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Abstract. Emerging online collaboration platforms such as Wikipedia,
Twitter, or Facebook provide the foundation for socio-technical sys-
tems where humans have become both content consumer and provider.
Existing software engineering tools and techniques support the system
engineer in designing and assessing the technical infrastructure. Little
research, however, addresses the engineer’s need for understanding the
overall socio-technical system behavior. The effect of fundamental de-
sign decisions becomes quickly unpredictable as multiple collaboration
patterns become integrated into a single system.

We propose the simulation of human and software elements at the col-
laboration level. We aim for detecting and evaluating undesirable system
behavior such as users experiencing repeated update conflicts or software
components becoming overloaded. To this end, this paper contributes (i)
a language and (ii) methodology for specifying and simulating large-scale
collaboration structures, (iii) example individual and aggregated pattern
simulations, and (iv) evaluation of the overall approach.

Keywords: Design Tools and Techniques, System Simulation, Collabo-
ration Patterns, Large-scale Socio-Technical Systems.

1 Introduction

During the last two decades, numerous web-based, large-scale collaboration ser-
vices have emerged for social networking (e.g., Facebook), collaborative tagging
(e.g., Digg), content sharing (e.g., Youtube), knowledge creation (e.g., Wikipedia),
crowdsourcing (e.g., Amazon Mechanical Turk), and source code production
(e.g., GitHub). Recent research efforts have analyzed these systems in terms
of user incentives, participation, recruitment, decision making, and information
management [18,5]. Engineered for diverse purposes, these systems differ widely
in the underlying collaboration patterns of their users [6]. For example, Amazon
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Mechanical Turk follows the master/worker pattern for task outsourcing, Face-
book links people in peer-to-peer social networks, Wikipedia manages shared
artifacts for collaborative editing, and Twitter provides publish/subscribe news
distribution.

Engineers of such systems have currently little support for anticipating the
system’s overall (i.e., socio-technical) behavior in large-scale deployments, in
terms of metrics such as the timeliness and load of messages, artifact changes,
queries, and so on. For example, a system architect for a knowledge creation
platform might be interested in the number of write conflicts given particular
contributor characteristics. Similarly, a crowdsourcing platform architect needs
to consider effects of task assignment strategies on task response time. A mi-
croblogging system architect may want to estimate the event propagation speed
for a given user subscription topology.

In general, an engineer aims to avoid negative behaviors such as information
overload, decision making based on stale data, accidental information disclosure,
or performance bottlenecks. These behaviors manifest themselves both within
user collaborations and within the software itself. Subscribing to many Wiki ar-
ticles, for example, may flood the user with updates and simultaneously overload
the software that aggregates change events (information overload). On the other
hand, a code repository user who is unaware of updates submitted by other users
may encounter numerous burdensome write conflicts when submitting changes
(information scarcity). The presence of multiple, aggregated patterns within a
single system further complicates the problem, as complex interactions result in
undesirable emergent behaviors that cannot be detected by observing individ-
ual patterns in isolation. System designers thus need sophisticated analysis to
identify such undesirable behavior and the conditions that create it.

Once engineers understand the implications of particular combination of user
behavior, collaboration patterns, and system configuration, they can apply sys-
tem constraints at design-time that prevent the undesired effects completely
or devise run-time adaptation mechanisms that mitigate those effects dynami-
cally. The resulting systems are more robust and may feature more coordina-
tion and awareness mechanisms that are well-understood and governed. Without
such support, systems may be brittle or restricted in terms of the provided col-
laboration mechanisms. For example, the successful mass-collaboration systems
mentioned above apply limits for technical or collaborative reasons. 1 We are,
however, interested in the effect of design decisions beyond simple constraints.

The primary technical challenge addressed in this paper is reasoning about the
expected emergent behavior in large-scale collaborative systems prior to imple-
mentation and deployment. To this end, we propose simulating the behavior of
web-scale collaboration systems in terms of collaborator structures, their actions,
and the supporting software infrastructure. Several prior research efforts target
important but only partial aspects of this problem, and thus fall short of deliver-
ing collaboration-centric design support. Existing work on simulating workflows or

1 Facebook has an upper limit of 5000 friend connections, Twitter places an initial
follow limit of 2000, and Wikipedia enforces rate limits on write requests.



