
Looking into the Future�

Using Timed Automata to Provide a Priori Advice
about Timed Declarative Process Models

Michael Westergaard and Fabrizio Maria Maggi

Eindhoven University of Technology, The Netherlands
{m.westergaard,f.m.maggi}@tue.nl

Abstract. Many processes are characterized by high variability, making
traditional process modeling languages cumbersome or even impossible
to be used for their description. This is especially true in cooperative en-
vironments relying heavily on human knowledge. Declarative languages,
like Declare, alleviate this issue by not describing what to do step by
step but by defining a set of constraints between actions that must not
be violated during the process execution. Furthermore, in modern co-
operative business, time is of utmost importance. Therefore, declarative
process models should be able to take this dimension into consideration.
Timed Declare has already previously been introduced to monitor tem-
poral constraints at runtime, but it has until now only been possible to
provide an alert when a constraint has already been violated without
the possibility of foreseeing and avoiding such violations. Moreover, the
existing definitions of Timed Declare do not support the static detection
of time-wise inconsistencies. In this paper, we introduce an extended
version of Timed Declare with a formal timed semantics for the entire
language. The semantics degenerates to the untimed semantics in the
expected way. We also introduce a translation to timed automata, which
allows us to detect inconsistencies in models prior to execution and to
early detect that a certain task is time sensitive. This means that either
the task cannot be executed after a deadline (or before a latency), or that
constraints are violated unless it is executed before (or after) a certain
time. This makes it possible to use declarative process models to provide
a priori guidance instead of just a posteriori detecting that an execution
is invalid.

Keywords: declarative process modeling, metric temporal logic, error
detection, operational support, timed automata, Declare.

1 Introduction

Organizations work today in a dynamic, complex and interconnected world. Even
in the heterogeneity of the environment where they operate, they need to execute
� This research is supported by the Technology Foundation STW, applied science

division of NWO and the technology program of the Dutch Ministry of Economic
Affairs.

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 250–267, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Looking into the Future 251

their processes in a trustworthy and correct manner. A compliance model is, in
general, a set of business constraints that allow practitioners to discriminate
whether a process instance behaves as expected or not.

During the execution of a business process it is often extremely important to
meet deadlines and optimize response times, especially in cooperative environ-
ments where contracts among multiple parties need to be adhered to. To this
aim, a compliance model can also include temporal constraints to guarantee the
correct execution of a process in terms of latencies (related to events that cannot
occur before a certain time, or must occur after a certain time) and deadlines
(related to events that cannot occur after a certain time, or must occur before
a certain time).

Nevertheless, the declarative nature of business constraints makes it difficult
to use procedural languages to describe compliance models. First, the integration
of diverse and heterogeneous constraints would quickly make models extremely
complex and tricky. Second, business constraints often target uncontrollable as-
pects, such as activities carried out by internal autonomous actors (e.g., a doctor
in a health-care process) or even by external independent entities (e.g., a web
service in a service choreography). Representing this variability through a proce-
dural model would require the explicit specification in the same model of multiple
alternatives. Again, this would make models completely unreadable.

For this reason, in this paper, we represent business constraints using Declare
[9,10,1,13]. Declare is a declarative language that combines a formal semantics
grounded in Linear Temporal Logic (LTL) with a graphical representation for
users. Differently from procedural models, a Declare model describes a process as
a list of constraints that must be satisfied during the process execution. A Declare
model is an “open world” where everything is allowed unless it is explicitly
forbidden. In this way, Declare is very suitable for describing compliance models.

Nevertheless, the standard LTL semantics of Declare is not sufficient to rep-
resent metric temporal constraints, i.e., constraints that specify latencies and
deadlines on the execution of the activities of a business process. Therefore, in
order to monitor such a kind of constraints in Declare, it is necessary to rep-
resent them through a more expressive formal semantics. For example, in [8,5],
the authors use the Event Calculus (EC). However, this approach allows users
to identify a violation only after it has occurred and it is not possible to prevent
violations from taking place. Moreover, by using the EC, it is not possible to
detect violations that cannot be ascribed to an individual constraint but are
determined by the interplay of two or more constraints.

To address these issues, the approach presented in this paper uses timed au-
tomata [2] instead of the EC to evaluate the compliance of a process instance
w.r.t. a (timed) Declare model at runtime. In particular, to express metric tem-
poral constraints in Declare, we extend the original LTL semantics of Declare
with MTL (Metric Temporal Logic) [7,3], a real-time extension of LTL with
quantitative temporal operators. MTL reasons over infinite traces. In contrast,
traces in a business process are supposed to finish sooner or later. Therefore,

252 M. Westergaard and F.M. Maggi

we use a variant of MTL for finite traces first introduced in [11]. This semantics
produces as output a boolean value representing whether the current (finite)
trace complies with the monitored property or not. In addition, we extend MTL
for finite traces with the four valued semantics RV-MTL (Runtime Verification
MTL), in order to respect the fact that it is not always possible to produce at
runtime a definitive answer about compliance.

We monitor RV-MTL rules through timed automata. However, we show with
some counterexamples that RV-MTL is undecidable, i.e., it is not possible to
translate every RV-MTL rule to timed automata. For this reason, we restrict our
perspective to the set of rules that we use to formally represent the semantics of
Timed Declare. For this (limited) set of rules, we present automata to monitor
them at runtime and check models a priori.

