

Lecture Notes in Computer Science 7565
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Robert Meersman Hervé Panetto
Tharam Dillon Stefanie Rinderle-Ma
Peter Dadam Xiaofang Zhou
Siani Pearson Alois Ferscha
Sonia Bergamaschi Isabel F. Cruz (Eds.)

On the Move to
Meaningful Internet Systems:
OTM 2012

Confederated International Conferences:
CoopIS, DOA-SVI, and ODBASE 2012
Rome, Italy, September 10-14, 2012
Proceedings, Part I

13

Volume Editors

Robert Meersman, Vrije Universiteit Brussel, Belgium; meersman@vub.ac.be

Hervé Panetto, University of Lorraine, France; herve.panetto@univ-lorraine.fr

Tharam Dillon, La Trobe University, Australia; tharam.dillon7@gmail.com

Stefanie Rinderle-Ma, Universität Wien, Austria; stefanie.rinderle-ma@univie.ac.at

Peter Dadam, Universität Ulm, Germany; peter.dadam@uni-ulm.de

Xiaofang Zhou, University of Queensland, Australia; zxf@itee.uq.edu.au

Siani Pearson, HP Labs, UK; siani.pearson@hp.com

Alois Ferscha, Johannes Kepler Universität, Austria; ferscha@soft.uni-linz.ac.at

Sonia Bergamaschi, University of Modena, Italy; sonia.bergamaschi@unimore.it

Isabel F. Cruz, University of Illinois at Chicago, IL, USA; isabelcfcruz@gmail.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-33605-8 e-ISBN 978-3-642-33606-5
DOI 10.1007/978-3-642-33606-5
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012947230

CR Subject Classification (1998): D.2.2, D.2.11-12, H.3.4-5, I.2.4, C.2.4, J.1,
K.4.4, K.6.5, C.2.0, H.4.1-3, H.5.2-3, H.2.3-4, F.4.1, F.3.2, I.2.6-7, F.1.1, K.6.3

LNCS Sublibrary: SL 3 – Information Systems and Application,
incl. Internet/Web and HCI

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

General Co-Chairs’ Message

for OnTheMove 2012

The OnTheMove 2012 event held in Rome, during September 10–14, further
consolidated the importance of the series of annual conferences that was started
in 2002 in Irvine, California. It then moved to Catania, Sicily in 2003, to Cyprus
in 2004 and 2005, Montpellier in 2006, Vilamoura in 2007 and 2009, in 2008
to Monterrey, Mexico, and was held in Heraklion, Crete, in 2010 and 2011. The
event continues to attract a diverse and representative selection of today’s world-
wide research on the scientific concepts underlying new computing paradigms,
which, of necessity, must be distributed, heterogeneous, and autonomous yet
meaningfully collaborative. Indeed, as such large, complex, and networked in-
telligent information systems become the focus and norm for computing, there
continues to be an acute and even increasing need to address and discuss face to
face in an integrated forum the implied software, system, and enterprise issues
as well as methodological, semantic, theoretical, and applicational issues. As we
all realize, email, the internet, and even video conferences are not by themselves
optimal nor sufficient for effective and efficient scientific exchange.

The OnTheMove (OTM) Federated Conference series was created to cover
the scientific exchange needs of the community/ies that work in the broad yet
closely connected fundamental technological spectrum of Web-based distributed
computing. The OTM program every year covers data and Web semantics,
distributed objects, Web services, databases, information systems, enterprise
workflow and collaboration, ubiquity, interoperability, mobility, grid, and high-
performance computing.

OnTheMove does not consider itself a so-called multi-conference event but
instead is proud to give meaning to the “federated” aspect in its full title: it
aspires to be a primary scientific meeting place where all aspects of research and
development of internet- and intranet-based systems in organizations and for
e-business are discussed in a scientifically motivated way, in a forum of loosely
interconnected workshops and conferences. This year’s OTM Federated Confer-
ences event therefore once more provided an opportunity for researchers and
practitioners to understand, discuss, and publish these developments within the
broader context of distributed, ubiquitous computing. To further promote syn-
ergy and coherence, the main conferences of OTM 2012 were conceived against
a background of three interlocking global themes:

– Virtual and Cloud Computing Infrastructures and Security
– Technology and Methodology for an Internet of Things and its Semantic

Web
– Collaborative and Social Computing for and in the Enterprise.

VI General Co-Chairs’ Message for OnTheMove 2012

Originally the federative structure of OTM was formed by the co-location
of three related, complementary, and successful main conference series: DOA
(Distributed Objects and Applications, since 1999), covering the relevant
infrastructure-enabling technologies; ODBASE (Ontologies, DataBases, and Ap-
plications of SEmantics, since 2002), covering Web semantics, XML databases
and ontologies; and CoopIS (Cooperative Information Systems, since 1993), cov-
ering the application of these technologies in an enterprise context through, e.g.,
workflow systems and knowledge management. In 2011 security issues, origi-
nally topics of the IS workshop (since 2007), became an integral part of DOA
as “Secure Virtual Infrastructures”, or DOA-SVI. Each of the main conferences
specifically seeks high-quality contributions and encourages researchers to treat
their respective topics within a framework that simultaneously incorporates (a)
theory, (b) conceptual design and development, (c) methodology and pragmatics,
and (d) application in particular case studies and industrial solutions.

As in previous years we again solicited and selected quality workshop pro-
posals to complement the more “archival” nature of the main conferences with
research results in a number of selected and emergent areas related to the gen-
eral area of Web-based distributed computing. We were also glad to see that
five of our earlier successful workshops (EI2N, OnToContent, ORM, INBAST,
and SeDeS) re-appeared in 2012, in some cases for the fifth or even seventh
time, and often in alliance with other older or newly emerging workshops. Three
brand-new independent workshops could be selected from proposals and hosted:
META4eS, SINCOM, and SOMOCO. The Industry Track, started in 2011 un-
der the auspicious leadership of Hervé Panetto and OMG’s Richard Mark Soley,
further gained momentum and visibility.

Incidentally, our OTM registration format (“one workshop buys all”) actively
intends to stimulate workshop audiences to productively mingle with each other
and, optionally, with those of the main conferences.

We were most happy to see that once more in 2012 the number of quality sub-
missions for the OnTheMove Academy (OTMA) substantially increased. OTMA
implements our unique interactive formula to bring PhD students together, and
aims to represent our “vision for the future” in research in the areas covered by
OTM. It is managed by a dedicated team of collaborators led by Peter Spyns and
Anja Metzner, and of course by the OTMA Dean, Erich Neuhold. In the OTM
Academy, PhD research proposals are submitted by students for peer review;
selected submissions and their approaches are then presented by the students
in front of a wider audience at the conference, and are independently and ex-
tensively analyzed and discussed in front of this audience by a panel of senior
professors.

As said, all three main conferences and the associated workshops share the
distributed aspects of modern computing systems, and the resulting applica-
tion pull created by the Internet and the so-called Semantic Web. For DOA-SVI
2012, the primary emphasis stayed on the distributed object infrastructure and
its virtual and security aspects; for ODBASE 2012, the focus became the knowl-
edge bases and methods required for enabling the use of formal semantics in

General Co-Chairs’ Message for OnTheMove 2012 VII

web-based databases and information systems; for CoopIS 2012, the focus as
usual was on the interaction of such technologies and methods with business
process issues, such as occur in networked organizations and enterprises. These
subject areas overlap in a scientifically natural fashion and many submissions
in fact also treated an envisaged mutual impact among them. As in previous
years, the organizers wanted to stimulate this cross-pollination by a program of
famous keynote speakers, focusing on the chosen themes and shared by all OTM
component events. We were quite proud to announce this year

– Ed Parsons, Google Inc, USA;
– Maurizio Lenzerini, U. di Roma La Sapienza, Italy;
– Volkmar Lotz, SAP Research, France;
– Manfred Reichert, U. of Ulm, Germany;
– Guido Vetere, IBM, Italy.

We received a total of 169 submissions for the three main conferences and
127 submissions in total for the workshops, an almost 20% increase compared
with those for 2011. Not only may we indeed again claim success in attracting an
increasingly representative volume of scientific papers, many from the USA and
Asia, but these numbers of course allow the Program Committees to compose
a high-quality cross-section of current research in the areas covered by OTM.
In fact, the Program Chairs of CoopIS 2012 conferences decided to accept only
approximately 1 full paper for every 5 submitted, while the ODBASE 2012
PC accepted less than 1 paper out of 3 submitted, not counting posters. For
the workshops and DOA-SVI 2012 the acceptance rate varies but the aim was
to stay consistently at about 1 accepted paper for 2-3 submitted, and this as
always subordinated to proper peer assessment of scientific quality. As usual we
have separated the proceedings into two volumes with their own titles, one for
the main conferences and one for the workshops and posters, and we are again
most grateful to the Springer LNCS team in Heidelberg for their professional
support, suggestions and meticulous collaboration in producing the files ready
for downloading on the USB sticks.

The reviewing process by the respective OTM Program Committees was
as always performed to professional standards: each paper submitted to the
main conferences was reviewed by at least three referees, with arbitrated email
discussions in the case of strongly diverging evaluations. It may be worthwhile to
emphasize that it is an explicit OnTheMove policy that all conference Program
Committees and Chairs make their selections completely autonomously from
the OTM organization itself. As in recent years, proceedings on paper were by
separate request and order, and incurred an extra charge.

The General Chairs are once more especially grateful to the many people
directly or indirectly involved in the setup of these federated conferences. Not
everyone realizes the large number of persons that need to be involved, and the
huge amount of work, commitment, and in the uncertain economic and funding
climate of 2012 certainly also financial risk, that is entailed by the organization
of an event like OTM. Apart from the persons in their roles mentioned above,

VIII General Co-Chairs’ Message for OnTheMove 2012

we therefore wish to thank in particular explicitly our 7 main conference PC
Chairs:

– CoopIS 2012: Stefanie Rinderle-Ma, Peter Dadam, Xiaofang Zhou;
– ODBASE 2012: Sonia Bergamaschi, Isabel F. Cruz;
– DOA-SVI 2012: Siani Pearson, Alois Ferscha.

And similarly the 2012 OTMA and Workshops PC Chairs (in order of ap-
pearance on the website): Hervé Panetto, Michele Dassisti, J. Cecil, Lawrence
Whitman, Jinwoo Park, Rafael Valencia Garćıa, Thomas Moser, Ricardo Colomo
Palacios, Ioana Ciuciu, Anna Fensel, Amanda Hicks, Matteo Palmonari, Terry
Halpin, Herman Balsters, Yan Tang, Jan Vanthienen, Wolfgang Prinz, Gre-
goris Mentzas, Fernando Ferri, Patrizia Grifoni, Arianna D’Ulizia, Maria Chiara
Caschera, Irina Kondratova, Peter Spyns, Anja Metzner, Erich J. Neuhold, Al-
fred Holl, and Maria Esther Vidal. All of them, together with their many PC
members, performed a superb and professional job in managing the difficult yet
existential process of peer review and selection of the best papers from the har-
vest of submissions. We all also owe a serious debt of gratitude to our supremely
competent and experienced Conference Secretariat and technical support staff in
Brussels and Guadalajara, Jan Demey, Daniel Meersman, and Carlos Madariaga.

The General Chairs also thankfully acknowledge the academic freedom, lo-
gistic support, and facilities they enjoy from their respective institutions, Vrije
Universiteit Brussel (VUB); Université de Lorraine CNRS, Nancy; and Univer-
sidad Politécnica de Madrid (UPM), without which such a project quite simply
would not be feasible. We do hope that the results of this federated scientific
enterprise contribute to your research and your place in the scientific network...
We look forward to seeing you again at next year’s event!

July 2012 Robert Meersman
Hervé Panetto
Tharam Dillon

Pilar Herrero

Organization

OTM (On The Move) is a federated event involving a series of major interna-
tional conferences and workshops. These proceedings contain the papers pre-
sented at the OTM 2012 Federated Conferences, consisting of three conferences,
namely, CoopIS 2012 (Cooperative Information Systems), DOA-SVI 2012 (Se-
cure Virtual Infrastructures), and ODBASE 2012 (Ontologies, Databases, and
Applications of Semantics).

Executive Committee

General Co-Chairs
Robert Meersman VU Brussels, Belgium
Tharam Dillon La Trobe University, Melbourne, Australia
Pilar Herrero Universidad Politécnica de Madrid, Spain

OnTheMove Academy Dean

Erich Neuhold University of Vienna, Austria

Industry Case Studies Program Chair

Hervé Panetto University of Lorraine, France

CoopIS 2012 PC Co-Chairs

Stefanie Rinderle-Ma University of Vienna, Austria
Peter Dadam Ulm University, Germany
Xiaofang Zhou University of Queensland, Australia

DOA-SVI 2012 PC Co-Chairs
Siani Pearson HP Labs, UK
Alois Ferscha Johannes Kepler Università Linz, Austria

ODBASE 2012 PC Co-Chairs
Sonia Bergamaschi Università di Modena e Reggio Emilia, Italy
Isabel F. Cruz University of Illinois at Chicago, USA

Logistics Team

Daniel Meersman
Carlos Madariaga
Jan Demey

X Organization

CoopIS 2012 Program Committee

Marco Aiello
Joonsoo Bae
Zohra Bellahsene
Nacer Boudjlida
James Caverlee
Vincenzo D’Andrea
Xiaoyong Du
Schahram Dustdar
Kaushik Dutta
Johann Eder
Rik Eshuis
Renato Fileto
Hong Gao
Ted Goranson
Paul Grefen
Amarnath Gupta
Mohand-Said Hacid
Jan Hidders
Stefan Jablonski
Paul Johannesson
Epaminondas Kapetanios
Rania Khalaf
Hiroyuki Kitagawa
Akhil Kumar
Frank Leymann
Guohui Li
Rong Liu
Sanjay K. Madria
Tiziana Margaria
Leo Mark
Maristella Matera

Massimo Mecella
Jan Mendling
John Miller
Arturo Molina
Nirmal Mukhi
Miyuki Nakano
Moira C. Norrie
Selmin Nurcan
Werner Nutt
Gerald Oster
Hervé Panetto
Barbara Pernici
Lakshmish Ramaswamy
Manfred Reichert
Antonio Ruiz Cortés
Shazia Sadiq
Ralf Schenkel
Jialie Shen
Aameek Singh
Jianwen Su
Xiaoping Sun
Susan Urban
Willem-Jan van den Heuvel
François B. Vernadat
Maria Esther Vidal
Barbara Weber
Mathias Weske
Andreas Wombacher
Jian Yang
Shuigeng Zhou

DOA-SVI 2012 Program Committee

Michele Bezzi
Lionel Brunie
Marco Casassa Mont
David Chadwick
Sadie Creese
Alfredo Cuzzocrea
Ernesto Damiani
Yuri Demchenko
Changyu Dong

Schahram Dustdar
Alois Ferscha
Ching-Hsien (Robert) Hsu
Karin Anna Hummel
Iulia Ion
Martin Jaatun
Ryan Ko
Antonio Krüger
Kai Kunze

Organization XI

Joe Loyall
Paul Malone
Marco Mamei
Gregorio Martinez
Rene Mayrhofer
Mohammed Odeh
Nick Papanikolaou
Siani Pearson
Christoph Reich

Chunming Rong
Charalabos Skianis
Anthony Sulistio
Bhavani Thuraisingham
Albert Zomaya
Jianying Zhou
Wolfgang Ziegler

ODBASE 2012 Program Committee

Karl Aberer
Harith Alani
Marcelo Arenas
Sören Auer
Denilson Barbosa
Payam Barnaghi
Zohra Bellahsene
Ladjel Bellatreche
Domenico Beneventano
Sourav S. Bhowmick
Omar Boucelma
Nieves Brisaboa
Andrea Cali
Jorge Cardoso
Stefano Ceri
Sunil Choenni
Oscar Corcho
Francisco Couto
Philippe Cudre-Mauroux
Roberto De Virgilio
Emanuele Della Valle
Prasad Deshpande
Dejing Dou
Johann Eder
Tanveer Faruquie
Walid Gaaloul
Aldo Gangemi
Mouzhi Ge
Giancarlo Guizzardi
Peter Haase
Mohand-Said Hacid
Harry Halpin
Takahiro Hara

Andreas Harth
Cornelia Hedeler
Pascal Hitzler
Prateek Jain
Krzysztof Janowicz
Matthias Klusch
Christian Kop
Manolis Koubarakis
Rajasekar Krishnamurthy
Shonali Krishnaswamy
Steffen Lamparter
Wookey Lee
Sanjay Madria
Frederick Maier
Massimo Mecella
Eduardo Mena
Paolo Missier
Anirban Mondal
Felix Naumann
Matteo Palmonari
Jeff Z. Pan
Hervé Panetto
Paolo Papotti
Josiane Xavier Parreira
Dino Pedreschi
Dimitris Plexousakis
Ivana Podnar Zarko
Axel Polleres
Guilin Qi
Christoph Quix
Benedicto Rodriguez
Prasan Roy
Satya Sahoo

XII Organization

Claudio Sartori
Kai-Uwe Sattler
Christoph Schlieder
Michael Schrefl
Wolf Siberski
Yannis Sismanis
Srinath Srinivasa
Divesh Srivastava
Yannis Stavrakas

Letizia Tanca
Goce Trajcevski
Kunal Verma
Johanna Völke
Christian von der Weth
Wei Wang
Guo-Qiang Zhang

The Coming Age of Ambient Information

Ed Parsons

Google Inc, USA

Short Bio

Ed Parsons is the Geospatial Technologist of Google, with responsibility for evan-
gelising Google’s mission to organise the world’s information using geography,
and tools including Google Earth, Google Maps and Google Maps for Mobile.
In his role he also maintains links with Universities, Research and Standards
Organisations which are involved in the development of Geospatial Technology.

Ed is based in Google’s London office, and anywhere else he can plug in his
laptop.

Ed was the first Chief Technology Officer in the 200-year-old history of Ord-
nance Survey, and was instrumental in moving the focus of the organisation from
mapping to Geographical Information.

Ed came to the Ordnance Survey from Autodesk, where he was EMEA Ap-
plications Manager for the Geographical Information Systems (GIS) Division.
He earned a Masters degree in Applied Remote Sensing from Cranfield Insti-
tute of Technology and holds a Honorary Doctorate in Science from Kingston
University, London.

Ed is a fellow of the Royal Geographical Society and is the author of nu-
merous articles, professional papers and presentations to International Confer-
ences and he developed one of the first weblogs in the Geospatial Industry at
www.edparsons.com.

Ed is married with two children and lives in South West London.

Talk

“The coming age of ambient information”

With the growing adoption of Internet Protocol Version 6 (IPv6) applications
and services will be able to communicate with devices attached to virtually all
human-made objects, and these devices will be able to communicate with each
other. The Internet of Things could become an information infrastructure a
number of orders of magnitude larger than the internet today, and one which
although similar may offer opportunities for radically new consumer applica-
tions. What are some of the opportunities and challenges presented by ambient
information.

Inconsistency Tolerance in Ontology-Based Data

Management

Maurizio Lenzerini

Università di Roma La Sapienza, Italy

Short Bio

Maurizio Lenzerini is a professor in Computer Science and Engineering at the
Università di Roma La Sapienza, Italy, where he is currently leading a research
group on Artificial Intelligence and Databases. His main research interests are in
Knowledge Representation and Reasoning, Ontology languages, Semantic Data
Integration, and Service Modeling. His recent work is mainly oriented towards
the use of Knowledge Representation and Automated Reasoning principles and
techniques in Information System management, and in particular in information
integration and service composition. He has authored over 250 papers published
in leading international journals and conferences. He has served on the editorial
boards of several international journals, and on the program committees of the
most prestigious conferences in the areas of interest. He is currently the Chair
of the Executive Committee of the ACM Symposium of Principles of Database
Systems, a Fellow of the European Coordinating Committee for Artificial Intel-
ligence (ECCAI), a Fellow of the Association for Computing Machinery (ACM),
and a member of The Academia Europaea - The Academy of Europe.

Talk

“Inconsistency tolerance in ontology-based data management”

Ontology-based data management aims at accessing, using, and maintaining
a set of data sources by means of an ontology, i.e., a conceptual representation
of the domain of interest in the underlying information system. Since the ontol-
ogy describes the domain, and not simply the data at the sources, it frequently
happens that data are inconsistent with respect to the ontology. Inconsistency
tolerance is therefore a crucial feature of an in the operation of ontology-based
data management systems. In this talk we first illustrate the main ideas and
techniques for using an ontology to access the data layer of an information sys-
tem, and then we discuss several issues related to inconsistency tolerance in
ontology-based data management.

Towards Accountable Services in the Cloud

Volkmar Lotz

SAP Research, France

Short Bio

Volkmar Lotz has more than 20 years experience in industrial research on Se-
curity and Software Engineering. He is heading the Security & Trust practice
of SAP Research, a group of 40+ researchers investigating into applied research
and innovative security solutions for modern software platforms, networked en-
terprises and Future Internet applications. The Security & Trust practice defines
and executes SAP’s security research agenda in alignment with SAP’s business
strategy and global research trends.

Volkmar’s current research interests include Business Process Security, Ser-
vice Security, Authorisation, Security Engineering, Formal Methods and Com-
pliance. Volkmar has published numerous scientific papers in his area of interest
and is regularly serving on Programme Committees of internationally renowned
conferences. He has been supervising various European projects, including large-
scale integrated projects. Volkmar holds a diploma in Computer Science from
the University of Kaiserslautern.

Talk

“Towards Accountable Services in the Cloud”

Accountability is a principle well suited to overcome trust concerns when operat-
ing sensitive business applications over the cloud. We argue that accountability
builds upon transparency and control, and investigate in control of services in
service-oriented architectures. Control needs to reach out to different layers of a
SOA, both horizontally and vertically.

We introduce an aspect model for services that enables control on these layers
by invasive modification of platform components and upon service orchestration.
This is seen as a major constituent of an accountability framework for the cloud,
which is the objective of an upcoming collaborative research project.

Process and Data: Two Sides of the Same Coin?

Manfred Reichert

University of Ulm, Germany

Short Bio

Manfred holds a PhD in Computer Science and a Diploma in Mathematics.
Since January 2008 he has been appointed as full professor at Ulm University,
Germany. Before, he was working in the Netherlands as associate professor at
the University of Twente. There, he was also leader of the strategic research
orientations on “E-health” and “Applied Science of Services”, and member of
the Management Board of the Centre for Telematics and Information Technology
- the largest ICT research institute in the Netherlands.

His major research interests include next generation process management
technology, adaptive processes, process lifecycle management, data-driven pro-
cess management, mobile processes, process model abstraction, and advanced
process-aware applications (e.g., e-health, automotive engineering). Together
with Peter Dadam he pioneered the work on the ADEPT process management
technology and co-founded the AristaFlow GmbH. Manfred has been participat-
ing in numerous BPM research projects and made outstanding contributions in
the BPMfield. His new Springer book on “Enabling Flexibility in Process-aware
Information Systems” will be published in September 2012. Manfred was PC
Co-chair of the BPM’08 and CoopIS’11 conferences and General Chair of the
BPM’09 conference.

Talk

“Process and Data: Two Sides of the Same Coin?”

Companies increasingly adopt process management technology which offers
promising perspectives for realizing flexible information systems. However, there
still exist numerous process scenarios not adequately covered by contemporary
information systems. One major reason for this deficiency is the insufficient un-
derstanding of the inherent relationships existing between business processes on
the one side and business data on the other. Consequently, these two perspectives
are not well integrated in existing process management systems.

This keynote emphasizes the need for both object- and process-awareness in
future information systems, and illustrates it along several case studies. Espe-
cially, the relation between these two fundamental perspectives will be discussed,

Process and Data: Two Sides of the Same Coin? XVII

and the role of business objects and data as drivers for both process modeling
and process enactment be emphasized. In general, any business process support
should consider object behavior as well as object interactions, and therefore be
based on two levels of granularity. In addition, data-driven process execution and
integrated user access to processes and data are needed. Besides giving insights
into these fundamental properties, an advanced framework supporting them in
an integrated manner will be presented and its application to complex process
scenarios be shown. Overall, a holistic and generic framework integrating pro-
cesses, data, and users will contribute to overcome many of the limitations of
existing process management technology.

Experiences with IBM Watson Question

Answering System

Guido Vetere

Center for Advanced Studies, IBM, Italy

Short Bio

Guido Vetere has attained a degree in Philosophy of Language at the University
of Rome ‘Sapienza’ with a thesis in computational linguistics. He joined IBM
Scientific Center in 1989, to work in many research and development projects
on knowledge representation, automated reasoning, information integration, and
language technologies. Since 2005, he leads the IBM Italy Center for Advanced
Studies. He is member of Program Committees of various international confer-
ences on Web Services, Ontologies, Semantic Web. Also, he represents IBM in
several joint research programs and standardization activities. He is the author of
many scientific publications and regularly collaborates with major Italian news-
papers on scientific divulgation. He is co-founder and VP of ‘Senso Comune’, a
no-profit organization for building a collaborative knowledge base of Italian.

Talk

“Experience with IBM Watson Question Answering System”

The IBM “Watson” Question Answering system, which won the Jeopardy! con-
test against human champions last year, is now being applied to real business.
Watson integrates Natural Language Processing, Evidence-based Reasoning and
Machine Learning in a way that makes it possible to deal with a great vari-
ety of information sources and to move beyond some of the most compelling
constraints of current IT systems. By developing Watson, IBM Research is fo-
cusing on various topics, including language understanding, evidence evaluation,
and knowledge acquisition, facing some of the fundamental problems of semantic
technologies, which ultimately root in open theoretical questions about linguistic
practices and the construction of human knowledge. Experiences with Watson
show how it is possible to effectively use a variety of different approaches to
such open questions, from exploiting ontologies and encyclopedic knowledge to
learning from texts by statistical methods, within a development process that
allows evaluating the best heuristics for the use case at hand.

Table of Contents – Part I

OnTheMove 2012 Keynotes

The Coming Age of Ambient Information . XIII
Ed Parsons

Inconsistency Tolerance in Ontology-Based Data Management XIV
Maurizio Lenzerini

Towards Accountable Services in the Cloud . XV
Volkmar Lotz

Process and Data: Two Sides of the Same Coin? . XVI
Manfred Reichert

Experiences with IBM Watson Question Answering System XVIII
Guido Vetere

Cooperative Information Systems (CoopIS) 2012

CoopIS 2012 PC Co-Chairs Message . 1
Stefanie Rinderle-Ma, Xiaofang Zhou, and Peter Dadam

Process and Data: Two Sides of the Same Coin? . 2
Manfred Reichert

Business Process Design

Configurable Declare: Designing Customisable Flexible Process
Models . 20

Dennis M.M. Schunselaar, Fabrizio Maria Maggi,
Natalia Sidorova, and Wil M.P. van der Aalst

Efficacy-Aware Business Process Modeling . 38
Matthias Lohrmann and Manfred Reichert

Automated Resource Assignment in BPMN Models Using RACI
Matrices . 56

Cristina Cabanillas, Manuel Resinas, and Antonio Ruiz-Cortés

Semantic Machine Learning for Business Process Content Generation . . . 74
Avi Wasser and Maya Lincoln

XX Table of Contents – Part I

Process Verification and Analysis

Hierarchical Process Verification in a Semi-trusted Environment 92
Ganna Monakova

Intentional Fragments: Bridging the Gap between Organizational and
Intentional Levels in Business Processes . 110

Mario Cortes-Cornax, Alexandru Matei, Emmanuel Letier,
Sophie Dupuy-Chessa, and Dominique Rieu

Indexing Process Model Flow Dependencies for Similarity Search 128
Ahmed Gater, Daniela Grigori, and Mokrane Bouzeghoub

Service-Oriented Architectures and Cloud

A Framework for Cost-Aware Cloud Data Management 146
Verena Kantere

Event-Driven Actors for Supporting Flexibility and Scalability in
Service-Based Integration Architecture . 164

Huy Tran and Uwe Zdun

A Conditional Lexicographic Approach for the Elicitation of QoS
Preferences . 182

Raluca Iordache and Florica Moldoveanu

Goal-Based Composition of Stateful Services for Smart Homes 194
Giuseppe De Giacomo, Claudio Di Ciccio, Paolo Felli,
Yuxiao Hu, and Massimo Mecella

Security, Risk, and Prediction

Automated Risk Mitigation in Business Processes . 212
Raffaele Conforti, Arthur H.M. ter Hofstede, Marcello La Rosa, and
Michael Adams

Aligning Service-Oriented Architectures with Security Requirements 232
Mattia Salnitri, Fabiano Dalpiaz, and Paolo Giorgini

Looking Into the Future: Using Timed Automata to Provide a Priori
Advice about Timed Declarative Process Models . 250

Michael Westergaard and Fabrizio Maria Maggi

Planlets: Automatically Recovering Dynamic Processes in YAWL 268
Andrea Marrella, Alessandro Russo, and Massimo Mecella

Table of Contents – Part I XXI

Discovery and Detection

Discovering Context-Aware Models for Predicting Business Process
Performances . 287

Francesco Folino, Massimo Guarascio, and Luigi Pontieri

On the Role of Fitness, Precision, Generalization and Simplicity in
Process Discovery . 305

Joos C.A.M. Buijs, Boudewijn F. van Dongen, and
Wil M.P. van der Aalst

ECO: Event Detection from Click-through Data via Query
Clustering . 323

Prabhu K. Angajala, Sanjay K. Madria, and Mark Linderman

Requirements-Driven Qualitative Adaptation . 342
Vı́tor E. Silva Souza, Alexei Lapouchnian, and John Mylopoulos

Collaboration

Analyzing Design Tradeoffs in Large-Scale Socio-technical Systems
through Simulation of Dynamic Collaboration Patterns 362

Christoph Dorn, George Edwards, and Nenad Medvidovic

Semantic and Locality Aware Consistency for Mobile Cooperative
Editing . 380

André Pessoa Negrão, João Costa, Paulo Ferreira, and Lúıs Veiga

Foster an Implicit Community Based on a Newsletter Tracking
System . 398

Tiago Lopes Ferreira and Alberto Rodrigues da Silva

Short Papers

Vino4TOSCA: A Visual Notation for Application Topologies Based on
TOSCA . 416

Uwe Breitenbücher, Tobias Binz, Oliver Kopp, Frank Leymann, and
David Schumm

BOINC-MR: MapReduce in a Volunteer Environment 425
Fernando Costa, Lúıs Veiga, and Paulo Ferreira

Parallel Processing for Business Artifacts with Declarative Lifecycles . . . 433
Yutian Sun, Richard Hull, and Roman Vacuĺın

XXII Table of Contents – Part I

Automatically Generating and Updating User Interface Components in
Process-Aware Information Systems . 444

Jens Kolb, Paul Hübner, and Manfred Reichert

Embedding ’Break the Glass’ into Business Process Models 455
Silvia von Stackelberg, Klemens Böhm, and Matthias Bracht

Author Index . 465

Table of Contents – Part II

Distributed Objects and Applications and Secure
Virtual Infrastructures (DOA-SVI) 2012

DOA-SVI 2012 PC Co-Chairs Message . 469
Alois Ferscha and Siani Pearson

Towards Accountable Services in the Cloud . 470
Volkmar Lotz and Anderson Santana de Oliveira

Privacy in the Cloud

Protecting Personal Information in Cloud Computing 475
Miranda Mowbray and Siani Pearson

How Not to Be Seen in the Cloud: A Progressive Privacy Solution for
Desktop-as-a-Service . 492

D. Davide Lamanna, Giorgia Lodi, and Roberto Baldoni

Privacy Preserving Cloud Transactions . 511
Debmalya Biswas and Krishnamurthy Vidyasankar

A Theoretically-Sound Accuracy/Privacy-Constrained Framework for
Computing Privacy Preserving Data Cubes in OLAP Environments 527

Alfredo Cuzzocrea and Domenico Saccá

Resource Management and Assurance

Consistency in Scalable Systems . 549
M.I. Ruiz-Fuertes, M.R. Pallardó-Lozoya, and F.D. Muñoz-Escóı

QoE-JVM: An Adaptive and Resource-Aware Java Runtime for Cloud
Computing . 566

José Simão and Lúıs Veiga

DEDISbench: A Benchmark for Deduplicated Storage Systems 584
J. Paulo, P. Reis, J. Pereira, and A. Sousa

Context, Compliance and Attack

Goal-Oriented Opportunistic Sensor Clouds . 602
Marc Kurz, Gerold Hölzl, and Alois Ferscha

XXIV Table of Contents – Part II

Natural Language Processing of Rules and Regulations for Compliance
in the Cloud . 620

Nick Papanikolaou

mOSAIC-Based Intrusion Detection Framework for Cloud
Computing . 628

Massimo Ficco, Salvatore Venticinque, and Beniamino Di Martino

Ontologies, DataBases, and Applications of
Semantics (ODBASE) 2012

ODBASE 2012 PC Co-Chairs Message . 645
Sonia Bergamaschi and Isabel Cruz

Using Ontologies and Semantics

Operations over Lightweight Ontologies . 646
Marco A. Casanova, José A.F. de Macêdo, Eveline R. Sacramento,
Ângela M.A. Pinheiro, Vânia M.P. Vidal, Karin K. Breitman, and
Antonio L. Furtado

Evaluating Ontology Matchers Using Arbitrary Ontologies and Human
Generated Heterogeneities . 664

Nafisa Afrin Chowdhury and Dejing Dou

Alignment of Ontology Design Patterns: Class As Property Value,
Value Partition and Normalisation . 682

Bene Rodriguez-Castro, Mouzhi Ge, and Martin Hepp

Making Data Meaningful: The Business Intelligence Model and Its
Formal Semantics in Description Logics . 700

Jennifer Horkoff, Alex Borgida, John Mylopoulos, Daniele Barone,
Lei Jiang, Eric Yu, and Daniel Amyot

Applying Probabilistic Techniques to Semantic
Information

Mining RDF Data for Property Axioms . 718
Daniel Fleischhacker, Johanna Völker, and Heiner Stuckenschmidt

A Non-intrusive Movie Recommendation System . 736
Tania Farinella, Sonia Bergamaschi, and Laura Po

Using Random Forests for Data Mining and Drowsy Driver
Classification Using FOT Data . 752

Cristofer Englund, Jordanka Kovaceva, Magdalena Lindman, and
John-Fredrik Grönvall

Table of Contents – Part II XXV

Exploiting and Querying Semantic Information

Context-Dependent Fuzzy Queries in SQLf . 763
Claudia Jiménez, Hernán Álvarez, and Leonid Tineo

RDF Keyword Search Query Processing via Tensor Calculus
(Short paper) . 780

Roberto De Virgilio

Aggregating Operational Knowledge in Community Settings
(Short paper) . 789

Srinath Srinivasa

Processing Heterogeneous RDF Events with Standing SPARQL Update
Rules (Short paper) . 797

Mikko Rinne, Haris Abdullah, Seppo Törmä, and Esko Nuutila

Alignment-Based Querying of Linked Open Data . 807
Amit Krishna Joshi, Prateek Jain, Pascal Hitzler, Peter Z. Yeh,
Kunal Verma, Amit P. Sheth, and Mariana Damova

An Uncertain Data Integration System . 825
Naser Ayat, Hamideh Afsarmanesh, Reza Akbarinia, and
Patrick Valduriez

B+-Tree Optimized for GPGPU . 843
Krzysztof Kaczmarski

Enhancing Trust-Based Competitive Multi Agent Systems by Certified
Reputation (Short paper) . 855

Francesco Buccafurri, Antonello Comi, Gianluca Lax, and
Domenico Rosaci

Semantics Enhancing Augmented Reality and Making Our Reality
Smarter (Short paper) . 863

Lyndon Nixon, Jens Grubert, Gerhard Reitmayr, and James Scicluna

Liana: A Framework That Utilizes Causality to Schedule Contention
Management across Networked Systems (Short Paper) 871

Yousef Abushnagh, Matthew Brook, Craig Sharp, Gary Ushaw, and
Graham Morgan

Managing and Storing Semantic Information

Extending Ontology-Based Databases with Behavioral Semantics 879
Youness Bazhar, Chedlia Chakroun, Yamine Aı̈t-Ameur,
Ladjel Bellatreche, and Stéphane Jean

XXVI Table of Contents – Part II

OntoDBench: Novel Benchmarking System for Ontology-Based
Databases . 897

Stéphane Jean, Ladjel Bellatreche, Géraud Fokou,
Mickaël Baron, and Selma Khouri

Using OWL and SWRL for the Semantic Analysis of XML Resources . . . 915
Jesús M. Almendros-Jiménez

Building Virtual Earth Observatories Using Ontologies, Linked
Geospatial Data and Knowledge Discovery Algorithms 932

Manolis Koubarakis, Michael Sioutis, George Garbis,
Manos Karpathiotakis, Kostis Kyzirakos,
Charalampos Nikolaou, Konstantina Bereta, Stavros Vassos,
Corneliu Octavian Dumitru, Daniela Espinoza-Molina,
Katrin Molch, Gottfried Schwarz, and Mihai Datcu

Author Index . 951

CoopIS 2012 PC Co-Chairs Message

Welcome to the proceedings of CoopIS 2012. It was the 20th conference in the
CoopIS conference series and took place in Rome, Italy, in September 2012.
This conference series has established itself as a major international forum for
exchanging ideas and results on scientific research for practitioners in fields
such as computer supported cooperative work (CSCW), middleware, Internet
& Web data management, electronic commerce, business process management,
agent technologies, and software architectures, to name a few. In addition, the
2012 edition of CoopIS aims at highlighting the increasing need for data- and
knowledge-intensive processes. As in previous years, CoopIS’12 was again part of
a joint event with other conferences, in the context of the OTM (”OnTheMove”)
federated conferences, covering different aspects of distributed information sys-
tems.

Thanks to the many high-quality submissions we were able to put a strong
program together. The selection process was very competitive which resulted in
quite a few good papers to be rejected. Each paper received at least three, in a
number of cases even four, independent peer reviews. From the 100 submissions
we were able to accept only 22 papers as full papers and eight papers as short
papers.

We are very grateful to the reviewers who worked hard to meet the tight
deadline. We thank also the staff of the OTM secretariat, especially Jan Demey,
Daniel Meersman, and Carlos Madariaga and the OTM General Chairs Robert
Meersman, Tharam Dillon, and Pilar Herrero for their support.

July 2012 Stefanie Rinderle-Ma
Xiaofang Zhou
Peter Dadam

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, p. 1, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Process and Data: Two Sides of the Same Coin?

Manfred Reichert

Institute of Databases and Information Systems, Ulm University, Germany
manfred.reichert@uni-ulm.de

Abstract. Companies increasingly adopt process management technol-
ogy which offers promising perspectives for realizing flexible informa-
tion systems. However, there still exist numerous process scenarios not
adequately covered by contemporary information systems. One major
reason for this deficiency is the insufficient understanding of the inher-
ent relationships existing between business processes on the one side
and business data on the other. Consequently, these two perspectives
are not well integrated in many existing process management systems.
This paper emphasizes the need for both object- and process-awareness
in future information systems, and illustrates it along several examples.
Especially, the relation between these two fundamental perspectives will
be discussed, and the role of business objects and data as drivers for both
process modeling and process enactment be emphasized. In general, any
business process support should consider object behavior as well as ob-
ject interactions, and therefore be based on two levels of granularity.
In addition, data-driven process execution and integrated user access to
processes and data are needed. Besides giving insights into these funda-
mental characteristics, an advanced framework supporting them in an
integrated manner will be presented and its application to real-world
process scenarios be shown. Overall, a holistic and generic framework
integrating processes, data, and users will contribute to overcome many
of the limitations of existing process management technology.

1 Introduction

Despite the widespread adoption of process management systems [1] there exist
many business processes not adequately supported by these systems. In this
context, different authors state that many deficiencies of contemporary process
management systems (PrMS) can be traced back to the missing integration
of processes and data [2–11]. Although processes and data seem to be closely
related, a unified understanding of the inherent relationships existing between
them is still missing.

In the PHILharmonicFlows project, we analyzed numerous business processes
from different domains which require a tight data integration [12–15]. We learned
that many of these processes are data-driven and that their support requires
object-awareness ; i.e., the progress of these processes depends on the processing
of certain business data represented through business objects. Objects comprise
a set of object attributes and are inter-related. In this context, business processes

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 2–19, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Process and Data: Two Sides of the Same Coin? 3

coordinate the processing of business objects among different users enabling
them to cooperate and communicate with each other. Most existing PrMS, how-
ever, mainly focus on business functions and their flow of control, whereas busi-
ness objects are ”unknown” to them. As a consequence, most PrMS only cover
simple data elements needed for control flow routing and for supplying input
parameters of activities with values. In turn, business objects are usually stored
in external databases and are outside the control of the PrMS. Hence, existing
PrMS are unable to adequately support object-aware processes [16].

This paper shows that process and data are actually two sides of the same
coin. Section 2 introduces the main characteristics of data-driven and object-
aware processes, which we gathered in a number of case studies [12, 13, 17] (see
[18] for details about the research methodology applied). Following this, Sec-
tion 3 sketches core components of our PHILharmonicFlows framework, which
enables comprehensive support of data-driven and object-aware processes. Sec-
tion 4 discusses related work and Section 5 concludes the paper with a summary.

2 Data-Driven and Object-Aware Processes

We first discuss fundamental characteristics of data-driven and object-aware
processes, we derived from a more detailed property list related to process mod-
eling, execution, and monitoring. The respective properties were discovered in
an extensive analysis of processes currently not adequately supported by process
management technology [12–14, 16]. To ensure that the processes we considered
are not ”self-made” examples, but constitute real-world processes of high prac-
tical relevance, we further analyzed processes implemented in existing business
applications. Further, we have deep insights into the code and process logic of
these applications. To justify our findings, we complemented our process analyses
by an extensive literature study ensuring relevance and completeness.

2.1 Application Example

We discuss the characteristics of data-driven and object-aware processes along
a simple job recruitment scenario (cf. Fig. 1).

Example 1 (Recruitment). In recruitment, applicants may apply for job

vacancies via an Internet online form. Once an application has been submit-
ted, the responsible personnel officer in the human resource department is
notified. The overall process goal is to decide which applicant shall get the job.
If an application is ineligible the applicant is immediately rejected. Other-
wise, personnel officers may request internal reviews for each applicant.
In this context, the concrete number of reviews may differ from application

to application. Corresponding review forms have to be filled by employees

from functional divisions. They make a proposal on how to proceed; i.e., they
indicate whether the applicant shall be invited for an interview or be rejected.
In the former case an additional appraisal is needed. After the employee has

4 M. Reichert

filled the review form she submits it back to the personnel officer. In the
meanwhile, additional applications might have arrived; i.e., reviews relating
to the same or to different applicationsmay be requested or submitted at differ-
ent points in time. The processing of the application, however, proceeds while
corresponding reviews are created; e.g., the personnel officer may check the
CV and study the cover letter of the application. Based on the incoming
reviews he makes his decision on the application or initiates further steps
(e.g., interviews or additional reviews). Finally, he does not have to wait
for the arrival of all reviews; e.g., if a particular employee suggests hiring the
applicant he can immediately follow this recommendation.

Fig. 1. Example of a recruitment process from the human resource domain

2.2 Basic Characteristics

Basically, data must be manageable in terms of object types comprising object
attributes and relations to other object types (cf. Fig. 2a). At run-time, the dif-
ferent object types comprise a varying number of inter-related object instances,
whereby the concrete instance number should be restrictable by lower and upper
cardinality bounds (cf. Fig. 2b). For each application, for example, at least one
and at most five reviews must be initiated. While for one application two reviews
are are available, another one may comprise three reviews (cf. Fig. 1).

In accordance to data modeling, the modeling and execution of processes can
be based on two levels of granularity: object behavior and object interactions.

Object Behavior. To cover the processing of individual object instances, the
first level of process granularity concerns object behavior. More precisely, for

Process and Data: Two Sides of the Same Coin? 5

Fig. 2. Data structure at build-time and at run-time

each object type a separate process definition should be provided (cf. Fig. 3a),
which can be used for coordinating the processing of an individual object in-
stance among different users. In addition, it should be possible to determine in
which order and by whom the attributes of a particular object instance have
to be (mandatorily) written, and what valid attribute values are. At run-time,
the creation of an object instance is directly coupled with the creation of its
corresponding process instance. In this context, it is important to ensure that
mandatorily required data is provided during process execution. For this reason,
object behavior should be defined in terms of data conditions rather than based
on black-box activities.

Example 2 (Objectbehavior).For requesting areview the responsibleperson-
nel officer has to mandatorily provide values for object attributes return date
and questionnaire.Following this, the employee being responsible for the review
has to mandatorily assign a value to object attribute proposal.

Object Interactions. Since related object instances may be created or deleted
at arbitrary points in time, a complex data structure emerges, which dynami-
cally evolves depending on the types and number of created object instances.
In addition, individual object instances (of the same type) may be in different
processing states at a certain point in time.

Taking the behavior of individual object instances into account, we obtain a
complex process structure in correspondence to the given data structure (cf. Fig.
3a). In this context, the second level of process granularity comprises the interac-
tions that take place between different object instances. More precisely, it must
be possible to execute individual process instances (of which each corresponds
to a particular object instance) in a loosely coupled manner, i.e., concurrently
to each other and synchronizing their execution where needed. First, it should
be possible to make the creation of a particular object instance dependent on
the progress of related object instances (creation dependency). Second, several
object instances of the same object type may be related to one and the same
object instance. Hence, it should be possible to aggregate information; amongst

6 M. Reichert

Fig. 3. Process structure at build-time and at run-time

others, this requires the aggregation of attribute values from related object in-
stances (aggregation). Third, the executions of different process instances may
be mutually dependent; i.e., whether or not an object instance can be further
processed may depend on the processing progress of other object instances (ex-
ecution dependency). In this context, interactions must also consider transitive
dependencies (e.g., reviews depend on the respective job offer) as well as trans-
verse ones (e.g., the creation of an interview may depend on the proposal made
in a review) between object instances (cf. Fig. 3).

Example 3 (Object interactions). A personnel officer must not initiate
any review as long as the corresponding application has not been finally sub-
mitted by the applicant (creation dependency). Furthermore, individual review
process instances are executed concurrently to each other as well as concurrently
to the application process instances; e.g., the personnel officer may read
and change the application, while the corresponding reviews are processed.
Further, reviews belonging to a particular application can be initiated and
submitted at different points in time. Besides this, a personnel officer should
be able to access information about submitted reviews (aggregative information);
i.e., if an employee submits her review recommending to invite the applicant

for an interview, the personnel officer needs this information immediately.
Opposed to this, when proposing rejection of the applicant, the personnel

officer should only be informed after all initiated reviews have been submit-
ted. Finally, if the personnel officer decides to hire one of the applicants,
all others must be rejected (execution dependency). These dependencies do not
necessarily coincide with the object relations. As example consider reviews and
interviews corresponding to the same application; i.e., an interview may
only be conducted if an employee proposes to invite the applicant during the
execution of a review process instance.

Data-Driven Execution. In order to proceed with the processing of a par-
ticular object instance, usually, in a given state certain attribute values are
mandatorily required. Thus, object attribute values reflect the progress of the
corresponding process instance. In particular, the activation of an activity does

Process and Data: Two Sides of the Same Coin? 7

not directly depend on the completion of other activities, but on the values
set for object attributes. More precisely, mandatory activities enforce the set-
ting of certain object attribute values in order to progress with the process. If
required data is already available, however, mandatory activities can be auto-
matically skipped when being activated. In principle, it should be possible to set
respective attributes also up front ; i.e., before the mandatory activity normally
writing this attribute becomes activated. However, users should be allowed to
re-execute a particular activity, even if all mandatory object attributes have been
already set. For this purpose, data-driven execution must be combined with ex-
plicit user commitments (i.e., activity-centred aspects). Finally, the execution of
a mandatory activity may also depend on available attribute values of related
object instances. Thus, coordination of process instances must be supported in
a data-driven way as well.

Example 4 (Data-driven execution). During a review request the personnel
officer must mandatorily set a return date. If a value for the latter is avail-
able, a mandatory activity for filling in the review form is assigned to the re-
sponsible employee. Here, in turn, a value for attribute proposal is mandatorily
required. However, even if the personnel officer has not completed his review
request yet (i.e., no value for attribute return data is available), the employee

may optionally edit certain attributes of the review (e.g., the proposal). If a
value of attribute proposal is already available when the personnel officer

finishes the request, the mandatory activity for providing the review is automati-
cally skipped. Opposed to this, an employee may change his proposal arbitrarily
often until he explicitly agrees to submit the review to the personnel officer.
Finally, the personnel officer makes his decision (e.g., whether to reject or
to accept the applicant) based on the incoming reviews.

Variable Activity Granularity. For creating object instances and chang-
ing object attribute values, form-based activities are required. Respective user
forms comprise input fields (e.g., text-fields or checkboxes) for writing and data
fields for reading selected attributes of object instances. In this context, however,
different users may prefer different work practices. In particular, using instance-
specific activities (cf. Fig. 5a), all input fields and data fields refer to attributes
of one particular object instance, whereas context-sensitive activities (cf. Fig.
5b) comprise fields referring to different, but related object instances (of poten-
tially different type). When initiating a review, for example, it is additionally
possible to edit the attribute values of the corresponding application. Finally,
batch activities involve several object instances of the same type (cf. Fig. 5c).
Here, the values of the different input fields are assigned to all involved object
instances in one go. This enables a personnel officer, for example, to reject a
number of application in one go. Depending on their preference, users should be
able to freely choose the most suitable activity type for achieving a particular
goal. In addition to form-based activities, it must be possible to integrate black-
box activities. The latter enable complex computations as well as the integration
of advanced functionalities (e.g., provided by web services).

8 M. Reichert

Fig. 4. Different kinds of activities

Moreover, whether certain object attributes are mandatory when processing a
particular activity might depend on other object attribute values as well; i.e.,
when filling a form certain attributes might become mandatory on-the-fly. Such
control flows being specific to a particular form should be also considered.

Example 5 (Activity Execution). When an employee fills in a review, addi-
tional information about the corresponding application should be provided; i.e.,
attributes belonging to the application for which the review is requested. For fill-
ing in the review form, a value for attribute proposal has to be assigned. If the
employeeproposes to invite the applicant, additional object attributes will become
mandatory; e.g., then he has to set attribute appraisal as well. This is not re-
quired if he assigns value reject to attribute proposal. Further, when a personnel
officer edits an application, all corresponding reviews should be visible. Fi-
nally, as soon as an applicant is hired for a job, for all other applications value
reject should be assignable to attribute decision by filling one form.

Integrated Access. To proceed with the control flow, mandatory activities
must be executed by responsible users in order to provide required attribute val-
ues. Other attribute values, however, may be optionally set. Moreover, users who
are usually not involved in process execution should be allowed to optionally ex-
ecute selected activities. In addition to a process-oriented view (e.g. work lists), a
data-oriented view should be provided enabling users to access and manage data
at any point in time. For this purpose, we need to define permissions for creat-
ing and deleting object instances as well as for reading/writing their attributes.
However, attribute changes contradicting to specified object behavior should be
prevented. Which attributes may be (mandatorily or optionally) written or read
by a particular form-based activity not only depends on the user invoking this
activity, but also on the progress of the corresponding process instances. While
certain users must execute an activity mandatorily in the context of a particular
object instance, others might be authorized to optionally execute this activity;
i.e., mandatory and optional permissions should be distinguishable. Moreover,
for object-aware processes, the selection of potential actors should not only de-
pend on the activity itself, but also on the object instances processed by this

Process and Data: Two Sides of the Same Coin? 9

activity. In this context, it is important to take the relationships between users
and object instances into account.

Example 6 (Integrated Access). A personnel officer may only decide
on applications for which the name of the applicants starts with a letter
between ’A’ and ’L’, while another officer may decide on applicants whose
name starts with a letter between ’M’ und ’Z’. An employee must mandato-
rily write attribute proposal when filling in a review. However, her manager

may optionally set this attribute as well. The mandatory activity for filling the
review form, in turn, should be only assigned to the employee. After submit-
ting her review, the employee still may change her comment. In this context, it
must be ensured that the employee can only access reviews she submitted be-
fore. However, attribute proposal, in turn, must not be changed anymore. The
personnel officer might have already performed the proposed action.

3 A Framework Enabling Data-Driven and Object-Aware
Processes

In the PHILharmonicFlows project, we developed a framework that enables the
characteristic properties of data-driven and object-aware processes and hence
contributes to overcome many of the limitations of existing process management
technology. The PHILharmonicFlows framework will be described in this sec-
tion using another illustrating example. In particular, the framework provides
advanced concepts and components enabling comprehensive support for data-
driven and object-aware processes.

3.1 Illustrating Example

We first present another example of an object-aware process along which we will
illustrate basic concepts of the PHILharmonicFlows framework.

The selected scenario deals with proposing extension courses at a university;
i.e., courses for professionals that aim at refreshing and updating their knowl-
edge in a certain area of expertise. In order to propose a new extension course,
the course coordinator must create a project describing it. The latter must be
approved by the faculty coordinator as well as the extension course committee.

Example 7 (Extension course proposal). The course coordinator cre-
ates a new extension course project using a form. In this context, he must
provide details about the course, like name, start date, duration, and
description. Following this, professors may start creating the lectures for
the extension course. Each lecture, in turn, must have detailed study plan

items, which describe the activities of the lecture. For each lecture, there may
be some (external) invited speakers. The latter either may accept or reject
the invitation. After receiving the responses for the invitations and creat-
ing the lectures, the coordinator may request the approval of the extension

course project. First, it must be approved by the faculty director. If he

10 M. Reichert

wants to reject it, he must provide a reason for his decision and the course
must not take place. Otherwise, the project is sent to the extension course

committee for evaluation. If there are more rejections than approvals, the
extension course project is rejected. Otherwise, it is approved and hence
may take place.

Extension course project
Creative Writing

01/04/2012
English

40 Hours
This course will focus on the
dynamics of story creation.

Invitation
Neil Gaiman

accepted

Study Plan Item
01/04/2012

Character Description
101

In this class, the
students will be asked
to create the basics of

a character.

Lecture
Lecture

Character Development
10 Hours

John Smith
How to develop a

character in a fictional
story.

Invitation
Invitation Study Plan Item

External

Review
invitation

Review
invitation

Faculty

Create
extension

course project
approved faculty

Course Coordinator
Max Meyer

Create lecture
Professor

Paul Thomson

Create lecture
Professor
Mark Moore

Faculty
Approve extension

course project Faculty Director
Lola Lee

Extension Course
Committee

Committee Member
Peter Frank

Faculty

Professor
Paul Thomson

Create study
plan item

Invited Speaker
Neil Gaiman

Invited Speaker
Douglas Adams

Invited Speaker
Terry Pratchett

users activities data
structure activities users

Approve extension
course project

Decision
Committe

Decision
Committe

Decision
Committe

Committee Member
Frank Ferdinand

Committee Member
Sonya Sun

Interesting course.

Create study
plan item

Approve extension
course project

Approve extension
course project

Review
invitation

Fig. 5. Extensions course proposal

3.2 Selected Components of the PHILharmonicFlows Framework

The PHILharmonicFlows framework supports object-aware processes focusing
on the processing of business data and business objects respectively. More pre-
cisely, object-awareness means that the overall process model is structured and
divided according to the object types involved. In turn, these object types are
organized in a data model and may be related to other object types. Moreover,
for each object type, a separate process type defining its object behavior exists.
At run-time, each object type then may comprise a varying number of object
instances. Since the creation of an object instance is directly coupled with the cre-
ation of a corresponding process instance, a complex process structure emerges.
Thereby, process instances referring to object instances of the same type are
executed asynchronously to each other as well as asynchronously to process in-
stances related to objects of different types. However, their execution may have
to be synchronized at certain points in time. Overall, PHILharmonicFlows differ-
entiates between micro and macro processes which allow capturing both object
behavior and object interactions. Furthermore, the execution of micro and macro
processes is data-driven and integrated access to processes and data objects is
enabled. Finally, different kinds of activity granularities are supported.

Process and Data: Two Sides of the Same Coin? 11

RUN TIME

BUILD TIME
Data Model

Micro Process

Macro Process

Object Type States

Micro Steps

Micro Transitions

Macro Steps

Macro TransitionsRelations

Attributes

Coordination
Overview Tables Worklists

Forms

Authorization

Process Context

Aggregation

Transverse

Permissions

User Assignment

a

b

d

c

e

Fig. 6. Overview of the PHILharmonicFlows framework

Data Model. A data model defines the object types as well as their correspond-
ing attributes and relations with cardinalities (cf. Fig. 6a).

Example 8 (Data structure). Fig. 7a illustrates the data model relating to
our example from Section 3.1. Object types lecture and decision committee

refer to object type extension course project. In turn, object types invitation
and study plan item refer to lecture. At run-time, these relations allow for
a varying number of inter-related object instances whose processing must be co-
ordinated. Further, cardinality constraints restrict the minimum and maximum
number of instances of an object type that may reference the same higher-level
object instance. Fig. 7b shows a corresponding data structure at run-time.

Data Model

a

object type

extension course project
name

description

lecture
name

description

1...n

decision committee
acceptance
comment

relation

1...n

invitation
speaker

acceptance

study plan item
topic

description

1..10
cardinality

0..5

attributes

Data Instances

b
name

description

extension course project
Creative Writing

Unraveling the dynamics of story
creation

name
description

name
description

lecture
Character development

Creating a fictional
character

decision committee
acceptance
comment

decision committee
acceptance
comment

acceptance
comment

decision committee
Approved
Nice idea

invitation
speaker

acceptance

invitation
Neil Gaiman

Accepted

date
description

study plan item
date

description

study plan item
Character description

Create the basis of a char.

object
instances

Process Structure

c
name

description

study plan item
date

description

study plan item
date

description

study plan iteminvitation
speaker

acceptance

invitation

lecture
name

description
name

description

lecture decision committee
acceptance
comment

decision committee
acceptance
comment

decision committee
acceptance
comment

decision committee

object
behavior

extension course project

dependency
between process

instances

Fig. 7. Data structure (data model and instances) and process structure

12 M. Reichert

Micro Processes. To express object behavior, for each object type of a data
model, a micro process type must be defined (cf. Fig. 6b). At run-time, the
creation of object instances is then directly coupled with the creation of a cor-
responding micro process instances. The latter coordinates the processing of the
object instance among different users and specifies the order in which object
attributes may be written. For this purpose, a micro process type comprises a
number of micro step types (cf. Fig 6b), of which each refers to one specific
object attribute and describes an atomic action for writing it. At run-time, a
micro step is reached if a value is set for the corresponding attribute; i.e., a
data-driven execution is enabled. Micro step types may be inter-connected using
micro transition types in order to express their default execution order. When
using form-based activities, micro transitions define the order in which the input
fields of the respective form shall be filled (i.e., the internal processing logic of
the form). Finally, to coordinate the processing of individual object instances
among different users, several micro step types can be grouped into state types.
At the instance level, a state may only be left if the values for all attributes
associated with the micro steps of the respective state type are set.

Example 9 (Micro process type). Fig. 8a shows the micro process type
of object type extension course project. While the extension course project
is in state under creation, the course coordinator may set the attributes
to which the corresponding micro step types refer (e.g., name, start date, or
description). Following this, a user decision is made in state under approval

faculty; i.e., the faculty director either approves or rejects the extension
course project. If the value of attribute decision faculty is rejected, a value
for attribute reason rejection is required.

User Authorization. PHILharmonicFlows provides advanced support for user
authorization while enabling an integrated access to process and data (cf. Fig. 6c).
User roles are associated with the different states of a micro process type.

under creation
name start_date faculty credits description

under approval
faculty

decision_faculty

rejected

rejected
approved under approval

extension course
committee

approved

Course Coordinator

Faculty Director

state type micro step types

micro transition
types

Authorization Table

P

under creation

CC

MW
Extension Course

Project
name
start_date
faculty
credits

R
MW R
MW R
MW R
MWdescription

decision_faculty
reason_rejection

R

Micro Process Type
object type

attribute

state type

attribute
permissions

a b

rejected faculty
reason_
rejection

Faculty Director

Fig. 8. Micro process type and authorization table for state “under creation”

Process and Data: Two Sides of the Same Coin? 13

At run-time, users owning the respective role then must set required attribute
values as indicated by the micro steps corresponding to the respective state; i.e.,
a mandatory activity (i.e., a user form) is created and assigned to the user’s work
list. To enable optional activities, in addition, PHILharmonicFlows generates an
authorization table for each object type. More precisely, the framework allows
granting different permissions for reading and writing attribute values as well
as for creating and deleting object instances to different user roles (cf. Fig. 6d).
Furthermore, permissions may vary depending on the state of an object instance.
The framework ensures that each user who must execute a mandatory activity
also owns corresponding write permissions; i.e., data and process authorization
are compliant with each other. The initially generated authorization table may
be further adjusted by assigning optional permissions to other users. In this
context, we differentiate between mandatory and optional write permissions.

Attributes, permissions, and the described micro process logic also provide the
basis for automatically generating user forms at run-time. In particular, when
taking the currently activated state of the micro process instance into account,
the authorization table specifies which input fields can be read or written by the
respective user in this state. Hence, any change directly affecting directly the forms
will be transparent to the end-user; i.e., the forms do not need to be manually
updated as in existing process-aware information systems.

Example 10 (Authorization table). In Fig. 8b, in state under creation of
micro process type extension course project, the course coordinator (CC)
has mandatory write (MW) permission for attributes name, start date, faculty,
credits, and description. In turn, a professor (P) is authorized to read (R)
these attributes in the respective state.

Macro Process Level. At run-time, object instances of the same and different
types may be created or deleted at arbitrary points in time; i.e., the data struc-
ture dynamically evolves depending on the types and number of created object
instances. In particular, whether subsequent states of micro process instances
can be reached may depend on other micro process instances as well; i.e., the
processing of an object instance may depend on the processing of a variable
number of instances of a related object type. Taking these dependencies among
objects into account, a complex process structure results (cf. Fig. 7c). To enable
proper interaction among the micro process instances, a coordination mecha-
nism is required to specify the interaction points of the involved processes. For
this purpose, PHILharmonicFlows automatically derives a state-based view for
each micro process type. This view is then used for modeling so-called macro
process types defining the respective object interactions (cf. Fig. 6d). The latter
hides the complexity of emerging process structure from users. Each macro pro-
cess type (cf. Fig. 9) consists of macro step types and macro transitions types
connecting them. As opposed to traditional process modeling approaches, where
process steps are defined in terms of black-box activities, a macro step type al-
ways refers to an object type together with a corresponding state type; i.e., the
latter serve as interface between micro and macro process types.

14 M. Reichert

The activation of a particular macro state might depend on instances of dif-
ferent micro process types. To express this, a respective macro input type has
to be defined for each macro step types. The latter can be connected to several
incoming macro transitions. At run-time, a macro step is enabled if at least one
of its macro inputs becomes activated.

Extension
Course Project

under
creation

Invitation

create
invitation

Study Plan
Item
create
item

Extension
Course Project

rejectedDecision
Committee

start macro step

state

macro input

macro step type

object type

Lecture

create
lecture

Invitation

responded

Study Plan
Item

finished

Lecture

finished

Decision
Committee

approved

rejected

Extension
Course Project

approved

Extension
Course Project

under approval
faculty

Decision
Committee

notified

Decision
Committee

under
approval

Fig. 9. Example of a Macro Process Type

To take the dynamically evolving number of object instances as well as the
asynchronous execution of corresponding micro process instances into account,
for each macro transition a corresponding coordination component needs to be
defined (cf. Fig. 6e). For this purpose, PHILharmonicFlows utilizes object rela-
tions from the data model; i.e., takes the relations between the object type of a
source macro step type and the one of a target macro step type into account. For
this purpose, the framework organizes the data model into different data levels.
All object types not referring to any other object type are placed on the top level.
Generally, any other object type is always assigned to a lower data level as the
object type it references. Based on this, PHILharmonicFlows can automatically
classify the macro transitions either as top-down or as bottom-up (cf. Fig. 10a).
If the object types of the source and sink macro step types refer to a common
higher-level object type, the macro transition is categorized as transverse.

For each of these categories of macro transition type, a particular coordination
component is required. A top-down transition characterizes the interaction from
an upper-level object type to a lower-level one. Here, the execution of a varying
number of micro process instances depends on one higher-level micro process
instance. In this context, a so-called process context type must be assigned to
the respective macro transition type. Due to lack of space, we do not go into
details. We also do not discuss transverse macro transition types here. In turn,
a bottom-up transition characterizes an interaction from a lower-level object
type to an upper-level one. In this case, the execution of one higher-level micro
process instance depends on the execution of several lower-level micro process
instances of the same type. For this reason, each bottom-up transition requires an
aggregation component for coordination. To manage the total number of lower-
level micro process instances related to the dependent upper-level micro process

Process and Data: Two Sides of the Same Coin? 15

instance, PHILharmonicFlows provides counters ; i.e., the latter permit to control
the number of micro process instances that have reached the respective state as
well as the ones that have not yet reached the state and the ones that have
skipped the same state. These counters can be used for defining aggregation
conditions enabling the higher-level micro process instance to activate the state.

Example 11 (Aggregation component). Fig. 10b shows an aggregation con-
dition (#IN < #ALL/2) expressing that the extension course project will be
approved if more than half of the committee members approve the project. In
this example, there are three micro process instances of decision committee

related to one instance of extension course project. The counter of this ex-
ample indicates that two of the running instances of decision committee have
already reached state approved (#IN = 2), while one instance has not yet reached
this state (#BEFORE=1). In this case, the condition is already fulfilled and the
upper-level micro process instance may continue its execution.

4 Related Work

In [16], we have shown why existing imperative, declarative, and data-driven (i.e.,
Case Handling [2, 19, 20]) process support paradigms are unable to adequately
support object-aware processes. However, to enable consistency between pro-
cess and object states, extensions of these approaches based on object life cycles
have been proposed. These extensions include object life cycle compliance [21],
object-centric process models [8, 9], business artifacts [4, 22], data-driven pro-
cess coordination [5, 23], and product-based workflows [6, 24]. However, none of
these approaches explicitly maps states to object attribute values. Consequently,
if certain pre-conditions cannot be met during run-time, it is not possible to
dynamically react to this. In addition, generic form logic is not provided in a

Data Model - Relations

Extension Course
Project #1

#2

#3

Lecture Decision
Committee

Invitation Study Plan Item

1..n 1..n

0..5 1..10

transverse

top-down

bottom-up

a
Aggregation Example

b Bottom-up Transition

Extension Course
ProjectDecision Committee

approved approved

#IN > #ALL/2

Extension Course Project

#1

#2

#3

under creation
rejected

approved

Decision Committee
Lecture

Invitation Study Plan Item

rejectedrejected

rejectedrejected
under

approval
approved

rejected

#IN = 2
#BEFORE = 1

Fig. 10. a) Kinds of relations between object Types; b) Aggregation example

16 M. Reichert

flexible way; i.e., there is no automatic generation of forms taking the individ-
ual attribute permissions of a user as well as the progress of the corresponding
process into account. Finally, opposed to these approaches, PHILharmonicFlows
captures the internal logic of an activity as well.

As illustrated in Fig. 11, each characteristic from Section 2 is addressed by
at least one existing approach. Although the mentioned approaches have defi-
ciencies (see footnotes in Fig. 11), they can be considered as pioneering work
towards data-driven and object-aware process support. As opposed to PHILhar-
monicFlows, however, none of them covers all characteristics in a comprehensive
and integrated way. Also note that Fig. 11 does not make a difference between
process modeling and process execution. Though some approaches (e.g., the busi-
ness artifacts framework [4]) provide rich capabilities for process modeling, they
do not cover run-time issues (or at least do not treat them explicitly).

Fig. 11. Evaluation of existing approaches

Interestingly, existing approaches partially consider similar scenarios, while ad-
dressing different characteristics (see the grey boxes on the bottom of Fig. 11). For
example, order processing was taken as illustrating scenario by Case Handling [2],
BatchActivities [25], and Business Artifacts [4]. Case Handling addresses the need
for enabling object behavior, data-driven execution, and integrated access. In turn,
Business Artifacts consider data-driven execution, object behavior and object in-
teractions. Finally, [25] describes the need for executing several activities in one go
(i.e., the execution of batch-activities). Hence, the integrated support of all char-
acteristics described is urgently needed to adequately cope with order processes.

Process and Data: Two Sides of the Same Coin? 17

5 Summary

Through elaborating the main characteristics of object-aware processes, this pa-
per has shown that process and data more or less constitute two sides of the same
coin, which must be tightly integrated. Hence, data-driven and object-aware pro-
cess support will provide an important contribution towards the realization of a
more flexible process management for which daily work can be accomplished in
a more natural way than in traditional process-aware information systems. As
illustrated in Fig. 12, a comprehensive integration of processes and data entails
three major benefits:

1. Flexible execution of unstructured, knowledge-intensive processes.
2. Integrated view on processes, data, and functions to users.
3. Generic business functions, e.g., automatically generated form-based activi-

ties.

PHILharmonicFlows offers a comprehensive solution framework to adequately
support data-driven and object-aware processes. In particular, this framework
supports the definition of data and process in separate, but well integrated mod-
els. So far, PHILharmonicFlows has addressed process modeling, execution and
monitoring, and it provides generic functions for the model-driven generation of
end user components (e.g., form-based activities). Furthermore, PHILharmon-
icFlows considers all components of the underlying data structure; i.e., objects,
relations and attributes. For this purpose, it enables the modeling of processes
at different levels of granularity. In particular, it combines object behavior based
on states with data-driven process execution. Further, it provides advanced sup-
port for process coordination as well as for the integrated access to business
processes, business functions and business data. We believe that the described
framework offers promising perspectives for overcoming many of the limitations
of contemporary PrMS.

Fig. 12. Object-aware Process Management

18 M. Reichert

References

1. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information Sys-
tems: Challenges, Methods, Technologies. Springer (2012)

2. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case Handling: A new Paradigm
for Business Process Support. DKE 53, 129–162 (2005)

3. van der Aalst, W.M.P., Barthelmess, P., Ellis, C.A., Wainer, J.: Workflow Mod-
eling using Proclets. In: Scheuermann, P., Etzion, O. (eds.) CoopIS 2000. LNCS,
vol. 1901, pp. 198–209. Springer, Heidelberg (2000)

4. Bhattacharya, K., Hull, R., Su, J.: A Data-Centric Design Methodology for Busi-
ness Processes, pp. 503–531. IGI Global (2009)

5. Müller, D., Reichert, M., Herbst, J.: Data-Driven Modeling and Coordination of
Large Process Structures. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I.
LNCS, vol. 4803, pp. 131–149. Springer, Heidelberg (2007)

6. Reijers, H.A., Liman, S., van der Aalst, W.M.P.: Product-Based Workflow Design.
Management Information Systems 20, 229–262 (2003)

7. Vanderfeesten, I., Reijers, H.A., van der Aalst, W.M.P.: Product-based Workflow
Support. Information Systems 36, 517–535 (2011)

8. Redding, G., Dumas, M., ter Hofstede, A.H.M., Iordachescu, A.: Transforming
Object-Oriented Models to Process-Oriented Models. In: ter Hofstede, A.H.M.,
Benatallah, B., Paik, H.-Y. (eds.) BPM Workshops 2007. LNCS, vol. 4928, pp.
132–143. Springer, Heidelberg (2008)

9. Redding, G.M., Dumas, M., ter Hofstede, A.H.M., Iordachescu, A.: A flexible,
object-centric approach for business process modelling. Service Oriented Comput-
ing and Applications, 1–11 (2009)

10. Künzle, V., Reichert, M.: Striving for object-aware process support: How existing
approaches fit together. In: 1st Int’l Symposium on Data-driven Process Discovery
and Analysis, SIMPDA 2011 (2011)

11. Rinderle, S., Reichert, M.: Data–Driven Process Control and Exception Handling
in Process Management Systems. In: Martinez, F.H., Pohl, K. (eds.) CAiSE 2006.
LNCS, vol. 4001, pp. 273–287. Springer, Heidelberg (2006)

12. Künzle, V., Reichert, M.: Towards Object-Aware Process Management Systems:
Issues, Challenges, Benefits. In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E.,
Schmidt, R., Soffer, P., Ukor, R. (eds.) BPMDS 2009 and EMMSAD 2009. LNBIP,
vol. 29, pp. 197–210. Springer, Heidelberg (2009)

13. Künzle, V., Reichert, M.: Integrating Users in Object-Aware Process Management
Systems: Issues and Challenges. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.)
BPM 2009 Workshops. LNBIP, vol. 43, pp. 29–41. Springer, Heidelberg (2010)

14. Künzle, V., Reichert, M.: PHILharmonicFlows: Towards a Framework for Object-
aware Process Management. Journal of Software Maintenance and Evolution: Re-
search and Practice 23, 205–244 (2011)

15. Künzle, V., Reichert, M.: A Modeling Paradigm for Integrating Processes and Data
at the Micro Level. In: Halpin, T., Nurcan, S., Krogstie, J., Soffer, P., Proper, E.,
Schmidt, R., Bider, I. (eds.) BPMDS 2011 and EMMSAD 2011. LNBIP, vol. 81,
pp. 201–215. Springer, Heidelberg (2011)

16. Künzle, V., Weber, B., Reichert, M.: Object-aware Business Processes: Fundamen-
tal Requirements and their Support in Existing Approaches. International Journal
of Information System Modeling and Design (IJISMD) 2, 19–46 (2011)

17. Chiao, C.M., Künzle, V., Reichert, M.: Towards object-aware process support
in healthcare information systems. In: 4th International Conference on eHealth,
Telemedicine, and Social Medicine, eTELEMED 2012 (2012)

Process and Data: Two Sides of the Same Coin? 19

18. Künzle, V., Reichert, M.: PHILharmonicFlows: Research and Design Methodology.
Technical Report UIB-2011-05, University of Ulm, Ulm, Germany (2011)

19. Weber, B., Mutschler, B., Reichert, M.: Investigating the effort of using business
process management technology: Results from a controlled experiment. Science of
Computer Programming 75, 292–310 (2010)

20. Guenther, C.W., Reichert, M., van der Aalst, W.M.: Supporting flexible processes
with adaptive workflow and case handling. In: Proc. WETICE 2008, 3rd IEEE
Workshop on Agile Cooperative Process-aware Information Systems (ProGility
2008), pp. 229–234. IEEE Computer Society Press (2008)

21. Küster, J.M., Ryndina, K., Gall, H.: Generation of Business Process Models for
Object Life Cycle Compliance. In: Alonso, G., Dadam, P., Rosemann, M. (eds.)
BPM 2007. LNCS, vol. 4714, pp. 165–181. Springer, Heidelberg (2007)

22. Gerede, C.E., Su, J.: Specification and Verification of Artifact Behaviors in Business
Process Models. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007.
LNCS, vol. 4749, pp. 181–192. Springer, Heidelberg (2007)

23. Müller, D., Reichert, M., Herbst, J.: A New Paradigm for the Enactment and Dy-
namic Adaptation of Data-Driven Process Structures. In: Bellahsène, Z., Léonard,
M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 48–63. Springer, Heidelberg (2008)

24. Vanderfeesten, I., Reijers, H.A., van der Aalst, W.M.P.: Product Based Workflow
Support: Dynamic Workflow Execution. In: Bellahsène, Z., Léonard, M. (eds.)
CAiSE 2008. LNCS, vol. 5074, pp. 571–574. Springer, Heidelberg (2008)

25. Sadiq, S.W., Orlowska, M.E., Sadiq, W., Schulz, K.: When workflows will not
deliver: The case of contradicting work practice. In: Proc. BIS 2005 (2005)

Configurable Declare: Designing Customisable

Flexible Process Models�,��

Dennis M.M. Schunselaar, Fabrizio Maria Maggi,
Natalia Sidorova, and Wil M.P. van der Aalst

Department of Mathematics and Computer Science,
Eindhoven University of Technology,

P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
{d.m.m.schunselaar,f.m.maggi,n.sidorova,w.m.p.v.d.aalst}@tue.nl

Abstract. Declarative languages are becoming more popular for
modelling business processes with a high degree of variability. Unlike
procedural languages, where the models define what is to be done, a
declarative model specifies what behaviour is not allowed, using con-
straints on process events. In this paper, we study how to support con-
figurability in such a declarative setting. We take Declare as an example
of a declarative process modelling language and introduce Configurable
Declare. Configurability is achieved by using configuration options for
event hiding and constraint omission. We illustrate our approach using a
case study, based on process models of ten Dutch municipalities. A Con-
figurable Declare model is constructed supporting the variations within
these municipalities.

Keywords: business process modelling, configurable process models,
declarative process models, Declare.

1 Introduction

Process-aware information systems [4], such as workflow management systems,
case-handling systems and enterprise information systems, are used in many
branches of industry and governmental organisations. Process models form the
heart of such systems since they define the flow of task executions. Traditionally,
the languages used for process modelling are procedural languages, since they are
very appropriate for describing well-structured processes with a predefined flow.
At the same time, procedural models become very complex for environments
with high variability, since every possible execution path has to be encoded
in the model. In the most extreme cases, like specifications of some medical

� This research has been carried out as part of the Configurable Services for Local
Governments (CoSeLoG) project (http://www.win.tue.nl/coselog/).

�� This research has been carried out as a part of the Poseidon project at Thales under
the responsibilities of the Embedded Systems Institute (ESI). The project is partially
supported by the Dutch Ministry of Economic Affairs under the BSIK program.

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 20–37, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.win.tue.nl/coselog/

Configurable Declare: Designing Customisable Flexible Process Models 21

Fig. 1. Example of Declare model describing the process for requesting an excerpt from
the civil registration (Mun. A)

Fig. 2. Automaton obtained from the translation of the Declare model in Fig. 1

protocols, the process flow cannot be completely predefined, and the procedural
way of modelling becomes impossible.

Unlike procedural languages, specifying what should be done, declarative lan-
guages specify which constraints may not be violated, and therefore they allow
for comprehensible descriptions of processes with a high degree of variability.
Declarative languages are also very appropriate for defining compliance models,
which specify what should (not) be done instead of saying how it should be
done. Consider, for instance, the set of rules in Fig. 1 from our case study. By
translating this simple set of rules into an automaton1, we obtain the procedural
model in Fig. 2 that is much more complex.

1 We have used the Declare tool (http://www.win.tue.nl/declare/) for the transla-
tion of Declare models to automata.

22 D.M.M. Schunselaar et al.

In recent years, a number of declarative process modelling languages were
developed [1,10,11,14] and proven to be more suitable for certain application do-
mains than procedural languages [6,12,19]. Nevertheless, since declarative pro-
cess modelling languages attracted the attention of the research community at
the later stage, when procedural languages were already massively used, there
are still serious gaps in the domain of declarative process modelling which are
still to be filled in. In this paper, we address one such a gap: configurability of
declarative process models.

Nowadays, many branches of industry have semi-standardised collections of
process models. Within one branch, process models of different organisations are
often very similar due to legislation and (partial) standardisation, e.g., processes
for registering a birth or extending a driving license would be very similar to
each other for different municipalities. A one-size-fits-all approach with full stan-
dardisation of processes is however often inappropriate, as these organisations
have good reasons for using specific variants of these common processes.

Configurable process models were introduced to solve the aforementioned
problems [8,9]. They allow the user to change some parts of the model towards
the user’s preferences. This solves the one-size-fits-all problem and improves
maintainability of processes since it becomes possible to describe several slightly
different models by a single configurable model. When the configurable model
is changed, all process models are updated automatically. To the best of our
knowledge, the only kind of existing configurable process models are procedural
models.

In this paper, we study in which way configurability in the declarative context
is different from configurability in the procedural context. For this purpose, we
consider the example declarative language Declare [11], in which constraints are
LTL-formulas evaluated on traces of events executed in a process, and we define
Configurable Declare. Since a declarative process model is a set of constraints
over a set of events (representing the completion of a specific task in a business
process), the configuration options we include in Configurable Declare are (1)
hiding an event and (2) omitting a constraint. Through a configuration, it is
possible to specify, for each configuration option, a boolean value that indicates
whether a hideable event must be hidden or an omittable constraint must be
omitted in the configured model.

Like most declarative languages, Declare works under the open world assump-
tion, and, therefore, hiding an event does not mean forbidding this event to be
executed. As the name suggests, hiding means allowing some event to become
unobservable, unmonitored, unlogged. The behaviour of a model in which an
event is hidden should remain the same as it was modulo this event. In the case
of a Declare model, where process behaviour is considered to be defined by the
set of traces (language) compliant with the model, hiding an event should result
in a model with the same language modulo the hidden event.

