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Preface

The Fourth International Workshop on Computational and Clinical Applica-
tions in Abdominal Imaging was held in conjunction with the 15th International
Conference on Medical Image Computing and Computer-Assisted Intervention
(MICCAI) on October 1, 2012, in Nice, France.

In the abdomen, organs and disease appearance are complex and subtle, and
thus the development of computational models that are useful in clinical practice
is highly challenging. Nevertheless, diagnosis often relies on the quantitative
measures of organs and lesions, because their volumes and shapes are strong
indicators of disorders. Given the complexity and high variability of abdominal
organs, the identification of distinct computational challenges for integrative
models of organs and abnormalities is essential for understanding anatomy and
disease, evaluating treatment, and planning intervention.

Leveraging the success of the previous workshops, the fourth MICCAI work-
shop on computational abdominal imaging aimed to provide a comprehensive
forum for reviewing clinical opportunities in computational abdominal imaging,
and for sharing state-of-the-art as well as emerging techniques for solving com-
putationally challenging image analysis and visualization problems, by bringing
together leading researchers and clinician-scientists from around the world.

In response to a call for papers, a total of 37 papers were initially submitted
to the workshop. These papers underwent a rigorous, double-blind peer-review
process, with each paper being reviewed by a minimum of 2, and in most cases, by
3 expert reviewers from the Scientific Review Committee. Based on the results
of this review, 31 papers were accepted by the workshop. All of the accepted
papers were revised by incorporating the reviewers’ comments and re-submitted
by the authors to be included in this proceedings volume.

The workshop provided participants with in-depth and interactive discus-
sions on the emerging techniques introduced by the current clinical challenges
that were not fully explored in the MICCAI main conference. The workshop suc-
cessfully provided a forum among participants for the dissemination of state-of-
the-art research and technologies, the exchange of emerging ideas, the initiation
of collaborations, and the exploration of new clinical applications for diagnostic
and interventional procedures in abdominal imaging.

We would like to express our sincere appreciation to the authors whose con-
tributions to this proceedings book have required considerable commitment of
time and effort. We also thank the members of the Scientific Review Commit-
tee for their excellent work in reviewing the submitted manuscripts on a tight
schedule.

October 2012 Hiroyuki Yoshida
David Hawkes

Michael Vannier
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Sergio Vera, Miguel A. González, Marius George Linguraru, and
Debora Gil

Registration of Free-Breathing Abdominal 3D Contrast-Enhanced
CT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
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Florence d’Alché-Buc, and Laurence Rouet



XIV Table of Contents

Non-newtonian Blood Flow Analysis for the Portal Vein Based on a
CT Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Harvey Ho, Adam Bartlett, and Peter Hunter

Tracer Kinetic Modeling by Morales-Smith Hypothesis in Hepatic
Perfusion CT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

Sang Ho Lee, Wenli Cai, and Hiroyuki Yoshida

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303



Prone to Supine CT Colonography Registration

Using a Landmark and Intensity
Composite Method

Thomas E. Hampshire1, Holger R. Roth1, Darren J. Boone2, Greg Slabaugh3,
Steve Halligan2, and David J. Hawkes1

1 Centre for Medical Image Computing,
University College London, London, WC1E 6BT, UK

thomas.hampshire.09@ucl.ac.uk
2 Centre for Medical Imaging, University College Hospital, London, UK

3 Department of Computing, City University, London, UK

Abstract. Matching corresponding location between prone and supine
acquisitions for CT colonography (CTC) is essential to verify the exis-
tence of a polyp, which can be a difficult task due to the considerable
deformations that will often occur to the colon during repositioning of
the patient. This can induce error and increase interpretation time. We
propose a novel method to automatically establish correspondence be-
tween the two acquisitions. A first step segments a set of haustral folds
in each view and determines correspondence via a labelling process us-
ing a Markov Random Field (MRF) model. We show how the landmark
correspondences can be used to non-rigidly transform a 2D source im-
age derived from a conformal mapping process on the 3D endoluminal
surface mesh to achieve full surface correspondence between prone and
supine views. This can be used to initialise an intensity-based non-rigid
B-spline registration method which further increases the accuracy. We
demonstrate a statistically significant improvement over the intensity
based non-rigid B-spline registration by using the composite method.

Keywords: CT colonography, image registration.

1 Introduction

A number of methods have been proposed to find correspondence between the
prone and supine positions. Centreline-based methods extract and align colonic
centrelines by stretching and shrinking based on path geometries [12]. These
methods are inherently restricted to achieving a registration along a single di-
mension and do not give any information about the degree of torsion of the
colon wall between views. Anatomical landmarks can be used to help align the
two datasets by first identifying a stable set of anatomical features, such as
the caecum, rectum and flexures [12,6], but stand-alone they do not provide
a fine enough registration between views. Voxel-based methods provide a fur-
ther means of registration [9]. However, these methods rely to varying extents

H. Yoshida, D. Hawkes, M.W. Vannier (Eds.): Abdominal Imaging 2012, LNCS 7601, pp. 1–9, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 T.E. Hampshire et al.

upon continuous prone and supine colonic segmentations, free from occlusion by
fluid or collapse; a scenario which occurs infrequently in daily practice, despite
optimal bowel preparation [10].

Fukano et al. proposed a registration method based on haustral fold matching
[1]. A second-order derivative difference filter was used to extract folds; their
volume and relative positions along the centreline with respect to a set of loca-
tions of high centreline curvature were used to establish correspondence. They
reported correct registration of 65.1% of large folds, and 13.3% of small folds;
where 9.3% and 32.7% of folds could not be judged.

Zeng et al. combined conformal mapping with feature matching between the
prone and supine surfaces [14]. The prone and supine colonic segmentations were
mapped onto five rectangle pairs. Correspondences were established using a fea-
ture matching method based upon mean curvature. The method relied on accu-
rately determining fivematching segments in the prone and supine datasets, which
is difficult to achieve and may not be possible in the case of local colonic collapse.

Recently, Hampshire et al. [2] presented a method for generating a set of robust
landmark correspondences between the prone and supine CT data using haustral
folds. A virtual camera registration is used to create a cost function for matching
pairs of folds between the prone and supine acquisitions. A Rotation Minimising
Frame (RMF) is swept along the centreline to parametrise the 3D fold position to
a 2D vector consisting of centreline distance and angular orientation. Additional
fold neighbourhood information in this parametrised space is used to enforce
geometric constraints in the form of a pair-wise cost function. The cost functions
are incorporated into a MRF model, and a fold labelling assignment is achieved
by a Belief Propagation (BP) [13] optimisation process.

Roth et al. [7] provide a full surface registration via a conformal mapping of
the prone and supine endoluminal surfaces to 2D cylindrical domains using Ricci
flow [3,15], followed by a non-rigid cylindrical intensity based registration using
a B-spline method [8] with a sum-of-squared-differences similarity metric based
on shape index (SI) [4].

This paper introduces a new composite registration method, first using the
sparse positions and displacements of the landmark based registration [2] mapped
onto a 2D domain created by performing a conformal mapping using the Ricci
flow algorithm [3,15], to construct an underlying function based on multilevel
B-splines that can be evaluated at any point to give a transformation from the
prone to the supine images. This transformation is further refined by the intensity
based registration in [7]. We demonstrate a statistically significant improvement
over the previously published methods.

2 B-Spline Approximation

We wish to approximate a smooth function f which relates the (x, y) points in
the prone unfolded image, to their (x′, y′) positions in the supine image over
domain Ω = (x, y)|0 ≤ x < m, 0 ≤ y < n. To do this we use the set of folds
P = {(xc, yc, vc)} where (xc, yc) is a point in Ω and vc is the value at (xc, yc).
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We define the mapping in terms of two functions: x′ = X(x, y) and y′ = Y (x, y).
As these functions can be derived simultaneously, we use the notation v =
(x′, y′) = f(x, y). To approximate the data P , we use function f as a uniform
bicubic B-spline, defined by control lattice Φ overlaid on domain Ω using the
method in [5]. We also assume Φ is an (m+3)×(n+3) lattice, where m and n are
the image dimensions defined in lattice control points. We define φij as the value
of ij-th control point on lattice Ω for i = −1, 0, ...,m+1 and j = −1, 0, ..., n+1.
We can then define the approximation function f :

f(x, y) =

3∑
k=0

3∑
l=0

Bk(s)Bl(t)φ(i+k)(j+l) , (1)

where i = �x�− 1, j = �y�− 1, s = x−�x�, and t = y−�y�. Bk and Bl are basis
functions:

B0(t) = (1 − t)3/6,

B1(t) = (3t3 − 6t2 + 4)/6,

B2(t) = (−3t3 + 3t2 + 3t+ 1)/6,

B3(t) = (t3)/6,

(2)

where 0 ≤ t < 1. For every point in P = {(xc, yc, vc)} a different value φc of
each of the control points φij is defined:

φc =
wcvc∑3

a=0

∑3
b=0 w

2
ab

, (3)

where wc = wkl = Bk(s)Bl(t), k = (i + 1) − �xc�, l = (j + 1) − �yc�, s =
xc − �xc�, t = yc − �yc�. Only data points in the 4 x 4 neighbourhood of each
control point are taken into consideration. To choose a value for each φij from
the contributions from each point φc the error e(φij) =

∑
c(wcφij − wcφc)

2 is
minimised by differentiating e(φij) with respect to φij giving:

φij =

∑
c w

2
cφc∑

c w
2
c

. (4)

To allow for a smooth function over the entire domain and more accurate local
deformations, a multilevel B-spline approximation is used to generate a hierarchy
of control lattices from coarse to fine. A refinement process is used to reduce the
sum of these functions into one B-spline function. For each level of control lattice
Φk we can derive a finer control lattice Φ′

k such that F (Φ′
k) = F (Φk). We then

derive function fk+1 by using control lattice Φk+1 to approximate data Pk =

{(xc, yc, Δk+1vc)}, where Δk+1vc = vc −
∑k

i=0 fi(xc, yc) = Δkvc − fk(xc, yc),
and Δ0vc = vc. Each function serves to remove the residual error from the
coarser lattice at each level. We can now define a progressive control lattice
Ψk+1 = Φ′

k + Φk+1 from the coarsest to finest levels. We apply this technique
to the images created by a conformal mapping [7] of the endoluminal surfaces



4 T.E. Hampshire et al.

of prone and supine images onto a rectangular domain. The sparse set of data
points P = {(xc, yc, vc)} have their positional information {(xc, yc)} taken from
the positions of haustral folds mapped onto the 2D domain, and the vertical and
horizontal displaced positions {vc} of the corresponding positions in the supine
image. To allow for a pseudo-continuous function over the y-axis, the image is
tripled (figure 1). Due to the true cylindrical nature of the registration problem,
there is an ambiguity over the direction of vertical displacement in the 2D images.
To create a smooth displacement, the B-spline fitting is repeated and at each
iteration the datum Pc with the maximum error between the y component of
the estimated and true displacement ey = |(F (xc, yc) − vc)y| is adjusted such
that v′c = vc + sign((F (xc, yc)− vc)y) · ymax where ymax is the size of the image
in the y-direction. The image is then shifted in the y-direction so as to minimise
vc and the full multi-level B-spline fitting is repeated to give the final function
F (Φ) with control lattice Φ.

Now for every position in the prone image Pprone = {(x, y)} ∈ Ω we can use
the function F to find the corresponding position in the supine image Psupine =
{(x, y)} ∈ Ω. We can use this transformation alone, or use it as an initialisation
to the intensity-based B-spline registration function presented in [7] to create a
finer composite registration.

a

b

c

d

e

f

g

h

Fig. 1. Images of the endoluminal surface produced from the conformal mapping tech-
nique (case 11). The colour scheme shows the Shape Index (SI) and the vectors show the
displacements generated from the landmark registration. Images show: a) the source
(prone) image; b) the ambiguous vector direction on the source image; c) the sorted
displacements; d) the source image vertically aligned to reduce displacements; e) the
source image with displacement vectors and regular grid; f) the result of the land-
mark B-spline registration with transformed image and grid; g) the refinement with
the intensity based registration (with same grid); h) the target (supine) image.
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3 Evaluation

3.1 Data

Ethical approval and informed consent was obtained to use anonymised CT
colonography data. Colonic cleansing and insufflations has been performed in
accordance with current recommendations [11]. These data consist of 17 valida-
tion cases of which 5 exhibited local luminal collapse (see table 1), and 4 cases
(cases 9 - 12) that had been excluded from a previous study using an intensity
based registration [7] due to marked differences in local distension and therefore
different surface features. Cases used fluid tagging (allowing for digital cleans-
ing of residual fluid) or little fluid remained. All parameters were optimised on
separate training data. A radiologist (experienced in over 400 validated colonog-
raphy studies) manually identified the centres of corresponding haustral folds
using ’virtual colonoscopy’ fly-through renderings, and external views of the
colonic lumen. This resulted in 1484 pairs of corresponding positions between
the two views to be used for evaluation.

Table 1. Information of cases exhibiting local luminal collapse. For each case, the num-
ber of collapsed regions in the prone and supine images are displayed, along with the
Euclidean distance across each region. Locations of collapse are given (DC: descending
colon; SC: sigmoid colon).

Prone Supine

Case No. Collapses Location Distance (mm) No. Collapses Location Distance (mm)
13 1 DC 65.0 0 - -
14 1 DC 245.1 1 DC 272.4
15 0 - - 1 SC 26.0
16 3 DC 6.5 0 - -

DC 34.4 - -
SC 8.0 - -

17 0 - - 1 DC 18.3

To assess the performance of each algorithm in terms of registration error,
each reference standard point is transformed from prone to supine using the
calculated transformation function and the 3D Euclidean distance between this
and the corresponding reference standard point is measured. It is clear that
the composite method outperforms both the intensity- and landmark-based reg-
istration methods at 7.0mm(±2.7mm), compared to 12.1mm(±10.6mm) and
9.2mm(±3.4mm) respectively. Using a Related Samples Wilcoxon Signed Rank
Test, the difference in error between each pair of results is statistically significant
with p < 0.001.
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a
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d

e

f

g

h

Fig. 2. Displaying the images in figure 1 in greater detail at the end of the colon. The
colour scheme shows the Shape Index (SI) and the vectors show the displacements
generated from the landmark registration. Images show: a) the source (prone) image,
b) the ambiguous vector direction on the source image; c) the sorted displacements;
d) the source image vertically aligned to reduce displacements; e) the source image
with displacement vectors and regular grid; f) the result of the landmark B-spline
registration with transformed image and grid; g) the refinement with the intensity
based registration (with same grid); h) the target (supine) image.
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Table 2. Mean fold registration error (mm) for each of the validation cases. Results
are shown individually for the intensity, landmark and composite registration methods.

Case Intensity Landmark Composite

F
u
ll
y
D
is
te
n
d
ed

1 12.0 10.1 11.7
2 7.4 7.3 5.6
3 5.3 6.0 5.2
4 9.0 6.1 5.6
5 5.6 5.1 5.6
6 3.5 4.7 3.6
7 5.9 6.4 5.6
8 6.9 7.3 6.2
Subset Mean 7.0 6.6 6.2
Subset Std 2.6 1.7 2.4

Previously Excluded Cases
9 44.9 15.2 5.8
10 12.5 8.5 7.8
11 16.8 10.3 6.0
12 7.3 10.3 6.2
Subset Mean 20.4 11.1 6.5
Subset Std 16.8 2.9 0.9

C
o
ll
a
p
se
d

13 30.3 16.2 15.0
14 5.9 13.6 6.8
15 7.5 11.1 7.2
16 15.7 9.1 6.7
17 8.8 8.4 7.6
Subset Mean 13.7 11.7 8.7
Subset Std 10.0 3.2 3.6

Total Mean 12.1 9.2 7.0
Total Std 10.6 3.4 2.7



8 T.E. Hampshire et al.

Fig. 3. External surface renderings of the transverse colon in the supine image of case
16. The set of reference standard points in the supine view (red) and the corresponding
points transformed from the prone view (blue) and shown using the results from the
intensity based (left) and composite (right) registration methods. The green lines show
the Euclidean distance error.

4 Conclusion

Our composite registration method combines landmark and intensity based reg-
istration techniques and improves the mean registration accuracy compared to
using either method alone. The work flow presented is fully automated, taking as
input a prone and supine colon lumen segmentation. The consistency of results
across cases showing a variety of characteristics indicates that the composite
method will provide a more robust registration than those previously reported,
especially in more ’difficult’ cases, such as those that show marked differences
in distension, or exhibit areas of local colonic collapse. This situation is very
common in routine practice and therefore an algorithm that is robust to these
characteristics is of greater clinical benefit.
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Abstract. This paper provides an external validation of a prone-supine
registration algorithm for CT colonography (CTC). A validation sam-
ple of 49 patient cases with 66 polyps (6 to 30 mm) was selected from a
publicly available, anonymized CTC archive. To enhance generalizability,
no case was excluded due to poor preparation or inadequate distension.
Corresponding prone and supine polyp coordinates were recorded and
the endoluminal surfaces registered: a Markov Random Field technique
was used to find feature matches between prone/supine acquisitions and
following mapping of the endoluminal surface to a cylinder, dense surface
correspondence was achieved via cylindrical non-rigid registration. The
polyp registration error was determined and a subjective assessment of
registration made for 2D slice-based and 3D endoluminal data display
using a pre-specified scoring system. Results were compared to using
“normalized distance along the colon centerline” (NDACC) which ap-
proximates to the method currently employed to match colonic positions
using proprietary CT colonography interpretation software. Registration
was possible in all 49 cases. Overall mean 3D polyp registration error
was significantly smaller with 19.9 mm in comparison to 27.7 mm using
NDACC (p=0.001). 82.7% of polyp matches were defined as “successful”
in comparison to 37.1% using NDACC according to the pre-specified cri-
teria. Similarly, using 2D visualization, 62.1% registrations were “success-
ful” and only 22.7% using NDACC. Full surface-based prone-to-supine
registration can successfully map the location of a polyp identified on one
acquisition to the corresponding endoluminal surface in the opposing ac-
quisition, greatly facilitating polyp matching and aiding interpretation.
Our method compares favorably to using NDACC.

Keywords: CT colonography, image registration.

1 Introduction

CT colonography interpretation is difficult and time consuming. Fecal residue
can simulate or obscure polyps, leading to both false positive and false negative

H. Yoshida, D. Hawkes, M.W. Vannier (Eds.): Abdominal Imaging 2012, LNCS 7601, pp. 10–19, 2012.
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diagnoses. To compensate for this, it is normal practice to obtain CT data with
the patient both prone and supine to redistribute fecal residue and colonic gas;
fecal residue tends to move, while fixed mural pathology does not. Matching
corresponding endoluminal locations between prone and supine acquisitions is
the cornerstone of competent interpretation [19]. Unfortunately, the colon often
undergoes significant deformation during repositioning [12] which complicates
the interpretative task and can induce reader error.

Software algorithms have attempted to facilitate matching of corresponding
locations between prone and supine acquisitions: matching of distances along
centerlines enables navigation to approximate endoluminal locations in both
datasets [1,9,18,11,17]. The most straight-forward method (and the only tech-
nique available in commercial workstations at present) being the “normalized
distance along the colon centerline” (NDACC) [16]. While centerline matching
studies have shown promising results [1,9,18,11,17], they tend to report registra-
tion error in only one dimension. However, it can be argued that centerline-based
methods are inherently limited because the interpretation task requires readers
to find a specific point on the endoluminal surface rather than along the cen-
terline. Moreover, many readers favor using multiplanar reformats rather than
endoluminal 3D displays, further limiting the utility of centerline methods in
routine daily practice.

Alternative methods that aim to register the full colonic surfaces have been
proposed [15,14,6,21]. However, such studies often report the selection criteria
incompletely [1,9,18,2,21,14] such that the transferability of results into clinical
practice remains uncertain. For example, studies routinely use optimally pre-
pared CT colonography datasets yet in reality, approximately 50% of cases are
“poorly prepared” [5]. Likewise, validation should use data from centers that
have not contributed to algorithm development (external validation) [3], to en-
sure previous exposure to the test data does not bias result.

We have developed software that establishes full spatial correspondence be-
tween the prone and supine endoluminal surfaces. We aim to externally validate
this registration algorithm using CT colonography data generalizable to clinical
practice and compare the results to those obtained using NDACC.

2 Prone to Supine Registration

The registration method has been described in detail previously [13]. Initializa-
tion is provided by robust matches of haustral folds between both views [4]. The
haustral folds are segmented on the colon surface using a graph cut method ap-
plied to a surface curvature-based metric. Using a Markov Random Field based
on similarity of folds and additional neighborhood information, fold matches are
then estimated between both views. Only inverse-consistent matches were used,
i.e. the same match is obtained supine-to-prone and prone-to-supine. Secondly,
the entire endoluminal surface is mapped to a cylinder utilizing a conformal
mapping based on Ricci flow [7]. The original surface curvature information is
preserved during this step. Surface correspondence is then achieved using a non-
rigid, cylindrical version of the well-known B-spline registration [10]. Registration
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is driven by local shape measurements, i.e. shape index (SI) computed on the
colon surface. This measure has also shown to be useful in computer-aided de-
tection (CAD) for CT colonography [20]. The sum-of-squared differences (SSD)
of these SI measures are used to drive the cylindrical registration. In case of
insufficient colonic distension, any locally collapsed region can be ignored dur-
ing this cylindrical registration when computing the similarity measure. This is
important as collapse can commonly occur in clinical practice. We arbitrarily
denote the prone image as target and supine image as source when computing
the registration. After convergence of the algorithm, any point on the endolu-
minal surface can be mapped between both corresponding acquisitions in either
direction (prone-to-supine and supine-to-prone) by inverting the result [13,4].
Fig. 1 illustrates the principle of this registration method.

Fig. 1. Prone (top) to supine (bottom) registration of endoluminal colon surfaces in
cylindrical space. The color coding indicates the local shape index SI measurements
which drive a non-rigid cylindrical B-spline registration – even in the case of local
collapse (indicated by square).

3 Methods and Materials

The external validation is based on publicly available CTC data [8]: the ACRIN
CTC trial1 investigators have made 103 anonymized cases, from 15 US centers,
with polyps (including reference standard) available on the National Cancer In-
stitutes National Biomedical Imaging Archive (NBIA)2. These cases include 69
medium (6-9 mm) and 32 large (>= 10 mm) polyps. These data represents

1 http://www.acrin.org/TabID/151/Default.aspx
2 https://imaging.nci.nih.gov/ncia/



External Clinical Validation of Prone and Supine CT 13

cases that are generalizable to daily practice and were uninvolved with the de-
velopment of the registration method. No attempt has been performed to select
‘perfect’ cases; cases were examined and excluded if: no independent CTC refer-
ence data were available (41), the polyp was not visible in both datasets (7), the
dataset was incomplete/corrupted (3) or the cancer/polyp was > 30 mm (3).
This leaves 49 cases with 66 polyps (38 large, 28 medium) used for validation.
Each present polyp was identified by an experienced observer (DJB) using the
independent reference data and prone and supine 3D polyp volumes were labeled
manually using ITK-snap3. The segmental distribution of polyps in the valida-
tion sample (n=66) were compared to polyps ≥6 mm (n=547) from the entire
ACRIN CTC study (21) (n=2525) to investigate the likely generalizability of our
results. By adopting the criteria proposed by Hara et al. [5], 55% of validation
cases (n=27) had excess residual fluid compared to 52% (1313) of the total CT
colonography studies from the same trial. 47% (23) had at least one region of
complete luminal collapse, similar to the 48% (50) observed in the total, 103,
positive cases in the publicly available database.

4 Assessment of Clinical Utility

Currently, standard clinical workstations for CT colonography interpretation al-
low the rendering of a virtual endoscopic or virtual fly-through views in order to
replicate the view during colonoscopy. We can judge the usefulness of our pro-
posed registration algorithm in clinical practice using these three-dimensional
renderings. To score the registration result, a polyp conspicuity grading was
developed by two experienced radiologists (DJB, SH): after successfully estab-
lishing the prone-to-supine correspondence over the full colon surface, the user is
automatically guided to the corresponding view in opposing data set when click-
ing on a potential polyp (see Fig. 2). The endoluminal display is generated using
a standard 120◦ field-of-view camera model and centering the camera origin at
the corresponding centerline position, pointing towards the surface registration
result. The clinical usefulness is then judged by using the following objective
polyp conspicuity score. The score is proportional to the amount of ‘mouse-
driven navigation’ necessary in order to bring the target polyp into view after
registration:

– 5 ‘Successful’: Polyp directly marked by registration prompt (Fig. 2)
– 4 ‘Successful’: Polyp within same field of view (Fig. 3)
– 3 ‘Partially successful’: Polyp becomes visible after ±90◦ pan
– 2 ‘Partially successful’: Polyp becomes visible after 360◦ pan
– 1 ‘Unsuccessful’: Polyp only comes into view after navigation along

centerline

Similarly, a 3D conspicuity assessment is performed in order to compare to
NDACC. Here, we combine the scores of category 4 and 5 as NDACC will not

3 www.itksnap.org
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Fig. 2. Example of polyp conspicuity score of 5 (‘direct hit’). The registration prompt
(black dot) marks the polyp indicated by the observer in the supine dataset (left).
Following registration, the algorithm centers the prone view to point towards the en-
doluminal coordinates calculated by the algorithm (right).

Fig. 3. Example of polyp conspicuity score of 4 (‘near miss’). The registration prompt
(black dot) marks the polyp indicated by the observer in the supine dataset (left).
Following registration, the algorithm centers the prone 3D field of view to point towards
the coordinates calculated by the algorithm (right). The algorithm fails to indicate the
polyp (arrow) correctly but the polyp is clearly visible in the same field of view.

provide a registration prompt on the colon surface. It will only synchronize the
virtual endoscopic views, looking straight along the centerline.

Furthermore, a conspicuity score was developed for aligning polyps using a
standard multiplanar slice viewer for increasing necessity of mouse-driven navi-
gation in all three orthogonal directions (axial, sagittal, coronal):

– 5 ‘Successful’: Polyp directly marked by registration prompt.
– 4 ‘Successful’: Polyp visible after 15 mm mouse-navigation
– 3 ‘Partially successful’: Polyp visible after ±20 mm mouse-navigation
– 2 ‘Partially successful’: Polyp visible within ±30 mm mouse-navigation
– 1 ‘Unsuccessful’: Polyp not within ±30 mm of registration prompt
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The polyp’s apex was computed using the manual segmentations and was used
to compute the 3D registration error and 2D slice displacement (measured in all
3 orthogonal directions). Both errors are reported in millimeters (mm).

Polyps could be in the field of view or not depending on the particular local
configuration of the endoluminal colon shape and centerline. In order to reduce
any bias towards the direction of transformation, all polyps were transformed
in prone-to-supine as well as in supine-to-prone directions. This resulted in a
total of 132 point transformations of 66 polyps for the following analysis. A 5%
significance level was a applied to all following cases when computing statistical
significance. Despite the data reflecting clinical practice and depicting many
areas of local colonic collapse, the registration was successfully computed in all
of the cases (100%).

5 Results

3D Registration Error. The mean of the 3D registration error was 19.9 mm
over the whole data set (66 polyps in 49 cases). This error measures the distance
between the target polyp’s apex and the point indicated on the colon surface
by our proposed method. A median error of 11.9 mm was achieved and the 3D
registration error ranged in the limits of 1.0 mm to 85.8 mm. The 3D registration
error did not vary significantly when comparing the polyp’s location in different
colonic segments (p=0.65). Furthermore, there was no significant increase in
registration error within data cases exhibiting at least one local luminal collapse
(p=0.075) using a Kruskal-Wallis test.

In order to provide a comparison to how a NDACC method would be used in
clinical practice, the polyp’s position along the centerline is found as the min-
imum distance between the polyps position on the colonic wall and all points
along the centerline, following the approach by Wang et al. [18]. In compari-
son, using NDACC leads to a mean 3D error of 27.7 mm between apex of the
polyp and the point indicated along the centerline. Here, our measured error is
significantly smaller (p=0.001).

1D Registration Error. Finding the polyp’s position along the centerline
further allows measuring the registration error as a 1D distance along center-
line, summarized in Table 1. Using a non-parametric paired analysis (Wilcoxon
Signed-Rank Test), our method gives no significant advantage over using NDACC
when using all 66 polyps: 17.6 mm compared to 20.8 mm using NDACC. How-
ever, when comparing registration by colonic segment, the method is shows sig-
nificant improvement over NDACC in the transverse, descending and sigmoid
colon (see Table 1). A mean of 19.3 mm is achieved for these colonic segments in
comparison 26.9 mm (NDACC). This is a significant improvement with p=0.047.
The largest improvement occurred in the transverse colon with a 15.3 mm re-
duction in registration error. This was anticipated as this segment was reported
as being most mobile during positional change of the patient [12].
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Table 1. 1D registration error, measured as displacement in along centerline [mm]

Colonic Number of 1D error 1D error
segment polyps proposed method NDACC
Rectum 14 13.1 14.7
Sigmoid 15 20.9 23.6
Descending 11 18.1 27.5
Transverse 7 17.9 33.2
Ascending 12 22.7 17.2
Cecum 7 9.9 10.5
Total 66 17.6 20.8

Polyp Conspicuity Score in 3D. The registration achieved an direct align-
ment of the registration prompt in both opposing data sets in 89 (67.4%) of cases
using virtual fly-throughs (conspicuity score of 5; see Fig. 2). Of 132 point trans-
formations, 20 (15.2%) were transformed within the same field of view, leading
to a score of 4 (see Fig. 3). Using the conspicuity grading, this leads to 82.7%
‘successful’ registrations. Nine (6.8%) polyp transformations required up to 90
degrees mouse-driven rotation around the camera center in order to bring the
polyp into view. In three accounts (2.3%), a full 360 degrees of rotation were
required to achieve the same. Therefore, a total of 9.1% were rated being aligned
‘partially successful’ for clinical relevance. A total of eleven (8.4%) point transfor-
mations failed as further navigation along the centerline was necessary in order
to bring the polyp into view. This compares favorable to using NDACC where
a ‘successful’ (score 4) was only achieved in 37.1% of point transformations.

Polyp Conspicuity Score in 2D. Using a purely multiplanar 2D slice 2D
visualization, the registration error was assessed by judging utility expressed in
necessary mouse-driven navigation in order to align the polyp apices in all three
orthogonal directions. The algorithm correctly aligned the slices of 82 (62.1%)
pairs of prone and supine polyps within ±15 mm of displacement and were
therefore being judged ‘successful’ for 2D navigation. 28 (21.3%) of cases were
‘partially successful’ registered, meaning that they were aligned within ±30 mm.
A total of 22 registrations (16.7%) failed as more than ±30 mm of navigation was
necessary in order to bring them into view. In comparison, NDACC achieved only
30 (22.7%) ‘successful’ alignments within ±15 mm of displacement. 78 (59.1%)
were judged ‘partially successful’ and 24 (18.2%) failed and was not visible within
±30 mm of navigation.

6 Discussion

In current clinical practice, prior to virtual colonoscopy, the interpreting clini-
cian must check the validity of the workstation’s proposed colonic segmentation,
primarily to ensure the computed centerline takes the correct path to ensure
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correct navigation along the colonic lumen. Likewise, our registration algorithm
currently relies on the user accepting the colon segmentation and the correct or-
der of colonic segments, defining start and end points. Thereafter, the algorithm
for establishing correspondence over the whole colonic surface is automated.

The assessment of registration accuracy used data from several hospitals un-
related to the development of the algorithm. This enables a generalizable assess-
ment of the algorithm’s performance which could be applied to normal clinical
practice. Our study sample closely parallels the ACRIN data in quality of the
bowel preparation and distension. Our algorithm compares favorably with pre-
vious methods which use optimally prepared cases or exclude cases exhibiting
local collapses for validation. We provide full surface registration of the colono-
graphic data that enables the indication of a specific location on the endoluminal
surface. This would provide the observer with considerably more information,
compared to a centerline position from where further navigation is necessary in
order to find the target location. This is reflected in our choice of pre-specified
criteria for polyp conspicuity using 3D endoscopic fly-through visualization fol-
lowing registration. Measuring the amount of navigation necessary in order to
align prone and supine polyps after registration allows a direct comparison to
centerline-based matching using NDACC. While it is intuitive that an accurate
prone to supine registration would be beneficial for shortening interpretation
time, further studies of clinical utility in everyday practice are necessary. For
example, the effect on sensitivity and specificity when finding polyps needs to
be evaluated.

This study is not without limitations: Some studies from the ACRIN vali-
dation archive were necessarily excluded due to inability of our radiologists to
confirm the presence of a polyp in both the prone and supine acquisitions. It is
therefore possible that some, inadequately distended studies were excluded from
the analysis. Nevertheless, we postulate that the NDACC methods, due to its
reliance on a continuous colonic segmentation, without regions of collapse, would
have fared even worse that the proposed method when dealing with these data. In
addition, while the processing of the endoluminal centerline occurs rapidly and
is available to the reporting radiologist at the time of reporting, our method,
at present, requires considerable processing time for surface extraction, feature
matching and non-rigid registration. However, once this step has been complete,
transferring between matched prone and supine locations is practically instan-
taneous. This is reminiscent of another, well-established adjunct to CT colono-
graphic interpretation – computer-aided detection (CAD) which, although now
integrated into many vendor platforms, initially required several hours of pro-
cessing time. We anticipate that with the integration of multi-threading and/or
GPU-technology we can reduce this such that integration into routine work-flow
could be possible.

In summary, we successfully applied computer-assisted prone-supine regis-
tration of specific points (polyps) on the endoluminal surface. The used CT
colonography data used for validation was from a subset of a larger multi-center
trial. Resulting registration accuracies show promise of the ability to rapidly and
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automatically match switch between prone and supine positions and compare fa-
vorably to using NDACC. This will further facilitate the interpretation of CT
colonography data.
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20. Yoshida, H., Näppi, J.: Three-dimensional computer-aided diagnosis scheme for
detection of colonic polyps. IEEE Trans. Med. Imaging 20, 1261–1274 (2001)

21. Zeng, W., Marino, J., Chaitanya Gurijala, K., Gu, X., Kaufman, A.: Supine and
prone colon registration using quasi-conformal mapping. IEEE Trans. Vis. Comput.
Graph 16, 1348–1357 (2010)



Efficient Topological Cleaning for Visual Colon Surface
Flattening

Rui Shi1, Wei Zeng2, Jerome Zhengrong Liang1, and Xianfeng David Gu1

1 Department of Computer Science, Department of Radiology,
Stony Brook University, Stony Brook, NY 11794, USA

rshi@cs.sunysb.edu
2 School of Computing & Information Sciences, Florida International University,

11200 SW 71st, Miami, FL 33199, USA

Abstract. Conformal mapping provides a unique way to flatten the three dimen-
sional (3D) anatomically-complicated colon wall. Visualizing the flattened 2D
colon wall supplies an alternative means for the task of detecting abnormality as
compared to the conventional endoscopic views. In addition to the visualization,
the flattened colon wall carries supplementary geometry and texture information
for computer aided detection of abnormality. It is hypothesized that utilizing both
the original 3D and the flattened 2D colon walls shall improve the detection ca-
pacity of currently available computed tomography colonography. One of the ma-
jor challenges for the conformal colon flattening is how to make the input colon
wall inner surface to be genus zero, as this is required by the flatten algorithm and
will guarantee high flatten quality. This paper describes an efficient topological
cleaning algorithm for the conformal colon flattening pipeline. Starting from a
segmented colon wall, the Marching Cube algorithm was first applied to gener-
ate the surface, then we apply our topological clearance algorithm to remove the
topological outliers to guarantee the output surface is exactly genus 0. The cleared
or denoised colon surface was then flattened by an Ricci flow. The pipeline was
tested by 14 patient datasets with comparison to our previous work.

Keywords: Flattening, conformal mapping, homotopy, Ricci flow, virtual
colonoscopy.

1 Introduction

Virtual colonoscopy (VC), mimicking the conventional optical colonoscopy (OC), is a
medical imaging procedure which uses X-rays or magnetic resonance (MR) signals and
computers (1) to produce two and three-dimensional (3D) images of the colon (large
intestine) from the lowest part, i.e., the rectum, all the way toward the lower end (i.e.,
the cecum) of the small intestine, and (2) to visualize the colon mucosal surface by
endoscopic views on a screen [7,8]. The procedure has shown the potential to screen
colonic polyps and detect colon diseases, including diverticulosis and cancer [14].

Traditional paradigm in VC employs X-ray computed tomography or computed to-
mography colonography (CTC) to achieve the tasks of screening and detection due to
the high speed of CT scanning and high contrast between colon wall and colon lumen
filled by CO2 or air in CT images. While MR colonography (MRC) has an attractive
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point of non-ionization radiation [16], it faces several drawbacks, e.g., lower spatial res-
olution, prone to motion artifacts, and noticeable susceptibility artifacts on the interface
between air and tissue/colon wall. Therefore, MRC remains in the early research de-
velopment stage, while CTC has been successfully demonstrated to be more convenient
and efficient than OC as a screening modality [14]. A combination of VC screening with
OC follow-up for therapeutic intervention could be a cost-effective means to prevent the
deadly disease of colon cancer.

However, because of the length of the colon with complicated structures, inspecting
the entire colon wall is time consuming and prone to errors by current VC technologies.
Moreover, because of the complicated colon structure, the field-of-view (FOV) of the
VC endoscopic views is limited, resulting in incomplete examinations. Flattening the
3D wall into a 2D image would effectively increase the FOV and provide supplementary
information to the VC endoscopic views [5]. Thereafter, various flattening techniques
[2,3,9,13,10,18] have been developed, among which the conformal mapping algorithm
[9,10] showed advantages in generating 2D colon wall image with minimal distortion
by preserving the structural angles.

Paik et al. [13] used cartographic projections to project the whole solid angle of the
camera. This approach samples the solid angle of the camera, and maps it onto a cylin-
der which is finally mapped to a 2D planar image. However, this method causes dis-
tortions in shape. Bartrol et al. [3] moved a camera along the central path of the colon.
However, this approach does not provide a complete overview of the colon. Haker et
al. [5] employed certain angle-preserving mappings, based on a discretization of the
Laplace-Beltrami operator, to flatten a surface onto a plane in a manner which pre-
serves the local geometry. However, the flattened result of their method is not efficient
for applications like polyp identification, and it requires a highly accurate and smooth
surface mesh to achieve a good mean-curvature calculation. Wang, et al. [18] explored a
volume-based flattening strategy to visualize the textures of the original 3D colon wall
in the flattened 2D image. However, the distance-based mapping may not be accurate
enough for detection of small polyps. The associated computation is intensive.

Hong et al. [9,15] utilized conformal structure to flatten the colon wall onto a planar
image. Their method is angle preserving and minimizes the global distortion. First, the
colon wall is segmented and extracted from the CTC image data set. The topology noise
(i.e., minute handle) is removed by a volumetric algorithm. The holomorphic 1-form,
a pair of orthogonal vector fields, is then computed on the 3D colon surface mesh us-
ing the conjugate gradient method. The colon surface is cut along a vertical trajectory
traced using the holomorphic 1-form. Consequently, the 3D colon surface is conformal
mapped onto a 2D rectangle. The flattened 2D mesh is then rendered using a direct vol-
ume rendering method accelerated with the GPU strategy. For applications like polyp
detection, the shape of the polyps is well preserved on the flattened colon images, and
thus provides an efficient way to enhance the navigation of a virtual colonoscopy system.

Unfortunately, the de-noise algorithm in [9,15] cannot always get genus 0 surface
(actually only one case succeed out of 14). In this paper, topological de-noise is solved
by our new algorithm, which guarantees the output surface to be genus 0. This efficient
de-noise algorithm greatly improved the efficiency and accuracy and deliver comparable
flattening results.
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2 Method

Fig. 1 shows our new conformal mapping pipeline with comparison to our previous one.
From acquired CTC datasets, our first task was to segment each image data volume and
extract the corresponding colon wall. This was achieved by a statistical maximum a
posteriori expectation-maximization (MAP-EM) algorithm [17]. Both our present and
previous pipelines share this task. Then a triangle mesh of the colon wall mucosal sur-
face was generated by the standard Marching Cube algorithm. To remove topology han-
dles, a new surface-based de-noise algorithm was applied. In our present pipeline, the
Marching Cube algorithm was applied prior to topological de-noising. After de-noising,
we developed Ricci flow method to perform the conformal flattening task.

Conformal mapping has many unique properties in flattening the colon wall, as
shown in [9]. However, as we mentioned, the old de-noise method cannot guarantee
the output surface is genus 0. Our contribution: we developed and applied a new topo-
logical de-noise algorithm, which is very efficient and can guarantee the output surface
to be genus 0.

CTC data
Denoise

Cube

Conformal Flattening

Marching
2D MeshMAP-EM

Conformal
Flattening

Denoise

(Old Method)

(New Method)

Smoothing

Fig. 1. Pipeline for our previous and current methods

3 Theoretic Background

This section briefly introduces elementary theories of surface topology and surface
Ricci Flow.

3.1 Homotopy Basis

Definition 1 (Homotopy). Two continuous maps f0, f1 : M → N are said to be homo-
topic if there is a continuous map f : M× I → N such that F(·,0) = f0 and F(·,1) = f1.
The map F is called a homotopy[12] between f0 and f1, denoted as f0

∼= f1.

Definition 2 (Homotopic Paths)[1]. Two paths f , g in M are said to be equivalent if f
and g are homotopic relative to {0,1}, denoted as f ∼= g

Definition 3 (Homotopy Basis). For a closed orientable surface M with genus g (i.e.,
a torus with g handles), there are 2g classes of homologically independent loops, called
the homotopy basis of the surface M. A homology basis consists of one loop from each
class, as shown in figure 2.
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Fig. 2. Left: Homotopy: Curve α is homotopy to β , but not homotopy to γ . Right: Homotopy basis
for a genus 2 surface. The number of loops L = 2g = 4 {a1,a2,b1,b2}, each as a representative of
it’s homotopy class.

3.2 Surface Ricci Flow

Suppose S is a surface in three dimensional Euclidean space R
3, therefore it has nat-

urally the induced Euclidean metric g. The Gaussian curvature is determined by the
Riemannian metric g, and satisfies the following Gauss-Bonnet theorem:

Theorem 1 (Gauss-Bonnet Theorem). The total Gaussian curvature of a closed met-
ric surface is ∫

S
KdA = 2πχ(S),

where χ(S) is the Euler number, which equals to χ(S) = 2−2g for closed surface with
genus g.

Ricci flow is a powerful curvature flow method invented by Hamilton[6] for the pur-
pose of proving Poincaré’s conjecture. Intuitively, it describes the process to deform the
Riemannian metric according to curvature such that the curvature evolves like a heat
diffusion process:

dg
dt

=−2Kg. (1)

The convergence of surface Ricci flow was also proved in[6].

Theorem 2. Suppose S is a closed surface with a Riemannian metric. If the total area
is preserved, the surface Ricci flow will converge to a Riemannian metric of constant
Gaussian curvature[6].

Fig. 3 shows the conformal parameterization of colon surface computed by Ricci flow,
figure 4 shows that conformal mapping preserves angle.

4 Algorithm

4.1 Topological De-noise

In previous work [9], the de-noise process started from the segmentation of the colon,
incorporated the simple point concept in a region growing based algorithm to extract a
topologically simple segmentation of the colon lumen. However, as we mentioned, the
de-noise algorithm cannot guarantee the output surface is genus 0 in practice, so we
developed a new efficient surface based de-noise algorithm to remove the topological
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Fig. 3. Conformal parameterization of the colon surface

Fig. 4. Conformal Mapping preserves angle: the angle on the texture domain is well preserved
after mapped to the surface, so the shape information of colon surface is well preserved

Algorithm 1. Topological De-noise Algorithm
Input: Surfaces M.
Output: Genus 0 surface M̄.
1. Compute the homotopy basis G of M using algorithm 2.
2. For each point p on homotopy basis G, grow a patch P.
3. Find the shortest homotopy loop pl starts at p in patch P.
4. Find the shortest loop min{pl} among all the vertices on G.
5. Cut M along min{pl} and fill the 2 holes appeared, get M̄.
6. If M̄ is not genus 0, goto step 1.

noise. As our method find tiny handles based on surface topology and remove them one
by one, the final surface is guaranteed to be genus 0. The pipeline is like the following:

The idea of efficient topological de-noise algorithm is like following: we can com-
pute the shortest loop goes though vertex v for all the vertices in mesh M, then find the
shortest one among them, it must be the shortest handle loop in M. Furthermore, all the
handles of a surface must be “go around” by the homotopy basis. As a result, we just
need to compute the shortest loops for vertices on the homotopy basis G instead of all
vertices of surface M, which leads to a 10 times speed up. Compared to the old voxel
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based de-noise algorithm, our surface based method is much faster, and guarantees the
output surface to be exactly genus 0. Fig. 5 shows a tiny handle went though by the
homotopy basis.

Fig. 5. A typical tiny hole and the homotopy basis (labeled by yellow line) goes around it

A homotopy basis at s can be thought of as a homology basis where all loops meet
at a common vertex s, called the basepoint. Erickson and Whittlesey [4] proved that
a shortest homotopy basis at a point on a mesh with n vertices can be computed in
O(nlogn) time. Fig. 6 shows the homotopy basis for genus 1 surface, algorithm 2 gives
the algorithm for computing the homotopy basis:

Algorithm 2. Homotopy Basis Algorithm
Input: Surfaces M.
Output: The homotopy basis G of M̄.
1. Find the maximum spanning tree T from a basepoint s.
2. Find a maximum spanning tree T ∗ on the edges of the dual graph which do not cross edges
in T .
3. Find all edges {e1,e2...e2g} which are neither in T nor are crossed by edges in T ∗.
4. Find the loops containing each ei (using T ), these loops form the homotopy basis.

4.2 Discrete Ricci Flow

The computation of the conformal mapping of a triangular mesh is based on the discrete
Ricci flow [11,19], as Algorithm 3 shows.

5 Experimental Results

CTC datasets was random selected from a database. The presented algorithm was im-
plemented in a similar manner as the previous algorithm [9] for a fair comparison. These
algorithms were executed on a PC platform of Intel Xeon X5450 3.0GHz CPU and 8.00
GB RAM. To get the maximum quality, we use the original un-simplified mesh for con-
formal mapping. The triangle number of the 14 datasets range from 700k to 1200k. The
method in [9] can only find around half of the handles, while our method can com-
pletely remove all the handles. Table 1 shows the de-noise result comparison between
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Fig. 6. Left: a and b are 2 homotopy basis for a genus 1 surface. Middle: The surface becomes a
topological disk after cut along the it’s homotopy basis. Right: Flatten the surface onto the plane.

Algorithm 3. Discrete Ricci Flow
Input: Surface M.
Output: The metric U of M.
1. Assign a circle at vertex vi with radius ri; For each edge [vi, v j ], two circles intersect at an
angle φi j , called edge weight.
2. The edge length li j of [vi, v j ] is determined by the cosine law: l2

i j = r2
i + r2

j −2rir jcosφi j

3. The angle θ jk
i , related to each corner , is determined by the current edge lengths with the

inverse hyperbolic cosine law.
4. Compute the discrete Gaussian curvature Ki of each vertex vi:

Ki =

{
2π −∑ fi jk∈F θ jk

i , interior vertex

π −∑ fi jk∈F θ jk
i , boundary vertex

(2)

where θ jk
i represents the corner angle attached to vertex vi in the face fi jk

5. Update the radius ri of each vertex vi: ri = ri − εKiri
6. Repeat the step 2 through 5, until ‖Ki‖ of all vertices are less than a specific error tolerance.

our method and the method in [9], as well as the total running time for de-noise and
conformal flattening. Notice that only 1 out of 14 case (3053S) reached genus 0 using
method in [9], which means most of the data are not qualified as input of the conformal
flattening algorithm, while all 14 reached genus 0 using our de-noise algorithm.

Table 1. De-noise Result and Time Efficiency

Data Index #Of mesh triangles # NO. of handles removed by our method # NO. of handles removed by method in [9] # Running time (Min.)
3033P 830 K 8 5 8.6 min
3033S 1120 K 26 10 10.3 min
3034P 764 K 24 21 8.1 min
3034S 800 K 7 2 8.2 min
3035S 1060 K 13 6 10.2 min
3036P 875 K 13 8 8.5 min
3037S 836 K 6 0 8.5 min
3038P 1167 K 16 10 10.8 min
3039P 920 K 7 5 9.4 min
3039S 1040 K 9 8 10.0 min
3041P 902 K 15 8 9.7 min
3041S 886 K 4 1 9.1 min
3043P 917 K 11 5 9.4 min
3053S 958 K 4 4 9.6 min
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Fig. 7. Letf : The zoomed-in results from method in [9]. Right : The zoomed-in results from our
method.

Fig. 8. Zoom-in flatten results of all 14 datasets

For the final colon image, figure 7 shows the zoomed in colon image of [9] and the
colon image computed by our method. We can see that the image from our method
is clearer and preserved more details compared with the old method. We also show
zoom-in flatten results of all 14 datasets in figure 8.
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6 Discussion

The key parts of our method is the new efficient topological de-noise algorithm. Our
new topological de-noise algorithm guarantee the output to be exactly genus 0. As a
result, the whole mapping process becomes much faster and more stable.
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Abstract. Dual-energy computed tomographic colonography (DE-CTC)
provides detailed information about the chemical composition of colon
that can be used to improve the accuracy of computer-aided detection
(CAD). We investigated how to calculate a thick target region for vol-
umetric detection of lesions in DE-CTC. After automated extraction of
the region of colonic lumen, the target region is calculated by use of a
distance-based scheme, where the image scale of the shape features that
are used for the detection of lesion candidates is adapted to the thick-
ness of the target region. False-positive (FP) detections are reduced by
use of a random-forest classifier. The detection accuracy of the CAD
scheme was evaluated at 5 thicknesses of the target region by use of
a leave-one-patient-out evaluation with 23 clinical minimal-preparation
DE-CTC cases including 27 lesions ≥6 mm in size. The results indicate
that the optimal choice of thickness depends on the size and morphology
of the target lesion. At optimal thickness, the per-patient sensitivity was
100% at 5 FP detections per patient on average, where the per-lesion
sensitivity was 100% (94%) for lesions ≥10 mm (6 – 9 mm) in size. The
results compare favorably with those of our previous approach.

Keywords: Computer-aided detection, dual energy, polyp detection,
laxative-free, non-cathartic, virtual colonoscopy, computed tomographic
colonography.

1 Introduction

Colorectal cancer is one of the leading causes of cancer mortality in Western
countries, but it could be prevented by early detection and removal of the pre-
cursor lesions [24]. Computed tomographic colonography (CTC) is a minimally
invasive imaging procedure that can detect patients with large adenomas and
cancers at high sensitivity [5].
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Computer-aided detection (CAD), that indicates locations of lesions in CTC
images automatically to radiologists, can be used to increase the detection sen-
sitivity and consistency of CTC examinations [2,26]. Most CAD schemes have
been developed for conventional CTC, where the patients are prepared with full
cathartic bowel cleansing. Most of these CAD schemes tend to miss many small
polyps (6 – 9 mm in size) [8] and flat lesions [12], and they display many false-
positive (FP) detections [20]. Recent developments have focused on improving
the detection sensitivity for polyps 6 – 9 mm in size. In one study, an advanced
interpolation method improved the detection sensitivity of CAD from 55% to
66% at 10 FP detections per patient [10]. In another study, multi-objective opti-
mization improved the detection sensitivity from 62% to 75% at 10 FP detections
per patient.

Most CAD schemes appear to use a surface-based detection scheme that an-
alyzes curvatures of a triangulated surface mesh of the colon. Previously, we
developed a CAD scheme where lesions are detected within a thick volumetric
target region encompassing the colonic mucosa [25,15]. In a recent evaluation
with 1,948 patients from 32 medical institutions [22], the CAD scheme detected
82% of the polyps 6 – 9 mm at 12 FP detections per patient and 100% (81%)
of the flat lesions ≥10 mm (6 – 9 mm) in size at 5 FP detections per patient.
Importantly, the difference in the detection accuracy between polyps and flat
lesions was not statistically significant. Although the number of FP detections
is still relatively high, these results indicate that the volumetric detection has
significant advantages over the conventional surface-based detection scheme.

One of the most common sources of FP CAD detections are partial-volume
tagging artifacts that imitate the shape and density of lesions [20]. Such artifacts
can be reduced by the application of dual-energy CTC (DE-CTC) [14] that uses
two monochromatic x-ray beams to provide more information about the chemical
composition of colon than what is available with conventional single-energy CTC
[6]. This can be useful in implementing non-cathartic CTC examinations for
increasing patient adherence to colorectal screening guidelines [1].

Previously, we observed that the thickness of the volumetric target region can
have significant effect on the detection accuracy of CAD in DE-CTC [19]. There-
fore, in this study, we developed a novel adaptive volumetric detection scheme
for DE-CTC. The target region is extracted precisely at specified thickness by
use of a distance-based method, and the calculation of shape features is adapted
to the thickness of the target region. To determine an optimal wall-thickness
value, the detection accuracy of CAD was evaluated at several thicknesses of the
target region by use of clinical DE-CTC cases.

2 Methods

2.1 Materials

Twenty-five patients were prepared for a DE-CTC examination by use of a one-
day preparation. In the evening prior to the examination, the patients were
advised to consume LoSo Prep (E-Z-EM, Inc., New York, USA) with several
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cups of water. In the morning of the examination, the patients consumed 50 ml
of iodine for positive-contrast tagging of residual bowel contents. The DE-CTC
scans were acquired in supine and prone positions with a dual-energy CT scanner
(SOMATOM Definition, Siemens Healthcare) at 140 kVp and 80 kVp energies
by use of a 1-mm slice thickness. No intravenous contrast was used. After the
CTC acquisition, the patients underwent conventional colononoscopy. Expert
radiologists correlated the DE-CTC data with the findings of colonoscopy.

All 25 DE-CTC cases were included in the study regardless of their diagnostic
quality. They were divided randomly into a development set of 2 cases and
an independent evaluation set of 23 cases. The development set was used for
parameter estimation, whereas the evaluation set was used for assessing the
detection accuracy of the CAD scheme.

2.2 Extraction of the Colonic Lumen

To extract the region of colon from DE-CTC image data, a linearly mixed volume
is calculated from the 140 kVp and 80 kVp energy images for each input CTC
series. The mixed volume is used for providing shape information, whereas the
two energy images are used for the characterization of underlying materials. The
region of colonic lumen is extracted by use of a fully automated lumen-based
tracking method [17]. Dual-energy index (DEI) is calculated to delineate fecal-
tagged materials precisely from soft tissue as

DEI =
v80 − v140

2000 + v80 + v140
, (1)

where v140 and v80 are the dual-energy values. The application of the DEI is
explained in Fig. 1.

2.3 Distance-Based Extraction of the Target Region

Let L denote the extracted three-dimensional binary mask of the colonic lumen
(Fig. 2a). To extract a thick region encompassing the colonic wall, the surface of
L is adjusted to an iso-intensity CT value level of -500 Hounsfield units (HU) —
this value has been established as an optimal value for representing the surface
of colon in CTC [23]. In tagged regions, the surface of L is adjusted to a pseudo-
enhancement-corrected [18] CT value of 150 HU.

Let L′ denote the adjusted binary lumen mask. Suppose that the target region
encompassing the colonic surface should have a thickness of d millimeters (mm).
To do this, we calculate a signed three-dimensional distance transform of L′,
or DL′ [3] (Fig. 2b). Negative values of DL′ indicate distance to the lumen
surface inside the lumen, whereas positive values indicate distance to the lumen
surface outside of the lumen. Therefore, we can establish the final target region
by clipping of the distance values between −d/2 and d/2 mm (Fig. 2c).
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(a) (b)

Fig. 1. (a) When the CT numbers of the 140 kVp and 80 kVp energy images are
mapped to a plane, samples of materials with different effective atomic numbers (Z)
appear along their unique characteristic lines. Water-like materials (Z = 7) and soft-
tissue materials (Z < 10) appear along the line of identity (dotted line), whereas heavier
bone-like materials (Z = 14) and fecal-tagged residual materials (iodine; Z=56) appear
above the line of identity. (b) Fecal-tagged materials can be delineated by thresholding
(dotted line) of the dual-energy index values.

2.4 Adaptive Volumetric Detection of Lesions

To detect lesions, we calculate two shape features at each point of the extracted
target region: the volumetric shape index (SI) and curvedness (CV ). They can

be expressed as SI(p) = 1
2 − 1

π arctan k1(p)+k2(p)
k1(p)−k2(p)

and CV (p) =

√
k1(p)

2+k2(p)
2

2 ,

where k1(p) and k2(p) are the principal curvatures of a surface passing through a
voxel p [7]. Because k1(p) and k2(p) can be calculated implicitly from the three-
dimensional first- and second-order partial derivatives of CT values [11], the SI
and CV are defined at every voxel of a CTC volume.

The SI maps every distinct shape (except for plane) to a unique value. The
highest values of SI indicate shapes of colonic lesions, whereas lower values
indicate other colonic structures [25] (Fig. 2d). The SI is not affected by the
flatness or sharpness of the geometric shape. Therefore, a high value of SI can
indicate both polyps and flat lesions. The perceived flatness or sharpness of
the shape is indicated by the CV : a low value of CV indicates a flat-topped
morphology, whereas a high value indicates a sharp-crested morphology.

Before the shape calculations, the CTC volume is convolved with a three-
dimensional Gaussian kernel,

G3(x, y, z, σ) =
1√
2πσ

3 exp−(x2+y2+z2)/(2σ2), (2)

to obtain an infinitely differentiable function [13]. This will also delimit the im-
age scale of observable lesions to the width of the Gaussian, or σ [9]. Because
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(a) (b) (c) (d)

Fig. 2. Extraction of a thick target region encompassing the colonic wall (the actual
calculations are performed three-dimensionally). (a) Left: axial CTC image of a region
of interest with a polyp. Right: the lumen-based tracking method extracts a binary
lumen mask (white region). (b) Signed distance transform of the lumen mask: colors
indicate distance to lumen surface. (c) A target region of thickness d (white region)
can be extracted by clipping of distance values between −d/2 and d/2. (d) To detect
lesions, shape features (here: shape index) are calculated for voxels of the target region.

clinically significant lesions are ≥6 mm in largest diameter, it might seem ap-
propriate to use a convolution kernel with σ = 6 mm. However, the optimal
choice of σ is not clear, because convolution with a wide Gaussian can distort
important details, thereby making subtle lesions challenging to detect.

In a previous study, where the shape features were calculated at a fixed image
scale of σ = 4 mm, the optimal thickness of the target region was 4 mm. This
suggests that the optimal image scale of features might depend on the thickness
of the target region. Therefore, in this study, we considered adaptive detection
where the image scale (σ) of the SI and CV features is set to the thickness (d)
of the target region (Fig. 3).

(a) (b) (c) (d)

Fig. 3. (a) Axial CTC image of a region of interest with a polyp at center. (b) The
values of shape index overlaid on a relatively thin target region (see Fig. 2d for expla-
nation of the color coding). (c) Adjustment of scale to a relatively thick target region.
(d) Adjustment of scale to a thick target region.

After the calculation of shape features, lesion candidates are detected by hys-
teresis thresholding of the shape values [25]. Smallest detections are excluded to
avoid the detection of clinically insignificant lesions (those measuring <6 mm in
largest diameter).
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2.5 Reduction of False Positives

The detection step yields a large number of lesion candidates, many of which are
FP detections. To minimize the number of false positives, a number of shape,
texture, and dual-energy features are calculated for the regions of lesion candi-
dates [16]. The dual-energy features include the DEI (Equation 1), dual-energy
ratio DER = v80

1+v140
, and dual-energy mixtures DEMr = rv140 + (1 − r)v80

(r∈{0.33, 0.50, 0.66}). Fig. 4 shows an example of the application of the DEI.
For analysis, the per-voxel values of features are summarized into aggregate

features in terms of their mean and variance within the region of a lesion can-
didate. The lesion candidates are classified into true-positive and FP detections
by use of a random-forest classifier [4] that has been previously shown to outper-
form support vector machines significantly in the detection of colorectal lesions
in CTC [21]. The classifier calculates the likelihood that a lesion candidate rep-
resents a true lesion. The lesion candidates with highest likelihood of being true
lesions are displayed as the lesions detected by CAD.

Fig. 4. Left: virtual endoluminal view of an obscure object (indicated by arrow) on
fold. Middle: axial CTC image of the object. Right: high values of the dual-energy
index in the axial image indicate that the object is a partial-volume tagging artifact.

2.6 Evaluation

The detection accuracy of CAD was evaluated at wall-thickness values of 2 mm,
3 mm, 4 mm, 5 mm, and 6 mm, by use of a leave-one-patient-out evaluation. A
colonoscopy-confirmed lesion was considered to be detected correctly by CAD,
if the center of a lesion candidate detected by CAD was within the radius of the
center of a true lesion in CTC data. All other CAD detections were considered as
false positives. To simulate a clinically realistic application of CAD, the number
of displayed detections was limited to at most 15 per patient.

3 Results

There were 11 lesions ≥10 mm and 16 lesions 6 – 9 mm in largest diameter in the
23 patients. These included 4 cancers, 20 adenomas, and 3 hyperplastic lesions.
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Fig. 5 shows the effect of the thickness of target region on the per-lesion
sensitivity of the CAD scheme. For lesions ≥10 mm in size (solid line), the
detection sensitivity was 100% at all thicknesses except at d = 2 mm. For lesions
6 – 9 mm in size (dotted line), the detection sensitivity peaked out at d = 3 mm
(94%), and then it declined rapidly as the wall thickness increased. At d = 6 mm,
the reduction in detection sensitivity was statistically significant (p < 0.05).
Regardless of the wall thickness, all four carcinomas were detected correctly.