364 C. Dorn, G. Edwards, and N. Medvidovic

crowdsourcing, for example, provides valuable insights into performance-improving
algorithms [14,17,22], but addresses only a single subdomain. Simulations of soft-
ware architectures and their implementation [8,2,15] focus on the software level
rather than human interaction. Finally, in the domain of statistical mechanics,
simulation and analysis of large-scale social networks remains very abstract [11,1].
General guidelines [12] for facilitating collaboration and user participation provide
a starting point for designing large-scale systems. They, for example, recommend
enabling users to edit and share data, but are insufficient for determining the spe-
cific effects within a given collaboration environment.

The primary contribution of this paper is a principled method for analyz-
ing complex collaboration architectures through simulation. In support of this
contribution, the paper describes:

– enhancements to an existing language for modeling collaboration patterns
that enable dynamic analysis (Sec. 3),

– example models of several individual collaboration patterns as well as a
model of their composition in a single system,

– specific techniques for scoping and targeting simulations to yield the most
useful results, and

– an evaluation of the overall approach demonstrating its feasibility and use-
fulness (Sec. 4).

The following section provides a motivating scenario (Sec. 2); with related work
in Section 5 and conclusion and outlook in Section 6.

2 Motivating Scenario

Building monitoring and security requires extensive collaboration among mem-
bers of a security team. These teams range in scope from a small group that
monitors an office building to hundreds of personnel in back offices and on-site
that monitor critical, geographically distributed infrastructure. Facility monitor-
ing systems that enable large-scale, flexible collaboration are subject to diverse
coordination requirements. In this paper, we will illustrate key concepts based
on such an example system composing collaboration patterns found in Twitter,
Wikipedia, and Amazon Mechanical Turk.

Consider a large-scale facility monitoring system (Fig. 1) involving several
different user roles: sensors, field agents, back-office agents, back-office analysts,
and team leaders. Sensors may be hardware and software components or people
with “eyes on the ground.” Field agents are located on site and directly monitor
data from sensors. Field agents are organized into teams assigned to a specific
building, floor, or area. Field agents may send alerts of suspicious activity to
back-office agents and flag relevant sensor data. Back-office agents investigate
suspicious behavior by aggregating information and assessing whether a threat
exists. Analysis of raw data from multiple video feeds, still images, and voice
recordings may overwhelm an assigned back-office agent and require additional
staff members on demand, in which case tasks can be assigned to a pool of back-
office analysts. The team leader is responsible for determining the appropriate
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response to an incident based on the aggregated, filtered information provided
by back-office agents.

Fig. 1. Aggregating Collaboration Patterns for Infrastructure Monitoring

Interaction among the various users and user groups in this scenario exhibits
several collaboration patterns. An engineer identifies following three potential
collaboration patterns that match the underlying coordination requirements: 1

Field agents will be provided with an interface for raising alerts and flagging
sensor feeds that may indicate suspicious behavior. Back-office agents will select
from a list of field agents from which they wish to receive alerts and flagged
sensor data. Field agents need not be aware of which or how many back-office
agents have selected to receive their alerts. Thus, information distribution will
be achieved through the publish/subscribe collaboration pattern.

2 Virtual log books will be used to record the occurrence of events and user
activities. Multiple log books may be created, each covering a different team,
time-period, or subject. Users will be able to retrieve the latest log book on
demand and make additions or modifications to it. Thus, the log books will
implement the shared artifact collaboration pattern.

3 Back-office agents who require a threat assessment will add work items to a
to-do list. Items in the to-do list will be automatically assigned to available back-
office analysts, who will review the relevant sensor data and indicate whether
a threat exists. In some cases, to minimize the potential for human error, the
same task may be assigned to multiple analysts so that their conclusions can
be compared for consistency. Thus, analysis tasks will be coordinated using the
master/worker collaboration pattern.

The system design needs to achieve a balance of providing flexible, unrestricted
collaboration mechanisms that facilitate staff members reacting to unforeseen
situations while at the same time maintaining desirable system behavior. Staff
members, for example, must not experience log book write conflicts, messages
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and alerts need to be delivered to all interested parties but simultaneously avoid
overloading the recipient, and tasks must finish in a timely manner and yield
the required quality. The following questions highlight some specific issues the
system designer might face:

1 How many field agents can a back-office agent reliably monitor before be-
coming overloaded? Should a limit be placed on how many field agents a back-
office agent can select to monitor?