To achieve language preservation, we take into account implicit constraints
that would be lost if we simply removed from the model the event and the con-
straints connected to the event. For example, consider a model with constraints

Configurable Declare: Designing Customisable Flexible Process Models 23

“every paper submission is followed by a review” and “every review is followed
by sending a notification letter” in which the event “review” gets hidden. This
implies that the two constraints we have will be removed together with the event.
To preserve the language modulo the hidden event “review”, we have to include
the implicit constraint “every paper submission is followed by sending a notifica-
tion letter” into the configured model. We define a derivation scheme for implicit
constraints that allows us to have a sound transformation of a configurable model
and a configuration to a configured model.

Since some configurations might lead to uninteresting or undesirable process
variants, we introduce meta-constraints, which are defined as logical expressions
over configuration choices, e.g., “if event A is hidden, then eventB is not hidden”.
Meta-constraints, in fact, restrict possible configurations to configurations that
make sense from the content-wise perspective.

To support process modelling with Configurable Declare, we have developed
ConfDeclare [16]. We have used this tool in the context of the CoSeLoG2

project for a case study based on process models from ten Dutch municipalities.
These models represent the production of an excerpt from the civil registration.
In particular, starting from the different variants of the process (one for each
municipality) we build a Configurable Declare model from which these variants
can be derived.

Related Work. Configurable process models have been defined for a number of
procedural modelling languages, e.g., C-SAP WebFlow , C-BPEL, C-YAWL [8],
CoSeNets [18], and C-EPC [13]. Imperative configurable process models sup-
port a number of standard operations. Some patterns for procedural configurable
models have been identified to support these operations [2,3,8,15]. Configurable
Declare supports those patterns that can be mirrored to the declarative ap-
proach.

The paper is structured as follows: Section 2 gives a brief introduction to
Declare. In Section 3, we introduce Configurable Declare. Section 4 explains the
configuration steps: hiding an event and omitting a constraint. In Section 5, we
show how to derive a Declare model from a Configurable Declare model and
a configuration. Finally, in Section 6, we draw some conclusions and discuss
directions for future work.

2 Declare: A User-Friendly Declarative Language

A process can be described by using different types of modelling languages. Pro-
cess modelling languages can be classified according to two categories: procedural
and declarative. A procedural model works with a “closed world” assumption,
i.e., it explicitly specifies all the acceptable sequences of events in the process and
everything that is not mentioned in the model is forbidden. Procedural process
models can be used to provide a high level of operating support to participants

2 http://www.win.tue.nl/coselog/

http://www.win.tue.nl/coselog/

24 D.M.M. Schunselaar et al.

Table 1. FLTL operators semantics

operator semantics

©ϕ ϕ has to hold in the next position of a path.

�ϕ ϕ has to hold in all the subsequent positions of a path.

♦ϕ ϕ has to hold eventually (somewhere) in the subsequent positions of a path.

ϕ Uψ
ϕ has to hold in a path at least until ψ holds and ψ must hold in the current or
in some future position.

who simply follow one of the allowed sequences in the model during the process
execution. Therefore, this type of models is optimal in environments that are
stable and where the process flow can be fully described in the model.

In contrast, a declarative model describes a process through constraints that
should not be violated by the process execution. A declarative process model
works with an “open world” assumption, i.e., any event is allowed unless it is
explicitly forbidden by some constraint. This type of models can be used in highly
dynamic environments where processes have a low degree of predictability. This is
optimal when participants make decisions themselves and adapt the process flow
accordingly (e.g., a doctor in a procedure to treat a fracture). Using declarative
models for such processes allows for compact, readable representations.

In this paper, we study configurability of declarative process modelling lan-
guages taking Declare as an example of these languages. We explain here the
basics of Declare necessary in the context of configurability and we refer the
reader to [11] for a complete description of the language. Declare has formal se-
mantics based on the use of a temporal logic, but the modeler is not confronted
with this formal side, since the language has a user-friendly graphical notation
capturing behavioural patterns expressible as temporal logic formulas. These
patterns are a superset of the ones identified by Dwyer et al. in [5] and each of
them has a specific graphical notation and semantics.

Given that business processes eventually terminate, Declare reasons on finite
traces of events and uses a variant of LTL for finite traces called FLTL [7].
Table 1 contains the main FLTL operators and their semantics. Fig. 3 shows
the graphical notation for the response constraint (response(A,B)) in Declare.
The semantics of this constraint is captured in FLTL by �(A ⇒ ♦B) (“every
occurrence of event A is eventually followed by an occurrence of event B). In
Table 2, we summarise the graphical notation and the FLTL semantics of the
Declare constraints used in this paper.

A Declare model can be seen as a set of constraints, i.e., a conjunction of
FLTL formulas over events. Formally, a Declare model can be defined as follows:

Fig. 3. The response constraint between A and B

Configurable Declare: Designing Customisable Flexible Process Models 25

Table 2. Graphical notation and FLTL semantics of the Declare constraints used in
this paper

constraint FLTL semantics graphical notation

respone(A,B) �(A⇒ ♦B)

precedence(A,B) (¬B UA) ∨ �(¬B)

succession(A,B) response(A,B) ∧ precedence(A,B)

alternate response(A,B) �(A⇒©(¬A UB))

exclusive 1 of 2(A,B) (♦A ∧ ¬♦B) ∨ (¬♦A ∧ ♦B)

init(A) A

Definition 1 (Declare Model). A Declare model is a pair M=(E, C), where
E is a set of events and C is a set of FLTL formulas over events in E.

A trace of events belongs to the language of a Declare model, if it satisfies all
the constraints of this model:

Definition 2 (Language). The language of a Declare model M = (E,C), namely
L(M), is the set of all traces satisfying all the constraints from C.

The formal semantics allows every Declare model to be executable and verifi-
able. To verify the validity of a constraint on a trace, the corresponding FLTL
formula can be translated to a finite state automaton that accepts those and
only those traces on which the formula is satisfied. The automaton for the re-
sponse constraint in Fig. 3 is shown in Fig. 4; the initial state (marked by an
edge with no origin) is here also an accepting state (indicated using a double
outline). When event A happens, the state of the automaton is changed to a
non-accepting state; it changes back to the initial accepting state only when a
event B happens. Next to the positive labels, we also have negative labels (e.g.,
¬A). They indicate that we can follow the transition for any event not men-
tioned (e.g., we can execute event C from the initial state and remain in the

¬A
A

¬B

B

Fig. 4. Automaton for response(A,B)

26 D.M.M. Schunselaar et al.

same state). This allows us to use the same automaton regardless of the input
language, taking into account the open-world assumption. To verify the validity
of a Declare model M = (E,C) for a trace, we consider the automaton obtained
from the conjunction of the constraints in the model.

Fig. 1 shows a simple Declare model describing the process for requesting
an excerpt from the civil registration in a Dutch municipality. This model is
part of a case study conducted in collaboration with ten Dutch municipalities in
the CoSeLoG project. These municipalities model (and execute) this process in
different, but still very similar ways, which makes it interesting in the context
of configurability.

The Declare model in Fig. 1 involves nine events, depicted as rectangles, (e.g.,
Send payment request) and nine constraints, showed as connectors between the
events (e.g., succession). Events represent the completion of a specific task in
the business process. Constraints highlight mandatory and forbidden behaviours,
implicitly identifying the acceptable sequences of events that comply with the
model.

The constraint init shows that Fill in e-form must be the first task per-
formed in the process; note that it is not forbidden to execute this task again
later on. Since it is necessary to exactly evaluate the total amount of administra-
tive expenses before formulating a payment request, Send payment request can
be performed only after having performed Determine administrative expenses,
as indicated by the precedence constraint between the two events. Fill in pay-
ment information must eventually be followed by Process payment, and Process
payment cannot complete before that Fill in payment information is completed,
which is captured by the succession constraint, being the combination of prece-
dence and response constraints. The exclusive choice between events Stop (that
stops the procedure) and Fill in payment information, depicted as a line with a
black diamond, indicates that one of these two events must be performed in the
process but not both. The response constraint between Produce excerpt and sign
it and Archive indicates that whenever Produce excerpt and sign it is executed,
Archive must eventually follow.

3 Configurable Declare

In this section, we introduce Configurable Declare, an extension ofDeclare. While
in imperative languages, where the focus is on modelling the allowed behaviour,
configuration options aim at making some behaviour optional (e.g., by blocking
an event), in declarative languages the focus is on modelling restrictions on the
behaviour, and therefore our configuration options will aim at making the restric-
tions optional. One reason to make some restrictions in the model optional can
come from the inability to execute, control or monitor an event in some context.
In this case, we want to allow for hiding an event depending on the configuration
chosen. Another way to remove some restriction is by removing constraints from
the model. Therefore, Configurable Declare introduces the possibility of anno-
tating some constraints as omittable. Finally, we use meta-constraints to define
which options for configuring the model are combinable and which not.

Configurable Declare: Designing Customisable Flexible Process Models 27

(a) A hideable event (b) An omittable constraint

Fig. 5. Graphical representation of the configuration options

Formally, we define a Configurable Declare model as:

Definition 3 (Configurable Declare Model). A Configurable Declare model
is a tuple (M,Eh, Co,MC) where:

– M = (E,C) is a Declare model,
– Eh ⊆ E is a set of hideable events (graphically represented as in Fig. 5(a)),
– Co ⊆ C is a set of omittable constraints (graphically represented as in

Fig. 5(b)), and
– MC is a set of meta-constraints and each meta-constraint defines a nar-

rowing of the function space (Eh ∪ Co) → B. We call this narrowing the
configuration space of the Configurable Declare model.

For the sake of readability, we overload the notation used and write, for example,
¬e⇒ (¬c1∧¬c2) for the meta-constraint saying that if hideable event e is hidden,
then omittable constraints c1 and c2 must be omitted, which implies that the
configuration space only include functions, whose values on e, c1 and c2 obey the
meta-constraint.

To configure a Configurable Declare model, the user has to make, for each
hidable event and omittable constraint, a configuration choice specifying whether
a hideable event should be hidden, and whether an omittable constraint should
be omitted in the configured model.

Definition 4 (Configuration). Let Mconf = (M,Eh, Co,MC) be a Config-
urable Declare model. A configuration of Mconf is a function conf : (Eh∪Co)→
B from the configuration space of Mconf .

By applying a configuration to a Configurable Declare model, we obtain a con-
figured model, which is one of the possible variants deducible from the given
Configurable Declare model.

4 Configuration Steps

We choose a two-step approach for defining a configuration of a Configurable
Declare model. In the first step –abstraction– the user defines the part of the
configuration that specifies which hideable events must be hidden in the config-
ured model, thus setting the context for this model. The Configurable Declare

28 D.M.M. Schunselaar et al.

Fig. 6. An implicit constraint between A and C can disappear when removing B

model is, then, transformed into a modified Configurable Declare model obtained
by hiding the events that must be hidden according to the configuration. In the
second step –configuring constraints– the user defines the part of the configura-
tion that specifies which omittable constraints must be omitted in the configured
model. Starting from the modified Configurable Declare model obtained in the
first step, the configured model is derived by omitting the constraints that must
be omitted according to the defined configuration.

4.1 Abstraction

In the abstraction step, the user defines a configuration over the hideable events
by choosing (not) to hide events that are hideable in the Configurable Declare
model. Note that hiding an event in a Declare model does not mean that it
cannot occur, but it means that it is not monitored, implying that there can be
no constraints restricting the execution of that event.

In this step, the user can possibly hide events which are involved in im-
plicit constraints , i.e., constraints that can be deduced from other (explicit)
constraints. Consider, for instance, the model in Fig. 6 where every A is eventu-
ally followed by B, and every B is eventually followed by C. By transitivity, also
every A is eventually followed by C, which is an implicit constraint. Similarly to
hiding in other settings (e.g., in the process algebra context), we want a model
derived by hiding B to be visible-language-equivalent to the model where B is
not hidden (with the hidden event considered to be invisible, like a τ -event).
When hiding B, we cannot simply remove B together with all the constraints
connected to B, since this would also remove the implicit constraint between
A and C. To maintain the language equivalence, we have to take the implicit
constraints into account, and, when necessary, make implicit constraints explicit.

Table 3 presents an excerpt from the list of constraint combinations connecting
events A, B and C, and the corresponding implicit constraints that should be

Table 3. An excerpt of the language equivalences after the τ -abstraction of B

LB←τ (response(A,B) ∧ response(B,C)) = L(response(A,C))
LB←τ (response(A,B) ∧ succession(B,C)) = L(response(A,C))
LB←τ (precedence(A,B) ∧ precedence(B,C)) = L(precedence(A,C))

LB←τ (precedence(A,B) ∧ succession(B,C)) = L(precedence(A,C))
LB←τ (succession(A,B) ∧ response(B,C)) = L(response(A,C))
LB←τ (succession(A,B) ∧ precedence(B,C)) = L(precedence(A,C))
LB←τ (succession(A,B) ∧ succession(B,C)) = L(succession(A,C))

Configurable Declare: Designing Customisable Flexible Process Models 29

Fig. 7. The implicit constraint between A and C is not expressible in standard Declare

added when hiding B. In [16], the reader can find the full list of combinations of
standard Declare constraints with the strongest implicit constraint (expressable
in the standard Declare) corresponding to each combination. Several of these
combinations do not allow for maintaining the language equivalence and the
best we can do is to approximate the implicit constraint. Consider, for instance,
the model in Fig. 7 consisting of two alternate response constraints. When B is
not hidden, the configured model accepts (among others) traces ABCABC and
ABACBC, which are abstracted to ACAC and AACC when hiding B in the
traces. Therefore, when B is hidden, the configured model does not accept any
trace in which more than two occurrences of A happen without a C in between.
By removing B from the model (i.e., by substituting B by τ), we would need to
obtain a Declare model which accepts exactly such traces, but such a constraint
is not expressible in Declare.

The approach provided in [16] considers as implicit constraint the closest
constraint that is stronger than the necessary (inexpressible) constraint, which
is alternate response(A,C) for the example considered (this constraint does not
accept the trace AACC.) An alternative approach is to choose for the closest
weaker constraint. This issue can be fully overcome by extending Declare with
new constraints (in this case with a constraint that forces the occurrence of C
after two occurrences of A). When using only the standard Declare constraints,
the user should be notified in case the language preservation is violated.

Below we sketch the proof idea, supporting our method for hiding events. The
proof is done by comparing the languages of the models obtained from the same
Configurable Declare model using different configurations.

Theorem 1. Let M = (E,C) and M ′ = (E′, C′) be Declare models obtained
by not hiding/hiding an event e ∈ E in the Configurable Declare model ((E,C),
{e}, ∅, ∅), respectively. Then, Le←τ (M) = L(M ′), i.e., the language of model M
with event e considered as invisible is the same as the language of model M ′.

Proof. (Idea) We can transform M to an equivalent model M ′′ where the im-
plicit constraints in which e is involved are made explicit, maintaining the lan-
guage equivalence between M and M ′′. Considering that implicit constraints
are deducible from the explicit constraints in the model, this implies that we
do not constrain the behaviour any further. Afterwards, we transform M ′′ to
M ′ by removing event e and all constraints associated with e. Showing that
Le←τ (M ′′) = Le←τ (M ′) is straightforward, using the equivalences as shown in
Table 3. Therefore, we can conclude that model M is visible-language equivalent
to the model M ′ (with e abstracted to τ). 	

30 D.M.M. Schunselaar et al.

Fig. 8. Implicit constraints between A and C and between A and D are omittable

When a hidden event is involved in omittable constraints, the situation becomes
slightly more complicated. If an implicit constraint to be added to the model is
derived using an omittable constraint, the implicit constraint should be added
as an omittable constraint. Consider, for instance, the model in Fig. 8. The
constraint between A and B can be omitted and B can be hidden. If we choose
to hide B, we have to make explicit the implicit constraints between A and C
(c1) and between A and D (c2). However, since the constraint between A and B
is omittable, we have to make the implicit constraints c1 and c2 also omittable.

At the same time, we need to preserve correlations between implicit con-
straints. Consider, again, the model in Fig. 8. If the constraint between A and
B is omitted, then both the implicit constraints c1 and c2 disappear. This in-
troduces a correlation between the implicit constraints c1 and c2: they should
be either both present or both omitted in the configured model. This can be
encoded through meta-constraints as c1 ⇔ c2.

Deducing which correlations have to be maintained between pairs of implicit
constraints is straightforward. Consider, for instance, the models in Fig. 9, in
which all implicit constraints have been made explicit. Constraint c4 is deduced
from c1 and c3, and c5 is deduced from c2 and c3. In the model in Fig. 9(a),
explicit constraints c1 and c2, and c3 are all omittable. Starting from the omit-
table (explicit) constraints, we can build the deduction graph in Fig. 10(a). In
this graph, if explicit constraints are used to deduce an implicit constraint, we
include an hyperarc between the explicit constraints and the implicit constraint.
For instance, c4 is deduced from c1 and c3, hence, we include a hyperarc be-
tween c1, c3 and c4. Using the hyperarcs, we can induce meta-constraints like
(c1 ∧ c3)⇔ c4.

(a) model 1 (b) model 2

Fig. 9. Configurable Declare models with the implicit constraints (c4, c5) made explicit

Configurable Declare: Designing Customisable Flexible Process Models 31

c5c4

c1 c3 c2

(a) Deduction graph of model 1

c5c4

c3

(b) Deduction graph of model 2

Fig. 10. Deduction graphs of the Configurable Declare models in Fig. 9

Using the deduction graphs, we can easily induce correlations between im-
plicit constraints. Consider the Configurable Declare model in Fig. 9(b) and the
corresponding deduction graph in Fig. 10(b). From Fig. 10(b), we can induce
the meta-constraints c3 ⇔ c4 and c3 ⇔ c5. By transitivity, we obtain the meta-
constraint c4 ⇔ c5. Therefore, when hiding C, c4 and c5 must be both omitted
or both not omitted.

From the technical perspective, it would be easier to let the user first define
which constraints should be omitted and then choose which events should be hid-
den. In this case, omittability of implicit constraints and correlations between them
would be irrelevant. This would, however, require the user to make choices about
constraints that are defined on events which are not relevant for her practice.

4.2 Configuring Constraints

In the second step, the user can decide which omittable constraints should be
omitted in the configured model. It is also possible to include the option of
substituting a constraint by a different constraint into Configurable Declare.
However, this option can be considered as syntactic sugar. Indeed, substituting
a (default) constraint with different constraints can be obtained by considering
these constraints as omittable and providing a meta-constraint specifying that
exactly one of this constraints can be kept in the configured model.

In Fig. 11(a), for instance, we show a model in which the response(A,B) can be
substituted by either precedence(A,B) or by alternate response(A,B). This can
also be encoded through omittable constraints as depicted in Fig. 11(b) with a
meta-constraint enforcing that exactly one of the omittable constraints is kept in
the configured model. This is encoded as c1 ∨ c2 ∨ c3, where ∨ is the exclusive or.

(a) Substitutable response(A, B) (b) The substitutable constraints in
Fig. 11(a) encoded as omittable con-
straints

Fig. 11. Substitutable constraints in Configurable Declare

32 D.M.M. Schunselaar et al.

5 Methodology and Case Study

In this section, we present the deduction of a Declare model from a Configurable
Declare model. As mentioned before, this is done through a two-step approach.
First the context is set (Subsection 5.1), and then, some constraints are selected
to be omitted in the configured model (Subsection 5.2). The methodology is
presented by using an example from our case study. Further results about the
case study are given in Section 5.3.

5.1 Setting the Context

The first step for configuring a Configurable Declare model consists in selecting
which events should be controlled and which events are uncontrolled in the con-
figured model. Using Algorithm 1, the Configurable Declare model is transformed
into a (modified) Configurable Declare model. Here, the hideable events that are
chosen to be hidden (denoted as set Sh) are removed from the model. It can be
the case that hiding an event invalidates some meta-constraints, or even that the
event to be hidden is not hideable. Therefore, we first check whether all meta-
constraints are satisfied and whether all events in Sh are hideable (Sh ⊆ Eh).
If this is the case, the events in Sh are removed from the Configurable Declare

Algorithm 1: Setting the context for a Configurable Declare model
SetTheContext(Mconf , Sh, Mconf ′)
Input: Mconf the Configurable Declare model, Sh ⊆ Eh the set of
hidden events
Output: Mconf ′ the Configurable Declare model after abstraction
(1) if the meta-constraints MC are not satisfied
(2) return
(3) else
(4) Mtemp ←Mconf

(5) T ← all implicit constraints (using the transitive closure
based on the rules in [16])

(6) foreach event e ∈Mtemp

(7) if e ∈ Sh

(8) C ← all implicit constraints which have to be
made explicit after hiding e using the defined rules
(see [16])

(9) add all constraints from C to Mtemp

(10) add all meta-constraints related to the removal of
e (based on T) to Mtemp

(11) Remove all events from Mtemp which are hidden
(12) Remove all constraints from Mtemp which are related to

hidden events
(13) Update all meta-constraints in Mtemp which are related

to hidden events
(14) return Mtemp

Configurable Declare: Designing Customisable Flexible Process Models 33

Fig. 12. The Configurable Declare model

model, the implicit constraints are made explicit if needed, and meta-constraints
are updated accordingly. Otherwise, the empty model is returned.

Consider the Configurable Declare model in Fig. 12 (without any specified
meta-constraint at the beginning). Suppose that the user chooses to hide events
Assign to employee, Send to DMS department, and Indicate already paid.

If we hide Send to DMS department, we need to add to the modified model
(Mconf ′) a succession constraint between Process payment and Assign to em-
ployee (c1), and between Process payment and Indicate already paid (c2). Fur-
thermore, we have to include in Mconf ′ a succession constraint between Fill in
payment information and Assign to employee (c3), and between Fill in pay-
ment information and Indicate already paid (c4). Since the succession between
Fill in payment information and Send to DMS department can be omitted, we
have to maintain the correlation between c3 and c4, i.e., the meta-constraint
m1 = c3 ⇔ c4 is added to Mconf ′ .

In the second iteration, we process Assign to employee. This introduces a
succession between Process payment and Produce extract and sign (c5) inMconf ′ .
Furthermore, the succession between Fill in payment information and Produce
extract and sign it (c6) has to be made explicit, and we have to include the
meta-constraint m2 = c4 ⇔ c6 in Mconf ′ .

If we hide Indicate already paid, we need to add to Mconf ′ the constraints
succession(Process payment, Produce extract and sign it) and succession(Fill in
payment information, Produce extract and sign it). Note that no new meta-
constraints have to be included at this iteration. Finally, we have to remove the
hidden events from the model, and remove the constraints and update the meta-
constraints related to any of those events. This yields the Configurable Declare
model depicted in Fig. 13 (with meta-constraints m1 and m2).

5.2 Configuring Constraints

The second step for configuring a Configurable Declare model consists of select-
ing which constraints have to be omitted in the configured model (we indicate
this set of constraints with So). Omitting a constraint might invalidate some
meta-constraints, or it can be the case that the constraint to be omitted is not
omittable. Therefore, we first check whether all meta-constraints are satisfied

34 D.M.M. Schunselaar et al.

Fig. 13. The Configurable Declare model for municipality A after setting the context

and whether all constraints in So are omittable (So ⊆ Co). If this is the case, the
constraints in So are removed from the Configurable Declare model. Otherwise,
the empty model is returned (Algorithm 2).

Suppose that we start from the Configurable Declare model depicted in Fig. 13
(with meta-constraints m1 and m2). Suppose that the user chooses to remove
the succession between Fill in payment information and Produce extract and
sign it, and the precedence between Archive and Send excerpt. Since m1 and m2

are satisfied, succession and precedence can be removed from the model yielding
the model depicted in Fig. 1, which belongs to municipality A.

5.3 Case Study

For the case study, we have used models from the CoSeLoG project adopted by
ten different Dutch municipalities. We have used the model for municipality A
(depicted in Fig. 1) as running example to present our proposed approach. To
obtain the models depicted in Fig. 14 and in Fig. 15 for municipalities B and C,
we use the configurations showed in Table 4 and in Table 5.

Algorithm 2: Removing omitted constraints from the Configurable De-
clare model

Configurability(((E,C), Eh, Co,MC), So, Mconf ′)
Input: ((E,C), Eh, Co,MC) the Configurable Declare model, So ⊆
Co the set of omitted constraints
Output: Mdecl the Declare model after omitting the constraints
(1) if the meta-constraints MC are not satisfied
(2) return
(3) else
(4) return (E,C \ So)

Configurable Declare: Designing Customisable Flexible Process Models 35

Fig. 14. The Declare model for municipality B

Fig. 15. The Declare model for municipality C

Table 4. The context for municipalities B and C

Event Mun. B Mun. C

Archive hidden not hidden
Assign to employee not hidden hidden
Indicate already paid hidden not hidden
Process payment not hidden hidden

Send to DMS department not hidden not hidden

Table 5. The configurability for municipalities B and C

Constraint Mun. B Mun. C

precedence(Archive, Send Extract) omitted omitted
succession(Fill in payment information,Send to DMS department) omitted omitted

6 Conclusion

In this paper, we defined Configurable Declare, a configurable declarative lan-
guage. The configurability setting for declarative languages differs from the set-
ting for procedural languages. Indeed, while adding configurability options for
procedural languages implies that more options for allowed behaviour get in-
cluded in the model, adding configurability options for declarative languages
results in the inclusion of more options for restricting behaviour.

We have defined an approach to transform a Configurable Declare model and
a given configuration into a Declare model. While in the declarative setting re-
moving a constraint turned out to be a trivial transformation, in the procedural

36 D.M.M. Schunselaar et al.

setting removing a dependency between two events without influencing depen-
dencies between other events is far from being trivial. On the other hand, hiding
an event is easy to implement in the procedural setting, whereas it requires a
dedicated mechanism to maintain implicit constraints in the declarative setting.

We have applied our approach as a proof of concept to a case study and we
have been able to capture processes of ten Dutch municipalities in one readable
Configurable Declare model. This paper must be considered as a starting point
for Configurable Declare and there are several research directions we want to
investigate concerning this topic. Below we elaborate on some of them.

Outlook. Building a Configurable Declare model from scratch is a logical option
when a completely new process needs to be designed. However, in many cases
(like in our case study) organisations already have models of their processes
available and the configurable model should be built based on some existing
knowledge. To make it possible, we are working on an approach for automatic
generation of a Configurable Declare model from a given set of Declare models
in such a way that the original Declare models are derivable from the gener-
ated Configurable Declare model (by applying some configurations). A related
question is how to derive automatically a configuration for a given Configurable
Declare model resulting in a model that is similar to a given Declare model.

When an organisation wants to start configuring a configurable model for
some existing process for which no model is available, event logs can be used for
deriving an appropriate configuration.

Finally, we would like to introduce patterns for meta-constraints in order to ease
the design process. In particular, we want to develop a method for the automated
deduction of meta-constraints to forbid configurations that lead to unsatisfiable
models (models with no behaviour), or to models in which some important events
become not executable or some important constraints become trivially true [17].

References

1. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a Truly Declarative Service
Flow Language. In: The Role of Business Processes in Service Oriented Architec-
tures. Internationales Begegnungs- und Forschungszentrum fuer Informatik (IBFI),
Schloss Dagstuhl, Germany (2006)

2. Becker, J., Delfmann, P., Knackstedt, R., Kuropka, D.: Configurative process mod-
eling - outlining an approach to increased business process model usability. In: Pro-
ceedings of the 15th Information Resources Management Association Information
Conference (2004)

3. Dreiling, A., Rosemann, M., van der Aalst, W.M.P., Heuser, L., Schulz, K.: Model-
based software configuration: patterns and languages. EJIS 15(6), 583–600 (2006)

4. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Infor-
mation Systems: Bridging People and Software through Process Technology. Wiley
Interscience (2005)

5. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for
finite-state verification. In: Proceedings of the 21st International Conference on
Software Engineering, ICSE 1999, pp. 411–420. ACM (1999)

Configurable Declare: Designing Customisable Flexible Process Models 37

6. Fahland, D., Lübke, D., Mendling, J., Reijers, H., Weber, B., Weidlich, M., Zugal,
S.: Declarative versus Imperative Process Modeling Languages: The Issue of Un-
derstandability. In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R.,
Soffer, P., Ukor, R. (eds.) BPMDS 2009 and EMMSAD 2009. LNBIP, vol. 29, pp.
353–366. Springer, Heidelberg (2009)

7. Giannakopoulou, D., Havelund, K.: Automata-based verification of temporal prop-
erties on running programs. In: ASE, pp. 412–416. IEEE Computer Society (2001)

8. Gottschalk, F.: Configurable Process Models. Ph.D. thesis, Eindhoven University
of Technology, The Netherlands (December 2009)

9. Gottschalk, F., van der Aalst, W.M.P., Jansen-Vullers, M., La Rosa, M.: Config-
urable Workflow Models. International Journal on Cooperative Information Sys-
tems 17(2) (2008)

10. Lamport, L.: The temporal logic of actions. ACM Trans. Program. Lang.
Syst. 16(3), 872–923 (1994)

11. Pesic, M.: Constraint-Based Workflow Management Systems: Shifting Controls to
Users. Ph.D. thesis, Beta Research School for Operations Management and Logis-
tics, Eindhoven (2008)

12. Pichler, P., Weber, B., Zugal, S., Pinggera, J., Mendling, J., Reijers, H.A.: Imper-
ative versus Declarative Process Modeling Languages: An Empirical Investigation.
In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM Workshops 2011, Part I.
LNBIP, vol. 99, pp. 383–394. Springer, Heidelberg (2012)

13. Rosemann, M., van der Aalst, W.M.P.: A configurable reference modelling lan-
guage. Information Systems 32, 1–23 (2007)

14. Sadiq, S.W., Orlowska, M.E., Sadiq, W.: Specification and validation of process
constraints for flexible workflows. Information Systems 30(5), 349–378 (2005)

15. Schumm, D., Leymann, F., Streule, A.: Process viewing patterns. In: EDOC, pp.
89–98 (2010)

16. Schunselaar, D.M.M.: Configurable Declare. Master’s thesis, Eindhoven University
of Technology (2011),
http://alexandria.tue.nl/extra1/afstversl/wsk-i/schunselaar2011.pdf

17. Schunselaar, D.M.M., Maggi, F.M., Sidorova, N.: Patterns for a Log-Based
Strengthening of Declarative Compliance Models. In: Derrick, J., Gnesi, S., Latella,
D., Treharne, H. (eds.) IFM 2012. LNCS, vol. 7321, pp. 327–342. Springer, Heidel-
berg (2012)

18. Schunselaar, D.M.M., Verbeek, E., van der Aalst, W.M.P., Raijers, H.A.: Creating
Sound and Reversible Configurable Process Models Using CoSeNets. In: Abramow-
icz, W., Kriksciuniene, D., Sakalauskas, V. (eds.) BIS 2012. LNBIP, vol. 117, pp.
24–35. Springer, Heidelberg (2012)

19. Zugal, S., Pinggera, J., Weber, B.: The Impact of Testcases on the Maintainability
of Declarative Process Models. In: Halpin, T., Nurcan, S., Krogstie, J., Soffer, P.,
Proper, E., Schmidt, R., Bider, I. (eds.) BPMDS 2011 and EMMSAD 2011. LNBIP,
vol. 81, pp. 163–177. Springer, Heidelberg (2011)

http://alexandria.tue.nl/extra1/afstversl/wsk-i/schunselaar2011.pdf

Efficacy-Aware Business Process Modeling

Matthias Lohrmann and Manfred Reichert

Ulm University,
Databases and Information Systems Institute

{matthias.lohrmann,manfred.reichert}@uni-ulm.de

Abstract. In business process design, business objective models can ful-
fill the role of formal requirement definitions. Matching process models
against objective models would, for instance, enable sound comparison of
implementation alternatives. For that purpose, objective models should
be available independently of their concrete implementation in a busi-
ness process. This issue is not addressed by common business process
management concepts yet. Moreover, process models are currently not
sufficiently expressive to determine business process efficacy in the sense
of fulfilling a business objective. Therefore, this paper develops and in-
tegrates constructs required for efficacy-aware process modeling and apt
to extend common modeling approaches. The concept is illustrated with
a sample scenario. Overall, it serves as an enabler for progressive appli-
cations like automated process optimization.

Keywords: Business Process Modeling and Analysis, Business Process
Design, Business Objectives and Goals.

1 Introduction

The notion of business goals, objectives, or similar concepts has been widely
used to define the term business process (e.g., [1]). At the same time, semantic
quality of process models has been recognized as an important prerequisite for
successful adoption [2]. Nevertheless, objectives are still a notable exception to
the progress towards formal business process semantics, and are only rudimen-
tarily considered in common modeling approaches [3, 4]. The effectiveness of
processes in regard to achieving business objectives can be subsumed as busi-
ness process efficacy. The case for assessing and controlling business process
efficacy with formal business objective models can be illustrated by considering
exemplary application scenarios:

Scenario 1 (Automated Business Process Optimization). Process-aware infor-
mation systems (PAISs) collect data on process execution that could be leveraged for
automated business process optimization [5]. Consider, for instance, process abortions:
if a process instance cannot be completed, it should abort as early as possible to avoid
unnecessary consumption of resources. Next-generation PAISs might re-arrange control
flow to foster this behavior based on the execution logs of past instances. However, this
must be done in a way to maintain the overall efficacy of the business process. Thus,
a semantic link between business objectives and business process models is required.

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 38–55, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Efficacy-Aware Business Process Modeling 39

Scenario 2 (Identification of Business Process Variants). The management of
business process variants has emerged as an important business process management
(BPM) issue [6–8]. However, criteria to determine whether two process models are
variants of the same reference process remain a “missing link”. In this respect, modeling
business processes in a way that enables tracing to common business objectives can
provide an effective characteristic to assess the “equivalence” of process variants.

Scenario 3 (Benchmarking). Qualitative benchmarking deals with good practices
to identify opportunities for process improvement [9]. This often meets the resistance
of practitioners as the equivalence of process alternatives regarding their outcome is
doubted. Formalizing efficacy can help to alleviate this issue. Similar considerations
apply to more recent approaches like process performance management [10].

As depicted in Figure 1, our approach contributes capabilities which are required
to address the scenarios lined out, but not provided by the state of the art. This
includes a clear distinction between business objectives (as a formal requirements
definition) and business processes (as an implementation), and the ability to
formally determine whether and under which circumstances a business objective
is achieved, i.e. whether a business process is efficacious. Proper formalization
will, in the end, be key to efficient automation. Seamless integration of new
concepts with existing BPM approaches fosters applicability.

C
o

n
s

tra
in

t:

Integration w
ith established

B
P

M
 approaches

(e.g. process m
odeling)

Capability 1:

Model business objectives independently from
business processes, i.e. in a separate model

Capability 2:

Formally assess business process efficacy, i.e. whether
a business process fulfills a business objective

Fig. 1. Contribution Overview

2 Methodology and Outline

In general, business objectives exist independently of business processes. A cer-
tain process constitutes just one of many potential alternatives to achieve its
objective, e.g. by using another IT system or re-arranging the order of activities.
In other words, a business objective is achieved by inducing a state that satis-
fies particular criteria – no matter how this is done. Therefore, assessment and
control of business process efficacy generally require two modeling facilities:

1. A business objective meta-model that is sufficiently expressive to model business
objectives independently of corresponding business processes in the sense of a for-
mal requirements definition.

40 M. Lohrmann and M. Reichert

2. An efficacy-aware business process meta-model that is sufficiently expressive to
determine whether a corresponding business process model fulfills a business ob-
jective, i.e. whether it is efficacious.

Design Science Artifacts

Constructs Models Methods

Terminology:
Required constructs
for efficacy-aware
business process

models

Meta-model:
Interrelations between
constructs (business
objectives, extended

business process
models)

Method:
Operations required to

enable business
process model efficacy

assessment

Build

Evaluate

Business
Objectives

Business
Processes

Available Results

Enable to assess business
process model efficacy

Effectiveness Criteria

Integrate with common
modeling languages

Build

Instantiations

Sample process:
Meta-model

instantiation: efficacy-
aware business
process model

Build

Evaluate

Build

Evaluate

Fig. 2. Methodology to Contrive an Efficacy-aware Business Process Meta-model

As we presented results towards business objective modeling in [11], the fo-
cus of this paper lies on the second modeling facility, the efficacy-aware busi-
ness process meta-model. Since this is a goal-bound artificial construct, we orient
our methodology at the design science paradigm [12, 13]. Figure 2 presents an
overview reflecting the design procedures build and evaluate, and the design arti-
facts constructs,models, methods, and instantiations [13]. As a first step, we build
a set of required constructs based on available results. This provides us with a ter-
minology for further considerations. We then describe the relations between the
constructs identified, thus building a meta-model.1 The meta-model is amended
with operations required for efficacy assessment in the sense of a method. On
that basis, efficacy-aware business process models can be built. Evaluation of
results then occurs in reversed order: a sample process is used to evaluate the
effectiveness of the method, the meta-model and, in turn, the set of constructs.

In terms of functionality, the resulting artifacts can be considered as effective
if efficacy assessment has been enabled. As an additional effectiveness criterion
to ensure applicability, we also demand that results should integrate well with
existing business process modeling languages. This means that new constructs
and meta-model elements should only be used where required due to limitations
in well-established languages, and all new constructs should be well-connected
to existing terminology. Note that these effectiveness criteria correspond to the
second capability and the constraint stipulated in Figure 1. The first capabil-
ity, separating objective from process models, has been addressed in [11] which
provides the basis for this paper.

1 Note the shift in terminology: in terms of design science artifacts, our meta-model
constitutes a model.

Efficacy-Aware Business Process Modeling 41

Accordingly, Section 3 reflects existing results and related work as a starting
point to build our approach. Section 4 derives terminology required for efficacy
assessment. Section 5 builds a meta-model for efficacy-aware business processes.
Section 6 presents operations required for efficacy assessment as well as an ex-
emplary instantiation of the meta-model to discuss the validity of our results.

3 Background

This section discusses related approaches and summarizes our previous work.

3.1 Related Work

Since the notion of goals or objectives is part of most definitions of the term
“business process”, there have been a number of approaches towards integrating
objectives into process modeling. Table 1 summarizes related approaches along
a set of semantic requirements relevant in the context of business objectives. A
more detailed analysis is presented in [11].

Table 1. Semantic Requirements and Related Work

Semantic Requirements Reflection in Related Work Conclusions

Consideration of the affect-
ing environment: Objectives
must consider the state of
both target artifacts to be
created and altered and envi-
ronmental conditions (e.g. in
decision processes).

Mostly no formal, state-based
concept of objectives achieve-
ment (e.g., [14–16]); objectives
may be viewed not as state to be
achieved, but as set of tasks to be
executed (e.g., [17, 18]).

The requirement to de-
lineate objectives from
activities and to suffi-
ciently consider environ-
mental conditions are
still open issues.

Varying target environment:
Depending on environmental
conditions, the set of arti-
facts to be created or altered
and the set of operations to
be carried out may vary.

Goals are mostly discussed on an
abstract level without referring to
single target artifacts (e.g., [14,
15]) or without an environmental
conditions concept (e.g., [16, 18]).

Flexible adaptation to
environmental condi-
tions in terms of actu-
ally required process
results is still an open
issue.

Order constraints: Con-
straints to the order of activ-
ities to be carried out must
be representable).

Constraints are partially consid-
ered as an abstract construct [18]
or via consistency of paths [17].
Other approaches omit order con-
straints (e.g. [14–16]).

The notion of con-
straints is partly avail-
able, but needs to be
refined.

The gap of existing approaches regarding the coverage of semantic require-
ments is not surprising considering that goal structures are mostly used as an
auxiliary tool in process design, but not as a means to formally manage effi-
cacy. Typically, this leads to the absence of separate business objective models.
Instead, business objectives are integrated into business process models.

This view is also reflected in a number of general process modeling formalisms
(e.g., EPCs [4]) as well as, in a broader context, enterprise architecture ap-
proaches (e.g., [19]). It corresponds to the methods category of design science

42 M. Lohrmann and M. Reichert

artifacts, and the merits of related concepts should be evaluated in this context.
In contrast, this paper is mainly focused on constructs and models.

Beyond the related work discussed in Table 1, it is instructive to consider i*
[20] and KAOS [21] from the requirements engineering field. The i* framework
aims at documenting actors’ goals and dependencies in early-phase requirements
engineering, but not on formalizing objectives. Accordingly, i* addresses a dif-
ferent lifecycle stage and cannot be matched against the semantic requirements
for our approach. In turn, KAOS provides a framework for capturing aspects
relevant to information systems requirements engineering via an “acquisition
strategy”. The constraints construct in KAOS corresponds to the concept of
business objectives in [11] and could be extended by the aspects relevant to
BPM as discussed there (cf. Section 3.2). The focus of this paper, however, is on
integrating with common BPM approaches instead of requirements engineering.
To avoid unnecessary complexity, we thus settle for our approach which is more
specific in this respect.

Approaches towards the compliance of process models to given rules (e.g.,
[22]) are aimed at ensuring the compliance of process execution with constraints
imposed (e.g., legal requirements), but do not address issues such as deriving
required resources from a process model. They are thus not sufficient to enable
efficacy assessment.

3.2 Available Results from Previous Work

Addressing the first capability stipulated in Section 1, we suggested and evalu-
ated a meta-model for formal business objectives modeling in [11]. This paper
focuses on its integration with common business process modeling concepts to
enable efficacy assessment. Consequently, this section provides an overview on
relevant business objective concepts needed for the understanding of our results.

Business processes are enacted to induce a change to their environment. The
intended change constitutes a business objective. A näıve approach might be to
simply model a set of actions required to fulfill the business objective. However,
this is not sufficient, as business processes need to interact with their environ-
ment. This means that the intended final state must be derived from the initial
state of the environment. As an example, consider the approval of loans. The
loan decision must consider the customer’s credit history. Thus “approve loan”
is not sufficient to describe the business objective. This challenge lies behind
most of the constructs shortly presented in the following.

For business objective modeling, we discern target elements as characteristics
of the business process’s environment to be altered, and conditional elements as
characteristics that need to be considered to determine the intended final state.
Both make up the environmental elements of a business process. In our loan
approval example, the loan decision constitutes a target element, and its aspired
value depends on the state of the customer’s credit history as a conditional
element. To describe the state of both target and conditional elements, we use
the concept of binary state determinants (BSDs).

Efficacy-Aware Business Process Modeling 43

We discern between target BSDs and conditional BSDs, which relate the state
of target and conditional elements, respectively, to a value range, either abso-
lutely or in terms of other conditional elements. If the respective relation holds,
the BSD is fulfilled. Regarding our loan example, “loan decision = approved”
might be a target BSD, and “overdues < 5% of credit volume” might be a
conditional BSD. Target BSDs are classified according to types reflecting their
semantic interrelation with environmental conditions which can, in turn, be ex-
pressed through sets of conditional BSDs. Figure 3 provides an overview.

Types of Target BSDs

Monovalent Target Bivalent Target BSDs Trivalent Target BSDsMonovalent Target

BSDs

Must always be
fulfilled to achieve
the business

Bivalent Target BSDs

Environmental conditions must be considered to
determine if the target BSD must be fulfilled

Trivalent Target BSDs

State of
environmental
conditions
determines one of

objective, regardless
of environmental
conditions
Example: “customer
address validated =

three options: for
certain states, the
BSD must be
fulfilled, for other
states, the BSD

Fully Determinate

Bivalent Target BSDs

The related
environmental
conditions determine

Partially Determinate

Bivalent Target BSDs

Must be fulfilled if the
respective
environmentaladdress validated =

true”
states, the BSD
must not be fulfilled,
and for the
remaining states, we
are indifferent
D i d li

conditions determine
whether the BSD
must or must not be
fulfilled
Example: “loan

environmental
conditions are given
If not, we are
indifferent whether
the BSD is fulfilled

During modeling,
trivalent target BSDs
are resolved into two
partially determinate
bivalent BSDs

approved = true” Example: “customer
entered into data
base = true” (only
really necessary if
the loan is approved)the loan is approved)

Fig. 3. Types of Target BSDs

To model the environmental conditions that determine whether a bivalent
target BSD must be fulfilled, each bivalent target BSD is linked to a condi-
tional proposition. Conditional propositions consist of conditional BSDs that are
arranged into sets of necessary and sufficient sub-conditions (cf. Example 1).
The sub-conditions allow minimizing the number of required checking actions
by following a strategy to quickly approve or disapprove the proposition.

Thus, a business objective bundles a set of target BSDs. It is achieved if and
only if each target BSD comprised has assumed a state reflecting its condi-
tional propositions. An efficacious business process has to approve or reject each
conditional proposition, and manipulate target elements accordingly. Figure 4
shows an exemplary business objective model. The corresponding semantics are
described in Example 1.

44 M. Lohrmann and M. Reichert

Clearing
document

posted

Age class
amended

Impairment
document

posted
OR

true

Business
impairment
requirement

Symbols

Monovalent
Target BSD set

Conditional
Element

Conditional BSD /
Subcondition

Target / Conditional
BSD link

OR

AND
Necessary
Subconditions

Sufficient
Subconditions

Fully Determinate
Bivalent Target BSD set

Partially Determinate
Bivalent Target BSD set

Reporting
impairment
requirement

Payment
received

Payment received = false AND
Reporting impairment req’ment > 0

Amount
receivable

Impairment
document

NOT posted
AND

AND

false

Payment received = false AND
Reporting impairment req’ment > 0

Payment received = false AND
Business impairment req’ment > 0

Payment received = false AND
Business impairment req’ment > 0

Amount receivable > max
(Business impairment req’ment,
Reporting impairment req’ment)

…

…

= 0

= 0

1

4

3

2

A B C D

E

F

G

B

C

G

G

AND AND

Fig. 4. Exemplary Business Objective: Year-end Receivables Processing

Example 1 (Business Objective: Year-end Receivables Processing). Properly pro-
cessing receivables, e.g. open customer invoices, constitutes a business objective
during year-end closing in accounting. Figure 4 informally presents the respec-
tive objective model described in the following. The top four horizontal lines
in the model correspond to the relevant conditional elements, and the bottom
four lines correspond to target BSDs. Vertical lines and nodes are used to link
conditional elements and target BSDs by way of conditional propositions. For
reference, target BSDs and sub-conditions have been amended with numbers
and literals, respectively. The individual target BSDs are modeled as follows:

– Target BSD Clearing document posted (1): If payment has been received
for the receivable, it must be cleared, i.e. removed from the list of open
items. If not, a clearing document must not be posted. Accordingly, Clearing
document posted constitutes a fully determinate bivalent target BSD linked
to Payment received (A) as a conditional BSD. Since there are no other
conditional BSDs to be considered, there is no need to discern sufficient and
necessary sub-conditions.

– Target BSDs Impairment document posted / Impairment document NOT
posted : An open receivable must be impaired (i.e., its book value as an asset
must be reduced) in certain cases, but it must not be impaired in others.
Moreover, there may be circumstances where we are indifferent. Accordingly,
Impairment document posted constitutes a trivalent target BSD which we
resolve into two partially determinate bivalent ones: Impairment document
posted and Impairment document NOT posted.

Efficacy-Aware Business Process Modeling 45

• Target BSD Impairment document posted (2): Business and reporting
impairment requirements are needed if the receivable is not being fully
recoverable according to management’s judgment or having to be im-
paired for (legal) reporting guidelines, respectively. If there is no payment
but a business impairment requirement (B), or if there is no payment
but a reporting impairment requirement (C), the impairment must be
posted. Accordingly, the OR label associated with the target BSD indi-
cates that there are two sufficient sub-conditions, each consisting of two
conditional BSDs.
• Target BSD Impairment document NOT posted (3): On the other hand,
if no payment has been received (D), and there is neither a business nor
a reporting impairment requirement (E and F), an impairment must not
be posted. Thus, there are three necessary sub-conditions as indicated
by the AND label going with the target BSD.

– Target BSD Age class amended (4): If an open receivable has not been cleared
(D) and its amount is greater than the amount to be impaired (G), it must
be amended with an age class for correct balance sheet reporting (e.g., “>
12 months”). If the receivable has been reduced to zero through clearing or
impairment, we are indifferent whether an age class is amended. Therefore,
Age class amended constitutes a partially determinate target BSD with two
necessary sub-conditions.

Note that for target BSDs with more than one conditional BSD, the notation
allows showing either necessary or sufficient sub-conditions, depending on the
modeler’s choice, and that monovalent Target BSDs do not occur in our example.

The business objectives modeling approach has been derived from semantic
requirements (cf. Table 1) and tested against usability criteria by applying it
to an exemplary real-world case with a modeling method [11]. In contrast to
related work (cf. Section 3.1), it provides the ability to formally describe business
objectives as intended states of the environment. It also provides a convention
to model order constraints. However, this topic is not covered by our example,
as it is more of a challenge when modeling business objectives without referring
to a concrete process model.

4 Business Process Model Efficacy

In Section 3.2, we discussed how business objectives can be modeled indepen-
dently from business processes, thus addressing the first capability in Figure 1.
This section focuses on the second capability, enabling efficacy assessment. We
first deepen our understanding of what constitutes an efficacious business pro-
cess. Then, we discuss what information is required to assess efficacy.

Considering the notion of business objectives in [11], we can define:

46 M. Lohrmann and M. Reichert

Definition 1 (Business Process Model Efficacy). A business process model
is formally efficacious iff no target BSD in its business objective can be fulfilled
unless the respective conditions defined by the business objective are fulfilled.

A business process model is fully efficacious iff it is formally efficacious and
all conditions which the model poses to target BSDs, but which are not defined
by the business objective, are considered as reasonable by subject matter experts.

A business process model is ideally efficacious iff it is formally efficacious and
there are no additional conditions posed to target BSDs beyond those defined by
the business objective.

Note that ideally efficacious business processes do not occur in practice as each
business process requires resources which are not part of the business objective
(e.g., expenditure of labor).

According to Def. 1, assessing efficacy requires to analyze process models re-
garding the conditions they pose towards the fulfillment of target BSDs. To
assess formal efficiency, the conditions obtained are then compared to the con-
ditions posed by the objective model. Moreover, to assess full efficacy, they are
in matched against subject matter experts’ expectations.

Example 2 (Efficacy Assessment). As an example, reconsider the loan approval
process. Comparing it with the business objective, in this case, will clarify
whether decision criteria for loan approval such as the credit history are ob-
served, i.e. whether the process is formally efficacious. For full efficacy, however,
we also need to consider whether an unreasonable amount of working time is
required for the process. This is not documented in the business objective, but
requires the judgment of subject matter experts.

Efficacy assessment can be supported by consolidating and properly structuring
the conditions a business process poses to individual target BSDs. Similar to
the modeling of business objectives in [11], this can be achieved by amending
target BSDs with conditional propositions consisting of conditional BSDs. In
contrast to business objectives, business processes pose a conditional proposition
even to monovalent target BSDs, since each business process requires resources
to be available (i.e., there are no ideally efficacious processes, cf. Def. 1). As
discussed in Section 3.2, assessment can be simplified by structuring conditional
propositions into necessary and sufficient sub-conditions.

Example 3 (Necessary and Sufficient Sub-conditions). Again, consider the ap-
proval of loans. The availability of customer master data and the responsible
manager both constitute necessary sub-conditions. Assuming that the customer’s
credit history is usually available in the data base, but may also have to be
obtained manually, we have two sufficient sub-conditions: the described neces-
sary sub-conditions plus the data base entry, and the described necessary sub-
conditions plus the availability of a clerk for manual evaluation.2

Efficacy-Aware Business Process Modeling 47

Moreover, to achieve formal efficacy (cf. Def. 1), the environmental conditions
resulting from a process model with respect to a target BSD must “encompass”
the environmental conditions specified in the objective model. More precisely,
each necessary sub-condition of the target BSD in the business objective should
be a necessary sub-condition in the process model as well. Therefore, we discern
between the outer conditional environment and the inner conditional environ-
ment defined by process and objective model, respectively. Figure 5 summarizes
the constituents of the outer conditional environment. We use the Referent Mod-
eling Language (RML) described in [23], since it provides a concise means of
describing set relations. The concept of target presumptions will be illustrated
in Section 6.

Target BSDs
TB

Outer Conditional
BSDs OCB

nos.contains

Outer Conditional
Propositions OCP

tb.
depends on

Necessary Outer
Sub-conditions NOS

Sufficient Outer
Sub-conditions SOS

sos.contains

nos.requires sos.validates

ocp.
contains

nos.is target
presumption

Relevant RML Symbols

Set: class concept as
basic construct

Explicit partial many-to-
many relation

Implicit partial many-to-
many relation

Explicit total many-to-
many relation

Each left side set element
explicitly relates to exactly
one right side set element

Fig. 5. Relating Target BSDs and the Outer Conditional Environment

5 Efficacy-Aware Business Process Models

Business process modeling languages are mostly oriented at execution seman-
tics of business processes, for instance because this is required for computerized
workflow implementation. In terms of semantics, this requires modeling possible
task sequences, but not the formalization of the impact on target BSDs or en-
actment preconditions (e.g., the availability of labor). We thus need to extend
existing approaches towards efficacy-aware process models.

The Business Process Model and Notation (BPMN) constitutes a broadly ap-
plied language covering common process modeling concepts [3]. Since we aim at
seamless integration with well-established concepts (cf. Figure 1), we use BPMN
as a basis for extension instead of defining an entirely new formalism. Table 2
summarizes the additional terminology required. The meta-model presented in
Figure 6 shows how the necessary terms are interrelated, and how they integrate
with BPMN concepts.

In BPMN, the modeler is generally free with respect to the level of granularity
regarding tasks and activities as atomic or aggregate constructs. In our context,
however, we need to limit this degree of freedom to obtain stricter execution
semantics. Accordingly, we require tasks to be enacted atomically, i.e., either

48 M. Lohrmann and M. Reichert

Table 2. Required Terminology

BPMN Terms Efficacy-aware
Meta-model Terms

Semantic Adaptations

Data objects Environmental ele-
ments: affecting and
affected elements,
target and condi-
tional elements

Environmental elements replace data objects. From the
perspective of the business process, they comprise the
overlapping sub-sets of affecting elements (e.g., data
fields altered) and affected elements (e.g., resources
spent). From the perspective of the business objective,
they comprise target elements and conditional ele-
ments (cf. Section 3.2). Both perspectives overlap. For
example, a target element can be an affected element
and an affecting element.

Conditions
attached to
split gateways

Branches and branch-
conditional BSDs

A branch is a sequence flow succeeding a conditional
split gateway. Branch-conditional BSDs take up the
concept presented in [11]. They are used to describe
split gateway conditions by relating affecting elements
to absolute or relative conditions (e.g., “A = 5” or
“A < B”). Thus, branch-conditional BSDs represent
environmental conditions that co-determine which
tasks are enacted.

[none] Task-requisite BSDs The BSD concept is also used to describe enactment
preconditions attached to tasks. Semantically, we as-
sume that an enabled task is enacted if and only if all
task-requisite BSDs are fulfilled. Task-requisite BSDs
may relate to resources that just need to be available
(e.g., “information system available = true”), or to re-
sources actually spent (e.g., “working time available >
1h”).

[none] State operations State operations related to tasks are used to model
effects on affected elements as functions (e.g., “A = A
+ B”). We assume that if a task is enacted, all related
state operations are executed, and that state opera-
tions related to tasks are the only elements of business
process models with an impact on affected elements.

Environmental
Elements EE

Affecting
Elements AGE

Affected
Elements ADE

Target
Elements TE

Conditional
Elements CE

Control Flow
Constructs CFC

Gateways G

+

+

Tasks T

t.requires

State
Operations SO

t.induces

ade.is left-side element

Task-requisite
Binary State

Determinants TB

Branch-conditional
Binary State

Determinants BCB

age.is
left-side
element

age.is
left-side
element

Branches Bb.
requires

b.induces

g.triggers

Relevant RML Symbols

Set: class concept as basic
construct.
Grey elements are comprised
in the BPMN set of constructs;
events, activities, sequence
flow etc. are not shown for
lack of a direct relation to
efficacy-aware extensions

Explicit partial many-to-many
relation

Implicit partial many-to-many
relation

Explicit partial many-to-one
relation

Each left side set element
explicitly relates to exactly one
right side set element

Disjoint total generalization+
Overlapping total
generalization

Fig. 6. Efficacy-aware Business Process Meta-model

Efficacy-Aware Business Process Modeling 49

Task-requisite BSDs:
- Payments list available
- Clerk time available >= 10
State operations:

- Payment identified := Payment received
- Clerk time available -= 10

Check for
payment

Perform
business

impairment
test

Clear open
item

Branch-conditional BSD:

Payment identified

Age
receivable

Branch-conditional BSD:

Amount receivable = 0

Perform
reporting

impairment
test

Post
impairment

Branch-conditional BSD:

Impairment amount = 0

Task-requisite BSDs:
- Manager time available >= 5
State operations:

- Impairment amount :=
business impairment
requirement

- Manager time available -= 5

Task-requisite BSDs:
- Clerk time available >= 10
State operations:

- Impairment amount posted := true
- Amount receivable := amount receivable –

impairment amount
- Clerk time available -= 10

Task-requisite BSDs:
- Aging transaction available
State operations:

- Age class amended := true

Task-requisite BSDs:
- Payment identified
- Clerk time available >= 10
State operations:

- Clearing document posted := true
- Clerk time available -= 10

Task-requisite BSDs:
- Impairment amount available
- Clerk time available >= 5
State operations:

- Impairment amount :=
max(impairment amount,
reporting impairment requirement)

- Clerk time available -= 5

1

4 5
8

7

6

2

3

12

9

10
11

Fig. 7. Exemplary Business Process: Year-end Receivables Processing

in total or not at all. Thus, tasks do not have internal execution semantics.
Trivially, this can be achieved by sufficiently refining tasks during modeling.

Figure 7 illustrates a process modeled in terms of BPMN and amended with
additional information according to Table 2. Its semantics are described in Ex-
ample 4.

Example 4 (Sample Business Process). Figure 7 depicts a sample process model
which corresponds to the business objective model from Figure 4. Relevant con-
trol flow elements have been annotated with reference numbers 1-12.

Business objective and business process relate to the management of receiv-
ables during year-end closing. Receivables are first matched against unallocated
payments (1). If payment has been identified (3), the receivable is cleared (12).
Otherwise (2), it is assessed in an impairment test based on management’s ap-
praisal (4) and formal criteria (5). If an impairment amount has been identified
(7), the impairment is posted (8). If an open item remains (10), it is allocated
to an age class (11). The latter task, for instance, can be enacted if it is enabled
and the aging transaction is available (task-requisite BSD). If it is enacted, the
age class is amended (state operation).

6 Efficacy Assessment Method and Sample Validation

Since our approach towards an efficacy-aware business process models extends
BPMN with a small set of additional terms, we may assume the second effective-
ness criterion (i.e., integration with common modeling languages) to be fulfilled.
Accordingly, our validation focuses on the functional requirement of enabling to
assess business process efficacy. Figure 5 shows which information must be avail-
able to allow assessing efficacy. This section discusses, by means of the sample

50 M. Lohrmann and M. Reichert

Table 3. Target BSDs, State Operations, and Control Flow Paths

Target BSD
(cf. Fig. 4)

Relevant State Operation
(Task No.)

Control Flow Path Alternatives
(cf. Fig. 7 for reference numbers)

Clearing document
posted

Clearing document posted =
true (12)

(1-3-12)

Impairment document
posted

Impairment document posted
= true (8)

(1-2-4-5-7-8)

Impairment document
NOT posted

Impairment document posted
= true (8)

NOT (1-2-4-5-7-8)

Age class amended Age class amended = true (11) (1-2-4-5-7-8-10-11) OR (1-2-4-5-6-10-11)

process described in Example 4, how this information can be derived from an
efficacy-aware business process model and used for efficacy assessment. It thus
demonstrates a method as discussed in Section 2.

To enable efficacy assessment for a business process model, we require infor-
mation about the outer conditional environment of target BSDs as described in
Figure 5. This information is obtained by executing three steps presented in the
following. The fourth step constitutes the actual efficacy assessment.

Step 1 (Matching Target BSDs, State Operations, and Control Flow
Paths). State operations describe the actions carried out on environmental ele-
ments when enacting tasks (cf. Table 2), and are required to fulfil target BSDs.
Table 3 therefore matches target BSDs against relevant state operations and
possible control flow paths to enact the state operations.

Note that, for the third target BSD (Impairment document NOT posted), the
relevant state operationmust not be executed to fulfill the target BSD. This issue
generally occurs for fully determinate bivalent target BSDs and for de-composed
trivalent target BSDs (cf. Section 3.2).

Building relevant control flow paths necessitates traversing the process model.
This is trivial for our simple example, but may get more complex in other cases.
Respective algorithms are discussed in, for instance, [24]. Loops with an an
unspecified number of iterations mostly reflect sets of uniform target elements
to be managed. As an example, consider lists of documents to be processed.
In line with common modeling approaches [25], this issue is best addressed by
using a corresponding structure of super- and sub-processes. Efficacy assessment
is then executed separately for each level.

Step 2 (Consolidating Control Flow Paths). To determine the outer con-
ditional environment required to fulfill a target BSD, we need to consolidate
the BSDs comprised in relevant alternative control flow paths (cf. Table 3)
considering the respective state operations. This can be achieved by “merg-
ing” subsequent control flow path elements until each relevant control path has
been consolidated into one set of conditional BSDs. The required operations are
shortly described in this step, but formalized in [26]. Two subsequent control
flow elements are merged as follows:

Efficacy-Aware Business Process Modeling 51

(a) Apply the state operations of the first element to the BSDs of the second element.
This is necessary to consider that state operations of the first element might affect
BSDs of the second element.

(b) Merge the resulting BSDs with the first element’s BSDs.
(c) Merge the first element’s with the second element’s state operations.

This provides us with new sets of BSDs and state operations, which jointly
describe a new virtual control flow element.

Example 5 (Control Flow Path Consolidation). The results of recursively follow-
ing through the consolidation procedure for the first relevant control flow path
of the Age class amended target BSD are presented in Figure 8. The top line de-
picts the relevant control flow path alternative extracted from the process model
(cf. Figure 7). In the second line, the merge operation has been executed for the
first two control flow elements. In this case, the respective sets of BSDs do not
address common environmental elements. Accordingly, the branch-conditional
BSD of (2) has simply been added to the merged set of BSDs of the new virtual
control flow element. The third line shows the results of following through the
merge procedure for the entire control flow path alternative, so that only one
virtual control flow element remains. This element bundles all BSDs and state
operations as though they would be enacted in a single task.

For more complex processes, the consolidation of control flow paths can be
structured along sub-processes that occur multiple times. Virtual control flow
elements can then be re-used. In our example, this applies to 1-2-4-5-7-8: this sub-
path is relevant to both Impairment document posted and Age class amended.
Note that parallel execution paths can be handled by using block-structured
process models and recursively consolidating parallel paths into activities. As
an additional consistency condition, this requires that the affected elements of
neither parallel path are affecting elements of the other one (cf. Table 2).

Step 3 (Building Necessary and Sufficient Sub-conditions). Necessary
and sufficient outer sub-conditions for a target BSD as defined in Figure 5 can
now be derived according to a simple schema:

– Each set of merged BSDs of a consolidated control flow path constitutes a sufficient
outer sub-condition since fulfillment of the BSDs is sufficient to enable the target
BSD. Accordingly, there are as many sufficient outer sub-conditions as there are
control flow path alternatives for a target BSD (cf. Table 3

– Any merged BSD that occurs in each control flow alternative constitutes a
necessary outer sub-condition. Note that, for the purpose of necessary outer sub-
conditions, BSDs where the same set of affecting elements is covered in each control
flow alternative are represented by their most “relaxed” form (in our case, this ap-
plies to the available clerk time).

– If the state operation inducing the target BSD has affecting elements, an addi-
tional necessary outer sub-condition is derived from the image function describing
the operation’s content (cf. [26, Def. 4]): the target presumption as included in

52 M. Lohrmann and M. Reichert

T
a

s
k

-r
e

q
u

is
it

e
 B

S
D

s
:

-
P

ay
m

en
ts

 li
st

 a
va

ila
bl

e
-

C
le

rk
 ti

m
e

av
ai

la
bl

e
>=

 1
0

S
ta

te
 o

p
e

ra
ti

o
n

s
:

-
P

ay
m

en
t i

de
nt

ifi
ed

 :=

P
ay

m
en

t r
ec

ei
ve

d
-

C
le

rk
 ti

m
e

av
ai

la
bl

e
-=

 1
0

C
he

ck
 fo

r
pa

ym
en

t

P
er

fo
rm

bu

si
ne

ss

im
pa

irm
en

t
te

st

B
ra

n
c

h
-

c
o

n
d

it
io

n
a

l

B
S

D
:

N
o

pa
ym

en
t

id
en

tif
ie

d

A
ge

re
ce

iv
ab

le

B
ra

n
c
h

-

c
o

n
d

it
io

n
a
l

B
S

D
:

A
m

ou
nt

re
ce

iv
ab

le
>

0

P
er

fo
rm

re

po
rt

in
g

im
pa

irm
en

t
te

st

P
os

t
im

pa
irm

en
t

B
ra

n
c
h

-

c
o

n
d

it
io

n
a
l

B
S

D
:

Im
pa

irm
en

t
am

ou
nt

 >
0

T
a

s
k

-r
e

q
u

is
it

e
 B

S
D

s
:

-
M

an
ag

er
 ti

m
e

av
ai

la
bl

e
>=

 5
S

ta
te

 o
p

e
ra

ti
o

n
s

:

-
Im

pa
irm

en
t a

m
ou

nt
 :=

bu

si
ne

ss
 im

pa
irm

en
t

re
qu

ire
m

en
t

-
M

an
ag

er
 ti

m
e

av
ai

la
bl

e
-=

 5

T
a

s
k

-r
e

q
u

is
it

e
 B

S
D

s
:

-
C

le
rk

 ti
m

e
av

ai
la

bl
e

>=
 1

0
S

ta
te

 o
p

e
ra

ti
o

n
s
:

-
Im

pa
irm

en
t d

oc
um

en
t p

os
te

d
:=

 tr
ue

-
A

m
ou

nt
 r

ec
ei

va
bl

e
:=

 a
m

ou
nt

re

ce
iv

ab
le

 –
im

pa
irm

en
t a

m
ou

nt
-

C
le

rk
 ti

m
e

av
ai

la
bl

e
-=

 1
0

T
a

s
k

-r
e

q
u

is
it

e
 B

S
D

s
:

-
A

gi
ng

 tr
an

sa
ct

io
n

av
ai

la
bl

e
S

ta
te

 o
p

e
ra

ti
o

n
s

:

-
A

ge
 c

la
ss

am

en
de

d
:=

 tr
ue

T
a

s
k

-r
e

q
u

is
it

e
 B

S
D

s
:

-
Im

pa
irm

en
t a

m
ou

nt
 a

va
ila

bl
e

-
C

le
rk

 ti
m

e
av

ai
la

bl
e

>=
 5

S
ta

te
 o

p
e

ra
ti

o
n

s
:

-
Im

pa
irm

en
t a

m
ou

nt
 :=

m

ax
(im

pa
irm

en
t a

m
ou

nt
,

re
po

rt
in

g
im

pa
irm

en
t r

eq
ui

re
m

en
t)

-
C

le
rk

 ti
m

e
av

ai
la

bl
e

-=
 5

1
4

5
8

7
2

10
11

M
e

rg
e

d
 B

S
D

s
:

-
P

ay
m

en
ts

 li
st

 a
va

ila
bl

e
-

C
le

rk
 ti

m
e

av
ai

la
bl

e
>=

 1
0

-
N

o
pa

ym
en

t r
ec

ei
ve

d

P
er

fo
rm

bu

si
ne

ss

im
pa

irm
en

t
te

st

A
ge

re
ce

iv
ab

le

B
ra

n
c
h

-

c
o

n
d

it
io

n
a
l

B
S

D
:

A
m

ou
nt

re
ce

iv
ab

le
>

0

P
er

fo
rm

re

po
rt

in
g

im
pa

irm
en

t
te

st

P
os

t
im

pa
irm

en
t

B
ra

n
c
h

-

c
o

n
d

it
io

n
a
l

B
S

D
:

Im
pa

irm
en

t
am

ou
nt

 >
0

1

4
5

8
7

2
10

11

M
e
rg

e
d

 B
S

D
s
:

-
P

ay
m

en
ts

 li
st

 a
va

ila
bl

e
-

C
le

rk
 ti

m
e

av
ai

la
bl

e
>=

 2
5

-
N

o
pa

ym
en

t r
ec

ei
ve

d
-

M
an

ag
er

 ti
m

e
av

ai
la

bl
e

>=
5

-
B

us
in

es
s

im
pa

irm
en

t r
eq

ui
re

m
en

t a
va

ila
bl

e
-

m
ax

(b
us

in
es

s
im

pa
irm

en
t r

eq
ui

re
m

en
t,

re
po

rt
in

g
im

pa
irm

en
t r

eq
ui

re
m

en
t)

 >
 0

-
A

m
ou

nt
 r

ec
ei

va
bl

e
>

m
ax

(b
us

in
es

s
im

pa
irm

en
t

re
qu

ire
m

en
t,

re
po

rt
in

g
im

pa
irm

en
t r

eq
ui

re
m

en
t

-
A

gi
ng

 tr
an

sa
ct

io
n

av
ai

la
bl

e

1
4

5

8
7

2

10
11

M
e

rg
e

d
 s

ta
te

 o
p

e
ra

ti
o

n
s

:

-
P

ay
m

en
t i

de
nt

ifi
ed

 :=
 P

ay
m

en
t r

ec
ei

ve
d

-
C

le
rk

 ti
m

e
av

ai
la

bl
e

-=
 2

5
-

Im
pa

irm
en

t a
m

ou
nt

 :=
 m

ax
(b

us
in

es
s

im
pa

irm
en

t r
eq

ui
re

m
en

t,
re

po
rt

in
g

im
pa

irm
en

t r
eq

ui
re

m
en

t)
-

M
an

ag
er

 ti
m

e
av

ai
la

bl
e

-=
 5

-
Im

pa
irm

en
t d

oc
um

en
t p

os
te

d
:=

 tr
ue

-
A

m
ou

nt
 r

ec
ei

va
bl

e
:=

 a
m

ou
nt

 r
ec

ei
va

bl
e

–
m

ax
(b

us
in

es
s

im
pa

irm
en

t r
eq

ui
re

m
en

t,
re

po
rt

in
g

im
pa

irm
en

t r
eq

ui
re

m
en

t)
-

A
ge

 c
la

ss
 a

m
en

de
d

:=
 tr

ue

M
e

rg
e

d
 s

ta
te

 o
p

e
ra

ti
o

n
s

:
-

P
ay

m
en

t i
de

nt
ifi

ed
 :=

 P
ay

m
en

t r
ec

ei
ve

d
-

C
le

rk
 ti

m
e

av
ai

la
bl

e
-=

 1
0

In
te

rm
ed

ia
te

st

ep
s

om
itt

ed

F
ig
.
8
.
C
o
n
tr
o
l
F
lo
w

P
a
th

C
o
n
so
li
d
a
ti
o
n
E
x
a
m
p
le

(c
f.
F
ig
.
7
)

Efficacy-Aware Business Process Modeling 53

Figure 5. To this end, we substitute the function’s affected element in the target
BSD by the image function. The resulting term yields the target presumption. It
represents environmental conditions not caused by control flow, but by the final
state operation itself.

The resulting sub-conditions are then compared to the respective necessary sub-
conditions of the target BSD as per the objective model. Results for Age class
amended are shown in Table 4.

Table 4. Target BSDs and the Conditional Environment for Age class amended

Binary State Determinants
Outer Sub-conditions Objective Model:

Necessary
Sub-conditionsSufficient:

Path 1
Sufficient:
Path 2

Necessary

Payments list available X X X

Clerk time available ≥ 25 X

Clerk time available ≥ 15 X X

Payment received = false X X X X

Manager time available ≥ 5 X X X

Business impairment req’ment available X X X

max(impairment requirements) > 0 X

max(impairment requirements) = 0 X

Amount receivable > max(imp. req’s) X X X

Aging transaction available X X X

Step 4 (Assessing Efficacy). To compare the outer conditional environment
as defined by a process model to the conditional environment of a business
objective, we must mainly consider the inconsistencies. According to Def. 1,
Table 4 enables to conclude:

– Target BSDs included in the business objective but not covered by state operations
signify that the business process is not formally efficacious, because the business
process alone is not sufficient to fulfill all target BSDs. This is not the case in our
example.

– Necessary sub-conditions of the business objective not covered by the process in-
dicate that the business process is not formally efficacious, because it may induce
target BSDs without considering relevant constraints. Again, this is not the case
in our example.

– Necessary outer sub-conditions of the process model with regard to a Target BSD
that do not correspond to necessary sub-conditions of the business objective indi-
cate resources required by the business process to induce a target BSD. It needs
to be judged whether these are considered as reasonable – the process may be not
fully efficacious even if it is formally efficacious.

For our sample process, we can conclude that the process is formally efficacious.
Whether it is fully efficacious will mainly depend on whether the associated
requirements regarding available labor resources are deemed as reasonable by
subject matter experts. Our sample validation has thus shown that our business

54 M. Lohrmann and M. Reichert

process meta-model (cf. Figure 6) enables efficacy assessment. As a next step, we
might use the objective model and the assessment method to evaluate alternative
implementation options for business process optimization.

7 Conclusion

In this paper, we built an approach towards efficacy-aware business process mod-
els based on the design science paradigm, insights on related work, and available
results on business objectives modeling. We derived required terminology from
functional requirements, and integrated the results into a meta-model extending
BPMN. We described a method to assess the efficacy of a corresponding process
model, and demonstrated the validity of our approach by application to a sample
case, thus addressing our functional effectiveness criterion.

Together with the business objectives modeling approach presented in [11],
the results presented yield the capabilities required for application scenarios
described in Section 1: the ability to model business objectives independently
from business processes, and the ability to formally assess efficacy. Seamless
integration with established BPM methods is warranted. As an example of how
application scenarios might be further pursued, reconsider our first scenario:

Scenario 1 (Automated Business Process Optimization). Formal efficacy
assessment as demonstrated in Section 6 permits to determine whether process adapta-
tions compromise business objective achievement. It thus becomes possible to automat-
ically propose adaptations aimed at cost or time optimization and test their efficacy.
Propositions might either be derived from empirically assessing “wasteful” execution
paths, or based on random selection and subject to subsequent statistical assessment. A
prospective approach would require preliminary determination of the efficacious scope
of action. In this respect, the procedure of consolidating efficacy-aware process models
(cf. Section 6) would have to be inverted.

In addition to adoption of the results presented into practical application scenar-
ios, future work will also address integration of the business objectives modeling
approach with requirements engineering frameworks such as KAOS [21]. Corre-
sponding to the integration into the BPM field of knowledge, this will further
improve the practical appeal of the approach.

References

1. Davenport, T.J., Short, J.E.: The new industrial engineering: Information tech-
nology and business process redesign. Sloan Mgmt. Rev. (4) (1990) 11–27

2. Krogstie, J., Sindre, G., Jørgensen, H.: Process models representing knowledge for
action: a revised quality framework. Europ. J. of Inf. Syst. 15(1) (2006) 91–102

3. The Object Management Group: Business Process Model and Notation: Version
2.0 (2011) http://www.omg.org/spec/BPMN/2.0.

4. Scheer, A.W., Thomas, O., Adam, O.: Process Modeling Using Event-Driven Pro-
cess Chains. In: Process-aware Information Systems. Wiley (2005) 119–145

Efficacy-Aware Business Process Modeling 55

5. Reichert, M., Weber, B.: Enabling Flexibility in Process-aware Information Sys-
tems: Challenges, Methods, Technologies. Springer (2012) to appear.

6. Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process
models: the Provop approach. J. Sw. Mnt. Ev. Res. Pract. 22(6-7) (2010) 519–546

7. Li, C., Reichert, M., Wombacher, A.: Mining business process variants: Challenges,
scenarios, algorithms. Data & Knowl. Eng. 70(5) (2011) 409–434

8. Weber, B., Reichert, M., Mendling, J., Reijers, H.A.: Refactoring large process
model repositories. Comput. Ind. 62(5) (2011) 467–486

9. Camp, R.C.: Benchmarking: the search for industry best practices that lead to
superior performance. Quality Press (1989)

10. IDS Scheer: Process intelligence white paper: What is process intelligence? (2009)
http://www.process-intelligence.com.

11. Lohrmann, M., Reichert, M.: Modeling business objectives. In: Proc. 4th S-BPM
ONE – Scientific Research. LNBIP 104 (2012) 106–126

12. Simon, H.A.: The Sciences of the Artificial. 3rd edn. MIT Press (1996)
13. March, S.T., Smith, G.F.: Design and natural science research on information

technology. Decis. Support Syst. 15(4) (1995) 251–266
14. Kueng, P., Kawalek, P.: Goal-based business process models: creation and evalu-

ation. Bus. Process Manag. J. 3(1) (1997) 17–38
15. Neiger, D., Churilov, L.: Goal-oriented business process modeling with EPCs and

value-focused thinking. In: Proc. 2nd BPM. LNCS 3080 (2004) 98–115
16. Markovic, I., Kowalkiewicz, M.: Linking business goals to process models in se-

mantic business process modeling. In: Proc. 12th EDOC, IEEE (2008) 332–338
17. Soffer, P., Wand, Y.: On the notion of soft-goals in business process modeling.

Bus. Process Manag. J. 11(6) (2005) 663–679
18. Lin, Y., Sølvberg, A.: Goal annotation of process models for semantic enrichment

of process knowledge. In: Proc. 19th CAiSE. LNCS 4495 (2007) 355–369
19. Engelsman, W., Quartel, D., Jonkers, H., van Sinderen, M.: Extending enterprise

architecture modelling with business goals and requirements. Ent. Inf. Sys. 5(1)
(2011) 9–36

20. Yu, E.S.K.: Towards modelling and reasoning support for early-phase requirements
engineering. In: Proc. 3rd Int’l Symp. on Requirements Engineering, IEEE (1997)
226–235

21. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed requirements acqui-
sition. Sc. of Comp. Programming 20(1-2) (1993) 3–50

22. Ly, L.T., Knuplesch, D., Rinderle-Ma, S., Göser, K., Pfeifer, H., Reichert, M.,
Dadam, P.: Seaflows toolset – compliance verification made easy for process-aware
information systems. In: Proc. CAiSE’10 Forum. LNBIP 72 (2010) 76–91

23. Sølvberg, A.: Data and what they refer to. In: Conceptual Modeling. Springer
(1999) 211–226

24. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms.
3rd edn. MIT Press (2009)

25. Weske, M.: Business Process Management. Springer (2007)
26. Lohrmann, M., Reichert, M.: Formalizing concepts for efficacy-aware business pro-

cess modeling. Technical Report UIB-2012-05, Databases and Information Systems
Institute, Ulm University (2012)

Automated Resource Assignment

in BPMN Models Using RACI Matrices�

Cristina Cabanillas, Manuel Resinas, and Antonio Ruiz-Cortés

Universidad de Sevilla, Spain
{cristinacabanillas,resinas,aruiz}@us.es

Abstract. Organizations need to manage the responsibility of their em-
ployees with respect to all the activities that are daily carried out within
them. Process-oriented organizations need to do it, in addition, in accor-
dance to the business processes their members participate in. However,
powerful mechanisms to manage responsibility in combination with busi-
ness processes are missing in current modelling notations, usually limited
to indicating who is in charge of undertaking the activities. RACI matri-
ces, on the contrary, were specifically conceived to provide responsibility
management information. They enable the specification of the level of re-
sponsibility each human resource has with regard to each activity carried
out in a company, ranging from the performer of the work to the resource
that must approve it or receive certain notifications. In this paper, we
propose the use of RACI matrices together with business process models
to manage human resource responsibilities in processes. Focused on a
concrete type of RACI matrices, called RASCI, we introduce a novel ap-
proach to automatically generate a BPMN model with RASCI informa-
tion given a BPMN model that does not handle resources, and a RASCI
matrix. The resulting model is BPMN-compliant and, thus, it is ready
to be executed in existing business process management systems. With
this approach, the assignment of responsibilities and the management of
processes can be designed separately, while being executed together.

Keywords: Responsibility management, RACI matrix, RACI-aware
BPMN model, RASCI sub-process, RASCI meta model.