Fig. 5. Per-lesion sensitivity of CAD in terms of the thickness of target region

Changes in wall thickness affect not only the sensitivity but also specificity
of the detection. Fig. 6 illustrates the CAD performance at different thicknesses
of the target region. The numbers in the plot indicate wall-thickness values (in
mm), and their location in the plot indicates the per-lesion sensitivity and the
average number of FP detections per patient. The highest detection performance
would be located at the top left corner of the plot, whereas the lowest detection
performance would be located at the bottom right corner. For lesions ≥10 mm
in size, the detection performance was highest at a wall thickness of 4 mm —
at higher wall-thickness values, the detection specificity was reduced due to a
13-mm flat lesion that was not detected anymore because of the effects of image
smoothing. For lesions 6 – 9 mm in size, at d = 3 mm, 94% of the polyps
were detected at 11 FPs per patient. Only one lesion, a 7-mm sessile polyp, was
missed, and our retrospective analysis indicates that this happened because the
polyp appears to measure only 4 mm in the CTC images.

Finally, Fig. 7 presents the free-response receiver operating characteristic
curves of the per-lesion and per-patient detection accuracy of the CAD scheme
at the 3-mm wall-thickness value. At 5 FP detections per patient on average, all
patients with lesions ≥6 mm were detected correctly.
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(a) (b)

Fig. 6. The numbers on the plot indicate CAD performance at that thickness of the
target region (in mm). (a) Detection of lesions ≥10 mm in size. (b) Detection of lesions
6 – 9 mm in size.

(a) (b)

Fig. 7. Free-response receiver operating characteristic curves of the (a) per-lesion and
(b) per-patient detection accuracy of the CAD scheme for lesions ≥10 mm and 6 – 9 mm
in size at 3-mm thickness of the target region

4 Discussion

We developed a novel method for volumetric detection of lesions in DE-CTC. A
thick volumetric target region encompassing the colonic wall is extracted from
CTC images by use of a distance-based scheme, and the scale of the shape
detection features is adapted to the thickness of the target region.

The results indicate that the thickness of the target region has a significant
effect on the detection accuracy of CAD. The effect is most noticeable in the
detection of 6 – 9 mm lesions. For larger lesions, the wall thickness has less effect
on detection sensitivity, but it can affect the detection specificity.
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In a previous study, where the shape features were calculated at a fixed im-
age scale using the same clinical DE-CTC cases [19], the per-lesion detection
sensitivity for 6 – 9 mm lesions was 87.5% with 11 FP detections per patient
at a wall thickness of d = 4 mm. In this study, the use of adaptive volumetric
detection at a wall thickness of 3 mm yielded a higher detection sensitivity of
94%. Furthermore, at a comparable 87.5% sensitivity between the studies, in
this study the number of FP detections was reduced by 45%, or to 6 per patient.
Therefore, the use of the adaptive volumetric detection method of this study
compares favorably with our previous approach.
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Abstract. To screen large populations for colorectal cancer, it may be
necessary to reduce the radiation dose of computed tomographic colonog-
raphy (CTC) examinations. We compared the accuracy of computer-
aided detection (CAD) in standard-dose (SD) CTC with that in
ultra-low-dose (ULD) CTC. We also assessed the effect of linear and
nonlinear denoising methods on CAD performance in ULD CTC. The
CAD system was trained to detect polyps with 43 SD CTC studies. It
was tested with 24 clinical studies, where the supine series were acquired
with SD CTC and the prone series were acquired with ULD CTC. The
polyp detection accuracy of CAD was significantly lower in ULD CTC
than in SD CTC. Linear denoising of ULD CTC images improved the
detection accuracy for large polyps, but it reduced sensitivity for small
polyps. However, with nonlinear denoising, the detection accuracy of
CAD in ULD CTC was not significantly different from that in SD CTC.

Keywords: Computer-aided detection, dose, diffusion, polyp detection,
virtual colonoscopy, computed tomographic colonography.

1 Introduction

Colorectal cancer is one of the leading causes of cancer mortality. Studies have
shown that the per-patient sensitivity of computed tomographic colonography
(CTC) for large adenomas and cancers is comparable to that of conventional
colonoscopy [5,16]. This makes CTC a potentially useful technique for colorectal
screening [8].

However, if CTC was used in large-scale population screening, its target pop-
ulation would be >100 million people in the United States alone [1]. One concern
is the potential risk of radiation-induced cancers. The risk is theoretical, because
at low doses there are many uncertainties with regard to the true effect of ioniz-
ing radiation [11]. Nevertheless, some simulation studies have suggested that, if
performed every 5 years for ages 50 – 80, CTC could induce up to 60,000 cancers
per 100 million screened individuals [4].
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Tube current is one of the principal sources of ionizing radiation in CTC.
Studies have suggested that a reduction in tube current might not have a sig-
nificant effect on polyp detection in CTC [3]. Therefore, it may be possible to
perform ultra-low-dose (ULD) CTC. The radiation dose of 1 – 2 millisievert
(mSv) of an ULD CTC examination would compare favorably with the yearly
dose of 2.5 – 3.0 mSv of the normal background radiation exposure in the United
States [18]. However, the use of ULD CTC can distort the observed colon surface
and lesions (Fig. 1), and this can be a problem for the application of CAD.

To date, the effect of ULD CTC on CAD has been investigated by use of
simulations only. A phantom study suggested that polyps ≥6 mm in size can
be detected at an effective dose of 1.61 mSv (a current of 5 – 15 mAs), if the
CTC data are preprocessed by use of an anisotropic filter [10]. A study based on
pig colons indicated that tube currents of 10 mAs are not an influencing factor
of CAD performance [9]. In another simulation study, where image noise was
added to 23 clinical studies to imitate an effective dose of 0.17 mSv (a current
of 1.39 mAs), conventional CAD detected 78% of polyps ≥10 mm and 65% of
polyps 6 – 9 mm in size at 16 false-positive (FP) detections per patient [17].

(a) (b)

Fig. 1. Visualization of a 6-mm polyp (indicated by arrow) in (a) standard-dose and
(b) ultra-low-dose CT colonography
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In this study, we investigated the effect of ULD CTC on the detection ac-
curacy of CAD by use of clinical standard dose (SD) and ULD CTC studies.
We also assessed the effect of linear and nonlinear denoising algorithms on CAD
performance in ULD CTC.

2 Methods

2.1 Gaussian Filtering

Gaussian filtering is a linear method that is often used for reducing image noise
(Fig 2a). Let I denote a volumetric input CTC image. The convolution of I with
a three-dimensional (3D) Gaussian kernel can be written as

I·G3(x, y, z, σ) =
∞∑

k=−∞

∞∑
j=−∞

∞∑
i=−∞

I(x, y, z)G3(x− i, y − j, z − k, σ), (1)

where the 3D Gaussian kernel is of the form

G3(x, y, z, σ) =
1√
2πσ

3 exp−(x2+y2+z2)/(2σ2) . (2)

The parameter σ determines the width of the Gaussian kernel.

2.2 Diffusion Filtering

Diffusion filtering extends the concept of the Gaussian filtering by reducing the
effect of smoothing at image boundaries (Fig. 2b). Such a nonlinear filter pre-
serves surfaces of the image more faithfully than conventional Gaussian filtering.

The anisotropic diffusion equation can be written as [15]

∂I

∂t
= div(c(x, y, z, t)∇I) = ∇c · ∇I + c(x, y, z, t)I, (3)

where c(x, y, t) is a diffusion coefficient that controls the rate of the diffusion.
Suppose that we know the locations of image boundaries, and that we would like
to encourage smoothing within homogeneous regions in preference to smoothing
of boundaries. To approximate such a function, we can define

c(||∇I||) = 1

1 + ( ||∇I||
K )2

, (4)

where K controls sensitivity to image boundaries.
Fig. 3 illustrates the outcomes of Gaussian filtering and diffusion filtering.

When the original image (Fig. 3a) is subjected to Gaussian filtering (Fig. 3b),
the perceived image noise is reduced, but also the boundaries and the polyp at
the center of the image are blurred. When the original image is subjected to
diffusion filtering (Fig. 3c), the boundaries and the polyp are preserved better
than after Gaussian filtering.
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(a) (b)

Fig. 2. Illustration of the denoising algorithms. The lines indicate matching locations
between the CTC image of a colonic wall (top image) and an intensity profile of the
region (bottom image). (a) In Gaussian filtering, the same smoothing kernel is applied
everywhere in the image. (b) In diffusion filtering, the width of the smoothing kernel
varies according to the intensity changes of the underlying image.

2.3 The CAD Scheme

Fig. 4 shows an overview of the CAD scheme. The region of colonic lumen is
extracted automatically [14]. Shape-based polyp detection is performed within
a thick region encompassing the colonic wall [19]. After the calculation of shape
and texture features of detected regions [13], a Bayesian neural network is used to
establish a lesion likelihood for each detection [12]. The detections with highest
lesion likelihood are displayed to the user as the output of the CAD scheme.

(a) (b) (c)

Fig. 3. (a) Axial CTC image with a polyp at center. (b) Convolution with a Gaussian
filter. (c) Convolution with a diffusion filter.
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Fig. 4. Overview of the CAD scheme

2.4 Evaluation

Sixty-seven patients were prepared for a CTC examination with a cathartic pre-
colonoscopy bowel cleansing. The CTC examinations were performed in supine
and prone positions with a 2.5-mm slice thickness and a 1.25-mm reconstruction
interval. After a CTC examination, conventional colonosopy was performed to
confirm the detected lesions.

The patients were divided into a training regimen and a testing regimen.
The training regimen contained 43 patients (18 males, 25 females; mean age:
61 years). The patients were scanned at two hospitals with SD CTC (100 mA
current and 120 kVp voltage). There were 44 lesions measuring ≥6 mm in largest
diameter in 24 patients (Fig. 5a).

(a)

(b)

Fig. 5. Distribution of lesions in (a) the training regimen and (b) the testing regimen
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The testing regimen contained 24 patients (17 males, 7 females; mean age:
63 years). The supine CTC series were acquired with SD CTC (100 mA current
and 120 kVp voltage), whereas the prone CTC series were acquired with ULD
CTC (20 mA current and 120 kVp voltage). There were 19 lesions ≥6 mm in 12
patients (Fig. 5b).

The CAD scheme was trained to detect lesions with the training regimen.
It was tested with the testing regimen by use of four data sets: (1) the 24
supine SD CTC series, (2) the 24 prone ULD CTC series, (3) the 24 prone
ULD CTC series with Gaussian filtering, and (4) the 24 prone ULD CTC series
with diffusion filtering. Statistical significance of the difference between detection
accuracies was tested by use of the jack-knife free-response receiver operating
characteristic analysis [2].

3 Results

The training sensitivity of CAD was 93% for lesions ≥6 mm in size at 5 FP
detections per patient. The sensitivity was 100% for lesions ≥10 mm and 83%
for lesions 6 – 9 mm in size.

Table 1 shows the per-lesion detection accuracy of CAD on the testing data.
With the SD series, the CAD scheme detected 100% of lesions ≥10 mm and 90%
of lesions 6 – 9 mm in size at 5 FPs per patient. With the ULD series (without
denoising), the detection sensitivity decreased significantly for lesions ≥10 mm
in size (p < 0.05), for lesions 6 – 9 mm in size (p < 0.05), and for lesions ≥6 mm
in size (p < 0.05).

Table 1. Per-lesion accuracy of CAD on the testing set. Arrows indicate improvement
(↑) or reduction (↓) of detection sensitivity by Gaussian filtering (G) or by diffusion
filtering (D). Abbreviations: ULD = ultra-low-dose, FPs/study = median number of
false-positive detections per patient.

Dose ≥10 mm 6 – 9 mm ≥6 mm FPs/study

Standard 100% 90% 95% 5

ULD 78% 70% 74% 4

ULD+G ↑89% ↓60% 74% 5

ULD+D ↑100% 70% ↑84% 5

When Gaussian denoising was applied to the ULD series, the detection sensi-
tivity increased for lesions ≥10 mm but it decreased for lesions 6 – 9 mm in size.
With diffusion filtering, the detection sensitivity increased to 100% for lesions
≥10 mm, and it remained at 70% for lesions 6 – 9 mm in size. With diffusion,
the detection sensitivity was not significantly different from that of the SD CTC
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Fig. 6. Free-response receiver operating characteristic curve of the detection perfor-
mance of CAD for polyps ≥6 mm in size on the testing set

(a) (b)

Fig. 7. Examples of missed lesions (indicated by blue arrows). (a) A 6-mm sessile polyp
in colonoscopy that was missed with both standard-dose and ultra-low-dose CTC. (b)
A 6-mm sessile lesion in colonoscopy that was missed with ultra-low-dose CTC but
detected with standard dose CTC.

series. Fig. 6 depicts the detection accuracies in terms of free-response receiver
operating characteristic curves.

4 Discussion

The results of this study indicate that the detection sensitivity of a CAD scheme
that has been trained to detect polyps with conventional SD CTC studies can
be reduced by 20% when it is used in ULD CTC. For large polyps, the detection
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sensitivity can be improved by denoising of the image data. However, denoising
by Gaussian filtering can further reduce the detection accuracy for polyps 6 –
9 mm in size. Therefore, the use of nonlinear diffusion filtering is preferred,
because it can improve the detection sensitivity for large polyps without further
degradation of the detection of smaller polyps.

According to the results, polyps that are seen clearly in SD CTC are likely
to be detected also in ULD CTC. However, subtle polyps that are only 6 –
7 mm in their largest diameter, and/or that have flat morphology in CTC, may
become more challenging to detect in ULD CTC than in SD CTC (Fig. 7).
Although some previous studies have suggested that a low tube current does
not have a significant effect on CAD performance, it is not clear if those studies
considered the detection of challenging polyps. The effect of ULD CTC on CAD
performance could also depend on the particular detection algorithm used by
that CAD system.

Previous studies that considered the effect of ULD CTC on CAD involved
phantoms or simulations. In this study, we used real clinical CTC studies. One of
the limitations of the study is that the conspicuity of polyps could differ between
the supine SD series and prone ULD series, thereby introducing a detection bias.

Another limitation is that we did not consider CTC studies with orally admin-
istered positive-contrast tagging. In recent years, orally administered tagging has
become increasingly common in CTC, because it can be used to reveal polyps
covered by fluid and to indicate feces that imitate lesions. However, if tagging has
high attenuation in CTC images, it could increase image noise locally, thereby
potentially impairing the detection of small and subtle polyps.

In addition to the reduction of tube current, novel CT reconstruction algo-
rithms could be able to reduce the effective dose by >50% without significant
effect on perceived image quality [7]. The radiation dose could also be reduced
by careful monitoring of necessary CT examinations. A combination of these
approaches is likely to provide the most optimal outcome for minimizing the
radiation burden on patients.
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Abstract. A low-dose CT simulation technique is presented which might allow 
for a virtual ultra-low-dose trial in CT colonography without requiring raw 
sinogram data. A virtual sinogram is generated by performing the line integral 
of the CT number-based attenuation value with use of the CT scan parameters 
available in the DICOM header and in the literature. A separate noise sinogram 
is generated with use of a noise model, which incorporates the X-ray photon 
flux depending on the mAs, system electronic noise, and virtual sinogram. A 
synthetic noise CT image is generated by application of the filtered back 
projection of the noise sinogram with use of an appropriate filter that depends 
on the reconstruction kernel of the original CT. Finally, a simulated low-dose 
CT image is generated by addition of the CT data for the synthetic noise to the 
original CT data. Clinical CT colonography images with and without fecal 
tagging were used as simulation input and 50%, 25%, and 12.5% dose images 
were generated and evaluated. Our results suggest that the proposed CT 
simulation technique has potential for application in virtual ultra-low-dose trial 
in CT colonography in which an unlimited number of scan protocols could be 
performed without repetition of the real CT exposure to the patients.  

Keywords: Algorithmic modulation transfer, noise power spectrum, low-dose 
simulation, filtered back projection.  

1 Introduction 

There is a growing concern about increased cancer risk due to the radiation exposure 
associated with CT examinations. This radiation-induced cancer risk is one of the 
limitations of CT colonography (CTC), which otherwise has a number of advantages 
over conventional methods for colon cancer screening and surveillance.  
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Therefore, various efforts are being made to reduce the amount of radiation in CT 
examinations while maintaining the diagnostic quality at a comparable level. 
Assessing the diagnostic performance of ultra-low-dose CTC is an example of 
studies, which explore the potential lower limit of low-dose CT imaging applications 
that do not compromise the diagnostic quality. However, for objective comparison, an 
ultra-low-dose study requires repeated CT scans of the same patients under different 
dose conditions, which involves ethical problems. 

Low-dose CT simulation is a promising technique that allows the generation of 
simulated low-dose CT images that use patients' CT images without repeating the CT 
examinations to provide images at different dose levels. Although it was reported that 
low-dose CT simulation could be done by use of raw sinogram data provided by the 
CT vendor, it is very difficult to set up such an experimental setting in general 
academic institutions.  

Our motivation was to develop a method which would enable low-dose CT 
simulation studies with use only of conventional CT image data and without the need 
for raw sinogram data, and then to evaluate its potential in CTC especially for virtual 
ultra-low-dose trial studies. 

2 Materials and Methods 

2.1 Materials 

A 16-row CT scanner (Somatom Sensation 16, Siemens, Erlangen, Germany) was 
used in this study. Water-phantom and DCIOM images from the CTC study were 
used as the low-dose simulation input. We used the water phantom to validate the 
developed low-dose CT simulation technique. The phantom was scanned at 120 KVp 
and 200 mAs/30 mAs with eight different reconstruction kernels. The CTC images 
were scanned at 140 kVp with the current level around 40 mAs. 

2.2 Methods 

A low-dose CT simulation involves creating a noise image that reflects a set of CT 
parameters and the patient’s anatomy. In this study, the required CT parameters were 
two sub-system functions, the algorithmic modulation transfer function (MTF) of the 
reconstruction kernels and the ramp filter apodization function; and two parametric 
values, the Q0 (detector photon flux during the actual CT examination) and the 
system noise of the CT. The two sub-system functions were derived by use of the 
noise power spectrum (NPS) of the water phantom and its comparison to the ideal 
white Gaussian quantum noise. The two parametric values were obtained from the 
literature. Throughout the procedure, our assumption was that CT scans were 
performed in the axial mode, and reconstructions were carried out by use of the 
conventional filtered back projection (FBP) method. 

2.2.1   Evaluation of the Sub-system Functions 
Measurement of NPS. We made use of the NPS of CT as an information source 
regarding the system response of the CT in the spatial frequency domain. To measure 
the algorithmic MTF, we applied the subtracted NPS technique to the water phantom  
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scan dataset. It is known that the noise in CT images contains not only a quantum 
noise portion, but also a structural noise portion. Usually, the structural noise arises 
from scatter, dark current, non-uniform detector gain, beam hardening, shading, and 
other unknown factors. These types of noises are non-stochastic and can be classified 
as artifacts. Therefore, these structural noise portion can be canceled by subtraction of 
two images, which are scanned with the same phase. However, the resulting 
subtracted image should be divided by the square root of two, because subtracting the 
two images results in increasing the noise by the square root of two [3]. The NPS is 
give by 

NPS u, v ∆x∆yMN FFT ∆I x, y√2 . (1)

Derivation of the Algorithmic MTF. Usually, what we call MTF in CT means MTF , which can be divided by the algorithmic MTF ( MTF  and non-
algorithmic MTF MTF . Whereas the  MTF  is mainly determined by blurring 
due to the focal spot and aperture of the detector pixels [1], the MTF  solely reflects 
the frequency response of the CT system occurring in the FBP procedure. The MTF  can be written as 

MTF MTF MTF . (2)

From the fact that the NPS is driven only by the quantum noise, we can make use of 
the NPS as an information source to find a solution for MTF . We calculated the MTF  for each reconstruction filter with equation (3), which describes the 
relationship among the NPS, ramp filter, and MTF : 

NPS f πfNEQ MTF f . (3)

Ramp Filter Apodization Function. Because CT reconstructions are realized in a 
digital system, several sources of error are introduced during the digitization 
interpolation steps in the calculation of the reconstruction procedure. In order to 
prevent such errors, we evaluated the ramp filter apodization function, which reflects 
the decay of the ramp shape in the high-frequency range. 

We created a sinogram consisting of white Gaussian noise, and we reconstructed it 
by using only the ramp filter to obtain a CT image that reflects the imperfection of the 
digital realization of the reconstruction. The NPSwgn, which is obtained from this CT 
image, reveals the spectral response of the realization error. The ramp filter 
apodization function H(f) is obtained by dividing the NPSwgn by the ramp function 
shown in equation (4). Because this apodization occurs due to the digital realization 
process, the apodization function depends on the reconstruction pixel size and on the 
interpolation method used: 
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H f NPSramp f . (4)

Overall Reconstruction Function. Literally, FBP means that there is a filtering 
procedure before back projection, and therefore, the definition of the filter is a key 
factor. The overall reconstruction function is the composition of the ramp function, 
MTFalg, and the ramp apodization function shown in equation (5). 

|f| · MTF fH f . (5)

2.2.2   Simulation of a Low-Dose CT Scan 
The simulation of a low-dose scan requires the following steps: 

1) A CT image in HU was converted to that of the attenuation coefficient by use of 
the effective µ  at 140 kVp. 

2) A virtual sinogram was produced through a virtual projection procedure, which 
performed the line integration of the attenuation coefficients along each ray path 
between the source and each detector pixel. As a result, the virtual sinogram 
{A g, d } was created representing the linear attenuation at each gantry step and 
each detector location. The notation 'g' means each gantry step in CT, and 'd' 
denotes the location in the detector array. 

3) The virtual sinogram data were translated to the virtual linear sinogram (S ) by 
equation (6): 

S g, d Q · e A , . (6)

4) The variance of the synthetic noise was calculated by equation (7). The first term 
on the right side is related to the quantum noise and the patient’s anatomy, and the 
second term on the right side is related to the system noise. 

σ g, d  α · Q · T g, d · 1ρ 1 NS. (7)

In equation (7), α is a correction coefficient, which is calibrated by minimizing of 
the difference of the NPS curves between the original and the simulated image. Q  
is the incident flux, which can be calculated with the TASMIP model. ρ is the ratio 
of mAs  to mAs . 

N N .Lρ N .H . (8)
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It has been reported that the system noise becomes a non-realizable factor when the 
linear attenuation is greater than 8. We referred the related equation for the CT 
scanner used in this study (Somatom Sensation 16, Siemens) to references [2, 5]. 

5) Synthetic noise was generated pixel by pixel by multiplying of the standard 
deviation with WGN, and was added to the virtual linear sinogram. 

S g, d S g, d σ g, d · WGN. (9)

WGN is the white Gaussian noise with '0' as the mean and the standard deviation 
of 1. 

6) The noise-added virtual linear sinogram was then converted back to produce the 
virtual-noise sinogram, and was subtracted from the original virtual sinogram, 
producing the synthetic noise sinogram. This noise sinogram was filtered back 
projected and converted to HU to generate the synthetic noise CT image. Finally, 
the synthetic noise image was added to the original CT image, resulting in a 
simulated low-dose CT image. 

3 Results 

The results of the water phantom experiment are shown in Fig. 1. The similarity of the 
real low-dose CT (Fig. 1(b)) and simulated low-dose CT images (Fig. 1(d)) validates 
that the proposed simulation technique works properly both visually and 
quantitatively. The reconstructed noise image (Fig. 1(c)) with the proposed filter 
kernel confirmed that the proper noise pattern contained an appropriately mixed 
random-noise and streak-noise pattern. 

Fig. 2 shows a comparison of the NPS graphs of the simulated and original CT 
images. Both the spectral pattern and the magnitude of the NPS graphs are 
comparable over the eight reconstruction kernels (B10f, B20f, B30f, and B40f). 

Figs. 3 and 4 show the ultra-low-dose simulation results applied to the clinical 
CTC images. The original CTC cases were around 40 mAs, and the simulated ultra-
low-dose level was around 50% (20 mAs), 25% (10 mAs), and 12.5% (5 mAs). Even 
though we could not compare the images to a real low-dose image, the simulated low-
dose images were in good agreement upon visual comparison of the noise pattern with 
the ultra-low-dose scan images available from the literature. In Fig. 3, which is from a 
patient who had remaining tagging fluid, strong streak artifacts became conspicuous 
at ultra-low-dose levels of 10.5 mAs and 5.25 mAs, whereas in Fig. 4, which is from a 
patient who had no any remaining tagging fluid, no such streak artifacts were 
noticeable at the lowest level (5.875 mAs). This comparison reveals that the level of 
streak artifacts is associated with the amount of remaining tagging material in the 
CTC images. This finding suggests that the fecal tagging regimen should be 
considered when ultra-low-dose CTC studies are designed. 
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(a) Real CT image with 240 mAs (b) Real CT image with 30 mAs 

 
(c) Synthetic CT noise image (d) Simulated low-dose CT image 

Fig. 1. Comparison of (a) high-dose scan (240 mAs), (b) low-dose scan (30 mAs), (c) simulated 
noise pattern, and (d) simulated low-dose (30 mAs) CT images for water phantom images 

 

(a) NPS graphs of  the real low-dose CT 
scan image (120 kVp, 30 mAs, B10f, 
B20f, B30f, B40f) 

(b) NPS graphs of the simulated low-dose 
CT image (120 kVp, 30 mAs, B10f, 
B20f, B30f, B40f) 

Fig. 2. NPS graphs of (a) real water phantom and (b) simulated low-dose CT image 
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(a) 42 mAs, real CT image 
(b) 21 mAs (50% dose), simulated low-

dose image 

 
(c) 10.5 mAs (25% dose), simulated low-

dose image 
(d) 5.25 mAs (12.5% dose), simulated low-

dose image 

Fig. 3. Example of a resulting image by use of the low-dose simulation technique applied to a 
CTC case with tagging material remaining in the colon 

 

(a) 47 mAs, real CT image 
(b) 23.5 mAs (50% dose), simulated low-

dose image 
Fig. 4. Example of a resulting image by use of the low-dose simulation technique applied to 
a CTC case without any tagging material 
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(c) 11.75 mAs (25% dose), simulated low-

dose image 
(d) 5.875 mAs (12.5% dose), simulated 

low-dose image 

Fig. 4. (continued) 

Table 1 compares the standard deviation (STD) measured at selected ROI areas 
including the kidneys and muscles marked on Fig. 5. Whereas the STDs of the 100% 
dose images were at a similar level, the STDs of the simulated 12.5% dose image for 
the patient with tagging material remaining in the colon were much higher than that of 
the patient without tagging material at the same dose level. 

Table 1. Standard deviation of the ROI areas 

Standard deviation 

Patient #1 (with tagging material) Patient #2 (without tagging material) 

 42 mAs 5.25 mAs  47 mAs 5.875 mAs 

ROI 1 26.5 185.6 ROI 4 20.6 99.5 
ROI 2 23.0 193.2 ROI 5 23.4 94.4 
ROI 3 18.3 109.9 ROI 6 19.2 66.8 

 
Fig. 5. ROI marks on the CT images of patients with (patient #1) and without (patient #2) 
tagging material 
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4 Conclusion 

In this paper, we presented a low-dose CT simulation technique applied to both water- 
phantom and CTC images. The water phantom results verify that the pattern and 
magnitude of the generated noise on the simulated low-dose CT images were 
sufficiently similar to that of real low-dose CT scan images, and the simulated ultra-
low-dose images for clinical CTC images provided a high level of realism in terms of 
noise and streak patterns. 

One limitation of our study is that the tube current modulation was not included in 
our simulation procedure; this will be the subject of our future work. 
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Abstract. An integrative CT simulation technique is presented that creates 
realistic CT images of virtual fecal-tagged material that was added to given 
clinical DICOM CT images. The energy spectrum of the CT X-ray source, the 
energy-dependent attenuation, and the scattering properties of the soft tissue 
and tagging material were incorporated in the generation technique for the 
DICOM image-based virtual sinograms, followed by CT reconstruction 
reflecting the vendor-specific filtering kernels. Dark band artifacts were 
generated by appropriate combining of beam-hardening and -scattering effects 
into the generation procedure for the virtual sinograms. We used a set of simple 
numerical phantoms to assess the basic behavior of artifact production. A 
reference set of CTC images with and without tagging material and artifacts 
was used for evaluation of the realism of the simulated results. The level of 
realism was evaluated in terms of the artifact strength and patterns around the 
added tagging material, compared to real tagging images. The results showed 
that our CT simulation technique provides sufficient realism for virtual fecal-
tagged images that reflect a chain of physical and numerical processes, 
including beam hardening, scattering, and vendor-specific kernel filtered 
backprojection. The technique presented has the potential to be used as a tool 
for investigating the effect of tagging materials on image quality and to gauge 
how well the electronic cleansing technique performs. 

Keywords: CT simulation, virtual tagging, CTC, artifact, beam hardening, 
scattering effect. 

1 Introduction 

CT colonography is a promising method in colon cancer screening, which provides a 
sensitivity comparable to that of optical colonoscopy for detecting polyps 10 mm and 



 Application of CT Simulation Technique for Virtual Fecal Tagging in CTC 59 

larger [1]. Its ability to examine the whole-colon structure non-invasively in a time- 
efficient manner, without needing sedation and recovery time, places CTC as an 
attractive alternative to optical colonoscopy in the screening and surveillance steps of 
colon cancer diagnosis [1].  

In an effort to reduce the patient's burden of the full cathartic bowel preparation 
currently required for CTC examination, studies are being carried out for the 
development of a noncathartic or a less intense cathartic bowel preparation in 
combination with an electronic bowel-cleansing technique [2]. In the research 
pathways towards optimizing the bowel preparation technique, a combination of 
studies would be needed before the final conclusion is reached, which would require 
huge costs and efforts, especially when varying image qualities with different tagging 
regimens are compared. Because tagging regimens with different materials and 
concentrations could generate varying degrees of artifacts in CT examinations, the 
performance of the visual examination as well as the electronic cleansing technique 
could be impaired depending on the resulting image quality due to the specific 
tagging regimen applied to the study. In addition, the image quality and the artifacts 
generated in CT are related to the patient’s body structure in a complex manner; the 
same tagging regimen would generate different artifacts in different patients. Ideally, 
different tagging regimens should be applied to the same patients so that one can 
objectively compare the image quality and artifacts resulting from each specific 
tagging regimen; however, it is practically and ethically impossible.  

The motivation for this study was to develop a technique that allows for virtual 
tagging on CTC images with different combinations of tagging materials and 
concentrations. This technique was applied to a CT simulation technique that included 
the energy-dependent attenuation characteristics of the tagging materials and of the 
body. We calculated the beam hardening and scattering process along the beam path 
within the body, which resulted in a realistic virtual tagging image with artifacts 
generated by the complex interactions of the tagging material with the X-ray energy 
and the body of the patient.   

We describe the basic physical principle involved in beam hardening and scatter 
generation, present a simple experiment with numerical phantoms, and discuss the 
preliminary results in terms of clinical CTC cases. 

2 Materials and Methods 

2.1 Numerical Phantoms 

A set of numerical phantoms that contained an oval-shaped disk of water and a 
circular disk of calcium was created, representing the human body and the spine, 
respectively, and multiple holes with air representing the insufflated colon. A hole 
was filled with iodine to varying levels of depths and concentrations to mimic the 
fecal tagging material. The numerical phantoms were used for assessment of the 
proper CT simulation technique. 
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Fig. 1. Numerical phantom dataset. The intensities of each phantom are based on the parts of 
the CT images and contrast material and are based also on the iodine-based tagging regimen 
(OMNIPAQUE 300 mg/mL) and the density for the ratio in the clinical case. The window level 
of the image was changed to the best view of the HU value for each component. 

2.2 Clinical Dataset 

Selected CTC images were used from the CTC case database at the Seoul National 
University Hospital. CT examinations were performed with an MDCT (Siemens 
SOMATOM Definition, Philips Brilliance 64) under low-dose conditions (120 kVp, 
40 ~ 55 mAs) and an iodine-based tagging regimen (OMNIPAQUE, 300mg/mL, 
Nycomed) was applied in the CTC cases used in this study.  

We used DICOM images containing tagging material in the colon and exhibiting 
beam-hardening artifacts in the colon as a reference dataset to evaluate the degree of 
artifacts depending on the tagging concentration and the body configuration. 

Fig. 2 shows sample reference images and line profiles revealing the degree of 
the dark-band artifacts around the tagging material. Table 1 summarizes the 
measured CT values at the tagging material and at a location with the most severe 
darkening artifact. As is shown, the degree of the artifacts has a complex 
relationship with the geometric configuration and concentration of the tagging 
material and with the body shape and the relative distance and location of another 
highly attenuating structure. 

A separate set of DICOM images was collected which do not show tagging 
material or artifacts at a given slice, to be used as a substrate for addition of virtual- 
tagging material and for evaluation of the virtual-tagging effect. 
 

 

Fig. 2. Various CT images with artifacts that lowered the tissue intensity 
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Table 1. Intensity of the contrast agent in the images with artifacts; the distorted intensity of the 
tissues compared to the normal tissues around the artifacts; the size of the contrast material; and 
the percent of contrast filling in the colon area. Distorted values are dependent on the contrast 
intensity of its source, its location, and the tissue material. 

Intensity of the tagging 
material (HU) 

Tissue intensity 
distortion (HU) 

Length of the contrast 
material (mm) 

Colon filling (%) 

1186 -214 21 mm 13% 
1787 -498 35 mm 33% 
1579 -520 42 mm 21% 
895 -115 24 mm 35% 
1180 -211 16 mm 8% 
1170 -282 27 mm 17% 
972 -208 31 mm 30% 
1050 -440 52 mm 25% 

2.3 Simulation of X-Ray Interaction with Matter 

2.3.1   CT Simulation 
For a simple fan-beam CT simulation, an in-house CT projection/backprojection tool 
was created. The simulation software code was created with MFC (Microsoft Visual 
Studio was used). The basic algorithm for the projection/backprojection was based on 
the following equations: 

 

 , , , , (1) 

g x, y , (2) 

 

where  is the projection data (sinogram),  is the original CT image,  the 
projection angle,  the count of projection rays, and g the backprojected image [3]. 

2.3.2   Beam Hardening Simulation 
During the process of penetration through an object, the energy profile of a 
polychromatic X-ray beam changes continuously at each step of attenuation along the 
path. This is because different bands of the energy spectrum attenuate differently 
depending on the specific attenuation coefficient of the material being imaged. In 
general, low-energy radiation, such as soft X-ray beams, is more strongly absorbed 
than high-energy radiation, such as hard X-ray beams [3]. This beam-hardening effect 
is a major source of dark-band artifacts seen on CT images that contain contrast 
agents. 
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Fig. 3. A) Scattering model for total transmission, photoelectric absorption, and Compton 
scattering. B) Mass attenuation coefficients of water and iodine. These values were obtained 
from the National Institute of Standards and Technology (NIST) website. 

 

Fig. 4. A) Various thicknesses of iodine-passed X-ray characteristic spectrum and B) the 
normalized spectrum. A beam-hardening effect can be seen in the normalized spectrum; the 
low-energy part is degraded and the high-energy part is enhanced. The base X-ray characteristic 
spectrum was simulated with the tungsten anode spectral model by use of TASMIP, with 120 
keV and a 3 mm aluminum filter. 

Equation (3) describes the basic principle of X-ray attenuation used in this study 
for calculation of the beam-hardening process: 

 , (3) 
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where μ(E) is the energy-dependent mass attenuation coefficient, ρ is the density, and 
x is the thickness of the material that the x-ray spectrum has transmitted [3]. 

The X-ray spectrum was obtained from a published model for a tungsten anode 
spectral model by use of interpolating polynomials (TASMIP), with the application of 
120 KVp and a 3 mm aluminum filter [4]. Beam hardening was calculated only for 
the iodine material, and the attenuation coefficient of water after passing the iodine 
material was updated by application of the hardened beam profiles to the spectral 
attenuation coefficients of water, as shown in Fig. 4. 

X-ray attenuation is due to photoelectric absorption, Compton scattering, and 
Rayleigh scattering. The total spectral attenuation coefficient  is given by 

 , (4) 

µ k , (5) 

µ · 2 1 2 11 2 ln 1 2 ln 1 221 31 2 . (6) 

For an analytical approximation,  was regarded as having a small, negligible 
contribution [5].  

The values for the mass attenuation coefficients of iodine, water, aluminum, etc. 
were obtained from a publicly available database [7]. 

2.3.3   Scattering Simulation 
Besides beam hardening, scattering is another important source of X-ray interaction 
with matter, which contributes strongly to the dark-band artifacts seen in CTC studies 
containing tagging materials. Although the Monte Carlo simulation technique is 
frequently used for calculation of the scattering process, it is impractically slow for 
use in CT simulation, which requires creating thousands of projection images per 
single CT image. Instead, we used a simple iterative-convolution model at each step 
of the ray path. The primary and the scattered transmission in water were calculated 
by use of the following equations: 

, , (7) 

G , , (8) 
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where G is the Gaussian filter convolution, x the thickness, and S(E) is the weighting 
function derived by the following equation: 

S E . (9) 

The relative fraction of the photoelectric absorption and the Compton scattering of 
water were used as weighting factors of the primary and scattered transmission for 
obtaining the total transmission at a given ray step: 

, (10) 

where k is the scattering-factor constant. 
After calculating the total transmission, we converted the value to a sinogram for 

the backprojection process. 
Because the CT images are already filtered on the vendor-specific filtered 

backprojection process of their creation, if the images are projected and backprojected 
again, the images may have changes in the intensity and structure (i.e. blurring or 
over-sharpening by various filters). To avoid this, we acquired a sinogram from the 
original CT image, and we subtracted it from the sinogram of the virtual ray 
projection to yield a sinogram that only had the information for the beam-hardening 
effects and scattering artifacts. We backprojected the subtracted sinogram to acquire 
the image for the artifact part and finally added to the original CT image to get the 
artifact-simulated fecal-tagged image. 

2.3.4   Integrated CT Simulation 
To create realistic CT images containing tagging materials and artifacts, we applied 
an integrated CT simulation technique including image-based material decomposition, 
virtual sinogram projection, beam hardening and scatter simulation, and vendor-
specific kernel filtering. Fig. 5 shows the overall procedure of our integrated CT 
simulation procedure.  

In the image preparation step, the CT image of interest was used as a substrate; a 
tagging-component image was created by application of the attenuation coefficient 
and concentration of the tagging material; a water-component image was created by 
application of a threshold to the substrate image and adding the water part of the 
tagging-component image. Finally, a component sum image was created by addition 
of the tagging component image to the substrate image. 

In the virtual-sinogram projection step, the ray projection was applied to the 
tagging component, water component, and component sub-images for calculation of 
the beam hardening, scattering, and photoelectric effects during ray penetration.  
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Fig. 5. Process box flowchart of the proposed method for simulating virtual fecal-tagged 
images 

After the ray projection was completed, each component projection was weighted 
and added to create an aggregate sinogram, followed by vendor-specific kernel 
filtering, and finally backprojected to create the simulated CT of the virtual-tagging 
data. 

3 Results 

The initial simulation was tested with the numerical phantoms at various densities. 
Fig. 6 shows oval phantoms with various iodine fill levels and densities. The intensity 
and size of the artifacts varied depending on the density and the percent of iodine 
filling. 

From the results of the evaluation, we found that the pattern of streak artifacts and 
their tissue intensity distortion were almost similar. In clinical trials, realistic CT 
images with artifacts were simulated successfully. 
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Fig. 6. Simulation results for the numerical phantoms with varying levels of colon filling and 
iodine density. The level of streak artifact varies depending on both iodine density and level of 
filling. The window width and the level of the image were adjusted to yield the best view of the 
artifacts. 

 

Fig. 7. A) CT image with artifacts, B) iodine mask, C) tissue normalized results with iodine 
mask, D) simulated result, and E) line profile of the original CT image and the virtual- tagging 
CT image result. Distorted values and their patterns are almost similar. 
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Fig. 8. A) Original CT images without artifacts, B) iodine-targeted image, C) iodine-mask 
added image, and D) CT simulated virtual fecal-tagged CT images. Beam-hardening and 
scattering artifacts were successfully generated. B) Line profile of the original CT image and 
virtual tagged image. 

4 Conclusion 

By use of the process described, virtual fecal-tagged CTC images can be generated at 
any location and for any circumstance. This result could contribute to the collection 
and practical use of patient data for research. Furthermore, it can be used as concrete 
datasets for CT colonography research in the future. 

5 Discussion 

This study presented an integrative CT simulation technique which could produce 
realistic dark-band artifacts caused by highly attenuating fecal tagging agents in CTC 
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studies. Dark-band artifacts are frequently seen in CTC studies with fecal tagging, and 
then often cause problems in electronic cleansing and polyp detection procedures in 
CAD systems. As shown in Table 1, the intensity of dark bands appears to be 
associated with several factors, including the density of the tagging agent, the level of 
fluid filling the colon, the width of filling, and the size of body. Although CT systems 
apply sophisticated techniques in the reconstruction procedure to reduce the dark-
band artifacts, these artifacts still remain as a challenging problem not yet overcome.  

Our study elucidated the physical process behind the generation of the dark-band 
artifacts. Whereas the these artifacts are usually called beam-'hardening artifacts', our 
study showed that these artifacts are, in fact, generated by a combination of beam- 
hardening and scattering effects which are two fundamental processes of x-ray 
interaction with matter. In this study, we did not attempt to apply the proposed 
technique to removal of the dark-band artifacts. Although our simulation technique 
has such a potential, artifact removal would involve additional steps of specialized 
techniques which remain a subject for further study.  

In its current form, however, the presented technique could be used in the 
evaluation of electronic cleansing techniques and polyp detection techniques in CTC 
under the fecal-tagging condition by providing an artifact-free image as the ground 
truth as well as the simulated virtual fecal-tagging image with dark-band artifacts as 
test data. This study is limited in that only fluid-state tagging material was considered. 
As various tagging regimens are being tried clinically, extending the tagging models 
of our simulation framework to include materials of solid or semi-solid forms which 
may appear as particles or thin surface layers would be necessary for advancement of 
this study to a more practical level. 
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Abstract. Studies have indicated that the acquisition parameters of
computed tomography (CT) scans can have significant effect on the ac-
curacy of computer-aided detection (CAD) in CT colonography. We in-
vestigated whether these parameters can be used as external features
with conventional image-based features to improve CAD performance. A
CAD scheme was trained with the CT colonography data of 886 patients,
and it was tested with an independent set of 705 CT colonography cases.
The results indicate that some CT acquisition parameters can be used
successfully as features of the detected lesion candidates for improving
the detection accuracy of CAD for flat lesions and carcinomas.

Keywords: Computed tomographic colonography, computer-aided de-
tection, CT acquisition, polyp detection, virtual colonoscopy.

1 Introduction

Some of the acquisition parameters of computed tomography (CT) can have a
significant effect on the detection accuracy of computer-aided detection (CAD) in
CT colonography (CTC). Therefore, studies have been performed to determine
the effect and optimal value of CT acquisition parameters for CAD in CTC. In
two studies, the slice thickness of CTC images was observed to limit the size
of the smallest polyp that is detectable by CAD [10,4]. In one study, CAD was
applied to low-dose CTC by use of a 13 mAs/rotation, collimation of 1.5 mm,
slice thickness of 3.0 mm, reconstruction interval of 1.5 mm, and table speed of
30 mm per rotation [3].

In practice, imaging devices are optimized for the purposes of visualization by
radiologists rather than for the application of CAD. Therefore, it is likely that
practical CAD systems will need to be able to adapt automatically to a wide
variety of input data and parameter settings from multiple sources.
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In a conventional application of CAD in CTC, the detected regions of lesion
candidates are characterized in terms of shape-based and texture-based features.
The features are collected into feature vectors that are analyzed by a classifier
to determine the likelihood that a lesion candidate represents a true lesion. The
detections with highest likelihood of being a lesion will represent the output of
the CAD scheme.

In this study, we considered the application of CT acquisition parameters as
additional external features of the lesion candidates. Because CT acquisition
parameters affect the visual appearance of CTC images (Fig. 1), and because
some of them are known to affect CAD performance anyway, we hypothesized
that their use as additional features could improve the discrimination perfor-
mance of the classifier used by a CAD scheme. By reflecting meaningful adjunct
information about image contrast, volumetric isotropy, or smoothness of the re-
constructed CTC image data, the CT acquisition parameters might be able to
improve the efficacy of conventional image-based shape and texture features.

(a) (b)

Fig. 1. Axial (left columns) and sagittal (right columns) CTC images of 7-mm polyps
with wide (top rows) and narrow (bottom rows) display window settings. (a) Applica-
tion of a soft reconstruction kernel, slice thickness of 1.0 mm, reconstruction interval
of 0.8 mm, and tube current of 28 mA with 140 kVp. (b) Application of a soft re-
construction kernel, slice thickness of 2.5 mm, reconstruction interval of 1.25 mm, and
tube current of 50 mA with 120 kVp.

The CT acquisition parameters that were used as external features in this
study are described in Section 2.2. We considered only parameters that can be
found in the file header of Digital Imaging and Communications in Medicine
(DICOM) files. Furthermore, we considered only parameters that are likely to
be associated with visually perceived image characteristics. For evaluation, each
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external parameter was combined, one at a time, with a set of 6 conventional
image-based shape and texture features that we have identified previously as the
most effective and consistent features in polyp detection [7].

To provide a variety of examples of different CTC image acquisitions, and to
avoid overfitting to a specific patient population or institution, we used a large
number of CTC cases from multiple institutions. The evaluation was based on
independent training and testing regimens. Statistical analysis was performed to
assess the effect of the external features on the detection accuracy of CAD.

2 Methods

2.1 CAD Scheme

The fully automated CAD scheme that was used in this study processes an
input CTC case in a number of steps. First, the CTC images are subjected to
a pseudo-enhancement correction for minimizing tagging artifacts [8], and the
volumetric data are interpolated to isotropic resolution [11]. Next, a thick region
encompassing the colonic mucosa is extracted from input CTC data by use of a
lumen-tracking method [7]. The locations of lesion candidates are determined by
thresholding of lesion-like values of volumetric shape features of the extracted
region [11]. The complete regions of detected lesion candidates are extracted by
use of conditional morphological dilation [6]. Several shape and texture features
are calculated for the regions of lesion candidates [5]. Finally, false-positive (FP)
detections are reduced by use of a statistical classifier that determines the output
of the CAD scheme [12].

Previously, we identified 6 shape and texture features that have emerged as
consistently effective discriminative features over a wide variety of CTC popu-
lations [7]. In the following, we will denote this basic set of features as F6. For
evaluation, each CT acquisition parameter (see Section 2.2) was combined with
F6, one at a time, to yield sets of 7 features for the training and testing of the
CAD scheme.

2.2 CT Acquisition Parameter Features

We considered the application of the following CT acquisition parameters as
external features of lesion candidates:

• Slice thickness (ST). In a multi-detector array scanner, the ST is determined
by binning of the different numbers of detector subunits together and by
physically moving the collimator to the outer edges of the slices of a detector
[1]. The image noise decreases when the slice thickness is increased.

• Reconstruction interval (RI). The RI defines the spacing of the reconstructed
images. If the RI is too wide, small lesions that are located at the boundary
between two slices could be missed due to partial-volume effects [9].

• Tube current (TC). A high TC reduces image noise, but it also increases
radiation dose to the patient.
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• In-plane image resolution (RS). The RS is the physical dimension of a pixel
in a reconstructed CTC image.

• Focal spot (FS). The FS is the area on the anode of an x-ray tube that
is struck by electrons and from which the resulting x-rays are emitted. An
increment of focal spot size reduces the ability to define small structures.

• Exposure time (ET). The ET is the time during which the patient is exposed
to radiation. A long scan time may cause in breathing artifacts.

• Reconstruction kernel (K). The K that is convoluted with the image data
determines the relationship between spatial resolution and image noise.

• Slice ratio (SR). The SR is a unitless feature that we derived from DICOM
header information to characterize the isotropy of the reconstructed volumet-
ric CTC data. It is calculated as SR = RS/ST. A small value of SR indicates
that the volumetric image data may be suffering from geometric distortions,
whereas a large value indicates that the physical voxels have nearly isotropic
resolution, thereby minimizing distortions of image structures.

Most of these parameters have numerical values. However, the value of the recon-
struction kernel (K) is highly dependendent on the manufacturer and the model
of the scanner. To provide a uniform value across different systems, we encoded
K in terms of 3 values: 0 (soft reconstruction kernel), 1 (standard reconstruction
kernel), and 2 (sharp reconstruction kernel).

To apply a CT acquisition parameter as an external feature, its value is pro-
vided as an additional feature in the feature vector of a lesion candidate (Fig. 2).
It should be noted that all lesion candidates that are detected within the same
CTC scan volume have the same value of a CT acquisition parameter feature.
In this study, the external feature was combined with our usual set of conven-
tional image-based shape and texture features (F6; see Section 2.1) of the lesion
candidates to construct a vector of 7 features that is analyzed by the classifier
of the CAD scheme to reduce FP detections and to determine the final output
of the CAD scheme.

2.3 Materials

The training data included the CTC data of 886 patients from 17 institutions.
The patients were prepared with cathartic bowel preparation. Orally adminis-
tered positive-contrast tagging was used with 56 patients. The CTC acquisi-
tion was performed in supine and prone positions. There were 158 colonoscopy-
confirmed carcinomas or adenomas (called hereafter as “advanced lesions”) in
112 patients: 56 were ≥10 mm and 102 were 6 – 9 mm in size.

The testing data included the CTC data of 705 patients from 13 institutions.
The patients and institutions of the testing data were completely indepdepen-
dent from those of the training data. The patients were prepared with cathartic
bowel preparation. One third of the patients were administered positive-contrast
tagging orally based on iodine alone or with barium. The CTC was performed
in supine and prone positions. There were 260 colonoscopy-confirmed advanced
lesions in 197 of the 705 patients: 158 of the lesions were ≥10 mm and 102 were
6 – 9 mm in size.
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Fig. 2. Application of the CT acquisition parameters as external features within the
CAD scheme. Each external feature was combined with the same 6 conventional image-
based shape and texture features. A statistical classifier analyzes the features to reduce
FP detections.

Table 1 summarizes the value range of the CT acquisition parameters between
the training and testing cases.

Table 1. Minimum and maximum values of the CT acquisition parameters in the
training and testing cases

Training Testing

Feature Min. Max. Min. Max.

ST 1.0 5.0 1.0 5.0
RI 1.0 5.0 0.59 2.0
TC 50 408 28 300
RS 0.50 0.97 0.51 0.97
FS 0.7 1.2 0.7 1.2
ET 27 3100 478 1825
K 0 1 0 1
SR 0.10 0.72 0.14 0.79

2.4 Evaluation

To provide clinically meaningful results, we limited the number of detections
that can be displayed by the CAD scheme to a maximum of 15 per patient. It
is likely that a display of a larger amount of CAD detections, most of which
are FP detections, would make the use of computer-assisted interpretation too
tedious for clinical practice. Given this constraint, we determined the maximum
detection sensitivity and the median number of FP detections per patient.
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To assess the statistical significance of the effect of a feature combination on
detection accuracy, a pair-wise randomization test was performed by comparing
the detection accuracies of CAD using the conventional 6 features (F6) with
that of using the F6 together with one of the CT acquisition parameter fea-
tures. The figure-of-merit (FOM) was the partial area under the free-response
receiver-operating characteristic (FROC) curve, where the partial area was cal-
culated to the left from the point where either CAD scheme reached its maximum
sensitivity [2].

3 Results

Table 2 shows the per-lesion detection accuracy of CAD in the testing set for
all advanced lesions ≥6 mm. The first row (F6) shows the result with the
6 conventional features, whereas the other rows show the result of an indi-
cated combination of 7 features. The use of the SR-feature yielded highest
increment in detection sensitivity, but the improvement was not statistically
significant.

Table 2. Per-lesion detection accuracy of CAD for advanced polyps and flat lesions.
Arrows indicate improvement of detection sensitivity as compared with the original
feature set (F6; first row).

Sensitivity FPs/case Sensitivity FPs/case

Features ≥10 mm median 6 – 9 mm median

F6 91% 11 81% 12

F6 + SR ↑92% 15 ↑85% 15

F6 + TC 91% 14 77% 15

F6 + ST ↑92% 13 ↑84% 12

F6 + RI ↑92% 12 79% ↓9
F6 + K ↑92% 11 ↑83% ↓11
F6 + FS ↑92% ↓10 81% ↓10
F6 + RS 91% 12 80% 12

F6 + ET ↑92% ↓10 80% 13

For polyps ≥6 mm, the small improvement in detection accuracy by use of
the SR, from 0.71 [0.706, 0.714] to 0.71 [0.710, 0.717] (the numbers in brackets
indicate 95% confidence intervals), was not statistically significant. However,
for flat lesions ≥6 mm, the use of SR improved the overall per-lesion detection
accuracy significantly from 0.68 [0.674, 0.690] to 0.70 [0.689, 0.702] (p < 0.05).
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Table 3 shows the detection result for advanced flat lesions. Again, the use
of the SR yielded most improvement in detection sensitivity. For flat lesions 6 –
9 mm, the improvement in overall detection accuracy from 0.61 [0.595, 0.624] to
0.64 [0.628, 0.654] was statistically significant (p < 0.01).

Table 3. Per-lesion detection accuracy for advanced flat lesions. Arrows indicate im-
provement of detection performance as compared with the original feature set (F6; first
row).

Sensitivity FPs/case Sensitivity FPs/case

Features ≥10 mm median 6 – 9 mm median

F6 100% 6 75% 5

F6 + SR 100% ↓4 ↑81% 7

F6 + CR 100% 6 63% 14

F6 + ST 100% ↓4 75% 6

F6 + RI 100% ↓4 75% 7

F6 + K 100% 10 75% 11

F6 + FS 100% 8 75% 6

F6 + RS 100% ↓4 75% 8

F6 + ET 100% 8 75% 7

The improvement of overall per-lesion detection accuracy by the SR-feature
was highly significant for carcinomas ≥6 mm. The detection accuracy improved
from 0.77 [0.759, 0.773] to 0.83 [0.827, 0.837] (p < 0.000001). In contrast, for
adenomas, the overall per-lesion detection accuracy was reduced marginally but
significantly, from 0.77 [0.771, 0.777] to 0.77 [0.762, 0.768] (p < 0.001).

4 Discussion

The results indicate that the acquisition parameters of CTC scans can indeed
be used successfully as external features to improve the detection accuracy of
CAD. However, only few parameters yielded a meaningful improvement, and
the precise effect depends on the type of target lesion. In particular, only the
SR-feature yielded statistically significant improvements. With SR, the detection
accuracy improved significantly in the detection of flat lesions ≥6 mm in size,
advanced flat lesions 6 – 9 mm in size, and carcinomas ≥6 mm in size.

It is not particularly surprising that the use of the SR-feature yielded mean-
ingful improvement in CAD performance. In previous studies, CAD performance
has been found to be highly dependent on z-axis spatial resolution. The SR fea-
tures appears to provide meaningful adjunct information about the anisotropy
of physical image resolution, thereby improving CAD performance [4].
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We used CT acquisition parameters that can be acquired from the header data
of DICOM files. A limitation of this approach is the confusion and inconsistency
of the terminology that is used by the different manufacturers and their scanner
models. For example, some operating modes of the scanners can yield different
effective values than what is specified by the DICOM header, and a parameter
value may have different effects on different scanners. Therefore, for a practical
application, a more detailed scanner-specific analysis of the optimal parameter
values may be needed.

Another limitation of the study is that we did not consider combinations of
CT acquisition parameter features but we analyzed the effect of each feature one
at a time. In combination, they could have a greater impact on improving the
detection accuracy of CAD.

5 Conclusion

We investigated the application of CT acquisition parameters as external features
with conventional image-based features for improving the detection accuracy of
CAD in CTC. A CAD scheme was trained and tested with large independent sets
of clinical CTC cases from multiple institutions. The results indicate that the use
of the so-called slice-ratio feature in particular can yield significant improvement
in the detection of flat lesions and carcinomas.
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Abstract. Several effective machine learning and pattern recognition schemes 
have been developed for medical imaging. Although many classifiers have been 
used with computer-aided detection (CAD) for computed tomographic 
colonography (CTC), little is known about their relative performance. This pilot 
study compares the performance of several state-of-the-art classifiers and 
feature selection methods in the classification of lesion candidates detected by 
CAD in CTC. There were four classifiers: linear discriminant analysis (LDA), 
radial basis function support vector machine (RBF-SVM), random forests (RF), 
and gradient boosting machine (GBM). There were five feature selection 
methods: sequential forward inclusion (SFI) of principal components (PCs), 
univariate filtering (UF), UF of PCs, recursive feature elimination (RFE), and 
RFE of PCs. A strategy of using all available features was tested also. For 
evaluation, 232,211 detections by a CAD system on 1,211 patients were 
subsampled randomly to create 10 different populations of 500 true-positive 
(TP) and 500 false-positive (FP) detections. The classifier performance was 
evaluated by use of the area under the receiver operating characteristic curve of 
3 repeated 10-fold cross-validations. According to the result, the discrimination 
performance of the RBF-SVM classifier with feature selection by the RFE of 
PCs compared favorably with other methods, although no single classifier 
outperformed other classifiers under all conditions and feature selection 
schemes.  

Keywords: Classification, feature selection, comparative performance, machine 
learning, virtual colonoscopy. 

1 Introduction 

Computed tomographic colonography (CTC) is a promising alternative to traditional 
invasive colonoscopy methods used in the detection and removal of polyps of the 
colon [1-3]. Computer-aided detection (CAD) systems for CTC typically make use of 
a classifier to discriminate between true-positive (TP) and false-positive (FP) findings 
generated by a polyp candidate detection system based on a set of features extracted 
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from the candidates [4-6]. However, CAD systems for CTC still display large 
numbers of FP detections [7]. Consequently, improving the detection specificity of 
CAD remains a challenging task in CTC, and a powerful classification engine is 
needed to deal with this difficult classification problem [8, 9]. 

The aim of a classification system is to classify an input pattern presented to the 
system to a correct category based on a feature vector of the input pattern. The 
complexity of the classification problem relies on the variability of the feature values for 
patterns in the same class relative to the difference between feature values for patterns in 
different classes. As a result, the optimality of a classifier depends on a specific dataset 
[10]. Thus, the goal of achieving the optimal performance for a pattern recognition 
system may be inconsistent with obtaining the best performance for a single classifier, 
which may also be associated with different feature selection schemes. This pilot study 
compared several state-of-the-art classifiers and feature selection schemes by using a 
large database in the classification task for CAD in CTC. 

2 Method 

2.1 Feature Selection 

The goal of feature selection is to select a subset of relevant features for building 
robust classifiers by removing irrelevant and redundant features from input data. This 
is expected to improve the speed of construction and the accuracy of the final 
classifier. 

From a theoretical perspective, it can be shown that optimal feature selection for 
supervised learning problems requires an exhaustive search of all possible subsets of 
features. However, for a large number of features or samples, an exhaustive search for 
an optimal feature set is impractical. Therefore, instead of an optimal set, in practice a 
supervised learning algorithm searches for a satisfactory approximation of the optimal 
set of features for a particular classifier. 

In this study, three principal state-of-the-art methods were considered for feature 
selection, including 1) principal component analysis (PCA) [11], 2) univariate 
filtering (UF) [12], and 3) recursive feature elimination (RFE) [13]. 

Principal Component Analysis. The PCA is a well-established method for feature 
extraction and dimensionality reduction. It is based on the assumption that most 
information about features is contained in the directions along which the variation of 
the features is largest. The most common derivation of PCA is a standardized linear 
projection, which maximizes the variance in the projected space.  

Univariate Filtering. UF is a feature selection method that reviews the features by 
using univariate statistical methods, such as the t-test or ANOVA models, to assess 
the efficacy of each individual feature in class prediction. UF is relatively dominantly 
used because of its simplicity and efficiency. However, it does not take into account 
feature-feature interactions, possibly leading to less accurate classifiers. UF is based 
on including the highest-ranked individual features depending on a chosen association 
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measure. Since UF applies independent evaluation criteria without the process of 
discovering patterns in data, it does not inherit any bias of a learning algorithm and it 
is also computationally efficient. UF is preferred in applications where application of 
data mining algorithms would be too costly or unnecessary in dealing with high 
dimensional features. 

Recursive Feature Elimination. RFE is a multivariate approach based on the 
information content of a group of features, which uses successive elimination of 
individual features ranked lowest according to a criterion, aimed at keeping the 
discrimination ability as high as possible. It attaches a weight to each available 
feature. Based on the assumption that the features with the smallest weights are least 
informative in a feature set, a predefined number of features is removed iteratively 
from the set of available features. RFE involves combinatorial searches through the 
space of feature subsets, guided by the prediction ability of a specific classification 
model. Since grouping and predictive analysis of multidimensional features are used 
to control the selection of feature subsets, RFE tends to give superior performance as 
feature subsets found are better suited to the predetermined learning algorithm. 
Consequently, it is more computationally expensive than the UF. 

In this study, a total of five feature selection methods derived from PCA, UF, and 
RFE were considered: 1) sequential forward inclusion (SFI) of the principal 
components (PCs) of PCA, 2) UF, 3) UF of PCs, 4) RFE, and 5) RFE of PCs. For 
comparison, also a strategy of using all available features without explicit feature 
selection was considered. 

2.2 Classification 

The goal of classification is to identify the correct category of an input pattern. The 
classification is typically based on an initial training set of samples whose category is 
known. 

In this study, the following state-of-the-art classifiers were considered: 1) linear 
discriminant analysis (LDA) [11], 2) radial basis function (RBF) support vector 
machine (RBF-SVM) [14], 3) random forest (RF) [15, 16], and 4) gradient boosting 
machine (GBM) [17, 18]. Each classifier, except for LDA, evaluated the effect of its 
model tuning parameters by using resampling. Optimal tuning parameters were 
chosen across those parameters. Finally, the classification performance was estimated 
from a training set. 

