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Abstract. Business process modeling is considered a manual, labor in-
tensive task. It requires significant domain expertise and may be prone
to errors or inconsistencies due to reliance on human factors. Hence,
automation through reuse of predefined process models is becoming a
common practice for generating new models. In this work we extend a
previously proposed generation method by adding semantic learning ca-
pabilities that opt to improve the quality of generated business process
models. The learning mechanism analyzes, in real-time, the linguistic re-
lationships between process descriptors and adjusts them according to
human inputs that are accumulated during the modeling process. To
demonstrate the method we present a case-study from the food man-
ufacturing industry. To estimate the applicative value we further ex-
perimented the method on a real-life process repository, showing that
the learning mechanism increases the effectiveness of the previously sug-
gested method for automating the design of new business process models.

Keywords: Business process model design, Business process reposito-
ries, Business process semantic similarity, Machine learning.

1 Introduction

Business process modeling is considered a manual, labor intensive task. It re-
quires significant domain expertise and is prone to errors or inconsistencies due
to reliance on human, non-machine assisted activities. Hence, automating the
reuse of predefined process models is becoming a common practice for creating
new business process models. Research in this field has focused on structured
reuse of existing building blocks and pre-defined patterns that provide context
and sequences [5]. The work in [11] established a method for designing new
business process models from process repositories, based on semantic similarity.
This method guides business analysts that are non domain experts, by suggesting
process steps that are relevant for the realization of the process goal. The busi-
ness logic for such suggestions is extracted from process repositories through the
analysis of existing business process model activities. Each activity is encoded
automatically as a semantic descriptor using the Process Descriptor Catalog
(“PDC”) notation, suggested first in [12] and elaborated in [11].
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This work aims to take the framework presented in [11] several steps forward
by: (1) proposing a machine learning mechanism that will take into account the
designer preferences at each design phase and adjust (in real-time) the sugges-
tions made by the automated design mechanism at the next design phases; and
(2) applying the suggested framework on real-life processes. Our work presents
the following innovations: (a) it provides a generic, real-time, machine learning
mechanism for the design of new business process models; (b) it equally utilizes
objects and actions for machine learning: we make use of all activity linguistic
components (object, actions and their qualifiers) concurrently, without special
focus on objects (as object centric methods do) or on actions (as activity-centric
methods do); and (c) it significantly extends the descriptor space model [11] to
enable the ongoing update of its underlying business logic as a result of learning,
turning it into a learning descriptor space.

The proposed extended method can assist process analysts in designing new
business process models while making use of knowledge that is encoded both
in the design of existing, related process models, and also from the accumu-
lated knowledge of the human designer. The extended framework is illustrated
throughout the paper using an example based on real-life processes from the
food manufacturing industry. We also use this process-repository to demonstrate
a case study, and use it as a basis for experiments that measure the effectiveness
of the proposed machine learning framework.

The paper is organized as follows: we present related work in Section 2, po-
sitioning our work with respect to previous research. In Section 3 we present
the semantic descriptor notion [11] as background to this work. In Section 4 we
elaborate the descriptor space concept presented in [11] to support the learn-
ing framework. We describe the extended automation method for designing new
business process models in Section 5. Section 6 introduces the case study and
our experiments and empirical analysis. We conclude in Section 7.

2 Related Work

Research on automated process model generation mainly focuses on supporting
the design of alternative process steps within existing process models [16,5,6,1].
The identification and choice of relevant process components are widely based on
the analysis of linguistic components - actions and objects that describe business
activities. Most existing languages for business process modeling and implemen-
tation are activity-centric, representing processes as a set of activities connected
by control-flow elements indicating the order of activity execution [19,10]. Other
works are action-centric, analyzing the connectivity and relationships between
actions [17].

In recent years, an alternative approach has been proposed, which is based
on objects (or artifacts/entities/documents) as a central component for business
process modeling and implementation. This relatively new approach focuses on
the central objects along with their life-cycles. Services (or tasks) are used to
specify the automated and/or human steps that help move objects through their
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life-cycle, and services are associated with artifacts using procedural, graph-
based, and/or declarative formalisms [8]. Such object-centric approaches include
artifact-centric modeling [14,2], data-driven modeling [13] and proclets [18].

Although most works in the above domain are either object, action or activ-
ity centric, only few works combine the three approaches in order to exploit an
extended knowledge scope of the business process. The work in [9] presents an
algorithm that generates an information-centric process model from an activity-
centric model. The works in [12,11] present the concept of business process de-
scriptor that decomposes process names into objects, actions and qualifiers. In
our previous review (see [11]) we identified only a few works that addressed the
design of new models. The work presented in [13], for example, utilizes the infor-
mation about a product and its structure for modeling large process structures.
[15] presents a method for designing new manufacturing related processes based
on product specification and required design criteria. The work in [6] supports
modeling recommendations based on the interpretation of process descriptions.

