
Parallel Processing
for Business Artifacts with Declarative Lifecycles

Yutian Sun1,2,�, Richard Hull2,�, and Roman Vaculı́n2

1 Department of Computer Science, UC Santa Barbara, USA
2 IBM T J Watson Research Center, USA

Abstract. The business artifact (a.k.a. business entity) approach to modeling and
implementing business operations and processes is based on a holistic marriage
of data and process and enables a factoring of business operations based on key
business-relevant conceptual entities. The recently introduced Guard-Stage-
Milestone (GSM) artifact meta-model provides a hierarchical and declarative ba-
sis for specifying artifact lifecycles, and is substantially influencing OMG’s
emerging Case Management Modeling Notation standard. In previous papers one
characterization of the operational semantics for GSM is based on the incremental,
strictly serial firing of Event-Condition-Action (ECA) like rules. This paper de-
velops a parallel algorithm equivalent to the sequential one in terms of externally
observable characteristics. Optimizations and analysis for the parallel algorithm
are discussed. This paper also introduces a simplification of the GSM meta-model
that provides more flexibility and makes checking for well-formedness of GSM
models simpler and more intuitive than in the preceding works on GSM.

1 Introduction

Business artifacts (a.k.a. business entities with lifecycles) are emerging as an impor-
tant conceptual basis for modeling and implementing business processes and operations
[7,5]. Unlike process-centric approaches, business artifacts enable a holistic marriage
of the data- and process-centric perspectives, and permit a factoring of a scope of busi-
ness that is often robust in the face of changes in the underlying business. A declarative
approach to business artifacts, called Guard-Stage-Milestone (GSM) was recently in-
troduced [2,5], and is substantially influencing OMG’s emerging Case Management
Modeling Notation [1]. Citations [2,5] introduce the operational semantics for GSM
and provide three equivalent formulations for it. One of these, which enables a direct
implementation, is based on the incremental, serial firing of Event-Condition-Action
(ECA) like rules, with each incoming event processed in strict sequence. This paper
develops an optimized parallel algorithm for executing GSM processes with improved
throughput and response time, and we also introduce a simplified GSM meta-model.

A GSM model typically consists of several artifact types, where each artifact type
corresponds to a class of key business-relevant conceptual entities that progress through
the business. Each artifact type includes an information model, which holds all business-
relevant information about an artifact instance as it progresses, and a lifecycle model,
which represents the ways that the artifact instance might progress. In GSM, mile-
stones correspond to business-relevant operational objectives that an artifact instance
might achieve, stages correspond to meaningful clusters of activity that are intended to

� This author supported in part by NSF grant IIS-0812578.

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 433–443, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

434 Y. Sun, R. Hull, and R. Vaculı́n

achieve milestones, and guards control when stages can be opened for execution. The
stages may be nested, and may be running in parallel. The processing is controlled by
declarative expressions, called sentries. Each guard is a sentry, and sentries are used to
control when stages should open or close and when milestones get achieved or invali-
dated. The use of sentries provides a declarative basis for GSM, and nesting of stages
provides abstraction and modularity. For ease of exposition, in the current paper we fo-
cus on the restricted case where there is only one artifact type and one artifact instance.
The results presented here naturally generalize to the multi-type/multi-instance context.

The most straightforward approach to operational semantics of GSM, called in-
cremental semantics, is based on the incremental, strictly sequential firing of Event-
Condition-Action (ECA) rules. In response to a single incoming event, the GSM system
will fire all relevant rules (e.g., for opening/closing of stages or achieving/invalidating of
milestones) until no more can be fired; after which the next incoming event can be pro-
cessed. In practical projects using GSM [9] when many incoming events are occurring
in a short time the incremental semantics may create a bottleneck in the system. Such
situations often occur in the context of collaborative problem solving [4] which can be
naturally well supported by GSM. A typical pattern in collaborative problem solving
involves a “shared artifact” [3] which serves as a coordination point of possibly many
users and other processes. Shared artifacts are targets of possibly many concurrently
incoming events and optimized implementations are needed to avoid bottlenecks.