2 How should access to the log book be regulated to prevent write conflicts?
Should staff members be required to obtain a lock before performing a write? If
not, how often can we expect conflicts to occur?

3 How many users should share each log book? What happens if a large
number of users are all trying to use the same log book?

4 How should tasks from the to-do list be allocated to available back-office
analysts? First-in-first-out or some other way?

To answer all these questions, analysis of individual patterns is insufficient. The
designer needs to consider system-wide, cascading implications such as the effect
of event bursts on crowd-based situation assessment, the effect of overloaded
crowd workers on timely event analysis, and the spike of write conflicts as staff
members condense event observations into shared log books.

3 Modeling and Simulation of Collaboration Patterns

Large-scale collaboration systems heavily rely on humans as providers and con-
sumers of information. Consequently, human behavior becomes an intrinsic as-
pect of the overall system. Given the inherent unpredictability of human behavior,
static analysis techniques (e.g., [16]) are insufficient for making informed decisions
about emergent behavior in a large-scale system. Instead, we focus on dynamic
analysis in the form of system simulation.

In contrast to detailed modeling of software components, we propose simu-
lating the interplay of humans and technology. In this context, the modeling
effort focuses on collaboration patterns [6], such as master/worker, shared arti-
fact, and publish/subscribe, rather than software architectures or architectural
styles, such as SOA or 3-tier client-server [19]. Our approach treats collabora-
tion patterns as “human architectures” consisting of people (human components)
and the systems they use to facilitate collaboration (collaboration connectors).
This achieves a clear distinction between work-centric roles (components) and
coordination-centric roles (connectors), as described in our previous work [7];
emphasizes modeling of human interactions independently from the underlying
design of the collaboration system used; and facilitates the identification of loci
for system collaboration constraints.

Our process for simulating large-scale collaborations consists of three basic
steps, usually performed in multiple iterations: (i) capturing collaboration pat-
terns in an executable model, (ii) defining scenarios, assumptions, and config-
urations for individual simulation runs, and (iii) evaluating and interpreting
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simulation results. These steps are described in Section 3.2. As a precondition, a
suitable modeling language for capturing collaboration patterns must be speci-
fied. We have created such a language as an extension of the human Architecture
Description Language (hADL [7], described in Section 3.1). This extended lan-
guage is sufficiently flexible to allow engineers to model their own patterns or
compositions of patterns, or they may extend the language further with pattern-
specific elements or properties.

We used the DomainPro 2 modeling and simulation tool suite to create mod-
els of collaboration patterns that conform to the extended hADL language and
run simulations of those models. DomainPro enables engineers to create custom
simulation languages through metamodeling and supports agent-based and dis-
crete event simulation semantics. In the following sections, the model diagrams
and simulation shown were all developed in DomainPro. However, our overall
approach is generic and could be easily applied using a different simulation en-
vironment.

Fig. 2. Master/Worker pattern in hADL. Action labels represent CRUD privileges:
Create, Read, Update, Delete. Collaboration objects exhibit optional references to
related objects.

3.1 Modeling Language for Collaboration Patterns

In order to create simulation models for human collaboration, we extended an
existing language, the human Architecture Description Language (hADL) [7],
with additional features and properties to capture dynamic system behavior. As
we will show, our extended hADL language can be used to capture a variety of
individual and composite collaboration patterns.

We will briefly revisit the relevant parts of hADL as it represents the foun-
dation for our simulation approach. In hADL, a collaboration pattern consists
of two types of active entities: human components and collaboration connectors.
A model of the master/worker pattern is shown in Fig. 2. The communication
media used by components (e.g., Master, Worker) and connectors (e.g., Job As-
signment) is represented by collaboration objects, such as messages (Task, Job,
Result), streams, and artifacts (Outcome). Human actions and object actions
restrict the interaction amongst components and connectors in terms of Create,
Read, Update, and Delete manipulation capabilities. Connecting human actions
and matching object actions gives rise to a collaboration pattern.
2 http://www.bluecellsoftware.com/



368 C. Dorn, G. Edwards, and N. Medvidovic

Just as software-centric architecture description languages provide a high-level
view of the system, hADL provides a view of human components, collaboration
connectors, collaboration objects, and their wiring. However, execution of collab-
oration patterns remains outside of hADL’s scope, and hADL does not address
the interdependencies amongst multiple patterns in a complex collaboration
system.

