
A Conditional Lexicographic Approach

for the Elicitation of QoS Preferences

Raluca Iordache and Florica Moldoveanu

University ”POLITEHNICA” of Bucharest, Romania
riordache@hotmail.com, fm@cs.pub.ro

Abstract. In a service-oriented environment, clients can usually choose
between several web services offering the same functionality. The web
service selection can be automated by allowing clients to specify non-
functional requirements such as quality of service. Clients should also be
able to indicate how to make tradeoffs when some of these requirements
cannot be met. The ability to capture tradeoff preferences is critical for
selecting the best fitting web service. In this paper, we propose a method
of expressing non-functional preferences, which requires minimal effort on
the part of the clients, but offers great flexibility in managing tradeoffs.
This method leads to a simple algorithm for selecting web services, which
does not require sophisticated multicriteria decision techniques.

Keywords: QoS preferences, multicriteria decision making, service se-
lection.

1 Introduction

The emergence of services brought the world of computing in front of a new level
of abstraction that is closer to the way humans naturally think and interact with
their surroundings [1]. In real life, people make use of particular services, after
selecting from the available alternatives the ones suiting best their requirements.
In service-oriented environments, the existence of numerous web services offering
the same functionality needed for a given task leaves the application designer
with several candidates to choose from. At this point, analyzing the quality of the
alternatives starts playing a fundamental role in the service selection. The non-
functional characteristics of a web service, such as availability, cost, response
time, or the supported security protocols define the Quality of Service (QoS)
concept.

Although considerable research has been done in the recent years, there is
currently no widely accepted approach for the QoS-aware selection of web ser-
vices. This is mainly due to the various issues that have to be addressed in
order to provide a complete solution. These issues include the design of suit-
able frameworks and architectures [2][3], which should provide ontologies for the
formal specification of QoS metrics [4][5], methods of obtaining current metric
values [6] and algorithms that select the best web service based on user-specified
QoS criteria [7].

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 182–193, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Conditional Lexicographic Approach for the Elicitation of QoS Preferences 183

The ability of clients to express their QoS expectations plays a crucial role in
the selection of the most suitable web service. While hard constraints are rela-
tively easy to formulate, there is no standard way to deal with soft constraints
that should reflect client’s preferences in situations where no web service is capa-
ble of satisfying all QoS requirements. Most approaches are based on specifying
priorities or associating weights to the different QoS dimensions. The drawback
of these methods is that they cannot accurately capture user’s preferences. On
the other hand, more elaborate ways of specifying QoS preferences usually re-
quire considerable effort on the part of the clients. This complexity brings the
risk that users don’t understand the method or they are not willing to spend so
much time expressing their preferences.

In this paper, we propose a conditional lexicographic method of articulating
non-functional preferences, which offers great flexibility, while being easy to use
and understand. It is based on the way people reason about their preferences,
thus fostering its acceptance by users. This method leads to a simple algorithm
for selecting web services, which does not require sophisticated multi-criteria
decision techniques.

The rest of this paper is organized as follows: Section 2 presents the addressed
problem of expressing the user’s preferences. Section 3 outlines the related work
of service selection based on multicriteria techniques. Section 4 introduces our
conditional lexicographic approach illustrated by a case study of a data visual-
isation service. The last section concludes the paper and outlines future work
directions.

2 The Problem of Expressing Preferences

Preference models can be found in various areas like psychology, mathematics,
philosophical literature, in economics and game theory, in operations research
and decision analysis and in various disciplines of computer science. The choices
that we make are guided by our preferences. Understanding preference handling
is relevant when attempting to build systems that make choices on behalf of
users [8].

Of particular interest for the domain of QoS-aware service selection are the
fields of multicriteria decision analysis and in particular of multiobjective opti-
mization or Pareto optimization. Multiobjective optimization problems can also
be found in various areas where optimal decisions involve tradeoffs between mul-
tiple (possibly conflicting) objectives. A Pareto optimal solution is a solution for
which it is impossible to improve one objective without worsening another one.
Multiobjective optimization uses a priori or a posteriori approaches, depending
on the moment when the decision maker’s preferences are articulated.

