
Indexing Process Model Flow Dependencies

for Similarity Search�

Ahmed Gater1, Daniela Grigori2, and Mokrane Bouzeghoub1

1 Université de Versailles Saint-Quentin en Yvelines
45 avenue des Etats-Unis, 78035 Versailles Cedex, France

2 Université Paris-Dauphine, Pl. Mal de Lattre de Tassigny 75775 Paris, France

Abstract. The importance gained by process models in modern
information systems leaded to the proliferation of process model repos-
itories. Retrieving process models within such repositories is a critical
functionality. Recent works propose metrics that rank process models
of a repository according to their similarity to a given query. However,
these methods sequentially browse all the processes of the repository
and compare each one against the query, which is computationally ex-
pensive. This paper presents a technique for quickly retrieving process
models similar to a given query that relies on an index built on behavioral
characteristics of process models.

Keywords: semantic process models, process similarity search, process
indexing.

1 Introduction

The importance gained by process models in modern information systems and in
service oriented architecture leaded to the proliferation of process model repos-
itories. These repositories may store collections of hundreds of process models
used by large enterprises, best practices processes (like SAP best practice pro-
cesses1) or reference models provided by process management systems vendors.

Consequently, there is a critical need for tools and techniques to manage
process model repositories, including techniques that allow retrieving process
models fulfilling user needs. If the user need is formulated or available as a process
model, the most similar processes must be retrieved in the repository. Solving
this problem, called process similarity search, requires to (i) define a suitable
similarity measure and (ii) propose methods that evaluate the similarity between
a process query and a set of target processes in the repository. While the first
problem received recently considerable attention ([10,3]), very few approaches
addressed the second one.

Given an algorithm calculating a similarity measure for two processes, a naive
approach to solve the retrieval problem is to traverse all the processes of the

� This work has received support from the National Agency for Research on the ref-
erence ANR-08-CORD-009.

1 http://www.sap.com/solutions/businessmaps/composer/index.epx

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 128–145, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Indexing Process Model Flow Dependencies for Similarity Search 129

repository and compare each one against the query, and rank these processes
according to their similarity to the query. However, majority of existing process
matching algorithms ([11,5]) are NP-complete and therefore they do not scale
for large process model repositories.

We propose in this paper an effective and fast similarity search technique
that allows retrieving the most similar processes to a user query within a pro-
cess repository. To this end, we use an abstraction function that represents a
process as a finite set of flow dependencies between its activities. Thus, the
similarity of two processes is defined at the basis of the similarity of their flow
dependencies. To speed up the comparison of the flow dependencies of the query
and those of the repository processes, we define an index structure built on the
flow dependencies and the activities of the processes. Furthermore, we address
the case where a process query cannot be fulfilled by a single target process, but
by the composition of several processes. To the best of our knowledge there is
not other work allowing to propose the composition of a set of processes as an
answer of a query.

The remainder of the paper is organized as follows. The next section presents
basic definitions and notations. Section 3 presents the abstraction function we
used to represent processes. Section 4 explains the index structures and section
5 shows how they are used for query answering. In section 6 we present an
experimental study of our technique. Section 7 discusses related works. Finally
section 8 draws conclusions and presents ongoing work.

2 Background and Definitions

A business process model consists of a set of related activities that are combined
using control flow operators. In this paper, a process model is formalized as a
directed attributed graph (A,C,E), called process graph (p-graph for short),
where A is a set of activity nodes, C is a set of connector nodes and E is a set
of edges. An activity node represents an atomic task, while connectors represent
control flow constraints between activities. An activity Act = (N, In,Out) is
described by its name (N), a set of inputs (In), and a set of outputs (Out). The
inputs and outputs of activities are annotated with concepts taken from a domain
ontology. Connector nodes represent Split and Join operators of types XOR or
AND. Split connectors have multiple outgoing edges, while Join connectors have
multiple incoming edges.

The processes we handle are block-structured, i.e. sequences, alternative and
parallel branchings, and loops are specified with well defined entry and exit
nodes. A block in a process can be an atomic activity, a well-delimited sub-
process, or even the process itself. There are five types of blocks: atomic block
(a single atomic activity), sequence of blocks SEQ < B1, ..., Bn >, parallel
execution of blocksAND < B1, ..., Bn >, alternative execution of blocksXOR <
B1, ..., Bn >, and loop through a block LOOP < B >. The blocks may be nested,
but never overlap, i.e. two blocks are either nested or disjoint (if a node belongs
to two blocks then they are nested).

130 A. Gater, D. Grigori, and M. Bouzeghoub

Fig. 1. Block structures

Fig. 2. Running Example

The structures of these blocks are shown by Figure 1, where the highlighted
nodes are the entry and exit of each block. Square boxes represent activity nodes,
and the oval ones represent connectors. An example of such block-structured
processes is depicted in the left part of Figure 2, where its blocks are shown
in the form of dashed boxes (B1, B2, B3 and B4). The inputs/outputs of its
activities are annotated by the ontology depicted in the right part of the same
figure. Notice that the assumption that processes are structured into blocks is not
strong, since recent studies have shown that most of the unstructured processes
can be transformed to equivalent structured processes [14].

In the remainder, we use the notions of smallest block containing a set of
activities and loop-free path. Their descriptions are given in Definitions 1 and 2.