1 Introduction

Organizations need to manage the assignment of responsibilities to their mem-
bers with respect to the activities that must be carried out within them. This
means that, in order to have an action plan of the work performed by every
member, not only associating functions to each member of the organization
is necessary, but providing a way to organize and display these responsibility
assignments is required too. This can be done by means of a Responsibility As-
signment Matrix (RAM), also known as RACI matrix or Linear Responsibility

� This work has been partially supported by the European Commission (FEDER),
Spanish Government under project SETI (TIN2009-07366); and projects THEOS
(TIC-5906) and ISABEL (TIC-2533) funded by the Andalusian Local Government.

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 56–73, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Automated Resource Assignment in BPMN Models 57

Chart (LRC) [1]. Such matrices provide a way to plan, organize and coordinate
work, and consist of assigning different degrees of responsibility for each activity
developed in the company to the members of an organization, such as who is in
charge of undertaking the activity and who must be informed once the action is
complete [2]. Several variants extending the functions considered in traditional
RACI matrices have appeared (e.g., RASCI matrices).

Besides, process-oriented organizations need to organize and control the ac-
tivities that are carried out in the company. This is typically done with business
process (BP) models that represent the control flow of the activities, together
with other perspectives of the process including data and resource management.
With regard to resources, most BP modelling notations existing at present allow
only the specification of who is in charge of performing the activities of the BP,
which is short scope with respect to all the issues involved in human resource
or responsibility management (i.e. with respect to RACI’s expressiveness). For
instance, the de-facto standard for BP modelling, Business Process Modelling
Notation (BPMN) [3], has this limitation.

Thus, there is an important distance between the responsibility information
that should be managed in an organization, and the one that is actually handled
with current BP modelling notations. Furthermore, given the increasing interest
of organizations to work with RACI matrices in combination with BPs [4], it is
evident that it is necessary either the improvement of the responsibility man-
agement capabilities of current BP modelling notations, or the development of a
mechanism to enrich the resource-related information contained in BP models.

In this paper, we address this problem and work in the latter direction. Specif-
ically, we introduce a novel approach to generate a BP model with complete re-
sponsibility information (i.e. a RACI-aware BP model) from a resource-unaware
BP model and a RACI matrix. Our approach tackles two main problems. On
the one hand, getting BP models with all the information required to be able
to execute them implies generating very accurate resource assignments for the
activities of the BP. However, this cannot be done directly due to the high level
at which RACI matrices and BP models are built. To overcome this issue, it is
necessary to provide extra information for the RACI matrix. In particular, some
information about the context in which the process is going to be executed, and
some restrictions to be considered, have to be indicated. We call this extra in-
formation binding information. On the other hand, the control flow of the BP
model must be changed according to the functions defined in RACI. To this end,
we propose a collection of transformations to model the information of a modal-
ity of RACI matrix called RASCI, together with the binding information, into
BPMN models. The transformations are as generic as possible and can be auto-
mated, and the resulting BP model has no intrusive information about RASCI
at first sight. Indeed, RASCI information is modelled at sub-process level1.

Notice that RASCI information could actually be modelled in BPMN with
no need of our approach in an ad-hoc manner. The use of swimlanes constitute
a possible mechanism to narrow this gap between RASCI and BPs. We could

1 Please notice that in this paper we may use terms RACI and RASCI interchangeably.

58 C. Cabanillas, M. Resinas, and A. Ruiz-Cortés

use them to represent organizational roles and place the proper activities in the
proper lanes to comply with the matrix. We worked on that line last year, in-
troducing a collection of RASCI patterns and an extension for BPMN 2.0 [3]
to allow the modelling of such patterns [5]. However, we realized that proceed-
ing that way has several problems. On the one hand, RASCI functions for each
activity are disseminated in the BP model, while they are actually part of the
work carried out for a single activity. On the other hand, the resulting BPMN
model may unnecessarily become very large and, consequently, difficult to read
and understand, due to the increase of lanes. Also, binding information can-
not be introduced with this approach based on swimlanes. Finally, keeping the
information of both elements (a RASCI matrix and its associated BP model)
consistent is difficult, since the modifications performed on one element should
be performed on the other as well. The replication of the information thus de-
rives in a synchronization problem. Therefore, the approach we present in this
paper has the following advantages with respect to the previous work:

– The resulting BPMN model is complete from the viewpoint of responsibility
management with respect to RASCI matrices. In addition, its appearance is
very similar of the initial BP model.

– The output BPMNmodel is ready to be executed in current Business Process
Management Systems (BPMSs), provided that they support the allocation
of resources to tasks.

– Synchronization of the BP model and the matrix can be performed automat-
ically by carrying out the transformations when the RASCI matrix and/or
the binding information change.

– There is a decoupling of BP management and resource management at de-
sign time, but they can be automatically mixed together to be executed in
combination at run time.

This paper is structured as follows. Section 2 introduces RACI matrices and
their use with BP models. Section 3 gives details about the type of binding
information required to complement RASCI information. Section 4 describes
the meta model that represents the whole application scenario. Section 5 details
our transformation-based approach together with some examples. A prototype
of the proposal is briefly described in Section 6. Then, some related work is
summarised in Section 7, and finally, conclusions drawn from this work and
some future work are presented in Section 8.

2 RACI Matrices

RACI matrices constitute a mechanism to represent the assignment of respon-
sibility of the members of an organization. In their standard modality, they are
utilised to associate activities with (human) resources, typically by using the
organizational roles (e.g. Project Coordinator, Sales Manager) the members of
an organization play within the company or given a specific context (e.g. in a
specific project or area) [1]. Figure 1 illustrates an example of RACI matrix. The

Automated Resource Assignment in BPMN Models 59

rows represent activities undertaken in a company, the columns of the matrix are
(human) resources, and each cell contains zero or more RACI initials indicating
the type of responsibility of such a resource on such an activity. As aforemen-
tioned, resources normally come in the form of organizational roles, as shown in
the table. However, depending on the company, resources may be represented
at different levels. For instance: (i) small companies could opt for using persons
directly in each column; or (ii) at a very high level we could find RACI matrices
in which each column would refer to specific organizational units. In this paper,
we are using the standard way, i.e., columns represent organizational roles.

The initial in the cells are different functions, called roles in RACI2:

– Responsible (R): person who must perform the work, responsible for the
activity until the work is finished and approved by an accountable. There is
typically only one person responsible for an activity.

– Accountable - also Approver or Final Approving Authority - (A): person who
must approve the work performed by the person responsible for an activity,
and who becomes responsible for it after approval. There must be one and
only one accountable for each activity.

– Consulted - sometimes Counsel - (C): this role involves the people whose
opinion is sought while performing the work, and with whom there is two-
way communication.

– Informed (I): person who is kept up-to-date about the progress of an activity
and/or the results of the work, and with whom there is just one-way com-
munication. There may be more than one informed person for an activity.

There are several variants of the original version of RACI matrices. Some are
based on extending the number of RACI roles to be considered for every activity,
e.g, RASCI or RACI-VS. Others give different meanings to the RACI initials.
In this paper, we build on RASCI matrices because they use a function that

Table 1. RASCI matrix for the process at pool ISA Group of Figure 1

2 We will use the term RACI role(s) to differentiate them from organizational roles.

60 C. Cabanillas, M. Resinas, and A. Ruiz-Cortés

IS
A

 R
es

ea
rc

h
 G

ro
u

p

Submit
Paper

Fill Travel
Authorizat ion

Send Travel
Authorizat ion

Register
at Conference

Any problem?

Make
Reservat ionsAccomodation

Transport

Travel
Authorizat ion

Sign Travel
Authorizat ion

Travel
Authorizat ion

Research Vice- chancellorship

No

Yes

Fig. 1. Conference Travel Management Process

may be interesting specially to IT organizations, where work or tasks needed to
complete an activity can usually be delegated to other people. RASCI matrices
involve the aforementioned RACI roles together with RASCI role Support :

– Support (S): people who may assist in completing an activity, i.e., the person
in charge can delegate work to them. Unlike Consulted, who may provide
input information to the activity (i.e., information helpful to perform some
work), Support will actively contribute in the completion of the activity.

A process-oriented organization could build one RASCI matrix for each BP used
in the company. The matrix would list its activities and the organizational roles
that participate in them for each RASCI role. Figure 1 shows a BPMN diagram
representing a collaboration between two BPs: one BP at pool Research Vice-
chancellorship and another one at pool ISA Research Group3. It illustrates a
simplified version of the procedure to manage the trip to a conference, according
to the rules of the University of Seville. We are going to focus on the BP carried
out at pool ISA Research Group. As can be seen in Table 1, the activities of the
matrix are exactly the BP activities in the model.

In outline, the process works as follows. It starts with the submission of the
Camera Ready version of an accepted paper by the PhD student whose paper has
been accepted for publication. After that, that student fills in an authorization
request to attend and present the paper at the conference. The coordinator of the
project that will finance the trip expenses must sign the authorization and inform
the student when it is done. The clerk of the research group the PhD student
belongs to is in charge of delivering the form for approval. In absence of problems,
the student must register at the conference and inform his/her PhD thesis’s

3 We remind the reader that in BPMN a process takes place within a single pool. Dia-
grams with two or more pools, in which messages between the pools are exchanged,
are called collaborations. All the process-oriented concepts used in this paper are
taken from BPMN 2.0 [3].

Automated Resource Assignment in BPMN Models 61

supervisor, as well as the project coordinator and the administrative assistant of
the project. Finally, the PhD student books the tickets needed, assisted by the
clerk of his/her research group, if required.

However, note that the previous description of the process contains some
nuances that are not incorporated in the RASCI matrix. In particular, specific
information about the individuals that have to be assigned to the RASCI roles
(e.g. the same PhD student during a single execution), or the context within
which it has to be done (e.g. the project coordinator of a specific project), is
missing in the matrix. The reason is that, as an organization, we aim at modelling
BPs that can be applied in different areas of the company (e.g. the same BP
may represent how to proceed with the application for a job, regardless of the
specific department in which the job is being offered). Similarly, RASCI matrices
must be as generic as possible, avoiding the replication of information due to the
application of a BP to those different areas or “contexts”. This flexibility in the
design of BPs and RASCI matrices is important, but means a problem when
trying to automate the combination of both elements, and the generation of the
corresponding resource assignments in the resulting BP model. How to solve it?
In order to overcome this issue, some extra information must be provided, which
we have called binding information.

3 Binding Information for Resource Assignment

Binding information complements the resource information provided by RASCI
matrices in order to enable automated BP resource assignment. This information
can be mainly of two types:

– Organizational unit context. Indicating only the organizational role for a
RASCI role is usually insufficient, since it does not limit the context in
which the BP is going to be run. Let us see it with an example. According
to the RASCI matrix in Table 1, role Project Coordinator is responsible
for activity Sign Travel Authorization. However, a project coordinator can
sign forms only for the project(s) he/she coordinates, so not any project
coordinator can perform this task in any execution of the process. Therefore,
it is necessary to indicate either directly the concrete data required (e.g.
name of the project we refer to in the current process instance), or where
this information can be found, e.g. in our BP the name of the project appears
in the Travel Authorization form filled in by the student (cf. Figure 1).

– Additional restrictions. Other information may be necessary in order to con-
strain the set of people that can be assigned certain RASCI role. For example,
sometimes it is essential that two activities of the same BP be carried out
not only by the same organizational role, but by the same person, i.e. Bind-
ing of Duties (BoD). In the scenario at hand the same PhD student submits
the paper and fills in the travel authorization form. Other times, exactly
the opposite may be necessary, i.e. Segregation of Duties (SoD), in order
to avoid conflicts of interests between individuals. Restrictions concerning
specific skills required to carry out a certain task may also be common.

62 C. Cabanillas, M. Resinas, and A. Ruiz-Cortés

Fig. 2. RASCI meta model with binding information

It is important to let the user define all these additional restrictions that
need to be taken into account for resource allocation at run time.

Notice that binding information must be given at RASCI role level, that is, for
each RASCI role participating in each BP activity of the matrix.

4 RASCI Meta Model with Binding Information

Taking all the aforementioned aspects into consideration, the meta model of a
RASCI matrix with binding information can be defined as shown in Figure 2.

– Class Activity represents the activities of the BP the RASCI matrix is associ-
ated to, and in which we aim to insert the responsibility-related information
necessary to make it work according to the matrix.

– Five relations between Activity and BoundRole represent the five RASCI
roles to be distributed among the members of the organization. The role
is bound because it may have binding information associated. The expres-
sions to specify the organizational unit context and any other additional re-
striction can be defined in classes UnitExpression and ResourceExpression,
respectively.
We have added the following conditions between Activity and BoundRole in
order to define some existence relations between RASCI roles. We use Object
Constraint Language (OCL)4 to specify the following invariants:

• When there is not a resource responsible for an activity (e.g. an au-
tomatic task executed directly by the system), the other RASCI roles
cannot exist, except RASCI role I. We exclude the information function
(I) because there may be automatic activities in the process consisting
of a notification message automatically sent by the system, but whose
destination can be a resource indicated in the RASCI matrix.

4 http://www.omg.org/spec/OCL/2.0/

Automated Resource Assignment in BPMN Models 63

context Activity inv:

if self.hasResponsible->isEmpty()

then

self.hasAccountable->isEmpty() and

self.hasSupport->isEmpty() and

self.hasConsulted->isEmpty()

endif

• When RASCI role R is in, then there must be an accountable, since this
role is mandatory according to RACI definition5 (cf. Section 2).

context Activity inv:

if not(self.hasResponsible->isEmpty())

then not(selt.hasAccountable->isEmpty())

endif

– The classes in gray in the figure represent the part of the organizational
meta model described by Russell et al. [6] we have relied on to build the
structure of an organization. We have added class UnitType for the sake
of understanding. In particular, each BoundRole is associated to a Role of
the organizational structure of the company. However, as aforementioned, a
person has a role in the context of an organizational unit (e.g. coordinator
of a certain project, or research assistant in a specific research group). This
relation is modelled by means of class Position. A position, thus, represents
a collection of roles in one specific organizational unit.

Let us take as example Activity Sign Travel Authorization of our use case (cf.
BP model in Figure 1 and RASCI matrix in Table 1) to exemplify the RASCI
meta model shown in Figure 2. The organizational roles that participate in this
activity (i.e. Project’s PhD Student and Project Coordinator) fit in class Role.
As aforementioned, every role is related to an organizational unit. In this case,
it is a project (class UnitType) called THEOS (class OrganizationalUnit). There
is a positional hierarchy for each organizational unit. For project THEOS it is
shown in Figure 3. It has six positions, occupied by seven persons. The relation
participatesIn of the meta model is outlined in the table attached to the figure.
For the rest of organizational units in the company, a similar model is required.

The rest of classes of the RASCI meta model (i.e. BoundRole, UnitExpression
and ResourceExpression) are specified at cell level. For RASCI roles R and A,
BoundRole contains the assignment to role Project Coordinator, together with a
UnitExpression stating that the name of the project can be found in file Travel
Authorization (handled in the process) during execution. For RASCI role I,
BoundRole is role Project’s PhD Student plus a ResourceExpression indicating
that it has to be the same person who performed activity Submit Paper. The
language used to specify the binding information, and thus, the whole resource

5 The lack of A in the table is interpreted as R and A being assigned to the same role.

64 C. Cabanillas, M. Resinas, and A. Ruiz-Cortés

THEOS's Project
Coordinator

THEOS's Account
Delegate

THEOS's Responsible
for Work Package

THEOS's Administrat ive
AssistantTHEOS's Technician

THEOS's PhDStudent
Anna

Betty

Daniel

AdeleChrist ine

Anthony

Charles

Position Role

THEOS’s Project Coordinator
Project Coordinator
Projec’s Account Administrator
Project’s Resource Manager

THEOS’s Responsible for Work Package
Project’s Responsible for Work Package
Project’s Researcher

THEOS’s PhD Student Project’s PhD Student
… …

Fig. 3. Excerpt of the organizational model of ISA Group from a project perspective

assignment expression for the BoundRole, depends on the language supported
by the BP modelling notation used. For instance, BPMN uses XPath6 by default
to define resource assignments.

5 Using a RASCI Matrix to Specify Resource
Assignments in BPMN Models

We already know all the information required to be able to automatically insert
RASCI information into a BP model in order to make it compliant with the
resource assignments of the matrix. As stated at the beginning of this paper,
BP modelling languages existing nowadays do not provide a explicit way to
model this RASCI-related information within BP models, being limited to the
assignment referring to RASCI role Responsible (R) in most cases. Nevertheless,
notations such as BPMN 2.0 offer extension mechanisms that may allow the
introduction of any type of information into the models and, thus, we can make
use of those features to add RASCI information [5].

We are working with BPMN [3] because it is the de-facto standard for process
modelling, and because its extension capabilities are sufficient to enable the
addition of the RASCI information we need to insert into the process models.

In the following, we introduce our approach to make a BPMN model RASCI-
aware in a generic and automatable way. Furthermore, the output BP after the
transformation from RASCI to BPMN is BPMN-compliant and has the required
information to be executed in existing BPMSs.

6 http://www.w3.org/TR/xpath/

http://www.w3.org/TR/xpath/

Automated Resource Assignment in BPMN Models 65

5.1 Resource Assignment Expressions in BPMN 2.0

Although swimlanes seem an easy and quick way to assign resources to the ac-
tivities of a BPMN model, they are not a convenient form to do it. The problem
basically relies on the lack of specific semantics for pools and lanes, which makes
them remain an element for pure visual organization of the process elements
in the model, as stated in the BPMN specification [3]. BPMN actually man-
ages resources at activity level, using by default XPath expressions to specify
resource assignments, although it permits the use of other languages. Making
use of that feature, in this paper we use Resource Assignment Language (RAL)
as an alternative to XPath to build resource assignment expressions.

RAL is a Domain Specific Language (DSL) specifically developed to express
resource assignments in BP activities [7]. It is based on the same organizational
meta model we used in Figure 2, which was defined by Russell et al. as basis to
describe the so-called Workflow Resource Patterns (WRPs)[8]. These are a col-
lection of patterns aimed at capturing the various ways in which resources can
be handled in workflows (WFs). RAL expressions range from very simple as-
signments based on specific individuals of the company, to complex assignments
containing access-control constraints (e.g. SoD) between activities, as well as
compound expressions. For instance:

RAL 1: IS Anna

RAL 2: NOT (IS PERSON WHO DID ACTIVITY SubmitPaper)

RAL 3: (HAS ROLE ProjectCoordinator) OR (HAS UNIT ResearchGroup)

Therefore, RAL allows expressing role-based assignments to specify the direct
assignments extracted from RASCI matrices, as well as binding information:

– Organizational unit context. To state that one RASCI role has to be per-
formed by an organizational role within a concrete organizational unit, we
could use RAL expression HAS UNIT UnitName, or expression HAS UNIT IN

DATA FIELD PathToData.DataField in case the information must be re-
trieved from a file stored in the Information System (IS) used in the com-
pany. Notice that the specific way to access data stored in the IS depends
on the implementation of the BPMS where the process is used, and so is the
way to express the path to the required file.

– Additional restrictions. RAL offers expressions to specify many types of con-
straints, such as expression IS PERSON WHO DID ACTIVITY ActName to indi-
cate BoD of a RASCI role with respect to the performer of another activity,
i.e. both RASCI roles have to be allocated to the same person. Similarly,
the negation of the previous expression can be used to define SoD. Expres-
sions such as SHARES SOME ROLE WITH PersonName and HAS CAPABILITY

CapabilityName allow the specification of other kinds of restrictions.

The reasons why we use RAL instead of XPath are:

– Even though XPath is a standard, it is barely supported by current BPMSs,
which usually implement resource assignments in an ad-hoc fashion.

66 C. Cabanillas, M. Resinas, and A. Ruiz-Cortés

– XPath is not conceived specifically for resources, so it is difficult to use it to
define resource assignment expressions.

– Derived from the previous point, XPath does not allow to express some
binding information such as SoD constraints or skill-based restrictions. We
refer the reader to [7] for further information about how to use RAL with
BPMN 2.0.

Besides, RAL’s formal semantics based on Description Logics (DLs) [9] pro-
vides it with powerful analysis capabilities, which could be useful in case we
subsequently wanted to extract and analyse RASCI information included in the
resulting BP model [10]. This analysis consists of answering questions related to
how resources are being managed in a BP. For instance, in a RACI scenario, we
could analyse the BPMNmodel resulting from our approach to check: (i) whether
there can be any person responsible (or accountable) for all the activities of the
process after allocation; or (ii) all the activities in which some person may partic-
ipate somehow (with any RASCI role); among others. The design-time analysis
of RAL expressions and its implementation within BPMN was described in [10].
Run-time analysis has already been developed and is being tested as part of a
Business Process Management System (BPMS) called Activiti7.

5.2 Generation of RASCI-Aware BPMN Models

In this section we introduce a collection of transformations that can be used
to include information coming from a RASCI matrix (plus binding data) in a
resource-unaware BPMN model. The BP activities that appear in the RASCI
matrix are changed into a sub-process with the name of the activity. All the
RASCI information will be contained in the sub-process. We will sometimes
refer to such a sub-process as RASCI sub-process. Within it, for each RASCI
role it is necessary to indicate:

– The control flow elements required, with the name convention pattern we
will use to make the transformation as automatic and generic as possible.

– The proper resource assignment expression associated to each new task.
This expression comes from class BoundRole of the RASCI meta model
(cf. Figure 2). Using RAL, the expression will be (i) (HAS ROLE Role IN

Unit In UnitExpression) AND (ResourceExpression), if there is a Unit-
Expression; (ii) (HAS ROLE Role) AND (ResourceExpression), otherwise.

We assume that there is only one person responsible and one accountable for
each activity (cf. meta model in Figure 2). Furthermore, the approval action
(RASCI role A) takes place after the completion of the work developed for the
activity, and only then the notification action (RASCI role I) can be performed.
We could opt for a different order of RASCI roles or, even, for allowing them
at different phases of the activity life cycle (for instance, to inform also before
the start of the task or during execution). However, in the latter case, changes
should be made in the RASCI matrix, and it is out of the scope of this paper.

7 http://activiti.org/

http://activiti.org/

Automated Resource Assignment in BPMN Models 67

RASCI Role I1

RASCI sub- process

Perform
Task T

BoD to RASCI Role R

Support S1
required
for T?

Approve
Activity T

Provide
Support by

S1 for T

Assess
Support

from S1 for T

Info from
C1 required
for T?

Provide Info
by C1 for T

Process
Response

from C1 for T

Inform Role
I1 about T

RASCI Role S1

BoD to
RASCI Role R

RASCI Role C1
BoD to

RASCI Role R

BoD to RASCI
Role R

RASCI Role A

Decide if
Support

S1
Required

for T

Decide if
Consulted

C1
Required

for T

T Approved?

BoD to
RASCI Role R

BoD to
RASCI Role R

RASCI Role R

Responsible

AccountableInformed

Support

Consulted

Yes

N
o

Yes

N
o

Yes

No

Fig. 4. Overview of a RASCI sub-process

The overview of a RASCI sub-process is depicted in Figure 4. BPMN groups
define the process fragments related to RASCI roles. In case a RASCI role does
not participate in the activity, the corresponding process fragment will be omit-
ted in the sub-process. If, on the contrary, there are several roles performing a
RASCI role, the associated process fragment will be added for everyone of them.
We will use activity Register at Conference of our RASCI matrix (c.f. Table 1)
to explain the transformations. Figure 5 shows the RASCI sub-process for it.

Responsible (R). This is the only RASCI role whose resource assignment
expression is associated to the RASCI sub-process itself, i.e. for activity Register
at Conference, the new sub-process has the following RAL expression: (HAS ROLE

ProjectsPhDStudent) AND (IS PERSON WHO DID ACTIVITY SubmitPaper).

68 C. Cabanillas, M. Resinas, and A. Ruiz-Cortés

HAS ROLE PhDThesisSupervisor IN UNIT IN
DATA FIELD StudentsInfo.Supervisor

HAS ROLE ProjectCoordinator IN
UNIT IN DATA FIELD

TravelAuthorizat ion.Project

HAS ROLE ProjectsAdminAssistant IN UNIT IN
DATA FIELD TravelAuthorizat ion.Project

Sub- process Register at Conference

Info from
PC required
for RAC? Provide

Info by
PC for RAC

Process
Response
from PC
for RAC

Perform Task
RAC

Inform Role
PhDTS about RAC

Inform Role
PAA about RAC

Inform Role PC
about RAC

IS PERSON WHO DID ACTIVITY
RegisterAtConference

HAS ROLE ProjectCoordinator IN
UNIT IN DATA FIELD
TravelAuthorizat ion.Project

Decide if
Consulted

PC Required
for RAC

IS PERSON WHO DID
ACTIVITY
RegisterAtConference

IS PERSON WHO DID ACTIVITY
RegisterAtConference

(HAS ROLE PhD Student) AND (IS PERSON
WHO DID ACTIVITY SubmitPaper)

Yes

No

Fig. 5. RASCI sub-process for activity Register at Conference of the BP in Figure 1.
Acronyms have been given for activities and roles for the sake of visualization.

Nonetheless, task Perform Task ActivityName is introduced in the RASCI sub-
process to represent the actual work to be completed for the activity. This task
is directly assigned to the performer of the sub-process, i.e. the RAL expression
for task Perform Task Register at Conference is IS PERSON WHO DID ACTIVITY

RegisterAtConference. This allows every element within the subprocess to
make reference to the performer of the activity being sure that there is already
an allocated performer. Note that if the activity itself were a sub-process, then
Perform Task Register at Conference would be that sub-process.

Accountable (A). To model this RASCI role we insert a new task into the
RASCI sub-process named Approve Activity ActivityName, in charge of approv-
ing the work developed in the activity at hand. Moreover, we have to add the
control flow required to go back to the beginning of the sub-process in case the
activity was not approved, by means of an XOR join gateway. The assignment
expression of RASCI role A will be assigned to the new task.

Automated Resource Assignment in BPMN Models 69

This process fragment can be omitted only if R and A are assigned to the
same organizational role in the RASCI matrix, and the binding information
for A consists of a BoD with respect to R (i.e. BoD between A and R). For
size reasons in Figure 5, we assume this is satisfied in our example activity. Note
that if the previous condition is met and no other RASCI role participates in the
activity, then the whole RASCI sub-process can be omitted and, thus, the result
of the transformation is the same initial activity with the resource assignment
expression corresponding to R.

Support (S). Inserting this RASCI role is not as straightforward for several
reasons: (i) support is not mandatory. It is a decision of the person in charge of
the task whether support is required to complete the work; (ii) it is said nowhere
that support cannot be requested more than once to the same organizational role
associated to RASCI role S in the matrix; (iii) it is inherent to term support
that the work performed by the person “external” to the task must be evaluated
by the resource in charge of the task (R) in order to decide whether the goal
of the support has been achieved and/or whether more support is required;
and (iv) it is not evident at which moment in task execution, support can be
requested. In this sense, we have to make some decisions. So, we propose the
control flow structure depicted in Figure 4 for RASCI role S, basically composed
of tasks Decide if Support Role Required for ActivityName, Provide Support by
Role for ActivityName and Assess Support from Role for ActivityName, and a
couple of XOR gateways. The task targeted at providing the required support is
assigned to the organizational role performing RASCI role S in the matrix with
the appropriate resource assignment expression. The rest of new tasks belong
to the person that is responsible for the activity. Thus, the resource assignment
expression for these tasks is a BoD constraint in RAL: IS PERSON WHO DID

ACTIVITY ActivityName. According to our RASCI matrix, activity Register at
Conference does not need support.

Consulted (C). The translation of this RASCI role into BPMN language is
very similar to RASCI role S. As depicted in the figure, the structure intro-
duced in the sub-process is the same, as well as the considerations to be made.
The only difference between the application of the two RASCI roles is in the
name of the tasks involved, and in the semantics of tasks Provide Support by
Role for ActivityName and Provide Info by Role for ActivityName. The person
in charge of the latter is not so much compromised with the global activity,
as his/her involvement is limited to providing certain information. For activity
Register at Conference, the RAL expression associated to the task performed by
the project coordinator, could be HAS ROLE ProjectCoordinator IN UNIT IN

DATA FIELD TravelAuthorization.Project. For the rest of tasks of this pro-
cess fragment, the associated RAL expression is IS PERSON WHO DID ACTIVITY

RegisterAtConference (cf. Figure 5).

Informed (I). This RASCI role has a very special difference with respect to the
others. The organizational role indicated in the matrix is the target person of

70 C. Cabanillas, M. Resinas, and A. Ruiz-Cortés

the notification action, not the performer like in the rest of cases. The problem is
that in BPMN we do not have a way to specify the resource “affected” by a task.
However, there is a mechanism based on message interchange to communicate
information to people working on other processes. The key point here is whether
the informed person can be considered an external participant or not. In case
that role does not participate in any other activity of the BP, it is undoubtedly
somebody external to the process. Thus, we could use messages to send the
notification. Otherwise, that person may have his own assigned tasks in the
process, and we do not have a way to notify something to that person without
interrupting his work flow. We believe that, given the RACI definition for I,
it is reasonable to consider it an external participant of the process under any
circumstances, due to the absence of collaboration from his part. Independently
of his responsibilities with respect to other BP activities, for that activity in
question he is a target, not an executor. Therefore, we will introduce task Inform
Role about ActivityName to represent an activity that sends a message to a
collapsed pool representing RASCI role I (cf. Figure 4). This task is assigned
to the person in charge of the main activity, like in RASCI roles S and C. For
activity Register at Conference, there are three informed people. The control
flow and the RAL expressions for them are directly shown in Figure 5.

Following these rules we can convert the initial BP model into another one
with the information necessary to implement RASCI in our organization. Fur-
thermore, the resulting model is very clean from the visualization perspective,
in the sense that it is very similar to the initial one. So, the overall under-
standability of the initial process is maintained. The real complexity related
to the RASCI information is found only when the RASCI sub-processes are
opened.

6 Implementation

An overview of the prototype we have developed for the approach is shown in
Figure 6. RACI2BPMN module receives the BPMN description of a resource-
unaware BP model as an XML file, and the representation of the associated
RASCI matrix together with the required binding information in a JSON file.
Applying the transformations explained in Section 5.2, the tool automatically
generates a BPMN model in which the previous tasks are now collapsed sub-
processes containing the RASCI-related information, i.e. the required control
flow and the proper assignment expressions. As depicted in the figure, the ap-
pearance of the resulting model is very similar to the initial process. We have
used RAL to write the resource assignment expressions because of its advantages
with respect to other options such as XPath (cf. Section 5.1). Nonetheless, a re-
quirement for the design of the prototype has been to allow the easy modification
of the language used for the assignment expressions.

The BPMN generated can be manipulated in any BP modelling tool, such
as Oryx [11], and it can be executed in BPMSs such as Activiti, in which we
have previously included the required functionality to process RAL expressions.

Automated Resource Assignment in BPMN Models 71

Fig. 6. Overview of the RACI2BPMN prototype

Notice that a pre-processing of the resulting BPMN model could be performed
before launching the process in order to make sure that the task labels in the
RASCI sub-processes conform to the name convention patterns established.

Further information about the prototype and examples can be found at
www.isa.us.es/cristal.

7 Related Work

Human resource management in BPs is an appealing challenge that is recently
catching much attention in academy. However, existing approaches are mainly
focused on indicating who must perform the BP activities and/or on introducing
the so-called access-control constraints (e.g. SoD, BoD) in WFs and BP models
[7, 12–15], but they leave aside the rest of responsibility functions involved in
RACI matrices.

Last year, we gave a step forward in the merger of RASCI matrices and
BPMN, introducing a collection of RASCI patterns, and an extension for BPMN
2.0 [3] to allow the modelling of such patterns [5]. Unlike our current approach,
that work was purely centered at design time and the assignment of organi-
zational roles to RASCI roles in the BPMN model was done by means of the
swimlanes. Now that RAL has a well-defined semantics, we believe it is a good
alternative to perform the resource assignments at activity level, as proposed
by BPMN 2.0. To the best of our knowledge, there are not other proposals so
far pursuing the same goal we are chasing [5]. Indeed, as derived from recent
studies, the handling of RACI matrices may become a very tough task [16].

In the market, on the contrary, it is noticeable the increasing interest of com-
panies and software developers in the use of RACI responsibility management
with BPs. Academic Signavio8 has recently added capabilities to indicate what

8 http://www.signavio.com/en/academic.html

www.isa.us.es/cristal
http://www.signavio.com/en/academic.html

72 C. Cabanillas, M. Resinas, and A. Ruiz-Cortés

RACI role each resource assignment associated to a task refers to, and to gen-
erate the RACI matrix automatically from the BPMN model. However, the
solution is ad-hoc, it is “just” a matter of design (without any semantics), and
the generation of the RACI matrix is something trivial having all the informa-
tion already in the model. The same is allowed in and applies to iGrafx for
Enterprise Modeling9. Other tools such as YAWL [17], WS-HumanTask [18] and
BPEL4People [19] do not provide support for RACI, being their improvements
on resource management mainly oriented to the introduction of capabilities for
task delegation, re-allocation, team work, and the like (see the definition of the
WRPs for further information about resource management in WFs [8]).

8 Conclusions and Future Work

From this work we can conclude that it is possible to join RASCI information
with BP models, and so be able to perform complete responsibility manage-
ment in our organization. Furthermore, it is possible to do so by generating a
BP model containing all the required information about resources (i.e. resource
assignment expressions including the binding information necessary) to be exe-
cuted by a process engine (i.e. a BPMS) with no need for any changes. In this
sense, with our approach we outperform the scope of previous work focused on
the use of BP swimlanes, which actually do not contribute in the generation of
an executable BP due to their lack of semantics, and the limited flexibility as for
expressing resource assignments. Our solution gets to keep the resulting BPMN
as “clean” as possible from the viewpoint of the initial process, since all the
RASCI information is at sub-process level. Besides, by decoupling responsibility
management and BP management, the problem of how to maintain the consis-
tency between the information in RASCI matrices and in BP models is already
solved. Any change regarding resources can be automatically applied to the BP
model by performing the transformation rules we introduced in this paper. This,
thus, avoids synchronization problems.

The approach presented in this paper could be specially useful to those organi-
zations that are not using BPs yet but want to move to a process-oriented style,
and use RACI to manage responsibility. Our transformations could help them
build RACI-aware BP model directly by re-using the information they have in
the RACI matrices.

The analysis of RASCI matrices regarding resource management, as well as
the resource assignment expressions resulting from the transformation, is part
of our future work in this line, for which we already have some results.

References

1. Smith, M.: Role And Responsibility Charting (RACI). In: Project Management
Forum (PMForum), p. 5 (2005)

2. Conchúir, D.O.: Human Resource Management Processes. In: Overview of the
PMBOK Guide, pp. 129–145. Springer, Heidelberg (2011)

9 http://www.igrafx.com/products/process4em/

http://www.igrafx.com/products/process4em/

Automated Resource Assignment in BPMN Models 73

3. BPMN 2.0, recommendation, OMG (2011)
4. ARIS, RACI. ARIS Community’s Website (2012),

http://www.ariscommunity.com/raci

5. Cabanillas, C., Resinas, M., Ruiz-Cortés, A.: Mixing RASCI Matrices and BPMN
Together for Responsibility Management. In: VII Jornadas en Ciencia e Ingeniera
de Servicios (JCIS 2011), vol. 1, pp. 167–180 (2011)

6. Russell, N., ter Hofstede, A., Edmond, D., van der Aalst, W.: Workflow Resource
Patterns. Tech. rep., BETA Working Paper Series, WP 127, Eindhoven University
of Technology, Eindhoven (2004)

7. Cabanillas, C., Resinas, M., Ruiz-Cortés, A.: RAL: A High-Level User-Oriented
Resource Assignment Language for Business Processes. In: Daniel, F., Barkaoui,
K., Dustdar, S. (eds.) BPM Workshops 2011, Part I. LNBIP, vol. 99, pp. 50–61.
Springer, Heidelberg (2012)

8. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond, D.: Workflow
Resource Patterns: Identification, Representation and Tool Support. In: Pastor, Ó.,
Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520, pp. 216–232. Springer,
Heidelberg (2005)

9. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.: The
Description Logics Handbook: Theory, Implementations, and Applications. Cam-
bridge University Press (2003)

10. Cabanillas, C., Resinas, M., Ruiz-Cortés, A.: Defining and Analysing Resource As-
signments in Business Processes with RAL. In: Kappel, G., Maamar, Z., Motahari-
Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 477–486. Springer, Heidel-
berg (2011)

11. Decker, G., Overdick, H., Weske, M.: Oryx – An Open Modeling Platform for the
BPM Community. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008.
LNCS, vol. 5240, pp. 382–385. Springer, Heidelberg (2008)

12. Bertino, E., Ferrari, E., Atluri, V.: The specification and enforcement of authoriza-
tion constraints in workflow management systems. ACM Trans. Inf. Syst. Secur. 2,
65–104 (1999)

13. Awad, A., Grosskopf, A., Meyer, A., Weske, M.: Enabling Resource Assignment
Constraints in BPMN. Tech. rep., BPT (2009)

14. Wolter, C., Miseldine, P., Meinel, C.: Verification of Business Process Entailment
Constraints Using SPIN. In: Massacci, F., Redwine Jr., S.T., Zannone, N. (eds.)
ESSoS 2009. LNCS, vol. 5429, pp. 1–15. Springer, Heidelberg (2009)

15. Strembeck, M., Mendling, J.: Modeling process-related RBAC models with ex-
tended UML activity models. Inf. Softw. Technol. 53, 456–483 (2011)

16. Bronkhorst, J.: RACI matrices - how difficult can it be? HP’s Website (June 2010),
http://h30507.www3.hp.com/t5/ITILigent-Service-Management/

RACI-matrices-how-difficult-can-it-be/ba-p/41138

17. Adams, M.: YAWL v2.3-User Manual. Tech. rep., The YAWL Foundation (2012)
18. Web Services-Human Task (WS-HumanTask) v1.1. Tech. rep., OASIS (2010)
19. WS-BPEL Extension for People (BPEL4People). Tech. rep., OASIS (2009)

http://www.ariscommunity.com/raci
http://h30507.www3.hp.com/t5/ITILigent-Service-Management/RACI-matrices-how-difficult-can-it-be/ba-p/41138
http://h30507.www3.hp.com/t5/ITILigent-Service-Management/RACI-matrices-how-difficult-can-it-be/ba-p/41138

Semantic Machine Learning
for Business Process Content Generation

Avi Wasser1 and Maya Lincoln2

1 University of Haifa, Israel
awasser@haifa.ac.il
2 ProcessGene Ltd.

maya.lincoln@processgene.com

Abstract. Business process modeling is considered a manual, labor in-
tensive task. It requires significant domain expertise and may be prone
to errors or inconsistencies due to reliance on human factors. Hence,
automation through reuse of predefined process models is becoming a
common practice for generating new models. In this work we extend a
previously proposed generation method by adding semantic learning ca-
pabilities that opt to improve the quality of generated business process
models. The learning mechanism analyzes, in real-time, the linguistic re-
lationships between process descriptors and adjusts them according to
human inputs that are accumulated during the modeling process. To
demonstrate the method we present a case-study from the food man-
ufacturing industry. To estimate the applicative value we further ex-
perimented the method on a real-life process repository, showing that
the learning mechanism increases the effectiveness of the previously sug-
gested method for automating the design of new business process models.

Keywords: Business process model design, Business process reposito-
ries, Business process semantic similarity, Machine learning.

1 Introduction

Business process modeling is considered a manual, labor intensive task. It re-
quires significant domain expertise and is prone to errors or inconsistencies due
to reliance on human, non-machine assisted activities. Hence, automating the
reuse of predefined process models is becoming a common practice for creating
new business process models. Research in this field has focused on structured
reuse of existing building blocks and pre-defined patterns that provide context
and sequences [5]. The work in [11] established a method for designing new
business process models from process repositories, based on semantic similarity.
This method guides business analysts that are non domain experts, by suggesting
process steps that are relevant for the realization of the process goal. The busi-
ness logic for such suggestions is extracted from process repositories through the
analysis of existing business process model activities. Each activity is encoded
automatically as a semantic descriptor using the Process Descriptor Catalog
(“PDC”) notation, suggested first in [12] and elaborated in [11].

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 74–91, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Semantic Machine Learning for Business Process Content Generation 75

This work aims to take the framework presented in [11] several steps forward
by: (1) proposing a machine learning mechanism that will take into account the
designer preferences at each design phase and adjust (in real-time) the sugges-
tions made by the automated design mechanism at the next design phases; and
(2) applying the suggested framework on real-life processes. Our work presents
the following innovations: (a) it provides a generic, real-time, machine learning
mechanism for the design of new business process models; (b) it equally utilizes
objects and actions for machine learning: we make use of all activity linguistic
components (object, actions and their qualifiers) concurrently, without special
focus on objects (as object centric methods do) or on actions (as activity-centric
methods do); and (c) it significantly extends the descriptor space model [11] to
enable the ongoing update of its underlying business logic as a result of learning,
turning it into a learning descriptor space.

The proposed extended method can assist process analysts in designing new
business process models while making use of knowledge that is encoded both
in the design of existing, related process models, and also from the accumu-
lated knowledge of the human designer. The extended framework is illustrated
throughout the paper using an example based on real-life processes from the
food manufacturing industry. We also use this process-repository to demonstrate
a case study, and use it as a basis for experiments that measure the effectiveness
of the proposed machine learning framework.

The paper is organized as follows: we present related work in Section 2, po-
sitioning our work with respect to previous research. In Section 3 we present
the semantic descriptor notion [11] as background to this work. In Section 4 we
elaborate the descriptor space concept presented in [11] to support the learn-
ing framework. We describe the extended automation method for designing new
business process models in Section 5. Section 6 introduces the case study and
our experiments and empirical analysis. We conclude in Section 7.

2 Related Work

Research on automated process model generation mainly focuses on supporting
the design of alternative process steps within existing process models [16,5,6,1].
The identification and choice of relevant process components are widely based on
the analysis of linguistic components - actions and objects that describe business
activities. Most existing languages for business process modeling and implemen-
tation are activity-centric, representing processes as a set of activities connected
by control-flow elements indicating the order of activity execution [19,10]. Other
works are action-centric, analyzing the connectivity and relationships between
actions [17].

In recent years, an alternative approach has been proposed, which is based
on objects (or artifacts/entities/documents) as a central component for business
process modeling and implementation. This relatively new approach focuses on
the central objects along with their life-cycles. Services (or tasks) are used to
specify the automated and/or human steps that help move objects through their

76 A. Wasser and M. Lincoln

life-cycle, and services are associated with artifacts using procedural, graph-
based, and/or declarative formalisms [8]. Such object-centric approaches include
artifact-centric modeling [14,2], data-driven modeling [13] and proclets [18].

Although most works in the above domain are either object, action or activ-
ity centric, only few works combine the three approaches in order to exploit an
extended knowledge scope of the business process. The work in [9] presents an
algorithm that generates an information-centric process model from an activity-
centric model. The works in [12,11] present the concept of business process de-
scriptor that decomposes process names into objects, actions and qualifiers. In
our previous review (see [11]) we identified only a few works that addressed the
design of new models. The work presented in [13], for example, utilizes the infor-
mation about a product and its structure for modeling large process structures.
[15] presents a method for designing new manufacturing related processes based
on product specification and required design criteria. The work in [6] supports
modeling recommendations based on the interpretation of process descriptions.

Focusing on our previous work in [11], we realized that although it presented
a method for new process model design based on business process descriptor
analysis, it didn’t apply a machine learning mechanism to provide a real-time
improvement of the suggested framework based on human inputs. We did find
some works that involve learning as means for achieving other business processes
repository utilization targets. For example, some works suggest frameworks for
better understanding business process models that apply learning during simu-
lations [3] or runtime [4], and the work in [7] uses reinforcement learning to solve
a resource allocation optimization problem.

In this work we elaborate research in this domain by: (a) proposing a learning
mechanism that will take into account the designer preferences at each design
phase and adjust (in real-time) the suggestions made by the design assistant
framework at next design phases; and (b) elaborating the descriptor space con-
cept to support learning frameworks.

3 The Semantic Descriptor Model

In the Process Descriptor Catalog model (“PDC”) [12] each activity is composed
of one action, one object that the action acts upon, and possibly one or more
action and object qualifiers, as illustrated in Fig. 1, using UML relationship sym-
bols. Qualifiers provide an additional description to actions and objects. In par-
ticular, a qualifier of an object is roughly related to an object state. State-of the
art Natural Language Processing (NLP) systems, e.g., the “Stanford Parser,”1

can be used to automatically decompose process and activity names into pro-
cess/activity descriptors.

For example, the activity “Manually mix wheat flour” generates an activity
descriptor containing the action “mix,” the action qualifier “manually,” the object
“flour” and the object qualifier “wheat.”

1 http://nlp.stanford.edu:8080/parser/index.jsp

Semantic Machine Learning for Business Process Content Generation 77

n

1

1

1

Process model

Activity

Action Object

1

Action qualifier

n

Object qualifier

1

n

11

Fig. 1. The activity decomposition model

In general, given an object, o, an object qualifier, qo, an action, a, and an
action qualifier, qa, a descriptor, d, is denoted as follows: d = (o, qo, a, qa). A
complete action is an action with its qualifier, and similarly, a complete object
is an object with its qualifier. We denote by a(d) the complete action part of
the descriptor, e.g., “manually mix” in the example, and similarly, o(d) denotes
the complete object part. In addition, qo(d) denotes the object qualifier part,
othin(d) denotes the object part of the descriptor (without its qualifiers), and
athin(d) denotes the action part.

3.1 A Descriptor Model for Process Design

The PDC model of [12] was enhanced by [11] to support automated process de-
sign. The extended model has two basic elements, namely objects and actions,
and four taxonomies are delineated from them, namely an Action Hierarchy
Model (AHM), an Object Hierarchy Model (OHM), an Action Sequence Model
(ASM) and an Object Lifecycle Model (OLM). The business action and object
taxonomy models organize a set of activity descriptors according to the rela-
tionships among business actions and objects both hierarchically and in terms
of execution order, as detailed next.

Cover

Cover

with
jam

Cover

with
sugar

Do

EvaluateAddMix

Add using

spoon

Manual

mix

Bake

Fig. 2. Segment of an action hierarchy model

The hierarchical dimension of actions and objects is determined by their qual-
ifiers. To illustrate the hierarchical dimension, a segment of the action hierarchy
model of a bakery is presented in Fig. 2 and a segment of the object hierarchy

78 A. Wasser and M. Lincoln

Bread

Banana

bread
Beer bread

Object

Yeast

Dry yeast

Lemon Raisin Oil

Olive oil

Spoon

Tea spoon

Cheese

Cheese

grater

Flour

Fig. 3. Segment of an object hierarchy model

model of a bakery is presented in Fig. 3. In the action hierarchy model, for ex-
ample, the action “Mix” It is a subclass (a more specific form) of “Manual mix,”
since the qualifier “Manual” limits the action of “Mix” to reduced action range.

It is worth noting that some higher-hierarchy objects and actions are gener-
ated automatically by removing qualifiers from lower-hierarchy objects and ac-
tions. For example, the action “Add” was not represented without qualifiers in the
bakery process repository, and was completed from the more detailed action: “Add
using spoon” by removing its action qualifier (“using spoon”) (see Fig. 2). This type
of objects and actions, namely: artificial objects and actions, are marked with a
dashed border. In addition, a root node “Do” is added to any action hierarchy
model and a root node “Object” is added to any object hierarchy model.

Flour Add Mix

Water Heat up Add to flour

Yeast Separate Mix with water Add to flour

Pour into glass

PourSift

Spray

Mix with flour

Bread Insert into oven Bake Cover Slice Pack Deliver

Fig. 4. Segment of an action sequence model of a bakery

Sifted flour Mixed flour

Water Hot water

Salt Weighed salt

Flour

Mixed water

Grained salt

Unbaked bread Baking bread Bread Sliced bread Packaged bread

Weighed flour Damaged flour

Fig. 5. Segment of an object lifecycle model of a bakery

In the action sequence model, each object holds a graph of ordered actions that
are applied to that object (see illustration in Fig. 4). For example, the object
“Flour” is related to the following action sequence: “Sift” followed by “Add,”
“Mix,” and finally “Pour.”

In the object lifecycle model each object holds a graph of ordered objects that
expresses the object’s lifecycle, meaning - the possible ordering of the object’s

Semantic Machine Learning for Business Process Content Generation 79

states. In other words, an OLM is a graph of ordered complete objects that
expresses the possible ordering of the object’s states (see illustration in Fig. 5).
For example, the object “Flour” is part of the following object lifecycle: “Flour”–>
“Sifted flour”–>“Mixed flour.”

Note that ASM and OLM are defined as sets of sequences and not as a single
sequence, since different unconnected processes in the repository may involve the
same object, and therefore contribute a different sequence to these models. We
denote the procedure for creating an ASM and an OLM for a complete object,
o, as: createASM(o) and createOLM (o), respectively.

4 The Learning Descriptor Space

In this section we extend the Descriptor Space (DS) concept presented in [11] to
express learned information regarding a designer’s preferences and knowledge.

Based on [11], it is possible to visualize the operational range of a business
process model as a descriptor space comprised of related objects and actions. The
descriptor space describes a range of activities that can be carried out within a
process execution flow. The coordinates represent the object dimension, the ac-
tion dimension, and their qualifiers. Therefore, each space coordinate represents
an activity as a quadruple AC = 〈o, qo, a, qa〉.

Once constructed, the descriptor space includes all the possible combinations
of descriptor components, forming a large and diversified set of possible descrip-
tors. It includes several “virtual” combinations - that did not originally exist in
the original process repository. These virtual combinations, together with exist-
ing activities, form a significantly extended repository that is used for the auto-
mated design of new business processes as well as for the learning mechanism.
For every two coordinates in the descriptor space a distance function is defined
as a linear combination of changes within each of its dimensions. Therefore, four
specific distance measures are defined as follows.

Definition 1. Object distance (OD): Let oi and oj be two objects, ODij is
the minimal number of steps connecting oi and oj in the object lifecycle model.

In a similar way Action distance, AD, is defined, calculated based on the action
sequence model. For example, the action distance between “Sift” and “Mix” when
acted on “Flour” is 2 (see Fig. 5).

Definition 2. Object hierarchy distance (OHD): Let oi and oj be two ob-
jects, OHDij is the minimal number of steps connecting oi with oj in the object
hierarchy model.

In a similar way Action hierarchy Distance, AHD, is defined, calculated based
on the action hierarchy model.

Definition 3. Object learned proximity (OLP): Let oi and oj be two objects
in the object lifecycle model, OLP ij is a constant positive number representing
the learned proximity between oi and oj in the object lifecycle model. OLP is
calibrated to 0 at the beginning of the first design step, and is updated according to

80 A. Wasser and M. Lincoln

the learning mechanism presented in Section 5. Higher values of OLP represent
learned proximities.

In a similar way: (1) Action learned proximity, ALP , is defined, calculated based
on the action sequence model; (2) Object hierarchy learned proximity, OHLP , is
defined, calculated based on the object hierarchy model; and (3) Action hierarchy
learned proximity, AHLP , is defined, calculated based on the action hierarchy
model.

OD, AD, OHD and AHD are combined with OLP , ALP , OHLP and AHLP
to generate a specific distance function between any two activities ACi and ACj ,
as follows (brackets are for readability only):

Dist(ACi,ACj)=(ODij−OLPij)+(ADij−ALPij)+(OHDij−OHLPij)+(AHDij−AHLPij)

(1)
It is worth noting that the hierarchy distances (OHD and AHD) can always be
calculated since the hierarchy models that they rely on are bidirectional trees.
However, the distances OD and AD can be undefined in some cases (e.g., when
the two objects are not connected in the object hierarchy model, or when the two
actions are not acted upon the same object and therefore do not take part in the
same action sequence). In these cases the above distance components contribute
a no-connection distance to the overall distance function. This distance is an
application-specific tunable parameter.

In general, it is possible to navigate within the descriptor space (hence, move
from one descriptor to another) in a meaningful way. This navigation enables
us to move up to more general or drill down to more specific action and object
scopes as well as to navigate to: (a) preceding and succeeding actions that act
on the descriptor’s object and (b) advance to a successor (more advanced) state
of the object’s current state or recede to a predecessor (less advanced) state.

5 Method for Automated Generation of Business Process
Content

In this section we extend the method presented in [11] by adding a learning
mechanism.

The design assistance method relies on an underlying process descriptor space
and at any phase, based on the user’s decision, it either refines an existing process
activity or suggests a next process activity. Based on each such user decision, the
design assistant learns more about the relationships between the involved actions
and objects and adjusts their distances in the descriptor space accordingly.

The design assistant is illustrated in Fig. 6. The design process starts when
a process designer defines the name of the new process model. This name is
decomposed into a process descriptor format. For example, a new process named:
“Bake raisin bread,” will be transformed into the following process descriptor:
object=“bread,” action=“bake,” object qualifier=“raisin,” action qualifier=“null.”

Based on the process descriptor input, the design assistant produces options
for the first process activity (see Section 5.1). The process designer reviews the

Semantic Machine Learning for Business Process Content Generation 81

Suggest a ranked
list of first/next
activity options

Design assistant

No

Specify a
new process

name

User

Yes
Select

an
option

User User

Process
design

completed?

Decide if to
approve or

refine activity

User

Adjust the DS
according to

user’s response

Design assistant

Fig. 6. The design assistant mechanism

output option list, and either selects the most suitable first activity for the newly
designed process, or suggests an alternative. At any next phase the designer
either requests to refine the current activity (see Section 5.2) or advance to
design the next activity (see Section 5.3). Each time the design assistant is
requested to suggest activities as part of the design process it outputs a list of
options, sorted and flagged according to the option’s relevance to the current
design phase and based on the current descriptor space (see Section 5.4). Based
on the designer’s preferences regarding the most suitable activity from the option
list and whether to refine or proceed to the next activity, the design assistant
deduces new knowledge regarding relationships between actions and objects in
the descriptor space and adjusts its distances accordingly (see Section 5.5).

After selecting the most suitable process activity from the suggested list, the
designer examines the newly designed process model to determine if it achieves
the process goals. If goals are achieved, the design is terminated; else - the design
procedure continues until the process goal is achieved.

5.1 Suggesting the First Process Activity

To suggest the first process activity, the design assistant searches the target
object and its more specific objects within the object hierarchy model. It then
creates first activity suggestions in the format of activity descriptors comprised
of the retrieved objects and the first action that acts upon them in the action se-
quence model. Continuing the example above, the following first activity options
will be suggested (see Fig. 3 and Fig. 4): “Insert bread into oven” and “Insert
banana bread into oven.”

5.2 Refining the Currently Suggested Process Activity

A refinement can be performed by five orthogonal methods. To illustrate each
of these methods we will show how the action “Cover bread” can be refined.

Action and Object Refinement. To refine the reference action, the design
assistant navigates the descriptor space by drilling down the action hierarchy
to more specific actions. It then combines the retrieved, more specific, actions
with the reference object. The refinement of objects is done in a similar manner.

82 A. Wasser and M. Lincoln

By applying an action refinement to our example’s reference activity, the refine-
ment option: “Cover bread with sugar” is retrieved (see Fig. 2).

Action and Object Generalization. The generalization method is similar to
the action and object refinement method, only this time the design assistant nav-
igates the descriptor space by moving up the action and the object hierarchical
dimension, respectively.

Advance an Action or an Object State. To advance the object’s state within
an activity, the design assistant navigates the descriptor space by moving forward
in the object lifecycle sub-dimension. In a symmetrical manner, to advance an
activity’s action, the design assistant moves forward in the action sequence sub-
dimension of the descriptor space. In our example the object “Sliced bread”
represents a more advanced state of the object “Bread” (see Fig. 5) and the action
“Slice” follows the action “Cover” in the action sequence applied on “Bread” (See
Fig. 4). Therefore, the following two refinement suggestions are constructed:
“Cover sliced bread” and “Slice bread.”

Recede to a Less Processed State of the Object or to a Former Action.
The receding method is similar to the advancing method, only this time the
design assistant navigates the descriptor space by moving backwards in the object
lifecycle and action sequence sub-dimensions. For example, the action “Bake”
is acted on “Bread” before this object is covered (before the action “Cover” is
applied) (see Fig. 4), hence creating the option: “Bake bread.”

Move to a Sibling Action or Object. In order to move to a sibling action, the
design assistant moves horizontally within the action hierarchical sub-dimension.
By fixing the reference action’s level, it retrieves sibling actions for this action.
Moving to a sibling object is conducted in a similar manner. Continuing our
example, a navigation to sibling actions to “Cover” retrieves a list of activities
that includes: “Mix bread” and “Evaluate bread” (see Fig. 2).

5.3 Suggesting the Next Process Activity

This step can be achieved in two alternative ways: either by advancing to a later
action that acts on the currently accepted (reference) object, or advancing to a sib-
ling object combined with the reference activity’s action. To demonstrate this step,
consider the activity following “Add yeast to flour.” The design assistant finds in
the action sequence model the option: “Mix yeast with flour” (see Fig. 4). In addi-
tion, sibling objects to “Yeast” are also retrieved from the object hierarchy model,
creating additional options such as “Add raisin” and “Add lemon” (see Fig. 3).

5.4 Preparing a Set of Output Options

The design assistant assesses the output options in each navigation phase and
combines an ordered option list to assist the user in selecting the most suitable

Semantic Machine Learning for Business Process Content Generation 83

option. The design assistant sorts the options according to their relevance to
the current design phase based on two considerations. First, on proximity to the
design phase reference coordinate - which represents the last selected activity
when suggesting a refined or next activity, or to the targeted process descriptor
when suggesting the first process activity. Second, the design assistant considers
to what extent was it changed comparing to actual activities that were part of the
underlying process repository. Therefore, the construction of the ordered option
list is conducted according to the following three stages: (a) sort by proximity
to the reference activity; (b) internally sort by similarity to processes in the
repository; and (c) flag each option, as further detailed below.

Sort by Proximity to the Reference Activity. The design assistant calcu-
lates the distance between the reference coordinate and each of the list options
(see definition 1), and sorts the list in an ascending order - from the closest to
the most distant option.

Internally Sort by Similarity to Processes in the Repository. The de-
sign assistant also takes into account the extent to which a proposed activity was
changed in comparison to actual activities in the underlying process repository.
For this purpose the design assistant distinguishes between three change levels:
(a) No change- the suggested activity is represented “as is” within the underly-
ing business process repository. These options are not marked by any flag; (b)
Slight modification - there is an actual activity in the underlying business pro-
cess repository containing the same object and action with different qualifiers.
These options are marked with “~”; (c) Major change - the object and action
within the suggested activity were not coupled in any of the activities within the
underlying business process repository. These options are marked with “M”.

According to the example presented in Section 5.3, several options were gen-
erated as candidates for next activities to be conducted after the activity “Add
yeast to flour.” Most of these options were produced by combining the action
“Add to flour” with siblings of the object “Yeast,” hence having the same distance
from the reference activity. Nevertheless, these options can further be differen-
tiated. For example, “Add lemon” is an actual activity in the bakery process
repository, and therefore is flagged as such. Nevertheless, “Add oil” has no repre-
sentation in this repository, but since “Add olive oil” does, this option is flagged
by “~.” Since there is no descriptor that combines the action “Add” and the
object “Spoon” in this repository, the option “Add spoon” is flagged by “M.”

Flag Each Option. After assessing each option’s relevance to the current nav-
igation phase and sorting the option list accordingly, the design assistant tags
each option with both the numerical distance value and the change level. For
example, the option “Add oil” from the example above will be flagged “[2,~].”

84 A. Wasser and M. Lincoln

5.5 Applying a Learning Mechanism

At each design step the process designer is provided with a list of optional next
activities, and is required to make the following two decisions: (1) select the most
suitable descriptor, ds, from the option list; and (2) decide whether to refine the
selected descriptor or to accept it and proceed to the design of the next activity.
The learning mechanism receives the two above designer decisions and deduces
new conclusions regarding the underlying business rules and business know-how
encoded in the descriptor space. As a result, the learning mechanism adjusts the
descriptor space, which is then used as a basis for producing the next/refined
optional activity list. The learning mechanism analyzes the following designer
decisions as detailed next.

Selecting Artificial Activities. As presented in Section 3, some actions and
objects in the descriptor space are artificial (automatically generated in the
action and object hierarchy models), and hence are not represented in any of
the process repository activities. In case the designer selects a descriptor that
contains an artificial action or object, the learning mechanism deduces that these
are “real-life” semantic elements and amends the descriptor space as follows.

1. Representing the artificial action or object as a real one in its hierarchy
model. For example, in case the designer selects the activity “Use grater,”
the object “Grater” becomes a real object in the object hierarchy model, and
its dashed line is replaced by a regular one (see Fig. 3).

2. Generating a new action sequence for the selected activity’s object. Fol-
lowing the above example, a new sequence in the action sequence model is
automatically generated for the object “Grater,” including one action, “Use.”
Formally, this suggestion can be given by:

createASM (o(ds)) (2)

3. Automatically updating the object lifecycle model by adding a representation
of the selected activity’s object. Following the above example, the object
“Grater” is added to the OLM as a single-object lifecycle. Formally, this
suggestion can be given by:

createOLM (o(ds)) (3)

Selecting Virtual Activities. Some options in the suggested descriptor list
are marked as “Slight modification” or “Major change,” hence representing a
virtual activity in the descriptor space (e.g. “Add oil,” “Add spoon”). In case the
process designer selects such options, the learning mechanism deduces that the
complete action can be applied to the complete object in “real-life” processes.
the descriptor space is therefore amended as follows.

1. Adding a(ds) to the action sequence of o(ds). Following the above exam-
ple, the action “Add” is added to the action sequence of “Oil” in the action
sequence model. In order to update the ASM , we regenerate ASM(o(ds)).
Formally, this suggestion can be given by Eq. 2.

Semantic Machine Learning for Business Process Content Generation 85

2. Updating the object lifecycle of o(ds). Formally, this suggestion can be given
by Eq. 3.

Selecting Distant List Options. As mentioned above, each optional activity
flag indicates the activity’s numerical distance from the reference descriptor,
dr. Options with the minimal distance, Distmin, are presented at the top of
that list, followed by other options in an ascending distance order. For example,
given the reference activity “Sift flour,” the optional activity list starts with
the options “[1] Add flour” followed by “[2] Mix flour” (see Fig. 4). In case the
process designer selects an activity flagged by distance Dist(ds) > Distmin, it
is possible to learn that the actual distance between the selected and reference
activities is shorter than the one currently represented in the DS. Higher values
of Dist(ds) represent a greater difference between the actual and current DS.
In our example, the designer may select the activity “[2] Mix flour” although it
is not the first option in the list.

In response to such designer selections, the learning mechanism reacts as fol-
lows. First, it calculates the difference between the distance components - OD,
AD, OHD and AHD of Distmin and those of Dist(ds). We denote this differ-
ence as the actual gap, AG. In our example the actual gap between OHD of the
first list option, dfirst = (flour, null, add, null), and the selected option, ds =
(flour, null, mix, null), is: AGOHD(dfirst, ds)= 0 (See Fig. 3), and the actual
gap between their action distance is: AGAD(dfirst, ds) = AD(ds)−AD(dfirst) =
2 − 1 = 1 (see Fig. 4).

Second, the learning mechanism corrects the learned proximities related to
each of the four distance components (OLP , ALP , OHLP and AHLP (see
Section 4)) by adding them a numerical value proportional to their actual gap.
Additions to learned proximities in case of “next activity” decisions are more sig-
nificant than additions in case of “activity refinement” decisions, since the first
indicates an exact match while the second indicates proximity only. Formally:
the object learned proximity between o(dr) and o(ds), OLPnew(o(dr), o(ds)), in
case of a “next activity” decision, is corrected as follows: OLPnew(o(dr), o(ds)) =
OLP (o(dr), o(ds))+AGOD(dfirst, ds)∗hnext, where hnext is a tunable parameter
that can be optimized in a future work. The calculation in case of an “activ-
ity refinement” is similar, using the tunable parameter hrefine < hnext. ALP ,
OHLP and AHLP are updated similarly. In continuous to our example, assum-
ing the designer chooses to move to the next activity, “Mix flour,” and assuming
ALP (o(dr), o(ds)) = 0 and hnext = 0.1, we calculate the new action learned
proximity as follows: OLPnew(o(dr), o(ds)) = 0 + 1 ∗ 0.1 = 0.1.

Selecting Refined List Options. In some cases the next activity is selected
after several refinement steps. After such design phases, that involve n refine-
ments, the learning mechanism shortens the distance between the previous (first
reference) selected descriptor, dr, and the new (currently selected one), ds, as
follows: Distnew(dr , ds) = Dist(dr, ds) − n ∗ hnext.

86 A. Wasser and M. Lincoln

6 Case Study and Experiments

6.1 Case Study: An Example for Designing a New Process Model

To illustrate the proposed framework we present two short examples from the
field of bakeries. The bakery process repository covers bakery activities starting
from the raw material procurement, through the manufacturing of baked goods
and terminating as the baked goods are sold to the customer. The newly designed
processes are related to the bakery field, but are not covered by the process
repository. The first new process, “Bake a chocolate cake,” extends the process
repository by baking a new product. The second new process, “Sell baked goods
via the Internet” extends the process repository by offering an additional service
to customers, that eliminates the need for their arrival to the store. Using these
examples we will show how the learning mechanism can be utilized to guide and
improve the design of new processes. In both examples hnext was set to 0.6 and
hrefine was set to 0.5.

Sift

flour
Add oil

Add

yeast

Pour

water

into

glass

Add

water
to flour

Fig. 7. The new designed process diagram for “Bake a chocolate cake”

The first example supports the design of a new business process for: “Bake a
chocolate cake.” The generated output (new process model) of this example is
illustrated in Fig. 7 as a YAWL (Yet Another Workflow Language) diagram. The
design process starts when the (human) process designer inserts the following
process descriptor: (action=”bake”, action qualifier=null, object=”cake”, object
qualifier=”chocolate”) to the process assistant and determines that the first ac-
tivity is: “Sift flour.” Respectively, the process assistant searches the descriptor
space, looking for next activity possibilities. The result set includes the following
activities (see Sections 5.3 and 5.4): “[1] Add flour,” “[2] Sift oil” and “[2,M] Sift
yeast.” The designer selects the option “Add flour” and decides to refine it. After
one refinement the activities “Add oil” and “Add yeast” are selected, and in the
next design phase after four refinements the activity “Pour water into glass” is
selected. As a result, the process designer suggests an option list for the next ac-
tivity that starts with the option: “[1] Heat up water.” This first option is selected
for refinement and as a result an option list is suggested, containing the option:
“[1] Add water to flour.” This option is selected as a valid option in the process
model. Therefore, its distance from the original reference activity, “Pour water
into glass” was shortened from 2 into 2−2∗0.6 = 0.8. In contrast to the original
descriptor space (Fig. 4), the activity “Add water to flour” is now more closer
to “Pour water into glass” than the activity “Heat up water.“ This automatically
acquired knowledge seems reasonable, since cake preparation processes do not
usually require warm water as in the case of bread preparation processes. After

Semantic Machine Learning for Business Process Content Generation 87

12 additional design phases, the process design reaches the phase of preparing
a jam cover for the cake. In this case the activity “Pour water into glass” was
selected again and this time the activity “Add water to flour” was suggested
before (and instead of) the activity “Heat up water,” saving one refinement step.

Select

baked
goods

Pay by

credit
card

Receive

ordered

baked

goods

Pack

baked
goods

Send

baked

goods

by car

Fig. 8. The new designed process diagram for “Sell baked goods via the Internet”

The designer is now interested to design the new business process: “Sell baked
goods via the Internet.” The design process is conducted in a similar manner
to the one presented above and results in the process diagram presented in Fig.
8. An interesting observation in this design process is the learning usage of the
activity “Send baked goods by car.” While the original business process repository
contained the action “Send by car” applied only to the object “damaged flour,”
the terminating activity combines this action with the object: “baked goods.”
This was achieved by the following design phases: after accepting the activity:
“Pack baked goods,” the designer asks for next activity suggestions and receives
an option list. Knowing that in order to fulfill the process goal, the last activity
should involve a sending by car action, she selects the option: “Send damaged
goods by car” and asks to refine it since it does not provide the exact required
activity. Since the objects “Damaged goods” and “Baked goods” are siblings
in the object hierarchy model, one of the refinement options is: “[2,M] Send
baked goods by car,” although it represents a major change to the underlying
process repository. The designer approves the new process design as a complete
design that fulfills the process goal, and the learning mechanism deduces that the
action “Send by car” can be applied on “baked goods” in real-life scenarios and
updates the descriptor space accordingly. This new learned knowledge assists in
improving the design process of other new process models such as: “Sell baked
goods via phone” and “Donate baked goods to poor families.”

6.2 Experiments

We now present an empirical evaluation of the proposed method effectiveness.
In order to evaluate the learning mechanism’s contribution, we implement the
evaluation method used in [11]. We first present our experimental setup and
describe the data that was used. Based on this setup we present the implemented
methodology. Finally, we present the experiment results and provide an empirical
analysis of these results.

Experiment Setup. The “no-connection” distance (defined in Section 4) was
set to 500; hnext was set to 0.2 and hrefine was set to 0.1.

88 A. Wasser and M. Lincoln

Data. We chose a set of 12 real-life processes from the bakery process repository,
comprising: (a) five processes from the core “Baking” category, with 45 activities
altogether; (b) three processes from the “Sales” category, with 22 activities alto-
gether; and (c) four processes from the “Maintenance” category, with 39 activities
altogether. The “Baking” data set contains core and industry-specific activities,
while the “Maintenance” data set represents a combination of industry-specific
as well as more industry agnostic activities. The most generic activity collection
is represented in the “Sales” domain, which shares many of its activities with
the food manufacturing industry. Using the selected 12 processes we created a
“process repository database.”

Evaluation Methodology. To evaluate the suggested method we conducted
12 experiments, each repeated twice: first without applying the learning mecha-
nism (a reference experiment) and second by applying the learning mechanism
(a full method experiment). Each experiment was conducted according to the
following steps: (a) preparation: remove one of the processes from the database
so that the database will not contain any of its descriptor components; (b) run
the design assistant mechanism in a stepwise manner. At each phase we try to
identify an activity (“goal activity”) that is compatible with the removed process,
according to the following steps: (1) if the goal activity’s linguistic components
are represented in the Process Repository Database, run the “find next activity”
algorithm (see Section 5.3). If the output list contains the goal activity - con-
tinue to reconstruct the next goal activity. Else, run the “activity refinement”
algorithm (see Section 5.2). If the option list produced by the refinement step
does not include the goal activity, choose the activity that shares the largest
amount of common descriptor components with the goal activity as a basis for
an additional refinement. If, after 10 successive refinements, the required activity
is still not represented by one of the output options, it is inserted manually as
the next process activity and the design process is continued by locating the next
activity; (2) else (the goal activity’s linguistic components are not represented in
the Process Repository Database), the next goal activity is inputted manually
by the experimenter. In full method experiments, at the end of each such phase
the learning mechanism is applied, correcting the current descriptor space as an
input to the next design phase (see Section 5.5).

Results and Analysis. Table 1 presents a summary of the experiment results.
Each experiment of creating a new process model was based on a database with
the set of all activity descriptors in all process models, excluding the set of
activity descriptors of one goal process. This means that we aim at recreating
the goal activities from a partial set of activity descriptors. On average, for 83.3%
of the goal activities, all descriptor components were contained both in the goal
process and in another process (see column #3). This was the case despite the
relatively small experiment size (11 processes, whereas the entire bakery process
repository includes around 70 processes), highlighting the amount of similarity
one would expect when designing new processes based on an existing repository.

Semantic Machine Learning for Business Process Content Generation 89

For the remaining 16.7%, at least one descriptor component was missing. In such
a case, the activity was inserted manually during the design process. It is worth
noting that for the 83.3% of activities that had the potential of reconstruction
from the database, 100% were reconstructed successfully using our method (see
Table 2).

Table 1. Experiment results

Column # 1 2 3 4 5 6 7
Column name # of

total
pro-

cesses
in DB

of
total

activi-
ties in
DB

% of
goal ac-
tivities
repre-

sented in
the DB

%
improve-
ment in
avg. #
of steps

per
design
phase

%
improve-
ment in

avg.
location

of
correct
option
in ’next
activity’

%
improve-
ment in

avg.
location

of
correct
option

in ’refine
activity’

%
improve-
ment in

avg.
location
of the
correct
option

per
design
phase

Avg.-all 12 106 83.3% 12.7% 32.9% 26.4% 28.5%
Avg.-Baking 5 45 85.2% 17.8% 38.6% 30.1% 31.0%
Avg.-Sales 3 22 80.8% 11.6% 34.2% 25.4% 27.7%

Avg.-Maintenance 4 39 82.7% 7.0% 24.8% 22.5% 25.9%

In addition, Table 1 shows that by applying the learning mechanism the follow-
ing measures were improved. First, on average, the number of iterations required
for reconstructing a goal activity (see column #4) was improved by 12.7%. The
design of Sales processes required less steps than the design of Baking and Main-
tenance processes, and therefore was less improved (7% vs. 17.8 and 11.6% on
average, respectively). It should be noted that the location of the goal activity
was improved significantly in the ranked list of suggested activities (average im-
provement: 28.5%, see column #7). This location was even better improved at
phases that did not involve refinement (average improvement: 32.9%, see column
#5); and was a little lower in steps in which a refinement was required (26.4%
on average, see column #6). This may be due to the fact that refinement steps
include a much larger amount of alternatives, and the tunable parameter hrefine

is lower than hnext (hence, learning is slower in refinement steps). Again it should
be noted that results within the Baking category were better than results within
the Sales and Maintenance categories - probably due to the larger amount of ac-
tivities representing each of the Baking processes, which enables more learning
opportunities. Another reason may be the similarity between Baking processes
which enables applying the learning results from one process to others as well.

Table 2 analyzes the difference in the number of refinements that are needed
to design the correct goal activity due to the usage of the learning mechanism.

90 A. Wasser and M. Lincoln

Table 2. Distribution of successful predictions vs. the number of required refinements

of refinements 0 1 2 3 4 5 6 7
% of difference in
the # of successful

predictions

11% 17% 10% 1% -10% -9% -7% -9%

For each number of refinements (0-7), we record the percentage of cases where
this number of refinements was needed: (a) when the learning mechanism is not
applied; and (b) when the learning mechanism is applied. Then, we calculate
the difference between the results in both cases. We observe, for example, that
by applying the learning mechanism, the ability of the system to reconstruct
the goal activity after one refinement was improved by 17%. In total, it can
be observed that the learning mechanism reduced the number of refinements
required to reach the correct goal activity. These results clearly demonstrate
that the learning mechanism improves the speed and efficiency of the design
method. As hypothesized earlier - a larger database would probably yield even
better results.

To summarize, we have shown the usefulness of using the learning mecha-
nism in identifying activities for a new business process. We also showed the
mechanism to be effective in the given experimental setup, both in terms of im-
provement in the number of design steps and in the number of refinements that
are needed.

7 Conclusions

We proposed a learning mechanism to improve a machine-assisted design method.
Such a mechanism saves design time and supports designers in creating new busi-
ness process models. The proposed method provides a starting point that can
already be applied in real-life scenarios, yet several research issues remain open,
including: (1) an extended empirical study to further examine the quality of
newly generated processes; and (2) an extended activity decomposition model
to include an elaborated set of business data and logic (e.g., roles and resources).

As a future work we intend to investigate further language semantics by us-
ing more advanced natural language processing techniques, as well as semantic
distances between words. Finally, we intend to apply the learning technique we
have developed to create new methods for workflow validation.

References

1. Becker, J., Delfmann, P., Herwig, S., Lis, L., Stein, A.: Towards Increased Com-
parability of Conceptual Models-Enforcing Naming Conventions through Domain
Thesauri and Linguistic Grammars. In: ECIS (June 2009)

Semantic Machine Learning for Business Process Content Generation 91

2. Bhattacharya, K., Gerede, C., Hull, R., Liu, R., Su, J.: Towards Formal Analysis of
Artifact-Centric Business Process Models. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 288–304. Springer, Heidelberg (2007)

3. Cronan, T.P., Douglas, D.E., Alnuaimi, O., Schmidt, P.J.: Decision making in
an integrated business process context: Learning using an erp simulation game.
Decision Sciences Journal of Innovative Education 9(2), 227–234 (2011)

4. Ghattas, J., Soffer, P., Peleg, M.: A Formal Model for Process Context Learning.
In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43,
pp. 140–157. Springer, Heidelberg (2010)

5. Gschwind, T., Koehler, J., Wong, J.: Applying Patterns during Business Process
Modeling. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS,
vol. 5240, pp. 4–19. Springer, Heidelberg (2008)

6. Hornung, T., Koschmider, A., Lausen, G.: Recommendation Based Process Mod-
eling Support: Method and User Experience. In: Li, Q., Spaccapietra, S., Yu, E.,
Olivé, A. (eds.) ER 2008. LNCS, vol. 5231, pp. 265–278. Springer, Heidelberg (2008)

7. Huang, Z., van der Aalst, W.M.P., Lu, X., Duan, H.: Reinforcement learning based
resource allocation in business process management. Data & Knowledge Engineer-
ing 70(1), 127–145 (2011)

8. Hull, R.: Artifact-Centric Business Process Models: Brief Survey of Research Re-
sults and Challenges. In: Meersman, R., Tari, Z. (eds.) OTM 2008, Part II. LNCS,
vol. 5332, pp. 1152–1163. Springer, Heidelberg (2008)

9. Kumaran, S., Liu, R., Wu, F.Y.: On the Duality of Information-Centric and
Activity-Centric Models of Business Processes. In: Bellahsène, Z., Léonard, M.
(eds.) CAiSE 2008. LNCS, vol. 5074, pp. 32–47. Springer, Heidelberg (2008)

10. Leopold, H., Smirnov, S., Mendling, J.: On the refactoring of activity labels in
business process models. Information Systems (2012)

11. Lincoln, M., Golani, M., Gal, A.: Machine-Assisted Design of Business Process
Models Using Descriptor Space Analysis. In: Hull, R., Mendling, J., Tai, S. (eds.)
BPM 2010. LNCS, vol. 6336, pp. 128–144. Springer, Heidelberg (2010)

12. Lincoln, M., Karni, R., Wasser, A.: A Framework for Ontological Standardization of
Business Process Content. In: International Conference on Enterprise Information
Systems, pp. 257–263 (2007)

13. Müller, D., Reichert, M., Herbst, J.: Data-Driven Modeling and Coordination of
Large Process Structures. In: Meersman, R., Tari, Z. (eds.) OTM 2007, Part I.
LNCS, vol. 4803, pp. 131–149. Springer, Heidelberg (2007)

14. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specifi-
cation. IBM Systems Journal 42(3), 428–445 (2003)

15. Reijers, H.A., Limam, S., Van Der Aalst, W.M.P.: Product-based workflow design.
Journal of Management Information Systems 20(1), 229–262 (2003)

16. Schonenberg, H., Weber, B., van Dongen, B.F., van der Aalst, W.M.P.: Supporting
Flexible Processes through Recommendations Based on History. In: Dumas, M.,
Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 51–66. Springer,
Heidelberg (2008)

17. Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Action patterns in business
process model repositories. Computers in Industry (2012)

18. Van der Aalst, W.M.P., Barthelmess, P., Eliis, C.A., Wainer, J.: Proclets: A frame-
work for lightweight interacting workflow processes. International Journal of Co-
operative Information Systems 10(4), 443–482 (2001)

19. Wahler, K., Küster, J.M.: Predicting Coupling of Object-Centric Business Process
Implementations. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008.
LNCS, vol. 5240, pp. 148–163. Springer, Heidelberg (2008)

Hierarchical Process Verification

in a Semi-trusted Environment

Ganna Monakova

SAP Research Karlsruhe

Vincenz-Priessnitz-Str. 1

76131 Karlsruhe, Germany

ganna.monakova@sap.com

Abstract. In a business collaboration different parties work together to
create a compositional process that incorporates internal processes of the
participants to achieve a common goal. It must be assured that certain
requirements, such as legal regulations, are fulfilled by the overall com-
position. Verification of such requirements requires knowledge about the
internal functionalities of the involved parties, who in turn do not want
to reveal their processes. This work presents a technique for hierarchical
verification of the requirements over the process composition based on
the guarantees, called property assertions, provided by the collaboration
participants.

