
Automatically Generating and Updating

User Interface Components
in Process-Aware Information Systems

Jens Kolb, Paul Hübner, and Manfred Reichert

Institute of Databases and Information Systems
Ulm University, Germany

{jens.kolb,paul.huebner,manfred.reichert}@uni-ulm.de
http://www.uni-ulm.de/dbis

Abstract. The increasing adoption of process-aware information sys-
tems (PAISs) has resulted in a large number of implemented business
processes. To react on changing needs, companies need to be able to
quickly adapt these process implementations. Current PAISs only pro-
vide mechanisms to evolve the schema of a process, but do not allow for
support the automated creation and adaptation of user interfaces (UIs).
The latter may have a complex logic and comprise conditional elements
or database queries. Creating and evolving UIs manually is a tedious and
error-prone task. This paper introduces a set of patterns for transform-
ing fragments of a business process, whose activities are performed by
the same user role, to UIs of the PAIS. In particular, UI logic can be ex-
pressed using the same notation as for process modeling. Furthermore, a
transformation method is introduced, which applies these patterns to au-
tomatically derive UIs by establishing a bidirectional mapping between
process model and UI. This mapping allows propagating UI changes to
the process model and vice versa. Overall, our approach enables process
designers to rapidly develop and update complex UIs in PAISs.

1 Introduction

Process-aware information systems (PAISs) separate process execution from ap-
plication code. Hence, a separation of concerns is realized based on explicit pro-
cess models. When initially capturing business processes in process models, focus
is put on business aspects, while technical aspects concerning process execution
are excluded. Usually, respective process models cover the users’ activities at a
fine-grained level (cf. Fig. 1a). Hence, before deploying such a process model in
a PAIS, it must be revised and customized. For example, several human tasks,
forming a process fragment in the process model, may be combined into one
activity in the executable process model (cf. Fig. 1b). This activity is then im-
plemented by a user interface (UI) component in the PAIS, e.g., a user form
whose logic corresponds to the one of the initial process fragment (cf. Fig. 1c).
Based on this logic, for example, form elements may be disabled when selecting
a certain check box, or web services may be called in the background. Overall,

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 444–454, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.uni-ulm.de/dbis

Automatic User Interface Generation 445

both the implementation and maintenance of the UI components in a PAIS is a
cumbersome and costly task. This hinders quick adaptations of process imple-
mentations [1].

Select
Customer

Choose
Contact
Type

Edit
Address

Review
Account

Accept
Message

Decline
Message

Create
Customer

Clerk

Clerk

Clerk

Clerk

Manager

Manager

Manager Approve
Account

Clerk Manager

Edit
Customer

CustId:int

Approve Account: Man...
Edit Customer: Clerk UI

Choose Contact Type

Edit Address
Street

City

E-MailContact

a) Initial (Business) Process Model b) Executable Process Model c) User Interface Components

Activity
XOR

AND

Data Element SESE block
(Single Entry Single Exit)

Fig. 1. Deriving UI Components from a Business Process Model

The process evolution of the processes implemented in a PAIS is a critical
success factor for any company. Such an evolution requires changes of the pro-
cess models and their associated UI components. Process model evolution is a
well-understood feature in modern PAISs [2,3]. There exist editors for defining
simple UI components of the PAIS (e.g., moving or renaming input fields in a
UI). However, complex changes of the logic of UIs can not be done by users, but
require process implementers. Moreover, the automatic propagation of changes
made in the UI components to the process model and vice versa is not supported.
We address these issues through the automatic generation of UI components out
of process fragments, and present patterns for transforming process fragments
to UI components. While elementary transformation patterns (ETP) transform
single activities to simple UI elements, complex transformation patterns (CTP)
enable the mapping of entire process fragments and their logic to UI compo-
nents, showing the same behaviour as the process fragment. Next, we provide an
advanced transformation method that allows generating UI components out of a
process model based on the user roles assigned to activities. This method allows
propagating changes of UI components to the process model and vice versa. Our
transformation method decreases the effort for evolving PAIS to changing needs.
The paper is structured as follows: Section 2 introduces basic notions. Section
3 describes common patterns for transforming process model fragments to UI
components. Section 4 presents a method for transforming process models to UI
components, which is based on transformation patterns and role-based process
views. Section 5 discusses related work and Section 6 summarizes the paper.