Definition 1. The smallest block containing a set of activities
Let (A,C,E) be a p-graph and acts = {a1, ..., ak} ⊆ A a set of activities. The
smallest block containing the activities of acts, denoted δ(acts), is the block B
such that:

Indexing Process Model Flow Dependencies for Similarity Search 131

– B contains the activities of acts, and
– Every block Bi �= B which contains the activities of acts contains also B.

Definition 2. Path and loop-free path. Let (A,C,E) be a p-graph and a
and b be two nodes. A path a → b refers to the existence of a sequence of edges
(n1, n2), (n2, n3), ..., (nk−1, nk) ∈ E, with k > 1, n1 = a and nk = b. A path
that does not contain an edge (ni−1, ni), with ni−1 is a connector node of type

XOR-Split and ni is a connector node of type XOR-Join, denoted a
lf→ b, is called

loop-free path.

3 Process Model Representation for Fast Retrieval

While graph indexing algorithms exist in the literature [15], these algorithms can
not be directly applied to process graphs. Firstly, p-graphs have two kind of nodes
(activities and control nodes) and specific attributes capturing the semantics of
the process. Most importantly, p-graphs capture the behavioral semantics of
the processes, which is not taken into account by the existing graph indexing
techniques that are mainly structural.

The idea is then to transform the p-graphs into another representation which is
the most faithfully representative of the p-graphs and, at the same time, makes
the evaluation of their similarity faster. This representation must be enough
representative to ensure that the similarity of two p-graphs is strongly correlated
by the similarity of their new representation.

To this end, we use an abstraction function that captures the essential behav-
ioral characteristics specified by a p-graph. This abstraction function inspired
by [6] and called process type, represents a p-graph as a finite set of flow depen-
dencies that occur between each pair of its activities. A flow dependency type
specifies how two activities relate to each other, and it is defined as the type of
the smallest block containing the two activities as formalized by Definition 3.
This definition states that there are four types of flow dependencies that may
occur between a pair of activities: “SEQ” when one of them is always executed
after the end of the execution of the other one, “PATH” if there exists a loop-
free execution path between them, “AND” when they are executed in parallel,
“XOR” when the activities are never executed in the same run.

Definition 3. Flow dependency type. Let (A,C,E) be a p-graph and ai, aj ∈
A two activities. The type Ti,j of the flow dependency that may occur between ai
and aj is one of the followings:

– Sequence flow dependency: Ti,j = SEQ iff δ({ai, aj}) is of type SEQ and
(ai, aj) ∈ E. The SEQ flow dependency is not commutative, thus, if Ti,j =
SEQ, then Tj,i is not defined.

– Path flow dependency: Ti,j = PATH iff δ({ai, aj}) is of type SEQ and

ai
lf→ aj occurs. The PATH flow dependency is not commutative, thus, if Ti,j

= PATH, then Tj,i is not defined.

132 A. Gater, D. Grigori, and M. Bouzeghoub

– XOR flow dependency: Ti,j = XOR iff δ({ai, aj}) is of type XOR. The
XOR flow dependency is commutative, thus, if Ti,j = XOR, then Tj,i =
XOR.

– AND flow dependency: Ti,j = AND iff δ({ai, aj}) is of type AND. The
AND flow dependency is commutative, thus, if Ti,j = AND, then Tj,i =
AND.

The type of the flow dependency of two activities is unique since it is defined on
the basis of the type of the smallest block containing the two activities.

In order to take into account loops specified in a p-graph, we define the notion
of flow dependency multiplicity, emphasing the fact that some flow dependencies
involve activities situated in a loop (and thus possible executed several times in
a run).

Definition 4. Flow dependency multiplicity. Let (A,C,E) be a p-graph,
ai, aj ∈ A be two activities, Ti,j be the type of their flow dependency. The mul-
tiplicity of a flow dependency between ai, aj, denoted Mi,j is:

– Mi,j = ∗ iff one of the blocks containing the smallest block containing ai and
aj (δ({ai, aj})) is of type LOOP.

– Mi,j = 1 otherwise.

The process type of a p-graph is defined below as the set of the pairs of activities,
with their flow dependencies types and multiplicities. Notice that for each pair
of activities only one flow dependency is added to the process type. When the
flow dependency type between two activities is commutative (XOR and AND),
the pair of activities to be added is, by convention, (ai, aj) such that the the
name of ai is lexicographically prior to the name of aj .

Definition 5. Flow dependency and Process type. Let P = (A,C,E) be
a p-graph and ai, aj ∈ A be two activities.

– The flow dependency between ai and aj is defined as a tuple fdi,j = (ai, aj , Ti,j ,
Mi,j), where Ti,j and Mi,j are respectively its type and multiplicity.

– The process type PTP of P is the set of all flow dependencies that occur be-
tween the pairs of activities of P , such that for any pair of flow dependencies
(ai, aj , Ti,j,Mi,j) and (ak, al, Tk,l,Mk,l) ∈ PTP , ai �= ak ∨ aj �= al, ai �= al
∨ aj �= ak.

In the following we use fd(ai, aj), fd(ai, aj).T ype, and fd(ai, aj).Multiplicity
to denote, respectively, the flow dependency occurring between activities ai and
aj , its type, and its multiplicity.