Linear Discriminant Analysis. LDA is a robust and fundamental classifier. It is used 
for finding an optimal transformation that maps input data into a lower dimensional 
space to minimize the within-class distance and simultaneously to maximize the 
between-class distance, thus achieving maximum discrimination. LDA is closely 
related to PCA in that both look for linear combinations of features which best 
explain the data. LDA attempts to model the difference between classes of data 
explicitly, whereas the PCA does not consider differences between classes. 
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Support Vector Machine. The SVM is based on the concept of decision planes that 
define boundaries. A decision plane is one that separates between a set of features 
having different class memberships. The classification is based on separating hyper-
planes that distinguish between objects of different class memberships in a multi-
dimensional space. The basic idea behind the SVM is to create nonlinear boundaries 
by generating linear boundaries on a higher-dimensional space, where the original 
features are rearranged by use of a set of mathematical functions known as kernels. 
There are a number of kernels that can be used in SVM models, including linear, 
polynomial, sigmoid, and RBF kernels. The RBF-SVM is the most popular choice 
among the kernel types used in the SVM. 

Random Forest. The RF classifier is an ensemble of decision trees, which combines 
the predictions of many classification trees to obtain more accurate classifications. 
Many samples of the same size as the original dataset, called bootstrap samples, are 
drawn from the dataset with replacement. In each bootstrap sample, approximately 
68% of the observations in the original dataset occur one or more times. The 
observations in the original dataset that do not occur in the bootstrap sample are said 
to be out-of-bag for that bootstrap sample. For each bootstrap sample, a decision tree 
is built. At each step of the building process, only a small number of variables are 
available for construction of the decision tree. There is no pruning of the decision 
trees of a RF classifier. The trees of the RF are then used for constructing predictions 
for all out-of-bag observations of bootstrap samples. The predicted class of an input 
sample is acquired by voting for the predicted class among all the trees. 

Gradient Boosting Machine. Boosting is a process that combines many separate 
prediction rules, some of which may be quite weak on their own, to produce a more 
powerful combined classifier. The GBM is another procedure that, like the RF, fits 
many trees to a single dataset. The GBM differs from the RF in that the trees are built 
sequentially, with observation weights updated according to whether the observations 
are correctly or incorrectly classified. Boosting iteratively adds basis functions in a 
greedy fashion such that each additional basis function further reduces the selected 
loss function. The GBM is one of the more novel classifiers that, to date, has rarely 
been applied in the analysis of medical images. 

2.3 Materials and Evaluation 

The empirical data for this study included potential lesion candidates detected by a  
CAD system [19] from a large clinical CTC screening population of 1,211 patients at 
20 medical centers [20]. The patients were prepared cathartically for the CTC 
examination. Orally administered fecal tagging was used for 37% of the patients. The 
CTC data were acquired by use of 11 CT scanners with an average slice thickness of 
2.35 mm (range, 1.0 – 5.0 mm) and average current of 156 mA (range, 50 – 408 mA). 
Approximately 18% of the patients had clinically significant colonoscopy-confirmed 
lesions. There were 317 lesions ≥6 mm: 40% of the lesions measured ≥10 mm and 
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60% measured 6 – 9 mm in the largest diameter. Approximately 84% of the lesions 
had polypoid morphology and 16% had flat morphology. 

There were 232,211 CAD detections, including 929 TP detections and 231,282 FP 
detections. Because some of the lesions were detected multiple times, the number of 
CAD detections is higher than that of confirmed true lesions in the patients. The 
detections were sampled randomly without replacement for construction of 10 
population samples for an unbiased evaluation of classifier performance under various 
conditions. Each subsample contained 500 TP and 500 FP CAD detections. Each 
detection was characterized by a total of 67 shape and texture features. 

The classifier performance was evaluated by use of three repeated 10-fold cross-
validations, where the performance was measured by use of the area under the 
receiver operating characteristic curve (Az). The Az was assessed for each population 
sample by use of the four different classifiers with each of the five different feature 
selection schemes. Fig. 1 illustrates the study design. 
 
 

 
 

Fig. 1. Diagram illustrating the experiments of the study. The CAD detections were sampled 
randomly to construct 10 population samples. For each population, feature selection was 
performed using one of 5 methods (see Section 2.1) and classification was performed with or 
without feature selection using one of 4 methods (see Section 2.2). Performance evaluated was 
based on the area under the receiver operating characteristic curve for each population (Az), 
average of Az over the 10 populations (m-Az), and average m-Az over the feature selection 
methods or over the classifiers and each feature selection method (average m-Az). 
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3 Results 

The classification performance of the four classifiers is summarized in Tables 1 to 6. 
Tables 1 through 5 show the classifier performance with each of the five feature 
selection methods, whereas Table 6 shows the classifier performance without feature 
selection. Each row shows the result of an indicated population sample, whereas the 
columns indicate the average and standard deviation of the Az value over three 
repeated 10-fold cross-validations of the indicated classifier. Bold numbers indicate 
the highest average of Az for a sample. The bottom row shows the average and 
standard deviation of Az over the 10 population samples. 

If we consider the highest overall classifier performance in terms of the highest 
mean Az (m-Az) over the 10 subsampled populations, the ranking of classifiers varies 
according to the feature selection method. The performance was highest for the RBF-
SVM without feature selection (0.800; Table 6), followed by the RF with RFE (0.799; 
Table 4), followed by RBF-SVM with the SFI of PCs (0.798; Table 1) and GBM with 
RFE (0.798; Table 4). 

Also, the frequency at which a classifier outperformed the other classifiers in terms 
of the highest Az for each of the 10 populations depended on the feature selection 
method. RBF-SVM outperformed the other classifiers most often with SFI of PCs 
(Table 1), with UF (Table 2), and without feature selection (Table 6). However, LDA 
outperformed the other classifiers with UF of PCs (70%; Table 3) and RFE of PCs 
(40%; Table 5). The RF and GBM classifiers outperformed the other classifiers with 
the RFE feature selection method (Table 4). 

The robustness, or consistency, of a classifier, can be characterized by the average 
m-Az value that the classifier yields for the different feature selection methods. In this 
sense, RBF-SVM yielded the highest performance (0.795), followed by the RF 
(0.794), GBM (0.793), and LDA (0.786). 

Table 1. Performance comparison of classifiers with feature selection by the SFI of PCs. 
Brackets indicate the standard deviation (SD) of Az. The numbers in bold indicate the highest 
value of Az among classifiers for each population sample. 

Population LDA RBF-SVM RF GBM 
1 0.780 [0.040] 0.796 [0.047] 0.789 [0.040] 0.778 [0.041] 
2 0.789 [0.055] 0.796 [0.051] 0.794 [0.050] 0.780 [0.054] 
3 0.810 [0.030] 0.821 [0.028] 0.814 [0.024] 0.812 [0.032] 
4 0.789 [0.039] 0.808 [0.041] 0.802 [0.045] 0.790 [0.038] 
5 0.794 [0.043] 0.790 [0.046] 0.786 [0.057] 0.789 [0.055] 
6 0.806 [0.035] 0.800 [0.041] 0.793 [0.044] 0.798 [0.041] 
7 0.789 [0.035] 0.804 [0.037] 0.790 [0.034] 0.799 [0.036] 
8 0.786 [0.042] 0.790 [0.041] 0.785 [0.042] 0.783 [0.044] 
9 0.776 [0.057] 0.789 [0.064] 0.792 [0.055] 0.781 [0.057] 

10 0.772 [0.052] 0.790 [0.049] 0.791 [0.043] 0.789 [0.039] 

Mean�SD 0.789�0.012 0.798�0.010 0.793�0.009 0.790�0.011 
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Table 2. Performance comparison of classifiers with feature selection by UF 

Population LDA RBF-SVM RF GBM 
1 0.784 [0.040] 0.782 [0.041] 0.790 [0.038] 0.781 [0.048] 
2 0.785 [0.058] 0.793 [0.049] 0.796 [0.054] 0.798 [0.054] 
3 0.809 [0.029] 0.816 [0.024] 0.815 [0.025] 0.807 [0.032] 
4 0.778 [0.047] 0.799 [0.048] 0.793 [0.044] 0.797 [0.053] 
5 0.779 [0.038] 0.785 [0.050] 0.778 [0.055] 0.783 [0.051] 
6 0.790 [0.035] 0.791 [0.042] 0.776 [0.046] 0.771 [0.042] 
7 0.789 [0.035] 0.811 [0.035] 0.792 [0.031] 0.797 [0.027] 
8 0.772 [0.041] 0.791 [0.048] 0.794 [0.042] 0.790 [0.043] 
9 0.764 [0.057] 0.791 [0.053] 0.802 [0.054] 0.796 [0.052] 

10 0.756 [0.056] 0.800 [0.044] 0.780 [0.043] 0.784 [0.035] 

Mean�SD 0.781�0.015 0.796�0.011 0.792�0.012 0.790�0.010 

Table 3. Performance comparison of classifiers with feature selection by UF of PCs 

Population LDA RBF-SVM RF GBM 
1 0.796 [0.040] 0.796 [0.047] 0.792 [0.047] 0.785 [0.041] 
2 0.805 [0.051] 0.799 [0.051] 0.800 [0.043] 0.791 [0.052] 
3 0.819 [0.024] 0.812 [0.028] 0.816 [0.031] 0.815 [0.034] 
4 0.806 [0.038] 0.798 [0.041] 0.791 [0.040] 0.803 [0.038] 
5 0.797 [0.045] 0.769 [0.046] 0.768 [0.060] 0.779 [0.044] 
6 0.804 [0.039] 0.784 [0.041] 0.783 [0.041] 0.790 [0.042] 
7 0.795 [0.035] 0.786 [0.037] 0.784 [0.034] 0.795 [0.031] 
8 0.789 [0.037] 0.782 [0.041] 0.792 [0.035] 0.788 [0.037] 
9 0.782 [0.053] 0.780 [0.064] 0.775 [0.054] 0.783 [0.048] 

10 0.765 [0.054] 0.779 [0.049] 0.772 [0.040] 0.776 [0.043] 

Mean�SD 0.796�0.015 0.789�0.013 0.787�0.014 0.790�0.011 

Table 4. Performance comparison of classifiers with feature selection by RFE 

Population LDA RBF-SVM RF GBM 
1 0.786 [0.041] 0.789 [0.041] 0.800 [0.040] 0.784 [0.044] 
2 0.739 [0.054] 0.798 [0.047] 0.803 [0.050] 0.810 [0.052] 
3 0.805 [0.030] 0.814 [0.025] 0.819 [0.024] 0.806 [0.028] 
4 0.776 [0.047] 0.800 [0.048] 0.798 [0.045] 0.800 [0.046] 
5 0.769 [0.048] 0.788 [0.050] 0.789 [0.057] 0.790 [0.053] 
6 0.802 [0.038] 0.789 [0.042] 0.778 [0.044] 0.785 [0.040] 
7 0.773 [0.034] 0.813 [0.038] 0.799 [0.034] 0.810 [0.027] 
8 0.765 [0.042] 0.790 [0.047] 0.798 [0.042] 0.791 [0.041] 
9 0.759 [0.063] 0.792 [0.053] 0.810 [0.055] 0.801 [0.051] 

10 0.753 [0.054] 0.801 [0.044] 0.791 [0.043] 0.801 [0.039] 

Mean�SD 0.773�0.021 0.797�0.010 0.799�0.011 0.798�0.010 
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Table 5. Performance comparison of classifiers with feature selection by RFE of PCs 

Population LDA RBF-SVM RF GBM 
1 0.800 [0.042] 0.799 [0.044] 0.799 [0.041] 0.787 [0.044] 
2 0.800 [0.055] 0.780 [0.058] 0.802 [0.046] 0.773 [0.051] 
3 0.817 [0.029] 0.809 [0.029] 0.815 [0.029] 0.814 [0.042] 
4 0.796 [0.040] 0.796 [0.036] 0.805 [0.043] 0.804 [0.042] 
5 0.807 [0.044] 0.796 [0.045] 0.788 [0.054] 0.785 [0.047] 
6 0.811 [0.037] 0.794 [0.034] 0.796 [0.039] 0.817 [0.035] 
7 0.810 [0.035] 0.792 [0.040] 0.773 [0.044] 0.798 [0.034] 
8 0.797 [0.037] 0.759 [0.044] 0.804 [0.034] 0.797 [0.029] 
9 0.772 [0.059] 0.782 [0.059] 0.789 [0.057] 0.792 [0.051] 

10 0.752 [0.045] 0.793 [0.046] 0.801 [0.039] 0.804 [0.038] 

Mean�SD 0.796�0.020 0.790�0.014 0.797�0.012 0.797�0.013 

Table 6. Performance comparison of classifier without feature selection 

Population LDA RBF-SVM RF GBM 
1 0.785 [0.041] 0.792 [0.043] 0.797 [0.040] 0.783 [0.040] 
2 0.785 [0.054] 0.800 [0.049] 0.801 [0.050] 0.794 [0.057] 
3 0.804 [0.032] 0.815 [0.025] 0.815 [0.023] 0.805 [0.033] 
4 0.782 [0.043] 0.809 [0.044] 0.798 [0.041] 0.799 [0.043] 
5 0.784 [0.047] 0.792 [0.050] 0.784 [0.056] 0.788 [0.051] 
6 0.798 [0.038] 0.799 [0.042] 0.776 [0.043] 0.780 [0.038] 
7 0.784 [0.035] 0.813 [0.038] 0.799 [0.031] 0.809 [0.029] 
8 0.776 [0.043] 0.791 [0.044] 0.794 [0.042] 0.790 [0.038] 
9 0.772 [0.057] 0.794 [0.055] 0.803 [0.054] 0.799 [0.052] 

10 0.763 [0.048] 0.798 [0.046] 0.791 [0.043] 0.798 [0.038] 

Mean�SD 0.783�0.012 0.800�0.009 0.796�0.011 0.794�0.009 

Similarly, we can also characterize the robustness of a feature selection method by 
calculation of the average m-Az value of the classifiers yielded by each  
selection method. In this sense, RFE of PCs yielded the highest performance (average 
of m-Az = 0.795; Table 5), followed by the strategy without feature selection (0.793; 
Table 6), SFI of PCs (0.793; Table 1), RFE (0.792; Table 4), UF of PCs (0.791; Table 
3), and UF (0.790; Table 2). 

4 Discussion 

The preliminary results of this pilot study indicate that the RBF-SVM classifier 
compares favorably with other state-of-the-art classifiers in the discrimination of TP 
and FP CAD detections in CTC. The feature selection method of RFE of PCs 
compares favorably with other feature selection methods. However, no single 
classifier could be considered optimal under all conditions, including the use of 
different population samples or different feature selection methods. 



86 S.H. Lee, J.J. Näppi, and H. Yoshida 

 

In this pilot study, we used balanced sets of TP and FP samples. In practice, CAD 
systems produce unbalanced samples with a large number of FP samples and 
relatively few TP samples. However, the use of balanced data sets for the purposes of 
constructing classifiers and for estimating classification accuracy would often be 
more convenient and faster. Further work is needed for establishing the effect of using 
balanced and unbalanced sets on the projected classification accuracy. 

Computational demands can place constraints on the classification problem. 
Among feature selection methods, RFE can be considered as a rather slow method for 
calculation, whereas the calculation for PCA is quite fast. The UF method is faster 
than the RFE, but slower than the PCA method. Among classifiers, the construction 
of SVM and GBM classifiers is remarkably slower than that of RF and LDA 
classifiers. The relatively small differences of the performance results suggest that 
although the use of fast classifiers and feature selection methods may reduce 
classification accuracy over that of slower methods, the reduction in overall accuracy 
is not necessarily meaningful in a practical application. 
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Abstract. The increasing radiation dose in dual-energy CT (DE-CT) scanning 
due to the double exposures at 80 kVp and 140 kVp is a major concern in the 
application of DE-CT. This paper presents a novel image-space denoising me-
thod, called piecewise structural diffusion (PSD), for the reduction of noise in 
low-dose DE-CT images. Three principle structures (plate, ridge, and cap) and 
their corresponding diffusion tensors are formulated based on the eigenvalues 
of a Hessian matrix. The local diffusion tensor that is piecewise-defined on the 
domain of shape index is composed by a linear combination of two diffusion 
tensors of the associated principle structures. A single diffusion tensor calcu-
lated from the fused DE-CT image is applied to both high- and low-energy im-
ages. In the DE-CT colon phantom study, we demonstrated that DE-CT images 
filtered by PSD yielded the similar image quality with half of radiation doses. 

Keywords: Noise reduction, dual-energy CT, dual-energy CT colonography. 

1 Introduction 

The dual-energy CT (DE-CT) theory was first introduced by Alvarez and Macovski 
more than three decades ago [1]. With the recent technical advances, DE-CT became 
widely available in clinical practice. It provides an effective means for estimation of 
material composition by an analysis of two X-ray attenuation values acquired simul-
taneously at two photon energies (such as 80 kVp and 140 kVp). This ability of ma-
terial decomposition has generated various new clinical applications that are other-
wise unavailable in conventional single-energy CT [2].  

Although DE-CT is highly promising, the potential of increased radiation dose, in 
the vicinity of one and half to two times of the dose of a routine single-energy CT 
examination due to the double exposures at 80 kVp and 140 kVp, is a major concern 
in the clinical application of DE-CT, because the potential risk of radiation-induced 
cancer due to the increasing radiation dose may not be negligible. Therefore, it is 
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imperative to lower the radiation dose of DE-CT to the level that is comparable to 
conventional single-energy CT without sacrificing the image quality.  

Reduction of radiation dose (such as by lowering the tube current) may cause high 
image noise, low image contrast, and increased artifacts [3]. Major CT manufactures 
have been developing solutions to reducing radiation dose for DE-CT scanning, such 
as the automatic dose exposure control [4] and iterative reconstruction methods [5]. 
These methods are based on either the scanner hardware or the projection data (sino-
gram). An alternative solution is to apply noise reduction filters to reconstructed DE-
CT images acquired with a low radiation dose, i.e., image-space denoising filters.  

The purpose of this study is to develop a novel image-space DE-CT noise reduc-
tion filter called piecewise structural diffusion (PSD), and to evaluate the performance 
and the potential to reducing radiation dose, by using nine DE-CT datasets of a colon 
phantom scanned at various radiation doses. 

The main contributions of the study are (1) PSD can deal with multiple structures 
in one diffusion process, and (2) a diffusion function is piecewise-defined on shape 
index [6-9]. Conventional diffusion filters works on only one type of structures, such 
as either tube or surface. We defined multiple principle structures (plate, ridge, and 
cap) based on anatomic features of interest, and used the scalar value of shape index 
to characterize a local 3D topologic shape. A local structure and its diffusion function 
were piecewise-defined on shape index. Our secondary contribution is to apply a sin-
gle diffusion tensor to both high- and low-energy images in DE-CT, which takes ad-
vantages of both images for estimating a reliable local structure. We developed and 
demonstrated PSD filter in DE-CT colonography images. 

2 Methods 

2.1 Previous Work 

Noise reduction filters have been developed and assessed for lowering image noise 
and improving image quality on CT images for decades [10]. Perona and Malik intro-
duced the anisotropic diffusion process [11], in which smoothing is formulated ma-
thematically as a diffusive process, , , ∇ , , (1) 

where div is the divergence operator, ∇  is the gradient of the image and the diffu-
sion strength is controlled by the diffusion tensor , .  ,  is the image in-
tensity at spatial coordinate x and iteration step t.  

In general, the diffuse tensor :  is a matrix that enforces the direc-
tional preference of the diffusion along the principal directions. The diffusion tensor 
must satisfy  continuous, symmetric, and positive definite. Therefore,  is a 
symmetric positive definite matrix for a nonlinear anisotropic diffusion.  

Conventional diffusion filters deals with one type of structures, such as edge-
enhancing diffusion that enhances surface (edge) and coherent-enhancing diffusion 
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Because diffusion tensor  in equation (2) is required to be positive definite, all 
eigenvalues of  are positives. This also indicates that the diagonal element of Λ x  
is positive definite, i.e., 0. Therefore, we assume, without loss of generality, 
that  is a function of | |. 
2.3 Diffusion Functions of Principle Structures 

A diffusion function  of a principle structure is defined as a function of eigenva-
lues. We define  as a function of : 1           ; | |1 | | ; otherwise, (3) 

where  is a constant of eigenvalue to indicate whether there is a structure at point   
(in the case of  | | ), and 2.0 is a threshold parameter. 

The diffusion functions and  for a principle structure are calculated based 

on the ratios of   and  : 

 1 · · , (4) 

where  1,2,  and 10 is a threshold parameter. 
In order to stop the diffusion at edges near zero-crossing, a weight function  is 

defined by use of the directional second derivative  along the normal :    1 0.9 , (5) 

where  5 is a threshold parameter. Note that 0.0 at zero-crossings. 
The final diffusion function is formulated by . 

2.4 Shape Index 

A shape index  characterizes the local 3D topologic shape at a point ∈  by 
use of the two principal curvatures  and  [6],[11],[12],[13]. Because the 
sign of a curvature defines the bending direction, i.e., inner or outer, a positive  
represents a convex shape, whereas a negative  represents a concave shape. Under 
the condition of 0, the shape index is defined by absolute value of curvatures as 
follows: 2 | | | || | | | , (6) 

where 0.001.  
Fig. 1 illustrates that, by using equation (6), it is possible to determine to which of 

the three topologic shapes, plate, ridge, or cap, a point belongs based on a single value  
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of . The shape index is normalized 
between 0 and 1. Thus, point  that 
belongs to the plate shape has  values 
around 0; ridge, around 0.5; and cap, 
around 1.0. The transition from one 
topologic shape to another occurs conti-
nuously. 
 
 

2.5 Piecewise Structural Diffusion 

Under the condition of  | | | | | | 0, the local shape at a point  can be 
represented as a combination of two principle structures, called piecewise-defined 
structure. Point  that has a combination of plate and ridge has 0.5; other-
wise, it has a combination of ridge and cap. Therefore, a diffusion function is a 
piecewise function defined on , called piecewise structural diffusion (PSD), as 
shown in equation (7).  1 · · ; 0.0 0.51 · · ; 0.5 1.0 ,  (7) 

where  is the weighting factor, which is in the range of 0.0, 1.0 . 
Suppose that 1 and 2 are two principle structures at point  so that 

. A simple form of  is a linear function of , as shown in equation (8). . (8) 

2.6 Dual-Energy CT Diffusion 

In DE-CT scanning, there are two CT values at a point ,  and , which 
are the CT values at low (80 kVp) and high (140 kVp) energies, respectively. In gen-
eral, 80 kVp images provide greater contrast than that of 140 kVp, but its image quali-
ty is limited due to the increased noise. Because  and  are CT values at differ-
ent photon energies of the same anatomic structures, the underlying diffusion struc-
tures are essentially the same for both images. Therefore, we applied a single diffu-
sion tensor to both images as illustrated in Fig. 2. 

 

Fig. 2. Illustration of dual-energy CT diffusion iteration 
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The single diffusion tensor, Λ x , for both  and  was calculated by use of 
the fused images. Conventionally, high-energy and low-energy images are fused by a 
linear blending function: a mixing of 30% 80 kVp and 70% 140 kVp (0.3 ·0.7 · . 

3 Experiments and Results 

We used a custom-ordered anthropomorphic colon phantom (Phantom Laboratory, 
Salem, NY) that was made of a urethane-mix material with a CT value of -100±10 
HU (120 kVp), and  cast around simulated bony structures of a pelvis, 2 femurs, and 
3 lumbar vertebrae. We installed a question-mark-shaped simulated colon with a 
length of approximately 50 cm and diameters of 3.5 ~ 4.0 cm. To simulate the semi-
solid fecal materials in fecal-tagging CTC, we filled the colon phantom, prior to imag-
ing, with 300 ml of simulated non-cathartic tagged fecal residues that were a mixture 
of aqueous fiber (psyllium), ground foodstuff (cereal), and non-ionic iodinated con-
trast agent (Omnipaque iohexol, GE Healthcare) at a concentration of 40 mg/ml. 

The phantom was scanned on a DE-CT scanner (SOMATON Definition Flash, 
Siemens Healthcare) with two different photon voltages: 80 kVp and 140 kVp. We 
applied nine tube current settings, 12 ~ 74 mAs for 140 kVp and 60 ~ 370 mAs for 80 
kVp, to test image noise at different radiation doses. The radiation dose index (CTDI-
vol) ranged from 2.79 to 16.77 mGy. For all scanning, we applied the soft tissue re-
construction algorithm and a 0.625 mm slice reconstruction interval. In total, we gen-
erated nine DE-CT datasets (512x512x537) for testing.  

We used the same parameter settings for all of our denoising experiments. With a 
unit grid spacing in all dimensions, we empirically set ∆ 0.125 for a stable nu-
meric iteration of the diffusion equation (1). The number of iterations in the diffusion 
process was set to 50. The standard deviation of Gaussian derivatives for calculation 
of Hessian matrix and eigenvalues was set to 1.0.  

For the assessment of the image quality after noise reduction, two groups of image 
quality metrics were evaluated: 

• To measure the noise level of the images: the mean (μ) and standard deviation 
(SD) of the images.   

• To measure the local structure similarity: quality index of local variance 
(QILV) [11] (value range [0.0, 1.0]) referred to the images scanned at the 
highest radiation dose. 

Table 2 lists the measurements of mean SD (MSD) and QILV for both original and 
denoised images at 140 kVp and 80 kVp. By comparison of the shaded cells in the 
table, we observed that the PSD filter can reduce the radiation dose approximately 
50% for the 140 kVp images and more than 50% for the 80 kVp images.  

Fig. 3 demonstrates an example of the effect of PSD on the reduction of radiation 
dose. The images at the upper row are the original images scanned at a CTDIvol of 
13.65 mGy, and the lower row shows the PSD-denoised images that were scanned at 
a CTDIvol of half of the dose, i.e., 6.83 mGy. Both groups of images have the same  
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Table 2. Comparison of mean standard deviation (MSD) and quality index of local variance 
(QILV) in both 140 kVp and 80 kVp images 

Dose 
(mGy) 

140 kVp Images 80 kVp Images 

Original Denoised Original Denoised 

MSD QILV MSD QILV MSD QILV MSD QILV 
2.79 69.2 0.86 49.0 0.97 97.1 0.93 63.0 0.97 
3.50 66.5 0.90 45.9 0.98 85.1 0.95 52.8 0.98 
4.65 55.9 0.94 36.2 0.99 79.0 0.97 48.4 0.98 
6.83 46.9 0.98 26.6 0.99 69.2 0.98 39.0 0.99 
9.10 41.0 0.99 21.0 0.99 67.4 0.99 36.2 0.99 

11.34 38.0 0.99 19.5 0.98 61.4 0.99 32.1 0.98 
13.65 35.6 0.99 17.8 0.98 51.2 0.99 25.9 0.98 
15.92 30.8 0.99 14.3 0.98 48.4 0.99 26.3 0.98 
16.77 30.4 1.00 13.6 0.99 48.0 1.00 25.7 0.99 

 

 

  

Fig. 3. An example of the effect of PSD filter on the reduction of radiation dose. The upper row 
shows the original images scanned at 13.65 mGy with MSD of 35.6 (140 kVp) and 51.2 (80 
kVp). The lower row shows the denoised images scanned at 6.83 mGy with MSD of 26.6 (140 
kVp) and 39.0 ( 80 kVp). Both groups have the same QILV of 0.99. 

QILV values, i.e., the same level of structure similarity referred to the images 
scanned at the highest dose. However, the MSD of the images scanned at 13.65 mGy 
(upper row) were 35.6 (140 kVp) and 51.2 (80 kVp), whereas the MSD of the PSD-
denoised images scanned at 6.83 mGy (lower row) were 26.6 (140 kVp) and 39.0 (80 
kVp), respectively. We observed that the half-dose DE-CT images have less noise 
after the application of PSD filter than that of the full-dose images. 

We compared the performance of PSD with six other denoising methods: binomial 
filter (BF), Gaussian filter (GF), curvature anisotropic diffusion (CAD), curvature 
flow (CF), gradient anisotropic diffusion (GAD), and min/max curvature diffusion 
(MMCD) by use of the recommended parameters [14]. We compared the SDs before 

(140 kVp) (80 kVp)

Original 
images 
scanned at 
13.65 mGy.

(140 kVp) (80 kVp)

PSD-denoised
images 
scanned at 
6.83 mGy.
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and after application of seven denoising algorithms on five materials: soft-tissue, 
bone, tagged materials, fat, and luminal air. The noise reduction rate is define as SD SDf /SD · 100% . Mean  values of nine datasets 
are compared by the color bars in Fig. 4 for both 140 kVp and 80 kVp images. In 
addition, we measured the QILV referred to the highest dose images to compare the 
effect of preservation of structural details after denoising. We observed that, although 
BF and GF had a high noise reduction rate, their QILV values were low compared to 
the other five diffusion filters. These results show that both BF and GF removed im-
age noise by losing image details, which tend to blur the images. On the other hand, 
five diffusion filters showed better performance on detail preservation as indicated by 
the high QILV values. Among five diffusion filters, PSD performed better on noise 
reduction than other diffusion filters, especially in the low-energy images. 

4 Conclusions 

Image-space noise reduction filter is an alternate means for lowering the radiation 
dose in DE-CT. This paper presents a novel anisotropic diffusion filter called PSD 
that used a piecewise structural diffuse tensor for preserving multiple types of struc-
tures in DE-CT images. The proposed PSD filter was evaluated by use of nine DE-CT 
datasets of a colon phantom scanned at various radiation doses. The results demon-
strated that the application of PSD may reduce more than half of the radiation dose in 
DE-CT scanning. In addition, PSD outperformed other diffusion filters on noise re-
duction in DE-CT images, especially in low-energy images. Further clinical studies 
will be conducted to demonstrate the performance of PSD filter on low-dose DE-
CTC-based colon cancer screening and other clinical applications such as the elec-
tronic cleansing [15-17]. 

  
(a) 140 kVp    (b) 80 kVp 

 

Fig. 4. Comparisons of seven denoising algorithms: binomial filter (BF), Gaussian filter 
(GF), curvature anisotropic diffusion (CAD), curvature flow (CF), gradient anisotropic diffu-
sion (GAD), min/max curvature diffusion (MMCD), and the proposed PSD, in (a) 140 kVp 
images and (b) 80 kVp images. The left vertical axis is the mean SD reduction: SD SDf /SD · 100%, which measures the performance on noise reduc-
tion. The color bars show the mean  in five materials. The right vertical axis is the mean 
QILV.  The dashed line displays the mean values of QILV of the filtered images referred to 
the highest dose images.  
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Abstract. Accurate diagnosis of Crohn’s disease (CD) has emerged as
an important medical challenge. Because current Magnetic resonance
imaging (MRI) analysis approaches rely on extensive manual segmenta-
tion for an accurate analysis, we propose a method for the automatic
identification and localization of regions in abdominal MR volumes that
have been affected by CD. Our proposed approach will serve to aug-
ment results from colonoscopy, the current reference standard for CD
diagnosis. Intensity statistics, texture anisotropy and shape asymmetry
of the 3D regions are used as features to distinguish between diseased
and normal regions. Particular emphasis is laid on a novel entropy based
asymmetry calculation method. Experiments on real patient data show
that our features achieve a high level of accuracy and perform better
than two competing methods.

Keywords: Crohn’s disease, supervised learning, magnetic resonance
imaging.

1 Introduction

Inflammatory bowel diseases (IBDs) constitute one of the largest healthcare
problems in the Western world afflicting over 1 million European citizens. Out
of these, nearly 700, 000 suffer from Crohn’s disease (CD). Crohn’s disease is a
autoimmune IBD that may affect any part of the gastrointestinal tract causing
abdominal pain, diarrhea, vomiting or weight loss. Assessment of CD severity is
essential to determine the therapeutic strategy. Currently, the reference standard
for diagnosis relies on results of colonoscopy and biopsy samples [13]. However,
the procedure is invasive, requires extensive bowel preparation, and gives in-
formation only on superficial abnormalities. Therefore it is beneficial to have a
non-invasive approach to detect CD.

Scope of Our Work: This paper proposes a method to detect and localize CD
afflicted regions from input abdominal magnetic resonance (MR) volumes with-
out an explicit segmentation of the bowel wall. Our method will serve as a tool

H.Yoshida,D.Hawkes, M.W.Vannier (Eds.): Abdominal Imaging 2012, LNCS 7601, pp. 97–106, 2012.
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to assist clinicians, reduce reliance on colonoscopy and help in rapid diagnosis
of CD. We extract features from 3D volumes of interest (VOI) and use them
to detect diseased regions. Intensity statistics, texture anisotropy and curvature
asymmetry were used as features to discriminate between diseased, normal and
background (normal non-intestine) regions. Also, higher order intensity statistics
like kurtosis and skewness that cannot be processed by the human visual system
(HVS) [9] are used for disease classification. Anisotropy of features is a measure
of a region’s asymmetry and has been used for identifying tumorous regions [11].
We propose a novel entropy based method to calculate the texture anisotropy
and curvature asymmetry of a VOI. Experimental results show a high degree
of accuracy in detecting CD. This paper makes the following contributions: 1)
an entropy based approach to calculate anisotropy and asymmetry of a region
is proposed; 2) it is combined with higher order image statistics to identify CD
affected areas in abdominal MRI. We describe our method in Section 2, present
results in Section 3 and conclude with Section 4.

Related Work on Disease Classification: Several drawbacks of colonoscopy like
invasiveness, procedure related discomfort and risk of bowel perforation has led
to the exploration of imaging techniques like sonography, computed tomography
(CT) and MRI to assess extension and severity of IBDs [17]. MRI has the poten-
tial to overcome limitations of sonography (gas interposition) and CT (exposure
to ionising radiations) because of high tissue contrast, lack of ionising radiations
and lower incidence of adverse events related to intravenous contrast. Rimola et
al. in [17] determined that rate of contrast enhancement and bowel wall thick-
ness relate to the severity of endoscopically active CD. However, its reliance on
explicit segmentation of the bowel wall and extensive manual scoring limits its
effectiveness.

There does not exist abundant research on image analysis of abdominal MRI
to identify Crohn’s disease, although [4] use dynamic contrast enhanced (DCE)
MRI for identifying colorectal cancer and [18] deal with ulcerative colitis. Previ-
ous research has addressed the tasks of identifying abnormal regions in different
applications like glaucoma diagnosis [7], whole body MR scans [15], cardiac coro-
nary stenoses [10] and Alzheimer’s disease [21] to name a few.

2 Methods

We employ a two stage classification approach where a test sample is first clas-
sified as either background or intestine. If the initial classification is intestine,
then the sample is further classified as either diseased or normal. Manual an-
notations by experts indicating diseased, normal and background regions in 3D
MR volumes were available. For every such labeled voxel we extract features (in-
tensity statistics, texture anisotropy and shape asymmetry) from its 35× 35× 5
neighborhood for training the classifiers.

Intensity andTexture Features: Since a simple visual examination of T1MRI
does not provide sufficient information to identify diseased areas, radiologists rely
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on the results from different tests (like colonoscopy and biopsy), and imaging pro-
tocols like MR-T1, MR-T2 and DCE-MRI. It is common in MR images to have
regions that do not form distinct spatial patterns but differ in their third order
statistics, e.g. boundaries of some malignant tumours are diffuse and invisible to
the naked eye [16]. We propose to investigate features that are not discernible by
the human eye but may provide discriminating features for our task. In addition
to mean and variance we calculate third and fourth order intensity statistics (like
skewness and kurtosis) in a voxel’s neighborhood.

In [11] texture anisotropy was used as a feature to identify tumorous regions in
brain images. Normal tissues exhibit a regular pattern in their appearance while
diseased regions show areas of asymmetry where the tissues have been affected by
the progression of disease. We aim to exploit this characteristic to discriminate
between diseased and normal regions in a VOI. Texture maps of the VOI were
obtained using orthonormal Gabor filters in the x − y and y − z directions as
described in [20] because 3D texture filters are computationally very expensive.
Gabor filters conform to the receptive field properties of cortical cells, capture
rich visual properties like spatial frequency characteristics and orientation, and
are robust to noise by incorporating Gaussian smoothing. Texture maps are
obtained along six directions (0◦, 30◦, 60◦, 90◦, 120◦, 150◦) for each slice.

While anisotropy in [11] was calculated using local gradient differences and
gray level dependence histograms, we use entropy to measure anisotropy. Texture
maps of slices in the x−y plane are divided into 9 equal parts corresponding to 9
sectors of a circle, and entropy determined for each sector. A higher entropy value
indicates wider distribution of texture values (hence high anisotropy), while low
entropy indicates lower anisotropy. The texture anisotropy for sector r is

Texr
Anisotropy = −

∑
tex

prtex log p
r
tex. (1)

prtex denotes the probability of distribution of texture values in sector r. We use
a different approach to calculate anisotropy of images in the y−z plane. As there
are 5 slices in the z dimension, there are not enough samples (only 35×5 = 175)
to calculate a reliable measure of entropy. Instead we calculate the entropy for
the whole slice and use it in the feature vector. Thus the number of texture
features are 80 (9 entropy values from each of 5 slices in the x − y plane, and
1 entropy value from each of 35 slices in the y − z plane). Hence forth we shall
denote the 80 dimensional texture feature vector as Tex. Fig. 1(e) shows the
plot texture entropy values for two slices of diseased and normal patches.

Shape Asymmetry: We extend the concept of asymmetry (or anisotropy)
to shape features. When healthy tissues are affected by progression of dis-
ease, it also affects spatial arrangement of voxels and hence their shape. Our
aim is to exploit this irregularity for distinguishing between diseased and nor-
mal tissues. Shape features in the VOI are characterized by the 3D curva-
ture of voxels. A detailed explanation of 3D curvature calculation is given in
(http://www.cs.ucl.ac.uk/staff/S.Arridge/teaching/ndsp/curvature3D.pdf).
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Shape asymmetry is calculated in a manner similar to texture anisotropy.
The entropy of curvature values is determined from 9 sectors of each slice. If
the curvature values have a wide distribution it indicates greater asymmetry in
shape, leading to a higher entropy value. On the other hand low entropy values
indicates less shape asymmetry. The shape asymmetry measure for a sector r is
given by

ShaperAsymmetry = −
∑
θ

prθ log p
r
θ. (2)

prθ denotes the probability of distribution of curvature values in sector r, θ indi-
cates the curvature values. Similar to texture anisotropy, the shape asymmetry
measure is also a 80 dimensional feature vector. Henceforth the shape asymme-
try vector is denoted as Shape. The above set of features give a 164 dimensional
feature vector for a single 3D VOI.

Figs. 1(a) and (b) show a 2D patch around a diseased pixel, and the corre-
sponding map of curvature values. Figs. 1(c) and (d) show a patch around a
normal pixel and the corresponding curvature map. Figs. 1(e) and (f), respec-
tively, show the plot of entropy values of texture and shape for 9 sectors of two
slices from the VOI. The colormap of Figs. 1(b) and (d) are in the same range of
[0, 5], with red regions denoting regions of high curvature. The curvature profile
for the normal patch is quite regular as compared to the diseased patch. This is
indicative of the fact that the curvature in diseased regions becomes distorted
due to ulcerations or other abnormalities. Thus they lose the regularity observed
in healthy tissues. This is corroborated by the plot in Fig. 1(f) where the diseased
patches show higher entropy indicating greater randomness.

3 Experimental Results

3D T1-weighted spoiled gradient echo sequence (SPGE) images were acquired
from 26 patients in supine position using a 3-T MR imaging unit (Intera, Philips
Healthcare). The spatial resolution of the images was 1.02 mm × 1.02 mm× 2
mm, and the acquired volume dimension was 400×400×100 voxels. The number
of annotated voxels were 6827 from diseased regions, 5156 from normal and 3725
from background regions. An expert radiologist annotated each diseased region
by outlining the region on each corresponding slice.

Features and Classifiers: We compare our method with two others, namely
the Dual-Complex Tree Wavelet Transform (DTCWT) based method of [3]
(DCTWT ) and a shape asymmetry based method derived from the reflectional
asymmetry measure of [12] (Asy). These two methods are recent developments
in the field of disease and asymmetry detection. Although our method uses more
features than these methods, it also highlights the challenges of localizing areas
affected with Crohn’s diseases Each of the three methods was evaluated us-
ing three different classifiers, Random forests (RF), Support Vector Machines
(SVM), and a Bayesian Classifier (BC). Random forests [5] have been success-
ful in a variety of domains and compare favorably with other state-of-the-art
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Fig. 1. (a)-(b) 2D patch around diseased voxel and corresponding curvature map;
(c)-(d) normal patch and corresponding curvature map; plot of entropy values for (e)
texture and (f) curvature of slices from VOI

algorithms [8]. A random forest is an ensemble of decision trees where each tree
is trained with a different subset of the training data to improve the classifier’s
generalization ability. Training finds the set of tests that best separate the train-
ing data into different classes. Random forests and their variants have been used
to detect abnormalities in mammograms [3], identify coronary artery stenoses
[10] and semantic segmentation in CT images [14]. We use 50 trees for the RF
classifier.

Support Vector Machines (SVMs) construct a hyperplane or set of hyperplanes
in a high-dimensional space, which can be used for classification, regression, or
other tasks. Intuitively, a good separation is achieved by the hyperplane that has
the largest distance to the nearest training data of any class (so-called functional
margin). In general larger the margin the lower the generalization error of the
classifier. SVMs have also seen wide application in classification tasks like brain
tumor segmentation [2,19], chest pathologies [1] and Glaucoma classification [7]
among others. For SVMs we use the LIBSVM package [6] and define a radial
basis function (RBF) as the kernel.

The default naive Bayesian classifier in MATLAB was the third classifier. A
Bayesian classifier was chosen to highlight the linearly non-separable nature of
the data, and the advantages of having a RBF kernel in SVMs. We have two
classification stages for all classifiers. For all classifiers we employ 10−fold cross
validation (leave-one-out with 10 subsets of the original data) approach.
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Table 1. Quantitative measures for the Stage 1 classification using different features
and three classifiers. Values indicate mean and standard deviation. Sensitivity is the
number of correctly detected intestine samples. Specificity is the number of correctly
detected background samples. Accuracy is the total of number of correct detections
(both background and intestine samples).

Asy DTCWT Our Features

SVM BC RF SVM BC RF SVM BC RF

Accuracy (%) 80.4 72.0 79.9 82.2 71.3 80.1 88.1 76.3 86.8
±2.6 ±2.3 ±2.2 ±2.4 ±2.9 ±2.5 ±2.0 ±6.4 ±1.8

Specificity (%) 67.9 41.5 68.0 68.1 42.7 67.6 71.1 54.1 70.6
±1.8 ±1.8 ±1.7 ±1.6 ±1.7 ±1.8 ±1.8 ±4.1 ±2.2

Sensitivity (%) 86.2 71.5 84.6 93.9 78.3 85.7 97.9 79.1 96.1
±1.9 ±1.4 ±1.8 ±2.7 ±2.1 ±1.9 ±1.3 ±4.5 ±1.7
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Fig. 2. Box plots for Stage 1 classification: (a) Accuracy; (b) Sensitivity. (c) ROC
curves for three classifiers using our features.

Classification Results for Stage 1. Table 1 shows different quantitative
measures of the first classification stage. Here each sample is classified as either
intestine or background. The highest classification accuracy is obtained using our
features, the results of which are shown in the box plots of Fig. 2. In this stage we
desire a high sensitivity or true positive rate (TPR) even at the expense of low
overall accuracy. True positive refers to a intestine sample correctly classified
as intestine. We do not want a intestine sample to be incorrectly labeled as
background thus increasing the false negative rate (FNR). In such a situation,
the diseased samples (which are part of intestine in the first stage) get classified as
background and hence escape the scrutiny of the next stage. This is particularly
undesirable in a clinical decision making system.

A comparison of receiver operating characteristics (ROC) curves of all three
classifiers using our features for stage 1 is shown in Fig. 2 (c). RF and SVM
give high sensitivity (more than 90%), but their specificity values are compara-
tively lower indicating a large number of false positives, i.e., many background
samples are classified as intestine. The overall accuracy (i.e., correct classifica-
tion percentage of both intestine and background samples) is lower than 86%
in all cases. This again indicates a high number of false positives. This is not a
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Table 2. Quantitative measures for individual and different combination of features
using RF classifier

Int T ex Shape Tex+ Int Shape+ Int Shape+ Tex
Accuracy (%) 77.1±2.3 81.6±2.1 79.1±2.7 79.2±1.3 79.5±2.4 82.3±1.3

Sensitivity(%) 79.3±3.2 86.9±2.1 82.3±1.9 83.1±3.1 83.8±2.3 86.6±2.8

disadvantage since these incorrectly labeled background samples are invariably
identified as normal in Stage 2 (as is evident from the results in Table 3 and
Fig. 3). BC (which is good in classifying data with a linear decision boundary)
has an overall accuracy less than 75%, which indicates the non-linearly separable
nature of datasets. All classifiers perform better than a random classifier.

Importance of Different Features. Table 2 shows results of Stage 1 clas-
sification using individual features and their combinations. The combination of
texture and shape features performs closest to the values in Table 1. However,
this does not diminish the contribution of intensity. A Student t-test on the
values for Tex + Shape (Table 2)and Our Features (Table 1) gives p < 0.032
indicating statistically different results (p < 0.05 indicates that the two sets of
results are statistically different, and hence significant). t-tests between Tex and
Tex− Int, and Shape versus Shape− Int give p < 0.04, showing that inclusion
of intensity statistics contributes to significant improvement.

DTCWT calculates a mean texture value across different orientations and
scales while Tex calculates mean, variance, skewness and kurtosis across ori-
entation and scales. Thus it is expected that Tex would be a more accurate
measure than DTCWT , as reflected in Tables 2 and 1. Asy and Shape provide
similar information as indicated by results of t−tests (p = 0.13).

Classification Results for Stage 2. Intestine samples from Stage 1 are con-
sidered in Stage 2 for further classification into diseased or normal. Table 3
shows different quantitative measures for Stage 2 based on the original number
of diseased and normal samples (not background samples) at the beginning of
Stage 1. The values in Tables 1 and 3 are not directly related as Table 3 does not
consider the background samples. In Stage 2 true positive refers to the number
of correctly classified diseased samples. BC’s accuracy and TPR is significantly
worse compared to RF and SVM, thus reinforcing our inference about the non-
linearly separable nature of the samples. RF and SVM, however, have similar
performance with accuracies greater than 85% when using our features.

Fig. 3 shows the box plots of accuracy and sensitivity, and ROC curves when
we consider Stage 2 classification independently. Obviously the values will be
higher than those reported in Table 3 (which are based on the original number
of samples). The box plots and ROC curves indicate that a high percentage of
each sample type is correctly classified by both SVM and RF. This is highly
desirable because ultimately we would like to detect the diseased regions from
abdominal MRI.
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Fig. 3. Box plots for Stage 2 classification: (a) Accuracy; (b) Sensitivity.(c) ROC curves
for three methods using RF classifier.

Table 3. Quantitative measures for the second classification stage using different clas-
sifiers. Values indicate mean and standard deviation. Sensitivity is the number of cor-
rectly classified diseased samples. Specificity is the number of correctly classified normal
samples. Accuracy is the total of number of correct classifications (both diseased and
normal samples).

Asy DTCWT Our Features

SVM BC RF SVM BC RF SVM BC RF

Accuracy (%) 81.2 59.1 81.3 81.4 58.4 81.1 87.5 62.8 87.2
±1.3 ±0.9 ±1.2 ±1.4 ±6.1 ±1.2 ±2.6 ±5.4 ±1.5

Specificity (%) 71.8 36.1 73.4 72.8 37.7 72.2 78.2 42.3 77.1
±3.1 ±4.8 ±2.4 ±1.4 ±2.7 ±1.9 ±1.7 ±4.1 ±1.6

Sensitivity (%) 84.5 60.5 84.9 86.9 61.3 86.1 91.9 64.8 90.4
±1.9 ±1.2 ±1.8 ±1.7 ±8.2 ±1.9 ±2.6 ±10.7 ±1.2

(a) (b) (c)

Fig. 4. Visual results for CD detection in Patient 16 with RF and different features: a)
our features, b) DTCWT and c) Asy. Manually annotated diseased regions are shown
in red while the result of automatic detection is shown in green.

Fig. 4 shows visual results for CD detection in Patient 16 using RF and the
three features where each voxel is classified as diseased or normal. The manu-
ally annotated diseased regions are shown in red while the result of automatic
detection is shown in green. The average Dice metric (DM) between manual
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annotations and detected regions using our features is 86.5±2.3 (RF), 77.2±3.1
(BC) and 84.9± 3.2 (SVM). Our features do a good job in localizing the exact
region afflicted with CD without explicit segmentation of the bowel wall.

4 Conclusion

We have proposed a method to identify VOI’s in the abdominal MRI that are af-
flicted with Crohn’s disease. Higher order intensity statistics, texture anisotropy
and shape asymmetry are used to discriminate between diseased, normal and
background regions. Higher order statistics capture image properties that are
not discernible to the human eye. Our novel shape asymmetry measure is simple
to compute than current approaches, and is informative in detecting diseased
regions. Experimental results show that our designed feature vector performs
better than Asy and DTCWT . Our results indicate that Crohn’s disease can
be detected from MR images, and thus reduce reliance on invasive procedures
like colonoscopy and biopsy. With further improvements of our method in the
future, we can hope to build a reliable detection and CD classification system.
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Abstract. Significant socio-economic burden of colonic motility disor-
ders necessitates in-depth analysis of this pathology. Current analysis
techniques are based on diameter measurements of colonic lumen on
cine-MR images. Interleaved multi-plane acquisition makes it difficult
to perform simultaneous measurements on the line of plane intersections
due to the out-of-plane motion (OPM) caused by respiration affecting the
underlying anatomy. Low temporal acquisition rate and dark-banding ar-
tifact are the challenging factors for OPM compensation. In this paper,
we propose the use of manifold learning in combination with in-plane
motion tracking for estimating OPM. We evaluate the effectiveness of
our approach on 8 MR patient data sets. Experimental results show the
good performance of our approach. The proposed method is independent
of the acquisition rate and is not limited to this specific application.

Keywords: Motion compensation, manifold learning, motility, functional
cine magnetic resonance imaging.

1 Introduction

Functional gastrointestinal disorders, such as diarrhea and chronic constipation,
are conditions presenting with a significant socioeconomic burden. Chronic con-
stipation is one of the most common of these conditions being one of the leading
diagnoses for gastrointestinal (GI) disorders in the United States [13]. One im-
portant type of constipation is the slow-transit constipation associated with slow
colonic transit time which is usually attributed to colonic motility disorders [1].
Therefore, it is necessary to study colonic motility in order to understand its
effects on colon pathologies mentioned above leading to an improved and more
adequate therapy in the end.

Existing well-established examination techniques such as manometry or scintig-
raphy are either invasive and inconvenient or expose patients to ionizing radia-
tion creating the demand for a fast and non-invasive monitoring technique for
the evaluation and quantification of colonic motility. On the other hand, func-
tional cine magnetic resonance imaging (cine-MRI) allows for non-invasive, fast
dynamic imaging with a superb soft tissue contrast [10].

H.Yoshida,D.Hawkes,M.W.Vannier (Eds.):Abdominal Imaging2012, LNCS7601, pp. 107–115, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



108 M. Yigitsoy et al.

The first use of cine-MRI for the analysis of colon motility was reported in [3]
and the authors considered luminal diameter changes as motility parameter and
manual diameter measurements were performed in the ascending, transverse and
descending parts of the colon. Sets of 2D dynamic image sequences from the same
imaging plane over time were acquired. Due to the respiratory gating, the sam-
pling in time was irregular making the continuous tracking of lumen diameters in-
feasible. In [6], this approach was extended by addressing the irregular sampling
in time and manual measurements on each 2D frame. A semi-automatic tool was
developed to perform automatic diameter measurements on the data acquired
during free breathing. However, measurements were still performed in 2D and the
analysis of complex colon motion in 3D was not feasible by using this approach.
Kutter et al. [9] proposed a multi-plane image acquisition of the colon by concen-
trating only on the descending part. In this setting, the images of the descending
colon were acquired in multiple quasi-orthogonal planes in an interleaved way in
order to perform simultaneous measurements on sagittal and coronal planes at
various points on the line of intersection (LOI) between the planes and, then, to
combine these values to have an approximation of the colon motion in 3D. How-
ever, since the acquisition in two planes is not simultaneous but sequential, the
colon undergoes an out-of-plane movement caused by respiratory motion. This
necessitates an OPM compensation in order to perform simultaneous diame-
ter measurements at anatomically corresponding locations on two intersecting
planes.

One approach to deal with this issue, is to approximate the breathing curve by
fitting a sinusoidal to in-plane displacements via a Fourier analysis, as proposed
in [9]. However, this idea is based on the assumption that the sampling rate per
orientation plane is high enough according to the Nyquist-Shannon sampling
theorem [12] for the recovery of the breathing curve with a frequency approxi-
mately 0.20 Hz. Apparently this is not feasible in our case where sampling rates
per orientation are approximately 0.25 Hz. Another approach is the usage of
the shared information, i.e. the intensity profiles (IP) along the lines of intersec-
tion (LOI), to have a rigid alignment as in [7]. However, due to dark banding
artifact in the images caused by fast MRI acquisition [4], the IPs from two im-
ages present large variations resulting in uncorrelated intensity patterns along
the LOI.

Therefore, in this work, we propose the use of manifold learning, a method that
has recently been successfully applied to the image-based recovery of breathing
motion [5], for the recovery and the compensation of the OPM in sagittal and
coronal cine-MRI sequences. To this end, we perform dimensionality reductions
on both sequences independently and use the average of the parameterizations
of these embeddings to approximate the breathing curve in order to establish a
basis for relating the sequences. In combination with in-plane motion tracking,
significant compensation of the OPM can be achieved. The performance of the
method is not affected by the data sampling rate as long as enough samples per
orientation are collected.
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Fig. 1. Flow diagram of the OPM compensation algorithm

2 Materials and Methods

In this study 8 subjects were examined with functional cine-MRI [8]. The ac-
quisition was performed using a half Fourier acquisition single shot turbo spin
echo sequence (HASTE; TR: 476 ms, TE: 54 ms, SL: 5 mm, FOV: 320 x 400
mm, i-Pat-factor: 3.0, voxel size: 1.25 x 1.25 x 5.0 mm, duration: 8 min). Three
orientations oblique to each other were set, examining 1 slice per orientation
(transversal, sagittal, coronal) with a time interval of 4 s between image-sets
to be able to physiologically image and track bowel motility. An alternating
acquisition scheme, {. . . ,ut

i,u
s
i+1,u

c
i+2,u

t
i+3,u

s
i+4,u

c
i+5, . . .}, was used in order

to equally sample data from each orientation. The transversal sequence is not
used in this work as it is not used for colon motility analysis. For more details
regarding the image acquisition protocol, please refer to [8].

2.1 Manifold Learning

The general idea of manifold learning is to project a manifold in high dimensional
space R

N to a low dimensional space R
n, while preserving the local neighbor-

hood. In our case, we consider one dimension of the ambient space for each image
pixel, so N is corresponding to the resolution of the MRI images. For the low
dimensional space, we set n = 3, in order to keep as much relevant information
as possible while performing a significant dimensionality reduction. Considering
k MR images U = {u1, . . . ,uk} that are acquired over several breathing cycles
in one orientation, the manifold learning M assigns each image to a coordinate
in the low dimensional space φi

M : RN → R
n, (1)

ui �→ φi, (2)

with 1 ≤ i ≤ k. The suggestion that images lie on a low dimensional manifold in
the ambient space seems to be justified because variations between neighboring
slices are smooth, and furthermore, slices from the same breathing phase but
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Fig. 2. Estimation of the mean motion curve via manifold learning. Curve fitting and
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the color encodes the index before (upper) and after (lower) reordering.

different acquisition times share similar information. Moreover, since manifold
learning techniques try to optimally preserve local information [2], meaning that
similar images are mapped to similar positions in the low dimensional space, it
is reasonable to use φi as an estimate for the respiratory phase.

We propose the application of Laplacian eigenmaps [2] for the respiratory
phase estimation because the technique is well founded on mathematical con-
cepts (Laplace Beltrami operator) and computationally efficient. Laplacian eigen-
maps build upon the construction of a graph, which represents the neighborhood
information of the data set. Subsequently, the graph Laplacian is applied to
calculate a low-dimensional representation of the data that preserves the local
neighborhood information in an optimal way.

We construct a graph with a node for each point ui and with edges connect-
ing neighboring nodes. In order to deal with contrast differences between frames,
we use cross correlation (NCC) as our similarity measure which is essential for
neighborhood selection and weighting. We select for each image ui the l near-
est neighbors, by evaluating the term NCC(ui,uj) Further, heat kernel-based
weights are assigned to the edges with

wij = e−(1−|NCC(ui,uj)|)2/(2·σ2) (3)

and σ2 the variance [2]. Once the neighborhood graph is constructed, the eigen-
vectors of the graph Laplacian provide the embedding map. After performing
independent dimensionality reductions on coronal and sagittal sequences, these
two embeddings need to be related in order to do further processing. The fact
that both sequences are affected by the same breathing motion enables us to
estimate the mean motion curve by using low dimensional embeddings of two
sequences. Since the embeddings approximate curves in 3D, see Fig. 2, we first fit
a 3rd order polynomial curve onto which we project original embedding points.
Then, each curve is parametrized by point distances from one side of the curves.
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Fig. 3. Illustration of the motion compensation process. The region of interest around
the LOI is highlighted where the difference after the compensation can be clearly
observed by looking at the lumen borders. Contrast enhanced for better visibility.

The direction of parametrization is chosen so that both of them are parametrized
from end-exhale (EE) to end-inhale (EI). After normalizing the parametrized
curves, the mean breathing curve to be used as a basis for compensation is
computed by taking the average of the normalized curves.

2.2 Out-of-Plane Motion Compensation

Since it is not possible to directly infer metric displacement values from the mean
breathing curve, we need to compute the range of displacements in mm’s, dz ,
along the direction of dominant breathing motion, i.e. z-axis [11] in the reference
coordinate frame. Then, we use this factor to scale the mean breathing curve in
order to get the metric displacement values along the z-axis relative to the EE
phase that is assumed to have no displacement.

In order to find dz, we first estimate the range of in-plane displacements,
dp, in the sagittal orientation plane and then back project it onto the z-axis in
order to approximate dz . To this end, we perform tracking using block match-
ing on the sagittal sequence to find a sequence of in-plane displacements, D =
{dp1, . . . , dpk}, relative to the first frame. A region that is highly influenced by
the respiratory motion and close to the diaphragm is chosen for tracking. This
is the visible part of the liver in our case. In-plane displacement range, dp, is
computed as dp = max(D) −min(D). This value is projected on z-axis as

dz =

{
dp

sin(α) , if α > 0

0, otherwise,
(4)

where α is the angle between the sagittal plane normal and the z-axis calculated
from the DICOM orientation data. The sagittal plane is chosen for estimating
dz since it is more aligned with the z-axis than the coronal plane. Once dz is
obtained, the mean breathing curve is updated by scaling it with dz. Then, for
each pair {us

i ,u
c
i+1}, we compute the difference between their z-displacements

relative to the EE phase, see Fig. 3. We shift the coronal plane by applying a
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translational transform along the z-axis to bring it to the breathing phase of the
sagittal plane leading to real anatomical correspondence along the LOIs.

3 Experiments and Results

We have conducted experiments on 8 different patient data to evaluate the per-
formance of the proposed method. For each data set, we first separated coronal
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Fig. 4. (a) Mean IPs for each orientation plane and the intensity STD curve along the
LOI. The landmark is searched for in the vicinity of the first peak from the right side in
the STD curve. (b) Plot of normalized landmark errors for each patient. Each patient
data has 336 pairs of coronal and sagittal to be aligned. Therefore, in this figure, each
box pair represents error statistics for 336 image pairs before (left) and after (right)
compensation.
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and sagittal 2D sequences each consisting of 336 frames with a size of 256x320
pixels. Then the proposed method was applied to compensate for the OPM.
Sagittal sequences of each subject underwent a tracking in order to estimate the
in-plane-displacement range. In each case, Laplacian eigenmaps was used as the
manifold learning technique. We set neighborhood size to 70 which empirically
seemed to be sufficient for our application.

As discussed in Section 1, direct use of IPs for aligment is not possible due
to large variations along the LOIs. Due to the same reason, we can not use IPs
directly for validation purposes. Instead, we used a landmark that is affected by
the breathing motion and that can easily be located in both of the IPs before and
after the application of the motion compensation technique. A good landmark
candidate is the edge of the liver which lies on the LOI and has a higher contrast
that can be distinguished from the rest. In the case of a simultaneous acquisition,
the positions of this landmark would match on both planes. Therefore, we used
the difference between the positions of this landmark to asses the performance
of compensation. A reduction of the difference indicates a good performance of
the compensation technique. The location of the landmark in IPs was detected
by searching for the maximum intensity around a predefined point. This point is
associated with a high intensity standard deviation (STD) in time, see Fig. 4(a).
There are also other points having high STD values, but, this one can be simply
identified by picking the first one from the top.

For each subject, we performed difference measurements on 336 different pairs.
We plot the statistics of the landmark error for each patient in Fig. 4(b). In
each case, compensation resulted in a reduction of landmark error showing the
effectiveness of the proposed approach.

4 Discussion and Conclusion

For an accurate analysis of the colon motility, motion due to respiration must be
suppressed both in- and out-of-plane. It is of great importance to compensate
for the OPM since the subsequent diameter measurements are directly based on
LOIs. Therefore, in this work, we proposed a novel OPM compensation technique
for dynamic, multi-plane, cine-MRI sequences of the colon. Experimental results
show the good performance of our method and high potential for being used in
similar scenarios with multi-plane acquisitions and OPM artifacts.

