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Abstract. Several effective machine learning and pattern recognition schemes 
have been developed for medical imaging. Although many classifiers have been 
used with computer-aided detection (CAD) for computed tomographic 
colonography (CTC), little is known about their relative performance. This pilot 
study compares the performance of several state-of-the-art classifiers and 
feature selection methods in the classification of lesion candidates detected by 
CAD in CTC. There were four classifiers: linear discriminant analysis (LDA), 
radial basis function support vector machine (RBF-SVM), random forests (RF), 
and gradient boosting machine (GBM). There were five feature selection 
methods: sequential forward inclusion (SFI) of principal components (PCs), 
univariate filtering (UF), UF of PCs, recursive feature elimination (RFE), and 
RFE of PCs. A strategy of using all available features was tested also. For 
evaluation, 232,211 detections by a CAD system on 1,211 patients were 
subsampled randomly to create 10 different populations of 500 true-positive 
(TP) and 500 false-positive (FP) detections. The classifier performance was 
evaluated by use of the area under the receiver operating characteristic curve of 
3 repeated 10-fold cross-validations. According to the result, the discrimination 
performance of the RBF-SVM classifier with feature selection by the RFE of 
PCs compared favorably with other methods, although no single classifier 
outperformed other classifiers under all conditions and feature selection 
schemes.  

Keywords: Classification, feature selection, comparative performance, machine 
learning, virtual colonoscopy. 

1 Introduction 

Computed tomographic colonography (CTC) is a promising alternative to traditional 
invasive colonoscopy methods used in the detection and removal of polyps of the 
colon [1-3]. Computer-aided detection (CAD) systems for CTC typically make use of 
a classifier to discriminate between true-positive (TP) and false-positive (FP) findings 
generated by a polyp candidate detection system based on a set of features extracted 



Comparative Performance of State-of-the-Art Classifiers in Computer-Aided Detection 79 

 

from the candidates [4-6]. However, CAD systems for CTC still display large 
numbers of FP detections [7]. Consequently, improving the detection specificity of 
CAD remains a challenging task in CTC, and a powerful classification engine is 
needed to deal with this difficult classification problem [8, 9]. 

The aim of a classification system is to classify an input pattern presented to the 
system to a correct category based on a feature vector of the input pattern. The 
complexity of the classification problem relies on the variability of the feature values for 
patterns in the same class relative to the difference between feature values for patterns in 
different classes. As a result, the optimality of a classifier depends on a specific dataset 
[10]. Thus, the goal of achieving the optimal performance for a pattern recognition 
system may be inconsistent with obtaining the best performance for a single classifier, 
which may also be associated with different feature selection schemes. This pilot study 
compared several state-of-the-art classifiers and feature selection schemes by using a 
large database in the classification task for CAD in CTC. 

2 Method 

2.1 Feature Selection 

The goal of feature selection is to select a subset of relevant features for building 
robust classifiers by removing irrelevant and redundant features from input data. This 
is expected to improve the speed of construction and the accuracy of the final 
classifier. 

From a theoretical perspective, it can be shown that optimal feature selection for 
supervised learning problems requires an exhaustive search of all possible subsets of 
features. However, for a large number of features or samples, an exhaustive search for 
an optimal feature set is impractical. Therefore, instead of an optimal set, in practice a 
supervised learning algorithm searches for a satisfactory approximation of the optimal 
set of features for a particular classifier. 

In this study, three principal state-of-the-art methods were considered for feature 
selection, including 1) principal component analysis (PCA) [11], 2) univariate 
filtering (UF) [12], and 3) recursive feature elimination (RFE) [13]. 

Principal Component Analysis. The PCA is a well-established method for feature 
extraction and dimensionality reduction. It is based on the assumption that most 
information about features is contained in the directions along which the variation of 
the features is largest. The most common derivation of PCA is a standardized linear 
projection, which maximizes the variance in the projected space.  

Univariate Filtering. UF is a feature selection method that reviews the features by 
using univariate statistical methods, such as the t-test or ANOVA models, to assess 
the efficacy of each individual feature in class prediction. UF is relatively dominantly 
used because of its simplicity and efficiency. However, it does not take into account 
feature-feature interactions, possibly leading to less accurate classifiers. UF is based 
on including the highest-ranked individual features depending on a chosen association 
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measure. Since UF applies independent evaluation criteria without the process of 
discovering patterns in data, it does not inherit any bias of a learning algorithm and it 
is also computationally efficient. UF is preferred in applications where application of 
data mining algorithms would be too costly or unnecessary in dealing with high 
dimensional features. 