While evaluating the compliance of a running process instance w.r.t. a De-
clare model, users are allowed, using timed automata, to “look into the future”
from two different perspectives. First of all, using timed automata, it is possible
to generate a (red) alert to warn users that a constraint (or a combination of
constraints) is going to be violated. In this way, they are advised to undertake
specific actions within a specific lapse of time before the violation has occurred
so that the violation can be avoided. We can also generate alerts with a lower
severity (yellow or orange), i.e., alerts to warn users that a specific activity can
currently be executed but, in the future, it will be (temporarily or permanently)
forbidden. Secondly, our approach allows early detection of violations. In fact,
using timed automata, it is possible to detect non-local violations when still none
of the individual constraints in the compliance model has been violated. A non-
local violation is a violation that cannot be ascribed to an individual constraint
but is determined by the interplay of two or more constraints and indicates that
(at least) one of them will be violated in the future.

The paper is structured as follows. Section 2 introduces some background
notions about automata, timed automata and MTL. In this section, we also
present RV-MTL. In Sect. 3, we present the semantics of Timed Declare and
automata to check individual constraints. In Sect. 5, we outline our prototype
implementation of Timed Declare, and in Sect. 6, we sum up our conclusions
and provide directions for future work.

2 Background

In this section, we introduce some background material. We first present stan-
dard Declare using a running example. Then, we introduce timed automata and
MTL (Metric Temporal Logic), the temporal logic we use in this paper. We also
present a runtime version of MTL, which extends MTL to a four-valued logic
for handling ongoing traces.

2.1 Declare and Running Example

Declare is a workflow language and tool [13] for modeling workflows using a
declarative approach. Instead of specifying what has to be done, constraints

Looking into the Future 253

between tasks are specified. In Fig. 1, we see a simple Declare model (ignore the
intervals for now) of an ordering process in a web shop. Here we have five tasks,
specified using rectangles (e.g., Order) and five constraints, specified either using
arrows or as the house annotation above Discount. The constraints specify when
certain tasks are allowed or required. For example, we have a precedence con-
straint from Order to Pay, indicating that we can only pay after placing an order
(we do not have to pay after placing an order, as we can cancel it though this is
not explicitly modeled). We have a succession constraint from Pay to Delivery,
indicating that if an order has been paid, it must be delivered, and it can only
be delivered after successful payment. Furthermore, we can only get a discount
if we order something (as specified by the precedence constraint from Order to
Discount), but if we get a discount, we have to sign up for subsequent advertise-
ment, as indicated by the response constraint from Discount to Advertisement.
The house above Discount restricts how many times this task can occur; in this
case the restriction is that it must occur zero or more times, which does not
mean anything for an untimed version of the model, but which shall become
useful later.

2.2 Timed Automata

A timed automaton augments standard finite automata with a set of clocks.
Clocks all run at the same rate and are typically denoted by c. While we cannot
control the progression of clocks, we can observe and reset them. We can also
perform actions depending on clock constraints, which compare the value of a
clock with any integer:

Definition 1 (Clock Constraints). Given a single clock c, the set of clock
constraints over c are

B(c) = {c ∼ n | n ∈ N, ∼∈ {≤, <,=, >,≥}}.

A timed automaton extends standard finite automata by adding invariants as
clock constraints to states and adding guards as clock constraints to transitions:

Definition 2 (timed Automaton). A timed automaton is a septuple:

T A = (S,AP,C, δ, I, sI , A)

where S is a finite set of states (also called locations), AP is a finite set of
labels, C is a set of clocks, δ ⊆ S×2B(C)×AP �{τ}×2{C}×S is the transition

0…1

Order Pay Delivery

0…*

Discount

[0,12] [0,12]

[1,∞)
[0,48]

Advertisement
[48,∞)

Fig. 1. Running example: Declare model consisting of four constraints

254 M. Westergaard and F.M. Maggi

relation where each transition has a set of clock constraints as guards and a
label, I : S → B(C) assigns invariants to states, sI is the initial state and
A ⊆ S is the set of accepting states.

The intuition is that time progresses at a constant and uncontrollable rate. We
are only allowed to stay in a state as long as the state invariant holds and can
only follow a transition if the guard constraint is true at the current time. The
distinguished transition τ represents time passing and corresponds to an invisible
transition, i.e., we can follow such a transition without consuming events as long
as the guard constraint is true. When following a transition, we reset all clocks
in the fourth component of the transition.

Often, we represent timed automata as directed graphs where nodes corre-
spond to states and arcs to transitions. An example of a timed automaton is
shown in Fig. 2. We have 4 labeled states and 8 transitions. We indicate the
initial state using an unrooted arrow (s0) and accepting states using a double
outline (s0 and s2). Invariants are shown in brackets below states (e.g., [xA <=
a] below s1). Next to transitions, we show their labels, guards, and clocks to
reset. For example, the transition from s2 to s0 has label τ (indicated by :tau),
has guard yA > a, and resets no clocks. The transitition from s0 to s1 resets
both xA and yA. We can have any number of guards and clock resets, including
none (e.g., the transition from s0 to s3). The dashed state (s3) indicates that no
accepting state is reachable from there.

We interpret timed automata over timed sequences, i.e., strings over R+×AP
where R+ = {x ∈ R | x ≥ 0}, denoted by σ = (t0, p0)(t1, p1) · · · (tk−1, pk−1). We
require that for i < j we have ti ≤ tj . The intuition is the same as for regular
automata; we follow states from the initial state. However, we also introduce
steps happening automatically due to time progressing.