4 Indexing Process Models

Two p-graphs are considered as likely similar when they have similar process
types, i.e. the more two p-graphs share flow dependencies, the more they are

Indexing Process Model Flow Dependencies for Similarity Search 133

similar. The goal is then to speed up the comparison of the process type of the
query with those of the p-graphs registered in the repository.

To identify p-graphs having similar process types to a query, we first need to
identify among registered activities those that are similar to the query activities.
Thus, we need an efficient way to find all the activities registered in the repository
that are similar to the activities of the query.

Accordingly, we define two index structures, constructed on an off-line pre-
processing step of the p-graphs registered in the repository that speed up the
evaluation of the queries. The first structure indexes the activities stored in the
repository, and is built on the concepts annotating their inputs and outputs. The
second one consists on hash tables that store the process types of p-graphs as
signatures of their flow dependencies. We assume hereafter that each p-graph of
the repository has a unique identifier, and each activity of each p-graph has also
a unique identifier. We assume also that all the p-graphs registered in the repos-
itory are annotated using the same ontology. This assumption is not strong since
there are many works on ontology alignment and merging (see [7] for a survey
in ontology alignment). In the following, we show how these index structures are
built.

4.1 Indexing the Activities of the Repository

An important issue in our p-graph retrieval technique is its ability to retrieve
among the activities of the repository those that are similar to the activities of the
query. The idea is then to define efficient mechanisms that allow finding quickly
potential matches of a query activity. Based on the observation stating that
activities having similar inputs/outputs are considered more likely to be similar
[9,13], we built an index that allows quickly retrieving, among the activities of
the repository, those having inputs/outputs similar to those of the query activity.

The index consists of two sets, attached to each concept of the ontology, that
record the activities where this concept appears as an input or an output. Pre-
cisely, each concept c of the ontology is attached to two sets of annotations Inc

andOutc that record the identifiers of the activities in which this concept appears,
respectively, as an input or an output. For instance, let us consider the p-graph
example and the piece of the ontology annotating its activities of Figure 2. The
attached input and output sets of the concept “ABI” are respectively InABI =
{ComputeCIN,GetIBAN} and OutABI = {GetABI − 1, GetABI − 2}.

In this work, we are interested in retrieving inexact matches when exact ones
do not exist. In other words, an activity in a target process is considered as a po-
tential match for a activity of the query process when it satisfies the constraints
(inputs and outputs) of the query activity at a given level, i.e. some mismatches
between the inputs/outputs of a query activity and those of a target activity
can be tolerated.

For instance, there is no activity of the p-graph depicted in Figure 2 that
can strictly fulfill a query activity requiring the concept “NationalBranch” as
an output. Accordingly, we have to look for activities having as output the
concepts the most similar to “NationalBranch” on the basis of the relationships

134 A. Gater, D. Grigori, and M. Bouzeghoub

between the concepts of the ontology. That way, by considering, for example, the
parent concept of “NationalBranch” which is the concept “Branch”, the activity
“GetBranchInfo” can be considered as a potential match of this query activity.

Given a concept c annotating an input (resp. output) of a target activity,
the idea is to find a reduced set of concepts (to avoid overloaded answers),
called relaxers, such that, when a query activity requires as input (resp. output)
one of the relaxers of c, this latter can be considered as a match at a given
degree of this activity input (resp. output). To get the set of relaxers of a given
concept c, we use three relaxation rules that are formalized in Definition 6.
These rules give the possible ways to ralaxe a concept annotating an input
or an output. The relaxation rules that have to be applied and the distance
(parameter ξ in definition 6, called relaxation degree) between a concept and its
relaxers are application dependent reflecting the mismatches that a user accepts
for finding activity matches. Notice that the higher is the value of ξ, less accurate
are the matches. Setting ξ = 0 means that no relaxation is allowed, and thus

only exact matches are retrieved. In the remaining, we use c
η
↪→ c′, where η ∈

{desc, asc, cous} to denote that the concept c′ is a relaxer of type η of the concept

c. Notice that each concept is the relaxer of itself, and we note that by c
origin
↪→ c.

Definition 6. Concept relaxation rules. Let c1 and c2 be two concepts of the
same ontology O, csc be their least common superconcept, and a natural number
ξ ≥ 1. c1 can relax c2 as follows:

– Descendant relaxer: c1 is a descendant relaxer of generation ξ (denoted
Descξ) of c2 iff c1 is a sub-concept of c2, and the length of the path between
c1 and c2 (in number of intermediate edges) is less than or equal to ξ.

– Ascendant relaxer: c1 is an ascendant relaxer of generation ξ (denoted
Ascξ) of c2 iff c1 is a super-concept of c2, and the length of the path between
c1 and c2 (in number of intermediate edges) is less than or equal to ξ.

– Cousin relaxer: c1 is a cousin relaxer of generation ξ (denoted Cousξ) of
c2 iff the length of the paths between csc and c1 and c2 are less than or equal
to ξ.

Consequently, the set of annotations attached to the input set Inc (resp. output
Outc) of a concept c records also the identifiers of the activities that have as
input (resp. output) one of the concepts that it can relax.