Recursive Feature Elimination. RFE is a multivariate approach based on the 
information content of a group of features, which uses successive elimination of 
individual features ranked lowest according to a criterion, aimed at keeping the 
discrimination ability as high as possible. It attaches a weight to each available 
feature. Based on the assumption that the features with the smallest weights are least 
informative in a feature set, a predefined number of features is removed iteratively 
from the set of available features. RFE involves combinatorial searches through the 
space of feature subsets, guided by the prediction ability of a specific classification 
model. Since grouping and predictive analysis of multidimensional features are used 
to control the selection of feature subsets, RFE tends to give superior performance as 
feature subsets found are better suited to the predetermined learning algorithm. 
Consequently, it is more computationally expensive than the UF. 

In this study, a total of five feature selection methods derived from PCA, UF, and 
RFE were considered: 1) sequential forward inclusion (SFI) of the principal 
components (PCs) of PCA, 2) UF, 3) UF of PCs, 4) RFE, and 5) RFE of PCs. For 
comparison, also a strategy of using all available features without explicit feature 
selection was considered. 

2.2 Classification 

The goal of classification is to identify the correct category of an input pattern. The 
classification is typically based on an initial training set of samples whose category is 
known. 

In this study, the following state-of-the-art classifiers were considered: 1) linear 
discriminant analysis (LDA) [11], 2) radial basis function (RBF) support vector 
machine (RBF-SVM) [14], 3) random forest (RF) [15, 16], and 4) gradient boosting 
machine (GBM) [17, 18]. Each classifier, except for LDA, evaluated the effect of its 
model tuning parameters by using resampling. Optimal tuning parameters were 
chosen across those parameters. Finally, the classification performance was estimated 
from a training set. 

Linear Discriminant Analysis. LDA is a robust and fundamental classifier. It is used 
for finding an optimal transformation that maps input data into a lower dimensional 
space to minimize the within-class distance and simultaneously to maximize the 
between-class distance, thus achieving maximum discrimination. LDA is closely 
related to PCA in that both look for linear combinations of features which best 
explain the data. LDA attempts to model the difference between classes of data 
explicitly, whereas the PCA does not consider differences between classes. 
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Support Vector Machine. The SVM is based on the concept of decision planes that 
define boundaries. A decision plane is one that separates between a set of features 
having different class memberships. The classification is based on separating hyper-
planes that distinguish between objects of different class memberships in a multi-
dimensional space. The basic idea behind the SVM is to create nonlinear boundaries 
by generating linear boundaries on a higher-dimensional space, where the original 
features are rearranged by use of a set of mathematical functions known as kernels. 
There are a number of kernels that can be used in SVM models, including linear, 
polynomial, sigmoid, and RBF kernels. The RBF-SVM is the most popular choice 
among the kernel types used in the SVM. 

Random Forest. The RF classifier is an ensemble of decision trees, which combines 
the predictions of many classification trees to obtain more accurate classifications. 
Many samples of the same size as the original dataset, called bootstrap samples, are 
drawn from the dataset with replacement. In each bootstrap sample, approximately 
68% of the observations in the original dataset occur one or more times. The 
observations in the original dataset that do not occur in the bootstrap sample are said 
to be out-of-bag for that bootstrap sample. For each bootstrap sample, a decision tree 
is built. At each step of the building process, only a small number of variables are 
available for construction of the decision tree. There is no pruning of the decision 
trees of a RF classifier. The trees of the RF are then used for constructing predictions 
for all out-of-bag observations of bootstrap samples. The predicted class of an input 
sample is acquired by voting for the predicted class among all the trees. 

Gradient Boosting Machine. Boosting is a process that combines many separate 
prediction rules, some of which may be quite weak on their own, to produce a more 
powerful combined classifier. The GBM is another procedure that, like the RF, fits 
many trees to a single dataset. The GBM differs from the RF in that the trees are built 
sequentially, with observation weights updated according to whether the observations 
are correctly or incorrectly classified. Boosting iteratively adds basis functions in a 
greedy fashion such that each additional basis function further reduces the selected 
loss function. The GBM is one of the more novel classifiers that, to date, has rarely 
been applied in the analysis of medical images. 