The major contribution of the present paper is a parallel algorithm for the execution
of GSM models. In particular, we (a) use a graph analysis to “target” the set of sentries
that might need to be tested, (b) introduce a pipelining technique so that the impact
of multiple incoming events on an artifact instance can be processed in parallel, and
(c) enable parallel execution of computation steps that stem from a single incoming
event. We show that the developed parallel algorithm is equivalent with the sequential
algorithm. A second contribution is to introduce a simplified GSM meta-model that is
more streamlined than the meta-model of [5,2]. In the simplified model, milestones are
by default separated from stages, and the definition of well-formedness is simplified.

Section 2 provides a motivating example. The formal GSM meta-model and the oper-
ational semantics are presented in Section 3. Section 4 focuses on an optimized sequen-
tial algorithm and a parallel algorithm respectively. Section 5 reviews related work, and
Section 6 concludes the paper. Due to space limitations the presentation here is terse;
additional details and proofs of correctness are in the full paper [8].

2 A Motivating Example

This section presents an example illustrating the key features of the GSM meta-model
and the importance of developing a parallel algorithm for executing GSM processes.

The running example is taken from the domain of IT Proposal Creation. The pro-
posal preparation work is highly collaborative, with each proposal involving 10’s of
contributing participants and it tends to be bursty, with a flurry of activity in the days
leading up to the proposal release. Whenever a worker inputs information into the
shared workspace for a proposal, this may trigger several automated steps (e.g., sanity
checks on what was just entered, updates to schedules, launching of automated routines
such as recomputing component pricing, and/or launching of other human activities).
Because of the bursty nature of the work, maximizing throughput is important. Because

Parallel Processing for Business Artifacts with Declarative Lifecycles 435

g2

m3 (Proposal Agreed)

ID custo
mer

credit

.

Data Attributes Status Attributes

Milestones Stages

h2

g6

g4

g3

g1

 S2: Refine Proposal

 S1: Create Initial
 Proposal

 S3: Submit
 Proposal

g7
 S4:

Revise
Technical
Aspects

g8 g11

 S6:
 Check
 Credit

g10

h1

+
m1 (Proposal
Permitted)

m4 (Proposal Declined)

price

m6 (Level B
Credit Approved)

m5 (Level A
Credit Approved)

m9 (Aggressive Pricing Approved) m10 (Customer Credit Acceptable)

g5

m6 (price
Determined)g9 S5:

Determine
Price

m5

m2 (Refinement
Approved)

Fig. 1. Part of GSM model for Proposal Creation application

guards milestones
g3: on +m1 m2 achiever: on refinedProposalReady()
g4: on +m4 m5 achiever: on revisedTechnicalReady()
g5: on resumeRefinement() m5 invalidator: on +S4
g7: on +S2 m6 achiever: on priceDetermined(price)
g8: on offerManagerRequest() m6 invalidator: on +S6
g9: on +m5 m7 achiever: on creditAppr(creditLevel) if creditLevel = “A”
g10: on +m6 and if not m7 & not m8 m8 achiever: on creditAppr(creditLevel) if creditLevel = “B”
g11: on +m6 and if price>500K & not m8 m9 achiever: on AggressivePricingExecApproval()
terminators m9 invalidator: on AggressivePricingRescinded()
h1: on suspendCreation() m10 achiever: if price <= 500K & (not m7 or not m8)
h2: on suspendRefinement() m10 achiever: if price > 500K & m8
For each stage S with milestone m, each
achiever for m is also a terminator for S

m10 invalidator: on +S6 if price > 500K & not m8

Fig. 2. Selected sentries for Example 2.1

a step by some worker (e.g., giving an approval or submitting some information) may
lead to an immediate follow-up step by the same worker or a close collaborator, mini-
mizing response time is also important.