The best known and simplest method for preference articulation is the weighted
sum method. The method uses weight values supplied by the user to describe the
importance of the objectives. One drawback of this method is that the weights
must both compensate for differences in objective function magnitudes and pro-
vide a value corresponding to the relative importance of an objective. Another

184 R. Iordache and F. Moldoveanu

drawback is that it is not able to find certain solutions in the case of a non-
convex Pareto curve. The authors of [9] conclude that the weighted sum method
”is fundamentally incapable of incorporating complex preference information”.

Lexicographic preferences is another simple method used for modeling rational
decision behavior. Preferences are defined by a lexical ordering, which leads to
a strict ranking. While being very easy to use, lexicographic preferences have
the major drawback of being non-compensatory. An extension of this method is
lexicographic semiorder, where a tradeoff is addressed in situations where there
is a significant improvement in one objective that can compensate an arbitrarily
small loss in the most important objective. An alternative x is considered better
than an alternative y if the first criterion that distinguishes between x and y ranks
x higher than y by an amount exceeding a fixed threshold [11]. The advantage of
this method is that it ensures that a solution that is slightly better on the most
important objective but a lot worse on the other objectives will not be selected.

3 Existing Methods and Approaches

Most work on QoS-aware service selection uses successive evaluation of differ-
ent, non functional aspects in order to attribute a general ”level of quality” to
a service [3]. Usually the selection of the service offering the best functionality
is based on either a single evaluation criterion or on a weighted sum of sev-
eral quantitative evaluation criteria. These approaches have in practice major
disadvantages because in most of the cases a single criterion is not enough for
defining the user’s QoS requirements and the weighted sum of the criteria lead
to compensation problems and so to inadequate results. Many QoS attributes
are qualitative parameters and cannot be used on a weighted sum evaluation.
By using quantification and assigning values to the qualitative data, these pa-
rameters can be transformed in quantitative parameters. This is done usually
by defining a measurement scale and then associating to each level of the scale
a numerical value. For example the scale can be defined as 1-5, with 1 being
very high and 5 being very low and these numbers are associated to the different
qualitative attributes, by their relevance.

In practice such a quantification approach doesn’t show good results in the
QoS-aware service selection, and the challenge of obtaining good results lies
in managing tradeoffs among QoS expectations in situations in which service
requesters specify quality levels that cannot be simultaneously met.

This key problem of managing tradeoffs of the QoS preferences is addressed
by [12]. The authors propose a QoS model for describing the QoS dimensions
(requirements and preferences) of the service requester and the service provider.
They are using fuzzy multicriteria decision analysis (MCDA) for comparing the
models and ranking the competing services according to the values of their char-
acteristics. The model describing the QoS properties is based on OMG’s UML
QoS Framework metamodel. MCDA methods allow the defining of weights re-
lated to criteria and also weights to interactions between criteria.

A Conditional Lexicographic Approach for the Elicitation of QoS Preferences 185

The authors of [13] propose an extension of the Web Service architecture
by adding to the UDDI registry a new component called Multicriteria Evalua-
tion Component (MEC) used for the multicriteria evaluation. This evaluation is
based on a Web version of IRIS (Interactive Robustness Analysis and Param-
eters Inference for multicriteria Sorting Problems), which uses the ELECTRE
TRI method.

Dealing with preferences, their priorities and possible tradeoffs between them
has been addressed by [11] using a model of lexicographic semiorder. The work
is addressing decision making based on lexicographic heuristics and ranking in
order to compare a pair of alternatives.

4 The Conditional Lexicographic Approach

As mentioned before, QoS expectations can take the form of hard and soft con-
straints. While all hard constraints must be satisfied in order for a web service
to be selected, soft constraints represent rather desirable characteristics of the
chosen service. If no web service meets all soft constraints, users should have the
possibility to express their tradeoff preferences, in order to allow the dynamic
selection of services.

Our approach to articulate the QoS preferences is based on the observation
that, when trying to find a set of rules allowing them to choose between several
alternatives, people start by ranking their preferences, in accordance with their
perceived importance. This action is equivalent to imposing a lexicographic order
on the different criteria that have to be considered. In most situations, using such
a strict hierarchy is not sufficient to capture people’s real preferences. In this case,
people usually introduce additional rules that change the criteria priorities when
some specific condition is met.

