under process. (2ΔP+1) —
range of nucleotides that Rp occupies, ΔP = 12 (range occupied upstream/downstream
from the nucleotide being processed).

1.Initiation and
promoter com-
plex formation

Pro + Rp
kinit−−−→ Rp · Pro(τoc) kinit = 0.0245, τoc =

40± 4

2.Promoter
clearance

Rp · Pro + U[1,(ΔP+1)]
km−−→ O1 + Pro km = 150

3. Activation On
ka−→ An ka = 150, n > 10;

ka = 30, n ≤ 10

4. Elongation An+Un+ΔP+1
km−−→ On+1+Un−ΔP +UR

n−ΔP
km = 150

5. Pausing On

kp−−−⇀↽−−−
1/τp

Onp kp = 0.55, τp = 3

6. Pause release
by collision

Onp +An−2ΔP−1
0.8km−−−−→ On +An−2ΔP−1 km = 150

7. Pause by colli-
sion

On +An−2ΔP−1
0.2km−−−−→ Onp +An−2ΔP−1 km = 150

8. Arrests On

kar−−−−⇀↽−−−−
1/τar

Onar kar = 0.000278, τar =
100

9. Editing On

ked−−−⇀↽−−−
1/τed

Oncorr ked = 0.00875, τed = 5

10. Premature
termination

On
kpre−−−→ Rp +U[(n−ΔP),(n+ΔP)] kpre = 0.00019

11. Pyro-
phosphorolysis

On + Un−ΔP−1 + UR
n−ΔP−1

kpyr−−−→ On−1 +
Un+ΔP−1

kpyr = 0.75

12. Completion Alast

kf−−→ Rp + U[last−ΔP,last] +mRNA kf = 2

13. mRNA
degradation

mRNA
kdr−−→ ∅ kdr = 0.025

moves by at least 2ΔR+2 = 32 nucleotides, thus revealing the first ΔR+1 = 16
nucleotides of the RNA needed for the next ribosome to bind. This length is
referred to as RBS region of the RNA.

Trans-translation corresponds to the release of the ribosome from the RNA
template after stalling, which can occur for several reasons, such as incorporation
of an incorrect codon, premature mRNA degradation, or frame-shifting [27, 30].
In the model, stalling followed by trans-translation can occur spontaneously
with a given probability at any codon via (21). When occurring, the mRNA
strand is degraded and all translating ribosomes are released. Estimates from
the observation of expression activity in E. coli suggest that, on average, 0.4% of
translation reactions are terminated by trans-translation [27], meaning that the
probability of occurrence of this event at each nucleotide depends on the length
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Table 2. Chemical reactions, rate constants (in s−1), and delays (in s) used to model
translation. Rib — ribosome, [RibR] — number of translating ribosomes on mRNA
strand, P — complete protein, UR — unoccupied nucleotide and OR — nucleotide
occupied by Rib, AR — activated nucleotide (after processing by Rib), n denotes
the number of a nucleotide in the sequence. (2ΔR + 1) — range of ribonucleotides
that ribosome occupies, ΔR = 15 (range occupied upstream/downstream from the
nucleotide being processed).

14. Initiation Rib + UR
[1,ΔR+1]

ktl−−→ OR
1 +RibR ktl = 0.53

15. Activation OR
n

ktr{A,B,C}−−−−−−−→ AR
n Codon dependent:

ktrA = 35;
ktrB = 8;
ktrC = 4.5

16–18. Stepwise
translocation

AR
n−3 +UR

[n+ΔR−3,n+ΔR−1]

ktm−−→ OR
n−2

OR
n−2

ktm−−→ OR
n−1

OR
n−1

ktm−−→ OR
n +UR

[n−ΔR−2,n−ΔR]

ktm = 1000

19. Back-trans-
location

OR
n + UR

[n−ΔR−2,n−ΔR]

kbt−−→ AR
n−3 +

UR
[n+ΔR−3,n+ΔR−1]

kbt = 1.5

20. Drop-off OR
n

kdrop−−−−→ Rib + UR
[n−ΔR,n+ΔR] kdrop = 1.14 · 10−4

21. Trans-
translation

mRNA
ktt−−→ [RibR]× Rib ktt = 0.000159

22. Elongation
completion and
protein folding

AR
last

ktlf−−−→ Rib + UR
[last−ΔR,last] + P(τfold) ktlf = 2,

τfold = 420± 100

23. Protein
degradation

P
kdp−−→ ∅ kdp = 0.0029

of the gene. Since we only model sequences 1000 nucleotides long, the trans-
translation reaction is always set to the same value, defined by ktt (Table 2).

We generate codon sequences randomly, according to the known statistical
frequency of each codon (extracted from NCBI GenBank, Dec. 1st, 2011) [31].
Slow ramps at the start or end of a sequence are set to be 35 codons long [13].
The codons activation rates (ktr in (15)) change linearly with the codon position
in the ramp, with ktr values ranging from 1 to 35 s−1, varying by 1 s−1 per codon.

In addition to the reactions from Table 1 and 2 for the genetic toggle switch
there are reactions modeling the interactions between the repressor proteins and
the promoters’ regions to which they bind to:

24. Proi + Pj

krep−−−−⇀↽−−−−
kunrep

Proi · Pj ,

where i, j = 1, 2 and i �= j.
Reaction (24) models the binding (krep) of a repressor protein to a promoter

region and its unbinding (kunrep). The expected time that the promoters are



312 I. Potapov et al.

available for transcription can be regulated by these rates. For this study the
default values are: krep = 1 s−1, and kunrep = 0.1 s−1.

To characterize the dynamics of a switch we quantify, from time series of RNA
and protein numbers, the stability of the switch, that is, the robustness of its
noisy attractors to fluctuations in protein and RNA numbers. For a wide range of
parameter values, the delayed stochastic switch has two noisy attractors [32, 33].
We assess the stability from the number of switches between the noisy attractors
in the time series. We define a switch as an event that satisfies the following
conditions: the number of one of the proteins becomes, from one moment to the
next, bigger than the number of the other protein, and there is no other switch
event within the next 1000 s (so that a single switch between noisy attractors is
not counted multiple times). Given these conditions, the stability, S, is:

S =
T

n+ 1
, (1)

where T is the total time of simulation and n is number of switches during T .
Thus, S is the average time between two consecutive switches.

3 Results and Discussion

3.1 Kinetics of Gene Expression for Randomly Generated Codon
Sequences

Based on the frequency of occurrence of codons in E. coli [31] we generated
30 random sequences, each 1000 nucleotides long. The sequences differ only in
the frequency of occurrence of its codons. We performed 200 simulations of the
kinetics of gene expression of each sequence, each 105 s long with a sampling
frequency of 1 s−1. Reactions and stochastic rate constants are shown in Table 1
and Table 2. Since simulations are initialized without mRNA or proteins, in all
calculations below we disregard an initial transient of 2·103 s, found sufficient to
allow mRNA and proteins to reach numbers near-equilibrium.

First, we computed the mean mRNA (E(RNA)) and protein (E(P)) numbers
in each simulation. Distributions of the mRNA mean numbers at near equilib-
rium are show in Fig. 1(left) for the 30 sequences as well as for a single sequence,
chosen at random from the 30 sequences. This allows comparing the variability
between simulations due to the stochasticity in the kinetics. Similarly, we show
the same distributions for mean protein numbers in Fig. 1(right), to compare
the variability in protein numbers between simulations due to stochasticity and
differing codon sequences.

Figure 1 (left) shows that there is no significant difference in mRNA kinet-
ics for different codon sequences, as expected. However, the kinetics of protein
production in Fig. 1 (right), differs between the 30 sequences causing the overall
distribution to be much wider than the distribution of the individual sequences
(Fig. 1 (right)). Such differences arise solely from the differing rates of protein
elongation and thus overall production, as the kinetics of transcription and RNA
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Fig. 1. (Left) Distribution of mean mRNA numbers (E(RNA)) and (Right) mean pro-
tein numbers (E(P)) at near-equilibrium from 200 simulations of individuals sequences.
Also shown are the distributions resulting from 30 sequences, each of which simulated
200 times.

and proteins degradation do not differ between models. The different proteins
production rate is due to differing codon sequences. These affect the mean trans-
lation elongation time, in particular, how long ribosomes remain, on average, in
the RBS region, which affects the mean of the intervals between initiations of
translation events.

To demonstrate this, in Fig. 2 (left) we show the mean rate of translation events
per time unit versus the mean protein numbers for each simulation, for two se-
quences (arbitrarily named sequences 1 and 2). There is a clear positive correla-
tion between the two quantities, showing that the codon sequence affects the rate
of translation initiation events. Having a faster rate of translation initiation events
leads to a higher number of premature terminations during translation (ribosome
drop-offs) (Fig. 2 (right)). However, this is not sufficient to cancel out the effect of
having different rates of initiation on the mean protein numbers.

We next analyze the fluctuations in protein numbers. From the formula for
the stationary variance in protein abundance [34], one expects that differences
in mean protein numbers cause the stationary variances to differ as well due to
the low-copy noise term (〈p〉−1) and because the kinetics of RNA production
does not differ between sequences. In Fig. 3 (top) we show the CV2 (square of
the coefficient of variation) in protein numbers at near-equilibrium for the 30
sequences, averaged over all simulations for each sequence. Also shown are the
distributions of protein numbers from the sequence that exhibited the lowest
CV2 (Fig. 3, bottom left) and from the sequence that exhibited the highest CV2

(Fig. 3, bottom right), out of the 30 sequences.
The differences in CV2 in protein numbers between sequences are of the order

of 5%. Note that this quantity is also affected by the stochasticity in protein
degradation which tends to diminish differences arising from the kinetics of pro-
duction. The relevance of these differences is, as noted later, context dependent.
While, at the single gene level they are likely not very significant, at a gene
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Fig. 2. Left: mean number of protein E(P) is positively correlated (with correlation
coefficients ri) with number of translation events. Right: number of ribosome drop-offs
is positively correlated with number of translation events. Data shown for the same
two codon sequences, denoted as 1 and 2.

network level they may be of significance, e.g., in allowing to cross thresholds in
protein numbers due to fluctuations.

The above results are derived from simulations using codon sequences ran-
domly generated. However, genes’ sequences are under selection and thus have
codon sequences that are far from random. Recent DNA analysis appears to
support this hypothesis, providing evidence for the existence of slow ramps in
specific regions of the mRNA sequences, relative to the RBS region [13]. Next,
we study the kinetics of expression of RNA sequences with such ramps.

3.2 Kinetics of Gene Expression in the Presence of Ramps of Slow
Codons

Recent studies revealed universally conserved profiles of RNA translation effi-
ciencies in different classes of organisms including bacteria [13]. In E. coli, many
mRNA sequences are such that the first 15–35 codons are, on average, translated
with lower efficiency than the rest of the sequence. Some genes also have slow
ramps at the end of the sequence. In general, these ramps exhibit an approxi-
mately linear increase/decrease in translation speed from beginning to end when
at the start/end of the RNA sequence [13].

In this section, we study the gene expression kinetics of such sequences. We
introduce linearly increasing codon rates for codons in positions 1 to 35 (counting
forward from the translation start site) or linearly decreasing codon rates for
codons in positions -35 to -1 (counting backwards from the stop codon). The
rest of the sequence is generated randomly as previously. We also generated
three sequences with uniform codon activation rates (models “A”, “B” and “C”),
corresponding to the three groups of codon activation rates (ktrA, ktrB, ktrC in
Table 2). These are used as “null models” that we compare with those with slow
ramps. We simulate each of the five models (the three null models and the two
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Fig. 3. Distribution of mean CV2(P) of protein numbers for the 30 different codon
sequences (top) and distributions of protein numbers(P) for the models that exhibited
the lowest (bottom left) and the highest (bottom right) values of CV2(P). All distri-
butions are obtained from the complete time series except for an initial transient of
2·103 s since the networks are initialized without mRNA and proteins.

models with a slow ramp at the start and at the end) 200 times, each simulation
lasting 105 s with 1 s−1 sampling frequency. Results are shown in Fig. 4.

From Fig. 4, the model with a slow ramp at the start of the sequence exhibits
the smallest E(P), due to having the slowest rate of protein production, along
with null model A. It is of interest to note these two models barely differ in
kinetics, supporting the hypothesis that the mean rate of protein production is
largely controlled by the sequence of the RBS region of the RNA. The model
with a slow ramp at the end, along with null model B, have an E(P) distribution
similar to the E(P) distributions from randomly generated codon sequences (see
Fig. 1 (right)). From this, we conclude that adding slow ramps in the end of the
sequences does affect significantly the mean rate of protein production.

Interestingly, while the ramps affect E(P), they do not affect the degree of
fluctuations in protein numbers (Fig. 5). From Fig. 5, the distributions of values
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Fig. 4. Distributions of mean protein numbers, E(P), at near-equilibrium of the two
models with a slow ramp at the start (“Start”) and the end (“End”) and of the three
null models with the uniform codons sequences. Null model A (slowest codon activation
rate, 4.5 s−1/codon for all codons), null model B (8 s−1/codon for all codons) and, null
model C (fastest activation rate, 35 s−1/codon for all codons).

of CV2 of the sequences with a ramp at the start and end are identical (from
the same simulations used for Fig. 4). These distributions are also identical to
those of the null models (data not shown).

3.3 Effects of Ramps of Slow Codons on Bistable Genetic Circuits

We next study the effect of ramps in the kinetics of a genetic toggle switch (TS)
[14], which consists of two genes, each expressing a protein that represses the
expression of the other gene. Due to the interactions that define the structure
of a genetic switch, usually one protein level is “high” while the other is “low”.
In the context of stochastic genetic circuits, regions of the state space where the
network remains in for long periods of time, yet can leave due to fluctuations
in the molecule numbers, are usually referred to as “noisy attractors” [35]. The
term is used instead of the usual concept of attractor, since stochastic systems
do not have attractors. 2-gene switches usually have two noisy attractors [35].

All model genetic toggle switches in this study have genes that are 1000 nu-
cleotides long each. All models are simulated 200 times for either 105 or 106 s,
sampled every second, and are described by reactions 1–24 and corresponding
kinetic parameters from Sec. 2.

First, we build 10 random switches, having the same codon sequences for
both genes. In order to assess variability of stability of the switches, obtained
by randomly varying the codon composition of genes belonging to the switch,
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we simulate those 10 switches for 105 s and compute distributions of stability
according to (1). The results are merged from all switches simulated and shown
in Fig. 6 (left). The figure also shows the contribution of a single toggle switch to
the overall distribution. Mean and standard deviation for the total distribution
in Fig. 6 (left) are 15820 and 8304 s, respectively, giving the total variation of
stability possible due to randomly varied codon sequence of genes within the
switch.

Next, we build null model TS, where the codon sequence is formed from codons
from one of the three classes of codons (A, B or C) according to their translation
rate (see reaction 15 in Table 2). Thus, we have three null model switches with
uniform codon rates distribution along the sequence. We simulated three models
200 times for 105 s and computed stability. Resulting distributions are shown in
Fig. 6 (right). One can see that the bigger translation rate of the null model, the
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Fig. 6. Total stability of 10 toggle switches with randomly generated codon se-
quences (both genes of a switch have the same sequence); also shown is example of
one of those distributions (left). Stability of three null model toggle switches with
uniform codon translation rates (right).
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bigger the tail of the distribution towards larger values of stability and, thus,
the bigger mean stability. The bigger rate of translation of a codon provides less
time that a ribosome spends on the codon and thus the faster the production of
the outcoming protein is. Increasing production rate increases the mean protein
numbers and, consequently, stability increases.

Next, we compare the kinetics of other three model switches. One switch
has random codon sequences, generated as previously. Another switch has slow
ramps at the start of the sequences of both genes. The last model switch has
slow ramps at the end of the sequences of both genes. In all cases, both genes
are 1000 nucleotides long.

We simulated the dynamics of each of the three model switches 200 times,
each simulation 106 s long, sampled every second. From the time series of protein
numbers we calculated the stability of the noisy attractors given by (1).

Compared to the model switch without ramps, the slow ramp at the end of
the sequences does not alter S significantly due to the weak effects on E(P)
numbers. However, the ramp at the start of the sequences causes S to decrease
by ∼25%. Thus, codon sequences can significantly affect the kinetics of small
genetic circuits and the location of a slow ramp, relative to the RBS region, is
relevant to the degree of change in the dynamics (Fig. 7).

Finally, we simulated a model switch such that only one gene has a slow ramp,
located at the start of the sequence (here named ‘biased switch’). Again, 200
simulations were performed. This model exhibits a stability increase of ∼400%
in comparison to the model without ramps. As such, we conclude that ramps
can bias the switch’s behavior and this bias has a strong effect in the ability of
the switch to ‘hold state’.

In Fig. 8 we show examples of the kinetics of protein numbers of two model
switches. In the left panel of Fig. 8 is shown the kinetics of the model switch
without ramps, while in the right panel is shown the kinetics of the model switch
where one of the two genes has a ramp, placed at the start of the RNA sequence.
Note the bias in the choice of noisy attractor in the latter model.
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Fig. 7. (Left) Slow ramp in the beginning of each sequence of the toggle switch (‘Lin
Ramp’) decreases stability as compared to the switch with randomly generated codon
sequence (‘Ref TS’). (Right) Slow ramp in the end of each sequence of the toggle
switch (‘End Lin Ramp’) does not alter significantly stability as compared to the switch
with randomly generated codon sequence.
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Fig. 8. Examples of the kinetics of protein numbers of the model toggle switch. Left:
model toggle switch with codon sequences randomly generated. Right: model toggle
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4 Conclusions

Using a model of transcription and translation at nucleotide and codon lev-
els with realistic parameters values extracted from measurements in E. coli we
studied how the codon sequence affects the kinetics of protein production of
individual genes and the dynamics of genetic toggle switches.

From the studies of the kinetics of single gene expression of genes with codon
sequences generated randomly according to the natural probabilities of occur-
rence in E. coli, we found that the codon sequence affects the mean protein
numbers in near-equilibrium significantly, due to affecting the rate of translation
initiation (by changing how long ribosomes remain at the RBS region). Inter-
estingly, the noise in protein numbers, as measured by square of coefficient of
variation (CV2), does not change significantly with the codon sequence, indicat-
ing that altering the codon bias may allow to engineer more strongly expressing
genes with weaker fluctuations in protein numbers.

Slow ramps were found to influence the kinetics of both single genes as well as
genetic switches. Relevantly, their effect likely depends on their location relative
to the RBS region, and both our kinetics studies, as well as sequence analysis
studies [13], suggest that selection may have shaped these ramps. The strongest
effects are attained by placing a slow ramp at the start of the sequence. In [13] it
was hypothesized that slow ramps can reduce ribosomal jams by averaging the
spacing between ribosomes on the mRNA strand. Our results support the hy-
pothesis of reduction of ribosomal jams, and further indicate that this is achieved
mostly by reducing the rate of translation initiation, rather than by averaging
the spacing between ribosomes (although this also occurs). At the level of small
genetic circuits we found evidence that slow ramps have tangible effects in the
kinetics of bistable networks. Again, effects are stronger when slow ramps are
placed at the start of the RNA sequences.

In conclusion, our results suggest that the codon sequences affect signifi-
cantly the dynamics of single gene expression and genetic circuits of prokaryotes.
These results may be of relevance in synthetic biology, when engineering genetic
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circuits for specific purposes, and in computational biology, when modeling ge-
netic circuits. Finally, they may assist in a better understanding of the evolu-
tionary pressures that genomes are subject to.
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Abstract. We present a case study on the use of robustness-guided and statistical
model checking approaches for simulating risks due to insulin infusion pump us-
age by diabetic patients. Insulin infusion pumps allow for a continuous delivery of
insulin with varying rates and delivery profiles to help patients self-regulate their
blood glucose levels. However, the use of infusion pumps and continuous glucose
monitors can pose risks to the patient including chronically elevated blood glu-
cose levels (hyperglycemia) or dangerously low glucose levels (hypoglycemia).

In this paper, we use mathematical models of the basic insulin-glucose regu-
latory system in a diabetic patient, insulin infusion pumps, and the user’s interac-
tion with these pumps defined by commonly used insulin infusion strategies for
maintaining normal glucose levels. These strategies include common guidelines
taught to patients by physicians and certified diabetes educators and have been
implemented in commercially available insulin bolus calculators. Furthermore,
we model the failures in the devices themselves along with common errors in the
usage of the pump. We compose these models together and analyze them using
two related techniques: (a) robustness guided state-space search to explore worst-
case scenarios and (b) statistical model checking techniques to assess the proba-
bilities of hyper- and hypoglycemia risks. Our technique can be used to identify
the worst-case effects of the combination of many different kinds of failures and
place high confidence bounds on their probabilities.