Example 2.1 Figure 1 illustrates a small part of a GSM model that can support Pro-
posal Creation, and Figure 2 shows several sentries for that model. The information
model of the business artifact is shown along the bottom of Figure 1, and top layers of
the lifecycle model are shown above. The three top-level phases of activity, depicted
as GSM stages with rounded corner boxes, are Create Initial Proposal (S1), Refine
Proposal (S2), and Submit Proposal (S3). Stage Refine Proposal is typically executed
several times. Stages can be arranged hierarchically, as illustrated in Refine Proposal.
(Although not illustrated in this example, distinct stages may execute in parallel.)

GSM milestones are shown as circles. Several milestones are naturally associated
with the completion of stages, e.g., Refine Proposal ends when an executive approves
the refinement. Other milestones are free-standing. For example, Customer Credit

436 Y. Sun, R. Hull, and R. Vaculı́n

Acceptable will become true if the proposal price is � $500K and the client has a Level
A credit rating, and if the proposal price is > $500K and the client has a Level B credit
rating. Milestones can be tested as Boolean values by conditions anywhere in the GSM
model.

Guards, which control when stages can be opened for execution, are shown as di-
amonds. Guard g1 on Create Initial Proposal is a “bootstrapping” guard; when it is
triggered a new artifact instance is created. In some cases it is convenient to have a
terminator for a stage, shown using a bowtie. For example h2 on Refine Proposal is a
terminator that can be triggered if a worker indicates that this stage should be suspended
(e.g., because the client has stated that they are withdrawing their request). Unlike mile-
stones, guards and terminators cannot be tested as Booleans.

We now briefly describe a representative scenario where fast response is important.

Example 2.2 Three representative substages are shown in Refine Proposal, namely Re-
vise Technical Aspects, Determine Price, and Check Credit. In practice, Revise Techni-
cal Aspects would have a number of substages dealing with hardware, software, work-
force, logistics, etc. Determine Price might involve several substages, and for this ex-
ample we assume that they are all automated (e.g., for determining costs associated
with various portions of the technical aspects, for computing shipping costs and taxes,
for adding everything up). Only a subset of these substages would be relevant for a
given execution of Determine Price. There may be other stages analogous to Determine
Price, e.g., for determining risk, impact on branding, or impact on competitive posi-
tioning. The Check Credit stage might be triggered if a newly computed price is higher
than the credit level already approved for the customer.

After a management-level worker approves a changed part of the Revise Technical
Aspects stage, there will be processing to recompute the price, which will then lead to a
feedback that either confirms that the client credit is still acceptable, or indicates that a
higher-level Credit Check must be performed. It is desirable that this feedback be given
to the worker within just a couple of seconds.

3 Guard-Stage-Milestone Meta-model

This section presents the syntax and operational semantics of the GSM meta-model. The
focus is one GSM model that involves a single artifact type. Due to space limitations,
the presentation is largely informal; formal definitions may be found in [8].

As illustrated in Section 2, a Guard-Stage-Milestone model (or GSM model) includes
both an information model and a lifecycle model. This is typically denoted as a 5-
tuple Γ = (Att, EType, Stg, Mst, Lcyc), where the components are, respectively, the
set of attributes (partitioned into the set Attdata of data attributes and Attstatus of status
attributes; the set of (incoming) event types; the set of stages; the set of milestones; and
the lifecycle model (which is defined below).

The domain of each data attribute A, denoted Dom(A), is assumed to include the
undefined value ⊥. For each milestone m, there is a Boolean milestone status attribute
also denoted by m in Attstatus; this is true if the milestone has been achieved and not
since invalidated, and false otherwise. For each stage S there is a Boolean stage status
attribute also denoted by S ; this is true if the stage is open and false otherwise.