For instance, let us consider the concept ABI of the ontology depicted by
Figure 2 and the activities of the p-graph of the same figure. By considering the
aforementioned relaxation rules and relaxers of generation 1 (ξ = 1), the output
set attached to concept “ABI” contains activity identifiers: “GetABI-1” and
“GetABI-2” (because “ABI” is an output of these activities), “ComputeCIN”
(because this activity has concept “CIN” as an output which is a descendant
relaxer of “ABI” of generation 1), “GetCAB-1” and “GetCAB-2” (because these
activities has concept “CAB” as an output which is a cousin relaxer of “ABI”
of generation 1). The formal description of the attached input and output sets
of a concept c are given in Definition 7.

Indexing Process Model Flow Dependencies for Similarity Search 135

Definition 7. Input and Output annotation sets. Let AIds and GIds be,
respectively, the sets of the identifiers of all the activities and the p-graphs regis-
tered in the repository. Let η ∈ {desc, asc, cous, origin} be a relaxation rule. Let
c be a concept belonging to an ontology O.

– Inc = {(IdA, Idg, η, ss)|IdA ∈ AIds, Idg ∈ GIds, ∃c′ ∈ In(IdA), c
′ η
↪→

c, ss = InputSim(c′, c)}
– Outc = {(IdA, Idg, η, ss)|IdA ∈ AIds, Idg ∈ GIds, ∃c′ ∈ In(IdA), c

′ η
↪→

c, ss = OutputSim(c′, c)}
The calculation of the similarity between a target concept and its relaxers differs
depending on whether it annotates an input or an output. For the case of inputs,
the similarity between a concept and its descendant relaxer is 1 since all the
attributes required by a target activity input c can be provided by a query
activity input which is a descendant of c. Following the same reasoning, the
similarity between a target activity output and its ascendants is 1 since the
target activity output c can provide all the attributes of a query activity output
which is its ascendant. In other cases, any similarity measure [16] can be used
to evaluate the similarity between a concept and its relaxer.

The construction of the sets of input and output annotations attached to
the concepts of the ontology is done incrementally. Thus, when adding a new
activity, only the input and output annotation sets of concepts appearing in this
activity
are updated by adding the new annotations. In another hand, when an activity
is removed from the repository, only the annotations generated by this activity
are deleted. Therefore, adding and deleting an activity do not require the re-
construction of the input and output annotations from scratch, this makes the
updating time short.

4.2 Indexing Process Types

As mentioned previously, the p-graphs registered in the repository are compiled
into their respective process types that are indexed using three hash tables:
Processes, Activities and FlowDependencies.

The Processes hash table contains the descriptions of the p-graphs registered
in the repository, such as the names, the number of their activities, and their
storage path. It is indexed by the identifier assigned to the p-graphs. This iden-
tifier is auto-generated by incrementing a counter every time that a new p-graph
is added to the repository.

The Activities hash table stores the descriptions of the activities of the p-
graphs registered in the repository. It is indexed by the identifiers assigned to
activities that are built by concatenating the identifier of the p-graph to which
they belong and a unique identifier distinguishing each activity within the p-
graph to which it belongs (generated in the same way as the identifier of the
p-graphs). Each entry of this table stores the name, inputs, and outputs of an
activity.

136 A. Gater, D. Grigori, and M. Bouzeghoub

The FlowDependencies hash table contains the flow dependencies specified by
the p-graphs registered in the repository. It is indexed by the signatures of these
flow dependencies that are built as follows.

Let us consider a flow dependency fd(i,j) = (ai, aj , T(i,j),M(i,j)) occurring
in a p-graph, and Aidi and Aidj be the identifiers assigned to the activities
ai and aj . The signature of fd(i,j) is built by concatenating the identifiers of
the activities (Aidi and Aidj) and the type of the flow dependency (T(i,j)):
“Aidi.Aidj .T(i,j)”. The signature of each flow dependency is unique since there
is only one dependency flow between each pair of activities. Each entry of the
FlowDependencies hash table records the multiplicity and the identifier of the
p-graph to which it belongs.

As the activity index, the construction of the index for process types is done
incrementally, by inserting the description of the p-graph and its activities, and
its flow dependencies in Processes, Activities, and flow dependency hash tables.

5 Process Retrieval

Given a query p-graph Q = (AQ, CQ, EQ) and a set of indexed p-graphs an-
notated using the same ontology O, the evaluation of Q operates in four steps
as shown by Figure 3. First, the process type PTQ of Q is established (step
Process Type Generator) following the procedure presented in section 3. Sec-
ond, the Activity Matches Searcher retrieves within the repository the match-
candidates of each activity of Q. Next, Process Matches Searcher examines the
match-candidates of the activities of Q and determines the set of p-graphs that
potentially match Q. The result is a list of p-graphs containing at least one pair
of activities similar to a pair of activities of Q and having the same flow depen-
dency type. These p-graphs are ranked based on the similarity of their process
types with PTQ, i.e. p-graphs sharing more flow dependencies with Q are bet-
ter ranked than those sharing less flow dependencies. Based on these p-graph
match-candidates, the Process Composition Searcher tries to discover complex
match candidates by composing the p-graph match-candidates. The similarities
of these compositions are then evaluated. This finally leads to a ranked list of
target p-graphs. Hereafter, we detail these steps.