2 Basic Notions

A process model is described in terms of a directed graph whose node set com-
prises activities, gateways, and data elements. An activity either corresponds to
a human task and thus requires user interactions, or to a service representing an
automated task. In turn, gateways can be categorized into AND, XOR and Loop
and are used for modeling parallel/conditional branchings and loops. Edges be-
tween activities and/or gateways represent precedence relations, i.e., the control

446 J. Kolb, P. Hübner, and M. Reichert

flow of the process model (cf. Fig. 1a). Furthermore, data elements comprise
primitive data elements and complex ones. Primitive data elements cover ele-
mentary data values of the process model and have one of the following types:
integer, float, boolean, string, date, or URI. Based on this, the data flow is de-
fined by a set of directed edges connecting data elements and activities. Writing
a data element is expressed through an edge pointing from an activity to the
data element. In turn, reading a data element is expressed by an edge from this
data element to the activity. We presume that process models are well-structured
[4], i.e., sequences, branchings (of different semantics), and loops are specified
as blocks with well-defined start and end nodes having the same gateway type.
These blocks, also known as SESE (single-entry-single-exit) blocks (cf. Fig. 1a),
may be nested, but are not allowed to overlap.

3 User Interface Transformation Patterns

The goal of our research is to identify and apply a general set of UI transfor-
mation patterns to map process fragments to UI components. To achieve this
goal, we first describe a three-step method, which we apply for identifying UI
transformation patterns (cf. Fig. 2). Step 1 analyzes and evaluates PAIS projects
in which we were involved. More precisely, we analyze the process models from
these projects as well as their technical implementation. Step 2 analyzes existing
PAISs and their support for UI generation. Step 3 scans related literature. The
empirical results are used to specify general UI transformation patterns. Based
on these patterns, Step 4 develops a transformation method for the automatic
generation of role-specific UI components (cf. Section 4).

UI
Transformation
Patterns

Research
Question

UI
Transformation

Method
Step 2: Analyze PAISs

Step 1: BPM Projects Evaluation

Step 3: Literature Screening

Step 4: Develop
Trans. Method

Fig. 2. Transformation Pattern Identification Method

3.1 Elementary Transformation Patterns

Elementary transformation patterns (ETP) enable the transformation of single
process model elements to simple UI elements. For example, an activity may
be transformed into a simple user form. Thereby, the respective ETP considers
activity input/output data elements and maps them to form elements.

ETP1 (Human Activity Transformation) transforms a single activity to
a Form Group Element (FGE) (cf. Table 1); i.e., for each human activity of a
process model, an FGE is generated. In modern PAIS, usually, such an FGE is
represented by a dialog window.

Automatic User Interface Generation 447

Table 1. ETP1: Human Activity Transformation

ETP1: Human Activity Transformation
Description: A human activity of a business process model (i.e., an activity to be performed

by a human resource) is transformed into a Form Group Element (FGE). An
FGE corresponds to a UI element that contains UI elements for displaying or
editing data.

Example: A clerk must perform an activity, in which customer data is edited.

Edit
Customer
Data

⇒
Edit Customer

FGE

Problem: To perform a human activity within a PAIS, a user interaction is required.

Implementation: An FGE can be implemented in terms of a dialog window. In the context of
CTPs, an FGE constitutes a grouping element of the UI.

ETP2 (Service Activity Transformation)1 creates application stubs for
automated tasks not performed by a user (e.g., fetching data from a database).
ETP2 is needed to generate complete UI components enabling interactions with
both users and backend systems (cf. Section 3.2).

