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Abstract. Discovering predictive models for run-time support is an
emerging topic in Process Mining research, which can effectively help op-
timize business process enactments. However, making accurate estimates
is not easy especially when considering fine-grain performance measures
(e.g., processing times) on a complex and flexible business process, where
performance patterns change over time, depending on both case proper-
ties and context factors (e.g., seasonality, workload). We try to face such
a situation by using an ad-hoc predictive clustering approach, where dif-
ferent context-related execution scenarios are discovered and modeled
accurately via distinct state-aware performance predictors. A readable
predictive model is obtained eventually, which can make performance
forecasts for any new running process case, by using the predictor of
the cluster it is estimated to belong to. The approach was implemented
in a system prototype, and validated on a real-life context. Test results
confirmed the scalability of the approach, and its efficacy in predicting
processing times and associated SLA violations.

1 Introduction

Process mining techniques [11] are widely reckoned as a precious tool for the
analysis of business processes, owing to their capability to extract useful infor-
mation out of historical process logs, possibly providing the analyst with a high-
level process model. An emerging research stream (see, e.g., [6,13]) concerns the
induction of state-aware models for predicting some relevant performance met-
rics, defined on process instances. For example, in [13], an annotated finite-state
model is induced from a given log, where the states correspond to abstract rep-
resentation of log traces. Conversely, a non-parametric regression model is used
in [6] to build the prediction for a new (possibly partial) trace upon its similarity
to a set of historical ones, while evaluating traces’ similarity based on the com-
parison of their respective abstract views. The interest towards such novel mining
tools stems from the observation that performance forecasts can be exploited to
improve process enactments, through, e.g., task/resource recommendations [9]
or risk notification [5]. However, accurate forecasts are not easy to make for
fine-grain measures (like, e.g., processing times), especially when the analyzed

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 287–304, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



288 F. Folino, M. Guarascio, and L. Pontieri

process shows complex and flexible dynamics, and its execution schemes and
performances change over time, depending on the context. In fact, the need to
recognize and model the influence of context factors on process behavior is a
hot issue in BPM community (see, e.g., [14]), which calls for properly extending
traditional approaches to process modeling (and, hopefully, to process mining).
In general, a way to increase process model precision is to partition the log by
ad-hoc clustering methods [10,7,8], and to find a (more precise) model for each
cluster, while regarding this latter as evidence for a peculiar execution scenario
of the process. To the best of our knowledge, however, all previous clustering-
oriented process mining approaches only focused on control-flow aspects, with
no connections with the discovery of performance predictors.

In this paper we right attempt to overcome the above limitations by proposing
an ad-hoc predictive clustering approach, capable to detect different context-
related execution scenarios (or process variants), and to equip each of them
with a tailored performance-prediction model. Our ultimate goal is to find a
novel kind of predictive model, where performance forecasts for any (unfinished)
process instance, are made in two steps: the instance is first assigned to a refer-
ence scenario (i.e., cluster), whose performance model is then used to eventually
make the forecast. Technically, we extend and integrate a method for inducing
predictive performance models [13] and a logics-oriented approach to predictive
clustering [3], where the discovered model, named Predictive Clustering Tree
(PCT), takes the form of a decision-tree. Specifically, the discovery of such sce-
narios (i.e., clusters) is carried out by partitioning the log traces based on their
associated context features, which may include both internal properties of a case
(e.g. the amount of goods requested in an order management process) and exter-
nal factors that characterize the situation where it takes place (e.g., workload,
resource availability, and seasonality indicators). Notably, the complex struc-
ture of (performance-annotated) process logs makes a trivial application of PCT
learning methods likely ineffective and/or computationally expensive. We hence
devise a method for encoding each log trace in a propositional form, featuring
both its context properties and some associated performance measurements.

Organization. The rest of the paper is structured as follows. Section 2 intro-
duces some notation and basic concepts. The specific problem faced in the paper
and the proposed solution approach are described in Section 3. Section 4 dis-
cusses an implementation of the approach, and its usage in a real-life setting (as
well as the quality metrics used for the evaluation). After discussing experiment
results in Section 5, we finally draw a few concluding remarks in Section 6.

2 Formal Framework

Following a standard approach in the literature, we assume that for each pro-
cess instance (a.k.a “case”) a trace is recorded, encoding the sequence of events
happened during the relative enactment. Different data parameters (e.g., the
amount of goods asked in a order-handling process) can be kept for any process
instance, while each event is associated with a process task and a timestamp –
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we here disregard other event properties, such as, e.g., task parameters or execu-
tors.We also assume that a additional features can be associated with each trace
that characterize the context where it takes place, and capture environmental
factors (which may well influence performances).

Let us first denote by T and E the (fixed) reference universes of all (possibly
partial) traces and associated events that may appear in a log. Moreover, let
μ̂ : T → M the unknown function assigning a performance value to each trace
— w.r.t. to a given reference performance metrics and an associated space M of
values. Note that μ̂ abstractly indicates the final target of our search, in that we
aim at eventually predicting the values of the metrics on any novel enactment.
We also assume that two kinds of context properties are defined for a process
instance: (i) (“intrinsic”) case attributes A1, ... , Aq, with associated domains
DA1 , ... , DAq , resp., and (ii) (“extrinsic”) environmental features B1, ... , Br,
with domainsDB1 , ... , DBr , resp. – this latter kind of data are meant to capture
the state of the BPM system in the moment when the instance starts. Finally,
for any sequence s, let len(s) denote its length, and s[i] the element in position
i, for i = 1 . . . len(s). Finally, s(i] is its prefix of s of length i, for i = 1 . . . len(s),
and s(0] = 〈〉 (the empty sequence). Some further concepts and notation are
formally introduced next to conveniently refer to log contents.