5.1 Activity Matches Searcher

Given a query activity Aq = (Nq, Inq, Outq), the Activity Matches Searcher
retrieves the set of activities registered in the repository that match Aq.

As mentioned above, an activity At = (Nt,Int, Outt) registered in the repos-
itory is a potential match of Aq if it shares at least one direct or relaxed in-
put/output with Aq, i.e. if it exists at least one input (resp. output) of At which
is an input (resp. output) of Aq or one input (resp. output) of Aq is a relaxer of
an input (resp. output) of At. The relaxation rules to be considered to generate
these match candidates are defined by the user.

To select these activities, the searcher refers to the input/output annotations
attached to the ontology concepts. Specifically, given the set of allowed input

Indexing Process Model Flow Dependencies for Similarity Search 137

Activity
Matches
SearcherQuery

Annotated Ontology

Process Type
Generator

Query
Process
Type Searcher

Activity/Process
matches

y

Process types

Type

Process
Matches
Searcher

Process
Composition
Searcher

Process
Type

matches

…

QueryQuery
matches

Fig. 3. P-graph retrieval steps

and output relaxation rules specified by a user denoted respectively RI and RO,
the set of match candidates of Aq is formally described by:

ActCandid(Aq, RI , RO) = InCandid(Aq, RI) ∪OutCandid(Aq, RO).

InCandid and OutCandid are the functions that, respectively, compute the sets
of the activities that share with Aq, at least, one direct or relaxed input and
output. They are defined as follows:

InCandid(Aq, RI) =
⋃

c ∈ Inq

{Idat |(Idat , Idg, η, ss) ∈ InAnnot(c), η ∈ RI}

OutCandid(Aq, RO) =
⋃

c ∈ Outq

{Idat |(Idat , Idg, η, ss) ∈ OutAnnot(c), η ∈ RO}

InAnnot(c) and OutAnnot(c) are the functions that retrieve respectively the
input and output annotations attached to the concept c using the index built on
the p-graph activities of the repository.

Once the set of match candidates is established, the similarity between Aq

and each candidate has to be calculated. The similarity between Aq and a target
activity At identified by Idat is defined on the basis of the similarity between
their inputs and outputs as stated by the following formula:

ActSim(Aq, Idat) =
1
2
(

1

|Int|
∑

c ∈ Inq

InSim(Idat , c) +

1

|Outq |
∑

c ∈ Outq

OutSim(Idat , c)),

where, |Outq| (resp. |Int|) is the number of outputs (resp. inputs) ofAq (resp.At).
The function InSim(Idat , c) (resp. OutSim(Idat , c)) returns the similarity of

the input (resp. output) annotation attached to the concept c whose activity
identifier is Idat when it exists, zero otherwise. This is shown by the following
formulas:

138 A. Gater, D. Grigori, and M. Bouzeghoub

InSim(Idat , c)) =

{
ss if (Idat , Idg, η, ss) ∈ InAnnot(c)
0 otherwise

OutSim(Idat , c) =

{
ss if (Idat , Idg, η, ss) ∈ OutAnnot(c)
0 otherwise

Doing so, some registered activities may be retrieved even if they have a low sim-
ilarity with the query activity. To keep only promising candidates, we set a simi-
larity threshold that match-candidates have to meet to be considered as potential
matches. Therefore, considering a similarity threshold ρ, the set of matches of an
activity Aq is: ActMatches(Aq, RI , RO, ρ) = {Idat |Idat ∈ ActCandid(Aq, RI , RO),

ActSim(Aq, Idat) > ρ}
Other threshold functions, such as the number of fulfilled inputs and/or out-

puts, and/or the number of activity match candidates to select can be considered.
Once the activity matches of each activity of Q are established and ordered

according to their similarity with this activity, they are passed as input to the
Process Matches Searcher.

5.2 Process Matches Searcher

Given the sets of activity matches of a query, the process matches searcher eval-
uates the similarity between each p-graph match-candidate and Q, this leads to
a ranking of these p-graphs.

The set of p-graph match-candidates of Q is defined as the set of p-graphs
with which it shares at least one activity as formalized by the following formula:

ProCand(Q,RI , RO, ρ) =
⋃

Aq ∈ AQ

⋃

Idat ∈
ActMatches(Aq, RI , RO , ρ)

PId(Idat),

where PId(Idat) gives the identifier of the p-graph to which the activity identi-
fied by Idat belongs.

Subsequently, a mapping between the activities of each match-candidate T
(identified by IdT) and the activities of Q is established. This mapping contains
all the correspondences found between their activities. It is formally defined as
follows:

MQ↔T = {(aq, Idat , ss)|aq ∈ AQ, IdT = PId(Idat), Idat ∈ ActMatches(aq, RI ,
RO, ρ), ss = ActSim(aq, Idat)}, such that for any pair (a1q, Id

1
at
, ss1) and (a2q , Id

2
at
,

ss2) ∈ MQ↔T , a
1
q �= a2q and Id1at

�= Id2at
.

The similarity of this mapping is defined as follows:

SimMQ↔T = 1
|AQ|

∑

(aq, Idat , ss) ∈ MQ↔T

ss.

As stated above, the similarity betweenQ and its match-candidate T is estimated
in the basis of the similarity of their process types PTQ and PTT .