Focusing on our previous work in [11], we realized that although it presented
a method for new process model design based on business process descriptor
analysis, it didn’t apply a machine learning mechanism to provide a real-time
improvement of the suggested framework based on human inputs. We did find
some works that involve learning as means for achieving other business processes
repository utilization targets. For example, some works suggest frameworks for
better understanding business process models that apply learning during simu-
lations [3] or runtime [4], and the work in [7] uses reinforcement learning to solve
a resource allocation optimization problem.

In this work we elaborate research in this domain by: (a) proposing a learning
mechanism that will take into account the designer preferences at each design
phase and adjust (in real-time) the suggestions made by the design assistant
framework at next design phases; and (b) elaborating the descriptor space con-
cept to support learning frameworks.

3 The Semantic Descriptor Model

In the Process Descriptor Catalog model (“PDC”) [12] each activity is composed
of one action, one object that the action acts upon, and possibly one or more
action and object qualifiers, as illustrated in Fig. 1, using UML relationship sym-
bols. Qualifiers provide an additional description to actions and objects. In par-
ticular, a qualifier of an object is roughly related to an object state. State-of the
art Natural Language Processing (NLP) systems, e.g., the “Stanford Parser,”1

can be used to automatically decompose process and activity names into pro-
cess/activity descriptors.

For example, the activity “Manually mix wheat flour” generates an activity
descriptor containing the action “mix,” the action qualifier “manually,” the object
“flour” and the object qualifier “wheat.”

1 http://nlp.stanford.edu:8080/parser/index.jsp
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Fig. 1. The activity decomposition model

In general, given an object, o, an object qualifier, qo, an action, a, and an
action qualifier, qa, a descriptor, d, is denoted as follows: d = (o, qo, a, qa). A
complete action is an action with its qualifier, and similarly, a complete object
is an object with its qualifier. We denote by a(d) the complete action part of
the descriptor, e.g., “manually mix” in the example, and similarly, o(d) denotes
the complete object part. In addition, qo(d) denotes the object qualifier part,
othin(d) denotes the object part of the descriptor (without its qualifiers), and
athin(d) denotes the action part.

3.1 A Descriptor Model for Process Design

The PDC model of [12] was enhanced by [11] to support automated process de-
sign. The extended model has two basic elements, namely objects and actions,
and four taxonomies are delineated from them, namely an Action Hierarchy
Model (AHM), an Object Hierarchy Model (OHM), an Action Sequence Model
(ASM) and an Object Lifecycle Model (OLM). The business action and object
taxonomy models organize a set of activity descriptors according to the rela-
tionships among business actions and objects both hierarchically and in terms
of execution order, as detailed next.
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Fig. 2. Segment of an action hierarchy model

The hierarchical dimension of actions and objects is determined by their qual-
ifiers. To illustrate the hierarchical dimension, a segment of the action hierarchy
model of a bakery is presented in Fig. 2 and a segment of the object hierarchy
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model of a bakery is presented in Fig. 3. In the action hierarchy model, for ex-
ample, the action “Mix” It is a subclass (a more specific form) of “Manual mix,”
since the qualifier “Manual” limits the action of “Mix” to reduced action range.

It is worth noting that some higher-hierarchy objects and actions are gener-
ated automatically by removing qualifiers from lower-hierarchy objects and ac-
tions. For example, the action “Add” was not represented without qualifiers in the
bakery process repository, and was completed from the more detailed action: “Add
using spoon” by removing its action qualifier (“using spoon”) (see Fig. 2). This type
of objects and actions, namely: artificial objects and actions, are marked with a
dashed border. In addition, a root node “Do” is added to any action hierarchy
model and a root node “Object” is added to any object hierarchy model.

Flour Add Mix

Water Heat up Add to flour

Yeast Separate Mix with water Add to flour

Pour into glass

PourSift

Spray

Mix with flour

Bread Insert into oven Bake Cover Slice Pack Deliver

Fig. 4. Segment of an action sequence model of a bakery
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Fig. 5. Segment of an object lifecycle model of a bakery

In the action sequence model, each object holds a graph of ordered actions that
are applied to that object (see illustration in Fig. 4). For example, the object
“Flour” is related to the following action sequence: “Sift” followed by “Add,”
“Mix,” and finally “Pour.”

