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Abstract. We present an evaluation of five diffusion filters for liver vessel 
enhancement in 3D CTA datasets of the liver. 3D CTA liver images are 
generally noisy, with limited contrast between vessels and parenchyma, 
especially for the small vessels. We investigate the performance of five 
(an)isotropic diffusions filters: Regular Perona-Malik, Coherence-Enhancing 
Diffusion, Edge-Enhancing Diffusion, Hybrid Diffusion with Continuous 
Switch and Vessel Enhancing Diffusion on a set of 14 abdominal CTA clinical 
datasets. The evaluation is based on signal to noise improvement. A parameter 
optimization is performed on 7 training images, after which the optimal 
versions of the filters are compared on 7 test images. The results demonstrate 
that all the diffusion filters improve SNR of the images and Hybrid Diffusion 
with Continuous Switch and Vessel Enhancing Diffusion gives the largest 
increase in SNR. 
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1 Introduction 

Liver vessel analysis is relevant for several clinical applications, a.o. for planning and 
guidance in minimally invasive interventions. Particularly, segmentation of the portal 
and hepatic veins is relevant for procedures such as liver surgery, TIPS and RFA. 
Arterial segmentation is relevant for e.g. chemo-embolization procedures in the liver. 

Liver vessel segmentation is challenging because 3D abdominal CTA is noisy, has 
variable contrast between the vessel and liver parenchyma, and because of the 
complex topology and varying sizes of the vessels. The quality of the CTA images 
depends on radiation dose, amount of contrast agent, and timing of data acquisition 
with respect to dose injection. Image quality could be improved at the expense of 
increased radiation dose or increased contrast usage, but both strategies are clinically 
not acceptable. 

Several liver vessel segmentation methods have been developed so far, a review of 
liver vessel segmentation can be found at [1]. Most of the works relating to liver 
vessel segmentation on 3D clinical CTA use filters to reduce the noise and enhance 
the vessel structure. Mainly, multi-scale Hessian based filters (Frangi, Sato, Erdt)  
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[2, 4, 5, 7] have been used in these studies. However, these studies lack an evaluation 
on to what extent preprocessing improves the segmentation results. A comparison of 
multi-scale Hessian based filters can be found at [3], but that study only demonstrates 
the effect of these Hessian-based filters without any quantitative measure. The study 
also shows that Hessian-based approaches may not work well at bifurcations and 
vessels with high curvature. 

The purpose of our study is to quantitatively evaluate the effect of diffusion filters 
on vessel enhancement in 3D CTAs of the liver. We investigate both the optimal filter 
settings for these filters, and compare the optimal versions of each filter. For the 
filters, we choose five well-known (an)isotropic diffusion filters: Regular Perona-
Malik (RPM), Contrast-Enhancing Diffusion (CED), Edge-Enhancing Diffusion 
(EED), Vessel-Enhancing Diffusion (VED) and Hybrid Diffusion with Continuous 
Switch (HDCS). RPM and EED have been applied to 3D rotational angiography 
images by Meijering et al [10]. They showed that EED works well in smoothing the 
vessel, while RPM can preserve small vessels. CED, introduced by Weickert [9], can 
filter tube-like structures. VED was published by Manniesing et al in 2006 [8]. This 
filter uses Hessian-based multi-scale filter’s responses to adjust diffusion scheme.  
Finally, HDCS was published by Mendrik et al in 2009 [10]. This filter combines 
both advantages of EED and CED to filter both homogeneous areas and vessel 
structures. 

2 Methodologies 

All filters we evaluated are diffusion filters. The main idea of diffusion filters comes 
from PDE [8] ݑ௧ ൌ divሺܦ.  is the gradient of the image and D is the ݑ׏ ሻ whereݑ׏
diffusion tensor, which steers the diffusion. If the diffusion tensor D is replaced by a 
scalar-valued diffusivity ݃ the diffusion will be isotropic. Whereas RPM is an 
isotropic filter, that only changes the amount of smoothing based on local gradient 
magnitude, the other filters are anisotropic filters, that not only locally change the 
level, but also the direction of smoothing by adapting the diffusion tensor. Each of the 
five filters is described in more detail below. 

