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Abstract. Colonoscopy is the preferred screening method currently available 
for detection of colorectal cancer and its precursor lesions, colorectal polyps. 
However, recent data suggest that there is a significant miss rate for the detec-
tion of polyps in the colon during colonoscopy. Therefore, techniques for real-
time quality measurement and feedback are necessary to aid the endoscopist 
towards optimal inspection to improve the overall quality of colonoscopy dur-
ing the procedure. A typical colonoscopy procedure consists of two phases: an 
insertion phase and a withdrawal phase. One of the most essential tasks in  
real-time fully automated quality measurement is to find the location of the 
boundary between insertion and withdrawal phases. In this paper, we present a 
method based on motion vector templates to detect the phase boundary in real-
time. The proposed method detects the phase boundary with a better accuracy 
and a faster speed compared to our previous method. 

Keywords: Colonoscopy, phase boundary, end of insertion, motion vectors, 
camera motion estimation, and motion vector templates. 

1 Introduction 

Colonoscopy is the preferred screening modality for prevention of colorectal cancer---
the second leading cause of cancer-related deaths in the US [1]. A typical colonosco-
py procedure consists of two phases: an insertion phase and a withdrawal phase. The 
main purpose of the insertion phase is to reach the end of the colon, whereas in the 
withdrawal phase, careful inspection of all visible mucosa, tissue sampling, polyp 
removal, etc., are performed. Despite being the preferred screening modality, recent 
data suggest that there is a significant miss-rate in the detection of even large polyps 
during colonoscopy [2]. The miss-rate may be related to the experience of the endos-
copist and the location of the lesion in the colon, but no prospective studies related to 
this have been done thus far. The American Society for Gastrointestinal Endoscopy 
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has suggested many guidelines for best practices in colonoscopy as described in [2] 
which includes the duration of the withdrawal phase, the average polyp detection rate, 
and the thorough of inspection of the colon mucosa. In [3], six quality metrics are 
proposed which are based on the durations of the insertion and the withdrawal phases. 
Therefore, accurate detection of the phase boundary (end of insertion (EOI)) between 
the insertion phase and the withdrawal phase is very essential in fully automated qual-
ity analysis of colonoscopy procedures. 

The best way to detect the EOI is to analyze the motion of the colonoscopy camera, 
specifically, the z-directional motion (i.e., dolling camera motion (DCM)). The reason 
is that the colonoscope moves in forward and backward directions inside the colon 
during colonoscopy [2]. An accurate estimation of the camera motion can be obtained 
by analyzing the change that occurred between two consecutive images (frames) (i.e., 
a frame pair) in the video due to the movement of the camera. This change can be 
represented by using motion vectors. A motion vector represents the displacement of 
an area (usually a macroblock) that occurred due to the movement of the camera. The 
major challenges in accurately detecting the EOI with this approach are (1) colonos-
copy frames have various artifacts such as out of focus (i.e., blurriness), specular  
reflection, stool, and water which can make the motion vector generation process 
imprecise, (2) traditional camera motion models such as the affine model [4] produce 
inaccurate motions often for colonoscopy, and (3) the method must complete all tasks 
in real-time. Specifically, our colonoscopy videos output 30 frames per second in 
MPEG-2 format. So, in order to achieve real-time processing, motion estimation of a 
frame pair must be completed within 66 milliseconds (ms) (i.e., 33ms per frame x 2).  

In this paper, we propose a new method to detect the EOI based on motion vector 
templates. This method attempts to analyze the motion vector distribution in the four 
corners of the frame pair in order to predict the camera motion. So, proposed method 
does not depend on heavy computations as in traditional models such as the affine 
model [4]. The motion vectors are generated using an optical flow block matching 
algorithm [5-7] which is more suitable for the motion vector generation in colonosco-
py frames. Motion vectors are obtained only on the frames that guarantee to provide 
accurate motions. Therefore, the primary contributions of this paper are (1) we pro-
pose a new algorithm to estimate camera motions in colonoscopy videos more accu-
rately using motion vector templates and (2) our new algorithm offer a very large 
improvement in the speed which leads to significantly better real-time EOI detection 
of colonoscopy videos compared to our previous method [4]. 

The remainder of this paper is organized as follows. Related work in the field of 
colonoscopy frame processing and a brief analysis of our previous work [4] are pre-
sented in Section 2. The proposed phase boundary detection technique is described in 
Section 3. In Section 4, we discuss our experimental setup and results. Finally, Sec-
tion 5 presents some concluding remarks. 

2 Related Work 

The related works on colonoscopy can be divided into three main categories: (1) 
processing of frames for tasks such as non-informative frame detection, stool frame 
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detection, and many others [8-10], (2) detection of abnormalities such as colorectal 
polyps [10], and (3) analysis of the quality of colonoscopy procedures [3]. 