1 Introduction

The goal of this paper is to combine physiological models of the insulin-glucose reg-
ulatory system in diabetic patients with medical device models of infusion pumps and
continuous glucose meters to perform in silico risk assessments. Modern treatments
for type-1 and 2 diabetes mellitus require frequent, periodic monitoring of blood glu-
cose levels and the subcutaneous delivery of artificial insulin. Developments in medical
device technologies have enabled software-controlled insulin infusion pumps that can
deliver precise amounts of insulin in user programmable patterns. Likewise, advances
in sensor technologies have enabled continuous glucose monitors (CGM) that can be
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used to sense the concentration of glucose subcutaneously. These technologies have en-
abled the development of automatic and manual control strategies, vastly improving the
ability of patients to achieve normal glycemic control [12,19,37].

However, the use of these devices and the control strategies are prone to hazards
arising from device, software and usage errors. A comprehensive list of these hazards
has been compiled by Zhang et al. [43]. These risks primarily arise due to factors such
as (a) failures in insulin pumps due to software errors, occlusions, and pump failures;
(b) calibration and dropout errors in the glucose monitors; and (c) usage errors includ-
ing discrepancies between planned and actual meals, incorrect insulin-to-carbs ratios,
sensitivity factors, and basal insulin levels. These hazards can expose the patient to sig-
nificant levels of hypoglycemia (low levels of blood glucose) or hyperglycemia (high
levels of glucose), each of which leads to dangerous complications including loss of
consciousness for hypoglycemia and ketacidosis for significant hyperglycemia. The
long term consequences of elevated post-prandial glucose levels include kidney damage
(nephropathy) and eye damage (retinopathy). Given the severity of these risks, a careful
study of the various kinds of faults involved in the infusion process and the associated
risks is of great importance.

In this paper, we create mathematical models of the overall infusion process by mod-
eling the components involved in an infusion. Our model incorporates physiological
models of the gluco-regulatory system [22,11,7,36,9,27,29], models of the various de-
vices involved, the user’s infusion strategy [34] and some of the possible faults that can
arise during the infusion process [43]. We specify metric temporal logic (MTL) prop-
erties [25] for the executions of this model which include (a) absence of hypoglycemia
(G(t) ≥ 3 mmol/L), (b) absence of significant hyperglycemia, (G(t) ≤ 20 mmol/L),
and (c) settling of the blood glucose level to a normal range 3 hours after a meal
(∀ t, t ≥ 150 ⇒ G(t) ∈ [4, 10] mmol/L). Unfortunately, the resulting models are
nonlinear and include discrete mode switches due to the user and device models. Exist-
ing symbolic verification tools are inadequate for exhaustively exploring the behaviors
of the overall model. Therefore, we adapt two recent approaches based on simulations:

Robustness-Guided Model Checking: We use robustness-guided sampling, assum-
ing that faults are non-deterministic [28,4] to explore the possible worst case scenarios
involving a combination of faults. Robustness guided sampling is based on the idea
of providing real-valued robustness semantics to formulas in metric temporal logic
[30,16,17]. The robustness of a trace w.r.t a given specification can be used as an ob-
jective function for a global stochastic optimization approach that seeks to minimize
the robustness to falsify a given temporal property. This is a suitable approach in cases
where the model is infinite state and non-linear. Such models are generally not amenable
to existing symbolic verification techniques. In this paper, we employ this scheme to
search for combinations of faults that can cause severe hyperglycemia, hypoglycemia
and delayed return to normal glycemic levels following a meal.

Statistical Model Checking: We use statistical model checking by associating
probabilities with faults to quantify the risk of hyper- and hypoglycemia with some
confidence interval bounds [42,10,44]. Statistical model checking (SMC) repeatedly
simulates a stochastic system while evaluating probabilistic temporal logic queries with
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high confidence. SMC approaches allows us to place bounds on the probability that a
formula holds for a given stochastic system.

The models described in this paper are integrate inside the Matlab
Simulink/Stateflow(tm) modeling environment. We use our tool S-Taliro which
incorporates robustness-guided state-space exploration using many different global
optimization engines including Monte-Carlo search [28], Ant-colony optimization [3],
genetic algorithms and cross-entropy sampling [32]1. Recently, we have extended
S-Taliro to support Bayesian Statistical Model Checking (SMC) [23,44]. Using
S-Taliro, we examine numerous fault scenarios involving a combination of faults to
analyze the worst-case scenarios arising from these situations and to quantify the risk
of hyper or hypoglycemia, assuming some prior probabilities for the various faults.

To our knowledge, the use of statistical and robustness-guided model checking to
analyze infusion risks in the insulin infusion pump setting is novel. Previously, there
have been attempts at quantifying risks involved in model-predictive controllers (MPC)
for overnight glycemic control using a simulation environment [40,20]. These simula-
tions derive a risk score for hypoglycemia risk using numerous simulations. However,
no confidence intervals are derived for the risk scores. The use of SMC in this paper
provides a more systematic and potentially less computationally expensive approach.
Jha et al. employ statistical model checking to discover parameters for a PI controller
for managing insulin infusion pumps using the Bergman minimal model [24].

Assessing risks in infusion pumps has received increasing attention recently
[43,5,39,38]. Our previous work considered the effects of infusion risks in a hospital
setting using drug infusion pumps and linear phramacokinetic models [33]. Therein, we
were able to employ bounded-model checking techniques for linear hybrid automata to
drive the worst-case search. Currently, the state-of-the-art in symbolic verification tech-
niques are inapplicable to our model which involves non-linear dynamics with switching.

2 Overview

We provide a brief overview of the problem and the proposed solutions.

Insulin Infusion Scenario: Consider a commonly occurring scenario of planning a
meal for a patient suffering from type-1 (insulin dependent) diabetes. The patient uses
an insulin infusion pump to deliver an appropriate bolus dosage of insulin 2 before the
meal commences. The planning process requires the patient to decide on the following
parameters:

1. The insulin bolus amount to be infused through an insulin infusion pump,
2. The timing of the bolus relative to the planned meal time,
3. The width of the bolus,
4. The timings and amounts of any planned corrective dosages to accommodate higher

than normal post-prandial blood glucose levels.

1 S-Taliro can be downloaded for free from
https://sites.google.com/a/asu.edu/s-taliro/

2 A bolus dosage is a fixed amount of a drug that is delivered over a relatively short period of
time to achieve a near-term effect.

https://sites.google.com/a/asu.edu/s-taliro/
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Typically, patients suffering from diabetes undergo training by physicians, certified di-
abetes educators and numerous books on the topic to arrive at suitable strategies for
planning meal infusions [34]. A typical calculation that is often automated by an in-
sulin bolus calculator involves the steps detailed below using the planned meal data:

– Divide the amount of carbohydrates in the meal by a personal insulin-to-carbs ratio
to obtain an appropriate bolus,

– Decide on the timing, shape and width of the bolus based on the Glycemic Index
(GI) of the planned meal and the blood glucose reading measured prior to the meal,

– Decide on a correction bolus a few hours after the meal by measuring blood glucose
levels and dividing it by a personal insulin sensitivity factor.

There are many rules of thumb for deciding upon an appropriate insulin-to-carbs ratio
or an insulin sensitivity factor. Often, the patients are required to carefully monitor and
adjust these ratios until they can achieve good glycemic control. However, there are
numerous risks involved in a typical infusion that can lead to elevated blood glucose
levels (hyperglycemia) or very low levels (hypoglycemia). A few commonly occurring
faults are summarized below (Zhang et al. provide an exhaustive list of hazards [43]):

1. Software errors in the insulin pump, affecting its ability to deliver insulin of the
specified amount and at the specified rates.

2. Calibration errors in the glucose monitors, whose readings are used to compute the
correction bolus.

3. Mismatches between the planned meal used in the bolus calculations and the actual
meal consumed.

4. Incorrect timing of the insulin dosage.
5. Incorrect usage of insulin infusion pump (eg., entering a wrong dosage, incorrect

bolus shape, unit errors).
6. Failures due to occlusions or pump hardware faults.

The systematic study of the effects of the faults on the overall infusion process is necessary
to find and remedy common causes that may result in significant hyperglycemia (elevated
blood glucose levels) causing dangerous conditions such as ketacidosis, or hypoglycemia
(low blood glucose levels) that may lead to a loss of consciousness or a dangerous coma
in the worst case. For instance, it is natural to ask questions such as (a) what are the worst-
case effects of a particular single fault or a combination of faults? (b) given probabilities
of individual faults, what is the overall probability of a severe hypoglycemia?

While it is possible to predict the qualitative effects of a single fault in isolation, the
combined effect of multiple faults are often be hard to predict quantitatively. Naturally,
a clinical study with real patients using the pump with various controls is the gold stan-
dard for providing answers to some of the questions above. However, such studies are
expensive, requiring a large set of participants since some of the faults occur infrequently.

An emerging line of research consists of modeling the various components involved
in the infusion: the infusion pump, the user’s meal planning strategies, physiological
models of the insulin-glucose regulation, the glucometer incorporating models of the
various faults that may occur [40,27,29]. Such models can then be analyzed for finding
worst-cases and their likelihood. This can often point the way towards improving the
process to make it safer for patients.
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Fig. 1. Key components in modeling meal insulin infusion pump usage scenario

Modeling and Simulation: Figure 1 shows the basic components that are modeled in
this scenario and the interactions between these models. Our approach integrates mod-
els of the insulin-glucose regulatory system [22,40], meal absorption models [41], a
minimal infusion pump model, glucose meter models [40,15] and a model of the pa-
tient’s usage of the pump to cover meals. The latter model is based on an understanding
of common pump usage recommendations by physicians and certified diabetes educa-
tors [34]. These sub-models are integrated to yield a Matlab Simulink(tm) model.

Fig. 2. Variation of plasma glucose (left) and plasma
insulin (right) concentrations with varying calibration
errors and infusion timings. The reference trajectories
with no infusion faults is highlighted.

Figure 2 shows a set of possi-
ble blood glucose and insulin levels
over time obtained by running sim-
ulations with randomly chosen glu-
cose monitor calibration errors and
discrepancies between planned and
actual meals. The shaded region
shows acceptable limits for glucose
levels. We note that presence of er-
rors and faults have the effect of
potentially causing hyperglycemia
as well as hypoglycemia. However,
repeated simulations do not suffice
to explore worst-case scenarios. If
simulations are performed uniformly at random, the number of simulations required
to uncover these scenarios is often prohibitively large. The analysis techniques used
here explore the worst case outcomes using state-space exploration guided by trace
robustness [28,4] and estimate the probability of hypo- and hyperglycemia, given the
probabilities for the individual machine faults and user errors [42,23].

3 Background

We first provide some brief background on diabetes mellitus and its treatment using
intensive insulin therapy. More information on topics related to diabetes can be obtained
from clinical textbooks on this topic [35].
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(a) (b) (c) (d)

Fig. 3. (a,b) Commercial insulin infusion pump models, (c) blood glucose monitor and (d) con-
tinuous sub-cutaneous glucose monitors

Insulin-Glucose Regulatory System. Diabetes mellitus is the generic name for a class
of diseases where critical parts of the natural glyco-control system fail. Type-1 diabetes
results from the loss of pancreatic insulin secretion due to to auto-immune destruction
of insulin producing β cells in the pancreas. Likewise, type-2 diabetes results from
insulin sensitivity, wherein damage to insulin receptors in the cells makes the action of
insulin weaker, resulting in the inability of the pancreas to keep up with the demand.

Diabetes is a commonly occurring ailment in the developed world as well as the de-
veloping world. A common treatment for chronic diabetes involves the external delivery
of artificial insulin (or insulin analogs) directly through a syringe, or sub-cutaneously
through an insulin infusion pump. The everyday delivery of insulin is controlled by the
patient with advance knowledge of their activities such as diet and exercise. Further-
more, diabetic patients are required to monitor their blood glucose levels intermittently
through “finger stick” blood glucose monitors, or recently by continuous glucose mon-
itors (CGMs) that provide a continuous reading of the subcutaneous glucose levels.

Insulin Infusion Pump and Continuous Glucose Monitors. We will now review
some of the basics of insulin infusion pumps and blood glucose monitors. The mono-
graph by Chee and Fernando contains further details [9].

An insulin infusion pump is a device that delivers insulin at a programmable rate over
time. Insulin infusion pumps have been shown to deliver insulin accurately even when
the requested rate of delivery is very small. This allows the pump to deliver insulin con-
tinuously throughout the day at a basal rate to counteract the endogenous production of
glucose in the body. Furthermore, pumps also allow for various bolus doses of insulin to
be infused before or just after meals to limit the occurrence of hyperglycemia following
a meal. The shape, width and amount of the bolus can be fine tuned according to the
planned meal. Starchy foods such as rice have a high glycemic index, requiring rapid
infusion of (short-acting) insulin while fat and protein-rich foods have a lower glycemic
index, requiring an infusion with a spread out peak (eg., square-wave bolus).

A continuous glucose monitor (CGM) provides frequent estimates of the blood glu-
cose level by sensing the amount of glucose subcutaneously in the interstitial fluid.
Currently available CGM devices provide readings that can be quite accurate. Further-
more, these devices can communicate wirelessly with a computer or an insulin pump to
transmit readings directly. CGMs have proven useful in providing feedback to diabetic
patients and their physicians to improve the patient’s ability to achieve normoglycemia.
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Table 1. Commonly used mathematical models of insulin-glucose regulation

Model Name Type Vars Remarks
Ackerman Affine 2 Two compartment linear model [2,1]
Bergman Nonlinear 3 2 insulin + 1 glucose compartment [7,6]
Cobelli Nonlinear ∼ 11 Comprehensive model including

glucagon submodel and renal function model [11,13]

Sorensen Nonlinear ∼ 19 Comprehensive physiological model with compartments
for brain, vascular, kidney, renal and peripheral systems [36].

Hovorka Nonlinear ∼ 11 Comprehensive model incorporating
endogenous glucose production and renal flitration [22,21,40].

4 Modeling Insulin Infusion

In this section, we present the overall model developed for insulin infusion. Figure 1
shows the overall model for the insulin infusion setup. The setup consists of an insulin
infusion pump used to deliver insulin to the patient to counteract the effect of a meal.
The meal itself is modeled based on the meal time, duration and its “glycemic factor”
that dictates the time from the start of the meal to the peak in blood glucose. The gut
absorption of the meal is modeled using a simple linear two compartment model pro-
posed originally by Worthington [41]. Finally, the model incorporates a user model that
attempts to capture the user’s insulin infusion and correction dosages. An ideal user
model is first formulated and calibrated based on the best practices advocated in many
guide books that are used by patients using infusion pumps (Cf. [34], for instance). We
then attempt to model various user mistakes such as discrepancies between the planned
meal and the actual meal, calibration errors in glucose readings, mis-timing of the cor-
rection dosages, miscalibration of basal insulin levels, insulin-to-carbs ratio and insulin
sensitivity factors.

We will now describe the construction of each of the sub-models in detail.

4.1 Glucoregulatory Models

There have been numerous attempts to derive mathematical models of the regulation
of glucose by insulin in diabetic patients. In this paper we employ the Hovorka model
[22,21,40] originally proposed by Hovorka and co-workers. We note that there are many
other models that are widely used. A few of the notable models are summarized in
Table 1. We refer the reader to many comprehensive surveys on this topic including
Cobelli et al. [12], Hovorka [19] and the monograph by Chee and Fernando [9]. Com-
paring predictions obtained by various models of the insulin-glucose regulatory system
in our risk assessment framework is an important future work.

The Hovorka model refers to a modeling approach that has been used to model the
regulatory system based on tracer studies during a standard intravenous glucose toler-
ance test [22]. The test measures the amount of insulin and the time needed to restore
normal plasma glucose concentrations after the direct infusion of an unit of glucose
under fasting conditions. Data from this test were fitted to a model that considers the
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dQ1(t)
dt

= −
[

F c
01

Q1(t)
+ x1(t)

]
Q1(t) + k12Q2(t) − FR(t) + EGP0(1− x3(t)) + Ug(t)

dQ2(t)
dt

= x1(t)Q1(t) − [k12 + x2(t)]Q2(t)
dS1(t)

dt
= UI(t) − S1(t)

tmax,I
dS2(t)

dt
= 1

tmax,I
(S1(t) − S2(t))

dI(t)
dt

=
S2(t)

tmax,IVI
− keI(t)

dxj(t)

dt
= ka,jxj(t) + kb,jI(t), j = 1, 2, 3

G(t) = Q1(t)
Vg

F c
01(t) =

{
F01, if G ≥ 4.5mmol/L
F01G(t)

4.5
, otherwise

FR(t) =

{
0.003(G(t) − 9)VG, if G ≥ 9mmol/L
0, otherwise

Fig. 4. Hovorka’s model for insulin-glucose regulatory system. See [9] for an explanation and
comparison with other models. Inputs to the model are UI(t) the rate of insulin infusion and
Ug(t), the rate of plasma glucose infusion. The output is G(t) the blood glucose concentration.

various factors affecting glucose concentration: its uptake by cells, its endogenous pro-
duction, renal clearance and production due to meal absorption. The complete ODE
(with details omitted) is summarized in Figure 4. A detailed explanation is available
elsewhere [21,40,9].

The parameter values for a group of “virtual patients” are summarized by Wilinska
et al. [40]. These parameter sets capture the observed intra- and inter subject variations
seen in real-life patient studies. The Hovorka model has been the basis of a model-
predictive controller that has been designed to automatically regulate overnight insulin
levels in diabetic through an insulin infusion pump and subcutaneous measurements
of glucose concentrations through continuous glucose monitors [21]. The controller
has been extensively simulated in-silico to estimate the risk of hypoglycemia [40] and
recently has been tested successfully in clinical trials [20].

Meal Sub-Model. The meal sub-model is part of the overall glucoregulatory model
described by Hovorka et al. to model the rate of absorption of the meal into the blood-
stream by the digestive system. We use a two compartment model

dG1(t)

dt
= − G1(t)

tmax,G
+B · UD(t) and

dG2(t)

dt
=

1

tmax,G
(G1(t)−G2(t)) .

HereG1(t), G2(t) model the amounts of glucose in the two hypothetical compartments,
B refers to the bio-availability of the meal (taken to be 0.8 in our simulations), UD(t)
refers to the meal input in terms of millimoles of glucose ingested at time t, and tmax,G

refers to the time to peak glucose absorption rate. In general, tmax,G is a function of the
meal glycemic index, wherein meals with high glycemic indices such as starch cause
the glucose absorption to peak relatively quickly, while meals with lower glycemic
indices such as protein and fat rich meals result in relatively flatter peaks that appear
slowly. Throughout our simulation, we will use tmax,G as being synonymous with the
glycemic index of the chief carbohydrate source in the consumed meal. The inputUg(t)

of glucose to the bloodstream resulting from the meal is given by Ug(t) =
G2(t)
tmax,G

.
Recently, Dalla Man et al. consider non-linear models of gut absorption wherein the

rate constant of glucose absorption from the gut is itself dependent on the amount of
glucose present. This model is shown to fit tracer meal data better than the Worthington
model [14,26].
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Fig. 5. Schematics for insulin delivery profiles supported by most insulin infusion pump models:
(left) basal, (middle) spike bolus and (right) square wave bolus

Glucose Monitors. The glucose monitor model periodically samples the output of the
insulin-glucose regulatory model to simulate readings of the subcutaneous glucose. We
assume that the value read by the glucose monitor is subject to a systematic calibration
error. Calibration errors in continuous glucose monitors (CGMs) have been studied by
Wilinska et al. (ibid.), Castle and Ward [8] and Cobelli and co-workers [15]. CGMs
need periodic re-calibration using traditional “finger stick” blood glucose readings. It is
conceivable, however, that the user may often delay this process leading to significant
calibration error wherein the reading may be off by as much as 40-50%. Our setup
models a fixed calibration error parameter that can be set at the start of the simulation.
The assumed calibration error for each simulation can occur in either direction. Apart
from calibration errors, “dropouts” have been commonly reported wherein the reading
from the CGM is attenuated for brief stretches of time. The simulation of “dropouts”
due to physical sensor errors is not currently considered in our setup.