Formally, we consider triples (t, s, V) ∈ R+ ×S×CR
+ , where the first entry is

the absolute timestamp, the second is the state and the third includes the values
of the clocks. We allow 2 kinds of transitions:

s0 s1

A
xA := 0
yA := 0

s3

B

[xA <= a]

A
yA := 0

s2

B
xA <= a

:tau
xA > a

:tau
yA > a

A
xA := 0
yA := 0

[yA <= a]

B

A, B

Fig. 2. Timed automaton for the succession [0,a](A,B) constraint

Looking into the Future 255

(t, s, V) →d (t + d, s, V + d) if ∀t′ ∈ [V, V + d], I(s)(t′) = true, and

(t, s, V) →a (t, s′, V ′) if (s, γ, a, C, s′) ∈ δ, γ(V) = true, and

I(s′)(V ′) = true with V ′(c) =

{
0 if c ∈ C, and

V (c) otherwise.

Note that the second case also includes invisible steps. If either of the two cases
hold, we write (t, s, V) → (t′, s′, V ′). A trace (t0, s0, v0) → (t1, s1, v1) → · · · →
(tk−1, sk−1, vk−1) is accepting if (t0, s0, V0) = (0, sI ,0) and sk−1 ∈ A. A timed
sequence σ = (t0, p0)(t1, p1) · · · (tk−1, pk−1) is accepting if there exists an accept-
ing trace T = (t′0, s0, V0) → (t′1, s1, V1) → · · · → (t′n−1, sn−1, Vn−1) such that
σ = project(T) where project projects the trace onto the first two components
and ignores τ steps.

2.3 Metric Temporal Logic

Metric Temporal Logic (MTL) is a logic talking about timed sequences of states.
The idea is that we have a set of atomic propositions, denoted by AP = {p0, p1,
. . . , pn−1}. For our variant of metric temporal logic, we look at timed sequences
of events and assume that events fall in the set of atomic propositions. We deal
with a fragment of MTL where all traces are finite. Therefore, we use the MTL
semantics for dealing with finite timed sequences presented in [11].

To express MTL formulas, we use the syntax:

Definition 3 (MTL Syntax). Formulas of MTL contain atomic proposi-
tions and are closed under negation, conjunction, disjunction, timed next op-
erator, timed until operator, timed previous/yesterday operator and timed since
operator, i.e., a formula ψ belongs to MTL if

ψ ::= p | ¬ψ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | XIψ | ψ1UIψ2 | YIψ | ψ1SIψ2

where p ∈ AP , ψ, ψ1, ψ2 ∈MTL, and I ⊆ R+ is an interval.

Let σ = (t0, p0)(t1, p1) · · · (tk−1, pk−1) be a finite timed sequence of states and
let ψ be an MTL formula. We write σ, i |= ψ to indicate that ψ holds at position
i in σ. The semantics of σ, i |= p, σ, i |= ¬ψ, σ, i |= ψ1∧ψ2 and σ, i |= ψ1∨ψ2 are
as normally in propositional logic: p is true at position i in σ if p = pi, ¬ψ is true
if ψ is not, ψ1 ∧ψ2 is true if both ψ1 and ψ2 are and ψ1 ∨ψ2 if either is. We say
that σ, i |= XIψ, if (ti, pi) has a successor state (i < k−1) and σ, i+1 |= ψ with
ti + a ≤ ti+1 ≤ ti + b. Moreover, σ, i |= YIψ, if (ti, pi) has a predecessor state
(i > 0) and σ, i− 1 |= ψ with ti − b ≤ ti−1 ≤ ti − a. We say that σ, i |= ψ1UIψ2,
if σ, j |= ψ2 for some j ≥ i with ti +a ≤ tj ≤ ti +b and σ, l |= ψ1 for all i ≤ l < j.
Finally, σ, i |= ψ1SIψ2, if σ, j |= ψ2 for some j ≤ i with ti − b ≤ tj ≤ ti − a and
σ, l |= ψ1 for all j < l ≤ i. This semantics coincides with FLTL (LTL for finite
traces) where only I = R+ is allowed.

256 M. Westergaard and F.M. Maggi

We add syntactic sugar for the normal connectives, such as ψ1 → ψ2 ≡ (¬ψ1)∨
ψ2 and ψ1 ↔ ψ2 ≡ (ψ1 → ψ2)∧(ψ2 → ψ1). We also add temporal syntactic sugar,
FIψ ≡ trueUIψ (timed future operator), GIψ ≡ ¬(FI(¬ψ)) (timed globally
operator), OIψ ≡ trueSIψ (timed once operator) and HIψ ≡ ¬(OI(¬ψ)) (timed
historically operator). The intuition behind the future operator and the once
operator is that ψ has to happen in the specified interval of time from now (in
the future or in the past). The intuition behind the globally operator and the
historically operator is that ψ has to hold for the entire interval (in the future
or in the past).

2.4 RV-MTL: A Metric Temporal Logic for Runtime Verification

When focusing on runtime verification of MTL properties, reasoning is carried
out on partial, ongoing traces, which describe a portion of the system’s execution.
Therefore, here, we extend MTL (for finite traces) with a four-valued semantics
called Runtime Verification Metric Temporal Logic (RV-MTL). Differently from
the original MTL semantics, which gives to the user only a boolean feedback
(specifying whether a trace is compliant or not w.r.t. a given property), RV-
MTL provides more sophisticated diagnostics.