ETP3 (Data Flow Transformation)1 transforms data elements and data
flow edges to UI elements. ETP3 as well as related patterns ETP3.1-ETP3.3
generate Field Elements (FE) within an FGE; i.e., when generating the FGE
(cf. ETP1), the data elements and edges of a process activity are transformed to
input/output FEs of a UI component. In this context, sub-patterns ETP3.1 and
ETP3.2 are applied to indicate whether the FE is read-only or editable. Finally,
ETP3.3 transforms the type of a data element to a specific FE; e.g., a boolean
data element is transformed to a radio button element with two choices.

3.2 Complex Transformation Patterns

Complex Transformation Patterns (CTPs) allow transforming entire fragments
of a process model, whose activities shall be performed by the same user, to
UI components. When creating such a UI component both the control and data
flow of the process fragment are considered. Hence, each generated UI component
covers parts of the overall process logic. By combining role-specific activities in
the same UI component, unnecessary UI context switches can be avoided. To
structure such a UI component, tab elements—called Tab Container Elements
(TCE)—are used. A CTP interconnects TCEs according to the control flow of
the process fragment to which it is applied. Single activities and data elements
related to the process fragment are transformed using ETPs.

CTP1 (Process Model Transformation). generates a User Interface Dialog
(UID) for process fragments whose activities are processed by the same user role
(cf. Table 2). AUID is a toplevel container,which is representedby a dialogwindow
in the PAIS containing UI elements representing activities and data elements.

1 A more detailed description of all ETPs can be found in [5].

448 J. Kolb, P. Hübner, and M. Reichert

Table 2. Pattern Descriptions for Patterns CTP1 and CTP2

CTP1: Process Model Transformation
Description: For a particular process fragment, a surroundingUser Interface Dialog (UID),

i.e., a toplevel container window, is generated. Following this, all other UI
elements related to activities of this fragment are generated based on ETPs
and CTPs, and are then embedded in the UID.

Example: All interactions with a clerk shall be done using the same UI component.

Process
Fragment Select

Customer

Choose
Contact
Type

Edit
Address

Create
Customer

Send
Decision ⇒

Account Creation: Clerk UI

UID

Problem: The UI elements related to the activities and data elements of a particular
process fragment need to be mapped to a toplevel container window. The
UI flow logic (e.g., the ordering in which field elements may be displayed or
written) corresponds to the control flow of the given process fragment.

Implementation: For each process fragment, a UID element (dialog window) is generated.

CTP2: Sequence Block Transformation
Description: A sequence of activities (and SESE blocks) is transformed into a sequence of

Tab Container Elements (TCE) to be processed in the same sequential order.
Example: A clerk first edits the customer data and then the corresponding contact data.

Edit
Customer

Edit
Contact

Sequence Block

⇒
Account Creation: Clerk UI

Edit Customer

Edit Contact

Edit Customer

TCE

Problem: Human activities, performed in sequence by the same user (role), shall be ac-
complished using the same UI component, instead of using separate UI com-
ponents (e.g., dialog windows) for each activity.

Implementation: For each activity (or SESE block), a TCE element is created. The order in
which these TCEs are processed relates to the one of the respective activities.

CTP2 (Sequence Block Transformation) deals with the transformation of
a sequence of activities (and SESE blocks respectively) to TCEs (cf. Table 2).
For each activity (or SESE block) of the sequence, a TCE element is generated
and linked to other TCEs according to the given activity sequence.

CTP3 (Parallel Block Transformation) transforms parallel activities (or
SESE blocks) of a process fragment to UI elements within the same UID. These
elements may then be accessed concurrently (cf. Table 3). The UI component is
similar to the one of a single activity (cf. ETP1). However, CTP3 not only covers
the transformation of activities arranged in parallel, but enables the concurrent
processing of SESE blocks arranged in parallel to the respective UI elements.

CTP4 (XOR Block Transformation)2 transforms an XOR branching of
a process fragment to a UI component. CTP4 generates independent TCEs for
each branch of the XOR branching. The decision, which branch and hence which
TCE shall be selected, is made during run-time; e.g., whether the TCE element
for creating a new customer or the one for editing an existing customer shall

2 A more detailed description of this pattern can be found in [5].

Automatic User Interface Generation 449

Table 3. Pattern Descriptions for Patterns CTP3 and CTP6

CTP3: Parallel Block Transformation
Description: A parallel block and its activities are mapped to a single TCE for their pro-

cessing. This TCE allows for their concurrent execution.