Definition 1 (Trace). A trace τ (∈ T ) is a triple 〈v, ā, s〉 such that id is a
unique identifier, ā ∈ DA1 × ... × DAq ) are its data, and s is a sequence of
events. For simplicity, let us also denote v = id(τ), ā = data(τ), s = seq(τ),
len(τ) = len(s), and τ [i] = s[i]. Moreover, env(τ) ∈ DB1 × ... × DBr are the
environment features associated with any trace τ , and context(τ) ∈ DA1 × ...×
DAq ×DB1×...×DBr is the juxtaposition of vectors data(τ) and env(τ). Finally,
τ(i] = 〈vi, āi, si〉 is a prefix of τ , for i =0 .. len(τ), such that vi is a new identifier,
āi = ā, si = s(i], env(τ(i)] = env(τ), and context(τ(i)] = context(τ). �

Definition 2 (Log). A log L (over T ) is a finite subset of T . Moreover, the
prefix set of L, denoted by P(L), is the set of all prefix traces that can be
extracted from L, i.e., P(L) = {τ(i] | τ ∈ L and 0 ≤ i ≤ len(τ)}. For any log L,
we will always assume that μ̂(τ) is known for any prefix trace τ ∈ P(L). �

Note that any prefix τ(i] in Def. 1 is a partial unfolding of τ sharing its context
data, while the last statement in Def. 2 can be handled by defining an auxiliary
function encoding μ̂ on the prefixes of past log traces – e.g., the (real) remaining
time of any prefix of such a trace τ is μ̂RT(τ (i]) = time(τ [len(τ )])− time(τ [i]).

2.1 State-Aware Performance Prediction

A Performance Prediction (Process) Model (PPM , for short), is for us a model
that can predict the performance value of any future process enactment, repre-
sented as a partial trace. Such a model, indeed, can be regarded as a function
μ : T → M that tries to estimate μ̂ all over the reference universe of traces.
Learning a PPM is then a special induction problem, where the training set is
represented as a log L, such that the value μ̂(τ) of the target measure is known
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for each (sub-)trace τ ∈ P(L). Different solutions were proposed to this prob-
lem [13,6], which share the idea of capturing the dependence of performance
values on traces (i.e., case histories) by regarding these latter at suitable ab-
straction levels.

Definition 3 (Trace Abstraction Functions). Let h ∈ (N)
⋃
{∞} be a

threshold on past history. A trace abstraction function absmode
h : T → R is a

function mapping each trace τ ∈ T to an element absmode
h (τ) in a space R of ab-

stract representations. For any τ ∈ T , while denoting n = len(τ) and j = n−h+1
if n > h and j = 1 otherwise, it is: (i) abslisth (τ) = 〈task(τ [j]), . . . , task(τ [n])〉;
(ii) absbagh (τ) = [(t, p) | t ∈ absseth (τ) and p = |{τ [k] | j ≤ k ≤ n, task(τ [k]) =
t}| ], and (iii) absseth (τ) = {task(τ [j]), . . . , task(τ [n])}. �
Each α ∈ R is a high level representation for some traces, capturing some hidden
state of the process analyzed. In particular, the three concrete abstraction func-
tions defined above maps traces to sequences, sets and multisets, respectively,
of task identifiers, and specialize the functions presented in [13] – we here only
consider to abstract each trace event into its associated task, while disregarding
other event properties (e.g., executors). This restriction could be easily removed
from our approach – even though, often, using multiple properties for gener-
alizing may lead to a combinatorial explosion of the abstract representations
produced (and to overfitting patterns). In [13], a Finite State Machine (FSM)
model is derived, such that a one-to-one mapping exists between its states and
the representations produced by some abstraction function abs, while each tran-
sition is labelled with an event property (namely, a task label in our case). For
example, let us assume that abslist∞ is used, and that a, b and c refer to three
process tasks. Then, the resulting FSM model will feature a transition labelled
with c from state 〈a, b〉 to state 〈a, b, c〉, if there is some trace τ in the input log
such that abslist∞ (τ(i]) = 〈a, b〉 and abslist∞ (τ(i + 1]) = 〈a, b, c〉. In order to make
this model capable to make predictions (w.r.t. a measure μ), it is turned into
an Annotated Finite State Machine (A-FSM), by equipping each node s with a
bag gathering all the values that μ̂ takes at the end of any trace prefix τ ∈ P(L)
such that abs(τ) coincides with the abstraction of s. These measurements help
estimate the target measure for any new process instance reaching s, e.g. by
simply storing an aggregate statistics (e.g., the average) over them. In principle,
our clustering-based scenario discovery scheme could be combined with other
state-aware prediction techniques, for it is parametric to the kind of model that
is eventually learnt for each scenario. However, in this paper we only consider
using A-FSM models, and their associated learning method, to this purpose.

2.2 Predictive Clustering

The core idea of Predictive Clustering approaches [2] is that, once discovered
an appropriate clustering model, a prediction for a new instance can be based
only on the cluster where it is deemed to belong, according to some suitable
assignment function. The underlying belief is that the higher similarity between
instances of the same cluster will help derive a more accurate predictor – w.r.t.
one induced from the whole dataset.
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To this end, two kinds of features are considered for any element z in a given
space Z = X × Y of instances: descriptive features, denoted by descr(z) ∈ X ,
and target features, denoted by targ(z) ∈ Y – which are those to be predicted.

Then, a predictive clustering model (PCM), for a given training set L ⊆ Z,
is a function m : X → Y of the form m(x) = p(c(x), x), where c : X → N is a
partitioning function and p : N×X → Y is a prediction function.

An important class of such models are Predictive Clustering Trees (PCTs) [2,3],
where the cluster assignment function is encoded by a decision tree, which can
be learnt by recursively partitioning the training set. At each step, a split test
is greedily chosen, over one descriptive feature, which (locally) minimizes:

lossd(m,L)
∑

Ci

|Ci ∈ c(L)| / |T | ×
∑

z∈Ci

d(targ(z), p(z))2 (1)

where Ci ranges over the current partition of L, and d is a distance measure d over
Z. – When working with numeric targets, a good trade-off between scalability
and accuracy is typically achieved by simply instantiating d with the classical
Euclidean distance over target features only. In this case, targ(avg(Ci)) over the
target subspace can be also used as the local (constant) predictor of cluster Ci,
with avg(Ci) = |Ci|−1 ×

∑
z∈Ci

z – i.e., the cluster’s average/centroid.
A variety of PCT learning methods exists in the literature, which differ in the

type/number of target features (e.g., decision trees, regression trees, multi-target
regression models, clustering trees), or in the underlying representation of data
instances – namely, relational (e.g., system TILDE [2]) and propositional (e.g.,
system CLUS [1]). In our setting, we focus on the discovery of a multi-target
regression PCT out of propositional data, mainly owing to scalability reasons.