RPM: Perona and Malik (1990) introduced an isotropic nonlinear diffusion as 
described by ݑ௧ ൌ divሺ݃ሺ|ݑ׏|ሻ. ሻݑ׏ . The scalar-valued diffusivity ݃ሺ|ݑ׏|ሻ  is 
function of the gradient |ݑ׏|, causing filtering in homogenous areas while retaining 
edges with high gradient. Catte [10] proposed the following scalar-valued diffusivity 
function for the non-linear diffusion using Gaussian derivative at scale ߪ: ݃ሺ|ݑ׏ఙ|ሻ ൌ 1 െ ݁ ష಴൫|׏ೠ഑|మ/ഊమ൯ర

,        (1) 

where C = 3.1488 and ߣ is contrast parameter. The contrast parameter ߣ acts as 
threshold scale for gradient |ݑ׏ఙ|. If the gradient is large compared to the contrast 
parameter, i.e |ݑ׏ఙ|ଶ ب ఙ|ሻݑ׏|ଶ, this results in ݃ሺߣ  ൎ 0, reducing the amount of 
diffusion. Therefore strong edges, where the gradient of u is large, are preserved. 
Parameter ߪ is the scale of Gaussian gradient. Value of ߪ should be chosen based 
on noise variance and the size of the small structures we want to retain. 
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EED: Weickert et al (1997) included information of orientation in diffusion scheme. 
Instead of using a scalar diffusivity function, they used a diffusion tensor D which 
was constructed from the tensor product: ܬఘሺݑ׏ఙሻ ൌ ఘܭ כ ሺݑ׏ఙݑ׏ఙTሻ.         (2) ܬఘ is a positive symmetric matrix. By eigendecomposing ܬఘ ൌ ܸ. .ߊ ܸT, they can 
extract eigenvalues ߤ௜ (i = 1-3, ߤଵ ൐ ଶߤ ൐  ,ߊ ଷ ), the diagonal elements of matrixߤ
and corresponding direction eigenvectors ଵܸ , ଶܸ and ଷܸ. Because eigenvalue ߤଵ 
is the largest eigenvalue, eigenvectors ଵܸ is in the direction of highest contrast 
(edges). The diffusion tensor is defined as ܦ ൌ ܸ. .߉ ܸT with eigenvectors ܸ as the 
same eigenvectors of tensor product ܬఘ. Eigenvalues of diffusion tensor of EED, ߉, 
are defined as: ߣ௘మ ൌ ௘యߣ   ൌ 1 and 

௘భߣ ൌ ൝1                         |ݑ׏ఙ| ൌ 01 െ ݁ ష಴൫|׏ೠ|మ/ഊ೐మ൯ర, |ఙݑ׏| ൐ 0,       (3) 

where, similar to RPM, C = 3.1488, and ߣ௘  is the contrast parameters.  This 
diffusion tensor results in large isotropic diffusion in flat areas where the gradient is 
small, and performs almost no diffusion in the direction along which gradient is the 
highest ( ଵܸ ఘܭ .(  in equation (2) acts as smoothing of gradient (Gaussian 
convolution with kernel ߩ). If gradient ݑ׏ఙ has large range of values, ߩ should be 
high enough to smooth the product. Otherwise, ߩ should be small enough to capture 
small changes in gradient.  