In the object lifecycle model each object holds a graph of ordered objects that
expresses the object’s lifecycle, meaning - the possible ordering of the object’s
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states. In other words, an OLM is a graph of ordered complete objects that
expresses the possible ordering of the object’s states (see illustration in Fig. 5).
For example, the object “Flour” is part of the following object lifecycle: “Flour”–>
“Sifted flour”–>“Mixed flour.”

Note that ASM and OLM are defined as sets of sequences and not as a single
sequence, since different unconnected processes in the repository may involve the
same object, and therefore contribute a different sequence to these models. We
denote the procedure for creating an ASM and an OLM for a complete object,
o, as: createASM(o) and createOLM (o), respectively.

4 The Learning Descriptor Space

In this section we extend the Descriptor Space (DS) concept presented in [11] to
express learned information regarding a designer’s preferences and knowledge.

Based on [11], it is possible to visualize the operational range of a business
process model as a descriptor space comprised of related objects and actions. The
descriptor space describes a range of activities that can be carried out within a
process execution flow. The coordinates represent the object dimension, the ac-
tion dimension, and their qualifiers. Therefore, each space coordinate represents
an activity as a quadruple AC = 〈o, qo, a, qa〉.

Once constructed, the descriptor space includes all the possible combinations
of descriptor components, forming a large and diversified set of possible descrip-
tors. It includes several “virtual” combinations - that did not originally exist in
the original process repository. These virtual combinations, together with exist-
ing activities, form a significantly extended repository that is used for the auto-
mated design of new business processes as well as for the learning mechanism.
For every two coordinates in the descriptor space a distance function is defined
as a linear combination of changes within each of its dimensions. Therefore, four
specific distance measures are defined as follows.

Definition 1. Object distance (OD): Let oi and oj be two objects, ODij is
the minimal number of steps connecting oi and oj in the object lifecycle model.

In a similar way Action distance, AD, is defined, calculated based on the action
sequence model. For example, the action distance between “Sift” and “Mix” when
acted on “Flour” is 2 (see Fig. 5).

Definition 2. Object hierarchy distance (OHD): Let oi and oj be two ob-
jects, OHDij is the minimal number of steps connecting oi with oj in the object
hierarchy model.

In a similar way Action hierarchy Distance, AHD, is defined, calculated based
on the action hierarchy model.

Definition 3. Object learned proximity (OLP): Let oi and oj be two objects
in the object lifecycle model, OLP ij is a constant positive number representing
the learned proximity between oi and oj in the object lifecycle model. OLP is
calibrated to 0 at the beginning of the first design step, and is updated according to
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the learning mechanism presented in Section 5. Higher values of OLP represent
learned proximities.

In a similar way: (1) Action learned proximity, ALP , is defined, calculated based
on the action sequence model; (2) Object hierarchy learned proximity, OHLP , is
defined, calculated based on the object hierarchy model; and (3) Action hierarchy
learned proximity, AHLP , is defined, calculated based on the action hierarchy
model.

OD, AD, OHD and AHD are combined with OLP , ALP , OHLP and AHLP
to generate a specific distance function between any two activities ACi and ACj ,
as follows (brackets are for readability only):

Dist(ACi,ACj)=(ODij−OLPij)+(ADij−ALPij)+(OHDij−OHLPij)+(AHDij−AHLPij)

(1)
It is worth noting that the hierarchy distances (OHD and AHD) can always be
calculated since the hierarchy models that they rely on are bidirectional trees.
However, the distances OD and AD can be undefined in some cases (e.g., when
the two objects are not connected in the object hierarchy model, or when the two
actions are not acted upon the same object and therefore do not take part in the
same action sequence). In these cases the above distance components contribute
a no-connection distance to the overall distance function. This distance is an
application-specific tunable parameter.

In general, it is possible to navigate within the descriptor space (hence, move
from one descriptor to another) in a meaningful way. This navigation enables
us to move up to more general or drill down to more specific action and object
scopes as well as to navigate to: (a) preceding and succeeding actions that act
on the descriptor’s object and (b) advance to a successor (more advanced) state
of the object’s current state or recede to a predecessor (less advanced) state.

5 Method for Automated Generation of Business Process
Content

In this section we extend the method presented in [11] by adding a learning
mechanism.

The design assistance method relies on an underlying process descriptor space
and at any phase, based on the user’s decision, it either refines an existing process
activity or suggests a next process activity. Based on each such user decision, the
design assistant learns more about the relationships between the involved actions
and objects and adjusts their distances in the descriptor space accordingly.