We propose a method to establish a total order on the set of existing web
service alternatives, by attaching conditions to lexicographic preferences and we
introduce a preference specification language that can be used for authoring QoS
preferences.

We illustrate our approach and the use of its associated specification language
by considering a hypothetical company that offers data visualization services.
One of these services is the generation of charts based on data sets. Instead of per-
forming itself such tasks, the company delegates them to other business partners,
which offer web services for chart generation. A service selection broker chooses
the most suitable web service, based on QoS requirements formulated by clients.
The chart generation web services are characterized by domain-independent QoS
attributes (e.g., availability, response time) and domain-specific ones (e.g., chart
type, cost per chart, number of colors, image resolution).

As client of the hypothetical company we consider a data acquisition system,
which regularly sends charts depicting the state of an industrial process to a
1280 x 720 monitor capable of displaying 65536 colors. The image displayed on
the monitor can be updated only at fixed intervals of 5 seconds. If a new chart is
not available at the end of a 5 seconds interval, the monitor update is postponed
until the next end of a 5 seconds interval.

186 R. Iordache and F. Moldoveanu

Our preference specification language allows specifying both constraints and
preferences. Constraints are declared as a list of comma separated boolean con-
ditions that must be satisfied by the service. They are enclosed in a constraints
block, as shown in Fig. 1.

constraints {
chartType = ”time series”,
cost < 10,
availability > 0.95,
imageResolution = ”1280x720”,
responseTime < 10

}

Fig. 1. Hard constraints specification

The order of constraint conditions is irrelevant, but order plays a key role in
the articulation of QoS preferences. For the beginning, we consider that the client
provides a strict ranking of preferences. This is expressed in our specification
language by using a preferences block that includes the comma separated list of
relevant QoS attributes in the order of their importance, as shown in Fig. 2.

preferences {
cost,
availability : high,
responseTime,
colors : high

}

Fig. 2. A simplistic specification of preferences

For each QoS attribute the client should indicate the direction associated
with better values. This piece of information appears after the attribute name,
separated by a colon. Possible values for direction are low and high, where low
is the default direction and can be omitted.

In the example above, cost is the most important QoS attribute, and services
with a lower cost are considered better. However, this specification of preferences
does not accurately capture client’s preferences. A first problem is that selecting a
web service with a response time greater than 5 seconds would result in skipping
an update of the monitor. This is a serious issue, and such a scenario should be
prevented even if this leads to a higher cost. The responseTime attribute should
be ranked higher only when exactly one of the two web services compared has a
value higher than 5 seconds for this attribute. If, for example, both web services
considered are able to provide the chart in less than 5 seconds, the problem of
missing an update does no longer exist and responseTime does not need a higher
ranking. Conversely, if both web services compared have a responseTime higher

A Conditional Lexicographic Approach for the Elicitation of QoS Preferences 187

than 5 seconds, an update of the monitor will be inevitably skipped, and the
actual value of this attribute is no longer of critical importance.

Another problem arises when at least one of the web services compared pro-
vides a number of colors less than 65536. Since this will lead to a loss of quality,
the client may want to increase in such situations the importance of the colors
attribute. If both web services provide a number of colors higher than 65536,
the colors attribute becomes irrelevant, because the difference in quality cannot
be detected on the available monitor.

Finally, a small difference in the values of the cost attribute should be ignored
if the selection of the slightly more expensive web service leads to a better color
quality.

In order to be able to articulate preferences for scenarios like the one above,
our specification language provides four unary preference operators, which are
shown in Table 1.

Table 1. Preference operators

Preference operator Meaning

AT LEAST ONE∗(condition) condition(service1) OR condition(service2)
EXACTLY ONE(condition) condition(service1) XOR condition(service2)
ALL(condition) condition(service1) AND condition(service2)
DIFF(attribute) |service1.attribute− service2.attribute|
∗default operator (can be omitted)

The first three operators take as argument a boolean formula, which usually
involves one or more QoS attributes. The formula is evaluated twice, once for
each of the web services to be compared. The two resulting boolean values are
passed as arguments to the boolean operator (OR, XOR, or AND) associated
with the given preference operator, in order to obtain the return value.