Example: While editing the address of a customer, the contact type the customer wants
to use for communication can be entered in parallel.

Choose
Contact
Type

Edit
Address

AND Block

⇒
Account Creation: Clerk UI

Edit Contact (AND)

Choose Contact Type

Edit Address

Problem: Activities (or SESE blocks) of a process fragment, which are performed in
parallel by the same user (role), shall be mapped to the same UI component;
UI elements then must be displayable/editable concurrently.

Implementation: When applying CTP3, for each parallel branch, FGEs are added to the TCE.

CTP6: Background Activity Transformation

Description: While human activities are performed by human resources, service activities
may automatically fetch or save data concurrently in the background.

Example: A user selects a customer name in order to edit respective customer data. After
selecting the name, in the background, all available customer information is
retrieved from the database and displayed to the user.

Background Activity Block

Fetch
Data

Select
Customer

Edit
Customer

String:CustomerID Customer:CustomerData

Background
Activity

⇒
Account Creation: Clerk UI

Select Customer

Edit Customer

Edit Customer
CustomerID:
CustomerID data element
triggers the background
activity which fetches the
respective customer data set

Problem: A service activity needs to be executed concurrently to human activities per-
formed by the same user (role). This requires the concurrent fetching/storing
of data from a database as well as the automated and dynamic displaying of
new form elements.

Implementation: Dynamic forms, which contain background activities, need a change listener
mechanism to detect user inputs and to react on them.

be displayed. In particular, run-time data for deciding which branch of an XOR
branching shall be executed is required.

CTP5 (Loop Block Transformation)2 transforms a loop block to elements
of a UI component. For each loop, CTP5 generates a TCE and corresponding
UI elements for nested activities or SESE blocks (cf. CTP1). Additionally, a
decision element is required to decide whether to exit the loop after completion
of a particular iteration or trigger the next loop iteration either based on data
elements processed during loop execution (e.g., evaluating data for validity) or
external criteria (e.g., calling someone until getting an answer).

CTP6 (Background Activity Transformation) reflects the need for dynam-
ically loading data elements by a service activity (cf. Table 3). More precisely,
data has to be fetched from or stored to a backend system, while the user con-
currently works on human activities.

450 J. Kolb, P. Hübner, and M. Reichert

4 Transforming Process Models to User Interfaces

Section 4.1 shows how the presented patterns are used to transform process frag-
ments to UI components of the PAIS. Further, we discuss how process fragments
can be adapted through changes of the UI components (cf. Section 4.2).

4.1 User Interface Transformation Method

To transform a process model, consisting of several process fragments, to mul-
tiple UI components, we introduce a five step method (cf. Fig. 3). Thereby, the
number of generated UI components depends on the number of different user
roles involved in the process.

Select
Customer

Choose
Contact
Type

Edit
Address

Review
Account

Accept
Message

Decline
Message

Create
Customer

Send
Decision

Process View

TCE
XOR
Edit

Customer

User Interface Dialog (UID)

Tab Container Element (TCE)Control Flow Block

Activity Form Group Element (FGE)

Data Element Field Element (FE)

C
TP

A
pp
lic
at
io
n

ET
P
A
pp
lic
at
io
n

Initial Process Model

Process Model User Interface

Account Creation: Clerk UI

Edit Customer (XOR)

Edit Contact (AND)

Send Decision
Choose Contact Type

Edit Address
Street

City

E-MailContact

Account Creation: Clerk UI

Edit Customer (XOR)

Edit Contact (AND)

Send Decision
Choose Contact Type

Edit Address

Account Creation: Clerk UI

Edit Customer (XOR)

Edit Contact (AND)

Send Decision

Account Creation: Clerk UI

Step 1: Role-Specific View Creation

Step 2: User Interface Creation

Step 3: Block Transformation

Step 4: Activity Transformation

Step 5: Data Transformation

TCE
SEQ

TCE
AND
Edit

Contact

FGE
Edit

Address

FGE
Choose
Contact
Type

FE
Contact

FE
City

FGE
Create
Customer

TCE

Send
Decision

...