Insulin Pump Sub-model. The pump model is itself quite simple: it supports (a) basal
delivery of insulin at a fixed rate and upon receiving a command, it provides a spike bo-
lus dosage of a given amount, shape and width. Figure 5 schematically presents the
basic modes supported by infusion pumps. Our model has “hardwired” bolus profiles
representing a unit bolus amount over a unit time, in the form of lookup tables that sum-
marize fractions of requested amounts against sub intervals. Given a particular amount
and time, the values from the lookup table are scaled appropriately and the insulin in-
puts UI(t) to the gluco-regulatory models are set.

Insulin pump faults include inaccurate doses delivered due to hardware or software
errors, stoppages due to occlusions or pump failure. These can also be modeled during
the infusion by using input parameters that specify the times and durations of the various
faulty situations.

4.2 User Infusion Control Strategy Model

Typically, the infusion pump is used to deliver a continuous flow of short-acting insulin
through the day, and intermittent bolus infusions to cover the glucose level increase
after a meal. Correction doses of insulin are administered to correct for higher than
normal levels immediately before a meal and/or a few hours after a meal. This section
is based on information available from diabetes education websites and books. We refer
the reader to the book by Scheiner for more information [34].
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Basal Insulin Requirement. Basal insulin refers to a constant flow of insulin deliv-
ered by a pump all day to compensate for endogenous glucose production. The basal
insulin level IB requires periodic calibration by the user based on glucose levels ob-
served during the night 3-4 hours after dinner. An appropriately calibrated basal level
IB ensures that the increase in blood glucose level during an extended period of fasting
(eg., during the night well after dinner) is as small as possible.

A typical recommendation for basal insulin for “moderately active” adult with type-
1 diabetes is IB(U/day) = 0.4×weight in kilograms. Starting from this rule of thumb,
the basal levels are adjusted with feedback obtained by frequent monitoring of blood
glucose levels to fine tune a basal insulin requirement.

Calculating Pre-Prandial Insulin Bolus. In order to adjust for the increase in post-
prandial glucose levels, a bolus dose of insulin is delivered through the pump before the
meal. The amount and width of a bolus infusion can be directly programmed by the user
or calculated by the pump using the planned meal parameters as inputs. The inputs to
the calculation include (1) grams of carbohydrates (CHO), (2) glycemic index (GI) of
the major CHO source in the food, and (3) personal ratio for insulin-to-carbohydrates.

The bolus size is calculated as follows:

pre-meal bolus amt.(U) = amt. of CHO(gms) × insulin-to-carbs ratio(U/gm) .

Additionally, based on the current blood glucose reading a correction bolus may also
be required. The correction bolus uses the formula

correction bolus(U) =
G(t) −Gdesired

sensitivity
, if G(t) > Gdesired .

Here G(t) refers to the current blood glucose reading, Gdesired refers to the desired
level, and sensitivity is a parameter that is discovered by calibration during the initial
period of pump usage by the patient.

There are many different “rules of thumb” for arriving at an initial estimate of the
basal insulin requirement, the insulin-to-carb ratio and the sensitivity factor. A starting
guess at the insulin-to-carbs ratio is given by 850

weight(kgs) . An initial sensitivity factor

is obtained using the formula total daily insulin reqd. (mmol/L)
94 . Often starting from

these values, the patient is asked to carefully adjust these values over a period of weeks
to achieve robust control of their blood sugar levels.

Timing the Bolus: Another key parameter is the timing of the bolus relative to the
meal time. The recommended time for the pre-meal bolus depends on the glycemic
index (GI) of the meal. For instance, high glycemic index meals (starches such as rice,
potatoes, white bread) require the bolus infusion 30− 40 minutes pre-meal while lower
glycemic index foods require an infusion that starts with the meal. Another parameter
is the shape and the width of the infusion. Typically starch heavy meals are covered by
a spike bolus while a low GI meal rich in fat and proteins is covered by a square wave
bolus. Insulin infusion pumps incorporate infusion modes that can support these bolus
shapes including combinations for meals that combine various food types.

Overall infusion control model: The infusion control model incorporates a program
that calculates the pre-meal bolus requirements using the insulin-to-carbs ratio and the
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correction insulin using the sensitivity factors. These factors are “calibrated” for the
insulin-glucose regulation model using the robustness guided state-space exploration
technique described in Section 5. The timing and shape of the bolus are determined
by classifying the planned meal GI into three categories high, medium and low [34].
The models developed for this paper and the analysis results will be made available for
download as part of the S-Taliro tool.

5 Robustness Guided Search

In this section, we present the basic concepts used in the analyses of models with respect
to metric temporal logic properties [4]. We present the details of our analysis method-
ology at a high level. More details are available from our prior work which deals with
the problem of using robustness guided state-space exploration to find falsifying traces
for MTL specifications of non-linear hybrid systems [28,17].

5.1 Metric Temporal Properties and Trace Robustness

Metric Temporal Logic (MTL) is a formalism to specify temporal properties of con-
tinuous time signals [25]. Table 2 summarizes the syntax and semantics of MTL for-
mulae. MTL formulae can be used to succinctly express key properties of desirable
post-prandial blood glucose levels. Let t = 0 model the start of a meal and we assume
t = 400 to be end of the simulation period being considered.G(t) is a signal modeling
the blood glucose concentration in terms of mmol/L at time t. Table 3 shows the three
properties of interest to us along with their descriptions.

Our goal is to find executions of the overall infusion process model that falsify at
least one of the properties in Table 3. Here each execution trace corresponds to a dif-
ferent values of planned vs. actual meal data, and calibration error. However, there are
potentially infinitely many executions for various values of the input parameters and
the models for the insulin-glucose regulatory system are non-linear. Therefore, we use
robustness metrics over execution traces to define an objective function over traces to
guide us in the search for a falsifying input.

Table 2. Metric Temporal Logic (MTL) Operators and their formal semantics at time t = t0.
σ : [0, T ] �→ Rn refers to a continuous time signal, I refers to a real time interval, AP refers to a
set of atomic proposition symbols, O maps each atomic proposition to a subset of Rn.

Formula ϕ Semantics (σ, t0,O) |= ϕ Remarks
� true Tautology
p ∈ AP σ(t0) ∈ O(p) Atomic Proposition holds.
ϕ1 ∧ ϕ2 (σ, t0,O) |= ϕ1 ∧ (σ, t0,O) |= ϕ2 Conjunction
ϕ1 ∨ ϕ2 (σ, t0,O) |= ϕ1 ∨ (σ, t0,O) |= ϕ2 Disjunction
¬ ϕ (σ, t0,O) �|= ϕ Negation
�Iϕ (∀t ∈ I)((t0 + t < T ) ⇒ (σ, t0 + t,O) |= ϕ) ϕ is Invariant in I
♦Iϕ (∃t ∈ I)((t0 + t < T ) ∧ (σ, t0 + t,O) |= ϕ) ϕ eventually holds in I

ϕ1UIϕ2
(∃t ∈ I)((t0 + t < T ) ∧ (σ, t0 + t,O) |= ϕ2 ∧
(∀t′ ∈ [0, t)) (σ, t0 + t′,O) |= ϕ1)

ϕ1 until ϕ2
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Table 3. MTL specifications for normal post-prandial glycemic control

No Hypoglycemia ϕhypo �[0,400](G ≥ 3)
No significant hyperglycemia ϕhyper �[0,400](G ≤ 20)
Glucose levels settle after digestion ϕsettle �[200,400](G ∈ [3, 10])

Fig. 6. Illustration of robustness of time trajectories. The trajectory is required to lie inside the
union of the two rectangles. A “cylindrification” around each trajectory is shown such that the
any trace in cylindrification has same outcome w.r.t trace as the original trajectory. Leftmost
trajectory satisfies property with strictly positive robustness due to larger cylindrification radius,
middle trajectory satisfies but with a small robustness value while rightmost trajectory violates
property with negative robustness.

5.2 Trace Robustness

The robustness of signals obtained by simulating hybrid systems is a useful concept
that generalizes the standard true/false interpretation of MTL formulae to real valued
semantics. Informally, robustness provides a measure of how far away a given trace
is from satisfying or violating a property. Real-valued semantics for temporal speci-
fications were considered by Rizk et al. for applications in systems biology [30] and
independently by Fainekos and Pappas for testing control systems [16,17]. Figure 6 il-
lustrates the main idea behind the robustness value of a trace σ w.r.t a MTL formula
ϕ. Informally, the robustness value ε indicates the size of the smallest cylinder that can
be drawn around σ so that any other trace σ′ contained inside this cylinder also has the
same valuation for the property as ϕ. I.e, σ′ satisfies ϕ iff σ does.

Formally, the robustness of a trace σ w.r.t a formula ϕ, denoted R(σ, ϕ), is a real
number such that

1. If R(σ, ϕ) > 0 then σ |= ϕ. Likewise, if R(σ, ϕ) < 0 then σ �|= ϕ.
2. IfR(σ, ϕ) = ε, then any trace that lies inside a cylinder of radius |ε| defined around
σ will also have the same outcome for the property ϕ as σ.

Details on the systematic calculation of robustness values from a sampled continuous-
time trace σ and a bounded-time MTL formula ϕ are available elsewhere [17]. The
approach to falsification of a property ϕ given a model M is to minimize the objec-
tive R(σ, ϕ) over all traces σ of the model M. As noted in our previous work [28],
this optimization problem is non-convex for most systems and furthermore, the objec-
tive R(σ, ϕ) cannot be written down in a closed form. However, it can be evaluated
for a given trace σ. Our previous works have explored the use of various global opti-
mization techniques such as Monte-Carlo simulation using Simulated Annealing [28],
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Table 4. Infusion faults and assumed ranges for minimal robustness search

Parameter Ideal Actual Remarks
Meal Time (mins) 40 [0, 80] discrepancy between planned (t=40) and actual meal time.
Meal Carbs (gms) 250 [150,350] discrepancy between planned and actual carbs ingested.
Meal tg,max (mins) 40 [20,80] meal start time to peak glucose absorption (planned vs. actual GI).
Meal Duration (mins) 30 [10,50] meal duration planned vs. actual.
Correction Bolus Time 200 [100,300] time when correction bolus is administered.
Calibration Error 0 [-0.3,0.3] CGM calibration error.

Ant-Colony Optimization [3], Genetic Algorithms and more recently the Cross-Entropy
Method [32]. These techniques have been implemented in a Matlab toolbox called S-
Taliro [4], which supports state-space exploration of Simulink/Stateflow models with
MTL specifications.

6 Worst-Case Scenario Search

We fix a scenario consisting of a planned meal at time t = 40 minutes after the start of
the simulation, a planned duration of 30 minutes, and consisting of 200 grams of CHO
(∼ 850 calories) with tg,max = 40 minutes, indicating a high GI meal (eg., bread, rice
or pasta). Our goal here is to explore the risks to the patient arising from these faults
in the infusion process. We note that our general framework allows us to explore other
meal scenarios and a different set of faults, as well. The overall methodology for this
exploration involves the following steps: (a) Formulating MTL properties to falsify (Cf.
Table 3); (b) Calibrating the model, so that the MTL properties are satisfied robustly
under normal, fault-free situations; (c) Setting up various combinations of faults (Cf.
Table 4); (d) Using S-Taliro tool to search for falsifications of the properties in Table 3
in the presence of infusion faults; and (e) Repeating the analysis with various faults
disabled to understand the minimal set of faults that are responsible for a given scenario.

Even though our model allows for transient infusion faults, the study performed in
this section, does not include such faults. This is primarily due to the lack of available
data on the frequency and timings of pump failures.

Fig. 7. Post-meal glucose on “calibration pa-
rameters” found using S-Taliro

Model Calibration: First, we calibrate
the patient-specific parameters involved
in deciding the size of the infusion includ-
ing the basal insulin IB , the insulin-to-
carbs ratio and the sensitivity factor. After
fixing a planned meal as described previ-
ously and disabling all faults, we perform
this calibration by using S-Taliro to search
for parameter values that maximize (usu-
ally, falsification involves a minimization)
the robustness of the correctness property
ψ : ϕhypo ∧ ϕhyper ∧ ϕsettle , as defined in Table 3. By maximizing the robustness,
we are, in effect, searching for a trace that (a) satisfies the property ψ, i.e, achieves
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Fig. 8. Two minimal robustness scenarios for potential hypoglycemia risk. (left) meal too
late/infusion too early and (right) meal too early/infusion too late.

ideal glycemic control and (b) does so robustly with nearby traces also satisfying the
property. The parameter values corresponding to the maximal robustness are chosen as
the ideal parameters that achieve the best overall control for a long enough time hori-
zon. Figure 7 shows the output of a fault-free execution using the calibration results to
control the infusion.

The analysis using S-Taliro identified four dangerous scenarios, all characterized
by discrepancies between the meal times. The assumed sensor calibration errors of up
to 30% in either direction were found to have very little effect. Furthermore, analy-
sis performed here was repeated for many different “optimal” values of basal insulin,
insulin-to-carbs ratio, and sensitivity factor found by running the model calibration pro-
cedure. Each repetition yields the same qualitative results described in the paper, but
with slightly varying robustness values for G(t) (upto 20% variation seen). We will
now discuss these scenarios in detail.

6.1 Hypoglycemia Scenarios

We first study the effect of faults to falsify the property ϕhypo : �G ≥ 3. We performed
the search inside S-Taliro using our model implemented in Simulink/Stateflow (tm), the
calibrated values for the user’s strategy reported previously and the meal timings drawn
non-deterministically from the ranges specified in Table 4. The optimization was run
using the stochastic optimization algorithms based on Simulated Annealing (SA) and
Cross Entropy (CE) roughly twenty five times, each time using different random seeds
to produce different minimal robustness scenarios. Each run required approximately
3− 10 minutes with up to 1000 simulations per run.

Each optimization run discovered property violations that expose potential hypo-
glycemia. The minimal values of G were aroundG = 2.3. Examining these violations,
we found that each scenario falls in one of two distinct categories. Figure 8 shows the
blood glucose outputs for both scenarios.

Potential Hypoglycemia Scenario-1: By disabling various faults in turn, we identified
three sufficient faults for this scenario:

1. The planned meal time (t = 40) is significantly earlier than actual meal time (t ∼
70). Alternatively, the insulin bolus is delivered too early.

2. The planned GI (tmax,G = 40) is lower than its actual GI (tmax,G ∼ 20).
3. The actual amount of CHO ingested in this scenario is less than the planned amount

of CHO.
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Fig. 9. Glucose concentration for significant hyperglycemia (left) and failure to settle (right). The
fault-free output is shown as a dashed line.

Additionally, the actual meal durations were slightly larger than planned.

Potential Hypoglycemia Scenario-2: This scenario is characterized by the following
combination of faults:

1. The planned meal time (t = 40) is significantly later than the actual meal time
(t ∼ 5). Alternatively, the bolus is delivered at or after the start of a high GI meal.

2. The meal’s planned GI is lower than the meal’s actual GI.
3. The actual amount of CHO ingested is lower than the planned CHO.

The actual meal durations were slightly less than the planned duration.

6.2 Scenario Analysis for Significant Hyperglycemia

Next, we consider scenarios for significant hyperglycemia G ≥ 25 that can lead to
dangerous conditions such as ketacidosis. Unlike hypoglycemia, this property is found
to be easier to falsify, requiring fewer iterations to find falsifying inputs. The minimal
robustness scenarios found by S-Taliro depend chiefly on two faults: (a) discrepancy
between planned meal GI (tmax,G = 40) and actual meal GI tmax,G ∼ 20 and (b)
discrepancy between planned meal CHO (= 200) and actual meal CHO (∼ 300). Other
faults have a minor impact on the maximum value of the blood glucose level G(t). In
such a scenario, the bolus of insulin is supplied too late and is insufficient to “cover”
the meal.

6.3 Scenario Analysis for Failure to Settle

Finally, we consider minimal robustness scenarios w.r.t failure to settle. Figure 9 (right)
shows the output glucose level for this scenario. The scenario depends on a combination
of two faults: (a) actual meal time significantly later than the planned time, and (b) the
actual CHO is higher than the planned CHO. In this scenario, the peak value of the
insulin precedes the peak gut absorption of glucose. Notice the initial dip inG(t) much
like the first hypoglycemia scenario followed by a delayed rise inG(t) that fails to settle
even after 6 hours.

6.4 Evaluation

We have thus far derived some situations that can cause significant hypoglycemia, hy-
perglycemia and failure to settle. Can the predictions made by our model be tested? The
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gold standard evaluation would be to conduct clinical studies of patients to determine if
the violations observed can be borne in real life. While we are planning to conduct ex-
tensive patient studies with collaborators from medical sciences as part of our ongoing
work in this area, such studies require time and significant effort to carry out.

Preliminary evidence is available from web logs maintained by many diabetic pa-
tients to check if any of the situations reported by us are also confirmed by diabetic
patients. We surveyed many such weblogs and some of the scenarios such as scenario-1
for hypoglycemia and the scenario for failure to settle seem to be well known 3. How-
ever, barring a few exceptions incident reports by patients focused on the effects and
not the root causes.

7 Statistical Model Checking

We have, thus far, used robustness guided state-space explorations to explore the ex-
treme, worst-case scenarios that may happen in the infusion. However, it is equally
interesting to find out the probability that the infusion may result in a hypoglycemia, hy-
perglycemia or a failure to settle (Cf. Table 3). In order to do so, a simple approach is to
assume a probability distribution for each of the faults described in Table 4. We assume
that the faults are uniformly distributed within their intervals and independent of each
other. We then simulate the model by sampling faults from this distribution and find
out the fraction of executions that violate each property. However, if the probabilities of
these bad outcomes are tiny to begin with, the number of executions required become
prohibitively large. Recent advances in Statistical Model-Checking (SMC) have given
rise to techniques that can estimate these probabilities efficiently while running as few
simulations as possible. SMC was originally formulated by Younes and Simmons [42].
A promising extension involving the use of Bayesian reasoning, has been used to ap-
plied to problems in systems biology [23] and control systems verification [44]. Rather
than estimating the probabilities of hypoglycemia or hyperglycemia empirically, these
techniques use repeated simulations to bound the required probability inside an interval
of given half-width δ with a given confidence c. In addition to worst-case search, we
have extended S-Taliro to support Bayesian SMC. Existing techniques implemented in-
side S-Taliro such as the Cross-Entropy Method can be directly used to find a suitable
prior distribution to reduce the number of simulations required.

Table 5 shows the probability estimates for significant hypoglycemia with various
confidence levels and intervals around the probability. We find that hypoglycemia (G <
3) has roughly 30% chance of occurrence, while significant hypoglycemia (G < 2.7)
has an estimated 7% chance of occurrence with very high confidence. The probabilities
for hyperglycemia are also presented in Table 5. Once again, we estimate a 2.2% chance
of significant hyperglycemia G > 25 and 0.3% chance of finding G > 35 (which
exposes the patient to dangerous ketacidosis).

The findings of this section are qualitatively borne out by an informal analysis of
incidents reported by diabetic patients and some clinical studies [18]. The majority of

3 For a discussion of meal timing from a patient’s perspective, see
http://thethirstthatchangedmylife.blogspot.com/
2010/09/loading-on-carbs.html

http://thethirstthatchangedmylife.blogspot.com/2010/09/loading-on-carbs.html
http://thethirstthatchangedmylife.blogspot.com/2010/09/loading-on-carbs.html
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Table 5. Results of SMC for estimating probability of avoiding hypoglycemia (left) and hyper-
glycemia (right). Each entry shows the posterior probability estimate p̂ such that the probability
lies within [p̂− δ, p̂+ δ] with confidence (coverage) indicated by c.

δ = 0.05 δ = 0.01
Coverage (c) .95 .99 .999 .95 .99 .999
�G ≥ 3 0.75 0.7 0.74 0.73 0.72 0.72

�G ≥ 2.8 0.87 0.88 0.88 0.89 0.88 0.88
�G ≥ 2.7 0.91 0.92 0.93 0.93 0.93 0.93

δ = 0.05 δ = 0.01
Coverage(c) .95 .99 .999 .95 .99 .999
�G ≤ 25 0.97 0.97 0.96 0.97 0.97 0.98
�G ≤ 30 0.97 0.98 0.98 0.99 0.99 0.99
�G ≤ 35 0.97 0.98 0.99 0.99 0.99 0.99

the infusion faults due to discrepancies between planned and actual meals result in
hypoglycemia. Hyperglycemia risks commonly occur due to silent pump failures that
were not modeled in this study.