Fig. 3. The metamodel (extended hADL language) for defining collaboration patterns.
Domain-specific extensions are highlighted in bold/blue.

Fig. 3 shows how hADL was extended to support dynamic behavior and simu-
lation. A CollabSystem consists of Collaborators, which in turn play one or more
Roles. A role may be either a Component or a Connector, thus enabling the
Collaborator to assume a component role in one pattern and a connector role in
another pattern. Each Role includes a set of CollabSteps that define the actions
performed by the role. Each CollabStep represents a logical unit of work (e.g.,
sending a message, retrieving document content, processing a set of events). Col-
labSequences define the sequence (control flow) of CollabSteps. A CollabSystem
also includes CollabObjects, the means of communication in hADL. Triggers rep-
resent events, such as such timer timeouts, that initiate collaborator responses.
Additional links (i.e., TriggerFlow, FocusOnObjConn, TriggerRefConn, and Ob-
jectRefConn) provide object references to complete the core model.

The types enumerated above contain properties (shown in italics) that can be
varied to achieve different simulation behaviors. For example, CollabSteps have
an associated duration (time needed to complete), and Roles define probabili-
ties for engaging in different optional behaviors. These types and properties can
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be further extended with pattern-specific types or properties if engineers wish
to investigate additional aspects of a pattern. Fig. 3, for example, highlights
additional Component and Connector subtypes as well as Configuration prop-
erties for the Publish/Subscribe pattern in bold/blue. Note that we excluded
extensions for the other patterns used in the scenario and evaluation for sake of
clarity.

3.2 Modeling Collaboration Patterns

To develop a model of a collaboration pattern or composition of patterns, an en-
gineer may utilize our extended hADL language or a pattern-specific variant of
it. The engineer defines the structure and behavior of the pattern(s) by instanti-
ating the appropriate components and connectors and defining their interactions.
The model usually also includes a set of data structures that encapsulate the
system’s dynamic state. Specifically, the simulation designer needs to identify:

Structure: Just as software engineering patterns [10] provide best-practises
in programming, so do collaboration patterns [6] provide reusable structures
of human components, collaboration connectors, actions, collaboration objects,
and their relationships. Note that it is infeasible to explicitly model every Col-
laborator instance in large-scale systems. Hence, CollabObjects serve not only
as carriers of information, but may also perform an addressing function (e.g.,
recording subscriptions to topics). Fig. 4 depicts the simulation model for a
topic-centric publish/subscribe CollabSystem. The model combines both pub-
lisher and subscriber Roles within a single Agent. The PubSubMW Collaborator
assumes the role of a collaboration connector for event delivery. PubMsg and
NfyMsg provide the means of communication between Agent and PubSubMW.

Fig. 4. Topic-centric Publish/Subscribe pattern in DomainPro Designer

Output: Behavior metrics provide engineers with information about the sys-
tem’s dynamic behavior. For example, the Agent workload when processing in-
coming events may be of interest to engineers. For the PubSubMW, engineers
may be concerned with the number of notification messages/events processed
during various batch processing intervals.
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Logic: The overall system behavior emerges from the interactions among
individual Collaborators’ behavior as well as the control flow among them. To
capture timing behavior, the simulation requires each CollabStep to specify its
duration, which may be a stochastic or random value. In Fig. 4, CollabSteps
such as Publish, Receive, and Forward contain the logic to create, read, and
process collaboration object content. Data is transferred between CollabSteps
either directly as input or indirectly by adding data or objects to an inbox (e.g.,
the EventCoord’s InQueue, or the EventProcesser’s InEvents).

Environment: CollabSteps and CollabSequences can be parameterized to
vary the simulation behavior. Example properties are the publisher’s event fire
rate, the middleware’s delivery delay, and the subscriber’s number of topics.