FE
Street

UID

Create Account

FE
Address

...

User Interface Model

Clerk

Clerk

Clerk

Clerk

ClerkManager

Manager

Manager

User Roles

Select
Customer

Choose
Contact
Type

Edit
Address

Create
Customer

Send
Decision

Select
Customer

Choose
Contact
Type

Edit
Address

Create
Customer

Send
Decision

Select
Customer

Choose
Contact
Type

Edit
Address

Create
Customer

Send
Decision

FGE
Select

Customer

Select
Customer

Choose
Contact
Type

Edit
Address

Create
Customer

Send
Decision

ContactAddress

Fig. 3. Transformation Method

Step 1. Role-specific process views [6,7,8] are created for the given process model.
A process view abstracts from certain aspects of the process model (e.g., it only
contains activities of a particular user role). In our context, a role-specific process
view constitutes the basis for creating a role-specific UI component.
Step 2. For each process view, a User Interface Dialog (UID) is created. A UID
acts as a toplevel container including all UI elements required for processing the
activities of a process view. For this purpose, CTP1 is applied (cf. Table 2).

Automatic User Interface Generation 451

Step 3. CTP2-6 are applied to transform complete process fragments to UI
elements. For each CTP applied, a Tab Container Element (TCE) is generated.
Each TCE is represented in the tab bar area (cf. Fig. 3, Step 3). When clicking
such an item, the corresponding UI elements are displayed. If there are nested
SESE blocks, they are displayed in a hierarchical tree in the tab bar area.
Step 4. Single activities (ETP1+2) are transformed into Form Group Elements
(FGE). Basically, each FGE represents one activity in the process model. In case
of a parallel branching, multiple activities are displayed on a TCE element in
the UI (cf. Fig. 3, Step 4).
Step 5. Data elements of the process view are transformed to Field Elements
(FE) and positioned within an FGE. There exist different kinds of FEs depending
on the data type of the respective data element (cf. pattern ETP3.3 in [5]).

The internal structure of the resulting UI component is represented through
a User Interface Model (UIM) (cf. Fig. 4b). This tree-based schema describes
the UI structure generated by our transformation method.

4.2 Synchronizing Process Model and UI Changes

After generating complex UI components for a process model through process
views and deploying them in the PAIS, users may want to modify the UI. Ba-
sically, two categories of UI changes can be distinguished. Local changes are
changes not affecting the associated process view. For example, assume that a
user re-positions the FGE Edit Address within the TCE Edit Contact (AND)
in Fig. 4a. Such a change would not affect the execution order of the activities
in the process view, i.e., it only affects the visual representation of the UI com-
ponent. Hence, the change needs not be propagated to the view. Global changes
modify the logic of the UI and the control flow of associated process views as
well (e.g., adding FGE Edit Phone Number and respective FE Phone, cf. Fig.
4a). The correct position of the change within the UIM can be determined by
the hierarchical structure of the UI (cf. Fig. 4b). The changes of the UIM are
then propagated to the process view; note that the latter is represented by the
UIM. Finally, the change of the process view has to be propagated to the basis
process model on which the view is created. For this propagation the concepts
developed in the proView3 project can be applied [9,10].

5 Related Work

Task Models describe the actions to be performed by a user when interacting
with an information system. Different variants of task models exist [11]. These
approaches describe the goals, steps and operations of a UI. Concurrent Task
Trees (CTT), in turn, provide a hierarchical model supporting various types of
tasks (e.g., automatic vs. manual task) and relationships between tasks (e.g.,
sequential vs. parallel execution) [12].