The preference operator DIFF takes as argument a QoS attribute and returns
the modulus of the difference of its corresponding values from the two web ser-
vices compared. Our specification language also allows the definition of virtual
QoS attributes, which will be treated as genuine QoS attributes by the prefer-
ence operators. This can be done by means of the def directive, as seen in the
example below:

def colorDepth = log2(colors)

In the remainder of this paper, we use the term preference rule to denote an
entry in the preferences block. As already seen, a preference rule has three com-
ponents: an optional condition, an attribute indicating the QoS dimension used
in comparisons and a direction flag stating which values should be considered
better. In our specification language, the preferences corresponding to the above
described scenario can be articulated as shown in Fig. 3:

188 R. Iordache and F. Moldoveanu

preferences {
[EXACTLY ONE(responseTime > 5)] responseTime,
[DIFF(cost) > 2] cost,
[colors < 65536] colors : high,
availability : high,
responseTime,
colors : high

}

Fig. 3. A more elaborate specification of preferences

The condition part of the third preference rule in the above preferences block
(i.e., [colors < 65536]) does not explicitly specify a preference operator, which
means it uses the default operator AT LEAST ONE.

The specification language can deal with situations where people are not fully
aware of their preferences. When users notice that the current rules do not
accurately capture their preferences, they can simply add a new conditional
rule, thus incrementally improving the preference specification.

In what follows, we use the notation s1 � s2 to indicate that the web service
s1 is preferred to the web service s2, and the notation s1 ∼ s2 to indicate that the
service s1 is indifferent to the web service s2 (i.e., s1 and s2 are equally preferred).
Additionally, we introduce the notation s1 � s2

k
to indicate that the web service

s1 is preferred to the web service s2 and that the preference rule k has been
decisive in establishing this relationship. We also introduce the complementary
operators ≺ and ≺

k
, defined by the following relations:

s1 ≺ s2, iff s2 � s1

s1 ≺ s2
k

, iff s2 � s1
k

An algorithm for comparing two web services based on the preferences expressed
using our conditional lexicographic approach is shown in Fig. 4.

The algorithm examines all entries in the preferences block in the order in
which they appear (line 2). If the current preference rule has no attached condi-
tion or the attached condition evaluates to true (line 6), the values corresponding
to the attribute specified by this entry are compared (line 7). The compare func-
tion returns a numerical value that is positive if the first argument is better,
negative if the second argument is better and 0 if the arguments are equal (see
pseudocode in Fig. 5). If the attribute values are not equal (line 8), the algorithm
returns a tuple containing the result of the current comparison and the index
of the preference rule that has been decisive in establishing the preference rela-
tionship (line 9). Otherwise, the algorithm continues its execution with the next
preference rule. A null return value (line 13) indicates an indifference relation
between the two web services, while a not-null tuple identifies a relation of type
≺
k
or �

k
between them.

A Conditional Lexicographic Approach for the Elicitation of QoS Preferences 189

1. function compareServices(service1, service2, preferences)
2. for i ← 1 .. length(preferences) do
3. cond ← preferences[i].condition
4. attr ← preferences[i].attribute
5. dir ← preferences[i].direction
6. if cond = null OR cond(service1, service2) = true then
7. result ← compare(service1.attr, service2.attr, dir)
8. if result �= 0 then
9. return {result, i}

10. end if
11. end if
12. end for
13. return null
14. end function

Fig. 4. Pairwise comparison of two web services

function compare(attr1, attr2, dir)
if attr1 = attr2 then

result ← 0
else if attr1 <attr2 then

result ← 1
else

result ← -1
end if
if dir = high then

result ← -result
end if
return result

end function

Fig. 5. Pairwise comparison of QoS attribute values

In a series of experiments, Tversky [10] has shown that people have sometimes
intransitive preferences. Therefore, being able to capture such preferences is
an important feature of our specification language. However, a consequence of
allowing intransitive preferences is that the pairwise comparison of all web service
alternatives is in general not sufficient to impose a total order on these services.
In order to illustrate this, we use a simplified version of the preferences specified
in Fig. 3. As shown in Fig. 6, the simplified version does no longer involve the QoS
attribute availability. Therefore, this attribute is no longer relevant for the web
service ranking. Although the simplified specification used for exemplification
is unrealistic, it is easier to analyze and it helps us highlight the intransitivity
issues. (The preference rule indexes appearing at the left side of the figure are
only informative and are not part of the preference specification.)