The core assumption under our work is that process performances really de-
pend on context factors. Hence, to predict the performances of any (partial) trace
τ , we regard its associated context data context(τ) as descriptive attributes.

We can now state the specific kind of performance model we want to discover.

Definition 4 (Context-Aware Performance Prediction Model (CA-PPM)).
Let L be a log on trace universe T , with context features context(T ), and
μ̂ : T → M, be a performance measure, known for all τ ∈ P(L). Then,
a context-aware performance prediction model (CA-PPM) for L is a pair M =
〈c, 〈μ1, . . . , μk〉〉, encoding a predictive clustering model gM for μ̂, such that:
(i) c : context(T ) → N, (ii) μi : T → M, for i ∈ c(context(T )), and (iii)
gM (τ)=μj(τ) with j=c(context(τ)). �
Notice that the dependence of the target measure on context features relies on
the separate modeling of different context-dependent execution scenarios (i.e.,
clusters), while the performance predictions are eventually based on a cluster
assignment function c, which estimates the membership of (possibly novel) pro-
cess instances to these scenarios. This model is a special kind of PPM model,
relying on a predictive clustering one. As such, it can be instantiated by com-
bining a predictive clustering tree (PCT) and multiple (performance-)annotated
FSM (A-FSM) models, as building blocks for implementing the functions c and
each μi, respectively, as discussed next.
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3 Problem Statement and Solution Approach

In principle, seeking an explicit encoding for the hidden performance measure μ̂,
based on a given log L, can be stated as the search for a CA-PPM (cf. Def. 4) min-
imizing some loss measure, like that in Eq. 1, possibly evaluated on an different
sample L′ ⊆ T than the one used as training set. However, to avoid incurring
in prohibitive computation times, we rather follow a heuristics approach, where
the problem is turned into a combination of two simpler ones, as defined below.

Definition 5 (Problem CAPP). Given a log L over T , and a performance
measure μ̂ only defined on P(L); Solve the following subproblems, sequentially:
[CAPP-S1]: find a function c (locally) minimizing the loss over a concise repre-
sentation of the given traces and associated measurements, irrespectively of the
cluster-wise prediction function q; and [CAPP-S2]: find a function q based on
the partition c(L) produced by c (keeping it fixed to as found before). �

Such a simplifying rephrasing of the problem frees us from the burden of simul-
taneously searching over both any possible partitioning c and all of its associated
prediction functions q. Moreover, we want to reuse existing tools for the induc-
tion of PCTs and of A-FSM models. This clearly requires to properly define the
structure of the training data used to learn a PCT model, since a näıve applica-
tion of PCT induction algorithms to log contents might lead to unsatisfactory
achievements in terms of both scalability and prediction accuracy.

To this end, we propose the adoption of a propositional view of the log, where
each (fully unfolded) trace in L acts as an individual training example. We
hence dismiss the natural idea of learning the clustering model based on all
partial traces in P(L) (and on their associated performance measurements), for
two reasons. First, if working explicitly with all partial traces, the number of
training samples will grow substantially, especially in the case where log traces
were generated by a process featuring complex and flexible control logics (i.e.,
many tasks and a high degree of non-determinism). More importantly, since
performance values tend to change notably along the course of a process instance
– this is right the rationale behind state-aware prediction approaches like [6,13]
– the learner may get confused when trying to separate groups of instances with
similar target measurements. Think, e.g., to the case of the remaining processing
time measure, which progressively decreases as a process enactment goes forward.

On the other hand, using full historical traces as clustering instances, we
must decide what are their associated targets, which the PCT learning algorithm
has to approximate at best. In fact, each trace τ corresponds to a sequence of
target values (μ̂(τ(1], . . . , μ̂(τ)), and we do not want to use sequences as cluster
prototypes, in order to keep the evaluation of candidate split tests fast enough.

As a heuristics solution, each trace is mapped into a vector space, where the
dimensions correspond to relevant states of the (hidden) process model. Such
target features are computed by way of the trace abstraction functions in Def. 3,
which attempt to transform, indeed, each trace into an abstract representation
of its enactment state, based on its past history.
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Input: A log L over a trace universe T , with data attributes A = A1, . . . , Aq, and
environment features B = B1, . . . , Br, a target measure μ̂ known over

P(L),
a trace abstraction function abs, and a relevance threshold σ ∈ [0, 1].

Output: A CA-PPM model for L (fully encoding μ̂ all over T ).
Method: Perform the following steps:
1 Associate a vector context(τ ) with each τ ∈ L, by computing features env(τ )
2 Compute a set PAσ(L, abs) of pivot state abstractions (cf. Def. 6)
3 Let PAσ(L, abs) = {α1, . . . , αs}
4 Build a performance sketch S for L using context vectors and PAσ(L, abs)
// S = {( id(τ ), context(τ ), 〈val(τ, α1), . . . , val(τ, αs)〉 ) |τ ∈ L} – cf. Eq.2

5 Learn a PCT T with classification (resp., prediction) function c (resp., q) using
context(τ ) (resp., val(τ, αi), i=1..s) as descript. (resp., target) features, ∀τ ∈ L

6 Let L[1], . . . , L[k] denote the discovered clusters – with {1, . . . , k} = c(S)
7 for each L[i] do
8 Induce an FSM model f from L[i], using abs as abstraction function
9 Derive an A-FSM f+ model from f

10 Define prediction function μi : T → M (for cluster i) based on f+

11 end
12 return 〈 c, { μ1, . . . , μk} 〉

Fig. 1. Algorithm CA-PPM Discovery

Specifically, given an abstraction function abs : T → R, a “candidate” target
feature can be defined for each abstract (state) representation α ∈ R, such that
the value val(τ, α) of this feature for any trace τ is computed as follows:

val(τ, α) =

{
NULL, if abs(τ (i]) �= α ∀i ∈ {0, ..., len(τ )};
agg( 〈 μ̂(τ (i1]), ..., μ̂(τ (is]) 〉 ), otherwise.