3 http://www.dbis.info/proView

452 J. Kolb, P. Hübner, and M. Reichert

Account Creation: Clerk UI

Edit Customer (XOR)

Edit Contact (AND)

Send Decision

Edit Phone Number

Choose Contact Type

Edit Address
Street

City

E-MailContact

Phone

TCE
SEQ

TCE
XOR

Edit Customer

TCE
AND

Edit Contact

FGE
Choose

Contact Type

FGE
Edit Phone
Number

FE
Contact

FE
City

FE
Phone

FGE
Select

Customer

FGE
Create
Customer

TCE

Send Decision

...... ...

... ...

TCE: Tab Container Element
FGE: Form Group Element
FE: Field Element

Edit Phone
Number

Select
Customer

Choose
Contact Type

Edit
Address

Create
Customer

Send
Decision

ContactAddress

Phone

a) Inserting New Form Elements b) Adapting the UI Model

FE
Street

c) Adapting Process Model

UID

Create Account

FE
Address

FGE
Edit

Address

Fig. 4. Adapting Process Models through Changes in the UI Component

Model-Driven UI Development applies the principles of Model-Driven De-
velopment to UI development. Although a lot of competing approaches exist,
an accepted standard is missing [13,14]. FlowiXML [15], for example, provides
a methodology to develop UIs for business processes, taking the organizational
structure as well as the process model into account. However, it does not al-
low for the automated generation of UIs. Based on FlowiXML, [16] describes
user tasks through task models (i.e., CTT) within a process model. Based on
these models, an abstract UI description is generated and transformed into a
UI component at run-time. This approach allows for changes based on UIs and
discusses how to manually align them with process models. However, automatic
propagation is not supported. [17] transforms a process model into a human in-
teraction perspective, which allows specifying data elements, user roles, tasks,
and UI layout. After manually refining them, corresponding UIs are generated
during run-time. Furthermore, data-centered process management offers a dif-
ferent (i.e., data-centered) view on processes. In particular, state transitions of
process-related data elements are described. Based on this, UIs can be generated
as well [18].

UI Generation in Existing PAIS is able to create UIs automatically (e.g.,
IBM Lombardi [19]). Single activities of a process model can be transformed into
simple UIs, taking associated data elements into account (cf. ETPs). More com-
plex scenarios are not covered. None of the approaches allows for the automatic
generation of complex UIs based on process models. The adaptation of process
models based on changes of the UI is only considered rudimentarily.

6 Conclusion

In this paper, we showed how UI components can be automatically created from
entire process fragments and process models respectively. For this purpose, el-
ementary and complex transformation patterns were identified and described.

Automatic User Interface Generation 453

Furthermore, a transformation method, which applies these patterns to create
complex UIs based on process views, was introduced. Our approach further en-
ables the propagation of UI changes (e.g., adding new input fields) to the asso-
ciated process model and vice versa. Finally, we implemented our UI generation
approach in a powerful proof-of-concept prototype [5]. In summary, our approach
will contribute to reduce costs for PAIS development and maintenance.

Future research will address the execution aspects of process models and as-
sociated UIs as well. In this context, features such as jumping back to an already
edited UI element will be supported by adapting the process instance.

References

1. Pradeep, H.: Process-User Interface Alignment: New Value From a New Level of
Alignment. Align Journal (October 3, 2007)

2. Weber, B., Reichert, M., Mendling, J., Reijers, H.A.: Refactoring Large Process
Model Repositories. Computers in Industry 62(5), 467–486 (2011)

3. Reichert, M., Dadam, P.: ADEPTflex - Supporting Dynamic Changes of Workflows
Without Losing Control. Journal of Intelligent Inf. Sys. 10(2), 93–129 (1998)

4. La Rosa, M., Wohed, P., Mendling, J., ter Hofstede, A.H.M., Reijers, H.A., van
der Aalst, W.M.P.: Managing Process Model Complexity Via Abstract Syntax
Modifications. IEEE Transactions on Industrial Informatics 7(4), 614–629 (2011)

5. Kolb, J., Hübner, P., Reichert, M.: Model-Driven User Interface Generation and
Adaptation in Process-Aware Information Systems. Technical report, UIB 2012-04,
Ulm University (2012)