2.3 Materials and Evaluation 

The empirical data for this study included potential lesion candidates detected by a  
CAD system [19] from a large clinical CTC screening population of 1,211 patients at 
20 medical centers [20]. The patients were prepared cathartically for the CTC 
examination. Orally administered fecal tagging was used for 37% of the patients. The 
CTC data were acquired by use of 11 CT scanners with an average slice thickness of 
2.35 mm (range, 1.0 – 5.0 mm) and average current of 156 mA (range, 50 – 408 mA). 
Approximately 18% of the patients had clinically significant colonoscopy-confirmed 
lesions. There were 317 lesions ≥6 mm: 40% of the lesions measured ≥10 mm and 
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60% measured 6 – 9 mm in the largest diameter. Approximately 84% of the lesions 
had polypoid morphology and 16% had flat morphology. 

There were 232,211 CAD detections, including 929 TP detections and 231,282 FP 
detections. Because some of the lesions were detected multiple times, the number of 
CAD detections is higher than that of confirmed true lesions in the patients. The 
detections were sampled randomly without replacement for construction of 10 
population samples for an unbiased evaluation of classifier performance under various 
conditions. Each subsample contained 500 TP and 500 FP CAD detections. Each 
detection was characterized by a total of 67 shape and texture features. 

The classifier performance was evaluated by use of three repeated 10-fold cross-
validations, where the performance was measured by use of the area under the 
receiver operating characteristic curve (Az). The Az was assessed for each population 
sample by use of the four different classifiers with each of the five different feature 
selection schemes. Fig. 1 illustrates the study design. 
 
 

 
 

Fig. 1. Diagram illustrating the experiments of the study. The CAD detections were sampled 
randomly to construct 10 population samples. For each population, feature selection was 
performed using one of 5 methods (see Section 2.1) and classification was performed with or 
without feature selection using one of 4 methods (see Section 2.2). Performance evaluated was 
based on the area under the receiver operating characteristic curve for each population (Az), 
average of Az over the 10 populations (m-Az), and average m-Az over the feature selection 
methods or over the classifiers and each feature selection method (average m-Az). 
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3 Results 

The classification performance of the four classifiers is summarized in Tables 1 to 6. 
Tables 1 through 5 show the classifier performance with each of the five feature 
selection methods, whereas Table 6 shows the classifier performance without feature 
selection. Each row shows the result of an indicated population sample, whereas the 
columns indicate the average and standard deviation of the Az value over three 
repeated 10-fold cross-validations of the indicated classifier. Bold numbers indicate 
the highest average of Az for a sample. The bottom row shows the average and 
standard deviation of Az over the 10 population samples. 

If we consider the highest overall classifier performance in terms of the highest 
mean Az (m-Az) over the 10 subsampled populations, the ranking of classifiers varies 
according to the feature selection method. The performance was highest for the RBF-
SVM without feature selection (0.800; Table 6), followed by the RF with RFE (0.799; 
Table 4), followed by RBF-SVM with the SFI of PCs (0.798; Table 1) and GBM with 
RFE (0.798; Table 4). 

Also, the frequency at which a classifier outperformed the other classifiers in terms 
of the highest Az for each of the 10 populations depended on the feature selection 
method. RBF-SVM outperformed the other classifiers most often with SFI of PCs 
(Table 1), with UF (Table 2), and without feature selection (Table 6). However, LDA 
outperformed the other classifiers with UF of PCs (70%; Table 3) and RFE of PCs 
(40%; Table 5). The RF and GBM classifiers outperformed the other classifiers with 
the RFE feature selection method (Table 4). 

The robustness, or consistency, of a classifier, can be characterized by the average 
m-Az value that the classifier yields for the different feature selection methods. In this 
sense, RBF-SVM yielded the highest performance (0.795), followed by the RF 
(0.794), GBM (0.793), and LDA (0.786). 

Table 1. Performance comparison of classifiers with feature selection by the SFI of PCs. 
Brackets indicate the standard deviation (SD) of Az. The numbers in bold indicate the highest 
value of Az among classifiers for each population sample. 