1 Introduction

Business collaborations require participants to work together to create a compos-
ite process that incorporates internal processes of the involved parties. It has to
be assured that the resulting process composition satisfies certain requirements,
such as applicable legal regulations or service agreements between the parties. If
participants fully trust each other, then they can reveal their internal processes.
In this case verification of a requirement over composition (called compositional
requirement) is no different from verification of a requiement over a local busi-
ness process, which has been widely discussed in the literature, see Section 5.
If, however, the operating environment is not fully-trusted, then participants
will not reveal their internal processes as they might contain sensitive informa-
tion, such as business decisions captured in the process structure. In this case
the problem of How to verify a requirement over process composition without
knowledge of the processes arises.

In this paper we propose the following solution to this problem: instead of
revealing the processes, participants provide property assertions that reflect cer-
tain characteristics of their processes 1. A property assertion specifies what is
guaranteed by a process, as opposite to the process structure that reveals how a

1 A semi-trusted environment is required, as some of the (abstracted) information
must be revealed to enable verification of the process composition. A non-trusted
environment would prohibit revelation of any information.

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 92–109, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

mailto: "Ganna Monakova" <ganna.monakova@sap.com>

Hierarchical Process Verification in a Semi-trusted Environment 93

guarantee is achieved. Provided property assertions only need to contain infor-
mation required by the compositional requirement. Therefore property assertions
allow to hide implementation details but still provide sufficient information to
enable verification of compositional properties.

The derivation of an appropriate process abstraction that only reveals process
properties necessary for a requirement verification is the subject of a different
work. In this paper we show how the compositional requirement can be proven
based on the provided property assertions. The presented technique can be used
for the bottom-up verification, as well as for the top-down process design:

– In a bottom-up approach the existing processes abstract their implementa-
tion with the property assertions. This on one hand allows for verification
of the requirements in a semi-trusted environment, on the other hand re-
duces the complexity of the verification problem due to the abstraction of
the unnecessary implementation details.

– In a top-down process design the top-level requirement is broken down into
sub-requirements that are assigned to the different parties as requirements on
the future process implementation. In this case the requirements become the
property assertions and can be used as a contract between the participants.

In both cases it is necessary to be able to prove compositional requirements
based on the given property assertions and on the structure of the composition,
which is the scope of this paper.

1.1 Running Example

As a running example consider a supply chain process shown in Fig. 1. The ex-
ample collaboration includes three participants: Retailer, Producer and Reseller.
The internal processes of the participants are not visible. Instead, participants
specify a number of property assertions that are fulfilled by the internal process
implementations. We use a semi-formal notation for the property assertions at
this point, later in Section 3 we define the formal property assertion language.
The flow of the process is the following: Retailer computes product demand
and, depending on the number of required items, sends an order request either
to Reseller or to Producer. Reseller does not reveal their process structure, but
guarantees that if the number of ordered items is less than 5000, then the prod-
ucts can be delivered via an express delivery. Reseller also specifies that the
express delivery is preceded by quality check. Producer specifies that an order
will be either rejected or the goods will be produced and delivered. Producer
also guarantees that any order above 10.000 will be accepted. They furthermore
guarantee that the production of goods is followed by a quality check.

As an example requirement over the collaboration we consider the Product
quality must be checked before it can be sold requirement. In this paper we show
how this requirement can be formally proven based on the provided property
assertions.

94 G. Monakova

Reseller Producer

Retailer2

Quantity < 2000 Quantity 2000

If (Quantity < 5000) THEN ExpressDelivery
PrecededBy (ExpressDelivery ,QualityCheck)

RejectOrder XOR (Produce AND Deliver)
FollowedBy (Produce, QualityCheck)
If (Quantity > 1000) THEN NOT RejectOrder

SellProduct

CalculateDemand AND CreateOrder
Retailer1

Fig. 1. Example Service Composition

1.2 Approach Overview and Paper Structure

To reflect hierarchical structure of a collaboration, where internal processes are
composed to the overall collaboration, we use nested graphs as the formal lan-
guage for collaborative models. A node in a nested graph can be a graph itself, in
which case it is called a hypernode. A nested graph naturally captures semantics
of scopes and reflects local and global process visibility through the notion of
hypernodes. Hiding the structure of a hypernode on a higher level corresponds
to abstraction of an internal process on a higher level.

To be able to prove requirements over the nested process graphs, we introduce
a set of generic axioms in Section 2 that reflect execution semantics of nested pro-
cess graphs. The presented axioms are used to create a set of assertions that model
execution semantic of a particular process model. We call such assertions a ver-
ification basis. A hypernode in a nested graph provides some guarantees about
the internal processes in form of process assertions. Section 3 introduces prop-
erty assertion language. Section 4 shows how the provided property assertions are
used to generate models of internal processes. Generated models are added to the
verification basis to complete the process specification. Finally, we show how the
compositional requirement is mapped to an assertion over the process activities.
The mapping is based on the activity types that are used in the requirement spec-
ification. The satisfiability of the modelled assertions is checked using the Satisfi-
ability Modulo Theories (SMT) solver Z3 [13]. An SMT solver solves satisfiability
problems for Boolean formulas containing predicates of underlying theories. Such
theories can be, for example, theories of arrays, lists and strings [2]. In addition, an
SMT solver can be extended with new theories as shown in [16]. In the proposed
approach we use the theory of the linear arithmetic.

Summarizing, the contribution of this paper are three-fold: first, we present
a formal theory of hierarchical process models based on the nested graphs and
show how to model process execution semantics with logical assertions. Second,
we present an assertion language for specifying process properties without re-
vealing the structure and business logic of internal processes. Third, we present
a hierarchical verification technique for verifying global properties of distributed
business processes based on the hierarchical process theory.

Hierarchical Process Verification in a Semi-trusted Environment 95

2 Nested Process Graph Theory

A process graph is a directed acyclic nested graph G = (A,L), where A
is the set of (hyper)nodes representing process activities and L = {Lk =
(Ai, Aj)|Lk.source = Ai ∧ Lk.target = Aj} is the set of directed edges repre-
senting synchronisation links between activities, where Lk.source denotes the
source and Lk.target the target activity of link Lk. Activities can be simple or
structured activities, in the second case the activity is represented through a
directed acyclic subgraph that is viewed as a hypernode from the parent graph.
A hypernode is used to represent a subprocess or a process scope.

Each link Li in a process graph has a transition condition Li.condition, with
default condition being set to true. After completion of an activity, states of
all outgoing links are evaluated as follows: if activity has been executed and
transition condition of an outgoing link Li evaluates to true, then the link status
Status(Li) evaluates to true; if activity has been skipped or if the transition
condition evaluates to false, then link status Status(Li) evaluates to false.

Let Lin(Ai) = {Li|Li.target = Ai} denote the set of all incoming links for
activity Ai. Each activity in the process graph has a join condition JC(A) =
F (Status(Lin

1), . . . , Status(Lin
k)), which is a logical expression over the states of

the incoming links. The join condition is evaluated after the states of all incoming
links have been evaluated. If the activity join condition evaluates to true, then
activity starts its execution, otherwise it is skipped. The default join condition
of each activity is the OR function over the incoming link states.

2.1 Activity Modelling and State Axioms

Each activity in a process has an execution lifecycle represented through the
following activity states: ready, started, skipped, executed, faulted, terminated,
and compensated. Figure 2 shows possible transitions between these states. Ac-
tivity reaches state ready when control flow reaches this activity, which hap-
pens when all predecessor activities complete their execution and the statuses
of all incoming links are evaluated. When an activity is reached, its join con-
dition is evaluated. If it evaluates to true, then activity is started, otherwise it
is skipped. If an activity has been started, then it either successfully finishes its
execution and reaches state executed, faults and goes into the state faulted, or it
terminates and goes into the state terminated. When an activity reaches states
skipped or executed it is automatically reaches state completed. This triggers
evaluation of the outgoing link statuses, which means that successor activities
no longer have to wait for this activity to complete. The state diagram contains
two additional transitions which are depicted with dashed lines: transition from
executed to compensated state happens if a compensation actions are taken at
some point after execution of the activity, transition from faulted to completed
happens if a fault handler repairs activity fault and allows for further execution
of the process. These two state transitions are only possible if the corresponding
constructs (fault handler and compensation handler) have been defined in the
process model.

96 G. Monakova

Ready

Started
Skipped

Faulted

Executed Compensated

Terminated

JC(A)=true
JC(A)=false

Completed

A

Fig. 2. Activity state transitions

In addition to the state variables, each activity is characterised by the ac-
tivity type it belongs to. We use AT notation to refer to an activity type, in
contrast to A that is used to denote an activity. Activity types can be arranged
into a type-subtype hierarchy. For example, a more fine-granular activity type
AirTransport is a subtype of a more coarse-granular activity type Transport .
Each activity type in our approach is represented through an integer interval
ActivityT ype := Record(start : int, end : int). The subtype relations are then
represented through the interval inclusion:

AT
i ⊂ AT

j ⇔ (AT
i .start ≥ AT

j .start) ∧ (AT
i .end ≤ AT

j .end)

For example, an activity type Transport is the supertype of activity types
AirT ransport and GroundTransport. A possible interval assignment to these
types would be [0, 10] for Transport and [0, 3] for AirT ransport and [4, 6] for
GroundTransport.

To reflect all activity properties, we define activity type as a record consisting
of the following fields:

Activity := Record(ready : int, ..., completed : int, atype : int)

The value of atype field decides to which type this activity belongs: A ∈ AT ⇔
A.atype ≥ AT .start∧A.atype ≤ AT .end. For example, if a process specifies that
it executes an activity of type Transport, then the atype field of variable AT that
represents this activity will be restricted to (AT .atype ≥ 0) ∧ (AT .atype ≤ 10).
Similar, if we assign 2 to the atype field, then we specify that this activity
is of type AirT ransport and Transport. We will use activity types to define
properties of the subprocesses in Section 3.

To represent activity state model and capture semantic of the state transitions,
we use eight integer fields:A.ready,A.started,A.skipped,A.executed,A.completed,
A.faulted, A.terminated and A.compensated. The value of the state field repre-
sents the point of time, starting from 0 denoting the process start, when activity
reaches this state. If activity does not reach a certain state, the value of the corre-
sponding state field is−1. Axioms fromTable 1 capture state transition semantics
of each activity A by defining dependencies between the field values:
– Axiom (N1) defines that each activity will eventually be started or skipped

if it has been reached. We assume that skipping happens in the next step
(+1), this assumption can be changed if required. Starting an activity can

Hierarchical Process Verification in a Semi-trusted Environment 97

Table 1. Activity state transitions axioms

A.ready > 0→ (A.started ≥ A.ready ∧A.skipped = −1) ∨
(A.skipped = A.ready + 1 ∧A.started = −1) (N1)

A.started > 0→ ((A.faulted > A.started) ∨
(A.terminated > A.started) ∨
(A.executed > A.started))

(N2)

A.started > 0→ ((A.faulted = −1 ∧ A.terminated = −1) ∨
(A.faulted = −1 ∧ A.executed = −1) ∨
(A.executed = −1 ∧ A.terminated = −1))

(N3)

A.started > 0← (A.faulted > 0 ∨A.terminated > 0 ∨ A.executed > 0) (N4)

A.compensated > 0→ A.executed > 0 ∧ A.compensated > A.executed (N5)

A.skipped > 0→ A.completed = A.skipped (N6)
A.executed > 0→ A.completed = A.executed (N7)
A.completed > 0→ A.executed > 0 ∨A.skipped > 0 (N8)

on the other hand take longer if we consider resource requirements, therefore
we use the ≥ operator.

– Axioms (N2) − (N4) state that if an activity has been started, then it will
either complete successfully, fail, or be terminated, whereby only one of these
states can be reached.

– Axiom (N5) specifies that an activity can only be compensated if it has been
executed.

– Axioms (N6) − (N8) state that an activity reaches state completed only if
and as soon as it has been skipped or executed.

Table 2. Fault, termination, and compensation handler axioms

AF .ready = A.faulted (F1)
AT .ready = A.terminated (F2)
AC .started > 0→ A.executed > 0 (F3)
AC .executed > 0→ A.compensated = AC .executed (F4)

If there is a fault handler AF , compensation handler AC or termination han-
dler AT defined for activity A, then the additional state transition axioms de-
picted in Table 2 need to be added to the general state transition axioms.

2.2 Parent-Child Axioms

A
A1

A2

AF

AT

AC

Fig. 3. Parent-Child

In addition to the relations between the states of a sin-
gle activity, relations between parent and child activities
represented through the hypernodes, which represent pro-
cess scopes, need to be specified. If Ai is a node inside
the hypernode A, then we call A the parent activity of
child activity Ai.

98 G. Monakova

Figure 3 shows an example hypernode with two children activities, Figure 4
shows relations between the states of the parent and child activities.

AT

AC

AF

faulted

completed

terminated

compensated

ready

completed

started

ready

ready

faulted

terminated

compensated

completed

ready

faulted

terminated

compensated

completed

executed

skipped

skipped

skipped started

executed

started

executed

completed

JC(A) = false
JC(A) =true

JC(A1) = false

JC(A2) = false

JC(A1) = true

JC(A2) = true
ready

Fig. 4. Parent-Child State Transitions

Table 3. Parent-child state dependencies axioms

Ai.ready > 0→ A.started > 0 ∧Ai.ready ≥ A.started (H1)

A.skipped > 0→ Ai.skipped > 0 ∧Ai.skipped = A.skipped (H2)

A.completed > 0→∧
i∈[1..n](Ai.completed > 0 ∧A.completed ≥ Ai.completed)

(H3)

A.terminated > 0→
(Ai.completed > 0 ∧Ai.completed < P .terminated)∨
(Ai.started > 0 ∧A.terminated = Ai.terminated)∨
(Ai.ready < 0)

(H4)

Ai.faulted > 0→ A.faulted > 0 ∧A.faulted = Ai.faulted (H5)
∀i ∈ [1..n] : Ai.faulted > 0→ (∀j ∈ [1..n] : j �= i→

((Aj .ready > 0 ∧Aj .terminated = Ai.faulted) ∨
(Aj .completed > 0 ∧Aj .completed < Ai.faulted) ∨
Aj .ready < 0)

(H6)

AC .ready > 0→ AiC .ready > AC .ready (H7)
AC .completed ≥ AiC .completed (H8)
∀(Ai, Aj) ∈ L : (Ai ∈ Children(A) ∧ Aj ∈ Children(A))

→ (AiC .ready > AjC .completed)
(H9)

Hierarchical Process Verification in a Semi-trusted Environment 99

Table 3 contains a set of axioms that capture parent-child state relations:

– Axiom (H1) specifies that a child activity can only be reached if the parent
activity has started.

– Axiom (H2) specifies that if parent activity is skipped, then all children
activities are skipped too.

– Axiom (H3) specifies that a parent activity completes when all child activities
complete

– Axiom (H4) specifies the termination semantic: If the parent activity is ter-
minated, all of it children activities, which are still running, are terminated.
Therefore all children activities will either be completed at the point of
parent activity termination, will not be reached yet, or will be terminated
together with the parent activity (immediate termination).

– Axiom (H5) specifies the fault propagation semantic: Fault propagation is
applied if there is no explicit fault handler defined for activity Ai. In this case
any fault of any child activity is propagated to the parent activity. If a child
activity has a fault handler, then the default fault propagation behaviour is
overwritten by the fault-handler execution semantic. In this case activities
defined in the fault handler are modelled using the same set of axioms, and
dependency between fault handler and corresponding activity is modelled
according to the fault axiom F1.

– In addition to the fault propagation, axiom (H6) specifies that if an activity
has faulted, then all still running activities in the same scope are terminated.

– Axioms (H7) − (H9) specify the default compensation handler semantic,
which invokes compensation handlers of the child activities in a reverse order.
Here AC denotes the compensation handler of the parent activity A, and AiC

denotes compensation handler of a child activity Ai.

2.3 Process Structure Axioms

Table 4 lists axioms that reflect dependencies between activities based on the
process structure.

– (S1) models synchronisation dependencies of a process activity Ai: An activ-
ity in a process graph is executed if it has been reached and its join condition
evaluates to true. An activity is reached if all predecessor activities have com-
pleted their execution, which means A.completed > 0 is true. This can hap-
pen through activity execution, activity skipping, or reparation of a faulted
activity through a fault handler as described in previous section. Each link
in a flow graph represents a synchronisation dependency between the source
and the target nodes. We model each link in a process graph as a variable of
type Link := Record(source : Activity, target : Activity, condition : bool),
where condition represents the link transition condition. D(Ai) denotes the
set of nodes that activity Ai is synchronised on. This set is computed as
D(Ai) = {Aj |∃Lk ∈ Lin(Ai), Lk.source = Aj}.

– Axiom (S2) specifies that if all predecessor activities of activity Ai have
completed, then Ai will reach state ready.

100 G. Monakova

– S3 and S4 specify the link status evaluation rules for any link L.
– Axioms (S5) and (S6) reflect the control flow after an activity has been

reached: if activity join condition evaluates to true , then activity will start
as defined by (S5), otherwise it will be skipped as defined by (S6).

Table 4. Process structure axioms

∀Aj ∈ D(Ai) :
(Ai.ready > 0→ Ai.ready ≥ Aj .completed ∧Aj .completed > 0)

(S1)∧
Aj∈D(Ai)

Aj .completed > 0→ Ai.ready > 0 (S2)

L.source.executed > 0→ Status(L) = L.condition (S3)
L.source.skipped > 0→ Status(L) = false (S4)

A.ready > 0 ∧ JC(A)↔ A.started > 0 (S5)
A.ready > 0 ∧ ¬JC(A)↔ A.skipped > 0 (S6)

3 Property Assertions

A property assertion guarantees certain behaviour of a process without revealing
how it has been implemented. Therefore property assertions allow participants
in a process collaboration to hide the process implementation details and offer a
natural form of abstraction. Due to their descriptive, yet formal nature, property
assertions can be used as a declarative description of a subprocess in the bottom-
up process composition, as well as a requirement specification for a subprocess
in the top-down process design, called process refinement.

Property assertions make statements over activity types rather than actual
activities. This supports specification of properties with the different abstraction
levels, depending on the granularity of the chosen activity type. If we define a
property assertion PA over activity type Transport which is defined by interval
[0, 10], we would restrict the set of activities these assertions apply to as follows:
∀A : (A.atype ≥ 0 ∧ A.atype ≤ 10)→ PA(A). Using more fine-granular activity
types allows for specification and verification of more specific constraints, but it
might reveal unnecessary details.

In this work we use an SMT solver to prove collaboration properties. Usage
of SMT solvers allows us to specify requirements in propositional logic, as well
as use additional theories, such as linear arithmetic theory. First Order Logic
(FOL) over finite domains can be mapped to the propositional logic over the
elements of the corresponding domain. The domain of an activity type is defined
by the number of activities of this type present in the process model. As there is
a limited number of activities in a process model, we will use FOL over activity
types to express properties of the corresponding activities.

In the following sections we will show some examples of the process prop-
erties that can be expressed using combination of linear arithmetic with the
logical operators. The examples are chosen to demonstrate expressiveness of the
language. To ease property specification for a business user, property templates
for the common properties can be defined similar to the Count and FollowedBy
templates that are defined in the following sections.

Hierarchical Process Verification in a Semi-trusted Environment 101

3.1 Activity Occurrence Specifications

A restriction on the number of activity executions of a specific type is specified
through Nmin ≤ Count(AT) ≤ Nmax constraint, which allows execution of min-
imum Nmin and maximum Nmax activities of type A in any process run. We
define Count function of an activity Ai and of activity type AT as follows:

Count(AT) =
∑

Ai∈AT

Count(Ai) =
∑

Ai∈AT

{
1 if Ai.executed > 0,

0 otherwise.
(3.1)

Although activity state .executed is the one that will be most commonly used to
express activity occurrence, we can extend count function to allow count of any
other activity states, that would allow to count the number of, e. g., failed or
compensated activities. The extended count function Count(AT , S) counts the
number of activity of type AT that reach state AS :

Count(Ai, S) =

{
1 if Ai.S > 0,

0 otherwise.
(3.2)

In some cases we will want to restrict time period for an activity state transfer.
For this purposes we can refine Count template with the time parameters:

Count(AT , S1, S2)[t1,t2] =
∑

Ai∈AT

{
1 Ai.S1 ≥ t1 ∧ Ai.S2 ≤ t2,

0 otherwise.
(3.3)

Where t1 and t2 can be relative or absolute timestamps.
Using refined count template we can specify that minimum MAX and maxi-

mum MIN activities executions of type AT must happen in time period [t1, t2]
as follows:

MAX ≤ Count(AT , started , executed)[t1,t2] ≤ MIN (3.4)

3.2 Temporal Properties Specifications

To capture temporal relations between activities we specify relations between
activity state fields using linear arithmetic operators >, <, ≥, ≤ and =. In
addition, we use operators + and − over activity state variables and integers
representing time intervals.

Having different states for each activity allows us to restrict activity execution
duration as follows:

A.executed > 0→ A.completed−A.started ≥MinDuration(A)

∧A.executed−A.started ≤MaxDuration(A)
(3.5)

Similarly, temporal dependencies between different activities and their states can
be specified using arithmetic operators. To demonstrate the expressiveness of the

102 G. Monakova

requirement specification language we consider FollowedBy example constraint
that has been often used in the process verification approaches and show how
different semantic variations of this constraint can be specified using FOL over
activities, predicates and operators from linear arithmetic over activity states,
and Count function defined above.

The FollowedBy constraint used in [19] is the AT must be followed by BT .
To express such a requirement in our model we use activity state variables and
linear arithmetic to specify the FollowedBy template as follows:

FollowedBy(AT , S1, B
T , S2) := ∀A ∈ AT : A.S1 > 0→

∃B ∈ BT : B.S2 > A.S1
(3.6)

Similar to FollowedBy template, PrecededBy template can be defined as fol-
lows:

PrecededBy(AT , S1, B
T , S2) := ∀A ∈ AT : A.S1 > 0→

(∃B ∈ BT : B.S2 > 0 ∧B.S2 < A.S1)
(3.7)

We assume that FollowedBy template has default parameters S1 = executed
and S2 = started, as well as that PrecededBy has default parameters S1 =
started and S2 = executed. This means that semantic of FollowedBy(AT , BT)
is equivalent to FollowedBy(AT , executed,BT , started). By varying activity
states in these templates we can slightly change their semantic, for exam-
ple FollowedBy(AT , started,BT , started) would allow parallel executions of
A ∈ AT and B ∈ BT as long as B starts after A has started.

To extend the FollowedBy requirement with the time restrictions as used
in [8] to express BT must follow AT within N time units constraint, we can
define the FollowedByWithin template as follows:

FollowedByWithin (AT , S1, B
T , S2, T) := ∀A ∈ AT :

A.S1 > 0→ ∃B ∈ BT : (B.S2 > A.S1)
∧(B.S2 < A.S1 + T)

(3.8)

Constraint FollowedByWithin(AT , executed,BT , started, 2) specifies that B
must start after A if it has been executed and has to finish its execution within
2 time units. It can be varied to specify that B must be completed within 2
hours after execution of A or that it has to reach a certain state in a time frame
relative to start of A. In general, any states defined in Section 2.1 can be used
to parameterise these templates.

3.3 Data Dependent Properties

A property assertion can be refined by adding data conditions over the pro-
cess input data Di that influence execution of activity. To specify that Ai will
be executed if and only if C(Di) evaluates to true, we use following property
assertion:

(Count(Ai, executed) ≤ 1) ∧ (C(Di)↔ Count(Ai, executed) = 1)

Hierarchical Process Verification in a Semi-trusted Environment 103

If activity execution condition contains expressions over local variables or if the
exact activity execution condition should not be exposed, it can be abstracted
to a necessary or a sufficient condition. A sufficient condition C(Di) leads to
execution of the activity: C(Di) → Count(Ai, executed) > 0, while necessary
condition is fulfilled when activity is executed: Count(Ai) = 1→ C(Di). Similar
to the activity occurrence constraint, any other property specification can be
refined with linear data conditions over the input data.

4 Hierarchical Process Verification Using Process Theory

In this section we will show how a requirement R over the parent process P
can be proven or disproven based on the property assertions PA(Pi) of the
subprocesses P1, ..., Pn, and on the structure of P .

4.1 Representing Subprocess Abstractions

Property assertions of a subprocess make statements about the internal process
behaviour. Such assertions need to be adapted to be included into the global con-
text of the overall process. For example, consider a subprocess Pk that makes a
statement Count(AT

i , executed) = 1 with respect to its behaviour. Furthermore,
consider a subprocess Pj that makes a statement over its behaviour about the
same activity type 2 ≤ Count(AT

i , executed) ≤ 3. Without adjustment of these
assertions to the global context, the combined assertion set would contain both
statements, which obviously would lead to a contradiction.

To adjust a local assertion to the global context, we create a set of unique
variables for each subprocess that represent internal activities of the subprocess.
In the above example we would create a variable Ai

Pk
1 that would represent

activity of type Ai in process Pk, and three variables Ai
Pj

1 , Ai
Pj

2 and Ai
Pj

3 to
represent activities of type Ai in process Pk. Count assertion is then mapped to
the assertions over the internal activities. For Pk it will be equivalent to

Ai
Pk
1 .executed > 0

And for Pj it will be equivalent to

Ai
Pj

1 .executed > 0 ∧ Ai
Pj

2 .executed > 0

Without loss of generality we specified that the first two activities are always
executed. There is no statement about the third activity, leaving a freedom for
SMT solver to decide whether it will be executed or not.

Let us assume a subprocess Pi provides a set of assertions PA(Pi) over ac-
tivity types T (PA(Pi)) = {AT

i1 , ..., A
T
ik
}. Let us assume that the overall process

requirement R is defined over activity types T (R) = {AT
1 , ..., A

T
m}. In the first

step we need to create a generic model of Pi with respect to the overall require-
ment R. A model consists of the subprocess activities respresented through the

104 G. Monakova

corresponding variables, as well as the property assertions of the subprocesses
mapped to these activities. As implementation of Pi is unknown, we do not know
how many activities of each type can occur in Pi. To generate a suitable number
of activity instances, we use the following approach.

1. For each activity type AT
il
∈ T (PA(Pi)) we generate as many instances as

specified by the maximum count constraint for this activity type in PA(Pi).
If no maximum count constraint is defined for this activity type, we generate
D number of activity instances, where D is the depth of the verification.

2. For each AT
j ∈ T (R) if AT

j ⊆
⋃

AT
ik

∈T (PA(Pi))
AT

ik
, meaning that activity type

AT
j is covered by types mentioned in PA(Pi), then activities for this type

have already be generated in the first step. If AT
j type refers to a type that

is not part of or is broader than types from T (PA(Pi)), then two strategies
can be taken:
(a) We assume a closed world model (if subprocess does not mention this

type, then it does not have it) and generate no additional activities of
this type.

(b) Introduce an additional negotiation step, where each subprocess will be
asked to provide information with respect to this type.

(c) Assume open world model: as property assertions only represent part
of the process functionality, it can happen that the subprocess contains
activities relevant for the overall requirement that are not reflected in
the property assertions. In this case we would generate D activities of
type AT

j \
⋃

AT
ik

∈T (PA(Pi))
AT

ik
.

4.2 Verifying Process Requirement

Let process P contain sub-processes P1,Pn. Let
PA(Pi) = PA1(Pi), ..., PAk(Pi) denote property assertion of sub-process Pi.
Let SA(P) denote structural assertions derived from the structure of process P ,
which include temporal as well as execution condition dependencies of P1,, Pn.
Let Act(Pi) denote specifications of internal activities of Pi as described above,
including activity state axioms and child-parent relations between Pi and spec-
ified internal activities. Then a requirement R on process P is fulfilled iff the
following is fulfilled:(

SA(P) ∧
∧

i∈1..n

Act(Pi) ∧
(
Pi.executed > 0→

∧
PAj∈PA(Pi)

PAj

))
→ R (4.1)

Including different activity states allows us to verify certain properties of fault
behaviour, but requires additional assertions to be added if we want to restrict
property verification to the non-faulty behaviour. For this purpose we need to
specify that all of the process activities must reach state executed if they reach
state started. This would force states faulted and terminated to be set to −1,
which reflects the non-faulty execution of this activity. To force verification of
the non-faulty behaviour for any activity Ai, we add the following assertion:

Ai.started > 0→ Ai.executed > 0 (4.2)

Hierarchical Process Verification in a Semi-trusted Environment 105

If on the other hand faulty behaviour of certain activities should be taken in
consideration during verification, assertion 4.2 should be skipped for such activ-
ities.

4.3 Application to the Case Study

In the motivating example we have four subprocesses modelled in the pro-
cess graph, represented through the hypernodes, which represent abstractions
of the corresponding processes. These are Retailer1, Reseller, Producer and
Retailer2. To model these subprocesses we declare four variables Retailer1,
Reseller, Producer and Retailer2 to be of type Activity and add the corre-
sponding state relation axioms to our verification basis. The type of these ac-
tivities has not been specified, therefore we do not restrict atype field of these
variables. Our example model also contains one data variable Quantity, which
is added to the verification basis as an Integer variable. Next we will show how
the abstract processes are modelled using Reseller activity and corresponding
property assertions as an example.

The Reseller does not specify activity occurrence restrictions, therefore to
generate internal activities for this abstracted process we need to choose the
depth parameter. For this example we choose verification depth D = 2 and use
closed world assumption, which means that we will create two activities of each
type declared by the process abstraction and create no additional activities. In
our case we create two activities ED1, ED2 of type ExpressDelivery and two
activities QC1, QC2 of type QualityCheck.

After activity declaration and addition of the activity axioms, we add parent-
child axioms according to Table 3. An example axiom (H1) applied to activities
of type ExpressDelivery looks as follows:

EDi.ready > 0→ Reseller.started > 0 ∧ EDi.ready ≥ Reseller.started

ED2.ready > 0→ Reseller.started > 0 ∧ ED2.ready ≥ Reseller.started

Next we will specify property assertions of Reseller mapped to the generated
internal activities. The first property assertion PA1 of Reseller is If (Quantity ¡
5000) THEN ExpressDelivery, which can formally be represented as (Quantity <
5000) → Count(ExpressDelivery, executed) > 0. This assertion is mapped to
the internal activities as follows:

PA1 = (Quantity < 5000→ (ED1.executed > 0 ∨ ED2.executed > 0))

The second property assertion PA2 of Reseller is PrecededBy(ExpressDelivery,
QualityCheck) is equivalent to ∀A ∈ ExpressDelivery : A.started > 0→ (∃B ∈
QualityCheck : B.executed > 0∧B.executed < A.started) To map the ∀ quantor
to the internal activities, we need to add the corresponding assertions for each
generated activity of type ExpressDelivery. In our case we map PAEDi

2 , where
i ∈ [1, 2] denotes the index of the generated ExpressDelivery activity, to the
generated process activities as follows:

106 G. Monakova

PAEDi
2 =

EDi.executed > 0→(
(QC1.executed > 0 ∧QC1.executed < EDi.executed)
∨(QC2.executed > 0 ∧QC2.executed < EDi.executed)

)

In the next step we add process structure axioms to the verification basis ac-
cording to Section 2.3. For this we first define link variables of type Link for
each process link:

Link := Record(source : Activity, target : Activity, condition : bool)

An example link between Retailer1 and Reseller is defined as

L1 : Link(source = Retailer1, target = Reseller, condition = Quantity < 2000)

Next we apply axioms from Table 4 to each of the process activities and each
of the process links. Here is an example of S1, S2 and S5 axioms applied to the
Reseller:

Reseller.ready > 0→ Reseller.ready ≥ Retailer1.completed

∧Retailer1.completed > 0

Retailer1.completed > 0→ Reseller.ready > 0

Reseller.ready > 0 ∧ Status(L1)↔ Reseller.started > 0

In addition, we specify that we only want to verify non-faulty runs through
elimination of faulty behaviour using rule 4.2. Applied to Producer this rule
looks as follows 2:

Producer.started > 0→ Producer.executed > 0

After modelling the process through the assertions according, we can prove the
collaboration requirement R: Product quality must be checked before the product
is sold, which is mapped to the generated activities as follows:

SellProduct1.started > 0→(
(QC1.executed > 0 ∧ SellProduct1.started > QC1.executed)

∨ (QC2.executed > 0 ∧ SellProduct1.started > QC2.executed)

∨ (QC3.executed > 0 ∧ SellProduct1.started > QC3.executed)
)

Using SMT solver Z3 [13], we add the process model assertions and negation
of the requirement to the verification context and check its satisfiability. The
solver returns UNSAT, which means that the requirement R is fulfilled. If we
slightly modify property assertions provided by the participants, e.g. change
Reseller guarantee for express delivery for quantities under 1000, then the SMT
solver returns SAT with a model that represents violation of the requirement.
The model returned by SMT solver assigns a value between 1000 and 2000 to
the quantity variable, and sets QC1.executed, QC2.executed, ED1.executed and
ED2.executed to false.

2 We can skip corresponding assertions for the internal activities as their fault or
termination would lead to fault or termination of the parent activities, which is
forbidden through the above assertions.

Hierarchical Process Verification in a Semi-trusted Environment 107

4.4 Performance Discussions

SMT solvers have been developed in academia and industry with increasing
scope and performance [3]. However, as the problem is NP-hard, the verification
of large models can still take quite a lot of time. The presented approach can
naturally cope with the large models by abstracting parts of the process through
the property assertions. Process abstraction through property assertions not
only allows participants to hide their implementation details, but also reduces
the size of the model by removing unnecessary details. To additionally improve
performance we can further reduce the model size by decreasing the Depth
parameter for generation of the internal activities (depth of 1 is sufficient in
a lot of cases), or through simplification of the activity state model. The number
of integer variables required to represent N activities is N ×K + 1, where K is
the number of activity states (1 is for the activity type variable). We can further
control the model size by deciding which activity states are required for each
verification case. In this work we use 8 state variables for each activity. Based
on the verification requirements this number can be reduced to 3 basic states:
ready, executed and skipped, which would suffice to analyse normal behaviour of
a process; or it can be extended with repaired, cancelled and any other relevant
states if required.

5 Related Work

Constraints have been widely used in the business process area for process speci-
fication, annotation, verification and validation. Our process modelling approach
is closely related to the flow construct of the Business Process Execution Lan-
guage (BPEL, [17]). An extensive overview of existing BPEL formalisations and
verification approaches is provided in [4]. In [14] the constraints are used to
model the semantic of a BPEL process. This allows verification of other con-
straints against the set of constraints representing a BPEL process by reducing
the constraint verification problem to the constraint satisfiability problem. The
approach analyses data flow together with the control flow, which allows verifi-
cation of the data dependent properties. The data mapping approach presented
in this paper was applied to the current work. In [15] an approach for modelling
and validation of different constraint types based on the geometrical shape of
a business process was presented. Property assertion language presented in this
paper heavily influenced the property assertion language in the current work.
A lot of work [9,1,10,11] exist in the area of business process verification using
petri nets. These works concentrate on verification of a workflow where all the
implementation details are known. In [19,18] authors present an LTL based con-
strain specification language, that is used to specify declarative workflows. In
every step of a workflow execution a set of the reachable is computed, so that
a user cannot execute an activity which does not lead to a successful process
termination. While this work is related to the property specification language,
our property assertion language allows to specify data-dependent properties, as
well as activity deadlines. An approach based on abstract state machines (ASM)

108 G. Monakova

is presented in [6]. While the mapping covers scopes, it does not consider the
relations between data conditions and activity executions. Approaches based on
the π-calculus are presented in [5,12]. As with the ASM approaches, these do
not consider the data dependencies of the process. In [7] the authors presented a
formal approach for modeling and verification of web service composition using
finite state process (FSP) notation. Similarly to the Petri Nets approach this
approach does not cover analysis of the activity dependency on the process data
and data manipulations.

In contrast to other works, we use proeprty assertions to declaratively describe
parts of a process. The presenterd verification approach uses property assertions
instead of the process models, which differentiates this work from the related
work.

6 Summary and Future Work

In this paper we presented a hierarchical process verification approach that al-
lows process participants to avoid disclosure of their subprocesses and still allow
for verification of certain properties of the parent process. We showed how a
hierarchical process model can be mapped to assertions, starting from a sin-
gle activity and its state axioms, through abstracted subprocesses with their
guarantees and child-parent axioms, to the complete process structure axioms.
Using the gennerated assertions we showed how a requirement over the process
composition can be verified using an SMT solver.

Acknowledgments. The research leading to these results has received funding
from the German “Federal Ministry of Education and Research” in the context
of the project “RescueIT”.

References

1. Van der Aalst, W.M.P.: Verification of Workflow Nets. In: Azéma, P., Balbo, G.
(eds.) ICATPN 1997. LNCS, vol. 1248, pp. 407–426. Springer, Heidelberg (1997)

2. Beckert, B., et al.: Intelligent Systems and Formal Methods in Software Engineer-
ing. IEEE Intelligent Systems 21(6), 71–81 (2006)

3. Biere, A., Biere, A., Heule, M., van Maaren, H., Walsh, T.: Handbook of Satis-
fiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press,
Amsterdam (2009)

4. van Breugel, F., Koshkina, M.: Models and Verification of BPEL (2006),
http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf

5. Fadlisyah, M.: Using the π-calculus for modeling and verifying processes on
web services. Master’s thesis, Insitute for Theoretical Computer Science, Dresden
University of Technology (2004)

6. Fahland, D., Reisig, W.: ASM-based semantics for BPEL: The negative control
flow. In: 12th International Workshop on Abstract State Machines, pp. 131–151
(March 2005)

http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf

Hierarchical Process Verification in a Semi-trusted Environment 109

7. Foster, H., Uchitel, S., Magee, J., Kramer, J.: A Model-Based Approach to Engi-
neering Web Service Compositions and Choreography in Test and Analysis of Web
Services. In: Baresi, L., Di Nitto, E. (eds.), ch. 71-91, pp. 72–91. Springer-Verlag
Berlin and Heidelberg GmbH & Co. (2007)

8. Giblin, C., Liu, A.Y., Müller, S., Pfitzmann, B., Zhou, X.: Regulations expressed
as logical models (realm). In: JURIX, pp. 37–48 (2005)

9. Hinz, S., Schmidt, K., Stahl, C.: Transforming BPEL to Petri Nets. In: van der
Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.) BPM 2005. LNCS,
vol. 3649, pp. 220–235. Springer, Heidelberg (2005)

10. Lohmann, N., Massuthe, P., Stahl, C., Weinberg, D.: Analyzing Interacting BPEL
Processes. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS,
vol. 4102, pp. 17–32. Springer, Heidelberg (2006)

11. Lohmann, N., Massuthe, P., Wolf, K.: Behavioral Constraints for Services. In:
Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp.
271–287. Springer, Heidelberg (2007)

12. Lucchia, R., Mazzara, M.: A pi-calculus based semantics for ws-bpel. Journal of
Logic and Algebraic Programming 70(1), 96–118 (2007)

13. Microsoft Research. Z3 an efficient theorem prover,
http://research.microsoft.com/en-us/um/redmond/projects/z3/

14. Monakova, G., et al.: Verifying Business Rules Using an SMT Solver for BPEL
Processes. In: BPSC (2009)

15. Monakova, G., Leymann, F.: Workflow art: A framework for multidimensional
workflow analysis. In: Enterprise Information Systems (2012)

16. Nelson, G., Oppen, D.: Simplification by Cooperating Decision Procedures. ACM
Transactions on Programming Languages and Systems 1(2), 245–257 (1979)

17. OASIS. Web Services Business Process Execution Language Version 2.0 (2007)
18. Pesic, M., Schonenberg, M.H., Sidorova, N., van der Aalst, W.M.P.: Constraint-

Based Workflow Models: Change Made Easy. In: Meersman, R., Tari, Z. (eds.)
OTM 2007, Part I. LNCS, vol. 4803, pp. 77–94. Springer, Heidelberg (2007)

19. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a Truly Declarative Service
Flow Language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006.
LNCS, vol. 4184, pp. 1–23. Springer, Heidelberg (2006)

http://research.microsoft.com/en-us/um/redmond/projects/z3/

Intentional Fragments: Bridging the Gap

between Organizational and Intentional Levels
in Business Processes

Mario Cortes-Cornax1, Alexandru Matei2, Emmanuel Letier2,
Sophie Dupuy-Chessa1, and Dominique Rieu1

1 University of Grenoble, CNRS, LIG
{Mario.Cortes-Cornax,Sophie.Dupuy,Dominique.Rieu}@imag.fr

http://sigma.imag.fr/
2 University College London, Gower Street, London WC1E 6BT, United Kingdom

alexandru.matei.09@ucl.ac.uk, e.letier@cs.ucl.ac.uk

Abstract. Business process models provide a natural way to describe
real-world processes to be supported by software-intensive systems. These
models can be used to analyze processes in the system-as-is and de-
scribe potential improvements for the system-to-be. There is however
little support to analyze how well a given business process models sat-
isfies its business goals. Our objective is to address these problems by
relating business process models to goal models so that goal-oriented re-
quirements engineering techniques can be used to analyze how well the
business processes for the system-as-is satisfy the business goals. The
paper establishes relationships between BPMN 2.0 and the KAOS goal-
oriented requirements modelling framework. We present the notion of
intentional fragment to bridge the gap between process models and goal
models. We conducted an evaluation to analyze use of this concept in
the context of a university process.

Keywords: Process Modelling, Business Process Management, Goal-
oriented Requirements Modelling, KAOS, BPMN 2.0.

1 Introduction

Business process models provide a natural way to describe real-world processes
to be supported by software-intensive systems. These models are widely used
in the industry as an important source of information about the current or
future processes in a company. A widely recognized problem among the business
analysts is the lack of a clear correspondence between business process models
and business objectives, rules and constraints [1]. This fact decreases the value
of such models, since it keeps the rationale behind each process implicit [2,3].
These problems have also been discussed in the context of the Business Process
Model and Notation (BPMN) [4]. Indeed, most practitioners point out the lack
of business rules behind BPMN models [5].

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 110–127, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://sigma.imag.fr/

Bridging the Gap between Organizational and Intentional Levels in BP 111

Different approaches have been proposed in the academia for relating business
process models with business objectives or constraints using frameworks such as
Non-Functional Requirements (NFR) [6], i* [7], Tropos [8] or KAOS [9]. Their
scope ranges from establishing semantic correspondences between process models
and goal models [8] to addressing non-functional requirements satisfaction [6]
or process variability and re-engineering methods [7]. These approaches either
assume a pre-existing goal model or define a goal model too tied to the process
model. They are generally not focused on how to create a goal model in the first
place. However, generating a useful goal model represents a challenge for most
business analysts.

Our aim is to relate business process models to goal models maintaining a clear
separation of concerns between the two models. Traceability links between these
two models will allow the business analyst to explicitly state the rationale of each
process activity. A goal-based analysis based on this relation can therefore be
applied to identify problems in the process model, such as missing or superfluous
activities.

The paper establishes the relationship between BPMN 2.0 and the KAOS
goal-oriented modelling framework through the concept of Intentional Fragment.
An intentional fragment is a set of flow elements of the process with a com-
mon purpose. By means of intentional fragments goals are therefore related to
the BPMN 2.0 process elements. The paper presents several heuristics to ex-
tract potential intentional fragments from the business process that will help
constructing goal models from the business process model and also guide the
goal-based analysis. We conducted an evaluation using the mission process in
the Informatics Laboratory of Grenoble (LIG) to analyze the use of intentional
fragment as an efficient and simple way to fill the gap between the organiza-
tional level represented by the business process model and the intentional level
represented by the goal model.

The paper is organized as follows. Section 2 briefly presents BPMN 2.0 and
KAOS framework thought a model used in our case study. Section 3 presents
the relation between these two models and a precise definition of the notion
of intentional fragment. The case study is discussed in Section 4. In Section 5
analysis questions derived from the notion of intentional fragment are raised.
Section 6 presents the related works and finally, future work and conclusions are
discussed in Section 7.

2 BPMN 2.0 Process Models and KAOS Goal Models

This section presents both BPMN 2.0 and KAOS languages through a running
example that relies on the mission process (e.g., conference travel or speech invi-
tation) in the Informatics Laboratory of Grenoble (LIG). We choose BPMN 2.0
since it is the de-facto standard to model business processes. KAOS on the other
hand is a well known framework for goal modelling which comes with a powerful
set of goal oriented analysis techniques.

112 M. Cortes-Cornax et al.

2.1 Running Example Modelled in BPMN 2.0

The main scope of BPMN is to describe business processes in an accessible way
at different levels of granularity (i.e., from abstract design models to detailed
executable models). Figure 1 shows a design model of the mission process in the
Informatics Laboratory of Grenoble (LIG) modelled in BPMN 2.0. A Process in
BPMN 2.0 is defined as “a sequence or flow of activities in a specific organization
with the objective of carrying out work” [4]. A Process in BPMN 2.0 might be
enclosed in a Pool which identifies the process responsible (Participant)(e.g.
Travel Agency and LIG). To organize and categorize Activities within a Pool,
Lanes are used which usually represent different organizational units in a process
(e.g. Team Leader and Employee). The flow of Activities, which represent the
work (e.g. “E1: set the travel schedules”), is controlled by Gateways, which are
the decision making (e.g. “Ok?”). A process starts with a Start Event and can
finish in different ways captured by the End Events.

Fig. 1. Mission Process - Before Leaving

Figure 1 describes the steps that permit an Employee go in a journey as
for example a conference, and then be refunded. An Employee must look for
convenient travel times and hotel for her destination firstly. Then, she asks for a
quote (quote request) to the Travel Agency. This request is a Message linked to a
Sequence Flow. She calculates the mission costs filling the Mission Order Request
(MOR) where she add the estimation for the staying expenses in addition to
transport and hotel expenses. The Team Leader checks the appropriateness and
cost of the mission and then approves or disapproves the mission. The Team
Leader also chooses the contract from which the mission will be financed. Both

Bridging the Gap between Organizational and Intentional Levels in BP 113

the MOR and the quote are addressed to the Team Assistant who is in charge
of doing all the administration documents so that the Employee can leave with
warranties to be covered by an assurance and with the Direction approval. We
present just the first part of the process model, before the Employee leaves.
Further details in the BPMN 2.0 constructs may be found in the standard [4].

2.2 Goal-Oriented Requirements Modelling in KAOS

Goal-oriented requirements engineering (GORE) supports “the use of goals for
eliciting, elaborating, structuring, specifying, analyzing, negotiating, document-
ing, and modifying requirements” [10].

The KAOS method for GORE offers a precise (formal) way to reason about
Requirements Engineering (RE). It defines several complementary system mod-
els, including the goal model. Goals captured in the goal model are prescriptive
statements about the system, capturing desired states or conditions. Goals are
organized hierarchically, starting from high level goals (usually corresponding to
business objectives). These goals are iteratively refined into Sub-goals. Require-
ments are under the responsibility of Agents. Agents are the active components
inside the system.

Figure 2 shows an example of goal model (not fully developed) concerning the
mission process of Fig. 1. On top, we find the high level goal “Go in a mission
comfortably and covered by an assurance” refined into further sub-goals leading
to requirements. The responsibility of the requirements are then assigned to
the agents. For example, the Employee is responsible of the goal (requirement)
“Program an informal discussion with the Team Leader to present the mission”.

Fig. 2. Example of Goal Model related to the Mission Process

We choose the KAOS method as it has a well developed mechanism to reason
about the goal models, including partial goal satisfaction [11] or obstacle analy-
sis [12]. Obstacles are conditions that prevent the satisfaction of a goal. Relating

114 M. Cortes-Cornax et al.

BPMN with KAOS allows the use of these techniques on the goal model inferred
from the process model. Other goal-oriented frameworks such as i* [7] are not
yet considered because they do not share neither the same terminology nor the
theoretical background.

3 Relating Business Process Models and Goal-Oriented
Models

This section presents a meta-model that integrates both BPMN 2.0 and KAOS
meta-models without changing their individual meaning. It also presents a pre-
cise definition of the Intentional Fragment.

3.1 The Meta-model Relating BPMN 2.0 and KAOS

This section presents the meta-model in Fig. 3 which introduces the notion of
Intentional Fragment as a mean to relate the BPMN 2.0 meta-model to the
KAOS meta-model. On top of the figure, the KAOS constructs are represented.
In the bottom, we represent the BPMN 2.0 constructs that we are interested
on. A Goal in KAOS could be refined into sub-goals as well as Agents could
also be refined. An Agent MAY be responsible of several Goals (0..*). Only the
leaf-goals in the goal model are related (not necessarily) to an Agent.

Fig. 3. Meta-model relating BPMN 2.0 and KAOS through Intentional Fragment

In BPMN 2.0 a Process contains a set of Flow Elements that could be Flow
Nodes (i.e Activity, Gateway and Event) or Sequence Flow (an arrow which
defines the sequence of the Flow Nodes). An Intentional Fragment contains one

Bridging the Gap between Organizational and Intentional Levels in BP 115

ore more Flow Elements (at least one activity). Several nodes in the process could
be related to an Intentional Fragment(0..*). An Intentional Fragment therefore
could be seen as a set nodes in a process (not necessarily connected) that MAY
satisfy a Goal. A Goal MAY be satisfied by several Intentional Fragments(0..*).
Each of these Intentional Fragments represent an alternative way to satisfy the
Goal. An Agent is considered responsible of a Goal if it performs all the Activities
related to a Goal through an Intentional Fragment.

(a) One-activity IF (b) Several-activities IF

Fig. 4. Examples of Intentional Fragments (IF) that Satisfy a Goal

Based on the mission process, Fig. 4 illustrates two examples of intentional
fragments linked with their corresponding goals. In the first example, the inten-
tional fragment contains one activity (“A4: make mission order without expenses
(MOWE)”). This activity is performed by the Team Assistant when the financier
sponsor of the mission is not the employer. The MOWE is the document that is
needed to control that the Employee will not receive an extra refund because the
expenses are in charge of an external financier. Therefore, the intentional fragment
in Fig. 4a satisfies the goal “Guarantee a unique refund”. The second intentional
fragment satisfies the goal “Achieve a good estimation of the mission costs”. All
the activities within an intentional fragment are performed by the Employee. This
implies that the latter is responsible to fulfill the goal. A more detailed definition
of the Intentional Fragment is presented in the following section.

We rely on the work of Anaya et al. [13] to use the KAOS Agent term to
refer to the participant BPMN 2.0 concept. In this work authors present the
Unified Entreprise Modelling Language approach (UEML) as a mean of mapping
different languages to a common ontology to interrelate construct descriptions
at the semantic level (BPMN and KAOS among others). The work shows that
an Agent in KAOS and a Participant in BPMN are both constructs used to
show an active entity that do not refer neither to transformations nor states
within the overall system. In addition, they could both refer to an abstract
entity or a concrete instance. In our work, an Agent will also refer to Lanes if
the latter represent roles in the organization like in our example. One of the
advantages of using BPMN and KAOS is that both frameworks allow different
levels of granularity: high level goals and sub-processes (compound activities)
can be refined into more specific goals and activities, respectively.

Our approach may be developed using resource assignment models [14] to
relate agents with performed activities.

116 M. Cortes-Cornax et al.

3.2 The Intentional Fragment

The Intentional Fragment makes explicit a relation between its constituent ac-
tivities and its corresponding goal that otherwise would not be visible. The
identification of intentional fragments is guided by the underlying purpose of
the activities. The scope of our discussion is a single process model although
the concept of intentional fragment can be expanded in future work to include
activities from several process models.

We define a state for an intentional fragment depending on whether or not it
satisfies a goal. If the intentional fragment is related to at least one goal, the state
of this class will be Justified (IFJ). On the other hand if an intentional fragment
is not related to any goal, the state is defined as Potential (IFP). Following,
the definition of this concept is given starting from the definition of a BPMN
process:

A BPMN Process P = (N,Start, End, δ) is defined by:

• A set N of flow nodes partitioned into Activities, Events and Gateways
• A set of start nodes Start ⊂ Events
• A set of end nodes End ⊂ Events
• A sequence relation δ ⊂ N × N defined as a set of tuples of nodes from
the process P satisfying a set of well-formedness constraints defined in the
BPMN specification
– estart ∈ Start has no predecessor in δ
– eend ∈ End has no successor in δ
– act ∈ Activity has exactly one successor and one predecessor in δ
– gtw ∈ Gateway has either one predecessor and several successors or
several predecessors and one successor

An Intentional Fragment [Potential] IFP of a BPMN process P = (N,Start,
End, δ) is a tuple (N ′, Start′, End′, δ′) such that:

• N ′ ⊆ N
• Start′ ⊆ N ′ is the set of nodes that have no predecessors in IFP
• End′ ⊆ N ′ is the set of nodes that have no successors in IFP
• A sequence relation δ′ ⊂ N ′ × N ′ which is the smallest relation satisfying
the following criteria:
– if n2 is reachable from n1 in P, then n2 should be reachable from n1

in IFP. We verify whether n2 is reachable from n1 using the transitive
closure of the sequence flow relation [15] (∀n1, n2 ∈ N ′)n2 ∈ n1. ∗ δ ⇒
n2 ∈ n1. ∗ δ′.

– if n2 is not reachable from n1 in P, then n2 should not be reachable from
n1 in IFP: (∀n1, n2 ∈ N ′)n2 �∈ n1. ∗ δ ⇒ n2 �∈ n1. ∗ δ′.

IFJ is an Intentional Fragment [Justified] in process P = (N, estart, End, δ) for
goal G iff:

Bridging the Gap between Organizational and Intentional Levels in BP 117

• Inclusion criteria: IFJ is an Intentional Fragment [Potential] of P, as de-
fined above
• Completeness criteria: the execution semantic of IFJ should be enough to
entail goal satisfaction: [|IFJ|] |= G
• Minimality criteria: there is no other fragment IFJ’ such that [|IFJ’|] |= G
and IFJ’ ⊂ IFJ

The definition of intentional fragment that is introduced imposes only the mini-
mum set of constraints necessary to preserve the semantics of the process model.
As long as these constraints are respected, analysts have the liberty to decide
what constitutes an intentional fragment. However, in future work we will intro-
duce additional well-formedness constraints to support formal verification of the
completeness and minimality criteria.

As a precondition to formally verify completeness and minimality criteria, we
need to consider how execution semantics for the process are expressed. In the
BPMN specification, the execution semantics is presented in a textual form, using
the concept of token. A mapping to the Business Process Execution Language for
Web Services (WS-BPEL) [16] is also presented, which gives an execution seman-
tics. BPMN semantics have also been expressed using Petri Nets [17] or Calculus
of Orchestration of Web Services (COWS) [18]. Although these approaches use
event based semantics, state based semantics have also been explored [19].

In future work, we intend to develop automated support for verifying com-
pleteness and minimality criteria for IFJ using model checking. This requires
expressing the semantics of an intentional fragment in terms of Labelled Transi-
tion Systems [20] that can be modelled checked against KAOS goal models [21].

Figure 5a shows an example of intentional fragment in a Potential state and
we also indicate that the sequencing of disconnected elements follows the pro-
cess directives (transitive closure property). Figure 5b shows how the Potential
Intentional Fragment changes its state to Justified when it is related to a goal.
Every agent that performs at least one of the activities that are part of the
fragment is partially responsible for the goal. To represent this joint responsi-
bility, we can introduce an abstract agent that represents the aggregation of all
the agents involved. In the example on Fig. 5a the team Leader, the employee
and the team Assistant perform activities that are part of the intentional frag-
ment that satisfies the goal. Therefore, the three participants refined an abstract
Agent that named (Abstract) Financial Agent.

118 M. Cortes-Cornax et al.

(a) Potential Intentional Fragment (IFP). Not Linked to a Goal

(b) Justified Intentional Fragment (IFJ). Linked to a Goal

Fig. 5. Examples of the Different States of an Intentional Fragment

4 Case Study

This section presents the evaluation of the Intentional Fragment concept. This
experiment was driven by Nadine Mandrin from the PIMLIG 1 team. Firstly, the
evaluation protocol is described. Then, some interesting results are discussed.

4.1 The Evaluation Protocol

Table 1 describes the evaluation protocol that we set up for our case study. We
wanted to validate the hypothesis that “An intentional fragment is an intuitive
and useful concept to relate business process models and goal models”. The avail-
able material was the case study that describes the mission process presented in
Section 2. Figure 1 shows one of the two parts of the process model that were
used in the evaluation. An evaluation keeps the trace of how subjects were using
the notion of intentional fragment.

To carry out the evaluation we choose a method recommended by sociol-
ogy and also by computer designers : the semi-structured interviews [22]. This
method belongs to the family of qualitative methods such as participant ob-
servation [23] or the focus groups [24]. We choose this interview method as it
helps developing a lot of ideas, opinions, or habits, even if they are not frequent
within the studied subjects. The goal is not to quantify these behaviors or needs
but to make a list as large as possible. Sociology recommends a minimum of
20 interviews in order to reach saturation in this list. Experience shows that

1 http://www.liglab.fr/pimlig

http://www.liglab.fr/pimlig

Bridging the Gap between Organizational and Intentional Levels in BP 119

Table 1. Evaluation Protocol for the Case Study

Subjects

People involved in the mission process of LIG (employees, team assistant, team leader
and direction).

Organization

21 personal semi-structured interviews. Around 45 minutes each one.

Evaluation method

The subjects understand, use and evaluate the concept of intentional fragment in a
familiar process.

Protocol

• The evaluator explains the mission process (10min).
• The evaluator proposes 3 intentional fragments and the subject identifies the associ-

ated goal for each one (5 - 10min).
• The evaluator proposes 3 goals and the subject identifies the associated intentional

fragment for each one (5 - 10min).
• The evaluator proposes a free time to identify new goals or intentional fragments.

The evaluator captures the trace of the subject’s work. The evaluator asks for errors
or gaps in the process (15min).

• The subject comments the usefulness of the concept of intentional fragment (5min).

from 20 interviews there is a behavior redundancy and new and original ideas
are rare. These interviews are organized face to face with an interview schedule
grid. We conducted 21 qualitative interviews with people that takes part of the
process and whose demographic profiles were different in terms of gender, age
and modelling experience.

When the process model was inferred, some errors and gaps were detected.
We did not correct them so we could also evaluate if our approach could help
stakeholders to analyze and detect problems in both the process and the model.
We did not provide the complete definition of intentional fragment to subjects
to avoid extra complexity. We just define it as “a set of elements in the process
related to a goal”. After the interviews, we analyzed all the responses to the
different exercises.

4.2 First Exercise: Identifying Goals from Intentional Fragments

Three main strategies were observed when during the first exercise. Subjects
tended to rely on abstraction to identify goals. They grouped sequential activ-
ities in a more generic one, which they considered the goal. For example, for the
first fragment (Fig. 4b), a common goal proposed was “prepare the mission”. An-
other common strategy is that subjects were guided by the data objects that go
out from the last activity of the proposed fragment (e.g., “get a mission request
order” for the first fragment). Finally, what we consider being the best approach,

120 M. Cortes-Cornax et al.

11 subjects synthesized the elements within the intentional fragment and go
beyond abstraction. A good example of goal for the first intentional fragment
would be: “achieve a good estimation of the mission costs”.

4.3 Second Exercise: Identifying Intentional Fragments from Goals

The second exercise consisted on identifying the intentional fragment correspond-
ing to a given goal. Two specific goals (the first and the third one) and a more
general goal (the second one) were proposed: 1) “the benefit against the cost of a
mission has to be evaluated”, 2) “a financial settlement is established in line with
the mission costs and regulated expenses” and 3) “the final financial settlement
is approved by the employee”. We analyzed the variability of the suggestions for
the corresponding intentional fragment.

The identification of an intentional fragment that relates to the second goal
(the more general) was difficult and depended on the subject’s interpretation.
We also observe much more dispersion in the activities involved. More than 50%
of the subjects suggested disconnected activities to fulfill the goal.

4.4 Third Exercise: Identifying New Intentional Fragments and
New Goals

The last exercise was the free part of the evaluation. Subjects had to reproduce
what they had already done in the two first exercises with their own manner no
matter what order. We also asked them during this exercise to identify errors or
gaps in the process model.

A total of 43 different goals were inferred in this exercise. The most com-
mon goals corresponded to the activities of the individual agents and also most
of them related to passing documents. Subjects commonly distinguish the em-
ployee from the rest of the laboratory agents. The more repeated goal was: “The
employee wants to do the mission with all the documents in order and then be
refund”.

Goals that had no corresponding intentional fragment were source of an error
or gap. A total of 49 different errors and gaps were detected. The most common
ones were: “what happens if disapprovals?” or “there is a lack of notifications”.
This proves that that an exhaustive analysis could be done by means of inten-
tional fragments.

4.5 Conclusions about the Evaluation

Some limits in our evaluation have to be considered. Firstly, the fact of using a
qualitative approach do not permit to generalize the results. However, relevant
feedback is given that permits refining our proposal. Secondly, the fact that
all the participants were familiar with the process. In this work, we make the
assumption that at least a part of the process model is already known. This
helped them to infer goals that were not explicitly described in the process model.

Bridging the Gap between Organizational and Intentional Levels in BP 121

On the other hand, we chose this approach to minimize the time dedicated to the
explanation of the process and focus on the goal inference through intentional
fragments. Another drawback that could be argued is that the ordering of the
exercises may affect the outcome. We maintain this strategy because it helped to
understand the approach and the notion of intentional fragment by giving them
as first exercise some examples. We prioritize the analysis of subjects’ behaviour
facing the same structure in the evaluation.

The purpose of this evaluation was to evaluate the usage of the notion of
Intentional Fragment to bridge the gap between goals and process models.
We observed that even if the definition of intentional fragment was not com-
pletely given to the subjects, it appeared in a natural way. We also observed
that this approach helped inferring goals.

5 Applications of the Intentional Fragment Concept

The relation between the process model and the goal model helps analysts to
firstly justify the business process and then analyze the process as-is. We develop
this points in the following section.

5.1 Inferring a Goal Model that Justifies the Process Model

We previously put forward the difficulty for an analyst to generate a correct goal
model. Particularly challenging is the inference of goals. During the evaluation, a
set of goals corresponding to the mission process were identified using the notion
of intentional fragment. Figure 6 illustrates a goal model that we generate based
on the goals elicited during the interviews. In structuring the goal model, we
employ some standard goal refinement patterns from KAOS [10]. For example,
the milestone driven refinement pattern is used to refine the goal “Plan a Mis-
sion”. The pattern is applicable to goals where an intermediate condition has to
hold true before reaching the prescribed condition. In our example, to be able
to warrant the financial means for the mission, an estimation of the costs has to
exist – this can be seen as a milestone in planning the trip.

Moreover, the different strategies that subjects used to group process nodes
gave us some clues about what are the potential intentional fragments that could
be automatically proposed and might be related to a business goal. We propose
a set of heuristics (H) to identify potential intentional fragments of different sizes
and scopes, based on visible patterns in the process model. The next step will be
to establish a correspondence between these potential intentional fragments and
goals. This can be done through GORE elicitation techniques [10] (e.g. asking
why? questions). A potential intentional fragment might be composed by:

H1. nodes between a start event and the first sequence flow to another lane. An
example of application for H1 can be found in Fig 4b.

H2. nodes between a sequence flow to another lane and an end event.

122 M. Cortes-Cornax et al.

Fig. 6. A Resulting Goal Model Inferred from Goals Proposed by Subjects

H3. nodes within the end events (other than the happy path end event) and the
immediately preceding XOR gateway. “Happy path” stands for the path
where everything goes right. Figure 7 shows the application of this heuris-
tic. In this case, the intentional fragment is not linked to any goal (subjects
did not find a goal associated).

H4. nodes immediately after and before a XOR gateway. They could imply
control goals.

H5. nodes within the path of two consecutive sequence flows that transit from
lane to lane. Figure 7 shows the application of this heuristic where the
intentional fragment satisfies the goal “1st verification and validation of
the mission”.

H6. nodes between two consecutive messages to/from the same agent.
H7. nodes having as input the same documents.
H8. nodes labeled with similar verbs. For example verify, inform, sign, etc ...
H9. nodes within a lane.

H10. nodes within the “happy path”. They relate to a high level goal.

Although difficult to infer, the goal model is not an end in itself. Rather, it is
useful because it supports further reasoning about the goals, for example through
conflict or obstacle analysis. To validate the usefulness of the inferred goal model,
we present one result that emerges from the obstacle analysis. Considering the
goal “Achieve a good estimation of the mission costs”, we can negate it and infer
an obstacle. So, starting from the statement ”Do not achieve a good estimation
of the mission costs”, a business analyst can ask what happens if some costs are

Bridging the Gap between Organizational and Intentional Levels in BP 123

Fig. 7. Example of Application of Heuristics 3 and 5

not considered, or if estimations cannot be obtained, or estimations are much
less than in reality. All of these are concerns that need to be addressed. As such,
the utility of the intentional fragment is validated by the fact that, by analyzing
the goal model inferred, we can identify problematic situations.

5.2 Alignment between the Process Model and the Goal Model

If both models are available and relations between intentional fragments and
goals have been established, an alignment analysis can be performed. We present
a set of heuristics that can be used to identify miss-alignments between the two
models. Figure 8 gives an overview of the alignment between a part of the process
model and a part of the goal model. It also illustrates the how we could apply
the two last heuristics.

• Check that for each goal identified in the goal model, there exists at least one
corresponding intentional fragment - this identifies objectives not fulfilled
by the considered process or shows that additional process models should
be considered. When there is any activity contributing to the satisfaction of
goal, a critical problem is detected. An example in our use case regarding
Fig. 2 is the goal “Program an informal discussion with the Team Leader
to present the mission”. There is no activity that clearly contributes to the
satisfaction of this goal in the process model.
• Check that each activity in the process model is part of at least one intentional
fragment - this step identifies superfluous activities. If an activity is not part
of any intentional fragment, an organizational problem is detected. In our
case study, the activity “TL3: Disapprove” (see Fig. 1) cannot be related

124 M. Cortes-Cornax et al.

to any goal . Although there is probably a reason to disapprove the mission
order request, the goal was not identified.
• Check the Agents’ responsibility - for each goal, we may verify if we could as-
sign all the activities that are part of the intentional fragment to an agent.
Figure 8 shows that to warrant the financial means of the journey, three par-
ticipants are involved that are the the team leader, the employee and the team
assistant. Looking at the process we observe that there is a double verification
of the warrant of financial means by the team leader and the team assistant.
We could think about the possibility to delegate this verification to only one
agent. Consequently, the performance of the process may be improved.
• Detecting interlocking intentional fragments - An interesting question that
arises is: If two intentional fragments are intertwined, how do they influence
each other? If the goals that relates the intentional fragments do not depend
on each other, the possibility of performing the activities in parallel may be
considered. In Fig. 8, the travel and hotel planning (i.e. activities E1, E2) may
be done in parallel because each activity is related to non-dependent goals.

Fig. 8. Alignment between Goal Model and the Process Model

6 Related Work

Other researches have already presented some relation between goal models and
business process models. Extending BPMN models to include additional arti-
facts that allow traceability to goals have been proposed [6,9,25]. However, these

Bridging the Gap between Organizational and Intentional Levels in BP 125

approaches add more complexity to the language. Alternatively, goal models are
firstly mapped to process models and then enriched to support variability on the
process models [7]. The problem here is that the goal model ends representing
almost the same view that the process model rather than being a higher level
intentional layer. This approach does not focus on reasoning about the rationale
of activities and their purpose as part of the overall process. Hence, its scope is
limited. In our approach one of our major aims is to maintain a clear separa-
tion of concerns between process models (the organizational layer) and the goal
model (intentional layer): the the Intentional Fragment is a pivot to bridge the
gap between both layers.

The notion of fragment has already been introduced in addition to standard
BPMN 2.0 constructs. For example, using reusable fragments that are then
mapped to BPEL blocks [26]. Fragments are identified based on certain struc-
tural patterns visible in the process model. Fragments have also been used to
represent localized knowledge regarding the business process [27]. This approach
starts from the assumption that each participant is aware of only some parts of
the process, and this constitutes a fragment. These fragments need to be inte-
grated to obtain a complete process model. Fragments are also used as a mean
to propose change patterns in process models [28]. These approaches use the
fragment concept as a connected set of nodes. In our approach, we also support
disconnected parts of the process and in addition, we explicitly define a relation
between fragments and goals.

In [29] authors present an aspect-oriented approach to modularize the cross-
cutting concerns in a business process modeling and they applied it using BPMN.
However, they stay in an organizational level when they identify these concerns.
In our approach we consider an intentional level represented by the goal model.

Automatic goal decomposition is performed to support cooperative team for-
mation (process parts assignments) within the context of Instant Virtual Enter-
prise (IVE) [30]. This work describes how to create the IVE process dynamically
matching goal requirements and agents capabilities. Our approach is more fo-
cused on facilitating the extraction of a goal model from a process-as-is and all
the further analysis that may be applied to identify problems or improve the
process model.

7 Conclusion and Future Work

In this paper we introduce the notion of intentional fragment as a mean to
relate process models and goal models. As we have shown in the case study,
the approach is a simple and very pragmatic solution for a well-known prob-
lem. Business analysts as well as stakeholders which are part of the process
could be involved in the generation of the goal model from a process model.
Goal based analysis could latter be performed and will help gaining a more
structured understanding of the process. The critical analysis is supported by
delimiting the organizational and intentional level. The BPMN 2.0 model and
the KAOS goal model represent different perspectives over the system. These

126 M. Cortes-Cornax et al.

models complement each other and are used to identify new goals or possible
organizational problems in the existing process. Intentional fragments permit
establishing the relations between goals and process nodes at different levels of
abstraction. These nodes could not be necessarily connected. Both high level
goals as well as requirements (i.e. leaf-goals) could be related with one or more
intentional fragments. The heuristics to extract potential intentional fragments
facilitates goal elicitation and goal-based analysis of the process model.

The work presented here raises several interesting questions for the future.
Most importantly, the identified heuristics could be the start-point to automate
intentional fragment identification. These heuristics will be integrated into a
tool that can help business analysts infer goal models from the business pro-
cess model. This would allow generating better goal models with less effort and
therefore help to justify them. Secondly, the semantics of intentional fragments
will be formalized. We also acknowledge the potential to suggest ameliorations
in the process, based on the results of the traceability analysis.

References

1. Hepp, M., Roman, D.: An ontology framework for semantic business process man-
agement. In: Proceedings of Wirtschaftsinformatik 2007 (2007)

2. Indulska, M., Recker, J., Rosemann, M., Green, P.: Business Process Modeling:
Current Issues and Future Challenges. In: van Eck, P., Gordijn, J., Wieringa, R.
(eds.) CAiSE 2009. LNCS, vol. 5565, pp. 501–514. Springer, Heidelberg (2009)

3. de la Vara, J.L., Sánchez, J., Pastor, Ó.: Business Process Modelling and Pur-
pose Analysis for Requirements Analysis of Information Systems. In: Bellahsène,
Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 213–227. Springer,
Heidelberg (2008)

4. OMG: Business process model and notation (bpmn 2.0) (2011),
http://www.omg.org/spec/BPMN/2.0/

5. Recker, J.: Opportunities and constraints: the current struggle with bpmn. Business
Process Management Journal 16(1), 181–201 (2010)

6. Pavlovski, C., Zou, J.: Non-functional requirements in business process modeling.
In: Proceedings of the Fifth Asia-Pacific Conference on Conceptual Modelling,
vol. 79, pp. 103–112. Australian Computer Society, Inc. (2008)

7. Lapouchnian, A., Yu, Y., Mylopoulos, J.: Requirements-Driven Design and Config-
uration Management of Business Processes. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 246–261. Springer, Heidelberg (2007)

8. Cardoso, E., Guizzardi, R., Almeida, J.: Aligning goal analysis and business process
modelling: a case study in healthcare. International Journal of Business Process
Integration and Management 5(2), 144–158 (2011)

9. Koliadis, G., Ghose, A.K.: Relating Business Process Models to Goal-Oriented
Requirements Models in KAOS. In: Hoffmann, A., Kang, B.-H., Richards, D.,
Tsumoto, S. (eds.) PKAW 2006. LNCS (LNAI), vol. 4303, pp. 25–39. Springer,
Heidelberg (2006)

10. Van Lamsweerde, A.: Goal-oriented requirements engineering: A guided tour. In:
Proceedings of the Fifth IEEE International Symposium on Requirements Engi-
neering, pp. 249–262. IEEE (2001)

http://www.omg.org/spec/BPMN/2.0/

Bridging the Gap between Organizational and Intentional Levels in BP 127

11. Letier, E., Van Lamsweerde, A.: Reasoning about partial goal satisfaction for
requirements and design engineering. ACM SIGSOFT Software Engineering
Notes 29, 53–62 (2004)

12. Van Lamsweerde, A., Letier, E.: Handling obstacles in goal-oriented requirements
engineering. IEEE Transactions on Software Engineering 26(10), 978–1005 (2000)

13. Anaya, V., Berio, G., Harzallah, M., Heymans, P., Matulevicius, R., Opdahl, A.,
Panetto, H., Verdecho, M.: The unified enterprise modelling language–overview
and further work. Computers in Industry 61(2), 99–111 (2010)

14. Cabanillas, C., Resinas, M., Ruiz-Cortés, A.: Defining and Analysing Resource As-
signments in Business Processes with RAL. In: Kappel, G., Maamar, Z., Motahari-
Nezhad, H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 477–486. Springer,
Heidelberg (2011)

15. Lidl, R., Pilz, G.: Applied abstract algebra. Springer (1998)
16. OASIS: Web services business process execution language v2.0 (2007),

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
17. Dijkman, R., Dumas, M., Ouyang, C.: Semantics and analysis of business process

models in bpmn. Information and Software Technology 50(12), 1281–1294 (2008)
18. Prandi, D., Quaglia, P., Zannone, N.: Formal Analysis of BPMN Via a Translation

into COWS. In: Lea, D., Zavattaro, G. (eds.) COORDINATION 2008. LNCS,
vol. 5052, pp. 249–263. Springer, Heidelberg (2008)

19. Soffer, P., Wand, Y.: Goal-Driven Analysis of Process Model Validity. In: Pers-
son, A., Stirna, J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 521–535. Springer,
Heidelberg (2004)

20. Magee, J., Kramer, J.: State models and java programs. Wiley (1999)
21. Letier, E., Kramer, J., Magee, J., Uchitel, S.: Deriving event-based transition

systems from goal-oriented requirements models. Automated Software Engineer-
ing 15(2), 175–206 (2008)

22. Hindus, D., Mainwaring, S., Leduc, N., Hagström, A., Bayley, O.: Casablanca: de-
signing social communication devices for the home. In: Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pp. 325–332. ACM (2001)

23. Simiand, F.: Méthode historique et science sociale. Annales. Histoire, Sciences So-
ciales 15, 83–119 (1960)

24. Bruseberg, A., McDonagh-Philp, D.: Focus groups to support the indus-
trial/product designer: a review based on current literature and designers’ feed-
back. Applied Ergonomics 33, 27–38 (2002)

25. Morrison, E., Ghose, A., Dam, H., Hinge, K., Hoesch-Klohe, K.: Strategic align-
ment of business processes (2011)

26. Ouyang, C., Dumas, M., Ter Hofstede, A., Van Der Aalst, W.: Pattern-based trans-
lation of bpmn process models to bpel web services. International Journal of Web
Services Research (JWSR) 5(1), 42–62 (2007)

27. Eberle, H., Leymann, F., Schleicher, D., Schumm, D., Unger, T.: Process fragment
composition operations. In: 2010 IEEE Asia-Pacific Services Computing Confer-
ence (APSCC), pp. 157–163. IEEE (2010)

28. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change sup-
port features–enhancing flexibility in process-aware information systems. Data &
Knowledge Engineering 66(3), 438–466 (2008)

29. Cappelli, C., Leite, J., Batista, T., Silva, L.: An aspect-oriented approach to busi-
ness process modeling. In: Proceedings of the 15th Workshop on Early Aspects,
pp. 7–12. ACM (2009)

30. Mehandjiev, N., Grefen, P.: Dynamic business process formation for instant virtual
enterprises. Springer-Verlag New York Inc. (2010)

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel

Indexing Process Model Flow Dependencies

for Similarity Search�

Ahmed Gater1, Daniela Grigori2, and Mokrane Bouzeghoub1

1 Université de Versailles Saint-Quentin en Yvelines
45 avenue des Etats-Unis, 78035 Versailles Cedex, France

2 Université Paris-Dauphine, Pl. Mal de Lattre de Tassigny 75775 Paris, France

Abstract. The importance gained by process models in modern
information systems leaded to the proliferation of process model repos-
itories. Retrieving process models within such repositories is a critical
functionality. Recent works propose metrics that rank process models
of a repository according to their similarity to a given query. However,
these methods sequentially browse all the processes of the repository
and compare each one against the query, which is computationally ex-
pensive. This paper presents a technique for quickly retrieving process
models similar to a given query that relies on an index built on behavioral
characteristics of process models.

Keywords: semantic process models, process similarity search, process
indexing.

1 Introduction

The importance gained by process models in modern information systems and in
service oriented architecture leaded to the proliferation of process model repos-
itories. These repositories may store collections of hundreds of process models
used by large enterprises, best practices processes (like SAP best practice pro-
cesses1) or reference models provided by process management systems vendors.

Consequently, there is a critical need for tools and techniques to manage
process model repositories, including techniques that allow retrieving process
models fulfilling user needs. If the user need is formulated or available as a process
model, the most similar processes must be retrieved in the repository. Solving
this problem, called process similarity search, requires to (i) define a suitable
similarity measure and (ii) propose methods that evaluate the similarity between
a process query and a set of target processes in the repository. While the first
problem received recently considerable attention ([10,3]), very few approaches
addressed the second one.

Given an algorithm calculating a similarity measure for two processes, a naive
approach to solve the retrieval problem is to traverse all the processes of the

� This work has received support from the National Agency for Research on the ref-
erence ANR-08-CORD-009.

1 http://www.sap.com/solutions/businessmaps/composer/index.epx

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 128–145, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Indexing Process Model Flow Dependencies for Similarity Search 129

repository and compare each one against the query, and rank these processes
according to their similarity to the query. However, majority of existing process
matching algorithms ([11,5]) are NP-complete and therefore they do not scale
for large process model repositories.

We propose in this paper an effective and fast similarity search technique
that allows retrieving the most similar processes to a user query within a pro-
cess repository. To this end, we use an abstraction function that represents a
process as a finite set of flow dependencies between its activities. Thus, the
similarity of two processes is defined at the basis of the similarity of their flow
dependencies. To speed up the comparison of the flow dependencies of the query
and those of the repository processes, we define an index structure built on the
flow dependencies and the activities of the processes. Furthermore, we address
the case where a process query cannot be fulfilled by a single target process, but
by the composition of several processes. To the best of our knowledge there is
not other work allowing to propose the composition of a set of processes as an
answer of a query.

The remainder of the paper is organized as follows. The next section presents
basic definitions and notations. Section 3 presents the abstraction function we
used to represent processes. Section 4 explains the index structures and section
5 shows how they are used for query answering. In section 6 we present an
experimental study of our technique. Section 7 discusses related works. Finally
section 8 draws conclusions and presents ongoing work.

2 Background and Definitions

A business process model consists of a set of related activities that are combined
using control flow operators. In this paper, a process model is formalized as a
directed attributed graph (A,C,E), called process graph (p-graph for short),
where A is a set of activity nodes, C is a set of connector nodes and E is a set
of edges. An activity node represents an atomic task, while connectors represent
control flow constraints between activities. An activity Act = (N, In,Out) is
described by its name (N), a set of inputs (In), and a set of outputs (Out). The
inputs and outputs of activities are annotated with concepts taken from a domain
ontology. Connector nodes represent Split and Join operators of types XOR or
AND. Split connectors have multiple outgoing edges, while Join connectors have
multiple incoming edges.

The processes we handle are block-structured, i.e. sequences, alternative and
parallel branchings, and loops are specified with well defined entry and exit
nodes. A block in a process can be an atomic activity, a well-delimited sub-
process, or even the process itself. There are five types of blocks: atomic block
(a single atomic activity), sequence of blocks SEQ < B1, ..., Bn >, parallel
execution of blocksAND < B1, ..., Bn >, alternative execution of blocksXOR <
B1, ..., Bn >, and loop through a block LOOP < B >. The blocks may be nested,
but never overlap, i.e. two blocks are either nested or disjoint (if a node belongs
to two blocks then they are nested).