The only work on real-time EOI detection that can be found in the literature is our 
previous work outlined in [4]. In that work the EOI is detected by applying a three 
step approach; (1) motion vector generation using color-based block matching, (2) 
camera motion estimation using the affine model, and (3) accumulation of DCM val-
ues. Due to the following issues, the accuracy of the EOI detection in our previous 
work is not satisfactory. Color-based block matching for motion vector generation is 
heavily dependent on the color information of the images. But, the colonoscopy 
frames have a limited color range [1, 2]. Also, since colonoscopy frames have a varie-
ty of artifacts such as blurriness, stool, and water, color-based block-matching method 
generates many flawed motion vectors. Moreover, the affine camera model [4] is very 
sensitive to outliers and generates incorrect DCM values when diverse motion vectors 
are present. Due to these incorrect DCM values, unnecessary local maxima (i.e., 
peaks) will be generated during DCM accumulation; consequently an incorrect point 
is detected as the phase boundary. The proposed method overcomes these issues and 
detects the EOI with 22% better accuracy and with 40-times better speed when com-
pared to the previous work as described in Section 3. 

3 Proposed Method 

The proposed method has four main steps: (1) preprocessing of colonoscopy frames 
to discard/enhance unsuitable frames for motion vector generation, (2) motion vector 
generation using optical flow, (3) camera motion estimation using motion vector tem-
plates, and (4) detection of the phase boundary by analyzing cumulative DCMs. In the 
following sections each step will be discussed in detail. 

3.1 Frame Preprocessing 

As mentioned in Section 1 various artifacts such as blurriness, specular reflection, 
stool, water, therapeutic instruments, etc in colonoscopy frames can create errors in 
the motion vector generation process. Hence, preprocessing of frames is mandatory to 
get accurate motion vectors. If at least one frame of a frame pair in a video stream is a 
blurry frame then that frame pair is ignored from the motion vector generation process 
using the method outlined in [8]. Stools can be found in most sections in the colon. 
By their nature, these stools can float inside the colon and generate object motions 
which can combine with the camera motions. This can provide very unreliable motion 
vectors. Therefore, we eliminate the frame pairs having at least one frame with a stool 
percentage greater than a certain threshold (set to 50% based on experiments) using 
the technique proposed in [9]. In addition to these frame pairs, we discard frame pairs 
if the frames in the frame pair are not sufficiently correlated (see Fig. 1(a)). We calcu-
late a correlation score between the two frames in each frame pair as expressed in 
equation (1). Then, only the frame pairs having correlation scores within a threshold 
value range are selected for motion vector generation. We set the threshold range to 
0.89 - 0.99. An upper threshold is used to remove highly correlated frames as such 
frame pairs produce very few motion vectors since they are very similar. 
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attempts to divide both previous and current frames into blocks, and then computes 
the motions of these blocks using optical flow [5, 7]. For each m × m block (Bk) cen-
tered around pixel (x,y) in frame k, we obtain a search area S in frame k-1 with Bk at 
the center block. The size of the search area S is (m +2p) × (m +2p) where p indicates 
the search range in pixels. Then, we compute the sum of square differences (SSD) 
between Bk and all possible m × m blocks in S as given in the equation (2). The m × m 
block (Bk') in S centered around (x',y'), which gives the lowest SSD is selected as the 
matching block. The displacement vector given by u = x - x'; v = y - y' is the motion 
vector between Bk and Bk'. fk(x,y) is the intensity of the pixel at (x,y). We experimen-
tally found that a block size of 8 × 8 pixels, a search area size of 16 ×16 pixels and a 
SSD threshold of 128 are able to generate more accurate motion vectors for colonos-
copy. Fig. 2(a) shows a typical result from motion vector generation. (The reason for 
having motion vectors only in four corner regions is explained in Section 3.3). 

, argmin,…,,… , , , . (2) 

 

Fig. 2. a) Generated motion vectors from a frame pair in the four motion vector templates (ar-
row sizes are scaled up by a factor of 4) and b) their TMVs (i.e., blue arrows; TMVs are scaled 
so that they fit into their quadrants). Green squares represent the Template boundaries. 