8 Threats to Validity

In this section, we discuss some of the threats to validity and address remedial steps
taken to ensure that the results in this work are applicable to real-life situations.

With any result involving in silico simulations, there is a risk that we are observing
modeling quirks that are not reflective of what happens in reality. However, the mod-
els used here have been extensively evaluated against studies on real patients [22,20],
providing evidence for their validity.

Another concern is that we assume that the food ingested has a single carbohydrate
source with fixed (high) GI. While this can be a good approximation in some cases (eg.,
a meal consisting mostly of pasta or a CHO heavy drink), such meals are not advised
for diabetic patients. Insulin pumps provide combination boluses to offset for different
types of foods with varying GIs. We plan to investigate these effects as part of our
ongoing research. Mixed meal simulations have been considered in the past by Della
Man et al. [14,27]. The effects of exercise are also a factor. However, modeling physical
activity and its effect on the blood glucose regulation is an active area of research with
few established models [31].

A shortcoming of assigning probabilities on the occurrence of faults is that there is no
available mathematical evidence that the distribution of planned meal times vs. actual
meal times are uniformly distributed in the interval of interest. Another assumption is
that of independence of the various faults. It is conceivable that a larger discrepancy be-
tween planned mealtimes and actual mealtimes indicates a larger discrepancy between
the planned and actual meal CHO or GI. Building fault models based on observations
of insulin infusion pump usage of real patients are critical to construct these models.
The probabilities reported by SMC are likely to change if we included more types of
faults such as pump failures in our study.

9 Conclusions

We have presented an in-silico evaluation of the risks involved in the infusion process.
Our approach has been two-fold: (a) using robustness-guided model checking to search
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for potential worst-case scenarios. Here, we report on some scenarios causing hypo-
glycemia, hyperglycemia and failure of the blood glucose to settle to normoglycemia.
Some of our scenarios are borne out by patient reports reported online. (b) We use Sta-
tistical Model Checking to place small bounds on the risks with very high confidence.

Our future direction is to consider individualized risk studies. Here, we seek to de-
velop models and risk analysis fitted to individual patients. This can yield lifestyle
analysis tools that can help advise patients on the best pump calibration parameters
to maintain normal glucose levels.
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1 rue de la Noë, 44321 Nantes cedex 3, France

5 Department of Information Engineering, University of Padova, Padova, 31050, Italy
6 European Bioinformatics Institute (EMBL-EBI) Wellcome Trust Genome Campus,

Cambridge CB10 1SD, UK
7 University of Potsdam, Institute for Computer Science, Germany

saezrodriguez@ebi.ac.uk, anne.siegel@irisa.fr

Abstract. A fundamental question in systems biology is the construc-
tion and training to data of mathematical models. Logic formalisms have
become very popular to model signaling networks because their simplicity
allows us to model large systems encompassing hundreds of proteins. An
approach to train (Boolean) logic models to high-throughput phospho-
proteomics data was recently introduced and solved using optimization
heuristics based on stochastic methods. Here we demonstrate how this
problem can be solved using Answer Set Programming (ASP), a declar-
ative problem solving paradigm, in which a problem is encoded as a
logical program such that its answer sets represent solutions to the prob-
lem. ASP has significant improvements over heuristic methods in terms
of efficiency and scalability, it guarantees global optimality of solutions as
well as provides a complete set of solutions. We illustrate the application
of ASP with in silico cases based on realistic networks and data.
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1 Introduction

Cells perceive extracellular information via receptors that trigger signaling path-
ways that transmit this information and process it. Among other effects, these
pathways regulate gene expression (transcriptional regulation), thereby defin-
ing the response of the cell to the information sensed in its environment. Over
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decades of biological research we have gathered large amount of information
about these pathways. Nowadays, there exist public repositories such as Path-
ways Commons [1] and Pathways Interaction Database [2] that contain curated
regulatory knowledge, from which signed and oriented graphs can be automat-
ically retrieved [3,4]. These signed-oriented graphs represent molecular interac-
tions inside the cell at the levels of signal transduction and (to a lower extent) of
transcriptional regulation. Their edges describe causal events, which in the case
of signal transduction are related to the molecular events triggered by cellular
receptors. These networks are derived from vast generic knowledge concerning
different cell types and they represent a useful starting point to generate predic-
tive models for cellular events.

Phospho-proteomics assays [5] are a recent form of high-throughput or ’omic’
data. They measure the level of phosphorylation (correlated with protein-activity)
of up to hundreds of proteins at the same moment in a particular biological sys-
tem [6]. Most cellular key processes, including proliferation, migration, and cell
cycle, are ultimatelly controlled by these protein-activity modifications. Thus,
measurement of phosphorylation of key proteins under appropriate conditions
(experimental designs), such as stimulating or perturbing the system in different
ways, can provide useful insights of cellular control.

Computational methods to infer and analyze signaling networks from
high-throughput phospho-proteomics data are lessmature than for transcriptional
data, which has been available for much longer time [6]. In particular, the inferer-
ence of gene regulatory networks from transcriptomics data is now an established
field (see [7,8] for a review). In comparison to transcriptomics, data is harder to
obtain in (phospho) proteomics, but prior knowledge about the networks is much
more abundant, and available in public resources as mentioned above.

An approach to integrate the prior knowledge existing in databases with the
specific insight provided by phospho-proteomics data was recently introduced
and implemented in the tool CellNOpt (CellNetOptimizer; www.cellnopt.org)
[9]. CellNOpt uses stochastic optimization algorithms (in particular, a genetic
algorithm), to find the Boolean logic model compatible that can best describe
the existing data. While CellNOpt has proved able to train networks of realistic
size, it suffers from the lack of guarantee of optimum intrinsic of stochastic
search methods. Furthermore, it scales poorly since the search space (and thus
the computational time) increases exponentially with the network size.

In this paper, we propose a novel method to solve the optimization problem
posed in [9] that overcomes its limitations. Our approach trains generic networks
based on experimental measures equally as CellNOpt in order to obtain a com-
plete set of global optimal networks specific to the experimental data. This family
of optimal networks could be regarded as an explanatory model that is specific
to a particular cell type and condition; from these models it should be possi-
ble to derive new, more accurate biological insights. To illustrate our approach
we used a generic Prior Knowledge Network (PKN) related to signaling events
upon stimulation of cellular receptors in hepatocytes, and trained this network
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with in silico simulated phospho-proteomics data. This network was used as
a benchmark for network inference in the context of the DREAM (Dialogues
for Reverse Engineering Assessment of Methods; www.the-dream-project.org)
Predictive Signaling Network Challenge [10].

The proposed solution encodes the optimization problem in Answer Set Pro-
gramming (ASP) [11]. ASP is a declarative problem solving paradigm from the
field of logic programming. Distributed under the GNU General Public Licence,
it offers highly efficient inference engines based on Boolean constraint solving
technology [12]. ASP allows for solving search problems from the complexity
class NP and with the use of disjunctive logic programs from the class ΣP

2 .
Moreover, modern ASP tools allow handling complex preferences and multi-
criteria optimization, guaranteeing the global optimum by reasoning over the
complete solution space.

Our results show significant improvements, concerning computation time and
completeness in the search of optimal models, in comparison with CellNOpt.
We note that similar features can be obtained by formulation of the problem
as an integer linear optimization problem [13]. The perspectives of this work go
towards the exploration of the complete space of optimal solutions in order to
identify properties such as the robustness of optimal models, and relate them to
the quality of the obtained predictions.

2 Formalization

The biological problem that we tackle in this work is essentially a combinatorial
optimization problem over the possible logic models representing a given PKN.
In this section, first we introduce the graphical representation of logic models by
giving a simple example that motivates our formalization. Then, we give a formal
definition for the inputs of the problem, we formally define a Protein Signaling
Logic Model (PSLM) and we show how predictions are made for a given model.
Finally, we define an objective function used for the optimization over the space
of possible logic models.

2.1 Motivation

The functional relationships of biological networks, such as PKNs, cannot be
captured using only a graph [15,9]. If, for example, two proteins (nodes) A and
B have a positive effect on a third one C (encoded in a graph as A→ C, and B→
C), is not clear if either A or B can active C, or if both are required (logic OR and
AND gate, respectively). To represent such complex (logical) relations between
nodes and offer a formal representation of cellular networks, hypergraphs can
be used. Since hypergraphs were already described and used to represent logic
models of protein signaling networks in [15,16,9,17,14], here we adopt the same
formalism and we simply give an example to introduce this representation. For
more details, we refer the reader to the cited literature.
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Example 1. Given the toy PKN described in Fig. 1(a), an arbitrary compatible logic
model is given by the following set of formulas {d = (a ∧ b) ∨ ¬c; e = c; f = d ∧
e}. Moreover, a representation of this logic model is given in Fig. 1(b) as a signed
and directed hypergraph. Note that each conjunction clause gives place to a different
hyperedge having as its source all the present literals in the clause.

(a) (b)

Fig. 1. Hypergraph representation of Logic Models. The green and red edges
correspond to activations and inhibitions, respectively. Green nodes represent ligands
that can be experimentally stimulated. Red nodes represent those species that can be
inhibited by using a drug. Blue nodes represent those species that can be measured
by using an antibody. White nodes are neither measured, nor manipulated. (a) A toy
PKN as a directed and signed graph. (b) An arbitrary Logic Model compatible with
the PKN shown in (a). Black filled circles represent AND gates, whereas multiple edges
arriving to one node model OR gates.

Informally, the training of logic models to phospho-proteomics data consist
in finding the hypergraph(s) compatible with a given PKN that best explains
the data (using some criteria). Even though a graphical representation is quite
intuitive and has been widely used in the literature, it is not the most appropriate
way to give a formal and clear formulation of this problem. Thus, in what follows
we give a formalization based on propositional logic and in the rest of this work,
whenever convenient, we will refer interchangeably to Protein Signaling Logic
Models as hypergraphs and to conjunctive clauses as hyperedges.

2.2 Problem Inputs

We identify three inputs to the problem: a Prior Knowledge Network (PKN), a
set of experimental conditions or perturbations and for each of them, a set of
experimental observations or measurements. For the sake of simplicity, in this
work we have considered only PKNs with no feedback loops. They account for the
main mechanisms of transmission of information in signaling pathways, but do
not include feedback mechanisms that are typically responsible for the switching
off of signals once the transmission has taken place [9,6]. In what follows, we
give a mathematical definition for each of these inputs.



346 S. Videla et al.

Definition 1 (Prior Knowledge Network). A PKN is a signed, acyclic, and
directed graph (V,E, σ) with E ⊆ V ×V the set of directed edges, σ ⊆ E×{1,−1}
the signs of the edges , and V = S∪K∪R∪U , the set of vertices where S are the
stimulus (inputs), K are the inhibitors (knock-outs), R are the readouts (outputs)
and U are neither measured, nor manipulated. Moreover, the subsets S,K,R,U
are all mutually disjoint except for K and R.

Note that in the previous definition, σ is defined as a relation and not as a func-
tion since it could be the case where both signs are present between two vertices.
This is even more likely to happen when a PKN, either extracted from the liter-
ature or from one of the mentioned databases, is compressed as described in [9]
in order to remove most of the nodes that are neither measured, nor manipu-
lated during the experiments. Also note that the subset of nodes K correspond
to those proteins (e.g. kinases) that can be forced to be inactive (inhibited) by
various experimental tools such as small-molecule drugs, antibodies or RNAi.

Definition 2 (Experimental condition). Given a PKN (V,E, σ) an experi-
mental condition over (V,E, σ) is a function ε : S ∪K ⊆ V → {0, 1} such that if
v ∈ S, then ε(v) = 1 (resp. 0) means that the stimuli v is present (resp. absent),
while if v ∈ K, then ε(v) = 1 (resp. 0) means that the inhibitor for v is absent
and therefore v is not inhibited (resp. the inhibitor for v is present and therefore
v is inhibited).

Definition 3 (Experimental observation). Given a PKN (V,E, σ) and an
experimental condition ε over (V,E, σ), an experimental observation under ε is
a function θ : R(ε) ⊆ R → {0, 1} such that R(ε) denotes the set of observed
readouts under ε and if v ∈ R(ε), θ(v) = 1 (resp. 0) means that the readout v is
present (resp. absent) under ε.

Since the phospho-proteomics data used here represents an average across a
population of cells, each of which may contain a different number of proteins
in active or inactive (1 or 0) state, the values are continuous. Thus, we have to
discretize the experimental data somehow in order to fit the previous definition.
A simple but yet effective approach is to use a threshold t = 0.5 such that values
greater than t are set to 1, while values lower that t are set to 0. Other approaches
could also be used but, since in this paper we work with discrete in silico data,
we left this discussion for a future work. Indeed, this paper focuses on comparing
the performance of training and formal approaches to the optimization problem,
for which in silico datasets appear more relevant.

2.3 Protein Signaling Logic Models

Here we state the combinatorial problem as a Constraint Satisfaction Problem
(CSP) in order to have a clear and formal definition of a Protein Signaling Logic
Model (PSLM) as a solution to this problem. Recall that a CSP is defined by a
set of variables X , a domain of values D, and a set of constraints or properties
to be satisfied. A solution to the problem is a function e : X → D that satisfies
all constraints [18].
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Next, we define two properties that we use later as the constraints of the CSP
formulation. The first property defines for a given PKN, the conditions that
must be satisfied by a logical formula in order to define the truth value of any
node. For example, if we look the Fig. 1 is quite clear that the hypergraph in
(b) is not just some arbitrary hypergraph, but instead is strongly related to the
graph in (a). This relation is captured by the following definition.

Definition 4 (PKN evidence property). Given a PKN (V,E, σ) and v ∈
V , a logical formula ϕ in Disjunctive Normal Form (DNF) has an evidence
in (V,E, σ) with respect to v if and only if for every propositional variable w
that occurs positively (resp. negatively) in ϕ, it exists an edge (w, v) ∈ E and
((w, v), 1) ∈ σ (resp. ((w, v),−1) ∈ σ).

The second property identifies those logical formulas in DNF for which exist
some equivalent but simpler formula. For example, for two literals X and Y , it
is easy to see that X ∨ (X ∧ Y ) ≡ X . In such case we say that X ∨ (X ∧ Y )
is redundant since, as we will see later, we are interested in minimizing the
complexity of the logic models. This concept was previously introduced in [9] as
a way to reduce the search space of all possible logical formulas.

Definition 5 (Redundancy property). Given a logical formula ϕ in DNF,
with ϕ =

∨
j≥1 cj where each cj is a conjunction clause, ϕ is a redundant formula

if and only if for some k, l ≥ 1 with k �= l and some logical conjunction r it holds
that ck = cl ∧ r.

Now, based on the general form of a CSP given above, and the properties defined
in (4) and (5), we define a PSLM as follows.

Definition 6 (Protein Signaling Logic Model). Given a PKN (V,E, σ) with
V \S = {v1, . . . , vm} for some m ≥ 1, let the set of variables X = {ψv1 , . . . , ψvm}
and the domain of values D given by all the formulas in DNF having V as the
set of propositional variables. Then, a function e : X → D defines a compatible
Protein Signaling Logic Model B if it holds for i = 1, . . . ,m that e(ψvi) has an
evidence in (V,E, σ) with respect to vi. Moreover, if it also holds for i = 1, . . . ,m
that e(ψvi) is not redundant, then we say that B is a non redundant logic model.

Example 2. Given the PKN in Fig. 1(a) the function that defines the logic model in
Fig. 1(b) is given by:

e(ψv) =

⎧⎨
⎩

(a ∧ b) ∨ ¬c if v = d
c if v = e
(d ∧ e) if v = f

for ψv ∈ {ψd, ψe, ψf}. Note that in every case, each formula satisfies both properties:
PKN evidence (Definition 4) and Non-redundancy (Definition 5).

2.4 Predictive Logic Model

A given Protein Signaling Logic Model (PSLM) describes only the static struc-
ture of a Boolean network. Even though Boolean networks are either synchronous
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or asynchronous, in any case the set of Logical Steady States (LSSs) is the same.
Therefore, and since we focus on a Logical Steady State Analysis (LSSA) which
offers a number of applications for studying functional aspects in cellular inter-
actions networks [15], choosing between synchronous and asynchronous is not
relevant in this work. Moreover, we do not need to compute all possible LSSs,
but only the one that can be reached from a given initial state. Note that the
existence of a unique LSS is guaranteed by the assumption of no feedbacks loops
in the given PKN. Next, we describe how we compute this LSS in terms of satis-
fiability of a particular logical formula. This is based on the formalization given
by [19] for a related problem named IFFSAT.

Let (V,E, σ) a PKN and B a compatible PSLM. Recall that B is defined by
a function from every non-stimuli in (V,E, σ) to a DNF formula satisfying the
PKN evidence property defined in Definition 4.

First, we define a logical formula R representing the regulation of every non-
stimuli or non-inhibitor node in (V,E, σ).

R =
∧

v∈V \(S∪K)

(B(v) ⇐⇒ v) (1)

Note that we use (B(v) ⇐⇒ v) instead of just (B(v) ⇒ v) to enforce that
every activation must have a “cause” within the model. Next, we define two
logical formulas S and K in order to fix the values of stimulus and the values or
regulations of inhibitors in (V,E, σ) under a given experimental condition ε.

S =
∧
v∈S

{
v if ε(v) = 1

¬v if ε(v) = 0
K =

∧
v∈K

{
B(v) ⇐⇒ v if ε(v) = 1

¬v if ε(v) = 0
(2)

Thereafter, we look for the truth assignment such that R ∧ S ∧ K evaluates to
true and which represents the LSS of the network for the given initial conditions.
The biological meaning behind this concept is that the input (stimuli) signals
are propagated through the network by using the faster reactions and after some
time, the state of each protein will not change in the future. Thus, we say that
the network is stabilized or that it has reached an steady state [15]. Finally, we
can define the model prediction under a given experimental condition as follows.

Definition 7 (Model prediction). Given a PKN (V,E, σ), a PSLM B com-
patible with (V,E, σ) and a experimental condition ε over (V,E, σ), the prediction
made by B under the experimental condition ε is given by the truth assignment
ρ : V → {0, 1} such that R∧ S ∧ K evaluates to true.

Note that without the assumption of no feedbacks loops in the given PKN,
the existence of multiple steady states or cycle attractors should be considered.
Then, in order to guarantee that ρ is well defined, new constraints should be
added to the CSP instance defined in (6), but this is left as a future work.

Example 3. Let ε : {a, b, c, d} → {0, 1} an experimental condition over the PKN given
in Fig. 1(a) defined by:

ε(v) =

{
1 if v ∈ {a, b, c}
0 if v = d



Revisiting the Training of Logic Models of Protein Signaling Networks with ASP 349

That is, a, b, c are stimulated while d is inhibited. Then, the prediction made by
the PSLM given in Fig. 1(b) under ε, is given by the truth assignment such that
the formula

((d ∧ e) ⇐⇒ f) ∧ (c ⇐⇒ e) ∧ a ∧ b ∧ c ∧ ¬d

evaluates to true. Thus, e is assigned to 1 and f is assigned to 0.

2.5 Objective Function

Given all the PSLMs compatible with a given PKN, our goal is to define an
objective function in order to capture under different experimental conditions,
the matching between the corresponding experimental observations and model
predictions. To this end, we adopt and reformulate the objective function pro-
posed in [9] in terms of our formalization. The objective function represents a
balance between fitness of model to experimental data and model size using a
free parameter chosen to maximize the predictive power of the model. Of course,
other objective functions can be defined in the future, but here we focus on a
comparison against one of the state of the art approaches and thus, we choose
to use the same objective function.

Before going further, we define the size of a model as follows.

Definition 8 (Size of Protein Signaling Logic Models). Given a PKN
(V,E, σ) and a PSLM B compatible with (V,E, σ), the size of B is given by |B| =∑

v∈V \S |B(v)| where |B(v)| denotes the canonical length of logical formulas.

Example 4. If we consider the PSLM given in Fig. 1(b), its size is given by: |(a∧ b)∨
¬c|+ |c|+ |(d∧ e)| = 3+1+2 = 6. This can be seen also as the size of the hypergraph,
where each hyperedge is weighted by the number of source nodes and the size of the
hypergraph is the sum of all weights.

Finally, we define the combinatorial optimization problem of learning PSLMs
from experimental observations under several experimental conditions as follows.