Artifact instances of GSM model Γ interact with the external environment by send-
ing and receiving typed external events with event types defined in EType. There are two

Parallel Processing for Business Artifacts with Declarative Lifecycles 437

types of external events: incoming events that are received from the external environ-
ment and outgoing events that are sent to the external environment. An event instance
(or simply, event) consists in an event type and a payload, specified as a family of at-
tribute/value pairs. As a notational convenience, the attributes here are drawn from the
set of data attributes of Γ. When an artifact instance incorporates an incoming event,
the attributes mentioned in the payload are updated according to the values

The actual “work” of a GSM model is performed by tasks, which are contained
in atomic stages. Tasks are invoked through message sending. The two types of task
relevant for this paper can: (a) generate 1-way messages (when invoked they wait for
a “handshake” indicating success or failure); (b) generate 2-way service calls (when
invoked they wait for the service call return from the called service or a time-out mes-
sage). (Upon completion of a 2-way service call generated by a task, an incoming mes-
sage is received by the artifact instance, and the atomic stage associated with the task
is closed.) In GSM, computational tasks (including assignments of attribute values) are
modeled using 2-way service calls.

A sentry for GSM model Γ is an expression of form ‘on < event expression > if <
condition >’; or ‘on < event expression >’; or ‘if < condition >’. The event expression
may have one of the following forms: Incoming event expression: E, where E ∈ EType
(intuitively, it gets satisfied if an event of type E occurs); Internal event expression:
For each milestone m this includes +m and −m; and for each stage S this includes +S
and −S . Intuitively, +m is triggered when m is achieved, −m when m is invalidated, +S
when S is opened, and −S when S is closed. As illustrated in Section 2, the guards
and terminators associated with stages are sentries. Also, milestones have associated
achieving sentries and invalidating sentries.

The lifecycle model of a GSM model Γ = (Att, EType, Stg, Mst, Lcyc), is the tu-
ple Lcyc = (Substages, Task, Submilestones, Guards, Terminators, Ach, Inv) where the
components are, respectively a function that maps each stage to its family of substages
(where the substage relationship forms a forest); a function that maps each atomic stage
to the unique task that it contains; a function that maps a subset of the milestones to
stages that they are contained in; a function that associates guards to stages; a func-
tion that associates terminators to stages; a function that associates achieving sentries
to milestones; and a function that associates invalidating sentries to milestones.

A snapshot of a GSM model Γ is an assignment Σ that maps each attribute of Γ to
a value in its domain (which includes ⊥ for data attributes). Snapshots are required to
satisfy the GSM invariant, namely that if a stage S is closed (i.e., if status attribute S
is assigned the value false) then all of its child stages are also closed. In the following
we also need the notion of pre-snapshot; this is an assignment Σ for Γ that might not
satisfy the GSM invariant.

Citation [2] introduces three equivalent formulations of the operational semantics of
GSM, called incremental, fixpoint, and closed-form (which is expressed in first-order
logic); in the current paper we focus exclusively on the incremental formulation. This
is based on responding to an incoming external event by repeated application of Event-
Condition-Action (ECA) like rules until no further rules can be fired. The ECA-like
rules are formed from the sentries of the GSM model. Because negation is present in
the ECA-like rules, some restrictions are placed on GSM models, and on the order of
rule application. These restrictions, described below, are analogous to those found in
stratified datalog and logic programming.

438 Y. Sun, R. Hull, and R. Vaculı́n

A fundamental notion in GSM is that of Business Step (B-step). These are concep-
tual atomic units of business-relevant processing, and correspond to the effect of in-
corporating one incoming event into a snapshot of GSM model Γ. B-steps have the
form of 4-tuples (Σ, e, Σ′,Gen), where Σ, Σ′ are snapshots, e is an incoming external
event, and Gen is a set of outgoing external events. Under the incremental formula-
tion, this 4-tuple is a B-step if there is a sequence of pre-snapshots Σ = Σ0, Σ1 =

ImmEffect(e, Σ), Σ2, . . . , Σn = Σ
′ where, speaking intuitively, Σ1 corresponds to the di-

rect incorporation (called “immediate effect”, denoted as ImmEffect) of event e into Σ,
and Σi+1 corresponds to the application of a sentry to Σi for i ∈ [2..n]. (For simplicity of
exposition below, we also permit Σi+1 to be identical to Σi for some i.) Further, Gen is
the set of outgoing events caused by the tasks that are launched during the sequence. In
the formal model, computation of this sequence of pre-snapshots is assumed to happen
in a single instant of time, and the set Gen of events is transmitted to the external envi-
ronment in one batch immediately after Σ′ is computed. We sometimes write a B-step
as a triple (Σ, e, Σ′) if Gen is understood from the context.

