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Abstract. This paper proposes a novel conditional statistical shape model 
(SSM) that allows a relaxed conditional term. The method is based on the selec-
tion formula and allows a seamless transition between the non-conditional SSM 
and the conventional conditional SSM. Unlike a conventional conditional SSM, 
the relaxed conditional SSM can take the reliability of the condition into ac-
count. Organ shapes estimated by the proposed SSM were used as shape priors 
for Graph Cut based segmentation. Results for liver shape estimation and sub-
sequent liver segmentation show the benefit of the proposed model over con-
ventional conditional SSMs. 
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1 Introduction 

Graph Cut based segmentation [1] with a shape prior as regulating term in the optimi-
zation of the energy function has proven a valuable tool in medical image processing 
[2,3]. Using a set of image features that are extracted from the target image as the 
conditional term for a conditional SSM, for example as described in [4], a shape prior 
is estimated that will serve as a restricting term in the optimization of the energy func-
tion in Graph Cut segmentation. Given an appropriate shape prior the Graph Cut seg-
mentation will improve. This benefit is the method’s vulnerability as well: A poor 
quality shape prior will deteriorate the Graph Cut segmentation accuracy. 

Relaxation of the condition, instead of applying the condition as a hard constraint, 
is essential in generating a shape prior. A relaxed conditional SSM should be able to 
bridge seamlessly between a non-conditional SSM and a conventional conditional 
SSM with hard constraints. Obtaining a method that allows such a seamless transition 
is the main aim of this paper, which is achieved by using the selection formula [5] for 
the calculation of the conditional covariance matrix and the conditional average. 

Several conditional SSMs have been proposed. Baka et. al [6] propose a condition-
al SSM in which uncertainties of the conditions can be integrated. The algorithm  
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calculates a conditional covariance matrix, but does not calculate a conditional aver-
age. For a seamless transition between non-conditional SSM and conventional condi-
tional SSM however, both the conditional covariance matrix and the conditional aver-
age are required. Syrkina et. al [7] propose a shape estimation method, that calculates 
a conditional distribution through a joint multivariate distribution of two statistical 
shape models; one representing the predictors and one for the shape that needs to be 
predicted. To minimize the prediction error, the number of shape modes retained for 
the two models is limited. In some cases this can lead to a considerable part of the 
training data that will be excluded from the model. Furthermore the algorithm re-
quires an estimate of the noise variance, which is difficult to obtain. 

The algorithm by de Bruijne et. al [4] uses the conventional conditional SSM with 
hard constraints, and extends it with ridge regression [8] to regularize the covariance 
matrix. Additionally, the introduction of ridge regression is an alternative approach to 
relax the conditional term of the SSM, because it allows the calculation of both the 
conditional covariance matrix and the conditional average.  A ridge parameter of 
zero will result in the conventional conditional SSM with hard constraints, whereas a 
very large ridge parameter leads to the generic, non-conditional SSM. Hence, the 
range of the regulating term is between zero and infinity. The method proposed in this 
paper presents a more elegant transition, with a regulating term between zero and one. 
In addition, the identity matrix in ridge regression might not be suitable to relax the 
condition, because it enhances the influence of the weaker shape variations.  

The benefit of the proposed method will be assessed by liver shape estimation, fol-
lowed by liver segmentation in non-contrast CT images. Many state of the art algo-
rithms for liver shape estimation and liver segmentation provide similar performance 
in relatively easy to segment images. The difficult to segment images, e.g. when the 
liver shape differs strongly from the average liver shape, remain challenging. Estima-
tion of such shapes, based on image features, is difficult and can result in errors in the 
condition estimation. The subsequent segmentation is hampered by suboptimal shape 
estimation. This paper seeks the room for improvement for such cases. Presented 
results focus on difficult to segment images. Furthermore, because shape estimation 
by a ridge regression based conditional SSM is the closest related method, results of 
the proposed method will be compared with results obtained through ridge regression. 

2 Conventional Conditional Statistical Shape Models 

To train a level-set based SSM, a data set of N manually annotated images is used to 
create a signed distance map, in which voxel values represent the distance to the organ 
contour. Negative distances denote the organ’s interior, positive distances signify the 
organ’s exterior. The distance data is extracted to a one-dimensional column vector, 
sized M, and Principal Component Analysis is applied to create a SSM. Projection of 
the training samples onto the model results in the principal component score matrix b, as 
depicted in Fig. 1. Details on level set based SSM training can be found in [9]. 