Let us consider ΠQ↔T be the set of fully matched flow dependencies be-
tween PTQ and PTT , that is defined as follows: ΠQ↔T = {(fdq, fdt)|fdq =

Indexing Process Model Flow Dependencies for Similarity Search 139

(aq1, a
q
2, ρq,mq) ∈ PTQ, fdt = (at1, a

t
2, ρt,mt) ∈ PTT , (a

q
1, a

t
1, ss1) ∈ MQ↔P , (a

q
2, a

t
2,

ss2) ∈ MQ↔P , ρq = ρt,mq = mt}.
Let us also consider Π ′

Q↔T be the set of partially matched flow dependencies
between PTQ and PTT , that includes the flow dependencies having the same
type and having their respective activities matched but having different multi-
plicities. Its formal description is defined as follows: Π ′

Q↔T = {(fdq, fdt)|fdq =

(aq1, a
q
2, ρq,mq) ∈ PTQ, fdt = (at1, a

t
2, ρt,mt) ∈ PTT , (a

q
1, a

t
1, ss1) ∈ MQ↔P , (a

q
2, a

t
2,

ss2) ∈ MQ↔P , ρq = ρt,mq �= mt}.
Finally, we define the similarity between Q and T as follows.

SimPro(Q,T) = ωm ∗ SimMQ↔T + ωf ∗ |ΠQ↔T |
|PTQ| + ωp ∗ |Π′

Q↔T |
|PTQ|

Weights 0 ≤ ωm ≤ 1, 0 ≤ ωf ≤ 1, and 0 ≤ ωp ≤ 1 (ωm + ωf + ωp = 1) indicate
the contribution of respectively, the matched activities between Q and T , fully
and partially matched flow dependencies to establish this similarity.

It should be noted that the computation of the shared flow dependencies
between a query and a target p-graphs is enhanced using the indice built on the
flow dependencies of the p-graphs of the repository.

5.3 Process Composition Searcher

As mentioned before, in some cases a query cannot be satisfied by a single target
p-graph, but by a set of p-graphs composed using control structures (sequence,
parallelism, alternative branches).The idea is then to develop a technique that is
able to propose the composition of several p-graphs as an answer. Such kind of
responses are very helpful since it relieves the user of a very tedious composition
task.

Informally, two p-graphs can be composed when their respective activities are
matched against subgraphs that are disjoint. Figure 4 shows a query and a set
of its match candidates. The match candidates T1 and T2 are good candidates
for composition since their respective activities are matched against subgraphs
that are disjoint, while the composition of T3 and T4 is not possible since the
subgraphs of the query covered by these matches overlap. In other words, a set
of p-graphs can be composed if they are mapped to subgraphs of the query that
are composable in sequence or using connector nodes of types XOR or AND.
This is formalized by Definition 8. This definition states that two p-graphs are
composable when the type of the flow dependencies occurring between each pair
of their respective match activities in the query are of the same type.

There is an exception to this rule that occurs when the two p-graphs are
matched against two parts of the query that are in sequence. The exception
states that if the flow dependencies occurring between the activities of the query
matched to a p-graph G1 and the activities matched to another p-graph G2 is
of type PATH, it may exist at most one pair of activities a1 ∈ G1 and a2 ∈ G2

having a flow dependency of type SEQ.

140 A. Gater, D. Grigori, and M. Bouzeghoub

Definition 8. Process composition. Let us consider a query p-graph Q =
(AQ, CQ, EQ) and a set of its match-candidates: T1 = (A1, C1, E1), ..., Tk =
(Ak, Ck, Ek). Let MQ↔Tk

, ..., MQ↔Tk
be the mappings found between Q and re-

spectively T1, ..., Tk. Let MQ→T1 = {aq|(aq, aT1 , ss1) ∈ MQ↔T1}, ..., MQ→Tk
=

{aq|(aq, aTk
, s2) ∈ MQ↔Tk

} be the sets of the mapped nodes of Q following re-
spectively the mappings MQ↔T1 , ..., and MQ↔Tk

. P-graphs T1, ..., and Tk are
composable to answer the query Q iff:

– MQ→T1 ∩ ... ∩MQ→Tk
= ∅

– for each pair MQ→Ti andMQ→Tj , and each pair of activities a1i , a
2
i ∈ MQ→Ti ,

and each pair of activities a1j , a
2
j ∈ MQ→Tj : fd(a

1
i , a

1
j).T ype = fd(a2i , a

2
j).T ype

Fig. 4. Process composition example

The composition of a set of p-graphs results in the fulfillment of other flow
dependencies specified by the query that are not satisfied by one p-graph taken
alone. Therefore, the set of fulfilled flow dependencies of the composition of
two p-graphs Ti and Tj is defined as follows: I(Ti, Tj) = {(a1, a2, γ,m)|a1 ∈
MQ→Ti , a2 ∈ MQ→Tj}, where, γ is the type of the flow dependency between each
pair (a1, a2) (it is unique since T1 and T2 are composable), m is its multiplicity
which is also the same of all the pairs of activities because the composition rule
allows only the composition of p-graphs that are mapped to disjoint sub-blocks.