Definition 9 (Learning Protein Signaling Logic Models). Given a PKN
(V,E, σ), n experimental conditions ε1, . . . , εn and n experimental observations
θ1, . . . , θn with each θi defined under εi, for a given PSLM B compatible with
(V,E, σ), and n model predictions ρ1, . . . , ρn over B with each ρi defined under
εi, we want to minimize

Θ(B) = Θf (B) + α×Θs(B) (3)

where Θf (B) = 1
no
×
∑n

i=1

∑
v∈R(εi)

(θi(v)−ρi(v))2 such that no, the total number

of output measures, is given by
∑n

i=1 |R(εi)| and Θs(B) = 1
b × |B| such that b is

the size of the union of all PSLMs compatible with (V,E, σ).
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3 Methods

In this section we describe the methods used to perform a comparison between
our ASP-based approach and the one presented in [9]. First we provide the
ASP implementation that we used to run the experiments and then, we describe
the method proposed to systematically generate in silico study cases based on
realistic networks and data.

3.1 ASP Implementation

Our goal is to provide an ASP solution for learning PSLMs from experimental
observations under several experimental conditions (Definition 9). Here we pro-
vide a logic program representation of the problem described in Section 2 in the
input language of the ASP grounder gringo [20]. After describing the format of
any input instance, we show how we generate non-redundant candidate solutions
having an evidence in the given PKN, then we describe how model predictions
are made and finally, we show the minimization of the objective function.

Input Instance. We start by describing the input instance for the PKN given
by (V,E, σ), the experimental conditions E = ε1, . . . , εn and the experimental
observations O = θ1, . . . , θn.

G((V,E, σ), E ,O) ={vertex(v) | v ∈ V }
∪{edge(u, v, s) | (u, v) ∈ E, ((u, v), s) ∈ σ}
∪{exp(i, v, s) | εi(v) = s, v ∈ S ∪K}
∪{obs(i, v, s) | θi(v) = s, v ∈ R(εi)}
∪{nexp(n)}
∪{stimuli(v) | v ∈ S}
∪{inhibitor(v) | v ∈ K}
∪{readout(v) | v ∈ R}

(4)

Candidate solutions. We follow a common methodology in ASP known as
“guess and check” where using non-deterministic constructs, we “guess” candi-
date solutions and then, using integrity constraints we “check” and eliminate
invalid candidates. Since we are interested only on those logical formulas having
an evidence in (V,E, σ), first we generate all the possible conjunction clauses
having such evidence by computing for every v ∈ V all the possible subsets
between the predecessors of v. This is done by the following rules.

subset(U,S, null, 1, V ) ← edge(U,V, S).

subset(U,SU , subset(W,SW , T ), N + 1, V ) ← subset(U,SU , null, 1, V ),

subset(W,SW , T,N, V ),

vertex(U) < vertex(W ).

(5)

The idea is to start with the singleton subsets containing only a single prede-
cessor, and to create a bigger subset by recursively extending a singleton subset
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with any other subset until a fix point is reached. The first rule defines all the
singleton subsets related to V . We represent the subsets here as linked lists where
U , the first argument in the predicate subset/5, represents the head of the list
(5 is the arity of the predicate). The second argument represents the sign of the
edge from U to V . The third argument represents the tail of the linked list (null
in case of a singleton). The fourth argument represents the subset cardinality,
and the last argument keeps track of the target vertex. The head is here used as a
identifier such that we can order all subsets. The second rule recursively extends
a singular subset identified by head argument U with any subset identified by
W as long as U < W . We exploit the order between the predicates vertex/1 to
avoid different permutations of the same subsets.

The following rules define the inclusion relationship between these subsets of
predecessors.

in(U, S, subset(U,S, T )) ← subset(U,S, T,N, V ).

in(W,SW , subset(U,SU , T )) ← in(W,SW , T ),

subset(U,SU , T, N, V ).

(6)

The first rule declares that every subset contains its “head” element. The second
rule declares that if W is included in T , and if there is another subset having T
as its “tail”, then W is also included in it.

Since each subset generated by the rules in (5) represents a possible conjunc-
tion clause, we can generate all possible logical formulas in DNF by considering
each subset as either present or absent.

{clause(subset(U,S, T ),N, V )} ← subset(U,S, T,N, V ).

← clause(C1, N, V ), clause(C2,M, V ),

C1 �= C2, in(U, S,C2) : in(U, S,C1).

(7)

The first rule is a choice rule that declares the non-deterministic generation of
predicates clause/3 from a subset. A clause represents the conjunction of all the
elements included in the subset. The second rule declares an integrity constraint
to avoid the generation of redundant logical formulas by using the predicates
generated in (6).

Model predictions. Next, we show the representation for the input signals
propagation. For each experiment, first the truth values for stimuli and inhibited
nodes are fixed and then, truth values are propagated to all nodes by exploiting
the fact that in order to assign true to any node, it is enough that one conjunction
clause over it evaluates to true.

fixed(E, V ) ← nexp(N), E = 1..N, stimuli(V ).

fixed(E, V ) ← inhibitor(V ), exp(E,V, 0).

active(E, V ) ← exp(E,V, 1), stimuli(V ).

inactive(E, V ) ← exp(E,V, 0).

(8)

The first and second rules simply declare which nodes have fixed truth values
because they are either an input node, or an inhibited node in a particular
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experiment. Thereafter, the third and fourth rules declare the truth assignments
that are given by the experimental condition.

The following rules model the signal propagation in every experiment.

active(E,V ) ← nexp(N), E = 1 . . . N,

clause(C,M, V ),not fixed(E, V ),

active(E,U) : in(U, 1, C),

inactive(E,U) : in(U,−1, C).

inactive(E, V ) ← vertex(V ), nexp(N), E = 1 . . . N,

not fixed(E,V ),not active(E, V ).

(9)

The first rule declares that for each experiment, if there is at least one conjunc-
tion clause having all its positive literals assigned to true and all its negated
literals assigned to false, then the complete clause evaluates to true. While the
second rule declares that every node that is not assigned to true, it is assigned
by default to false.

Optimization. Finally, we show the declaration of the objective function. In
Section 2 we defined the objective function Θ, but since ASP can only minimize
integer functions, we transformed Θ into Θint trying to lose as less information
as possible. To this end, if we assume that the free parameter α = N

D for some

N,D ∈ N, multiplying Θ by N × 1
α × no × b we define Θint as follows.

Θint(B) = D × no × b×Θ(B)

= D × b×
n∑

i=1

∑
v∈R(εi)

(θi(v)− ρi(v))
2 +N × no × |B| (10)

This new (integer) objective function is represented as follows in our ASP en-
coding.

#const npenalty = 1.
#const dpenalty = 1000.
penalty N(npenalty).
penalty D(dpenalty).
b(B) ← B = [subset( , , N, ) = N ].
no(E) ← E = [obs( , , )].
mismatch(E,V ) ← obs(E, V, 0), active(E,V ).
mismatch(E,V ) ← obs(E, V, 1), inactive(E, V ).

(11)

The rules in (11) declare the predicates that we need to give a representation
of Θint. First, we declare two predicates to represent the free parameter α as a
fraction of integers. Then, we use a weighted sum to declare the size of the union
of all logic models and we count the number of single experimental observations.
The two last rules declare in which cases a model prediction does not match the
corresponding output measurement.

Last but not least, we require the minimization of the (integer) objective
function Θint simply by using the #minimize directive.

#minimize[ mismatch( , ) : b(B) : penalty D(PD) = B × PD,

clause( , N, ) : no(E) : penalty N(PN) = E × PN ×N ].
(12)
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3.2 Benchmark Datasets

We wanted to compare the ASP approach with CellNOpt and analyze the scal-
ability of the methods. Also we wanted to determine how the inference of the
network is influenced by specific parameters of the problem. For this purpose, we
generated meaningful benchmarks that covered a broad range of these influential
parameters.

Middle and Large-Scale Benchmark Datasets We constructed a middle
(see Fig 2) and a large scale (see Fig 3) optimization problem. Both PKNs were
derived from literature and in each case we randomly selected compatible PSLMs
or hypergraphs (middle: Fig. 2(b), large: Fig. 3(b)), from which we generated
in silico datasets under several experimental conditions giving place to differ-
ent numbers of output measures. The main parameters used to compute the
objective function for the optimization are shown in the Table 1.

Table 1. Middle and Large optimization problems

Scale Nodes Edges
Compatible
hyperedges

Size of
union

hypergraph

Selected
hypergraph

size

Experimental
conditions

Output
measures

Middle 17 34 87 162 20 34 210

Large 30 53 130 247 37 56 840

Large Set of Benchmark Datasets. We relied on a literature derived PKN
for growth and inflammatory signaling [10] to derive compatible PSLMs and
generate 240 benchmark datasets with in silico observation data. Given the
literature derived network (V,E, σ) with V = S ∪ K ∪ R ∪ U , we created 4
derivative networks (Vi, E, σ), i = 1 . . . 4 with Vi = V , Vi = S ∪ Ki ∪ Ri ∪ Ui,
Ki ⊆ K, Ri ⊆ R, and U ⊆ Ui. Each network differing in sets of inhibitors and
readouts. For these networks we compressed (bypassed) nodes that are neither
measured, nor manipulated during the experiments, which were not affected by
any perturbation, lay on terminal branches or in linear cascades, as described
in [9], yielding to 4 compressed networks.

To investigate the influence of the size of the networks in the optimization
both in terms of computational times and recovered edges, we randomly selected
PSLMs of 3 different sizes (20, 25, or 30) for each compressed network. The size
of each model was obtained as defined in Definition 8. Then, 5 different PSLMs
were generated for each compressed network and for each size, giving a total of
60 different models (20 of each size). We use these 60 models to run simulated
experiments and generate in silico experimental observations.

Moreover, we wanted to investigate how the amount of experimental observa-
tion data influences the network inference. Therefore, we generated 4 datasets
D1 . . .D4 of experimental observations for each model. The first dataset D1
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(a) (b)

(c)

Fig. 2. Input and outputs of a middle-scale optimization problem. (a) A
literature-derived Prior Knowledge Network (PKN) of growth and inflammatory sig-
naling. (b) An hypergraph which is compatible with the PKN shown in (a). From this
model we derive 240 output measures under 34 experimental conditions. (c) The ASP
optimization enumerated all the minimal PSLMs that predict the in silico measures
produced in (b) with no mismatches. The union of the 8 optimal models is shown with
a specific edge encoding: edges are labeled according to their percentage of occurrence
in all the 8 models. The thick green edges correspond to those edges that also appear
in the hypergraph used to generate the in silico datasets.

contained only experimental observations from single-stimulus/single-inhibitor
experiments. The other datasetsD2 . . . D4 contained observations from multiple-
stimuli/multiple-inhibitors experiments with 30, 50 and 60 experimental condi-
tions respectively. The larger datasets always include the smaller datasets, such
that D1 ⊂ D2 ⊂ D3 ⊂ D4. In total we generated 240 different datasets of 4
different sizes, generated from 60 different models of 3 different sizes. The whole
method is illustrated in the Fig. 4.

4 Results and Discussions

First, we focused in finding minimal PSLMs compatible with the given PKN and
predicting the generated dataset for the middle (see Fig. 2) and large-scale (see
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(a) (b)

(c)

Fig. 3. Large-scale optimization problem. (a) A Large literature-derived PKN
of growth and inflammatory signaling obtained from [21]. (b) An hypergraph which is
compatible with the PKN shown in (a). From this model we derive 840 output measures
under 56 experimental conditions. (c) Union of the two minimal PSLMs predicting the
whole dataset with no mismatches.

Fig. 3) benchmarks. Second, general comparisons between our logical approach
implemented in ASP and the genetic algorithm implemented in CellNOpt, were
performed over the 240 datasets generated as described in Section 3.2.

4.1 Enumeration of Solutions to the Optimization Problems

We used the ASP implementation detailed in Section 3.1 to identify the PSLMs
compatible with the middle-scale PKN (respectively the large-scale PKN) having
an optimal score with respect to the generated dataset.

Notice that in both cases, by the construction of the datasets, we knew that
there exists a compatible PSLM which predicts the whole datasets without mis-
matches. As a consequence, if α ∈ (0, 1) (see Eq. 3, Eq. 10), the optimization
problem is equivalent to find the logic models with perfect fit and minimal size.

In a first run, the ASP implementation allowed us to compute the minimal
score of the optimization problem. Afterwards, we run the ASP solver again to
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Fig. 4. Pipeline of the generation of the 240 benchmarks

enumerate all the models having a score lower or equal than the minimal score.
All together, we obtained a complete enumeration of all minimal models. Below,
we show the results obtained using the ASP-based approach to solve the middle
and large optimization problems.

– Middle-scale The minimal score was computed in 0.06 seconds1. The enu-
meration took 0.03 seconds and found 8 global optimal Boolean models with
size equal to 16. The union of the 8 optimal models found is shown in Fig.
2(c).

– Large-scale The minimal score was computed in 0.4 seconds. The enumera-
tion took 0.07 seconds and found 2 global optimal Boolean models with size
equal to 26. In Fig. 3(c) we show the union of the 2 optimal models found.

Both optimization problems were also run with CellNOpt, based on its genetic
algorithm (see Materials and Methods section in [9]) performing generations over
a population of 500 models2.

– Middle-scaleThe optimization was run for 9.2 hours and the best score was
reached after 7.2 hours (299 generations). During the optimization, 66Boolean
models with perfect fit were found, with sizes going from 16 to 24. Out of the
66 models, only 2 models were minimal (i.e. with size equal to 16).

1 All ASP computations were run in a MacBook Pro, Intel Core i7, 2.7 GHz and 4
GB of RAM using Gringo 3.0.3 and Clasp 2.0.5 versions.

2 All CellNOpt computations were run in a cluster of 542 nodes, each with 32 GB of
memory, and a total of 9000 cores using CellNOptR 1.0.0.
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– Large-scale The optimization problem was run for 27.8 hours and the best
score was reached after 24.5 hours (319 generations). During the optimiza-
tion, 206 models with perfect fit were found, with sizes going from 27 to 36.
Note that in this case, CellNOpt did not find any of the minimal models (i.e.
with size equal to 26).

Our main conclusion here is as follows: in both cases, due to the use of in
silico data, models with perfect fit were exhibited by both approaches. The
main advantage of the formal approach is to be able to explicitly compute the
minimal score, allowing us to enumerate all models with this score in a very short
time. Meanwhile, genetic algorithms are not able to exhibit this information
and therefore cannot develop strategies to compute all minimal models. At the
same time, this leads to the question about the biological relevance of optimal
models and if it is possible to discriminate between them. A precise study of the
biological pathways selected in each optimal model did not allow us to specifically
favor one model according to biological evidences. That is why we choose to show
the union of them in each case (Fig. 2(c) and Fig. 3(c)).

Nonetheless, the ASP search was strongly supported by the fact that there
exists at least one model with perfect fit. This considerably reduces the optimiza-
tion problem to the search of compatible models with minimal size by canceling
the Θf term in Eq. (3). Performing optimizations over real data will induce that
there will no more exist models with perfect fit, which may have a strong ef-
fect over the performance of our formal approach, while for genetic algorithms
performances may probably be less affected by real data, but this will have to
be studied. An interesting perspective is therefore to test the efficiency of these
approaches in a real case experiment.

Fig. 5. Number of suboptimal solutions to the middle-scale (red curve)
and large-scale (blue curve) optimization problems. Each curve describes the
number of models with perfect fit with a given size, where the size ranges from its
minimal value to the maximal size of models found by CellNOpt.
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4.2 Dependency to the Model Size

To have a first view of the space of solutions, we investigated the role of the model
size over the optimization process. Indeed, the optimization criteria moderates
the choice of a model of minimal size -according to a parsimonious principle-
by a free parameter related to the fitting between observations and predictions.
(see Eq. 3). However, as we mentioned above, in all our experiments we known
that there exists at least one model which predicts the whole datasets without
mismatches and thus, the optimization problem is focused on finding minimal
models. Therefore strongly favoring the size of the model. To evaluate the impact
of this for the middle and large optimization problems depicted in Fig. 2 and
Fig. 3, we used ASP to enumerate all the models with perfect fit having their size
less or equal to the size of the models found by CellNOpt. Results are depicted
in Fig. 5, providing a first insight on the structure of the space of compatible
PSLMs with perfect fit. It appears that the number of compatible PSLMs in-
creases exponentially with the size of the model. Therefore, optimizing over the
size criteria appears quite crucial. A prospective issue is to elucidate whether
the topology of the space of suboptimal models informs about the biological
relevance of minimal models.

Fig. 6. Executions of ASP and CellNOpt optimizations that found all global
optimal models. The total number of runs was of 240 in account of the in-silico
data generated. The x-axis represents the number of global optimal models that each
problem had. The y-axis, shows the number of executions where ASP and CellNOpt
found the total number of global optimums.

4.3 Accuracy of Predictions

The study of the middle and large optimization problems evidenced that genetic
algorithms may not find all minimal models. In order to elucidate whether this
phenomenon is frequent, we used the 240 benchmark datasets generated with
the method described in Section 3.2. In Fig. 6 we show the number of executions
of the optimization process for ASP and CellNOpt where both approaches found
the complete set of global optimal (minimal) models. Recall that ASP ensures
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finding the complete set of global optimal models (blue bars in Fig. 6) while this is
not the case for CellNOpt. We observed that in 202 executions out of 240 (84%),
ASP and CellNOpt both found all the minimal models. This is particularly clear
in the 105 executions with a single minimal model, which was found by CellNOpt
in 95% of executions. Nonetheless, in the 44 cases with more than 4 optimal
models, CellNOpt found all optimal models in only 47% cases. More generally,
as the number of minimal solutions to the optimization problem increases, the
percentage of minimal solutions identified by CellNOpt decreases.

Fig. 7. Computation time of ASP and CellNOpt with respect to the num-
ber of experimental observations. The x-axis is the number of experimental ob-
servations: sum of number of readouts for each experimental condition. The maxi-
mum, average, and minimum computation times are plotted in green, red, and blue
respectively.

4.4 Computation Times

In Fig. 7 we plot the computation time evolution for ASP and CellNOpt with re-
spect to the number of experimental observations (i.e. output measures) included
in the in silico datasets used to run the optimizations. Since we generated multi-
ple datasets which contained the same number of experimental observations, for
each optimization related to these multiple datasets we obtained minimum, max-
imum, and average times. We observe that the ASP computation times are in a
range that goes from 0.02 to 0.15 seconds, while CellNOpt computation times
to find the best score goes from 43 minutes to 2.7 hours, which was set as the
limit running time. We see from these results that ASP outperforms CellNOpt
in 5 order of magnitude guaranteeing in all cases global optimality. As discussed
in a previous subsection, the main prospective issue is to test the relevance of
this conclusion when optimizing with real data instead of in silico data.
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5 Conclusion

We have proposed a formal encoding of a combinatorial optimization problem
related to the inference of Boolean rules describing protein signaling networks.
We have used ASP, a declarative problem solving paradigm, to solve this opti-
mization problem and compared its performance against the stochastic method
implemented by CellNOpt. Our ASP formulation relies on powerful, state-of-the-
art and free open source software [20,12]. As main conclusion, we prove that our
ASP-based approach ensures to find all optimal models by reasoning over the
complete solution space. Moreover, in the experiments presented in this work,
ASP outperforms CellNOpt in up to 5 orders of magnitude.

Our analyses provide concrete illustrations of the potential applications, in
our opinion under-explored, of ASP in this field. Recently, Integer Linear Pro-
gramming (ILP) have been used to solve the same problem that we described
here [13]. In principle, ILP solvers can also provide the complete set of optimal
solutions but a detailed comparison between ASP and ILP for this particular
problem remains to be done.

As discussed within the results section, several prospective issues shall now be
investigated. We first have to study the robustness of our results when optimizing
over real networks and datasets. Second, we shall develop tools to explore the
topology of the space of suboptimal models in order to gain in biological relevance
in the inference process and try to elucidate whether this topology informs about
the biological relevance of minimal models. Finally, by considering the presence
of feedbacks loops in the input PKN and by studying the effect of different
discretization approaches, we hope to improve the state of the art in protein
signaling network inference and offer a useful tool for biologists.
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Abstract. We present a detailed model of the JAK-STAT pathway in
IL-6 signaling as non-trivial case study demonstrating a new database-
supported modular modeling method. A module is a self-contained and
autonomous Petri net, centred around an individual protein. The mod-
elling approach allows to easily generate and modify coherent, executable
models composed from a collection of modules and provides numerous
options for advanced biomodel engineering.