130 A. Gater, D. Grigori, and M. Bouzeghoub

Fig. 1. Block structures

Fig. 2. Running Example

The structures of these blocks are shown by Figure 1, where the highlighted
nodes are the entry and exit of each block. Square boxes represent activity nodes,
and the oval ones represent connectors. An example of such block-structured
processes is depicted in the left part of Figure 2, where its blocks are shown
in the form of dashed boxes (B1, B2, B3 and B4). The inputs/outputs of its
activities are annotated by the ontology depicted in the right part of the same
figure. Notice that the assumption that processes are structured into blocks is not
strong, since recent studies have shown that most of the unstructured processes
can be transformed to equivalent structured processes [14].

In the remainder, we use the notions of smallest block containing a set of
activities and loop-free path. Their descriptions are given in Definitions 1 and 2.

Definition 1. The smallest block containing a set of activities
Let (A,C,E) be a p-graph and acts = {a1, ..., ak} ⊆ A a set of activities. The
smallest block containing the activities of acts, denoted δ(acts), is the block B
such that:

Indexing Process Model Flow Dependencies for Similarity Search 131

– B contains the activities of acts, and
– Every block Bi �= B which contains the activities of acts contains also B.

Definition 2. Path and loop-free path. Let (A,C,E) be a p-graph and a
and b be two nodes. A path a → b refers to the existence of a sequence of edges
(n1, n2), (n2, n3), ..., (nk−1, nk) ∈ E, with k > 1, n1 = a and nk = b. A path
that does not contain an edge (ni−1, ni), with ni−1 is a connector node of type

XOR-Split and ni is a connector node of type XOR-Join, denoted a
lf→ b, is called

loop-free path.

3 Process Model Representation for Fast Retrieval

While graph indexing algorithms exist in the literature [15], these algorithms can
not be directly applied to process graphs. Firstly, p-graphs have two kind of nodes
(activities and control nodes) and specific attributes capturing the semantics of
the process. Most importantly, p-graphs capture the behavioral semantics of
the processes, which is not taken into account by the existing graph indexing
techniques that are mainly structural.

The idea is then to transform the p-graphs into another representation which is
the most faithfully representative of the p-graphs and, at the same time, makes
the evaluation of their similarity faster. This representation must be enough
representative to ensure that the similarity of two p-graphs is strongly correlated
by the similarity of their new representation.

To this end, we use an abstraction function that captures the essential behav-
ioral characteristics specified by a p-graph. This abstraction function inspired
by [6] and called process type, represents a p-graph as a finite set of flow depen-
dencies that occur between each pair of its activities. A flow dependency type
specifies how two activities relate to each other, and it is defined as the type of
the smallest block containing the two activities as formalized by Definition 3.
This definition states that there are four types of flow dependencies that may
occur between a pair of activities: “SEQ” when one of them is always executed
after the end of the execution of the other one, “PATH” if there exists a loop-
free execution path between them, “AND” when they are executed in parallel,
“XOR” when the activities are never executed in the same run.

Definition 3. Flow dependency type. Let (A,C,E) be a p-graph and ai, aj ∈
A two activities. The type Ti,j of the flow dependency that may occur between ai
and aj is one of the followings:

– Sequence flow dependency: Ti,j = SEQ iff δ({ai, aj}) is of type SEQ and
(ai, aj) ∈ E. The SEQ flow dependency is not commutative, thus, if Ti,j =
SEQ, then Tj,i is not defined.

– Path flow dependency: Ti,j = PATH iff δ({ai, aj}) is of type SEQ and

ai
lf→ aj occurs. The PATH flow dependency is not commutative, thus, if Ti,j

= PATH, then Tj,i is not defined.

132 A. Gater, D. Grigori, and M. Bouzeghoub

– XOR flow dependency: Ti,j = XOR iff δ({ai, aj}) is of type XOR. The
XOR flow dependency is commutative, thus, if Ti,j = XOR, then Tj,i =
XOR.

– AND flow dependency: Ti,j = AND iff δ({ai, aj}) is of type AND. The
AND flow dependency is commutative, thus, if Ti,j = AND, then Tj,i =
AND.

The type of the flow dependency of two activities is unique since it is defined on
the basis of the type of the smallest block containing the two activities.

In order to take into account loops specified in a p-graph, we define the notion
of flow dependency multiplicity, emphasing the fact that some flow dependencies
involve activities situated in a loop (and thus possible executed several times in
a run).

Definition 4. Flow dependency multiplicity. Let (A,C,E) be a p-graph,
ai, aj ∈ A be two activities, Ti,j be the type of their flow dependency. The mul-
tiplicity of a flow dependency between ai, aj, denoted Mi,j is:

– Mi,j = ∗ iff one of the blocks containing the smallest block containing ai and
aj (δ({ai, aj})) is of type LOOP.

– Mi,j = 1 otherwise.

The process type of a p-graph is defined below as the set of the pairs of activities,
with their flow dependencies types and multiplicities. Notice that for each pair
of activities only one flow dependency is added to the process type. When the
flow dependency type between two activities is commutative (XOR and AND),
the pair of activities to be added is, by convention, (ai, aj) such that the the
name of ai is lexicographically prior to the name of aj .

Definition 5. Flow dependency and Process type. Let P = (A,C,E) be
a p-graph and ai, aj ∈ A be two activities.

– The flow dependency between ai and aj is defined as a tuple fdi,j = (ai, aj , Ti,j ,
Mi,j), where Ti,j and Mi,j are respectively its type and multiplicity.

– The process type PTP of P is the set of all flow dependencies that occur be-
tween the pairs of activities of P , such that for any pair of flow dependencies
(ai, aj , Ti,j,Mi,j) and (ak, al, Tk,l,Mk,l) ∈ PTP , ai �= ak ∨ aj �= al, ai �= al
∨ aj �= ak.

In the following we use fd(ai, aj), fd(ai, aj).T ype, and fd(ai, aj).Multiplicity
to denote, respectively, the flow dependency occurring between activities ai and
aj , its type, and its multiplicity.

4 Indexing Process Models

Two p-graphs are considered as likely similar when they have similar process
types, i.e. the more two p-graphs share flow dependencies, the more they are

Indexing Process Model Flow Dependencies for Similarity Search 133

similar. The goal is then to speed up the comparison of the process type of the
query with those of the p-graphs registered in the repository.

To identify p-graphs having similar process types to a query, we first need to
identify among registered activities those that are similar to the query activities.
Thus, we need an efficient way to find all the activities registered in the repository
that are similar to the activities of the query.

Accordingly, we define two index structures, constructed on an off-line pre-
processing step of the p-graphs registered in the repository that speed up the
evaluation of the queries. The first structure indexes the activities stored in the
repository, and is built on the concepts annotating their inputs and outputs. The
second one consists on hash tables that store the process types of p-graphs as
signatures of their flow dependencies. We assume hereafter that each p-graph of
the repository has a unique identifier, and each activity of each p-graph has also
a unique identifier. We assume also that all the p-graphs registered in the repos-
itory are annotated using the same ontology. This assumption is not strong since
there are many works on ontology alignment and merging (see [7] for a survey
in ontology alignment). In the following, we show how these index structures are
built.

4.1 Indexing the Activities of the Repository

An important issue in our p-graph retrieval technique is its ability to retrieve
among the activities of the repository those that are similar to the activities of the
query. The idea is then to define efficient mechanisms that allow finding quickly
potential matches of a query activity. Based on the observation stating that
activities having similar inputs/outputs are considered more likely to be similar
[9,13], we built an index that allows quickly retrieving, among the activities of
the repository, those having inputs/outputs similar to those of the query activity.

The index consists of two sets, attached to each concept of the ontology, that
record the activities where this concept appears as an input or an output. Pre-
cisely, each concept c of the ontology is attached to two sets of annotations Inc

andOutc that record the identifiers of the activities in which this concept appears,
respectively, as an input or an output. For instance, let us consider the p-graph
example and the piece of the ontology annotating its activities of Figure 2. The
attached input and output sets of the concept “ABI” are respectively InABI =
{ComputeCIN,GetIBAN} and OutABI = {GetABI − 1, GetABI − 2}.

In this work, we are interested in retrieving inexact matches when exact ones
do not exist. In other words, an activity in a target process is considered as a po-
tential match for a activity of the query process when it satisfies the constraints
(inputs and outputs) of the query activity at a given level, i.e. some mismatches
between the inputs/outputs of a query activity and those of a target activity
can be tolerated.

For instance, there is no activity of the p-graph depicted in Figure 2 that
can strictly fulfill a query activity requiring the concept “NationalBranch” as
an output. Accordingly, we have to look for activities having as output the
concepts the most similar to “NationalBranch” on the basis of the relationships

134 A. Gater, D. Grigori, and M. Bouzeghoub

between the concepts of the ontology. That way, by considering, for example, the
parent concept of “NationalBranch” which is the concept “Branch”, the activity
“GetBranchInfo” can be considered as a potential match of this query activity.

Given a concept c annotating an input (resp. output) of a target activity,
the idea is to find a reduced set of concepts (to avoid overloaded answers),
called relaxers, such that, when a query activity requires as input (resp. output)
one of the relaxers of c, this latter can be considered as a match at a given
degree of this activity input (resp. output). To get the set of relaxers of a given
concept c, we use three relaxation rules that are formalized in Definition 6.
These rules give the possible ways to ralaxe a concept annotating an input
or an output. The relaxation rules that have to be applied and the distance
(parameter ξ in definition 6, called relaxation degree) between a concept and its
relaxers are application dependent reflecting the mismatches that a user accepts
for finding activity matches. Notice that the higher is the value of ξ, less accurate
are the matches. Setting ξ = 0 means that no relaxation is allowed, and thus

only exact matches are retrieved. In the remaining, we use c
η
↪→ c′, where η ∈

{desc, asc, cous} to denote that the concept c′ is a relaxer of type η of the concept

c. Notice that each concept is the relaxer of itself, and we note that by c
origin
↪→ c.

Definition 6. Concept relaxation rules. Let c1 and c2 be two concepts of the
same ontology O, csc be their least common superconcept, and a natural number
ξ ≥ 1. c1 can relax c2 as follows:

– Descendant relaxer: c1 is a descendant relaxer of generation ξ (denoted
Descξ) of c2 iff c1 is a sub-concept of c2, and the length of the path between
c1 and c2 (in number of intermediate edges) is less than or equal to ξ.

– Ascendant relaxer: c1 is an ascendant relaxer of generation ξ (denoted
Ascξ) of c2 iff c1 is a super-concept of c2, and the length of the path between
c1 and c2 (in number of intermediate edges) is less than or equal to ξ.

– Cousin relaxer: c1 is a cousin relaxer of generation ξ (denoted Cousξ) of
c2 iff the length of the paths between csc and c1 and c2 are less than or equal
to ξ.

Consequently, the set of annotations attached to the input set Inc (resp. output
Outc) of a concept c records also the identifiers of the activities that have as
input (resp. output) one of the concepts that it can relax.

For instance, let us consider the concept ABI of the ontology depicted by
Figure 2 and the activities of the p-graph of the same figure. By considering the
aforementioned relaxation rules and relaxers of generation 1 (ξ = 1), the output
set attached to concept “ABI” contains activity identifiers: “GetABI-1” and
“GetABI-2” (because “ABI” is an output of these activities), “ComputeCIN”
(because this activity has concept “CIN” as an output which is a descendant
relaxer of “ABI” of generation 1), “GetCAB-1” and “GetCAB-2” (because these
activities has concept “CAB” as an output which is a cousin relaxer of “ABI”
of generation 1). The formal description of the attached input and output sets
of a concept c are given in Definition 7.

Indexing Process Model Flow Dependencies for Similarity Search 135

Definition 7. Input and Output annotation sets. Let AIds and GIds be,
respectively, the sets of the identifiers of all the activities and the p-graphs regis-
tered in the repository. Let η ∈ {desc, asc, cous, origin} be a relaxation rule. Let
c be a concept belonging to an ontology O.

– Inc = {(IdA, Idg, η, ss)|IdA ∈ AIds, Idg ∈ GIds, ∃c′ ∈ In(IdA), c
′ η
↪→

c, ss = InputSim(c′, c)}
– Outc = {(IdA, Idg, η, ss)|IdA ∈ AIds, Idg ∈ GIds, ∃c′ ∈ In(IdA), c

′ η
↪→

c, ss = OutputSim(c′, c)}

The calculation of the similarity between a target concept and its relaxers differs
depending on whether it annotates an input or an output. For the case of inputs,
the similarity between a concept and its descendant relaxer is 1 since all the
attributes required by a target activity input c can be provided by a query
activity input which is a descendant of c. Following the same reasoning, the
similarity between a target activity output and its ascendants is 1 since the
target activity output c can provide all the attributes of a query activity output
which is its ascendant. In other cases, any similarity measure [16] can be used
to evaluate the similarity between a concept and its relaxer.

The construction of the sets of input and output annotations attached to
the concepts of the ontology is done incrementally. Thus, when adding a new
activity, only the input and output annotation sets of concepts appearing in this
activity
are updated by adding the new annotations. In another hand, when an activity
is removed from the repository, only the annotations generated by this activity
are deleted. Therefore, adding and deleting an activity do not require the re-
construction of the input and output annotations from scratch, this makes the
updating time short.

4.2 Indexing Process Types

As mentioned previously, the p-graphs registered in the repository are compiled
into their respective process types that are indexed using three hash tables:
Processes, Activities and FlowDependencies.

The Processes hash table contains the descriptions of the p-graphs registered
in the repository, such as the names, the number of their activities, and their
storage path. It is indexed by the identifier assigned to the p-graphs. This iden-
tifier is auto-generated by incrementing a counter every time that a new p-graph
is added to the repository.

The Activities hash table stores the descriptions of the activities of the p-
graphs registered in the repository. It is indexed by the identifiers assigned to
activities that are built by concatenating the identifier of the p-graph to which
they belong and a unique identifier distinguishing each activity within the p-
graph to which it belongs (generated in the same way as the identifier of the
p-graphs). Each entry of this table stores the name, inputs, and outputs of an
activity.

136 A. Gater, D. Grigori, and M. Bouzeghoub

The FlowDependencies hash table contains the flow dependencies specified by
the p-graphs registered in the repository. It is indexed by the signatures of these
flow dependencies that are built as follows.

Let us consider a flow dependency fd(i,j) = (ai, aj , T(i,j),M(i,j)) occurring
in a p-graph, and Aidi and Aidj be the identifiers assigned to the activities
ai and aj . The signature of fd(i,j) is built by concatenating the identifiers of
the activities (Aidi and Aidj) and the type of the flow dependency (T(i,j)):
“Aidi.Aidj .T(i,j)”. The signature of each flow dependency is unique since there
is only one dependency flow between each pair of activities. Each entry of the
FlowDependencies hash table records the multiplicity and the identifier of the
p-graph to which it belongs.

As the activity index, the construction of the index for process types is done
incrementally, by inserting the description of the p-graph and its activities, and
its flow dependencies in Processes, Activities, and flow dependency hash tables.

5 Process Retrieval

Given a query p-graph Q = (AQ, CQ, EQ) and a set of indexed p-graphs an-
notated using the same ontology O, the evaluation of Q operates in four steps
as shown by Figure 3. First, the process type PTQ of Q is established (step
Process Type Generator) following the procedure presented in section 3. Sec-
ond, the Activity Matches Searcher retrieves within the repository the match-
candidates of each activity of Q. Next, Process Matches Searcher examines the
match-candidates of the activities of Q and determines the set of p-graphs that
potentially match Q. The result is a list of p-graphs containing at least one pair
of activities similar to a pair of activities of Q and having the same flow depen-
dency type. These p-graphs are ranked based on the similarity of their process
types with PTQ, i.e. p-graphs sharing more flow dependencies with Q are bet-
ter ranked than those sharing less flow dependencies. Based on these p-graph
match-candidates, the Process Composition Searcher tries to discover complex
match candidates by composing the p-graph match-candidates. The similarities
of these compositions are then evaluated. This finally leads to a ranked list of
target p-graphs. Hereafter, we detail these steps.

5.1 Activity Matches Searcher

Given a query activity Aq = (Nq, Inq, Outq), the Activity Matches Searcher
retrieves the set of activities registered in the repository that match Aq.

As mentioned above, an activity At = (Nt,Int, Outt) registered in the repos-
itory is a potential match of Aq if it shares at least one direct or relaxed in-
put/output with Aq, i.e. if it exists at least one input (resp. output) of At which
is an input (resp. output) of Aq or one input (resp. output) of Aq is a relaxer of
an input (resp. output) of At. The relaxation rules to be considered to generate
these match candidates are defined by the user.

To select these activities, the searcher refers to the input/output annotations
attached to the ontology concepts. Specifically, given the set of allowed input

Indexing Process Model Flow Dependencies for Similarity Search 137

Activity
Matches
SearcherQuery

Annotated Ontology

Process Type
Generator

Query
Process

Type Searcher

Activity/Process
matches

y

Process types

Type

Process
Matches
Searcher

Process
Composition

Searcher

Process
Type

matches

…

QueryQuery
matches

Fig. 3. P-graph retrieval steps

and output relaxation rules specified by a user denoted respectively RI and RO,
the set of match candidates of Aq is formally described by:

ActCandid(Aq, RI , RO) = InCandid(Aq, RI) ∪OutCandid(Aq, RO).

InCandid and OutCandid are the functions that, respectively, compute the sets
of the activities that share with Aq, at least, one direct or relaxed input and
output. They are defined as follows:

InCandid(Aq, RI) =
⋃

c ∈ Inq

{Idat |(Idat , Idg, η, ss) ∈ InAnnot(c), η ∈ RI}

OutCandid(Aq, RO) =
⋃

c ∈ Outq
{Idat |(Idat , Idg, η, ss) ∈ OutAnnot(c), η ∈ RO}

InAnnot(c) and OutAnnot(c) are the functions that retrieve respectively the
input and output annotations attached to the concept c using the index built on
the p-graph activities of the repository.

Once the set of match candidates is established, the similarity between Aq

and each candidate has to be calculated. The similarity between Aq and a target
activity At identified by Idat is defined on the basis of the similarity between
their inputs and outputs as stated by the following formula:

ActSim(Aq, Idat) =
1
2
(

1

|Int|
∑

c ∈ Inq

InSim(Idat , c) +

1

|Outq |
∑

c ∈ Outq
OutSim(Idat , c)),

where, |Outq| (resp. |Int|) is the number of outputs (resp. inputs) ofAq (resp.At).
The function InSim(Idat , c) (resp. OutSim(Idat , c)) returns the similarity of

the input (resp. output) annotation attached to the concept c whose activity
identifier is Idat when it exists, zero otherwise. This is shown by the following
formulas:

138 A. Gater, D. Grigori, and M. Bouzeghoub

InSim(Idat , c)) =

{
ss if (Idat , Idg, η, ss) ∈ InAnnot(c)
0 otherwise

OutSim(Idat , c) =

{
ss if (Idat , Idg, η, ss) ∈ OutAnnot(c)
0 otherwise

Doing so, some registered activities may be retrieved even if they have a low sim-
ilarity with the query activity. To keep only promising candidates, we set a simi-
larity threshold that match-candidates have to meet to be considered as potential
matches. Therefore, considering a similarity threshold ρ, the set of matches of an
activity Aq is: ActMatches(Aq, RI , RO, ρ) = {Idat |Idat ∈ ActCandid(Aq, RI , RO),

ActSim(Aq, Idat) > ρ}
Other threshold functions, such as the number of fulfilled inputs and/or out-

puts, and/or the number of activity match candidates to select can be considered.
Once the activity matches of each activity of Q are established and ordered

according to their similarity with this activity, they are passed as input to the
Process Matches Searcher.

5.2 Process Matches Searcher

Given the sets of activity matches of a query, the process matches searcher eval-
uates the similarity between each p-graph match-candidate and Q, this leads to
a ranking of these p-graphs.

The set of p-graph match-candidates of Q is defined as the set of p-graphs
with which it shares at least one activity as formalized by the following formula:

ProCand(Q,RI , RO, ρ) =
⋃

Aq ∈ AQ

⋃
Idat ∈

ActMatches(Aq, RI , RO , ρ)

PId(Idat),

where PId(Idat) gives the identifier of the p-graph to which the activity identi-
fied by Idat belongs.

Subsequently, a mapping between the activities of each match-candidate T
(identified by IdT) and the activities of Q is established. This mapping contains
all the correspondences found between their activities. It is formally defined as
follows:

MQ↔T = {(aq, Idat , ss)|aq ∈ AQ, IdT = PId(Idat), Idat ∈ ActMatches(aq, RI ,
RO, ρ), ss = ActSim(aq, Idat)}, such that for any pair (a1q, Id

1
at
, ss1) and (a2q , Id

2
at
,

ss2) ∈MQ↔T , a
1
q �= a2q and Id1at

�= Id2at
.

The similarity of this mapping is defined as follows:

SimMQ↔T = 1
|AQ|

∑

(aq, Idat , ss) ∈MQ↔T

ss.

As stated above, the similarity betweenQ and its match-candidate T is estimated
in the basis of the similarity of their process types PTQ and PTT .

Let us consider ΠQ↔T be the set of fully matched flow dependencies be-
tween PTQ and PTT , that is defined as follows: ΠQ↔T = {(fdq, fdt)|fdq =

Indexing Process Model Flow Dependencies for Similarity Search 139

(aq1, a
q
2, ρq,mq) ∈ PTQ, fdt = (at1, a

t
2, ρt,mt) ∈ PTT , (a

q
1, a

t
1, ss1) ∈MQ↔P , (a

q
2, a

t
2,

ss2) ∈MQ↔P , ρq = ρt,mq = mt}.
Let us also consider Π ′

Q↔T be the set of partially matched flow dependencies
between PTQ and PTT , that includes the flow dependencies having the same
type and having their respective activities matched but having different multi-
plicities. Its formal description is defined as follows: Π ′

Q↔T = {(fdq, fdt)|fdq =

(aq1, a
q
2, ρq,mq) ∈ PTQ, fdt = (at1, a

t
2, ρt,mt) ∈ PTT , (a

q
1, a

t
1, ss1) ∈MQ↔P , (a

q
2, a

t
2,

ss2) ∈MQ↔P , ρq = ρt,mq �= mt}.
Finally, we define the similarity between Q and T as follows.

SimPro(Q,T) = ωm ∗ SimMQ↔T + ωf ∗ |ΠQ↔T |
|PTQ| + ωp ∗

|Π′
Q↔T |
|PTQ|

Weights 0 ≤ ωm ≤ 1, 0 ≤ ωf ≤ 1, and 0 ≤ ωp ≤ 1 (ωm + ωf + ωp = 1) indicate
the contribution of respectively, the matched activities between Q and T , fully
and partially matched flow dependencies to establish this similarity.

It should be noted that the computation of the shared flow dependencies
between a query and a target p-graphs is enhanced using the indice built on the
flow dependencies of the p-graphs of the repository.

5.3 Process Composition Searcher

As mentioned before, in some cases a query cannot be satisfied by a single target
p-graph, but by a set of p-graphs composed using control structures (sequence,
parallelism, alternative branches).The idea is then to develop a technique that is
able to propose the composition of several p-graphs as an answer. Such kind of
responses are very helpful since it relieves the user of a very tedious composition
task.

Informally, two p-graphs can be composed when their respective activities are
matched against subgraphs that are disjoint. Figure 4 shows a query and a set
of its match candidates. The match candidates T1 and T2 are good candidates
for composition since their respective activities are matched against subgraphs
that are disjoint, while the composition of T3 and T4 is not possible since the
subgraphs of the query covered by these matches overlap. In other words, a set
of p-graphs can be composed if they are mapped to subgraphs of the query that
are composable in sequence or using connector nodes of types XOR or AND.
This is formalized by Definition 8. This definition states that two p-graphs are
composable when the type of the flow dependencies occurring between each pair
of their respective match activities in the query are of the same type.

There is an exception to this rule that occurs when the two p-graphs are
matched against two parts of the query that are in sequence. The exception
states that if the flow dependencies occurring between the activities of the query
matched to a p-graph G1 and the activities matched to another p-graph G2 is
of type PATH, it may exist at most one pair of activities a1 ∈ G1 and a2 ∈ G2

having a flow dependency of type SEQ.

140 A. Gater, D. Grigori, and M. Bouzeghoub

Definition 8. Process composition. Let us consider a query p-graph Q =
(AQ, CQ, EQ) and a set of its match-candidates: T1 = (A1, C1, E1), ..., Tk =
(Ak, Ck, Ek). Let MQ↔Tk

, ..., MQ↔Tk
be the mappings found between Q and re-

spectively T1, ..., Tk. Let MQ→T1 = {aq|(aq, aT1 , ss1) ∈MQ↔T1}, ..., MQ→Tk
=

{aq|(aq, aTk
, s2) ∈ MQ↔Tk

} be the sets of the mapped nodes of Q following re-
spectively the mappings MQ↔T1 , ..., and MQ↔Tk

. P-graphs T1, ..., and Tk are
composable to answer the query Q iff:

– MQ→T1 ∩ ... ∩MQ→Tk
= ∅

– for each pair MQ→Ti andMQ→Tj , and each pair of activities a1i , a
2
i ∈MQ→Ti ,

and each pair of activities a1j , a
2
j ∈MQ→Tj : fd(a

1
i , a

1
j).T ype = fd(a2i , a

2
j).T ype

Fig. 4. Process composition example

The composition of a set of p-graphs results in the fulfillment of other flow
dependencies specified by the query that are not satisfied by one p-graph taken
alone. Therefore, the set of fulfilled flow dependencies of the composition of
two p-graphs Ti and Tj is defined as follows: I(Ti, Tj) = {(a1, a2, γ,m)|a1 ∈
MQ→Ti , a2 ∈MQ→Tj}, where, γ is the type of the flow dependency between each
pair (a1, a2) (it is unique since T1 and T2 are composable), m is its multiplicity
which is also the same of all the pairs of activities because the composition rule
allows only the composition of p-graphs that are mapped to disjoint sub-blocks.

Let Ts = {T1, ..., Tk} be the set of p-graphs to be composed in order to answer
the query Q, the set of flow dependencies of the query satisfied by the compo-

sition of the p-graphs of Ts is: IQ =

|Ts|⋃
i=1

|Ts|⋃
j=i

(I(Ti, Tj)). Therefore, the similarity

between Q and Ts is defined as follows:

Indexing Process Model Flow Dependencies for Similarity Search 141

SimCompo(Q,Ts) =

|Ts|∑
i=1

SimPro(Q,Ti) + ωf ∗
|IQ|
|PTQ|

, where ωf is as defined in

section 5.2

6 Implementation and Experiments

We implemented our technique on top of a platform for matching p-graphs [4]
and experimentally evaluated it. One of the problems we faced to conduct our
experiments is the lack of a public benchmark over which we can test our tech-
nique, and against which we could compare its result. To overcome this, we built

Fig. 5. Number of annotations of the ontology Vs the number of p-graphs and ξ

up our own test collection that we generated by considering the mismatches
that most often occur in real life p-graphs and a set of p-graph characteristics
that could impact the performances of our technique. The collection contains
623 p-graphs annotated using an ontology containing 500 concepts. On average
each p-graph contained 19 activities with a minimum of 2 and a maximum of 83
activities. The average size of an activity name is 2 words with a minimum of 1
and a maximum 8 words.

We randomly extracted from this collection 30 query p-graphs and 300 p-
graph targets. We then manually evaluated the similarity between each query
and the targets in a 1-7 Likert scale and we subsequently ranked the targets
according to their similarity with each query. Details about the methodology we
followed to built this collection and its characteristics can be found in [8].

The first experiments were dedicated to the study of the size of the indexes
according to the number of indexed p-graphs and the relaxation degree (ξ). From
Figure 5, we can see that the number of annotations generated when adding p-
graphs is approximatively linear with respect to the number of indexed p-graphs
(the tendency is the same whatever the value of ξ). In addition, the number
of generated annotations for the same number of indexed p-graphs increases,
as expected, with the increasing of the value of ξ. Nevertheless, the number of
annotations remains reasonable for a repository containing 600 p-graphs (630k

142 A. Gater, D. Grigori, and M. Bouzeghoub

Fig. 6. Sizes of the hash tables Vs the number of p-graphs and ξ

when ξ = 2). From Figure 6, we can see that the size of the hashtable index is
also approximatively linear with respect to the number of indexed p-graphs. For
instance, the indexing of 600 p-graphs required 77k entries in the hashtables,
and on average, the indexing of a p-graph required 128 entries. The size of
the indexes could become prohibitive for repositories containing thousands of
p-graphs, but it supports the indexing of current repositories that, in majority
of cases, contain less than 1000 p-graphs. It should be noted that the time for
indexing 600 p-graphs is about 300 seconds. Although the indexing of a large
number of p-graphs at the same time may require considerable time, it is not
penalizing since it is done in an off-line preprocessing step.

Figure 7 shows the effect of varying the number of indexed p-graphs and the
relaxation degree ξ (from 0 to 2) on the average and maximum times spent for
answering the queries of our benchmark. The results show that query answer-
ing is done within low times. For example, the maximum and average time for
answering a query are respectively equal to 37 ms and 95 ms when the number
of indexed p-graphs is equal to 600 and ξ is equal to 2 (the worst case in our
experiments). These results also show that the time of query answering increases

Fig. 7. Query evaluation times vs the number of p-graphs and ξ

Indexing Process Model Flow Dependencies for Similarity Search 143

with the increasing of the number of indexed p-graphs, and the tendency of this
increasing is approximatively linear (whatever the value of ξ).

Finally, we evaluated the quality of the rankings found by our technique with
respect to the number of the indexed p-graphs and the value of ξ. The indexes
are built only on p-graphs for which a manual evaluation was made (300 p-
graphs). The effectiveness of the rankings is evaluated using the well known
NDCG formula formalized in Definition 9. The results of this experiment are
shown by the graphic of Figure 8. As shown by this graphic, the results obtained
by our technique are very satisfactory. For instance, the NDCG obtained when
ξ = 2 and the number of indexed p-graphs is 300 is equal to 0.81. We also
observed that the value of NDCG slightly decreases when the number of indexed
p-graphs increases. However, the decreasing is it is negligible when ξ = 2.

Definition 9. NDCG measure. Let Ψ = [P1, P2, ..., Pn] be the ranking found by an
algorithm for a given query Qk, and δ

(k,i) be the similarity degree between Qk and PMi

given by an expert. Let Zn be the DCG corresponding to the manual (best) ranking. The

effectiveness of the ranking Ψ is: NDCGn = 1
Zn

∑n
i=1

2δ
(k,i)−1

log2(i+1)
.

Fig. 8. NDCG Vs the number of indexed p-graphs and ξ

7 Related Work

To the best of our knowledge, the only works addressing the problem of process
retrieval in repositories are [17,18,12,1].

In [17], an index build on top of a RDBMS relates a process model to a set
of partial traces of length N. A feature-based filtering technique is proposed
in [18] to search a collection of processes specified using process graphs. The
target processes are ranked according to the number of shared features with the
query. Features are small subgraphs that may be: the first and last activities,
sequence of a given length, a split node and its successors, and a join node with
its predecessors.

A visual query language extending BPMN is proposed in [1] to query graph-
based process collection. The processes are stored in a relational database that

144 A. Gater, D. Grigori, and M. Bouzeghoub

stores process models nodes (activities and gateway), edges, and paths. The
approach is extended in [2] to handle differences of vocabularies that may occur
between the query and the stored processes.

Recently, another query language is proposed in [12] that allows specifying
the behavioral relationships (two activities can be in sequence, parallel or exclu-
sive branches) that must fulfill the processes to retrieve. The relationships that
occur in the stored processes are indexed using an inverted list that relies each
behavioral relationship to the set of processes where it occurs.

Many other works [3,10] addressed the problem of measuring the similarity
between two processes. These methods sequentially traverse all the processes
of the repository and compare each process against the query. The majority of
these algorithms are NP-complete and therefore they do not suit for searching
similar processes of a query within a repository of processes.

To summarize, we proposed a fast similarity search technique that allows
retrieving within a repository the processes the more similar to the query, while
the above techniques allow only exact structural matches. Other novel feature
of our approach is that it allows proposing a composition of processes in the
repository to answer a user query.

8 Conclusion

We propose in this paper an effective and fast similarity search technique that
allows retrieving within a process repository, the processes the most similar to
the query. Moreover, our approach allows proposing the composition of processes
in the repository to answer his query. To do so, we use an abstraction function
that represents a process model as a finite set of representative flow dependen-
cies, which are indexed along with the process activities. We implemented our
algorithms in a larger platform for matching process models [4] and experimen-
tally evaluated it. Experiments show that our technique has very good execution
times.

To reduce the size of indexes, mainly for managing very large repositories, we
are currently investigating methods of ontology encoding that reduce the size of
the annotated ontology. We also work on methods that allow a more compact
representation of the process type relation.

References

1. Awad, A.: Bpmn-q: A language to query business processes. In: EMISA, pp. 115–128
(2007)

2. Awad, A., Polyvyanyy, A., Weske, M.: Semantic querying of business process mod-
els. In: EDOC, pp. 85–94 (2008)

3. Becker, M., Laue, R.: A comparative survey of business process similarity measures.
Computers in Industry 63(2), 148–167 (2012)

4. Corrales, J.C., Grigori, D., Bouzeghoub, M., Burbano, J.E.: Bematch: a platform
for matchmaking service behavior models. In: EDBT, pp. 695–699 (2008)

Indexing Process Model Flow Dependencies for Similarity Search 145

5. Dijkman, R.M., Dumas, M., van Dongen, B.F., Käärik, R., Mendling, J.: Similarity
of business process models: Metrics and evaluation. Inf. Syst., 498–516 (2011)

6. Eshuis, R., Grefen, P.: Structural matching of bpel processes. In: Fifth European
Conference on Web Services, Halle (Saale), Germany, pp. 171–180 (2007)

7. Euzenat, J., Shvaiko, P.: Ontology Matching. Springer, Heidelberg (2007)
8. Gater, A.: Process matching and discovery. PhD thesis, University of Versailles

(2012)
9. Gater, A., Grigori, D., Bouzeghoub, M.: Complex mapping discovery for semantic

process model alignment. In: IIWAS (2010)
10. Gater, A., Grigori, D., Bouzeghoub, M.: A graph-based approach for semantic

process model discovery. In: Sakr, S., Pardede, E. (eds.) Graph Data Manage-
ment:Techniques and Applications, pp. 223–233. Information Science Reference
(2011)

11. Grigori, D., Corrales, J.C., Bouzeghoub, M., Gater, A.: Ranking bpel processes for
service discovery. IEEE T. Services Computing, 178–192 (2010)

12. Jin, T., Wang, J., Wen, L.: Querying Business Process Models Based on Semantics.
In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011, Part II. LNCS, vol. 6588,
pp. 164–178. Springer, Heidelberg (2011)

13. Klusch, M., Fries, B., Sycara, K.: Automated sematic web discovery with owls-mx.
In: AAMAS 2006 (2006)

14. Polyvyanyy, A., Garćıa-Bañuelos, L., Dumas, M.: Structuring Acyclic Process
Models. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336,
pp. 276–293. Springer, Heidelberg (2010)

15. Sakr, S., Al-Naymat, G.: Graph indexing and querying: a review. International
Journal of Web Information Systems 6(2), 101–120 (2010)

16. Valery, C.: Fuzzy semantic distance measures between ontological concepts. In:
NAFIPS, pp. 635–640 (2004)

17. Wombacher, A., Mahleko, B., Fankhauser, P.: A grammar-based index for matching
business processes. In: ICWS 2005 (2005)

18. Yan, Z., Dijkman, R., Grefen, P.: Fast Business Process Similarity Search with
Feature-Based Similarity Estimation. In: Meersman, R., Dillon, T.S., Herrero, P.
(eds.) OTM 2010, Part I. LNCS, vol. 6426, pp. 60–77. Springer, Heidelberg (2010)

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 146–163, 2012.
© Springer-Verlag Berlin Heidelberg 2012

A Framework for Cost-Aware Cloud Data Management

Verena Kantere

Cyprus University of Technology
verena.kantere@cut.ac.cy

Abstract. The emerging world of offering information services through the
cloud necessitates the coalescence of existing research and business technolo-
gies into the provision of all-inclusive solutions for data management. This pa-
per proposes a framework that can support cost-aware data management in the
cloud. Users and cloud providers can use the framework to receive and provide
services that comply with agreements on data service cost and requirements and
allow for profit while being efficient in terms of performance. The proposed
framework includes modules that incorporate the notion of monetary cost in
current data management, but also modules that take optimization decisions for
future data management taking into account both monetary cost and perfor-
mance. The framework dictates the design of a middleware application that can
be plugged on top of a cloud data management system. Such a middleware
receives the user’s workload and preferences for cost and query performance
and controls data management so that the user is satisfied and the cloud provid-
er is viable and, furthermore, profitable. An initial realization of part of the
framework as a middleware application has already been constructed, tested and
published with promising results.

Keywords: Cloud data services, cloud data management, cost-aware data man-
agement, cloud economics.

1 Introduction

The new trend for service infrastructures in the IT domain is called cloud computing,
a style of computing that allows Internet users of any expertise to access information
services on the web. Information, as well as software is permanently stored in Internet
servers and probably cached temporarily on the user side.

Outsourcing the archiving and manipulation of large persistent datasets, such as
scientific data of large scale, small-and-medium enterprise data as well as personal
datasets gains more and more credence. The general requirement of users is to man-
age efficiently the data with a dynamic demand for additional or reduced computa-
tional support, while investing as little as possible time and money. Unfortunately,
current commercial data management tools are insufficient to meet these requirements
especially while they are not tailored for specific data and users. Also, they are usual-
ly incapable to support the unprecedented scale, rate, and complexity of big data col-
lection and processing.

The cloud computing paradigm seems the right choice for designing infrastructures
and moreover applications that can meet the above data management expectations.

 A Framework for Cost-Aware Cloud Data Management 147

The cloud alleviates the burden of data management from the users by offering transpa-
rent data services for remuneration. Emerging IT business in cloud computing [1, 2, 3]
is an effort to offer such services. Such a cloud provider necessitates various technologi-
cal capabilities. Most importantly, it is required that cloud data services run with mi-
nimal capital expenditure, but, nonetheless, can support efficiently multi-user tenancy.

A cloud data service provider offers its services on cloud databases. Such databas-
es support the archiving of user data in the cloud employing caching techniques. Data
that reside in the cloud, i.e. cloud data, can benefit from the offered cloud data servic-
es. Users are customers of the cloud that consume its resources as a utility service.
Specifically, the users can query the cloud data, paying the price for what they use.
User payment is employed for coverage of short and long-term costs. Short-term cost
refers to the respective query execution, and long-term cost to the self-preservation of
the cloud infrastructure and improvement of the cloud services.

We propose a generic framework that aims to coalesce the existing research and
business technologies into the provision of an all-inclusive solution for the manage-
ment of data in the cloud. The framework is designed to provide transparent cost-
aware data management on top of a cloud database, whatever the latter is: a traditional
DBMS deployed on a cloud infrastructure or a new prototype of a cloud DBMS. The
purpose of the proposed framework is to provide an economy solution for a cloud
data management system that is inherently bound to the technical solutions. Currently,
our focus is on scientific data, since their variety, volume and extreme data manage-
ment requirements makes them the best candidates for research and experimentation.
The framework, however, is generic and applicable to any kind of data that may need
cloud management.

The framework aims to support an economy for a cloud infrastructure that handles
structured data, i.e. data that are stored in databases. Following the business line in
cloud computing, the proposed economy employs a cost model that takes into account
all the available resources in a cloud, such as disk space and I/O operations, CPU time
and network bandwidth. The economy is self-tuned to the policies that aim to: (i) high
quality of individual query services, (ii) increasing overall quality of query services,
and (iii) cloud profit. The experience of data management is accumulated and quanti-
fied by a regret scheme in order to assist the improvement of cloud services by build-
ing new data structures, (i.e. cached data and indexes). The cost of new data structures
is amortized to prospective users based on a model that predicts future service con-
sumption. Finally, cloud profit is ensured and maximized using an appropriate pricing
scheme. The framework may include an optional module that comprises a query plan-
ner and query router that enable the servicing of sets or sequences of queries. The
cloud economy can be extended in order to handle such query combinations. In this
way, the cloud framework can serve in an optimal manner even demanding tasks of
data analysis (which are very common in scientific data management). Finally, asso-
ciative modules that take care of risk management and estimate data service correla-
tions are necessary in order to use the framework in real cloud environments.

An initial application of a simplified form of the framework is already designed,
developed, tested and published in [4, 5, 6]. This experience has proved the applica-
bility and effectiveness of the framework even in a simplified form. Our goal is to
extend our existing work with the general and elaborated form of the framework
presented in this paper.

148 V. Kantere

2 Related Work

Current research on cloud computing considers an infrastructure that comprises a set
of independent edge caches that cooperate in order to deliver web content. Content
sharing among caches [7, 8, 9] involves (i) content retrieval from sibling caches in-
stead from the server, (ii) routing and sharing of content updates, and (iii) sharing
cache resources, in order to achieve efficient collaborative data place-
ment/replacement/update/lookups etc. Being more compliant with the business do-
main, this proposal focuses on self-tuned cloud caches that share resources, rather that
self-organization of independent caches. Concerning the management of scientific
data, existing research solutions [10], consider network bandwidth to be the only im-
portant resource, and, therefore, the sole basis for cost computation. However, cloud
businesses usually prorate cost to more types of resources. For instance, GoGrid [8]
gives network bandwidth for free. A self-tuned cache [11] reduces query execution
costs adaptively to the workload. As a step further towards commercial applications,
we propose an economy that takes into consideration the overall cost of the infrastruc-
ture beyond network bandwidth: disk I/O, storage and CPU.

Cloud computing is the natural dilation of grid computing [12], as it enables an in-
tegrated collaborative use of high-end computing owned and managed by multiple
organizations. Grid databases [13] are federated database servers over a grid, which
are viewed as a virtual database system through a service federation middleware [14].
Querying the grid data guaranteeing high performance is one of the key issues for
distributed queries across large datasets. This issue is inherited in cloud computing,
and becomes more complicated, since it is augmented with the issue of providing an
accounting service that supports a payment scheme for cloud usage. We take this
challenge and we propose a framework of data-aware cloud economy that fills the
essential gap of tuning the provision of data management services for remuneration.

Related to the proposed framework for cloud economy is the research on auction-
ing and accounting systems. Accounting in wide-area networks that offer distributed
services have long been the target of research in computing. Mariposa [15] discusses
an economic model for querying and storage in a distributed database system. In Ma-
riposa clients and servers have an account in a network bank and users allocate a
budget to each of their queries. The processing mechanism aims to service the query
in the allotted budget by executing portions of it on various sites. The latter place bids
for the execution of query parts, and the bids are accumulated in query brokers. The
decision of selecting the most appropriate bids is delegated to the user. In contrast,
our cloud proposal can recommend to the user an efficient but also profitable for the
cloud query plan. In the spirit of Mariposa, a series of other works have proposed
solutions for similar frameworks [16, 17, 18, 19, 20]. These focus on job scheduling
and bid negotiation, which are orthogonal issues to those that are tackled by the pro-
posed framework.

Concerning the special case of scientific data, their management has been a chal-
lenge until now. The need for in-depth analysis on huge amounts of data has increased
the demand for additional computational support. Unfortunately, current commercial
data management tools are incapable of supporting the unprecedented scale, rate, and
complexity of scientific data collection and processing. Independently of the catego-
ries that scientific data belong to, their management is essentially divided into the

 A Framework for Cost-Aware Cloud Data Management 149

following coarse phases: workflow deployment, management of metadata, data inte-
gration, data archiving and finally data processing [21]. All these phases suffer from
tremendous data management problems that concern automation, online processing,
data and process integration and file management [22].

The proposed framework enables the leverage of the management of scientific data
by a cloud provider, achieving transparency of data management solutions that are
efficient and cheap. Currently, scientists need to tightly collaborate with computer
engineers in order to develop custom solutions that efficiently support data storage
and analysis for each different experiment [23, 24]. Beyond the fact that constant
collaboration of multidisciplinary scientists and engineers is hard, time and effort
consuming, the experience gained by such collaboration is not inherited widely to the
scientific community, so that next generation experimental setups can benefit from it.
It is absolutely necessary to develop generic solutions for storage and analysis of
scientific data that can easily be extended and customized. Developing generic solu-
tions is feasible, since there are low-level commonalities in the way that experimental
data are represented or analyzed [21, 24]. Therefore, frequently, scientific data
processing encompasses generic procedures. Current research, however, has not pro-
posed any solution for the support of such processes.

Fig. 1. Operation of a cloud data service provider

3 Operation of a Cloud Data Service Provider

In a cloud environment, there are the users and probably owners of data on one hand
and the cloud data service provider on the other. In the general case, the data reside
permanently in backend databases. The cloud database supports caching of these data
in order to offer efficient query processing. Users pose queries to the cloud, which are
charged in order to be served. The goal of the cloud is to provide efficient query
processing at low price, while being profitable. Query performance is measured in
terms of execution time. Naturally, query execution is accelerated with the number of
available data structures, i.e. indexes and cached data. Rationally, the faster the execu-
tion, the more expensive the service is. The user defines her preferences concerning
the service of her query by indicating the budget she is willing to spend on the query,
according to the respective execution time that the cloud can provide.

150 V. Kantere

The cloud receives the query and the budget/execution-time preferences of the user
and produces respective alternative query plans. The cost of these query plans is esti-
mated and juxtaposed to the preferences of the user. If the cheapest plan is to execute
the query on the backend database (i.e. the permanent storage of the data), the cloud
outsources query execution. Otherwise, the query is executed on the cloud database,
either on data that is already cached or by caching data from their permanent storage. If
there are query plans that the user can afford, according to her budget, then the cloud
picks up the most appropriate one of them, w.r.t. the supported policies. If the cost of
alternative query plans is over the user budget, the user is presented with the alternative
options and can choose which one she is willing to pay for, if there is such one. The
profit from each query service is credited to the cloud account and is employed in order
to build data structures that can improve the query services. The cost of the new struc-
tures is amortized to prospective users that will consume services that employ these
structures. Fig. 1 shows graphically the operation of the cloud data service provider.

3.1 Cloud Data Services

The cloud offers services on the data that the user can access. These services are
summarized as follows:

1. Data storage design: The user may request from the cloud to implement either a
user pre-defined or a cloud design for the storage of her data in the cloud database.

2. Query execution: The user may request the execution of a query or the execution
of a whole workload. The cloud has to create alternative query plans and select
one for execution. Furthermore, the cloud has to dynamically parallelize the ex-
ecution on the cloud infrastructure.

3. Query optimization: The cloud has to optimize query execution by creating and
maintaining dynamically and automatically (i.e. without the intervention of the us-
er) data structures, such as indexes, cached data columns and data views.

All the above services incur an infrastructure and administration cost that, through
their provision, is alleviated from the user and burdens the cloud data service provid-
er. The proposed framework aims at handling this economic burden in the best possi-
ble way, such that the provider remains viable and furthermore profitable.

Fig. 2. Collaboration of the framework and
the cloud DBMS

Fig. 3. Internal operation flow in the proposed
framework

 A Framework for Cost-Aware Cloud Data Management 151

3.2 Cloud Economic Policies

As mentioned, a query plan is selected according to supported policies. Our frame-
work supports the following policies, which can lead to a viable and even more a prof-
itable operation of the cloud data service provider.

1. Individual user satisfaction: The service provider should keep each user satisfied
with the data services she receives. User satisfaction is achieved if the following
requirements are satisfied:

─ Respect user preferences for query execution: The quality of the data services
that the user receives should comply with her preferences for query execution.
For example, a user that requests a fast or cheap query execution, should receive
query execution that is fast or cheap, respectively.

─ Avoid over-charging data services: Each service should be priced close to its ac-
tual cost, i.e. the cloud intention is to provide cost-competitive services.

─ Respect user budget constraints: The user should receive services that are al-
ways priced in her declared budget.

2. Data service improvement: The cloud provider should be able to offer improved
services as time goes by. Service improvement can be sought along two direc-
tions:

─ Offer broader and appropriate services: The cloud has to increase the variety of
offered services with time. This means that it should build more data structures,
which can be used in offered query execution plans. Moreover, the cloud has to
change or discontinue services that are no longer useful or popular.

─ Offer services at a lower price: Ideally, as time goes by, the cloud should be able
to offer the same services, e.g. the same data structures, at a lower price.

3. Cloud profitability: A commercial cloud provider is a business and as such it aims
at making profit. The latter can be guaranteed by the following:
─ Set optimal price: Services should be priced above their actual cost in a way that

the overall cloud profit is maximized.
─ Schedule optimal availability: The cloud has the option of discontinuing servic-

es that are not popular and creating services that are. This means that data struc-
tures that are not used often in user query execution should be evicted from the
cloud DBMS and data structures that are used often should be constructed and
maintained. Fig. 2 and Fig. 3 show conceptually how the framework sits on top
of a cloud DBMS and what is the overall internal operation the framework.

3.3 Cloud Layering Architecture

As it is widely known, the cloud computing paradigm dictates the offer of services on
three levels, namely the infrastructure (IaaS), the platform (PaaS) and the software
(SaaS). In case of cloud data service provision, the infrastructure is the cloud cluster,
which includes CPUs, disks, memory and I/O and network communication; the plat-
form is the cloud DBMS deployed on the infrastructure and the software is a specific
database application. A cloud data service provider may offer all three levels as an

152 V. Kantere

all-inclusive service, i.e. such a provider may own the infrastructure and manage both
the cloud DBMS and the database applications on top of it. Alternatively, the cloud
data service provider may not own the infrastructure, but rent the latter from an IaaS
provider, and manage only the cloud DBMS and the database applications. Even
more, the cloud data service provider may rent the cloud database from a PaaS pro-
vider. In any of the three cases, the offered data services incur a cost that is either the
direct cost of operating the cloud infrastructure, or the cost of renting it through me-
diators. Fig. 4 shows the 3 alternative architectures. Our framework takes the infra-
structure cost as an input, no matter if this originates from operating or renting the
infrastructure. Therefore, the framework is applicable to any of the three layering
architectures.

Fig. 4. Overall architecture and mediation of the cloud data service provider

4 Cost-Aware Data Management

The cloud data service provider needs to perform traditional data management, i.e.
data management that aims at performance, while taking into consideration cost re-
strictions. The latter are input to the provider, which has to decide what to output as an
offered service. The input can be broken down to four categories:

1. Data requests: This refers to what the user asks for. Usually, it is query execution,
but it can be a workload execution or other data tasks, such as data replication.

2. Data updates: This refers to the rate and extent of data update. When data is up-
dated in the backend databases (in case it is permanently stored out of the cloud),
the updated data has to be reloaded into the cloud database. Moreover, data update
incurs an update of all relevant data structures.

3. Infrastructure cost: This refers to the cost of operating or renting the infrastruc-
ture, namely CPU, disk, I/O operations and network.

4. User budgets: This refers to how much the users are willing to spend on monetary
compensation for the data services they receive.

 A Framework for Cost-Aware Cloud Data Management 153

Data requests

Data updates

User budgets

Infrastructure

cost

Service cost

Service

Investment

Investment cost

amortization

Cloud profit

Cost model

Regret scheme

Prediction

model

Pricing scheme

Fig. 5. Operation of the proposed framework

Considering the above input, the cloud has to decide what are the services it should
offer, which can be broken down to two decisions: (i) how to service each individual
request and (ii) what should be the available services. In order to take these decisions,
the cloud has to answer to the following questions:

1. What is the cost of a possible service?
Assuming that there is a pool of possible services to be offered alternatively for the
fulfillment of a data request, the cloud needs to decide which one complies best
with all the cost restrictions.

2. In which services should money from the cloud account be invested?
The cloud needs to create pools of services that can serve alternatively or comple-
mentary data requests. For example two query plans may each include a different
index, and these indexes can be used alternatively or in combination to serve the
same query. To create these services the provider needs to invest cloud money,
which will cover the cost of operating the infrastructure.

3. What is the depreciation of a service since it becomes available?
In order to keep the cloud data service provider viable, the cloud money invested
in the creation of possible services needs to be recuperated from user payments.
The cloud needs to know how much and for how long it can recuperate the cost.

4. How can the cloud make profit?
The cloud data service provider is usually a business, and, as such, it aims not only
to be economically viable, but also profitable. Thus, it is essential for the provider
to know if and how much profit it can make from the offered services.

To answer the above questions our framework comprises four basic generic modules:
(i) a service cost model, (ii) a data management regret scheme, (iii) a prediction model
for service consumption and (iv) a service pricing scheme. These are presented in the
following. The operation of the proposed framework is shown in Fig. 5.

154 V. Kantere

Fig. 6. Operation of the cost model

4.1 Service Cost Model

A request for query execution received by the provider is distributed to the appropri-
ate CPU node(s), or to the backend databases (the actual distribution and execution
algorithm depends on the cloud DBMS and is a black box to framework). It is essen-
tial for the economy of the cloud provider to estimate correctly the utility cost of the
cloud infrastructure. Based on such estimations, the cloud can decide the compensa-
tion requested from the users for the offered query services. The cost model takes as
input either (i) a query execution plan or (ii) a data structure that is to be built from
scratch or to be updated. For the query plan, the cost model estimates what is the ex-
ecution cost and for a data structure it estimates what is (a) the cost for building and
(b) the cost of maintaining the structure in the cloud DBMS. In order to estimate the
total cost, the model takes into account (i) what are the necessary primitive data oper-
ations for each input (e.g. scan, join, select, project) and (ii) how much of the infra-
structure will be used (CPU, I/O operations, network bandwidth and disk space). The
operation of the cost model is shown in Fig. 6.

It is safe to assume that the cloud provides unlimited amount of storage space,
CPU nodes, and very high-speed intra-cloud networking. Also, the CPU nodes are
usually all identical to each other. Compared to TCP bandwidth on Internet, the intra-
cloud bandwidth is orders of magnitude faster and we can ignore the overhead asso-
ciated with it. We assume that the storage system is based on a clustered file system,
where the disk blocks are replicated and stored close to the CPU nodes accessing
them. Also, we assume that the virtual disk is a shared resource for all the CPU nodes
in the cloud DBMS (share-all architecture).

Since the cloud DBMS considers many alternative possible query plans, i.e. design
configurations for executing a query, accurate and fast estimation of the cost asso-
ciated with each plan is very important. The execution time of a query is estimated
based on a respective query plan. Currently, in our work we have only considered

 A Framework for Cost-Aware Cloud Data Management 155

plans that run thoroughly in the backend or in the cloud DBMS. Concerning queries
that run in the cloud DBMS completely, the estimation of the execution cost is deter-
mined based on a plan that is suitable for the cloud. Therefore, the implementation of
the cost model module needs to be aware and take into account statistics on query
execution on the specific cloud DBMS. Such statistics can be requested by the cost
model from the cloud DBMS based on query templates. Then, specific queries can be
matched with the appropriate template and their execution cost can be estimated
based on the statistics for the template.

As mentioned, the cost model is used to estimate the cost of building or maintain-
ing (i.e. updating) a data structure, too. The latter can be cached data columns from
the permanent data storage, views and indexes on cached columns. For the estimation
of the building and maintenance cost of a data structure, the cost model has to use
statistics on creating similar structures, too. These statistics can be collected by the
cloud DBMS optimizer during a training period, or interleaved training periods.

4.2 Data Management Regret Scheme

The data management regret scheme accumulates and quantifies the experience of the
cloud provider in taking data management decisions in order to help the provider to
take better, in terms of cost and performance, decisions in the future. In effect, this
means that the cloud aims to execute in the future similar data requests to current ones
in a cheaper and faster manner. This can be achieved if the cloud builds and maintains
appropriate data structures and utilizes the right parts of the infrastructure (i.e. how
many CPUs and how much memory to use for servicing the data requests, and how
much disk to use for data replication).

Essentially, the absence of a data structure in the cloud DBMS prohibits the pro-
vider from offering services, i.e. query execution plans, which employ this structure.
Also, having to rent (or switch on, depending on the cloud provider architecture and
mediation) more infrastructure means a ‘cold start’ for caches and a delay in CPU and
disk utilization. The goal of the regret scheme is to monitor how many times the pro-
vider has not been able to offer a query plan (or a data operation in general) that
would satisfy the user preferences in the best possible way due to the unavailability of
a data structure or part of the infrastructure. To achieve this, query plans have to be
broken down into basic plans and compared to each other with respect to the data
structures they comprise and the infrastructure (especially the parallelization degree,
i.e. number of CPUs used). This comparison leads to the formulation of a ‘regret’ for
the unavailability of data structures and infrastructure, which has to be quantified and
accumulated, so that it can be an indication that the investment in building and offer-
ing this data structure is a good or bad data management decision. The regret scheme
can also include the decision making part for creating data structures or adding infra-
structure, based on the accumulated regret. This decision making has to be based on
the policies presented in Section 3.2, with a customizable prioritization. The operation
of the regret scheme is shown in Fig. 7.

156 V. Kantere

•

•

Fig. 7. Operation of the regret scheme

4.3 Prediction Model

The regret leads to the improvement of data services (see Fig. 8). Yet, the cost of
investment in new data structures is paid from the credit in the cloud account. The
intention of the provider is to remain economically viable, by amortizing this cost to
prospective users that receive data services that use the new inventory. The goal of
amortization is to reduce the individual cost of these services. Cost reduction increas-
es the potential that the offered services are cheaper and well-within the user’s budg-
et. In such a case, the services become competitive and have a high chance of being
offered instead of alternative services (for example the faster and the cheaper a query
plan is, the most probable it is to be selected for execution, among alternative query
plans). The provider benefits from the difference of actual cost and offered user com-
pensation; therefore, the provider increases its credit, which gives the opportunity for
more investments directed by regret, leading to even more quality data services.

The framework comprises a prediction model for the amortization of the building
and maintenance cost of new data structures to prospective data requests that will be
executed using them. If data structures are employed in the service of a lot of prospec-
tive data requests, then its building cost can be longer amortized, making individual
payments smaller. The opposite holds for structures that are predicted to be used by
few prospective queries. The prediction should be ongoing in order to fix errors using
feedback from real incoming workload.

There has been notable work on workload prediction in grid and super-computer
environments [25, 26, 27, 28]. These works deal with the problem of workload mod-
eling for the production of synthetic workloads employed for the evaluation of real
systems. They focus on the site execution locality [25] or the temporal locality [27] of
workload characteristics such as runtime, memory and CPU usage etc [26]. These
works are orthogonal to the prediction model we need and focus on workload charac-
teristics of the data level. Specific works on modeling job arrivals [28, 29] can be
complementary to the discussed prediction model, since they can provide the work-
load distribution for special grid environments. Structure usage prediction has been
studied in other areas, such as the processor cache-line access and survivability pre-
diction [30]. One proposal is a trace-based mechanism that predicts when a cache-line

 A Framework for Cost-Aware Cloud Data Management 157

has been last accessed [31]. Another is a time-based mechanism that predicts the
death of a block after a specific timeout period [32]. A third one is a counting-based
predictor [33] that predicts the line to be dead after a fixed number of accesses. The
prediction model included in the proposed framework should be on the lines of the
last one, extended, however, to utilize the computing and storage power available to
full processors compared to the limited power on a cache controller.

Fig. 8. Observation is followed by prediction of data requests and user preferences

4.4 Pricing Scheme

The cloud provider makes profit from selling its services at a price that is higher than
the actual cost. Setting the right price for a service is a non-trivial problem, because
when there is competition the demand for services grows inversely but not propor-
tionally to the price. There are two major challenges when trying to define an optimal
pricing scheme for the cloud caching service. The first is to define a simplified
enough model of the price-demand dependency, to achieve a feasible pricing solution,
but not an oversimplified model, which is not representative. For example, a static
pricing scheme cannot be optimal if the demand for services has deterministic season-
al fluctuations. The second challenge is to define a pricing scheme that is adaptable to
(i) modeling errors, (ii) time-dependent model changes, and (iii) stochastic behavior
of the application. For instance, service demand may depend in a non-predictable way
from factors external to the cloud application, such as socioeconomic situations.

Pricing schemes were proposed recently for the optimal allocation of grid re-
sources in order to increase revenue [34], or to achieve an equilibrium of grid and
user satisfaction [35], assuming knowledge of the demand for resources or the possi-
bility to vary the price of a resource for different users. Similarly, dynamic pricing for
web services [36] focuses on scheduling user requests. Moreover, dynamic pricing for
the provision of network services [37, 38] aims at achieving a game-theoretic equili-
brium through price control among competitive Internet Service Providers. The prob-
lem of revenue management through dynamic pricing is well-studied [39]. Based on
the rationale that price and demand are dependent qualities, numerous variations of
the problem have been tackled, for instance businesses that sell products to retailers
[40], seasonal products [41], stochastic demand [42]. Data services necessitate a new
dedicated pricing scheme since they are distinguished from consumable products in
two major ways: (i) they are not exhausted while they are consumed and (ii) the de-
mand for a specific service pauses while this is not available.

158 V. Kantere

Cost model

Regret scheme Prediction

model

P
ric

in
g

 s
c
h

e
m

e
 Query Planner

Query Router

Correlation Estimator

Risk Manager

R

Fig. 9. Modules of the cost-aware data management framework

5 Associative Framework Modules

Section 4 describes the basic modules of the proposed framework in order to achieve
cost-aware data management in a cloud data service provider. Beyond the basic mod-
ules, the framework should include some associative modules that are necessary in
order to make the framework applicable and effective in a real cloud environment:

1. An estimator of the correlation of offered data services: All three modules, the
regret scheme, the prediction model and the pricing scheme, make decisions about
offered data services. These decisions may be ineffective or even wrong if essen-
tial correlations between data services are ignored. All three modules could benefit
from information on such correlation, input by a separate associative module that
is able to estimate it.

2. A middleware for workload execution: The basic modules operate and take
decisions on a query-per-query basis. Yet, in a real cloud data management envi-
ronment users would most probably like to receive services for execution of large
workloads and not for individual queries. A middleware that takes care of plan-
ning the execution of a group or even a workflow of data requests and routes these
to the cloud DBMS is necessary.

3. A risk manager: All basic modules take decisions based on cost and performance
estimations. Naturally, estimations are expected to be wrong occasionally. In such
cases, the respective decisions are wrong and have a negative effect to the cloud
provider operation, and to its economic viability and profitability. We need to
have some knowledge about the extent of such negative effects and relate them
with recovery and calibrating procedures. A module that can take all such infor-
mation into account, and estimate and manipulate the risk they incur for the pro-
vider, is necessary in a real cloud environment.

Fig. 9 shows all the modules of the framework.

 A Framework for Cost-Aware Cloud Data Management 159

5.1 Estimator of Data Service Correlation

It is expected that the employment of data structures in the provision of data services
will exhibit utility correlations. Therefore the regret scheme but, most importantly, the
pricing model should take into account that the data structures may compete or colla-
borate during query execution. For example, consider the query:

select A from T where B = 5 and C = 10

Out of the set of candidate indexes to run the query efficiently, indexes Ib =T(B), Ic
=T(C), and Ibc =T(BC) are most important, since they can satisfy the conditions in
the ’where’ clause. If the cloud DBMS uses Ibc, then the indexes Ib and Ic, will never
be used, since Ibc can satisfy both conditions. Therefore, the presence of Ibc has a
negative impact on the demand for Ib and Ic. Alternatively, if the cloud DBMS uses
Ib, then Ic can also improve query performance via index intersections, hence increas-
ing the profit for the cloud. Therefore, indexes Ib and Ic have positive impact on each
other’s demand. Thus, it is necessary to provide a measure that estimates demand
correlations among data structures. We form three requirements for this measure.

1. The measure is able to capture both competitiveness and collaborativeness of data
structures.

2. The computational complexity is low so that its performance is satisfying even in
the presence of a big number of data structures.

3. The measure computes normalized values, in order to provide fair comparison.

Recently, the authors of [43] proposed a technique that computes the correlation be-
tween indexes. Yet, this technique does not satisfy any of the above requirements.

Beyond measuring the correlation of data structures, the module could also meas-
ure the correlation of the performance of different CPUs or data partitions on the
cloud disk. Since data services utilize data structures for accelerating data search, as
well as CPU and data partitions for parallelization of execution, we can use the corre-
lation measurements of all the latter in order to classify data structures and parts of the
infrastructure. Such classifications can be used to form basic data services and build
complex ones on top of them. The correlation of the latter can be, therefore, based on
the correlation of basic data services that are involved.

5.2 A Middleware for Workload Execution

In a real cloud environment, we expect users to ask for the service of a workload and
not just individual queries. Such a workload can be a group or even a workflow of
data requests, in which queries can be interleaved by algorithmic processing. Such a
query workflow may represent an experimental analysis on scientific data and may be
accompanied by data computing that has to be performed between queries. Thus, it is
necessary to provide in the proposed framework a middleware that takes as input a set
of queries and routes these queries into the cloud appropriately, in parallel and se-
quential combinations. The middleware architecture can enable the realization of
analysis workflows by providing interaction of queries. The challenge in designing
the middleware is to achieve a functionality that resembles that of a declarative

160 V. Kantere

programming language. The analysis workflow should be received by the middleware
as a program by a interpreter. The comprised queries would correspond to the para-
meterized functions of the program that have to be executed in a specific (partial)
order.

The middleware includes an overall query planner that schedules the queries in-
volved in a workflow or, even more, in many workflows. The planner has to compute,
update and use estimations for the overall cost and performance. Using such estima-
tions, the planner enables efficient parallel processing of independent queries. For this
task we can employ experience in job scheduling and query optimization.

5.3 Incorporating Risk Management

All basic framework modules operate on the basis of various estimations. Yet, it is
very probable that the real operation of the cloud provider would prove these estima-
tions wrong, in which case the provider runs the risk to become economically non-
profitable, and furthermore, non-viable. The uncertainty of the behavior of such an
environment comes from several sources: unknown changes in service availability
(e.g. data updates), unpredictable extremes of service requests (spikes), and unpre-
dictable failures of cloud hardware. Thus, it is necessary to include in the framework
an associative module that handles the risk that originates from these factors. The risk
module estimates the risk based on statistics and includes tailored risk management
procedures for the rest of the modules. Having a separate module to handle the risk
allows the implementation, testing and customization of various risk management
techniques, without affecting the design of the basic modules. Achieving the realiza-
tion of an effective risk module will allow the design of a wide range of SLAs be-
tween the users and the cloud data service provider.

6 Current State of Work and Future Plans

In [4] we make an initial proposal of an economic model suitable for a self-tuned
cloud cache. We have defined the cloud infrastructure for data that are massively
collected and queried, such as scientific data and we have studied the characteristics
of query workloads that are amenable to caching, and, therefore, economically suita-
ble to be served by a cloud data management system. Typically, the queries must have
two properties: first, they have data access locality, i.e. they mostly target a specific
part of the data; second, queries have temporal locality, i.e. similar queries are posed
close in time. We make an initial proposal of a cost model that takes into account all
possible query and infrastructure expenditure. Our experimental study proves that the
proposed solution is on the right track and viable for a variety of workloads and data.

In [5] we present a prediction model that estimates the survivability of the new da-
ta structure in the cloud DBMS, which is based on two factors: (i) usefulness of the
structure, i.e. the probability that the structure is employed in data services w.r.t. time,
and (ii) the stability of the structure, i.e. the probability that data related to the struc-
ture are not updated w.r.t. time.

 A Framework for Cost-Aware Cloud Data Management 161

In [6] we present a pricing scheme that is suitable for a cloud cache. The scheme
is based on a novel price-demand model designed specifically for a cloud cache.
There are two major challenges in designing such model: First, we need a model that
represents the reality in a simplified, in order to be computable at runtime with thou-
sands of parameters, but not over-simplified manner, in order to capture the factors
that determine the price-demand relation. Together with the pricing scheme we also
showed a first effort in designing a correlation estimator for data structures.

We consider all the above work to be the first step towards the exploration of the
applicability of the proposed framework in a cloud data service provider. We intend
to revisit, extend and generalize the current work so that the modules work for sets or
workflows of queries or data requests beyond queries. Also, most of the current work
does not take into account correlations of data services and parallelization of execu-
tion on many machines. Furthermore, we have not worked yet on the middleware for
workload execution and the risk manager. Finally, the above work was produced in
parts that were designed and tested separately. We need to go a step further and ex-
tend the work so that all modules are units that constitute a black box for the outside
environment, yet they collaborate transparently, as in the proposed framework.

Until now our experimental study has been based on real and synthetic datasets
and query workloads. The real datasets and workloads were from SDSS 2006 [44]. In
the future we intend to perform experimental studies on a diversity of data and queries
that will allow for a thorough testing of the framework. Furthermore, we can use these
real datasets and workloads in order to produce synthetic ones that will allow for a
thorough sensitivity testing. Roughly, synthetic datasets should vary: (i) selectivity,
(ii) joins, and (iii) aggregation of query operations; and by (i) varying the value range
of existing attributes or entity properties, and (ii) adding more attributes or entities.
The general goal of our methodology is to perform thorough sensitivity experimenta-
tion on all aspects of the proposed data-aware cloud economy.

7 Conclusion

This paper proposes a generic framework for cost-aware data management in a cloud
environment. The framework comprises basic and associative modules that each
take care of one aspect of integrating cost-aware and traditional, performance-aware,
data management. The modules are designed to give input and output to each other
and to the cloud DBMS that executes the user data requests. In this way, each one of
them can be realized in a manner that is suitable for the cloud application at hand,
without interfering with the realization of the rest. The whole framework can be
plugged on top of a cloud DBMS. We have already promising results from a first
effort to realize the basic modules of the framework for a cloud cache.

References

1. http://aws.amazon.com/ec2
2. http://www.gogrid.com

162 V. Kantere

3. http://code.google.com/appengine
4. Dash, D., Kantere, V., Ailamaki, A.: An Economic Model for Self-Tuned Cloud Caching.

In: ICDE, pp. 1687–1693 (2009)
5. Kantere, V., Dash, D., Gratsias, G., Ailamaki, A.: Predicting cost amortization for query

services. In: ACM SIGMOD, pp. 325–336 (2011)
6. Kantere, V., Dash, D., Francois, G., Kyriakopoulou, S., Ailamaki, A.: Optimal Pricing for a

Cloud Cache. The IEEE TKDE, Special Issue on Cloud Data Management 23(6), 1345–1358
(2011)

7. Ramaswamy, L., Liu, L., Iyengar, A.: Cache clouds: Cooperative caching of dynamic doc-
uments in edge networks. In: ICDCS, pp. 229–238 (2005)

8. Ramaswamy, L., Liu, L., Iyengar, A.: Scalable delivery of dynamic content using a coop-
erative edge cache grid. IEEE TKDE 19(5) (2007)

9. Bhattacharjee, S., Calvert, K.L., Zegura, E.W.: Self-organizing wide-area network caches.
In: IEEE Infocom, pp. 752–757 (1998)

10. Malik, T., Burns, R.C., Chaudhary, A.: Bypass caching: Making scientific databases good
network citizens. In: ICDE, pp. 94–105 (2005)

11. Wang, X., Burns, R.C., Terzis, A., Deshpande, A.: Network-aware join processing in
global-scale database federations. In: ICDE, pp. 586–595 (2008)

12. Foster, I.: What is the grid? a three point checklist (2002),
http://www-fp.mcs.anl.gov/foster/articles/whatisthegrid.pdf

13. Nieto-Santisteban, M.A., Gray, J., Szalay, A.S., Annis, J., Thakar, A.R., Omullane, W.J.:
When database systems meet the grid. In: CIDR, pp. 154–161 (2005)

14. Watson, P.: Databases and the grid. Grid Computing: Making The Global Infrastructure a
Reality, Technical Report (2001)

15. Stonebraker, M., Aoki, P.M., Litwin, W., Pfeffer, A., Sah, A., Sidell, J., Staelin, C., Yu,
A.: Mariposa: A wide-area distributed database system. VLDB J. 5(1) (1996)

16. Wellman, M.P., Walsh, W.E., Wurman, P.R., Mackie-Mason, J.K.: Auction protocols for
decentralized scheduling. Games and Economic Behavior 35, 2001 (1998)

17. Ernemann, C., Hamscher, V., Yahyapour, R.: Economic Scheduling in Grid Computing.
In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002. LNCS, vol. 2537,
pp. 128–152. Springer, Heidelberg (2002)

18. Moreno, R., Alonso-Conde, A.B.: Job Scheduling and Resource Management Techniques
in Economic Grid Environments. In: Fernández Rivera, F., Bubak, M., Gómez Tato, A.,
Doallo, R. (eds.) Across Grids 2003. LNCS, vol. 2970, pp. 25–32. Springer, Heidelberg
(2004)

19. Kradolfer, M., Tombros, D.: Market-based workflow management. International Journal of
Cooperative Information Systems 7 (1998)

20. Chen, C., Maheswaran, M., Toulouse, M.: Supporting co-allocation in an auctioning-based
resource allocator for grid systems. In: IPDPS, pp. 89–96 (2002)

21. The Office of Science Data-Management Challenge. Report from the DOE Office of
Science Data-Management Workshops (March-May 2004)

22. Ailamaki, A., Kantere, V., Dash, D.: Managing scientific data. Communications of
ACM 53(6), 68–78 (2010)

23. Gray, J., Szalay, A.S., Thakar, A., Stoughton, C., van Berg, J.: Online Scientific Data
Curation, Publication, and Archiving. CoRR cs.DL/0208012 (2002)

24. Gray, J., Liu, D.T., Nieto-Santisteban, M.A., Szalay, A.S., DeWitt, D.J., Heber, G.: Scien-
tific Data Management in the Coming Decade. CoRR abs/cs/0502008 (2005)

25. Feitelson, D.G.: Locality of sampling and diversity in parallel system workloads. In: ICS,
pp. 53–63 (2007)

 A Framework for Cost-Aware Cloud Data Management 163

26. Li, H., Groep, D.L., Wolters, L.: Workload Characteristics of a Multi-cluster Supercompu-
ter. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2004. LNCS,
vol. 3277, pp. 176–193. Springer, Heidelberg (2005)

27. Li, H., Muskulus, M., Wolters, L.: Modeling correlated workloads by combining model
based clustering and a localized sampling algorithm. In: ICS, pp. 64–72 (2007)

28. Minh, T.N., Wolters, L.: Modeling Parallel System Workloads with Temporal Locality. In:
Frachtenberg, E., Schwiegelshohn, U. (eds.) JSSPP 2009. LNCS, vol. 5798, pp. 101–115.
Springer, Heidelberg (2009)

29. Minh, T.N., Wolters, L.: Modeling job arrival process with long range dependence and
burstiness characteristics. In: CCGRID, pp. 324–330 (2009)

30. Calder, B., Grunwald, D.: Next cache line and set prediction. In: ISCA, pp. 287–296
(1995)

31. Lai, A.-C., Fide, C., Falsafi, B.: Dead-block prediction & dead-block correlating prefetch-
ers. In: ISCA, pp. 144–154 (2001)

32. Hu, Z., Kaxiras, S., Martonosi, M.: Timekeeping in the memory system: predicting and op-
timizing memory behavior. In: ISCA, pp. 209–220 (2002)

33. Kharbutli, M., Solihin, Y.: Counter-based cache replacement and bypassing algorithms.
IEEE Transactions in Computing 57(4), 433–447 (2008)

34. Sulistio, A., Kyong Hoon, K., Buyya, R.: Using revenue management to determine pricing
of reservations. In: IEEE e-Science, pp. 396–405 (2007)

35. Allenotor, D., Thulasiram, R.K., Thulasiraman, P.: A Financial Option Based Grid Re-
sources Pricing Model: Towards an Equilibrium between Service Quality for User and
Profitability for Service Providers. In: Abdennadher, N., Petcu, D. (eds.) GPC 2009.
LNCS, vol. 5529, pp. 13–24. Springer, Heidelberg (2009)

36. Lin, Z., Ramanathan, S., Zhao, H.: Usage-based dynamic pricing of Web services for op-
timizing resource allocation. Inf. Systems and E-Business Management 3(3), 221–242
(2005)

37. Masuda, Y., Whang, S.: Dynamic Pricing for Network Service: Equilibrium and Stability.
Management Science 45(6), 857–869 (1999)

38. Cao, X.-R., Shen, H.-X., Milito, R., Wirth, P.: Internet pricing with a game theoretical ap-
proach: concepts and examples. ACM Transactions on Networking 10(2), 208–216 (2007)

39. Bitran, G.R., Caldentey, R.: An overview of pricing models for revenue management.
MSOM 5(3), 203–229 (2003)

40. Ghose, A., Choudhary, V., Mukhopadhyay, T., Rajan, U.: Dynamic pricing: A strategic
advantage for electronic retailers. In: ICIS, p. 28 (2003)

41. You, P.-S., Chen, T.C.: Dynamic pricing of seasonal goods with spot and forward pur-
chase demands. Comput. Math. Appl. 54(4), 490–498 (2007)

42. Gallego, G., van Ryzin, G.: Optimal Dynamic Pricing of Inventories with Stochastic De-
mand over Finite Horizons. Management Science 40(8), 999–1020 (1994)

43. Schnaitter, K., Polyzotis, N., Getoor, L.: Modeling index interactions. In: VLDB,
pp. 1234–1245 (2009)

44. http://www.sdss.org

Event-Driven Actors for Supporting Flexibility and
Scalability in Service-Based Integration Architecture

Huy Tran and Uwe Zdun

Software Architecture Research Group
University of Vienna, Austria

firstname.lastname@unvie.ac.at

Abstract. Service-based software systems are often built by incorporating func-
tionalities from other software systems or platforms. A widely used approach in
practice is to introduce an intermediate integration layer for hiding the complex-
ity and heterogeneity of the integrated systems or platforms. However, existing
approaches introduce limited support for the flexibility of the integration archi-
tecture. It is challenging to alter the integration architecture, e.g., due to some ex-
ceptions or unanticipated situations such as peak loads or emergencies, because
of rigid dependency structures in the integration architecture defined at design
or deployment time. In this paper, we propose DERA as a novel approach that
exploits event-driven architecture concepts for enhancing the flexibility and scal-
ability of service-based integration architectures. Our approach provides primi-
tive concepts that can easily be analyzed with tools or be used to depict a current
snapshot of the integration architecture using graphical notations close to the in-
tuitive perception of stakeholders. We show the applicability of DERA through
an industrial case study in the field of software platform integration and evaluate
the scalability of our approach.

Keywords: Event-driven architecture, event actors, services, service-based inte-
gration architecture, flexibility, scalability, substitutability.

1 Introduction

Service-oriented architectures (SOA) provide efficient means for exposing functional-
ity of software systems or platforms in terms of services with standardized interfaces.
Service-based systems can be built by incorporating services provided by other sys-
tems or platforms. Instead of directly dealing with the heterogeneity and variety of
the integrated systems or platforms, an intermediate integration layer is often intro-
duced for bringing systems or platforms into the service-oriented world and providing
the required service integration and composition logic [15]. Figure 1 illustrates a high-
level overview of a simplistic platform integration layer design. There is a considerable
amount of existing approaches for realizing the integration layer, such as using compos-
ite services, enterprise service buses, messaging infrastructures, or business processes.

A certain flexibility is often required at the level of the integration layer to not only
support rapid tailoring and customization of the integration architecture but also enable
the ability to deal with some exceptions or unanticipated situations such as peak loads

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 164–181, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Event-Driven Actors for Supporting Flexibility and Scalability 165

Platform
Service

Platform
Service

Adapter

Facade

Application
Component

Application
Component

Se
rv

ic
e-

ba
se

d
pl

at
fo

rm
 in

te
gr

at
io

n

Adapter

A
pp

lic
at

io
n

Pl
at

fo
rm

Data
Mapper

Fig. 1. Overview example for service-based platform integration architectures

or emergencies. The mentioned existing approaches introduce only limited support for
the flexibility of the integration architecture through dynamic bindings of the consti-
tuting elements (e.g., dependency injection or aspect weaving techniques are used in
some of the mentioned approaches) [7,9,8]. Altering the integration architecture is very
challenging because of the rigid dependency structures in the integration architecture
defined at design or deployment time. Such rigid dependencies also might cause scala-
bility problems as sophisticated algorithms and coordination techniques are required to
efficiently schedule and distribute integration and composition logic [14,4].