The design assistant is illustrated in Fig. 6. The design process starts when
a process designer defines the name of the new process model. This name is
decomposed into a process descriptor format. For example, a new process named:
“Bake raisin bread,” will be transformed into the following process descriptor:
object=“bread,” action=“bake,” object qualifier=“raisin,” action qualifier=“null.”

Based on the process descriptor input, the design assistant produces options
for the first process activity (see Section 5.1). The process designer reviews the
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output option list, and either selects the most suitable first activity for the newly
designed process, or suggests an alternative. At any next phase the designer
either requests to refine the current activity (see Section 5.2) or advance to
design the next activity (see Section 5.3). Each time the design assistant is
requested to suggest activities as part of the design process it outputs a list of
options, sorted and flagged according to the option’s relevance to the current
design phase and based on the current descriptor space (see Section 5.4). Based
on the designer’s preferences regarding the most suitable activity from the option
list and whether to refine or proceed to the next activity, the design assistant
deduces new knowledge regarding relationships between actions and objects in
the descriptor space and adjusts its distances accordingly (see Section 5.5).

After selecting the most suitable process activity from the suggested list, the
designer examines the newly designed process model to determine if it achieves
the process goals. If goals are achieved, the design is terminated; else - the design
procedure continues until the process goal is achieved.

5.1 Suggesting the First Process Activity

To suggest the first process activity, the design assistant searches the target
object and its more specific objects within the object hierarchy model. It then
creates first activity suggestions in the format of activity descriptors comprised
of the retrieved objects and the first action that acts upon them in the action se-
quence model. Continuing the example above, the following first activity options
will be suggested (see Fig. 3 and Fig. 4): “Insert bread into oven” and “Insert
banana bread into oven.”

5.2 Refining the Currently Suggested Process Activity

A refinement can be performed by five orthogonal methods. To illustrate each
of these methods we will show how the action “Cover bread” can be refined.

Action and Object Refinement. To refine the reference action, the design
assistant navigates the descriptor space by drilling down the action hierarchy
to more specific actions. It then combines the retrieved, more specific, actions
with the reference object. The refinement of objects is done in a similar manner.
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By applying an action refinement to our example’s reference activity, the refine-
ment option: “Cover bread with sugar” is retrieved (see Fig. 2).

Action and Object Generalization. The generalization method is similar to
the action and object refinement method, only this time the design assistant nav-
igates the descriptor space by moving up the action and the object hierarchical
dimension, respectively.

Advance an Action or an Object State. To advance the object’s state within
an activity, the design assistant navigates the descriptor space by moving forward
in the object lifecycle sub-dimension. In a symmetrical manner, to advance an
activity’s action, the design assistant moves forward in the action sequence sub-
dimension of the descriptor space. In our example the object “Sliced bread”
represents a more advanced state of the object “Bread” (see Fig. 5) and the action
“Slice” follows the action “Cover” in the action sequence applied on “Bread” (See
Fig. 4). Therefore, the following two refinement suggestions are constructed:
“Cover sliced bread” and “Slice bread.”

Recede to a Less Processed State of the Object or to a Former Action.
The receding method is similar to the advancing method, only this time the
design assistant navigates the descriptor space by moving backwards in the object
lifecycle and action sequence sub-dimensions. For example, the action “Bake”
is acted on “Bread” before this object is covered (before the action “Cover” is
applied) (see Fig. 4), hence creating the option: “Bake bread.”

Move to a Sibling Action or Object. In order to move to a sibling action, the
design assistant moves horizontally within the action hierarchical sub-dimension.
By fixing the reference action’s level, it retrieves sibling actions for this action.
Moving to a sibling object is conducted in a similar manner. Continuing our
example, a navigation to sibling actions to “Cover” retrieves a list of activities
that includes: “Mix bread” and “Evaluate bread” (see Fig. 2).

5.3 Suggesting the Next Process Activity

This step can be achieved in two alternative ways: either by advancing to a later
action that acts on the currently accepted (reference) object, or advancing to a sib-
ling object combined with the reference activity’s action. To demonstrate this step,
consider the activity following “Add yeast to flour.” The design assistant finds in
the action sequence model the option: “Mix yeast with flour” (see Fig. 4). In addi-
tion, sibling objects to “Yeast” are also retrieved from the object hierarchy model,
creating additional options such as “Add raisin” and “Add lemon” (see Fig. 3).

5.4 Preparing a Set of Output Options

The design assistant assesses the output options in each navigation phase and
combines an ordered option list to assist the user in selecting the most suitable
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option. The design assistant sorts the options according to their relevance to
the current design phase based on two considerations. First, on proximity to the
design phase reference coordinate - which represents the last selected activity
when suggesting a refined or next activity, or to the targeted process descriptor
when suggesting the first process activity. Second, the design assistant considers
to what extent was it changed comparing to actual activities that were part of the
underlying process repository. Therefore, the construction of the ordered option
list is conducted according to the following three stages: (a) sort by proximity
to the reference activity; (b) internally sort by similarity to processes in the
repository; and (c) flag each option, as further detailed below.