1 Background

Theevolutionary conservedJAK-STATpathway is oneof themajor signalling com-
ponents in most of the eukaryotic cells [4]. JAK-STAT transmits stimuli from the
cell membrane to the nucleus and is therefore mainly responsible for the gene reg-
ulation to control cell growth, differentiation and death. The dysfunctionality of
the JAK-STAT pathway can lead to cancers or immune deficiency syndromes. An
outstanding characteristic of the JAK-STAT pathway is the extensive crosstalk
among its components (Fig. 1.A). The JAK protein as well as the STAT protein
can appear in different isoforms that interact with several cytokine receptors and
gene promoters, which leads to a combinatorial problem. It is a challenging task to
explore the extensive cross-talk of the regulatory components, which we address by
a new modular approach to biomodel engineering.

2 Results and Conclusions

Instead of creating a large monolithic mathematical model, we have developed a
bottom-up modular description of the JAK-STAT pathway [1]. Each module as
model component represents an individual protein and all its reactions with other
interaction partners. In addition, each module contains metadata for documen-
tation purposes; it, thus, corresponds to a wiki-like mini-review. Modules can be
linked to each other in arbitrary combination accounting for the combinatorial
complexity of regulation (Fig. 1.B). A coherent network is obtained via specific
connection interfaces, these are identical shared subnets describing the interac-
tion between to proteins. The characteristic advantage of the approach is that no
further modifications are required in order to obtain an executable model. As mod-
elling framework we chose Petri nets, which are intuitively understandable, allow
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Fig. 1. JAK/STAT pathway in IL-6 signalling. (A) Mechanism of the JAK-
STAT pathway in IL-6 signaling consists of the following steps: (1) Binding of
interleukin-6 (IL-6) to IL6-receptor α (IL-6Rα) and glycoprotein gp130 and thereby
formation of an active receptor complex, (2) activation of the JAK kinase by transphos-
phorylation, (3) phosphorylation tyrosine residues of gp130 by active JAK, (4) binding
of STAT to phosphotyrosines of gp130 and phosphorylation by STAT, (5) dimerization
of phosphorylated STATs and translocation to the nucleus, (6) activation of transcrip-
tion of multiple genes, including SOCS, (7) binding of SOCS to gp130 and thereby
inhibition of JAK (negative feedback), (8) dephosphorylation of gp130 by the SHP2
phosphatase, (9) phosphorylation of SHP2 by JAK and thereby inhibition of SHP2
(negative feedback); see [4] for a detailed review. The molecular mechanisms of each
involved protein have been modelled in the form of separate Petri nets (modules)
indicated by the corresponding coarse places (two nested circles) representing the un-
derlying Petri net. The synthesis and degradation of SOCS3 are modelled within a
biosynthesis/degradation module as indicated by the corresponding coarse transition
(two nested squares) representing the underlying Petri net. The figure was redrawn
from [4]. (B) Modules can be reused and recombined in various combinations. The
obtained models can be used to test for the effect of alternative or modified reac-
tion mechanisms. (C) Here, we employed stochastic simulations to demonstrate the
response of the involved components dependent on IL-6 supply. IL-6 is injected only
in the second third of the simulation time. The signalling activity increases during
stimulation. The system shows basal activity before and after the stimulation.
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Fig. 2. The gp130 module. The extracellular part of the gp130 glycoprotein consists
of the Ig-like domain and a cytokine-binding site, which are responsible for complex
formation with IL-6 and IL6-Rα. The intracellular part of gp130 has an interbox 1-
2 region, where JAKs are constitutively bound. Downstream of this binding site the
gp130 receptor has several important tyrosine residues, which are phosphorylated by
activated JAK. The phosphotyrosine pY759 is the specific binding site of SHP2 and
SOCS isoforms via their SH2 domain, where STAT isoforms can interact via their SH2
domain with the other phosphotyrosines. In the corresponding Petri net model of gp130,
the extracellular binding site of IL-6 and the intracellular binding site of JAK1 to the
Box 1 and Box 2 sites are represented as coarse transitions. Three coarse transitions are
assigned to each tyrosine residue downstream of Y759 describing the phosphorylation
by JAK1, the dephosphorylation by SHP2, and the binding interaction with STAT3
(in the case of Y759 two coarse transitions are used to represent the interaction with
SHP2 and SOCS3). The boxed panels on the right side of the Figure exemplify four
subnets that are included in the corresponding coarse transitions in the gp130 module.



Modular Model of JAK-STAT Signalling 365

visual modelling and are executable. Petri nets have been shown to be perfectly
suited to describe the inherently concurrent mechanisms in biological systems [3].
For providing a proof-of-principle for our modular modelling concept, we focus on
JAK-STAT signalling induced by the IL-6 cytokine with only one isoform of each
protein involved (JAK1, STAT3, SOCS3, SHP2, gp130, IL-6R, IL-6). Accordingly
we constructed seven protein modules, one mRNA module for SOCS3 biosynthe-
sis and one SOCS3 degradation module. Exemplarily, we show here the module
of gp130 (Fig. 2). The networks which can be generated from this set of modules
consist of up to 90 places and 100 transitions. The modules are hierarchically de-
signed to obtain a clear graphical representation of the reaction mechanisms. The
composed models comprise up to 58 pages with a nesting depth of 4. The modules
were created and composed with Snoopy [5] and the built-in simulator was used
to run stochastic simulations (Fig. 1.C). Structural analysis was performed with
Charlie [2] to validate the structure of each module (not shown here, see [1]).

The model can be extended to include transcriptional regulation by employing
gene modules, mRNA modules, degradation modules, and causal interaction mod-
ules. We have established a prototype database with a publically accessible web-
interface [1]. The database can manage multiple versions of each module by strict
version control. It supports the curation, documentation, and update of individ-
ual modules and the subsequent automatic composition of complex models, with-
out requiring mathematical skills. The case study has demonstrated that modular
modelling is ideally suited for exploring signalling networks with extensive cross-
talk like inJAK-STAT.The supportingdatabase essentially contributes toapower-
ful, comprehensive and unifying platform for modelling and analysis.The platform
can be easily used by wet lab scientists to re-engineer individual modules in order
to test the global consequences of alternative reaction mechanisms [2] (Fig. 1.B).
The database associates meta-data to the individual modules, and thus is ideally
suited for the documentation and validation of alternative reaction mechanisms.
In the context of advanced biomodel engineering our modelling framework encour-
ages the automated generation of biologically realistic synthetic and synthetically
rewired network models.

References

1. Blätke, M., et al.: JAK/STAT signalling - an executable model assembled from
molecule-centred modules demonstrating a module-oriented database concept for
systems- and synthetic biology (submitted, 2012),
http://arxiv.org/abs/1206.0959v1

2. Franzke, A.: Charlie 2.0 – a multi-threaded Petri net analyzer. Diploma thesis, BTU
Cottbus, Dep. of CS (December 2009)

3. Heiner, M., Gilbert, D., Donaldson, R.: Petri Nets for Systems and Synthetic Biol-
ogy. In: Bernardo, M., Degano, P., Zavattaro, G. (eds.) SFM 2008. LNCS, vol. 5016,
pp. 215–264. Springer, Heidelberg (2008)

4. Heinrich, P., et al.: Principles of interleukin (il)-6-type cytokine signalling and its
regulation. Biochemical Journal 374, 1–20 (2003)

5. Rohr, C., Marwan, W., Heiner, M.: Snoopy - a unifying Petri net framework to
investigate biomolecular networks. Bioinformatics 26(7), 974–975 (2010)

http://arxiv.org/abs/1206.0959v1


ManyCell:

A Multiscale Simulator for Cellular Systems

Joseph O. Dada1,2 and Pedro Mendes1,2,3

1 Manchester Institute of Biotechnology
2 School of Computer Science, Oxford Road, The University of Manchester, UK

3 Virginia Bioinformatics Institute, Blacksburg, VA
{joseph.dada,pedro.mendes}@manchester.ac.uk

Abstract. The emergent properties of multiscale biological systems are
driven by the complex interactions of their internal compositions usually
organized in hierarchical scales. A common representation takes cells as
the basic units which are organized in larger structures: cultures, tissues
and organs. Within cells there is also a great deal of organization, both
structural (organelles) and biochemical (pathways). A software environ-
ment capable of minimizing the computational cost of simulating large-
scale multiscale models is required to help understand the functional
behaviours of these systems. Here we present ManyCell, a multiscale
simulation software environment for efficient simulation of such cellular
systems. ManyCell does not only allow the integration and simulation of
models from different biological scales, but also combines innovative mul-
tiscale methods with distributed computing approaches to accelerate the
process of simulating large-scale multiscale agent-based models. Thereby
opening up the possibilities of understanding the functional behaviour of
cellular systems in an efficient way.

Keywords: multiscale, simulation, modelling, agent-based, ODE,
software.

1 Introduction

Biological organisms are complex systems. They are made up of various spa-
tial and temporal scales with complex interactions across various processes and
mechanisms at different scales. One of the main aims of multiscale simulation
in biology is to be able to simulate entire organs or even entire organisms at
various levels of details. Several methods have already been used, some taking
a mean-field approach, others representing the entire hierarchy of entities [1].
While the objective of these models is to represent entire organs, they should
still be able to simulate all of its cells and their intracellular pathways. However
that would imply simulating 106 − 1012 cells. It would be best if the simulation
software could somehow not have to carry out such large numbers of calcula-
tions. Thus it is important to make use of multiscale nature of the biological
systems. The software ManyCell, that is described here, is intended to achieve
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this requirement and implements technical solutions that contribute to numer-
ical efficiency and scalability. The software uses ordinary differential equations
(ODEs) to model the internal biochemistry of cells; each cell is modelled as an
agent, where its state changes depend on discrete events that are triggered by the
ODEs. The system also allows other entities, such as the extracellular medium
or other extrinsic factors, to be modelled as agents. We present and illustrate
the conceptual design, architecture, implementation, and functionality of Many-
Cell for multiscale simulation of cellular systems. We illustrate its usage using
an exemplary multiscale model of a yeast cell culture. ManyCell is designed to
support the integration of the different scales of cellular systems from molecular
scale to a tissue/culture scale, and eventually to a whole organism.

2 Design and Implementation

The basic requirements for multiscale simulation software to be able to deal
with very large numbers of cells are scalability and time efficiency. ManyCell is
time efficient and scalable – it is not limited by the finite resource of a single
computer. It includes technologies to specifically address these issues. ManyCell
is designed as a component-based system with each component having a well-
defined interface for interacting with other components. Fig. 1 (a) depicts the
modular architecture of ManyCell. To improve efficiency we have adopted an
In Situ Adaptive Tabulation (ISAT) mechanism [2]. To provide scalability the
system uses distributed computing such that arbitrary numbers of processing
units can be added to share the work. The Workload Manager (WM) compo-
nent is responsible for distributing the computational intensive workloads. Unlike
most agent-based simulators that keep the entire ensemble of agents in mem-
ory, we adopted a new solution where a relational database management system
(RDBMS) is used to manage the agents. This allows the number of transactions
(events triggered by the underlying ODEs) to be extremely large, and as a bonus
the simulation results are easily managed and queried. This capability is handled
by the Simulation Database (SimDB) component. DataManager component pro-
vides a unified interface for accessing the database and XML based files (SBML
model and XML multiscale model file).

The agents themselves require simulating ODE-based pathway models, which
is carried out by the software COPASI [3] via COPASI Web services (CopasiWS)
[4], each instance being able to be run on a different processing unit. Web service
technology enables the distribution of the computing intensive workload across
many processors. Because of this, ManyCell readily accepts models encoded in
SBML [5], such as those in the BioModels database [6], and encodes simulation
results in SBRML [7]. The tissue/culture organization rules are encoded in a
simple XML format called Multiscale XML model file (MXML). MXML is the
main input to ManyCell. It consist of five main sections for describing various as-
pects of the multiscale model: bioreactor, cell, sub-cellular, simulation and
database sections. The Multi-Agents Simulator (MAS) is the core of ManyCell.
It simulates the Cell agents and handles the connection of the discrete events
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defined in the sub-cellular SBML model to the decisions of individual cells. For
example, the firing of a division event during simulation of the ODEs model
of a cell signifies the birth of a new daughter cell, which means creation of a
new cell agent in MAS. MAS automatically generates serial, parallel or ISAT-
based executable code for the multiscale model in the MXML file. A Master
agent is responsible for the scheduling, management and synchronization of cell
agent activities, while the Medium agent manages the nutrients and stress in
the micro-environment. ManyCell comes with both command line and a Web
interface.

ManyCell components are implemented in different programming languages.
MAS, DataManager, CopasiWS are implemented in Java. The CopasiWS Client
is implemented in C++ with the help of gSOAP toolkit [8], ISAT component in
C++ with the help of Fortran library developed for algorithm in [2] and COPASI
simulation engine (CopasiSE) is a C++ based software. Further details about
ManyCell are available from http://www.comp-bio-sys.org/ManyCell.

(a) Architecture (b) Performance evaluation

Fig. 1. Architecture and performance of ManyCell

3 Results and Discussion

We used proliferating yeast cell cultures as a case study. The Cell-agent encap-
sulates a number of variables describing the biochemical variables of a yeast bio-
logical cell in culture, such as age, cell cycle phase, and concentration of various
chemical species. It also performs autonomous calculations of the intracellular
dynamics of the biochemical reaction networks [9]. The base model for each cell
intracellular reaction network is the one developed by Chen et al. [10], modified
here to explictly consume a medium substrate for its growth. Each Cell-agent
is equipped with the biochemical network model encoded in SBML format. We
defined the multiscale agent-based model in MXML for the case study and per-
formed various simulation experiments on the model. We tested three cases a)
serial – where only one cell at a time solves its system of ODEs, b) parallel –
where two or more cells solve their ODEs simultaneously (in different processing
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units); c) ISAT – where the ODE solutions make use of the ISAT scheme. Fig. 1
(b) shows the performance of the three computational approaches. While CPU
time for all the approaches increases with number of simulated cell agents, that
of serial increases at a faster rate than the parallel and ISAT approaches (note:
average serial simulation time for a cell agent is around 48 seconds). ISAT scheme
provides some 45- and 5-fold acceleration over the serial and parallel computa-
tions respectively. Using only two computers in an intranet environment (one for
ODE calculations, the other for the RDBMS) we were able to simulate growth
up to one million cells. Thus simulations can easily be scaled up to run at least
109 cells in computer farms or cloud computing. The ManyCell architecture al-
lows scaling up the number of computers dedicated to numerics, as well as those
dedicated to the data management (RDBMS). This system is thus expected to
be able to simulate entire organs by representing all of its cells.
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Many models in Systems Biology are described as Ordinary Differential Equa-
tions (ODEs), which allows for numerical integration, bifurcation analyses, pa-
rameter sensitivity analyses, etc. Before fixing the kinetics and parameter values
however, various analyses can be performed on the structure of the model. This
approach has rapidly developed in Systems Biology in the last decade, with
for instance, the analyses of structural invariants in Petri net representation [4]
model reductions by subgraph epimorphims [2], qualitative attractors in logical
dynamics or temporal logic properties by analogy to circuit and program verifi-
cation. These complementary analysis tools do not rely on kinetic information,
but on the structure of the model with reactions.

The Systems Biology Markup Language (SBML) of [3] is now a standard for
sharing and publishing reaction models. However, since SBML does not enforce
any coherence between the structure and the kinetics of a reaction, an ODE
model can be transcribed in SBML without reflecting the real structure of the
reactions, hereby invalidating all structural analyses.

In this paper we propose a general compatibility condition between the kinetic
expression and the structure of a reaction, describe an algorithm for inferring
a reaction model from an ODE system, and report on its use for automatically
curating the writing in SBML of the models in the repository biomodels.net.

1 Theory of Well-Formed Reaction Kinetics

Let us consider a finite set {x1, . . . , xv} of molecular species. A reaction model R
is a finite set of n reactions, written R = { ei for ri / mi => pi }i=1,...,n, where
ei is a mathematical expression over species concentrations, also written xi by
abuse of notation, and symbolic parameters that are supposed positive; ri, mi

and pi are multisets of species which represent the reactants, the inhibitors, and
the products of the reaction respectively. The species that are both reactants and
products in a reaction are called catalysts. Catalysts and inhibitors are called
modifiers in SBML. For a multiset r of molecular species, i.e. a function V → N,
we denote by r(x) the multiplicity of x in r, i.e. r(x) = 0 if x does not belong
to r, and r(x) ≥ 1 if x belongs to r, which is also written x ∈ r. The empty
multiset is written .

Let us call non-decomposable a mathematical expression that is syntactically
not an addition nor a subtraction, and that cannot be reduced at top-level by
the laws of distributivity of the product and division, and let us say

Definition 1 A reaction e for r / m => p over molecular species {x1, . . . , xv}
is well-formed if the following conditions hold:
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1. e is a well-defined, nonnegative and partially differentiable mathematical ex-
pression for any values x1 ≥ 0, . . . , xv ≥ 0;

2. x ∈ r if and only if ∂e/∂x > 0 for some x1 ≥ 0, . . . , xv ≥ 0;
3. x ∈ m if and only if ∂e/∂x < 0 for some x1 ≥ 0, . . . , xv ≥ 0;

The reaction is non-decomposable if its kinetic expression e is non-decomposable.

These well-formedness conditions are met by standard kinetics, such as mass
action law, Michaelis-Menten, Hill, and negative Hill kinetics. However there
are ODE system which cannot be presented by a well-formed non-decomposable
reaction model.

Example 1. The ODE system ẋ = −k can be associated to the reaction k for x

=> _ which is not well-formed, or to k+l*x for x => _ and l*x for x => 2*x

which are not non-decomposable, but cannot be associated to a well-formed non-
decomposable system.

Example 2. On the other hand, the ODE with symbolic parameters k1, k2, k3
˙pMPF = k2 ∗ [MPF ] ∗ [Wee1]− k1 ∗ [pMPF ] ∗ [Cdc25]
˙MPF = k1 ∗ [pMPF ] ∗ [Cdc25]− k2 ∗ [MPF ] ∗ [Wee1]
˙Wee1 = k3/(k4 + [Clock]), ˙Cdc25 = 0, ˙Clock = 0

is associated to the well-formed non-decomposable model
k1*[pMPF]*[Cdc25] for pMPF + Cdc25 => MPF + Cdc25

k2*[MPF]*[Wee1] for MPF + Wee1 => pMPF + Wee1

k3/(k4+[Clock]) for _ / Clock => Wee1

2 Reaction Model Inference Algorithm

The following algorithm for inferring reactions from ordinary differential equa-
tions is based on a syntactical normal form for ODE systems. Unlike the al-
gorithm proposed in [5], our algorithm does not rely on uniqueness properties
and always succeeds even when there are no corresponding well-formed reaction
models, by inferring possibly non well-formed reactions.

Let us say that an expression is in additive normal form if it is of the form∑t
s=1 cs ∗fs with cs numerical coefficients and fs non-decomposable terms with-

out coefficients. An ODE system is in additive normal form if each equation is
in additive normal normal form as follows ẋi =

∑t
s=1 ci,s ∗ fs, 1 ≤ i ≤ v where

t is the number of non-decomposable terms in the system.
The idea of our reaction inference algorithm is to normalize the ODE and

infer a corresponding reaction model by sorting the terms of the equations and
using their coefficients as stoichiometric coefficients. To test the sign of partial
derivatives, we content ourselves with an approximate test by comparing the
exponents.