CED: Weickert (1999) included a coherence factor in diffusion process. The coherent 
factor is defined as:  ߢ ൌ  ሺߤଵ െ ଶሻଶߤ ൅ ሺߤଶ െ ଷሻଶߤ ൅  ሺߤଷ െ  ଵሻଶ,    (4)ߤ

This factor measures the relation of each pair of the eigenvalues. If a structure is 
tubular, ଵܸ  , ଶܸ  direction are in the direction of high contrast and ଷܸ  in the 
direction of little contrast. Thus in the case of tubular structures,  ߤଵ ൎ ଶߤ ب  ଷ, andߤ
thus  ߢ has high a value. Otherwise, ߢ has small value. Eigenvalues of diffusion 
tensor of CED are defined as: ߣ௖భ ൌ ߣ௖మ ൌ ௖యߣ and ߙ ൌ ൜ ߢ                                             ߙ ൌ ߙ0 ൅ ሺ1 െ ߢ   ,ሻߢ/ܥሻexp ሺെߙ ൐ 0,     (5) 

where C = 3.1488 and ߙ is very small. For tube-like structures, ߢ is large, the 
diffusion mainly occurs in the direction ଷܸ(least contrast). Therefore CED only blurs 
along tubular structures. For plate-like structures, ߢ  is small, resulting in small 
isotropic diffusion (depends on ߙ). 

HDCS: Mendrik (2009) introduced HDCS as a combination of CED and EED. The 
main idea is that to use a voting criterion to decide whether local structure is tubular 
or non–tubular.  The structure classifier is defined as: ߦ ൌ ଵߤ  ሺߙ ൅ ⁄ଶሻߤ െ ଶߤ ሺߙ ൅ ⁄ଷߤ ሻ,       (6) 
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where ߙ ൌ 0.001  and ሺߤଵ ൐ ଶߤ ൐ ଷሻߤ   are eigenvalues of tensor product in 
equation (2).  ߦ ا 0 when the structure is tubular, ߦ ൎ 0 when structure is sphere 
-like (background and noise), and ߦ ب 0  when structure is plate-like. The 
eigenvalues of HDCS diffusion tensor is combination of eigenvalues of EED and 
CED: ߣℎ೔ ൌ ሺ1 െ ௖೔ߣሻߝ  ൅ ௘೔ߣߝ ,          (7) 

ߝ  ൌ exp ሺఓమሺఒℎమ ሺకି|క|ሻିଶఓయሻଶఒℎర ሻ,          (8) 

where ߣℎ is contrast parameter.  When the local structure is tubular, ߝ ՜ 0 and the 
diffusion is CED-like, for other structures ߝ ՜ 1, and diffusion is  EED-like. 

VED: Manniesing (2006) used the multi-scale Hessian filter response to drive the 
diffusion.  The main idea of the multi-scale Hessian filter is that by using 
eigenvalues of Hessian matrix, which determine local curvatures, we can distinguish 
tubular structures from other structures in a multi-scale framework. The output 
response is a combination of the maximum responses at each scale. Let ܸ א ሾ0,1ሿ is 
the output of a multi-scale scale vesselness filter. ܸ should be around 1 inside tubular 
structures and 0 elsewhere. Assume that  |ߣଵ| ൏ |ଶߣ| ൏  ଷ|  are eigenvalues ofߣ|
Hessian matrix ߅, corresponding to eigenvectors ଵܳ, ܳଶ and ܳଷ, i.e., ߅ ൌ  ܳ. .߉ ܳT. 
Then, ଵܳ should be the direction of the least curvature (along vessel in case of vessel 
structure). The diffusion tensor D is defined as ൌ ܳ. .′߉ ܳT . Diagonal elements of 
matrix ߉′ can be defined as:  ߣ′ଵ ൌ 1 ൅ ሺ߱ െ 1ሻܸଵ/௦,           ߣ′ଶ ൌ ଷ′ߣ ൌ 1 ൅ ሺߝ െ 1ሻܸଵ/௦,       (9) 

where s is a sensitivity parameter which controls the impact of ܸ on  ߣ′ଵ ; ߱ is a 
parameter larger than 1, which ensures that ଵܳ is always the direction of largest 
diffusion; ߝ is relative small to allow high isotropic diffusion when ܸ ൎ 0 ( non-
vessel structure ). 