3.3 Camera Motion Estimation Using Motion Vector Templates 

Motion vector templates have been studied previously in [11, 12]. A key aspect of our 
motion vector template method is the following: motion vectors in the four corners of 
our images show a unique pattern for each different type of camera motion. In the 
center part of the frame, we find either zero motion vectors (i.e., zero magnitude) (e.g. 
Z-directional translation) or motion vectors similar to four corners in the frame (e.g. X 
and Y motions). Hence, the camera motion can be estimated by analyzing the motion 
vector pattern in the four corners of a frame pair. Indeed, in the proposed method 
motion vectors are computed only in the four corners of a frame pair (see Fig. 2(a)). 
Four regions in the corners are called motion vector templates. Using our data set, we 
experimentally choose that the size of a Template as 13% of a frame, that is, 30% of 
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the width and 44% of the width of a frame (i.e., a Template is a square). Since, our 
aim is to find a specific pattern in the four motion vector templates; we represent the 
net motion in each Template region by one vector. This vector is computed by per-
forming the vector addition of all motion vectors in each Template and then by calcu-
lating the mean vector as defined in equation (3). In a Template, the resultant vector is 
called its “Template Motion Vector (TMV)”. In equation (3), mvik  is the kth motion 
vector of the ith Template and ni is the number of motion vectors in the ith Template. 
Four TMVs can be seen as illustrated in Fig. 2(b).                 TMVi  ∑ mviknik 1ni . (3) 

Estimating the DCM by Computing the DCM Contribution. Forward and back-
ward motions of the colonoscope can be estimated from positive DCM and negative 
DCM, respectively. Directions of the majority of motion vectors in a typical positive 
DCM are normally pointing from center to border. Hence, the directions of the four 
TMVs are also pointing from center to border (see Fig 3(a)). The directions of the 
majority of motion vectors and TMVs follow the opposite direction in a typical nega-
tive DCM (see Fig 3(b)). In general for a zooming motion, a similar behavior can be 
observed. Since, there is no zooming function available in a colonoscope; this pattern 
of TMVs can only be noticed when there is a DCM. Hence, we estimate the DCM 
when TMVs follow this pattern. We estimate the total DCM by calculating the DCM 
contribution from each Template. DCM contribution of a Template is calculated as 
the cosine of the angle that the TMV makes with the DCM axis multiplied by magni-
tude of the TMV. Use of cosine of the angle of TMVs ensures that more weight is 
assigned to the TMVs that are closer to the DCM axis (i.e., red line in each Template 
of Fig. 3). The rationale behind this design is that for a perfect DCM as seen in Fig. 
3(a) and 3(b), TWVs are aligned with the DCM axis and the average of the magnitudes 
of TMVs represents the amount of DCM. For a non-perfect DCM as seen in Fig. 3(c), 
TMVs are away from the DCM axis and hence only a fraction of the magnitude 
represents the DCM. We compute the DCM contribution of a TMV, if it falls within 
the 45° range (in both directions, i.e., light blue and light green regions in Fig. 3) from 
the DCM axis. That means that a TMV within the 45° range from the DCM axis pro-
vides information about movement along the colon axis. TMVs which fall outside the 
45° range carry essentially no information related to DCM. For this reason we ignore 
TMVs which fall outside the 45° region when calculating DCM.  

The total DCM estimation process can be formulated as follows. We represent the 
magnitude and the angle of a kth TMV which provides a non-zero positive DCM con-
tribution as  and , respectively (see Fig. 3(a), T1,T3 and T4). Also,  and 

 represents the magnitude and the angle of the kth TMV which provides a non-zero 
negative DCM contribution (see Fig. 3(c), T2). Here, pd stands for positive dolling 
and nd stands for negative dolling. In Fig. 3(c), T1 has a positive DCM contribution 
and its value can be calculated as  and T2 has a negative DCM contribu-
tion and its value can be calculated as  and so on. We calculate the total 
DCM of a frame pair by taking DCM support count into consideration. The positive 
DCM support count (PDSC) is defined as the number of non-zero positive DCM  
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contributions and the negative DCM support count (NDSC) is defined as the number 
of non-zero negative DCM contributions. To be considered as a DCM, one of PDSC 
or NDSC must be at least two (experimentally decided). If we encounter equal (two) 
PDSC and NDSC, then we assign a zero DCM. Based on this model, we compute the 
average of positive DCM contributions for positive DCM, and the average of the neg-
ative DCM contributions for negative DCM as defined in equation (4).  ∑ , and 2,  ∑ , and 2,0,                         Otherwise.      

  (4) 

 

Fig. 3. An example of a) a perfect positive DCM, b) a perfect negative DCM and c) a DCM 
contribution calculation. Since PDSC > NDSC, (c) represents a positive DCM and it is also an 
example for a non-perfect positive DCM. In a), b), and c), T1-T4 are four templates, red lines 
represent the DCM axes, light blue and light regions represent the positive DCM and negative 
DCM supporting regions, respectively. The dark blue arrows show TMVs. 