Sort by Proximity to the Reference Activity. The design assistant calcu-
lates the distance between the reference coordinate and each of the list options
(see definition 1), and sorts the list in an ascending order - from the closest to
the most distant option.

Internally Sort by Similarity to Processes in the Repository. The de-
sign assistant also takes into account the extent to which a proposed activity was
changed in comparison to actual activities in the underlying process repository.
For this purpose the design assistant distinguishes between three change levels:
(a) No change- the suggested activity is represented “as is” within the underly-
ing business process repository. These options are not marked by any flag; (b)
Slight modification - there is an actual activity in the underlying business pro-
cess repository containing the same object and action with different qualifiers.
These options are marked with “~”; (c) Major change - the object and action
within the suggested activity were not coupled in any of the activities within the
underlying business process repository. These options are marked with “M”.

According to the example presented in Section 5.3, several options were gen-
erated as candidates for next activities to be conducted after the activity “Add
yeast to flour.” Most of these options were produced by combining the action
“Add to flour” with siblings of the object “Yeast,” hence having the same distance
from the reference activity. Nevertheless, these options can further be differen-
tiated. For example, “Add lemon” is an actual activity in the bakery process
repository, and therefore is flagged as such. Nevertheless, “Add oil” has no repre-
sentation in this repository, but since “Add olive oil” does, this option is flagged
by “~.” Since there is no descriptor that combines the action “Add” and the
object “Spoon” in this repository, the option “Add spoon” is flagged by “M.”

Flag Each Option. After assessing each option’s relevance to the current nav-
igation phase and sorting the option list accordingly, the design assistant tags
each option with both the numerical distance value and the change level. For
example, the option “Add oil” from the example above will be flagged “[2,~].”
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5.5 Applying a Learning Mechanism

At each design step the process designer is provided with a list of optional next
activities, and is required to make the following two decisions: (1) select the most
suitable descriptor, ds, from the option list; and (2) decide whether to refine the
selected descriptor or to accept it and proceed to the design of the next activity.
The learning mechanism receives the two above designer decisions and deduces
new conclusions regarding the underlying business rules and business know-how
encoded in the descriptor space. As a result, the learning mechanism adjusts the
descriptor space, which is then used as a basis for producing the next/refined
optional activity list. The learning mechanism analyzes the following designer
decisions as detailed next.

Selecting Artificial Activities. As presented in Section 3, some actions and
objects in the descriptor space are artificial (automatically generated in the
action and object hierarchy models), and hence are not represented in any of
the process repository activities. In case the designer selects a descriptor that
contains an artificial action or object, the learning mechanism deduces that these
are “real-life” semantic elements and amends the descriptor space as follows.

1. Representing the artificial action or object as a real one in its hierarchy
model. For example, in case the designer selects the activity “Use grater,”
the object “Grater” becomes a real object in the object hierarchy model, and
its dashed line is replaced by a regular one (see Fig. 3).

2. Generating a new action sequence for the selected activity’s object. Fol-
lowing the above example, a new sequence in the action sequence model is
automatically generated for the object “Grater,” including one action, “Use.”
Formally, this suggestion can be given by:

createASM (o(ds)) (2)

3. Automatically updating the object lifecycle model by adding a representation
of the selected activity’s object. Following the above example, the object
“Grater” is added to the OLM as a single-object lifecycle. Formally, this
suggestion can be given by:

createOLM (o(ds)) (3)

Selecting Virtual Activities. Some options in the suggested descriptor list
are marked as “Slight modification” or “Major change,” hence representing a
virtual activity in the descriptor space (e.g. “Add oil,” “Add spoon”). In case the
process designer selects such options, the learning mechanism deduces that the
complete action can be applied to the complete object in “real-life” processes.
the descriptor space is therefore amended as follows.

1. Adding a(ds) to the action sequence of o(ds). Following the above exam-
ple, the action “Add” is added to the action sequence of “Oil” in the action
sequence model. In order to update the ASM , we regenerate ASM(o(ds)).
Formally, this suggestion can be given by Eq. 2.
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2. Updating the object lifecycle of o(ds). Formally, this suggestion can be given
by Eq. 3.