3 Experiments and Evaluations 

3.1 Data 

We randomly chose 7 training datasets and 7 testing datasets from portal venous 
phase liver CTAs that were acquired in Erasmus Medical Center, Rotterdam. The 
datasets have an in-plane pixel size of 0.74 mm x 0.74 mm, 1-1.5 mm slice spacing, 
1-2 mm slice thickness, 72-180 axial slices, 512 x 512 pixels per slice. Scanning was 
performed 60 seconds after the injection of 100 cc intravenous contrast agent with 
radiation dose of 140 - 320 mAs and control voltage of 80 - 120 kV. The datasets 
contain portal veins, hepatic veins, tumors, cysts, metastases in different shape and 
size. Some datasets also contain metal artifacts. 

To reduce filtering times, we cropped the datasets into smaller datasets which 
containing all liver vessels, which resulted in a reduction of around 75 %. 
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3.2 Evaluation Criteria 

We use SNR as a quantitative metric to determine whether the images have improved. 
We calculate the SNR over a large set of point pairs that were annotated in the vessel 
and in the background. We follow the following protocol to calculate the SNR: 

1. We choose 12 to15 random axial slices within liver region to ensure that number 
of vessels in those is sufficient ( more than 300 vessels per data) 

2. In every slice, a trained observer annotated all vessels, which have diameter from 
0.74mm (one pixel) to around 10 mm, by clicking one point in the vessel, we call 
them object points.  

3. For each object point, a corresponding nearby points in the liver parenchyma is 
manually selected, which is at least 5 pixels away from the vessels. We call these 
background points.  

4. The SNR of each pair is calculated as: 

 ܴܵܰ ൌ 10݃݋20݈ ௢௕௝ି௠௘௔௡ሺ௕௚௥ሻ௦௧ௗሺ௕௚௥ሻ  (dB),        (10) 

where the standard deviation of the background points is determined in an axial 5x5 
ROI around the point. 
 

          

(a)            (b) 

Fig. 1. (a) The vessel markers for SNR calculation: Small red dots are vessel markers, respectly 
indexed to big green circles on nearby background arias. (b) SNR histograms of an original 
image (red) and a diffusion image (gray).  

From the SNR of all these pairs in one datasets, we determine the mean and 
standard deviation, which we use to quantitatively evaluate the filter’s results and 
analyze the effect of the filters on large and small vessels. 

3.3 Parameter Optimization 

The optimal filter parameters are determined in a training stage. For each of the 
training datasets, we apply the five filters and tune parameters to get the optimal 
result, based on the mean SNR over all datasets. For the range of values for each 
parameter we follow the suggestions of Mendrik et al. [10]. 

The parameter optimization is performed on Linux cluster which contain 80 
2.4GHz-64 bits-cores. For RPM, CED, EED, it takes 10 to 20 seconds per iteration, 



 Evaluation of Diffusion Filters for 3D CTA Liver Vessel Enhancement 173 

while for CED and VED, it takes 30 to 60 seconds per iteration. The maximum 
number of iteration of all filters is set to 50. All parameter values are described in 
detail in appendix A. 

4 Results 

4.1 Optimal Parameters 

Fig. 2(a) shows the optimal contrast parameter of EED and Fig. 2(b) presents the 
curve of SNR versus number of iterations for RPM. Fig 2(a) shows the optimization 
results for the contrast parameter for EED, which demonstrates that the value of that 
parameter is dataset – independent, whereas the number of iterations [Fig 2(b)] is 
dataset-dependent: the more noisy data is, the more number of iteration is required. 

 

(a)            (b) 

Fig. 2. (a) The average optimal contrast parameter for EED is at 10 (the highest SNR value of 
the red curve). (b) The average optimal number of iterations for RPM is around 22. 

The optimal parameters resulting from the training step are listed in Table 1. 