(2)

where {i1, ..., is} = {j ∈ Z | 0 ≤ j ≤ len(τ ) and abs(τ (i]) = α}, and ij < ik for any
0 ≤ j < k ≤ s, while agg is a function aggregating a sequence of measure values
into a single one (e.g., the average, median, first, last in the sequence). Note
that, for all the tests in Section 5, we always selected the last sequence element.

AS the number of state abstractions may be high, some suitable strategy
is needed to select an optimal subset of them, as to prevent the PCT learner
from getting lost in a high-dimensional and sparse target space (yet taking long
computation times). To this end, we devise an ad-hoc, greedy, selection strategy,
to identify a restricted set of “pivot” state abstractions, which looks to be the
(locally) best ones in discriminating different performance profiles. The selection
criterion used to this purpose relies on a fixed scoring function φ : R×2T → [0, 1]
(which will be discussed in details later on), which assigns each state abstraction
α ∈ R to a score φ(α,L), quantifying the confidence in α making a profitable
target feature w.r.t. the search of a predictive clustering for L. More precisely:

Definition 6 (Pivot State Abstraction). Let L be a log, abs : T → R be
a trace abstraction function, and σ ∈ [0, 1] be a relevance threshold. Then, any
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a ∈ R is a pivot state abstraction for L and σ w.r.t. abs, if φ(α,L) ≥ σ. Moreover,
PAσ(L, abs) is the set of all pivot state abstractions for L and σ w.r.t. abs. �
Provided with a set of pivot state abstractions PAσ(L, abs) = {αj1, ..., αju},
subproblem CAPP-S1 can be eventually faced by solving a standard (multi-
regression) PCT induction on a dataset where: (i) each trace τ in the log corre-
sponds to a distinct instance, (ii) the vector context(τ) encodes the descriptive
features of τ and (iii) val(τ, αj1), ..., val(τ, αju) are the target features of τ . This
dataset, called in the following a performance sketch of L (w.r.t. abs and σ), of-
fers a propositional view over the log, enabling for a fast and effective calculation
of a predictive clustering model.

A detailed description of the different steps of our approach is given in the
CA-PPM Discovery algorithm, shown in Fig. 1. The meaning of its steps is quite
straightforward, as it coincide to the computation process discussed so far. How-
ever, it is worth remarking that the induction of an FSM model for each discov-
ered cluster (step 8), and its subsequent annotation with performance measure-
ments (step 9) are carried out by taking advantage of the techniques presented
in [13]. Notably, the performance measurements associated with each state in
the model are eventually aggregated into a single constant estimator (namely,
the average over them all), in the implementation of μ[i] (step 10). Moreover,
whenever a new trace τ generates an unseen sequence of states, as a simple
workaround, the function can be extended in a way that its next estimate for
τ will be based on the last valid one made for it. Finally, the selection of pivot
state features performed in step 2 hinges on the following scoring function:

φ(α,L) = 3

√
φvar(α,L)× φcorr(α,L)× φsupp(α,L) (3)

where φvar(α,L), φcorr(α,L), and φsupp(α,L) are all functions ranging on [0, 1].
Basically, function φvar(α,L) depends on the variability of the values pro-

duced by α on all input traces (i.e., {val(α, τ)|τ ∈ L}) and gives preference
to higher-variability features – the more the variability of trace measures the
higher the score. Function φcorr(α,L) measures instead the maximal correlation
between the value taken by the feature over each trace and the corresponding
value of each descriptive (context) feature – the higher the correlation the higher
the score. Finally, φsupp(α,L) simply is 2 × min(0.5, |{τ ∈ L | val(τ, α) > 0}|)
– low support state abstractions hardly help find significant groups of traces,
indeed. In a sense, the overall scoring function is biased towards features guar-
anteeing a good compromise between support, correlation with descriptive fea-
tures (which are the ones guiding the partitioning of log traces) and performance
values’ variability (in order to find clusters showing quite different performance
models).

Before leaving the section, let us observe that the peculiar feature selection
subproblem faced here is beyond the scope of the attribute selection capabilities
of the heuristics search method embedded in predictive clustering algorithms,
due to the fact that our candidate features correspond to target variables, and
not to predictor ones. This is also the reason why we cannot trivially reuse
feature-selection (i.e., attribute-selection) techniques available in the literature.
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Fig. 2. CA-TP plug-in architecture

4 Case Study: Time Prediction on a Logistics Process

After illustrating the prototype system, in Section 4.1, in the remainder of this
section, we discuss the experiments carried out on a real log data and the ob-
tained results. In particular, in Section 4.2, we first illustrate the application
scenario, by discussing the kind of data involved in it. Then, in Section 4.3,
we introduce the setting adopted to evaluate the quality of discovered models.
Finally, in Section 5, the results of tests performed on this scenario are evaluated.

4.1 The Prototype System: Plugin CA-TP

As a specialized version of algorithm CA-PPM Discovery, we implemented a
prototype system, named CA-TP (i.e., Context-Aware Time Prediction), which
can discover a CA-PPM for predicting the remaining processing time measure, in
order to assess the validity of the approach on practical situations. The prototype
system has been developed as plug-in for ProM framework [12], a popular Process
Mining framework. The logical architecture of the system is sketched in Figure 2,
where arrows between blocks stand for information flows. The whole mining
process is driven by the control logic of the the plug-in, while the other modules
basically replicate the main computation phases of the algorithm. By Log Data
we here denote a collection of process logs represented in the MXML [12] format.