Selecting Distant List Options. As mentioned above, each optional activity
flag indicates the activity’s numerical distance from the reference descriptor,
dr. Options with the minimal distance, Distmin, are presented at the top of
that list, followed by other options in an ascending distance order. For example,
given the reference activity “Sift flour,” the optional activity list starts with
the options “[1] Add flour” followed by “[2] Mix flour” (see Fig. 4). In case the
process designer selects an activity flagged by distance Dist(ds) > Distmin, it
is possible to learn that the actual distance between the selected and reference
activities is shorter than the one currently represented in the DS. Higher values
of Dist(ds) represent a greater difference between the actual and current DS.
In our example, the designer may select the activity “[2] Mix flour” although it
is not the first option in the list.

In response to such designer selections, the learning mechanism reacts as fol-
lows. First, it calculates the difference between the distance components - OD,
AD, OHD and AHD of Distmin and those of Dist(ds). We denote this differ-
ence as the actual gap, AG. In our example the actual gap between OHD of the
first list option, dfirst = (flour, null, add, null), and the selected option, ds =
(flour, null, mix, null), is: AGOHD(dfirst, ds)= 0 (See Fig. 3), and the actual
gap between their action distance is: AGAD(dfirst, ds) = AD(ds)−AD(dfirst) =
2 − 1 = 1 (see Fig. 4).

Second, the learning mechanism corrects the learned proximities related to
each of the four distance components (OLP , ALP , OHLP and AHLP (see
Section 4)) by adding them a numerical value proportional to their actual gap.
Additions to learned proximities in case of “next activity” decisions are more sig-
nificant than additions in case of “activity refinement” decisions, since the first
indicates an exact match while the second indicates proximity only. Formally:
the object learned proximity between o(dr) and o(ds), OLPnew(o(dr), o(ds)), in
case of a “next activity” decision, is corrected as follows: OLPnew(o(dr), o(ds)) =
OLP (o(dr), o(ds))+AGOD(dfirst, ds)∗hnext, where hnext is a tunable parameter
that can be optimized in a future work. The calculation in case of an “activ-
ity refinement” is similar, using the tunable parameter hrefine < hnext. ALP ,
OHLP and AHLP are updated similarly. In continuous to our example, assum-
ing the designer chooses to move to the next activity, “Mix flour,” and assuming
ALP (o(dr), o(ds)) = 0 and hnext = 0.1, we calculate the new action learned
proximity as follows: OLPnew(o(dr), o(ds)) = 0 + 1 ∗ 0.1 = 0.1.

Selecting Refined List Options. In some cases the next activity is selected
after several refinement steps. After such design phases, that involve n refine-
ments, the learning mechanism shortens the distance between the previous (first
reference) selected descriptor, dr, and the new (currently selected one), ds, as
follows: Distnew(dr , ds) = Dist(dr, ds) − n ∗ hnext.
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6 Case Study and Experiments

6.1 Case Study: An Example for Designing a New Process Model

To illustrate the proposed framework we present two short examples from the
field of bakeries. The bakery process repository covers bakery activities starting
from the raw material procurement, through the manufacturing of baked goods
and terminating as the baked goods are sold to the customer. The newly designed
processes are related to the bakery field, but are not covered by the process
repository. The first new process, “Bake a chocolate cake,” extends the process
repository by baking a new product. The second new process, “Sell baked goods
via the Internet” extends the process repository by offering an additional service
to customers, that eliminates the need for their arrival to the store. Using these
examples we will show how the learning mechanism can be utilized to guide and
improve the design of new processes. In both examples hnext was set to 0.6 and
hrefine was set to 0.5.

Sift 

flour
Add oil

Add 

yeast

Pour 

water 

into 

glass

Add 

water 
to flour

Fig. 7. The new designed process diagram for “Bake a chocolate cake”

The first example supports the design of a new business process for: “Bake a
chocolate cake.” The generated output (new process model) of this example is
illustrated in Fig. 7 as a YAWL (Yet Another Workflow Language) diagram. The
design process starts when the (human) process designer inserts the following
process descriptor: (action=”bake”, action qualifier=null, object=”cake”, object
qualifier=”chocolate”) to the process assistant and determines that the first ac-
tivity is: “Sift flour.” Respectively, the process assistant searches the descriptor
space, looking for next activity possibilities. The result set includes the following
activities (see Sections 5.3 and 5.4): “[1] Add flour,” “[2] Sift oil” and “[2,M] Sift
yeast.” The designer selects the option “Add flour” and decides to refine it. After
one refinement the activities “Add oil” and “Add yeast” are selected, and in the
next design phase after four refinements the activity “Pour water into glass” is
selected. As a result, the process designer suggests an option list for the next ac-
tivity that starts with the option: “[1] Heat up water.” This first option is selected
for refinement and as a result an option list is suggested, containing the option:
“[1] Add water to flour.” This option is selected as a valid option in the process
model. Therefore, its distance from the original reference activity, “Pour water
into glass” was shortened from 2 into 2−2∗0.6 = 0.8. In contrast to the original
descriptor space (Fig. 4), the activity “Add water to flour” is now more closer
to “Pour water into glass” than the activity “Heat up water.“ This automatically
acquired knowledge seems reasonable, since cake preparation processes do not
usually require warm water as in the case of bread preparation processes. After
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12 additional design phases, the process design reaches the phase of preparing
a jam cover for the cake. In this case the activity “Pour water into glass” was
selected again and this time the activity “Add water to flour” was suggested
before (and instead of) the activity “Heat up water,” saving one refinement step.
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Fig. 8. The new designed process diagram for “Sell baked goods via the Internet”