3.4 Estimation of the Phase Boundary/End of Insertion (EOI) 

The estimation of the EOI is done by analyzing the behavior of cumulative DCM 
(CDCM)) values of selected frame pairs in the entire procedure in real-time. We keep 
track of the CDCM values to find local maxima (i.e., peaks) in which the peak value 
remains unchanged for at least 1 minute (experimentally decided) as shown in Fig. 4. 
The frame number corresponding to this peak is assigned as the current EOI (i.e., a 
candidate EOI). Later, if we encounter another candidate EOI which has a CDCM 
value that is greater than the CDCM value of the current EOI, then the current EOI is 
updated with that candidate EOI. The frame number of the most recent candidate EOI  
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will be chosen as the EOI, which is the phase boundary. Obviously, the last EOI will 
be the frame number that defines the maximum CDCM value of the entire procedure. 
CDCM values of a full colonoscopy stream can be plotted as shown in Fig. 4. Since 
the size of a Template in the new method is 13% of a frame, we process only 52% of 
the frame area for motion vector generation. Also, we use an optimized version of the 
optical flow block matching algorithm provided by OpenCV 2.0 [7]. In addition to 
those, we apply CPU multithreading for motion vector generation by dividing the 
total number of blocks among the available processors for parallel processing. The 
combination of the above three factors ensures that the proposed method performs the 
DCM calculation well within real-time. 
 

 

Fig. 4. A CDCM plot of a full colonoscopy video stream. The red oval is the detected EOI. 
Basically, this curve gives a snapshot of how the colonoscope moved through the colon in 
forward and backward directions during the procedure. 

4 Experimental Setup and Results 

The proposed method was implemented and integrated into SAPPAHIRE [13] which 
is a framework developed for real-time capture and quality analysis of colonoscopy. 
We perform our experiments in a simulation mode where videos are used as real-time 
video streams. All experiments were done in a computer with Intel(R) Core i7 2600K, 
64-bit, 3.40GHz processor and 8 GB memory. We conducted experiments on ordinary 
videos as well as on real colonoscopy video streams. 

We created a video which contains five types of motions. The video was record-
ed at a valley outside of a building. Five different types of motions are: (1) slow 
forward (frame 0 to 611), (2) fast forward (frame 741 to 1151), (3) fast backward 
(frame 1161 to 1431), (4) slow backward (frame 1441 to 2281), and (5) zero mo-
tion (frame 611 to 731 and frame 1091 to 1161). In the CDCM plot shown in Fig. 
5, the fast motions (2 and 3) can be seen as steep lines, and slow motions (1 and 4) 
can be seen as less-steep lines. Also, zero motions (5) can be seen as straight lines. 
Therefore, our proposed method has accurately captured all motions that are con-
tained in the video. 
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Fig. 5. CDCM plot of the ordinary video. Numbers 1-5 represent the five different types of 
motions present in the video. 

Our real colonoscopy video set contains 146 videos. The average video length is 
17.40 minutes and the frame size is 720 x 480. When the cecum is reached during 
colonoscopy, any remaining debris is removed followed by inspection of the appendi-
ceal orifice, the ileocecal valve and if required or readily possible the distal terminal 
ileum. Clearing debris and inspection require about 1 to 2 minutes. Therefore, if the 
detected EOI falls within a 2 min range from the ground truth (i.e., before or after), 
then we consider it as a correctly detected EOI and vice versa. Outcomes from this 
experiment are summarized in Table 1. The results show that our new method detects 
the EOI with 82% accuracy. Therefore, compared to our previous method, we 
obtained a 22% improvement in accuracy. When comparing the average time 
difference with the ground truth of all videos of the two methods, the new method has 
shown a major improvement (81 seconds). Also, the proposed method provides a 
substantial gain (almost 40-times) in the average execution time per frame pair over 
the earlier method. The previous method satisfies the real-time constraint by a slight 
margin (by 13.70ms = 66 - 52.30). However, the new method satisfies the real-time 
constraint by a considerably larger margin (by 64.68 ms = 66 - 1.32). 

Table 1. Effectiveness of the proposed phase boundary detection method 

Description Previous New 

Number of correctly detected videos 88 120 
Accuracy of the EOI detection 60% 82% 
Average time difference with the ground truth EOI (mm:ss) 02.54 01:33 
Average execution time per frame pair (ms) 52.30 1.32 

5 Conclusion 

Finding the phase boundary is considered to be a very important task for fully 
automated quality analysis of colonoscopy. We have proposed and implemented a 
new algorithm for real-time phase boundary detection in colonoscopy using motion 
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vector templates. The proposed method detects the phase boundary with 82% 
accuracy which is 22% better than our previous algorithm. Also, the new algorithm is 
40-times faster than our previous algorithm. Moreover, this method is easy to 
implement since it does not possess heavy computations compared to the previous 
method. Experimental results also demonstrate that this method works very well on 
estimating the dolling motions of ordinary videos. Accurate detection of the phase 
boundary leads to generation of many quality metrics, such as the ones proposed in 
[3]. A key problem affecting the accuracy of our current method is formed by frames 
containing remaining debris, air bubbles and water or specular reflections. In the 
future we will improve the accuracy by detecting and eliminating these frames. 
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