Having defined the simulation structure and behavior, a major challenge still
remains before executing and analyzing the simulation model. Complex, large-
scale collaboration systems typically exhibit a considerable set of configuration
parameters, such as connectivity, work duration, action probabilities, and simu-
lation duration, which quickly leads to an explosion in possible simulation con-
figurations. We propose two main mechanisms for reducing the configuration
space (which we then exemplary demonstrate in the next subsection).

First, we suggest introducing dependencies between multiple configuration
parameters. For example, all work durations can be defined as ratios of a core
execution duration. This limits testing efforts to determination of sensible de-
pendencies and limits simulation executions to a greatly reduced set of core
parameters.

Second, we recommend the separate evaluation of independent patterns before
aggregating them into the overall system. Doing so reveals the fundamental
behavior and functional limits of a particular pattern, subsequently reducing the
complexity of evaluating them as they are integrated into a composite system.

3.3 Scenario Model

Following the design methodology in the previous subsections, we provide one
possible simulation model for the monitoring system from the scenario.

Structure: The motivating scenario introduced five user types: sensors, field
agents, back-office agents, back-office analysts, and team leaders (recall Sec. 2).
Fig. 5 depicts the interaction topology.3 Field agents publishing information
about the same topic also update a common status report using the shared
artifact pattern. They thus adopt the publisher role in the pub-sub pattern and
the contributor role in the shared artifact pattern. Similarly, back-office agents
exhibit roles in three different patterns: publisher and subscriber, contributor,
and master. Back-office analysts perform the worker role in the master-worker
pattern. Collaboration connector tasks such as event distribution, artifact access
control, and task assignment are implemented in software.

Output: In the building monitoring system, one global performance metric is
the duration between when a critical situation occurs and when it is recognized
3 A readable visualization of the overall simulation model would exceed this paper’s

page margins. View it at: http://wp.me/P1xPeS-2F
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Fig. 5. Monitoring system simulation overview (simplified: collaboration connectors
omitted for sake of clarity)

and responded to by the team leader. Suppose engineers are interested in the
behavior under various load levels. The primary, external drivers of system load
are the frequencies of sensor events, notification messages, analysis tasks, and
log book updates. To make the simulation as realistic as possible, our model will
include periods of regular, low-level activity interrupted by bursts of activity.

Using our approach, engineers can compare the effect of design decisions on
system behavior, in terms of reaction to and recovery from increasing load levels.
For example, we will show how engineers can examine the effect of (i) dropping
events instead of processing all events, (ii) processing tasks in a last-in-first-out
(LIFO) manner versus first-in-first-out (FIFO), and (iii) obtaining a write lock
for the shared log book rather than updating on demand and resolving write
conflicts later. Relevant metrics in the model capture agent load/idle time, task
duration, time waiting to obtain a lock, and number of update conflicts. We
discuss the system’s emergent behavior and associated metrics in more detail for
each pattern in the following subsections.

Logic: The behavior of individual agents and roles in the model is specified
as follows. Within each collaborator, we separate activities associated with each
role played by the collaborator to allow for individual pattern analysis (recall
that some collaborators play multiple collaboration roles). Yet, creating such
composite patterns requires integrating control and data flow within a single
collaborator. Whereas the particular mechanism depends on the application, in
general events will trigger processing while data passes through “inboxes” to
the other pattern. As shown in Fig. 4, the Subscriber role enqueues all received
PubMsgs to the EventProcesser’s InEvents box and notifies the FieldAgentWork
method about new events. The publisher component in turn will dispatch new
PubMsg events from the EventProcesser via its ProcEvents box or otherwise
idle and/or create a random new message on its own.

Environment: Modeling different design alternatives in separate models is
not an option when aggregating multiple patterns, each having several configu-
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ration options. Instead, we introduce parameters available for configuration at
simulation time to switch between design variants. In the shared artifact pat-
tern, for example, DoArtifactLocking determines whether CollabSequences to
GetLock, WaitLock, and ReleaseLock methods (shaded) will be active or by-
passed (Fig. 6).

Fig. 6. Model excerpt for evaluating opportunistic write access and lock-based write
access for updating a shared artifact

Following the recommendations in Section 3.2 on introducing configuration
dependencies and thus minimizing the number of tuning parameters, all human
execution methods derive their duration as a ratio of a core agent WorkExecu-
tionDuration setting. Similarly, we defined the amount of topics and log books
as a fixed rate of the number of sensors, respectively field agents.