The designer is now interested to design the new business process: “Sell baked
goods via the Internet.” The design process is conducted in a similar manner
to the one presented above and results in the process diagram presented in Fig.
8. An interesting observation in this design process is the learning usage of the
activity “Send baked goods by car.” While the original business process repository
contained the action “Send by car” applied only to the object “damaged flour,”
the terminating activity combines this action with the object: “baked goods.”
This was achieved by the following design phases: after accepting the activity:
“Pack baked goods,” the designer asks for next activity suggestions and receives
an option list. Knowing that in order to fulfill the process goal, the last activity
should involve a sending by car action, she selects the option: “Send damaged
goods by car” and asks to refine it since it does not provide the exact required
activity. Since the objects “Damaged goods” and “Baked goods” are siblings
in the object hierarchy model, one of the refinement options is: “[2,M] Send
baked goods by car,” although it represents a major change to the underlying
process repository. The designer approves the new process design as a complete
design that fulfills the process goal, and the learning mechanism deduces that the
action “Send by car” can be applied on “baked goods” in real-life scenarios and
updates the descriptor space accordingly. This new learned knowledge assists in
improving the design process of other new process models such as: “Sell baked
goods via phone” and “Donate baked goods to poor families.”

6.2 Experiments

We now present an empirical evaluation of the proposed method effectiveness.
In order to evaluate the learning mechanism’s contribution, we implement the
evaluation method used in [11]. We first present our experimental setup and
describe the data that was used. Based on this setup we present the implemented
methodology. Finally, we present the experiment results and provide an empirical
analysis of these results.

Experiment Setup. The “no-connection” distance (defined in Section 4) was
set to 500; hnext was set to 0.2 and hrefine was set to 0.1.
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Data. We chose a set of 12 real-life processes from the bakery process repository,
comprising: (a) five processes from the core “Baking” category, with 45 activities
altogether; (b) three processes from the “Sales” category, with 22 activities alto-
gether; and (c) four processes from the “Maintenance” category, with 39 activities
altogether. The “Baking” data set contains core and industry-specific activities,
while the “Maintenance” data set represents a combination of industry-specific
as well as more industry agnostic activities. The most generic activity collection
is represented in the “Sales” domain, which shares many of its activities with
the food manufacturing industry. Using the selected 12 processes we created a
“process repository database.”

Evaluation Methodology. To evaluate the suggested method we conducted
12 experiments, each repeated twice: first without applying the learning mecha-
nism (a reference experiment) and second by applying the learning mechanism
(a full method experiment). Each experiment was conducted according to the
following steps: (a) preparation: remove one of the processes from the database
so that the database will not contain any of its descriptor components; (b) run
the design assistant mechanism in a stepwise manner. At each phase we try to
identify an activity (“goal activity”) that is compatible with the removed process,
according to the following steps: (1) if the goal activity’s linguistic components
are represented in the Process Repository Database, run the “find next activity”
algorithm (see Section 5.3). If the output list contains the goal activity - con-
tinue to reconstruct the next goal activity. Else, run the “activity refinement”
algorithm (see Section 5.2). If the option list produced by the refinement step
does not include the goal activity, choose the activity that shares the largest
amount of common descriptor components with the goal activity as a basis for
an additional refinement. If, after 10 successive refinements, the required activity
is still not represented by one of the output options, it is inserted manually as
the next process activity and the design process is continued by locating the next
activity; (2) else (the goal activity’s linguistic components are not represented in
the Process Repository Database), the next goal activity is inputted manually
by the experimenter. In full method experiments, at the end of each such phase
the learning mechanism is applied, correcting the current descriptor space as an
input to the next design phase (see Section 5.5).