The Scenario Discovery module is responsible for identifying behaviorally ho-
mogeneous groups of traces in terms of both context data and remaining times.
In particular, the discovery of different trace clusters is carried out by the Predic-
tive Clustering submodule which groups traces sharing both similar descriptive
and target values. This latter module leverages the CLUS system [1], a predictive
clustering framework for inducing PCT models out of propositional data. Such
a model is found by trying to optimize the multi-target regression models (w.r.t.
a given set of target attributes) of clusters obtained by partitioning the space of
descriptive attributes. In this regard, the Trace Mapping submodule acts as a
“translator” which converts all log traces into propositional tuples, according to
the (ARFF) format used in CLUS. As explained above, this mapping relies on
the explicit representation of both context data and target attributes, derived
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from the original (MXML) log. In particular, the Context Extraction module ex-
tract extrinsic (environmental) context features, including workload indicators
and aggregated time dimensions, and add them to the descriptive attributes of
each trace. Notice that this module takes advantage of auxiliary data structures
to efficiently search all log data that help capture the local context of any trace
τ . In particular, two indexes (based on search trees) over log traces are used,
which allow to quickly find all the traces that started or finished, respectively,
in a given time range. In fact, these indexes are meant to retrieve all the events
occurred during the enactment of τ , to reconstruct its context. Complementarily,
the Target Features Extraction submodule provides the Trace Mapping one with
an quasi-optimal set of trace abstractions (obtained by combining trace activi-
ties in lists/sets/bags, possibly bounded in their size by a parameter h), which
will be eventually used as target features for the predictive clustering step.

Log traces, labeled with cluster IDs, are delivered to the Time Predictors
Learning module, which, leveraging the approach in [13], derives a collection
of A-FSM models. More specifically, the submodule FSM Induction is used to
build a transition model for each cluster, whereas the FSM Annotation anno-
tates them with time information. As a final result, a CA-PPMmodel is eventually
built, which integrates multiple A-FSM models for scenario-specific time pre-
dictions, with a set of logical rules (corresponding to the leaves of a PCT model)
for discriminating among the discovered scenarios. For inspection purposes and
further analysis, the whole model is then stored in an ad-hoc repository.

Module Evaluator helps the user assess the quality of time predictions on the
test set, by leveraging two submodules: A-FSM Evaluation and State Evalua-
tion, which compute a series of standard error metrics for an entire A-FSM
model and for its individual states, respectively. The measures of all predictive
models are gathered and eventually combined into global measures (described
in Section 4.3), and arranged in a easily-readable report.

4.2 Application Scenario

Our approach has been validated on a real-life scenario, pertaining the handling
of containers in a maritime terminal. There, a series of logistic activities are reg-
istered for each container passing through the harbor. Massive volumes of data
are hence generated continually, which can profitably be exploited to analyze
and improve the enactment of logistics processes. In particular, we consider only
containers which both arrive and depart by sea, and focused on the different
kinds of moves they undergo over the “yard”, i.e., the main area used in the har-
bor for storage purposes. This area is logically partitioned into a finite number
of tri-dimensional slots, which are the units of storage space used for containers,
and are organized in a fixed number of sectors

The lifecycle of any container can be roughly summarized as follows. The
container is unloaded from a ship and temporarily placed near to the dock, un-
til it is carried to some suitable yard slot for being stocked. Symmetrically, at
boarding time, the container is first placed in a yard area close to the dock, and
then loaded on a cargo. Different kinds of vehicles can be used for moving a
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container, including, e.g., cranes, straddle-carriers (a vehicle capable of pick-
ing and carrying a container, by possibly lifting it up), and multi-trailers (a
train-like vehicle that can transport many containers). This basic life cycle may
be extended with additional transfers, classified as “house-keeping”, which are
meant to make the container approach its final embark point or to leave room for
other containers. More precisely, the following basic operations may be registered
for any container: (i) MOV, when it is moved from a yard position to another by
a straddle carrier; (ii) DRB, when it is moved from a yard position to another by
a multi-trailer; (iii) DRG, when a multi-trailer moves to get it; (iv) LOAD, when
it is charged on a multi-trailer; (v) DIS, when it is discharged off a multi-trailer;
(vi) SHF, when it is moved upward or downward, possibly to switch its position
with another container; (vii) OUT, when a dock crane embarks it on a ship.

In our experimentation, we focused on a subset of 5336 containers, namely
the ones that completed their entire life cycle in the hub along the first four
months of year 2006, and which were exchanged with four given ports around
the Mediterranean sea. To translate these data into a process-oriented form, we
viewed the transit of any container through the hub as a single enactment case
of a (unknown) logistic process, where each log event refers to one of the basic
operations above (i.e., MOV, DRB, DRG, LOAD, DIS, SHF, OUT) described above. Each
of these operations hence acts as one activity of the reference logistics process.

Context Data. Several data attributes are available for each container (i.e., each
process instance), which include, in particular, its origin and final destination
ports, its previous and next calls, diverse characteristics of the ship that unloaded
it, its physical features (e.g., size, weight), and a series of categorical attributes
concerning its contents (e.g., the presence of dangerous or perishable goods). In
addition to these internal properties of containers, some additional environmen-
tal features are associated with each container, which are meant to capture the
context surrounding its arrival to the port. In particular, in our experimentation,
we only considered two very basic environmental features: (i) a rough workload
indicator, simply coinciding with the number of containers still in the port at
time tc, and (ii) a series of low-granularity time dimensions derived from the
arrival time (namely, the hour, day of the week and month). Clearly, various
additional context variables could be defined, in general, for a process instance
(concerning, e.g., resource availability or refined workload indicators), possibly
depending on the specific application domain. However, we leave this issue to
future work. On the other hand, despite the narrow scope and simplistic nature
of these feature, the benefits of using them to detect performance prediction
scenarios were neat in our experimentation, as discussed later on.