Let Ts = {T1, ..., Tk} be the set of p-graphs to be composed in order to answer
the query Q, the set of flow dependencies of the query satisfied by the compo-

sition of the p-graphs of Ts is: IQ =

|Ts|⋃

i=1

|Ts|⋃

j=i

(I(Ti, Tj)). Therefore, the similarity

between Q and Ts is defined as follows:

Indexing Process Model Flow Dependencies for Similarity Search 141

SimCompo(Q,Ts) =

|Ts|∑

i=1

SimPro(Q,Ti) + ωf ∗ |IQ|
|PTQ| , where ωf is as defined in

section 5.2

6 Implementation and Experiments

We implemented our technique on top of a platform for matching p-graphs [4]
and experimentally evaluated it. One of the problems we faced to conduct our
experiments is the lack of a public benchmark over which we can test our tech-
nique, and against which we could compare its result. To overcome this, we built

Fig. 5. Number of annotations of the ontology Vs the number of p-graphs and ξ

up our own test collection that we generated by considering the mismatches
that most often occur in real life p-graphs and a set of p-graph characteristics
that could impact the performances of our technique. The collection contains
623 p-graphs annotated using an ontology containing 500 concepts. On average
each p-graph contained 19 activities with a minimum of 2 and a maximum of 83
activities. The average size of an activity name is 2 words with a minimum of 1
and a maximum 8 words.

We randomly extracted from this collection 30 query p-graphs and 300 p-
graph targets. We then manually evaluated the similarity between each query
and the targets in a 1-7 Likert scale and we subsequently ranked the targets
according to their similarity with each query. Details about the methodology we
followed to built this collection and its characteristics can be found in [8].

The first experiments were dedicated to the study of the size of the indexes
according to the number of indexed p-graphs and the relaxation degree (ξ). From
Figure 5, we can see that the number of annotations generated when adding p-
graphs is approximatively linear with respect to the number of indexed p-graphs
(the tendency is the same whatever the value of ξ). In addition, the number
of generated annotations for the same number of indexed p-graphs increases,
as expected, with the increasing of the value of ξ. Nevertheless, the number of
annotations remains reasonable for a repository containing 600 p-graphs (630k

142 A. Gater, D. Grigori, and M. Bouzeghoub

Fig. 6. Sizes of the hash tables Vs the number of p-graphs and ξ

when ξ = 2). From Figure 6, we can see that the size of the hashtable index is
also approximatively linear with respect to the number of indexed p-graphs. For
instance, the indexing of 600 p-graphs required 77k entries in the hashtables,
and on average, the indexing of a p-graph required 128 entries. The size of
the indexes could become prohibitive for repositories containing thousands of
p-graphs, but it supports the indexing of current repositories that, in majority
of cases, contain less than 1000 p-graphs. It should be noted that the time for
indexing 600 p-graphs is about 300 seconds. Although the indexing of a large
number of p-graphs at the same time may require considerable time, it is not
penalizing since it is done in an off-line preprocessing step.

Figure 7 shows the effect of varying the number of indexed p-graphs and the
relaxation degree ξ (from 0 to 2) on the average and maximum times spent for
answering the queries of our benchmark. The results show that query answer-
ing is done within low times. For example, the maximum and average time for
answering a query are respectively equal to 37 ms and 95 ms when the number
of indexed p-graphs is equal to 600 and ξ is equal to 2 (the worst case in our
experiments). These results also show that the time of query answering increases

Fig. 7. Query evaluation times vs the number of p-graphs and ξ

Indexing Process Model Flow Dependencies for Similarity Search 143

with the increasing of the number of indexed p-graphs, and the tendency of this
increasing is approximatively linear (whatever the value of ξ).

Finally, we evaluated the quality of the rankings found by our technique with
respect to the number of the indexed p-graphs and the value of ξ. The indexes
are built only on p-graphs for which a manual evaluation was made (300 p-
graphs). The effectiveness of the rankings is evaluated using the well known
NDCG formula formalized in Definition 9. The results of this experiment are
shown by the graphic of Figure 8. As shown by this graphic, the results obtained
by our technique are very satisfactory. For instance, the NDCG obtained when
ξ = 2 and the number of indexed p-graphs is 300 is equal to 0.81. We also
observed that the value of NDCG slightly decreases when the number of indexed
p-graphs increases. However, the decreasing is it is negligible when ξ = 2.

Definition 9. NDCG measure. Let Ψ = [P1, P2, ..., Pn] be the ranking found by an
algorithm for a given query Qk, and δ(k,i) be the similarity degree between Qk and PMi

given by an expert. Let Zn be the DCG corresponding to the manual (best) ranking. The

effectiveness of the ranking Ψ is: NDCGn = 1
Zn

∑n
i=1

2δ
(k,i)−1

log2(i+1)
.

Fig. 8. NDCG Vs the number of indexed p-graphs and ξ

7 Related Work

To the best of our knowledge, the only works addressing the problem of process
retrieval in repositories are [17,18,12,1].

In [17], an index build on top of a RDBMS relates a process model to a set
of partial traces of length N. A feature-based filtering technique is proposed
in [18] to search a collection of processes specified using process graphs. The
target processes are ranked according to the number of shared features with the
query. Features are small subgraphs that may be: the first and last activities,
sequence of a given length, a split node and its successors, and a join node with
its predecessors.