The novelty of our method is based on the use of manifold learning for the
estimation of out-of-plane breathing motion on multiple planes. This gives a
ground for relating sagittal and coronal planes in terms of breathing motion.
Since low dimensional embedding gives a relative distribution of high dimen-
sional data in the low dimensional space, it is not possible to deduce metric
displacements using manifold learning. Therefore, in-plane motion tracking on
sagittal sequences is included to assign metric values to the low dimensional
embeddings relative to EE phase. Correlations between tracking and manifold
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learning for sagittal sequences were above 0.95 in average. This also reveals the
effectiveness of manifold learning in detecting motion patterns.

Due to the nature of the problem, a simple validation approach based on IPs
was not feasible. Dark banding artifact along the LOIs did not allow us to use IPs
directly for the evaluation. Instead, we detected landmarks along LOIs that are
highly influenced by the breathing motion. By measuring the difference between
positions of landmarks on two planes before and after motion compensation, we
were able to evaluate the performance of the proposed method. Experimental
results revealed the possibility of recovering the out-of-plane breathing motion
using a combination of in-plane motion tracking and manifold learning on image
sequences.
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Abstract. Colonoscopy is the preferred screening method currently available 
for detection of colorectal cancer and its precursor lesions, colorectal polyps. 
However, recent data suggest that there is a significant miss rate for the detec-
tion of polyps in the colon during colonoscopy. Therefore, techniques for real-
time quality measurement and feedback are necessary to aid the endoscopist 
towards optimal inspection to improve the overall quality of colonoscopy dur-
ing the procedure. A typical colonoscopy procedure consists of two phases: an 
insertion phase and a withdrawal phase. One of the most essential tasks in  
real-time fully automated quality measurement is to find the location of the 
boundary between insertion and withdrawal phases. In this paper, we present a 
method based on motion vector templates to detect the phase boundary in real-
time. The proposed method detects the phase boundary with a better accuracy 
and a faster speed compared to our previous method. 

Keywords: Colonoscopy, phase boundary, end of insertion, motion vectors, 
camera motion estimation, and motion vector templates. 

1 Introduction 

Colonoscopy is the preferred screening modality for prevention of colorectal cancer---
the second leading cause of cancer-related deaths in the US [1]. A typical colonosco-
py procedure consists of two phases: an insertion phase and a withdrawal phase. The 
main purpose of the insertion phase is to reach the end of the colon, whereas in the 
withdrawal phase, careful inspection of all visible mucosa, tissue sampling, polyp 
removal, etc., are performed. Despite being the preferred screening modality, recent 
data suggest that there is a significant miss-rate in the detection of even large polyps 
during colonoscopy [2]. The miss-rate may be related to the experience of the endos-
copist and the location of the lesion in the colon, but no prospective studies related to 
this have been done thus far. The American Society for Gastrointestinal Endoscopy 
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has suggested many guidelines for best practices in colonoscopy as described in [2] 
which includes the duration of the withdrawal phase, the average polyp detection rate, 
and the thorough of inspection of the colon mucosa. In [3], six quality metrics are 
proposed which are based on the durations of the insertion and the withdrawal phases. 
Therefore, accurate detection of the phase boundary (end of insertion (EOI)) between 
the insertion phase and the withdrawal phase is very essential in fully automated qual-
ity analysis of colonoscopy procedures. 

The best way to detect the EOI is to analyze the motion of the colonoscopy camera, 
specifically, the z-directional motion (i.e., dolling camera motion (DCM)). The reason 
is that the colonoscope moves in forward and backward directions inside the colon 
during colonoscopy [2]. An accurate estimation of the camera motion can be obtained 
by analyzing the change that occurred between two consecutive images (frames) (i.e., 
a frame pair) in the video due to the movement of the camera. This change can be 
represented by using motion vectors. A motion vector represents the displacement of 
an area (usually a macroblock) that occurred due to the movement of the camera. The 
major challenges in accurately detecting the EOI with this approach are (1) colonos-
copy frames have various artifacts such as out of focus (i.e., blurriness), specular  
reflection, stool, and water which can make the motion vector generation process 
imprecise, (2) traditional camera motion models such as the affine model [4] produce 
inaccurate motions often for colonoscopy, and (3) the method must complete all tasks 
in real-time. Specifically, our colonoscopy videos output 30 frames per second in 
MPEG-2 format. So, in order to achieve real-time processing, motion estimation of a 
frame pair must be completed within 66 milliseconds (ms) (i.e., 33ms per frame x 2).  

In this paper, we propose a new method to detect the EOI based on motion vector 
templates. This method attempts to analyze the motion vector distribution in the four 
corners of the frame pair in order to predict the camera motion. So, proposed method 
does not depend on heavy computations as in traditional models such as the affine 
model [4]. The motion vectors are generated using an optical flow block matching 
algorithm [5-7] which is more suitable for the motion vector generation in colonosco-
py frames. Motion vectors are obtained only on the frames that guarantee to provide 
accurate motions. Therefore, the primary contributions of this paper are (1) we pro-
pose a new algorithm to estimate camera motions in colonoscopy videos more accu-
rately using motion vector templates and (2) our new algorithm offer a very large 
improvement in the speed which leads to significantly better real-time EOI detection 
of colonoscopy videos compared to our previous method [4]. 

The remainder of this paper is organized as follows. Related work in the field of 
colonoscopy frame processing and a brief analysis of our previous work [4] are pre-
sented in Section 2. The proposed phase boundary detection technique is described in 
Section 3. In Section 4, we discuss our experimental setup and results. Finally, Sec-
tion 5 presents some concluding remarks. 

2 Related Work 

The related works on colonoscopy can be divided into three main categories: (1) 
processing of frames for tasks such as non-informative frame detection, stool frame 
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detection, and many others [8-10], (2) detection of abnormalities such as colorectal 
polyps [10], and (3) analysis of the quality of colonoscopy procedures [3]. 

The only work on real-time EOI detection that can be found in the literature is our 
previous work outlined in [4]. In that work the EOI is detected by applying a three 
step approach; (1) motion vector generation using color-based block matching, (2) 
camera motion estimation using the affine model, and (3) accumulation of DCM val-
ues. Due to the following issues, the accuracy of the EOI detection in our previous 
work is not satisfactory. Color-based block matching for motion vector generation is 
heavily dependent on the color information of the images. But, the colonoscopy 
frames have a limited color range [1, 2]. Also, since colonoscopy frames have a varie-
ty of artifacts such as blurriness, stool, and water, color-based block-matching method 
generates many flawed motion vectors. Moreover, the affine camera model [4] is very 
sensitive to outliers and generates incorrect DCM values when diverse motion vectors 
are present. Due to these incorrect DCM values, unnecessary local maxima (i.e., 
peaks) will be generated during DCM accumulation; consequently an incorrect point 
is detected as the phase boundary. The proposed method overcomes these issues and 
detects the EOI with 22% better accuracy and with 40-times better speed when com-
pared to the previous work as described in Section 3. 

3 Proposed Method 

The proposed method has four main steps: (1) preprocessing of colonoscopy frames 
to discard/enhance unsuitable frames for motion vector generation, (2) motion vector 
generation using optical flow, (3) camera motion estimation using motion vector tem-
plates, and (4) detection of the phase boundary by analyzing cumulative DCMs. In the 
following sections each step will be discussed in detail. 

3.1 Frame Preprocessing 

As mentioned in Section 1 various artifacts such as blurriness, specular reflection, 
stool, water, therapeutic instruments, etc in colonoscopy frames can create errors in 
the motion vector generation process. Hence, preprocessing of frames is mandatory to 
get accurate motion vectors. If at least one frame of a frame pair in a video stream is a 
blurry frame then that frame pair is ignored from the motion vector generation process 
using the method outlined in [8]. Stools can be found in most sections in the colon. 
By their nature, these stools can float inside the colon and generate object motions 
which can combine with the camera motions. This can provide very unreliable motion 
vectors. Therefore, we eliminate the frame pairs having at least one frame with a stool 
percentage greater than a certain threshold (set to 50% based on experiments) using 
the technique proposed in [9]. In addition to these frame pairs, we discard frame pairs 
if the frames in the frame pair are not sufficiently correlated (see Fig. 1(a)). We calcu-
late a correlation score between the two frames in each frame pair as expressed in 
equation (1). Then, only the frame pairs having correlation scores within a threshold 
value range are selected for motion vector generation. We set the threshold range to 
0.89 - 0.99. An upper threshold is used to remove highly correlated frames as such 
frame pairs produce very few motion vectors since they are very similar. 
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attempts to divide both previous and current frames into blocks, and then computes 
the motions of these blocks using optical flow [5, 7]. For each m × m block (Bk) cen-
tered around pixel (x,y) in frame k, we obtain a search area S in frame k-1 with Bk at 
the center block. The size of the search area S is (m +2p) × (m +2p) where p indicates 
the search range in pixels. Then, we compute the sum of square differences (SSD) 
between Bk and all possible m × m blocks in S as given in the equation (2). The m × m 
block (Bk') in S centered around (x',y'), which gives the lowest SSD is selected as the 
matching block. The displacement vector given by u = x - x'; v = y - y' is the motion 
vector between Bk and Bk'. fk(x,y) is the intensity of the pixel at (x,y). We experimen-
tally found that a block size of 8 × 8 pixels, a search area size of 16 ×16 pixels and a 
SSD threshold of 128 are able to generate more accurate motion vectors for colonos-
copy. Fig. 2(a) shows a typical result from motion vector generation. (The reason for 
having motion vectors only in four corner regions is explained in Section 3.3). 

, argmin,…,,… , , , . (2) 

 

Fig. 2. a) Generated motion vectors from a frame pair in the four motion vector templates (ar-
row sizes are scaled up by a factor of 4) and b) their TMVs (i.e., blue arrows; TMVs are scaled 
so that they fit into their quadrants). Green squares represent the Template boundaries. 

3.3 Camera Motion Estimation Using Motion Vector Templates 

Motion vector templates have been studied previously in [11, 12]. A key aspect of our 
motion vector template method is the following: motion vectors in the four corners of 
our images show a unique pattern for each different type of camera motion. In the 
center part of the frame, we find either zero motion vectors (i.e., zero magnitude) (e.g. 
Z-directional translation) or motion vectors similar to four corners in the frame (e.g. X 
and Y motions). Hence, the camera motion can be estimated by analyzing the motion 
vector pattern in the four corners of a frame pair. Indeed, in the proposed method 
motion vectors are computed only in the four corners of a frame pair (see Fig. 2(a)). 
Four regions in the corners are called motion vector templates. Using our data set, we 
experimentally choose that the size of a Template as 13% of a frame, that is, 30% of 
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the width and 44% of the width of a frame (i.e., a Template is a square). Since, our 
aim is to find a specific pattern in the four motion vector templates; we represent the 
net motion in each Template region by one vector. This vector is computed by per-
forming the vector addition of all motion vectors in each Template and then by calcu-
lating the mean vector as defined in equation (3). In a Template, the resultant vector is 
called its “Template Motion Vector (TMV)”. In equation (3), mvik  is the kth motion 
vector of the ith Template and ni is the number of motion vectors in the ith Template. 
Four TMVs can be seen as illustrated in Fig. 2(b).                 TMVi  ∑ mviknik 1ni . (3) 

Estimating the DCM by Computing the DCM Contribution. Forward and back-
ward motions of the colonoscope can be estimated from positive DCM and negative 
DCM, respectively. Directions of the majority of motion vectors in a typical positive 
DCM are normally pointing from center to border. Hence, the directions of the four 
TMVs are also pointing from center to border (see Fig 3(a)). The directions of the 
majority of motion vectors and TMVs follow the opposite direction in a typical nega-
tive DCM (see Fig 3(b)). In general for a zooming motion, a similar behavior can be 
observed. Since, there is no zooming function available in a colonoscope; this pattern 
of TMVs can only be noticed when there is a DCM. Hence, we estimate the DCM 
when TMVs follow this pattern. We estimate the total DCM by calculating the DCM 
contribution from each Template. DCM contribution of a Template is calculated as 
the cosine of the angle that the TMV makes with the DCM axis multiplied by magni-
tude of the TMV. Use of cosine of the angle of TMVs ensures that more weight is 
assigned to the TMVs that are closer to the DCM axis (i.e., red line in each Template 
of Fig. 3). The rationale behind this design is that for a perfect DCM as seen in Fig. 
3(a) and 3(b), TWVs are aligned with the DCM axis and the average of the magnitudes 
of TMVs represents the amount of DCM. For a non-perfect DCM as seen in Fig. 3(c), 
TMVs are away from the DCM axis and hence only a fraction of the magnitude 
represents the DCM. We compute the DCM contribution of a TMV, if it falls within 
the 45° range (in both directions, i.e., light blue and light green regions in Fig. 3) from 
the DCM axis. That means that a TMV within the 45° range from the DCM axis pro-
vides information about movement along the colon axis. TMVs which fall outside the 
45° range carry essentially no information related to DCM. For this reason we ignore 
TMVs which fall outside the 45° region when calculating DCM.  

The total DCM estimation process can be formulated as follows. We represent the 
magnitude and the angle of a kth TMV which provides a non-zero positive DCM con-
tribution as  and , respectively (see Fig. 3(a), T1,T3 and T4). Also,  and 

 represents the magnitude and the angle of the kth TMV which provides a non-zero 
negative DCM contribution (see Fig. 3(c), T2). Here, pd stands for positive dolling 
and nd stands for negative dolling. In Fig. 3(c), T1 has a positive DCM contribution 
and its value can be calculated as  and T2 has a negative DCM contribu-
tion and its value can be calculated as  and so on. We calculate the total 
DCM of a frame pair by taking DCM support count into consideration. The positive 
DCM support count (PDSC) is defined as the number of non-zero positive DCM  
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contributions and the negative DCM support count (NDSC) is defined as the number 
of non-zero negative DCM contributions. To be considered as a DCM, one of PDSC 
or NDSC must be at least two (experimentally decided). If we encounter equal (two) 
PDSC and NDSC, then we assign a zero DCM. Based on this model, we compute the 
average of positive DCM contributions for positive DCM, and the average of the neg-
ative DCM contributions for negative DCM as defined in equation (4).  ∑ , and 2,  ∑ , and 2,0,                         Otherwise.      

  (4) 

 

Fig. 3. An example of a) a perfect positive DCM, b) a perfect negative DCM and c) a DCM 
contribution calculation. Since PDSC > NDSC, (c) represents a positive DCM and it is also an 
example for a non-perfect positive DCM. In a), b), and c), T1-T4 are four templates, red lines 
represent the DCM axes, light blue and light regions represent the positive DCM and negative 
DCM supporting regions, respectively. The dark blue arrows show TMVs. 

3.4 Estimation of the Phase Boundary/End of Insertion (EOI) 

The estimation of the EOI is done by analyzing the behavior of cumulative DCM 
(CDCM)) values of selected frame pairs in the entire procedure in real-time. We keep 
track of the CDCM values to find local maxima (i.e., peaks) in which the peak value 
remains unchanged for at least 1 minute (experimentally decided) as shown in Fig. 4. 
The frame number corresponding to this peak is assigned as the current EOI (i.e., a 
candidate EOI). Later, if we encounter another candidate EOI which has a CDCM 
value that is greater than the CDCM value of the current EOI, then the current EOI is 
updated with that candidate EOI. The frame number of the most recent candidate EOI  
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will be chosen as the EOI, which is the phase boundary. Obviously, the last EOI will 
be the frame number that defines the maximum CDCM value of the entire procedure. 
CDCM values of a full colonoscopy stream can be plotted as shown in Fig. 4. Since 
the size of a Template in the new method is 13% of a frame, we process only 52% of 
the frame area for motion vector generation. Also, we use an optimized version of the 
optical flow block matching algorithm provided by OpenCV 2.0 [7]. In addition to 
those, we apply CPU multithreading for motion vector generation by dividing the 
total number of blocks among the available processors for parallel processing. The 
combination of the above three factors ensures that the proposed method performs the 
DCM calculation well within real-time. 
 

 

Fig. 4. A CDCM plot of a full colonoscopy video stream. The red oval is the detected EOI. 
Basically, this curve gives a snapshot of how the colonoscope moved through the colon in 
forward and backward directions during the procedure. 

4 Experimental Setup and Results 

The proposed method was implemented and integrated into SAPPAHIRE [13] which 
is a framework developed for real-time capture and quality analysis of colonoscopy. 
We perform our experiments in a simulation mode where videos are used as real-time 
video streams. All experiments were done in a computer with Intel(R) Core i7 2600K, 
64-bit, 3.40GHz processor and 8 GB memory. We conducted experiments on ordinary 
videos as well as on real colonoscopy video streams. 

We created a video which contains five types of motions. The video was record-
ed at a valley outside of a building. Five different types of motions are: (1) slow 
forward (frame 0 to 611), (2) fast forward (frame 741 to 1151), (3) fast backward 
(frame 1161 to 1431), (4) slow backward (frame 1441 to 2281), and (5) zero mo-
tion (frame 611 to 731 and frame 1091 to 1161). In the CDCM plot shown in Fig. 
5, the fast motions (2 and 3) can be seen as steep lines, and slow motions (1 and 4) 
can be seen as less-steep lines. Also, zero motions (5) can be seen as straight lines. 
Therefore, our proposed method has accurately captured all motions that are con-
tained in the video. 
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Fig. 5. CDCM plot of the ordinary video. Numbers 1-5 represent the five different types of 
motions present in the video. 

Our real colonoscopy video set contains 146 videos. The average video length is 
17.40 minutes and the frame size is 720 x 480. When the cecum is reached during 
colonoscopy, any remaining debris is removed followed by inspection of the appendi-
ceal orifice, the ileocecal valve and if required or readily possible the distal terminal 
ileum. Clearing debris and inspection require about 1 to 2 minutes. Therefore, if the 
detected EOI falls within a 2 min range from the ground truth (i.e., before or after), 
then we consider it as a correctly detected EOI and vice versa. Outcomes from this 
experiment are summarized in Table 1. The results show that our new method detects 
the EOI with 82% accuracy. Therefore, compared to our previous method, we 
obtained a 22% improvement in accuracy. When comparing the average time 
difference with the ground truth of all videos of the two methods, the new method has 
shown a major improvement (81 seconds). Also, the proposed method provides a 
substantial gain (almost 40-times) in the average execution time per frame pair over 
the earlier method. The previous method satisfies the real-time constraint by a slight 
margin (by 13.70ms = 66 - 52.30). However, the new method satisfies the real-time 
constraint by a considerably larger margin (by 64.68 ms = 66 - 1.32). 

Table 1. Effectiveness of the proposed phase boundary detection method 

Description Previous New 

Number of correctly detected videos 88 120 
Accuracy of the EOI detection 60% 82% 
Average time difference with the ground truth EOI (mm:ss) 02.54 01:33 
Average execution time per frame pair (ms) 52.30 1.32 

5 Conclusion 

Finding the phase boundary is considered to be a very important task for fully 
automated quality analysis of colonoscopy. We have proposed and implemented a 
new algorithm for real-time phase boundary detection in colonoscopy using motion 
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vector templates. The proposed method detects the phase boundary with 82% 
accuracy which is 22% better than our previous algorithm. Also, the new algorithm is 
40-times faster than our previous algorithm. Moreover, this method is easy to 
implement since it does not possess heavy computations compared to the previous 
method. Experimental results also demonstrate that this method works very well on 
estimating the dolling motions of ordinary videos. Accurate detection of the phase 
boundary leads to generation of many quality metrics, such as the ones proposed in 
[3]. A key problem affecting the accuracy of our current method is formed by frames 
containing remaining debris, air bubbles and water or specular reflections. In the 
future we will improve the accuracy by detecting and eliminating these frames. 
 
Acknowledgments. This work is partially supported by NSF STTR-Grant No. 
0740596, 0956847, National Institute of Diabetes and Digestive and Kidney Diseases 
(NIDDK DK083745). 

References 

1. American Cancer Society. Colorectal Cancer Facts & Figures (2008),  
http://www.cancer.org/docroot/STT/content/STT_1x_Cancer_ 
Facts_and_Figures_2008.asp 

2. Rex, D.K., Petrini, J.L., Baron, T.H., Chak, A., Cohen, J., Deal, S.E., Hoffman, B., Jacob-
son, B.C., Mergener, K., Pertersen, B., Safdi, M.A., Faigel, D.O., Pike, I.M.: Quality Indi-
cators for Colonoscopy. Gastrointestinal Endoscopy 63, S16–S26 (2006) 

3. Oh, J., Hwang, S., Cao, Y., Tavanapong, W., Liu, D., Wong, J., de Groen, P.C.: Measuring 
Objective Quality of Colonoscopy. IEEE T. Bio-Med. Eng. 56(9), 2190–2196 (2009) 

4. Oh, J., Rajbal, M.A., Muthukudage, J.K., Tavanapong, W., Wong, J., de Groen, P.C.: 
Real-Time Phase Boundary Detection in Colonoscopy Videos. In: 6th International Sym-
posium on Image and Signal Processing and Analysis, Salzburg, pp. 724–729 (2009) 

5. Bouguet, J.Y.: Pyramidal Implementation of the Lucas Kanade Feature Tracker. Intel Cor-
poration Microprocessor Research Labs 1(2), 1–9 (2001) 

6. Horn, B., Schunck, B.: Determining Optical Flow. Artif. Intell. 17, 185–203 (1981) 
7. Bradski, G., Kaehler, A.: Learning OpenCV:Computer Vision with the OpenCV Library. 

O’Reilly Media (2008) 
8. Oh, J., Hwang, S., Lee, J., Tavanapong, W., Wong, J., de Groen, P.C.: Informative Frame 

Classification for Endoscopy Video. Med. Image Anal. 11(2), 110–127 (2007) 
9. Muthukudage, J., Oh, J., Tavanapong, W., Wong, J., de Groen, P.C.: Color Based Stool 

Region Detection in Colonoscopy Videos for Quality Measurements. In: Ho, Y.-S. (ed.) 
PSIVT 2011, Part I. LNCS, vol. 7087, pp. 61–72. Springer, Heidelberg (2011) 

10. Atasoy, S., Mateus, D., Lallemand, J., Meining, A., Yang, G.-Z., Navab, N.: Endoscopic 
Video Manifolds. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, M.A. (eds.) MICCAI 
2010, Part II. LNCS, vol. 6362, pp. 437–445. Springer, Heidelberg (2010) 

11. Nguyen, T., Laurendeau, D., Branzan, A.: A Robust Method for Camera Motion Estima-
tion in Movies Based on Optical Flow. Int. J. Intell. Syst. Technol. Appl. 9(3/4), 228–238 
(2010) 

12. Xiong, W., Lee, J.C.: Efficient Scene Change Detection and Camera Motion Annotation for 
Video Classification. Computer Vision and Image Understanding 71(2), 166–181 (1998) 

13. Stanek, S.R., Tavanapong, W., Wong, J., Oh, J., Nawarathna, R., Muthukudage, J., de 
Groen, P.C.: SAPPHIRE Middleware and Software Development Kit for Medical Video 
Analysis. In: 24th IEEE International Symposium on Computer-Based Medical Systems, 
Bristol, pp. 1–6 (2011) 



 

H. Yoshida, D. Hawkes, M.W. Vannier (Eds.): Abdominal Imaging 2012, LNCS 7601, pp. 126–136, 2012. 
© Springer-Verlag Berlin Heidelberg 2012 

Relaxed Conditional Statistical Shape Models and Their 
Application to Non-contrast Liver Segmentation 

Sho Tomoshige1, Elco Oost1, Akinobu Shimizu1, Hidefumi Watanabe1,  
Hidefumi Kobatake1, and Shigeru Nawano2 

1 Graduate School of Bio-Applications and Systems Engineering, 
Tokyo University of Agriculture and Technology, 

Nakacho 2-24-16, Koganei-shi, Tokyo 184-8588, Japan 
{c_r_oost,simiz}@cc.tuat.ac.jp 

2 Department of Radiology, International University of Health and Welfare, 
Mita Hospital, 1-4-3 Mita, Minato-ku, Tokyo 108-8329, Japan 

Abstract. This paper proposes a novel conditional statistical shape model 
(SSM) that allows a relaxed conditional term. The method is based on the selec-
tion formula and allows a seamless transition between the non-conditional SSM 
and the conventional conditional SSM. Unlike a conventional conditional SSM, 
the relaxed conditional SSM can take the reliability of the condition into ac-
count. Organ shapes estimated by the proposed SSM were used as shape priors 
for Graph Cut based segmentation. Results for liver shape estimation and sub-
sequent liver segmentation show the benefit of the proposed model over con-
ventional conditional SSMs. 

Keywords: Conditional shape modeling, relaxation, liver segmentation. 

1 Introduction 

Graph Cut based segmentation [1] with a shape prior as regulating term in the optimi-
zation of the energy function has proven a valuable tool in medical image processing 
[2,3]. Using a set of image features that are extracted from the target image as the 
conditional term for a conditional SSM, for example as described in [4], a shape prior 
is estimated that will serve as a restricting term in the optimization of the energy func-
tion in Graph Cut segmentation. Given an appropriate shape prior the Graph Cut seg-
mentation will improve. This benefit is the method’s vulnerability as well: A poor 
quality shape prior will deteriorate the Graph Cut segmentation accuracy. 

Relaxation of the condition, instead of applying the condition as a hard constraint, 
is essential in generating a shape prior. A relaxed conditional SSM should be able to 
bridge seamlessly between a non-conditional SSM and a conventional conditional 
SSM with hard constraints. Obtaining a method that allows such a seamless transition 
is the main aim of this paper, which is achieved by using the selection formula [5] for 
the calculation of the conditional covariance matrix and the conditional average. 

Several conditional SSMs have been proposed. Baka et. al [6] propose a condition-
al SSM in which uncertainties of the conditions can be integrated. The algorithm  
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calculates a conditional covariance matrix, but does not calculate a conditional aver-
age. For a seamless transition between non-conditional SSM and conventional condi-
tional SSM however, both the conditional covariance matrix and the conditional aver-
age are required. Syrkina et. al [7] propose a shape estimation method, that calculates 
a conditional distribution through a joint multivariate distribution of two statistical 
shape models; one representing the predictors and one for the shape that needs to be 
predicted. To minimize the prediction error, the number of shape modes retained for 
the two models is limited. In some cases this can lead to a considerable part of the 
training data that will be excluded from the model. Furthermore the algorithm re-
quires an estimate of the noise variance, which is difficult to obtain. 

The algorithm by de Bruijne et. al [4] uses the conventional conditional SSM with 
hard constraints, and extends it with ridge regression [8] to regularize the covariance 
matrix. Additionally, the introduction of ridge regression is an alternative approach to 
relax the conditional term of the SSM, because it allows the calculation of both the 
conditional covariance matrix and the conditional average.  A ridge parameter of 
zero will result in the conventional conditional SSM with hard constraints, whereas a 
very large ridge parameter leads to the generic, non-conditional SSM. Hence, the 
range of the regulating term is between zero and infinity. The method proposed in this 
paper presents a more elegant transition, with a regulating term between zero and one. 
In addition, the identity matrix in ridge regression might not be suitable to relax the 
condition, because it enhances the influence of the weaker shape variations.  

The benefit of the proposed method will be assessed by liver shape estimation, fol-
lowed by liver segmentation in non-contrast CT images. Many state of the art algo-
rithms for liver shape estimation and liver segmentation provide similar performance 
in relatively easy to segment images. The difficult to segment images, e.g. when the 
liver shape differs strongly from the average liver shape, remain challenging. Estima-
tion of such shapes, based on image features, is difficult and can result in errors in the 
condition estimation. The subsequent segmentation is hampered by suboptimal shape 
estimation. This paper seeks the room for improvement for such cases. Presented 
results focus on difficult to segment images. Furthermore, because shape estimation 
by a ridge regression based conditional SSM is the closest related method, results of 
the proposed method will be compared with results obtained through ridge regression. 

2 Conventional Conditional Statistical Shape Models 

To train a level-set based SSM, a data set of N manually annotated images is used to 
create a signed distance map, in which voxel values represent the distance to the organ 
contour. Negative distances denote the organ’s interior, positive distances signify the 
organ’s exterior. The distance data is extracted to a one-dimensional column vector, 
sized M, and Principal Component Analysis is applied to create a SSM. Projection of 
the training samples onto the model results in the principal component score matrix b, as 
depicted in Fig. 1. Details on level set based SSM training can be found in [9]. 

To obtain conditional data, a number of features is calculated from the true label 
data for all training data samples. These features are combined in matrix X, which has 
N columns (number of training samples) and F rows (number of calculated features). 
Subsequently, an unseen test image is roughly segmented using maximum a posteriori  
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relatively strongly affected, whereas the influence on the stronger shape variations is 
limited. 

It is worth mentioning that Σxx might be singular due to multi-colinearity of the fea-
tures. In experiments, the number of samples was, compared to the number of condi-
tional features, large enough to obtain non-singularity. In addition, from a large data 
base of features it is easy to select a set of features whose covariance matrix is not 
singular and which can still be effectively used as conditions for the SSM. 

4 Estimation of a Shape Prior 

The importance of a reliable conditional term in estimating the shape prior was 
stressed in section 1. To generate the shape prior, the following steps were performed: 

1. Roughly extract the test image by maximum a posteriori estimation [10]. 
2. Project the MAP result onto the relaxed conditional SSM (described in Section 3) 

and define the parametric position as the search starting point. 
3. Select the shape parameters 1 until ⌊L/3⌋, in which L denotes the number of shape 

parameters that represent 90% of the model’s variation. 
4. Using Powell’s method [11], with the Jaccard Index as objective function, optimize 

the shape parameters for the projected MAP result. 

To avoid local minima, the optimization is done in three subsequent steps: first for 
shape parameters 1 until [L/3], then for 1 until [2L/3] and finally for 1 until L. 

5 Experimental Setup and Results 

The total data set consisted of 144 non-contrast abdominal CT images. The image size 
was 512x512x154~807 voxels with a resolution of 0.546~1.00 mm/voxel. The data 
was subsampled by a factor 2. The first 48 cases were used to train the SSM, the 
second 48 cases were used to decide and evaluate the Graph Cut parameters, to optim-
ize the reliability parameter γ and to optimize ρ. The third 48 cases, that were availa-
ble for testing, were divided into two categories: easy to segment and difficult to  
segment. The state of the art methods in liver segmentation all show acceptable seg-
mentation results for easy cases. For difficult cases however improvements in seg-
mentation can be achieved. This paper therefore will mainly focus on the set of 24 
difficult cases. The 24 easy cases will only be discussed briefly. To distinguish be-
tween easy and difficult cases, the shape estimates for the 48 test cases were created 
using a standard, non-conditional SSM. The 24 cases that showed the lowest Jaccard 
Index after subsequent Graph Cut segmentation were marked as difficult cases.  

A set of 20 features, derived from manual labels (training) or from MAP results 
(testing), was used as conditional terms. Among the features were the object length in 
x, y and z direction, surface areas of the projected object on sagittal, coronal and axial 
planes, the object’s volume and histogram derived parameters such as the median x, 
y, and z location and the location of the 25th and 75th percentile x, y, and z position. 
Comparing the parameters generated from manual labels with parameters generated 
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in which P is the set of voxels in CT images, p∈P denotes the voxels, NB denotes the 
set of neighboring voxel pairs, A=(A1,…,Ap,…,A|P|) is the set of labels assigned to all 
voxels and λ is the weight factor to balance both energies. The other parameters are: 
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with Ip signifying the CT value of voxel p. Equation (15) calculates for every voxel 
the negative likelihood, equation (16) is the boundary term and equation (17) is the 
shape energy term. In this equation, Φ is the signed distance to the outline of the 
shape prior. By calculating the inner product of the vector from voxel p to neighbor- 
ing voxel q with ∇Φp, the validity of the segmented shape is evaluated. Using the 
second set of 48 cases, optimized values were found at λ = 1.5 and σ = 10.0 (for ridge 
regression, for γ = 0.0 and for γ = 1.0),  λ = 1.0 and σ = 5.0 (for γ = 0.5). 

Fig. 4b shows the degree of overlap between the true shape and the result of Graph 
Cut segmentation with shape priors obtained from ridge regression and obtained from 
the proposed method with γ = 0.0, γ = 0.5 and γ = 1.0, when using the 24 difficult  
 
 

 
 

 
 

true shape ridge regression γ = 0.0 γ = 0.5 γ = 1.0 

 J.I. = 0.829 J.I. = 0.829 J.I. = 0.834 J.I. = 0.773 

Fig. 5. Axial (top row) and coronal (bottom row) example results of generated shape priors for 
ridge regression and for the proposed method with different values of γ 



134 S. Tomoshige et al. 

 

 
 

 
 

true shape ridge regression γ = 0.0 γ = 0.5 γ = 1.0 

 J.I. = 0.904 J.I. = 0.904 J.I. = 0.917 J.I. = 0.859 

Fig. 6. Axial (top row) and coronal (bottom row) example segmentation results for Graph Cuts 
initialized with different shape priors 

cases from the test data set. Wilcoxon signed rank test showed no statistical signifi-
cant difference between the results for the standard SSM and the relaxed conditional 
SSM segmentation results. However, comparing the results obtained with the conven-
tional and the relaxed SSM showed a statistical significant difference. Also, the pro-
posed method (γ = 0.5) outperforms Graph Cut segmentation in which the shape prior 
was estimated using ridge regression, with a statistically significant difference in per-
formance. Fig. 6 shows an example segmentation result for the four different models 
and, similar to Fig. 5, the relaxed conditional SSM generates the best results. The 
example image shows a liver with an extremely large left lobe. The axial view in  
Fig. 5 clearly shows the performance gain by the strongly improved segmentation of 
the tip of the left liver lobe. The coronal view shows that, contrary to the other mod-
els, the proposes relaxed conditional SSM is able to properly segment the bottom of 
left lobe, despite its far from average shape.  

The 24 easy cases showed comparable results as the difficult cases, with differenc-
es however having weaker statistical significance. Average Jaccard Index values for 
ridge regression, γ = 0.0, γ = 0.5 and γ = 1.0 were 0.821, 0.820, 0.826 and 0.800 for 
shape estimation and 0.922, 0.929, 0.928 and 0.925 for subsequent Graph Cut seg-
mentation. Average evaluation time for MAP based rough segmentation (Intel® 
Xeon® E5606 CPU), shape estimation (Nvidia® Tesla C2050 GPU) and Graph Cut 
segmentation (Intel® Xeon® E5606 CPU) were 20, 130 and 20 seconds respectively. 

6 Discussion 

This paper described the construction of a shape prior by a novel relaxed conditional 
SSM. The generated shapes were used as shape priors for Graph Cut segmentation of 
the liver in abdominal CT images. This way, the reliability of the condition is taken 
into account during the generation of the shape prior. A fixed reliability parameter γ 
was used for all conditions and was optimized using a data set of 48 training cases. 
Future work will focus on using different values of γ for individual features. 

The goal of the research presented in this paper was to improve the accuracy of  
estimated shape priors. Compared to a conventional conditional SSM, compared  
to a SSM without condition and compared to a conditional SSM based on ridge  
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regression, the generated shape priors showed statistical significantly higher accuracy, 
for the 24 selected difficult to segment cases, thereby achieving the goal of this paper. 

Because ridge regression is the only comparable method to bridge between the 
non-conditional SSM and the conventional conditional SSM, both using a conditional 
covariance matrix and a conditional average, the results of the proposed method have 
been compared with ridge regression based shape prior estimates. The proposed re-
laxed conditional SSM proved to estimate statistical significantly better shape priors.  

Evaluating Fig. 4, the benefit of the proposed relaxed conditional SSM clearly lies 
in improved shape estimation and improved segmentation for difficult to segment 
images. Inspection of notoriously difficult to segment areas, such as shown in Figs. 5 
and 6, corroborate the suggested benefit of the proposed method. 

After Graph Cut segmentation, the results based on the relaxed conditional SSM 
still showed the highest Jaccard Index, also when compared with ridge regression 
based results. The proposed relaxed conditional SSM showed a higher average seg-
mentation accuracy than all other models, with differences being statistically signifi-
cant, except when compared to the non-conditional SSM. The improved accuracy in 
comparison with segmentation based on the conventional conditional SSM was found 
statistically significant. Therefore, it can be concluded that the relaxed conditional 
SSM outperforms the conventional conditional SSM, both in the estimation of the 
shape prior and in the subsequent segmentation. 

The calculation of the conditional covariance matrix and the conditional average 
allows a seamless transition between the generic non-conditional SSM and the con-
ventional conditional SSM. Contrary to [6], in which only a conditional covariance 
matrix is used, the proposed method calculates both a conditional covariance matrix 
and a conditional average. Following equations (7) to (10) a perfect interpolation 
between the non-conditional SSM and the conventional conditional SSM is achieved. 

In ridge regression there is an over-accentuation of the weaker shape variations, 
which are more strongly influenced by the ridge parameter than the stronger shape 
variations. Such a imbalance does not arise when calculating the conditional cova-
riance matrix and conditional average through equations (9) and (10). The improved 
performance in shape estimation and its influence on subsequent Graph Cut segmen-
tation can be contributed to this seamless transition between the non-conditional SSM 
and the conventional conditional SSM. 

Future work includes modifications to the algorithm, to enable the processing of 
contrast enhanced CT data as well. This will also allow a more thorough comparison 
with other methods, for example based on the SLIVER07 database [13]. 
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Abstract. Discontinuous motion is quite common in the medical field
as for example in the case of breathing induced organ motion. Regis-
tration methods that are able to preserve discontinuities are therefore
of special interest. To achieve this goal we developed in our previous
work a framework that combines motion segmentation and registration.
To avoid unreliable motion fields the incorporation of landmark corre-
spondences can be a remedy. We therefore describe in this paper how
we integrate the landmarks in our variational approach and how to solve
the minimisation problem with a primal-dual algorithm. Qualitative and
quantitative results are shown for real MR images of breathing induced
liver motion.

Keywords: Motion, registration, liver.

1 Introduction

Nowadays, image registration is an indispensable tool for many medical ap-
plications and a great variety of well established methods have been proposed.
Although image registration has been a topic of high interest in the last decades,
methods that can handle discontinuous motion fields have only drawn little at-
tention until recently. This despite its importance when for example registering
abdominal organs that undergo breathing induced motion.

More attention to discontinuity preserving methods is being paid in the related
research field of optical flow. Important theoretical contributions also originate
from image segmentation and image denoising methods. Mumford and Shah
for example proposed in their pioneering work [13] a functional for image seg-
mentation that avoids spatial smoothing in certain locations of the image, thus
preserving discontinuities. Vese and Chan [18] introduced a level set framework
based approach to efficiently solve the Mumford and Shah minimisation prob-
lem for segmentation. Another influential approach based on the Total Variation
(TV) norm, known to preserve discontinuities, was proposed by Rudin, Osher
and Fatemi [16] for image denoising. The beneficial behaviour of the TV-norm
was also exploited in image segmentation, image registration and optical flow
methods, as for example in [5], [15] and [2].
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A recent registration approach that tries to handle discontinuities in the dis-
placement field of medical images has been proposed by Schmidt-Richberg et
al. [17], which considers a direction-dependent regularisation method of the dis-
placement field. This method relies on the calculation of the normals at the
object boundaries and therefore a rather good manual segmentation has to be
provided in advance.

As shown in the work of Amiaz et al. [1], where the optical flow method of
Brox et al. [2] was embedded into the segmentation framework of Vese and Chan
[18], the so achieved motion segmentation can influence the registration process
positively. Instead of using the level set formulation, we used in our previous
works [9,10] the segmentation framework of Chan et al. [5] that guarantees a
globally optimal motion segmentation result for a fixed motion field. A pre-
liminary short version of the work in [10] can be found in [11]. Following the
work of Chambolle and Pock [4] we solved then the registration problem with a
primal-dual approach.

To avoid unreliable motion fields, we incorporate in this paper the information
of landmarks into our previous work [10]. There exist many image registration
methods which integrate the information of landmark correspondences, as for ex-
ample [7,8,12,14,3]. Here, we will make use of the recent work of Brox and Malik
[3], which contains the idea on how to include descriptor matchings, respectively
landmark correspondences, easily into a variational framework.

2 Method

In the following we want to describe the proposed method. First, we shortly re-
capitulate the registration and motion segmentation framework we used already
before in [10] and in a second part we discuss the incorporation of the landmarks
into the energy functional.

2.1 Registration and Motion Segmentation Framework

We define by Ω ⊂ R
2 the domain of the pixel positions x = (x1, x2) and by the

functions R : Ω → R and T : Ω → R our reference and template image. The
aim of image registration is to find a transformation Φ(x) := x + w(x) such
that the relation T ◦Φ ≈ R holds and the displacement field w : Ω → R

2, where
w(x) := (u(x), v(x)) with u, v : Ω → R, will be the function we focus at. For
convenience we will use the abbreviations w, u and v for w(x), u(x) and v(x).

The proposed registration method integrates the displacement field estimation
into the convex segmentation method of Chan et al. [5] to preserve the discon-
tinuities in the displacement field. The energy functional for this variational
approach is given by

E(w+, w−, ũ) =
∫

Ω

D(w+) ũ(x) dx +
∫

Ω

D(w−) (1 − ũ(x)) dx

+ ν

∫
Ω

|∇ũ(x)| dx . (1)
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Here, the function D represents the data term and is of the general form D(w) :=
f(w)+μ s(w), where f and s are the fidelity term and the smoothness term with
μ ∈ R

+ being a weighting parameter. We choose a fidelity term f that incor-
porates the constraints for the grey value constancy and the gradient constancy
with their corresponding weights γ1, γ2 ∈ R

+
0 . Therefore we define

f(w) = f(u, v) := γ1|T (x + w) − R(x)| + γ2|∂x1T (x + w) − ∂x1R(x)|
+ γ2|∂x2T (x + w) − ∂x2R(x)| . (2)

The smoothness term s corresponds to the L1 norm respectively the vectorial
TV norm of w and is given by

s(w) = s(u, v) :=
√
|∇u|2 + |∇v|2 = |∇w| . (3)

Furthermore, to incorporate Chan et al.’s work [5], a binary function ũ : R
2 →

{0, 1}, ũ(x) := 1Σ(x), where Σ ⊆ Ω ⊆ R
2, with Σ := {x ∈ Ω | ũ(x) = 1}, is

used in (1) to differentiate the displacement field w into w+ and w−. Finally,
the last term in the above energy (1) is a regularisation defined by the TV norm
and weighted by a parameter ν ∈ R

+.
The registration problem is solved by minimising energy E in (1) with respect

to w+, w− and ũ and we finally obtain the aimed displacement field by setting
w := w+ ũ + w− (1 − ũ).

As pointed out by Chan et al. in [5], (1) is strongly related to the Mumford-
Shah functional [13] and one can show that a global minimiser of the set Σ can
be found by minimising energy E in (1) with respect to ũ over a convex set.

2.2 Incorporation of the Landmarks

To exploit the information of the landmarks in the proposed variational registra-
tion method we make use of Brox and Malik’s approach [3]. The landmark point
correspondences, which are defined by the vectors wLM = (uLM , vLM ), should
act as a prior to the displacement field w and we therefore seek to additionally
minimise an energy of the form

ELM (wLM ) =
∫

Ω

1S(x) |w(x) − wLM (x)|22 dx , (4)

where S is the set of the landmark positions in the reference image R. More
specifically, incorporating energy ELM into our registration and motion segmen-
tation framework defined by the energy functional E in (1) results in a modified
fidelity term f in (2), namely

f(w) := γ1|T (x + w) − R(x)| + γ2|∂x1T (x + w) − ∂x1R(x)|
+ γ2|∂x2T (x + w) − ∂x2R(x)| + 1

2
λ1S(x) |w(x) − wLM (x)|22 , (5)
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where λ is a weighting parameter. Instead of using a dense correspondence field
[3], we use the landmarks extracted by the Affine Scale Invariant Feature Trans-
form (A-SIFT) method [19], a recently developed algorithm that extends the well
known SIFT method and allows landmark matching under affine deformations,
hence usually finding a lot more matches than the SIFT method. The putative
matches found are then filtered by fitting a homography to the matches using
RANSAC yielding the set S of landmark positions.

3 Minimisation

3.1 Iterative Scheme

To facilitate the minimisation procedure we replace the fidelity term f in (5) by
its partly linearised version

f(w)=γ1|ρ1(w)|+γ2|ρ(1)
2 (w)|+γ2|ρ(2)

2 (w)|+ 1
2
λ1S(x) |w(x)−wLM (x)|22 , (6)

where
ρ1(w) := T (x + w0) + ∇T (x + w0)T (w − w0) − R(x) , (7)

ρ
(1)
2 (w) := ∂x1T (x + w0) +

(
∂x1x1T (x + w0)
∂x2x1T (x + w0)

)T

(w − w0) − ∂x1R(x) , (8)

and

ρ
(2)
2 (w) := ∂x2T (x + w0) +

(
∂x1x2T (x + w0)
∂x2x2T (x + w0)

)T

(w − w0) − ∂x2R(x) . (9)

The minimisation of the energy functional E with respect to w+, w− and ũ is
then performed by the following iterative scheme:

1. For fixed w+ and w−, solve

min
ũ∈[0,1]

{∫
Ω

D(w+) ũ(x) dx +
∫

Ω

D(w−) (1 − ũ(x)) dx +
∫

Ω

ν |∇ũ(x)| dx

}
.

(10)

2. For fixed ũ, solve

min
w+

{∫
Ω

D(w+) ũ(x) dx

}
. (11)

3. For fixed ũ, solve

min
w−

{∫
Ω

D(w−) (1 − ũ(x)) dx

}
. (12)

To solve the subproblems (10), (11) and (12) in a fast and efficient way, we follow
a primal-dual approach as described by Chambolle and Pock in [4]. We therefore
recapitulate in the next section the basic notations and formulations.
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3.2 The Primal-Dual Approach of Chambolle and Pock

First, we define by X and Y two finite-dimensional real vector spaces. Their inner
products are denoted by 〈·, ·〉X respectively 〈·, ·〉Y and their induced norms are
given by ‖·‖X =

√〈·, ·〉X respectively ‖·‖Y =
√〈·, ·〉Y . The general non-linear

primal problem we have is of the form

min
x∈X

F (Kx) + G(x) , (13)

where F : Y → [0, +∞) and G : X → [0, +∞) are proper, convex and lower
semi-continuous and the map K : X → Y is a continuous linear operator. The
corresponding primal-dual formulation is the saddle-point problem

min
x∈X

max
y∈Y

〈Kx, y〉Y + G(x) − F ∗(y) , (14)

with F ∗ : Y → R ∪ {+∞} being the convex conjugate of F . We assume that
the problems above have at least one solution (x̂, ŷ) ∈ X × Y and therefore
it holds Kx̂ ∈ ∂F ∗(ŷ) and −(K∗ŷ) ∈ ∂G(x̂), where ∂F ∗(ŷ) and ∂G(x̂) are
the subdifferentials of the convex functions F ∗ at ŷ and G at x̂. Furthermore we
assume that F and G are “simple”, i.e. that the resolvent operators (I+σ∂F ∗)−1

and (I + τ∂G)−1 are easy to compute. For a convex function f the resolvent of
the operator τ∂f at x̃ can be calculated in our case by

x = (I + τ∂f)−1(x̃) = argmin
x

{
‖x − x̃‖2

2τ
+ f(x)

}
. (15)

We will only make use of Algorithm 1 in [4] with the extrapolation parameter
θ = 1. The usage of the other proposed algorithms is left for the moment for
later research.

To apply Algorithm 1 in [4] to the minimisation problems (10), (11) and
(12), we first need to rewrite them in their discretised version, then identify the
functions F and G and finally derive the resolvent operators (I + σ∂F ∗)−1 and
(I + τ∂G)−1.

For the discrete setting we therefore define by xi,j = (x1 i,j , x2 i,j) = (ih, jh),
i = 1, . . . , M, j = 1, . . . , N , the pixel positions in the image domain with h being
the spatial step size. For the calculations of the finite differences, the discrete
divergence operator, the discretised inner products and further details we refer
the reader to [4] and the references therein.

In the following sections we will discuss the resolvent operators for the three
given minimisation problems (10), (11) and (12). The formulation of the resolvent
operators does not change much with respect to our previous work in [10]. We
nevertheless recapitulate them in the following sections and point out the certain
changes which appear.
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3.3 Resolvent Operators for Problem (10)

Let us consider the continuous problem (10). After its discretisation and some
calculations we get

p = (I + σ∂F ∗)−1(p̃) =⇒ pi,j = ν
p̃i,j

max{ν, |p̃i,j|} , (16)

as a solution of the resolvent operator with respect to F ∗. This is the same result
we got in [10] and the calculations are performed in the same way as there. The
resolvent operator with respect to G is also derived similar as in [10] and is given
by

ũ = (I + τ∂G)−1(û) =⇒ ũi,j =min
{
max
{
ûi,j−τ

(
D(w+

i,j)−D(w−
i,j)
)
, 0
}

, 1
}

.

(17)

Note that the data term D, or more specifically the fidelity term f that appears in
D, is not the same as in our previous work. This time it additionally incorporates
the information of the landmarks.

3.4 Resolvent Operators for Problem (11)

Now we consider the continuous problem (11). The numerical calculations in
the implementation get facilitated by having a smooth extension of w+ to the
domain Ω \ Σ. We therefore consider instead the problem

min
w+

{∫
Ω

f(w+) ũ(x) + μ s(w+) dx

}
. (18)

Comparing (11) to (18) the only difference is, that the factor ũ is not applied to
the smoothness term s anymore.

From the resolvent operator with respect to F ∗ we obtain this time

q=(I + σ∂F ∗)−1(q̃) =⇒ qi,j =μ
q̃i,j

max{μ, |q̃i,j |} . (19)

This is again the same result as in [10] but more changes appear instead in
the solution for resolvent operator with respect to G. This time the function G
incorporates the information of the landmarks and is given by

G(w+) =
∑
i,j

(
γ1|ρ1(w+

i,j)| + γ2|ρ(1)
2 (w+

i,j)| + γ2|ρ(2)
2 (w+

i,j)|

+
1
2
λ1S(xi,j)

(
(u+

i,j − uLM i,j)2 + (v+
i,j − vLM i,j)2

) )
ũi,j . (20)

The derivation of the resolvent operator with respect to G is again not that
straightforward and more effort has to be put in to find a suitable solution. This
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can be done similar as in [10] and therefore, having a closer look at the definition
of G (20) and equation (15), we see that we have to solve

w+ = (I + τ∂G)−1(w+
0 ) = arg min

w+∈X

{
‖w+ − w+

0 ‖
2

X

2τ
+ G(w+)

}

= argmin
w+=(u+,v+)∈X

{
1
2τ

∑
i,j

( (
u+

i,j − u+
0 i,j

)2
+
(
v+

i,j − v+
0 i,j

)2 ) (21)

+
∑
i,j

(
γ1|ρ1(w+

i,j)| + γ2|ρ(1)
2 (w+

i,j)| + γ2|ρ(2)
2 (w+

i,j)|

+
1
2
λ1S(xi,j)

(
(u+

i,j − uLM i,j)2 + (v+
i,j − vLM i,j)2

) )
ũi,j

}
.

Similar to the work in [10] for ũi,j = 0 we can conclude from (21) that w+
i,j =

w+
0 i,j . On the other hand, for ũi,j = 1 we have again to distinguish the cases

ρ1(w+
i,j)
(

>
<
=

)
0 , ρ

(1)
2 (w+

i,j)
(

>
<
=

)
0 , ρ

(2)
2 (w+

i,j)
(

>
<
=

)
0 , (22)

which turn out to be 27 in total. The additional term of the landmarks will cause
slight changes in the resolvent operator with respect to G that we used to have
before in [10]. Nevertheless, the idea of the derivation of the explicit solutions
for w+

i,j and the reformulations of the conditions in (22) remains the same.

3.5 Resolvent Operators for Problem (12)

This section is very similar to Section 3.4 and we mainly have to just replace
w+ by w− and ũ by 1− ũ. To achieve a smooth extension of w− to the domain
Σ, we consider now instead of problem (12) the following problem

min
w−

{∫
Ω

f(w−) (1 − ũ(x)) + μ s(w−) dx

}
. (23)

The resolvent operator with respect to F ∗ is identical to (19) and compared to
the section before only very slight changes of the resolvent operator with respect
to G have to be done.

4 Results

The minimisation problems for the displacement fields w+ and w− remain non-
convex, although we have a convex minimisation problem with respect to the
motion segmentation function ũ. To facilitate the minimisation procedure of this
overall non-convex problem, the fidelity term f was linearised in (6). Nevertheless
we should remember that we have to update w+

0 and w−
0 regularly. To avoid the

risk of getting stuck in a local minimum during the optimisation we therefore
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(a) (b) (c) (d) (e) (f)
Fig. 1. Qualitative example for a pair of liver images with a discontinuous displacement
field. Motion segmentation ũ without landmarks (a) and with (d), reference image R
overlaid with the motion segmentation without (b) and with landmarks (e) and the
displacement field w without (c) and with landmarks (f).
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Fig. 2. Quantitative evaluation for 22 pairs of liver images with a discontinuous dis-
placement field. Comparison of the MSE (left) and NMI (right).

apply a coarse-to-fine strategy in the same manner as in our previous work [10].
The final displacement field is then achieved by setting w(x) = w+(x) if x ∈ Σ
and w(x) = w−(x) if x ∈ Ω \Σ. To calculate the images T (x+w±) during the
iterations and to obtain the final registered image T (x+w) bicubic interpolation
is used.

For the experiments we used real MR images of the abdomen, which were
taken during the breathing cycle and show the sliding motion of the liver. A
qualitative example is shown in Fig. 1. The inclusion of the landmarks lead to
a more reliable motion segmentation result, since the in fact static part of the
background is not assigned to the area with bigger motion anymore.

In Fig. 2 a quantitative evaluation is shown for 22 different liver image pairs. In
average, the A-SIFT method [19] delivered around 1173 matches for these image
pairs and after applying RANSAC around 1001 were left. Since we are interested
in the discontinuities of the displacement field, we compare the proposed method
to the methods that preserve discontinuities in the displacement field, in this
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case, the demon algorithm with anisotropic diffusion filtering [6], the registration
algorithm of Brox et al. [2] and our previous work [10]. The parameters for all
the methods were chosen by optimising them with respect to the 22 image pairs.
For our methods they were set to γ1 = 4, γ2 = 1, μ = 0.2, ν = 0.1 and for the
weighting of the landmark term we used λ = 0.3. For the demon algorithm with
anisotropic diffusion filtering we could use the suggested parameters and for Brox
et al.’s method we used γ = 5, α = 80 and σ = 0.9. Both of our methods showed
an improvement compared to the demon algorithm with anisotropic diffusion
filtering and the registration algorithm of Brox et al.

5 Conclusion

In this paper we presented a primal-dual method for discontinuity preserving
non-rigid registration, that makes use of the segmentation framework of Chan
et al. [5] and includes the information of landmarks. The so gained motion seg-
mentation influences the motion estimation positively by sharpening the discon-
tinuities in the displacement field. The minimisation of the energy functional is
implemented in a coarse-to-fine strategy and exploits the rapidity of the primal-
dual algorithm studied in [4]. The experimental results demonstrated desirable
performance of the proposed method in comparison with those of the demon
algorithm with anisotropic diffusion filtering [6] and the registration algorithm
of Brox et al. [2].
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Abstract. The effective modeling and predicting of respiratory motion
in abdominal organs is crucial to the task of tumor treatments. Cur-
rent approaches in statistical respiration modeling either build a subject-
specific model which is only suitable for that single subject or create a
population model by assuming a coherent population with a relatively
simple distribution and, therefore, fail to account for variations of the
breathing pattern among different subjects. To bridge this gap, we pro-
pose a more flexible method based on exemplar models, which is able to
cope with heterogeneous population data and can be better adapted to a
previously unseen subject. We have showed that, in contrary to principal
component analysis based models, our method is capable of effectively
utilizing complementary information provided by increasing number of
examples taken from a population. In addition to being more robust
against outliers, the proposed method also achieved lower mean errors
in leave-one-out experiments.

Keywords: Respiration, liver motion, statistical population model, mo-
tion modeling, 4D MRI, principal component analysis, exemplar models.

1 Introduction

To take advantage of novel therapy devices with improved targeting precision
(e.g. beam-steering, pencil-beams, phased arrays, refined catheter-steering, mul-
tileaf collimators), it is crucial to have accurate information about the position
of the organ during therapy. Fast and comprehensive image acquisition as well
as fast image processing would be required for determining and quantifying the
motion of all points in the organ in real time. As this is generally not possi-
ble, prior knowledge about the expected motion is required to complement the
partial observations (so called surrogates) acquired during therapy.

There is an extensive body of work dedicated to modeling 4D motion in ab-
dominal organs, and the interested reader is referred to [1] for a review on this
topic. These works follow two general approaches. Either a so called subject-
specific model is built from the data acquired through a planning session [2–4], or
data from different subjects are gathered to build a population model [5–10]. The
former has the advantage that the model captures the specific motion patterns
of an individual subject. However, any inter-session changes in the organ motion
are difficult to account for in this approach. Moreover, building subject-specific
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models could be time consuming and expensive. Population models are designed
to overcome these shortcomings. In most cases these are based on principal com-
ponent analysis (PCA) [5, 8, 10, 11]. An exception is the work of Ehrhardt et al.
[9], where a mean motion model was built for lung cancer patients by mapping
all subject-specific motion models to an average image space and calculating the
Log-Euclidean mean of all the mapped transformations. Von Siebenthal et al.
[5] observed that, in addition to the repetitive respiratory motion of the liver,
there exists a gradual motion and deformation of the organ which is noticeable
in imaging sessions lasting more than 20 minutes [5]. They built a population
model for this so called drift in the observed livers using PCA. Most recently,
Arnold et al. [11] used this drift model in combination with a subject-specific
recording of liver positions over time for spatial as well as temporal prediction.

However, all the aforementioned population models assume a coherent pop-
ulation (e.g. one Gaussian distribution modeled by PCA), which is unlikely to
hold as there are variations in the motion patterns of different subjects. He et
al. [6] used kernel PCA with least-square support vector machines to model the
non-linear statistics of respiratory motion. However, they did not specifically
address the issue of population sub-classes. Even though their model is more
powerful than PCA, the tuning of the parameters of the kernel function as well
as the support vector algorithm is a time consuming and cumbersome process
and might have to be repeated for each new dataset.

To address these issues, we propose the use of exemplar models as a non-
parametric method for adapting the population model to an individual subject
during therapy based on the individual breathing patterns observed via the sur-
rogate. To that end, we have created submodels by PCA analysis for individual
subjects. The final model is a linear mixture of these exemplar models. Even
though the use of most similar samples has been previously proposed in other
fields such as atlas-based segmentations [12], to the best of our knowledge this is
the first attempt to build an individualized breathing model from observations
over a population by taking advantage of similarities in the respiratory motion
of different subjects.

2 Materials

Our experiments are based on free-breathing 4DMRI [5] data obtained from 12
healthy volunteers, 6 female and 6 male, with an average age of 31. The 4DMRI
sequences consist of 25-30 slices with an in-plane resolution of 1.8 × 1.8 mm2,
a slice thickness of 4 mm and a temporal resolution of 290-410 ms taken in the
course of 40-75 minutes.

An intensity-based non-rigid registration has been employed [5] to quantify
the motion of the liver observed during 4DMRI acquisition. In order to establish
inter-subject correspondences, a number of anatomically and biomechanically
corresponding points were chosen manually for each subject. By performing a
cubic interpolation between these landmarks, the positions of 290 corresponding
points in the liver were obtained [5].
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In this study we used the position of three of these points as our surrogates
and assumed that they can be tracked during therapy. These surrogates include
a point on the diaphragm, the entrance point of the portal vein into the liver, and
a point in the center of the liver defined by vessel features. We also considered
the case where the liver motion of a subject can be observed for 3-5 minutes
immediately prior to therapy for creating a subject-specific respiratory model.
We refer to these data, which typically consist of 27-84 respiratory cycles, as the
pre-therapy data.

Motion Data. The liver position is described by N points, where the position
of the ith point at time step t is represented by pi

t = [piSIt
, piAP t

, piLRt
], with

SI, AP, and LR denoting the superior-inferior, anterior-posterior, and left-right
axis. The position of the liver at time step t is represented by a 3N dimensional
vector pt built from concatenating the pi

t vectors. The motion of the liver at
time t is defined by Δpt = pt − pref with pref being the reference exhale
vector constructed using the available exhale image(s) during the pre-therapy
stage. The exhale state texh in each cycle is defined as the local maxima of SI
component of the mean motion trajectory of the observed points (i.e. surrogates).
Motivated by [5], we decompose the generic motion vector Δpt into respiratory
Δpresp,t and drift Δpdrift,t components:

Δpt = Δpresp,t +Δpdrift,t = (pt − ptexh
) + (ptexh

− pref ) , (1)

where ptexh
is the position of the points at the most recent exhale state. The

same decomposition is done for the surrogate signal during therapy, with each
component of the surrogate being used to predict the respective component of
the motion vector.

3 Methods

3.1 Motion Model Concept

PCA has been successfully employed in the literature for modeling the subject-
specific respiratory motion of abdominal organs [3, 4] and the underlying reason
of its effectiveness for this purpose has theoretically been explained [13]. Yet,
PCA’s suitability for modeling a population of subjects is not as well justified.
Indeed, variations in anatomy and breathing regimes between individual subjects
are likely to lead to different motion patterns that are not well approximated by
a single Gaussian distribution.

In this work we propose to distinguish between different patterns of breath-
ing motion within a population. On the one hand, effective clustering of the
motion vectors for such high dimensional data is not easily attained. On the
other hand, it is reasonable to assume that motion vectors originating from an
individual subject acquired during a single session demonstrate similar breath-
ing patterns. Therefore, instead of finding different patterns of breathing motion
by means of clustering, we turn to a classification method called instance-based
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Fig. 1. This schematic illustrates the different steps of our proposed exemplar
method for motion prediction during therapy

learning [14] , which has been effectively exploited in computer vision and ma-
chine learning [15, 16].