4.3 Performance Measures and Evaluation Setting

With regard to the scenario above, we want to assess the quality of our approach
in predicting the (remaining) time needed to completely process a container (i.e.,
until the OUT activity is performed on it). Knowing in advance such a metrics is of
great value for harbor managers, in order to optimize the allocation of resources,
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and to possibly prevent, for instance, incurring in violations of SLA (service level
agreement) terms. In fact, certain typical SLAs establish that process enactments
must not last more than a Maximum Dwell Time (MDT); otherwise pecuniary
penalties will be charged to the trans-shipment company. By the way, besides
MDT, another important parameter for the scenario on hand is the average
dwell-time (ADT ), i.e., the average sojourn time for containers in the terminal,
which will be also used next for normalizing time measures.

Among the variety of metrics available in the literature, in order to assess the
prediction accuracy of our models we resort (like in [13]) to the classic root mean
squared error (rmse), mean absolute error (mae), and mean absolute percent-
age error (mape). In order to reduce the estimation bias, errors are measured
according to a (10 fold) cross-validation procedure.

Formally, let us assume that τ ∈ P(L′) be a (possibly partial) trace in current
test fold L′ (amounting to 10% of L’s trace), and that μ̂RT(τ) (resp., μRT(τ))
denote the actual (resp., predicted) remaining time for τ . Then the individual
prediction errors associated with all the prefixes (i.e., partial enactments) of τ ’s
are measured as follows: (i) mae = (1/|P(L′)|) ×

∑
τ∈P(L′) |μ̂RT(τ ) − μRT(τ )|; (ii)

rmse = (
∑

τ∈P(L′)(μ̂RT(τ )− μRT(τ ))
2/|P(L′)| )1/2; and (iii) mape = (1/|P(L′)|) ×∑

τ∈P(L′)(|μ̂RT(τ )− μRT(τ )|) / μ̂RT(τ ).

In addition to the average prediction errors above (providing actual loss mea-
sures), we will also evaluate the capability of a CA-PPM to support the prediction
of “overtime faults”, regarded as a specific form of SLA violations. To this end,
let us denote by τc a trace encoding the full history of a container c, and τc(i] be
its projection till some given step i. Then, an overtime fault for τc(i] is predicted
based on the likelihood �fault(τc(i]) that the total time μRT(τc(i]), which will
be eventually spent to fully handle c, does not exceed MDT. Precisely, letting
eT ime(τc(i]) denote the time already elapsed for c from its arrival at the system,
this likelihood is computed as follows:

�fault(τc) =

{
1− MDT

eTime(τc(i])+μRT(τc(i])
, if eT ime(τc(i]) + μRT(τc(i]) > MDT

0, if eT ime(τc(i]) + μRT(τc(i]) ≤ MDT

For a suitably chosen risk tolerance threshold γrisk, an alert is eventually trig-
gered, while looking at the partial enactment τc(i], whenever �fault(τc(i]) > γrisk,
to notify the high risk of an incoming overtime fault – the greater the thresh-
old, the lower sensitivity to the detection of potential overtime faults. Then,
interpreting fault prediction as a classification problem with two given classes,
i.e., true vs. false overtime faults, we can measure the prediction accuracy
by computing the rates FN of False Negatives (i.e., overtime faults that were
not deemed as such) and FP of False Positive (i.e., normal cases signaled as
risky), as well as classical measures of Precision (i.e., P = TP/(TP + FP ), Re-
call (i.e., R = TP/(TP +FN)), with TP denoting the number of true positives,
i.e., correctly predicted overtime faults. Incidentally, τc(i] is a true positive if
time(τ(len(τ))) > MDT , and true negative otherwise.
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5 Experiment Results

A series of tests were performed to assess the effectiveness and the efficiency of
our approach in discovering a CA-PPM for remaining time prediction, based on the
log described in the previous section. To this end, we tested our approach with
various configurations of its parameters. In the following, we will report results
obtained for different configurations of the two parameters associated with the
abstraction function absmode

h : the horizon limit h, and the abstraction mode ∈
{list, bag} – results with set-based abstractions are not shown here, due to their
minor relevance, as discussed afterwards. Conversely, a fixed configuration is
shown for threshold σ (namely, σ = 0.4), which was chosen pragmatically based
on a series of specific tests, omitted here for space reasons.

All error results shown next were averaged over 10 trials, whereas their re-
spective variance are not reported for the sake of brevity. Notice, however, that
standard deviations were always lower than 5% of the average for all the metrics.

Qualitative Results. Before illustrating quantitative results in detail, let us show
an example of one CA-PPM (when absh = absbag4 and σ = 0.4) induced from the
above log, in order to enable for a rough evaluation of the descriptive features of
the model – even though its main goal is to offer operational support by means
of performance predictions. In particular, the Figure 3 (a) reports, as a portion
of the clustering function, the decision rule corresponding to one of the clusters
found (namely, cluster 37), which actually corresponds to one of the leaves of the
PCT model discovered with CLUS. This rule allows for easily interpreting the
semantics of the cluster in terms of both container properties (namely, the origin
port PrevHarbor, the destination port NextHarbor, the navigation line that is
going to take it away NavLine OUT, the navigation line bringing it in the current
port NavLine IN), and environmental context data (namely, the basic workload
indicator Workload, based on instance counts, and aggregated time dimensions
ArrivalDay or ArrivalHour). Despite its simplicity, the rule helps characterize
a very peculiar, and yet relatively frequent scenario (the cluster gathers, indeed,
43 out of the 5336 traces) for the handling of containers.