To obtain conditional data, a number of features is calculated from the true label 
data for all training data samples. These features are combined in matrix X, which has 
N columns (number of training samples) and F rows (number of calculated features). 
Subsequently, an unseen test image is roughly segmented using maximum a posteriori  
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relatively strongly affected, whereas the influence on the stronger shape variations is 
limited. 

It is worth mentioning that Σxx might be singular due to multi-colinearity of the fea-
tures. In experiments, the number of samples was, compared to the number of condi-
tional features, large enough to obtain non-singularity. In addition, from a large data 
base of features it is easy to select a set of features whose covariance matrix is not 
singular and which can still be effectively used as conditions for the SSM. 

4 Estimation of a Shape Prior 

The importance of a reliable conditional term in estimating the shape prior was 
stressed in section 1. To generate the shape prior, the following steps were performed: 

1. Roughly extract the test image by maximum a posteriori estimation [10]. 
2. Project the MAP result onto the relaxed conditional SSM (described in Section 3) 

and define the parametric position as the search starting point. 
3. Select the shape parameters 1 until ⌊L/3⌋, in which L denotes the number of shape 

parameters that represent 90% of the model’s variation. 
4. Using Powell’s method [11], with the Jaccard Index as objective function, optimize 

the shape parameters for the projected MAP result. 

To avoid local minima, the optimization is done in three subsequent steps: first for 
shape parameters 1 until [L/3], then for 1 until [2L/3] and finally for 1 until L. 

5 Experimental Setup and Results 

The total data set consisted of 144 non-contrast abdominal CT images. The image size 
was 512x512x154~807 voxels with a resolution of 0.546~1.00 mm/voxel. The data 
was subsampled by a factor 2. The first 48 cases were used to train the SSM, the 
second 48 cases were used to decide and evaluate the Graph Cut parameters, to optim-
ize the reliability parameter γ and to optimize ρ. The third 48 cases, that were availa-
ble for testing, were divided into two categories: easy to segment and difficult to  
segment. The state of the art methods in liver segmentation all show acceptable seg-
mentation results for easy cases. For difficult cases however improvements in seg-
mentation can be achieved. This paper therefore will mainly focus on the set of 24 
difficult cases. The 24 easy cases will only be discussed briefly. To distinguish be-
tween easy and difficult cases, the shape estimates for the 48 test cases were created 
using a standard, non-conditional SSM. The 24 cases that showed the lowest Jaccard 
Index after subsequent Graph Cut segmentation were marked as difficult cases.  

A set of 20 features, derived from manual labels (training) or from MAP results 
(testing), was used as conditional terms. Among the features were the object length in 
x, y and z direction, surface areas of the projected object on sagittal, coronal and axial 
planes, the object’s volume and histogram derived parameters such as the median x, 
y, and z location and the location of the 25th and 75th percentile x, y, and z position. 
Comparing the parameters generated from manual labels with parameters generated 
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with Ip signifying the CT value of voxel p. Equation (15) calculates for every voxel 
the negative likelihood, equation (16) is the boundary term and equation (17) is the 
shape energy term. In this equation, Φ is the signed distance to the outline of the 
shape prior. By calculating the inner product of the vector from voxel p to neighbor- 
ing voxel q with ∇Φp, the validity of the segmented shape is evaluated. Using the 
second set of 48 cases, optimized values were found at λ = 1.5 and σ = 10.0 (for ridge 
regression, for γ = 0.0 and for γ = 1.0),  λ = 1.0 and σ = 5.0 (for γ = 0.5). 

Fig. 4b shows the degree of overlap between the true shape and the result of Graph 
Cut segmentation with shape priors obtained from ridge regression and obtained from 
the proposed method with γ = 0.0, γ = 0.5 and γ = 1.0, when using the 24 difficult  
 
 

 
 

 
 

true shape ridge regression γ = 0.0 γ = 0.5 γ = 1.0 

 J.I. = 0.829 J.I. = 0.829 J.I. = 0.834 J.I. = 0.773 

Fig. 5. Axial (top row) and coronal (bottom row) example results of generated shape priors for 
ridge regression and for the proposed method with different values of γ 
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true shape ridge regression γ = 0.0 γ = 0.5 γ = 1.0 