Population LDA RBF-SVM RF GBM 
1 0.780 [0.040] 0.796 [0.047] 0.789 [0.040] 0.778 [0.041] 
2 0.789 [0.055] 0.796 [0.051] 0.794 [0.050] 0.780 [0.054] 
3 0.810 [0.030] 0.821 [0.028] 0.814 [0.024] 0.812 [0.032] 
4 0.789 [0.039] 0.808 [0.041] 0.802 [0.045] 0.790 [0.038] 
5 0.794 [0.043] 0.790 [0.046] 0.786 [0.057] 0.789 [0.055] 
6 0.806 [0.035] 0.800 [0.041] 0.793 [0.044] 0.798 [0.041] 
7 0.789 [0.035] 0.804 [0.037] 0.790 [0.034] 0.799 [0.036] 
8 0.786 [0.042] 0.790 [0.041] 0.785 [0.042] 0.783 [0.044] 
9 0.776 [0.057] 0.789 [0.064] 0.792 [0.055] 0.781 [0.057] 

10 0.772 [0.052] 0.790 [0.049] 0.791 [0.043] 0.789 [0.039] 

Mean�SD 0.789�0.012 0.798�0.010 0.793�0.009 0.790�0.011 
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Table 2. Performance comparison of classifiers with feature selection by UF 

Population LDA RBF-SVM RF GBM 
1 0.784 [0.040] 0.782 [0.041] 0.790 [0.038] 0.781 [0.048] 
2 0.785 [0.058] 0.793 [0.049] 0.796 [0.054] 0.798 [0.054] 
3 0.809 [0.029] 0.816 [0.024] 0.815 [0.025] 0.807 [0.032] 
4 0.778 [0.047] 0.799 [0.048] 0.793 [0.044] 0.797 [0.053] 
5 0.779 [0.038] 0.785 [0.050] 0.778 [0.055] 0.783 [0.051] 
6 0.790 [0.035] 0.791 [0.042] 0.776 [0.046] 0.771 [0.042] 
7 0.789 [0.035] 0.811 [0.035] 0.792 [0.031] 0.797 [0.027] 
8 0.772 [0.041] 0.791 [0.048] 0.794 [0.042] 0.790 [0.043] 
9 0.764 [0.057] 0.791 [0.053] 0.802 [0.054] 0.796 [0.052] 

10 0.756 [0.056] 0.800 [0.044] 0.780 [0.043] 0.784 [0.035] 

Mean�SD 0.781�0.015 0.796�0.011 0.792�0.012 0.790�0.010 

Table 3. Performance comparison of classifiers with feature selection by UF of PCs 

Population LDA RBF-SVM RF GBM 
1 0.796 [0.040] 0.796 [0.047] 0.792 [0.047] 0.785 [0.041] 
2 0.805 [0.051] 0.799 [0.051] 0.800 [0.043] 0.791 [0.052] 
3 0.819 [0.024] 0.812 [0.028] 0.816 [0.031] 0.815 [0.034] 
4 0.806 [0.038] 0.798 [0.041] 0.791 [0.040] 0.803 [0.038] 
5 0.797 [0.045] 0.769 [0.046] 0.768 [0.060] 0.779 [0.044] 
6 0.804 [0.039] 0.784 [0.041] 0.783 [0.041] 0.790 [0.042] 
7 0.795 [0.035] 0.786 [0.037] 0.784 [0.034] 0.795 [0.031] 
8 0.789 [0.037] 0.782 [0.041] 0.792 [0.035] 0.788 [0.037] 
9 0.782 [0.053] 0.780 [0.064] 0.775 [0.054] 0.783 [0.048] 

10 0.765 [0.054] 0.779 [0.049] 0.772 [0.040] 0.776 [0.043] 

Mean�SD 0.796�0.015 0.789�0.013 0.787�0.014 0.790�0.011 

Table 4. Performance comparison of classifiers with feature selection by RFE 

Population LDA RBF-SVM RF GBM 
1 0.786 [0.041] 0.789 [0.041] 0.800 [0.040] 0.784 [0.044] 
2 0.739 [0.054] 0.798 [0.047] 0.803 [0.050] 0.810 [0.052] 
3 0.805 [0.030] 0.814 [0.025] 0.819 [0.024] 0.806 [0.028] 
4 0.776 [0.047] 0.800 [0.048] 0.798 [0.045] 0.800 [0.046] 
5 0.769 [0.048] 0.788 [0.050] 0.789 [0.057] 0.790 [0.053] 
6 0.802 [0.038] 0.789 [0.042] 0.778 [0.044] 0.785 [0.040] 
7 0.773 [0.034] 0.813 [0.038] 0.799 [0.034] 0.810 [0.027] 
8 0.765 [0.042] 0.790 [0.047] 0.798 [0.042] 0.791 [0.041] 
9 0.759 [0.063] 0.792 [0.053] 0.810 [0.055] 0.801 [0.051] 

10 0.753 [0.054] 0.801 [0.044] 0.791 [0.043] 0.801 [0.039] 