As a matter of fact, the A-FSM model found for the same cluster (shown in
Figure 3 (b)) witnesses that for this peculiar configuration of context factors (i.e.,

IF
NextHarbor ∈ {VCE,KOP,FOS,GOA,SAL,VAR,

T XG,NYC,CND,MT R,ODS} AND
NavLine OUT= JMCS AND
NavLine IN ∈ {CPS,MSK,SEN,HLL,UAC} AND
PrevHarbor ∈ {ASH,MER,ALY,NYC,LEH,

HOU,HFA,EWR,ORF,CHS} AND
ArrivalDay ∈ {SAT,SUN} AND
Arrivalhour> 11.0 AND
Workload> 117.0

THEN
Cluster label = 37

(a) (b)

Fig. 3. Excerpt from a CA-PPM model for the harbor log, showing the (a) decision rule
and (b) A-FMS model of one of the clusters found – (a) and (b) are a sort of (data-
driven) descriptions for a context variant and its associated process variant, resp.
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context variant), the containers tend to undergo a very small, and quite specific,
paths over logistics operations. By the way, each node in the A-FSM is labelled
with the bag of (the 4 more recent) operations leading to it – e.g., the node
tagged with [MOV2, OUT] encodes all the traces in the cluster that undergo two
MOVs before leaving the yard (operation OUT). Along with labels, each node also
reports a constant prediction for the remaining time (normalized w.r.t. ADT).
Edge labels codify, instead, which operations can trigger the corresponding node
transition. For the sake of clarity, if a container is in the state labelled as [MOVE,
SHF] and a further MOV operation occurs, then the next state will be the one
associated with [MOV2, SHF]. Notably, this simple A-FMS model gave a neatly
positive contribution to the accuracy of the global CA-PPM model – very low
errors (namely, rmse = 0.138, mae = 0.080, and mape = 0.302) were produced,
indeed, on the test traces that were assigned to it.

Time Prediction Effectiveness. Table 1 summarizes the errors made in predict-
ing remaining times (normalized by the average dwell time ADT) for the case
of rmse and mae), using both our CA-TP plug-in and the prediction method
proposed in [13] (here denoted by FSM , and also employed as a base learner in
our approach). The tests were performed using different trace abstraction func-
tions absh, and keeping fixed threshold σ = 0.4. For the sake of comparison,
Table 2 also reports the percentage of error reduction (Δ%) obtained by CA-TP

w.r.t. FSM . Moreover, the results of CA-TP are further differentiated according
to which kinds of descriptive features were used. Specifically, CA-TP− refers to
the case where a CA-PPM is built only considering static container properties
(e.g., dimensions, origin/destination ports). Conversely, CA-TP+ indicates the
case where log traces are also associated with extrinsic context features (namely,
workload indicators and seasonality dimensions), in addition to their primitive
data attributes. These figures clearly show that our clustering-based method
performs always better than the baseline, no matter of the parameter setting.

By a closer look, two factors appear to affect more the performances: the usage
of derived context features and the value of history horizon h. In particular,
the advantage of using environment-driven features is neat, despite they were
very rough and partial, seeing as the average error reduction (computed over
all error metrics) of CA-TP+ is close to 37%, whereas CA-TP− “just” gets a 24%
improvement. As to h, it is easily seen that, although the benefits of using our
solution gets appreciable as soon as h > 1, the best performances are reached
for h = 4, when all kinds of errors shrink more than 65% w.r.t. the baseline (see
Table 2). Stretching the horizon beyond 8 seem to bring no further advantages
(apart minor improvements for the mape error with absBAG

8 ). This result is
not surprising, seeing as accuracy achievements might even fall when using high
values of h, due to the excessive level of detail on trace histories (and to the
consequent high risk of overfitting).

The effect of the abstraction mode looks less marked, as very similar (good)
results are found in both cases. Actually, whatever h and the kind of context
features, less than 1% error reduction is obtained (on all metrics) when adopting
bag abstractions, w.r.t. the case where lists were used. Finally, we notice that
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Table 1. Average prediction errors (computed via a 10-fold cross-validation), for CA-TP
and the baseline method (FSM), and different abstraction functions abstypeh (σ = 0.4)

Parameters (absmode
h ) FSM [13] CA-TP− CA-TP+

mode h rmse mae mape rmse mae mape rmse mae mape

LIST

1 0.655 0.444 2.985 0.649 0.436 2.964 0.647 0.436 2.811
2 0.465 0.211 0.516 0.335 0.102 0.376 0.335 0.095 0.355
4 0.465 0.204 0.418 0.342 0.102 0.246 0.160 0.058 0.114
8 0.465 0.204 0.407 0.349 0.102 0.175 0.164 0.058 0.107
16 0.465 0.204 0.407 0.349 0.102 0.175 0.164 0.058 0.107

Total 0.503 0.253 0.947 0.409 0.169 0.787 0.298 0.141 0.699

BAG

1 0.655 0.444 2.985 0.649 0.436 2.964 0.647 0.436 2.811
2 0.473 0.218 0.560 0.342 0.109 0.404 0.342 0.102 0.375
4 0.465 0.211 0.420 0.335 0.095 0.248 0.156 0.058 0.118
8 0.465 0.211 0.420 0.342 0.095 0.170 0.156 0.058 0.107
16 0.465 0.211 0.420 0.342 0.095 0.170 0.156 0.058 0.107

Total 0.505 0.259 0.961 0.406 0.166 0.791 0.296 0.143 0.704

Grand Total 0.504 0.256 0.954 0.407 0.167 0.789 0.297 0.142 0.701

Table 2. Error reductions (%) – derived from Table 1 – achieved by CA-TP w.r.t. FSM

Parameters (absmode
h ) CA-TP− (Δ%) CA-TP+ (Δ%)

mode h rmse mae mape rmse mae mape

LIST

1 -0.8% -1.6% -0.7% -1.2% -1.6% -5.8%
2 -28.1% -51.7% -27.2% -28.1% -55.2% -31.3%
4 -26.6% -50.0% -41.1% -65.6% -71.4% -72.8%
8 -25.0% -50.0% -57.0% -64.8% -71.4% -73.8%
16 -25.0% -50.0% -57.0% -64.8% -71.4% -73.8%

Total −18.8% −33.3% −16.8% −40.8% −44.3% −26.2%

BAG

1 -0.8% -1.6% -0.7% -1.2% -1.6% -5.8%
2 -27.7% -50.0% -27.8% -27.7% -53.8% -33.0%
4 -28.1% -55.2% -41.0% -66.4% -72.4% -72.0%
8 -26.6% -55.2% -59.6% -66.4% -72.4% -74.5%
16 -26.6% -55.2% -59.6% -66.4% -72.4% -74.5%

Total −19.6% −36.0% −17.7% −41.4% −44.9% −26.8%

Grand Total −19.2% −34.7% −17.3% −41.1% −44.6% −26.5%

poorer performances were obtained, in general, when using all methods with set-
oriented trace abstraction functions (i.e., absseth ). However, since our approaches
confirmed, even in such a case, similar degrees of improvement over the baseline,
as those in Table 2, these results are not reported here for lack of space.