Event-driven communication styles are potential solutions for facilitating high
flexibility, scalability, and concurrency of distributed systems [18]. Due to the intrinsic
loose coupling of the participants, the event-based architectural style is used in many
large-scale distributed software systems today. The advantages of event-driven com-
munication styles have been extensively exploited in a considerable amount of work
proposing different combinations of event-driven architectures (EDA) with business
process management and SOAs [12,25]. To the best of our knowledge, none of the
existing approaches has exploited EDA for resolving the aforementioned problems
in service-based integration architectures. Another issue hindering the use of EDA
is that software architects and developers often find the event-driven communication
style unintuitive (compared to other paradigms such as remote procedure calls or
messaging) and large architectures with many event actors and numerous events hard
to comprehend.

In this paper, we propose DERA as a novel approach leveraging the event-driven
architecture style to enable flexibility of integration architectures for supporting
various kinds of runtime evolution and dynamic adaptation while minimizing the
non-deterministic nature of event-based applications. In particular, our approach en-
capsulates constituting elements (e.g., components, functions, adapters, proxies) using
event actors with explicit interfaces. It exploits the event-based communication style
to loosen the dependencies among the actors. The interfaces of the actors, described
in terms of incoming and outgoing events, are formally specified and constrained to,
on the one hand, enable the support for changing actors at runtime (e.g., replacing
actors or changing their execution order). On the other hand, well-defined interfaces

166 H. Tran and U. Zdun

of actors also reduce the non-deterministic behavior in EDAs. The proposed graphical
notations of the DERA concepts can be used to visually depict a current snapshot
of the event-driven service integration architecture that is closer to the stakeholders’
perception than studying only the event actors’ inputs and outputs and their event
processing rules. In this paper, we present concepts and formalizations to establish the
foundation of our approach as well as a prototypical implementation. We show the ap-
plicability of our approach using an industrial case study in the field of service platform
integration. Finally, we evaluate the performance and scalability of our approach, as
good scalability is one of the central promises of EDAs and a central integration layer
is a potential bottleneck in an integration architecture. We can show that our approach
offers linear scalability and has only a moderate performance overhead compared to a
hard-coded Java implementation with rigid dependencies among the actors.

The paper is structured as follows. Section 2 introduces the case study. We present the
DERA (Dynamic Event-driven Actors) approach in Section 3. In Section 4, we describe
a prototypical implementation of DERA, revisit the case study and elaborate on how
DERA can help to improve the flexibility in the case study, and report on the evaluation
of DERA’s performance and scalability. We compare to related work in Section 5, and
finally we conclude and discuss future work in Section 6.

2 Case Study

We illustrate the application of the concepts presented in this paper in an integration
scenario of a warehouse operator application extracted from an industrial case study in
the field of service platform integration1. In the context of this application, there are
three different domain-specific service platforms, namely, a yard management system
(YMS), a warehouse management system (WMS), and a remote monitoring system
(RMS) that provide a wide variety of services. The warehouse operator application shall
utilize these services to perform various necessary tasks that are triggered by events
such as the arrival of a truck carrying products to be stored in the warehouse. The three
platforms shall be integrated using an service-based platform integration layer akin to
the one in Figure 1, and the warehouse operator application shall use the services of the
integration layer to access the services of all three platforms.

We present in Figure 2 a schematic view of one scenario of the warehouse opera-
tor application. The lifelines of the sequence diagram represent the proxy components
which are responsible for interacting with the service platforms involved in the scenar-
ios. One of the crucial requirements for the scenario is that we want to be able to alter
the composition logic of the warehouse operator in a flexible manner at runtime. For
instance, the warehouse operator might not need to perform getFreeDock because the
arriving truck is specially assigned to a dedicated dock in the yard. Another example is
that the warehouse operators need to call the warehouse staff to prepare for unloading
products in the truck. We will revisit and analyze this scenario in Section 4.

1 http://indenica.eu/fileadmin/INDENICA/user_upload/d51-casestud.pdf

http://indenica.eu/fileadmin/INDENICA/user_upload/d51-casestud.pdf

Event-Driven Actors for Supporting Flexibility and Scalability 167

YMS WMS RMS

truckArrived(truckID)

truckReady(truckID)

startUnloading(truckID)

truckLeft(truckID)

unloadingFinished(dockID)

getFreeDock

moveTruckToDock(dockID)

store(truckID,unitID)

registerStorageUnit(unitID)

transportStorageToBinLocation(unitID,storageID)
unitStored(unitID,storageID)

searchAndReserveBinLocation(unitID, storageID)

storeStarted(unitID)

loop(# bins)

requestCamera(locationID)requestCamera(userID)

receiveVideo(locationID)receiveVideo(userID)

par

Operator

Se
rv

ic
e-

ba
se

d
Pl

at
fo

rm
 In

te
gr

at
io

n

Fig. 2. The behavior of the unloading scenario

3 Dynamic Event-Driven Actors (DERA)

3.1 DERA Primitive Concepts

Figure 3 depicts the meta-model of the primitive concepts forming a DERA system.
The semantics of these basic event actors are provided in Table 1. The central notions
of DERA are events and event actors. An event can be considered essentially as “any
happening of interest that can be observed from within a computer” [20] (or a software
system). An example of an event from the business domain is the arrival of a purchase
order. An event is associated with one or more ObjectReferences for obtaining refer-
ences to data sources managed in ObjectPools. Events may also have some attributes
such as their unique identifier, correlation identifiers, timing attributes, and so on.

An event type is a representation of a class of events that share a common set of
attributes. An instance of an event type is a concrete occurrence of that event type
that has a unique identifier and is instantiated with concrete values of the event type’s
attributes. An example of an event type are incoming customer orders, whilst the corre-
sponding instance of this type is an incoming order from Alice. Given a concrete event
e, typeof(e) will be used to denote the event type of e.

The encapsulation of a particular computational unit (e.g., an executable function, a
component, a proxy, or an adapter) that performs a concrete task, for instance, executing
composition logic of a number of service invocations, performing the role of a service

168 H. Tran and U. Zdun

*event

+ register()
+ unregister()
+ fire()
+ activate()
+ deactivate()
+ dispose()

Execution
Domain

actor
* + notify()

+ match()

EventActor

+ trueEvent[*]
+ falseEvent[*]

Condition Barrier

+ id: String
+ eventAttributes[*]

Event

+ reference : String

ObjectReference

*

+ inputEvent[*]
+ outputEvent[*]

ActorInterface

EventBridge

/src target1 *

+ create()
+ read()
+ update()
+ delete()

ObjectPool + start()

Trigger

+ eval()

Predicate 1
predicate

+ func()

Behavior

behavior 1

*

*

* objectRef

event

objectRef

Fig. 3. Meta-model for the primitive DERA concepts and their relationships

adapter or proxy, accessing and transforming data, to name but a few, is an event actor
(or actor for short). Each actor has a well-defined interface represented by the Actor-
Interface class. The actor’s interface defines a set of events that the actor awaits (aka
input events) and a set of events that the actor will emit after finishing its execution (aka
output events). Particular behavior of each actor is defined through a concrete instance
of the Behavior class. The execution of an actor is triggered by the arrival of any of
the input events. At the end of its execution, the actor will emit all of its output events
that, in turn, may trigger the executions of other actors.

In Table 1, we present the graphical notations of the DERA actors that can be used
to visually depict a snapshot of a DERA system at a particular point in time. A formal
behavior definition for each type of actor is given as a Finite State Machine (FSM).
The transitions between two states represents the occurrence of DERA operation invo-
cations such as (un)register, (de)activate, notify, match, func, fire, and so
forth, (see Definition 2 below). Any snapshot of a DERA system can easily be trans-
formed into an FSM or another formal representation (like a Petri Net) to perform
formal analysis of the system snapshot. The DERA prototype is based on Java. De-
veloping DERA applications using the Java APIs is rather tedious as they offer a lower
abstraction level than DERA system models. For this reason, we additionally provide
DeraDSL, a domain-specific language (DSL) for supporting the model-driven specifi-
cation of DERA systems. The second column of Table 1 shows the code required for
definingeach of the actor type in DeraDSL. Note that DeraDSL’s constructs will be
mapped to the meta-model depicted in Figure 3 and consequently to the Java imple-
mentation of DERA for execution. We explain DeraDSL in detail in Section 4.1.

Event actors are defined based on well-defined event interfaces:

Definition 1 (Event actor interface). An interface Ix of a DERA event actor x can be
described by a 2-tuple (•x, x•), where •x is a set of input events expected by x and x•
is a set of output events to be emitted by x (•x and x• can be empty sets).

The benefits of specifying well-defined interfaces for DERA event actors are manifold.
Firstly, they enable us to conceptually capture a snapshot of current state of the DERA

Event-Driven Actors for Supporting Flexibility and Scalability 169

Table 1. Notations and formal definitions of behaviors of DERA actors

Actor Notation DeraDSL construct Formal behavior definition

EventActor EventActor <name>

input [inputEvents]

output [outputEvents]

func [actor-behavior]

activate

unregister

notify

match

func

fire

register unregister

deactivate

Barrier Barrier <name>

input [inputEvents]

output[outputEvents] deactivate unregister

notify

match fire

register unregister

got
all input

¬ got all
input

activate

match

Condition Condition <name>

input[inputEvents]

when-true[trueEvents]

when-false[falseEvents]

eval [predicate]

deactivate unregister

notify

match

register unregister

activate

eval() = true

¬ eval() = true

fire(trueEvents) fire(falseEvents)

Trigger Trigger <name>

output [outputEvents] activate
unregister

fire

register unregister

deactivate

start

EventBridge EventBridge <name>

target [targetDomains] activate
unregister

notify

register unregister

deactivate

notify(target)

170 H. Tran and U. Zdun

system and derive a directed graph that comprises event actors connected via their in-
puts and output events at design time or runtime. As a result, we are able to support
monitoring and analysis of important properties such as reachability (safety or deadlock
checking), liveliness, performance, quality of services, of DERA systems described in
terms of such graphs. On the other hand, well-defined interfaces also enable us to sup-
port changes at runtime, e.g., substituting an event actor by another with a compatible
interface or changing the execution order of event actors by substituting an event actor
by another having the same input events but different output events.

3.2 DERA Architecture

Figure 4 shows an overview of the DERA tool-chain on the left-hand side and the DERA
runtime architecture on the right-hand side. DeraDSL will be described in Section 4.1.
In this section, we focus on the DERA runtime architecture.

Developer

DeraDSL

DERA
Code Generator

DERA Engine

DeraDSL code

Executable codedeploys/
manages/
monitors/

Execution Domain

Execution Domain

Execution Domain

event
bridge

event
bridge

develops/
verifies

Fig. 4. Overview of DERA development toolchain and system architecture

DERA is designed so that each event actor only concentrates on its own task, its well-
defined interfaces defining its input events and the events it is going to emit. There are
no tight dependencies between two particular event actors except “virtual connections”
established via the event-based communications. This is realized using the notion of
event channels which are abstractions used for delivering events among communicating
parties. All actors in an execution domain of a DERA system are connected to the
same channel, and all events are published via the channel. All events published on a
channel are consumed by all actors registered for the channel. Hence, actors are loosely
coupled. This loose coupling leads to the flexibility and scalability of DERA. That is,
event actors can be distributed for better load balancing or performance optimization
purposes without requiring any sophisticated distribution algorithms.

Event channels are also used as a means to implement logical execution domains.
Execution domains are useful for supporting runtime governance activities such as de-
ployment, management, and monitoring, as they can be used to group event actors and
events. An execution domain might host one or many DERA applications while a cer-
tain DERA application can span across several execution domains. Two DERA exe-
cution domains can be connected by EventBridges which are special event actors

Event-Driven Actors for Supporting Flexibility and Scalability 171

responsible for forwarding events from a DERA execution domain to another (see Fig-
ure 4). The original function of event bridges may also be extended with extra features
such as enriching or transforming the content of events.

Definition 2 (DERA system). A DERA system S can be described by a 4-tuple
(E ,A, C,O), where

1. E is a finite set of events.
2. A is a finite set of event actors. Each event actor x ∈ A has a well-defined interface
Ix(•x, x•), where •x ⊆ E and x• ⊆ E and can perform a particular function.

3. C is an event channel that is responsible for delivering an event received from a
certain event actor exactly once to all other actors registered to the channel. An
event actor x ∈ A consumes an incoming event e ∈ E from the channel C only if
match(x, e)=true (for definition of match() see below). The channel is assumed
to be reliable, i.e., no message is lost or altered.

4. O is a set of basic operations, including (but not limited to)
– register(x), where x ∈ A, indicates that the actor x is registered to the event

channel C.
– unregister(x), where x ∈ A, indicates that the actor x unregisters to the

event channel C.
– fire(x,E) or fire(x, e), where x ∈ A, E ⊆ E , and e ∈ E , indicates that the

actor x fires a set of events E or a single event e, respectively.
– match(x, e), where x ∈ A, e ∈ •x, returns true if the event e matches the

interface of the actor x and false otherwise.
– func(x), where x ∈ A, denotes a concrete task or an arbitrary user-defined

behavior of the event actor x.
– deactivate(x) and activate(x), where x ∈ A: deactivate(x) is used for

putting the execution of x on hold and activate(x) is used for resuming its
execution, for instance, after a deactivate(x).

The interface operations register() and unregister() are mainly used for the man-
agement of a DERA execution domain, and deactivate() and activate() deal with
lifecycle management. The operation func() is the placeholder where one can put in a
certain user-defined behavior such as invoking a service, accessing a database, or open-
ing and reading a local file. Please note that the execution of the operation func() is
not allowed to change the event actor’s interface (i.e., input and output events) or emit
new events. The main goal of this constraint is to reduce the non-deterministic nature of
the event-based communication styles employed in DERA. Changing an event actor’s
input and output events must be explicitly declared through its interface. As a result, we
can conceptually establish the dependencies between event actors by observing their
interface descriptions. The dependencies can be used for many important tasks such as
monitoring and verifying properties of DERA systems and applications.

Definition 3 (Event matching). Given a DERA system S described by the 4-tuple
(E ,A, C,O). Let x be an event actor (x ∈ A) having an interface Ix = (•x, x•).
An event e1 ∈ E matches the interface Ix if and only if there exists at least one
event e2 ∈ •x such that e1 and e2 are of the same event type (i.e., typeof(e1) =

typeof(e2)).

172 H. Tran and U. Zdun

Definition 4 (DERA application). A DERA application Φ running in a DERA system
S can be described by a 4-tuple (A,E,Estart, Efinish), where

– A ⊆ A is a finite set of event actors constituting the functionality of the application;
– E ⊆ E is a finite set of events published and consumed by the event actors of A;
– Estart ⊆ E is a finite set of events that indicate the start of the application;
– Efinish ⊆ E is a finite set of events that indicate the end of the application.

module eu.indenica.casestudy.yms
domain YMS {

Trigger y1 output [ymsTruckArrived]
EventActor y2 input [facadeMoveTruckToDock] output [ymsMoveTruckToDockFinished]

func [MoveTruck]
EventActor y3 input [ymsMoveTruckToDockFinished] output [ymsTruckReady]

func [CheckTruckReadyForUnloading]
Barrier y4 input [ymsTruckReady, facadeStartUnloading] output [ymsStartedUnloading]
EventActor y5 input [ymsStartedUnloading, ymsUnloadingNotFinished] output [ymsStore]

func [StoreUnit]
Condition y6 input [ymsStore] when-true [ymsUnloadingFinished]

when-false [ymsUnloadingNotFinished]
EventActor y7 input [ymsUnloadingFinished] output [ymsTruckLeft] func [CheckTruckInDock]
Application YMS start-with [ymsTruckArrived] end-with [ymsTruckLeft]

} y3y1 y2

y7

y4 y5 y6

Fig. 5. DERA application and its corresponding graphical representation

We present in Figure 5 an excerpt of the composition logic of the proxy component
of the integration architecture that is responsible for interacting with the YMS platform
in the scenario shown in Figure 2. The proxy component is described using the pro-
gramming constructs provided by DeraDSL. Given the specification of the actors and
their interfaces, we can build an intuitive graphical representation of a snapshot of the
application using the notation from Table 1. Note that the dashed lines among event ac-
tors are not real dependencies but virtual connections achieved by analyzing the inputs
and outputs of the actors captured in the snapshot of the application.

3.3 Event Actor Substitution

There are several studies in programming languages (especially object-oriented pro-
gramming) and component-based systems, on the substitutability of data types, objects,
and components [22,17]. The event actor substitution in approach is based on the well-
known Liskov substitution principle [17]. There are three crucial features of DERA
actors that enable us to substitute a certain actor at runtime. Firstly, each actor x explic-
itly exposes a well-defined event-based interface Ix(•x, x•). Secondly, the interactions
among actors are loosely coupled through event-based communication. Thirdly, the en-
capsulation of a computational unit that performs a concrete task (i.e., the operation
func() of an EventActor) is not allowed to alter the interface. These features allow
us to substitute an actor by one or a set of other actors that introduce (1) an interface
which is compatible to the original actor’s interface (called strong substitution below)
or (2) a different interface (called weak substitution below).

Event-Driven Actors for Supporting Flexibility and Scalability 173

Strong substitution occurs when the developers have to replace or upgrade an existing
functionality with a different (e.g., better or bug-fixed) version while preserving the
overall structure and behavior of the DERA application. It is achieved by defining a
new actor y with the same interface as x. x can be replaced with y using the operation
deactivate(x) to temporarily put the execution of x on hold, and using the operations
register(y) and activate(y) to enable the execution of y.

Definition 5 (Strong substitution). Let x be an event actor having an interface
Ix(•x, x•). An event actor y posing an interface Iy(•y, y•) is said to be a strong
substitution for x if all the following constraints are satisfied:

1. Type requirement: y must be of the same type or a subtype of x. That is, if x is of type
EventActor, then y must be of type EventActor or a subtype of EventActor.

2. Input requirement (applied for every event actor x, such that •x �= ∅): •y = •x,
i.e., y has to be able to accept the same input events as x does.

3. Output requirement (applied for every event actor x, such that x• �= ∅): y• = x•,
i.e., y has to fire the same output events as x does.

Weak substitution occurs when the developers want to alter the structure and behav-
ior of one or all running instances of a DERA application, for instance, skipping some
tasks to deal with exceptions or unanticipated circumstances such as peak loads and
emergencies or adding new functionalities. This is difficult to achieve with many ex-
isting integration architectures due to rigid dependency structures. We can support the
required flexibility in DERA by substituting existing event actors with newly defined
event actors posing different interfaces. This kind of substitution is called weak substi-
tution as it is not going to preserve the original structure and behavior.

Definition 6 (Weak substitution). In a DERA applicationΦ = (A,E,Estart, Efinish),
let x ∈ A be an event actor having an interface Ix(•x, x•). A weak substitution y for
x can be achieved by relaxing one or more of the conditions for strong substitutions.

To illustrate possible relaxations of strong substitution conditions, let us consider the
following examples:

1. Type requirement: x and y can be instances of a) the same or b) different types.
2. Input requirement (applied for every event actor x, such that •x �= ∅): there are no

constraints on the input, but a potential case may be one of the following:
a) •x ⊆ •y, i.e., y is able to be triggered by more input events than x,

b) •y = •x ∩
(⋃

z•, ∀z ∈ A ∧ z �= x
)
, i.e., y only considers to accept a subset

of x’s input events that are going to be emitted by other event actors,

c) •x ∩ •y = ∅
3. Output requirement (applied for every event actor x, such that x• �= ∅): there are

no constraints on the output, but a potential case may be one of the following:
a) x• ⊆ y•, i.e., y can emit more events than x.

b) y• = x• ∩
(⋃
•z, ∀z ∈ A ∧ z �= x

)
, i.e., y only considers to fire a subset of

x’s output events that are going to be consumed by other event actors.

c) x• ∩ y• = ∅

174 H. Tran and U. Zdun

Weak substitutions lead to different levels of changes ranging from light or moderate
adjustments (e.g., 2(a), 2(b), 3(a), and 3(b)) to significant and disruptive alterations
(e.g., 2(c) and 3(c)) of event actors’ interfaces. In some situations, these changes may
become undesirable as they can result in anomalies such as dead tasks, deadlocks, or
livelocks. It would be unrealistic to require the developers to ensure that a certain sub-
stitution must lead to an expected and sound state of the running DERA applications.
Instead, exploiting powerful reasoning mechanisms based on formal methods such as
process algebras [16,19] or Petri-nets [21] can help developers to analyze a certain
runtime snapshot of DERA applications to detect potential flaws and correct the sub-
stitution before applying it. Also, existing approaches on behavior inheritance [5] or on
using change patterns for preserving certain system properties [24] can be leveraged
in the context of DERA to enhance the soundness of actor substitutions. Studying the
applicability of those mechanisms is one of our planned future works.

4 Implementation – Case Study Revisited – Evaluation

4.1 DERA Implementation

A prototypical implementation of the DERA concepts has been developed to show the
feasibility of our approach and implement the case study presented in the next sec-
tion. In our implementation, we have defined an abstraction layer covering all primitive
concepts of DERA presented in Figure 3. This layer is independent from the underlying
technologies. The implementation layer realizes the concepts of the abstraction layer us-
ing a particular technology, in our case the Java Concurrency Utilities packages2. These
packages, which are available in Java JDK 1.5 and later, provide sufficient concurrency
utilities. In particular, in our DERA implementation, the event-driven communication
style is realized using asynchronous event callbacks. The creation and execution of
event actors are managed using the built-in ExecutorServicewith fixed thread pools
and the synchronization among actors is done through the synchronized() construct.

The DERA EventChannels represent a means for delivering events among com-
munication parties and can be realized by asynchronous communication styles. Thus,
it is possible to incorporate existing powerful libraries and frameworks such as Java
Message Service3 or PADRES [11] in the DERA implementation. For the evaluation
purpose presented in the next section, we opted for implementing DERA EventChan-

nels based on pure Java asynchronous multi-threading. Each EventChannel has a
number of event distributors mapped to a pool of light-weight Java threads. These event
distributors receive and deliver events following a round-robin scheduling strategy.

The DERA EventBridges used to enable DERA systems to support distributed
event processing (see Figure 4) have been realized using REST Web services. REST
services are a good match for DERA’s flexible and scalable architecture because of
the use of the scalable and stateless concepts of the Web in the REST architectural
style. In the DERA implementation, the REST services are used for transmitting events
between two (possible distributed) execution domain A and B that are connected via an

2 http://docs.oracle.com/javase/1.5.0/docs/guide/concurrency/index.html
3 http://jcp.org/en/jsr/detail?id=343

http://docs.oracle.com/javase/1.5.0/docs/guide/concurrency/index.html
http://jcp.org/en/jsr/detail?id=343

Event-Driven Actors for Supporting Flexibility and Scalability 175

EventBridge. The EventBridge is realized using a REST Service that is connected
as an event actor to domain B. An event actor on domain A acts as a REST client
forwarding all events raised within A to the REST service. The REST service delivers
all received events to B. A bidirectional bridge can be established by adding a second
REST service to the event bridge actor on channel A.

As mentioned before, DeraDSL has been developed aiming at minimizing the noise
of Java language structures and supporting efficient DERA application development.
We leverage Xtext4, which is a powerful framework supporting textual language devel-
opment with several advanced features, for instance, syntax coloring, code completion,
validation, excellent integration with Java, and many others, to implement DeraDSL.
Furthermore, combining Xtext with Xtend5 helps us on mapping DeraDSL’s elements
onto the Java-based constructs and libraries that implement DERA. We partially de-
scribed some primary elements of DeraDSL in Table 1 and used them to illustrate the
development of DERA applications in Figure 5.

4.2 Case Study Revisited

Developing the warehouse operator application, motivated in Section 2, using the
DERA prototype is fairly straightforward. First, we need to define an EventActor

for encapsulating each task to be carried out. Then, we need to assign the input and
output events of that actor. A Barrier may be necessary when we need to wait for
more than one event arriving before some other tasks can be performed. For decisions,
such as checking if there are enough storage locations in the warehouse to store all
units, Condition is used. We show an excerpt of the DeraDSL code defining the
warehouse operator composition logic using DERA actors in Listing 1.1. In this
excerpt, the concrete definitions of the operation func() of the event actors are in a
separate modules and can be cross-referenced. Thus, these functions are omitted in
the code. The management operations such as (de)register and (de)activate

are also not visible but we will discuss them in the next section. The warehouse
operator requires some events from the integration facade, namely, PlatformFacade,
defined in the lower part of the code excerpt. Thus, we create an event bridge named
OperatorToFacade for delivering events from the WarehouseOperator domain
to the PlatformFacade domain. Likewise, the event bridge FacadeToOperator is
defined in the PlatformFacade domain for sending events back.

Even though DeraDSL can help on better formulating DERA elements, the code
shown in Listing 1.1 is still not close to the developers’ perception. At a certain stage,
for instance, after finishing development or before deploying, a snapshot of a DERA
system and application can be taken and visually depicted using the graphical notations
described in Table 1. Accordingly, we can establish an equivalent intuitive graphical
representation, as shown in Figure 6, of the aforementioned code. The events from the
PlatformFacade domain to the WarehouseOperator domain are shown for illustrat-
ing the relationship between two domains. We can see that the semantics of DERA
concepts and notations are close to that of traditional conditional structures in existing

4 http://xtext.org
5 http://xtend-lang.org

http://xtext.org
http://xtend-lang.org

176 H. Tran and U. Zdun

programming languages or widely-used formal models such as such as process alge-
bras [16,19] or Petri-nets [21]. As a result, existing formal analysis techniques can be
leveraged (see Section for details).

module eu.indenica.casestudy.warehouse.operator
domain WarehouseOperator {

EventActor TruckArrivedNotified input [facadeTruckArrived] output [
operatorTruckArrivedNotified]

EventActor GetFreeDock input [operatorTruckArrivedNotified] output [operatorGetFreeDock]
Barrier b1 input [facadeGetFreeDockFinished, operatorGetFreeDock] output [
operatorGetFreeDockFinished]

EventActor MoveTruckToDock input [facadeGetFreeDockFinished] output [
operatorMoveTruckToDock]

EventActor RequestCamera input [operatorTruckArrivedNotified] output [
operatorRequestCamera]

Barrier b2 input [operatorRequestCamera, facadeRequestCameraFinished] output [
operatorRequestCameraFinished]

EventActor VideoReceiving input [operatorRequestCameraFinished] output [
operatorReceiveVideo]

Barrier b3 input [operatorMoveTruckToDock, facadeMoveTruckToDockFinished,
operatorReceiveVideo, facadeReceiveVideoFinished,facadeTruckReady] output [
operatorTruckReadyNotified]

EventActor StartUnloading input [operatorTruckReadyNotified] output [
operatorStartUnloading]

Barrier b4 input [operatorStartUnloading, facadeStoreStarted] output [
operatorStoreStartedNotified]

EventActor StoringMonitoring input [operatorStoreStartedNotified,
operatorStoringNotFinished] output [operatorStoringMonitoring]

Barrier b5 input [operatorStoringMonitoring, facadeUnitStored] output [operatorUnitStored
]

Condition isStoringFinished input [operatorUnitStored] when-true [operatorStoringFinished
] when-false [operatorStoringNotFinished]

Barrier b6 input [operatorStoringFinished, facadeUnloadingFinished, facadeTruckLeft]
output [operatorFinished]

EventBridge OperatorToFacade target [eu.indenica.casestudy.facade.PlatformFacade]
Application WarehouseOperator start-with [facadeTruckArrived] end-with [operatorFinished]

}
module eu.indenica.casestudy.facade
domain PlatformFacade {

...
EventBridge FacadeToOperator target [eu.indenica.casestudy.warehouse.operator.
WarehouseOperator]

...
}

Listing 1.1. Excerpt of the code defining the warehouse operator application

4.3 Event Actor Substitutions

In this section, we illustrate weak substitutions for the change requirements introduced
in Section 2. The first requirement is to to skip the execution of the task GetFree-

Dock. This can be achieved through a weak substitution, i.e., by defining a new actor
MoveTruckToDockNew that directly consumes the event operatorTruckArrivedNo-
tified emitted by the actor app, as illustrated in Listing 1.2.

Event-Driven Actors for Supporting Flexibility and Scalability 177

Request
Camera

Receive
Video

Storing
Monitoring

is
Storing
Finished

Get
FreeDock

MoveTruck
ToDock

Truck
Arrived
Notified

b1

b2

b3 Start
Unloading

b4 b5 b6

facade
TruckArrived

FacadeTo
Operator

facade
Unloading
Finished

facade
TruckLeft

facade
Unit
Stored

facade
Store
Started

facade
Request
Camera
Finished

facade
GetFreeDock
Finished

facade
MoveTruck
ToDock
Finished

facade
Receive
Video
Finished

facade
TruckReady

WarehouseOperator Execution Domain

Fig. 6. The graphical representation of the warehouse operator application

EventActor MoveTruckToDockNew input[operatorTruckArrivedNotified] output[
operatorMoveTruckToDock]
register [MoveTruckToDockNew] // register the new actor
deactivate [MoveTruckToDock] // temporarily suspend the old actor
deactivate [b1] // we do not need this Barrier
... // verifications can be performed here to detect potential anomalies
activate [MoveTruckToDockNew] // now we can activate the new actor

Listing 1.2. Skipping the existing event actor GetFreeDock

In the second requirement from Section 2 the warehouse operators need to call the
warehouse staff to prepare for unloading products in the truck. This implies that a new
actor, namely, CallWarehouseStaff, must be executed before the StartUnloading
actor. We demonstrate in Listing 1.3 how the new actor can be incorporated into the
existing warehouse operator composition logic using weak substitutions.

EventActor CallWarehouseStaff input[operatorStoreStartedNotified] output[
operatorCallWarehouseStaff]
EventActor StartUnloadingNew input[operatorCallWarehouseStaff] output[operatorStartUnloading]
register [CallWarehouseStaff]
register [StartUnloadingNew]
deactivate [StartUnloading]
/* verifications can be performed here to detect anomalies */
activate [StartUnloadingNew]
activate [CallWarehouseStaff]

Listing 1.3. Adding a new event actor CallWarehouseStaff

4.4 Performance and Scalability Evaluation

As the integration layer stands between the service-based applications and the underly-
ing systems and platforms, it is a potential bottleneck in an integration architecture. Also
the channel concept of DERA might introduce a bottleneck that could cause scalability
problems. Thus, we conducted an evaluation of the performance and scalability of our
approach comparing to a reference implementation based on pure hard-coded Java with
rigid dependencies among the tasks. In this reference implementation we used exactly

178 H. Tran and U. Zdun

tasks java σjava dera σdera

50 148 8.2 323.9 23.7
100 293.9 5.1 582.4 26.4
150 403.5 22.1 819.0 31.1
200 569.9 12.7 1042.3 34.4
250 640.9 32.5 1216.0 46.9
300 745.5 6.6 1310.6 22.9
350 865.2 8.7 1484.4 28.8
400 986.4 7.6 1648.8 47.9
450 1103.5 8.6 1813.2 56.5
500 1224.9 8.8 1951.6 22.3
550 1342.1 8.0 2095.7 25.0
600 1466.5 11.2 2245.2 27.8
650 1592.4 20.0 2418.9 20.6
700 1734.8 77.0 2565.7 19.0
750 1827.1 15.6 2721.4 18.9
800 1954.8 52.3 2869.0 20.3
850 2076.6 38.8 3019.5 22.8
900 2186.4 60.8 3165.4 18.9
950 2309.9 25.5 3290.0 24.7

1000 2439.8 16.8 3464.6 22.1

Fig. 7. Evaluation of DERA scalability

the same tasks (a simple service invocation in a server running on the same machine) as
in the DERA actor’s tasks. We hard-coded the integration in Java, offering no flexibility,
to exactly measure the impact of DERA’s features on performance and scalability.

We evaluate the DERA implementation and the Java counterpart on the Java SE
Runtime 1.6.0 u31 64-bit version on a workstation with an Intel CPU Quad-core i7 2.0
GHz and 8 gigabytes memory. To minimize the interference of the Java VM garbage
collector and dynamic memory allocations during the experiments, the Java VM is set
up with the following options: -Xms512m -Xmx1024m -Xss1m. We measured in 50
rounds the execution time of n (n = 50, 100, . . . , 950, 1000, respectively) DERA actors
running in an execution domain with a fixed thread pool of size 8 (which is the number
of CPU cores) and compare to n Java tasks running in a thread pool of the same size.

Scatter plots for the measured execution times are visualized in Figure 7 (each value
of n in the 50 rounds is depicted; the values are pretty close together). We derived the
two regression functions shown in Figure 7 from the data of the measurements using
the least-squares linear regression method. In Figure 7, we also present the average ex-
ecution time of DERA (i.e., dera) and the Java counterpart (i.e., java) along with their
standard deviations, σdera and σjava, respectively. As can be seen for the observed data,
both our approach and the Java hard-coded implementation offer approximately linear
scalability. Our approach introduces only a moderate performance overhead, especially
when considering that (1) realistic model sizes – such as those in our industrial case
study – seldom go beyond 20-50 actors and (2) the approach is indented to be used for
remote service integration and each service invoked over the network requires much
more time than what is spent in the integration layer.

5 Related Work

The integration layer targeted in our approach is related to dynamic service composi-
tion approaches [10,2,7]. The dynamicity of those approaches is mostly achieved by

Event-Driven Actors for Supporting Flexibility and Scalability 179

deferring service discovery and binding to runtime. Initially, service placeholders or
composition rules are prescribed in the configuration so that the enactment engine can
later find, select, and combine relevant services on the fly. Moreover, most of these
approaches using rigid dependency structures. However, none of the aforementioned
approaches provides sufficient supports for flexibly changing or substituting arbitrary
elements as in DERA. There are a few exceptions, such as the eFlow framework [6],
in which modifications of composite services are allowed, but in an ad-hoc manner. As
DERA actors need to interact with and incorporate various services, our approach can
benefit from the advanced techniques in discovering and binding services to enhance
the dynamicity of the interaction between DERA actors and corresponding services.
None of these approaches considers the flexibility at runtime as in our approach.

An extensively used approach for specifying service composition are process-driven
SOAs [15]. A typical process comprises a number of tasks and a control flow defining
the execution order of these tasks. BPMN6 and BPEL7 are a widely used languages
for describing processes. Unfortunately, they expose tight dependencies among service
invocations with rigid control flows and structures. The enactment of BPMN or BPEL
descriptions is usually determined at design time and very difficult to change at run-
time. There are a substantial amount of efforts focusing on relaxing the rigid structures
of process descriptions, and, therefore, enable a certain degree of flexibility of process
execution [13,24,23]. These approaches mainly target long-running transactional sys-
tems and still suffer from the tight dependencies among the tasks. In contrast, there
exists no such rigid control flows in DERA, only the virtual relationships among ac-
tors. Changing these virtual relationships can be straightforwardly achieved by altering
actor interfaces using DERA substitution mechanisms. Our approach focuses on flexi-
ble short-running composition logic for integrating software systems and platforms. A
number of approaches leverage the aspect-oriented programming paradigm for support
process modifications by specifying and weaving additional modules, such as logging,
auditing, and security, into the original composition logic [9,8]. However, the aspect-
oriented approaches do not aim at loosening the dependency structures and provide
limited supports for flexible changes at runtime.

A considerable amount of studies in the field of coordination theory are investigat-
ing methods and techniques aiming at separating computation from coordination [3]
and making the interaction between components explicit in terms of coordination mod-
els and protocols. However, as far as components are still aware of these models and
protocols which are stored in the components, their computation and interaction with
peers is likely based on, and influenced by, this data [3]. In DERA, computational el-
ements (i.e., actors) are totally unaware of the others. Communication between event
actors is fully decoupled from the behavior of the actors.

The theoretical foundation of our work benefits from existing formal methods re-
search in the field of subtyping. DERA substitution mechanisms are based on the stud-
ies on the substitutability of data types, objects, and components, especially the well-
known Liskov substitution principle [17]. DERA extends these concepts to the domain
of event-driven architectures and actors in behavior models. The implementation of

6 http://www.omg.org/spec/BPMN/2.0/PDF
7 http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

http://www.omg.org/spec/BPMN/2.0/PDF
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

180 H. Tran and U. Zdun

DERA, in particular, the event channels, can be realized using asynchronous commu-
nication styles. Therefore, our future plan is to investigate and realize event channels
using existing distributed publish-subscribe frameworks such as PADRES [11].

The concept of actor proposed in DERA is different from the actor models originally
proposed in Agha’s dissertation and follow-on studies [1]. The actors in the actor mod-
els are more complex as they encapsulate data, method, and interfaces. Moreover, in
contrast to DERA systems in which event actors are totally unaware of each other, the
actor models require that an actor must know the references, namely, mail address, of
other actors to communicate with them by exchanging messages. This constraint clearly
imposes tight dependencies among actors.

6 Conclusion

In this paper we present dynamic event actors (DERA) as a novel approach that exploits
EDA to enable the flexibility of integration architectures and support various kinds of
runtime evolution and adaptation. In particular, DERA introduces the concept of event
actors with formally specified event interfaces for representing constituting elements
(e.g., components, adapters, proxies). The communications and dependencies between
actors are neither embedded in the actors nor prescribed in rigid dependency structures
as in existing approaches. In contrast, the event-based communication style is exploited
for loosening these dependencies among actors. In addition, event substitution mecha-
nisms are proposed to enable the ability of altering DERA applications at runtime by
making changes of event actor interfaces and substituting event actors. The main focus
of our paper is to introduce DERA concepts and elements grounding on a sound for-
malization along with a prototypical implementation. The applicability of DERA has
been shown through an industrial case study. The evaluation of DERA systems shows
linear scalability with moderate performance overhead compared to an equivalent pure
Java reference implementation.

A future work plan is to utilize existing formal reasoning methods for concurrent
and distributed systems for supporting the verification of DERA system properties such
as reachability, boundedness, and liveness, at important stages of development, e.g.,
before deploying and/or substituting actors. In addition, existing approaches for estab-
lishing reliable communication channels shall be exploited and extended in the context
of DERA.

Acknowledgment. This work was partially supported by the European Union FP7
project INDENICA (http://www.indenica.eu), Grant No. 257483.

References

1. Agha, G.A.: ACTORS: A Model of Concurrent Computation in Distributed Systems. PhD
thesis (1985)

2. Alamri, A., Eid, M., Saddik, A.E.: Classification of the state-of-the-art dynamic web services
composition techniques. Int. J. Web Grid Serv. 2(2), 148–166 (2006)

3. Arbab, F., Talcott, C.L. (eds.): COORDINATION 2002. LNCS, vol. 2315. Springer,
Heidelberg (2002)

http://www.indenica.eu

Event-Driven Actors for Supporting Flexibility and Scalability 181

4. Atluri, V., Chun, S.A., Mukkamala, R., Mazzoleni, P.: A decentralized execution model for
inter-organizational workflows. Distrib. and Parallel Databases 22(1), 55–83 (2007)

5. Basten, T., van der Aalst, W.M.P.: Inheritance of behavior. Journal of Logic and Algebraic
Programming 47(2), 47–145 (2001)

6. Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., Shan, M.-C.: Adaptive and Dynamic Ser-
vice Composition in eFlow. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS,
vol. 1789, pp. 13–31. Springer, Heidelberg (2000)

7. Chakraborty, D., Joshi, A.: Dynamic service composition: State-of-the-art and research di-
rections. Tech. Rep. TR-CS-01-19, Department of Computer Science and Electrical Engi-
neering, University of Maryland, USA (2001)

8. Charfi, A., Mezini, M.: AO4BPEL: An aspect-oriented extension to BPEL. World Wide
Web 10(3), 309–344 (2007)

9. Cibrán, M.A., Verheecke, B., Vanderperren, W., Suvée, D., Jonckers, V.: Aspect-oriented
programming for dynamic web service selection, integration and management. World Wide
Web 10(3), 211–242 (2007)

10. D’Mello, D.A., Ananthanarayana, V.S., Salian, S.: A Review of Dynamic Web Service Com-
position Techniques. In: Meghanathan, N., Kaushik, B.K., Nagamalai, D. (eds.) CCSIT 2011,
Part III. CCIS, vol. 133, pp. 85–97. Springer, Heidelberg (2011)

11. Fidler, E., Jacobsen, H.A., Li, G., Mankovski, S.: The PADRES distributed publish/sub-
scribe system. In: Feature Interactions in Telecommunications and Software Systems VIII,
ICFI 2005, pp. 12–30 (2005)

12. Ganesan, S., Yoon, Y., Jacobsen, H.A.: NIñOS take five: the management infrastructure for
distributed event-driven workflows. In: 5th ACM Int’l Conf. on Distributed Event-based Sys-
tem (DEBS), pp. 195–206. ACM (2011)

13. Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process models: the
provop approach. J. Softw. Maint. Evol. 22, 519–546 (2010)

14. Hens, P., Snoeck, M., Backer, M.D., Poels, G.: Transforming Standard Process Models to
Decentralized Autonomous Entities. In: 5th SIKS/BENAIS Conf. on Enterprise Information
Systems, pp. 97–106. CEUR WS.org, Aachen (2010)

15. Hentrich, C., Zdun, U.: Process-Driven SOA: Patterns for Aligning Business and IT. Infosys
Press (2012)

16. Hoare, C.A.R.: Communicating Sequential Processes. Prentice Hall (April 1985)
17. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Transactions on Program-

ming Languages and Systems 16(6), 1811–1841 (1994)
18. Luckham, D.C.: The Power of Events: An Introduction to Complex Event Processing in

Distributed Enterprise Systems. Addison-Wesley, Boston (2001)
19. Milner, R.: Communicating and Mobile Systems: the Pi-Calculus, 1st edn. Cambridge Uni-

versity Press (June 1999)
20. Mühl, G., Fiege, L., Pietzuch, P.: Distributed Event-Based Systems, 1st edn. Springer (2006)
21. Murata, T.: Petri Nets: Properties, Analysis and Applications. Proceedings of the IEEE 77(4),

541–580 (1989)
22. Pierce, B.C.: Types and Programming Languages. The MIT Press (February 2002)
23. Redding, G., Dumas, M., ter Hofstede, A.H.M., Iordachescu, A.: Modelling flexible pro-

cesses with business objects. In: IEEE Conf. Commerce and Enterprise Computing (CEC),
pp. 41–48 (2009)

24. Reichert, M., Dadam, P.: Enabling adaptive process-aware information systems with
ADEPT2. In: Handbook of Research on Business Process Modeling, pp. 173–203. Infor-
mation Science Reference (2009)

25. Tombros, D., Geppert, A.: Building Extensible Workflow Systems Using an Event-Based
Infrastructure. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789,
pp. 325–339. Springer, Heidelberg (2000)

A Conditional Lexicographic Approach

for the Elicitation of QoS Preferences

Raluca Iordache and Florica Moldoveanu

University ”POLITEHNICA” of Bucharest, Romania
riordache@hotmail.com, fm@cs.pub.ro

Abstract. In a service-oriented environment, clients can usually choose
between several web services offering the same functionality. The web
service selection can be automated by allowing clients to specify non-
functional requirements such as quality of service. Clients should also be
able to indicate how to make tradeoffs when some of these requirements
cannot be met. The ability to capture tradeoff preferences is critical for
selecting the best fitting web service. In this paper, we propose a method
of expressing non-functional preferences, which requires minimal effort on
the part of the clients, but offers great flexibility in managing tradeoffs.
This method leads to a simple algorithm for selecting web services, which
does not require sophisticated multicriteria decision techniques.

Keywords: QoS preferences, multicriteria decision making, service se-
lection.

1 Introduction

The emergence of services brought the world of computing in front of a new level
of abstraction that is closer to the way humans naturally think and interact with
their surroundings [1]. In real life, people make use of particular services, after
selecting from the available alternatives the ones suiting best their requirements.
In service-oriented environments, the existence of numerous web services offering
the same functionality needed for a given task leaves the application designer
with several candidates to choose from. At this point, analyzing the quality of the
alternatives starts playing a fundamental role in the service selection. The non-
functional characteristics of a web service, such as availability, cost, response
time, or the supported security protocols define the Quality of Service (QoS)
concept.

Although considerable research has been done in the recent years, there is
currently no widely accepted approach for the QoS-aware selection of web ser-
vices. This is mainly due to the various issues that have to be addressed in
order to provide a complete solution. These issues include the design of suit-
able frameworks and architectures [2][3], which should provide ontologies for the
formal specification of QoS metrics [4][5], methods of obtaining current metric
values [6] and algorithms that select the best web service based on user-specified
QoS criteria [7].

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 182–193, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Conditional Lexicographic Approach for the Elicitation of QoS Preferences 183

The ability of clients to express their QoS expectations plays a crucial role in
the selection of the most suitable web service. While hard constraints are rela-
tively easy to formulate, there is no standard way to deal with soft constraints
that should reflect client’s preferences in situations where no web service is capa-
ble of satisfying all QoS requirements. Most approaches are based on specifying
priorities or associating weights to the different QoS dimensions. The drawback
of these methods is that they cannot accurately capture user’s preferences. On
the other hand, more elaborate ways of specifying QoS preferences usually re-
quire considerable effort on the part of the clients. This complexity brings the
risk that users don’t understand the method or they are not willing to spend so
much time expressing their preferences.

In this paper, we propose a conditional lexicographic method of articulating
non-functional preferences, which offers great flexibility, while being easy to use
and understand. It is based on the way people reason about their preferences,
thus fostering its acceptance by users. This method leads to a simple algorithm
for selecting web services, which does not require sophisticated multi-criteria
decision techniques.

The rest of this paper is organized as follows: Section 2 presents the addressed
problem of expressing the user’s preferences. Section 3 outlines the related work
of service selection based on multicriteria techniques. Section 4 introduces our
conditional lexicographic approach illustrated by a case study of a data visual-
isation service. The last section concludes the paper and outlines future work
directions.

2 The Problem of Expressing Preferences

Preference models can be found in various areas like psychology, mathematics,
philosophical literature, in economics and game theory, in operations research
and decision analysis and in various disciplines of computer science. The choices
that we make are guided by our preferences. Understanding preference handling
is relevant when attempting to build systems that make choices on behalf of
users [8].

Of particular interest for the domain of QoS-aware service selection are the
fields of multicriteria decision analysis and in particular of multiobjective opti-
mization or Pareto optimization. Multiobjective optimization problems can also
be found in various areas where optimal decisions involve tradeoffs between mul-
tiple (possibly conflicting) objectives. A Pareto optimal solution is a solution for
which it is impossible to improve one objective without worsening another one.
Multiobjective optimization uses a priori or a posteriori approaches, depending
on the moment when the decision maker’s preferences are articulated.

The best known and simplest method for preference articulation is the weighted
sum method. The method uses weight values supplied by the user to describe the
importance of the objectives. One drawback of this method is that the weights
must both compensate for differences in objective function magnitudes and pro-
vide a value corresponding to the relative importance of an objective. Another

184 R. Iordache and F. Moldoveanu

drawback is that it is not able to find certain solutions in the case of a non-
convex Pareto curve. The authors of [9] conclude that the weighted sum method
”is fundamentally incapable of incorporating complex preference information”.

Lexicographic preferences is another simple method used for modeling rational
decision behavior. Preferences are defined by a lexical ordering, which leads to
a strict ranking. While being very easy to use, lexicographic preferences have
the major drawback of being non-compensatory. An extension of this method is
lexicographic semiorder, where a tradeoff is addressed in situations where there
is a significant improvement in one objective that can compensate an arbitrarily
small loss in the most important objective. An alternative x is considered better
than an alternative y if the first criterion that distinguishes between x and y ranks
x higher than y by an amount exceeding a fixed threshold [11]. The advantage of
this method is that it ensures that a solution that is slightly better on the most
important objective but a lot worse on the other objectives will not be selected.

3 Existing Methods and Approaches

Most work on QoS-aware service selection uses successive evaluation of differ-
ent, non functional aspects in order to attribute a general ”level of quality” to
a service [3]. Usually the selection of the service offering the best functionality
is based on either a single evaluation criterion or on a weighted sum of sev-
eral quantitative evaluation criteria. These approaches have in practice major
disadvantages because in most of the cases a single criterion is not enough for
defining the user’s QoS requirements and the weighted sum of the criteria lead
to compensation problems and so to inadequate results. Many QoS attributes
are qualitative parameters and cannot be used on a weighted sum evaluation.
By using quantification and assigning values to the qualitative data, these pa-
rameters can be transformed in quantitative parameters. This is done usually
by defining a measurement scale and then associating to each level of the scale
a numerical value. For example the scale can be defined as 1-5, with 1 being
very high and 5 being very low and these numbers are associated to the different
qualitative attributes, by their relevance.

In practice such a quantification approach doesn’t show good results in the
QoS-aware service selection, and the challenge of obtaining good results lies
in managing tradeoffs among QoS expectations in situations in which service
requesters specify quality levels that cannot be simultaneously met.

This key problem of managing tradeoffs of the QoS preferences is addressed
by [12]. The authors propose a QoS model for describing the QoS dimensions
(requirements and preferences) of the service requester and the service provider.
They are using fuzzy multicriteria decision analysis (MCDA) for comparing the
models and ranking the competing services according to the values of their char-
acteristics. The model describing the QoS properties is based on OMG’s UML
QoS Framework metamodel. MCDA methods allow the defining of weights re-
lated to criteria and also weights to interactions between criteria.

A Conditional Lexicographic Approach for the Elicitation of QoS Preferences 185

The authors of [13] propose an extension of the Web Service architecture
by adding to the UDDI registry a new component called Multicriteria Evalua-
tion Component (MEC) used for the multicriteria evaluation. This evaluation is
based on a Web version of IRIS (Interactive Robustness Analysis and Param-
eters Inference for multicriteria Sorting Problems), which uses the ELECTRE
TRI method.

Dealing with preferences, their priorities and possible tradeoffs between them
has been addressed by [11] using a model of lexicographic semiorder. The work
is addressing decision making based on lexicographic heuristics and ranking in
order to compare a pair of alternatives.

4 The Conditional Lexicographic Approach

As mentioned before, QoS expectations can take the form of hard and soft con-
straints. While all hard constraints must be satisfied in order for a web service
to be selected, soft constraints represent rather desirable characteristics of the
chosen service. If no web service meets all soft constraints, users should have the
possibility to express their tradeoff preferences, in order to allow the dynamic
selection of services.

Our approach to articulate the QoS preferences is based on the observation
that, when trying to find a set of rules allowing them to choose between several
alternatives, people start by ranking their preferences, in accordance with their
perceived importance. This action is equivalent to imposing a lexicographic order
on the different criteria that have to be considered. In most situations, using such
a strict hierarchy is not sufficient to capture people’s real preferences. In this case,
people usually introduce additional rules that change the criteria priorities when
some specific condition is met.

We propose a method to establish a total order on the set of existing web
service alternatives, by attaching conditions to lexicographic preferences and we
introduce a preference specification language that can be used for authoring QoS
preferences.

We illustrate our approach and the use of its associated specification language
by considering a hypothetical company that offers data visualization services.
One of these services is the generation of charts based on data sets. Instead of per-
forming itself such tasks, the company delegates them to other business partners,
which offer web services for chart generation. A service selection broker chooses
the most suitable web service, based on QoS requirements formulated by clients.
The chart generation web services are characterized by domain-independent QoS
attributes (e.g., availability, response time) and domain-specific ones (e.g., chart
type, cost per chart, number of colors, image resolution).

As client of the hypothetical company we consider a data acquisition system,
which regularly sends charts depicting the state of an industrial process to a
1280 x 720 monitor capable of displaying 65536 colors. The image displayed on
the monitor can be updated only at fixed intervals of 5 seconds. If a new chart is
not available at the end of a 5 seconds interval, the monitor update is postponed
until the next end of a 5 seconds interval.

186 R. Iordache and F. Moldoveanu

Our preference specification language allows specifying both constraints and
preferences. Constraints are declared as a list of comma separated boolean con-
ditions that must be satisfied by the service. They are enclosed in a constraints
block, as shown in Fig. 1.

constraints {
chartType = ”time series”,
cost < 10,
availability > 0.95,
imageResolution = ”1280x720”,
responseTime < 10

}

Fig. 1. Hard constraints specification

The order of constraint conditions is irrelevant, but order plays a key role in
the articulation of QoS preferences. For the beginning, we consider that the client
provides a strict ranking of preferences. This is expressed in our specification
language by using a preferences block that includes the comma separated list of
relevant QoS attributes in the order of their importance, as shown in Fig. 2.

preferences {
cost,
availability : high,
responseTime,
colors : high

}

Fig. 2. A simplistic specification of preferences

For each QoS attribute the client should indicate the direction associated
with better values. This piece of information appears after the attribute name,
separated by a colon. Possible values for direction are low and high, where low
is the default direction and can be omitted.

In the example above, cost is the most important QoS attribute, and services
with a lower cost are considered better. However, this specification of preferences
does not accurately capture client’s preferences. A first problem is that selecting a
web service with a response time greater than 5 seconds would result in skipping
an update of the monitor. This is a serious issue, and such a scenario should be
prevented even if this leads to a higher cost. The responseTime attribute should
be ranked higher only when exactly one of the two web services compared has a
value higher than 5 seconds for this attribute. If, for example, both web services
considered are able to provide the chart in less than 5 seconds, the problem of
missing an update does no longer exist and responseTime does not need a higher
ranking. Conversely, if both web services compared have a responseTime higher

A Conditional Lexicographic Approach for the Elicitation of QoS Preferences 187

than 5 seconds, an update of the monitor will be inevitably skipped, and the
actual value of this attribute is no longer of critical importance.

Another problem arises when at least one of the web services compared pro-
vides a number of colors less than 65536. Since this will lead to a loss of quality,
the client may want to increase in such situations the importance of the colors
attribute. If both web services provide a number of colors higher than 65536,
the colors attribute becomes irrelevant, because the difference in quality cannot
be detected on the available monitor.

Finally, a small difference in the values of the cost attribute should be ignored
if the selection of the slightly more expensive web service leads to a better color
quality.

In order to be able to articulate preferences for scenarios like the one above,
our specification language provides four unary preference operators, which are
shown in Table 1.

Table 1. Preference operators

Preference operator Meaning

AT LEAST ONE∗(condition) condition(service1) OR condition(service2)
EXACTLY ONE(condition) condition(service1) XOR condition(service2)
ALL(condition) condition(service1) AND condition(service2)
DIFF(attribute) |service1.attribute− service2.attribute|
∗default operator (can be omitted)

The first three operators take as argument a boolean formula, which usually
involves one or more QoS attributes. The formula is evaluated twice, once for
each of the web services to be compared. The two resulting boolean values are
passed as arguments to the boolean operator (OR, XOR, or AND) associated
with the given preference operator, in order to obtain the return value.

The preference operator DIFF takes as argument a QoS attribute and returns
the modulus of the difference of its corresponding values from the two web ser-
vices compared. Our specification language also allows the definition of virtual
QoS attributes, which will be treated as genuine QoS attributes by the prefer-
ence operators. This can be done by means of the def directive, as seen in the
example below:

def colorDepth = log2(colors)

In the remainder of this paper, we use the term preference rule to denote an
entry in the preferences block. As already seen, a preference rule has three com-
ponents: an optional condition, an attribute indicating the QoS dimension used
in comparisons and a direction flag stating which values should be considered
better. In our specification language, the preferences corresponding to the above
described scenario can be articulated as shown in Fig. 3:

188 R. Iordache and F. Moldoveanu

preferences {
[EXACTLY ONE(responseTime > 5)] responseTime,
[DIFF(cost) > 2] cost,
[colors < 65536] colors : high,
availability : high,
responseTime,
colors : high

}

Fig. 3. A more elaborate specification of preferences

The condition part of the third preference rule in the above preferences block
(i.e., [colors < 65536]) does not explicitly specify a preference operator, which
means it uses the default operator AT LEAST ONE.

The specification language can deal with situations where people are not fully
aware of their preferences. When users notice that the current rules do not
accurately capture their preferences, they can simply add a new conditional
rule, thus incrementally improving the preference specification.

In what follows, we use the notation s1 � s2 to indicate that the web service
s1 is preferred to the web service s2, and the notation s1 ∼ s2 to indicate that the
service s1 is indifferent to the web service s2 (i.e., s1 and s2 are equally preferred).
Additionally, we introduce the notation s1 � s2

k
to indicate that the web service

s1 is preferred to the web service s2 and that the preference rule k has been
decisive in establishing this relationship. We also introduce the complementary
operators ≺ and ≺

k
, defined by the following relations:

s1 ≺ s2, iff s2 � s1

s1 ≺ s2
k

, iff s2 � s1
k

An algorithm for comparing two web services based on the preferences expressed
using our conditional lexicographic approach is shown in Fig. 4.

The algorithm examines all entries in the preferences block in the order in
which they appear (line 2). If the current preference rule has no attached condi-
tion or the attached condition evaluates to true (line 6), the values corresponding
to the attribute specified by this entry are compared (line 7). The compare func-
tion returns a numerical value that is positive if the first argument is better,
negative if the second argument is better and 0 if the arguments are equal (see
pseudocode in Fig. 5). If the attribute values are not equal (line 8), the algorithm
returns a tuple containing the result of the current comparison and the index
of the preference rule that has been decisive in establishing the preference rela-
tionship (line 9). Otherwise, the algorithm continues its execution with the next
preference rule. A null return value (line 13) indicates an indifference relation
between the two web services, while a not-null tuple identifies a relation of type
≺
k
or �

k
between them.

A Conditional Lexicographic Approach for the Elicitation of QoS Preferences 189

1. function compareServices(service1, service2, preferences)
2. for i ← 1 .. length(preferences) do
3. cond ← preferences[i].condition
4. attr ← preferences[i].attribute
5. dir ← preferences[i].direction
6. if cond = null OR cond(service1, service2) = true then
7. result ← compare(service1.attr, service2.attr, dir)
8. if result �= 0 then
9. return {result, i}

10. end if
11. end if
12. end for
13. return null
14. end function

Fig. 4. Pairwise comparison of two web services

function compare(attr1, attr2, dir)
if attr1 = attr2 then

result ← 0
else if attr1 <attr2 then

result ← 1
else

result ← -1
end if
if dir = high then

result ← -result
end if
return result

end function

Fig. 5. Pairwise comparison of QoS attribute values

In a series of experiments, Tversky [10] has shown that people have sometimes
intransitive preferences. Therefore, being able to capture such preferences is
an important feature of our specification language. However, a consequence of
allowing intransitive preferences is that the pairwise comparison of all web service
alternatives is in general not sufficient to impose a total order on these services.
In order to illustrate this, we use a simplified version of the preferences specified
in Fig. 3. As shown in Fig. 6, the simplified version does no longer involve the QoS
attribute availability. Therefore, this attribute is no longer relevant for the web
service ranking. Although the simplified specification used for exemplification
is unrealistic, it is easier to analyze and it helps us highlight the intransitivity
issues. (The preference rule indexes appearing at the left side of the figure are
only informative and are not part of the preference specification.)

We consider a set of 5 web service alternatives (WS1 through WS5) with the
relevant QoS attribute values specified in Table 2.

190 R. Iordache and F. Moldoveanu

preferences {
1. [EXACTLY ONE(responseTime > 5)] responseTime,
2. [DIFF(cost) > 2] cost,
3. [colors < 65536] colors : high,
4. responseTime

}

Fig. 6. A simplified specification of preferences used for exemplification

Table 2. Relevant QoS attribute values

WS1 WS2 WS3 WS4 WS5

responseTime 7.0 7.0 5.5 4.5 7.5
cost 4.0 5.0 6.5 8.0 7.5
colors 256 256 256 65536 65536

The relations identified by the pairwise comparison of the 5 web services
considered in our example are depicted in Table 3, where header notations use
the format i / j to indicate that the corresponding symbol in the line below
represents the preference relation between the web services WSi and WSj .

Table 3. Pairwise comparison of the 5 web services

1/2 1/3 1/4 1/5 2/3 2/4 2/5 3/4 3/5 4/5

∼ �
2

≺
1

�
2

≺
4

≺
1

�
2

≺
1

≺
3

�
1

Several cases of intransitivity of preferences can be observed in the above ta-
ble. A first example is given by the following relations:

WS1 �WS3 �WS2

WS1 ∼WS2

Although WS1 is indifferent to WS2, WS1 is preferred to WS3, while WS2 is
not preferred to WS3.

Another example is the rock-paper-scissors relationship induced by:

WS2 ≺WS3 ≺WS5

WS5 ≺WS2

In order to obtain a total order on the set of web service alternatives, we attach
to each web service i a score vector of integer values: Vi ∈ Nr+1, where r is the
number of preference rules. The algorithm used to compute the score vectors is
presented in Fig. 7, where n denotes the number of web service alternatives.

A Conditional Lexicographic Approach for the Elicitation of QoS Preferences 191

procedure createScoreVectors()
for i ← 1 .. n do

for k ← 1 .. r do
V k
i ← number of times service WSi is preferred to another

web service due to decisive rule k (i.e., due to a �
k

relation).

end for
V r+1
i ← number of times service WSi is indifferent to another web service.

end for
end procedure

Fig. 7. Procedure to create the score vectors

For the 5 web service alternatives considered in our example, the correspond-
ing score vectors computed with the above algorithm are presented in Fig. 8.

Fig. 8. Score vectors of the 5 web service alternatives

Using the score vectors, we are able to provide an algorithm for the ranking of
web service alternatives. This algorithm is based on the function compareScores,
described in pseudocode in Fig. 9. Again, r is used to denote the number of
preference rules. The function takes as arguments two score vectors and returns
a numerical value that is positive if the web service corresponding to the first
score vector is preferred, negative if the web service corresponding to the second
score vector is preferred and 0 if the corresponding web services are indifferent
to each other.

For each of the two corresponding web services, the function computes the
number of times it has been preferred to other web services (lines 2, 3). This
computation does not take into account the number of times a web service has
been found to be indifferent to another one (hence the sum is taken up to the
value r, not r + 1).

If the previously computed values count1 and count2 are not equal (line 4),
the web service with the higher value is chosen as the better one (line 5).

Otherwise, the algorithm scans each position in the score vectors (line 7) and
if it finds different values, the web service corresponding to the higher value is
chosen as the better one (lines 8-10). The scanning of the values in the vector
scores starts with the position corresponding to the first preference rule, be-
cause this is considered the most important one, and it ends with the position

192 R. Iordache and F. Moldoveanu

1. function compareScores(V1, V2)
2. count1 ←

∑r
i=1 V

i
1

3. count2 ←
∑r

i=1 V
i
2

4. if count1 �= count2 then
5. return count1 − count2
6. end if
7. for i ← 1 .. r + 1 do
8. if V i

1 �= V i
2 then

9. return V i
1 − V i

2

10. end if
11. end for
12. return 0
13. end function

Fig. 9. Function for score vector comparison

corresponding to the number of indifference relations (i.e., r+1), because this is
considered the least important one. If the score vectors are identical, the function
returns 0 (line 12).

In contrast with the function compareServices presented in Fig. 4, the function
compareScores induces a total order on the set of web service alternatives, thus
allowing us to rank them accordingly. Using this algorithm, the 5 web service
alternatives considered in our example will be ranked in the following order:

(WS4, WS1, WS2, WS5, WS3),

with WS4 being the best alternative.

5 Conclusions and Future Work

In this paper we have introduced a new approach of ranking service alternatives
based on the users QoS expectations. The users can define their requirements
and preferences by using a simple and intuitive specification language that at-
taches conditions to lexicographic rules. Our approach facilitates the elicitation
of preferences from clients, because it resembles the way people express trade-
offs when reasoning about their preferences. The proposed method can deal with
intransitive preferences and with situations where people are not fully aware of
their preferences.

Our current efforts are directed toward designing and implementing a
framework for dynamic web service selection that supports the handling of QoS
preferences based on the approach presented in this paper. A prototype implemen-
tation of the ranking engine is available at http://qospref.sourceforge.net/
and we plan to also offer open source implementations for the other components
of our framework.

http://qospref.sourceforge.net/

A Conditional Lexicographic Approach for the Elicitation of QoS Preferences 193

References

1. Medjahed, B., Bouguettaya, A.: Service Composition for the Semantic Web.
Springer (2011)

2. Maximilien, E.M., Singh, M.P.: A Framework and Ontology for Dynamic Web
Services Selection. IEEE Internet Computing 8(5), 84–93 (2004)

3. Zeng, L., Benatallah, B.: QoS-Aware Middleware for Web Services Composition.
IEEE Transactions on Software Engineering 30(5), 311–327 (2004)

4. Zhou, C., Chia, L.T., Lee, B.S.: DAML-QoS Ontology for Web Services. In: Inter-
national Conference on Web Services, pp. 472–479 (2004)

5. Papaioannou, I.V., Tsesmetzis, D.T., Roussaki, I.G., Anagnostou, M.E.: A QoS
Ontology Language for Web-Services. Advanced Information Networking and Ap-
plications, 101–106 (2006)

6. Zeng, L., Lei, H., Chang, H.: Monitoring the QoS for Web Services. In: Krämer,
B.J., Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 132–144.
Springer, Heidelberg (2007)

7. Day, J., Deters, R.: Selecting the best web service. In: Conference of the Centre for
Advanced Studies on Collaborative Research, pp. 293–307 (2004)

8. Brafman, R.I., Domshlak, C.: Preference Handling — An Introductory Tutorial.
AI Magazine, 58–86 (2009)

9. Marler, R.T., Arora, J.S.: The weighted sum method for multi-objective optimiza-
tion: new insights. Structural and Multidisciplinary Optimization 41(6), 853–862
(2010)

10. Tversky, A.: Intransitivity of Preferences. Psychological Review 76(1), 31–48 (1969)
11. Manzini, P., Mariotti, M.: Choice by lexicographic semiorders. Theoretical Eco-

nomics 7(1) (2010)
12. Herssens, C., Jureta, I.J., Faulkner, S.: Capturing and Using QoS Relationships

to Improve Service Selection. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008.
LNCS, vol. 5074, pp. 312–327. Springer, Heidelberg (2008)

13. Chakhar, S., Haddad, S., Mokdad, L., Mousseau, V.: Multicriteria Evaluation-
Based Conceptual Framework for Composite Web Service Selection. Evaluation
and Decision Models: Real Case Studies. Springer, Berlin (2011)

Goal-Based Composition

of Stateful Services for Smart Homes

Giuseppe De Giacomo1, Claudio Di Ciccio1, Paolo Felli1,
Yuxiao Hu2, and Massimo Mecella1

1 Sapienza – Università di Roma, Italy
{degiacomo,cdc,felli,mecella}@dis.uniroma1.it

2 Google Waterloo, Canada
yuxiao@google.com

Abstract. The emerging trend in process management and in service
oriented applications is to enable the composition of new distributed
processes on the basis of user requests, through (parts of) available (and
often embedded in the environment) services to be composed and or-
chestrated in order to satisfy such requests. Here, we consider a user
process as specified in terms of repeated goals that the user may choose
to get fulfilled, organized in a kind of routine. Available services are
suitably composed and orchestrated in order to realize such a process.
In particular we focus on smart homes, in which available services are
those ones offered by sensor and actuator devices deployed in the home,
and the target user process is directly and continuously controlled by
the inhabitants, through actual goal choices. We provide a solver that
synthesizes the orchestrator for the requested process and we show its
practical applicability in a real smart home use case.

Keywords: process/service composition, smart houses/buildings, plan-
ning techniques.

1 Introduction

The promise of Web services (WSs) and of Service Oriented Architectures
(SOAs) in general, coupled with the technologies and methodologies of Business
Process Management (BPM), is to enable the composition of new distributed
processes/solutions: (parts of) available services can be composed and orches-
trated in order to realize complex processes, offering advanced functionalities to
users.

Many approaches (surveyed, e.g., in [3]) have been proposed in the last years
in order to address the above problem from different viewpoints. Works based
on Planning in AI, such as [16,24,5,26] consider only the input/output specifi-
cation of available services, which is captured by atomic actions together with
their pre- and post-conditions (a notable extension is [2]), and specify the over-
all semantics in terms of propositions/formulas (facts known to be true) and
actions, affecting the proposition values. All these approaches consider stateless

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 194–211, 2012.
� Springer-Verlag Berlin Heidelberg 2012

Goal-Based Composition of Stateful Services for Smart Homes 195

services, as the operations offered to clients do not depend on the past history,
as services do not retain any information about past interactions. Also other
works (e.g., [25,17,8,6]) consider available services as atomic actions, but, rather
than on (planning-based) composition, they focus on modeling issues and au-
tomatic service discovery, by resorting to rich ontologies as a basic description
mean. Many works (e.g., [15,22,1,18] consider how to perform composition by
taking into account Quality-of-Service (QoS) of the composite and component
services. Some works consider non classical techniques (e.g., [23] adopts learning
approaches) for solving the composition problem.

There are also approaches (e.g., [12]) that consider stateful services, which
impose constraints on the possible sequences of interactions (a.k.a., conversa-
tions) that a client can engage with the service. Stateful services raise additional
challenges, as the process coordinating such services should be correct w.r.t. the
possible conversations allowed by the services themselves. An interesting ap-
proach of this type is the one of [19], in which the specification is a set of atomic
actions and propositions, like in planning, services are (finite-state) transition
systems whose transitions correspond to action executions, which, in general, af-
fect the truth values of propositions, and the client requests a (main) goal (i.e., a
formula built from the above propositions) to be achieved, while requiring run-
time failures to be properly handled by achieving a special exception handling
goal. Another interesting approach is the one adopted in [4], often referred to as
Roman Model, in which again services are abstracted as transition systems and
the objective is to obtain a composite service that preserves a desired interaction,
expressed as a (virtual) target service.

In this paper, we consider a notable extension of the Roman Model, where
goal-based processes are used, instead of target services, to specify what the user
desires to achieve. Such processes can be thought of as routines built from virtual
tasks expressed declaratively simply as goals, which allow users to specify the
desired state of affair to bring about. Such goals are organized in a control flow
structure, possibly involving loops that regulates their sequencing, as well as the
decision points where the user can choose the next goal to request.

Wrt [19], the main novelty proposed in this paper is allowing clients to request
new goals, once the current one is achieved (by a plan). In general, such requests
can be arranged as routines represented as finite-state transition systems whose
transitions correspond to goal requests. These routines typically involve loops,
thus ruling out näıve approaches based on (classical, conditional or conformant)
planning. Indeed, not all plans that achieve a requested goal are successful: some
might lead the system to states preventing future client requests fulfillment.
Such bad plans could be recognized by taking into account all goals the client
can request in the future, which, in the presence of loops, span over an infinite
horizon (though finite-state).

The approach proposed here is strongly motivated by challenging applications
in the domain of smart houses and buildings, i.e., buildings pervasively equipped
with sensors and actuators making their functionalities available according to
the service-oriented paradigm. In order to be dynamically configurable and

196 G. De Giacomo et al.

composable, embedded services need to expose semantically rich service de-
scriptions, comprising (i) interface specifications and (ii) specifications of the
externally visible behaviors. Moreover, human actors in the environment can be
abstracted as services, and actually “wrapped” by a semantic description (e.g., a
nurse offering medical services). This allows them to be involved in orchestrations
and to collaborate with devices, to reach certain goals. See, e.g., [14,11,7].

We envision a user that can express processes she would like to have realized
in the house, in the form of routines consisting of goals (e.g., states of the house
she would like to have realized); an engine automatically synthesizes the right
orchestration of services able to satisfy the goals. Users can interact with the
house through different kinds of interfaces, either centralized (e.g., in a home
control station) or distributed, and embedded in specific interface devices. Brain
Computer Interfaces (BCIs) allow also people with disabilities to interact with
the system. Using such interfaces, users issue specific goals to the system, which
is, in turn, expected to react and satisfy the request.

In this paper, we detail this approach. We provide a framework for composi-
tion of goal-oriented processes form available (non-atomic) services (Section 2).
We present a case study where the framework is applied in a real smart home
setting (Section 3). We provide a effective solver (Section 4), which synthesize
an orchestrator that realizes the target goal-oriented processes, by detailing sub-
processes that fulfil the various goals at the various point in time. Our solver
is sound and complete, and far more practical than other solutions proposed
in literature, also because it easily allows for exploiting heuristic in the search
for the solution. We show the effectiveness of our solver with some experiments
in our use case (Section 5). We conclude the paper with a brief discussion on
further work (Section 6).

2 Framework

We assume that the user acts on an environment that is formalized as a possibly
nondeterministic dynamic domain D, which provides a symbolic abstraction of
the world that the user acts in. Formally, a dynamic domain is a tuple D =
〈P,A,D0, ρ〉, where:

– P = {p1, . . . , pn} is a finite set of domain propositions. D ∈ 2P is a state;
– A = {a1, . . . , ar} is the finite set of domain actions ;
– D0 ∈ 2P is the initial state;
– ρ ⊆ 2P × A × 2P is the transition relation. We freely interchange notations
〈D, a,D′〉 ∈ ρ and D

a−→ D′ in D.

Intuitively, a dynamic domain models an environment whose states are described
by the set P of boolean propositions, holding all relevant information about the
current situation. For instance, the state of a room can be defined by the light
being on or off and the door being open or closed, using two propositions light on
and door open. By convention, we say that if one of such propositions is in the
current state of D, then it evaluates to � (true), otherwise it is ⊥ (false). Hence,

Goal-Based Composition of Stateful Services for Smart Homes 197

a propositional formula ϕ over P holds in a domain state D ∈ 2P (D |= ϕ) if
ϕ evaluates to � when all of its propositions occurring in D are replaced by �.
However, such domain can not be manipulated directly, i.e., domain actions can
not be accessed directly by the user: they are provided through available services.
The idea is that, at each moment, a service offers a set of possible actions, and
the user can interact with the domain D only by means of available services.

Given a dynamic domain D, a service over D is a tuple B = 〈B,O, b0, �〉,
where: (i) B is the finite set of service states; (ii) O is the finite set of service
actions over the domain, i.e., O ∩ A �= ∅; (iii) b0 ∈ B is the service initial
state; (iv) � ⊆ B ×O ×B is the service transition relation. We will interchange

notations 〈b, a, b′〉 ∈ � and b
a−→ b′ in B.

As a service is instructed to perform an action over D, both the service and
the domain evolve synchronously (and possibly nondeterministically) according
to their respective transition relations. So, for a domain action to be carried
out, it needs to be both compatible with the domain and (currently) available
in some service. However, services can also feature local actions, i.e., actions
whose execution does not affect the domain evolution. For instance, a service
representing a physical device might require to be switched on to use all its
functionalities, a fact that is not captured by D alone. To define formally this
idea, we introduce the notiton of executability for actions of a service B =
〈B,O, b0, �〉: given B in its own service state b and a domain D in domain state
D, action a ∈ O is said to be executable by B in b iff (i) it is available in b, i.e.

b
a−→ b′ in B for some state b′ ∈ B and (ii) it is either a local action (a �∈ O∩A)

or it is allowed in D, i.e., there exists a domain state D′ such that D
a−→ D′.

Notice that services are loosely-coupled with the domain they are interacting
with: new services can be easily added to the systems and modifications to the
description of the underlying domain do not affect them.

Example 1. Consider a dynamic domain D = 〈P,A,D0, ρ〉 describing (among
othet components) a simple door as in Figure 2a. A domain proposition
doorIsOpen ∈ P is used to keep its state, and the door can be ei-
ther closed or opened executing domain actions {doClose, doOpen} ⊆ A.
However, the door can only be managed through a service doorSrv =

〈{open, closed}, {doOpen, doClose}, open, �〉 where � is such that open
doClose−→

closed and closed
doOpen−→ open. Assume that doorSrv is in its state open, and

the current domain state D to be such that doorIsOpen ∈ D (i.e., it evaluates
to true in D). As soon as action doClose is executed, both the doorSrv service
evolves changing its state to closed and, synchronously, the domain evolves to a
state D′ such that doorIsOpen �∈ D′ (i.e., it evaluates to false in D′).

Given a dynamic domain D and a fixed set of available services over it, we define
a dynamic system to be the resulting global system, seen as a whole: it is an
abstract structure used to capture the interaction of available services with the
environment. Formally, given a dynamic domain D and a set of available services
B1, . . . ,Bn, with Bi = 〈Bi, Oi, bi0, �i〉, the corresponding dynamic system is the
tuple S = 〈S, Γ, s0, ϑ〉, where:

198 G. De Giacomo et al.

– S = (B1 × · · · ×Bn)× 2P is the set of system states;
– Γ = A ∪

⋃n
i=1 Oi is the set of system actions;

– s0 = 〈〈b10, . . . , bn0〉, D0〉 ∈ S is the system initial state;
– ϑ ⊆ S × (Γ × {1, . . . , n}) × S is the system transition relation such that

〈〈b1, . . . bn〉, D〉
a,i−→ 〈〈b′1, . . . b′n〉, D′〉 is in ϑ iff:

(i) 〈bi, a, b′i〉 ∈ �i;
(ii) for each j ∈ {1, . . . , n}, if j �= i then b′j = bj .
(iii) if a ∈ A then 〈D, a,D′〉 ∈ ρ, otherwise D′ = D;

(i)-(ii) require that only one service Bi moves from its own state bi to b′i per-
forming action a, and (iii) requires that, if the action performed is not a local
action, the domain evolves accordingly. Indeed, the set of system operations Γ
includes operations local to services, i.e. whose execution, according to ϑ, does
not affect the domain evolution. We stress the fact that a dynamic system does
not correspond to any actual structure: it is a convenient representation of the
interaction between the available services and the domain. Indeed, a dynamic
system captures the joint execution of a dynamic domain and a set of services
where, at each step, only one service moves, and possibly affects, through opera-
tion execution, the state of the underlying domain. The evolutions of a system S
are captured by its histories, herehence S-histories. One such history is a finite

sequence of the form τ = s0
a1,j1−→ s1 · · · s�−1 a�,j�−→ s� of length |τ | .

= � + 1 such

that (i) si ∈ S for i ∈ {0, . . . , �}; (ii) s0 = s0; (iii) si
ai+1,ji+1

−→ si+1 in S, for
each i ∈ {0, . . . , �− 1}. We denote with τ |k its k-length (finite) prefix, and with
H the set of all possible S-histories. Given a dynamic system S, a general plan
is a (possibly partial) function π : H −→ Γ × {1, . . . , n} that outputs, given an
S-history, a pair representing the action to be executed and the index of the
service which has to execute it. An execution of a general plan π from a state

s ∈ S is a possibly infinite sequence τ = s0
a1,j1−→ s1

a2,j2−→ · · · such that (i) s0 = s;
(ii) τ |k is an S-history, for all 0 < k ≤ |τ |; and (iii) 〈ak, jk〉 = π(τ |k), for all
0 < k < |τ |. When all possible executions of a general plan are finite, the plan
is a conditional plan. The set of all conditional plans over S is referred to as Π .
Note that, being finite, executions of conditional plans are S-histories. A finite
execution τ such that π(τ) is undefined is a complete execution, which means,
informally, that the execution cannot be extended further. In the following, we
shall consider only conditional plans.

We say that an execution τ = s0
a1,j1−→ s1 · · · s�−1 a�,j�−→ s� of a conditional plan

π, with si = 〈〈bi1, . . . bin〉, Di〉:
– achieves a goal φ iff D� |= φ
– maintains a goal ψ iff Di |= ψ for every i ∈ {0, . . . , �− 1}

Such notions can be extended to conditional plans: a conditional plan π achieves
φ from state s if all of its complete executions from s do so; and π maintains ψ
from s if all of its (complete or not) executions from s do.

Finally, we can formally define the notion of (goal-based) target process for a
dynamic domain D as a tuple T = 〈T,G, t0, δ〉, where:

Goal-Based Composition of Stateful Services for Smart Homes 199

– T = {t0, . . . , tq} is the finite set of process states ;
– G is a finite set of goals of the form achieve φ while maintaining ψ, denoted

by pairs g = 〈ψ, φ〉, where ψ and φ are propositional formulae over P ;
– t0 ∈ T is the process initial state;

– δ ⊆ T × G × T is the transition relation. We will also write t
g−→ t′ in P .

A target process T is a transition system whose states represent choice points,
and whose transitions specify pairs of maintenance and achievement goals that
the user can request at each step. Hence, T allows to combine achievement and
maintenance goals so that they can be requested (and hence fulfilled) according
to a specific temporal arrangement, which is specified by the relation δ of T .
Intuitively, a target process T is realized when a conditional plan π is available
for the goal couple g = 〈φ, ψ〉 chosen from initial state t0 and, upon plan’s
completion, a new conditional plan π′ is available for the new selected goal,
and so on. In other words, all potential target requests respecting T ’s structure
(possibly infinite) have to be fulfilled by a conditional plan, which is meant to be
executed starting from the state that previous plan execution left the dynamic
system S in (initially from s0). Since the sequences of goals actually chosen by
the user can not be forseen, a realization has to take into account all possible
ones: at any point in time, all possible choices available in the target process
must be guaranteed by the system, i.e., every legal request needs to be satisfied.
We are going to give a formal definition of this intuition [9] in the remainder of
this section.