Let σ = (t0, p0)(t1, p1) · · · (tk−1, pk−1) be a finite timed sequence of states and
let ψ be an MTL formula. The semantics of [σ |= ψ]RV is defined as follows:

– [σ |= ψ]RV = if for each possible continuation w of σ: σw |= ψ (in this
case ψ is permanently satisfied by σ);

– [σ |= ψ]RV = ⊥ if for each possible continuation w of σ: σw �|= ψ (in this
case ψ is permanently violated by σ);

– [σ |= ψ]RV = p if σ |= ψ but there is a possible continuation w of σ such
that σw �|= ψ (in this case ψ is possibly satisfied by σ);

– [σ |= ψ]RV = ⊥p if σ �|= ψ but there is a possible continuation w of σ such
that σw |= ψ (in this case ψ is possibly violated by σ).

3 Timed Declare

In this section we introduce a timed version of Declare. The version is similar
to the one in [8], but we allow time on more constraints and instead give a
semantics which collapse to the standard LTL semantics when removing time.
We also introduce new constraints that are useful when dealing with time.

Returning to the running example in Fig. 1, we see that the constraints all
have intervals next to them. This represents when things have to occur. For
example, we indicate that payment has to be performed withing 12 time units
after the initial order (for example, because orders without payment are purged
after 12 time units), and shipment has to take place within 12 time units after
payment. Processing a discount cannot occur earlier than 1 time unit after the
order. Sending out advertisements is only performed 48 time units after the
discount. Finally, we have a new constraint, exclusive allowance, which states
that the discount can only be applied in the first 48 time units of the process.

Looking into the Future 257

0 ba

A
A
B

A
B

existence
A
B

A
B

0 ba

A
A
B

A
B

absence
A
B

A
B

0 ba

A
A
B

A
B

exclusive
allowanceA

B
A
B

Fig. 3. Existence, Absence, and Exclusive Allowance

In Fig. 3, we give a graphical representation of the semantics for the timed
existence and absence, and a new constraint which only makes sense in the timed
version, exclusive allowance. The timed existence indicates that, starting from
the beginning of a process instance, A must occur at least once (indicated by
underline) at some point t ∈ I where I is some interval from a to b (either of
which may be included and b may also be ∞). A is allowed outside this interval
(as is any other event, indicated by B in the figure. The timed absence specifies
that A must not occur in the interval I (indicated by a double strikeout). A
is allowed outside this interval. Where existence forces something to happen, it
may also be useful to just allow something to happen in a specific interval, i.e.,
consider the conjunction of absence in the intervals before and after. This yields
the exclusive allowance, which specifies that A is only allowed inside the interval
I (e.g., exclusive allowance[2,7](A) ≡ ∧absence[0,2)(A) ∧ absence(7,∞](A)). In our
example in Fig. 1, we use exclusive allowance to only allow for a discount within
the first 48 time units (though here it is equivalent to absence after this interval).

Figure 4 shows a graphical representation of the semantics for the timed re-
sponded existence. This constraint indicates that, if A occurs at time t1, B must
occur at some point t0 ∈ [t1−b, t1−a] or t2 ∈ [t1 +a, t1 +b] (assuming I = [a, b];
if the interval is semi-open the intervals for t0 and t2 need to be updated ac-
cordingly). In the interval [t0, t2] another A or another B can occur and, also,
any event different from A and B (indicated by C in the figure). For the sake
of readability, in this representation, we do not specify the behavior outside the
interval [t0, t2] where any event can occur. This semantics must be valid for each
A in a process instance. The timed co-existence (which is not shown) is the con-
junction of the timed responded existence with parameters (A,B) and the timed
responded existence with parameters (B,A).

Figure 5 shows the semantics for the timed response, the timed alternate
response and the timed chain response. The timed response indicates that, if A

t0 t2t1+a t1+bt1-at1-b

B B
A
B
C

A
B
C

t1

A

Fig. 4. Responded Existence

258 M. Westergaard and F.M. Maggi

t0 t1t0+a t0+bt1-at1-b

A B
A
B
C

A
B
C

A
B
C

t0 t1t0+a t0+bt1-at1-b

A B
A
B
C

A
B
C

A
B
C

t0 t1t0+a t0+bt1-at1-b

A B
A
B
C

A
B
C

A
B
C

base

alternate

chain

Fig. 5. Response, Alternate Response, Chain Response

occurs at time t0, B must occur at some point t1 ∈ I. Any event can occur inside
this interval. In all representations in Fig. 5 (and also in the ones in Fig. 6) we do
not specify the behavior outside the interval [t0, t1], because outside this interval
any event can occur. The timed alternate response specifies that if A occurs
at time t0, B must occur at some point t1 ∈ I. A is not allowed in the interval
[t0, t1]. Any event different from A is allowed. The timed chain response indicates
that, if A occurs at time t0, B must occur next at some point t1 ∈ [t0 +a, t0 + b].
Nothing is allowed between A and B. Each of these constraints must hold for
each A.

In Fig. 6, we give a graphical representation of the semantics for the timed
precedence, the timed alternate precedence and the timed chain precedence.
The timed precedence indicates that, if B occurs at time t1, A must occur at
some point t0 ∈ I. Any event can occur between A and B. The timed alternate
precedence specifies that, if B occurs at time t1, an A must occur at some point
t0 ∈ [t1 − b, t1 − a]. B is not allowed in the interval [t0, t1]. Any event different
from B is allowed. The timed chain precedence indicates that, if B occurs at time
t1, A must occur immediately before at some point t0 ∈ [t1 − b, t1 − a]. Other
events are not allowed in between.