Example 3.1 In Fig. 1, suppose now S 1, S 3, S 5 and S 6 are closed and S 2 and S 4 are
open. A new B-step can be triggered by receiving event revisedTechnicalReady. In this
B-step, m5 will be achieved and so stage S 4 will close. Since g9 is +m5, the B-step will
also open stage S 5. After that no further sentries are applicable and the B-step ends.

B-steps must satisfy two properties, called Inertial and Toggle-Once. Speaking intu-
itively, inertial means that if Σ and Σ′ differ on some status attribute, then there must be
some sentry that justifies the change. Toggle-Once means that in a sequence as given
above, a status attribute can change value at most once. This corresponds to the intuition
that everything business-relevant about a B-step should be observable by looking at the
snapshots before and after the B-step.

We now describe how the sentries of Γ are used to create the ECA-like rules, called
here ‘Prerequisite-Antecedent-Consequent’ (PAC) rules. The “prerequisite” component
of these rules helps to enforce the Toggle Once property. (In most naturally arising GSM
schemas, the “prerequisite” component is not needed.)

Definition: A Prerequisite-Antecedent-Consequent (PAC) rule ρ, for GSM model Γ is
a tuple (π, α, γ), where: (Prerequisite) π is a formula on attributes in Att; (Antecedent)
α is a sentry based on attributes in Att, internal events over Attstatus, and external event
types EType; and (Consequent) γ is an internal event �σ, where � ∈ {+,−} and σ ∈
Attstatus.

Returning to the incremental semantics, suppose that a partial sequence Σ = Σ0, Σ1 =

ImmEffect(e, Σ), Σ2, . . . , Σi has already been constructed. A PAC rule (π, α, γ) is appli-
cable to (Σ, Σi) if Σ |= π and Σi |= α. In this case, Σi+1 may be formed by modifying Σi

according to the status change called for in γ.
A GSM model Γ is well-formed if the graph defined next is acyclic. This graph is

also central to the parallelization developed in Section 4.

Definition: The extended polarized dependency graph (EPDG) of GSM model Γ, de-
noted EPDG(Γ) is a graph where the node setV includes: for each event type E, nodes
+E; for each milestone m, nodes +m and −m; and for each stage S , nodes +S and −S .
The edge set E is defined as follows. (Here “�,�′” are polarities, and range over {+,−};
σ, σ′ are not necessarily distinct status attributes; and (π, α, γ) as a PAC rule in ΓPAC .)

Parallel Processing for Business Artifacts with Declarative Lifecycles 439

Basis Prerequisite Antecedent Consequent
Explicit rules
PAC-1 Guard: if on ξ if ϕ is a guard of S . (Include term S ′

if S ′ is parent of S .)
¬S on ξ if ϕ ∧S ′ +S

PAC-2 Terminator: if on ξ if ϕ is an terminator of S . S on ξ if ϕ −S
PAC-3 Milestone achiever: if m is a milestone and on ξ if ϕ

is an achieving sentry for m. (Include term S ′ if S ′ is
parent of m.)

¬m on ξ if ϕ ∧S ′ +m

PAC-4 Milestone invalidator: if m is a milestone and on ξ if
ϕ is an invalidating sentry for m.

m on ξ if ϕ −m

Invariant preserving rule
PAC-5 If S is a child stage of S ′ S on −S ′ −S

Fig. 3. Prerequisite-Antecedent-Consequent Rules of a GSM Model

+S2

+m1

+m4

+resume
Refinement

+S4

+offerManager
Request

+m5

+S5

+S6
+m6

+m7

+m8

-m7

-m8

+m2

+refined
ProposalReady

+revised
TechnicalReady

-m5

+price
Determined

-m6

+creditAppr
+m9

+Aggressive
PricingExecApproval

-m9

+Aggressive
PricingRescinded +m10

-m10
-S4 -S5

-S6

-S2

-S1

-S3

Fig. 4. (Extended) Polarized Dependency Graph

– If α includes in its triggering event ξ the internal event expression �′σ′, and γ is
�σ, then include edge (�′σ′,�σ).