 J.I. = 0.904 J.I. = 0.904 J.I. = 0.917 J.I. = 0.859 

Fig. 6. Axial (top row) and coronal (bottom row) example segmentation results for Graph Cuts 
initialized with different shape priors 

cases from the test data set. Wilcoxon signed rank test showed no statistical signifi-
cant difference between the results for the standard SSM and the relaxed conditional 
SSM segmentation results. However, comparing the results obtained with the conven-
tional and the relaxed SSM showed a statistical significant difference. Also, the pro-
posed method (γ = 0.5) outperforms Graph Cut segmentation in which the shape prior 
was estimated using ridge regression, with a statistically significant difference in per-
formance. Fig. 6 shows an example segmentation result for the four different models 
and, similar to Fig. 5, the relaxed conditional SSM generates the best results. The 
example image shows a liver with an extremely large left lobe. The axial view in  
Fig. 5 clearly shows the performance gain by the strongly improved segmentation of 
the tip of the left liver lobe. The coronal view shows that, contrary to the other mod-
els, the proposes relaxed conditional SSM is able to properly segment the bottom of 
left lobe, despite its far from average shape.  

The 24 easy cases showed comparable results as the difficult cases, with differenc-
es however having weaker statistical significance. Average Jaccard Index values for 
ridge regression, γ = 0.0, γ = 0.5 and γ = 1.0 were 0.821, 0.820, 0.826 and 0.800 for 
shape estimation and 0.922, 0.929, 0.928 and 0.925 for subsequent Graph Cut seg-
mentation. Average evaluation time for MAP based rough segmentation (Intel® 
Xeon® E5606 CPU), shape estimation (Nvidia® Tesla C2050 GPU) and Graph Cut 
segmentation (Intel® Xeon® E5606 CPU) were 20, 130 and 20 seconds respectively. 

6 Discussion 

This paper described the construction of a shape prior by a novel relaxed conditional 
SSM. The generated shapes were used as shape priors for Graph Cut segmentation of 
the liver in abdominal CT images. This way, the reliability of the condition is taken 
into account during the generation of the shape prior. A fixed reliability parameter γ 
was used for all conditions and was optimized using a data set of 48 training cases. 
Future work will focus on using different values of γ for individual features. 

The goal of the research presented in this paper was to improve the accuracy of  
estimated shape priors. Compared to a conventional conditional SSM, compared  
to a SSM without condition and compared to a conditional SSM based on ridge  
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regression, the generated shape priors showed statistical significantly higher accuracy, 
for the 24 selected difficult to segment cases, thereby achieving the goal of this paper. 

Because ridge regression is the only comparable method to bridge between the 
non-conditional SSM and the conventional conditional SSM, both using a conditional 
covariance matrix and a conditional average, the results of the proposed method have 
been compared with ridge regression based shape prior estimates. The proposed re-
laxed conditional SSM proved to estimate statistical significantly better shape priors.  

Evaluating Fig. 4, the benefit of the proposed relaxed conditional SSM clearly lies 
in improved shape estimation and improved segmentation for difficult to segment 
images. Inspection of notoriously difficult to segment areas, such as shown in Figs. 5 
and 6, corroborate the suggested benefit of the proposed method. 

After Graph Cut segmentation, the results based on the relaxed conditional SSM 
still showed the highest Jaccard Index, also when compared with ridge regression 
based results. The proposed relaxed conditional SSM showed a higher average seg-
mentation accuracy than all other models, with differences being statistically signifi-
cant, except when compared to the non-conditional SSM. The improved accuracy in 
comparison with segmentation based on the conventional conditional SSM was found 
statistically significant. Therefore, it can be concluded that the relaxed conditional 
SSM outperforms the conventional conditional SSM, both in the estimation of the 
shape prior and in the subsequent segmentation. 

The calculation of the conditional covariance matrix and the conditional average 
allows a seamless transition between the generic non-conditional SSM and the con-
ventional conditional SSM. Contrary to [6], in which only a conditional covariance 
matrix is used, the proposed method calculates both a conditional covariance matrix 
and a conditional average. Following equations (7) to (10) a perfect interpolation 
between the non-conditional SSM and the conventional conditional SSM is achieved. 

In ridge regression there is an over-accentuation of the weaker shape variations, 
which are more strongly influenced by the ridge parameter than the stronger shape 
variations. Such a imbalance does not arise when calculating the conditional cova-
riance matrix and conditional average through equations (9) and (10). The improved 
performance in shape estimation and its influence on subsequent Graph Cut segmen-
tation can be contributed to this seamless transition between the non-conditional SSM 
and the conventional conditional SSM. 

Future work includes modifications to the algorithm, to enable the processing of 
contrast enhanced CT data as well. This will also allow a more thorough comparison 
with other methods, for example based on the SLIVER07 database [13]. 
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