In particular, our method is based on the distance-weighted k-nearest neighbor
algorithm [17]. We have assumed that different examples of breathing patterns
exist in the population and each of them is represented by at least one subject
in the dataset. Hence, we built our exemplar models by fitting a PCA model
to the motion vectors of each individual subject. During therapy, the prediction
is realized as a weighted combination of the predictions of all the exemplar
models, where the weights are based on the similarity of the surrogate and the
corresponding model. The different steps of our proposed method are illustrated
in Fig. 1.

3.2 Subject-Specific PCA Modeling

Assuming that the 3N dimensional motion vectors Δpt, t = 1..T , with T being
the number of time steps, belong to a 3N dimensional Gaussian distribution
Δpt ∼ N (μ,Σ), our task is to find the most probable vector Δp̂t, given a subset
of its elements, namely the surrogate vector st. To create the motion model,
the observed vectors Δpt are decomposed into the surrogate st and the motion
vector of the rest of the points which we wish to predict (rt), as ΔpT

t =
[
sTt , r

T
t

]
.

The same decomposition into corresponding components is done for their mean

μT =
[
μT
s , μ

T
r

]
, and their covariance matrix Σ =

[
Σss Σsr

Σrs Σrr

]
. It can be shown

[18], that if the distribution of the Δpt vectors is Gaussian, then the conditional
distribution (Δpt|st) is also a Gaussian distribution of the form

(Δpt|st) ∼ N (μ+

[
Σss

Σrs

]
Σss

−1(st − μs), Σ −
[
Σss

Σrs

]
Σss

−1

[
Σss

Σrs

]
) . (2)
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Therefore, the most probable vector Δp̂t given st, is the mean of the above
conditional distribution.

To find the principal components of the Δpt vectors, we perform Eigenvalue

decomposition on their covariance matrix, Σ
Eig
= EΛET , where E is composed of

the eigenvectors of Σ, and Λ has the corresponding eigenvalues on its diagonal.
By breaking up ET =

[
ET

s ,E
T
r

]
into two submatrices, each consisting of the

rows corresponding to s and r, we find the most probable vector Δp̂t given st
in terms of eigenvectors as:

Δp̂t = μ+EΛET
s (EsΛET

s )
−1

(st − μs) . (3)

3.3 Population PCA Modeling

Given a dataset with J subjects, where each subject j = 1..J , has Tj observations
of the same N points, a PCA population model is built similar to section 3.2,
by using the observations from all included subjects j. Index t then denotes the
observation index and ranges from 1 to

∑
j Tj . The rest of the algorithm is the

same as the subject-specific algorithm.

3.4 Exemplars Modeling

To create a population model using exemplars, we build a PCA model M j from
each subject j as described in section 3.2. To predict Δpt, for a new subject,
given st at time step t, we obtain the motion vector predictions Δp̂j

t of all M j

models through equation 3. To combine these predictions in a distance-weighted
k-nearest-neighbor approach [17], we have to estimate the dissimilarity of each of
the exemplar models to the current observation. We base this dissimilarity on the
squared Mahalanobis distance between the surrogate st and the corresponding
components of an individual model M j :

d(st,M
j) = (st − μj

s)
TΣj

ss(st − μj
s) . (4)

Consequently, the exemplar weight, wj
t , which provides the contribution of the

prediction of model M j at time t to the final prediction, is computed from the
inverse of the above distance:

wj
t =

1/(d(st,M
j) + η)∑J

k=1 1/(d(st,M
k) + η)

, (5)

where η is a small positive number introduced to avoid numerical instability.
Finally, the motion vector, Δp̂t, is formed from a weighted sum of the Δp̂j

t

vectors:

Δp̂t =

J∑
j=1

wj
tΔp̂j

t . (6)
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4 Experiments and Results

4.1 Evaluation Method

The prediction error of the model at each point pi
t was defined by the Euclidean

distance between the predicted motion (Δp̂i
t) and the motion obtained from the

non-rigid registration result (Δpi
t), ie. E

i
t = ‖Δp̂i

t −Δpi
t‖. For each subject j,

the error distribution was summarized by its mean mEj , standard deviation sEj

and maximum xEj , e.g.

mEj =
1

TjN

Tj∑
t=1

N∑
i=1

Ei
t . (7)

The number of points in the liver of each subject was 290 and the number of
time steps Tj varied between 3300 and 6700. The prediction accuracy of the
population models were evaluated based on leave-one-out experiments. We used
3 of the points as our surrogates (see section 2) and predicted the positions of the
remaining N = 287 points in the livers. No temporal prediction was performed.

Statistical significance at the α=0.001 level of the difference in the mean of
mEj over all subjects of two methods was tested by bootstrapping [19]. For this,
prediction results were resampled with replacement 5000 times and the difference
in the mean error was calculated. The probability of equal results was based on
the fraction of differences which were zero or negative.

4.2 Experiments

In this study, we performed two sets of experiments to evaluate two aspects of
our proposed method, namely its prediction accuracy and its learning capability.
In the following we will explain each set of experiments in more details.

Prediction Accuracy Experiments. To fully investigate the contribution of
individual steps of our framework to the prediction accuracy, we conducted 7
experiments, with different combinations of the type of motion vectors {drift,
respiration and generic = drift + respiration} and the type of motion model
{exemplar models, subject-specific PCA and population PCA}. PCA and exem-
plar models of drift and respiratory motion were built by replacing Δpt with
Δpdrift,t and Δpresp,t vectors, respectively, in the calculations of sections 3.2
and 3.4. Subject-specific PCA models were based on the pre-therapy data from
the same subject. Since no substantial drift could be observed during the pre-
therapy stage, no subject-specific drift motion models were created.

Learning Capacity Experiments. To test the ability of our proposed method
to fully utilize the information provided by an increasing number of samples
used for model building, we performed the following experiment. After excluding
the subject to be tested, we randomly picked n ∈ {1..11} subjects from the
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population, and built a PCA and an exemplar drift model. Next, we used these
models to predict the drift of the left out subject. The same procedure was carried
out for all the subjects and the mean error over all of them, εn, was computed.
We repeated this experiment 7 times for each number n and computed the mean
and the standard deviation of εn over all 7 repetitions.

4.3 Results

Table 1 lists the statistics of the motion amplitude for the individual subjects.
The results of the prediction accuracy experiments, using the generic motion
models and the experiments using the separated motion models are summarized
in Tables 2 and 3, respectively. These results suggest that,

– Exemplar models outperform the PCA models in all of the experiments (G3
vs G2, S2 vs S1, and S4 vs S3).

– Separation of drift and respiratory motion lowers the error only when the
respiratory component is modeled by a subject-specific model (S3 and S4
have lower errors than G2 and G3, but S1 and S2 have higher errors than
G2 and G3 respectively).

– The best results are achieved by modeling the drift component using ex-
emplar models and the respiratory component by a subject-specific model
(S4).

– The use of exemplar models improves the lowest error achieved by PCA
model by 10% (compare experiments S3 and S4).

Table 1. Statistics of the motion amplitude of the liver points (‖Δpit‖) for all
subjects. The average value of mean, standard deviation (std) and maximum
(max) over all subjects was 4.21 mm, 2.39 mm and 17.12 mm, respectively.

Subj Amplitude of motion Subj Amplitude of motion Subj Amplitude of motion
mean ± std (max)(mm) mean ± std (max)(mm) mean ± std (max)(mm)

1 5.76 ± 3.47 ( 20.93 ) 5 3.40 ± 2.05 ( 19.49 ) 9 3.91 ± 2.09 ( 14.29 )
2 3.10 ± 1.73 ( 17.26 ) 6 5.96 ± 3.42 ( 19.71 ) 10 7.28 ± 3.61 ( 21.15 )
3 3.13 ± 1.65 ( 11.51 ) 7 2.76 ± 1.71 ( 11.21 ) 11 3.58 ± 2.13 ( 16.75 )
4 3.25 ± 2.09 ( 16.68 ) 8 3.99 ± 2.28 ( 18.40 ) 12 4.37 ± 2.42 ( 18.02 )

Table 2. Performance of the models without separating drift and respiratory
motions in leave-one-out tests

Generic Motion Models Mean over all subjects j of
mEj (mm) sEj (mm) xEj(mm)

G1 Subject-Specific Model 1.18 0.99 8.45

G2 PCA Population Model 1.08 0.82 8.12

G3 Exemplar Population Model 1.02 0.70 8.07
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Table 3. Performance of separated drift and respiratory models in leave-one-out
tests

Separated Motion Models Mean over all subjects j of
Drift Model Respiration Model mEj (mm) sEj (mm) xEj(mm)

S1 PCA Population PCA Population 1.16 0.84 9.02
S2 Exemplar Population Exemplar Population 1.05 0.79 8.26

S3 PCA Population Subject-Specific 0.97 0.77 8.65
S4 Exemplar Population Subject-Specific 0.87 0.67 7.99

(a) (b)

Fig. 2. Comparison of the performance of PCA and exemplar drift population
models, showing (a) the mean and (b) the maximum error in predicting the drift
of each point in the liver of the left-out subjects

Fig. 3. Mean error of drift prediction over all subjects as a function of the size
of the population using PCA and exemplar population models. The error bars
show the standard deviation of the mean error from the 7 repetitions.
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Fig. 2 shows a comparison of the drift prediction in experiments S3 and S4 for
the individual subjects. It can be observed that the exemplar method provided
a lower mean and maximum error than the PCA method for each subjects. The
difference in mean prediction error of S4 and S3 was also statistically significant
(p < 0.001). No other significance tests were performed.

The results of the learning capacity experiments are depicted in Fig. 3. The
PCA model shows no substantial improvement when incorporating more than 5
subjects. In contrast, the exemplar model continues to improve as the number
of considered subjects increases.

5 Discussion

Using Kullback-Leibler(KL) divergence as a distance measure between distribu-
tions, we observed that subjects 12 and 7 have the largest and the smallest sum of
distances from the other subjects in the population. Also, the highest and lowest
amounts of improvement using exemplar models are associated with subjects 12
and 7 respectively. This can be due to the fact that by fitting one PCA model to
a population, the model captures the average motion pattern, performing poorly
on uncommon subjects. The exemplar model is, however, more robust towards
such outliers in motion patterns.

The most important advantage of exemplar models is their learning capacity.
The trend seen in Fig. 3 suggests that exemplar models are more capable of
using complementary information from a new subject and incorporating it into
their models.

Furthermore, the exemplar method is incremental in the sense that adding new
subjects to the model can be performed without re-calculating already considered
cases. This attribute reduces the computational time and, together with the
improved learning capacity of the approach, allows for step-by-step incorporation
of cases where insufficient prediction is observed.

6 Conclusion

In this study, we addressed the problem of modeling and predicting two indepen-
dent types of liver motion namely respiratory and drift motion in the presence of
different breathing patterns among subjects. We proposed a method to generate
an adaptable population model based on 4D motion fields obtained from 4DMRI
images of 12 subjects.

Exemplar models were built for classes of the population represented by the
individual subjects. Using a linear combination of the prediction of these exem-
plar models, the respiratory motion of a new subject was predicted, such that
the most similar exemplar models have the highest influence.

We have explored different modeling methods for respiration and drift motion
using PCA and exemplar models and concluded that a subject-specific PCA
respiratory motion model based on pre-therapy data, combined with an exemplar
population model for the drift achieve the lowest mean error. Finally, it was
shown that the exemplar models have a higher learning capacity.
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Abstract. In this paper we present a set of 3D-rigid motion invariant
texture features. We experimentally establish that when they are com-
bined with mean attenuation intensity differences the new augmented
features are capable of discriminating normal from abnormal liver tissue
in arterial phase contrast enhanced X-ray CT–scans with high sensitivity
and specificity. To extract these features CT-scans are processed in their
native dimensionality. We experimentally observe that the 3D-rotational
invariance of the proposed features improves the clustering of the feature
vectors extracted from normal liver tissue samples.

Keywords: Liver cancer, 3D-texture classification, rotationally invari-
ant features, soft tissue discrimination.

1 Introduction and Previous Work

The early detection of liver cancer lesions can potentially improve the manage-
ment of various forms of liver cancer. Typically, liver lesions are identified using
contrast enhanced CT scans acquired at different phases of perfusion of the hep-
atic parenchyma by the infused contrast agent. The task of identifying the lesions
is performed by a radiologist using a large number of images generated from this
multiphase CT acquisition and requires significant time and effort.

In this work, we present an algorithm and experimental results that demon-
strate the feasibility of the development of a semi-automatic screening tool capable
of detecting liver abnormalities in contrast enhanced x-ray CT-scans. Specifically,
utilizing ideas proposed by Jain et. al. [4] we develop 3D-rigid motion invariant
texture features. We experimentally establish that when these features are com-
bined with mean attenuation intensity differences the new augmented features are
capable of discriminating normal from abnormal liver tissue in arterial phase con-
trast enhanced X-ray CT–scans with high sensitivity and specificity.
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When scans are acquired during different perfusion phases of the contrast
agent, liver lesions result in hypodense or hyperdense Regions of Interest (ROI)
relative to normal hepatic parenchyma. Quite often, in the arterial phase hypo-
dense ROIs are adjacent to hyperdense ones due to the increased vascularization
of active cancerous lesions. The driving assumption in our approach is that liver
tissue ROIs can be represented in a contrast–enhanced x-ray CT scan by two
components, 3D-texture and local mean intensities. The first of the two compo-
nents captures the structure while the second provides the average intensity of
the ROI, which is a traditional feature for tissue discrimination and is much more
observable by the eye of the trained beholder than the former. We demonstrate
though that local attenuation intensity averages are not by themselves robust
enough to discriminate normal from abnormal tissue. Our results reveal that
features capturing the structural characteristics of the 3D-textures associated
with these tissue types in general perform better than the former, or at least
equally well.

Texture-based lesion segmentation has been successfully used in the past for
the detection of cancerous hepatic lesions [11]. In contrast to the herein pro-
posed method, which is natively implemented in 3D, proposed texture features
in the existing literature are extracted in a slice by slice manner by combin-
ing first and second order moments [3]. Very similar approaches have also been
used to segment the liver from neighboring organs [7,15,12]. Apart from the fact
that our methods are natively designed to work in 3D, a fundamental differ-
ence between previous texture-based approaches and our work is that they use
significantly more complex classifiers. Liver segmentation and detection of can-
cerous lesions has been mostly performed with non-texture based methods as in
[1,9,8,17,14,10] where the difference in attenuation intensity between more and
less contrast-perfused ROIs is used for feature extraction or as in [5,2] where
deformable models are utilized to generate the boundaries between normal and
abnormal tissues. However, both of these approaches mostly limit the detection
of cancer lesions to the hypodense ones, because differences in average intensities
are typically the dominant discriminative features.

In spite of the significant successes in the field of hepatic tumor detection
and segmentation, our work opens an unexplored direction. The novelty of our
approach relies first, on the use of 3D isotropic multiscale analysis for the ex-
traction of 3D-rigid motion invariant texture features; second, on augmenting
these texture features with attenuation intensity-based features. The proposed
3D-rigid motion invariant features allow feature vectors from normal tissue sam-
ples to form clusters that are more well-defined than the clusters formed when
the 3D-texture features do not account for 3D-rotations. This enhances the dis-
criminatory power of the proposed features (Fig. 3). Our experimental results
are not directly comparable with the results of others, because we only test the
discriminative power of our features on sets of ROIs and we don’t segment nor-
mal from abnormal liver tissue. However, it appears that the proposed features
can be used for tissue discrimination with high sensitivity and specificity rates
rendering them as a promising tool for developing segmentation algorithms.
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2 Methods

Our tissue classification scheme consists of two levels of classifiers. The design of
both levels is traditional. The first level consists of an ensemble of SVMs classi-
fiers which at the second level decide by majority voting whether a tissue ROI
is normal or abnormal. The SVM classifiers use low-dimensional feature vectors
whose components express the statistical disparity at one or more scales of the
3D-texture corresponding to a given liver tissue ROI for the 3D-texture of a
normal reference ROI and the difference of average intensities between the two
ROIs. To develop these classifiers the human operator selects a small number of
reference normal ROIs from an x-ray CT-scan that is examined. The proposed
feature design takes into account that a liver consists of soft tissues with vary-
ing 3D-orientations thus requiring features to be invariant under 3D-rotations
and translations. In particular, cancer will tend to develop along blood vessels,
which themselves appear with a varying degree of 3D-orientations. Moreover,
malignancies form their vasculature with an even richer orientation variation
in 3D. Attenuation intensity local average-based features would automatically
be invariant to 3D-rigid motions, and therefore insensitive to the variety of 3D-
orientations of the patterns formed by tissues of interest, but 3D-texture features
must be specifically designed to be 3D-rigid motion invariant. We discuss the
details of this design in the next paragraph.

2.1 3D-Texture Based Features

To discriminate 3D-textures corresponding to soft–tissue ROIs we assume that
both ROIs have zero mean. The texture component of the proposed features is
derived by combining 3D-rigid motion invariant monoscale ‘distances’ between
texture signatures derived by fitting order–one Gaussian Markov Random Field
(GMRF) models to the orbits of 3D-texture rotations corresponding to the zero-
mean tissue ROIs, as proposed in [4,16]. In this manner, our features quantify
3D-texture disparities at various scales. A 3D-textureX is modeled as a spatially
homogeneous random field defined on the continuous domain R

3. Image acqui-
sition generates the realization of X in the form of a digital 3D-image whose
values at the points of a discrete sampling lattice Λ are the exact same values
of its ‘continuous parent’ at the grid points of Λ. Hence, an α-rotation of the
discrete texture X is the restriction of the α-rotation of its continuous parent on
Λ. So, rotating the discrete texture X amounts to rotating the autocovariance ρ
of its continuous parent.

Using the approximation of ρ by the empirical autocovariance function ρ0 we
‘fit’ a very simple order-one GMRF model to the data ρ0(k)k∈Λ from which the

autocovariance matrix of the fitted model Σ̂ and its inverse (Σ̂)−1 are computed
following a method originally proposed in [6] adopted for 3D in [4,13]. By taking
any α-rotation of ρ0 and fitting the same model to the rotated ρ0 (Σ̂)α is
obtained. Since, 3D-shifts induced by the action of Λ do not affect the discrete
texture X, due to the spatial homogeneity assumption it follows that the orbit
ΓX(α) = (Σ̂)α, α ∈ SO(3) is the monoscale 3D-rigid motion covariant texture
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signature of the observed texture X at the scale corresponding to the density
of the lattice Λ. This led Jain et al [4] to propose a 3D-rigid motion invariant
texture ‘distance’ at this scale

Rdist(X,Y) := min
τ∈SO(3)

∫
SO(3)

KLdist (ΓX(α), ΓY(τα)) dα , (1)

where KLdist(Σ1, Σ2) =
1
2Trace(Σ

−1
2 Σ1 +Σ−1

1 Σ2 − 2IN×N ). We stress that the
3D-texture corresponding to a tissue ROI is almost never an order one GMRF.
Yet, we carry out our computations as if it were such a GMRF. We use this
computationally simple and numerically efficient stochastic model as a probe for
tissue discrimination and not as a texture model for soft tissues. The 3D-texture
features for the promised liver tissue SVM classifiers are constructed via (1).

2.2 Feature Extraction

Let {sk}k=1,2,...,N be 3D volumes from normal or abnormal liver tissues and
Λk := sk ∩ Λ. Now, fix a sample n which is known to be normal to be the
reference normal. For each one of the {sk}k=1,2,...,N we derive the feature vector
f(sk;n) relative to n according to the following algorithm.

The first component of the feature vector f(sk;n) is

DM (sk,n) :=
|sk − n|√

var(sk) + var(n)
. (2)

DM standardizes the statistical disparity due to the difference in the average
attenuation intensity between sk and n. To form the remaining components
of the feature vector f(sk;n), we use the 3D-rigid motion invariant statistical
disparity RDj(sk,n) at scales j = 0,−1, between the 3D textures corresponding
to sk and n where

RDj(sk,n) = max

{
0,

Rdistj(sk,n)− diamn(j)

diamn(j)

}
(3)

[4]. If for a given sample sk and at some scale j, RDj(sk,n) is large, then we can
conclude that the sample sk has a different 3D texture than the reference normal
n sk thus more the tissue from which sk originated is likely to be abnormal. To
compute RDj(sk,n) we make some non-trivial modifications to the algorithm
proposed in [16] to make it applicable to ROIs that are not 3D cubes. We describe
those modifications below:

Computation of RDj(sk,n): (i) Adjust intensity values in both sk and n
to have zero mean.

(ii) Upsample each sk to a twice the denser grid as in [16]. The upsampled
3D-texture sample is convolved with the isotropic low-pass synthesis filter H0:

H0(ξ) =

⎧⎪⎨⎪⎩
1 |ξ| ≤ 1−β

2τ ,
1
2

[
1 + cos

(
πτ
β

(
|ξ| − 1−β

2τ

))]
1−β
2τ < |ξ| ≤ 1+β

2τ ,

0 otherwise,

(4)
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where τ = 100/84 and β = 1/7. The isotropy of H0 increases the accuracy of
the computation of ρ0.

(iii) Let t be a node in sk, then a neighborhood of t is ηt := (t + W ) ⊂ Λk

where W is a symmetric neighborhood of the origin. We set W = W+ ∪ W−

where W− = −W+ and W+ = {(2−j+1, 0, 0), (0, 2−j+1, 0), (0, 0, 2−j+1)}. The
order-one GMRF model limits interactions within W . Also define Λ′

k ⊂ Λk to
satisfy (ηt +W ) ⊂ Λk for every t ∈ Λ′

k. We extract our statistics from sk|Λ′
k
.

(iv) Compute the empirical auto-covariance matrix ρ0 of sk|Λ′
k
via:

ρ0(t) =
1

|Λ′
k|
∑
r∈Λ′

k

skrskr+t , for all t such that ‖t‖∞ ≤ 2−j+2.

where |Λ′
k| denotes the number of voxels in Λ′

k; ρ0 is of size (2−j+3 + 1)3.
(v) Any of the 3D textures need not satisfy ρ0(t) = ρ0(−t). So we artificially

symmetrize ρ′0 by setting ρ′0(t) := 1
2 [ρ0(t) + ρ0(−t)] for all t ∈ Λ′

k such that
‖t‖∞ ≤ 2−j+2. To simplify the notation from now on we use ρ′0 = ρ0.

(vi) Let yr = [skl
+ sk−l

], l ∈ (r + W+). Define Y = [yr], r ∈ Λ′
k.

The least squares estimates σ̂ and θ̂ of the order-one GMRF model that fits

the data are given by the statistics: θ̂(sk) = (YTY)−1YT sk and σ̂2(sk) =
1

|Λ′
k|
(
sTk sk − θ̂

T
YT sk

)
(vii) Y T sk and Y TY are given by (YT sk)r = |Λ′

k|(ρ0(r)+ρ0(−r)) ∀r ∈ W+

(YTY)(t,r) = |Λ′
k|[ρ0(r−t)+ρ0(r+t)+ρ0(−r−t)+ρ0(−r+t)] (t, r) ∈ W+×W+.

(viii) The computation of (Y TY )−1 is performed as in [16].
By iterating for a finite set of rotations the previous steps the rotationally

covariant signatures Γsk and Γn are generated as in [4] and finally RDj(sk,n) is

computed for j = 0,−1 using the isotropic low pass filter [4] with τ = 2−j .100
84 .

We keep the low–pass output at the original resolution. To extract the order-one
GMRF statistics we use the interactions of pixels 2−j+1 apart and we repeat all
of the previous steps with the exception of step (ii). As noted in [4] observing tex-
tures at lower scales compensates for the loss of the tissue textures information
due the use of the order-one GMRF model.

3 Experiments and Results

Arterial phase X-ray CT scans of liver from six patients were obtained. All scans
were obtained with almost cubic voxels which is necessary for our method. From
each of the six CT-scan series, we selected a set of eight normal and twelve
abnormal ROIs, chosen by an expert radiologist. The abnormal ROIs contained
one or more cancer lesions at different stages of maturity and size. For each of
the series we perform three experiments. First, we use each one of the normal
ROIs n, as a reference normal. Then, we compute three sets of feature vectors.
Using the feature vectors we develop a two class SVM-classifier corresponding
to n with each one of these sets of features. The kernel of the SVM-classifier is
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approximated by Radial Basis functions and for our implementation we use the
free package LibSVM. Next we define the three said types of features.

(a) f1(sk) = (DM (sk,n)), classifies samples sk by exclusively using differences
of ROI mean attenuation intensities.

(b) f2(sk) = (RD0(sk,n), RD−1(sk,n)), classifies samples sk using their 3D-
texture disparities at the original scale and at one scale coarser than the original.
3D-displacements and 3D-rotations of ROIs do not influence the statistical dis-
parity of the textures of any two ROIs. Any directional characteristics native
to each texture contribute to this texture disparity feature only with respect to
their relative 3D-orientations.

(c) f3(sk) = (RD0(sk,n), RD−1(sk,n), DM (sk,n)) combines multiscale tex-
ture disparity with differences in average attenuation intensity.

To validate the performance of each set of the features above, we test each
of the SVM-classifiers associated with a normal tissue ROI using only this set
of features. We also test a classifier combining input from each one of these
classifiers by majority voting referred to as SVM-voting separately for features
f1, f2 and f3 . We estimate the accuracy of these classifiers in two ways.

Experiment 1: We randomly divide 20 samples in two groups, with 4 normal
and 6 abnormal ROIs in each group. We perform a two fold cross validation by
alternately training the SVM classifier on each group and testing it on the other.
The average accuracy of each pair of classifiers is referred to as the accuracy of
the two–fold classification. We repeat the previous test 100 times. The average
accuracy of the two–fold classification from these 100 random trials is shown in
Tables 1, 2. The average accuracy of the SVM-voting classifier for the same 100
random trials is also shown in Tables 1 and 2.

Experiment 2: This leave–two–out experiment essentially assesses the gen-
eralization capacity of the proposed classifiers. From the sample of twenty tissues
from each patient we use 18 of them for training and two for testing. Leave-two-
out accuracy is calculated for each of the eight SVM classfiers corresponding to
each of the normal ROIs for each of the CT-scan series and for each of the pro-
posed features f1, f2 and f3. We also assess the performance of the SVM-voting
classifier. In the same way Tables 1 and 2 provide the average performance of

Fig. 1. Typical 3D-view of the texture of a normal liver ROI (left) and of an abnormal
(neoplastic) liver ROI (right)
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Table 1. The entries of the table denotes the accuracy in percentage for each set of
proposed features. SVM Classifiers are defined for each set of features and relative to
each of the normal ROIs in each CT-scan series of Livers from 2 patients (L1, L2).
Then we observe the average accuracy obtained from N1 to N8. SVM-Voting gives the
classification based on the majority voting of reference normals used for training.

Two fold cross-validation Leave-two-out-validation

Reference Features used Features used
Normal DM (RD0, RD−1) (RD0, RD−1, DM ) DM (RD0, RD−1) (RD0, RD−1, DM )

L1

N1 95.0 94.4 100 92.7 80.7 100
N2 75.8 90.4 97.7 77.6 84.4 100
N3 77.0 91.6 98.1 71.4 90.1 100
N4 95.6 95.1 97.8 100 91.1 100
N5 94.9 95.1 98.1 99.5 93.8 100
N6 94.9 94.4 99.2 99.5 89.6 100
N7 95.5 92.8 99.1 100 90.6 100
N8 95.2 95.0 97.9 100 95.8 100

Average 90.5 93.6 98.5 92.6 89.5 100
SVM-Voting 94.8 94.0 98.6 100 89.1 100

L2

N1 90.3 91.0 99.2 78.1 79.2 100
N2 92.3 79.5 99.4 95.8 95.8 100
N3 91.1 91.3 99.7 86.5 87.0 100
N4 92.0 88.6 99.4 90.6 86.5 100
N5 92.2 89.0 98.5 75.0 81.8 100
N6 92.3 84.5 96.4 81.3 92.2 99.5
N7 85.4 93.5 99.6 69.3 91.1 100
N8 88.9 91.2 98.4 88.0 87.0 100

Average 90.5 88.6 98.8 83.1 87.6 99.9
SVM-Voting 91.2 90.2 99.7 80.2 87.0 100

these classifiers tested on all possible 96 partitions of the ROI set from each
CT-scan series.

4 Discussion

In this paper we present a novel set of features combining information of multi-
scale texture disparity with the difference between average attenuation values for
a given pair of texture patches one of which corresponds to normal tissue. These
features exploit the full power of the 3D information modern scanners provide.
We develop our features and the associated SVM classifiers using normal tissue
reference ROIs only, because this type of tissue is less diverse within the same
organ. Since the proposed disparities between normal tissues are also typically
relatively small, because not absolute but only relative 3D-orientations of di-
rectional characteristics influence the evaluation of textural disparities (Fig. 3)
making disparity assessments obtained from different SVM classifiers to agree.
Tables 1, 2 support this claim by manifesting the robust assessment of textu-
ral similarity between normal tissues and the dissimilarity between normal and
abnormal ones enabling thus a highly accurate SVM voting classification.
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Fig. 2. Examples of our choices of normal (N) and diseased (Abn) regions, whose cross-
sections are shown on 2D slices. We selected many different kind of abnormalities for
our experiments, which includes tumors of different sizes and from different stages.

Fig. 3. Scatterplots show that the use of 3D-rotationally invariance texture disparities
improves normal tissue ROI feature vector clustering. Left: RDj ’s given by texture
distance Rdistj (Eq. (1)). Most feature vectors from normal tissue ROIs cluster around
the origin and clearly away from their abnormal ROI counterparts. Right: Texture
disparities are computed using KLdist only, without averaging over 3D rotations. The
normal tissue ROI cluster is less pronounced and it is more proximal to abnormal tissue
ROI feature vectors.
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Table 2. Continuation of Table 1 to show the classification accuracy obtained from
the two experiments for rest of the four patients (L3-L6)

Two fold cross-validation Leave two out validation

Reference Features used Features used
Normal DM (RD0, RD−1) (RD0, RD−1, DM ) DM (RD0, RD−1) (RD0, RD−1, DM )

L3

N1 73.4 83.4 86.2 67.2 58.3 90.6
N2 73.6 74.4 71.1 83.3 78.1 49.5
N3 75.0 82.9 84.7 75.5 78.1 93.2
N4 69.4 78.2 73.4 49.5 65.6 62.5
N5 77.0 79.4 79.7 92.2 66.7 93.8
N6 74.6 81.6 79.7 72.9 67.2 93.8
N7 76.5 84.2 85.6 97.4 77.1 81.3
N8 75.1 85.2 82.9 99.5 95.3 85.4

Average 74.3 81.1 80.4 79.7 73.3 81.3
SVM-Voting 74.4 83.2 83.0 91.1 70.3 91.1

L4

N1 93.1 71.4 84.9 83.3 56.3 71.4
N2 89.0 70.4 89.1 73.4 63.0 92.7
N3 95.2 68.6 90.6 84.4 52.6 87.5
N4 92.5 70.1 93.0 79.2 76.6 95.8
N5 89.5 78.0 91.3 83.3 85.4 90.1
N6 95.0 68.8 90.5 93.8 72.9 92.7
N7 95.2 74.4 91.2 92.7 69.3 94.8
N8 95.3 80.0 91.6 97.4 87.5 93.8

Average 93.1 72.7 90.3 85.9 70.4 89.8
SVM-Voting 93.5 69.7 91.5 90.6 67.2 93.8

L5

N1 95.0 71.4 93.5 82.8 50.5 91.1
N2 95.1 70.0 92.0 87.0 66.7 94.8
N3 95.1 70.3 93.2 78.1 68.8 99.0
N4 99.2 75.1 95.0 100 59.9 92.2
N5 95.1 72.1 92.1 79.2 56.8 93.8
N6 97.5 72.3 92.9 100 76.0 95.8
N7 96.7 73.7 91.7 99.5 58.9 88.5
N8 95.0 70.6 93.0 69.3 47.4 99.0

Average 96.1 71.9 92.9 87.0 60.6 94.3
SVM-Voting 95.0 72.3 93.2 91.1 55.7 95.8

L6

N1 96.2 91.1 99.6 99.5 100 100
N2 95.1 74.2 96.8 96.9 81.3 100
N3 97.9 74.0 98.1 100 80.2 100
N4 98.3 81.3 98.9 100 75.5 100
N5 98.4 66.7 95.0 100 80.7 99.5
N6 95.2 82.2 97.6 96.4 85.9 100
N7 97.9 81.6 99.9 100 81.3 100
N8 95.0 70.7 96.4 93.8 51.6 100

Average 96.7 77.7 97.8 98.3 79.6 99.9
SVM-Voting 95.5 79.8 98.6 100 82.8 100
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Abstract. We present an evaluation of five diffusion filters for liver vessel 
enhancement in 3D CTA datasets of the liver. 3D CTA liver images are 
generally noisy, with limited contrast between vessels and parenchyma, 
especially for the small vessels. We investigate the performance of five 
(an)isotropic diffusions filters: Regular Perona-Malik, Coherence-Enhancing 
Diffusion, Edge-Enhancing Diffusion, Hybrid Diffusion with Continuous 
Switch and Vessel Enhancing Diffusion on a set of 14 abdominal CTA clinical 
datasets. The evaluation is based on signal to noise improvement. A parameter 
optimization is performed on 7 training images, after which the optimal 
versions of the filters are compared on 7 test images. The results demonstrate 
that all the diffusion filters improve SNR of the images and Hybrid Diffusion 
with Continuous Switch and Vessel Enhancing Diffusion gives the largest 
increase in SNR. 

Keywords: Diffusion, HDCS, VED, CED, RPM, EED, 3D CTA, liver vessel. 

1 Introduction 

Liver vessel analysis is relevant for several clinical applications, a.o. for planning and 
guidance in minimally invasive interventions. Particularly, segmentation of the portal 
and hepatic veins is relevant for procedures such as liver surgery, TIPS and RFA. 
Arterial segmentation is relevant for e.g. chemo-embolization procedures in the liver. 

Liver vessel segmentation is challenging because 3D abdominal CTA is noisy, has 
variable contrast between the vessel and liver parenchyma, and because of the 
complex topology and varying sizes of the vessels. The quality of the CTA images 
depends on radiation dose, amount of contrast agent, and timing of data acquisition 
with respect to dose injection. Image quality could be improved at the expense of 
increased radiation dose or increased contrast usage, but both strategies are clinically 
not acceptable. 

Several liver vessel segmentation methods have been developed so far, a review of 
liver vessel segmentation can be found at [1]. Most of the works relating to liver 
vessel segmentation on 3D clinical CTA use filters to reduce the noise and enhance 
the vessel structure. Mainly, multi-scale Hessian based filters (Frangi, Sato, Erdt)  
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[2, 4, 5, 7] have been used in these studies. However, these studies lack an evaluation 
on to what extent preprocessing improves the segmentation results. A comparison of 
multi-scale Hessian based filters can be found at [3], but that study only demonstrates 
the effect of these Hessian-based filters without any quantitative measure. The study 
also shows that Hessian-based approaches may not work well at bifurcations and 
vessels with high curvature. 

The purpose of our study is to quantitatively evaluate the effect of diffusion filters 
on vessel enhancement in 3D CTAs of the liver. We investigate both the optimal filter 
settings for these filters, and compare the optimal versions of each filter. For the 
filters, we choose five well-known (an)isotropic diffusion filters: Regular Perona-
Malik (RPM), Contrast-Enhancing Diffusion (CED), Edge-Enhancing Diffusion 
(EED), Vessel-Enhancing Diffusion (VED) and Hybrid Diffusion with Continuous 
Switch (HDCS). RPM and EED have been applied to 3D rotational angiography 
images by Meijering et al [10]. They showed that EED works well in smoothing the 
vessel, while RPM can preserve small vessels. CED, introduced by Weickert [9], can 
filter tube-like structures. VED was published by Manniesing et al in 2006 [8]. This 
filter uses Hessian-based multi-scale filter’s responses to adjust diffusion scheme.  
Finally, HDCS was published by Mendrik et al in 2009 [10]. This filter combines 
both advantages of EED and CED to filter both homogeneous areas and vessel 
structures. 

2 Methodologies 

All filters we evaluated are diffusion filters. The main idea of diffusion filters comes 
from PDE [8] div . ∇  where ∇  is the gradient of the image and D is the 
diffusion tensor, which steers the diffusion. If the diffusion tensor D is replaced by a 
scalar-valued diffusivity  the diffusion will be isotropic. Whereas RPM is an 
isotropic filter, that only changes the amount of smoothing based on local gradient 
magnitude, the other filters are anisotropic filters, that not only locally change the 
level, but also the direction of smoothing by adapting the diffusion tensor. Each of the 
five filters is described in more detail below. 

RPM: Perona and Malik (1990) introduced an isotropic nonlinear diffusion as 
described by div |∇ | . ∇ . The scalar-valued diffusivity |∇ |  is 
function of the gradient |∇ |, causing filtering in homogenous areas while retaining 
edges with high gradient. Catte [10] proposed the following scalar-valued diffusivity 
function for the non-linear diffusion using Gaussian derivative at scale : |∇ | 1 |∇ | / ,        (1) 

where C = 3.1488 and  is contrast parameter. The contrast parameter  acts as 
threshold scale for gradient |∇ |. If the gradient is large compared to the contrast 
parameter, i.e |∇ | , this results in |∇ |  0, reducing the amount of 
diffusion. Therefore strong edges, where the gradient of u is large, are preserved. 
Parameter  is the scale of Gaussian gradient. Value of  should be chosen based 
on noise variance and the size of the small structures we want to retain. 
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EED: Weickert et al (1997) included information of orientation in diffusion scheme. 
Instead of using a scalar diffusivity function, they used a diffusion tensor D which 
was constructed from the tensor product: ∇ ∇ ∇ T .         (2) 

 is a positive symmetric matrix. By eigendecomposing . . T, they can 
extract eigenvalues  (i = 1-3,  ), the diagonal elements of matrix , 
and corresponding direction eigenvectors  ,  and . Because eigenvalue  
is the largest eigenvalue, eigenvectors  is in the direction of highest contrast 
(edges). The diffusion tensor is defined as . . T with eigenvectors  as the 
same eigenvectors of tensor product . Eigenvalues of diffusion tensor of EED, , 
are defined as:   1 and 1                         |∇ | 01 |∇ | / , |∇ | 0,       (3) 

where, similar to RPM, C = 3.1488, and  is the contrast parameters.  This 
diffusion tensor results in large isotropic diffusion in flat areas where the gradient is 
small, and performs almost no diffusion in the direction along which gradient is the 
highest ( ).  in equation (2) acts as smoothing of gradient (Gaussian 
convolution with kernel ). If gradient ∇  has large range of values,  should be 
high enough to smooth the product. Otherwise,  should be small enough to capture 
small changes in gradient.  

CED: Weickert (1999) included a coherence factor in diffusion process. The coherent 
factor is defined as:     ,    (4) 

This factor measures the relation of each pair of the eigenvalues. If a structure is 
tubular,  ,  direction are in the direction of high contrast and  in the 
direction of little contrast. Thus in the case of tubular structures,  , and 
thus   has high a value. Otherwise,  has small value. Eigenvalues of diffusion 
tensor of CED are defined as:   and                                              01 exp / ,   0,     (5) 

where C = 3.1488 and  is very small. For tube-like structures,  is large, the 
diffusion mainly occurs in the direction (least contrast). Therefore CED only blurs 
along tubular structures. For plate-like structures,   is small, resulting in small 
isotropic diffusion (depends on ). 

HDCS: Mendrik (2009) introduced HDCS as a combination of CED and EED. The 
main idea is that to use a voting criterion to decide whether local structure is tubular 
or non–tubular.  The structure classifier is defined as:  ⁄ ⁄ ,       (6) 
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where 0.001  and   are eigenvalues of tensor product in 
equation (2).  0 when the structure is tubular,  0 when structure is sphere 
-like (background and noise), and 0  when structure is plate-like. The 
eigenvalues of HDCS diffusion tensor is combination of eigenvalues of EED and 
CED: 

ℎ 1  ,          (7) 

 exp ℎ | |
ℎ

,          (8) 

where ℎ is contrast parameter.  When the local structure is tubular,  0 and the 
diffusion is CED-like, for other structures  1, and diffusion is  EED-like. 

VED: Manniesing (2006) used the multi-scale Hessian filter response to drive the 
diffusion.  The main idea of the multi-scale Hessian filter is that by using 
eigenvalues of Hessian matrix, which determine local curvatures, we can distinguish 
tubular structures from other structures in a multi-scale framework. The output 
response is a combination of the maximum responses at each scale. Let ∈ 0,1  is 
the output of a multi-scale scale vesselness filter.  should be around 1 inside tubular 
structures and 0 elsewhere. Assume that  | | | | | |  are eigenvalues of 
Hessian matrix , corresponding to eigenvectors ,  and , i.e.,  . . T. 
Then,  should be the direction of the least curvature (along vessel in case of vessel 
structure). The diffusion tensor D is defined as . ′. T . Diagonal elements of 
matrix ′ can be defined as:  ′ 1 1 / ,           ′ ′ 1 1 / ,       (9) 

where s is a sensitivity parameter which controls the impact of  on  ′  ;  is a 
parameter larger than 1, which ensures that  is always the direction of largest 
diffusion;  is relative small to allow high isotropic diffusion when 0 ( non-
vessel structure ). 

3 Experiments and Evaluations 

3.1 Data 

We randomly chose 7 training datasets and 7 testing datasets from portal venous 
phase liver CTAs that were acquired in Erasmus Medical Center, Rotterdam. The 
datasets have an in-plane pixel size of 0.74 mm x 0.74 mm, 1-1.5 mm slice spacing, 
1-2 mm slice thickness, 72-180 axial slices, 512 x 512 pixels per slice. Scanning was 
performed 60 seconds after the injection of 100 cc intravenous contrast agent with 
radiation dose of 140 - 320 mAs and control voltage of 80 - 120 kV. The datasets 
contain portal veins, hepatic veins, tumors, cysts, metastases in different shape and 
size. Some datasets also contain metal artifacts. 

To reduce filtering times, we cropped the datasets into smaller datasets which 
containing all liver vessels, which resulted in a reduction of around 75 %. 
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3.2 Evaluation Criteria 

We use SNR as a quantitative metric to determine whether the images have improved. 
We calculate the SNR over a large set of point pairs that were annotated in the vessel 
and in the background. We follow the following protocol to calculate the SNR: 

1. We choose 12 to15 random axial slices within liver region to ensure that number 
of vessels in those is sufficient ( more than 300 vessels per data) 

2. In every slice, a trained observer annotated all vessels, which have diameter from 
0.74mm (one pixel) to around 10 mm, by clicking one point in the vessel, we call 
them object points.  

3. For each object point, a corresponding nearby points in the liver parenchyma is 
manually selected, which is at least 5 pixels away from the vessels. We call these 
background points.  

4. The SNR of each pair is calculated as: 

 20 10  (dB),        (10) 

where the standard deviation of the background points is determined in an axial 5x5 
ROI around the point. 
 

          

(a)            (b) 

Fig. 1. (a) The vessel markers for SNR calculation: Small red dots are vessel markers, respectly 
indexed to big green circles on nearby background arias. (b) SNR histograms of an original 
image (red) and a diffusion image (gray).  

From the SNR of all these pairs in one datasets, we determine the mean and 
standard deviation, which we use to quantitatively evaluate the filter’s results and 
analyze the effect of the filters on large and small vessels. 

3.3 Parameter Optimization 

The optimal filter parameters are determined in a training stage. For each of the 
training datasets, we apply the five filters and tune parameters to get the optimal 
result, based on the mean SNR over all datasets. For the range of values for each 
parameter we follow the suggestions of Mendrik et al. [10]. 

The parameter optimization is performed on Linux cluster which contain 80 
2.4GHz-64 bits-cores. For RPM, CED, EED, it takes 10 to 20 seconds per iteration, 
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while for CED and VED, it takes 30 to 60 seconds per iteration. The maximum 
number of iteration of all filters is set to 50. All parameter values are described in 
detail in appendix A. 

4 Results 

4.1 Optimal Parameters 

Fig. 2(a) shows the optimal contrast parameter of EED and Fig. 2(b) presents the 
curve of SNR versus number of iterations for RPM. Fig 2(a) shows the optimization 
results for the contrast parameter for EED, which demonstrates that the value of that 
parameter is dataset – independent, whereas the number of iterations [Fig 2(b)] is 
dataset-dependent: the more noisy data is, the more number of iteration is required. 

 

(a)            (b) 

Fig. 2. (a) The average optimal contrast parameter for EED is at 10 (the highest SNR value of 
the red curve). (b) The average optimal number of iterations for RPM is around 22. 

The optimal parameters resulting from the training step are listed in Table 1. 

Table 1. The optimal parameters of the diffusion filters 

Filter Abbr Optimal Parameters 
Regular Perona- Malik RPM τ = 0.0625; η = 22 ; λ = 10; σ = 1 
Edge-Enhancing Diffusion EED τ = 0.0625; η = 40;  λe = 10; σ = 1 
Coherence-Enhancing Diffusion CED τ = 0.0625; η = 50; λc = 5; α = 0.001;  

σ = 1; ρ = 1 
Hybrid Diffusion filter with 
Continuous Switch  

HDCS τ = 0.0625; η = 40; λc = 5; λe = 10; λh = 10;  
α = 0.001; σ = 1; ρ = 1 

Vessel Enhancing Diffusion VED τ = 0.0625; η =32; ω = 25.0; s = 1; 
ε = 0.01; σmin= 1; σmax = 3; v = 5;  
α = 0.5; β = 0.5; γ = 120 

4.2 Filter Comparison 

We applied the filters on the 7 test datasets with the optimal parameters from Table 1. 
Ranking of each diffusion filter are based on average SNR over the test datasets. The  
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Fig. 3. Ranking on test dataset 

results of the overall performance are summarized in Fig. 3. According to the results, 
HDCS performed better than the other filters. 

From Fig. 3, we can see that all filtered results have better SNR than original ones. 
This also can be seen as SNR histogram in Fig. 1. Fig. 1(b) is an example of SNR 
histograms of an original image (red) and a diffusion image (gray). The diffusion 
image’s histogram is to the right of the original’s one, that means the filter has 
improved SNR in general. 

 To visualize the effect of diffusion filters in terms of SNR, we calculated the 
changes in SNR between every pair of points of the filtered images and those of the 
original ones. The delta SNR is divided into 3 parts: the red part is smaller than zero, 
that means at those locations, the diffusion results in a worse SNR.; the yellow part is 
from zero to mean of SNR, which means that at those locations, the diffusion filter is 
able to improve SNR; the green points are those where the SNR is larger than the 
mean of the SNR, which means that there is a large improvement. The results for one 
dataset are shown in Fig. 4. 
 

   
(a)                                     (b) 

Fig. 4. (a) Histogram of Delta SNR and (b) vessel marker render, respectly. The yellow part is 
remarked by yellow x characters; The green part is noted by green asterisks; The red part is 
represented by red + characters. 
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5 Discussion 

We have optimized and applied five diffusion filters for increasing the SNR in liver 
vessel CTA images. In the parameter optimization stage, we choose a time step which 
is quite small, τ = 0.0625, to ensure stability of diffusion scheme. In the experiments, 
we can see that, when increasing the number of iteration, SNR increases as noise is 
suppressed. However, when the number of iterations becomes too large, both vessel 
structure and noise are blurred, which results in an SNR decrease. Around the optimal 
number of iteration, the SNR curve is quite flat [Fig. 2(b)].  

 To visually compare the results, outputs of each filter and the unfiltered image are 
shown in Fig. 5 with the same window-level, we can see that the original image has 
good contrast but much noise. All of the filters, to some extent, blurred low-contrast 
smaller-than-1 mm vessels. The reason may be that, in optimization step, at Gaussian 
scale 1, large vessels have more SNR improvement than the SNR reduction in 
the small vessels [Fig. 4 (b)]. Diffusion filters blur noise, improve high contrast 
vessels but also blur low-contrast small vessel.    
 

 

Fig. 5. Maximum intensity projection (7 slices) of the diffusion outputs. Order of top row from 
left to right: Original, RPM, EED. Order of bottom row from left to right: CED, VED, HDCS. 

Also in Fig. 5, EED, VED, and RPM reduce contrast between vessels and 
background. This effect results from blurring in all directions if gradient or curvature 
is not high enough to prevent blurring. CED and HDCS not only keep better contrast 
between vessel and background, but also retain better the structure of small vessels 
(short-blue green). However, in this study, CED leads to irregular borders of large 
vessels (long-red arrow). The main reason is that noise at the edges makes the CED 
tensor consider this noise as small vessels. For HDCS, this effect is not as much as 
CED because at boundary, EED has some impacts. This effect doesn’t influence SNR 
in general because we only take evaluate the intensity at the center of vessel. In this 
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study, we used coherent factor     for 
CED as suggested in the original paper by Weickert [1999]. This results in rough 
effect at boundary of big vessel.  In the HDCS paper [10], Mendrik introduced a new 

coherent factor  / . This causes the boundaries of large vessels to 
be smoother compared to the CED version in this study. In further study, we could 
use that factor to have better adapted for 3D images. 

In test stage, CED shows the worse ranking [Fig 3]. The main reason of this 
ranking is that CED mainly blurs inside the vessel while noise in flat areas is not 
suppressed much. In contrast, HDCS not only performs well in side vessel as CED 
does, but also uses the diffusion property of EED, blurring when gradient is small, in 
flat areas. This quantitative result is in agreement with the conclusion of the 
qualitative evaluation by Mendrik et al. 

 This study just shows optimal parameters for global SNR. However at optimal 
SNR, all the diffusions expose problem with very small and low contrast vessels. 
Depending on specific clinical application, for instant in RFA (when detection of 
small vessels is relevant), we can use this study to recognize very small and low 
contrast vessels, and then optimize setting again. 

6 Conclusion 

We presented a quantitative evaluation of five diffusion filters, RPM, EED, CED, 
HDCS and VED on 3D CTA images of the liver. We optimized the relevant 
parameters of each filter on a training set of seven CTAs. Based on an evaluation on 
an independent set of seven datasets and using SNR as criterion, we conclude that 
HDCS filter performs the best over the other filters. 

References 

1. Lesage, D., Angelini, E.D., Bloch, I., Funka-Lea, G.: A Review of 3D Vessel Lumen 
Segmentation Techniques: Models, Features and Extraction Schemes. Med. Image 
Anal. 13, 819–845 (2009) 

2. Freiman, M., Joskowicz, L., Sosna, J.: A Variational Method for Vessels Segmentation: 
Algorithm and Application to Liver Vessels Visualization. In: Proc. of SPIE, vol. 7261,  
p. 72610H (2009) 

3. Drechsler, K., Laura, C.O.: Comparison of Vesselness Functions for Multiscale Analysis 
of the Liver Vasculature. In: 10th IEEE International Conference on Information 
Technology and Applications in Biomedicine, pp. 1–5. IEEE Press, New York (2010) 

4. Erdt, M., Raspe, M., Suehling, M.: Automatic Hepatic Vessel Segmentation Using 
Graphics Hardware. In: Dohi, T., Sakuma, I., Liao, H. (eds.) MIAR 2008. LNCS, 
vol. 5128, pp. 403–412. Springer, Heidelberg (2008) 

5. Lehmann, K.S., Ritz, J.P., Valdeig, S., Schenk, A., Holmer, C., Peitgen, H.O., Buhr, H.J., 
Frericks, B.B.: Portal Vein Segmentation of a 3D-Planning System for Liver Surgery - In 
Vivo Evaluation in a Porcine Model. Ann. Surg. Oncol. 15, 1899–1907 (2008) 

6. Selle, D., Preim, B., Schenk, A., Peitgen, H.O.: Analysis of Vasculature for Liver Surgical 
Planning. IEEE Trans. Med. Imaging 21, 1344–1357 (2002) 



 Evaluation of Diffusion Filters for 3D CTA Liver Vessel Enhancement 177 

7. Alhonnoro, T., Pollari, M., Lilja, M., Flanagan, R., Kainz, B., Muehl, J., Mayrhauser, U., 
Portugaller, H., Stiegler, P., Tscheliessnigg, K.: Vessel Segmentation for Ablation 
Treatment Planning and Simulation. In: Jiang, T., Navab, N., Pluim, J.P.W., Viergever, 
M.A. (eds.) MICCAI 2010, Part I. LNCS, vol. 6361, pp. 45–52. Springer, Heidelberg 
(2010) 

8. Manniesing, R., Viergever, M.A., Niessen, W.J.: Vessel Enhancing Diffusion: A Scale 
Space Representation of Vessel Structures. Med. Image Anal. 10, 815–825 (2006) 

9. Weickert, J.A.: Coherence-Enhancing Diffusion Filtering. Int. J. Comput. Vis. 31,  
111–127 (1999) 

10. Mendrik, A.M., Vonken, E.J., Rutten, A., Viergever, M.A., van Ginneken, B.: Noise 
Reduction in Computed Tomography Scans Using 3-D Anisotropic Hybrid Diffusion with 
Continuous Switch. IEEE Trans. Med. Imaging 28, 1585–1594 (2009) 

Appendix A 

Parameters design: 

Table 2. The parameters in optimization stage: σ (Gaussian scale); C (contrast constant); λ, λc, 

λe (contrast parameters to RPM, CED and EED); τ (time step); η: ( number of iteration). 

Filter Abbr Parameter optimization values 
Regular Perona- Malik RPM τ: 0.0625; σ: 0.5, 1; τ: 0.0625 

η: 4, 8, 12, 16, 18, 20, 22, 24, 30 40, 50 ;  
λ: 5, 10, 12, 14, 16, 18, 20, 25, 30, 80, 150;  

Edge-Enhancing Diffusion EED σ: 0.5, 1; C: 3.31488; τ: 0.0625 
λe: 5, 10, 30, 80, 120, 160 
η : 4, 8, 12, 16, 20, 24, 30, 35 ,40 45, 50  

Coherence-Enhancing 
Diffusion 

CED σ: 0.5, 1; ρ: 0.5, 1; τ: 0.0625; α: 0.001 
λc: 5,10, 30, 80, 120, 160 
η: 4, 8, 12, 16,  22,  26, 30, 35, 40, 45, 50  

Hybrid Diffusion filter with 
Continuous Switch  

HDCS σ: 0.5, 1; ρ: 0.5, 1; α: 0.001 
λh: 5, 10, 15, 20, 30  

λc: 5; λe: 10 
η: 4, 8, 12, 16, 20, 25, 30, 40, 50 

Vessel Enhancing Diffusion VED σ: 1 – 3 (5 scales); τ: 0.0625 
α: 0.5; β: 0.5; γ: 10, 40, 80, 120, 160, 280 
η: 4, 8, 12, 16, 20, 25, 32, 40, 50 
ω: 8, 25, 32 
s :  0.5, 1, 2, 5 
ε: 0.01; c: 10-6 

 *Contrast parameters in HDCS can be used form EED and CED. 
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Abstract. Anatomical structure is important for medical education and disease 
diagnosis. In the application of surgical simulation, different anatomical struc-
tures can be retrieved to create variety of surgical scenarios for training, while 
similar structures can also be retrieved to assist disease diagnosis. This paper 
presents an approach to liver-gallbladder anatomical structure retrieval with 3D 
shape comparison, where the direct shape comparison based on dense shape 
registration is applied to liver shape due to its shape complexity, and  feature 
based comparison is applied to gallbladder shape with a semantic shape decom-
position using the saliency area based on multi-scale curvatures and concavity. 
After the registration of liver models, the geometric structure of the gallbladder 
and liver can be combined for joint comparison. With the 3D models con-
structed from a set of liver-gallbladder CT data, experiments are conducted for 
joint liver-gallbladder retrieval. Encouraging result shows that it can reveal im-
portant topology based on similarity and variance of 3D shapes and has a simi-
lar performance compared to that of manual retrieval by human operators. 

Keywords: Anatomical structure, shape analysis, shape comparison, surgical 
simulation. 

1 Introduction 

Anatomical relationships of liver and gallbladder (GB), of which some are rare such 
as the left GB and intrahepatic GB, may pose challenges to the surgeons. The GB 
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shape information, such as extra large size of a GB or folds on a GB, is not only use-
ful for surgery and training, but may also reveal some potential pathological risks. In 
laparoscopic surgery and simulation of cholecystectomy, anatomical shape and struc-
ture of the liver and GB, including the position, size and wall thickness, are some of 
the important factors that affect the difficulty of such surgeries. Most of the current 
surgery simulation systems mainly aim at the training on fundamental laparoscopic 
skills (FLS) with generic liver, GB and other organ models. Such a simulation thus 
lacks the facility to supply different scenarios with different challenges for training. 
However it is possible to construct new models from patient CT data and store the 
models in a model library for future training as well as patient specific surgery plan-
ning and preoperative practice. 

The training with new models can assist the surgeon trainees by exposing them 
with new scenarios and different challenges instead of a single generic model. With 
increasing number of models, it becomes difficult for a trainee to select suitable train-
ing cases, to cater for his/her specific training purposes. Thus a reliable approach to 
compare and retrieve the relevant (similar or dissimilar) anatomical structure is highly 
needed. 

1.1 Related Works 

GB diseases have varying symptoms, which sometimes can be shown in the shape 
change of a GB [1, 2]. Although the shape anomaly may not always be related to 
disease, it may cause the stasis that could lead to stone formation and inflammation 
[3]. Measurement for wall thickness from CT images has been studied by Prasad et al 
[4]. Noticeably, GBs can also vary from person to person in terms of size, shape and 
location, which pose the challenges for new surgeons. 

In cholecystectomy, liver is the main surrounding organ of GB. Thus liver shape is 
to be modeled in the simulation and the anatomical relationship specifies the surgery 
scenario. In the literature, liver shape model has been successfully applied for atlas 
construction [5] and segmentation [6]. However there is no study on the retrieval of 
anatomical structure of liver-GB. The statistical liver shape model and liver shape 
retrieval has been successfully applied for segmentation [7]. However there is no 
systematic study on the retrieval of liver-gallbladder. Work in [8] presented physics 
modeling of GB, which did not address GB shape analysis. In [9] the researchers 
described an approach to a 3D shape decomposition, which is improved using a more 
robust saliency method in this paper. 

In 3D model retrieval, works include shape description, modeling and similarity 
measurement [10]. Generally a 3D shape can be represented by tetrahedral or polyhe-
dral mesh. Focusing on surface model, there are three main categories of 3D shape 
analysis. One is based on the mesh patch segmentation from the salient points on the 
surface [11], and the second is based on skeletonization of 3D shapes or logical parts 
decomposition [12]. Besides, there are some works proposed to compare the shape 
based on the registered models directly using the distance of the corresponding points 
[13, 14]. To segment an object into meaningful parts, minima rule and part salience 
[15] have been proposed. Banegas et al presented a decomposition of volume data 
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[16], and then ellipsoids are fitted and deformed to reconstruct the object from the 
hierarchical decomposition. 

1.2 Contributions 

This paper presents an approach to the application in joint liver-GB shape comparison 
and retrieval, where direct shape registration and comparison based on Coherent Point 
Drift (CPD) [13] is adopted to compute liver shape similarity and semantic features 
are proposed for GB shape comparison. Using CPD is due to its speed and nonlineari-
ty for non-rigid shape registration. Combining the distance measurement of the liver-
GB anatomical structures, users can retrieve the similar or dissimilar data sets for 
surgery training or pathological comparisons. Noted that the liver-gallbladder pairs 
are essentially in a continuous shape space, as no categories are defined for joint liver-
gallbladder anatomical structure, the conventional precision-recall measurement can 
not be adopted for the retrieval performance evaluation. Instead, the Spearman’s score 
for rank correlation [20] is used to compare the order of the retrieval data sets with the 
result from human operators, which can be the trainee surgeons or technicians who 
are selecting similar or dissimilar anatomical structures for training. 

2 Liver-Gallbladder Model Comparison 

The preprocessing of CT data to reconstruct liver and GB model is based on our pre-
vious work for CT image segmentation and mesh construction and optimization [17], 
[18]. This paper focuses on liver-GB shape analysis and retrieval, where we compare 
liver shape based on direct shape distance due to the complexity of liver shape, while 
model GBs with meaningful semantic features. 

2.1 Similarity of Liver Shapes  

The registration method adopted here is based on CPD where point set registration is 
formulated as a probability density estimation problem. The moving set is modeled by 
a Gaussion mixture model (GMM) with unknown centroids. It forces the GMM  
centroids to move coherently as a group by reparameterizing the centroid locations 
explicitly. The form of transformation is non-rigid.  Since we choose to use a fast 
Gaussian transformation [13] the registration is fast (about 10 seconds for 2 sets of 
1000 points/vertices on surface mesh). Given the registration of liver shapes L1 and 
L2, we compute the mean Hausdorff distance of the two shapes, modified (multiplied) 
by dot product of the surface normals of the two correspondences. 

Fig. 1 shows the superimposed liver shapes, from similar shape to dissimilar ones. 
Only rigid transformation is used for better visualization so the original shapes can be 
compared visually.  

To quantitatively evaluate the performance of the proposed shape comparison, we 
use the Spearman’s score that computes the rank correlation [20] on two of the shape 
similarity ranking orders. We get the Spearman’s score on liver retrieval between 
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human operators and the method. As the liver shapes are highly complex, the  
shape similarity rank is quite subjective from person to person especially for dissimi-
lar shapes comparison. Nevertheless, for those similar shapes, the rank should be 
consistent. 

Here, the Spearman’s score ρ between the two human operators is only 0.40. Ana-
lyzing the result we found that for the dissimilar liver sets the retrieval results were 
quite subjective, which caused the low correlation among the sets. While for those 
liver shapes that have many similar samples, the correlation rank is higher, the score 
ρ=0.53 if four sets that have less similarity with each other are not used in the com-
parison.  The correlation score by using the CPD shape registration with the two 
human operators are increased to 0.54 and 0.47 respectively. 