4 Evaluation

The evaluation of our approach is two-fold. First, we show that modeling a com-
plex large-scale collaboration system is indeed feasible (Sec. 4.1). Second, we
demonstrate that our approach is beneficial during system architecture devel-
opment. To this end, we analyze design decision trade-offs for individual collab-
oration patterns (Sec. 4.2) and for the composite pattern (Sec. 4.3) from the
motivating scenario.

4.1 Feasibility

A feasible modeling approach should simultaneously facilitate simulations of
small as well as complex models without involving considerable design over-
head. We take the number of collaborators (Coll), components (Comp), con-
nectors (Conn), collaboration steps (i.e., methods) (CStep), collaboration ob-
jects (CObj ), collaboration sequences (CSeq), triggers (Trig), and trigger flows
(TFlow) as an indicator for the modeling complexity. For the individual pat-
terns we count only elements involved in the respective simulation run. Table 1
demonstrates that even a composite model needs only a few elements to model
complex behavior. In our example, we minimized the number of collaborators
by integrating all agent behavior in a single collaborator type.
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Table 1. Model element count for individual and aggregated patterns. Note that each
simulation contains elements for determining the active and calm event intervals.

Pattern Coll Comp Conn CStep CObj CSeq Trig TFlow

Publish/Subscribe 2 3 1 7 5 7 4 6
Master/Worker 3 2 1 7 3 7 4 6
Shared Artifact 2 1 1 9 2 14 5 6
Composite 5 6 3 25 8 36 9 15

4.2 Simulating Individual Patterns

Master/Worker Simulation: Suppose engineers wish to evaluate the effect of
assigning tasks to back-office analysts in FIFO versus LIFO order. The master/-
worker model measures the number of open tasks, the number of idle workers,
and the task execution duration across time. We are interested in average task
duration and also how predictable duration is (i.e., whether two sequential tasks
tend to yield similar duration time).

Fig. 7 shows the data gathered from a simulation in which ten back-office
agents (masters) each generate a task every time unit with 40% probability or
otherwise idle. The pool of workers consists of twenty back-office analysts who
require three time units (t) to complete a task. Task bursts are generated every
56t and last for 28t. The simulation indicates whether the worker pool recovers
from the added load in a timely manner (i.e, whether the recovery duration is
less than the burst duration). During each burst, back-office agents double their
task creation likelihood, and cut their idle time in half (resulting in a fourfold
load increase). For each subsequent burst, the number of back-office agents in
burst mode increases by 10%. Once 3000 tasks have been generated, no new tasks
are created, allowing the analyst pool to finish all remaining tasks and obtain
comparable metrics (FIFO and LIFO yield overall 15.1t average duration).4

Table 2. Average task duration (dur) and average sequential duration difference (diff)
for FIFO and LIFO for the three phases of Fig.7.

FIFO LIFO

Interval (t) dur diff dur dur < 100 diff
Phase 1 Low 0-112 3.04 0.06 3.04 3.04 0.06
Phase 2 Med 113-280 7.57 0.25 10.21 6.92 6.51
Phase 3 High 281-450 26.14 0.29 24.04 12.44 13.82

FIFO and FIFO perform equally well for a low task load (Phase 1). Towards
the end of Phase 2, the worker pool reaches its recovery limit, as it cannot
process the load received during the burst phases rapidly enough. Note that LIFO
4 Due to page constraints, we cannot display the very similar behavior observed for

1,000 agents, 2,000 analysts, and 300,000 tasks.
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processing results in the first few tasks (duration > 100t) to be completed during
simulation “cool down.” Considering all tasks, FIFO appears to be superior to
LIFO in this scenario. However, tasks that remain unprocessed for a very long
time may become irrelevant. For example, if we ignore task as useless after 100t,
LIFO provides better average task duration for relevant responses. (Table 2:
dur < 100). On the downside, LIFO causes large fluctuations in the durations
of sequential tasks (Table 2 diff), regardless of load level. A task completed in
minimum time might be followed by a task that potentially expires.