Table 1. The optimal parameters of the diffusion filters 

Filter Abbr Optimal Parameters 
Regular Perona- Malik RPM τ = 0.0625; η = 22 ; λ = 10; σ = 1 
Edge-Enhancing Diffusion EED τ = 0.0625; η = 40;  λe = 10; σ = 1 
Coherence-Enhancing Diffusion CED τ = 0.0625; η = 50; λc = 5; α = 0.001;  

σ = 1; ρ = 1 
Hybrid Diffusion filter with 
Continuous Switch  

HDCS τ = 0.0625; η = 40; λc = 5; λe = 10; λh = 10;  
α = 0.001; σ = 1; ρ = 1 

Vessel Enhancing Diffusion VED τ = 0.0625; η =32; ω = 25.0; s = 1; 
ε = 0.01; σmin= 1; σmax = 3; v = 5;  
α = 0.5; β = 0.5; γ = 120 

4.2 Filter Comparison 

We applied the filters on the 7 test datasets with the optimal parameters from Table 1. 
Ranking of each diffusion filter are based on average SNR over the test datasets. The  
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Fig. 3. Ranking on test dataset 

results of the overall performance are summarized in Fig. 3. According to the results, 
HDCS performed better than the other filters. 

From Fig. 3, we can see that all filtered results have better SNR than original ones. 
This also can be seen as SNR histogram in Fig. 1. Fig. 1(b) is an example of SNR 
histograms of an original image (red) and a diffusion image (gray). The diffusion 
image’s histogram is to the right of the original’s one, that means the filter has 
improved SNR in general. 

 To visualize the effect of diffusion filters in terms of SNR, we calculated the 
changes in SNR between every pair of points of the filtered images and those of the 
original ones. The delta SNR is divided into 3 parts: the red part is smaller than zero, 
that means at those locations, the diffusion results in a worse SNR.; the yellow part is 
from zero to mean of SNR, which means that at those locations, the diffusion filter is 
able to improve SNR; the green points are those where the SNR is larger than the 
mean of the SNR, which means that there is a large improvement. The results for one 
dataset are shown in Fig. 4. 
 

   
(a)                                     (b) 

Fig. 4. (a) Histogram of Delta SNR and (b) vessel marker render, respectly. The yellow part is 
remarked by yellow x characters; The green part is noted by green asterisks; The red part is 
represented by red + characters. 
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5 Discussion 

We have optimized and applied five diffusion filters for increasing the SNR in liver 
vessel CTA images. In the parameter optimization stage, we choose a time step which 
is quite small, τ = 0.0625, to ensure stability of diffusion scheme. In the experiments, 
we can see that, when increasing the number of iteration, SNR increases as noise is 
suppressed. However, when the number of iterations becomes too large, both vessel 
structure and noise are blurred, which results in an SNR decrease. Around the optimal 
number of iteration, the SNR curve is quite flat [Fig. 2(b)].  

 To visually compare the results, outputs of each filter and the unfiltered image are 
shown in Fig. 5 with the same window-level, we can see that the original image has 
good contrast but much noise. All of the filters, to some extent, blurred low-contrast 
smaller-than-1 mm vessels. The reason may be that, in optimization step, at Gaussian 
scale ߪ ൌ 1, large vessels have more SNR improvement than the SNR reduction in 
the small vessels [Fig. 4 (b)]. Diffusion filters blur noise, improve high contrast 
vessels but also blur low-contrast small vessel.    
 

 

Fig. 5. Maximum intensity projection (7 slices) of the diffusion outputs. Order of top row from 
left to right: Original, RPM, EED. Order of bottom row from left to right: CED, VED, HDCS. 