Results and Analysis. Table 1 presents a summary of the experiment results.
Each experiment of creating a new process model was based on a database with
the set of all activity descriptors in all process models, excluding the set of
activity descriptors of one goal process. This means that we aim at recreating
the goal activities from a partial set of activity descriptors. On average, for 83.3%
of the goal activities, all descriptor components were contained both in the goal
process and in another process (see column #3). This was the case despite the
relatively small experiment size (11 processes, whereas the entire bakery process
repository includes around 70 processes), highlighting the amount of similarity
one would expect when designing new processes based on an existing repository.
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For the remaining 16.7%, at least one descriptor component was missing. In such
a case, the activity was inserted manually during the design process. It is worth
noting that for the 83.3% of activities that had the potential of reconstruction
from the database, 100% were reconstructed successfully using our method (see
Table 2).

Table 1. Experiment results

Column # 1 2 3 4 5 6 7
Column name # of

total
pro-

cesses
in DB

# of
total

activi-
ties in
DB

% of
goal ac-
tivities
repre-

sented in
the DB

%
improve-
ment in
avg. #
of steps

per
design
phase

%
improve-
ment in

avg.
location

of
correct
option
in ’next
activity’

%
improve-
ment in

avg.
location

of
correct
option

in ’refine
activity’

%
improve-
ment in

avg.
location
of the
correct
option

per
design
phase

Avg.-all 12 106 83.3% 12.7% 32.9% 26.4% 28.5%
Avg.-Baking 5 45 85.2% 17.8% 38.6% 30.1% 31.0%
Avg.-Sales 3 22 80.8% 11.6% 34.2% 25.4% 27.7%

Avg.-Maintenance 4 39 82.7% 7.0% 24.8% 22.5% 25.9%

In addition, Table 1 shows that by applying the learning mechanism the follow-
ing measures were improved. First, on average, the number of iterations required
for reconstructing a goal activity (see column #4) was improved by 12.7%. The
design of Sales processes required less steps than the design of Baking and Main-
tenance processes, and therefore was less improved (7% vs. 17.8 and 11.6% on
average, respectively). It should be noted that the location of the goal activity
was improved significantly in the ranked list of suggested activities (average im-
provement: 28.5%, see column #7). This location was even better improved at
phases that did not involve refinement (average improvement: 32.9%, see column
#5); and was a little lower in steps in which a refinement was required (26.4%
on average, see column #6). This may be due to the fact that refinement steps
include a much larger amount of alternatives, and the tunable parameter hrefine

is lower than hnext (hence, learning is slower in refinement steps). Again it should
be noted that results within the Baking category were better than results within
the Sales and Maintenance categories - probably due to the larger amount of ac-
tivities representing each of the Baking processes, which enables more learning
opportunities. Another reason may be the similarity between Baking processes
which enables applying the learning results from one process to others as well.

Table 2 analyzes the difference in the number of refinements that are needed
to design the correct goal activity due to the usage of the learning mechanism.
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Table 2. Distribution of successful predictions vs. the number of required refinements

# of refinements 0 1 2 3 4 5 6 7
% of difference in
the # of successful

predictions

11% 17% 10% 1% -10% -9% -7% -9%

For each number of refinements (0-7), we record the percentage of cases where
this number of refinements was needed: (a) when the learning mechanism is not
applied; and (b) when the learning mechanism is applied. Then, we calculate
the difference between the results in both cases. We observe, for example, that
by applying the learning mechanism, the ability of the system to reconstruct
the goal activity after one refinement was improved by 17%. In total, it can
be observed that the learning mechanism reduced the number of refinements
required to reach the correct goal activity. These results clearly demonstrate
that the learning mechanism improves the speed and efficiency of the design
method. As hypothesized earlier - a larger database would probably yield even
better results.

To summarize, we have shown the usefulness of using the learning mecha-
nism in identifying activities for a new business process. We also showed the
mechanism to be effective in the given experimental setup, both in terms of im-
provement in the number of design steps and in the number of refinements that
are needed.

7 Conclusions

We proposed a learning mechanism to improve a machine-assisted design method.
Such a mechanism saves design time and supports designers in creating new busi-
ness process models. The proposed method provides a starting point that can
already be applied in real-life scenarios, yet several research issues remain open,
including: (1) an extended empirical study to further examine the quality of
newly generated processes; and (2) an extended activity decomposition model
to include an elaborated set of business data and logic (e.g., roles and resources).

As a future work we intend to investigate further language semantics by us-
ing more advanced natural language processing techniques, as well as semantic
distances between words. Finally, we intend to apply the learning technique we
have developed to create new methods for workflow validation.
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