The timed succession, the timed alternate succession and the timed chain
succession (which are not shown in the table for the sake of readability) can be

t0 t1t0+a t0+bt1-at1-b

A B
A
B
C

A
B
C

A
B
C

t0 t1t0+a t0+bt1-at1-b

A B
A
B
C

A
B
C

A
B
C

t0 t1t0+a t0+bt1-at1-b

A B
A
B
C

A
B
C

A
B
C

base

alternate

chain

Fig. 6. Precedence, Alternate Precedence, Chain Precedence

Looking into the Future 259

t0 t0+a t0+b

A
A
B
C

A
B
C

not response

not responded
existence

t0+a t0+bt0-at0-b

A
B
C

A
B
C

t0

A

not precedence

t1t1-at1-b

B
A
B
C

A
B
C

Fig. 7. Not Co-existence, Not Succession and Not Chain Succession

defined as the conjunction of the appropriate timed precedence and the timed
response.

Figure 7 gives a graphical representation of the semantics for negations of
constraints. The constraint timed not responded existence specifies that, when-
ever A occurs, B is forbidden in the specified interval before and after. Again,
the timed not co-existence is not shown, but remains the conjunction of the
timed not responded existence with parameters (A,B) and the timed not re-
sponded existence with parameters (B,A). The timed not response indicates
that, whenever A occurs, B is forbidden in the time interval t ∈ I. The timed
not precedence indicates that, whenever B occurs, A is forbidden in the time in-
terval t ∈ [tB−b, tB−a]. The timed not succession is the conjunction of these last
two constraints. The chain versions of the precedence and response constraints
(not shown) allow B/A to occur inside the interval if any action occurs between
them.

In Table 1, we summarize the timed semantics for each constraint. The se-
mantics for the untimed constraints is the same as in [9], except we allow for
the use of past operators, which makes specifying some constraints simpler. The
timed versions are in most cases the same as for the untimed version except we
add time. The (negated) responded existence is a bit more complicated to make
the timing correct, but it is easy to see that this formula is equivalent to the
corresponding untimed formula if time is removed.

3.1 Timed Automata for Declare

MTL is undecidable. It is not always possible to translate an MTL formula to a
timed automaton. We show this with a counterexample. Consider, for instance,
the timed semantics for the response constraint G(A → FIB). We cannot ex-
press this semantics with a fixed number of clocks. Intuitively, we need to start
a new timer for each A to make sure we that can see which (if any) of the As are
satisfied by a given B. We have chosen to use MTL to specify Timed Declare
anyway as we need the power to express the full semantics of Timed Declare.
Other timed logics similar to LTL cannot express [4] the semantics for, e.g.,
timed responded existence and response.

260 M. Westergaard and F.M. Maggi

Table 1. Semantics for some Declare constraints

Constraint Untimed semantics Timed semantics

existence FA FIA
absence ¬FA ¬FIA
exclusive allowance − ¬F[0,a]A ∧ ¬F[b,∞]A

responded existence FA → FB G(A → (OIB ∨ FIB))

response G(A → FB) G(A → FIB)
alternate response G(A → X(¬AUB)) G(A → X(¬AUIB))
chain response G(A → XB) G(A → XIB)

precedence G(B → OA) G(B → OIA)
alternate precedence G(B → Y(¬BSA)) G(B → Y(¬BSIA))
chain precedence G(B → YA) G(B → YIA)

not responded existence FA → ¬FB G(A → (¬OIB ∧ FIB))
not response G(A → ¬(FB)) G(A → ¬(FIB))
not precedence G(B → ¬(OA)) G(B → ¬(OIA))
not chain response G(A → ¬(XB)) G(A → ¬(XIB))
not chain precedence G(B → ¬(YA)) G(B → ¬(YIA))

The uncomputability is only present if we wish to translate a formula to an
automaton for static analysis. For on-line monitoring, we can easily instantiate a
timer every time we activate a constraint. We can do this in terms of automata
or as in [8] in terms of the Event Calculus. The desire to provide a meaningful
timed semantics for Declare, even though we lose some analytical power is what
prompts us to go with the undecidable logic.

As not every MTL formula can be translated to an automaton and not every
Timed Declare constraint can be represented using a timed automaton, we need
to restrict what we allow if we are to do analysis. If we restrict all intervals to
either include 0 or go to ∞ it turns out that all constraints can be represented as
an automaton. The reason is that it now becomes enough to remember the first
and last time we saw each event for each constraint. Therefore, for an event,A, we
introduce two clocks xA and yA; xA keeps track of the first outstandingA and yA
keeps track of the last. Note that succession[0,b](A,B)∧ succession[a,∞)(A,B) �=
succession[a,b](A,B), so this does not contradict that we cannot construct the
automaton for the right side of the expression. The left side of the expression can
be satisfied using two As or two Bs, each in one interval but not in the other,
but the right side does not admit this.