We consider a set of 5 web service alternatives (WS1 through WS5) with the
relevant QoS attribute values specified in Table 2.

190 R. Iordache and F. Moldoveanu

preferences {
1. [EXACTLY ONE(responseTime > 5)] responseTime,
2. [DIFF(cost) > 2] cost,
3. [colors < 65536] colors : high,
4. responseTime

}

Fig. 6. A simplified specification of preferences used for exemplification

Table 2. Relevant QoS attribute values

WS1 WS2 WS3 WS4 WS5

responseTime 7.0 7.0 5.5 4.5 7.5
cost 4.0 5.0 6.5 8.0 7.5
colors 256 256 256 65536 65536

The relations identified by the pairwise comparison of the 5 web services
considered in our example are depicted in Table 3, where header notations use
the format i / j to indicate that the corresponding symbol in the line below
represents the preference relation between the web services WSi and WSj .

Table 3. Pairwise comparison of the 5 web services

1/2 1/3 1/4 1/5 2/3 2/4 2/5 3/4 3/5 4/5

∼ �
2

≺
1

�
2

≺
4

≺
1

�
2

≺
1

≺
3

�
1

Several cases of intransitivity of preferences can be observed in the above ta-
ble. A first example is given by the following relations:

WS1 � WS3 � WS2

WS1 ∼ WS2

Although WS1 is indifferent to WS2, WS1 is preferred to WS3, while WS2 is
not preferred to WS3.

Another example is the rock-paper-scissors relationship induced by:

WS2 ≺ WS3 ≺ WS5

WS5 ≺ WS2

In order to obtain a total order on the set of web service alternatives, we attach
to each web service i a score vector of integer values: Vi ∈ N

r+1, where r is the
number of preference rules. The algorithm used to compute the score vectors is
presented in Fig. 7, where n denotes the number of web service alternatives.

A Conditional Lexicographic Approach for the Elicitation of QoS Preferences 191

procedure createScoreVectors()
for i ← 1 .. n do

for k ← 1 .. r do
V k
i ← number of times service WSi is preferred to another

web service due to decisive rule k (i.e., due to a �
k

relation).

end for
V r+1
i ← number of times service WSi is indifferent to another web service.

end for
end procedure

Fig. 7. Procedure to create the score vectors

For the 5 web service alternatives considered in our example, the correspond-
ing score vectors computed with the above algorithm are presented in Fig. 8.

Fig. 8. Score vectors of the 5 web service alternatives

Using the score vectors, we are able to provide an algorithm for the ranking of
web service alternatives. This algorithm is based on the function compareScores,
described in pseudocode in Fig. 9. Again, r is used to denote the number of
preference rules. The function takes as arguments two score vectors and returns
a numerical value that is positive if the web service corresponding to the first
score vector is preferred, negative if the web service corresponding to the second
score vector is preferred and 0 if the corresponding web services are indifferent
to each other.

For each of the two corresponding web services, the function computes the
number of times it has been preferred to other web services (lines 2, 3). This
computation does not take into account the number of times a web service has
been found to be indifferent to another one (hence the sum is taken up to the
value r, not r + 1).

If the previously computed values count1 and count2 are not equal (line 4),
the web service with the higher value is chosen as the better one (line 5).

Otherwise, the algorithm scans each position in the score vectors (line 7) and
if it finds different values, the web service corresponding to the higher value is
chosen as the better one (lines 8-10). The scanning of the values in the vector
scores starts with the position corresponding to the first preference rule, be-
cause this is considered the most important one, and it ends with the position

192 R. Iordache and F. Moldoveanu

1. function compareScores(V1, V2)
2. count1 ←∑r

i=1 V
i
1

3. count2 ←∑r
i=1 V

i
2

4. if count1 �= count2 then
5. return count1 − count2
6. end if
7. for i ← 1 .. r + 1 do
8. if V i

1 �= V i
2 then

9. return V i
1 − V i

2

10. end if
11. end for
12. return 0
13. end function

Fig. 9. Function for score vector comparison

corresponding to the number of indifference relations (i.e., r+1), because this is
considered the least important one. If the score vectors are identical, the function
returns 0 (line 12).