A visual query language extending BPMN is proposed in [1] to query graph-
based process collection. The processes are stored in a relational database that

144 A. Gater, D. Grigori, and M. Bouzeghoub

stores process models nodes (activities and gateway), edges, and paths. The
approach is extended in [2] to handle differences of vocabularies that may occur
between the query and the stored processes.

Recently, another query language is proposed in [12] that allows specifying
the behavioral relationships (two activities can be in sequence, parallel or exclu-
sive branches) that must fulfill the processes to retrieve. The relationships that
occur in the stored processes are indexed using an inverted list that relies each
behavioral relationship to the set of processes where it occurs.

Many other works [3,10] addressed the problem of measuring the similarity
between two processes. These methods sequentially traverse all the processes
of the repository and compare each process against the query. The majority of
these algorithms are NP-complete and therefore they do not suit for searching
similar processes of a query within a repository of processes.

To summarize, we proposed a fast similarity search technique that allows
retrieving within a repository the processes the more similar to the query, while
the above techniques allow only exact structural matches. Other novel feature
of our approach is that it allows proposing a composition of processes in the
repository to answer a user query.

8 Conclusion

We propose in this paper an effective and fast similarity search technique that
allows retrieving within a process repository, the processes the most similar to
the query. Moreover, our approach allows proposing the composition of processes
in the repository to answer his query. To do so, we use an abstraction function
that represents a process model as a finite set of representative flow dependen-
cies, which are indexed along with the process activities. We implemented our
algorithms in a larger platform for matching process models [4] and experimen-
tally evaluated it. Experiments show that our technique has very good execution
times.

To reduce the size of indexes, mainly for managing very large repositories, we
are currently investigating methods of ontology encoding that reduce the size of
the annotated ontology. We also work on methods that allow a more compact
representation of the process type relation.

References

1. Awad, A.: Bpmn-q: A language to query business processes. In: EMISA, pp. 115–128
(2007)

2. Awad, A., Polyvyanyy, A., Weske, M.: Semantic querying of business process mod-
els. In: EDOC, pp. 85–94 (2008)

3. Becker, M., Laue, R.: A comparative survey of business process similarity measures.
Computers in Industry 63(2), 148–167 (2012)

4. Corrales, J.C., Grigori, D., Bouzeghoub, M., Burbano, J.E.: Bematch: a platform
for matchmaking service behavior models. In: EDBT, pp. 695–699 (2008)

Indexing Process Model Flow Dependencies for Similarity Search 145

5. Dijkman, R.M., Dumas, M., van Dongen, B.F., Käärik, R., Mendling, J.: Similarity
of business process models: Metrics and evaluation. Inf. Syst., 498–516 (2011)

6. Eshuis, R., Grefen, P.: Structural matching of bpel processes. In: Fifth European
Conference on Web Services, Halle (Saale), Germany, pp. 171–180 (2007)

7. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
8. Gater, A.: Process matching and discovery. PhD thesis, University of Versailles

(2012)
9. Gater, A., Grigori, D., Bouzeghoub, M.: Complex mapping discovery for semantic

process model alignment. In: IIWAS (2010)
10. Gater, A., Grigori, D., Bouzeghoub, M.: A graph-based approach for semantic

process model discovery. In: Sakr, S., Pardede, E. (eds.) Graph Data Manage-
ment:Techniques and Applications, pp. 223–233. Information Science Reference
(2011)

11. Grigori, D., Corrales, J.C., Bouzeghoub, M., Gater, A.: Ranking bpel processes for
service discovery. IEEE T. Services Computing, 178–192 (2010)

12. Jin, T., Wang, J., Wen, L.: Querying Business Process Models Based on Semantics.
In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011, Part II. LNCS, vol. 6588,
pp. 164–178. Springer, Heidelberg (2011)

13. Klusch, M., Fries, B., Sycara, K.: Automated sematic web discovery with owls-mx.
In: AAMAS 2006 (2006)

14. Polyvyanyy, A., Garćıa-Bañuelos, L., Dumas, M.: Structuring Acyclic Process
Models. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336,
pp. 276–293. Springer, Heidelberg (2010)

15. Sakr, S., Al-Naymat, G.: Graph indexing and querying: a review. International
Journal of Web Information Systems 6(2), 101–120 (2010)

16. Valery, C.: Fuzzy semantic distance measures between ontological concepts. In:
NAFIPS, pp. 635–640 (2004)

17. Wombacher, A., Mahleko, B., Fankhauser, P.: A grammar-based index for matching
business processes. In: ICWS 2005 (2005)

18. Yan, Z., Dijkman, R., Grefen, P.: Fast Business Process Similarity Search with
Feature-Based Similarity Estimation. In: Meersman, R., Dillon, T.S., Herrero, P.
(eds.) OTM 2010, Part I. LNCS, vol. 6426, pp. 60–77. Springer, Heidelberg (2010)

	Indexing Process Model Flow Dependencies for Similarity Search
	Introduction
	Background and Definitions
	Process Model Representation for Fast Retrieval
	Indexing Process Models
	Indexing the Activities of the Repository
	Indexing Process Types

	Process Retrieval
	Activity Matches Searcher
	Process Matches Searcher
	Process Composition Searcher

	Implementation and Experiments
	Related Work
	Conclusion
	References