The automaton in Fig. 2 checks the succession[0,a](A,B) constraint. From the
initial state s0, we can take an A to s1 and a B to s3. State s3 is an inescapable
non-accepting state and can be thought of as a failure (indicated by a dashed
outline). This makes sense: if we see a B before and A, we have violated the
constraint. For all other events, we just remain in s0. When we see an A from
s0, we reset the clocks xA and yA, indicating when we first and last saw an A
(namely now). We can stay in s1 as long as xA<=a, i.e., until it is long enough
ago we saw an A that executing a B is mandatory; if we do not progress before
that, we are forced to follow the τ transition to s3. Intuitively s1 means “we have
seen As that are not followed by Bs”, s2 means “we have seen As, all obligations
are satisfied, and the last A is close enough that we may still execute Bs”, and

Looking into the Future 261

s0

[E < a]

s1
:tau

E >= a

s3

A
E < a

A

[E <= b]

s2

:tau
 E > b

A
A

Fig. 8. Timed automaton for the exclusive allowance [a,b](A) constraint

s0 means “we have no outstanding As and no A is close enough that we may
execute Bs”. Thus, we reset when we last saw an A in s1 and transition to s2 if
we see a B. We may only stay in s2 as long as the last A is close enough (the
invariant on s2, yA <= a); if we see an A we have a new outstanding A and move
to s1 resetting both clocks. We allow for executing Bs, but when the invariant
no longer is satisfied, we transition to s0 and start from scratch.

We employ a similar technique for all precedence, response, succession, and re-
sponse constraints. The existence, absence, and exclusive allowance can trivially
be checked in their full generality using a single clock for each constraint (see,
e.g., Fig. 8 where the automaton for exclusive allowance is shown and uses only
clock E). Precedence and response constraints can be checked using a single clock
(we only need to keep track of either the first or last occurrence of A depending
on whether the interval includes 0 or ∞; see Figs. 9 and 10 for examples). We
can also represent the alternate response and the three chain constraints in their
full generality. The intuition is that we can no longer execute more As between
A and B (cf., Figs. 5 and 6).

s0

s1
A

yA := 0

s2B

B
yA <= a

A
yA := 0

B
yA > a

A, B

Fig. 9. Timed automaton for the precedence [0,a](A, B) constraint

s0

s1
A

xA := 0

s3
B

A
s2

B
xA >= a

B
xA < a

A, B

A, B

Fig. 10. Timed automaton for the precedence [a,∞)(A,B) constraint

262 M. Westergaard and F.M. Maggi

4 Analysis

In this section we show how to use automaton-based Timed Declare for analysis
purposes to provide alerts when tasks are time-sensitive and to implement an a
priori check of whether it is possible to meet deadlines.

4.1 Colored Alerts to Provide a Priori Advice

To monitor a Timed Declare model, we translate the model into a timed automa-
ton. We simply instantiate our timed automata for each constraint. It is possible
to compute the product of timed automata efficiently [2] so we do that in a way
similar to how we construct colored automata for untimed Declare models. Such
automata contains information about acceptance for each constraint in isolation
and also about the acceptance of the conjunction. In the untimed version, this
allows us to discover an inevitable violation even though no violation has yet
taken place. The goal is to extend this to temporal properties as well.

Using a timed automaton we allow users to have relevant feedback during
the process execution. During the execution of the process, this automaton can
be used to give advice to the users about the action to undertake to obey the
latencies and the deadlines specified by the compliance model, thus preventing
possible violations from taking place. This advice is given through alerts that
can be associated to different colors: yellow for alerts with low severity, orange
for alerts with medium severity and red for alerts with high severity.

A red alert is generated when the automaton is in a consistent state, but
letting time pass will unavoidable lead to violating one of the constraints. For
instance, in the automaton in Fig. 2, modeling the succession constraint (in
our example think of the succession from Order to Pay), if A (Pay) is executed
(moving to state s1), a red alert is generated for the execution of B (Delivery)
within 12 time units (as a= 12). If Delivery is not executed, the constraint is
violated (delivery has not taken place on time). Such an alert is generated for a
state with an invariant where the only τ transition leads to a failure (dashed)
state.

An orange alert is generated when the automaton is in a state where an activ-
ity can currently be executed but, after a certain number of time units, it cannot
be executed anymore (and never in the future). For instance, in the automaton
in Fig. 8 modeling the exclusive allowance constrains (in our model think of the
Discount which is only available for the first 48 time units), when monitoring
starts, we immediately transition to s1 (as a= 0). Then, an orange alert is gen-
erated for A (Discount, because the customer missed out on the limited-time
discount). The alert is generated because in state s1 it is possible to execute A,
but s1 has an invariant and a τ transition to s2 from which executing A will
always lead to a failure state. Alternatively, we generate such an alert if we are
in a state where an action is guarded and can no longer be executed in any
successor state and the clocks in the constraints cannot be reset.

A yellow alert is generated when the automaton is in a state where an activity
can currently be executed but, after a certain number of time units, it cannot be

Looking into the Future 263

executed anymore. However, there is still the possibility to execute the activity
somewhere in the future. For instance, in the automaton in Fig. 9 modeling the
precedence constraint (in our example, we have a precedence of this type from
Order to Pay). If A (Order) is executed, a yellow alert is generated to execute B
(Pay) within 12 time units (as a= 12). This is because in state s1 we can execute
Pay but if we let time pass, we can no longer satisfy the guard and there is no
τ transition to a state where we can. We also generate such an alert if we are
in a state with an invariant and a τ transition to a state where the event is not
enabled.

4.2 Constraint Interaction

Constraint interaction can be checked by computing the strongly connected com-
ponents (SCCs) of the automaton, marking failure states (dashed states in the
examples), and for each state compute which events lead to non-failure states,
called the enabled events. We compute the union of these sets for each strongly
connected component, and propagate them backwards in the SCC graph. We call
these the possible events. Now, as we traverse the automaton, we can identify
each of the three kinds of alerts and notice that after payment, delivering is very
important (red alert) to avoid violating a constraint, applying for the discount is
of medium importance (orange alert) as it becomes unavailable after some time,
and after ordering, payment is important to avoid erasure of the order.