Also in Fig. 5, EED, VED, and RPM reduce contrast between vessels and 
background. This effect results from blurring in all directions if gradient or curvature 
is not high enough to prevent blurring. CED and HDCS not only keep better contrast 
between vessel and background, but also retain better the structure of small vessels 
(short-blue green). However, in this study, CED leads to irregular borders of large 
vessels (long-red arrow). The main reason is that noise at the edges makes the CED 
tensor consider this noise as small vessels. For HDCS, this effect is not as much as 
CED because at boundary, EED has some impacts. This effect doesn’t influence SNR 
in general because we only take evaluate the intensity at the center of vessel. In this 
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study, we used coherent factor ߢ ൌ  ሺߤଵ െ ଶሻଶߤ ൅ ሺߤଶ െ ଷሻଶߤ ൅  ሺߤଷ െ ଵሻଶߤ  for 
CED as suggested in the original paper by Weickert [1999]. This results in rough 
effect at boundary of big vessel.  In the HDCS paper [10], Mendrik introduced a new 

coherent factor ߢ ൌ  ൫ߤଶ/ሺߙ ൅ ଷሻ൯ସߤ
. This causes the boundaries of large vessels to 

be smoother compared to the CED version in this study. In further study, we could 
use that factor to have better adapted for 3D images. 

In test stage, CED shows the worse ranking [Fig 3]. The main reason of this 
ranking is that CED mainly blurs inside the vessel while noise in flat areas is not 
suppressed much. In contrast, HDCS not only performs well in side vessel as CED 
does, but also uses the diffusion property of EED, blurring when gradient is small, in 
flat areas. This quantitative result is in agreement with the conclusion of the 
qualitative evaluation by Mendrik et al. 

 This study just shows optimal parameters for global SNR. However at optimal 
SNR, all the diffusions expose problem with very small and low contrast vessels. 
Depending on specific clinical application, for instant in RFA (when detection of 
small vessels is relevant), we can use this study to recognize very small and low 
contrast vessels, and then optimize setting again. 

6 Conclusion 

We presented a quantitative evaluation of five diffusion filters, RPM, EED, CED, 
HDCS and VED on 3D CTA images of the liver. We optimized the relevant 
parameters of each filter on a training set of seven CTAs. Based on an evaluation on 
an independent set of seven datasets and using SNR as criterion, we conclude that 
HDCS filter performs the best over the other filters. 
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Appendix A 

Parameters design: 

Table 2. The parameters in optimization stage: σ (Gaussian scale); C (contrast constant); λ, λc, 

λe (contrast parameters to RPM, CED and EED); τ (time step); η: ( number of iteration). 

Filter Abbr Parameter optimization values 
Regular Perona- Malik RPM τ: 0.0625; σ: 0.5, 1; τ: 0.0625 

η: 4, 8, 12, 16, 18, 20, 22, 24, 30 40, 50 ;  
λ: 5, 10, 12, 14, 16, 18, 20, 25, 30, 80, 150;  

Edge-Enhancing Diffusion EED σ: 0.5, 1; C: 3.31488; τ: 0.0625 
λe: 5, 10, 30, 80, 120, 160 
η : 4, 8, 12, 16, 20, 24, 30, 35 ,40 45, 50  

Coherence-Enhancing 
Diffusion 

CED σ: 0.5, 1; ρ: 0.5, 1; τ: 0.0625; α: 0.001 
λc: 5,10, 30, 80, 120, 160 
η: 4, 8, 12, 16,  22,  26, 30, 35, 40, 45, 50  

Hybrid Diffusion filter with 
Continuous Switch  

HDCS σ: 0.5, 1; ρ: 0.5, 1; α: 0.001 
λh: 5, 10, 15, 20, 30  

λc: 5; λe: 10 
η: 4, 8, 12, 16, 20, 25, 30, 40, 50 

Vessel Enhancing Diffusion VED σ: 1 – 3 (5 scales); τ: 0.0625 
α: 0.5; β: 0.5; γ: 10, 40, 80, 120, 160, 280 
η: 4, 8, 12, 16, 20, 25, 32, 40, 50 
ω: 8, 25, 32 
s :  0.5, 1, 2, 5 
ε: 0.01; c: 10-6 

 *Contrast parameters in HDCS can be used form EED and CED. 
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