– If α includes in its condition the expression σ′ and γ is �σ, then include edges
(+σ′,�σ) and (−σ′,�σ).

– If a guard g (or a terminator h) of a stage S contains a triggering event of type E, or
a data attribute from the payload of E, then include edge (+E,+S) (or (+E,−S)).

– If an achieving (or invalidating) sentry of milestone m contains a triggering event
of type E, or a data attribute from the payload of E, then include edge (+E,+m) (or
(+E,−m)).

Intuitively, an edge (�σ,�′σ′) is included in the EPDG if possible impacts on �σ
should be finalized before the PAC rules impacting �′σ′ are considered. We may also
use the notion of “PDG” [8] (EPDG without +E nodes, where E is an event type) in the
remainder of this paper.

Fig. 4 shows to part of the EPDG for the GSM model of Example 2.1 (the solid nodes
and edges form the “PDG”). Here, there is an edge from +m5 to +S 5, because the guard
g9 on S 5 includes +m5. Also, both +m8 and −m8 point to m10 in the EPDG, because m8

is mentioned in the if part of an achiever of m10.
When constructing a B-step using the incremental construction, the PAC rules are

considered in an order based on a topological sort of the PDG A key result of [2] states
that if Γ is well-formed and e is applicable to Σ, then there is exactly one snapshot Σ′
(and one set Gen) such that (Σ, e, Σ′,Gen) is a B-step. In particular, the construction of
Σ′ is independent of the topological sort used for rule application.

440 Y. Sun, R. Hull, and R. Vaculı́n

As discussed in [8], in some corner cases after completion of a B-step (Σ, e, Σ′,Gen)
some PAC rule might be applicable to Σ′. In this paper we consider only GSM models
Γ for which this does not arise: such GSM models are called “orphan-free”.

4 Parallelized Business Steps: Algorithm with Parallelism

The reason to propose the parallel algorithm for GSM is to solve the bottleneck that may
occur when events are evaluated in a strictly sequential manner. The proposed parallel
algorithm uses the following techniques. (1) Targeting: When processing a single B-
step, it is sufficient to traverse only a subset of the PDG graph instead of the entire
graph (introduced in this section); (2) Pipelining: B-steps can be evaluated in parallel.
(3) Parallelism within a single B-step: Even within a B-step, some evaluations can be
done in parallel.

We start by introducing the targeting algorithm which serves as a basis for the paral-
lel algorithm. This approach reduces the number of PDG nodes that need to be evalu-
ated in every B-step. We show the equivalence between the targeting algorithm and the
sequential one.

Assuming an orphan-free and well-formed GSM model, the following “targeting
algorithm” performs one B-step for an incoming event e of type E:

– For each reachable node v from (+E) in topological order
• If v is +E, then apply immediate effect with e.
• Otherwise, apply each PAC rule associated with v.

Theorem 4.1 (Informal) The targeting algorithm and the incremental algorithm share
the same operational semantics.

The proof of Theorem 4.1 is in [8]. If the multi-threaded mechanism is used in the GSM
engine, one optimization using the targeting algorithm can be obtained by evaluating
two nodes that have no partial relationship in parallel. We use this idea in the parallel
algorithm to handle multiple events.

Example 4.2 In Fig. 4, if event “priceDetermined” comes, instead of traversing the
whole PDG, only nodes +m6, +S 6, −S 5, −m6, +m10, and −m10 need to be visited in
topological order. Furthermore, since −S 5, +m10, and +S 6 share no partial relationship,
these three nodes can be evaluated in parallel.