The simulation highlights various control parameters to steer the system be-
havior under load. Besides the main choice between FIFO and LIFO, engineers
may decide to limit task creation rates, limit the number of back-office agents,
increase the size of the analyst pool, or enforce task expiration dates. Evaluation
of more sophisticated mechanisms such as task priorities, variations of worker
performance, or dynamic switching between FIFO and LIFO merely requires
some additional modeling work.

Fig. 7. Task execution duration for FIFO
and LIFO with increasingly intense burst
intervals

Fig. 8. Average number of conflicts until
successful update

Shared Artifact Simulation: Use of a common logbook by multiple agents
in the monitoring system raises the question of how to control write access. En-
gineers face a trade-off between lock-based access and opportunistic access with
conflict detection. The former guarantees write success and constant write effort,
but may cause long wait times to obtain the lock. The latter promises immediate
write access at the chance of creating write conflicts, potentially imposing ad-
ditional work to resolve conflicts. Relevant metrics in the shared artifact model
(Fig. 6) capture the average duration to successfully complete an update and
the average probability of a conflict occurring during an update.

In the shared artifact simulation, a set of agents (playing the role of con-
tributors) access a single logbook. Periodically, each agent updates the logbook
with 20% probability or idles (i.e., works on something else) for 6t. An update
attempt takes 1t and specifies the last known artifact version and the update
scope. The scope ([0; 100]) describes the extent of the update (e.g., the portion of
the logbook modified) and is equivalent to the likelihood of a conflict among dif-
ferent versions (0% = never conflicting, 100% = always conflicting). The system
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behavior is simulated under fluctuating load, exhibiting bursts lasting 40t fol-
lowed by periods of baseline behavior lasting 20t. The remaining burst behavior
configuration and generation is identical to the master/worker simulation above.
Fig. 9 shows the update duration for twenty and ten contributors, respectively.

Fig. 9. Update duration for 20 (left) and 10 (right) contributors per artifact for lock-
based and opportunistic access at 100% and 70% conflict likelihood

The two strategies perform similarly at low load as lock waiting times remain
low and conflicts are infrequent. At medium load opportunistic updates show
significant duration benefit for 70% conflict likelihood. Note that with conflict
probability of 70% and 20 contributors, however, every update still fails on av-
erage more than once, which for humans is typically considered unacceptable
(Fig. 8). At high load, neither strategy remains sensible. Locking for this con-
figuration of contributors and write access duration hits its theoretical limit, in
which agents are constantly waiting for a lock (i.e., average update duration
of 10). Opportunistic access even yields average update durations well beyond
twice the regular idle duration.

Engineers might consider some or all of the following options in this scenario:
(i) (dynamically) restricting the number of contributors per artifact, (ii) enforc-
ing update rate limits, and/or (iii) facilitating shorter access durations. Fig. 9
(right) highlights how reducing the contributor base (compared to Fig. 9 (left))
results in a disproportionately large reduction in duration and conflicts. Even
then, with 10 contributors, 70% conflict probability produces one conflict per
update on average during burst intervals (Fig.8).

4.3 Simulating Composite Patterns

Having gained an understanding of the master/worker and shared artifact pat-
terns individually, we now focus on their aggregation, along with the pub/sub
pattern, to assess the complex system described in Section 4.1. Specifically, our
composite model simulates the effect of activity bursts on the analyst pool and
log book to reveal the impact on the time required to detect unsafe or insecure
situations. A typical simulation run for this scenario involves 600 collaborators,
100k events, 10k tasks, and 8k artifact updates within 1000t.
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Activity bursts in the composite model are identical to those in the previous
simulations. Sensor events are tagged with a different situation ID for each 40t
interval of base or burst behavior. We measure the duration from the beginning
of an interval until the time the team leader first detects the ID from incom-
ing events. The load on field agents determines the scope of logbook updates
(i.e., the conflict likelihood) and the number of outgoing events. Those events
result in tasks being assigned to back-office analysts for processing before being
propagated to the team leader by back-office agents.

Fig. 10. Access conflicts for field agents
and back-office agents

Fig. 11. Situation detection duration for
lock-based and opportunistic access

Agents update the log-book after each iteration of event processing. Whereas
lock-based access allows the agent to continue working while waiting, opportunis-
tic access requires full attention and delays event processing while the update is
occurring. Lock-based access requires the agent to complete each update before
attempting a subsequent one.