Mean�SD 0.773�0.021 0.797�0.010 0.799�0.011 0.798�0.010 
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Table 5. Performance comparison of classifiers with feature selection by RFE of PCs 

Population LDA RBF-SVM RF GBM 
1 0.800 [0.042] 0.799 [0.044] 0.799 [0.041] 0.787 [0.044] 
2 0.800 [0.055] 0.780 [0.058] 0.802 [0.046] 0.773 [0.051] 
3 0.817 [0.029] 0.809 [0.029] 0.815 [0.029] 0.814 [0.042] 
4 0.796 [0.040] 0.796 [0.036] 0.805 [0.043] 0.804 [0.042] 
5 0.807 [0.044] 0.796 [0.045] 0.788 [0.054] 0.785 [0.047] 
6 0.811 [0.037] 0.794 [0.034] 0.796 [0.039] 0.817 [0.035] 
7 0.810 [0.035] 0.792 [0.040] 0.773 [0.044] 0.798 [0.034] 
8 0.797 [0.037] 0.759 [0.044] 0.804 [0.034] 0.797 [0.029] 
9 0.772 [0.059] 0.782 [0.059] 0.789 [0.057] 0.792 [0.051] 

10 0.752 [0.045] 0.793 [0.046] 0.801 [0.039] 0.804 [0.038] 

Mean�SD 0.796�0.020 0.790�0.014 0.797�0.012 0.797�0.013 

Table 6. Performance comparison of classifier without feature selection 

Population LDA RBF-SVM RF GBM 
1 0.785 [0.041] 0.792 [0.043] 0.797 [0.040] 0.783 [0.040] 
2 0.785 [0.054] 0.800 [0.049] 0.801 [0.050] 0.794 [0.057] 
3 0.804 [0.032] 0.815 [0.025] 0.815 [0.023] 0.805 [0.033] 
4 0.782 [0.043] 0.809 [0.044] 0.798 [0.041] 0.799 [0.043] 
5 0.784 [0.047] 0.792 [0.050] 0.784 [0.056] 0.788 [0.051] 
6 0.798 [0.038] 0.799 [0.042] 0.776 [0.043] 0.780 [0.038] 
7 0.784 [0.035] 0.813 [0.038] 0.799 [0.031] 0.809 [0.029] 
8 0.776 [0.043] 0.791 [0.044] 0.794 [0.042] 0.790 [0.038] 
9 0.772 [0.057] 0.794 [0.055] 0.803 [0.054] 0.799 [0.052] 

10 0.763 [0.048] 0.798 [0.046] 0.791 [0.043] 0.798 [0.038] 

Mean�SD 0.783�0.012 0.800�0.009 0.796�0.011 0.794�0.009 

Similarly, we can also characterize the robustness of a feature selection method by 
calculation of the average m-Az value of the classifiers yielded by each  
selection method. In this sense, RFE of PCs yielded the highest performance (average 
of m-Az = 0.795; Table 5), followed by the strategy without feature selection (0.793; 
Table 6), SFI of PCs (0.793; Table 1), RFE (0.792; Table 4), UF of PCs (0.791; Table 
3), and UF (0.790; Table 2). 

4 Discussion 

The preliminary results of this pilot study indicate that the RBF-SVM classifier 
compares favorably with other state-of-the-art classifiers in the discrimination of TP 
and FP CAD detections in CTC. The feature selection method of RFE of PCs 
compares favorably with other feature selection methods. However, no single 
classifier could be considered optimal under all conditions, including the use of 
different population samples or different feature selection methods. 
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In this pilot study, we used balanced sets of TP and FP samples. In practice, CAD 
systems produce unbalanced samples with a large number of FP samples and 
relatively few TP samples. However, the use of balanced data sets for the purposes of 
constructing classifiers and for estimating classification accuracy would often be 
more convenient and faster. Further work is needed for establishing the effect of using 
balanced and unbalanced sets on the projected classification accuracy. 

Computational demands can place constraints on the classification problem. 
Among feature selection methods, RFE can be considered as a rather slow method for 
calculation, whereas the calculation for PCA is quite fast. The UF method is faster 
than the RFE, but slower than the PCA method. Among classifiers, the construction 
of SVM and GBM classifiers is remarkably slower than that of RF and LDA 
classifiers. The relatively small differences of the performance results suggest that 
although the use of fast classifiers and feature selection methods may reduce 
classification accuracy over that of slower methods, the reduction in overall accuracy 
is not necessarily meaningful in a practical application. 
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