The targeting algorithm provides the basis for parallelizing B-steps. Suppose two events
of different types arrive at about the same time and the EPDG subgraphs of the two event
types have no intersection in terms of nodes. Naturally, it is possible to traverse the two
subgraphs and apply the corresponding PAC rules in parallel. On the other hand, if there
are some nodes shared by the two subgraphs, the parallel algorithm needs to make sure
that PAC rules associated with the shared nodes for the event that arrived earlier are ap-
plied before those associated with the later event. We assume that incoming events and
the corresponding B-steps are labeled by increasing numbers (or logical timestamps)
that correspond to the order in which events occurred. The parallel algorithm will use
these numbers to make sure that during the concurrent B-steps, the ordering of events
is not violated.

Parallel Processing for Business Artifacts with Declarative Lifecycles 441

In the algorithms, we use the following notation. Given a GSM model Γ and its
EPDG (V,E), each node v ∈ V is associated with two sets denoted as will visit(v)
and has visited(v), whose elements are positive integers. Given a status attribute σ, the
complement of node +σ (or −σ) is node −σ (or +σ), denoted as co(−σ) (or co(+σ)).

For each incoming event, there are three high-level steps of how B-steps are pro-
cessed in parallel: labeling, evaluation, and removal.

1. Labeling: In order to understand which node is available for immediate processing,
it is necessary to label them first. Suppose the kth event arrives which is of type E, then
add k to will visit(v) of each EPDG node v that is reachable from +E. This “labeling
policy” is based on the result of the targeting algorithm.

2. Evaluation: Once the numbers are labeled for the kth event, the B-step k can start to
evaluate its corresponding reachable nodes similar to targeting algorithm (by applying
the PAC rules or the immediate effect). A B-step k can evaluate a node v, if v satisfies
the following evaluation policy: (1) k is the smallest number in will visit(v); and (2) k
is smaller than each number in will visit(u) and will visit(co(u)), where u is a node and
(u, v) is an edge; and (3) k is no greater than each number in will visit(co(v)).

3. Removal: Once B-step k applies the PAC rules or the immediate effect on a node v, k
is moved from will visit(v) to has visited(v) which indicates that the B-step k has visited
v already. This removes the ordering restriction and will unblock the later B-steps, so
that they can apply PAC rules on the shared nodes.

Theorem 4.3 (Equivalence theorem, informal) .The parallel algorithm and the tar-
geting algorithm are equivalent in terms of the observable behavior.

The formal statement and the proof of Theorem 4.3 is in [8]. Theorem 4.3 guarantees
that the parallel algorithm can correctly handle multiple incoming events in parallel and
generate the same snapshots, outgoing events, and query answers as if all incoming
events and queries are processed sequentially.

In [8], an optimized algorithm is provided. Based on the optimized version, it can be
shown that the complexity in the worst case is no worse than the targeting algorithm;
while much better than targeting algorithm in terms of order in the best case.

5 Related Works

The GSM paradigm used here is based on the business artifact model originally intro-
duced in [7,6], but using a declarative basis [2,5].

There is a strong relationship between the GSM model and Case Management [13,12];
both approaches focus on conceptual entities that evolve over time, and support ad hoc
styles of managing activities. The GSM framework provides a formal operational se-
mantics [2,5]. The core GSM constructs are being incorporated into the emerging OMG
Case Management Modeling Notation standard [1], and there is ongoing work to adapt
the GSM semantics to that context.

DecSerFlow [11] is inherently more declarative than GSM. GSM can be viewed as a
reactive system that permits the use of a rich rules-based paradigm for determining, at
any moment in time, what activities should be performed next.

There is a loose correspondence between the artifact approach and proclets [10]; both
approaches factor a BPM application into “bite-size” pieces that interact through time.

442 Y. Sun, R. Hull, and R. Vaculı́n

Proclets do not emphasize the data aspect, and support only message-based proclet
interaction. In addition to supporting messages, GSM permits interaction of artifact
instances through condition testing and internal event triggering.

Citation [3] presents a framework for supporting web-based collaborative business
processes. They use a construct called task artifact to hold the complete collaboration
state, and to help manage the response to incoming events. An interesting research
question is to explore whether GSM could provide a useful approach for specifying
possible lifecycles of task artifacts.