 

        
            Query Liver           score=7.15           score=9.42 

        
                 score=13.93             score=17.77            score=28.97 

Fig. 1. Liver registration and score using modified mean Hausdorff distance measurement 

2.2 Gallbladder Shape Modeling 

GB shape can be intuitively and semantically represented by neck, size, orientation, 
and folds. To detect a GB fold, we use saliency region to segment a GB. We have 
developed a method for the decomposition [9]. However it has problems in ring-like 
saliency region caused by shape protrusion or large saliency region caused by a flat-
tened fold. Here we present a new approach to find the proper cutting plane. With a 
surface mesh, a saliency region Rs at scale s is defined as a set of connected mesh 
vertices V, of which all the Gaussian curvatures Ks are negative due to the opposite 
values of the two principal curvatures. 

Rs = {v∈V, Ks(v)<0}. (1)

To capture the global shape change, we detect all local minimum in Rs of Gaussian 
curvatures at largest scale N, Vm = {vm∈V, KN(vm)< KN(vr1), vr1 is the neighboring 
vertices at ring 1 of vm}. As KN is negative, we have 
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The concavity Cm measures the minimum distance from the mesh vertex vm to the 
mesh convex hull. It is a good measurement of the global shape concavity at the ver-
tex. To consider the saliency region around vp (2), set the curvature threshold as half 
of the local minima, ξs=0.5Ks(vp), Rs = {v∈V, Ks(v)< ξs}. A multiscale saliency re-
gion Rp is then defined as 
 

Rp=Rs, and Rs ≠φ . (3)

 
Let the saliency region be Q containing vp. The center of the saliency region is the 
mean, 
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where Q has NQ vertices. Define the main norm nc for the saliency region as the sur-
face norm nearest to vc. The principal (curvature) directions of the surface at a vertex 
vi in Q can be computed [19]. Shown in Fig. 2 are the curvature directions, with the 
blue lines being the minimum principal curvature directions pn, and yellow lines being 
those for maximum principal direction pm. Red dots are the saliency points forming 
the saliency region (on left image). Note that we are interested in a cutting plane 
aligned with nc. Illustrated in Fig. 2 (central image), let the cutting plane have a nor-
mal np, vc is a point on the plane, then nc×np=0. Removing the nc component from pn, 
we have, 
 

ccnn
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Fig. 2. Cutting plane using principal curvature direction. Left: partial surface at a saliency re-
gion, Middle: the illustration of the curvatures, Right: the ellipsoid fitting for a GB. 
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The cutting plane normal is then computed as 
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With the cutting plane, the mesh vertices of a GB are separated into two sets of data 
points. One ellipsoid is applied to one set of points by the ellipsoid fitting.  

The GB neck is further identified by a position related to the liver center. Let a GB 
mesh vertices be G={gi}, the liver mesh vertices be L={lj}, centered at lc. The major 
principal axis Og of G can be obtained by PCA. Mapping all {gi} to Og, so di= {(gi -
gc)Og}. The GB neck Ne is obtained as one of the two extremes {ge1=arg max(di), 
ge2=arg min(di)} that is close to the liver center lc. Another extreme is taken as the 
fundus. Here, given Ne, a GB is simplified by the connection of the major axis of the 
decomposed ellipsoids, (E1,E2), pointing from the GB neck to the GB fundus. Fig. 3 
illustrates such a GB topology, which is the semantic feature of the GB, written as  
G = {Ne,Og,Sg,(E1,E2)}, where Sg is the size of the GB. 

Depending on fold detection, a GB may have only one ellipsoid if no saliency re-
gion detected. For GBs A and B both with two ellipsoids (EA

1,E
A

2), and (EB
1,E

B
2), the 

bend difference (angle and size) is used to measure the similarity. By shifting NA
e to 

NB
e, and rotating the ellipsoids (EA

1,E
A

2) around EA
1×EB

1 so that EA
1 is aligned to EB

1, 
the distance of the folds is, 

 

 

 

 

 

 

Fig. 3.  Gallbladder representation 
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The weight 

AB
w  measures the difference of relative length I between the two folds, 
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If a GB G with only one ellipsoid EG

1, letting EG
2= EG

1, (8) still works well as a dis-
tance measurement. It can be shown that if the folds are the same, Db=0. 

2.3 Liver-Gallbladder Distance Measurement 

In this study, liver volume is normalized so that it will not affect the comparison. It 
can always be added easily later whenever it is necessary. Mahalanobis distance is 
adopted to compute the joint liver-GB distance between patients, p1 and p2. Let DL be 
the distance between liver shapes, and DG

i=1,…,4= (
bgSgOeN

DDDD ,,, ) be the distance 

between the semantic features of the GBs. To balance the shape influence of liver and 
GB, the joint similarity is rewritten as 
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The σ in (11) is the corresponding standard deviation. 

3 Experiments and Result Analysis 

Experiments have been conducted on a small data set including 19 liver-GB CT 
scans. Liver volume is normalized so that it will not affect the comparison. By visual 
examination of the results in Fig. 4, we can see that a high similarity score (11) does 
reflect the anatomical similarity, both in shapes and structures. The gallbladders are 
superimposed at the bottom-right for a better view. Query-1 has obtained very similar 
anatomical structures on top. Query 2 has only one similar instance, but due to the 
gallbladders’ shapes are not similar, the overall score is low.  
 
 

          
                 Query-1             S=0.96              S=0.87 

        
                 S=0.78              S=0.67              S=0.53 

Fig. 4. Liver-GB retrieval with similarity scores 
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                    Query-2          S=0.76            S=0.70              

    
                    S=0.66            S=0.64            S=0.53 
 

Fig. 4. (continued) 

 
Spearman’s rank correlation [20] is also used to measure the performance. The 

higher the Spearman’s score ρ is, the more similar of the two ranks will be. Two users 
are asked to sort the data based on the visual similarity. The mean score ρ between the 
two users is 0.55, over all 19 queries. Compared with the results from the two users, 
the proposed approach got the mean scores ρ=0.50 and 0.40 respectively. The main 
difference is caused by some dissimilar datasets, which are difficult even for human 
operators to decide the similarity rank among them. If we take out the dissimilar sets 
(4 sets, irregular liver and gallbladder shapes), the score between the 2 operators is 
0.68 and the scores go up to 0.64 and 0.54 between our method and the two human 
operators. We also tested the shape retrieval method in [21] using multi-view 
LightField Descriptor. Including all data for testing, the correlation score with human 
operators are 0.34 and 0.35. One of the reasons is that the LightField is good for simi-
lar objects, but it may not suitable for dissimilar objects. In GB comparison, the size 
and orientation are the factors to be considered, however which will be normalized by 
LightField. 

4 Conclusion 

This paper presents the approaches to model and compare 3D anatomical structures of 
liver-gallbladder pairs. Through jointly comparing the shape and structure features, 
the liver-gallbladder anatomical retrieval is developed. Although the data set collected 
and tested is small, it includes variant structures and shape changes like fundus fold, 
big fold in the middle of gallbladder, normal liver shapes, and abnormal liver shapes 
(some are due to lesions) with gallbladders in different types and positions. The  
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preliminary test shows that the approach successfully retrieved the data according to 
the similarities or dissimilarity. The quantitative results show that our method is high-
ly correlated with human’s performance.  

The structure retrieval proposed in the paper is limited to either similar or dissimi-
lar cases for the training purpose based on liver shape, GB shape and the relationship 
between liver and GB. The shape registration using CPD or other generic registration 
does not consider the semantic similarity of livers, such as the similarity between liver 
left/right lobes or the GB fossa shapes, which requires specific region identification 
on the lobes, segments and fossa. For GB comparison, only the biggest fold is de-
tected and used for GB decomposition. For GBs with more complicated folds, the 
method may not be enough to characterize the shape variation. Currently the detected 
fold can be a real fold or a small ‘fold’ caused by the extension from GB to cystic 
duct. In the comparison (8), we do not distinguish the types of folds, but the relative 
length and position of the folds are used to measure the difference between two GBs. 

Future works include the benchmark on more datasets, improvement using rele-
vance feedback, and incorporation of other structures for data retrieval. 
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Abstract. Accurately detecting and segmenting ovarian cancer metas-
tases can have potentially great clinical impact on diagnosis and treat-
ment. The routine machine learning strategies to locate ovarian tumors
work poorly because the tumors spread randomly to the entire abdomen.
We propose a tumor sensitive matching flow (TSMF) to identify
metastasis-caused shape variance between patient organs and atlas.
TSMF juxtaposes the role of feature computation/classification, and
TSMF vectors highlight tumor regions while dampening all other ar-
eas. Therefore, metastases can be accurately located by choosing ar-
eas with large TSMF vectors, and segmented by exploiting the level set
algorithm on these regions. The proposed algorithm was validated on
contrast-enhanced CT data from 11 patients with 26 metastases. 84.6%
of metastases were successfully detected, and false positive per patient
was 1.2. The volume overlap of the segmented metastases was 63±5.6%,
the Dice coefficient was 77± 4.2%, and the average surface distance was
3.9± 0.95mm.

Keywords: Ovarian cancer metastases, computer-aided detection,
tumor sensitive matching flow.

1 Introduction

Detecting and segmenting ovarian cancer metastases enhance the prognosis and
treatment of women with ovarian cancer because 75% of them have tumors that
have already spread at the time of diagnosis [9]. The metastasis detection man-
ifests many challenges, including 1) variability in shapes and locations among
individuals, 2) indistinctive intensity profile in comparison with surrounding tis-
sues, 3) abnormal shapes of human organs compressed by metastases. Unpre-
dictable locations of metastases hinder existing detection algorithms [12,13,4]
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(a) (b) (c)

Fig. 1. (a) Significant shape variance between the registered atlas (purple) and the

patient’s liver (green); (b) optical flow methods can track the shape variance, which

is mapped to the patient’s liver. Blue to red represents small to large displacements;

(c) tumor sensitive matching flow highlights the displacements at tumor regions while

dampening all other deformed areas.

to classify ovarian tumors despite the fact that salient tumor classifiers can be
trained on annotated datasets. Manual annotation and classifier training are
usually time-consuming. Moreover, most detection algorithms [1,3,6] focus on
finding lesions or tumors inside organs. Our purpose is instead to locate exterior
ovarian cancer metastases attached to organs. Therefore, metastasis detection
without training would be desirable.

Metastases can be alternatively located by measuring local shape variance
between patient data and atlas because they often push organs to deform. Image
registration serves this purpose. For instance, free-form deformation registration
[10] exploits the spline model to track non-rigid motion. Fig. 1a illustrates the
shape variance between the registered atlas liver (purple) and the patient’s liver
(green). The difference is partly due to attached metastases (red), but mainly
caused by the variability among individuals. Therefore, shape comparison solely
based on image registration is unreliable. Optical flow methods [2,7] can compute
relative image displacements between registered and patient livers, as shown in
Fig. 1b. The amounts of image displacements are color mapped to the patient’s
liver. Red areas contain large displacements, which match actual shape variance.
However, the individual variability dominates the image displacements while
metastases take minor effects.

In this paper, we study the problem of eliminating shape variance caused
by individual variability while keeping the variance due to metastases, so as to
identify them. We propose a tumor sensitive matching flow (TSMF) to integrate
local tumor classifier into optical flow computation. Tumor-like regions are em-
phasized during flow computation, while all other areas are suppressed. Fig. 1c
illustrates the results of TSMF, where red regions correspond to the locations of
metastases. Finally, we can place level set seeds in these areas to segment them.
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2 Methodology

The flow of our method for detecting and segment metastasis is described in
Fig. 2. It consists of three major steps: shape descriptor construction, tumor
sensitive matching flow computation, and metastasis segmentation.

Fig. 2. Tumor sensitive matching flow method for detecting and segmenting metastasis

2.1 Shape Descriptor Construction

Shape is the primary feature for radiologists to detect metastasis. The purpose of
this step is to build shape descriptors for both patient images and reference CT
images (scanned from healthy persons), depicted in top left and center images
of Fig. 2.

Liver and spleen are segmented using the method in Linguraru [5] from pa-
tient images because ovarian cancer metastases frequently attach to them. Dis-
tance transform [8] is then performed on the segmented organs to build the
distance field, which is the shape descriptor for the patient data. Similar process
is performed on one reference CT dataset. The Reference CT images are first
registered with the patient images [10]. The registration parameters are then
used to transform a probabilistic atlas, shown in top right image of Fig. 2, to the
patient coordinate. The registered atlas thus covers the possible spatial ranges
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that the healthy organ would have. Another distance field is calculated from the
registered atlas and used as the shape descriptor for the reference images. There-
fore, we obtain two pairs of datasets: patient and registered reference images,
and patient and atlas distance fields.

2.2 Tumor Sensitive Matching Flow (TSMF) Computation

The TSMF computation is the key to accurately identify metastases by compar-
ing two pairs of datasets from the previous step. Let Ip(x, y, z) and Ia(x, y, z)
be the patient images and reference images, and Dp(x, y, z) and Da(x, y, z) be
their corresponding distance fields, with −→u = (ux, uy, uz) be the TSMF vector at
point (x, y, z). Similar to optical flow computation [2,7], the TSMF computation
can be formulated as a global energy function within a minimization framework

E(−→w ) =

∫∫
(x,y,z)∈R3

Ψ((Ia(x+ ux, y + uy , z + uz)− Ip(x, y, z))
2)︸ ︷︷ ︸

Intensity Constancy

+ βG(x, y, z)Ψ((∇Ia(x+ ux, y + uy, z + uz)−∇Ip(x, y, z))
2)︸ ︷︷ ︸

Gradient Constancy

+ γG(x, y, z)Ψ((Da(x+ ux, y + uy , z + uz)−Dp(x, y, z))
2)︸ ︷︷ ︸

Distance Constancy

+ αΨ(|∇ux|2 + |∇uy |2 + |∇uz |2)︸ ︷︷ ︸
Flow Smoothness

dxdydz,

(1)

where Ψ(x2) =
√
x2 + ε2, ε = 0.001 is a modified L1 norm and allows the com-

putation to handle non-Gaussian deviations of the matching criterion. α, β,
and γ are constants to balance different components. G(x, y, z) is a metastasis-
likelihood equation for estimating the probability of the metastasis existence at
point (x, y, z). The larger the value of G(x, y, z), the more influence the distance
and gradient constancy terms will conduct in the local flow computation. There-
fore, flow vectors are magnified at the locations where metastasis is more likely
to exist.

Next, we clarify the definition of G(x, y, z). In Fig. 2.2, we notice that the
intensity values of the metastasis are slightly lower than the liver and its region
is approximately homogeneous. A Gaussian kernel is used to model the intensity
distribution of metastases, and we experimentally determine that μm = 1060HU
and σm = 20HU are the average and standard deviation from one representa-
tive dataset. The metastasis also generates the local concavity of the liver, and
it can be measured by S(x, y, z) = Da(x, y, z) −Dp(x, y, z). Moreover, it stays
at the exterior of the liver, and thus G(x, y, z) should be a piecewise function
that highlights metastases at organ’s boundaries. Let Ω and Ω be the segmented
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organs and non-organ regions, respectively. ∂Ω is the organ boundary. G(x, y, z)
is defined as

G(x, y, z) =

⎧⎨⎩
0.01 for (x, y, z) ∈ Ω

S(x, y, z)/exp( σ
σm

)(1 + (μ−μm

σm
)2) for (x, y, z) ∈ ∂Ω

0.01× (Dmax −Dp(x, y, z)) for (x, y, z) ∈ Ω.

(2)

Fig. 3. The analysis of metastasis

properties to design a metastasis-

likelihood function

Here, Dmax is the largest distance value at
the patient distance field, and μ and σ are
mean and deviation of the intensity values of
the non-organ pixels adjacent to the current
boundary point in the patient images. Equa-
tion (2) indicates that the likelihood of the
metastasis existence remains a small value in
the non-organ regions and gradually decreases
towards the organ. The likelihood significantly
increases if the local boundary has large shape
change as well as the intensity values remains
homogeneous within the metastasis intensity
level. Therefore, Equation (2) is sensitive to
the metastases attaching to organs.
Minimization. Equation (1) is non-trivial to
be minimized because it is a highly non-linear
and non-convex equation. In order to ease the
description, we define the following [7]:

ΔI = Ia(x+ ux, y + uy, z + uz)− Ip(x, y, z)

ΔD = Da(x+ ux, y + uy, z + uz)−Dp(x, y, z)

Δ(∂xI) = ∂xIa(x + ux, y + uy, z + uz)− ∂xIp(x, y, z)

Δ(∂yI) = ∂yIa(x+ ux, y + uy, z + uz)− ∂yIp(x, y, z)

Δ(∂zI) = ∂zIa(x+ ux, y + uy, z + uz)− ∂zIp(x, y, z)

(3)

In terms of the calculus of variations, the Euler-Lagrange equation regarding to
x component is expressed as

Ψ ′((ΔI)2)∂xIaΔI + βG(x, y, z)Ψ ′((Δ(∂xI))
2 + (Δ(∂yI))

2 + (Δ(∂zI))
2)

(∂xxIaΔ(∂xI) + ∂xyIaΔ(∂yI) + ∂xzIaΔ(∂zI)) + γG(x, y, z)Ψ ′((ΔD)2)∂xDaΔD

− αdiv(Ψ ′(|∇ux|2 + |∇uy |2 + |∇uz|2)∇ux) = 0.

(4)

The equations of y and z components can be similarly derived. However, Equa-
tion (4) is still nonlinear in its argument −→u .

Multi-scale analysis is an efficient approach to handle non-convexity of Equa-
tion (4) as the solution in the coarse scale can better approximate the global
minimum. Volume pyramids are constructed to simulate scale space on patient
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and reference images as well as their distance fields. Sampling rate 0.75 is used
to ensure the smooth transition between different scales.

Sequential linearization [2,7] is another numerical strategy to remove non-
linearity in Equation (4). It is represented as two nested fixed-point iterations.
Assuming k be pyramid level and l be the outer iteration index,

(ΔI)k,l+1 = (ΔI)k,l + (∂xIa)
k,lduk,l

x + (∂yIa)
k,lduk,l

y + (∂zIa)
k,lduk,l

z , (5)

where −→u k,l+1 = (uk,l
x +duk,l

x , uk,l
y +duk,l

y , uk,l
z +duk,l

z ). Accordingly, non-linearity
at ΔI is iteratively removed, and the same strategy can be performed on other
abbreviations in Equation (3). Let the inner iteration index be m, the purpose of
the inner iteration is to manipulate all Ψ ′(∗) operators only relying on d−→u k,l,m

when d−→u k,l,m+1 is being estimated. Therefore, Equation (4) is finally converted
into a linear equation after two nested iterations.

Fig. 4. The process of seed point determi-

nation, where the metastasis is represented

as a red sphere and the liver is shown

in blue. A transitional point q is deter-

mined by moving a surface point p with

half length of the flow vector, indicated as

white arrows. The seed point is determined

by choosing the center points of a set of

transitional points satisfying the intensity

requirement.

Successive over-relaxation method
[14] is employed to minimize the mas-
sive liner system over the entire vol-
ume. After two nested iterations ex-
ceed predefined values at the current
pyramid level, the solutions are used
as the initialization for the next pyra-
mid level through bilinear interpola-
tion. TSMF field is generated after
the computation is accomplished at
the finest pyramid level. Fig. 1c shows
the final results.

2.3 Metastasis Segmentation

Level set method based on fast march-
ing [11] is employed to segment metas-
tases due to its accuracy. The key
to extracting metastases successfully
is the determination of a set of seed
points.

TSMF field makes the task of
seed determination tractable. Poten-
tial metastasis regions are first ex-
tracted by selecting organ surfaces
with the length of flow vectors larger

than 15mm. Connecting graphs are then built on the selected surfaces to deter-
mine the number of connected regions, in other words, the number of potential
metastases. If the number of vertices of a connected region exceeds 100 (approx-
imately 100mm2 area on the organ surface), it is evenly split.
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Fig. 4 illustrates the process of seed point determination within a connected
region. Let p = (x, y, z) be a surface point, represented as a green point. We first
compute the transitional point q = (x̂, ŷ, ẑ) = (x+ ux

2 , y+
uy

2 , z + uz

2 ) in yellow.
A set of transitional points can be obtained, and its center point is q =

∑
i q,

indicated as a black point. If μm − σm < I(q) < μm + σm, q is chosen as a seed
point. Otherwise, search its adjacent points and select neighbored points that
fulfill the intensity range. If none of them satisfy the condition, this region is
rejected.

The determined seed points are then imported into the fast marching approach
and metastases are finally segmented.

3 Experimental Results

TSMF algorithm was tested on 11 abdominal contrast-enhanced CT datasets
generated by Siemens 64-detector CT scanner. Slice thicknesses was 1mm. Each
dataset has at least one ovarian cancer metastasis. Retrospective analysis of
these images was inspected by our Institutional Reviewer Board. 26 metastases
in the selected datasets were annotated by an experienced radiologist and used
as the ground-truth. Their size (the maximum diameter) range is 4.0-49.9mm.
22 metastases were attached to the liver, and the remaining 4 were touched to
the spleen.

It takes 20 minutes to process one patient. Fig. 5 illustrates the results from
four patients, corresponding to four rows. Ground-truth metastases are illus-
trated in the right column, TSMF fields are given in the center column, and our
segmentation results are shown in the right. The first patient in Fig. 5 has a
metastasis in the right side of the liver. The TSMF field accurately tracks the
shape change caused by this metastasis. As a result, the metastasis is identified
and segmented in the right column. There is one false positive on the gallbladder.
The intensity profile and shape of the gallbladder as computed by the TSMF
are similar to those of the metastasis. The similar result was observed in the
second patient. In the third patient, the spleen is also attached to a metasta-
sis and TSMF can still locate and segment it correctly. The fourth patient is a
challenging case because most organs in the left abdomen were removed. Metas-
tasis (A) located at the left abdomen is attached to the liver only at one slice.
Because the shape change is minor, TSMF misses it. The same issue happens to
the metastasis (B) because of its small size. However, the remaining metastases
are successfully detected by TSMF.

The detailed validation of detection and segmentation on 11 patients were pre-
sented in table 1. Sensitivity (Sen.) and false positive per patient (FP/Patient)
are used to evaluate detection results. Six metrics used in liver segmentation [5]
are employed to evaluate the metastasis segmentation. They are volume over-
lap (VO), Dice coefficient (DC), relative absolute volume difference (RA), aver-
age symmetric absolute surface distance (AS), symmetric RMS surface distance
(SR), and maximum symmetric absolute surface distance (MS).
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Fig. 5. The comparison between ground-truth (left column) and segmented metastases

(right column). TSMF results are also illustrated in the center column, where TSMF

vectors are color mapped to the organ surfaces (blue to red represents the increment of

flow vectors). Each row corresponds to a patient. True metastases are shown in red and

false positives in yellow. False positives tend to be located near the gallbladder because

its intensity and shape are similar to metastases. Livers and spleens were automatically

segmented. Metastasis A is missed because of incomplete liver segmentation and B is

due to its small size (5.6mm).

4 Conclusion and Future Work

We have proposed a tumor sensitive matching flow (TSMF) algorithm to detect
and segment ovarian cancer metastases randomly distributed in the abdomen
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Table 1. Validation results of metastasis detection and segmentation on 11 patients

Detection Segmentation

Sen.(%) FP/Patient VO(%) DC(%) RA(%) AS(mm) SR (mm) MS (mm)

84.6 1.2 63±5.6 77± 4.2 27± 15 3.9± 0.95 6.5± 2.6 15± 2.7

from contrast-enhanced CT data. TSMF provides an efficient means to measure
shape variance caused by metastases between patient images and atlas data while
suppressing all other deformations. Therefore, metastases can be accurately lo-
cated and segmented according to the TSMF field. The method can successfully
detect 84.6% of metastases on data from 11 patients with an average surface
distance of 3.88mm.

However, the TSMF presented 13 false positives over 11 patients. Seven of
them were located on the gallbladder because it has a similar intensity distri-
bution and shape to the metastases. Currently, we are introducing the gallblad-
der atlas to the metastasis detection, so as to reduce false positives. Moreover,
three of four true positives were missed due to small shape changes between
metastases and organs. We are developing a more accurate metastasis-likelihood
function based on the information from local image structures, such as tex-
ture and shape index, to enhance the sensitivity to the metastases. In addition,
segmented metastases sometimes include the surrounding tissues because the
boundaries between them are undistinguished. Segmentation strategies based
on other image information beyond intensities is being studied to prevent over-
segmentation. Last but not least, we are collecting more datasets to test our
detection algorithm. Not only are patients with metastases chosen, but also the
datasets without metastases are also considered to evaluate the robustness of
our detection algorithm.
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Abstract. The non-rigid registration of abdominal images is still a big chal-
lenge due to the breathing motion. Indeed, the sliding between the abdominal 
wall and the abdominal viscera makes the local deformation field disconti-
nuous; it means that the classical registration approach, which assumes a 
smooth global deformation field cannot provide accurate and clinical-required 
results. Other new approaches intend to add in regularization a term to allow 
discontinuous deformation field near sliding boundary, however, the perfor-
mance of such approaches needs to be further evaluated. We propose a new ap-
proach to perform abdominal image registration including a priori knowledge of 
the sliding area. Our strategy is to firstly delineate the abdominal wall in source 
and target images and create new images containing viscera only. Then a state-
of-the-art non-rigid registration algorithm is adopted for the registration of the 
viscera region. In this paper, we firstly show why and how a quick interactive 
delineation of the full abdominal wall (AW) can be performed using B-spline 
interpolation. Secondly, we evaluate our registration approach on arterial and 
venous phase CT images. The results of our approach are compared to the one 
obtained using the same algorithm with the same parameters on the original da-
ta (without segmentation). The registration errors (mean ± SD) with our ap-
proach are: liver (1.94 ± 2.76 mm), left kidney (0.38 ± 0.66 mm), right kidney 
(0.42 ± 0.82 mm), spleen (4.15 ± 3.68 mm), which is much better than the reg-
istration result without segmentation: liver (6.48 ± 10.00 mm), left kidney (3.14 
± 3.39 mm), right kidney (2.79 ± 3.12 mm), spleen (17.45 ± 12.39 mm). The re-
sults clearly demonstrate our approach is a promising method to remove the 
sliding motion effect on the non-rigid registration of abdominal images. 

Keywords: Sliding motion, abdominal image registration, image segmentation. 

1 Introduction 

Image registration plays a significant role for many clinical applications. Though 
there are lots of registration approaches and algorithms to handle several kinds of 
situation, abdominal organs registration is still a challenging task since there is not 
only deformation of the abdominal organs, but there is also their sliding against the 
abdominal wall (AW) during the breathing motion [1]. 
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Non-rigid image registration of medical image is usually an ill-posed problem: it 
may give accurate but non-realistic results. One classical approach for registering 
abdominal images is to adopt a similarity measure metric to get optimization parame-
ters of the transformation model. For example, a B-spline transformation model com-
bined with mutual information similarity metric has been used for breast MR image 
registration [2], liver motion modeling [3], and liver registration [4]. The main limita-
tion of this approach is that it assumes that the global deformation field is smooth, so 
it cannot represent the local sliding between moving structures during the breathing 
cycle. 

Thus, to make registration results suitable for clinical applications, regularization 
terms have been proposed to take the deformation field discontinuities into account. 
They are based on spatial smoothing of a non-parametric dense deformation field. It 
includes the use of the anisotropic diffusive regularization for representing the discon-
tinuities at sliding interface [5, 6], and the combination of the demon algorithms with 
local affine transformation to obtain a smooth diffeomorphic dense deformation field 
[7-9]. However, the performance of these approaches has not been clearly quantita-
tively evaluated, and thus need further validation. 

After discussion with medical and anatomy experts, it can be summarized that the 
main sliding motion occurs between the abdominal wall and abdominal viscera. In 
other words, the sliding motion between abdominal organs themselves is very small 
compared with the whole abdominal viscera sliding. Therefore, it seems relevant to 
locate the sliding area and remove the AW from original image before carrying out 
non-rigid image registration, so that it avoids complex work to adapt a regularization 
step to artificial take boundary sliding effect into account. 

In section 2, we firstly show on patient data that due to the low curvature of abdo-
minal wall, ten slices only need to be delineated in order to provide an accurate full 
segmentation of the abdominal wall. In section 3, we evaluate on one patient data the 
benefit of our approach for non-rigid registration of abdominal area. 

2 Fast Interactive Segmentation of the Abdominal Wall 

In this section, we firstly describe the interactive tool that we have developed in order 
to quickly delineate abdominal wall in several axial slices. Secondly, we discuss the 
number of axial slices that must be interactively delineated to reach an accurate seg-
mentation and show on patient data that 10 slices are enough on average. 

2.1 Interactive Segmentation Tool Description and Image Generation 

Given an abdominal 3D image, the outline of our segmentation is that we select some 
axial slices to delineate interactively with control points linked by a 2D B-spline. 
Then the remaining slices are segmented automatically using a 3D B-spline based 
interpolation technique. Finally, users have to make some small modifications for a 
more accurate segmentation by adjusting control points of the 2D B-spline curve. The 
detailed process is as follows. 
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Given a selected axial slice image, we add control points sequentially along the 
boundary of the considered region, here the abdominal viscera. Once all control 
points are added on the boundary, a 2D B-spline based fitting technique is adopted to 
form a curve linking all adjacent points (cf. Fig.1 (a)). The B-splines being updated in 
real-time, the place of control points can be adjusted in order to improve the created 
curve accuracy. Once this step is finished, we go to the next selected slice image. The 
closest created curve is automatically copied on the current slice. In order to facilitate 
matching between points from slice i and slice i +1, the control point number of the 
curve is preserved, therefore, we do not have to append control points again (cf. Fig.1 
(b)). Some small modifications on location of control points are sufficient to update 
the curve which delineates the abdominal viscera. After delineation of at least 4 slices, 
the boundary of abdominal viscera in the rest of all axial slices can be estimated 
automatically with the use of 3D B-spline based interpolation technique. Simultane-
ously, a 3D mesh can also be created using the Marching Cubes algorithm (cf. Fig.1 
(c)) and allows to check the segmentation accuracy. Finally, the image to be regis-
tered is processed by replacing the AW voxel value by 0 (cf. Fig. (d)). 

However, the number of selected slices (NSS) needs to be discussed, because an 
abdominal volume data normally contains more than 200 slices. If we choose too 
many slices for interactive segmentation, for example 80% of all slices, it would take 
an expert more than 5 hours to do the segmentation. If too few slices are chosen, the 
segmentation result might not be satisfying, we have to find the good compromise. 

2.2 Evaluation of the Minimum NSS to Delineate the Abdominal Wall 

The length of acquired abdominal-thorax volume data along z axis is usually about 50 
cm. Using 8 patient CT data (resolution of 512 × 512× 292 with voxel size of 
0.961 ×  0.961×1.8 mm), our medical staff perform segmentation with our 
segmentation tool for each of them using 50, 20, 10 and 5 slices. An expert had 
defined that the segmentation with 50 slices (1 slice/cm) could be considered as 
ground truth due to the low curvature of the abdominal wall. Then, a dense 3D mesh 
M50 (resp.S20, S10, S5) were created for each patient from the segmentation with 50 
slices (resp.20, 10, 5). The surface models S20, S10 and S5 can be compared to the M50 
and the difference between them can be measured by computing the distance from the 
vertex of the surface model to the closest point belonging to M50. The number of 
control points in each slice is the same for the segmentation with different NSS. 

Fig. 3 shows the distance histogram between meshes S20, S10 and S5 with M50 on 2 
patient data. We can see that the distance distribution of points is almost the same for 
S20 and S10 (peak around 0.6 mm). But for NSS equals to 5, there are many points 
which distance are larger than 0.8 mm. We also calculate the total average distance 
and standard deviation between surfaces S20, S10, and S5 with M50 on 8 patient data (see 
Table 1). It clearly shows that the mean error is reduced from 1.27 mm (NSS = 5) to 
0.84 mm (NSS = 10) which corresponding to the voxel size and thus to the ground 
truth accuracy. However, there is only slight improvement in accuracy for the NSS 
increased from 10 to 20. 
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From these statistic charts and tables, we can conclude that the NSS for interactive 
segmentation can be chosen below 20, but above 10. This evaluation also shows that 
the abdominal wall can finally be fully segmented in a very reasonable time compared 
with clinical workflow using semi interactive tool with similar accuracy than  
ground truth.  Particularly, 15 slices are segmented in less than 10 minutes with our 
software. 

Table 1. Average distance and standard deviation between surfaces S20, S10, S5 with ground 
truth M50 

 5 slices 10 slices 20 slices 
Average distance (mm) 1.27 0.84 0.71 

SD (mm) 0.99 0.52 0.36 

3 Evaluation of Abdominal Wall Removal on Deformable 
Registration 

In this section, we apply state-of-the-art non-rigid algorithm to register an arterial 
phase abdominal CT image with a venous phase CT image of the same patient. In a 
first step, we use original image Iarterial and Ivenous, and in a second step we use I’arterial 
and I’venous which abdominal wall are removed with our proposed method (NSS=15). 
Finally, we compare the registration result accuracy using several insight 
measurements (cf. Section 3.4).  

3.1 Image Data  

The original data we use is two abdominal CT images, namely arterial and venous-
phase CT of the same patient. The size is 512 × 512× 292 with spacing of 0.961 × 
0.961×1.8 mm3. Then, these two images were segmented by the proposed approach to 
get the result images without abdominal wall.  

3.2 Non-rigid Image Registration  

The goal in contrast-enhanced CT abdominal images registration is to find a spatial 
transformation that correctly maps points in the source image to the corresponding 
ones in the target image. One important issue that needs to be considered is that not 
only shape of organs is deformed because of breathing, they also move in cranial-
caudal direction. Obviously, using rigid or affine transformation only is not sufficient 
to accurately describe this transformation. Therefore, we choose a combined trans-
formation T which contains rigid transformation, affine transformation and multi-
resolution deformable transformation using free form deformation (FFD)： , , , ,  (1)
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The great advantage and capacity of B-spline based FFD compared with thin-plate 
splines in modelling the 3D deformation field has been proved by [2, 11, 12]. 

3.3 Choice of Similarity Metric 

For the registration of arterial and venous-phase CT images, it is necessary to define a 
registration metric. Intrinsic value difference between these two data sources make the 
intensity similarity measure impossible using methods such as sum of squared 
differences or correlation. We decide to choose the Mutual Information (MI) which is 
a concept of information theory. MI means how much information one random 
variable contains about another random variable and does not need a bijection of grey 
level between source and target images. This was introduced into the medical image 
registration area by Collignon [14] and Viola [15]. In our paper, we adopt the class 
itk::MattesMutualInformationImageToImageMetric to implement the similarity 
measurement. More details can be obtained via accessing the ITK website [16]. 

3.4 Evaluation of the Registration 

To evaluate the registration results on original images and on images modified with 
our approach, several organs (liver, kidney, spleen) have been segmented manually by 
an expert in the target image (arterial- phase CT) and the same organs have been seg-
mented in the images after registration. These segmentation Then a quantitative 
analysis is performed. Firstly, for two segmented organs masks (  and ), we de-
fine the Sensitivity and Specificity as following: , . (2)

In the liver case, represents the liver mask in the original CT image,  represents 
its mask in the registered image with or without the abdominal wall. Secondly, Table 
2 gives the volume of organs (liver, left/right kidney, spleen). Thirdly, we calculate 
the mean distance between both masks for each organ, and the results are shown in 
the Table 3. Here, the mean distance is the average of the distance between all points 
of the boundary of the organ in original image and their closest point that in the 
boundary of registered one with or without abdominal wall. 

Table 3 shows that the mean distance is significantly reduced when using image in 
which AW has been removed. For example, the mean distance of the liver without 
registration is 30.90 mm, then, this value is reduced from 6.48 mm to 1.94 mm cor-
responding to the registration with and without the abdominal wall. The sensitivity 
and specificity of all organs are also dramatically improved when AW is not in the 
registered image. Finally, the important improvement of our registration approach can 
be assessed on the 3D model in Fig. 3. However, one can see that there are still some 
errors (5 mm) close to the diaphragm. This is mainly due to the grey level of lungs 
and heart which are not homogeneous.  
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Table 2. Organ volume computed from the original data and registered image with and without 
abdominal wall 

Organs Voriginal

(mm3) 
VregWithAW

(mm

3

) 
VregWithoutAW

(mm

3

) 

Liver 2004.43 2345.50 2116.32

Left kidney 212.32 200.285 218.508

Right kidney 212.832 198.066 215.948

Spleen 322.944 355.892 354.630

 

Table 3. Quantitative analysis for the registration accuracy of the liver, left kidney, right kidney 
and spleen 

Organs  Sensitivity Specificity Mean (mm) 

Liver 

NoRegistration 
 
 

 30.90 

RegWithAW 92.51% 79.05% 6.48 (± 10.00) 

RegWithoutAW 96.96% 91.83% 1.94 (± 2.76) 

Left kidney 

NoRegistration   24.76 

RegWithAW 81.44% 86.33% 3.14 (± 3.39) 

RegWithoutAW 86.33% 96.01% 0.38 (± 0.66) 

Right kidney 

NoRegistration   24.57 

RegWithAW 82.98% 89.17% 2.79 (± 3.12) 

RegWithoutAW 98.01% 96.63% 0.42 (± 0.82) 

Spleen 

NoRegistration   30.72 

RegWithAW 38.94% 35.33% 
17.45 (± 
12.39) 

RegWithoutAW 82.72% 75.33% 4.15 (± 3.68) 
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(g) 
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Abstract. The current procedure of renal cortex segmentation is subjective and 
tedious. This investigation is to develop and validate an automated method to 
segment renal cortex on contrast-enhanced abdominal CT images. The 
proposed framework consists of four parts: first, an active appearance model 
(AAM) is built using a set of training images; second, the AAM is refined by 
live wire (LW) method to initialize the shape and location of the kidney; third, 
an iterative graph cut-oriented active appearance model (IGC-OAAM) method 
is applied to segment the kidney; Finally, the identified kidney contour is used 
as shape constraints for renal cortex segmentation which is also based on IGC-
OAAM. The proposed method was validated on a clinical data set of 27 CT 
angiography images. The experimental results show that: (1) an overall cortex 
segmentation accuracy with overlap error ≤12.7%, volume difference ≤ 3.9%, 
average distance ≤ 1.5 mm, root mean square (RMS) distance ≤ 2.8 mm and 
maximal distance ≤ 19.5 mm could be achieved. (2) The proposed method is 
highly efficient such that the overall segmentation can be finalized within 2 
minutes. 

Keywords: Segmentation, Kidney, Renal Cortex, Graph Cut. 

1 Introduction 

Kidney cancer is among the 10 most common cancers in both men and women. 
Overall, the lifetime risk for developing kidney cancer is about 1 in 70 (1.43%) [1]. 
Renal cell carcinoma which arises from the renal cortex is the most common type of 
kidney cancer in adults, responsible for approximately 80% of cases [2]. Hence, the 
investigation of the renal cortex has great value for kidney cancer research. 
Segmentation of the renal cortex is of particular clinical importance. Currently, many 
of the renal cortex segmentations used clinically rely mainly on manual methods, 
which are subjective, tedious, and prone to errors. Therefore there is a strong need to 
have a fully automatic and accurate kidney and renal cortex segmentation method in 
clinics. 
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Segmentation of renal cortex is not a trivial task. There were several prior 
investigations [3-15] in renal and renal cortex segmentation on CT and MRI images, 
including both semi-automatic [3-6] and fully automatic [7-9, 10-15] methods. For 
kidney segmentation in dynamic MR images, not only the spatial information but also 
the timing activities (also known as time intensity curves, TIC) were used for kidney 
segmentation [5, 10-12, 15]. Boykov et al. [11, 12] introduced a temporal Markov 
model to describe the TIC for each pixel, and used min-cut [11] for kidney 
segmentation. However, the user needs to specify seed points. For the atlas based and 
registration based methods, Sun et al. [13] presented an integrated image registration 
algorithm to segment renal cortex for dynamic renal perfusion MR images. Another 
registration based approach was proposed by Zollner et al. [14] by separating the 
inner compartments by k-means after a non-rigid registration guided by TIC. Song et 
al. [15] proposed a 4D level set framework for dynamic MR images kidney 
segmentation. The method also combined information from spatial anatomical 
structures and temporal dynamics. 

Most of the studies described above [4, 5, 9-15] classified the kidney into the three 
compartments: renal cortex, medulla and pelvis. Based on the strict definition of renal 
cortex, only out-layer of the kidney is considered as a cortex because renal columns 
have anatomical and functional differences [16]. Many prior investigations [4, 9-11], 
[14] considered cortex and column as one tissue although they are anatomically 
different. However, in most clinical application for renal cortex segmentation, only 
the out-layer of the kidney is measured [16]. For certain clinical investigations, it is 
desirable to measure the cortex precisely. In this paper, we propose a framework to 
automatically segment renal cortex precisely. 

  

          
(a)                 (b)              (c) 

Renal 
cortex 

Renal 
column 

Renal 
medulla 

 

Fig. 1. Examples of segmentation results for cortex segmentation. (a) Input image; (b) 
Segmentation results by traditional GC method; (c) Segmentation results by the proposed 
method. 

The proposed framework consists of two phases: training and segmentation phase. 
In the training phase, we construct the AAM model and train the live wire (LW) cost 
function and GC parameters. This allows us to construct oriented AAM (OAAM). 
The segmentation phase consists of two main parts: initialization and delineation. For 
the initialization part, a pseudo-3D initialization strategy is employed and a multi-
resolution OAAM is proposed, which synergistically combines the AAM and LW 
methods (the essence of OAAM). A multi-resolution multi-object strategy is utilized 
to help for initialization. For the delineation part, the shape information generated 
from the initialization step is integrated into the GC cost computation, and an iterative 
algorithm is proposed for cortex delineation. 
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2 IGCOAAM Based Renal Cortex Segmentation 

Fig. 2 shows the flowchart of the proposed method. In the training phase, an AAM is 
constructed and the LW and GC parameters are trained. The segmentation phase 
consists of two main steps: initialization and delineation. In the initialization step, we 
employ a pseudo 3D initialization strategy in which the kidney is initialized slice-by-
slice via a multi-resolution multi-object OAAM method. The employment of pseudo-
3D initialization strategy is motivated by two reasons: (1) Compared to a full 3D 
initialization method, the proposed method is much faster while achieved a similar 
performance, (2) It is difficult to combine AAM with LW in 3D. For the delineation 
part, the shape information generated from the OAAM initialization step is integrated 
into the GC cost computation. The kidney is segmented using the iterative graph cut 
oriented active appearance model (IGC-OAAM) method [17]. After getting the 
kidney contour, morphological operations are performed to get the initial cortex 
shape. Finally, the shape constrained IGC-OAAM method is applied once more to 
obtain the final renal cortex segmentation.  The details of each step are given in the 
following sub-sections. 

Input Training  
Images 

Landmarking 

AAM Construction, 
Live Wire Boundary Cost 
and Graph Cut Parameter 

Estimation 

Kidney Initialization 
 by MOAAM 

 
Input Image  

Kidney Delineation 
by IGC-OAAM 

Initial Cortex Shape 
Generation 

Cortex Delineation 
by IGC-OAAM 

Segmentation 

Output  

Interpolation 

Initialization 

Delineation 

Training 

 

Fig. 2. The flowchart of the proposed system 

2.1 Model Building and Parameter Training 

The model building requires several constraints, one of which is anatomical 
correspondence finding. Since, the location and the size of the kidney may change 
considerably from subject to subject, it would be beneficial to interpolate the image 
slices of the organ in terms of having remarkable physical location correspondences 
between subjects.  Therefore, prior to building the model, the top and bottom slices 
of kidney are first manually identified. Then linear interpolation is applied to generate 
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the same number of slices for each subject in training set. 2D OAAM models are then 
constructed for each slice level from the training images. Once the landmarks are 
specified, the standard AAM method [21] is used for constructing the model. 
Although we employ a pseudo-3-D initialization strategy, we also build the fully 3-D 
AAM, which is denoted as M3D, using the method in [22].  

The LW cost function and GC parameters are also estimated in this stage. For the 
training of LW cost function parameters, an oriented boundary cost function is 
devised as per the LW method [23]. For the GC parameters )|( OIP p  and 

)|( BIP p (see equation (3)), the histograms of intensity for each object can also be 

estimated from the training images. 

2.2 Initialization 

The initialization step plays an important role in the overall framework. It does not 
only provide shape constraints to the later GC segmentation, but also makes the 
proposed method fully automatic. The proposed initialization method includes three 
main steps. First, a slice localization method is applied to detect the top and bottom 
slices of the kidney. Then a linear interpolation is applied to generate the same 
number of slices for the subject as in the model. Second, the organ is recognized slice 
by slice via a multi-resolution OAAM method. A multi-object strategy [17] is utilized 
to further assist the kidney initialization. The initialization performance with multiple 
organs in the model is much better than with a single organ due to the constraints 
among multiple organs [18]. The multi-resolution strategy is also used to improve the 
performance of the proposed method. Finally, a refinement method is applied to the 
initialization result. 

2.3 Delineation by Shape Constrained GC 

The proposed delineation method consists of three main steps. First, the kidney is 
segmented using the iterative shape constrained GC method which incorporates the 
kidney shape information generated from the initialization step. Second, after getting 
the kidney contour, morphological operations are performed to get the initial cortex 
shape. Finally, the shape constrained GC method is applied again to refine the final 
renal cortex which incorporates the cortex shape at this time. The details of each step 
are given in the following sub-sections. Since the shape constrained GC methods is 
the building block of the proposed delineation algorithm, we present it first.  

2.3.1   Shape Constrained Graph Cut Cost Function 
The segmentation problem can be formulated as an energy minimization problem 
such that for a set of pixels P and a set of labels L, the goal is to find a labeling f: P  
L that minimizes the energy function En(f). 

,
,

( ) ( ) ( , ) ,
p

p p p q p q
p P p P q N

En f R f B f f
∈ ∈ ∈

= +    (1)
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where Np is the set of pixels in the neighborhood of p, Rp(fp) is the cost of assigning 
label fp ∈  L to p, and Bp,q(fp, fq) is the cost of assigning labels fp, fq ∈  L to p and q.      
In our framework, the unary cost Rp(fp) was the sum of a data penalty Dp(fp) and a 
shape penalty Sp(fp)  term.  The data term was defined based on the image intensity 
and can be considered as a log likelihood of the image intensity for the target object. 
The shape prior term is independent of image information, and the boundary term is 
based on the gradient of the image intensity. 

The proposed shape-integrated energy function was defined as follows: 

,
,

( ) ( ( ) ( , )) ( , ),
p

p p p p o p q p q
p P p P q N

En f D f S f B f fα β γ
∈ ∈ ∈

= ⋅ + ⋅ + ⋅ x  (2)

where , ,α β γ  are the weights for the data term, shape term, and boundary term, 

respectively, satisfying 1α β γ+ + = . These components are defined as follows: 

ln ( | ),
( )

ln ( | ),         
p p

p p
p p

P I O if f object label
D f

P I B if f background label

− == − =
  (3)

2

, 2

( ) 1
( , ) exp( ) ( , ),

( , )2
p q
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−
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1,
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p q
p q

if f f
f f

otherwise
δ

≠
= 


 (5)

where Ip is the intensity of pixel p, object label is the label of the object (foreground).
 )|( OIP p  and )|( BIP p are the probability of intensity of pixel p belonging to object 

and background, respectively, which  are  estimated  from  object  and  
background intensity  histograms  during the training phase (details given below). 
d(p, q) is the Euclidian distance between pixels p and q, and σ is the standard 
deviation of the intensity differences of neighboring voxels along the boundary. 
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=
= 


x
x

x
  (7)

where ( , )Od p x  is the distance from pixel p to the set of pixels which constitute the 

interior of the current shape xo of object O. (Note that if p is in the interior of xo, then 
( , )Od p x = 0.) ),( opd x  is the distance from voxel p to the complementary of the 

shape xo. Or  is the radius of the sphere that roughly encloses xo.  The linear time 

distance transform method in reference [18] was used in this paper for computing this 
distance. 
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2.3.2   Renal Cortex Segmentation 
Now, we present the details for the renal cortex segmentation, which consists of 
three main steps: kidney delineation, cortex shape generation and cortex delineation. 

Kidney Delineation. The purpose of this step is to precisely delineate the kidney 
shapes recognized in the previous step. We propose an IGC-OAAM method for the 
kidney’s delineation, which effectively integrates the shape information from the 
OAAM initialization step with the globally optimal 3D delineation capability of the 
GC method. (see below algorithm).   

We assume that the recognized shapes are sufficiently close to the actual 
boundaries in the given image to be segmented. The IGC-OAAM algorithm then 
determines what the new position of the landmarks of the objects represented in the 

initialized shape xin should be such that the minimum GC cost is achieved, as 
presented below. 
 
Algorithm: IGC-OAAM for Kidney Delineation  
Input: Initialized shapes xin, shape distance d = ∞, ε = a 
small value. 
Output: Resulting shapes xout and the associated kidney 
boundaries shape KS. 
Begin 
While d > ε do  
1. Perform GC segmentation using equation (6) based on 

the OAAM initialized shapes xin; 
2. Compute the new position of the landmarks by moving 

each landmark in xin to the point closest on the GC 
boundary; call the resulting shapes xnew; 

3. If no landmarks move, then, set xnew as xout and stop; 
    Else, subject xnew to the constraints of model M3D, 

and call the result xin. And computer the shape 
distance d between the current shape and previous 
shape using the method in [19]. 

EndWhile 
Perform one final GC segmentation based on xout, and 
obtain the associated shape boundaries KS. 
End 
 

In our implementation, ε = 0.1. We found from the experimental results that the 
segmentation accuracies usually don’t change much after two iterations. We also limit 
that a landmark can move within any iteration to 6 voxels in order to make the surface 
change smoother. 
 
Renal Cortex Shape Construction. After getting the kidney contour, our target is to 
get the initial cortex shape. A heuristic method based on morphological operation 
(erosion) is used to construct an initial renal cortex shape. The number of erosion time 
is estimated from the training data set which is actually related with the depth of the 
renal cortex. 
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Renal Cortex Delineation. Based on the above step, we got the initial cortex shape. 
We assume that the initialized cortex shapes are sufficiently close to the actual 
boundaries in the given image to be segmented. Here, the IGC-OAAM is used again 
to refine the final renal cortex boundaries, and the generated initial cortex shape is 
used as the shape constraint. 

3 Experimental Results 

This study involved 27 patients (12 men and 15 women, age ranged from 19-63). 
Abdominal images were acquired during preoperative screening. All examinations were 
performed with one of two different types of CT scanners (LightSpeed Ultra, GE Medical 
Systems, Milwaukee, WI; or Mx8000 IDT 16, Philips Medical Systems, Andover, MA). 
Prior to image acquisition, the patients were injected with 130 mL of Isovue-300 contrast 
agent (Bracco Diagnostics, Milan, Italy). CT images were reviewed with a three-
dimensional multiplanar reformatting interactive mode on an image-processing 
workstation (Advanced Workstation; GE Medical Systems). The pixel size varied from 
0.55 to 1 mm, and slice thickness from 1 to 5 mm. The leave-one-out strategy was used to 
evaluate the proposed method. 

For quantitative evaluation, the MICCAI 2007 grand challenge for liver segmentation 
evaluation criteria [19]: volumetric overlap error, relative volume difference, average 
symmetric surface distance, root mean square (RMS) symmetric surface distance, and 
maximal symmetric surface distance were used to evaluate the proposed method. The 
evaluation results are summarized in Table 1. The average volumetric overlap error 
for kidney segmentation is about 3.6%, while for cortex segmentation, the average 
overlap error is about 12.7%. In Fig. 3, the 3rd and 4th column shows the 
segmentation results for the kidney and cortex by the proposed method, respectively. 
Additionally, the error of cortex segmentation is higher than kidney segmentation, 
which may be due to the greater difficulty in cortex segmentation than kidney 
segmentation. 

Table 1. Segmentation evaluation based on the “MICCAI 2007 grand challenge for liver 
segmentation” evaluation criteria 

Method 
Overlap 

Error 
[%] 

Volume 
difference 

[%] 

Avg. 
distance 

[mm] 

RMS 
distance 

[mm] 

Max 
distance 

[mm] 

Kidney 
Segmentation 

3.6 
± 2.6 

1.9 
±2.1 

0.9 
±0.5 

1.7 
±1.1 

16.9 
±7.1 

Cortex 
Segmentation 

12.7 
± 3.3 

3.9 
±5.2 

1.5 
±1.1 

2.8 
±2.6 

19.5 
±9.8 

 
In terms of efficiency, Table 4 shows the computation time for the kidney and 

cortex segmentation on an Intel Xeon E5440 workstation with 2.83GHz CPU, 8 GB 
of RAM. For kidney segmentation, the time for the computation was reduced from 8 
minutes for manual segmentation to about 1.3 minutes for automatic segmentation. 
For renal cortex segmentation, the time was reduced from 20 minutes for manual 
segmentation, to less than 2 minutes for automatic segmentation. 
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Fig. 3. Experimental results for two slice levels of kidney and cortex segmentation. The first 
column is the original slice image; the second is MOAAM initialization result; the third is the 
kidney segmentation results by the proposed method; the fourth is the cortex segmentation 
results by the proposed method.   

4 Conclusions and Discussions 

In this paper, we proposed a fully automated framework for renal cortex segmentation 
and quantification. The proposed framework synergistically combined the AAM, LW, 
and GC methods to exploit their complementary strengths. The proposed method 
consists of three main parts: model building, initialization, and segmentation. For the 
initialization part, we employed a pseudo-3D strategy, and segment the organs slice 
by slice via multi-resolution multi-object OAAM method, which effectively combines 
the AAM and LW methods. For the segmentation (delineation) part, an IGC-OAAM 
method was proposed which effectively integrated the shape information gathered 
from OAAM initialization with a GC algorithm. The method was tested on a clinical 
abdominal CT dataset with 27 contrast-enhanced images. The experimental results 
suggested that an overall renal cortex segmentation accuracy with overlap error 
≤12.7%, volume difference ≤ 3.9%, average distance ≤ 1.5 mm, RMS distance ≤ 2.8 
mm and maximal distance ≤ 19.5 mm could be achieved. 

Use of the automatic algorithm greatly reduced the time needed for the 
segmentation, especially for cortex segmentation. The reduction of the mean 
segmentation time from 20 minutes for manual segmentation to less than 2 minutes 
for automatic segmentation made cortex segmentation from CTA images much more 
practically in clinical routine. 
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Abstract. This paper describes a novel approach for model based esti-
mation of a dense deformation field utilizing an implicit representation of
shape changes. Unlike existing methods based on the Point Distribution
Model (PDM), the proposed method is not affected by an incorrect point
correspondence which is a major limiting factor in practical applications
of the PDM with clinical data. The proposed method uses regression be-
tween parametric representations of pelvic organs’ shape and correspond-
ing dense displacement field parameterized by the stationary vector field.
The regression function is learned based on the training data sets includ-
ing subjects with representative organ deformations, where the inter- and
intra- subject correspondences are established via the log-Euclidean dif-
feomorphic formulation. The evaluation of the proposed method is con-
ducted both on synthetic examples to provide systematic experimental
evidence of correctness of the implicit shape representation for shape-
driven prediction of the deformation field and, real MRI data to show
accuracy in terms of deformation and prostate position prediction. The
results show an increased robustness of the proposed framework in com-
parison to PDM approaches and suggest potential of its application for
adaptive radiation therapy of prostate.

Keywords: Prostate motion estimation, deformation modeling, diffeo-
morphic image registration, implicit shape representation, regression.

1 Introduction

The estimation of a reliable deformation field from noisy data has essential im-
portance in many clinical applications. In some cases when it is possible to obtain
high quality training data, a deformation (motion) model constructed from such
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data, can be either introduced into the registration process as an additional con-
straint [1] or linked somehow to partial information from a measurement that
is affected by the deforming tissue and thus used to indirectly infer the tissue
deformation [20,9,8,4].

Currently, such measurement is most often restricted to a point or a set of
points. Implementations of this methodology include online systems for simul-
taneous compensation of laparoscopic camera motion and respiration induced
tissue deformations [11], 4D image-guided lung radiation therapy [20,9,8], pelvic
area subject-specific [17] and population based [16] organs modeling. The shape
variability of rectum and bladder with applications to radiotherapy planning and
delivery was also considered in [14], where the statistical deformation model was
build on parameters of spherical harmonics used to represent organs surface with
a small number of points interactively selected by an operator. For the purpose
of lung motion estimation, the air content of a reference volume as a predictor
has been used [4]. All the aforementioned methods require the estimation of
correspondence between points detected in images representing different defor-
mation phases, which is sensitive to occurrences of gross error (data outliers).
To avoid the problems associated with point correspondence errors, it is pro-
posed here to use an implicit representation for shape description. The implicit
shape representation was considered and successfully utilized for segmentation
of medical images containing known types of objects [18], and also in a global
alignment and local registration of shapes [6]. In both cases, this representation
solves difficulties with finding correspondences.

Whereas the intra-patient motion model can be easily generated utilizing
multiple registrations between acquired volumes representing different phases of
organs’ motion [17,20], the inter-patient motion model that is built in similar
manner, is biased towards the chosen reference image. Therefore, a mean ref-
erence patient has to be estimated followed by establishment of the common
patient space [5]. Moreover, in many recent approaches ([20,9,8]), the statistical
models of the deformation fields were obtained by directly applying principal
components analysis (PCA) to them (or B-spline parameterization [15]). Al-
though those approaches were to some extent successful in certain applications,
this motion model has some disadvantages. The most important is that such
eigenvectors do not form a vector space of valid deformation fields (e.g. diffeo-
morphism is not guaranteed to be preserved). Here, the log-Euclidean framework
[2,3,19] is applied to parameterize the non-linear diffeomorphic deformation field.

The main contribution of this paper is a novel approach to prostate position
and dense deformation field prediction. The proposed method uses implicit sur-
faces (described in Section 2.3) to represent the shape of bladder and rectum.
The results presented in Section 3 show the advantages of this shape descriptor
in comparison to PDM. Moreover, the common patient space that is essential
for the presented method and established in log-Euclidean framework by per-
forming group-wise registration, is summarized in Section 2.1. The intra-subject
registration to estimate subject-specific deformation is explained in Section 2.2.
Finally, the training process is demonstrated in Section 2.4. The results obtained
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for the simulated and real magnetic resonance imaging (MRI) data are shown
in Section 3 to demonstrate the plausibility of the described prostate position
prediction system. The results for synthetic data illustrate efficiency of the pro-
posed method in comparison to PDM. The accuracy with respect to prostate
position estimation based on real MRI data are shown to demonstrate the po-
tential application in ART.

2 Methodology

In the proposed approach, each patient k : k = 1, . . . ,K is described by a set of
n-dimensional images Ik = {Ikl : Ω ⊂ R

n → R, l = 0, . . . , Lk}. A transformation
ϕ0l : Ω → Ω that warps image Ikl to image Ik0 , is represented by a stationary
velocity field vk

0l, related to a diffeomorphic displacement field uk
0l through the

exponential mapping ϕk
0l(x) = x + uk

0l(x) = x + exp(vk
0l(x)) [2,19]. The dif-

feomorphic registration guarantees that folding will not take place, contrary to
many other methods which do not have this constraint included [9,16,20].

2.1 Common Space Generation

Calculating the velocity fields for each set of patient images can only provide a
patient specific motion model. In order to obtain a general motion model, the
common patient space has to be established. To avoid possible bias due to se-
lecting a particular reference image, the implicit group-wise image registration
was proposed in [5]. Contrary to the original method, in this work to maintain
diffeomorphic consistency, the displacement fields are parameterized via station-
ary velocity fields. The energy function ε(v) is given in Equation 1 where Sim
is a similarity measure and Reg is a regularization term, and the Demon-like
approach is used to minimize it [12].

ε(v) =

K∑
k1=1

K∑
k2=1
k1 �=k2

Sim(Ik1
0 (exp(vk1

0 )), Ik2
0 (exp(vk2

0 ))) + α

K∑
k1=1

Reg(vk1
0 ) (1)

The implicit group-wise registration estimates the set of transformations ϕk
0m

that warps each planning image Ik0 to the mean intensity image Im, that finally
can be calculated as an average of all warped images 1

K

∑
Ik0 (ϕ0m).

The performance of the proposed method is demonstrated in Fig. 1, showing
the average of the input data and the Intensity Variance (IV ) [5,12] before and
after data co-registration.

2.2 Intra-subject Registration

Generation of the deformation model requires estimation of numerous non-linear
diffeomorphic transformations between different stages of organs motion. Since
the transformations ϕk

0m have already been established, the intra-patient defor-
mations are calculated for the images Jk

l = Ikl (ϕ
k
0m) in the common patient
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Fig. 1. Results of performing the log-domain implicit group-wise registration for the
MRI pelvic-area data set: (top left) average of the input data; (bottom left) IV before
registration; (top right) average of the input data after performing registration; (bottom
right) IV after registration

space. To assure symmetry of the registration with respect to the input images
and impose the inverse consistency criterion, the consistent intensity-based al-
gorithm previously proposed in [19] is used. This approach implements a fast
and efficient Demon method, that minimizes the energy:

ε(vk
0l) = Sim(Jk

0 , J
k
l (exp(v0l))) + Sim(Jk

l , J
k
0 (exp(−v0l))) + αReg(v0l) (2)

The main advantage of using this method of registration is that the output
velocity field v0l minimizing energy ε (Equation 2) can be directly used for a
log-domain calculation of deformation statistics without explicitly computing
the logarithm of the displacement field, which is time consuming [2,3]. How-
ever, different methods of registration can be used instead as long as they
permit vectorial statistics to be calculated and the invertibility constraint is
preserved [2].