When we just start the process, we may not realize that we are on the
clock. In our example, we actually have to hurry with our order, because if
we do not order within 47 time units, we cannot wait one time unit more
and apply for the discount before it becomes unavailable at time 48. We thus
wish for an orange alert for Order in the initial state even though Order itself
does not become permanently unavailable. We cannot see this from automata
from individual constraints, but the product automaton is needed. In Fig. 11,
we see the product of the automata for precedence[1,∞)(Order,Discount) and
exclusive allowance[0,48](Discount). We have hidden the failure state for legibil-
ity; anytime Order or Discount is not explicitly possible, they lead to the failure

s0
Od

[E <= 48]

s1
OD

Order
xOrder := 0

s3
O

:tau
E > 48

Order

[E <= 48]

s2
OD

Discount
xOrder >= 1

s4
O

:tau
E>48

[E <= 48]

Order, Discount

s5
O

:tau
E > 48

Order

Order

Order

Fig. 11. Timed automaton for the conjunction of the exclusive allowance [0,48](Order)
and precedence [1,∞)(Order, Discount) constraints

264 M. Westergaard and F.M. Maggi

state. We have also annotated the states with the enabled and possible events.
An O means that Order is enabled, a D means that Discount is enabled, and
d means that Discount is possible. We see that in the initial state, Discount is
possible, but the state has an invariant and a τ transition to a state where Dis-
count no longer is possible. We can see that while Discount is possible, it is not
enabled, so producing an orange alert would be of little use. Instead, we produce
an orange alert for Order as we can see it leads us to another strongly connected
component where Discount still is possible and even enabled in this case. The
orange alert now moves to Discount where it rightly belongs.

4.3 Detection of Inconsistencies

If we modify the model in Fig. 1, adding a not succession constraint from Order
to Deliver with a time limit of 36 time units, we model that we may not deliver
goods within 36 time units from the order(e.g., due to local tax laws). We can
see that Pay has to be executed no more than 12 time units from Order and
Deliver no more than 12 time units from Pay, forcing delivery within 24 time
units of Order. This of course conflicts with the new constraint, and we get an
automaton accepting the empty language. We can detect this and point out the
conflict between the 3 constraints, and let the user alleviate it by removing one
or loosening one of the temporal constraints.

5 Implementation

In this section, we briefly describe our prototype implementation of Timed De-
clare in UppAal [12], a tool for analysis of timed automata.

UppAal makes it possible to design a model by defining process templates.
We have designed a process template for each of the (most commonly used)
constraints in Timed Declare. One such an example is shown in Fig. 12. In this
example, we have a template in the field to the left for each constraint. The
model shown is the UppAal implementation of the automaton from Fig. 2 test-
ing the succession [0,a](A,B) constraint. UppAal implements automata slightly
differently from what we want. Most importantly, it does not have a notion of
accepting states nor of synchronization. This is possible to get around, though.

To get around lack of synchronization, we use broadcast channels, which make
it possible for a single sender to synchronize with multiple recipients. We then
have a single driver (see Fig. 13) acting as sender and all the templates act as
receivers and hence progress as the driver dictates. The driver (Fig. 13 (left))
has two states, an initial state and a termination state. The driver is a real
flower-model, which allows for any (here of four) actions looping in the initial
state. Each time, we transmit on the corresponding broadcast channel (e.g., a!).
At some point, the driver decides to terminate, and communicates on done. If
we look back at the implementation of Fig. 2 in Fig. 12, we see that many events
receive on channels (e.g., A?). This will be synchronized with other automata
listening to the same channel. Furthermore, channels cannot advance without
receiving, so they just stay put for events that do not affect them.

Looking into the Future 265

Fig. 12. Our prototype in UppAal

We handle non-accepting states by indicating that they forbid communicating
on done. In our example, we see this construction from the middle state in Fig. 12.
It has a transition receiving on done but leading to a state with the invariant
false underneath it. This means that it is never a legal move to go there, so if the
automaton in Fig. 12 is in the middle state, the driver is prevented from sending
on done and hence terminating.

Listing 1. System declarations for the model in Fig. 1

� �

1 broadcast chan done , Order , Pay , De l ive ry , Discount , Advert isement ;

3 c1 = pr e c l e q (Order , Pay , 1 2) ;
4 c2 = suc c l e q (Pay , De l ivery , 1 2) ;
5 c3 = prec geq (Order , Discount , 1) ;
6 c4 = ex c l u s i v e ab s e n c e (Discount , 0 , 4 8) ;
7 c5 = re spon se geq (Discount , Advertisement , 4 8) ;
8 a = a l l (Order , Pay , De l ive ry , Discount , Advert isement) ;

10 system a , c1 , c2 , c3 , c4 , c5 ;
� �

Finally, we need to tie our symbolic names (A, B, and a) in Fig. 12 to actual
tasks. We notice near the top right of Fig. 12 that we have a field for parameters.
We here state that A and B are broadcast channel input parameters, and we have
declared a as an integer input parameter. We then tie the entire system together
in the System declarations, (the description is as simple as Listing 1). We first set
up a channel for each task (l. 1), then we instantiate the individual constraints
(ll. 3–7) and the driver (l. 8), and finally we start the system (l. 10). Now the
formal names are tied to actual names and we can run the model in the simulator

266 M. Westergaard and F.M. Maggi

Fig. 13. Our driver (left) and test (right)

in UppAal. We can also perform analysis. We can check if the model is non-
empty by checking if the driver (Fig. 13 (left)) can reach the finished state. We
can also instantiate the test in Fig. 13 (right) for each task and, when the found
state is reachable, indicating that it is possible to execute that event.