Algorithm 2 input: ODE system O

1. O ← additive-normal-form(O)
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2. R← ∅
3. for each non-decomposable term f of an equation in O

(a) let r ← , p← , m←
(b) for each variable x where f occurs with coefficient c in ẋ in O

i. if c < 0 then r(x)← −c
ii. if c > 0 then p(x)← c

(c) for each variable x such that r(x) = 0 and ∂f
∂x > 0 for some values

i. r(x)← 1
ii. p(x)← p(x) + 1

(d) for each variable x such that ∂f
∂x < 0 for some values

i. m(x)← 1
(e) R← R ∪ {f for r / m => p}

4. output: reaction model R

Proposition 3 The reaction model inferred by Algorithm 2 from an ODE sys-
tem in additive normal form ẋi =

∑t
s=1 ci,s ∗ fs for 1 ≤ i ≤ v is the set of

non-decomposable reactions {fs for rs/ms → ps}1≤s≤t where

rs =
∑
ci,s<0

(−ci,s) ∗ xi+
∑

{i | ci,s≥0, ∂fs
∂xi

>0}
xi ps =

∑
ci,s>0

ci,s ∗ xi+
∑

{i | ci,s≥0, ∂fs
∂xi

>0}
xi ms = {x|

∂fs
∂x
< 0}

Algorithm 2 always computes a reaction model with an equivalent associated
ODE system but this reaction model may not be well-formed. In particular, step
3b may infer reactions with reactants that do not occur in the kinetic expression.
On the other hand, all variables appearing in the kinetics will now appear in the
reaction as either catalysts (step 3c), inhibitors or both (step 3d). We have:

Proposition 4 The ODE system associated to the reaction model inferred from
an ODE system O is equivalent to O. The reaction model inferred from the ODEs
associated to a non-decomposable well-formed reaction model is well-formed and
non-decomposable.

For space reasons, we do not describe here the preprocessor that is applied on the
ODE system for detecting simplifications by mass conservation linear invariants
and inferring hidden molecules, prior to the inference of reactions.

Example 3. The model of Example 2 has one invariant: pMPF + MPF is a
constant c. Replacing pMPF by c−MPF yields to the system

˙MPF = k1 ∗ (c− [MPF ]) ∗ [Cdc25]− k2 ∗ [MPF ] ∗ [Wee1]
˙Wee1 = k3/(k4 + [Clock]) ˙Cdc25 = 0 ˙Clock = 0

From this system, Algorithm 2 would infer the reactions:

c*k1*[Cdc25] for Cdc25 => Cdc25 + MPF

k1*[Cdc25]*[MPF] for MPF + Cdc25 => Cdc25

k2*[MPF]*[Wee1] for MPF + Wee1 => Wee1

k3/(k4+[Clock]) for _ / Clock => Wee1

However, the preprocessor recognizes the linear invariant and introduces a
molecule y for the expression [y] = c − [MPF ] which yields in this case to
the same reactions as of Example 2 with y = pMPF .
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3 Evaluation Results on Biomodels.net

Out of the 409 models from the curated branch of the latest version (21) of
biomodels.net, 340 models have proper kinetic laws. We compare the number
of non well formed reaction models before and after the automatic curation
obtained by exporting SBML to ODE format and applying our reaction inference
algorithm to the ODE. The following table summarizes the improvement by
counting the number of models with BIOCHAM warnings: well-formed :

– “K not R” denotes the number of models in which the concentration of some
compound appears in a kinetic law but it is neither a reactant nor a modifier;

– “R not K” denotes the number of models in which some compound is marked
as reactant or modifier but does not appear in its kinetic law.

– “Negative” denotes the number of models where a minus sign appears in the
kinetic expression at some place that is not inside an exponent expression.

225 models, i.e. 66% of the 340 reaction models of the original “curated” part
of biomodels.net are non well formed and produce some warning. Our algorithm
is able to automatically reduce the number of non well-formed models by 58%,
from 66% to 28%:

Biomodels.net K not R R not K Neg. Any warning

Originally Curated 165 120 148 225 (66.17%)
Automatically Curated 0 81 39 97 (28.52%)

The algorithm completely removes the “K not R” warnings. For the two other
warnings, since the algorithm focuses on non-decomposable kinetics, it results in
curated models quite close to the original ones, but does not tackle thoroughly
the case of reactions with rates independent of some reactant, as in Example 1.
For these reasons, 97 over 340 models remain with a non well-formedness warning
after automatic curation [1].
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Abstract. Bio-PEPA [2], a process algebra developed from PEPA [5]
is used to model a process occurring in mammalian cells whereby the
Src oncoprotein is trafficked between different parts of the cell [9]. Src is
associated with cell movement and adhesion between cells which is linked
to tumour formation [9]. A useful model of the protein’s behaviour can
provide predictions for new experimental hypotheses which may improve
our understanding, and in time, lead to new therapies for cancer. The
aim is to assess the suitability of Bio-PEPA for more detailed modelling
of Src trafficking than that of a previous simpler Bio-PEPA model [4].

Bio-PEPA has the advantage that it provides many types of analysis, such as
ordinary differential equations, stochastic simulation, continuous-time Markov
chains, trace investigation and model-checking. These analyses are implemented
in or accessible via the Bio-PEPA Eclipse Plug-in [3] (see www.biopepa.org).

The syntax of well-defined Bio-PEPA species components with locations [1]
is given by C

def
=
∑n

i=1(αi, κi) opi C such that αi �= αj for i �= j. Here C is a con-
stant of the form A@loc, each αi is a reaction name, each κi is the stoichiometric
coefficient for C in reaction αi, and each opi is a prefix operator describing the
role of C is reaction αi. The operator ↓ indicates a reactant, ↑ a product, ⊕ an
activator, ) an inhibitor and * an arbitrary modifier. Hence a species compo-
nent has a unique name and describes the reaction capabilities of that species. A
Bio-PEPA model then has the syntax P ::= P �	

L
P | C(x) where x represents

the quantity of species C. Species cooperate over reactions in L, or ∗ can be used
to denote all shared reactions. A species may only appear once in a well-defined
model. A Bio-PEPA system is a tuple containing species components, model and
additional information about locations, species, constants and rate functions.

The operational semantics consist of a capability transition relation where
labels on the transitions record the reaction name and information about the
species taking part in the reaction; and the stochastic relation where this infor-
mation is transformed into a rate using a function specific to the reaction, giving
a transition sytem labelled with reaction names and rates (as in PEPA [5]).

The protein under consideration here is the Src protein, a member of the
Src family of proteins. It is a non-receptor protein tyrosine kinase which has two
domains to which other molecules can bind [9]. In its inactive form, its conforma-
tion prevents access to these domains, whereas in its active form these domains
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are available, and Src can interact with other proteins. Research (described be-
low) has shown that Src is trafficked around the cell in endosomes. These are
membrane-bound compartments found in the cytoplasm of the cell. They merge
with vesicles which engulf molecules on the inner side of the membrane, and their
role is to sort molecules for recycling1 and degradation. Endosomes move along
microfilaments and/or microtubules, so movement is typically in one direction,
often in towards the nucleus or out towards the cellular membrane. They tend
to vary in contents rather than number or speed.

Usually, Src is found in two locations in the cell: a large amount of inactive
Src is located around the nucleus, in the perinuclear region, and a much smaller
amount of active Src is located on or near the membrane [7,8]. Sandilands,
Frame and others have investigated how the addition of growth factor affects
Src activity. After stimulation with fibroblast growth factor (FGF), Src is found
in endosomes throughout the cytoplasm. Moreover, there is a gradient of inactive
Src to active Src from perinuclear region to membrane and hence Src activation
takes place in endosomes [8]. Furthermore, the persistence of active Src at the
membrane is inversely related to the quantity of FGF added. When 1 nanogram
of FGF is added, large quantities of active Src persist two hours after addition;
in contrast, when 50 times this amount is added, the quantity of active Src is
already reduced after 30 minutes and has returned to normal levels after 1 hour
[7]. The goal for the model is to demonstrate this persistence behaviour.

The first challenge of the modelling is lack of experimental data. There is
qualititative data: the gradient of active Src, and quantitative data: the timing
of the persistence of active Src after growth factor addition. Additionally, the
speed of endosomes can be determined because their movement is directional
and has been measured. Research into endosomes has shown that there are both
long and short recycling loops [6]. Hence from this, one can estimate how long
it should take for an endosome to move through a long loop and a short loop.
The second and longer term challenge is making the model concrete enough to
be useful in prediction but abstract enough to be tractable.

An initial single combined long recycling loop model was developed but it
did not demonstrate the required behaviour. After discussion with experimen-
tal biologists, a two loop model was built. In the shorter loop, which is always
in operation, some of the active Src at the cell membrane is recycled in endo-
somes, and the hypothesis is that there will always be active Src about to be
delivered to the membrane, ensuring the ongoing presence of active Src at the
membrane. The longer recycling loop is only active on stimulation by FGF and
involves trafficking of active Src bound to the FGF receptor (FGFR). When en-
dosomes in this loop come close to the perinuclear region, they engulf inactive
Src which is then activated during the movement of the endosome outwards. In
both loops, it can happen that the endosome contents are degraded rather than
recycled. Figure 1 illustrates these concepts. The Bio-PEPA model consists of
seven species. Inactive Src in the perinuclear region is available in such large
quantities that it can be treated implicitly. The model is moderately abstract;

1 Here, recycling means to “return to the membrane for re-use”.
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Fig. 1. The two loop model of Src trafficking: dashed arrows denote movement and
solid arrows denote reactions. Double circles represent endosomes and the large outlined
arrows indicate degradation of endosome contents. The short loop is on the left with
the long loop on the right.

active Src at the membrane is a species, as are endosomes containing active Src.
This is possible using the stoichiometry coefficient in modelling the interaction
of species. Consider the following definition for active Src at the membrane.

aSrc@membrane
def
= (aSrc FGFR binding , 1) ↓ aSrc@membrane
+ (into short loop endosome, 150) ↓ aSrc@membrane
+ (outof short loop endosome, 150) ↑ aSrc@membrane
+ (outof long loop endosome , 100) ↑ aSrc@membrane

The binding of active Src and FGFR to form active FGFR is an abstraction of
a number of reactions whose detail is not necessary for the modelling but the
stoichiometry of 1 indicates that one active Src molecule takes part in the bind-
ing (and FGFR has the same stoichiometry). However, for the other reactions
which represent amounts of active Src either moving into endosomes or moving
out of endosomes, the stoichiometric coefficient represents these quantities. The
endosome species taking part in the reaction will have a stoichiometry of one
to capture the notion that a single endosome contains multiple Src molecules.
The stoichiometry for the outof short loop endosome reaction can be made less
than that for into short loop endosome to describe the loss of active Src within
the recycling loop, or alternatively this can be done by removal of endosomes.

Simulation demonstrates a short-lived peak of active Src at the membrane
on addition of FGF as shown in Figure 2. This model does not demonstrate the
behaviour for smaller amounts of FGF and this requires further exploration of the
parameter space. It appears Bio-PEPA provides useful abstraction techniques.

Due to the limited data, this style of modelling can be described as quasi-
quantitative and exploratory. However, the model has been useful for discussion
with the biologists involved, both for the biological understanding of the mod-
eller, and in raising interesting questions for the biologists about the underly-
ing mechanisms. Ongoing discussions will develop the model further, and new
techniques may provide more quantitative data. Recent research about Src in
cancerous cells shows that when too much active Src at the membrane could lead
to cell death, there is a mechanism to sequester this active Src and hence enable
survival of the cell [10]. This shows that there may be multiple mechanisms by
which Src is trafficked and suggests scope for a more complex model.
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Fig. 2. Stochastic simulations without addition of growth factor (left) and with addi-
tion of growth factor at one hour (right). The graphs show the average of 10 simulations.
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Abstract. We present the first results of ongoing work investigating two
models of the artificial inducible promoter Tet-On that include epige-
netic regulation. We consider chromatin states and 1D diffusion of tran-
scription factors that reveal, respectively, stochastic noise and a memory
effect.

1 Introduction

In gene regulatory systems, transcription factors (TF) usually require activation
in order to perform their regulatory function. This generally results from the ac-
tion of complex signalling pathways, so an investigation of the dynamics of TF ac-
tivation is important for understanding the underlying gene regulation. Recently,
an efficient experimental technique to monitor this dynamics has been proposed,
using fluorescent proteins expressed under the control of an inducible promoter by
the TF of interest. However, observed fluorescence is not linearly correlated to the
TF activation: a delay is induced by fluorescent protein expression and subsequent
folding; and fluorescence may persist even after TF deactivation. Huang et al [4]
propose a method to reconstruct TF dynamics from observed fluorescent protein
dynamics by means of a very simple two-level model of the Tet-On system, an
artificial inducible promoter of Green Fluorescent Protein (GFP). The first level
(rules (1) to (3) below) models the signal transduction pathway leading to TF
activation: this involves the artificial TF rtTA, activated by binding with doxycy-
cline Dox i. Extracellular doxycycline Dox e is assumed constant and can degrade
in the cell. The second level (rules (4) to (9)) models protein synthesis and acti-
vation of fluorescence: this includes transcription, translation andGFP activation.

Doxe
Deff−−−→ Dox e +Dox i (1)

Dox i
Deff−−−→ ∅ (2)

rtTA +Dox i

kf2−−⇀↽−−
kr2

rtTA · Dox (3)

rtTA ·Dox
S′
m−−→ rtTA · Dox +mRNA (4)

mRNA
Dm−−→ ∅ (5)

mRNA
Sn−−→ GFP +mRNA (6)

GFP
Sf−−→ GFPa (7)

GFP
Dn−−→ ∅ (8)

GFPa
Dn−−→ ∅ (9)
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Fig. 1. Continuous (left) and pulse (right) stimulation with doxycycline

Fig. 1 shows that the dynamics predicted by the deterministic model is in good
agreement with experimental data in the case of continuous and pulse1 stimula-
tion with doxycycline. In [4], the authors demonstrate that the dynamics of TF
activation is accurately correlated with the dynamics offluorescence.

In this paper, we propose two simple extensions of the basic model proposed
in [4] to investigate effects that may result from epigenetic regulation. The first
extension deals with chromatin states, i.e. the (un)availability of the inducible
promoter due to chromatin compaction. In the second, we model TF diffusion
along DNA, i.e. the binding of a TF to non-specific binding sites, followed by
its sliding to the operator site.

2 Chromatin States: A Stochastic Noise Effect

The experimental data of [4] appear to be quite noisy, contrary to what is pre-
dicted by the original model (Fig. 2 left). Although it is hard to assess quantita-
tively, we can assume that some of this noise results from intrinsic stochasticity.
A recognized likely source of stochasticity in gene regulation is the dynamic
alteration of chromatin structure that makes it more or less accessible to the
transcriptional machinery. Most of the time, the chromatin is tightly packaged
or, roughly speaking, in a closed state. This implies that the TF cannot find
the promoter to activate transcription; to allow rtTA · Dox to bind with the
promoter, the chromatin must be in an open state. Depending on the needs of
the cell, the chromatin can rapidly switch between these states.

We refine the model given in the introduction by replacing reaction (4) with
reactions (10) to (13) below. In words, rtTA ·Dox can bind its operator site (rule
(10)) when the chromatin is locally open; then, either rtTA ·Dox can dissociate
from the operator (rule (10)), or transcription can begin (rule (13)). At any time,
the chromatin can switch to a closed state (rule (11)); if the TF is bound to the
operator when the chromatin closes, then it dissociates (rule (12)).

1 This means that Doxe concentration is set to zero after some delay.
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Fig. 2. Comparison of the stochastic noise between the basic model (left) and the
model with chromatin states (right)

We take values for krop and kfop of the same order as those for TetR given in
[1]. The values of kclosed and kopen are actually dependent on the promoter used,
the position of the gene, the cell type, etc, but the values taken here are close
to those of promoters found in mammalian cells [6]. Finally, the rate constant of
transcription (rule (13)) has been chosen to fit the experimental data.

rtTA · Dox +Opopen

kfop−−⇀↽−−
krop

Opopen · rtTA ·Dox (10)

Opclosed

kopen−−−−⇀↽−−−−
kclosed

Opopen (11)

Opopen · rtTA · Dox
kclosed−−−−→ Opclosed + rtTA ·Dox (12)

Opopen · rtTA · Dox
ktrans−−−→ Opopen · rtTA ·Dox +mRNA (13)

The average of the stochastic simulations in Fig. 2 is close to the deterministic
dynamics given by Huang et al. [4], as expected, but stochastic noise is far more
pronounced than in the basic model. The influence of chromatin states could
thus provide an explanation for the noise observed in the experimental data.

3 1D Diffusion of TF: A Memory Effect

Another interesting aspect of gene regulation is related to how the TF finds its
promoter since it is known that three-dimensional (3D) diffusion is insufficient
to explain fast binding [5]. In [3], a diffusion-based model is proposed: once the
TF has (3D-) diffused within the nucleus and bound randomly to a non-specific
DNA site, it rapidly slides along the DNA (1D diffusion) in a small region. If
there is an operator in this region, it has an approximately 50-50 chance to
bind it. In the case of binding, transcription can begin; otherwise, the TF either
unbinds completely, returning to a search by 3D diffusion, or it jumps to another
non-specific binding site in a neighbouring area.

We add this behaviour to the basic model with 14 new reactions available as
supplementary material at www.lifl.fr/~lhoussai/
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Fig. 3. Comparison between Huang model and Sliding model, with a continuous (left)
or pulse (right) stimulation of doxycycline

The transcription rate has again been chosen to fit the experimental data and
the other parameters have been taken from [3] and [2]. The results of the deter-
ministic simulations in Fig. 3 are interesting: there is no significant difference in
the case of constant stimulation but, in the pulse case, fluorescence decays more
slowly than in the basic model which can be interpreted as a sort of “memory
effect”.

4 Conclusion

We have developed two extensions of the Tet-On model of [4]. The first, adding
chromatin states, increases stochastic noise but preserves the average behaviour
in accordance with the experimental data. The second, adding a search for the
operator by the TF via 1D diffusion, reveals a delayed decay in fluorescence after
stimulation has ceased. We are currently investigating this effect in more detail,
notably in the case where there are multiple operator sites in close proximity.
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2. Bonnet, I.: Mécanismes de diffusion facilitée de l’enzyme de restriction EcoRV (2007)
3. Hammar, P., Leroy, P., Mahmutovic, A., Marklund, E.G., Berg, O.G., Elf, J.: The lac

repressor displays facilitated diffusion in living cells. Science 336(6088), 1595–1598
(2012)

4. Huang, Z., Moya, C., Jayaraman, A., Hahn, J.: Using the Tet-On system to de-
velop a procedure for extracting transcription factor activation dynamics. Molecular
Biosystems 6(10), 1883–1889 (2010)

5. Riggs, A.D., Bourgeois, S., Cohn, M.: The lac repressor-operator interaction. 3.
kinetic studies. Journal of Molecular Biology 53(3), 401–417 (1970)

6. Suter, D.M., Molina, N., Gatfield, D., Schneider, K., Schibler, U., Naef, F.:
Mammalian genes are transcribed with widely different bursting kinetics. Sci-
ence 332(6028), 472–474 (2011)



GeneFuncster: A Web Tool for Gene Functional

Enrichment Analysis and Visualisation

Asta Laiho1,�,��, András Király2,��, and Attila Gyenesei1
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Abstract. Many freely available tools exist for analysing functional en-
richment among short filtered or long unfiltered gene lists. These analyses
are typically performed against either Gene Ontologies (GO) or KEGG
pathways (Kyoto Encyclopedia of Genes and Genomes) database. The
functionality to carry out these various analyses is currently scattered in
different tools, many of which are also often very limited regarding re-
sult visualization. GeneFuncster is a tool that can analyse the functional
enrichment in both the short filtered gene lists and full unfiltered gene
lists towards both GO and KEGG and provide a comprehensive result
visualisation for both databases. GeneFuncster is a simple to use publicly
available web tool accessible at http://bioinfo.utu.fi/GeneFuncster.

Keywords: functional enrichment analysis, pathway analysis, gene ex-
pression analysis.

1 Introduction

The technological advance in the field of biotechnology during the last decade
has led to the increasing generation of functional genomics data. Especially the
well established DNA microarray technology and more recently developed high-
throughput short read sequencing technology are producing large data sets that
require automated means for analysing and visualising the results by taking
the gene functions into account. As a result, functional enrichment analysis has
become a standard part of the analysis of high-throughput genomics data sets
and many freely available tools with different approaches have been developed
during the recent years (see [4] for a good review). These tools vary for example
based on the kind of input and organisms supported, the statistical tests used
for carrying out the enrichment tests, the selection of databases available to
conduct the enrichment analysis against and the way the results are reported
and visualised. Many of the tools provide useful and unique features, and thus the
researchers typically need to use several tools in order to gain a more complete
view on the biological significance behind the list of genes under inspection. For
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example, many of the available tools take a short filtered list of genes as input to
be compared to a given background set of genes and then perform a statistical
test (typically based on a hypergeometric or binomial model) to detect whether
genes belonging to certain functional categorizations appear in the input gene
set more often than would be expected by chance alone.