2.3 Shape Representation

To evaluate the proposed surrogate-based image deformation prediction method-
ology, segmentation of an n-dimensional image Jk

l has to be performed to
produce a binary image Sk

l : Ω ⊂ R
n → {0, 1} representing the organ of in-

terest. Segmentation for organs such as bladder or rectum is a relatively simple
task when compared to prostate segmentation. Such segmentation can often be
achieved using one of the previously proposed automatic or semi-automatic seg-
mentation algorithms [21]. The sign distance function φk

l (x) that is chosen here
as a shape descriptor, is defined as the minimum Euclidean distance from a given
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voxel position x = [x1, ..., xn] ∈ Ω to the shape’s boundary Sk
l , multiplied by 1

or -1 depending on which side of the boundary x is located. The positive or neg-
ative distance is assigned to all voxels inside or outside Sk

l respectively, whereas
for all voxels on the shape boundary the distance function has value zero. An
efficient algorithm, with linear computation time, for exact Euclidean Distance
(ED) calculation for arbitrary dimensional binary image was proposed in [10].

2.4 Training Process

During the training process, the motion model, linking observed shape changes of
the bladder/rectum and corresponding deformation field variations of the pelvic
region, is estimated using data sets of implicit shapes and matched velocity fields.
First, note that due to the high dimensionality of the velocity field and adopted
shape representation, a direct estimation of the motion model is computationally
prohibitive. A commonly used technique for reducing dimensionality of data is
PCA [20,9,8]. In our case, it allows the extraction of the major modes of varia-
tion for shape and velocity fields. For each registered image Jp (p = 1, . . . , P ),
where P is the number of volumes in the database, different from the reference
volume P = K · (L− 1)) the corresponding velocity field and implicit shapes are
formed as vectors. After carrying out PCA using all Vp, the velocity field can be
approximated as:

Vp � μV +

EV∑
i=1

γpiwi = μV + ΓpWV (3)

where μV is the sample mean velocity field, wi is ith eigenvector, γpi are coeffi-
cients, WV is the matrix of eigenvectors and Γp is the vector of coefficients with
EV representing the number of the major velocity field eigenmodes observed in
the training data set. Similarly, for the implicit shape representation:

Φp � μΦ +

EΦ∑
i=1

θpizi = μΦ +ΘpZΦ (4)

where μΦ is the sample mean implicit shape, zi is ith eigenvector, θpi are coeffi-
cients, ZΦ is the matrix of eigenvectors and Θt is the vector of coefficients with
EΦ representing the number of the major implicit shape eigenmodes present in
the training data set. The sign distance functions do not form a vector space and
although it is possible to ”vectorise” this representation by using so called Log-
Odds maps [13] in the proposed algorithm no operations are preformed in that
space, since the θpi coefficients are only used in regression model to predict veloc-
ity field. Additionally it was shown in [18] that this theoretical inconsistency does
not affect significantly the performance of this shape representation in practice.
The motion model M , linking observed organ deformations with the correspond-
ing velocity fields is built via multivariate linear regression between coefficients

matrixes Γ =
[
Γ T
0 , . . . , Γ T

p , . . . , Γ T
P

]T
and Θ =

[
ΘT

0 , . . . , Θ
T
p , . . . , Θ

T
P

]T
:

M = (ΘTΘ + ρD)−1ΘTΓ (5)
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Fig. 2. Training process and deformation field prediction using the implicit shape-based
dense deformation field estimation model for prostate

where ρ denotes a regularisation parameter for the prediction model and D is
an identity matrix [16].

2.5 Dense Deformation Field Prediction

Once the modelM is learned, it can be utilized in practice both on the images for
patients already included in the model and for images of new patients. In both
cases, a new image has to be first mapped to the common patient space and then
segmented to obtain its shape descriptor. Then, the implicit representation of any
new shape Φnew can be directly projected onto the shape eigenvector space ZΦ

to get shape coefficients Θnew . Subsequently, corresponding velocity coefficients
Γnew can be calculated using the estimated motion model: Γnew = ΘnewM .
Then, under the Baker-Campbell-Hausdorff formula for the composition of the
diffeomorphic deformations [3], the predicted diffeomorphic deformation field
unew can be approximated by exponentiation of the sum of the velocity fields
eigenvectors:

unew = exp(μV + ΓnewWV ) (6)

The computational burden of this training scheme is highly time-consuming,
mostly due to multiple registration of volumes, but it is performed only once
during the learning of the motion model M . However, the model evaluation
is fast as it involves only the calculation of implicit shape descriptors, matrix
multiplication and calculation of the exponential map. The scheme presenting
the proposed model training framework and the corresponding model evaluation
process is shown in Fig. 2.
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Table 1. Errors of estimation deformation fields obtained using different shape rep-
resentations: (PDM perf.) - PDM with ground truth correspondence; (PDM norm.) -
PDM with Gaussian noise μ = 0.0, σ = 1.0 representing typical measurement error;
(PDM g1.) - PDM norm. with gross error ς = 5%, τ 20

10 ; (PDM g2.) - PDM norm. with
gross error ς = 5%, τ 40

20 ; (PDM g3.) - PDM norm. with gross error ς = 1%, τ 40
20 . All

results are given in mm.

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5
avg max avg max avg max avg max avg max avg ± std

PDM perf. 0.23 3.61 0.25 3.90 0.21 3.36 0.18 2.75 0.18 2.7 0.21 ± 0.12
PDM norm. 0.47 4.94 0.52 6.63 0.49 4.82 0.44 4.46 0.44 3.83 0.47 ± 0.11
PDM g1. 0.79 8.77 0.72 7.26 0.76 12.04 0.60 6.52 0.65 6.26 0.70 ± 0.22
PDM g2. 1.19 17.59 1.24 13.11 1.14 12.18 1.07 16.45 1.06 10.16 1.14 ± 0.34
PDM g3. 0.63 6.08 0.59 7.22 0.64 10.17 0.54 5.81 0.67 7.71 0.61 ± 0.22
implicit 0.31 5.36 0.36 4.14 0.30 5.34 0.25 3.42 0.28 4.13 0.30 ± 0.14

3 Experimental Results

The simulated data set consists of 50 volumes of size 320x240x30, which were
warped by known (ground truth) deformation fields. The known velocity fields
were generated from a random zero-mean Gaussian velocity process defined on
selected knots of a sparse 3D regular grid of size 30x20x15, which were heavily
smoothed by a low-pass filter. The selected knots were chosen in the area close
to the bladder. Then, velocity fields were interpolated to a finer grid with cubic
splines before being scaled and exponentiated to get a wide range of diffeomor-
phic deformation fields [3]. The resultant data set was divided into two parts.
The first set with 40 volumes was used for initializing the motion model, whereas
10 remaining volumes were used for model evaluation. The experiments were re-
peated 5 times, each time for a different, randomly selected training data set.
For all the tests, a segmented bladder was used as a surrogate, represented either
by the signed distance function for the method proposed in this paper or by 167
points uniformly distributed on the bladder surface for the PDM approach. To
model the occurrence of incorrect point-to-point correspondences, gross errors
were introduced to the PDM representation during the methodological valida-
tion. The implemented gross errors are characterized by: ς -representing expected
percentage of points affected by the gross errors and, τmax

min - encoding the mini-
mum (min) and maximum (max) magnitude of the gross errors, with the actual
simulated error magnitudes selected randomly from a uniform distribution. In
all cases the points were selected on the bladder surface.

The results shown in Tab. 1 indicate that the implicit shape representation
performs in a similar manner to PDM without gross errors. PDM accuracy dete-
riorates quite quickly with even small levels of gross errors (with only one or two
points affected out of 167 used for shape representation) thereby showing that
the estimated deformation field is no longer reliable. As might be anticipated
the estimation error gets bigger with the increasing magnitude of gross errors τ
or when more points are affected by it (for larger ς).
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Table 2. Errors of estimation deformation fields and prostate positions

Trial 1 Trial 2 Trial 3 Trial 4 Trial 5 Trial 1-5
avg ± std (mm)

Deformation
characteristics 7.40±3.39 4.07±0.84 8.61±3.03 5.94±2.42 3.57±1.39 5.92±2.14
Error of
prediction 2.45±1.16 1.45±0.15 2.71±0.98 2.05±0.78 1.25±0.41 1.98±0.62

For the second part of the experiments, real MRI data were used. The data
set consisted of 25 scans obtained from 5 subjects. For each subject the images
were collected in equal intervals over 40 minutes in order to capture signifi-
cant changes of bladder/rectum shape. Then the images were normalized to the
spatial resolution of 1.0x1.0x3.0mm and the anatomical structures used in ex-
periments were manually annotated. For each experiment, four sets were chosen
as training data, the remaining one as test data. The experiments were repeated
5 times, every time with a different set selected as test data. In order to get
quantitative results and to estimate ground truth deformation fields, the reg-
istration was independently performed between corresponding pairs of images
that were then used to compare with those estimated using the prediction sys-
tem. The overall robustness in terms of the accuracy with respect to the ground
truth deformation fields is summarized in the 2nd row of Tab. 2 whereas the
1st row characterizes the ground truth data. Based on these results, it can be
concluded that the proposed method is able to estimate dense deformation field
with errors less than 2.0±0.62mm. Fig. 3 (left) shows the mean image with
segmented bladder, prostate and rectum whereas Fig. 3 (middle) shows a new
image with the actual position of the three organs alongside the superimposed
position of the prostate from the mean image. The new position of the prostate
from the mean image is estimated by warping the segmented mean image with
the displacement field calculated based on the learned model and the measured
shape of the bladder and rectum in the new image. The result shown in Fig.
3(right) demonstrates that the proposed method, in this case, was able to esti-
mate correctly the actual position of the prostate in the new data. Additionally,
the computational cost is significantly reduced when compared with the classical
registration. The average time of prediction when the motion model is already
trained is about 1s while the registration takes about 180s.

4 Conclusion

The paper describes a novel technique for model-based image dense deforma-
tion field estimation with an implicit surface representation, with initial results
suggesting this may be used as an effective and robust deformation descriptor.
The proposed framework uses a motion model estimated from a training data
set of shapes and corresponding displacement fields parameterized via station-
ary velocity fields estimated using a fast and efficient diffeomorphic registration
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Fig. 3. (Left) mean image used during training with delineated bladder (magenta),
rectum (green) and prostate (yellow). (Middle) Image, not used during model training,
with delineated bladder, rectum and (ground truth) prostate in cyan. (Right) Image
with the position of the prostate estimated using the proposed method (yellow).

scheme, formulated in the log-Euclidean framework. Additionally, it has been
demonstrated that with the help of the proposed method, it may well be possi-
ble to predict the dense displacement field solely from the measured deformations
of the implicit surface. Experiments conducted with the real data show that it
is possible to predict the real-world deformation field, which suggests that the
position of the prostate might be inferred from shape deformations of the blad-
der/rectum, which lie immediately superior and posterior respectively. Here we
note that the relatively solid prostate surrounds the urethra as it emerges from
the base of the bladder. Furthermore, prostatic motion is limited by lateral lig-
aments, which largely constrain its motion to lie in the anterior-posterior plane.
Hence, bladder and rectal deformations due to filling are the primary drivers of
prostate displacement. The seminal vesicles attached to the prostate gland are
more challenging, due to their small size and deformable nature. Nevertheless, as
it is relatively easier to segment bladder, somewhat less so the rectum, compared
to the prostate from the X-ray cone beam CT scans now commonly deployed for
image guided radiation therapy, it can be concluded that the proposed method-
ology can be potentially useful for adaptive radiation therapy of prostate. Thus,
further investigation will be centered on combining the motion model built from
pre-radiotherapy MRI data with shape descriptors extracted from radiotherapy
imaging. Furthermore, it is worth noting, that a new generation of radiotherapy
machines is being developed to provide in-room 3D live MRI concurrently with
therapeutic radiation [7].
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Abstract. Interventional non-invasive MR-guided techniques for treat-
ment of liver tumors, such as HIFU, could benefit greatly from automatic
cartilage detection. In this paper, segmentation of the cartilage in the rib
cage is performed in 3D MR images. This is a challenging task, due to
the poor contrast between cartilage and muscle, and the non-uniform
intensity of the cartilage.

Our segmentation algorithm is based on feature selection by analyzing
orientation and vesselness, automatic sternum localization using anatom-
ical knowledge, skeletonization and ridge finding, and level set evolution.

We show that our algorithm is capable of detecting all visible carti-
lage structures in the scans. Gaps and false positives may occur, due to
lack of contrast or the presence of non-cartilage structures with similar
features. However, the segmentation is accurate, even for regions with
low contrast, with an average error of the boundary of 1.1 mm.

Keywords: Cartilage segmentation, rib cage, MRI.

1 Introduction

Cartilage segmentation of the rib cage in MRI is a relatively unexplored topic,
since it has never served a purpose. Nowadays, new techniques for treatment of
tumors in abdominal organs are in development, that require automatic moni-
toring of the treatment. MR-guided HIFU (High Intensity Focused Ultrasound)
is an example of such a technique. An ultrasound transducer is used to create
a heating focus at a tumor, such that the tumor tissue coagulates. The temper-
ature is monitored by MR-thermometry. To use this technique for ablation of
tumors in the liver, the ultrasound beam needs to propagate through the inter-
costal space, to prevent painful heating of the ribs. Therefore, the location of
the ribs should be known during treatment. Since the liver is partially covered
by the cartilage of the rib cage, automatic cartilage segmentation in MR images
is required.

The rib cage consists of bone and cartilage. The first seven ribs are attached
to the sternum by the costal cartilage. The 8th, 9th, and 10th ribs join with the
costal cartilage of the 7th rib. The floating ribs are not attached to the costal
cartilage.

H.Yoshida,D.Hawkes,M.W.Vannier (Eds.):Abdominal Imaging2012, LNCS7601, pp. 229–237, 2012.
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MRI-scans can depict the costal cartilage to a certain extent, however, the in-
tensity values are fairly inhomogeneous and in addition, low contrast complicates
the detection.

There are no methods in literature yet which describe costal cartilage seg-
mentation. However, several segmentation schemes exist for cartilage in the knee.
Since the intensity of cartilage in MRI is non-uniform, intensity-based approaches
will not solve the problem. Knee cartilage segmentation methods often include
prior knowledge [1], classifiers [2,3] or a graph optimization framework [4].

Rib cage segmentation is often done on CT images, where model-based ap-
proaches or classifiers are used frequently [5,6,7].

In this paper, a fully automatic costal cartilage segmentation scheme is de-
veloped and evaluated.

2 Materials and Methods

2.1 Data

Since HIFU treatment of the liver is not yet applied in the clinic, there are no
clinical data available which depict the costal cartilage on MRI. Therefore, MR
images of the cartilage were obtained on four volunteers. However, there will be
no anatomical differences with patients, since the pathology will be in the liver,
and not in the cartilage.

In accordance with local regulations in the hospital, the volunteers were
screened for contraindications and informed about possible risks.

For each volunteer, a 3D T1-weighted gradient echo coronal fat-suppressed
MRI scan was acquired (Philips Achieva, TE/TR 1.940/4.017 ms, flip angle 10◦,
in-plane resolution 1.302 x 1.302 mm2 or 1.372 x 1.372 mm2, slice thickness 1.5
mm). The scan consisted of 67 slices, such that only the anterior part of the
body was contained in the field of view. The volunteers were placed in prone
position, to simulate HIFU-treatment. The images were acquired during normal
breathing.

For validation, a sagittal scan was acquired for two volunteers using the same
sequence as mentioned above. This scan consisted of 50 slices and was angulated
in a way that the profile of the cartilage close to the liver is clearly visible, such
that the accuracy of the segmentation boundaries can be evaluated on it.

2.2 Methods

For all images, a volume of interest containing the body is created by histogram
analysis, thresholding and morphology.

The cartilage segmentation pipeline consists of five main steps: analyzing ves-
selness and orientation, sternum localization, preliminary segmentation of all
structures connected to the sternum, skeletonization and ridge finding, and final
segmentation by conditional growing using level sets. Below, each step will be
explained in detail.
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Vesselness and Orientation. One of the main features of the costal cartilage
structures is their vessel-like shape. Therefore, as a first step, 3D vesselness
is calculated on the image using the vesselness filter as proposed in [8]. The
parameter σ, which indicates the scale, is varied from 3 to 7 mm in steps of 0.5
mm. After normalization, the vesselness image is thresholded at 5% to obtain a
binary volume containing vessel-like structures. Fig. 1(a) and Fig. 1(b) show the
original volume and the binary vesselness volume.

For each component of this binary vesselness volume, the orientation of every
voxel is determined in-plane. Then every slice of each component is labeled with
the orientation that occurs most often. This slice-by-slice approach makes it
possible to disconnect structures that have a different in-plane orientation, such
that cartilage structures will be separated from vessel-like structures in the liver
and the intestines.

Finding a Point in the Sternum. The next step is to find a point (xs, ys, zs)
in the sternum from which the cartilage structures can be located. Since the
sternum is not visible on MRI, it is located by inspecting the candidate cartilage
structures.

Let (x, y, z) span a coordinate system such that z runs in the AP-direction.
The coronal slice that contains the highest number of cartilage voxels is found,
by looking for the slice z = zs that contains the largest translational symmetry
in CC-direction. The slice of the binary volume defined by zs will be referred to
as Szs .

The coordinate xs is the center of the body in RL-direction.
Finally, the coordinate ys must define a point on the CC-axis, such that the

cartilage structures can be grown from there. We search for the point to which
all cartilage structures are oriented. This point will have a large radial symmetry
in Szs . Then ys will be given by the lowest y-coordinate for which a maximal
radial symmetry occurs on the line x = xs, as shown in Fig. 1(d). The radial
symmetry transform was implemented as in [9].

In practice, the exact location of the sternum point will not influence the final
segmentation as long as it is not too close to another point with large radial
symmetry. An offset of 5 voxels still yields similar results.

Preliminary Segmentation. Next, a volume of interest needs to be created
around the sternum point (xs, ys, zs), containing as many cartilage structures as
possible. This volume is grown in the y-direction based on Szs as shown in Fig.
1(e), and is extended in 3D by duplicating it in the surrounding slices. Since the
extent of the cartilage structures increases when moving downwards, the volume
grows wider every step. The growing stops when the amount of structure found
for a larger value of y is below a threshold of 20 voxels. Since the superior part
of the cartilage is located more posteriorly, the resulting volume is tilted around
the x-axis, to look for the angle at which a maximum overlap with the binary
vesselness volume occurs. All connected structures touching this tilted volume
are contained in the preliminary segmentation, as shown in Fig. 1(f).
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(a) (b) (c)

(d) (e)

(f) (g)

(h) (i)

Fig. 1. The different steps of the segmentation pipeline. a) The original volume at
slice zs. b) The slice Szs is the slice in the thresholded vesselness volume that contains
most cartilage structures. c) The symmetry overlap is maximal in this slice. d) The
coordinate ys is given by the first maximum of radial symmetry on the line x = xs.
e) The volume of interest is grown from the sternum point on Szs . f) All connected
structures that touch the tilted volume of interest are contained in the preliminary
segmentation (3D view). g) The preliminary segmenation is skeletonized (3D view).
h) After removing vertical structures and growing line segments together, all cartilage
structures are presented by a line element (3D view). i) The final segmentation from
the line elements by fast marching level sets (3D view).
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Skeletonization and Ridgeness. Ridges are located on the vesselness output,
by searching for local ridgeness as in [5]. The preliminary segmentation is skele-
tonized (Fig. 1(g)). This yields several line structures, some of which belong to
the same rib. To be able to grow these segments together, for every voxel in the
skeleton, a local neighborhood is investigated to look for ridge voxels that likely
belong to the same structure. For seed voxels xs and candidate ridge voxels xc,
with orientations (defined as the unit vector parallel to the ridge) represented
by vs and vc, respectively, the following criteria are used, as in [5]:

1. A candidate voxel should be close to the seed voxel: ‖xc − xs‖ ≤ εc.

2. A candidate voxel should have a similar orientation to that of the seed voxel:
‖vc · vs‖ ≥ ε0.

3. A candidate voxel should not be on a parallel ridge. Therefore, the vector
pointing from the seed voxel to the candidate voxel should have a direction
similar to the orientation of the candidate voxel: ‖(xc − xs) · vc‖ ≥ εp.

The thresholds εc, ε0 and εp were set to 10, 0.9 and 0.8, respectively.

Level Set Evolution. At this point, all visible cartilage structures in the im-
age will be represented by a line element (Fig. 1(h)). As a final step, level set
evolution is performed to yield a full segmentation. For this purpose, the ITK
fast marching level set filter is used to dilate the line elements, and finally the
ITK Laplacian segmentation level set filter is used to refine the output.

The fast marching level set filter requires two inputs: a set of seed points and
a speed function. The seed points are given by the line elements. The speed
function is calculated over the anisotropically diffused vesselness output, to pre-
vent leaking to the liver, which has a similar intensity to cartilage. The speed
function is obtained by calculating a sigmoid function over all voxels:

f(u) =
1

1 + e−
u−β
α

, (1)

where u is the voxel intensity value and α and β are segmentation parameters.
The values of α and β influence the correctness of the speed function. Since we
want the speed function to have value 1 inside cartilage structures and 0 on the
edges, β should be larger than the value at the edges, and smaller than the value
inside. The parameter β is set to 0.2, since this is the average value between
the minimum and maximum vesselness output for all images. The parameter
α determines the speed at which the function approaches its asymptotes. This
value should be small to yield a steep descent in the speed function. We found
that α = β/5 = 0.04 works fine for all cases. The number of iterations was set
to 300, which yielded fine results for all cases.

The output of the fast marching level sets serves as an input to the Laplacian
segmentation level set filter. Now the anisotropically diffused original image is
used as a speed image, on which speed is calculated by Laplacian filtering. This
way, the segmentation is allowed to grow towards the cartilage boundaries that
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have a low vesselness output. To make sure that it reaches the boundaries, the
number of iterations was set to 1000.

The Laplacian level set algorithm yields a final segmentation (Fig. 1(i)).

3 Results

The results are evaluated mainly by visual inspection for completeness and accu-
racy. For two volunteers, an additional evaluation scan was acquired at a known
location, on which the segmentation is overlaid, to measure the boundary error.

The results show that the algorithm was able to detect all cartilage structures
that are attached to the sternum and contained in the scan. For the first and
fourth volunteer, the first cartilage structure, which is close to the clavicle, was
not contained in the field of view and therefore these segmentations counted six
structures attached to the sternum, instead of seven. In most scans not all of
the 8th, 9th and 10th cartilage structures were visible, either due to low contrast
or their position outside the field of view. The structures that were visible were
detected. More structures of the lower rib cartilage were visible on the right side
near the liver, which is also our main interest.

(a) (b)

(c) (d)

Fig. 2. 3D renderings of the cartilage segmentation for all four volunteers

Results are shown in Fig. 2 and Fig. 3. The 3D rendering is shown for all
volunteers. In addition, one slice is taken from every scan, on which the segmen-
tation contours are overlaid, to illustrate the correctness of the segmentation by
visual inspection.
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(a) (b)

(c) (d)

(e) (f) (g)

(h)

Fig. 3. The evaluation slices for each volunteer (a-d). On these slices, the segmentation
contours are overlaid for visual inspection (e-h).
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On the third scan, shown in Fig. 3(g), the cartilage of the 6th and 7th left
ribs has not been segmented fully. The same holds for the 7th ribs in the second
scan (Fig. 3(f)) and the fourth scan (Fig. 3(h)). The vesselness was too low at
these locations, due to low contrast. The gaps were too large to be filled by ridge
finding, due to the size of the neighborhood used. The size of the neighborhood
is limited, since a larger neighborhood will induce more false positives.

In general, the segmentation was accurate. Gaps or false positives may occur,
but the algorithm was able to segment almost the entire costal cartilage.

For the third and fourth volunteer, an evaluation scan was acquired at a known
location in the body, such that the boundary error of the segmentation can be
measured objectively. This scan was angulated such that it is orthogonal to the
cartilage that covers the liver, showing the profile of these structures. This way,
it is possible to measure the diameter of the structures accurately. The segmen-
tation is overlaid on this scan to evaluate the boundary accuracy, as shown in
Fig. 4(a) and Fig. 4(b). The boundaries were segmented manually to serve as a
reference standard. The boundary error was measured in AP- and CC-direction
on four different ribs, at two locations in each rib, by measuring the distance in
voxels from the segmentation boundary to the real cartilage boundary in these
directions. The cartilage was oversegmented at some locations, but never under-
segmented. For use in the clinic, an undersegmentation could cause the HIFU
beam to hit the rib cage. However, an oversegmentation provides an additional
safety margin and is in that sense not a problem. The mean boundary error
was 1 voxel (resulting in an error of 1.37 mm) in AP-direction and 0.6 voxels
(0.82 mm) in CC-direction. The highest outlier was an oversegmentation of 2.5
voxels (3.43 mm). At three locations in both volunteers, the error was 0 mm.
The average boundary error was 1.1 mm.

(a) (b)

Fig. 4. Evaluation of the boundary accuracy, with contours representing the inside of
the segmentation boundary

4 Conclusion

An automatic segmentation algorithm was developed to segment the cartilage
structures of the rib cage in MR images. The segmentation scheme is based on
analysis of shape and orientation, sternum localization, skeletonization and ridge
finding and level set evolution.
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The segmentation was evaluated by checking the completeness and the bound-
ary error of the cartilage structures. Since these are preliminary results, the
evaluation was done mainly by visual inspection of the contours. The method
produced accurate segmentations. The boundary error was evaluated quantita-
tively for two volunteers, yielding an average error of 1.1 mm.

All segmentations were complete, in the sense that all cartilage structures
visible in the MR scan were detected. Gaps may occur when the vesselness
output was too low, due to low contrast.

In conclusion, the presented algorithm shows promising results. It is able to
detect all visible cartilage structures in MR scans of the thorax. Future work will
be dedicated to generating results on a larger data set and providing a detailed
quantitative evaluation.
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Abstract. In this paper, a method for detecting gastric lymph nodes
from abdominal CT images is proposed. The positions of metastatic can-
cers and metastatic lymph nodes should be accurately estimated in order
to determine the optimal surgical plan for cancer removal. Ellipsoidal-
and spherical-shaped lymph nodes are observed in medical images. How-
ever, the detection target of previous lymph node detection methods was
only the spherical-shaped lymph nodes. We propose a method for detect-
ing both ellipsoidal- and spherical-shaped lymph nodes by using a multi-
shape and multi-scale ellipsoidal structure detection filter that detects
the lymph nodes from CT images. The size and the shape of a detection
target are specified by the parameters of the filter. The multi-shape and
multi-scale detection is performed by applying the filter multiple times
with different values for the parameters. Experimental results using 16
cases of CT images showed that the proposed method could detect 56.8%
of lymph nodes.

Keywords: CT image, CAD, gastric lymph node detection.

1 Introduction

Cancers develop in organs and can spread to other parts of the body. Cancer cells
at the originating site can move through the lymphatic system, the bloodstream,
and the abdominal cavity. These cells can then begin to grow in other parts of the
body. This process is called metastasis. Metastatic cancers may appear in many
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different parts of the body. If a primary cancer is found in diagnosis, physicians
need to identify the locations of metastatic cancers to completely cure a patient.
Lymph nodes become enlarged if they contain metastatic cancer. The positions
and the number of enlarged lymph nodes are examined to clarify the stage of the
cancer. Cancers and enlarged lymph nodes around the cancers are removed in
surgery to reduce the risk of the cancer recurring [1]. However, surgical removal
of excess tissue may decrease the quality of life of a patient. The positions of
metastatic cancers and metastatic lymph nodes should be accurately estimated
to determine the optimal surgical plan for removing cancer.

To develop a computer aided diagnosis and a surgical planning systems of
cancers, an automated detection method of lymph nodes from medical images is
required. High resolution 3D medical images such as 3D computed tomography
(CT) images are used for cancer diagnoses. Fig. 1 shows examples of lymph nodes
in CT images. CT value contrasts between the lymph nodes and the surrounding
regions are low. Additionally, organs which have similar CT values to the lymph
nodes are usually located close to the lymph nodes. These features make finding
the lymph nodes from CT images very difficult.

Methods for detecting lymph node from CT images have been proposed by sev-
eral research groups. A local intensity structure analysis based on the eigenvalues
of the Hessian matrix was used for detecting mediastinal lymph nodes [2] and ab-
dominal lymph nodes [3]. A template matching technique was used for detect-
ing abdominal lymph nodes [4]. Barbu et al. [5] proposed a machine learning and
MRF based detection method for axillary lymph nodes. Kitasaka et al. [6] used a
3D minimum directional difference filter to detect lymph nodes in abdominal CT
images. These methods detected spherical shaped regions as lymph node candi-
dates in images. The shape of the lymph node is ellipsoidal. The shape changes
to spherical if the lymph node enlarges. Thus, ellipsoidal- and spherical-shaped
lymph nodes are observed in CT images. However, the detection target of the pre-
vious methods was only the spherical-shaped lymph nodes.

In this paper, a method for detecting enlarged gastric lymph nodes from 3D ab-
dominal CT images is proposed. This method detects both ellipsoidal- and
spherical-shaped lymph nodes by using a multi-shape and multi-scale ellipsoidal
structure detection filter. The lymph nodes are observed as ellipsoidal- or spherical-
shaped regions, which have slightly higher CT values than the surrounding
regions. We developed the multi-shape and multi-scale ellipsoidal structure de-
tection filter on the basis of local intensity structure analysis in order to detect
such lymph nodes. The size and shape of a detection target are specified by the
parameters of the filter. Multi-shape and multi-scale detection is performed by
applying the filter multiple times with different values for the parameters.

2 Method

2.1 Overview

The proposed method consists of preprocessing, detection, and false positive
(FP) reduction processes. In the preprocessing step, we extract regions that
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Fig. 1. Examples of lymph nodes in CT images. The lymph nodes are indicated by
circles.

define which of the following processes are applied. The multi-shape and multi-
scale ellipsoidal structure detection filter is used in the detection process. Final
detection results are obtained after the FP reduction process.

2.2 Preprocessing

The input of the proposed method is a 3D contrasted abdominal CT image of a
patient who has gastric cancer. We apply a 3D Gaussian smoothing filter to the
CT image. The standard deviation of the Gaussian smoothing filter is 0.5 [mm].
The detection process is applied to the soft tissue of the body. We extract a soft
tissue region from the CT image by using a thresholding process. The soft tissue
region R is extracted as a set of voxels having CT values from -400 to 200 [H.U.]
in the CT image.

2.3 Detection Process

Enlarged lymph nodes have higher CT values than the surrounding voxels. The
shape of enlarged lymph nodes is similar to an ellipsoid or sphere. We detect
enlarged lymph nodes having such features by using the multi-shape and multi-
scale ellipsoidal structure detection filter.

We approximate the local CT value distribution with a quadratic polyno-
mial of three variables by fitting it to the neighborhood (cubic region whose
edge length is l [mm]) of each voxel in R. The surface fitting is performed by
minimizing the fitting error, which is defined as the squared difference of the
approximated and actual CT values. We obtain a Hessian matrix consisting of
second-order partial differential coefficients of the polynomial. Let the eigenval-
ues of the Hessian matrix be λ1, λ2, and λ3 (λ3 ≤ λ2 ≤ λ1) and their corre-
sponding eigenvectors be e1, e2, and e3. Eigenvalues λ1 and λ3 correspond to
eigenvectors e1 and e3, along which the second derivatives are maximum and
minimum. λ2 is a second derivative value of a direction orthogonal to eigenvec-
tors e1 and e3. When the distribution of local CT values around a target voxel
shows an ellipsoidal structure, the eigenvalues of the Hessian matrix show the
pattern λ3 < λ2 ≈ λ1 < 0. Fig. 2 shows profiles of eigenvalues calculated on
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Fig. 2. (a) An example of a lymph node. (b) Profiles of eigenvalues calculated at
each voxel on the red line shown in the figure (a). Eigenvalues in the lymph node are
shown near the center of the graph. The eigenvalues show the pattern in the ellipsoidal
structure (λ3 < λ2 ≈ λ1 < 0).

an actual CT image. We define the ellipsoidal structure detection filter, which
detects voxels in the ellipsoidal structure showing the condition of eigenvalues,
as

S(λ1, λ2, λ3) = |λ3|
(
1− 1

1− p

∣∣∣∣λ2

λ3
− p

∣∣∣∣)γ

ψ(λ1, λ2), (1)

where

ψ(λs, λt) =

{(
λs

λt

)γ
, if λt ≤ λs < 0,

0, otherwise.
(2)

Equation 2 was proposed by Sato et al. [7]. The parameter p defines the numerical
relation of λ2 and λ3 (0 ≤ p < 1). The absolute values of λ2 and λ3 represent the
magnitude of CT value changes along the long and short axes of the ellipsoidal
structure, respectively. The positional relationship of an ellipsoidal structure and
the eigenvectors is shown in Fig. 3. The parameter γ defines the sharpness of
selectivity for the ellipsoidal structure.

The structure of a detection target of the filter is changed according to the
parameter p. The filter detects ellipsoidal structures that have a shape similar to
a sheet structure if the parameter p is close to 0. The filter also detects ellipsoidal
structures that have a shape similar to a spherical structure if the parameter p
is close to 1. The scale of the detection target of the filter is specified by the
parameter l. The filter is applicable to detecting various shapes and scales of
detection targets by selecting the proper values of p and l.

We apply the ellipsoidal structure detection filter to each voxel in the region
R. We generate a detection result image Id (a grayscale image with background
voxels) that has output values of the filter on each voxel. Lymph node candidate
regions are extracted as a set of voxels whose values are greater than 0 in Id.
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e3

e1

e2

Fig. 3. Directions of the eigenvectors in a ellipsoidal structure. e1 and e2 correspond
to the long axis, and e3 corresponds to the short axis of the ellipsoidal structure.

We calculate the output values of the filter with different settings of parameters
p and l for a voxel in order to perform a multi-shape and multi-scale detection.
The maximum output value of the filter within the output values of the filter
calculated with different settings of the parameters is stored in the Id.

2.4 FP Reduction Process

To reduce FPs in the detection result stored in Id, we perform thresholding
processes based on voxel values, volumes, maximum voxel values, distances from
stomach regions, and contrasts of CT values between a candidate region and the
surrounding region.

All voxels whose intensity value is lower than t1 are removed. The rest of
the processes are region-based reduction processes. Small connected components
whose volume is lower than t2 [mm3] and connected components where the
maximum intensity value is lower than t3 are removed. Connected components
more than t4 [mm] away from the stomach region are removed. We extract the
stomach region manually. Automation of this extraction process is easy if the
inside of the stomach is filled with air. However, the stomach may contain fluid
or food, which causes automated extractions to fail. Therefore, we perform the
extraction manually.

The difference in average CT values between the lymph node candidate region
and the surrounding region is also used to remove FPs. We calculate the average
CT value a1 [H.U.] of voxels in a candidate region. A dilation filter, whose
structure element is a sphere 3.0 [mm] in radius, is applied to the candidate
region. We obtain the surrounding region of the candidate region by subtracting
the candidate region from the result of the dilation filter. The average CT value
of voxels in the surrounding region is described as a2 [H.U.]. The candidate
region is removed if the average CT values satisfy either conditions a1 − a2 < t5
or t6 < a1 − a2.

The remaining regions after these reduction processes are the final lymph
node candidate regions.
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Fig. 4. FROC curves with parameters: (a) (red curve) t1 = 0, . . . , 105, t2 = 0.0, t3 = 0,
and t4 = 200; (a) (blue curve) t1 = 26, t2 = 0.0, . . . , 34.0, t3 = 0, and t4 = 200; (b)
(green curve) t1 = 26, t2 = 1.6, t3 = 0, . . . , 130, and t4 = 200; and (b) (purple curve)
t1 = 26, t2 = 1.6, t3 = 30, and t4 = 20, . . . , 200.

3 Experiments

We applied the proposed method to 16 cases of contrasted 3D abdominal CT
images. All were stomach cancer cases. 88 lymph nodes were found by a medical
doctor in the CT images. The acquisition parameters of the CT images were
image size: 512×512 [pixels], number of slices: 359-584, pixel spacing: 0.625-
0.741 [mm], slice spacing: 0.500-0.800 [mm], slice thickness: 0.500-1.00 [mm],
tube voltage: 120 [kVp], and tube current: 150-450 [mAs]. We experimentally
determined the parameters of the method as l={4.0, 5.0, 6.0} [mm], p={0.7,
0.9}, and γ=1.

To determine the parameters of the FP reduction process, we generated FROC
curves by calculating the sensitivity and the FP number/case of various FP
reduction parameters. Fig. 4 (a) shows a FROC curve (red color) obtained by
setting the parameters as t1 = 0, . . . , 105, t2 = 0.0, t3 = 0, and t4 = 200. From
the FROC curve, sensitivity was 79.5% with 3739.9 FPs/case when t1 = 26.
Similarly, from the FROC curve shown in Fig. 4 (a) (blue color), sensitivity was
68.2% with 1401.1 FPs/case when t2 = 1.6 [mm3]. From the FROC curve shown
in Fig. 4 (b) (green color), sensitivity was 68.2% with 1398.3 FPs/case when
t3 = 30. From the FROC curve shown in Fig. 4 (b) (purple color), sensitivity was
62.5% with 558.6 FPs/case when t4 = 60 [mm]. t5 and t6 were also determined
from FROC curves as t5 = 50 and t6 = 110. In summary, the sensitivity of the
proposed method was 56.8% (50/88) with 262.3 FPs/case.

Examples of lymph nodes detected by the proposed method are shown in
Fig. 5.

4 Discussion

The proposed method detected lymph nodes from contrasted 3D abdominal CT
images. The ellipsoidal structure detection filter could detect the various shapes
and scales of the lymph nodes by setting various values to parameters p and
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Fig. 5. Detection results of the proposed method. The size of the detection target was
from 4.0 to 6.0 [mm]. The marked regions are detected regions. The regions indicated
by the circles are true positive regions.

l. The sensitivity of the abdominal lymph node detection method proposed by
Mori et al. [3] was 79.2% with 98 FPs/case, and that of the axillary lymph
node detection method proposed by Barbu et al. [5] was 82.3% with 1 FP/case.
However, the sizes of their detection targets were 5.0 [mm] or larger [3] and
10.0 [mm] or larger [5]. The size (scale) of our detection target was from 4.0
to 6.0 [mm]. Our method can detect very small lymph nodes in comparison to
the previous methods. The sensitivity of our method (56.8%) is close to that of
humans finding lymph nodes from CT images. Our method has the potential to
help in the diagnosis of metastatic cancers.

Some of the enlarged lymph nodes had ellipsoidal shapes. However, most of
the enlarged lymph nodes had spherical shapes in the CT images. We set the
values {0.7, 0.9} to the parameter p to detect spherically shaped lymph nodes.
The scale of the detection target was 4.0 to 6.0 [mm]. Though these parameters
were determined experimentally, they should be determined on the basis of the
actual shapes and scales of the lymph nodes. To obtain the optimal values of
parameters p and l, the statistical analysis of shapes and scales of lymph nodes
using a larger number of CT images is necessary.
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Although we performed the FP reduction process on the basis of the thresh-
olding processes of the output values of the filter and CT values, the detection
results still contained many FPs. To reduce FPs, it is necessary to introduce to
the FP reduction process new feature values such as the shape of a candidate
region and the positional relationship of candidate regions. Using the anatomical
information of the lymph nodes, such as the average position of the lymph node
and the positional relationships between the lymph nodes and other organs, in
the FP reduction process will be effective for further reducing FPs. Such anatom-
ical information based detection requires the statistical analysis of lymph nodes
and organ extractions.

5 Conclusion

In this paper, a method for detecting gastric lymph nodes from abdominal CT
images was proposed. We introduced a multi-shape and multi-scale ellipsoidal
structure detection filter that detects lymph nodes. The filter can detect the
various scales of ellipsoidal and spherical lymph nodes. Experimental results
using 16 cases of CT images showed that the proposed method can detect 56.8%
of lymph nodes. Future work includes the development of a FP reduction process
based on anatomical information, optimization of the parameters, and evaluation
of the method by using a larger number of images.
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Abstract. Accurate extraction of live tumors from CT data is important for 
disease management. In this study, an algorithm based on spectral clustering 
with out-of-sample extension is developed for the semi-automated delineation 
of liver tumors from 3D CT scans. In this method, spatial information is 
incorporated into a similarity metric together with low-level image features. A 
trick of out-of-sample extension is performed to reduce the computational 
burden in eigen-decomposition for a large matrix. Experimental results show 
that the developed method using multi-windowing feature obtained better 
results than using only the original data-depth and the support vector machine 
method, with a sensitivity of 0.77 and a Jaccard similarity measure of 0.70. 

Keywords: Spectral clustering, out-of-sample extension, CT, tumor delineation. 

1 Introduction 

Liver tumors include benign tumors, primary malignant tumors and liver metastases. 
Contrast-enhanced multi-detector computed tomography (MDCT) is widely used for 
the detection, diagnosis and management of liver tumor. Accurate delineation of liver 
tumor in 3D CT scans is important for tumor volume quantification, which is used for 
disease prognosis and assessment of treatment response. Manual tumor margin 
delineation is very tedious, especially for thin-section CT scans with a number of 
tumors in one patient. Some semi-automated methods, including region growing, 
watershed, level-set, hidden Markov measure filed, etc, have been developed to 
segment liver tumor from CT data [1-5]. The majority of these methods segment each 
tumor individually in 2D slices or 3D volumes, hence the efficiency is not high when 
processing scans with multiple lesions. It is desired to develop new techniques which 
are able to extract and delineate all possible livers tumor simultaneously from a 3D 
CT data volume. This will greatly assist clinicians in liver tumor diagnosis, treatment 
planning and follow-up management. 
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In general, for the standard 4-phase contrast-enhanced liver CT scan, images from 
the portal venous (PV) phase give the best visual discrimination for liver objects 
including liver parenchyma, liver vessels (hyperdense) and tumors (hypodense, if 
has). Hence it is interesting to explore clustering-based method to classify or group 
voxels into different tissue classes according to certain similarity criteria. The 
applications of spectral clustering approach [6, 7] in the segmentations of magnetic 
resonance and positron emission tomography images have been reported [8-10]. The 
main idea of spectral clustering is to find the principal eigenvectors and eigenvalues, 
i.e. the spectrum, of a large affinity matrix encoding the pairwise similarity of voxels 
and then to group these principal eigenvectors to achieve the graph partitioning. This 
equivalently accomplishes the grouping of voxels based on their pairwise similarity 
and the paths they form in the graph represented by the affinity matrix. 

To the best of our knowledge, there is no report on spectral clustering method for 
the segmentation of CT data. In this paper, we present a spectral clustering-based 
method to delineate liver tumors from CT volumes in PV phase at a semi-supervised 
manner, with the following three emphases. First, a pairwise similarity metric 
combining both spatial and low-level image features is proposed for the spectral 
clustering framework. Secondly, we incorporate out-of-sample extension [11] into 
spectral clustering, hence the main computational burden of eigen-decomposition of 
the affinity matrix can be avoided and the segmentation can be achieved at the 
original image resolution, leading to more accurately segmented regions. Thirdly, 
original CT data volume in 12-bit data depth is re-scaled by multi-windowing, to 
obtain a set of images with different contrasts as the low-level feature for clustering 
work. Our proposed method was tested by 12 MDCT data volumes and the results 
were quantitatively evaluated. 

2 Method 

2.1 Framework of Spectral Clustering 

Spectral clustering is often considered as an approximate solution to graph-cut 
problem that obtains data partitioning by cutting weak links between graph nodes to 
separate data into various segments. The framework of the algorithm is as follows [6]: 

Given a set of data points 
1{ , , }nS s s=   in Rd to be clustered into k subsets, 

(1) Form the affinity matrix defined by ( )2 2|| || / 2ij i jA exp s s σ= − −  if i j≠ , and 

0iiA = ; 

(2) Define D to be a diagonal matrix whose (i, i)-element is the sum of A’s i-th row, 
and construct the matrix 1 2 1 2L D AD− −= ; 

(3) Find 
1 2, , , kx x x , the k largest eigenvectors of L, and form the matrix 

[ ]1 2   n k
kX x x x R ×= ∈ , by stacking the eigenvectors in columns; 

(4) Renormalize each of X’s rows to have the unit length to form the matrix Y from X; 
(5) Treating each row of Y as a point in Rk, the rows in Y are clustered into k clusters 

via the K-means algorithm; 
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(6) Assign the original points is  to cluster j only if row i of the matrix Y was 

assigned to cluster j. 

In most of the cases, the affinity matrix is formed by the Euclidean distances between 
pairwise data points, scaled by 2σ2, to reflect the degree of similarity between 
pairwise data points in S. 

2.2 A Similarity Metric Combining Spatial and Low-Level Features 

Being independent of any assumption of a distributional model, the success of a 
spectral clustering method depends heavily on the choice of an appropriately selected 
metric that measures the pairwise similarity between data points. In this study, we 
construct a metric ( , )i jd s s  that reflects both the spatial and low-level features 

between two voxel 
is  and 

js  in a CT volume: 

( , ) ( , ) ( , ),i j i j i jd s s K s s G s s= ⋅  

( ) ( )2 22 2
1 2( , ) / 2 / 2 ,i j i j i jd s s exp p p exp q qα σ β σ= − − ⋅ − −  

( )2 22 2
1 2( , ) / 2 / 2 ,i j i j i jd s s exp p p q qα σ β σ= − − − −            (1) 

where 
1σ  and 

2σ  are scalars, 
ip  is the spatial location of voxel 

is , 
iq  is the 

feature vector based on low-level image features of 
is , α and β are weights fulfilling 

, [0,1]α β ∈  and 1α β+ = . Besides of the low-level image features, this metric 

considers the spatial constraints that tumor is generally a continuous mass in 3D 
space. Hence given similar low-level image features, two spatially nearby voxels will 
have more influence on the similarity measure than two voxels that are far apart. Here 
α and β are used to weight the influences from spatial and low-level image features. 

2.3 Out-of-Sample Extension 

The main computational burden in spectral clustering approach is the eigen-
decomposition of affinity matrix of size nn× , where n equals to the number of voxels 
in the volume data and the computation complexity is in the order of n3. If directly 
applying spectral clustering to group all the voxels in a CT volume, the dimension of the 
affinity matrix can be extremely high, causing computational problems in eigen-
decomposition. With out-of-sample extension method [11], we only need to find the 
spectral embedding of a subset of the data voxels from sample selection, while the 
remaining voxels will be mapped to the spectral space using a mapping function and 
clustered unsupervisedly therein. Hence, the main computational burden of eigen-
decomposition of the similarity matrix can be avoided and the data partitioning can be 
achieved at the original data resolution. In addition by this step, the unsupervised 
spectral clustering is converted to a semi-supervised procedure where sample selection 
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to form the training set is required. The framework of out-of-sample extension for 
spectral clustering is as follows: 

Assume that a set of labeled samples Tr was chosen from the CT volume. Spectral 
clustering described in section 2.1 was applied into Tr using the similarity metric 
defined in equation (1), and X and V are the matrices of eigenvector and eigenvalue 
obtained on Tr. For the remaining data points Te, a “mutual” affinity matrix ( , )D i j  

can be constructed by the similarity metric in equation (1) between pairwise Te and 
Tr, where ( , )D i j  is of m×l size, m and l are the number of data points in Te and Tr, 

respectively. ( , )D i j  can be normalized by 

'

( , )
( , ) .

( , ) ( , ')
x Tr x Tr

D i j
D i j

D i x D j x
∈ ∈

=
 

          (2) 

The spectral embedding for Te can be computed from 

1.mappedX D X V −= ⋅ ⋅                   (3) 

After obtaining 
mappedX , clustering algorithms such as K-means can be used to 

partition the data. Thus spectral clustering can be achieved by out-of-sample 
extension technique without eigen-decomposition of the very large affinity matrix. 

2.4 Rescale CT Data by Multi-windowing 

For CT data analysis, voxel density (indicated by Hounsfield Unit, HU) and its derivates 
are the most common low-level image features. The voxel density is of 12-bit integer in 
data depth, but for display and interpretation purposes, CT data are converted into 
images of 8-bit integer in data depth, with different window level and width settings 
(winow level, window width) to highlight different anatomic structures. For example, (-
600, 1600) is the standard lung window by which the lung structure, vessels and 
bronchus can be viewed clearly; (50, 350) is the standard abdominal window by which 
the organs/structures in abdominal region can be well visualized. To examine liver 
region, especially to detect liver lesions, a window width of 350 is still too wide so that 
some tumors may be overlooked due to the close image intensities shown in this 
window. In practice, radiologists often use a narrower window width to observe liver 
region. Here we adopt a customized ‘liver window’ [12] for CT data rescaling: Liver 
window has a window center equal to the density level of liver parenchyma (obtained 
by online sample selection) and a window width of 180. 

3 Implementation and Experiment 

Our proposed method was evaluated by using 12 MDCT data volumes (image size of 
512×512 pixels, slice thickness of 2-3 mm) acquired in PV phase. The reference 
standards (RS) of liver tumors were identified and manually traced out by an 
experienced abdominal radiologist. 
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Before using the developed method to delineate liver tumors, an anisotropic 
diffusion filter was applied to CT data to reduce CT image noise but still preserve the 
significant parts of the image content. Then a 3D flipping-free mesh deformation 
algorithm [10] was employed for the segmentation of the gross liver as the region-of-
interest (ROI). Within the segmented liver ROI, approximately 3 tissue classes exist: 
normal liver parenchyma, enhanced vessel and tumor, based on prior knowledge. For 
each data set, samples of each class (tumor, vessel and normal liver parenchyma) 
were obtained by mouse-pen selection, as shown in Fig. 1. Each 12-bit CT data 
volume was rescaled into 2 set of 8-bit images using standard abdominal window (50, 
350) and the customized ‘liver window’. The corresponding image intensities from 
the 2 sets of images form a concurrent feature vector (IAW, ILW) to be used as the low-
level image feature. In the implementation, both spatial and low-level image features 
were normalized into [0, 1]. In addition, α and β were set as 0.2 and 0.8, respectively. 
For comparison purpose, CT data were also tested by 1) the proposed method but 
using the original data depth, and 2) a binary support vector machine (SVM) method 
using multi-windowing feature. For the binary SVM method, tumor samples were 
used as the positive samples and vessel and liver parenchyma samples were combined 
together as the negative samples. 

 

The extracted lesions were compared with the RS by voxel overlapping on the 
basis of per data volume (not per tumor). Two quantitative measures, sensitivity 
(SEN) and Jaccard similarity measure (JSM) were calculated to assess the similarity 
between the computerized and manually defined liver tumors: 

( ) ,Alg RS RSSEN Vol Vol Vol=                          (4) 

( ) ( ) ,Alg RS Alg RSJSM Vol Vol Vol Vol=                   (5) 

where 
AlgVol  is the tumor volume delineated by the algorithm and 

RSVol  is the RS. 

Compared to SEN, JSM considers the impact of false positives on the overall 
performance of the methods. 

Fig. 1. (a)-(c) Sample selection was performed on 3 slices from different sections, red for 
normal liver parenchyma, green for lesion, blue for vessel; (d) the sections of the 3 slices in 
the coronal view, (a) to (c) is from top to bottom.  

a b a c d
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4 Results 

Tumor delineation was tested on 12 CT data volumes using the proposed method and 
the SVM method. Fig. 2 shows 3 CT slices in two different windows and the 
corresponding results after spectral clustering using multi-window feature and  
the original data depth. Fig. 3 shows 3 examples of tumor delineation results using the 
developed method (with/without multi-windowing feature) and the SVM method. 
Compared with the other two methods, the developed method with multi-windowing 
feature is more sensitive in capturing small and peripheral lesions which are with 
weak image appearance and features, as marked by yellow circles in Fig. 3. In fact, 
some tiny vessel branches with weak image appearance are also identified by the 
proposed method. On the contrary they are classified as the liver parenchyma, the 
class with the majority of elements, by the other methods. One needs to pay attention 
that in some cases, due to the timing in the acquisition of PV phase images, part of the 
inferior vena cava (IVC) embedded in the liver is not well enhanced, therefore this 
part tends to be classified into tumor class by these methods, as shown in the bottom 
row of Fig. 3. All the three methods misclassified the un-enhanced IVC, which is 
 

 
 
 

Fig. 2. Three CT slices in abdominal window (I), liver window (II), and the corresponding 
results after spectral clustering using multi-windowing feature (III) and the original data-
depth (IV); red: liver parenchyma; green: tumor, blue: vessel 

( I ) ( II ) ( III ) ( IV ) 
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Table 1. Results of the evaluation metrics expressed as SEB, and JSM 

Data No. 
Proposed method 

with multi-windowing 
Proposed method 

with 12-bit data depth 
SVM method 

SEN JSM SEN JSM SEN JSM 

1 0.77 0.72 0.80 0.75 0.76 0.72 

2 0.62 0.56 0.61 0.56 0.60 0.58 

3 0.71 0.61 0.62 0.59 0.70 0.64 

4 0.76 0.67 0.57 0.55 0.61 0.55 

5 0.79 0.67 0.75 0.68 0.73 0.71 

6 0.68 0.63 0.67 0.62 0.68 0.64 

7 0.84 0.76 0.73 0.70 0.71 0.70 

8 0.74 0.70 0.69 0.59 0.71 0.63 

9 0.86 0.83 0.78 0.75 0.82 0.70 

10 0.80 0.77 0.71 0.65 0.73 0.69 

11 0.78 0.74 0.72 0.69 0.69 0.66 

12 0.83 0.79 0.80 0.76 0.82 0.75 

Mean±SD 0.77±0.07 0.70±0.08 0.70±0.08 0.66±0.08 0.71±0.07 0.66±0.06 

 

marked by the green arrow in (I), into the tumor class, as marked by green circles. 
The mean values of SEN and JSM obtained by the developed method with multi-
windowing feature are 0.77 and 0.70, respectively, whereas they are 0.70 and 0.66 for 
the proposed method without multi-windowing feature, and 071 and 0.66 for the 
SVM method, as shown in Table 1. These figures indicate that the proposed method 
outperform the other two methods moderately. 

5 Conclusion 

In this paper, a semi-supervised spectral clustering algorithm with out-of-sample 
extension is proposed for the delineation of liver tumors from 3D CT data. In this 
method, a metric combining both spatial information and low-level image features 
was constructed to encode the pairwise similarity of each data point. A trick of out-of-
extension was employed for the reduction of computation burden in matrix eigen-
decomposition. In addition, CT data was rescaled into different contrasts by multi-
windowing to form the low-level image feature for better discrimiantion. Experiments 
were conducted on 12 CT scans and the results suggested that the proposed method 
with multi-windowing feature performed modestly better than the same method 
without multi-windowing feature and the SVM method. The improvement is mainly 
in the increase of detection sensitivity for small and peripheral lesions. 
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Abstract. An effective method for quantitatively evaluating rigid and non-rigid 
image registration without any manual assessment is proposed. This evaluation 
method is based on feature point detection in reference images and correspond-
ing point localization in registered floating images. For feature point detection, 
a 3D SIFT keypoint detector is applied to determine evaluation reference points 
in liver vessel regions of reference images. For corresponding point 
localization, a 3D phase-only correlation approach is applied to match reference 
points and their corresponding points. Distance between the reference points 
and the correspondences can be used to estimate image registration errors. With 
the proposed method, users can evaluate different registration algorithms using 
their own image data automatically. 

Keywords: Image registration, evaluation, feature point detection, correspond-
ing point localization. 

1 Introduction 

Image registration aims to find a spatial transformation that maps points from one 
image to corresponding points in another image. Medical image registration is 
fundamentally used in many applications, such as diagnosis, planning treatment, guid-
ing treatment, and monitoring disease progression. Thus, it is necessary to validate 
whether a rigid/non-rigid registration algorithm satisfies the needs of an image 
processing application with high accuracy, robustness, and other performance criteria. 

The most straightforward method for estimating image registration error is to com-
pare a given registration transformation with a “gold standard” transformation [1], 
whose accuracy is high. However, the lack of a gold standard prevents any automatic 
assessment of registration accuracy. Even if individuals trained to interpret medical 
images are involved in an experimental validation of registration algorithm, it is diffi-
cult to provide a method for consistently and accurately assessing individual images. 
As a result, few attempts have been made to evaluate and compare the performance of 
image registration algorithms. Even so, two projects that stand out in this regard are 
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the “Retrospective Image Registration and Evaluation (RIRE) Project” [2] (for 
evaluating rigid registration accuracy) and the “Non-rigid Image Registration Evalua-
tion Project (NIREP)” [3]. The RIRE project used bone-implanted fiducial markers to 
obtain a marker-based rigid transformation as the gold-standard transformation. 
Registration error was measured by calculating the error relative to the gold standard 
over a set of specified regions. In contrast, instead of providing a gold-standard 
transformation for accuracy evaluation, NIREP provided four metrics for evaluating 
the performance of non-rigid image registration. Both projects required manual 
annotation and segmentation to create evaluation databases, and the evaluation data 
only included brain images. 

In our previous work, for clinical applications such as computer-aided diagnosis 
and observation of treatment progress [7, 12], rigid and non-rigid image registration 
algorithms are developed. The present study aims to quantitatively evaluate the accu-
racy and robustness of these methods by using clinical data, especially abdominal CT 
images for diagnosis of hepatic tumor. Since we do not have any manually annotated 
image data as ground truth for this evaluation task, it is necessary to develop an auto-
matic method for evaluating the accuracy of the previously developed registration 
algorithms. To satisfy that necessity, the following method is proposed. In abdominal 
CT images, liver vessel regions of reference images are segmented, and feature points 
in the segmented regions are detected using a 3D SIFT (scale-invariant feature trans-
form) keypoint detector [4]. In floating images after registration, correspondences of 
the SIFT feature points are searched for and localized using a 3D phase-based image-
matching method [5, 13]. By calculating distance between the feature point pairs, it is 
possible to obtain a numerical-registration error without any manual assessment of the 
registration algorithm. A brief description of the proposed method is given in Section 
2, and the fiducial-point detection and the correspondence matching for evaluating 
registration accuracy are described in Sections 3 and 4, respectively. Results of 
experiments on medical image registration are presented in Section 5, and concluding 
remarks are given in Section 6. 

2 Proposed Method 

To quantitatively measure registration error, distance between landmarks or regions in 
reference images and their correspondences in floating images after registration 
should be accurately estimated. It is therefore necessary to develop an accuracy-
evaluation framework that mainly consists of two stages: fiducial point detection and 
corresponding point matching. The framework of the proposed method is illustrated 
in Fig. 1, and some data examples generated by different procedures for accuracy 
evaluation are shown in Fig. 2. 

As for landmark detection, to extract reference points, scale-space extrema detec-
tion, i.e., keypoint detection in 3D SIFT features [4], is adopted. Since anatomic land-
mark points of vessel regions are considered as appropriate reference points for 
evaluating the accuracy of medical image registration [6], liver vessel regions are 
segmented from our clinical data, and SIFT feature points are extracted from the  
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segmented regions as reference points. As shown in Fig. 1, the liver region is firstly 
segmented from the reference image with a previously developed graph-cuts-based 
method [7]. After that, the vessel region is segmented from the liver region. To detect 
appropriate feature points for evaluation, the region of interest includes not only liver 
vessels but also neighboring regions of the vessels. (Such regions are called “vessel 
regions” for convenience hereafter.) For such regions, high-accuracy segmentation of 
vessels is not required; instead, a smoothing and thresholding procedure can be used. 
To extract reference points from the vessel regions automatically, 3D SIFT keypoint 
detection, which detects local extrema from image pyramids consisting of differences 
in Gaussian-blurred images at multiple scales, is applied. 

After the SIFT feature point detection, instead of SIFT descriptor, a phase-based 
image-matching algorithm with high accuracy is applied to localize the 
correspondences. A Fourier transform (FT) of image blocks around the reference 
points and that of their candidate correspondences is computed, respectively. Phase 
components of the image-block pairs in the frequency domain are used to estimate 
locations of the correspondences. The image-block matching method can achieve high 
accuracy at the sub-voxel level [5]. Even under rotation, the matching method can 
give good performance by coarse-to-fine and iterative procedures. As a result, it is 
possible to measure a registration error by using the distance between the SIFT 
keypoints and their correspondences. Note that although the current implementation  
 

 

Fig. 1. Framework of evaluation of registration results 
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only focuses on feature point matching in liver-vessel regions, the proposed method 
can be extended to different types and modalities of images, since both the feature-
detection and image-matching algorithms can be applied to general image data. 

3 Feature Point Detection 

3.1 Vessel-Region Segmentation 

To detect fiducial points used in registration-accuracy evaluation, first, liver vessel 
regions are segmented from abdomen images. Thanks to our previous work on liver-
region segmentation [7], we assume that segmented liver region was available for this 
study. A Hessian-based 3D line filter [8] can be used to enhance tubular structures in 
the liver regions, and major vessels can be segmented by thresholding. However, as 
mentioned in Section 2, it is necessary to extract fiducial points by using a feature 
point detector, so the region of interest includes not only liver vessels but also 
neighboring regions of these vessels. A simple way to obtain such regions is to 
smooth the liver region and segment regions with threshold  determined by mean 

 and standard deviation  of the smoothed intensities as  , (1)

where  is empirically set as 1.0. Voxels whose intensity exceeds  are consi-
dered as the region of interest for feature point detection. 