Let S be a dynamic system and T a target process. A PLAN-simulation rela-
tion, is a relation R ⊆ T ×S such that 〈t, s〉 ∈ R implies that for each transition

t
〈ψ,φ〉−→ t′ in T , there exists a conditional plan π such that: (i) π achieves φ and

maintains ψ from state s and (ii) for all π’s possible complete executions from s

of the form s
π(τ |1)−→ · · · π(τ |�)−→ s�, it is the case that 〈t′, s�〉 ∈ R. A plan π preserves

R from 〈t, s〉 for a given transition t
〈ψ,φ〉−→ t′ in T if requirement (ii) above holds.

Also, we say that a target process state t ∈ T is PLAN-simulated by a system
state s ∈ S, denoted t �PLAN s, if there exists a PLAN -simulation relation R
such that 〈t, s〉 ∈ R. Moreover, we say that a target process T is realizable in a
dynamic system S if t0 �PLAN s0. When the target process is realizable, one can
compute once for all (offline) a function Ω : S × δ −→ Π that, if at any point
in time the dynamic system reaches state s and the process requests transition

t
〈ψ,φ〉−→ t′ of T , outputs a conditional plan π that its execution starting from s

(i) achieves φ while maintaining ψ and (ii) preserves �PLAN, i.e., it guarantees
that, for all possible states the system can reach upon π’s execution, all target
transitions outgoing from t′ (according to δ) can still be realized by a conditional
plan (possibly returned by the function itself). Such function Ω is referred to as
process realization.

We can now formally state the problem of concern: Given a dynamic domain
D, available services B1, . . . ,Bn, and a target process T , build, if it exists, a
realization of T in the dynamic system S corresponding to D and B1, . . . ,Bn.
In previous work [9,10], a solution to a simplified variant of our problem has been

200 G. De Giacomo et al.

proposed1. Here, as discussed above, we explicitly distinguish between dynamic
domain and available services, thus obtaining a different, more sophisticated
problem. Nonetheless, the techniques presented there still apply, as we can reduce
our problem to that case. This allows us to claim this result:

Theorem 1 ([9]). Building a realization of a target process T in a dynamic
system S is an EXPTIME-complete problem.

3 Case Study

Here we present a case study, freely inspired by a real storyboard of a live demo
held in a smart home located in Rome, whose houseplant is depicted in Figure 1.

Bathroom Living room

Bed room Guest room Kitchen

Toilet

D1

D7

D6D5

D4

D3

D2

W1 W3

W4

W2

Fig. 1. The smart home plant

The home is equipped with many devices and a central reasoning system,
whose domotic core is based on the framework and solver described in this paper,
in order to orchestrate all the offered services. Imagine here lives Niels, a man
affected by Amyotrophic Lateral Sclerosis (ALS). He is unable to walk, thus he
needs a wheelchair to move around the house. The other human actors are Dan,
a guest sleeping in the living room, and Wilma, the nurse. At the beginning of
the story, Niels is sleeping in his automated bed.

The services the system can manage are the bedService, i.e., an au-
tomated bed, which can be either down or up; the doorNumService,
i.e., the doors, for Num ∈ {1, 7} (Figure 2a); the alarmService, i.e., an
alarm, that can be either set or not; the lightRoomService, i.e., light
bulbs and lamps, for each Room in Figure 1; the kitchenService, i.e.,
a cooking service with preset dishes (Figure 2c); the pantryService,
i.e., an automated pantry, able to check whether ingredients are in or
not and buy them, if missing (see Figure 2b); the bathroomService,

1 In particular, in [9,10] services are modelled directly in terms of restrictions on the
domain.

Goal-Based Composition of Stateful Services for Smart Homes 201

i.e., a bathroom management system, able to warm the temperature inside and
fill or empty the tub (Figure 2e); and finally the tvService, i.e., a TV, either
on or off.

open closed

doClose

doOpen

(a) doorNumService

ready missing

doCheck

doCheck

doBuy

(b) pantryService

clean dirty

doCook

doCleanUp

(c) kitchenService

ready

doPickOwner

doLeaveOwner

doMoveToKitchen
doMoveToBedroom

doMoveTo...

(d) nurseService

offcooling warming

filled

doTurnOffHeater

doRaiseBathTempdoLowerBathTemp

doFillTub

doLowerBathTemp

doTurnOffBathHeater

doRaiseBathTemp

doTurnOffBathHeater

doFillTub

doEmptyTub

(e) bathroomService

Fig. 2. Case study services

Finally, we consider a very particular service, that we call nurseService: it is
Wilma, the nurse, who is in charge of moving Niels around the house. Despite the
fact that an analogous service could be provided by some mechanical device, we
refer to an human to illustrate how actors can be abstracted as services as well,
wrapped by a semantic description. All services are depicted in Figure 2, except
for lightRoomService, bedService, alarmService and tvService that have
very simple on/off behaviors. As described in Section 2, a dynamic domain state

202 G. De Giacomo et al.

is a subset of 2P , where P = {p1, . . . , pn} is a finite set of boolean domain propo-
sitions. In order to express that, e.g., the bathroom temperature is mild, we could
make use of a grounded propositional letter such as bathroomTemperatureIsMild .
Nevertheless, we would have a grounded proposition for each value that the
sensed temperature may assume (bathroomTemperatureIsHot , etc.) with the im-
plicit constraint that only one of them can be evaluated to � at a time (and all
the others to ⊥). Thus, for sake of simplicity, here we make use of statements
of the form “var = val” (e.g., “varBathroomTemperature = warm”). We call
var the domain variable; val can be equal to any expected value which var can
assume. Using such abbreviations we can phrase concepts like “a domain vari-
able var is set to the val value” to easily refer to a transition in the dynamic
domain moving from the current state to a following one where the proposition
var = val holds. For the sake of readability, actions are identified by the do-
prefix (e.g., doRing).

Now we comment the case study. All services affect, through their actions, the
related domain variables representing the state of the context. As an example,
consider Figure 2e. Action doRaiseBathTemp causes the bathroomService to
reach warming state, and affects the domain setting varBathroomTemperature
either to (i) mild if it was equal to cold , or (ii) warm , if previously mild .
However, we can imagine also indirect effects: e.g., the door4Service and
door5Service’s doOpen actions trivially turn the varDoor4 and varDoor5
domain variables from closed to open and, at the same time, change the
varGuestDisturbed domain variable from false to true, since, as depicted in
Figure 1, they leed to the guest room, which we supposed Dan, the guest,
to sleep in. The dynamic domain constrains the execution of service actions,
allowing executable transitions only to take place (as explained in Section 2).
For instance, consider the doPick and doLeave actions in nurseService: they
represent Wilma taking and releasing Niels’ wheelchair. Even if they are al-
ways available according to the service’s description (Figure 2d), they are al-
lowed by the domain iff varPositionOwner and varPositionNurse are equal (i.e.,
iff

∨
r∈Rooms(varPositionOwner = r ∧ varPositionNurse = r) for Rooms =

{livingRoom , bedRoom, bathRoom , guestRoom, toilet , kitchen}). Further on, it is
stated that you can activate the doPick transition only if varOwnerPicked = false
(conversely, activate the doPick only if varOwnerPicked = true) and, when
varOwnerPicked = true, doMoveToRoom causes both varPositionOwner and
varPositionNurse to be set to the same Room. As an example of interaction
between services, consider kitchenService and pantryService. As depicted
in Figure 2, they do not have any action in common. Though, cooking any
dish (namely, invoking doCook action on the kitchenService service) is not
possible if some ingredients are missing (i.e., if varIngredients = false). The
pantryService can buy them (indeed, doBuyIngredients sets varIngredients =
true), but only after the execution of a check (doCheckIngredients). The evolu-
tion of doCheckIngredients is constrained by the varIngredients domain variable:
if varIngredients = false, then the next state of pantryService is missing (and
the doBuyIngredients action executable), otherwise it remains in the ready state.

Goal-Based Composition of Stateful Services for Smart Homes 203

Such comments motivate the advantages of decoupling services and dynamic
domain as in the framework: the evolution of the system is not straightforward
from the inspection of services or dynamic domains alone. Indeed, a service rep-
resents the behavior of a real device or application plugged in the environment,
and it is distributed by vendors who do not know the actual context in which
it will be used. The same service could affect (or be affected by) the world in
different ways, according to the environment it is interacting with.

sleep
t0

cook
Breakfast

t1

eat
Breakfast

t4

WC
t3

TV
t2

ψ1 ≡ (varLightsBedroom = off)
∧(varPositionOwner = bedroom)
∧(varDoor3 = closed)
∧(varDoor4 = closed)
∧(varBed = down)

φ1 ≡ (varBreakfastReady = true)
∧(varAlarmSet = false)

ψ0 ≡ true
φ0 ≡ (varBed = down)

∧(varAlarmSet = true)
∧(varOwnerPicked = false)
∧(varBathtub = empty)
∧(varLightsToilet = on)
∧(varLightsBedroom = off)
∧(varLightsBathroom = off)
∧(varLightsKitchen = off)
∧(varLightsLivingroom = off)
∧(varPositionOwner = bedroom)
∧(varDoor2 = closed) ∧ (varDoor3 = closed)
∧(varDoor4 = closed) ∧ (varDoor5 = closed)
∧(varDoor6 = closed) ∧ (varDoor7 = closed)
∧(varPositionNurse = toilet)
∧(varTv = off)
∧(varBathroomTemperature = cold)

ψ2
φ3

ψ2 ≡ (varGuestDisturbed = false)
φ2 ≡ (varPositionOwner = livingroom)

∧(varOwnerPicked = false)
∧(varTv = on)

ψ2
φ3 ≡ (varBathtub = filled)

∧(varDoor2 = closed)
∧(varLightsBathroom = on)
∧(varOwnerPicked = false)
∧(varPositionOwner = bathroom)
∧(varBathroomTemperature = warm)

ψ4
φ4

ψ2
φ3

ψ4 ≡ (varGuestDisturbed = false)
∧(varBathroomTemperature = warm)

φ4 ≡ (varBreakfastReady = true)
∧(varPositionOwner = kitchen)
∧(varLightsKitchen = on)
∧(varOwnerPicked = false)

Fig. 3. The sample target process

Next we turn to the target process itself, shown in Figure 3, representing what
Niels wants to happen, when waking up in the morning. First, the home system
must let Niels get awaken only after the breakfast is ready: this is the aim of
the first transition, where the reachability goal is to have (varBreakfastReady =
true) ∧ (varAlarmSet = false), while all conditions that make Niels sleep com-
fortable must be kept: (varBed = down) ∧ (varLightsBedroom = off) ∧ . . .
Then, once the alarm rang out, we let Niels decide whether he prefers to
have a bath or to watch TV (and optionally have a bath afterwards). In both
cases, we do not want to wake up Dan (ψ2 ≡ (varGuestDisturbed = false)).
Niels can successively have breakfast, but we suppose that further he can go
back to the bathroom and eat a little more again how many times he wishes:

204 G. De Giacomo et al.

this is the rationale beneath the formulation of: ψ4 ≡ (varGuestDisturbed =
false) ∧ (varBathroomTemperature = warm). Finally, Niels can get back to the
bed room. The transition from the eatBreakfast (t4) state to the sleep (t0) one
has no maintenance goal (i.e., φ0 = true), whereas the reachability goal is just
to reset the domain variables to their initial setup.

4 Solver

As we can see from the case study above, goal-based processes can be used to
naturally specify the behavior of complex long-running intelligent systems. In
order to apply this framework to real applications, however, we need a prac-
tical and efficient solver for such composition tasks. The solution in [9], [10]
reduces the composition problem to LTL synthesis by model checking. As a re-
sult, an efficient model checker and the approach is viable in practice only if
large computational resources are available; on typical hardware for the smart
home applications, only simple examples can be solved with that approach.

In light of the success of heuristic search in classical planning, it is interesting
to ask whether this problem can be more efficiently solved by a direct search
method. In this paper, we pursue this idea, and propose a novel solution to
the composition problem based on an AND-OR search in the space of execution
traces of incremental partial policies. Intuitively, the search keeps a partial policy
at each step, and simulates its execution, taking into account all possibilities of
the goal requests and the nondeterministic effects of the actions. If no action is
specified for some situation yet, the policy is augmented by trying all possible
actions for it. Starting from an empty policy, this process is repeated until either
a valid policy is found that works in all contingencies, or all policy extensions are
tried yet no solution is found. In this process, the nondeterministic goal requests
and action effects are handled as “AND steps,” whereas the free choice of actions
during expansion represents an “OR step.” Figure 4 shows the Prolog code of
the body of our solver.

The composition starts from an empty policy [] with the initial goal state and
initial world state S0, and simulates (while incrementally building) its execution,
until all possible goal requests in the target process can always be achieved by
some policy C (line 2). In our implementation, we always assume that the intial
goal state is 0. To handle all the possible evolutions of the system from goal
state T and world state S, the compose/4 2 predicate first finds all goal requests
GL that originate from T , and augments the current policy C0 to obtain C1

that handles these requests (lines 4–6). This is done by compGoals/5, which
represents the first AND step in the search cycle. It recursively processes each
goal request in the list GL by using planForGoal/8 (lines 8–11). Notice that
the policy is updated in each recursive step with the intermediate variable C in
line 11. The predicate planForGoal/8 essentially performs conditional planning
with full observability and nondeterministic effects (lines 13–20). Lines 14 and

2 According to the Prolog convention, we use the syntax <name of the predi-
cate>/<arity>.

Goal-Based Composition of Stateful Services for Smart Homes 205

0: % planner.pl - a generic solver for goal-based process composition.
1: % Usage: call compose(C) to find a realization C.
2: compose(C) :- initial state(S0), compose(0, S0, [], C).
3:
4: % compose(T, S,C0, C1) compose for goal state T .
5: compose(T, S,C0, C1) :-
6: findall(〈M,G, T ′〉, goal(T,M,G, T ′), GL), !,

compGoals(T, GL, S,C0, C1).
7:
8: % compGoals(T, GL, S,C0, C1) compose for all goal requests in GL.
9: compGoals(, [], , C, C).

10: compGoals(T, [〈M,G, T ′〉|GL], S, C0, C1) :-
11: planForGoal(T,M,G, T ′, S, [], C0, C),

compGoals(T, GL, S,C,C1).
12:
13: % planForGoal(T,M,G, T ′, S,H,C0, C1)

% update policy for a specific goal.
14: planForGoal(, , , , S,H, ,) :- member(S,H), !, fail.
15: planForGoal(,M, , , S, , ,) :- \+ holds(M,S), !, fail.
16: planForGoal(T, , , T ′, S, , C,C) :- member(〈T, T ′, S, 〉, C), !.
17: planForGoal(, , G, T, S, , C0, C1) :- holds(G,S), !,

compose(T, S,C0, C1).
18: planForGoal(T,M,G, T ′, S,H,C0, C1) :-
19: bestAct(G,A, S), next states(S,A,SL),
20: tryStates(T,M,G, T ′, SL, [S|H], [〈T, T ′, S,A〉|C0], C1).
21:
22: % tryStates(T,M,G, T ′, SL,H,C0, C1)

% compose for all progressed world states.
23: tryStates(, , , , [], , C, C).
24: tryStates(T,M,G, T ′, [S|SL], H,C0, C1) :-
25: planForGoal(T,M,G, T ′, S,H,C0, C),

tryStates(T,M,G, T ′, SL,H,C,C1).

Fig. 4. Prolog implementation of our search-based solver

206 G. De Giacomo et al.

15 prevent the found partial policy from containing deadloops or violating the
maintenance goal. Line 16 detects visited states in achieved goals so that they
can be realized in the same way, and thus no further search is needed. Line 17
checks whether the current achievement goal has been realized, and if so, it goes
on to recursively compose for the next goal state. Finally, Lines 18–20 capture
the last case where no action is associated to the current situation, in which case
the current policy needs expansion to handle it. This is done by the OR step
of the search cycle, which proposes a best candidate action with the predicate
bestAct/3, and planning goes on for the resulting world states.

Since the actions are nondeterministic, it means that executing an action
may lead to multiple possible states, and the policy we find must work for them
all. In our algorithm, tryStates/8 handles all these states by recursing into
planForGoal/8 with updated policy for each state, which represents the second
AND step in the search cycle (lines 22–25).

Recall that the exploration of a search branch may fail in Lines 14 and 15,
due to a deadloop and violation of a maintenance goal, respectively. When either
case occurs, the program backtracks to the most recent predicate with a different
succeeding assignment, which is always bestAct/3. From there, the next best
action is proposed and tried, and so on. If all the possible actions have been
tried, yet none leads to a valid policy, the program backtracks to the next most
recent bestAct/3 instance, and the same process is performed similarly.

Notice that our algorithm is applicable to any goal-based process composition
task, as the predicates initial state/1, holds/2, bestAct/3, next states/3

and goal/4 behave according to the actual target goal-based process and its
underlying dynamic environment which are specified using a problem definition
language detailed below. It is not hard to see that the our algorithm strategi-
cally enumerates all valid policies, generating on-the-fly action mappings for
reachable situations only. The algorithm can be shown to be sound and complete.

Theorem 2 (Soundness and completeness). Let T be a target goal-based
process and S its underlying dynamic system. If compose(C) succeeds, then C

is a realization of T in S. Moreover, if T is realizable in S, then compose(C)

succeeds.

This algorithm can be used for solving small composition problems even with a
simple enumeration-based implementation of bestAct/3. However, as the prob-
lem size grows, this näıve implementation quickly becomes intractable, due to
the large branching factor and deep search tree. Therefore, some intelligent or-
dering is needed for the succeeding bindings of bestAct/3, in order to make our
solver efficient for large composition tasks. In our implementation of the solver3,

3 The code of both solver and case study, as well as the experimental results, are
available at the URL: http://www.dis.uniroma1.it/~cdc/pubs/
CoopIS2012-Code Tests.zip

http://www.dis.uniroma1.it/~cdc/pubs/CoopIS2012-Code_Tests.zip
http://www.dis.uniroma1.it/~cdc/pubs/CoopIS2012-Code_Tests.zip

Goal-Based Composition of Stateful Services for Smart Homes 207

we make use of the well-known delete-relaxation heuristics [13], although other
heuristics in classical planning could be adapted as well.

The delete-relaxation heuristics for a state is computed by solving a relaxed
goal-reachability problem where all negative conditions and delete effects are
eliminated from the original planning problem. It can be shown that the relaxed
problem can always be solved (or proven unsolvable) in polynomial time. If a
relaxed plan is found, then the number of actions in the plan is used as a heuristic
estimation for the cost of achieving the goal from the current state; otherwise
it is guaranteed that no plan exists to achieve the goal from the current state,
so it is safe to prune this search branch and backtrack to other alternatives. In
our implementation, when choosing the best action, bestAct/3 first sorts all
legal actions according to the optimistic goal distance of their successor states
using the delete-relaxation heuristics4, and unifies with each of the actions in
ascending order when the predicate is (re-)evaluated. Notice that the heuristics
only changes the ordering of branch exploration in the search tree, with possible
sound pruning for deadends, and does not affect the correctness guarantee of our
algorithm.

For our solver, a problem specification is a regular Prolog source file which
contains the following components:

– the instruction to load the solver :- include(planner).

– a list of primitive fluents, each fluent F specified by prim_fluent(F).

– a list of primitive actions, each action A specified by prim_action(A).

– action preconditions, one for each action A, by poss(A,P). where A is the
action, and P is its precondition formula.

– conditional effects of actions of the form causes(A,F,V,C). meaning that
fluent F will take value V if action A is executed in a state where condition C

holds.
– initial assignment of fluents of the form init(F,V). where F is the fluent

and V is its initial value.
– the process by a list of goal transitions of the form goal(T,M,G,T’). where

T and T’ are the source and target goal states of the transition, M is the
maintanence goal, and G the achievement goal. By default, the initial goal
state is always 0.

5 Experiments on the Case Study

In order to test the efficiency of the solution presented in Section 4, we conducted
some experiments based on the case study of Section 3.

Given the dynamic system S and the target process T described in Section 3,
we considered both T and its restrictions Ti∈{1,...,5}, shown in Figure 5, where
states and goals refer to the ones depicted in Figure 3.

4 In our experiments, we also take into account the conjunction of the maintenance
goals of the next goal state, so that states violating future maintenance goals are
pruned earlier, leading to further gain in efficiency.

208 G. De Giacomo et al.

t0

t1
ψ1
φ1

ψ0
φ0

(a) T1

t0

t1

t3

ψ1
φ1 ψ2

φ3

ψ0
φ0

(b) T2

t0

t1

t4

t2

ψ1
φ1

ψ0
φ0

ψ2
φ2

ψ4
φ4

(c) T3

t0

t1

t4

t3

ψ1
φ1

ψ0
φ0

ψ2
φ3

ψ2
φ3

ψ4
φ4

(d) T4

t0

t1

t4

t3 t2

ψ1
φ1

ψ0
φ0

ψ2
φ3

ψ2
φ2

ψ2
φ3

ψ4
φ4

ψ4
φ4

(e) T5

t0

t1

t4

t3 t2

ψ1
φ1

ψ0
φ0

ψ2
φ3

ψ2
φ2

ψ2
φ3

ψ4
φ4

ψ2
φ3

ψ4
φ4

(f) T

Fig. 5. Test target processes

Trans.’s Time [sec] Std. Dev. Coeff. of Var. [�]
Mean (M) min (m) Max (M) (σ) (σ/M)

T1 2 1.166 1.15 1.19 0.011 9.219

T2 3 60.688 60.54 60.82 0.094 1.545

T3 4 30.448 30.39 30.61 0.088 2.896

T4 5 83.497 83.26 83.88 0.195 2.331

T5 7 180.894 180.29 182.05 0.523 2.889

T 8 238.841 238.38 239.19 0.291 1.219

Fig. 6. Test results

Hence, for each Ti, we run the solver 10 times in a SWI-Prolog 5.10.2 envi-
ronment, on top of an Intel Core Duo 1.66 GHz (2 GB DDR2 RAM, Ubuntu
10.04) laptop.

We gathered the results listed in Figure 6. The solution for the complete
problem was found in about 239 seconds. Performances for simpler formulations
followed an almost linear trend with respect to the input dimension, measured in
terms of number of transitions in the target process (see Figure 7a). Figure 7b5

shows that such results are quite reliable, since the Coefficient of Variation (i.e.,
the ratio between the Standard Deviation σ and the Mean ValueM) is fair little
(ca. 2�, excluding the first value, which is not significant, being the solution
for that instance computed in too few milliseconds) and keeps constant as the
M value grows. The performances are notable, especially if compared to the
previous tests. Indeed, we ran a solver based on model checking techniques,
built on top of TLV (version 4.18.4, see [20]), on the laptop mentioned above.

5 There, the base for the Logarithm of the Mean TimeM is the leastM value.

Goal-Based Composition of Stateful Services for Smart Homes 209

(a) Tests results (b) Coefficient of variation

Fig. 7. Graphical representation of the test results

Notice that such a solver requires the usage of high computational resources,
which are not affordable in a smart home scenario. Indeed, on our laptop it took
more than 24 hours to terminate, whereas the solver presented in this paper is
returned a solution within less than 4 minutes.

6 Conclusions

In this paper we have proposed an approach for composing goal-based processes
on the basis of available services, which stems from the real needs of a smart
home scenario, in which available services are based on sensors, actuators and
equipments of the home. The approach and the solver we develop turned out
to be effective in practice as the case study and the experiments demonstrate.
Future work include the investigation of the case of multiple users (e.g., all
inhabitants of the home) asking for different simultaneous goal-based processes.
Preliminary ideas can be found in [21,10].

Acknowledgements. This work has been partly supported by the EU
projects SM4All (FP7-224332), ACSI (FP7-257593) and Greener Buildings
(FP7-258888), and by the Italian AriSLA project Brindisys. Yuxiao Hu would
like to thank his PhD supervisor Hector Levesque for useful discussions and
financial support.

References

1. Baligand, F., Rivierre, N., Ledoux, T.: A Declarative Approach for QoS-Aware
Web Service Compositions. In: Krämer, B.J., Lin, K.-J., Narasimhan, P. (eds.)
ICSOC 2007. LNCS, vol. 4749, pp. 422–428. Springer, Heidelberg (2007)

210 G. De Giacomo et al.

2. Beauche, S., Poizat, P.: Automated Service Composition with Adaptive Planning.
In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364,
pp. 530–537. Springer, Heidelberg (2008)

3. ter Beek, M.H., Bucchiarone, A., Gnesi, S.: Formal Methods for Service Composi-
tion. Annals of Mathematics, Computing and Teleinformatics 1(5), 1–10 (2007)

4. Berardi, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Mecella, M.: Automatic
Service Composition based on Behavioural Descriptions. International Journal of
Cooperative Information Systems 14(4), 333–376 (2005)

5. Blythe, J., Ambite, J. (eds.): Proc. of ICAPS 2004 Workshop on Planning and
Scheduling for Web and Grid Services (2004)

6. Cardoso, J., Sheth, A.P.: Introduction to Semantic Web Services and Web Process
Composition. In: Cardoso, J., Sheth, A.P. (eds.) SWSWPC 2004. LNCS, vol. 3387,
pp. 1–13. Springer, Heidelberg (2005)

7. Catarci, T., Di Ciccio, C., Forte, V., Iacomussi, E., Mecella, M., Santucci, G., Tino,
G.: Service Composition and Advanced User Interfaces in the Home of Tomorrow:
The SM4All Approach. In: Gabrielli, S., Elias, D., Kahol, K. (eds.) AmBI-SYS
2011. LNICST, vol. 70, pp. 12–19. Springer, Heidelberg (2011)

8. Curbera, F., Sheth, A., Verma, K.: Services Oriented Architectures and Semantic
Web Processes. In: ICWS 2004 (2004)

9. De Giacomo, G., Patrizi, F., Sardiña, S.: Agent Programming via Planning Pro-
grams. In: AAMAS 2010 (2010)

10. De Giacomo, G., Felli, P., Patrizi, F., Sardiña, S.: Two-player Game Structures for
Generalized Planning and Agent Composition. In: AAAI 2010 (2010)

11. Di Ciccio, C., Mecella, M., Caruso, M., Forte, V., Iacomussi, E., Rasch, K., Quer-
zoni, L., Santucci, G., Tino, G.: The Homes of Tomorrow: Service Composition
and Advanced User Interfaces. ICST Trans. Ambient Systems 11(10-12) (2011)

12. Hassen, R.R., Nourine, L., Toumani, F.: Protocol-Based Web Service Composition.
In: Bouguettaya, A., Krueger, I., Margaria, T. (eds.) ICSOC 2008. LNCS, vol. 5364,
pp. 38–53. Springer, Heidelberg (2008)

13. Hoffmann, J., Nebel, B.: The FF Planning System: Fast Plan Generation through
Heuristic Search. Journal of Artificial Intelligence Research 14, 253–302 (2001)

14. Kaldeli, E., Warriach, E.U., Bresser, J., Lazovik, A., Aiello, M.: Interoperation,
Composition and Simulation of Services at Home. In: Maglio, P.P., Weske, M.,
Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 167–181. Springer,
Heidelberg (2010)

15. Klein, A., Ishikawa, F., Honiden, S.: Efficient QoS-Aware Service Composition
with a Probabilistic Service Selection Policy. In: Maglio, P.P., Weske, M., Yang,
J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 182–196. Springer,
Heidelberg (2010)

16. McIlraith, S., Son, T.: Adapting GOLOG for Composition of Semantic Web Ser-
vices. In: KR 2002 (2002)

17. Medjahed, B., Bouguettaya, A., Elmagarmid, A.: Composing Web Services on the
Semantic Web. Very Large Data Base Journal 12(4), 333–351 (2003)

18. De Paoli, F., Lulli, G., Maurino, A.: Design of Quality-Based Composite Web
Services. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294,
pp. 153–164. Springer, Heidelberg (2006)

19. Pistore, M., Marconi, A., Bertoli, P., Traverso, P.: Automated Composition of Web
Services by Planning at the Knowledge Level. In: IJCAI 2005 (2005)

20. Pnueli, A., Shahar, E.: The TLV System and its Applications. Tech. rep., Depart-
ment of Computer Science, Weizmann Institute, Rehovot, Israel (1996)

Goal-Based Composition of Stateful Services for Smart Homes 211

21. Sardiña, S., De Giacomo, G.: Realizing Multiple Autonomous Agents through
Scheduling of Shared Devices. In: ICAPS 2008 (2008)

22. Schuller, D., Miede, A., Eckert, J., Lampe, U., Papageorgiou, A., Steinmetz, R.:
QoS-Based Optimization of Service Compositions for Complex Workflows. In:
Maglio, P.P., Weske, M., Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS,
vol. 6470, pp. 641–648. Springer, Heidelberg (2010)

23. Wang, H., Zhou, X., Zhou, X., Liu, W., Li, W., Bouguettaya, A.: Adaptive Ser-
vice Composition Based on Reinforcement Learning. In: Maglio, P.P., Weske, M.,
Yang, J., Fantinato, M. (eds.) ICSOC 2010. LNCS, vol. 6470, pp. 92–107. Springer,
Heidelberg (2010)

24. Wu, D., Parsia, B., Sirin, E., Hendler, J., Nau, D.S.: Automating DAML-S Web
Services Composition Using SHOP2. In: Fensel, D., Sycara, K., Mylopoulos, J.
(eds.) ISWC 2003. LNCS, vol. 2870, pp. 195–210. Springer, Heidelberg (2003)

25. Yang, J., Papazoglou, M.: Service Components for Managing the Life-cycle of Ser-
vice Compositions. Information Systems 29(2), 97–125 (2004)

26. Zhao, H., Doshi, P.: A Hierarchical Framework for Composing Nested Web
Processes. In: Dan, A., Lamersdorf, W. (eds.) ICSOC 2006. LNCS, vol. 4294,
pp. 116–128. Springer, Heidelberg (2006)

Automated Risk Mitigation in Business Processes

Raffaele Conforti1, Arthur H.M. ter Hofstede1,2,3,
Marcello La Rosa1,2, and Michael Adams1

1 Queensland University of Technology, Australia
{raffaele.conforti,a.terhofstede,m.larosa,mj.adams}@qut.edu.au

2 NICTA Queensland Lab, Australia
3 Eindhoven University of Technology, The Netherlands

Abstract. This paper proposes a concrete approach for the automatic mitigation
of risks that are detected during process enactment. Given a process model ex-
posed to risks, e.g. a financial process exposed to the risk of approval fraud, we
enact this process and as soon as the likelihood of the associated risk(s) is no
longer tolerable, we generate a set of possible mitigation actions to reduce the
risks’ likelihood, ideally annulling the risks altogether. A mitigation action is a
sequence of controlled changes applied to the running process instance, taking
into account a snapshot of the process resources and data, and the current sta-
tus of the system in which the process is executed. These actions are proposed
as recommendations to help process administrators mitigate process-related risks
as soon as they arise. The approach has been implemented in the YAWL envi-
ronment and its performance evaluated. The results show that it is possible to
mitigate process-related risks within a few minutes.

1 Introduction

Business processes in various sectors such as financial, healthcare and oil&gas, are
constantly exposed to a wide range of risks. Take for example the BP oil spill in 2010
which resulted in an environmental disaster, or the fraud at Société Générale in 2008,
which led to a e 4.9B loss.

A process-related risk measures the likelihood and the consequence that some-
thing happening will impact on the process objectives [29]. Failing to address process-
related risks can result in substantial financial and reputational consequences, poten-
tially threatening an organization’s existence, like in the case of Société Générale. There
is thus an increasing need to better manage business process risks, as also highlighted
by legislative initiatives like Basel II [7] and the Sarbanes-Oxley Act.1 Organizations
are attempting to incorporate process-related risks as a distinct view in their operational
management, seeking effective ways to control such risks. However, whilst conceptu-
ally appealing, to date there is little guidance as to how this can be concretely done.

In previous work [12], we presented a mechanism to model risks in executable busi-
ness process models and detect them as early as possible during process execution. Un-
fortunately, detecting a risk in time is often not enough to avoid the negative outcome
associated. A prompt risk mitigation should be taken to restore the process instance to

1 www.gpo.gov/fdsys/pkg/PLAW-107publ204

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 212–231, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

www.gpo.gov/fdsys/pkg/PLAW-107publ204

Automated Risk Mitigation in Business Processes 213

a safe state, before the instance progresses any further. Moreover, taking the right mit-
igation at the right time may make the difference between success and failure. In fact,
the number of possible ways a process-related risk may be mitigated is potentially very
large that it is difficult for a process administrator to take the right decision at the right
time, without any support. One has to consider all mitigations that are possible, given
the current state of the process instance (including a snapshot of the associated data
and resources), and the context in which the instance is running, i.e. the state of other
running instances, to make such a decision. For example, in order to mitigate the risk
of a process instance A to run overtime, a mitigation may entail to reallocate resources
from a process instance B (potentially of another process) to A.

In light of the above, in this paper we propose a technique for automatically miti-
gating process-related risks. Since a process instance may be affected by multiple risks
at the same time, we treat this problem as a multi-objective optimization problem. A
solution to this problem is a variant of the risky process instance obtained by apply-
ing a sequence of mitigation actions, in order to reduce the risks’ probability down to
a tolerable level, or in the best case, to annul the risks altogether. Mitigation actions
include control-flow aspects (e.g. skipping a task to be executed), process resources
(e.g. reallocating a resource to a different task), and data (e.g. rolling back an executed
task to restore its input data). To explore the potentially large solution space, we use
dominance-based Multi-Objective Simulated Annealing (MOSA) [28]. At each run, the
algorithm generates a small set of solutions similar to the original process instance but
with less risks. It stops when either a maximum number of non-redundant solutions (i.e.
solutions proposing different mitigations) is found or a given timeframe elapses. This
approach is not meant to replace human judgement. Instead, it aims to support process
administrators in deciding what mitigations to take, by reducing the number of feasible
options, and consequently the time needed to take a decision.

We defined the mitigation actions in collaboration with an Australian risk consultant.
To prove the feasibility of this approach, we implemented these actions and the MOSA
algorithm on top of the YAWL system. We instantiated a set of process models from the
logistics [34] and screen business [25] domains that are affected by one or more risks,
and executed a series of tests to mitigate such risks. The tests show that the technique
can find a set of possible solutions within a few minutes of computation, and that in all
cases the associated risks are mitigated.

The rest of this paper is organized as follows. Section 2 introduces the required back-
ground concepts in the context of an example. Section 3 describes the proposed tech-
nique to mitigate process risks which is then evaluated in Section 4. Section 5 covers
related work and Section 6 concludes the paper.

2 Background and Running Example
Our technique for risk mitigation is part of a holistic approach for managing process-
related risks throughout the process lifecycle. Accordingly, the four phases of the tradi-
tional BPM lifecycle (Design, Implementation, Enactment and Analysis) [16] are each
extended to incorporate elements of risk, as shown in Fig. 1. First, in a Risk Identifica-
tion phase, the process model to be designed is analyzed for potential risks. Established
risk analysis methods such as Fault Tree Analysis [11] or Root Cause Analysis [21]

214 R. Conforti et al.

can be employed in this phase. The output of this phase is a set of risks, each ex-
pressed as a risk condition that describes the set of events that lead to a potential fault
occurrence. Then, in the Design phase, these high-level risk conditions are mapped
to process model-specific aspects. The result of this phase is a risk-annotated process
model. Next, in the Implementation phase, these conditions are linked to workflow-
specific aspects, such as the content of data variables and resource allocation states.
The model is then executed by a risk-aware process engine in the Enactment phase.

Process
Implementation

Risk-aware workflow
implementation

Risk
Identification

Risk analysis

Risk-annotated
models

Risk-annotated
workflows

Current
process data

Historical
process data

Risk prevention
changes

Process Design

Risk-aware
process modelling

1

2

3

4Process Diagnosis

Risk monitoring and
controlling

Process
Enactment
Risk-aware

workflow execution
Risk mitigation

changes

Reporting

Risks

Fig. 1. Risk-aware BPM lifecycle

To evaluate risk conditions in
this phase, we need to consider
the current state of all running
instances of any process (and
not only the instance for which
we are computing the risk con-
dition), the resources that are
busy and available, and the val-
ues of the data variables being
created and consumed. More-
over, we need to consider his-
torical data, i.e. the archived ex-
ecution data of all previous in-
stances of the process. Finally, the Diagnosis phase involves risk monitoring and con-
trolling, which can trigger changes in the current process instance, to mitigate the like-
lihood of a fault occurring, or in the underlying process model, to prevent a given risk
from occurring in future instances. This risk mitigation phase is the focus of this paper.

Let us now consider an example process for which we have defined several risks, to
understand how risk conditions can be formulated in terms of process model elements.
These conditions will provide input for the risk mitigation technique presented in the
next section. The example process, shown in Figure 2, describes a Payment subprocess
of an order fulfillment process, inspired by the VICS industry standard for logistics [34].
This standard is endorsed by 100+ companies worldwide, with a total sales volume of
$2.3 Trillion annually [34]. The example process begins after freight has been picked
up by a carrier and deals with the payment of shipment costs. First, a Shipment Invoice
is produced for costs related to a specific order. If payment has been made in advance, a
Finance Officer simply issues a Shipment Remittance Advice to the customer specify-
ing the amount paid. Otherwise, the Finance Officer issues a Shipment Payment Order,
which requires approval by a Senior Finance Officer (a superior of the Finance Officer)
who may request amendments be made by the Finance Officer that issued the Order.
After the document is finalized and the customer has paid, an Account Manager can
process the payment. If the customer underpays, the Account Manager issues a Debit
Adjustment, the customer makes a further payment and the payment is reprocessed. If a
customer overpays, the Account Manager issues a Credit Adjustment. In the latter case
and in the case of correct payment, the Payment subprocess completes.

In this process, we can identify various faults that may occur during execution. For
example, a Service Level Agreement (SLA) may establish that the process (or one of its
tasks) may not last longer than a Maximum Cycle Time MCT (e.g. 5 days), otherwise

Automated Risk Mitigation in Business Processes 215

Process Shipment
Payment

Approve Shipment
Payment Order

[payment incorrect
due to overcharge]

[payment correct]

[payment
incorrect due to
underpayment]

Input
condition

Output
condition

Task

[else]

[pre-paid
shipments]

Issue Shipment
Invoice

Issue Shipment
Remittance Advice

[order
approved]

[order
not approved]

Issue Shipment
Payment Order

Update Shipment
Payment Order

Settle
Account

Receive
Payment

Issue Credit
Adjustment

Issue Debit
Adjustment

Receive
Payment

XOR join XOR splitArc

Fig. 2. Order-Fulfillment: Payment subprocess (using the YAWL [19] notation)

a pecuniary penalty may be incurred. To detect the risk of overtime fault at run-time, we
should check the likelihood that the running instance does not exceed the MCT based
on the amount of time Tc expired to that point. Let us consider Te as the remaining
cycle time, i.e. the amount of time estimated to complete the current instance given Tc

based on past executions, which can be computed using the approach in [2]. Then the
probability of exceeding MCT can be computed as 1−MCT /(Te + Tc) if Te + Tc >
MCT and is equal to 0 if Te +Tc ≤ MCT . If this probability is greater than a tolerance
value (e.g. 60%), we notify the risk to the user.

A second fault is related to the resources participating in the process. The Senior
Finance Officer who has approved a Shipment Payment Order for a given customer must
have not approved another order by the same customer in the last d days, otherwise there
is a potential for approval fraud, a violation of a four-eyes principle across different
instances of the Payment subprocess. To detect this risk we first have to check that there
is an order, say order o of customer c, to be approved. Moreover, we need to check that
either of the following conditions holds: i) o has been allocated to a Senior Finance
Officer who has already approved another order for customer c in the last d days; or ii)
at least one Senior Finance Officer is available who approved an order for customer c in
the last d days and all other Senior Finance Officers who did not approve an order for c
during the last d days are unavailable.

Finally, a third fault relates to a situation where a process instance executes a given
task too many times, typically via a loop. Not only could this lead to a process slow-
down, but also to a “livelock” if the task is in a loop whose exit condition is deliberately
never met. In general, given a task t, a maximum number of allowable executions of t
per process instance, MAE (t), can be fixed as part of the service-level agreement for
t. In our example, this fault may occur if task “Update Shipment Payment Order” is re-
executed five times within the same process instance. We call this an order unfulfillment
fault. To detect the risk at run-time, we need to check if: i) the Update task is currently
being performed for order o; and ii) it is likely that the task will be repeated within the
same process instance. The probability that the number of times a task will be repeated
within the same instance is computed by dividing the number of instances where the
MAE for the task has been reached by the number of instances that have executed this
task at least as many times as it has been executed by the current instance, and have
completed. If the probability to exceed MAE (t) is greater than a tolerance value for t,
e.g. 60%, we notify the risk to the user.

In the next section we propose a set of mitigation actions that can be performed
“on-the-fly” on a running process instance in order to mitigate its risks.

216 R. Conforti et al.

3 Approach

In this paper we deal with the problem of automatically mitigating one or more business
process risks for a specific running process instance (case for short), without raising
other business process risks for the same case. This problem belongs to the family of
multi-objective optimization problems, and we propose the use of simulated annealing
for finding a Pareto-optimal solution, or a set of such solutions.

The Process Risk Simulated Annealing (PRSA) algorithm is an application of the
DBMOSA [28] algorithm where at each iteration a new solution is discovered through
the use of one or more random mitigation actions. The algorithm proposes a solution,
or mitigation, as a sequence of elementary mitigation actions. A “behavioral cost” (cost
for short) is associated with each mitigation action, and measures how deeply an action
affects the process instance to which it is applied. For example, allocating a different
resource to a work item has a lower cost than skipping a task that has to be executed.
The total cost of a solution is the sum of the costs of each mitigation action used in that
solution. A good solution to the PRSA algorithm is one that reduces the likelihood of a
risk under its threshold, keeping the total cost as low as possible.

When comparing solutions that have the same cost, a solution that fully mitigates
a risk is better than one that mitigates that risk because its risk condition is no longer
evaluable. And in turn, this solution is better than one that does not mitigate the risk
at all. Finally, if two solutions mitigate the same risk, we privilege the one that yields
the lowest risk probability. Given two solutions a, b we say that a dominates b if it
mitigates the same risks mitigated by b with a lower total cost. As result, we define
them as mutually non-dominating if neither one dominates the other.

Below we describe the more elementary mitigation actions that can be used to cre-
ate a solution, and how they affect a process case. We use the YAWL language as a
reference language to define the mitigation actions, since this language has a formal
foundation on which we can build our definitions and algorithms. However, the notions
presented in this section can easily be generalized to other languages. Before introduc-
ing them, we introduce a number of preliminary concepts and notations.

YAWL Specification. We will not repeat the full definition of a YAWL specification
as defined in [19], we will only use selected parts. The set of net identifiers is given by
NetID and the process identifier is the net identifier of the root net, ProcessID ∈ NetID.
Furthermore, each net has, among others, a set of conditions C, an input condition
i ∈ C, an output condition o ∈ C, and a set of tasks T and there is a flow relation
F ⊆ (C \ {o} × T) ∪ (T × C \ {i}) ∪ (T × T).

We use the following auxiliary functions from [19]. The pre-set of x is defined as
•x = {y ∈ C ∪ T | (y, x) ∈ F} and the post-set of x is defined as x• = {y ∈ C ∪ T |
(x, y) ∈ F}. We also introduced other auxiliary functions. The set of tasks that directly
or through a place precedes a task ts is referred to as the task pre-set of t and is defined
as ◦t = {x ∈ T | x ∈ •t ∨ ∃y ∈ C[y ∈ •t ∧ x ∈ •y]}. Similarly, the task post-set of t
is defined as t◦ = {x ∈ T | x ∈ t • ∨∃y ∈ C[y ∈ t • ∧x ∈ y•]}. Finally, to detect all
the successors of a task, it is defined as t◦∗ and it is the transitive closure of t◦.

Following the convention in [19], we write e.g. Tn to access the tasks of net n.
Moreover, for a YAWL specification y, Ty is the set of tasks that occur in any of its

Automated Risk Mitigation in Business Processes 217

nets, i.e. Ty = ∪n∈NetIDTn, and for a set of YAWL specifications Y , TY is the set of
tasks that occur in any of the nets of any of the specifications, i.e. TY = ∪y∈Y Ty.

In our context we have only one Organizational model [19] and what is relevant
for us is the set of resources, UserID , to whom work items can be assigned. Fi-
nally, we defined the set of skippable tasks as {t ∈ TY | ∃r ∈ UserID [skip ∈
UserTaskPriv (r, t)]}.

The set StatusType contains the various statuses that a work item may go
through during its lifecycle. These are: offered , allocated , started , completed ,
forceCompleted , cancelled , failed , deadlocked used by the YAWL system and addi-
tionally deoffered , deallocated , destarted , rollback , skipped used for mitigation pur-
poses. Many of these statuses are self-explanatory. The status rollback is the status of a
work item which was completed but then enabled again though not offered . The status
skipped is the status of a work item that was skipped, which is similar to the status
completed but the work item was not actually performed. For convenience, we provide
certain groupings of event types. In particular, Rel � StatusType\ {cancelled , failed ,
rollback} is the set of event types that identify a work item as subject to mitigation.
Active � {offered , allocated , started} is the set of event types that mark a work item
as in progress, Completed � {completed , forceCompleted} is the set of event types
that mark a work item as completed, and ActiveC : Active ∪Completed is their union.

Given set ActiveC we define a partial order ⊆� ActiveC × ActiveC such that it
preserves the partial ordering deoffered < offered < allocated < started < completed
= forceCompleted .

Definition 1 (Log). In the context of a set of YAWL specifications Y , with associated
set of tasks TY and a set of root nets R, a log is defined as L = (E , W , C, Model , WI ,
Case, Task , EvType , Time, Res, Inp, Outp) where:

– E is a set of events,
– W is a set of work items,
– C is a set of case identifiers,
– Model : C → R is a function relating cases to the root nets of the associated YAWL

specification,
– WI : E → W is a surjective function relating events to work items,
– Case : E → C is a surjective function relating events to cases,
– Task : W → TY is a function relating work items to tasks,
– EvType : E → StatusType is a function relating events to work item statuses,
– Time : E → T is an injective function relating events to timestamps, hence no two

events in the log can have identical timestamps,
– Res : E → 2UserID is a function relating events to sets of resources, as some events

may concern multiple resources (e.g. a work item being offered),
– Inp : E × Var � Ω is a partial function relating events and variables to (input)

values,
– Outp : E×Var � Ω is a partial function relating events and variables to (output)

values.

Definition 2 (Event Comparison). Let L be a log, given E ′ ⊆ E , E ′ �= ∅, we define the
operators e1 < e2 iff Time(e1) < Time(e2) and e1 � e2 iff Time(e1) ≤ Time(e2),

218 R. Conforti et al.

which reflect the temporal ordering on events, and the operators min E ′ = e1 iff e1 ∈ E ′

and for all e2 ∈ E ′, e1 � e2, which determines the earliest event of an event set, and
max E ′ = e1 iff e1 ∈ E ′ and for all e2 ∈ E ′, e2 � e1, which determines the latest event
of an event set.

Useful is the possibility of identifying events belonging to the same work item.

Definition 3 (Work Item Event Grouping). Let L be a log, e an event in this log,
e ∈ E , and w a work item in this log, w ∈ W , we define the set of events that belong
to work item w as WI(w) � {e ∈ E | WI (e) = w}. Similarly, we define the set of
events that belong to the same work item of e as WI(e) � WI(WI (e)). Finally, the
latest event for work item w is defined as ωw � max WI(w).

As for events we are interested in being able to compare work items.

Definition 4 (Work Item Comparison). Let L be a log, with w1, w2 ∈ W , we define
w1 < w2 as max WI(w1) < min WI(w2). This operator reflects the partial temporal
order between work items, i.e. work item w1 precedes work item w2 if its latest event is
earlier than the earliest event of w2.

An execution graph for a process case provides a view of its execution and is defined
on the basis of a log and its corresponding process model.

Definition 5 (Execution Graph). Let L be a process log with case c, Y its YAWL
specification, and UserID the set of resources, we define the execution graph of c as
G(c) = (Node, NodeTask , Status,�, NodeRes , TimeNode , VarNode) where:

– Node = {w ∈ W | EvType(ωw) ∈ Rel ∧Case(w) = c} is the set of nodes, where
each node represents a work item that is not modifiable,

– NodeTask = Task |Node is the restriction of the function Task to the set of nodes,
– Status = {(ωw, s) ∈ Node × Rel | s = EvType(ωw)} is a function relating a

node with its status of execution,
– �= {(w1, w2) ∈ Node × Node | Status(w1) ∈ {completed , skip} ∧

NodeTask (w1) ∈ ◦NodeTask(w2) ∧ �w3 ∈ Node[(NodeTask (w1) =
NodeTask (w3) ∨ NodeTask (w2) = NodeTask (w3)) ∧ w1 < w3 ∧ w3 < w2])}
is the flow relation between work items. Its reflexive transitive closure is defined as
�∗,

– NodeRes = {((w, s), r) ∈ (Node × Active) × 2UserID | ∃e1 ∈
WI(w)[EvType(e1) = s ∧ r = Res(e1) ∧ �e2 ∈ WI(w)[e1 < e2 ∧
EvType(e2) � s]]} is a function that yields the resources that are involved in the
latest changing w to status s,

– TimeNode = {((w, s), t) ∈ (Node × ActiveC) × T) | ∃e1 ∈
WI(w)[EvType(e1) = s ∧ t = Time(e1) ∧ �e2 ∈ WI(w)[e1 < e2 ∧
EvType(e2) � s]]} is a partial function that yields the timestamp when w latest
moved to status s,

– VarNode = {((w, x), v) ∈ (Node × Var) × Ω | EvType(ωw) /∈
{skip, deoffered}∧v = Inp(max {e2 ∈ WI(w) | EvType(e2) = offered}, x)}⊕
{((w, x), v) ∈ (Node × Var) × Ω | EvType(ωw) ∈ Completed ∧ v =
Outp(ωw, x)} is a partial function relating nodes and variables to values.

Automated Risk Mitigation in Business Processes 219

As we explore mitigation options the execution graph should evolve along with it, and
the initial execution graph becomes a dynamic data structure from which we can modify
nodes. We will refer to this modified execution graph as mitigation graph.

The concept of border identifies work items that can be modified. Such work items
are currently in execution, or they are completed work items for which there are no
successor work items that are completed or being executed.

Definition 6 (Border). Let G be a mitigation graph. We define the border of G, �G ,
as {n1 ∈ Node | ∀n2 ∈ Node[n1 �∗ n2 ⇒ Status(n2) ∈ {deoffered , skipped ,
rollback}]}.

Definition 7 (Mitigations). Let Y be a set of YAWL specifications, with associated set
of tasks TY , a set of resources UserID , and a log L. A mitigation is represented as
M = (A,AcType,AcTask ,AcRes,AcCase,�) where:

– A is a set of mitigation actions,
– AcType : A → {deoffer , deallocate , destart , offer , allocate , start , rollback , skip},

is a function relating actions to types of mitigation,
– AcTask : A → TY is a function relating actions to tasks,
– AcRes : A� UserID is a partial function relating actions to resources,
– AcCase : A → C is a function relating actions to cases,
– �⊆ A ×A is a total ordering on mitigation actions indicating the order in which

they need to be performed. We refer to this total ordering as the mitigation se-
quence.

The insertion of a new mitigation action a /∈ A into mitigation M , can be expressed as
addMit (M, a, et, t, r, c) � (A∪{a},AcType∪{(a, et)},AcTask ∪{(a, t)},AcRes∪
{(a, r)},AcCase ∪ {(a, c)},� ∪{(x, a) | x ∈ A}).

Now we are in a position to introduce the mitigation actions. For each action we
will provide a short description of its behavior; we will quantify its cost and specify
the precondition(s) required for its application. All these actions are executed in the
context of a mitigation M . As soon as a risk is detected we collect the log L containing
all process cases. This log is used to generate an execution graph G′, that we refer to as
the original execution graph. It is used as a reference for comparison with the original
status of the system. The effects of mitigations actions are explored, though not yet
applied, during execution of the mitigation algorithm, and hence they are performed on
a clone of the original execution graph which we will refer to as G.

Throughout the remainder of this section G′ is the original execution graph, G the
mitigation graph in use, and c ∈ C is a case. Moreover, whenever a node is modified,
we need to store the time this modification occurred. In order to capture the time, we
use function curr().

A mitigation is a sequence of mitigation actions. Below we describe the mitigation
actions supported by the PRSA algorithm, and the effects that each action yields. Due
to space issues, only some actions are fully furnished in the form of an algorithm in this
paper. We refer the reader to the technical report for the algorithms of all mitigation
actions [13].

Deoffer. This action deoffers a task from a resource to whom the task was offered.
We can execute deOff (c, G, M) as described in Algorithm 1 if there is a work item

220 R. Conforti et al.

x ∈ �G such that x is an offered work item. The cost of this action was set to 1 and
this action serves as a reference for the cost of the other actions. With reference to
our working example, let us assume that for certain process instances an order cannot
be updated (e.g. when an order’s line items have already gone into production their
quantity can no longer be reduced). To prevent such update, we can set a risk condition
that is satisfied as soon as a work item of task “Update Shipment Payment Order” is
offered to a resource in a specific instance. This risk can be annulled by deoffering this
work item and then skipping the work item altogether to prevent it from being reoffered.

Deallocate. This action deallocates a task from the resource to whom the task was
allocated. If there is a work item x ∈ �G such that x is an allocated work item, we
can execute deAll(c, G, M). We set the cost of this action to 2, since considering the
progress status of a work item, deallocating a work item should be more “expensive”
than deoffering it. In the Payment subprocess this action could be used to mitigate
the approval fraud risk. The work item of “Approve Shipment Payment Order” can be
deallocated from the resource to whom this work item is allocated when the risk is
detected, since this resource approved another order for the same customer in the past.

Destart. This action brings an already started work item back to the state allocated
and allocates it to the resource who started it. We can execute deSta(c, G, M) if there
is a work item x ∈ �G such that x is a started work item. For this action we set the
cost to 3 as destarting a work item requires more effort than deallocating a work item.
The destart action may also be used to mitigate an approval fraud risk. For example,
it may be used to “free up” a resource who has never approved an order for the current
customer, reducing this way the probability of allocating the work item of “Approve
Shipment Payment Order” to a resource who has approved another order for the same
customer in the past.

Offer. This action offers a work item to a resource to whom the task is not currently
offered, either because it is not yet part of the set of resources to whom the task is
currently offered, or because the task is currently deoffered . Given a function D that
relates tasks to the set of resources to whom their work items can be offered, we can
execute off (D, c, G, G′, M) if there is a work item x ∈ �G such that x is an offered
or deoffered work item, and this work item is an offered , allocated or started work
item in the execution graph G′. This action has a cost of 1, the same as deoffer . Since
this action can only be executed if we previously executed a deoffer , these two actions
can be combined to “reoffer” a work item to another resource (with a total cost of 2).
For example, to reduce the risk of approval fraud in the Payment subprocess, we can
deoffer the work item of “Approve Shipment Payment Order” from all Senior Financial
Officers that have already approved another order for the same customer in the past, and
offer that work item to a Senior Financial Officer that does not satisfy this condition.

Allocate. This action reallocates a work item that was deallocated before (and still
has not been allocated) to a resource to whom the task was not allocated when the
deallocation took place. We can execute all (c, G, G′, M) if there is a work item x ∈
�G such that x is an offered work item, and x is originally an allocated or started work
item. This action has a cost of −1. This action can only be executed if we previously
executed a deallocate , with the result of changing the resource involved in a work item
(so the total cost is 2− 1 = 1). We can use the combination deallocate + allocate as an

Automated Risk Mitigation in Business Processes 221

Algorithm 1: Deoffer Task
function deOff (Case c, Mitigation Graph G, Mitigation M);
Output: Execution Graph G, Mitigation M
begin

n ⇐ Any({x ∈ �G | Status(x) = offered});
if n �=⊥ then

r ⇐ Any(NodeRes(n, offered));
if |NodeRes(n, offered)| > 1 then

et ⇐ offered ;
TimeNode ⇐ TimeNode ⊕ {((n, offered), curr())};
NodeRes ⇐ NodeRes ⊕ {((n, offered),NodeRes(n, offered) \ {r})};

else
et ⇐ deoffered ;
TimeNode ⇐ {(n, offered)} –� TimeNode;
NodeRes ⇐ NodeRes(n, offered) –� NodeRes ;
VarNode ⇐ {(n, v) | VarNode(n, v) ∈ Ω} –� TimeNode;

Status ⇐ Status ⊕ {(n, et)};
M ⇐ addMit(M,NewAction(), deoffer ,NodeTask(n), r, c);

return (G, M)
end

alternative to mitigate the risk of approval fraud. With a total cost of 1, this combination
would be preferred to using deoffer + offer .

Start. This action restarts a work item that was previously destarted (and has not yet
been restarted) and associates it with a different resource from the one who started the
task. We can execute sta(c, G, G′, M) if there is a work item x ∈ �G such that x is
an allocated work item, and x is originally a started work item. The cost of this action
is −1, and the reasoning is similar to that used for the allocate action. This mitigation
action can be used to reduce the negative impact of a deoffer or deallocate previously
performed on a process instance.

Rollback. This action returns a completed work item to the status of unoffered.
We can execute rollbackTask (c, G) if there is a work item x ∈ �G such that x is
a completed work item. Its operationalization is described in Algorithm 2. The roll-
back action restores the case to a consistent status where the execution of a given work
item never happened. A compensation routine can be associated with a task, so that it
is triggered when the task is rolled back. The idea of this compensation routine is to
deal with elements outside the control of the workflow engine (e.g. returning the money
to a client after their payment has been rolled back). The rollback action is our most
powerful action and has a cost of 9, obtained by adding the absolute values of all the
actions introduced until now. In our Payment subprocess, we can use this action when
we execute a large number of updates on the same Payment Order.

Skip. This action marks an unoffered and skippable task as ‘to be skipped’. If there
exists a task t ∈ skippable which does not have any work item active or completed,
and there not exists a mitigation action a ∈ A which skipped task t for case c, then
we define skipTask (c, G). To limit the use of this action, since this action may produce

222 R. Conforti et al.

Algorithm 2: Rollback Task
function rollbackTask (Case c, Execution Graph G, Mitigation M);
Output: Execution Graph G, Mitigation M
begin

n1 ⇐ Any({x ∈ �G | StatusG(x) ∈ Completed});
if n1 �=⊥ then

foreach n2 ∈ NodeG do
if n1 �∗

G n2 then StatusG ⇐ StatusG ⊕ {(n2, rollback)};

StatusG ⇐ StatusG ⊕ {(n1, rollback)};
M ⇐ addMit(M,NewAction(), rollback ,NodeTaskG(n1),⊥, c);

return (G, M)
end

inconsistency in the data, we decided to assign a cost of 9. The utility of this action can
be seen in two situations when we consider our running example. The first situation is
the order unfulfillment. In this case, to prevent the reiterated execution of an update, we
may decide to skip the “Update Shipment Payment Order” task. The second situation
is the overtime process risk. In this case we may decide to skip some tasks in order to
complete the process in time.

Relocate Resource. This action looks for a resource that is only involved in the
execution of a work item belonging to a case for which no risk was defined. If once such
a resource is found, it deallocates (and destarts if necessary) the work item associated
with this resource and allocates the resource to a work item of the process case that
we want to mitigate. The cost of this action is 7 since this action performs a (partial)
sequence of destart and deallocate on two work items, and another allocate and a start
action on one work item. Let x be an active border work item x ∈ �G in case c, r be
a resource involved only in case c2, and c2 be process which is not risky. If resource
r only started or allocated one work item (of any active border events), then we can
execute relRes(c, G, M,SRC).

4 Evaluation
We implemented the PRSA algorithm as a custom service in the YAWL system.2 We
extended the YAWL system as it is built on a service-oriented architecture, which fa-
cilitates the addition of new services; it is open-source, which facilitates its distribution
among academics and practitioners; and as the underlying YAWL language provides
comprehensive supports for the workflow patterns [19].

The risk mitigation service interacts with the risk detection service3 that we devel-
oped previously [12], for the sake of identifying risks and computing their probabilities.
It uses as input a reference to the process instance whose risks need to be mitigated, the
complete YAWL specification for this instance, a log of the process (as extracted from
the YAWL system), and a copy of the risk sensors associated with the process instance,
as provided by the risk detection service. Modifications that a mitigation may introduce

2 http://www.yawlfoundation.org
3 http://www.yawlfoundation.org/prsa

http://www.yawlfoundation.org
http://www.yawlfoundation.org/prsa

Automated Risk Mitigation in Business Processes 223

are communicated to the risk detection service, which recomputes the risk probabili-
ties. The final solutions are returned to the user as recommendations. The one chosen
by the user is then applied to the process instance under exam using the APIs provided
by the YAWL engine. We implemented compensation actions associated with rolled
back work items via the YAWL Worklet mechanism [19]. Accordingly, we equipped
the YAWL Editor with an interface to allow users to associate a Worklet containing a
compensation action to a task. When an instance of this task is rolled back, the associ-
ated Worklet is run as a separate process instance in the YAWL engine, so that from an
engine perspective, the Worklet and its invoking processes are two distinct cases.

To prove the feasibility of our approach, we ran three experiments. First, we tested
the required time to mitigate the same set of risks on different process models. Second,
we checked the dependency of the mitigation time on different variables. Third, we
checked the quality of the mitigations proposed on a specific process model.

For the first experiment, we used four real-life process models available to the re-
search team, for which we could identify risk conditions. The sizes of these models
range from 5 to 20 tasks. The first model (Process A) describes a film production pro-
cess, carried out on a daily basis. This process is taken from a case study we conducted
in collaboration with the Australian Film, Television and Radio School [25]. The other
three models are subprocesses of an order fulfillment process inspired by the VICS in-
dustry standard for logistics [34]. The first one (Process B) deals with the ordering, the
second (Process C) deals with the payment for the goods and is the process we showed
in Section 2, the third model (Process D) deals with the delivery of the goods.

Next, we defined seven generic risk conditions that are applicable to all these pro-
cesses, where with “generic” we mean risks that are not linked to a specific context,
such as a financial frauds, but that are linked to control-flow aspects. These condi-
tions represent possible undesirable situations that may arise in a process, and relate
to different process aspects such as data, resources and control-flow elements. They
are domain-independent so that we could define them on all four process models. The
first condition detects a situation where two concurrent work items may not complete
in a desired order. The second one is used to detect a violation of the four-eyes princi-
ple between parallel work items. The third one detects whether a time limit is exceed
when executing a loop. The fourth condition detects a possible delay with the execution
of a work item. The fifth one detects the possibility that two concurrent work items
that should be executed by the same resource are actually allocated to two different
resources (a situation that is not possible to enforce with many workflow management
systems). The sixth one detects a delay with the execution of a portion of the process
while the seventh one detects a data error, specifically if the data values produced by
two concurrent work items are not the same.

For each process model we generated a variant with a specific combination of
the above risk conditions. This led to a total of 180 process models (not every risk
identified could be applied to every process model, since some of these risk condi-
tions require parallelism and/or loops that are not present in every process model).
These process models are as follows: 19 models with 1 risk condition, 40 models
with 2 risk conditions, 50 with 3 risk conditions, 41 models with 4 risk conditions,

224 R. Conforti et al.

Table 1. Time and number of candidate solutions explored to
find the first solution

Process Size Variants Risks Mitigation time [sec] Candidates
avg/max min max avg min max avg

Process A 20 127 3.53 / 7 0.003 178.891 26.415 2 20,181 3,456
Process B 5 7 1.71 / 3 0.001 0.033 0.015 3 54 32
Process C 15 31 3.05 / 5 0.001 0.117 0.030 2 256 60.93
Process D 5 15 2.13 / 4 0.004 0.929 0.170 2 553 78.2

Total 45 180 3.18 / 7 0.001 178.891 18.657 2 20,181 2,457

22 process models with five
risk conditions, seven pro-
cess models with six risk
conditions, and one process
model with all seven risk
conditions.

For each process model
we ran ten tests and aver-
aged the results. Each test was executed on the first state of a process instance where
all the risk conditions evaluated to true. For each group of tests on the same process
model we measured the time required to obtain the first solution that mitigates all risks,
and the number of candidate solutions generated by the algorithm in order to obtain
this solution. We performed the tests on an Intel Core I5 M560 2.67GHz processor with
4GB RAM, running Linux Lubuntu v11.10.

Table 1 shows the results of this experiment. The second, third and fourth columns
show the size (as number of tasks), the number of variants and the number of risk
conditions for each of the four process models. The fifth and sixth columns show the
mitigation time required to find the first solution, and the number of candidate solutions
explored to find such a solution. From this table we can observe that the algorithm takes
at most 3 mins (179 secs) to mitigate multiple risks in a variant of Process A (this timing
refers to a combination of 5 risks for this process), though the average time is much
lower (19 secs across all models). It seems reasonable to assume that in most business
scenarios mitigation times in the order of a few minutes are acceptable, compared to
the average time required to perform a task, and thus the average duration of a process
instance. For example, let us assume an average duration of 24 hours for the Payment
subprocess, with a new task being executed every 30 mins. Let us also assume that we
sample the risk conditions every 5 mins. This means we have up to 6 mins to mitigate
all identified risks before a new task is executed which may change the risk conditions.

Table 1 also shows that the algorithm needs to explore a very large number of can-
didate solutions to find the first solution (2,456 solutions on average across all models).
While it is not fair to compare the computation power of a machine to that of humans,
this result highlights the complexity of finding a solution. It is reasonable to think that
many of these candidate solutions explored by the algorithm would also need be evalu-
ated by a human in order to find the right solution.

R² = 0.7411

0.00

0.00

0.01

0.10

1.00

10.00

100.00

1000.00

10000.00

0 2 4 6 8 10

Time #Tasks in isk ondition

Fig. 3. Correlation between time and a) risks/tasks ratio, b) tasks in risk conditions

Automated Risk Mitigation in Business Processes 225

In the second experiment, we investigated the factors affecting the performance of
the algorithm. One would think that the mitigation time is proportional to the number of
risks defined in a process model, and to the model size itself. The larger the number of
risks and/or the model size, the longer it should take to mitigate such risks. However the
data we extrapolated from Table 1 does not confirm this hypothesis. For example, the 21
variants of Process A with 5 risks have mitigation times ranging from 3.3 to 179 secs,
despite their sizes and number of risks being the same. To verify that the mitigation time
is not sensitive to the number of risks, nor to the process size, we plotted the correlation
between the mitigation time and the ratio risks/process size in Figure 3a (the solid line is
the linear regression of the points). The low value of the coefficient of determination R2

(0.07) confirms this intuition. We then checked the correlation between the mitigation
time and the number of tasks used in risk conditions. The intuition is that the more
work items of these tasks are pending in a given state of the process instance, the larger
the number of possible mitigation actions. The corresponding scatter plot is shown in
Figure 3b, which indeed confirms this intuition (R2 = 0.74).

Finally, we checked the feasibility of the solutions proposed by the algorithm, when
mitigating the domain-specific risks associated with the Payment subprocess (cf. Sec-
tion 2). We recall that two of these risks (overtime process and order unfulfillment) are
detected when the associated probability, obtained by analyzing historical data, exceeds
a tolerance threshold, whereas the third risk (approval fraud) involves a complex risk
condition. We considered the first state of an instance of the Payment subprocess when
all three risks are active. This occurs after executing “Update shipment payment order”
for the third time, once task “Approve shipment payment order” has been allocated to a
resource who has already executed this task in the past.

Table 2. Payment subprocess mit-
igation

Solutions [at 1 min] 1 2 3 4 5
Overtime Process + + + + +
Approval Fraud + + + + +

Order Unfulfillment + + ± ± −
Cost 50 50 40 40 19

To obtain a small number of solutions, we stopped
the algorithm after one min of execution. In this time-
frame, five solutions were retrieved. For each solution,
Table 2 reports whether the solution mitigates each of
the three risks, and the cost of the solution in terms
of mitigation actions performed on the initial process
instance. In particular, a “−” indicates a risk not miti-
gated, a “+” indicates a risk mitigated (with risk prob-
ability lower than the specific threshold if the condition depends on the risk probability),
and a “±” indicates a risk mitigated whose condition cannot be computed for lack of
information, i.e. some of the variables used in the risk condition are null. We recall that
the algorithm prioritizes a solution whose risk is mitigated by computing the risk con-
dition, than a solution whose risk is mitigated because the respective condition cannot
be computed.

The five solutions identified are pairwise mutually non-dominating. Solutions 1 and
2 are dominated by solutions 3, 4 and 5 cost-wise, but dominate these solutions w.r.t.
the mitigation of the order unfulfillment risk. Solution 5 dominates solutions 3 and
4 cost-wise but is dominated by these two solutions w.r.t. the mitigation of the order
unfulfillment risk.

Let us briefly examine the mitigations performed by the five solutions. The first four
solutions mitigate the approval fraud by deallocating the resource that was allocated

226 R. Conforti et al.

“Approve shipment payment order”, while solution 5 additionally allocates the work
item to a resource who did not execute this task for the same customer in the past. All
these mitigations are feasible, though the one provided by solution 5 is more robust,
since there is no risk that the task gets allocated to a resource who has already exe-
cuted it. The order unfulfillment risk is mitigated by solutions 1 and 2 through rolling
back the work item of task “Update shipment payment order” (which leads to a deoffer
of the work item of task “Approve shipment payment order” that comes afterwards).
Solutions 3 and 4 do this too but also mark this task ‘to be skipped’ preventing a pos-
sible re-execution of it. This action sets to null the risk variables associated with this
task that retrieve the number of executions and its estimated remaining time making
the risk mitigated but not computable. Thus, while all four solutions are feasible, we
would prioritise the first two since these ensure that the risk probability has actually
dropped below the threshold. Finally, all solutions differ in the way they mitigate the
overtime process risk. Each of them skips a different task among those not yet executed
(for simplicity, all of them have the same estimated duration). Despite the fact that all
these solutions are feasible, only the mitigation proposed by solution 3 is interesting
since it proposes to skip tasks “Update Shipment Payment Order” and “Approve Ship-
ment Payment Order” avoiding this way that the loop is taken again. In other words, it
prevents the order to undergo further updates, and subsequent approvals.

5 Related Work

Risk mitigation is an essential step in the risk management process [29]. Several risk
analysis methods such as OCTAVE [4], CRAMM [6] and CORAS [22] describe guide-
lines for identifying risk mitigations. For example, these guidelines provide instructions
on how to conduct structured brainstorming sessions with experts in order to identify
viable mitigation procedures. Although helpful, these guidelines are too generic and
no support is offered on how mitigation procedures could be operationalized. Simi-
larly, the academic literature recognizes the importance of mitigating process-related
risks, though it focuses on risk-aware BPM methodologies in general, rather than on
concrete algorithms for automating risk mitigation [24,20,14,30,27,8,33]. For exam-
ple, the ROPE (Risk-Oriented Process Evaluation) methodology [33] is concerned with
threats to the resources required for process execution. If a required resource becomes
unavailable, pre-planned countermeasures and recovery procedures are manually en-
acted to handle the fault. These procedures are defined and validated via a simulator at
design-time; enactment at runtime is designated to a ‘responsible person’, that is, the
mitigation and recovery operations are not automated. For a comprehensive survey of
these risk-aware BPM methodologies, we refer to [31].

The mitigation actions proposed in this paper share commonalities with the work-
flow exception patterns [26]. For example, the reoffer pattern at the work item level
can be obtained by combining our mitigation actions deoffer + offer, which represent
atomic operations in this respect. Another similarity is between our rollback action and
the recovery patterns rollback and compensate, since our rollback can also trigger a
compensation action if this is available for the task being rolled back. Given that we
need to operationalize these actions, we do provide a precise characterization of all ac-
tions and their effects, whereas the work in [26] limits itself to a textual description

Automated Risk Mitigation in Business Processes 227

of these exception patterns, as they are observed from an analysis of process modeling
languages and tools. That said, the main contribution of our paper is not the proposed
set of mitigation actions per se (which could be replaced or modified) but rather an au-
tomated mechanism for combining these actions in an optimal way in order to mitigate
a set of process-related risks as far as possible.

Risks like those we illustrated in this paper can also be encoded as constraints on
top of a process model. Approaches exist that can check whether there exists at least
an instance of a constrained process model that can be executed without violating the
constraints. For example, Combi and Posenato [10] propose a general method for check-
ing the satisfiability of temporal process constraints (like our overtime process risk) at
design-time. Other approaches can also enforce these constraints at run-time, so that
any process instance will satisfy all the constraints by construction. For example, Tan
et al. [32] propose a model for constrained workflow execution that addresses cardinal-
ity constraints (e.g. to control how many times a task can be executed), binding of duty
constraints (i.e. the ability of a resource to retain a familiar work item) and separation
of duty constraints (i.e. different resources should execute different tasks). These con-
straints can be enforced only within a given process instance. The approach proposed
by Warner and Atluri [35] overcomes this limitation by proposing a constraint speci-
fication language for resource allocation that also addresses inter-instance constraints.
Compared to our work, constrained workflow execution provides a rigid approach ac-
cording to which if the constraints cannot be satisfied, a process model will simply not
be instantiated, or if instantiated, the instance violating the constraints will throw an
exception. Commercial systems such as IBM WebSphere and AristaFlow also support
constrained workflow execution, and handle these violations (e.g. violations of tempo-
ral constraints) by escalating control to a process administrator.4 Instead, our approach
allows a process instance to be automatically adapted on-the-fly in order to reduce the
risk of violating such constraints.

Various research frameworks have been proposed for the dynamic adaptation of pro-
cess instances. For example, ADEPT [15] supports adding, deleting and changing the
sequence of tasks at both the model and instance levels, however such changes must
be achieved via manual intervention by an administrator. AgentWork [23] provides the
ability to modify process instances by dropping and adding individual tasks based on
events and rules. CBRFlow [36] uses case-based reasoning to support runtime adapta-
tion by allowing users to annotate rules during process execution. CEVICHE [18] is
a service-based framework that uses the AO4BPEL (Aspect-Oriented for BPEL) lan-
guage [9] to provide an option for skipping or reallocating tasks to other services in
an ad-hoc manner. While these approaches could be used for risk mitigation purposes,
they do not provide any help for the identification of which particular mitigation actions
should be used. The YAWL Worklet Service [3] provides each task of a process instance
with the ability to be associated with an extensible repertoire of actions (‘drop-in’ pro-
cesses), one of which is contextually and dynamically bound to the task at runtime. It
also supports capabilities for dynamically detecting and handling runtime exceptions.

4 http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/
index.jsp?topic=/com.ibm.wbit.612.help.tel.ui.doc/topics/
tescal8.html

http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.jsp?topic=/com.ibm.wbit.612.help.tel.ui.doc/topics/tescal8.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.jsp?topic=/com.ibm.wbit.612.help.tel.ui.doc/topics/tescal8.html
http://publib.boulder.ibm.com/infocenter/dmndhelp/v6r1mx/index.jsp?topic=/com.ibm.wbit.612.help.tel.ui.doc/topics/tescal8.html

228 R. Conforti et al.

However the approach is generic and not specifically designed for risk detection and
mitigation. Also a new situation cannot automatically be dealt with but requires a work-
flow administrator to intervene.

Our work is also related to operational support in process mining [1]. Operational
support deals with the analysis of current and historical execution data, with the aim
to predict future states of a running process instance, and provide recommendations to
guide the user in selecting the next activity to execute based on certain objectives. For
example, the approach for cycle time prediction in [2] could be, with the opportune
modifications, adapted for risk prediction. Using this approach it would be possible
to estimate the probability of an overtime risk and suggest the next steps the current
instance should take in order to keep this risk under control. The application of this
approach unfortunately requires that the process model captures all the possible mitiga-
tion actions as normal activities, i.e. as control-flow alternatives. For instance, if a task
can be skipped, there should be a path without that task that leads to the end node of
the process model. This may drastically increase the complexity of the process model.
Moreover, this approach would not be applicable to capture mitigation operations on
resources (i.e. deallocating a resource) or on task states (e.g. suspending a task). That
said, more in general, our approach could be seen as a possible provider for operation
support, and could thus be integrated in process mining environments like ProM.5

Our work provides recommendations to users as to which mitigation actions can be
applied to the specific context at hand. As such, it shares commonalities with recom-
mendation and decision support systems. Alter [5] states that the focus of such systems
should be towards improving decision making within work systems, rather than exter-
nalizing support. This view is shared by our technique, which provides an extension to
existing process-aware information systems, rather than a separate standalone tool. As
such, it may be considered a member of the domain known as Group Decision Support
Systems, which facilitate task support in group environments.

In previous work [17] we explored the use of dominance-based MOSA for auto-
matically fixing behavioral errors in process models, at design-time. Our work on risk
mitigation can thus be seen as an adaptation of that idea to run-time aspects, since we
aim to improve running process instances. Besides their distinct aims, the main differ-
ence between the two approaches is that for correcting behavioral errors we defined
three objective functions capturing the structural and behavioral similarity of a solu-
tion to the incorrect model, whereas in risk mitigation the number and type of objective
functions depends on which risks are active in a given state of a process instance.

6 Conclusion

This paper contributes a concrete technique for the automatic mitigation of process-
related risks at run-time. The technique requires as input an executable process model
and a set of associated risk conditions. At run-time, when one or more risk conditions
evaluate to true, a process administrator can launch our technique to mitigate the iden-
tified risks and bring the process instance back to a safe state. This is achieved by gen-
erating a set of possible mitigations that change the current instance in order to bring

5 http://processmining.org

http://processmining.org

Automated Risk Mitigation in Business Processes 229

the likelihood of the identified risks below a tolerance level. These mitigation actions
are not performed directly on the instance under consideration. Rather, their effects are
simulated and those solutions that mitigate the most risks in a given timeframe, are
proposed as recommendations to the process administrator.

The mitigation actions are determined via a dominance-based MOSA algorithm.
This choice allows us to explore the solution space as widely as possible, avoiding
local optima. In essence, each risk is treated as an objective function whose likelihood
needs be minimized. The objective is reached as soon as the likelihood goes below the
tolerance value for that particular risk. Mitigation actions affect various aspects of a
process, such as task execution and resources utilization. To the best of our knowledge,
this is the first time that process-related risks can be mitigated automatically.

The technique was implemented in the YAWL system and its performance evaluated
with real-life process models. The tests show that on the analyzed process models a set
of possible solutions can be found in a matter of seconds, or within a few minutes in
the worst case, and that in all cases the associated risks are mitigated. We expect this
technique to reduce the effort and time required by process administrators to understand
what mitigation actions are feasible based on a particular state of the system. That said,
we still need to validate the feasibility and appropriateness of the proposed mitigation
actions with domain experts. We plan to do so by comparing the solutions obtained with
our algorithm with those proposed by them. We also plan to improve the exploration
of the solution space by prioritizing the mitigation of those risks that have the highest
impact on the process objectives. In fact, currently all risks are treated alike whereas
in reality this might not be the case. Finally, the algorithm could also be extended to
prioritize certain mitigation actions based on how these have been ranked by the users
in previously mitigated instances.

Acknowledgments We thank Peter Hughes and Wil van der Aalst for their valuable
comments and suggestions. This research is funded by the ARC Discovery Project
“Risk-aware Business Process Management” (DP110100091) and by the NICTA
Queensland Lab.