While analysing the functional enrichment among the filtered genes (e.g. most
differentially expressed ones) is very useful, the choice of filtering thresholds can
have a significant effect on the analysis outcome. When none or only a few of
the many related influenced genes are regulated strongly enough to meet the
filtering criterion, some important functional categorizations may be missed. As
a solution, other tools take the full unfiltered gene list as input and employ
threshold free ranking based approaches applying for example a non-parametric
Kolmogorov-Smirnov test. These types of methods are efficient in detecting
subtle but consistent changes among genes belonging to the same functional
category. Thus the two approaches should be regarded as complementary and
optimally applied in parallel to gain a complete view of all affected functional
categorizations.

While majority of the available tools simply report the results as a table of
category terms ranked according to the test p-value, some tools also provide ways
to visualise the results in the context of the functional category information. An
informative way to present the GO enrichment results is to provide a view on
the directed acyclic GO term graph (DAG) in which each gene product may
be annotated to one or more terms. Colouring the terms by the enrichment
significance allows an easy detection of the clusters of affected closely related
GO terms. Similarly, a good way to visualise the KEGG enrichment results is
by presenting the pathway maps where the nodes representing genes or gene
complexes are coloured. As many of the described useful features are scattered
across various tools, there is a clear need for a combined method. In this article,
we present GeneFuncster that is able to analyse functional enrichment in both
short filtered gene lists and full unfiltered gene lists as well as represent the results
by both GO hierarchical graphs and KEGG pathway maps. If fold-change and/or
p-value data is provided by the user, gene level bar plots as well as colouring of
the KEGG graph gene nodes according to the direction of the regulation becomes
available. These kinds of more advanced and extremely useful visualisations are
currently missing from most freely available tools.

2 Methods

GeneFuncster takes advantage of several R/Bioconductor packages including
topGO, GOstats and gage [1,3]. GeneFuncster is able to run functional enrich-
ment analyses on both short filtered and full unfiltered gene lists. A traditional
over-representation analysis is employed to compare a short filtered gene list to
a background provided by the user. Alternatively, the list of all known genes of
a specific organism can be used as background. With the full unfiltered gene list
enrichment analysis the question of how to rank the genes becomes important.



384 A. Laiho, A. Király, and A. Gyenesei

Fig. 1. Overview of various result reports generated by GeneFunscter. Detailed de-
scriptions can be found in the tool web site. The most enriched terms/pathways are
listed for KEGG and each main GO category. Result visualisations include coloured
KEGG pathway maps, GO term graphs and gene-level plots.

In the context of gene expression profiling data, the goal is to rank the genes
according to the strength of evidence for differential gene expression between
the sample condition groups. Some tools, like GOrilla, take a list of ranked gene
symbols as input while others, like GSEA, start from the matrix of normalized
gene expression values across all samples and then perform the statistical anal-
ysis between the sample condition groups and rank the genes according to the
test statistics. In GeneFuncster, the user may provide a ranked list of gene iden-
tifiers, or attach fold-changes and/or p-values and then choose to have the gene
list ranked according to either of these. As a unique feature of GeneFuncster,
the user may also choose to use the so called average rank method for ranking
the genes. This method first ranks the genes separately based on fold-changes
and p-values, and then calculates the average ranks based on both of them.

Primary input for GeneFunscter consists of a list of Entrez gene identifiers
or gene symbols. The list can be pasted directly to the input form or uploaded
from a file with optionally included fold-changes and p-values to be used in
visualisations and for allowing the ranking of genes. The user can optionally
give a background gene list to be used in the filtered list analysis. There are
many parameters available for fine tuning the analysis and result visualisation.
Several organisms are currently supported and many others can easily be added
when requested.

Results are reported on a summary html page in tables of terms sorted ac-
cording to the term p-values, separately for all analysed main categories. These
tables contain links to official term description pages, GO term graph and KEGG
pathway maps where the associated genes are coloured and additional gene level
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plots taking advantage of the potentially available fold-change and/or p-values
for genes. Overview of the various result reports produced with GeneFuncster is
shown in Fig. 1.

3 Conclusion

Functional analysis has become a standard tool in elucidating the underlying
biology within short unsorted or long sorted lists of genes. Coupled with infor-
mative visualisation of the results in a biological context, it has a huge potential
in serving the biological research community. GeneFuncster provides functional
enrichment analysis with an emphasis especially on the result reporting and vi-
sualisation. An earlier version of the tool has been successfully used in several
studies including [5].
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Abstract. We used 3-genes genetic oscillator as a model of oscillators
coupled with quorum sensing, implemented as the production of a diffu-
sive molecule, autoinducer. The autoinducer stimulates expression of the
target gene within the oscillator’s core, providing a positive feedback.
Previous studies suggest that there is a hysteresis in the system between
oscillatory (OS) and stationary (SS) dynamical solutions. We question
the robustness of these attractors in presence of molecular noise, exist-
ing due to small number of molecules in the characteristic processes of
gene expression. We showed distributions of return times of OS near
and within the hysteresis region. The SS is revealed by the return times
duration increase as the system approaches hysteresis. Moreover, the
amplitude of stochastic oscillations is larger because of sensitivity of the
system to the steady state even outside of the hysteresis. The sensitivity
is caused by the stochastic drift in the parameter space.

Keywords: multistability, hysteresis, genetic oscillator.

1 Introduction

Oscillators are common in all contexts of life. For example, genes interact with
each other constituting a network [1] which, for a certain structure, may lead
to temporal oscillations in protein numbers and, thus, in a whole biochemical
regulatory network which is governed by these genes [1].

The ability of living organisms to maintain the period and amplitude of tem-
poral oscillations in presence of molecular noise and environmental fluctuations
can be crucial for viability and evolutionary fitness of a single individual as well
as a population [2].

We use a model of a synthetic 3-genes oscillator, repressilator [1], with quorum
sensing (QS) [3], a mechanism for inter-cellular communication. Each gene in
the network inhibits production of a gene next to it, thus, a cyclic structure
is formed (Fig. 1). In addition to a ring of three genes, the scheme contains a
coupling module implemented as a production of a small diffusive molecule —
autoinducer (AI), which is a common agent for QS [3].

The recent studyhas shownnewproperties of themodel: coexistence (hysteresis)
of regular limit cycle (LC) and stable steady state (SSS) in a single cell oscillator [4].
The hysteresis between the LC and the SSS confers a cell the possibility to choose
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Fig. 1. Scheme of the repressilator with QS. Lowercase and uppercase letters are mRNA
and proteins, respectively.

between different responses to external stimuli, for example, additional AI influx.
Here we consider effects of noise, occurring due to small number of molecules, on
a hysteresis properties of the circuit, since noise may lead to completely new dy-
namical regimes in a multistable system or destroy existing ones.We show how the
dynamical properties of the stochastic system, like period distributions and ampli-
tude of oscillations, change as the system approaches the hysteresis region.

2 Methods

We will use a dimension version (see in [5]) of the dimensionless model presented
in [6] to study the stochastic effects on the dynamics of the single cell oscillator [4].

To account for noise due to small numbers of molecules constituting the sys-
tem we use a standard approach, simulations using Stochastic Simulation Al-
gorithm (SSA) [7]. Linear chemical interactions are modeled as unimolecular
reactions. The propensities for the nonlinear reactions are represented by the
corresponding nonlinear deterministic functions and computed at each step of
the algorithm. We use this model technique due to unknown complex interactions
taking place during these reactions.

For each parameter set we perform 100/400 simulations, each 105 s long,
sampled every second. For the time series we compute the distribution of return
times (periods) by taking a Poincaré section in the discrete state space and
computing time intervals between moments when trajectory passes the section
in one direction. The section is taken so that it is equidistant from maximum
and minimum of the deterministic oscillations. If there are fast oscillations in the
time series we choose 5000 s to be a minimal possible period: the algorithm sums
computed periods until the sum reaches the threshold of 5000 s, then a period
value is stored. We found 5000 s to be enough to cut off the fast fluctuations
from the time series and not large enough to skew the true period distribution.
This analysis is performed on the most abundant in numbers variable B.

3 Results

The dynamics of the deterministic model of the repressilator with QS is char-
acterized by the limit cycle (LC) attractor that corresponds to the temporal
oscillations of the system. This stable attractor emerges at the Hopf bifurcation
for sufficiently large transcriptional rate [4].
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The LC persists in a wide range of the transcriptional rate, but with its
increase LC undergoes the infinite period bifurcation (IPB), i.e. the rotation of
the representation point at the limit cycle is stopped due to the falling into a
fixed point attractor in the phase space and the period of the oscillation goes
to infinity. This fixed point attractor corresponds to the stable steady state
dynamics of the system and is not related to the emergence of HB. The latter
stable steady state (SSS) appears because of the AI influence on the system [4]
and in some range of the transcriptional rates there are two stable dynamical
behaviors of the system: the oscillations (LC) and the stationary dynamics (SSS).
This leads the system to the hysteresis [4]. The study of the hysteresis deserves a
special attention because of the new regulatory possibilities of the repressilators
with quorum sensing.
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Fig. 2. The period distributions for different values of transcription rate (alphad).
Two last values are within hysteresis region (shown in bold). Vertical line denotes
deterministic period. 100 and 400 simulations were performed for the distributions of
the first and second row, respectively.

We perform stochastic simulations of the system to determine to what extent
molecular noise affects the hysteresis properties of the system. We use the period
distribution analysis (see the Methods) of the stochastic system in the conditions
where the hysteresis occurs [4]. We choose 6 values of the transcription rate (here
denoted as alphad) and compute the distributions of periods for each of them.
Results are shown in Fig. 2.

For the smallest value of the transcription rate (alphad = 0.001) the peak of
the period distribution corresponds to the lowest values of found periods (Fig. 2).
This occurs because of the highly intensive intrinsic noise due to small alphad.
Thus, the LC is smashed by the noise and the dominating fluctuations are mostly
captured by the period distribution analysis. As alphad approaches the IPB the
LC grows in amplitude and the oscillations become more pronounced, and, ad-
ditionally, the system becomes increasingly perturbed by the SSS. Namely, the



Effects of Noise on the Multistability in Genetic Oscillator 389

stochasticity causes the drift in the parameter space that in practice creates
the hysteresis where there is no hysteresis in the deterministic system. Thus,
before the deterministic hysteresis region the peak of the period distribution
passes to smaller values as compared to the deterministic period (Fig. 2), which
appears because of the fast transitions between two attractors as the SSS be-
comes stronger in perturbing the system. These fast transitions do not allow
the stochastic system to have the same period as that of the deterministic sys-
tem, which can be clearly seen for much larger period values (data not shown).
Namely, due to the high fluctuations’ level the system’s life time in either of the
attractors is significantly shortened.

The amplitude of the stochastic oscillations before the hysteresis region be-
comes larger as compared to the deterministic case due to the perturbation
caused by SSS. This also causes the appearance of the larger periods, which can
be seen from the distribution peaks shifted rightwards from the corresponding de-
terministic periods for some moderate values of alphad = {0.005, 0.01} (Fig. 2),
where the LC is not either smashed by the noise or in the hysteresis region
determined by the stochastic effects.

4 Conclusions

In this work we questioned the robustness of the multistability of the repressi-
lator with quorum sensing in presence of molecular noise. We have shown that
noise highly affects the oscillatory behavior of the repressilator by increasing
the amplitude of the oscillations with moderate fluctuations in the period. The
stochastic system has been shown to reveal the stable steady state even for the
parameters outside of the hysteresis region. We have shown that the straight-
forward application of the Gillespie algorithm (standard approach in modeling
gene expression [2]) to the model indicates that the system is weakly anchored
in either of attractors present in the hysteresis region.
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Abstract. We present a core Ontology of Biomodelling (OBM), which
formally defines principle entities of modelling of biological systems, and
follows a structural approach for the engineering of biochemical network
models. OBM is fully interoperable with relevant resources, e.g. GO,
SBML, ChEBI, and the recording of biomodelling knowledge with On-
tology of Biomedical investigations (OBI) ensures efficient sharing and
re-use of information, reproducibility of developed biomodels, retrieval of
information regarding tools, methods, tasks, bio-models and their parts.
An initial version of OBM is available at disc.brunel.ac.uk/obm.

Keywords: ontology, knowledge representation, systems biology,
modelling.

1 Introduction

We propose an Ontology of Biomodelling (OBM) that enables formally defined
description of the key information about the design and analysis of biological
models, motivated by the need for interoperability and re-usability of scientific
knowledge. OBM is an important element in BioModel Engineering, a structured
approach for the engineering of biochemical network models [2], which facili-
tates the design, construction and analysis of computational models of biological
systems.

Ontology engineering is a popular solution for integration, interoperability and
re-usability of scientific knowledge and is related to several biomodelling ontolog-
ical resources. Systems Biology Ontology (SBO)1 is a set of controlled, relational
vocabularies of terms commonly used in systems biology, in particular in com-
putational modelling, and informs the development of SBML2. The Ontology of
Data Mining (OntoDM) enables recording of most essential information about
predictive modelling as a type of data mining [8]. The Ontology of Biomedical
investigations (OBI) provides semantic descriptors to report the most essential
information about scientific investigations carried out in biomedical domains [4].

OBM employs an OBI approach to the reporting of investigations [4], incor-
porating all the relevant representations from other resources such as OntoDM

1 http://www.ebi.ac.uk/sbo
2 http://sbml.org
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and SBO, and is fully interoperable with GO (Gene Ontology), ChEBI (Chem-
ical Entities of Biological Interest), SBML and other biomedical resources. It
is designed as a foundation for an environment to support the key steps of the
construction and analysis of models of biological systems (see section 2). Such
an environment would assist in the selection of methods and tools for the con-
struction and development of a model, searching over available models and their
parts, advising appropriate validation methods, and reporting output models in
standard formats. An ontology-driven environment would serve as an integration
platform for most existing tools.

2 A Workflow of Biomodelling

The following steps are most commonly presented in a typical scenario of biomod-
elling:

1. Identification of tasks and requirements for a model construction.
Construction of a model of a bio-system is a purpose-led process. Such purposes
or tasks along with specified requirements could and should be recorded and
collected for the benefit of the research community. Some scientific domains
already have such dedicated task ontologies [6]. A constructed model can be
checked for how well it satisfies the specified requirements. Such analysis can be
used for meta-learning to find patterns of what models and design methods are
suitable for particular tasks and requirements [1].

2. Modelling a domain of interest. Currently developers of bio-models rely
on manual literature searches, interviews with biologists and chemists, analysis
of experimental results in order to provide an unambiguous representation of the
knowledge about a target biochemical system. Such domain background knowl-
edge relevant for modelling should be represented in a form of domain modelling
ontologies and preserved for future re-use. Domain modelling ontologies could be
populated by automatic text mining searches that would extract required infor-
mation from scientific literature, e.g. parameters of a system and recommended
values, lists of genes, proteins, and chemical reactions that are associated with a
target system; and by facts from already existing resources such as data bases,
knowledge bases, and other domain ontologies.

3. Selection of model type and associated construction method.
There are different types of models, e.g. static, dynamic – qualitative, quantita-
tive (continuous, stochastic, hybrid), and it is important to select an appropriate
for the purpose. OBM (empowered by a task ontology and a methods ontology)
enables queries over available methods and models such as “Is there already an
existing model A that can be modified to satisfy requirements R?”, “Find all
methods that are applicable for a task X with requirements R”, “What modifi-
cations of method A would lead to the satisfaction of requirement R?”, “Why is
method A not suitable for task B?”. Additionally, ready-made ‘building blocks’
of models could be re-used to construct a new model. Breitling et al. proposed
typical building blocks for modelling of cellular signaling models (see [3] for more
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detail). In a similar way ready building blocks could be collected for other areas
of interest, and offered to developers for specified tasks.

4. Selection of tools for model construction, analysis, and validation.
There is a great variety of software available for modelling tasks. The Software
Ontology (SWO)3 is a resource for describing software tools, their types, tasks,
versions, provenance and data associated. OBM (empowered by a task ontology
and SWO) enables such queries over available methods and tools as “List all
available tools for a task X and a method M”, “Is a tool T well supported
and has a large user community?”, “Is software S freely available for academic
purposes?”.

5. Verification of a model. Once a model for a biological system has
been created, it needs to be validated in a principled way. Does it produce
reasonable predictions of system behavior? What datasets were used to test the
model, and what properties do they have? Is the model it safe against deadlock
and other system failures? Has it been tested in wet laboratory experiments?
OntoDM provides formalized description of various model verification methods,
and also of datasets that are used to test models [8], [7]. OBM extends OntoDM
descriptors by the description of model checking by wet experimentations.

6. Exploration of a model. Once a model for a biological system has
been created and verified, it can be used for simulating system behavior un-
der various conditions. A domain modelling ontology could supply parameters
and their values as an input for model simulation. All produced versions of a
model should be recorded for further analysis, meta-learning, and re-use. Some
tools, e.g. BioNessie4, allow recording of model versions and simulations runs,
but it is still not a common practice in systems biology to record and report this
information.

7. Reporting. Currently SBML is widely used for recording and reporting of
biomodels. However, it is important to do this not only the final model, but also
for all steps in its development, versions, and verification so that scientist could
make informative decisions about how to use models. Many parts of models
are re-usable and should also be recorded as separate entities. OBM enables
the recording and reporting of the key information about the process of the
development, analysis, and verification in a machine processable form.

The basic methodology of biomodelling can be extended to meet the challenges
of multiscale modelling of complex biological systems (see [5] for more detail).

3 OBM: A Core Ontology of Biomodelling

OBM follows OBI in the representation of a typical scientific workflow [4]. OBM
imports from OBI classes that are relevant for the area of modelling of biological
systems, e.g. investigator, planned-process, objective, conclusion-textual-entity,
and relations between these classes, e.g. has-specified-input, precedes. Addition-
ally, OBM defines biomodelling - specific classes for the representation of the

3 http://theswo.sourceforge.net/
4 disc.brunel.ac.uk/bionessie/
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area of modelling of biological systems, e.g. model, model-component, task-
identification, model-verification, model-representation, and relations between
them, e.g. is-model-of.

We have followed the best practices in ontology engineering in the development
of OBM. OBM employs standard upper level classes and relations where possible
to ensure full interoperability with key biomedical ontologies and other resources,
i.e. ChEBI, GO, OBI. OBM is designed in such a way that it compliments other
ontological resources, e.g. SWO for the description of software, OntoDM for the
description of predictive modelling, SBO for the description of a model, that
are necessary for the efficient recording of the most essential information about
biomodelling.

Future Work. The development and application of OBM will have the follow-
ing next stages: (1) an extension of the coverage of OBM in order to include
various biomodelling scenarios, and not only most typical ones; (2) an instantia-
tion of OBM in order to enable search over workflows and their steps (currently
OBM provides the conceptual description of biomodelling workflows, i.e. at the
class level); (3) support of the development of an ontology-driven environment
for biomodelling.

References

1. Brazdil, P., Carrier, G.C., Soares, C., Vilalta, R.: Metalearning. Applications to
Data Mining. Springer (2009)

2. Breitling, R., Donaldson, R., Gilbert, D., Heiner, M.: Biomodel engineering - from
structure to behavior. Trans. on Comput. Syst. Biol. 12, 1–12 (2010)

3. Breitling, R., Gilbert, D., Heiner, M., Orton, R.: A structured approach for the engi-
neering of biochemical network models, illustrated for signalling pathways. Briefings
in Bioinformatics 12 (2008)

4. Brinkman, R.R., Courtot, M., Derom, D., Fostel, J.M., He, Y., Lord, P., Malone, J.,
Parkinson, H., Peters, B., Rocca-Serra, P., Ruttenberg, A., Sansone, S.-A., Solda-
tova, L.N., Stoeckert, C.J., Turner, J.A., Zheng, J., The OBI Consortium: Modeling
biomedical experimental processes with OBI. J. of Biomedical Semantics 1, 1–12
(2010)

5. Gao, Q., Gilbert, D., Heiner, M., Liu, F., Maccagnola, D., Tree, D.: Multiscale
modelling and analysis of planar cell polarity in the drosophila wing. IEEE/ACM
Transactions on Computational Biology and Bioinformatics (in press, 2012)

6. Mizoguchi, R., Vanwelkenhuysen, J., Ikeda, M.: Towards very large knowledge bases.
Task ontology for reuse of problem solving knowledge. IOS Press (1995)
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Liò, Pietro 127
Lysenko, Artem 69

Madelaine, Guillaume 378
Magnin, Morgan 166
Mahajan, Simmi 227
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