6 Conclusion

In this paper, we have introduced a timed version of Declare. Our version is
similar to the one in [8], but allows the use of time for more Declare constraints.
We give a semantics in terms of MTL, a timed version of LTL, and we repre-
sent these semantics through timed automata. We show how we can use these
automata to not only identify when a constraint is violated like in [8], but even
to provide a priori warnings that time constraints may be violated in the future
or that certain actions may become unavailable if not executed swiftly. We can
also detect that deadlines are impossible to meet prior to execution.

In this paper, we have considered tasks without duration taking place with
time spans between them. We are very interested in looking into giving tasks
duration. This can be done either by considering the start and completion of a
task as separate events or by looking at tasks as signals instead of events. When
we do so, it is obvious to start looking at the resource perspective as well, as it
may be that a model cannot be executed by a single person (for example if two 14
time unit tasks have to be executed within a 24 time unit period). For these cases
we can compute interesting statistics like how fast can a model be executed given
infinite resources, how fast can it be executed (if at all) using a given amount
resources, and how many resources are necessary to execute a model. We believe
that this can be extended to also provide plans for individual resources, and
we believe we can extend this to do planning for running multiple instances of
multiple models. This is very similar to providing operational support (except
where operational support tries to answer similar questions on-the-fly, we try to
answer them before the fact).

Here, we have used timed automata because they make it possible and easy
to do sophisticated analysis. It would also be very interesting to investigate how
moving to more advanced automata admitting creating fresh clocks skews the
balance between expressiveness and analysis.

Looking into the Future 267

We would also like to integrate the presented analysis facilities in Declare [13],
preferably in a backwards compatible way. One way to do that is to integrate
UppAal’s command line tool, which may definitely be good for analysis, but
less optimal for on-the-fly execution, as UppAal computes the product on-the-
fly while checking properties. We can, therefore, not precompute the enabled
and possible events, which is necessary to be able to provide orange and yellow
alerts. Another possibility is to use UppAal’s DBM library, which implements
difference-bound matrices [6] (a very efficient data-structure to implement timed
automata), and to leverage the automaton library already available in Declare.

References

1. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: Bal-
ancing between flexibility and support. Computer Science - Research and Devel-
opment 23, 99–113 (2009)

2. Alur, R., Dill, D.: A Theory of Timed Automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

3. Alur, R., Henzinger, T.: Real-time logics: complexity and expressiveness. In: Pro-
ceedings of Fifth Annual IEEE Symposium on Logic in Computer Science, LICS
1990, pp. 390–401 (June 1990)

4. Bauer, A., Leucker, M., Schallhart, C.: Comparing ltl semantics for runtime veri-
fication. Logic and Computation, 651–674 (2010)

5. Chesani, F., Mello, P., Montali, M., Torroni, P.: Verification of Choreographies
During Execution Using the Reactive Event Calculus. In: Bruni, R., Wolf, K. (eds.)
WS-FM 2008. LNCS, vol. 5387, pp. 55–72. Springer, Heidelberg (2009)

6. David, D.: Timing Assumptions and Verification of Finite-state Concurrent Sys-
tems. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Hei-
delberg (1990)

7. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Systems 2, 255–299 (1990), http://dx.doi.org/10.1007/BF01995674,
10.1007/BF01995674

8. Montali, M.: Specification and Verification of Declarative Open Interaction Models.
LNBIP, vol. 56, pp. 1–383. Springer, Heidelberg (2010)

9. Pesic, M.: Constraint-Based Workflow Management Systems: Shifting Controls to
Users. Ph.D. thesis, Beta Research School for Operations Management and Logis-
tics, Eindhoven (2008)

10. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declare: Full support for
loosely-structured processes. In: IEEE International EDOC Conference 2007, pp.
287–300 (2007)

11. Thati, P., Roşu, G.: Monitoring algorithms for metric temporal logic specifications.
Electron. Notes Theor. Comput. Sci. 113, 145–162 (2005),
http://dx.doi.org/10.1016/j.entcs.2004.01.029

12. UppAal webpage, http://www.uppaal.org
13. Westergaard, M., Maggi, F.: Declare: A Tool Suite for Declarative Workflow Mod-

eling and Enactment. In: Ludwig, H., Reijers, H. (eds.) Business Process Man-
agement Demonstration Track (BPMDemos 2011). CEUR Workshop Proceedings,
vol. 820. CEUR-WS.org (2011)

http://dx.doi.org/10.1007/BF01995674
http://dx.doi.org/10.1016/j.entcs.2004.01.029
http://www.uppaal.org

	Looking into the Future
	Introduction
	Background
	Declare and Running Example
	Timed Automata
	Metric Temporal Logic
	RV-MTL: A Metric Temporal Logic for Runtime Verification

	Timed Declare
	Timed Automata for Declare

	Analysis
	Colored Alerts to Provide a Priori Advice
	Constraint Interaction
	Detection of Inconsistencies

	Implementation
	Conclusion
	References