6. Reichert, M., Kolb, J., Bobrik, R., Bauer, T.: Enabling Personalized Visualization
of Large Business Processes through Parameterizable Views. In: Proc. ACM SAC
2012, Riva del Garda (Trento), Italy (2012)

7. Kolb, J., Reichert, M., Weber, B.: Using Concurrent Task Trees for Stakeholder-
centered Modeling and Visualization of Business Processes. In: Oppl, S.,
Fleischmann, A. (eds.) S-BPM ONE 2012. CCIS, vol. 284, pp. 237–251. Springer,
Heidelberg (2012)

8. Bobrik, R., Reichert, M., Bauer, T.: View-Based Process Visualization. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 88–95.
Springer, Heidelberg (2007)

9. Kolb, J., Kammerer, K., Reichert, M.: Updatable Process Views for User-centered
Adaption of Large Process Models. In: Proc. Intl. Conf. on Service Oriented Com-
puting (ICSOC 2012), Shanghai, China (to appear, 2012)

10. Kolb, J., Kammerer, K., Reichert, M.: Updatable Process Views for Adapting Large
Process Models: The proView Demonstrator. In: Proc. of the Business Process
Management 2012 Demonstration Track, Tallinn, Estonia (to appear, 2012)

11. Limbourg, Q., Vanderdonckt, J.: Comparing Task Models for User Interface Design.
The Handbook of Task Analysis for Human-Computer Interaction 6 (2004)

12. Paternò, F., Mancini, C., Meniconi, S., Maria, V.S.: ConcurTaskTrees: A Dia-
grammatic Notation for Specifying Task Models. In: Proc. IFIP TC13 Int’l Conf.
on Human-Computer Interaction, pp. 362–369 (1997)

13. Traetteberg, H., Molina, P.J.: Making Model-Based UI Design Practical: Usable
and Open Methods and Tools. In: Proc. IUI 2004, pp. 376–377 (2004)

14. Lu, X.: Model Driven Development of Complex User Interface. In: Proc. MoDELS
2007, Workshop on Model Driven Development of Advanced User Interfaces (2007)

454 J. Kolb, P. Hübner, and M. Reichert

15. Garcia, J.G., Vanderdonckt, J., Calleros, J.M.G.: FlowiXML: A Step Towards De-
signing Workflow Management Systems. Int’l Journal of Web Engineering and
Technology 4(2), 163–182 (2008)

16. Sousa, K., Mendonça, H., Vanderdonckt, J., Rogier, E., Vandermeulen, J.: User
Interface Derivation from Business Processes: A Model-Driven Approach for Or-
ganizational Engineering. In: Proc. ACM SAC 2008, pp. 553–560 (2008)

17. Sukaviriya, N., Sinha, V., Ramachandra, T., Mani, S., Stolze, M.: User-Centered
Design and Business Process Modeling: Cross Road in Rapid Prototyping Tools.
In: Baranauskas, C., Abascal, J., Barbosa, S.D.J. (eds.) INTERACT 2007. LNCS,
vol. 4662, pp. 165–178. Springer, Heidelberg (2007)

18. Künzle, V., Reichert, M.: PHILharmonicFlows: Towards A Framework for Object-
Aware Process Management. Journal Software Maintenance and Evolution: Re-
search & Practice 23(4), 205–244 (2011)

19. Yang, S., Sun, Y., Waterhouse, J., Lau, D., Al-Hamwy, T.: Modeling and Imple-
menting a Business Process Using WebSphere Lombardi Edition 7.1. In: Proc.
CASCON 2010, pp. 374–375 (2010)

	Automatically Generating and Updating User Interface Components in Process-Aware Information Systems
	Introduction
	Basic Notions
	User Interface Transformation Patterns
	Elementary Transformation Patterns
	Complex Transformation Patterns

	Transforming Process Models to User Interfaces
	User Interface Transformation Method
	Synchronizing Process Model and UI Changes

	Related Work
	Conclusion
	References