 

 

 

Fig. 2. Examples of fiducial point matching results for registration evaluation 
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3.2   3D SIFT Feature Point Detection in Vessel Region 

To detect fiducial points in reference images, 3D SIFT feature point detector is ap-
plied to segmented vessel regions. SIFT feature points can be detected by using 
difference-of-Gaussian (DoG) images [9]. For a medical image, which is usually a 3D 
image, DoG images can be computed as follows [4]: , , , , , , , , , , (2)

where  is a constant multiplicative factor. , , ,  is an image , ,  that is 
smoothed with a variable-scale Gaussian filter , , , : 

, , , , , , , , 1√2 , , . (3)

Such DoG images are used for detecting local extrema at a pyramid level for a certain 
scale . For a voxel  in a DoG image with , the intensity of  is compared with 
those of its 80 neighboring voxels (26 neighboring points at the same , and 27 
counterparts at the scale of  and , respectively). The voxel with the most or 
least extreme value of intensity is considered as the feature point. Multi-scale search-
ing parameters are set as 1.00, 1.26, 1.58, 2.00, 2.52, 3.17, 4.00  and 2.0 / . Note that although the DoG images are computed with the whole image, the 
feature point detection is only performed in the vessel regions. 

4 Corresponding Point Localization 

To measure distance between the reference points and their correspondences, an im-
age-matching method based on a 3D phase-only correlation (POC) function is 
applied. The original POC function [10] is calculated with a 2D discrete Fourier 
transform (2D DFT) to estimate displacement between image blocks, and it is 
extended to a 3D implementation while maintaining good performance [5]. 

4.1 Image Matching Using 3D Phase-Only Correlation (3D POC) Function 

Given two  volumes, , ,  and , , , 3D DFT of the 
two volumes are , ,  and , , . Normalized cross spectrum , ,  is defined as 

, , , , , ,, , , , , , , , , (4)

where , ,  and , ,  are phase components of , ,  and , , ; , ,  denotes the complex conjugate of , , . The 
POC function ̂ , ,  between , ,  and , ,  is the 3D 
inverse DFT (3D IDFT) of , , , and is given by 
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̂ , , 1 , ,, , . (5)

If two volumes are similar, their POC function gives a distinct sharp peak. If not, the 
peak drops significantly. The height of the peak can be used as a good similarity 
measure for image matching, and the location of the peak shows the displacement 
between the two volumes. When the peak locates between image voxels, the sub-
voxel displacement can also be obtained by peak model fitting in good accuracy [10].  

In image matching using 3D POC, it is assumed that reference points and their 
correspondences are at the same voxels initially. Corresponding image blocks around 
the point-pairs are used to calculate the POC function and estimate displacements 
between the point-pairs. Moreover, image pyramids of reference and floating images are 
created, and the block matching is performed in a coarse-to-fine way. The matching 
procedure starts in the coarsest level while the size of image blocks remain the same in 
all levels. In our work, the block size is fixed to 32 32 32 voxels empirically.  

When transformation such as rotation is occurred on the image blocks, it is difficult 
to obtain accurate matching results by a single run of POC matching. In this case, 
iterative processing is necessary. Firstly, a rigid transformation is obtained by an 
initial matching with outlier correction. The transformation is applied to the floating 
image to reduce the rotation between the image pair. Then, block matching is 
performed again, followed by a resulted transformation. Experimentally, three runs of 
such iterative processing is able to give good matching results for registration 
evaluation in our work. 

4.2 Combination of 3D SIFT and 3D POC Matching for Registration 
Evaluation 

Since 3D POC can provide accurate image-matching results, we suppose that distance 
between corresponding landmark pairs can be used to validate accuracy of an image 
registration. However, one of the main problems in 3D POC matching is the selection of 
reference points. In [5], the reference points for image matching are determined by CT 
value empirically, but this determination is not appropriate for registration evaluation. In 
this work, 3D SIFT keypoint detector is applied to detect fiducial points in vessel 
regions of reference images. Corresponding points in registered floating images are then 
searched for and localized using the 3D POC image-matching. We suppose that the 
distance between the SIFT feature points and their correspondences (localized by 3D 
POC image matching) is an appropriate measure of image registration error. This 
supposition was experimentally verified as described in the next section. 

5 Experimental Results 

To verify the effectiveness of the proposed algorithm for evaluating image registra-
tion, the accuracy of the image matching based on a 3D POC function was estimated. 
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In the rest experiments, the proposed evaluation method was used to evaluate registra-
tion results obtained by different registration methods, which include rigid and non-
rigid registration algorithms developed in our previous work, and by the rigid and 
non-rigid registration modules of the Elastix toolkit [11]. 

5.1 3D POC Matching Error 

The accuracy of image-matching algorithm based on a 3D POC function was 
experimentally validated. In detail, seven sets of simulated data were generated from 
abdominal CT images of seven patients. Image resolution was 0.548 to 0.665 mm, 
with 512 512 voxels in the axial plane, and 2.5-mm resolution in the z-direction. 
In each set of simulated data, reference and floating images were generated from the 
same CT image. To perform the experiment in an intermodal way, a grey-level 
transformation was applied to the floating image according to the following equation: 1 22 , (6)

where the range of intensities in  is 0, 1 . The floating image was then trans-
formed by arbitrary translations and rotations to generate displacements from the 
reference image. Since the original image pair were the same image, the displace-
ments were known. Fiducial points from every reference image were detected, and 
correspondences in the generated floating images were localized. The estimated 
correspondences were compared to the ground truth, and RMS error of the image 
matching was calculated as follows: 

Err ∑ | |
  

∑ , (7) 

where , ,  is a reference point, , ,  is a corresponding 
point, and  is the number of point pairs. 

The rotation applied to the floating images was fixed at 2.5 degrees, and the im-
ages were then translated from 10  to 10  mm with an interval of 5  mm. The 
translation was then fixed at 5 mm, and the images were rotated from 5  to 5 
degrees with an interval of 2.5  degrees. The RMS matching errors are listed in 
Tables 1 and 2. It is clear from the tables that the RMS errors are from 0.077 to 0.140 mm, which illustrates that the proposed evaluation method can provide high 
accuracy for landmark matching and that it is effective for measuring registration 
errors quantitatively. 
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Table 1. Image-matching errors of 3D POC function when rotation is 2.5 degrees 

Translation (mm) -10 -5 0 5 10 

RMS error: 
Mean ( STD) (mm) 

0.083 
(0.033) 

0.079 
(0.033) 

0.077 
(0.021) 

0.098 
(0.034) 

0.102 
(0.025) 

Table 2. Image-matching errors of 3D POC function when translation is 5 mm 

Rotation (degree) -5 -2.5 0 2.5 5 

RMS error: 
Mean ( STD) (mm) 

0.140 
(0.023) 

0.098 
(0.034) 

0.080 
(0.028) 

0.097 
(0.037) 

0.130 
(0.020) 

Table 3. Evaluation results for four algorithms 

 Rigid Elastix rigid Non-rigid Elastix non-rigid 
RMS error: 

Mean ( STD) (mm) 
5.72  

(3.23) 
8.00  

(3.60) 
3.29  

(0.92) 
4.03 

 (1.61) 

5.2 Evaluation of Rigid and Non-rigid Registration Results 

The clinical data used in the evaluation experiments are abdominal contrast-enhanced 
CT images (in arterial phase) from the same patients mentioned in Section 5.1. Since 
these data are used for observation of disease development and treatment progress in 
RFA surgery for hepatic tumor, image pairs before and after the RFA surgery, with 
intervals of one to six months, were selected. In the experiments, four registration 
methods were evaluated: rigid and non-rigid algorithms developed in our previous 
work and the similar modules of the Elastix toolkit. Registration parameters of Elastix 
are set according to the recommendations in the Elastix manual. These four registra-
tion methods were applied to the seven image pairs, and registered floating images 
were created. 3D SIFT feature points in vessel region of each reference image were 
then detected, and POC-based image matching was performed to estimate locations of 
correspondences in the registered floating images. The number of SIFT feature points 
detected from liver-vessel regions was from 200 to 500. The running time of SIFT 
detection was about 20 to 40 seconds, and that of POC matching was about 20 to 60 
seconds. All the evaluation tasks were run on a system with Intel® Core™ i7 3.07-
GHz CPU and 12-GB memory without any optimization. Example results of fiducial 
point matching for evaluating a non-rigid registration are given in Fig. 3 [(a): 
reference image; (b): floating image after registration]. It is clear that every fiducial 
point in the reference image has a corresponding point that is accurately located in the 
registered floating image. Note that the landmark circled in the floating image is the 
corresponding point in another slice of the reference image. 

The RMS error of the four image registration methods applied to a certain image 
was calculated according to Eq. 7, and the calculated errors are listed in Table 3. Both 
the two non-rigid algorithms perform a rigid registration as a pre-processing 
procedure. Here, average errors were only measured in registrations with errors less 
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than 12  mm by both the rigid/non-rigid methods and the Elastix rigid/non-rigid 
modules. As a result, registration results of 5 image pairs given by rigid methods, and 
those of 6 image pairs given by non-rigid methods were evaluated in our work. 

6 Conclusion and Future Work 

A method for quantitatively evaluating rigid and non-rigid image registration in an 
automatic way was developed. With the proposed method, fiducial points for the 
evaluation are detected by 3D SIFT keypoint detector applied to liver-vessel regions 
of reference images, and corresponding points in the registered floating images are 
localized with 3D POC-based image matching. Experimental results show that the 
proposed method can provide high enough accuracy that the distance between the 
fiducial/corresponding point pairs can be used to measure image registration error. 
With the proposed method, users can assess their own image data with different 
registration algorithms quantitatively and automatically. 

Since the proposed method is performed on reference images and registered 
floating images, in the future, it is necessary to evaluate by an experienced observer 
that whether the detected matches effectively reflect actual physical correspondences 
in original image pairs. 
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Abstract. Medial representations are a widely used technique in ab-
dominal organ shape representation and parametrization. Those meth-
ods require good medial manifolds as a starting point. Any medial surface
used to parameterize a volume should be simple enough to allow an easy
manipulation and complete enough to allow an accurate reconstruction
of the volume. Obtaining good quality medial surfaces is still a problem
with current iterative thinning methods. This forces the usage of generic,
pre-calculated medial templates that are adapted to the final shape at
the cost of a drop in volume reconstruction. This paper describes an
operator for generation of medial structures that generates clean and
complete manifolds well suited for their further use in medial represen-
tations of abdominal organ volumes. While being simpler than thinning
surfaces, experiments show its high performance in volume reconstruc-
tion and preservation of medial surface main branching topology.

Keywords: Medial surface representation, volume reconstruction.

1 Introduction

One of the most used tools for volumetric shape representation are medial repre-
sentations. In abdominal imaging, techniques such as M-Reps [9] and CM-Reps
[19,18] have shown the potential to model complex anatomical shapes, and are
being used in fields such as computational neuroanatomy [20,14], 3D cardiac
modelling [15,16], and cancer treatment planning [12].

While other surface representation/parametrization methods model only the
external surface of objects [2,3], medial representations can model also the inte-
rior of the shape by providing a radial perpendicular coordinate [1] that extends
from the medial surface. This allows to parameterize the (possibly diseased)
parenchyma of organs, and their internal vascular system, powerful sources of
information in organ functionality, analysis and diagnosis. Any medial manifold
used to (re)generate anatomical volumes must be simple enough to allow an
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(a) (b)

Fig. 1. Medial surfaces obtained using a 6-connected neighborhood (a), and a 26 con-
nected neighborhood (b)

easy generation of the radial axis, but complete enough to allow a satisfactory
reconstruction of the volume.

Most methods of medial surface computation are based on morphological
(ordered) thinning operations on either the original volume or the distance map
to its boundary. In any case, they require the definition of a neighborhood set and
surface conditions for the removal of simple voxels (those that do not alter the
topology if removed) that do not lie on a surface. The complexity of neighborhood
definition and surface tests increases exponentially with the dimension of the
embedding space [5]. Additionally, small changes in those tests or in the order in
which voxels are traversed, generate completely different surfaces (as illustrated
in Fig. 1). Surfaces produced with thinning based methods would need to be
pruned in order to eliminate spurious branches and manifolds generated due
to noise in the volume surface. However, there is no easy way to tell which
manifolds can be safely removed without hurting the capability of representation
of anatomical structures.

Some authors overcome this limitations using a generic manifold that has
to be fitted into the volumetric shape [19]. This limits the number of objects
that can be processed to those that can be represented by the topology of the
template manifold. Simplified templates do not introduce a high reconstruction
error as far as the concavity of the volume boundary keeps low (as for a number of
subcortical brain structures [13]). However, anatomies with complex concavity
patterns (such as abdominal organs [17]) or pathological shapes with severe
deformation can not be captured by a deformed, simplified manifold.

Preserving the medial main branching topology is of prime importance for suc-
cessfully applying medial representations to any anatomical shape. In order to do
so, it would be desirable to generate specific initial manifolds for each anatomical
case. This would remove fitting errors in the model and would capture the com-
plete topology of volumes. Recent methods for medial surface generation based
on Non Maxima Suppression (NMS) of medialness maps [17] have shown a strong
potential to generate surfaces with minimal branching and great reconstruction
power. In order to produce complete surfaces, the definition of the medial map
is crucial. In [17], authors use a map based on level sets that in spite of giving a
normalized response it has two main weak points. On one side, the response is
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a step-wise almost binary map that is prone to introduce internal surface holes
in the further NMS stage. On the other side, the response significantly drops at
surface branches, which, again, might introduce unconnected components.

The present work focuses on the definition of a medial map capable of pro-
ducing complete medial surfaces reaching a good compromise between simplicity
of the medial geometry and its ability to reconstruct the whole anatomical vol-
ume. We introduce a medial map based on ridge detectors that combines the
advantages of steerable filters and level sets geometry. We call this medial map
Geometric Steerable Medial Map, GSM2. A database of liver segmentations gen-
erated from an abdominal atlas [11,6] is used as a benchmark to evaluate the
accuracy of volumes reconstructed from medial surfaces, as well as the capabil-
ity for preserving medial main branches. Results show that the proposed GSM2
produces branching topologies related to anatomy concavities that have a recon-
struction power higher than thinning approaches.

2 Medial Map Combining Geometric and Steerable
Filters

Distance maps are a key element for obtaining medial maps, since, by definition,
their maximum values are located at central voxels corresponding to the medial
structure. Distance maps can be used directly to generate skeletons (see [10])
but the ridges of the distance map have show superior power to identify medial
voxels [17]. In image processing, ridge detectors are based either on level sets
geometry or image intensity profiles.

The operator described in [8] defines ridges as lines joining points of maximum
curvature of the distance map level sets. It is computed using the maximum
eigenvector of the structure tensor of the distance map as follows.

Let V be the eigenvector of principal eigenvalue of the structure tensor and
consider its reorientation along the distance gradient, V = (P,Q,R), given as:

V = sign(< V · ∇D >) · V
for< · > the scalar product. The ridgeness measure [8] is given by the divergence:

NRM := div(V ) = ∂xP + ∂yQ+ ∂zR (1)

The above operator assigns positive values to ridge pixels and negative values
to valley ones.

A main advantage is that NRM ∈ [−N,N ] for N the dimension of the volume.
In this way, it is possible to set a threshold common to any volume for detecting
significant ridges and, thus, points highly likely to belong to the medial surface.
However, by its geometric nature, NRM has two main limitations. In order to be
properly defined, NRM requires that the vector V uniquely defines the tangent
space to image level sets. Therefore, the operator achieves strong responses in
the case of one-fold medial manifolds, but significantly drops anywhere two or
more medial surfaces intersect each other. Additionally, NRM responses are not
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continuous maps but step-wise almost binary images (see Fig. 2, left). Such
discrete nature of the map hinders the performance of the NMS binarization step
that removes some internal voxels of the medial structure and, thus, introduces
holes in the final medial surface.

Fig. 2. Performance of different ridge operators. Normalized Ridge Map (left), Steer-
able Gaussian Ridge (center) and Geometric Steerable Medial Map (right).

On the other side, ridge maps based on image intensity are computed by con-
volution with a bank of steerable filters. Each filter is defined by 2nd derivatives
of (oriented) anisotropic 3D Gaussian kernels:

gΘσ = g
(θ,φ)
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for (x̃, ỹ, z̃) the coordinates given by a rotations of angles θ and φ that transform
the z-axis into the unitary vector (cosφ cos θ, cosφ sin θ, sinφ). In order to detect
sheet-like ridges, the scales are set to σz < σx = σy.

The second partial derivative along the z axis constitutes the principal kernel
for computing ridges:
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The response of the operator Steerable Gaussian Ridge (SGR) is calculated as
the maximum response for a discrete sampling of the angulation:

SGR := max
i,j

(
D ∗ ∂2

zg
Θi,j
σ

)
(2)

for Θi,j given by θi = { iπ
N , i = 1..N} and φj = { jπ

M , j = 1..M}.
A main advantage of using steerable filters is that their response provides

continuous maps which ensure completeness of the surfaces obtained by NMS
binarization. Besides, since they decouple the space of possible orientations for
medial surfaces, their response does not decrease at self-intersections (see Fig. 2,
left and center). Their main counterpart is that their response is not normalized,
so setting the threshold for NMS binarization becomes a delicate issue.
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The analysis above shows that geometric and intensity methods have comple-
mentary advantages and shortcomings. Therefore we propose combining them
into the following Geometric Steerable Medial Map (GSM2):

GSM2 := SGR(NMR) = max
i,j

(
NRM ∗ ∂2

zg
Θi,j
σ

)
(3)

The advantages of GSM2 are two-fold. On one hand, steerable filters provide
a continuous approximation to NMR semi-discrete maps with a more uniform
response at self-intersecting points. On the other hand, because NMR maps have
a sharp response at central voxels, GSM2 still provides a highly selective response
at ridges. In this manner GSM2 generates medial maps with good combination
of specificity in detecting medial voxels while having good characteristics for
NMS binarization, which does not introduce internal holes (Fig. 2, right).

3 Validation Experiments

In order to provide a real scenario for the reconstruction tests we have used an
atlas of abdominal organs computed by normalized probabilistic models from
the registration of 9 subjects [11,6]. By its higher concavity complexity we have
chosen the liver as a source of anatomical volumes. We have applied GSM2
using σ = 0.5, ρ = 1 for computing structure tensors in NMR and N = M = 8
orientations for SGR. In order to check the capability of GSM2 for preserving
medial main branching topology, we have considered the full surface as well as
a simplified surface (labelled GSM2S) obtained by removal of secondary medial
branches. For comparison to morphological methods, we have also applied an
ordered thinning using a 26-connected neighborhood [10] followed by a pruning
(labelled Th26P ).

Figure 3 shows the three kinds of medial surfaces considered on a representa-
tive liver. In spite of prunning, medial manifolds computed using thinning have
a branching geometry more complex than GSM2 and apparently not related to
the volume boundary geometry (concave-convex profile). This is not the case
for GSM2 surfaces, whose branching topology arises from volume boundary con-
cavities. It follows that its subsequent simplification is better suited for volume
convex decomposition, which naturally describe the geometry of objects [7].

Our experiments will focus on evaluating how the pruning affects the gener-
ation of reconstructed volumes. Volumes are reconstructed from the computed
medial surfaces by applying the inverse medial transform. Comparisons with
the original shape are based on volume overlap error (VOE) and maximum
symmetric surface distances (MxSD) [4]. Lower metric values indicate better re-
construction capability: VOE provides a global score, while MxSD detects local
deviations in the shape of the volume boundary.

Table 1 reports metric scores for each liver. For most livers, thinning is the
worst performer in terms of reconstruction power and boundary distortion, while
the complete GSM2 is the best method. It is worth noticing that the global
volume reconstruction of the simplified GSM2 compares to its complete version
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(a) (b)

Fig. 3. Medial Manifolds of a healthy liver: full GSM2 (blue surface) and its simplifi-
cation (red surface), (a) and Th26P , (b)

in all cases. Regarding volume boundaries, we have a noticeable distortion in
3 cases (livers 2, 5 and 7). Distortion appears in the superior liver lobe due to
a more prominent concavity in this lobe for the three cases (as illustrated in
Fig. 4(a)). This might hinder proper measurements of abnormal or pathological
structures. This is not the case for GSM2 complete surfaces as exemplified in
Fig. 4. The oversized superior lobe on the right liver is captured by the presence
of an unusual medial manifold configuration.

Table 1. Errors in reconstruction VOE and MxSD for each liver

GSM2 GSM2S Th26P

V OE MxSD VOE MxSD V OE MxSD

Liver 1 2.51 8.37 2.78 8.37 3.14 12.04
Liver 2 2.22 9 2.85 12.41 2.60 10.68
Liver 3 2.58 8.78 2.92 8.78 3.13 12.04
Liver 4 2.51 9.80 2.55 9.85 2.84 10.77
Liver 5 2.42 4.24 2.83 8.60 2.73 9.64
Liver 6 2.49 9.27 2.71 9.27 2.69 7.49
Liver 7 2.25 4.90 2.69 10.20 2.73 10.48
Liver 8 2.12 10.44 2.36 10.44 2.41 10.77
Liver 9 2.72 9.69 2.98 9.69 3.05 12.04

Mean 2.42 8.28 2.74 9.73 2.81 10.66
Std Dev. 0.19 2.19 0.19 1.23 0.25 1.45

4 Conclusions

In order to provide manageable representations of complex organs, medial man-
ifolds should reach a compromise between simplicity in geometry and capability
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(a) (b)

Fig. 4. Impact of medial branching topology: (a) reconstruction error for a healthy
liver when using complete GSM2 (white volume and red surface) and simplified GSM2
(blue volume and yellow surface), and detection of unusual lobe for a pathological case,
(b)

for restoring the anatomy of the organ. The method presented in this paper al-
lows the computation of medial manifolds resulting in surfaces of greater simplic-
ity than the generated by thinning methods. Although having this minimalistic
property, the resulting manifolds can be used to recalculate the original volume
with slightly better reconstructions than existing methods.

Our experiments show that our method is preferable to using a generic tem-
plate since it allows tackling a wider set of shapes which could not be precisely
represented by a generic manifold. Any simplification of a medial surface results
in a drop in reconstruction quality. This drop in accuracy is hard to relate to the
simplification process because the branching topology of thinning-based medial
manifolds is not always related to the anatomy curvature (concavity-convexity
pattern). A main advantage of GSM2 medial surfaces is that their branches are
linked to the shape concavities due to the geometrical and normalized nature
of the operator. In this context, GSM2 manifolds can be simplified (pruned)
ensuring that the loss of reconstruction power will be minimum.

Future work includes the usage of GSM2 surfaces in the context of shape
parametrization, providing a new set of coordinates to each point in the volume.
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Abstract. CT perfusion imaging is used for the follow-up of abdominal
tumors. A specificity of our work is that patients are breathing freely
during image acquisition (5 minutes). We propose an automatic 3D im-
age registration to compensate for respiratory motion. The registration
is computed in two main steps: global translation in the z-direction and
3D multiresolution blockmatching. Within this algorithm, the choice of
similarity measure largely determines the algorithm robustness in pres-
ence of intensity shifts due to contrast diffusion. We exploit a modified
entropy-based similarity measure to improve the quality of registration.
We also propose two relevant criteria allowing to quantify the registra-
tion quality: one based on the gradients of difference images and one
based on the smoothness of enhanced-intensity curves.

Keywords: Free-breathing, spatio-temporal registration, DCE-CT,
evaluation criteria.

1 Introduction

Functional imaging has gained attention for oncology therapy. It is based on the
acquisition of time sequences combined with contrast injection. Long acquisitions
(up to 5 minutes) allow to study the complete dynamics of diffusion, including the
effects of tissue permeability. However, it is possible to get relevant information
only if data are correctly registered. Two main approaches are possible to deal
with respiratory motion, sequential breath hold [1] or free-breathing. In the
present study, free breathing is selected, since a less stressed patient usually
provides sequences with more regular motion. The current study focuses on
tumors in liver or kidney using dynamic enhanced CT.

Methods for registration of images acquired with free-breathing are being de-
veloped essentially for contrast-enhanced MRI. Wollny et al. [7] exploit the quasi
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periodicity of respiratory cycle for myocardial perfusion. Li et al. [2] explicitly
estimate the respiratory cycle within abdominal perfusion. In both cases, an
important assumption is a high time resolution.

In CT, it is also possible to have high time resolution, but this is combined
with a short time of acquisition (2 minutes) [4], and this does not allow to extract
permeability. For CT perfusion, with the objective of extracting adequate data
for functional analysis, a longer time of acquisition is required which implies,
mostly for dose considerations, a low time resolution. The second constraint is
a limited imaging field of view in z-direction. To the best of our knowledge, no
previous studies have investigated image registration on free-breathing with ab-
dominal dynamic contrast-enhanced CT (DCE-CT) for long acquisitions. In that
context, the aim of this paper is, in a first part, to propose the complete pipeline
of the intensity-based methods that we have proposed to compensate free respi-
ratory motion. The second main contribution of this study is the definition and
evaluation of a dedicated similarity measure adapted from the difference entropy
(DE), which is compared to the classically used DE [3]. Finally, we propose the
definitions of a temporal and a spatial criteria, in order to objectively evaluate
the quality of the registration and to compare the results obtained when testing
the different similarity measures.

2 Materials and Methods

2.1 Data Acquisition

39 data acquisitions were performed with a 256 slices CT (Brilliance iCT 256,
Philips Healthcare, The Netherlands) on 14 patients. All patients gave informed
consent. The dynamic CT protocol consists in acquiring 48 volumes every 2.5
seconds then 18 volumes every 10 seconds (80 kV, 80 mAS, rotation time of
0.33 seconds, dose of iodine 80 cc). With 8 cm detector coverage in z-direction,
the CT scanner allows for 5.5 cm effective z-coverage in a single rotation with
a 3D axial cone beam correction. This coverage is large enough to keep most
of the lesion in image volume. In the axial plane, data are reconstructed with
a pixel size of 0.68 mm × 0.68 mm [5]. Reconstructed volumes are expressed
in Hounsfield Units (HU). Image intensities can thus range from -1024 (air) to
2000 HU (bone).

2.2 Spatio-Temporal Registration

The main challenges for registration in these conditions are:

– Limited volume height: data acquisition covers about 6 cm in z-direction,
while the amplitude of respiratory motion may reach 2 to 3 cm, in the same
z-direction. This means that the whole liver or kidneys are not imaged.
Consequently, full organ tracking is not possible and local approaches have
to be used.
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– Contrast agent injection: intensities of a given tissue vary with time (figure
1). The choice of a similarity measure which is robust to contrast-induced
intensity variations is essential in our method.

– Free breathing and low time resolution: since patients breath freely, a first
consequence is that acquisitions correspond to different instants in respi-
ratory cycle and a prediction using a respiratory model is not possible. A
second consequence is the existence of strong intensity variations between
two consecutive volumes due to contrast arrival and low time resolution (2.5
or 10 seconds). In such a context, the problem of intensity differences is
present even between successive pairs of volumes (It onto It−1) and register-
ing these pairs of volumes would lead to unnecessary errors accumulation.
So, it is preferable to align all volumes onto a common reference volume
Ir. Since the majority of image volumes are enhanced, an intuitive solution
would be to choose a reference volume Ir with contrast (t ≈ 30). However,
we observed that the tumor is most often well centered in the first volume
(t = 0), which is why we selected it as the reference volume Ir.

Fig. 1. Image data at time 0 (left) and 15 seconds after injection (right). On the right
figure: kidney is enhanced (white square) and aorta with hepatic artery are enhanced
(white rectangle, middle).

In order to deal with these challenges, we present an adapted spatio-temporal
registration pipeline. Each reconstruction provides a dynamic sequence DSI =
(It, t ∈ (1, ...T )), where It is a 3D image acquired at time t and T is the number
of acquisition times.

Our registration approach involves two main steps, followed by a step of regu-
larization and warping:

1. Global z-Translation : since the main motion is in the z-direction, the
first step consists in a global evaluation of the z-translation. To improve this
initial step, thresholds are applied to exclude air (∼-1024 HU) and intense
contrasts (≥600 HU), such as the contrast of the static aorta in z-direction.
We considerer all pixels which intensity is between -800 HU and 600 HU.
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Since we are considering one global translation for the whole masked vol-
ume at this point, we verified that the local contrast diffusion was not an
important disturbance, and that the sum of square of differences (SSD) was
the most appropriate metric (compared to entropy and mutual information,
results not shown).

2. Multi-Resolution Blockmatching [6]: initialized by the z-translation
found in the first step, this 3D registration method is computed with block
sizes of (11 × 11 × 7 mm3) at the highest resolution. It provides, for each
block, motion vectors corresponding to translations in x, y and z directions.

3. Regularization: a regularization step is necessary to smooth the motion
vector fields. A gaussian filter is computed in 3D (σ = 1.2).

4. Warping: warping consists in reconstructing new image sequences (J1, ...JT )
with respiratory motion compensation. A trilinear interpolation is used.

2.3 Masking

In order to improve the algorithm robustness and its computing efficiency,
masked volumes are computed. For each volume, a mask is defined by exclud-
ing spine, which have a different motion from the rest of the abdomen, and
background, which does not give useful information.

Our mask consists of two 3D zones with z-translation invariance. These two
zones can therefore be represented in an axial plane of arbitrary z-value.

On each axial plane, a threshold of 500 HU is first applied to extract the bones:
the largest connected component is the spine. Similarly, the largest connected
component of pixels of intensity values lower than -500 HU are considered to
belong to the background (fig. 2).

Fig. 2. Mask example: white zone is the valid region, excluding spine and background

2.4 Similarity Measures for Multi-resolution Blockmatching

To locally register the volumes Ir and It, our approach is based on a similarity
measure which is potentially robust to intensity variations, namely DE.

The entropyH of a discrete random variableX with probability mass function
p(X) is defined as:

H(X) = E(−log p(X)). (1)
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The difference between Ir and It, noted Ir−t, is used to evaluate DE. The classical
definition is based on the normalized histogram hist(Ir−t) of Ir−t with B bins:

DE = −
B∑

j=1

hist(Ir−t)j ∗ log(hist(Ir−t)j). (2)

DE is classically used for registration, in particular in contrast enhanced echocar-
diography [3].

However, it is known that the quality of registration is very dependent on the
number of bins B. So, our approach is to approximate DE to have a more
dedicated and robust similarity measure. We can define H directly in the image
domain Ω as:

H =
1

card(Ω)

card(Ω)∑
i=1

−log pi. (3)

with pi the intensity of pixel i and card(Ω) = Nx ∗Ny ∗Nz the number of pixels
in Ω, Nx in x dimension, Ny in y dimension and Nz in z dimension.

In addition, assuming that the pixel intensities in each block are distributed
following an univariate Gaussian distribution with mean μ and variance σ, DEG

is expressed as:

DEG = log(σ) +
1

card(Ω)

card(Ω)∑
i=1

(pi − μ)2

2σ2
. (4)

We can then compare our proposed similarity measure DEG and the classical
one DE. To this end, we define two evaluation criteria.

2.5 Evaluation Criteria

In order to evaluate the quality of registration for each similarity measure, we
define two criteria, related to the temporal and spatial dimensions of the method.

Temporal Evaluation Criterion : We propose a new evaluation criterion
based on curve smoothness. The quality of the registration is assessed by the
smoothness of the time curve of mean intensities after registration (figure 3). In-
deed, after registration, time-intensity curves should reflect the contrast intake
only, and not the respiratory motion. Since the presence of kidney in a given
axial slice is highly sensitive to respiratory motion, a region of interest (ROI) is
defined within the kidney. Mean intensities Īt of any image (It) before registra-
tion and J̄t of the same image after registration are calculated within ROI, for
each acquisition time t and plotted, see fig. 3 for an illustrative example.

The two curves are independently filtered by a median time-filter with a win-
dow span of 3 points, noted M(It, 3) and M(Jt, 3). Therefore, the sum of the
absolute difference between the smoothed curve and the original curve can be
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used as indicator of the smoothness of the enhancement curve. Thus, we define
SC as:

SC =

∑T
t=1 |J̄t −M(Jt, 3)| −

∑T
t=1 |Īt −M(It, 3)|∑T

t=1 |Īt −M(It, 3)|
. (5)

The higher SC is, the better quality of registration is.

Fig. 3. Mean intensities inside ROI on an axial slice during time of acquisition before
registration Īt (dash line) and after registration J̄t (solid line)

Spatial Evaluation Criterion: the usual metric of SSD was not used in our
study since a change in contrast intensity would fool the evaluation. In order
to remove variations due to contrast arrival, we decided to used the gradient
of the difference images. We computed two gradient image volumes GIt−Ir and
GJt−Ir, and their associated norm ||GIt−Ir || and ||GJt−Ir ||. Finally, we compute
the spatial evaluation criterion, noted GC, as in equation 6. This definition is
based on the idea that, after registration, the gradients of difference images
should be lower than before registration. So, a high GC shows a better quality
of registration.

GC =
1

T

T∑
t=1

||GIt−Ir || − ||GJt−Ir ||
||GIt−Ir ||

. (6)

GI is defined as the classical gradient of an image I:

GI(x,y,z) =
√
∇X(I(x, y, z))2 +∇Y (I(x, y, z))2. (7)

where ∇X(I) is the gradient of I in x direction and ∇Y (I) is the gradient of I
in y direction.
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From this gradient image, the L2 norm is derived:

||GI || =
Nz∑
z=1

√√√√√ (Nx,Ny)∑
(x,y)=(1,1)

GI(x, y, z)2. (8)

3 Results

Fig. 4 shows the results of registration using a checkerboard. After registration,
frontiers of organs are better aligned.

Fig. 4. On the top: before registration; on the bottom: after registration. At left:
Checkerboards between image of reference (yellow) and current image (gray). At mid-
dle: zoom on kidney, which is better aligned after registration than before, especially
in the red squares. At right, zoom on jejunum.

After global z-translation, we apply our algorithm of multiresolution block-
matching with DE and our modified similarity measure DEG. In figure 5, results
show that our proposed measure DEG is better adapted as similarity measure,
according to SC and GC criteria. Note that we tested the assumption of gaus-
sian distribution of pixel intensities in each block. It obviously depends on the
size of blocks and their location (blocks that cover two different regions of the
image have less normal distribution than blocks that include only homogeneous
regions). Our algorithm was nevertheless robust even for blocks that did not
verified this assumption.

4 Conclusion

We have presented a full setup to provide automatic registration of 4D DCE-CT
sequences, using an algorithm that consists of global z-translation and multires-
olution blockmatching. One main challenge, related to contrast arrival, has been
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Fig. 5. Values of the two criteria, namely intensity curve smoothness SC (left) and
gradient criterion GC (right) for the two similarity measures DE and DEG. These
plots show that the proposed similarity measure DEG improves the evaluation criteria
on the all 39 data acquisitions.

specifically evaluated in the step of multi-resolution block-matching. In this part,
we presented an adapted similarity measure (DEG), which was found to be more
adapted to registration on free-breathing abdominal 4D contrast enhanced CT
than DE.

Our mid-term objective is to provide a prototype that could be used by clin-
icians. Therefore, the computation time was one of our main constraints. Our
method is relatively efficient. To register one image volume (512*512*22), it
takes about 3 seconds (Intel(R) Core(TM) i5-2450M CPU, 2,5 GHz). Such a
performance is encouraging for a future clinical use.

A possible further refinement of our work could be to consider changing of
similarity measures with time, according to the diffusion phases of the contrast.

Acknowledgements. We thank Shrif Makram-Ebeid and Vincent Auvray for
their discussions and Philippe Coulon for his implication.
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Abstract. In this paper we perform a Newtonian and a non-Newtonian
blood flow analysis for a patient-specific portal vein (PV), which was dig-
itized from a CT image. The non-linear relationship between the shear
stress and shear rate was simulated using a Carreau model. We found
that, under normal physiological conditions, the computed data from
the non-Newtonian model was only marginally different from that of the
Newtonian model. However, when the portal flow was severely reduced
(e.g., 10% of its normal value), the difference between the two models
was significant. Hence we suggest that the Newtonian model is a good
approximation for portal flow in physiological conditions whereas a non-
Newtonian model should be used in pathological conditions when the
very low flow rate induces a much higher blood viscosity.

Keywords: Blood flow, computational modeling, portal vein, computed
tomography.

1 Introduction

In healthy adult human beings, about 30% (∼1.5L/min) of total blood flow
volume perfuses the liver through a hepatic artery and a portal vein (PV). In
particular, the PV is the only pathway to deliver 2/3 (∼1L/min) of this large vol-
ume of nutrient-borne but poorly-oxygenated blood from the intestine, pancreas
and spleen into the liver [3].

Anatomically the PV bifurcates into the left PV and right PV which supply
their respective lobes. This can be appreciated from tomography images after the
portal veins are enhanced by a contrast agent, e.g., as shown in Fig. 1(a). The
CT image alone, however, does not provide any quantitative information about
blood flow such as its flow velocity and pressure. In contrast, phase contrast MRA
is able to yield 3D flow quantities which may be used for portal flow analysis
[3,1]. However, a MRI scan is costly, and the resolution of the current PC MRA
(∼0.8mm) is still not high enough to capture complex 3D flow patterns.

Computational modeling provides another means to evaluate blood flow. This
has been made possible through advancing computational fluid dynamics (CFD),

H.Yoshida,D.Hawkes,M.W.Vannier (Eds.):Abdominal Imaging2012, LNCS7601, pp. 283–291, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. (a) Portal vein viewed from a CT image; (b) digitized liver surface and
vasculature

which, when combined with contemporary image scanning techniques, can be
used for flow analysis in a clinical context. Nowadays, general-purpose commer-
cial CFD packages are able to simulate blood flow in patent-specific geometries.
While this utility is becoming more frequently used in biomedical research, care
should be taken towards the subtle hemodynamic features that might be ne-
glected but can be physiologically significant. For instance, up to this day, flow
simulation for the portal vein has been mainly performed assuming the blood
as a Newtonian fluid [4], whereby the shear stress (τ) has a linear relationship
with shear rate (γ̇) and its viscosity (μ) is a constant. However, blood is a non-
Newtonian fluid and it exhibits shear-thinning properties [7]. A question thus
arises as to whether the non-Newtonian blood properties have an impact on
blood simulations in the PV.

This purpose of this paper is to address this question by comparing the flow
dynamics in both Newtonian and non-Newtonian models, based upon the vascu-
lar geometry digitized from a CT-image. We briefly introduce the procedure for
vascular model construction, flow analysis, and present the simulation results.

2 Methods

2.1 Medical Imaging

We retrospectively studied the CT image (GE LightSpeed) of a male patient. The
spatial resolution of the image was 0.879× 0.879× 0.625mm. The image, shown
in Fig. 1(a), enhances the portal and hepatic veins. Using a commercial MIMICS
software (Materialise, Leuven, Belgium) we segmented the liver and intrahepatic



Aneurysm Database 285

PV and HV trees (Fig. 1(b)). Also segmented are the superior mesenteric vein
(SMC) and the splenic vein (SV), which merge into the PV.

To facilitate 3D flow simulation, the portal veins downstream the second gen-
eration were discarded because the image resolution was not high enough to
conduct an accurate 3D vascular surface-reconstruction (see Fig. 2). The surface
mesh of the PV, SMV and SV were imported into a computational grid genera-
tion software ANSYS ICEM (ANSYS Inc.). The number of generated tetrahedral
elements was about 160K using a robust Octree method.

Fig. 2. Computational grid generation: tetrahedral grid is shown at the cross-section
sliced by the cut plane

2.2 Mathematical Modeling for Blood Flow

Governing Equations. The governing equations i.e. the mass and momentum
conservation equations for blood flow can be written in a compact form:

∂ρ

∂t
+ ∇ · v = 0, (1)

ρ(
∂v
∂t

+ v · ∇v) = −∇p + ∇ · τ + ρg, (2)

where v, ρ, τ are the blood flow velocity, blood density and stress tensor, respec-
tively. The last term in Equation (2) ρg represents gravity and is often dropped
in arterial flow since it is small compared with the pressure force. If the flow
is steady, as will be simulated for the portal vein, the first term at the LHS of
Equations (1) and (2) can also be dropped.

For Newtonian blood flow, a linear relationship between the stress τ and strain
rates γ̇ can be expressed as:

τ = μγ̇, (3)

where the blood viscosity μ is a constant (μ = 0.00345Pa · s).
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Non-newtonian Blood Models. The Newtonian blood model used in Equa-
tion (3) is only accurate when the flow shear rate (γ̇) is sufficiently high (e.g.,
when γ̇ > 100s−1), whereas blood is a shear thinning fluid and its viscosity is
much higher in low shear rates (see data from [8]).

An overview of this topic (blood rheology) can be found in [2] and some
non-Newtonian models (e.g., the Carreau, Casson and Power Law models) are
presented in [7]. In this work we need to determine whether the Newtonian model
is a plausible approximation. To that end we implemented the Carreau model
into the solver, which represents the relationship between the viscosity and shear
rate as:

μ = μ∞ + (μ0 − μ∞)[1 + (λγ̇)2](n−1)/2. (4)

Fig. 3. Viscosity vs shear rate: a comparison of non-Newtonian model (Carreau) and
Newtonian model

The parameters μ0, μ∞, n and λ are obtained by fitting Equation (4) with
experimental data [7]. We adopted their values from [7]: λ = 3.313s, n = 0.3568,
μ0 = 0.056Pa ·s and μ∞ = 0.00345Pa ·s, the resulting viscosity-shear rate (μ-γ̇)
curve is plotted in Fig. 3. Note, that the blood viscosity becomes substantially
higher when γ̇ < 5s−1, and it tends to be equivalent to the Newtonian viscosity
(μ∞) in high shear rates (> 100s−1).

Numerical Methods. Equations (1) and (2) were integrated over each of the
small elements (also known as control volumes) of Fig. 2 to yield discretized
equations. A commercial finite-volume-based flow code CFX 11.0 (ANSYS Inc.,
Canonsburg, PA) was used to solve these equations numerically. The portal flow
was considered as steady, as revealed by ultrasonic measurements [4]. The inflow
velocity boundary conditions, 20 cm/s and 30 cm/s, were prescribed at SV and
SMV, respectively. These data were adopted from literature [4,9]. In addition, a
zero pressure was imposed at the outlet to allow free outflow. The wall of portal
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vein was simplified as rigid because of the steady venous flow would not cause
large wall displacements.

3 Results

3.1 Newtonian Flow Model

The computation was performed on a desktop computer (Intel Core 2.4GHz).
The computational results such as the flow velocity and pressure were post-
processed in Fig. 4. We observe that the average flow velocity in PV is about
0.15m/s, which translate into flow rate is about 20 mL/s or 1.2L/min. This is
consistent with the flow rate mentioned in Introduction. Also observable are the
helical flow pattern (indicated by the arrow) in PV developed after the merging
point of the SMV and SV.

Fig. 4. Post-processing of CFD results: (a) Velocity streamline: helical flow was de-
veloped after the merging point of SMV and SV; (2) WSS distribution on the wall

Fig. 4(b) shows the wall shear stress (WSS) distribution on the wall, which
ranges from 0.2 to 0.4 Pa, or 0.0015-0.003mmHg. This agrees with the simulation
reported in [4]. A visualization was also made for the shear rate, which is shown
in Fig. 5. It is evident that the shear rates at very limited regions actually are
lower than 5s−1 where the blood viscosity is substantially higher (refer to Fig.
3). This might suggest the soundness of employing Newtonian model for flow
analysis. Nevertheless, we performed a non-Newtonian flow analysis as below.

3.2 Non-newtonian Models for Normal PV Flow

With the same boundary conditions, but a different transport property (viscos-
ity) as per Equation (4), a non-Newtonian flow analysis was performed and the
results are shown in Figs. 6 and 7.
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Fig. 5. Shear rate distribution on the portal vein surface: a comparison of the New-
tonian and non-Newtonian model

Fig. 6 shows the flow vector profile on a cross-section of the PV. No substantial
difference between the Newtonian and Carreau models were noticed, although
the velocity vector is slightly smaller for the latter. Fig. 7(a) shows the veloc-
ity vector from a different view, which reveals the helical flow pattern. It can
be seen that there are only slight difference between the Newtonian and non-
Newtonian models. Fig. 7(b) shows the pressure gradient on the cross-section.
Again the differences between the Newtonian and non-Newtonian models are
only marginal.

3.3 Non-newtonian Models for Low PV Flows

The above simulations were made based on the assumption that the PV flow
was normal, i.e., ∼1L/min. In pathological conditions, the PV flow can be very
low due to a high hepatic resistance, which usually causes portal hypertension.
In this scenario the high flow shear rate shown in Fig. 5 is no longer realistic, but
according to the plot in Fig. 3 will render significant computational differences
between the Newtonian and non-Newtonian models.

Two virtual flow experiments were performed to verify this hypothesis, whereby
the PV flow was reduced to 1/3 and 1/10 of its normal value. The resulted WSS
visualization is shown in Fig. 8. It can be seen that significant differences in-
deed exist between Newtonian and non-Newtonian models, in particular for the
1/10 case: the WSS predicated by the Carreau model was substantially higher
(∼100%) than the Newtonian model.

4 Discussion

A good understanding of blood flow dynamics in the portal vein is important for
hepatic physiology and pathology as it is the only vascular pathway to deliver
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Fig. 6. 3D vector visualization on a cross-section of the PV. No substantial difference
between the Newtonian and Carreau models were noted, although the velocity vector
is slightly smaller for the later.

nutrients to the liver. Diseases of the portal vein, for instance, portal hyper-
tension which is caused by increased resistance in hepatic tissues, may lead to
bleeding (esophagus) varices which is lethal if not treated urgently.

In a previous study [5], we performed a Newtonian flow analysis for the portal
vein, and also simulated the hepatic circulation variations in after a virtual hep-
atectomy. This paper can be viewed as a sister-paper of [5] in that, we intended
to investigate whether Newtonian blood flow model is a good approximation of
PV flow, or if a non-Newtonian model should be employed instead. The decision
may be derived from a numerical analysis of the shear strain rate, which was
shown in Fig. 5. The figure indicates that low shear rate regions (5s−1) were pre-
sented in a small portion of wall area under normal inflow conditions and thus a
Newtonian model could be sufficient. This is verified by a comparison between
a non-Newtonian model (the Carreau model) and the Newtonian model. The
comparisons of the flow velocity profile and pressure gradient on an identical
cross-section suggested that there were only marginal differences between the
two models, although the flow profile yielded from the non-Newtonian model is
slightly more flat and even. This may be explained from the fact that the higher
viscosity simulated from the Carreau model has a higher resistance to flow, or a
larger ‘dissipative’ force to distribute blood flow [6].

However, it should be emphasized that under pathological conditions, flow rate
in the PV could be substantially lower, and thus the flow simulation can be very
different with a non-Newtonian model. This was confirmed in Fig. 8(b) when
the portal flow was only 10% of normal value. This might have physiological
significance when it comes to biomedical research since the Newtonian model
underestimated the WSS. Our future work, therefore, is to collect experimental
data on shear rate and shear stress in the portal vein.



290 H. Ho, A. Bartlett, and P. Hunter

Fig. 7. Comparison of (a) flow velocity and (b) pressure-gradient on the cross-section.
The differences between the two models are marginal.

Fig. 8. Comparison of Newtonian and non-Newtonian models under (a) 1/3 of normal
flow rate; and (b) 1/10 of normal flow rate. The differences between the two models
are significant.
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5 Conclusion

We simulated blood flow in a patient-specific portal vein which was digitized
from a CT image. We found that under normal physiological conditions there
were only marginal difference between the simulation results yielded from the
Newtonian and non-Newtonian models. However, in pathological conditions non-
Newtonian effects became significant due to substantially lower flow rate in the
portal vein.
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lor Strategical Research Fund of the University of Auckland, which we gratefully
acknowledge.
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Abstract. Most of the existing tracer kinetic models for dynamic contrast-
enhanced CT or MRI do not fully describe the principles of intra- and 
transcapillary transport of tracers. One point is to disregard the concentration 
profiles between the inlets and outlets of capillaries, which may cause a biased 
estimation of tissue parameters by a systematic error. The Morales-Smith 
hypothesis enables one to resolve this ambiguity by assuming that the difference 
between arterial and venous concentrations is proportional to the difference 
between the arterial and capillary concentrations. If the backflow of administered 
tracer into the plasma compartment is negligible compared to its outflow into the 
interstitial compartment during the initial enhancement phase after tracer 
administration, the capillary concentration can be considered to fall exponentially 
along the capillary from the arterial concentration to the venous concentration by 
the Renkin-Crone model, i.e., unidirectional extraction fraction, which can be 
incorporated in the concept of the Morales-Smith hypothesis. In this study, we 
reformed the mass-balance equations and mathematical solutions of several 
representative and well-known tracer kinetic models so that the Morales-Smith 
hypothesis could be incorporated into their compartment tracer kinetics, 
considering a tissue-specific factor independent of time as proposed by Brix et al. 
[5]. The tissue-specific factor was applied to a liver tumor case study in perfusion 
CT to illustrate the potential effectiveness of the Morales-Smith hypothesis. The 
proposed scheme was shown to be potentially useful for more consistent and 
reliable estimation of physiologic tissue parameters. 

Keywords: Tracer kinetic modeling, Morales-Smith hypothesis, Renkin-Crone 
model, hepatic perfusion CT. 

1 Introduction 

Dynamic contrast-enhanced (DCE) imaging with CT or MRI has received widespread 
interest because these techniques allow noninvasive in vivo assessment of tissue 
hemodynamics and could provide physiologic information about the tissue 
microvasculature [1-3]. 

Assessment of hemodynamic changes in the liver is particularly challenging 
because of the dual blood supply to this organ [3]. Various degrees of abnormalities in 



 Tracer Kinetic Modeling by Morales-Smith Hypothesis in Hepatic Perfusion CT 293 

the rate of blood supply from the hepatic artery and portal vein can be found 
according to the different kinds of liver diseases [1, 4]. Thus, a reliable estimate of a 
total hepatic perfusion to consider a tissue-specific factor [5] as well as separate 
measurements of hepatic arterial and portal venous perfusions are particularly 
important for the liver diseases. 

The microvascular characteristics of diseased tissues can be investigated by fitting 
of a tracer kinetic model on a region of interest or pixel basis to tracer concentration 
time course data derived from DCE imaging data. A number of different tracer kinetic 
models, with varying degrees of complexity, have been used for quantification of the 
vascular properties of normal and tumor tissues [3, 5-8].  

The question arises which tracer kinetic model is optimal for quantification of DCE 
data, under what conditions, and how large the differences in physiologic parameters 
are. For selecting or justifying a model of a physiologic system, the different 
assumptions related to concepts of tracer kinetics must be considered, starting with a 
simplified model which is successfully expanded, keeping in mind that there is always 
a trade-off between model complexity and estimability. In addition, if a particular 
model selected cannot be qualified as an absolute best kinetic model, as circumstances 
require, selecting statistically the physiologic parameters provided for good 
discrimination between non-cancerous and cancerous tissues across different kinetic 
models would be needed [9]. 

Thus, we first review several representative and well-known pharmacokinetic 
models, and we compare their kinetic parameter maps in hepatic perfusion CT. For 
further study, we incorporated the Morales-Smith hypothesis [10] to all compartment 
tracer kinetic models presented in order to resolve the ambiguity of capillary 
concentration from the arterial concentration to the venous concentration by 
considering a tissue-specific factor independent of time, as proposed by Brix et al. [5]. 
Our primary aim in this study was to illustrate the effectiveness of the Morales-Smith 
hypothesis through comparison between kinetic parameter maps applied to a liver 
tumor case study in perfusion CT. 

2 Methods 

We consider two sources of blood flow to the liver: flow from the hepatic artery, A, 
and flow from the portal vein, PV. Assuming that the tracer plasma concentrations 
for the hepatic artery A  (g/min) and the portal vein PV  can be sampled from 
dynamic CT images, the concentration for the liver tissue T  can be expressed as 
follows: 

T AT A PVT PV   

T A 1 PV , (1) 
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where , A  (ml/min), PV , ,  and T  (ml) denote the impulse residue 
response function, apparent hepatic arterial flow, apparent portal venous flow, 
apparent total hepatic plasma flow, arterial fraction, and tissue volume, respectively. 

Thus, AT (ml/min/ml), PVT  and T become the apparent arterial perfusion, apparent 

portal perfusion, and total apparent hepatic perfusion, respectively. The apparent 
plasma flow, , is systemically higher than the true plasma flow  by a factor 
of 1 2, where  is given by the following expression [5]: 

1 with 1 . (2) 

Note that  and  (ml/min) are the extraction fraction given by the Renkin-Crone 
model [11, 12], and the permeability surface area product, respectively. The factor  
is a tissue-specific model parameter that is independent of time, which can be used to 
approximate the true plasma flow  from the apparent plasma flow  caused by the 
difference between the capillary plasma and venous concentrations. 

For pharmacokinetic analysis of hepatic perfusion CT data, five pharmacokinetic 
models were formulated: 1) the two compartment exchange (2CX) model, 2) 
adiabatic approximation to the tissue homogeneity (AATH) model, 3) distributed 
(DP) parameter model, 4) Tofts-Kety (TK) model, and 5) extended Tofts-Kety (ETK) 
model. A graphical representation of the five models is given in Fig. 1. 

2.1 Two Compartment Exchange (2CX) Model 

The 2CX model [5] assumes two compartments that are composed of the plasma and 
interstitial spaces. These compartments are assumed to be well mixed, i.e., tracer  
 

Fig. 1. A graphical representation of the two compartment exchange model (2CX), adiabatic 
approximation to the tissue homogeneity (AATH) model, distributed parameter (DP) model, 
Tofts-Kety (TK) model, and extended Tofts-Kety (ETK) model. Note that the TK ( ) 
and ETK ( ) models are reduced versions of the 2CX model under specific physiological 
scenarios. 



 Tracer Kinetic Modeling by Morales-Smith Hypothesis in Hepatic Perfusion CT 295 

 

Fig. 1. (continued) 

movement is sufficiently fast and distributes evenly throughout the compartment, so 
that the tracer concentration is a function only of time, but not of space. Thus, the 
2CX model is called a lumped-parameter model, which can be described by the 
following mass-balance equations: 

P P A 1 PV P P P I , (3) 

I I P I . (4) 

Note that P P T  and I I T  are the plasma and interstitial volumes, where P  and I  denote the plasma and interstitial volume fractions, respectively. By 
convolution with the impulse residue function , the analytic solution for T  
can be given as 

T P P 1 1 PI P 1 PI P   

A 1 PV , (5) 
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where P 1 PI P P 1 PI P 4 PI P P . 

2.2 Adiabatic Approximation to the Tissue Homogeneity (AATH) Model  

The AATH model [8] assumes a plug-flow model for the plasma and a well-mixed 
compartment for the interstitial space, where the plasma concentration is described by 
a one-dimensional axial variation P , , assuming a capillary tube with a fluid 
flow. Thus, if the axial length of a capillary tube is , the average concentration at the 
venous end is P , . In particular, the capillary walls are impermeable in the 
AATH model, and instead the interstitial space receives influx with clearance  
from the venous end of the capillary. The rest fraction 1  and the outflux from 
the interstitial space drain straight to the vein. Because the capillary walls are 
impermeable in the AATH model, the mass-balance equation in the capillary bed 
becomes only the plug-flow equation without decay. Because P ,  is the 
concentration at the venous end of the capillary, the equation for the interstitial space 
is described with influx P , . Additionally in this study, we defined an 

apparent extraction fraction 1  in order to apply the Morales-Smith 
hypothesis, i.e., the apparent plasma flow  and the permeability surface area 
product  are used for calculation of . Although the AATH model assumes 
impermeable capillary walls, this approach can be reasonable because  is related 
mathematically to  by the Renkin-Crone model. Therefore, these assumptions lead 
to the following set of mass-balance equations: 

P , P A 1 PV P , , (6) 

I I P , I , (7) 

where  is the Dirac delta function that denotes the idealized impulse excitation 
of a unit-mass source. The analytic solution for T  becomes 

T P P PI P P 1 P
  

A 1 PV , (8) 

where  denotes the unit step function. 

2.3 Distributed Parameter (DP) Model 

The DP model [3] describes the capillary bed as a plug-flow system like the AATH 
model. However, unlike the AATH model, the interstitial compartment is modeled as 



 Tracer Kinetic Modeling by Morales-Smith Hypothesis in Hepatic Perfusion CT 297 

a series of infinitesimal compartments that exchange tracer only with nearby locations 
in the capillary bed. Thus, the concentrations P ,  and I ,  both rely on the 
position of a capillary tube. The DP model does not allow for axial tracer transport in 
the interstitial space. Therefore, a tracer cannot travel to the venous ends of the 
capillary bed through the interstitial space. Thus, the DP model can be considered as a 
chain of infinitesimal 2CX models. The mass-balance equations in the DP model can 
be formulated for an elemental volume  along the axial length  of a capillary 
tube as follows: 

P , P A 1 PV P ,
P P , I , , (9) 

I , I P , I , , (10) 

The analytic solution for T  can be expressed as 

T P P
P

· 1 P PI P PI P 1 2 P PI PP
  

A 1 PV , (11) 

where  denotes the modified Bessel function of the first kind. 

2.4 Tofts-Kety (TK) and Extended Tofts-Kety (ETK) Models 

Under certain conditions such as limited information on the data or the tracer 
administration, the use of the 2CX model may be inadequate for data analysis. In 
these cases, a reduced model can be used for the identification of reliable tissue 
parameters. The ETK model [6] is a reduced version of the 2CX model, which holds 
for a scenario in which the plasma flow is sufficiently high to replenish loss of tracer 
into the interstitial space, i.e. a permeability-limited model ( ). In terms of an 
operation, the ETK model assumes that the concentration time curve in the plasma 
compartment cannot be distinguished from the arterial input concentration, i.e., P A 1 PV  for the liver. The T  for the ETK model is 
obtained from the equation (5) for the 2CX model in the limit ∞ as 
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T P A 1 PVP P PI P A 1 PV . (12) 

Although the ETK model is originally the permeability-limited model, it can be 
converted into a mixed flow- and permeability-limited or clearance model by use of 
the relationship . Thus, equation (12) can be reformulated as 

T P A 1 PV
P P PI P A 1 PV . (13) 

Thus, this conversion enables one to apply the Morales-Smith hypothesis, as can be 
done for the other models presented. Note that 2 as ∞  in the ETK model, 
i.e., 2 . On the other hand, the TK model [7] ignores an intravascular tracer, i.e., T  I I , which can be considered in terms of the flow-limited condition 
( ) in the 2CX model. The flow-limited model is obtained from equation (5) 
for the 2CX model in the limit ∞ as 

T P P PP I P A 1 PV . (14) 

Because P I in the TK model, PP I PI . In addition, under the flow-limited 

condition, . Thus, equation (14) can be reformulated as 

T  P P PI P A 1 PV . (15) 

Note that 1 as ∞ in the TK model, i.e.,  and . 

3 Results 

We used a hepatocellular carcinoma (HCC) case to generate kinetic parameter maps 
from different pharmacokinetic models and to compare them between with and 
without the Morales-Smith hypothesis in perfusion CT. Imaging was performed on a 
16-MDCT scanner (LightSpeed, GE Healthcare). Four consecutive slices in the 
region of the HCC were selected for cine image acquisition. A dynamic contrast 
enhanced study of the selected four slices was performed in a single breath-hold at the 
end of expiration with a static table position. As the contrast-media protocol for this 
case, a total of 70 ml of nonionic iodinated contrast medium (300 mg/ml) was injected 
in the antecubital vein at the rate of 7 ml/s through an 18-gauge IV cannula by use of 
a power injector. We used the following CT parameters to obtain dynamic data: 
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gantry rotation time, 1 s; 100 kVp; 240 mA; acquisition in four images per gantry 
rotation; and a reconstructed slice thickness of 5 mm. Six seconds after the start of 
contrast medium injection, an initial scan was obtained, followed by continuous 
image acquisition with a temporal resolution of 0.5 s for a total duration of 25 s, 
depending on the patient’s maximum breath hold capacity. Intermittent imaging was 
then performed once every 15 s for a total scan duration of 225 s. 

Fig. 2 shows the parameter maps for the apparent hepatic perfusion T , apparent 

arterial perfusion AT , and apparent portal perfusion PVT , which are calculated by 
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Fig. 2. Parameter maps for apparent hepatic perfusion T , apparent arterial perfusion AT , 

and apparent portal perfusion PVT , calculated with a constant factor 1 
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assuming a constant factor 1 without the Morales-Smith hypothesis. In Fig. 3, 

the parameter maps for the hepatic perfusion T , arterial perfusion AT , and portal 

perfusion PVT  are corrected by the variable tissue-specific factor  for applying the  
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Fig. 3. Parameter maps for hepatic perfusion T , arterial perfusion AT , and portal perfusion PVT , corrected by the Morales-Smith hypothesis 
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Morales-Smith hypothesis. The apparent arterial perfusion was relatively 
overestimated in the tumor tissue as compared to the corrected arterial perfusion, 
whereas the apparent portal perfusion exhibited relatively uneven mapping patterns in 
both normal and tumor tissues as compared to the corrected portal perfusion, affecting 
their total apparent hepatic perfusion. When the apparent hepatic perfusion with the 
corrected hepatic perfusion was compared among different kinetic models, the 
variation in the apparent hepatic perfusion was relatively higher in both normal and 
tumor tissues, as theoretically expected because the venous concentration hidden at 
the outlet of capillaries, which cannot be measured noninvasively, can influence the 
capillary plasma flow. In addition, the range of the apparent and corrected perfusion 
values mapped was different among different kinetic models because of their different 
underlying physiologic assumptions. Overall, the corrected hepatic perfusion, 
corrected arterial perfusion, and corrected portal perfusion improved the mapping 
quality, the consistency of the perfusion values within the same type of tissue, and the 
contrast between normal and tumor tissues. Note that the tissue-specific factor  is 
not applied to the TK model because of the constant value of 1. The ETK model 
was relatively less affected by the tissue-specific factor  because of the constant 
value of 2. 

4 Conclusion 

The preliminary results of this study showed that the model solution considering a 
tissue-specific factor by the Morales-Smith hypothesis provides promising prospects 
for more consistent quantification of well-defined physiologic parameters that 
characterize the tissue microcirculation and microvasculature. 
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