Fault Prediction Effectiveness. In general, the quality of overtime fault estima-
tion is measured w.r.t. a given maximum dwell-time MDT, set in predefined
agreements on service quality between the shipping lines and the terminal han-
dler. In our tests we fixed MDT = 2×ADT (namely, MDT=11.46 days).

Figure 4 sheds light on the ability our approach discriminate “over-time” from
“in-time” containers. To this purpose, we report both Precision and Recall scores
for different values of the risk threshold γrisk, when a fixed, good-working, con-
figuration of the underlying trace abstraction criterion (namely, absh=absBAG

4 )
is used for both our approach and the baseline one [13] (FSM), and σ=0.4 in
our feature selection procedure. Notice that we only consider here the case where
our tool (referred to as CA-TP+ in the figure) is provided with all kinds of (both
intrinsic and extrinsic) context features available in the application scenario. As
expected, recall tends to worsen when increasing γrisk, while an opposite trend
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Fig. 4. Accuracy scores for the prediction of overtime faults by CA-TP+ and by the
baseline methods, when varying γrisk, while fixing σ =0.4, h=4, and absbagh

is perceived for precision results. Interestingly, when using lower values of γrisk
(i.e., a more aggressive warning policy) the capability of our approach to recog-
nize real overtime cases is compelling w.r.t. the baseline predictor – in particular,
an astonishing recall of 0.95 (vs. 0.64) is reached with γrisk=0. In general, re-
call scores are usually more important than precision ones in our scenario, since
containers “stuck” in the yard implies high monetary costs, and if effectively
recognizing them, suitable counter-measures could be undertaken – possibly re-
sorting to the usage of additional (storage/processing) resources, which are not
used in normal conditions for economical reasons. Clearly, such remedial policies
as well come with a cost, even though it is typically far lower than SLA-violation
penalties. Anyway, seeing as our method gets quite good precision scores over a
wide range of γrisk’s values, it is reasonable to expect that a suitable trade-off
can be reached, according to actual application requirements. More specifically,
notice that the precision scores of the two methods are very similar for any
value of γrisk (in particular, our method never work significantly worse than the
baseline one), and both flatten on 1 with γrisk = 0.4.

Scalability Analysis. Table 3 shows the average computation times (in seconds)
taken by CA-TP+ and by the method in [13] for building a prediction model, as well
as the number of clusters found in the first case (for completeness) – obviously, the
secondmethod does not perform any clustering of the log. Again, different abstrac-
tionmethods absmode

h and a fixed value ofσwere considered in the tests, whichwere
all performed on a dedicated computer, equipped with an Intel dual-core processor
and a 2GB (DDR2 1033 MHz) RAM, and running Windows XP Professional. For
both methods, the real computation times are reported in the columns denoted by
T ime. Conversely, T imepar corresponds to the time that would be spent in a vir-
tual scenario, where an idealistic “overhead-free”parallelization of our approach is
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Table 3. Number of clusters found by CA-TP+ , and computation times for CA-TP+ and
the baseline method, for different abstraction functions asbmode

h and σ = 0.4

Parameters (absmode
h ) CA-TP+ FSM [13]

mode h Cluster# Time [sec] Timepar [sec] Time [sec]

LIST

1 9 16.8 7.4 3.9
2 51.3 20.0 9.7 5.6
4 63.8 19.6 7.9 10.7
8 57.9 20.2 8.1 16.0
16 57.9 92.3 32.6 89.8

Total 46.8 32 13.1 25.2

BAG

1 9 17 7.3 4.0
2 50.7 19.7 9.6 5.5
4 64 18.7 7.6 8.4
8 57.9 19.8 8.0 10.6
16 57.9 79.0 36.0 32.3

Total 46.68 30.9 13.7 12.2

Grand Total 46.74 31.4 13.4 18.7

used for concurrently learning the A-FSM models of all trace clusters. Although,
as expected, our approach takes always longer times than the baseline method, the
former achieves a satisfactory trade-off between effectiveness and efficiency.We are
further comforted by the idealistic estimates T imepar, which let us be confident
in the possibility of strengthen the scalability of our approach by resorting to a
parallel implementation of it.

6 Conclusions

In this paper we have proposed an ad-hoc predictive clustering approach to the
discovery of performance-oriented models, capable to provide performance fore-
casts at run time. Several innovative features distinguish our proposal from cur-
rent literature. In particular, by automatically reckoning process variants with
different performance patterns, prediction accuracy can be improved consider-
ably, as witnessed by test results in the paper. Further, as the clustering model
is represented via logical rules, the discovered process/context variants can be
easily interpreted and validated. This makes our approach helpful in the ex-post
analysis (revision, and consolidation) of tacit context-adaptation policies, and in
the design of contextualized process models, capable to adapt to context changes.
The methodology has been implemented as a plug-in in the ProM framework and
validated on a real case study. Empirical results confirm the efficacy of the ap-
proach in predicting processing times, and in helping foresee SLA violations, as
well as its scalability. As future work, we plan to investigate on making tighter
the link between the clustering phase and the induction of cluster predictors,
and on the usage of novel methods both for defining environment-related con-
text variables, and for selecting performance-relevant space abstraction, as well
as on combining our approach with other basic performance prediction meth-
ods (e.g., [6]), and adopting more refined models capable to capture concurrent
behaviors more effectively. In particular, it is worth considering the possibility
to automatically abstract and merge together similar states (e.g., by suitably
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extending methods like those in [4]), in order to obtain more compact and gen-
eralized intra-cluster proces models. Moreover, further efforts are needed in order
to make the approach fully exploitable in practical application contexts. In par-
ticular, it would be beneficial to complement the prediction of SLA violations
with explanations and suggestions about possible remedial actions.
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