6 Conclusions

Business artifacts with Guard-Stage-Milestone (GSM) lifecycle models offer a flexi-
ble, declarative, and modular way to support collaborative business processes. The core
constructs of GSM are being incorporated into the emerging OMG Case Management
Modeling Notation standard. This paper presents an algorithm to support parallel ex-
ecution of GSM processes, which can be especially useful in the context of highly
collaborative and/or web-scale business processes. The paper also introduces a GSM
meta-model that simplifies the previously published one.

An important next step is to implement and benchmark the parallel algorithm pre-
sented here, on both synthetic and “real” processes, to determine the practical gains in
throughput and response time yielded. More broadly, it will be useful to examine exist-
ing and future application areas for GSM and Case Management to identify other ways
to optimize overall performance.

References

1. BizAgi, Cordys, IBM, Oracle, SAP AG, Singularity (OMG Submitters) and Agile Enterprise
Design, Stiftelsen SINTEF, TIBCO, Trisotech (Co-Authors). Proposal for: Case Manage-
ment Modeling and Notation (CMMN) Specification 1.0, Document bmi/12-02-09, Object
Management Group (February 2012)

2. Damaggio, E., Hull, R., Vaculı́n, R.: On the Equivalence of Incremental and Fixpoint Se-
mantics for Business Artifacts with Guard-Stage-Milestone Lifecycles. In: Rinderle-Ma, S.,
Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 396–412. Springer, Heidelberg
(2011)

3. Dorn, C., Taylor, R.N., Dustdar, S.: Flexible social workflows: Collaborations as human ar-
chitecture. IEEE Internet Computing 16(2), 72–77 (2012)

4. Dustdar, S.: Caramba - a process-aware collaboration system supporting ad hoc and collabo-
rative processes in virtual teams. Distributed and Parallel Databases 15(1), 45–66 (2004)

5. Hull, R., et al.: Business artifacts with guard-stage-milestone lifecycles: Managing artifact
interactions with conditions and events. In: Proc. 5th ACM Intl. Conf. on Distributed Event-
based Systems, DEBS 2011, pp. 51–62. ACM, New York (2011)

6. Kumaran, S., Nandi, P., Heath, T., Bhaskaran, K., Das, R.: Adoc-oriented programming. In:
SAINT, pp. 334–343 (2003)

7. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM
Syst. J. 42, 428–445 (2003)

8. Sun, Y., Hull, R., Vaculı́n, R.: Parallel processing for business artifacts with declarative life-
cycles (full version). IBM internal technical report, available on request (2012)

9. Vaculı́n, R., et al.: Declarative business artifact centric modeling of decision and knowledge
intensive business processes. In: Proc. Intl. Conf. on Enterprise Distributed Objects Confer-
ence (EDOC), pp. 151–160 (2011)

Parallel Processing for Business Artifacts with Declarative Lifecycles 443

10. van der Aalst, W.M.P., et al.: Proclets: A framework for lightweight interacting workflow
processes. Int. J. Cooperative Inf. Syst., 443–481 (2001)

11. van der Aalst, W.M.P., Pesic, M.: Decserflow: Towards a truly declarative service flow lan-
guage. In: The Role of Business Processes in Service Oriented Architectures 2006 (2006)

12. van der Aalst, W.M.P., Weske, M.: Case handling: a new paradigm for business process
support. Data Knowl. Eng. 53, 129–162 (2005)

13. Zhu, W.-D., et al.: Advanced Case Management with IBM Case Manager,
http://www.redbooks.ibm.com/redpieces/abstracts/sg247929
.html?Open

http://www.redbooks.ibm.com/redpieces/abstracts/sg247929.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg247929.html?Open

	Parallel Processing for Business Artifacts with Declarative Lifecycles
	Introduction
	A Motivating Example
	Guard-Stage-Milestone Meta-model
	Parallelized Business Steps: Algorithm with Parallelism
	Related Works
	Conclusions
	References