In the composite model, field agents operate at the lock-based limit: 10 agents
per artifact, updating about every 5t, with update duration 1t. As Fig. 11 high-
lights, the lock waiting time directly impacts timely situation detection. How-
ever, opportunistic access comes at the cost of rising conflicts for field agents
with increasing event load. Back-office agents are less affected as only four share
a single artifact and are additionally shielded from high load by previous field
agent processing (Fig. 10).

Given the level of redundant events, LIFO clearly outperforms FIFO for
medium and high load (Fig. 11). The increasing task load delays situation detec-
tion with FIFO to such extent, that the last few situations remain undetected
within the simulation time.

In summary, the composite system simulation supports system design deci-
sions by highlighting (i) the impact of access strategies on the detection duration,
(ii) the impact of task queue style on situation detection success, (ii) the bottle-
necks (i.e., shared artifacts for field agents rather than back-office agents), (iv)
and the potential for dynamically switching between strategies. For example,
applying FIFO and opportunistic access at low load and switching to LIFO and
lock-based access at high load.
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Limitations: A simulation can only give detailed recommendations about
the optimum expert pool size, or the optimum number of experts per artifact
for precisely defined models of individual patterns. Simulations of complex socio-
technical systems can only cover particular aspects of interest, never all details.
Thus any results in terms of absolute numbers are unsuitable to be applied di-
rectly in a real world systems. Instead, the simulation enables system engineers
to compare the impact of different design decisions and decide what trade-offs
need to be made. The simulation outcome provides an understanding what mech-
anisms might fail earlier, which strategies behave more predictably, and which
configurations result in a more robust system. At the same time, a simulation
raises awareness of system metrics that are best suited for serving as indicators
of looming performance deterioration.

5 Related Work

Simulating system aspects for gaining an understanding of its behavior has been
proposed in many diverse areas. Scenario-driven dynamic analysis of distributed
architectures enables the system architect to compare design trade-offs [8]. Ex-
tensions to UML models such as sequence diagrams allows for tracking of perfor-
mance metrics [2]. Simulation ranges from modeling individual software compo-
nents [4] to large-scale service oriented systems [15] for the prediction of system
reliability or the development of adequacy criteria and test cases for distributed
systems [21]. Simulation of business process and workflows aims for detecting
bottlenecks, predicting cost and time, evaluating quality and flexibility, and
determining other performance metrics [14,23,17]. Research on crowdsourcing
applies simulation to demonstrate the effect of assessment tasks on skill evolu-
tion [22], to evaluate the impact of collaboration policies [20], or determine the
optimum number of replicated jobs per task [3].

These research efforts target important but only partial aspects of socio-
technical systems. Focusing only on a subdomain or only on the technical part,
they thus fall short of delivering collaboration-centric design support.

Social network analysis observes and analyzes general emerging system prop-
erties such as the power-law network topology [1] as well as system specific
properties such as the structure of discussion threads on Slashdot [11]. Such re-
search provides insights on how to simulate realistic structure and behavior of
large-scale collaborative efforts.

On the small scale end of the spectrum, team automata formalize the inter-
actions amongst multiple participants in groupware systems [9]. Although team
automata initially targeted Computer Supported Cooperative Work (CSCW)
systems to rigorously define and enforce collaboration protocols [16], their na-
ture lend them more to the analysis and design of security mechanisms. We be-
lieve that team automata are unsuitable for simulating socio-technical systems
where the exact participant behavior is a-priori unknown. The Construct group
simulation tool [13] overcomes these limitations but remains severely restricted
in the maximum amount of simultaneously active collaborators.
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6 Conclusions

This paper presented a method for simulating complex collaboration structures in
support of understanding system design trade-offs. We extended the human Ar-
chitecture Description Language to obtain an executable model of collaboration
patterns. Exemplary simulations of the master-worker pattern, the shared-artifact
pattern, and their integration with the publish-subscribe pattern demonstrate fea-
sibility and benefit to the system designer.

Future work will focus on exploring these patterns in more detail and applying
the simulation framework for evaluating dynamic switching between strategies
(e.g., FIFO ⇔ LIFO) at runtime and evaluate our work in the scope of a real
world system. Simultaneously we intend to include additional human component
aspects such as learning, forgetting, skills, trust, or social connections.
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