In contrast with the function compareServices presented in Fig. 4, the function
compareScores induces a total order on the set of web service alternatives, thus
allowing us to rank them accordingly. Using this algorithm, the 5 web service
alternatives considered in our example will be ranked in the following order:

(WS4, WS1, WS2, WS5, WS3),

with WS4 being the best alternative.

5 Conclusions and Future Work

In this paper we have introduced a new approach of ranking service alternatives
based on the users QoS expectations. The users can define their requirements
and preferences by using a simple and intuitive specification language that at-
taches conditions to lexicographic rules. Our approach facilitates the elicitation
of preferences from clients, because it resembles the way people express trade-
offs when reasoning about their preferences. The proposed method can deal with
intransitive preferences and with situations where people are not fully aware of
their preferences.

Our current efforts are directed toward designing and implementing a
framework for dynamic web service selection that supports the handling of QoS
preferences based on the approach presented in this paper. A prototype implemen-
tation of the ranking engine is available at http://qospref.sourceforge.net/
and we plan to also offer open source implementations for the other components
of our framework.

http://qospref.sourceforge.net/

A Conditional Lexicographic Approach for the Elicitation of QoS Preferences 193

References

1. Medjahed, B., Bouguettaya, A.: Service Composition for the Semantic Web.
Springer (2011)

2. Maximilien, E.M., Singh, M.P.: A Framework and Ontology for Dynamic Web
Services Selection. IEEE Internet Computing 8(5), 84–93 (2004)

3. Zeng, L., Benatallah, B.: QoS-Aware Middleware for Web Services Composition.
IEEE Transactions on Software Engineering 30(5), 311–327 (2004)

4. Zhou, C., Chia, L.T., Lee, B.S.: DAML-QoS Ontology for Web Services. In: Inter-
national Conference on Web Services, pp. 472–479 (2004)

5. Papaioannou, I.V., Tsesmetzis, D.T., Roussaki, I.G., Anagnostou, M.E.: A QoS
Ontology Language for Web-Services. Advanced Information Networking and Ap-
plications, 101–106 (2006)

6. Zeng, L., Lei, H., Chang, H.: Monitoring the QoS for Web Services. In: Krämer,
B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 132–144.
Springer, Heidelberg (2007)

7. Day, J., Deters, R.: Selecting the best web service. In: Conference of the Centre for
Advanced Studies on Collaborative Research, pp. 293–307 (2004)

8. Brafman, R.I., Domshlak, C.: Preference Handling — An Introductory Tutorial.
AI Magazine, 58–86 (2009)

9. Marler, R.T., Arora, J.S.: The weighted sum method for multi-objective optimiza-
tion: new insights. Structural and Multidisciplinary Optimization 41(6), 853–862
(2010)

10. Tversky, A.: Intransitivity of Preferences. Psychological Review 76(1), 31–48 (1969)
11. Manzini, P., Mariotti, M.: Choice by lexicographic semiorders. Theoretical Eco-

nomics 7(1) (2010)
12. Herssens, C., Jureta, I.J., Faulkner, S.: Capturing and Using QoS Relationships

to Improve Service Selection. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008.
LNCS, vol. 5074, pp. 312–327. Springer, Heidelberg (2008)

13. Chakhar, S., Haddad, S., Mokdad, L., Mousseau, V.: Multicriteria Evaluation-
Based Conceptual Framework for Composite Web Service Selection. Evaluation
and Decision Models: Real Case Studies. Springer, Berlin (2011)

	A Conditional Lexicographic Approach for the Elicitation of QoS Preferences
	Introduction
	The Problem of Expressing Preferences
	Existing Methods and Approaches
	The Conditional Lexicographic Approach
	Conclusions and Future Work
	References