References

1. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Busi-
ness Processes. Springer (2011)

2. van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process
mining. Information Systems 36(2), 450–475 (2011)

3. Adams, M., ter Hofstede, A.H.M., van der Aalst, W.M.P., Edmond, D.: Dynamic, Extensible
and Context-Aware Exception Handling for Workflows. In: Meersman, R., Tari, Z. (eds.)
OTM 2007, Part I. LNCS, vol. 4803, pp. 95–112. Springer, Heidelberg (2007)

4. Alberts, C.J., Dorofee, A.J.: OCTAVE criteria, version 2.0. Technical Report CMU/SEI-
2001-TR-016, Carnegie Mellon University (2001)

5. Alter, S.: A work system view of DSS in its fourth decade. In: DSS, vol. 38 (December 2004)
6. Barber, B., Davey, J.: The use of the CCTA Risk Analysis and Management Methodology

CRAMM in health information systems. In: MEDINFO. North Holland Publishing (1992)
7. Basel Committee on Bankin Supervision. Basel II: International Convergence of Capital

Measurement and Capital Standards (2006)

230 R. Conforti et al.

8. Betz, S., Hickl, S., Oberweis, A.: Risk-aware business process modeling and simulation using
xml nets. In: IEEE CEC, pp. 349–356 (September 2011)

9. Charfi, A., Mezini, M.: AO4BPEL: An aspect-oriented extension to BPEL. In: WWW (2007)
10. Combi, C., Posenato, R.: Controllability in Temporal Conceptual Workflow Schemata. In:

Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 64–79.
Springer, Heidelberg (2009)

11. International Electrotechnical Commission. IEC 61025 Fault Tree Analysis, FTA (1990)
12. Conforti, R., Fortino, G., La Rosa, M., ter Hofstede, A.H.M.: History-Aware, Real-Time

Risk Detection in Business Processes. In: Meersman, R., Dillon, T., Herrero, P., Kumar, A.,
Reichert, M., Qing, L., Ooi, B.-C., Damiani, E., Schmidt, D.C., White, J., Hauswirth, M.,
Hitzler, P., Mohania, M. (eds.) OTM 2011, Part I. LNCS, vol. 7044, pp. 100–118. Springer,
Heidelberg (2011)

13. Conforti, R., ter Hofstede, A.H.M., La Rosa, M., Adams, M.J.: Automated risk mitigation in
business processes (extended version). QUT ePrints 49331 (2012)

14. Cope, E.W., Kuster, J.M., Etzweiler, D., Deleris, L.A., Ray, B.: Incorporating risk into busi-
ness process models. IBM Journal of Research and Development 54(3), 4:1–4:13 (2010)

15. Dadam, P., Reichert, M.: The ADEPT project: a decade of research and development for
robust and flexible process support. CSRD 23, 81–97 (2009)

16. Dumas, M., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Process-Aware Information Sys-
tems: Bridging People and Software through Process Technology. Wiley & Sons (2005)

17. Gambini, M., La Rosa, M., Migliorini, S., Ter Hofstede, A.H.M.: Automated Error Correc-
tion of Business Process Models. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM
2011. LNCS, vol. 6896, pp. 148–165. Springer, Heidelberg (2011)

18. Hermosillo, G., Seinturier, L., Duchien, L.: Using complex event processing for dynamic
business process adaptation. In: SCC, pp. 466–473. IEEE (2010)

19. ter Hofstede, A.H.M., van der Aalst, W.M.P., Adams, M., Russell, N. (eds.): Modern Busi-
ness Process Automation: YAWL and its Support Environment. Springer (2010)

20. Jallow, A.K., Majeed, B., Vergidis, K., Tiwari, A., Roy, R.: Operational risk analysis in busi-
ness processes. BTTJ 25(1), 168–177 (2007)

21. Johnson, W.G.: MORT: The Management Oversight and Risk Tree. U.S. Atomic Energy
Commission (1973)

22. Lund, M.S., Solhaug, B., Stølen, K.: Model-Driven Risk Analysis: The CORAS Approach.
Springer (2011)

23. Muller, R., Greiner, U., Rahm, E.: AgentWork: a workflow system supporting rule-based
workflow adaptation. Data & Knowledge Engineering 51(2), 223–256 (2004)

24. Neiger, D., Churilov, L., zur Muehlen, M., Rosemann, M.: Integrating risks in business pro-
cess models with value focused process engineering. In: ECIS. AISeL (2006)

25. Ouyang, C., La Rosa, M., ter Hofstede, A.H.M., Dumas, M., Shortland, K.: Toward web-
scale workflows for film production. IEEE, Internet Computing 12(5), 53–61 (2008)

26. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Workflow Exception Patterns. In:
Martinez, F.H., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp. 288–302. Springer, Hei-
delberg (2006)

27. Sienou, A., Lamine, E., Pingaud, H., Karduck, A.P.: Risk driven process engineering in dig-
ital ecosystems: Modelling risk. In: Proc. of IEEE DEST, pp. 647–650 (2010)

28. Smith, K.I., Everson, R.M., Fieldsend, J.E., Murphy, C., Misra, R.: Dominance-based multi-
objective simulated annealing. IEEE TEC 12(3), 323–342 (2008)

29. Standards Australia and Standards New Zealand. Standard AS/NZS ISO 31000 (2009)
30. Strecker, S., Heise, D., Frank, U.: RiskM: A multi-perspective modeling method for IT risk

assessment. Information Systems Frontiers, 1–17 (2010)

Automated Risk Mitigation in Business Processes 231

31. Suriadi, S., Weiß, B., Winkelmann, A., ter Hofstede, A., Wynn, M., Ouyang, C., Adams,
M.J., Conforti, R., Fidge, C., La Rosa, M., Pika, A.: Current research in risk-aware business
process management - overview, comparison, and gap analysis. QUT ePrints 50606 (2012)

32. Tan, K., Crampton, J., Gunter, C.A.: The consistency of task-based authorization constraints
in workflow. In: Proc. of IEEE CSFW, pp. 155–169 (June 2004)

33. Tjoa, S., Jakoubi, S., Goluch, G., Kitzler, G., Goluch, S., Quirchmayr, G.: A formal approach
enabling risk-aware business process modeling and simulation. IEEE TSC 4(2) (2011)

34. Voluntary Interindustry Commerce Solutions Association. Voluntary Inter-industry Com-
merce Standard (VICS), http://www.vics.org (accessed: June 2011)

35. Warner, J., Atluri, V.: Inter-instance authorization constraints for secure workflow manage-
ment. In: Proc. of SACMAT, pp. 190–199. ACM, New York (2006)

36. Weber, B., Wild, W., Feige, U.: CBRFlow: Enabling Adaptive Workflow Management
Through Conversational Case-Based Reasoning. In: Funk, P., González Calero, P.A. (eds.)
ECCBR 2004. LNCS (LNAI), vol. 3155, pp. 434–448. Springer, Heidelberg (2004)

http://www.vics.org

Aligning Service-Oriented Architectures

with Security Requirements

Mattia Salnitri, Fabiano Dalpiaz, and Paolo Giorgini

University of Trento, Italy
{mattia.salnitri,f.dalpiaz,paolo.giorgini}@unitn.it

Abstract. Aligning requirements and architectures is a long-standing
concern in software engineering. Alignment is crucial in the area of
systems evolution, wherein requirements and system architectures keep
changing after system deployment. We address a specific alignment prob-
lem, namely, checking the compliance of a service-oriented architecture—
representing a composite service—with security requirements. Service-
oriented architectures are dynamic (services can be replaced on-the-fly),
and assessing compliance with security requirements is key, since non-
compliance may lead to sanctions as well as privacy violation. After mo-
tivating and describing the problem, we propose algorithms to check two
specific security requirements: non-disclosure and non-repudiation. We
illustrate the approach using an e-government scenario.

Keywords: SOA, alignment, evolution, security requirements.

1 Introduction

The alignment between requirements and software architectures (R/A align-
ment, from now on) is an age-old yet actual problem in software engineering in
general, and in requirements engineering in particular [17, 22]. This problem is
traditionally addressed at design-time in a top-down fashion [2, 16], by providing
methodological guidelines to requirements engineers and system architects for
deriving an architecture that satisfies a given requirements specification.

Though useful at design-time, these approaches are only a partial solution
when considering that both requirements and architectures are subject to evo-
lution after system deployment. Requirements evolve [11] due to changes in the
stakeholders needs, in organizational policies, in norms and laws in the deploy-
ment environment, and as a result of feedback about system operation. Architec-
tural evolution [1] can be either internal—the architecture topology changes—or
external—the specification of components and interactions is altered.

Architectural evolution is driven by requirements evolution, i.e., architectures
need to evolve when they do not satisfy their requirements. Semi-automated run-
time compliance verification requires understanding and formalizing the concep-
tual relationship between requirements and architectural models. The challenge
is to relate these two artifacts, that exploit different modeling abstractions, which
refer to the problem space and the solution space, respectively.

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 232–249, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Aligning Service-Oriented Architectures with Security Requirements 233

In this paper, we are interested in the alignment between security requirements
and service-oriented architectures:

– security requirements are crucial, as non compliance may violate norms, e.g.,
about privacy, or usage / modification of official documents. In turn, this may
imply monetary compensations, dissatisfaction of customers, and decreasing
reputation;

– service-oriented architectures represent an inherently evolving type of ar-
chitecture, where composite services [3] may evolve—either due to designer
intervention or through self-recomposition—when services are replaced or
when the composition structure changes.

Our contribution is a semi-automated approach to support runtime alignment
between composite services and security requirements. First, the analysts are
expected to conceptually connect the architecture specification with the secu-
rity requirements, i.e., linking concepts in the requirements (goals, actors, se-
curity needs) with concepts in the composite service (activity, participant, data
flow). Second, automated algorithms check compliance at run-time, whenever
changes in the architecture or in the requirements occur. Compared to existing
approaches, ours minimizes human involvement after system deployment.

Organization. Sec. 2 presents the baseline languages for security require-
ments and composite services. Sec. 3 details the R/A alignment problem. Sec. 4
describes the conceptual link between the two models. Sec. 5 illustrates two algo-
rithms for checking security requirements: non-disclosure and non-repudiation.
Sec. 6 discusses related work and presents future directions.

2 Baseline

In Sec. 2.1 we introduce the adopted modeling language for security require-
ments, while in Sec. 2.2 the language to describe the architecture of service
compositions.

Example 1 (eGovernment). Land selling involves not only finding a buyer, but
also exchanging documents with governmental bodies. The municipality has to
certify that the land is residential zoning. We suppose land selling is supported by
an eGov application that sends the official contract (including the municipality’s
certification) to the ministry (who can object), and archives the contract. �

2.1 Security Requirements with STS-ml

Many security requirements modeling languages have been proposed so far. Some
extend UML—mainly abuse cases [14] and misuse cases [19]—by adding undesir-
able usage scenarios of the system. In a similar spirit, Lamsweerde [24] extends
goal modeling by adding an anti-model that describes the goals of attackers.
Differently, SI* [9] and Secure Tropos [15] aim at modeling security needs. We
choose STS-ml [5], a goal-oriented language for service-oriented settings, in which
security requirements constrain the interactions between actors.

234 M. Salnitri, F. Dalpiaz, and P. Giorgini

��������

����	
�

��	
�����

������

���������
���� ��	�
	��

��������

���	���

��
���

���	�	���	��

���
���

��������

����	
�

���������
����

��	�
	��

��������

��������	�

���	��

���������	��

������ ���

���	��

��������

����	��

!"�	�����������

#������������

$�����

������ ���

���	��

!"�	�����������

�	�	�������	��

��������

����	��

���������	���	��

������

���

��������	
�����

���

��	
�����

���

������

��	
�����

���

���������

���

������

������

������

���

��������

����	
�

���

���������
����

������
��	
�����

��	�
	��

��������

���

������

���

������

������

��	
�����

������ ���

���	��

����

!"�	��

��������

������

������

���

��	
�����

���

������

�����

��	�

��	

���������������

�������

���������������

�	�������

���������

Fig. 1. STS-ml social view for the eGovernment example

In STS-ml, requirements models are expressed by three views: (i) the social
view describes the main actors, their rationale, goal delegations, and document
provisions (Fig. 1); (ii) the information view defines the relationship between
information and documents (Fig. 2); and (iii) the authorization view represents
the authorizations about information that actors grant one to another (Fig. 3).

Social View. Two types of actors are modeled: agents—concrete entities that
are known at design-time (e.g., eGov application)—and roles—that can be played
by different agents at runtime (e.g., Seller). An actor’s rationale is an AND/OR
goal tree (e.g., the root goal of the Seller is to have her Land sold). To achieve
their goals, actors need, modify, and produce documents (e.g., Seller needs docu-
ment Contract draft to achieve goal Contract finalized). Two social relationships
link couples of actors: goal delegation and document provision. Goal delegations
can be subject to security needs (e.g., non-repudiation, no-delegation, redun-
dancy, . . .). In Fig. 1, the Seller delegates goal Government notified to the eGov
application, requesting the delegatee not to repudiate the delegation.

Information View. Documents and information are linked one to another.
The “Tangible by” relation indicates that an information is represented by a
document. In Fig. 2, Sale information is made tangible by documents Official
contract and Contract draft. The “Part of” relation defines sub-information and
sub-documents. Ownership relates an actor to the information that she owns.

Authorization View. It represents the permissions on information that actors
grant one to another. An authorization is indicated as an arrow connecting two

Aligning Service-Oriented Architectures with Security Requirements 235

��������

	

��	�

������
	����

�����	�����	��

����	�������	��

������

�	������	��� �����

�	���������	����

������
	�

	

��	�

�������� ��������

���	
�������

���	
�������

���	
�������

���	
�������

�����������

���

Fig. 2. STS-ml information view for the eGovernment example

actors with a middle box. Such box details the granted permissions (Use, Modify,
Produce, Distribute) on documents representing specific information. Authoriza-
tions can be limited by defining a scope: one or more goals for whose fulfillment
the permissions are granted. In Fig. 3, the Seller authorizes the Municipality to
use Sale information in the scope of goal Approval provided.

��������	�
�

�		� �������	���
���

������
��	�

����

��	��������
���

��������	

�������	

��������

��������

� � � �

��	��������
���

�������	��������

� � � �

��������	��������	

� � � �

��������	��������	 ��	��������
���

�������
���
���

�������������

��������������������� !��"�
#����$"��������"������%���&

���������������

'����� ���	����&

Fig. 3. STS-ml authorization view for the eGovernment example

Starting from the three views that constitute an STS-ml model, a Security
Requirements Specification (SRS) is derived using the STS-tool1. The specifica-
tion details the security requirements—social commitments between couples of
actors—, as well as a knowledge base, that makes the SRS self-contained.

A social commitment is a quaternary relation C(x,y,p,q), where a debtor ac-
tor x commits to a creditor actor y that, if the proposition p is brought about,
then the proposition q will be brought about [20]. STS-ml supports a special-
ized version of commitments to express security requirements; in particular, the
consequent q is about the satisfaction of a security need.

Table 1 is a partial SRS for the eGovernment scenario. C1 is a security require-
ment about non-repudiation: the eGov application commits to the Seller that,
if goal Government notified is delegated, such delegation will not be repudiated.
Both C2 and C3 concern non-disclosure. In C3, the Municipality commits to the
1 http://www.sts-tool.eu

236 M. Salnitri, F. Dalpiaz, and P. Giorgini

Table 1. Part of the security requirements specification for the scenario in Figures 1-3

Security requirements:
C1: C(eGov application, Seller, D=delegation(Seller, eGov application, Government noti-

fied), non-rep(D)),
C2: C(e-Gov application, Seller, �, non-disc(Municipal approval∧Sale information),
C3: C(Municipality, Seller, �, non-discl(Sale information), . . .
Knowledge base:
part-of(Land details, Sale information), part-of(Price, Sale information), . . .
tangible-by(Sale information, Official contract), tangible-by(Sale information, Contract
draft), . . .
owns(Seller, Sale information), . . .

Seller that Sale information will not be disclosed. The knowledge base describes
relations that enable the understanding of the relationships related to informa-
tion. For example, it describes the information parts that Sale information is
composed of, it details the documents that enable exchanging Sale information,
and information owners.

2.2 BPMN with Security Extensions

We describe the architecture of services composition—i.e., the way services are
interconnected—by using an extended version of the Business Process Modeling
Notation (BPMN) with support for security annotations (inspired by [18]). The
notation we use in this paper can be easily adopted by existing tools, provided
that they include support for representing the data flow between activities and
enable the definition of custom security-related activities.

Create
contract

draft

Examine
draft

Insert
approval ID

Add duty
stamp

Send copy
to ministry

Check copy

Scan
contract

Archive
contract

copy

Review
contract

Fig. 4. Security-extended BPMN for the eGovernment example

Fig. 4 shows a security-extended BPMN model for the eGovernment scenario.
Such model is a set of activities (e.g., Create contract draft) carried out by
different performers (e.g., Athens REA) following the specified control flow (solid
arrows, exclusive and parallel gates). For example, after the real estate company

Aligning Service-Oriented Architectures with Security Requirements 237

Athens REA has completed activity Create contract draft, the municipality of
Athens has to examine the draft. The model also represents the information
flow through labeled dashed arrows, whose label indicates the variable that is
transferred between two performers. So as to determine how an activity uses a
variable, we consider the incoming and outgoing arrows related to that variable:

– Create contract draft produces V1, as it has an outgoing arrow labeled V1
but no incoming arrow;

– Examine draft uses V1, as there is only an incoming arrow labeled V1 ;
– Send copy to ministry may modify V3, as there are both incoming and

outgoing arrows labeled V3.

3 The R/A Alignment Problem

We motivate and illustrate the evolution of requirements and architectures, and
show its implications on R/A alignment. We refer to specific requirements spec-
ifications (business processes) with the labels SRS1, . . . , SRSn (BP1, . . . , BPn).
After illustrating the problem in Sec. 3.1, we analyze the evolution of security
requirements and service compositions in Sec. 3.2 and Sec. 3.3, respectively.

3.1 The R/A Alignment Problem Explained

Fig. 5 shows some possible evolutions of requirements and architectures, and
emphasizes their impact on R/A alignment. At design-time, the service compo-
sition BP1 meets the initial security requirements specification SRS1. When the
composition self-reconfigures at runtime, and is replaced by another composition
BP2, alignment with SRS1 is lost. The requirements analyst relaxes some secu-
rity requirements of secondary importance to the stakeholders. This leads to a
new specification SRS2 which guarantees R/A alignment. Later, stricter privacy
laws are introduced. The analyst revises the requirements models, leading to a
new specification SRS3. BP2 is now non-aligned with SRS3. Then, the system
architect defines a new composition BP3 that is aligned with SRS3.

Non-compliance with security requirements has severe consequences [4]. Loss
of privacy and unauthorized disclosure of data are serious threats, especially
when loss of confidentiality can potentially open the doors to world-wide access
to personal information through the Internet. Another consequence is data in-
tegrity: imagine what would happen if the price for a land sale were changed by
an unauthorized user! Compliance with organizational processes and standards is
also at risk: take the case, for instance, if binding-of-duties, separation-of-duties,
and redundancy are not provided as expected. In general, security requirements
violations have consequences from an economical perspective [6], lead to penal-
ties imposed by laws, and decrease the reputation of involved organizations.

3.2 Security Requirements Evolution

The effect of the evolution of security requirements is that a new specification
SRS2 replaces the previously valid specification SRS1, and the two differ in at

238 M. Salnitri, F. Dalpiaz, and P. Giorgini

Requirements

Architecture

Alignment?

Self-recom-
position

Analyst
relaxes reqs

Privacy law
revised Re-design

SR1 SR2 SR3

BP1 BP2 BP3

Time

Fig. 5. R/A alignment threatened by the evolution of requirements and architecture

least one element. Since our considered security requirements specification is
derived from an STS-ml model, changes in SRS are triggered by changes in the
social, resource, and authorization views of the corresponding STS-ml model.

The effects of requirements evolution may turn a compliant architecture into
a non-compliant one, or vice-versa. These effects arise due to the occurrence of
specific events that cause the evolution of security requirements:

– Revised security needs : the stakeholders change their desires about security,
or the organizational policies are revised. For example, in the eGovernment
scenario, the municipality may establish that the seller cannot transfer its
authorization on documents representing the municipal approval;

– Broadened analysis scope: the requirements analyst may realize that the con-
ducted analysis does not cover all the important stakeholders. For example,
the requirements analyst may realize that the STS-ml models do not include
any actor representing the competent ministry. In turn, this will lead to
further security requirements about confidentiality;

– Evolution of norms : the security norms in the legal environment where the
service composition is deployed change. New laws imposing stricter security
could be introduced, existing norms could be strengthened, weakened, and
abrogated. For example, consider a new municipal law stating that the prices
of land transactions shall not be notified to governmental bodies;

– Legal context switching : the actors participating in security requirements
are not always located in the same legal context. If the actor is a role,
in particular, different agents—in different locations—may adopt such role;
depending on the location, a different set of laws applies. For instance, a
Spanish buyer would have to comply both with Greek and Spanish laws.

3.3 Service Composition Evolution

The architecture of a secure composite service BP2 evolves a previous architec-
ture BP1 if they differ in either: (i) the activities—including the security-related
activities—they are composed of; (ii) the control flow between activities; (iii) the
information flow between activities; or (iv) the performers assigned to activities.

Aligning Service-Oriented Architectures with Security Requirements 239

A service composition may evolve either autonomously, or due to human in-
tervention. Manual redesign occurs when a designer defines an alternative com-
position to better satisfy her needs. Self-recomposition occurs when, based on
the monitored runtime data, a workflow engine replaces the composition.

Diverse reasons may trigger the evolution of a composition, among which:

– No available or no trustworthy service: there is no available service for a
specific activity, or existing providers are not sufficiently trustworthy. For
example, if no employee were available to add the duty stamp, a web service
that uses a electronic duty stamp could be introduced;

– Functional failure or under-performance: the service composition does not
deliver the expected outcome, or its performance is not adequate. For in-
stance, the service composition about eGovernment could be too slow for
Athens REA, who may decide to outsource the approval process chunk;

– Security failure: the service composition fails to correctly deliver the secu-
rity features declared at the architectural level. For example, if the service
responsible for sending a copy of the contract to the ministry publishes it—
violating the architectural information flow—confidentiality is violated;

4 Supporting R/A Alignment: A Methodological
Approach

We describe a methodological approach to support R/A alignment. It starts at
design-time by establishing initial alignment, and is continuously carried out at
runtime, so as to identify non-alignment and to re-establish alignment in case
of evolutions. The approach is semi-automated, as it includes activities to be
conducted by analysts as well as machine-executable algorithms.

Fig. 6 illustrates our approach. Initially, an analyst models and analyzes the
security requirements—e.g., using STS-ml, as explained in Sec. 2.1—and derives
the Security Requirements Specification (SRS). As soon as a business process BP
defining the architecture a service composition is available, the analyst has to
devise a conceptual mapping between elements in SRS and elements in BP. This
step (Sec. 4.1) produces a conceptual mapping CM, which enables the automated
instantiation of the security requirements. Such activity (Sec. 4.2) interprets the
SRS—which is expressed over concepts in STS-ml such as actors and goals—
in terms of the concepts that characterize service composition at hand—such
as performers and activities—and produces an Instantiated SRS (ISRS). This
document and the BP feed alignment checking, a set of automated algorithms
(some described in Sec. 5) that compute the actual R/A alignment. Based on
the alignment status, different paths are followed:

– Non-alignment : the analyst has to revise either the composition, the SRS,
or both. While the basic case involves the analyst in a redesign activity, an
interesting option is to trigger an automated service re-composition. The
applied revisions require the conceptual mapping to be adjusted; then, in-
stantiation and checking are executed on the revised artifacts;

240 M. Salnitri, F. Dalpiaz, and P. Giorgini

Fig. 6. Our method for supporting R/A alignment in presence of evolution

– Alignment : our framework waits for the next event to happen. If the event
is the occurrence of an evolutionary action, the process re-starts from the
conceptual mapping; if the composition terminates, the process ends.

In this paper, we detail the activities in the upper part of Fig. 6, which constitute
our basic framework. We leave to future work the activities concerned with fixing
non-compliance and repeating the check when an artifact evolves.

4.1 Conceptual Mapping R/A

This activity is carried out by an analyst to define a conceptual mapping CM
between the SRS and the BP. The creation of CM is necessary because the
architectural model is at a different level of abstraction from the requirements
specification. Therefore, the skills of a human analyst to reconcile these abstrac-
tion level gap are required. CM consists of a set of relations between BP and
SRS elements:

– Participants to actors : for each participant in BP, the analyst identifies links
with the actors appearing in SRS as debtor or creditor. To do so, BP par-
ticipants shall be specialized into agents or roles. Two possible relationships
are possible: (i) is-a relates one or more BP roles (agents) to one SRS role
(agent); (ii) plays links one or more BP agents to one or more SRS roles;

– Activities to goals : all activities in BP shall be linked to relevant goals in SRS
(if any relevant goal exists). The relationship we support is called relates-to,
and indicates that the activity is performed in order to achieve a goal. An
activity may be related to several goals, and a goal to several activities;

Aligning Service-Oriented Architectures with Security Requirements 241

– Variables to documents : each variable appearing in BP is linked to zero
or one documents in SRS via a represents relationship, indicating that the
variable represents a document.

Table 2. R/A conceptual mapping for the eGovernment scenario

plays(Athens REA, Seller), plays(Athens Munic., Municipality), is-a(eGov,eGov ap-
plication), is-a(Storage, eGov application)

relates-to(Create contract draft, Draft prepared), relates-to(Review draft, Draft
prepared), relates-to(Examine draft, Resid zone checked), relates-to(Insert ap-
proval ID, Approval provided), relates-to(Add duty stamp, Contract finalized),
relates-to(Send copy to ministry, Government notified), relates-to(Scan contract,
Government notified), relates-to(Archive contract copy, Government notified)

represents(V1, Contract draft), represents(V2, Building approval), repre-
sents(V3, Official contract)

Table 2 shows a possible CM between the SRS in Table 1 and the BP in
Fig. 4. There are two BP participants (eGov and Storage) which are linked (by
an is-a relation) to the agent eGov application in SRS. The BP participant
Greek ministry is not linked to any actor in SRS. Among the mapped activities,
both Create contract draft and Review draft are related to goal Draft prepared.

Security requirements are not directly mapped to security activities. These
requirements correspond to patterns and anti-patterns which will be checked
using algorithms like the ones described in Sec. 5.

4.2 Security Requirements Instantiation

The conceptual mapping CM enables to instantiate SRS on the service compo-
sition BP, i.e., understanding these requirements in terms of BP concepts (e.g.,
participant, activity, variable). Instantiation of security requirements comprises
two main steps: (i) instantiation of debtors and creditors of security require-
ments, according to CM, into participants in BP (see Sec. 4.2; and (ii) instanti-
ating the security needs, originally expressed on SRS actors, to BP participants
(see Sec. 4.2). As a result, these steps return an instantiated specification ISRS.

Debtor and Creditor Instantiation. Each commitment in SRS is instan-
tiated, based on CM, by checking the corresponding BP performers associated
with the debtor and creditor of that commitment. If CM says that a debtor actor
in an SRS commitment is linked to two BP performers, that commitment will
be instantiated twice, as each performer has to create a commitment instance.

Algorithm 1 (function InstantiateDebtor) shows how the debtor instan-
tiation is performed, and returns an instantiated set of commitments instCom-
mitments. If the debtor is a role (lines 2-3), the CM is searched for, in order
to identify all performers who play that role. These performers are added to
the set bpPerformersdeb. Then (line 4), is-a relationships involving the debtor

242 M. Salnitri, F. Dalpiaz, and P. Giorgini

Algorithm 1 Debtor instantiation for a commitment
InstantiateDebtor(C(deb,cred,p,q), CM)
1 instCommitments ← ∅
2 if TypeOf(deb) = role then
3 bpPerformersdeb.Add(CM.Search(plays(*, deb)))
4 bpPerformersdeb.Add(CM.Search(is-a(*, deb)))
5 for each perf ∈ bpPerformersdeb do
6 instCommitments.Add(c(perf, cred, p, q))
7 return instCommitments

are searched for, and the set bpPerformersdeb is enriched. For each of these per-
formers (lines 5-6), an instance of the original commitment is created with that
performer as debtor; the commitment instance is added to instCommitments.

The returned set of commitments is processed to instantiate the creditor. The
algorithm for the creditor is analogous to Algorithm 1, with the only difference
that the creditor is replaced (instead of the debtor).

Example 2 (Actors instantiation). Consider commitment C1:C(eGov application,
Seller, non-discl(Sale information)) from Table 1, and the mapping in Table 2.
The SRS role eGov application is linked to two participants: eGov and Storage.
The instantiation of C1 creates two commitments:
C1.1:C(eGov, Athens REA, non-discl(Sale information))
C1.2:C(Storage, Athens REA, non-discl(Sale information))

The debtor and creditor of these commitments are now referring to BP. �

Security Need Instantiation. After the commitments have been instantiated
with respect to debtor and creditor, they are instantiated with respect to the se-
curity need in the consequent. The general form of a consequent is a parametric
predicate: sec-need(par1,. . . ,parn). Unlike the previous instantiation activities,
we cannot devise a generic algorithm for security needs. We detail specific algo-
rithms in Sec. 5. Here, we illustrate the problem on two security need types:

– Separation of duties: C(Seller, Municipality, SoD(Approval provided, Draft pre-
pared)). The instantiation algorithm will create n × m commitments, where
n is the number of activities that relate to Approval provided and m the
number of activities that relate to Draft prepared ;

– Need-to-know: C(Seller, municipality, NtK(Municipal approval, Draft prepared)).
Even if there are p activities related to the goal (p > 1), a single commit-
ment is created. In our example, the instance will contain the set of activities
{Create contract draft, Review draft}.

5 Compliance Checking

We detail two algorithms to check R/A alignment—to execute alignment check-
ing in Fig. 6—for two security requirements types in STS-ml: non-disclosure of
information (Sec. 5.1) and non-repudiation of a delegation (Sec. 5.2).

Aligning Service-Oriented Architectures with Security Requirements 243

These algorithms need the conceptual mapping CM, the security requirements
specification SRS (and its instantiated version ISRS), and the business process
of a composition BP. The result is the compliance status of BP. A possible
extension could return also the cause for non-compliance.

The service composition architecture BP is a BPMN model extended with
security-related activities. Typically, BP would be defined by enriching a regu-
lar business process model. The security activities are special types of activities
meant to guarantee security and reliability; for instance, sending an acknowledge-
ment, encrypting some data, replicating stored data, etc. In [18], these activities
are graphically represented as annotations on regular activities.

In general, a security requirement is satisfied if BP exhibits a specific struc-
tural pattern, either in terms of the sequencing of activities (the control flow),
the information flow, the included security activities, and the assigned perform-
ers. Our algorithms enable verifying the presence (absence) of specific patterns
(anti-patterns). Our ultimate objective is to build a repository of algorithms to
allow checking all the security requirements supported by STS-ml.

5.1 Non-disclosure

In STS-ml, a non-disclosure security requirement is a commitment C(deb, cred,
�, non-discl(info)), where actor deb commits to actor cred that information info
will not be distributed to other actors than cred or the owner of info.

Algorithm 2 Non-Disclosure instantiation
InstantiateND(C(deb, cred, �, non-discl(info)), CM, SRS)
1 instCommitments ← ∅
2 documents ← SRS.Search(tangible-by(info, *))
3 for each doc ∈ documents
4 do bpVariables ← CM.Search(represents(*, doc))
5 for each var ∈ bpVariables
6 do instCommitments.Add(C(deb, cred, �, non-discl(var)))
7 return instCommitments

Algorithm 2 (InstantiateND) takes in input a non-disclosure requirement,
CM, and SRS (after debtor and creditor instantiation). It searches SRS for all
the documents that make tangible the information (line 2). For each document
(lines 3-6), CM is searched for variables representing that document (line 4). A
non-disclosure commitment instance is created (line 6) for each of those variables.

The commitments returned by Algorithm 2 feed Algorithm 3, which checks
whether that commitment is satisfied or not by BP. If any commitment is not
satisfied, R/A alignment does not hold. Given a commitment instance C(deb,
cred, �, non-discl(var)) and the process BP, Algorithm 3 determines whether
there is at least one activity, performed by the debtor deb, that transfers variable
var to an activity executed by a performer that differs from the variable owner

244 M. Salnitri, F. Dalpiaz, and P. Giorgini

Algorithm 3 Non-Disclosure Verification
VerifyND(C(deb, cred, �, non-discl(var)), BP, SRS, CM)

1 actByDeb ← BP.ActivitiesBy(deb)
2 actByCred ← BP.ActivitiesBy(cred)
3 actUsingVar ← BP.ActivitiesUsing(var)
4 doc ← CM.Search(represents(var, *))
5 if doc �= null

6 then info ← SRS.Search(tangible-by(*, doc))
7 for each i ∈ info
8 do own ← SRS.Search(owns(*, i))
9 actByOwner.Add(BP.ActivitiesBy(own))

10 actByOthers ← actUsingVar \ actByDeb \ actByCred \ actByOwner
11 for each ai ∈ actByDeb
12 do for each aj ∈ actByOthers
13 do if var ∈ output(ai) ∩ input(aj)
14 then return non-compliant

15 return compliant

or the creditor cred. In order to check this, a number of sets of activities are
defined in the algorithm by querying BP (e.g., actByDeb indicates all activities
performed by deb), CM (e.g., doc is the document that the variable represents, if
any) , and SRS (e.g., info is the set of information the document makes tangible).

Example 3 (Checking non-disclosure). Suppose an evolution of the security re-
quirements occurs. Take BP as in Fig. 4, CM as in Table 2, and the evolved
requirement C3:C(eGov application, Seller, �, non-discl(Sale information)). By ex-
ecuting the instantiation algorithms for debtor (Algorithm 1), creditor, and se-
curity need (Algorithm 2), we obtain the following four commitment instances:
C3.1:C(eGov, Athens REA, �, non-discl(V1))
C3.2:C(eGov, Athens REA, �, non-discl(V3))
C3.3:C(Storage, Athens REA, �, non-discl(V1))
C3.4:C(Storage, Athens REA, �, non-discl(V3))

By running Algorithm 3 on the four commitments, it returns compliance for C3.1,
C3.3, and C3.4, while it returns non-compliance for C3.2. Indeed, eGov ’s activity
“Send copy to ministry” transfers V3 to activity “Check copy” performed by
the Greek ministry, who is neither the owner of V3 nor the creditor of C3.2.

In order to re-establish R/A alignment, either BP is re-designed so that V3
is not transferred to the Greek ministry, or the non-disclosure requirement is
relaxed, by allowing sale information to be re-distributed. �

5.2 Non-Repudiation

Non-repudiation in STS-ml is defined as a commitment C(d, c, del=delegate(c,d,g),
non-rep(del)), where actor d commits to actor c that the delegator (c) will be
provided with a proof that the delegation of goal g is acknowledged by d (so that
d cannot able repudiate the delegation later on).

Aligning Service-Oriented Architectures with Security Requirements 245

Algorithm 4 Non-Repudiation instantiation
InstantiateNR(C(d, c, del=delegate(c,d,g), non-rep(del)), CM)
1 instCommitments ← ∅
2 activities ← CM.Search(relates-to(*, g))
3 for each act ∈ activities
4 do inst ← C(d, c, del=delegate(c,d,act), non-rep(del))
5 instCommitments.Add(inst)
6 return instCommitments

Function InstantiateNR (Algorithm 4) takes in input a non-repudiation
commitment and CM. CM is searched for all activities that are linked to the
delegated goal g via a relates-to relationship. For each of these activities (lines
3-5), a commitment instance is created where the debtor d commits not to
repudiate the delegation of that activity.

Algorithm 5 Non-repudiation verification
VerifyNR(actNR, perf, actCurr, found, visited)

1 switch TypeOf(actCurr)
2 case ack :
3 if (actCurr ∈ AckFor(actNR) ∧ Perf(actCurr) = perf)
4 then return true

5 case end :
6 return not found
7 case default :
8 if (actCurr = actNR)
9 then found ← true

10 next ← NextActivities(actCurr) \ visited
11 if next = ∅ then return true

12 switch TypeOf(NextElement(actCurr))
13 case gway-excl :
14 return

∧
a∈next VerifyNR(actNR, perf, a, found, visited ∪ actCurr)

15 case gway-incl :
16 return

∨
a∈next VerifyNR(actNR, perf, a, found, visited ∪ actCurr)

17 case activity :
18 VerifyNR(actNR, perf, GetFirst(next), found, visited ∪ actCurr)

Each instantiated non-repudiation commitment—which refers to a specific
activity actNR—is verified on BP by the recursive function VerifyNR (Algo-
rithm 5). The commitment is satisfied when, for each path from start to end in
BP that includes that activity, there is an acknowledge for actNR made by the
executor of actNR. The performer of the acknowledge activity certifies the dele-
gator that the delegation has taken place. A possible implementation is notifying
a workflow engine about the delegation acceptance.

The parameters of VerifyNR are the activity for which an ack is needed
(actNR); the debtor in the non-repudiation commitment (perf); the currently

246 M. Salnitri, F. Dalpiaz, and P. Giorgini

examined activity in BP (actCurr); a boolean variable indicating if, in the path
the algorithm is exploring, actNR was encountered (found); and the set of activ-
ities the algorithm has already encountered (visited). This last variable enables
dealing with cycles in BP. Given a commitment for the non-repudiation of act,
in which the debtor is deb, the algorithm is initially invoked as VerifyNR(act,
deb, start, false, {start}).

If the current activity is an ack for the searched activity executed by perf, it
returns true (lines 2-4). If it is the end activity, the algorithm returns false if
the activity was found but the ack was not found, while it returns true if the
activity was not found (lines 5-6). If the current activity is the searched one, then
the variable found is set to true: an ack is required (lines 7-9). If there are no
subsequent activities, this means the algorithm has reached the end of a cycle;
since cycles are supported only via exclusive gateways, the algorithm returns
true, as such value does not affect the computation of compliance (lines 10-11).
The recursive calls of the algorithm depend on the type of the next encountered
element (line 12). If an exclusive gate is found, the algorithm is recursively called
for all subsequent activities, and the compliance results are conjuncted, as com-
pliance is needed in all paths (lines 13-14). If a parallel gateway is encountered,
all outgoing paths are followed, and the results are disjuncted, as one ack suffices
(lines 15-16). In case of an activity, the algorithm examines it (lines 17-18).

Example 4 (Checking non-repudiation). Suppose the architecture of the compos-
ite service evolves. We check the evolved BP in Fig. 4 with the non-repudiation
commitment C1:C(eGov application, Seller, D=delegate(Seller, eGov application,
Government notified), non-rep(D)). The instantiation process—which includes Al-
gorithm 4—returns the following commitments:
C1.1:C(eGov, Athens REA, non-rep(Send copy to ministry))
C1.2:C(eGov, Athens REA, non-rep(Scan contract))
C1.3:C(eGov, Athens REA, non-rep(Archive contract copy))
C1.4:C(Storage, Athens REA, non-rep(Send copy to ministry))
C1.5:C(Storage, Athens REA, non-rep(Scan contract))
C1.6:C(Storage, Athens REA, non-rep(Archive contract copy))

By running Algorithm 5 on all the commitments, it returns that C1.3, C1.4,
and C1.5 are compliant: the debtor is not the performer of the activity, thus
no acknowledge is required. C1.1, C1.2, and C1.6 are not compliant: the activity
specified in the commitment is executed but there is no corresponding acknowl-
edge. To align the BP with C1.1, C1.2 and C1.6, either BP is modified adding
the needed acknowledge activities, or security requirement C1 is removed. A con-
crete solution is to add an acknowledge activity Send copy to ministry between
Add duty stamp and Send copy to ministry.

6 Discussion

We have proposed a methodological and semi-automated approach to align
service-oriented architectures—specifically, service compositions—with security

Aligning Service-Oriented Architectures with Security Requirements 247

requirements specifications—in particular, social commitments in STS-ml. While
our approach addresses the entire R/A alignment problem, this paper focuses on
checking alignment. Such activity is key in the era of software evolution, where
both requirements and software systems are subject to unpredicted changes.

Our approach includes three steps: (i) an analyst creates a conceptual map-
ping between requirements and architecture—e.g., the activities that relate to a
certain goal; (ii) algorithms are executed to check R/A alignment; and (iii) in
case of non-alignment, evolutionary actions are taken by the analysts—or the
system itself—to revise either the architecture or the requirements.

We have provided algorithms to check R/A alignment for two security require-
ments types: non-disclosure of information and non-repudiation of delegations.
We have already investigated other types (need-to-know, fall-back and true re-
dundancy) which were not shown due to space limitations.

Our approach complements methods to derive architectures from requirements
(e.g. [2, 10, 16, 23]), which can be applied at design-time to define a suitable
architecture for a given set of requirements. Our approach provides a contin-
uous on-line alignment checking, which enables coping with evolution of both
requirements and architecture.

Compliance is a hot topic in information security [12]. The effects of non-
compliance are well known and existing empirical studies have investigated [21]
how compliance is perceived by employees in organizations.

However, only recently the compliance between requirements and business
processes has lead to concrete research efforts. Liu et al [13] describe how to
check the compliance between a set of formally expressed regulatory require-
ments and business processes. They created a tool which transforms (i) business
process models, expressed with Business process Execution language (BPEL),
in pi-calculus; (ii) regulatory requirements, expressed with Business Property
Specification Language (BPSL), in linear temporal logic. This tool verifies the
business process against these compliance rules by means of model-checking tech-
nology. Our approach takes a different yet orthogonal standpoint as it considers
security requirements over interactions.

Ghose and Koliadis [8] enrich BPMN with annotations, then transform mod-
els created using such language into Semantic Process Network (SPNets). This
allows for defining a class of proximity relations that highlight the extent to
which evolutions of an original business process deviate. Unlike us, they focus
only on the structural difference between processes, and they don’t take into
account security requirements.

Other approaches (e.g., [7]) tackle the evolution problem from a legal per-
spective. They propose a systematic approach to help organizations align their
business processes with (privacy) laws. Unlike ours, however, their approach is
off-line and mainly design-time.

Some algorithms are implemented in the Security Requirements Compliance
Module (SRCM) tool. It currently supports non-repudiation and several
authorization-related requirements: non-modification, non-usage, non-production
and non-disclosure. Future versions of the module will support other require-

248 M. Salnitri, F. Dalpiaz, and P. Giorgini

ments such as redundancy, separation of duties, binding of duties, integrity, etc.
The tool takes as input three XML files: a specific version of BP, the SRS, and
the CM. SRCM returns another XML file which contains the SRS commitments
grouped in three sets: satisfied, violated, or undecidable. SRCM is implemented
as an OSGi bundle2, so as to facilitate integration with other tools.

Our future work includes extending the framework in many ways. First, we
will devise algorithms to support different types of security requirements. Second,
we will provide a complete implementation of the tool to support the analyst
in the mapping phase as well as to check R/A alignment in a continuous on-
line fashion. Third, we will investigate how service-oriented architectures can
self-evolve to guarantee R/A alignment. Fourth, we will empirically evaluate
the effectiveness of our approach on industrial case studies in the Air Traffic
Management domain (from Aniketos). Fifth, we will extend our approach to
include verifying alignment between architecture and implementation. We plan
to use techniques such as bytecode verification to determine whether the security
properties in the business process are correctly implemented.

Acknowledgement. The research leading to these results has received fund-
ing from the European Union Seventh Framework Programme (FP7/2007-2013)
under grant no 257930 (Aniketos) and 256980 (NESSoS).

References

1. Barais, O., Le Meur, A.F., Duchien, L., Lawall, J.: Software Architecture Evolution.
In: Mens, T., Demeyer, S. (eds.) Software Evolution. LNCS, pp. 233–262. Springer,
Heidelberg (2008)

2. Bastos, L.R.D., Castro, J.F.B.: Systematic Integration Between Requirements and
Architecture. In: Choren, R., Garcia, A., Lucena, C., Romanovsky, A. (eds.) SEL-
MAS 2004. LNCS, vol. 3390, pp. 85–103. Springer, Heidelberg (2005)

3. Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., Shan, M.-C.: Adaptive and
Dynamic Service Composition in eFlow. In: Wangler, B., Bergman, L.D. (eds.)
CAiSE 2000. LNCS, vol. 1789, pp. 13–31. Springer, Heidelberg (2000)

4. Crook, R., Ince, D., Lin, L., Nuseibeh, B.: Security Requirements Engineering:
When Anti-Requirements Hit the Fan. In: Proc. of RE 2002, pp. 203–205. IEEE
(2002)

5. Dalpiaz, F., Paja, E., Giorgini, P.: Security Requirements Engineering via Com-
mitments. In: Proc. of STAST 2011 (2011)

6. Garg, A., Curtis, J., Halper, H.: Quantifying the Financial Impact of IT Security
Breaches. Information Management & Computer Security 11(2), 74–83 (2003)

7. Ghanavati, S., Amyot, D., Peyton, L.: Compliance Analysis Based on a Goal-
oriented Requirement Language Evaluation Methodology. In: Proc. of RE 2009,
pp. 133–142 (2009)

8. Ghose, A., Koliadis, G.: Auditing Business Process Compliance. In: Krämer, B.J.,
Lin, K.-J., Narasimhan, P. (eds.) ICSOC 2007. LNCS, vol. 4749, pp. 169–180.
Springer, Heidelberg (2007)

2 http://www.osgi.org/

Aligning Service-Oriented Architectures with Security Requirements 249

9. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Modeling Security Re-
quirements through Ownership, Permission and Delegation. In: Proc. of RE 2005,
pp. 167–176. IEEE (2005)

10. Hall, J.G., Jackson, M., Laney, R.C., Nuseibeh, B., Rapanotti, L.: Relating Soft-
ware Requirements and Architectures using Problem Frames. In: Proc. of RE 2002,
pp. 137–144. IEEE (2002)

11. Harker, S.D.P., Eason, K.D., Dobson, J.E.: The Change and Evolution of Require-
ments as a Challenge to the Practice of Software Engineering. In: Proc. of RE
1993, pp. 266–272. IEEE (1993)

12. Julisch, K.: Security Compliance: the Next Frontier in Security Research. In: Proc.
of the 2008 Workshop on New Security Paradigms, pp. 71–74. ACM (2008)

13. Liu, Y., Müller, S., Xu, K.: A Static Compliance-Checking Framework for Business
Process Models. IBM Systems Journal 46(2), 335–361 (2007)

14. McDermott, J., Fox, C.: Using Abuse Case Models for Security Requirements Anal-
ysis. In: Proc. of ACSAC 1999, pp. 55–64. IEEE (1999)

15. Mouratidis, H., Giorgini, P.: Secure Tropos: A Security-Oriented Extension of the
Tropos methodology. International Journal of Software Engineering and Knowl-
edge Engineering 17(2), 285–309 (2007)

16. Nuseibeh, B.: Weaving together requirements and architectures. Computer 34(3),
115–119 (2001)

17. Nuseibeh, B., Easterbrook, S.: Requirements Engineering: a Roadmap. In: Proc.
of FOSE 2000, pp. 35–46. ACM (2000)

18. Rodŕıguez, A., Fernández-Medina, E., Piattini, M.: A BPMN Extension for the
Modeling of Security requirements in Business Processes. IEICE Transactions on
Information and Systems 90(4), 745–752 (2007)

19. Sindre, G., Opdahl, A.L.: Eliciting Security Requirements with Misuse Cases. Re-
quirements Engineering 10(1), 34–44 (2005)

20. Singh, M.P.: An Ontology for Commitments in Multiagent Systems: Toward a
Unification of Normative Concepts. Artificial Intelligence and Law 7(1), 97–113
(1999)

21. Siponen, M., Pahnila, S., Adam Mahmood, M.: Compliance with Information Se-
curity Policies: An Empirical Investigation. Computer 43, 64–71 (2010)

22. van Lamsweerde, A.: Requirements Engineering in the Year 2000: A Research
Perspective. In: Proc. of ICSE 2000, pp. 5–19 (2000)

23. van Lamsweerde, A.: From System Goals to Software Architecture. In: Bernardo,
M., Inverardi, P. (eds.) SFM 2003. LNCS, vol. 2804, pp. 25–43. Springer, Heidelberg
(2003)

24. van Lamsweerde, A.: Elaborating Security Requirements by Construction of In-
tentional Anti-Models. In: Proc. of ICSE 2004, pp. 148–157. IEEE (2004)

Looking into the Future�

Using Timed Automata to Provide a Priori Advice
about Timed Declarative Process Models

Michael Westergaard and Fabrizio Maria Maggi

Eindhoven University of Technology, The Netherlands
{m.westergaard,f.m.maggi}@tue.nl

Abstract. Many processes are characterized by high variability, making
traditional process modeling languages cumbersome or even impossible
to be used for their description. This is especially true in cooperative en-
vironments relying heavily on human knowledge. Declarative languages,
like Declare, alleviate this issue by not describing what to do step by
step but by defining a set of constraints between actions that must not
be violated during the process execution. Furthermore, in modern co-
operative business, time is of utmost importance. Therefore, declarative
process models should be able to take this dimension into consideration.
Timed Declare has already previously been introduced to monitor tem-
poral constraints at runtime, but it has until now only been possible to
provide an alert when a constraint has already been violated without
the possibility of foreseeing and avoiding such violations. Moreover, the
existing definitions of Timed Declare do not support the static detection
of time-wise inconsistencies. In this paper, we introduce an extended
version of Timed Declare with a formal timed semantics for the entire
language. The semantics degenerates to the untimed semantics in the
expected way. We also introduce a translation to timed automata, which
allows us to detect inconsistencies in models prior to execution and to
early detect that a certain task is time sensitive. This means that either
the task cannot be executed after a deadline (or before a latency), or that
constraints are violated unless it is executed before (or after) a certain
time. This makes it possible to use declarative process models to provide
a priori guidance instead of just a posteriori detecting that an execution
is invalid.

Keywords: declarative process modeling, metric temporal logic, error
detection, operational support, timed automata, Declare.

1 Introduction

Organizations work today in a dynamic, complex and interconnected world. Even
in the heterogeneity of the environment where they operate, they need to execute
� This research is supported by the Technology Foundation STW, applied science

division of NWO and the technology program of the Dutch Ministry of Economic
Affairs.

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 250–267, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Looking into the Future 251

their processes in a trustworthy and correct manner. A compliance model is, in
general, a set of business constraints that allow practitioners to discriminate
whether a process instance behaves as expected or not.

During the execution of a business process it is often extremely important to
meet deadlines and optimize response times, especially in cooperative environ-
ments where contracts among multiple parties need to be adhered to. To this
aim, a compliance model can also include temporal constraints to guarantee the
correct execution of a process in terms of latencies (related to events that cannot
occur before a certain time, or must occur after a certain time) and deadlines
(related to events that cannot occur after a certain time, or must occur before
a certain time).

Nevertheless, the declarative nature of business constraints makes it difficult
to use procedural languages to describe compliance models. First, the integration
of diverse and heterogeneous constraints would quickly make models extremely
complex and tricky. Second, business constraints often target uncontrollable as-
pects, such as activities carried out by internal autonomous actors (e.g., a doctor
in a health-care process) or even by external independent entities (e.g., a web
service in a service choreography). Representing this variability through a proce-
dural model would require the explicit specification in the same model of multiple
alternatives. Again, this would make models completely unreadable.

For this reason, in this paper, we represent business constraints using Declare
[9,10,1,13]. Declare is a declarative language that combines a formal semantics
grounded in Linear Temporal Logic (LTL) with a graphical representation for
users. Differently from procedural models, a Declare model describes a process as
a list of constraints that must be satisfied during the process execution. A Declare
model is an “open world” where everything is allowed unless it is explicitly
forbidden. In this way, Declare is very suitable for describing compliance models.

Nevertheless, the standard LTL semantics of Declare is not sufficient to rep-
resent metric temporal constraints, i.e., constraints that specify latencies and
deadlines on the execution of the activities of a business process. Therefore, in
order to monitor such a kind of constraints in Declare, it is necessary to rep-
resent them through a more expressive formal semantics. For example, in [8,5],
the authors use the Event Calculus (EC). However, this approach allows users
to identify a violation only after it has occurred and it is not possible to prevent
violations from taking place. Moreover, by using the EC, it is not possible to
detect violations that cannot be ascribed to an individual constraint but are
determined by the interplay of two or more constraints.

To address these issues, the approach presented in this paper uses timed au-
tomata [2] instead of the EC to evaluate the compliance of a process instance
w.r.t. a (timed) Declare model at runtime. In particular, to express metric tem-
poral constraints in Declare, we extend the original LTL semantics of Declare
with MTL (Metric Temporal Logic) [7,3], a real-time extension of LTL with
quantitative temporal operators. MTL reasons over infinite traces. In contrast,
traces in a business process are supposed to finish sooner or later. Therefore,

252 M. Westergaard and F.M. Maggi

we use a variant of MTL for finite traces first introduced in [11]. This semantics
produces as output a boolean value representing whether the current (finite)
trace complies with the monitored property or not. In addition, we extend MTL
for finite traces with the four valued semantics RV-MTL (Runtime Verification
MTL), in order to respect the fact that it is not always possible to produce at
runtime a definitive answer about compliance.

We monitor RV-MTL rules through timed automata. However, we show with
some counterexamples that RV-MTL is undecidable, i.e., it is not possible to
translate every RV-MTL rule to timed automata. For this reason, we restrict our
perspective to the set of rules that we use to formally represent the semantics of
Timed Declare. For this (limited) set of rules, we present automata to monitor
them at runtime and check models a priori.

While evaluating the compliance of a running process instance w.r.t. a De-
clare model, users are allowed, using timed automata, to “look into the future”
from two different perspectives. First of all, using timed automata, it is possible
to generate a (red) alert to warn users that a constraint (or a combination of
constraints) is going to be violated. In this way, they are advised to undertake
specific actions within a specific lapse of time before the violation has occurred
so that the violation can be avoided. We can also generate alerts with a lower
severity (yellow or orange), i.e., alerts to warn users that a specific activity can
currently be executed but, in the future, it will be (temporarily or permanently)
forbidden. Secondly, our approach allows early detection of violations. In fact,
using timed automata, it is possible to detect non-local violations when still none
of the individual constraints in the compliance model has been violated. A non-
local violation is a violation that cannot be ascribed to an individual constraint
but is determined by the interplay of two or more constraints and indicates that
(at least) one of them will be violated in the future.

The paper is structured as follows. Section 2 introduces some background
notions about automata, timed automata and MTL. In this section, we also
present RV-MTL. In Sect. 3, we present the semantics of Timed Declare and
automata to check individual constraints. In Sect. 5, we outline our prototype
implementation of Timed Declare, and in Sect. 6, we sum up our conclusions
and provide directions for future work.

2 Background

In this section, we introduce some background material. We first present stan-
dard Declare using a running example. Then, we introduce timed automata and
MTL (Metric Temporal Logic), the temporal logic we use in this paper. We also
present a runtime version of MTL, which extends MTL to a four-valued logic
for handling ongoing traces.

2.1 Declare and Running Example

Declare is a workflow language and tool [13] for modeling workflows using a
declarative approach. Instead of specifying what has to be done, constraints

Looking into the Future 253

between tasks are specified. In Fig. 1, we see a simple Declare model (ignore the
intervals for now) of an ordering process in a web shop. Here we have five tasks,
specified using rectangles (e.g., Order) and five constraints, specified either using
arrows or as the house annotation above Discount. The constraints specify when
certain tasks are allowed or required. For example, we have a precedence con-
straint from Order to Pay, indicating that we can only pay after placing an order
(we do not have to pay after placing an order, as we can cancel it though this is
not explicitly modeled). We have a succession constraint from Pay to Delivery,
indicating that if an order has been paid, it must be delivered, and it can only
be delivered after successful payment. Furthermore, we can only get a discount
if we order something (as specified by the precedence constraint from Order to
Discount), but if we get a discount, we have to sign up for subsequent advertise-
ment, as indicated by the response constraint from Discount to Advertisement.
The house above Discount restricts how many times this task can occur; in this
case the restriction is that it must occur zero or more times, which does not
mean anything for an untimed version of the model, but which shall become
useful later.

2.2 Timed Automata

A timed automaton augments standard finite automata with a set of clocks.
Clocks all run at the same rate and are typically denoted by c. While we cannot
control the progression of clocks, we can observe and reset them. We can also
perform actions depending on clock constraints, which compare the value of a
clock with any integer:

Definition 1 (Clock Constraints). Given a single clock c, the set of clock
constraints over c are

B(c) = {c ∼ n | n ∈ N, ∼∈ {≤, <, =, >,≥}}.

A timed automaton extends standard finite automata by adding invariants as
clock constraints to states and adding guards as clock constraints to transitions:

Definition 2 (timed Automaton). A timed automaton is a septuple:

T A = (S, AP, C, δ, I, sI , A)

where S is a finite set of states (also called locations), AP is a finite set of
labels, C is a set of clocks, δ ⊆ S×2B(C)×AP �{τ}×2{C}×S is the transition

0…1

Order Pay Delivery

0…*

Discount

[0,12] [0,12]

[1,∞)
[0,48]

Advertisement
[48,∞)

Fig. 1. Running example: Declare model consisting of four constraints

254 M. Westergaard and F.M. Maggi

relation where each transition has a set of clock constraints as guards and a
label, I : S → B(C) assigns invariants to states, sI is the initial state and
A ⊆ S is the set of accepting states.

The intuition is that time progresses at a constant and uncontrollable rate. We
are only allowed to stay in a state as long as the state invariant holds and can
only follow a transition if the guard constraint is true at the current time. The
distinguished transition τ represents time passing and corresponds to an invisible
transition, i.e., we can follow such a transition without consuming events as long
as the guard constraint is true. When following a transition, we reset all clocks
in the fourth component of the transition.

Often, we represent timed automata as directed graphs where nodes corre-
spond to states and arcs to transitions. An example of a timed automaton is
shown in Fig. 2. We have 4 labeled states and 8 transitions. We indicate the
initial state using an unrooted arrow (s0) and accepting states using a double
outline (s0 and s2). Invariants are shown in brackets below states (e.g., [xA <=
a] below s1). Next to transitions, we show their labels, guards, and clocks to
reset. For example, the transition from s2 to s0 has label τ (indicated by :tau),
has guard yA > a, and resets no clocks. The transitition from s0 to s1 resets
both xA and yA. We can have any number of guards and clock resets, including
none (e.g., the transition from s0 to s3). The dashed state (s3) indicates that no
accepting state is reachable from there.

We interpret timed automata over timed sequences, i.e., strings over R+×AP
where R+ = {x ∈ R | x ≥ 0}, denoted by σ = (t0, p0)(t1, p1) · · · (tk−1, pk−1). We
require that for i < j we have ti ≤ tj . The intuition is the same as for regular
automata; we follow states from the initial state. However, we also introduce
steps happening automatically due to time progressing.

Formally, we consider triples (t, s, V) ∈ R+ ×S ×CR
+ , where the first entry is

the absolute timestamp, the second is the state and the third includes the values
of the clocks. We allow 2 kinds of transitions:

s0 s1

A
xA := 0
yA := 0

s3

B

[xA <= a]

A
yA := 0

s2

B
xA <= a

:tau
xA > a

:tau
yA > a

A
xA := 0
yA := 0

[yA <= a]

B

A, B

Fig. 2. Timed automaton for the succession [0,a](A,B) constraint

Looking into the Future 255

(t, s, V) →d (t + d, s, V + d) if ∀t′ ∈ [V, V + d], I(s)(t′) = true, and

(t, s, V) →a (t, s′, V ′) if (s, γ, a, C, s′) ∈ δ, γ(V) = true, and

I(s′)(V ′) = true with V ′(c) =

{
0 if c ∈ C, and

V (c) otherwise.

Note that the second case also includes invisible steps. If either of the two cases
hold, we write (t, s, V) → (t′, s′, V ′). A trace (t0, s0, v0) → (t1, s1, v1) → · · · →
(tk−1, sk−1, vk−1) is accepting if (t0, s0, V0) = (0, sI ,0) and sk−1 ∈ A. A timed
sequence σ = (t0, p0)(t1, p1) · · · (tk−1, pk−1) is accepting if there exists an accept-
ing trace T = (t′0, s0, V0) → (t′1, s1, V1) → · · · → (t′n−1, sn−1, Vn−1) such that
σ = project(T) where project projects the trace onto the first two components
and ignores τ steps.

2.3 Metric Temporal Logic

Metric Temporal Logic (MTL) is a logic talking about timed sequences of states.
The idea is that we have a set of atomic propositions, denoted by AP = {p0, p1,
. . . , pn−1}. For our variant of metric temporal logic, we look at timed sequences
of events and assume that events fall in the set of atomic propositions. We deal
with a fragment of MTL where all traces are finite. Therefore, we use the MTL
semantics for dealing with finite timed sequences presented in [11].

To express MTL formulas, we use the syntax:

Definition 3 (MTL Syntax). Formulas of MTL contain atomic proposi-
tions and are closed under negation, conjunction, disjunction, timed next op-
erator, timed until operator, timed previous/yesterday operator and timed since
operator, i.e., a formula ψ belongs to MTL if

ψ ::= p | ¬ψ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | XIψ | ψ1UIψ2 | YIψ | ψ1SIψ2

where p ∈ AP , ψ, ψ1, ψ2 ∈MTL, and I ⊆ R+ is an interval.

Let σ = (t0, p0)(t1, p1) · · · (tk−1, pk−1) be a finite timed sequence of states and
let ψ be an MTL formula. We write σ, i |= ψ to indicate that ψ holds at position
i in σ. The semantics of σ, i |= p, σ, i |= ¬ψ, σ, i |= ψ1∧ψ2 and σ, i |= ψ1∨ψ2 are
as normally in propositional logic: p is true at position i in σ if p = pi, ¬ψ is true
if ψ is not, ψ1 ∧ψ2 is true if both ψ1 and ψ2 are and ψ1 ∨ψ2 if either is. We say
that σ, i |= XIψ, if (ti, pi) has a successor state (i < k−1) and σ, i+1 |= ψ with
ti + a ≤ ti+1 ≤ ti + b. Moreover, σ, i |= YIψ, if (ti, pi) has a predecessor state
(i > 0) and σ, i− 1 |= ψ with ti − b ≤ ti−1 ≤ ti − a. We say that σ, i |= ψ1UIψ2,
if σ, j |= ψ2 for some j ≥ i with ti +a ≤ tj ≤ ti +b and σ, l |= ψ1 for all i ≤ l < j.
Finally, σ, i |= ψ1SIψ2, if σ, j |= ψ2 for some j ≤ i with ti − b ≤ tj ≤ ti − a and
σ, l |= ψ1 for all j < l ≤ i. This semantics coincides with FLTL (LTL for finite
traces) where only I = R+ is allowed.

256 M. Westergaard and F.M. Maggi

We add syntactic sugar for the normal connectives, such as ψ1 → ψ2 ≡ (¬ψ1)∨
ψ2 and ψ1 ↔ ψ2 ≡ (ψ1 → ψ2)∧(ψ2 → ψ1). We also add temporal syntactic sugar,
FIψ ≡ trueUIψ (timed future operator), GIψ ≡ ¬(FI(¬ψ)) (timed globally
operator), OIψ ≡ trueSIψ (timed once operator) and HIψ ≡ ¬(OI(¬ψ)) (timed
historically operator). The intuition behind the future operator and the once
operator is that ψ has to happen in the specified interval of time from now (in
the future or in the past). The intuition behind the globally operator and the
historically operator is that ψ has to hold for the entire interval (in the future
or in the past).

2.4 RV-MTL: A Metric Temporal Logic for Runtime Verification

When focusing on runtime verification of MTL properties, reasoning is carried
out on partial, ongoing traces, which describe a portion of the system’s execution.
Therefore, here, we extend MTL (for finite traces) with a four-valued semantics
called Runtime Verification Metric Temporal Logic (RV-MTL). Differently from
the original MTL semantics, which gives to the user only a boolean feedback
(specifying whether a trace is compliant or not w.r.t. a given property), RV-
MTL provides more sophisticated diagnostics.

Let σ = (t0, p0)(t1, p1) · · · (tk−1, pk−1) be a finite timed sequence of states and
let ψ be an MTL formula. The semantics of [σ |= ψ]RV is defined as follows:

– [σ |= ψ]RV = � if for each possible continuation w of σ: σw |= ψ (in this
case ψ is permanently satisfied by σ);

– [σ |= ψ]RV = ⊥ if for each possible continuation w of σ: σw �|= ψ (in this
case ψ is permanently violated by σ);

– [σ |= ψ]RV = �p if σ |= ψ but there is a possible continuation w of σ such
that σw �|= ψ (in this case ψ is possibly satisfied by σ);

– [σ |= ψ]RV = ⊥p if σ �|= ψ but there is a possible continuation w of σ such
that σw |= ψ (in this case ψ is possibly violated by σ).

3 Timed Declare

In this section we introduce a timed version of Declare. The version is similar
to the one in [8], but we allow time on more constraints and instead give a
semantics which collapse to the standard LTL semantics when removing time.
We also introduce new constraints that are useful when dealing with time.

Returning to the running example in Fig. 1, we see that the constraints all
have intervals next to them. This represents when things have to occur. For
example, we indicate that payment has to be performed withing 12 time units
after the initial order (for example, because orders without payment are purged
after 12 time units), and shipment has to take place within 12 time units after
payment. Processing a discount cannot occur earlier than 1 time unit after the
order. Sending out advertisements is only performed 48 time units after the
discount. Finally, we have a new constraint, exclusive allowance, which states
that the discount can only be applied in the first 48 time units of the process.

Looking into the Future 257

0 ba

A
A
B

A
B

existence
A
B

A
B

0 ba

A
A
B

A
B

absence
A
B

A
B

0 ba

A
A
B

A
B

exclusive
allowanceA

B
A
B

Fig. 3. Existence, Absence, and Exclusive Allowance

In Fig. 3, we give a graphical representation of the semantics for the timed
existence and absence, and a new constraint which only makes sense in the timed
version, exclusive allowance. The timed existence indicates that, starting from
the beginning of a process instance, A must occur at least once (indicated by
underline) at some point t ∈ I where I is some interval from a to b (either of
which may be included and b may also be ∞). A is allowed outside this interval
(as is any other event, indicated by B in the figure. The timed absence specifies
that A must not occur in the interval I (indicated by a double strikeout). A
is allowed outside this interval. Where existence forces something to happen, it
may also be useful to just allow something to happen in a specific interval, i.e.,
consider the conjunction of absence in the intervals before and after. This yields
the exclusive allowance, which specifies that A is only allowed inside the interval
I (e.g., exclusive allowance[2,7](A) ≡ ∧absence[0,2)(A) ∧ absence(7,∞](A)). In our
example in Fig. 1, we use exclusive allowance to only allow for a discount within
the first 48 time units (though here it is equivalent to absence after this interval).

Figure 4 shows a graphical representation of the semantics for the timed re-
sponded existence. This constraint indicates that, if A occurs at time t1, B must
occur at some point t0 ∈ [t1−b, t1−a] or t2 ∈ [t1 +a, t1 +b] (assuming I = [a, b];
if the interval is semi-open the intervals for t0 and t2 need to be updated ac-
cordingly). In the interval [t0, t2] another A or another B can occur and, also,
any event different from A and B (indicated by C in the figure). For the sake
of readability, in this representation, we do not specify the behavior outside the
interval [t0, t2] where any event can occur. This semantics must be valid for each
A in a process instance. The timed co-existence (which is not shown) is the con-
junction of the timed responded existence with parameters (A, B) and the timed
responded existence with parameters (B, A).

Figure 5 shows the semantics for the timed response, the timed alternate
response and the timed chain response. The timed response indicates that, if A

t0 t2t1+a t1+bt1-at1-b

B B
A
B
C

A
B
C

t1

A

Fig. 4. Responded Existence

258 M. Westergaard and F.M. Maggi

t0 t1t0+a t0+bt1-at1-b

A B
A
B
C

A
B
C

A
B
C

t0 t1t0+a t0+bt1-at1-b

A B
A
B
C

A
B
C

A
B
C

t0 t1t0+a t0+bt1-at1-b

A B
A
B
C

A
B
C

A
B
C

base

alternate

chain

Fig. 5. Response, Alternate Response, Chain Response

occurs at time t0, B must occur at some point t1 ∈ I. Any event can occur inside
this interval. In all representations in Fig. 5 (and also in the ones in Fig. 6) we do
not specify the behavior outside the interval [t0, t1], because outside this interval
any event can occur. The timed alternate response specifies that if A occurs
at time t0, B must occur at some point t1 ∈ I. A is not allowed in the interval
[t0, t1]. Any event different from A is allowed. The timed chain response indicates
that, if A occurs at time t0, B must occur next at some point t1 ∈ [t0 +a, t0 + b].
Nothing is allowed between A and B. Each of these constraints must hold for
each A.

In Fig. 6, we give a graphical representation of the semantics for the timed
precedence, the timed alternate precedence and the timed chain precedence.
The timed precedence indicates that, if B occurs at time t1, A must occur at
some point t0 ∈ I. Any event can occur between A and B. The timed alternate
precedence specifies that, if B occurs at time t1, an A must occur at some point
t0 ∈ [t1 − b, t1 − a]. B is not allowed in the interval [t0, t1]. Any event different
from B is allowed. The timed chain precedence indicates that, if B occurs at time
t1, A must occur immediately before at some point t0 ∈ [t1 − b, t1 − a]. Other
events are not allowed in between.

The timed succession, the timed alternate succession and the timed chain
succession (which are not shown in the table for the sake of readability) can be

t0 t1t0+a t0+bt1-at1-b

A B
A
B
C

A
B
C

A
B
C

t0 t1t0+a t0+bt1-at1-b

A B
A
B
C

A
B
C

A
B
C

t0 t1t0+a t0+bt1-at1-b

A B
A
B
C

A
B
C

A
B
C

base

alternate

chain

Fig. 6. Precedence, Alternate Precedence, Chain Precedence

Looking into the Future 259

t0 t0+a t0+b

A
A
B
C

A
B
C

not response

not responded
existence

t0+a t0+bt0-at0-b

A
B
C

A
B
C

t0

A

not precedence

t1t1-at1-b

B
A
B
C

A
B
C

Fig. 7. Not Co-existence, Not Succession and Not Chain Succession

defined as the conjunction of the appropriate timed precedence and the timed
response.

Figure 7 gives a graphical representation of the semantics for negations of
constraints. The constraint timed not responded existence specifies that, when-
ever A occurs, B is forbidden in the specified interval before and after. Again,
the timed not co-existence is not shown, but remains the conjunction of the
timed not responded existence with parameters (A, B) and the timed not re-
sponded existence with parameters (B, A). The timed not response indicates
that, whenever A occurs, B is forbidden in the time interval t ∈ I. The timed
not precedence indicates that, whenever B occurs, A is forbidden in the time in-
terval t ∈ [tB−b, tB−a]. The timed not succession is the conjunction of these last
two constraints. The chain versions of the precedence and response constraints
(not shown) allow B/A to occur inside the interval if any action occurs between
them.

In Table 1, we summarize the timed semantics for each constraint. The se-
mantics for the untimed constraints is the same as in [9], except we allow for
the use of past operators, which makes specifying some constraints simpler. The
timed versions are in most cases the same as for the untimed version except we
add time. The (negated) responded existence is a bit more complicated to make
the timing correct, but it is easy to see that this formula is equivalent to the
corresponding untimed formula if time is removed.

3.1 Timed Automata for Declare

MTL is undecidable. It is not always possible to translate an MTL formula to a
timed automaton. We show this with a counterexample. Consider, for instance,
the timed semantics for the response constraint G(A → FIB). We cannot ex-
press this semantics with a fixed number of clocks. Intuitively, we need to start
a new timer for each A to make sure we that can see which (if any) of the As are
satisfied by a given B. We have chosen to use MTL to specify Timed Declare
anyway as we need the power to express the full semantics of Timed Declare.
Other timed logics similar to LTL cannot express [4] the semantics for, e.g.,
timed responded existence and response.

260 M. Westergaard and F.M. Maggi

Table 1. Semantics for some Declare constraints

Constraint Untimed semantics Timed semantics

existence FA FIA
absence ¬FA ¬FIA
exclusive allowance − ¬F[0,a]A ∧ ¬F[b,∞]A

responded existence FA → FB G(A → (OIB ∨ FIB))

response G(A → FB) G(A → FIB)
alternate response G(A → X(¬AUB)) G(A → X(¬AUIB))
chain response G(A → XB) G(A → XIB)

precedence G(B → OA) G(B → OIA)
alternate precedence G(B → Y(¬BSA)) G(B → Y(¬BSIA))
chain precedence G(B → YA) G(B → YIA)

not responded existence FA → ¬FB G(A → (¬OIB ∧ FIB))
not response G(A → ¬(FB)) G(A → ¬(FIB))
not precedence G(B → ¬(OA)) G(B → ¬(OIA))
not chain response G(A → ¬(XB)) G(A → ¬(XIB))
not chain precedence G(B → ¬(YA)) G(B → ¬(YIA))

The uncomputability is only present if we wish to translate a formula to an
automaton for static analysis. For on-line monitoring, we can easily instantiate a
timer every time we activate a constraint. We can do this in terms of automata
or as in [8] in terms of the Event Calculus. The desire to provide a meaningful
timed semantics for Declare, even though we lose some analytical power is what
prompts us to go with the undecidable logic.

As not every MTL formula can be translated to an automaton and not every
Timed Declare constraint can be represented using a timed automaton, we need
to restrict what we allow if we are to do analysis. If we restrict all intervals to
either include 0 or go to ∞ it turns out that all constraints can be represented as
an automaton. The reason is that it now becomes enough to remember the first
and last time we saw each event for each constraint. Therefore, for an event, A, we
introduce two clocks xA and yA; xA keeps track of the first outstanding A and yA
keeps track of the last. Note that succession[0,b](A, B)∧ succession[a,∞)(A, B) �=
succession[a,b](A, B), so this does not contradict that we cannot construct the
automaton for the right side of the expression. The left side of the expression can
be satisfied using two As or two Bs, each in one interval but not in the other,
but the right side does not admit this.

The automaton in Fig. 2 checks the succession[0,a](A, B) constraint. From the
initial state s0, we can take an A to s1 and a B to s3. State s3 is an inescapable
non-accepting state and can be thought of as a failure (indicated by a dashed
outline). This makes sense: if we see a B before and A, we have violated the
constraint. For all other events, we just remain in s0. When we see an A from
s0, we reset the clocks xA and yA, indicating when we first and last saw an A
(namely now). We can stay in s1 as long as xA<=a, i.e., until it is long enough
ago we saw an A that executing a B is mandatory; if we do not progress before
that, we are forced to follow the τ transition to s3. Intuitively s1 means “we have
seen As that are not followed by Bs”, s2 means “we have seen As, all obligations
are satisfied, and the last A is close enough that we may still execute Bs”, and

Looking into the Future 261

s0

[E < a]

s1
:tau

E >= a

s3

A
E < a

A

[E <= b]

s2

:tau
 E > b

A
A

Fig. 8. Timed automaton for the exclusive allowance [a,b](A) constraint

s0 means “we have no outstanding As and no A is close enough that we may
execute Bs”. Thus, we reset when we last saw an A in s1 and transition to s2 if
we see a B. We may only stay in s2 as long as the last A is close enough (the
invariant on s2, yA <= a); if we see an A we have a new outstanding A and move
to s1 resetting both clocks. We allow for executing Bs, but when the invariant
no longer is satisfied, we transition to s0 and start from scratch.

We employ a similar technique for all precedence, response, succession, and re-
sponse constraints. The existence, absence, and exclusive allowance can trivially
be checked in their full generality using a single clock for each constraint (see,
e.g., Fig. 8 where the automaton for exclusive allowance is shown and uses only
clock E). Precedence and response constraints can be checked using a single clock
(we only need to keep track of either the first or last occurrence of A depending
on whether the interval includes 0 or ∞; see Figs. 9 and 10 for examples). We
can also represent the alternate response and the three chain constraints in their
full generality. The intuition is that we can no longer execute more As between
A and B (cf., Figs. 5 and 6).

s0

s1
A

yA := 0

s2B

B
yA <= a

A
yA := 0

B
yA > a

A, B

Fig. 9. Timed automaton for the precedence [0,a](A, B) constraint

s0

s1
A

xA := 0

s3
B

A
s2

B
xA >= a

B
xA < a

A, B

A, B

Fig. 10. Timed automaton for the precedence [a,∞)(A,B) constraint

262 M. Westergaard and F.M. Maggi

4 Analysis

In this section we show how to use automaton-based Timed Declare for analysis
purposes to provide alerts when tasks are time-sensitive and to implement an a
priori check of whether it is possible to meet deadlines.

4.1 Colored Alerts to Provide a Priori Advice

To monitor a Timed Declare model, we translate the model into a timed automa-
ton. We simply instantiate our timed automata for each constraint. It is possible
to compute the product of timed automata efficiently [2] so we do that in a way
similar to how we construct colored automata for untimed Declare models. Such
automata contains information about acceptance for each constraint in isolation
and also about the acceptance of the conjunction. In the untimed version, this
allows us to discover an inevitable violation even though no violation has yet
taken place. The goal is to extend this to temporal properties as well.

Using a timed automaton we allow users to have relevant feedback during
the process execution. During the execution of the process, this automaton can
be used to give advice to the users about the action to undertake to obey the
latencies and the deadlines specified by the compliance model, thus preventing
possible violations from taking place. This advice is given through alerts that
can be associated to different colors: yellow for alerts with low severity, orange
for alerts with medium severity and red for alerts with high severity.

A red alert is generated when the automaton is in a consistent state, but
letting time pass will unavoidable lead to violating one of the constraints. For
instance, in the automaton in Fig. 2, modeling the succession constraint (in
our example think of the succession from Order to Pay), if A (Pay) is executed
(moving to state s1), a red alert is generated for the execution of B (Delivery)
within 12 time units (as a= 12). If Delivery is not executed, the constraint is
violated (delivery has not taken place on time). Such an alert is generated for a
state with an invariant where the only τ transition leads to a failure (dashed)
state.

An orange alert is generated when the automaton is in a state where an activ-
ity can currently be executed but, after a certain number of time units, it cannot
be executed anymore (and never in the future). For instance, in the automaton
in Fig. 8 modeling the exclusive allowance constrains (in our model think of the
Discount which is only available for the first 48 time units), when monitoring
starts, we immediately transition to s1 (as a= 0). Then, an orange alert is gen-
erated for A (Discount, because the customer missed out on the limited-time
discount). The alert is generated because in state s1 it is possible to execute A,
but s1 has an invariant and a τ transition to s2 from which executing A will
always lead to a failure state. Alternatively, we generate such an alert if we are
in a state where an action is guarded and can no longer be executed in any
successor state and the clocks in the constraints cannot be reset.

A yellow alert is generated when the automaton is in a state where an activity
can currently be executed but, after a certain number of time units, it cannot be

Looking into the Future 263

executed anymore. However, there is still the possibility to execute the activity
somewhere in the future. For instance, in the automaton in Fig. 9 modeling the
precedence constraint (in our example, we have a precedence of this type from
Order to Pay). If A (Order) is executed, a yellow alert is generated to execute B
(Pay) within 12 time units (as a= 12). This is because in state s1 we can execute
Pay but if we let time pass, we can no longer satisfy the guard and there is no
τ transition to a state where we can. We also generate such an alert if we are
in a state with an invariant and a τ transition to a state where the event is not
enabled.

4.2 Constraint Interaction

Constraint interaction can be checked by computing the strongly connected com-
ponents (SCCs) of the automaton, marking failure states (dashed states in the
examples), and for each state compute which events lead to non-failure states,
called the enabled events. We compute the union of these sets for each strongly
connected component, and propagate them backwards in the SCC graph. We call
these the possible events. Now, as we traverse the automaton, we can identify
each of the three kinds of alerts and notice that after payment, delivering is very
important (red alert) to avoid violating a constraint, applying for the discount is
of medium importance (orange alert) as it becomes unavailable after some time,
and after ordering, payment is important to avoid erasure of the order.

When we just start the process, we may not realize that we are on the
clock. In our example, we actually have to hurry with our order, because if
we do not order within 47 time units, we cannot wait one time unit more
and apply for the discount before it becomes unavailable at time 48. We thus
wish for an orange alert for Order in the initial state even though Order itself
does not become permanently unavailable. We cannot see this from automata
from individual constraints, but the product automaton is needed. In Fig. 11,
we see the product of the automata for precedence[1,∞)(Order, Discount) and
exclusive allowance[0,48](Discount). We have hidden the failure state for legibil-
ity; anytime Order or Discount is not explicitly possible, they lead to the failure

s0
Od

[E <= 48]

s1
OD

Order
xOrder := 0

s3
O

:tau
E > 48

Order

[E <= 48]

s2
OD

Discount
xOrder >= 1

s4
O

:tau
E>48

[E <= 48]

Order, Discount

s5
O

:tau
E > 48

Order

Order

Order

Fig. 11. Timed automaton for the conjunction of the exclusive allowance [0,48](Order)
and precedence [1,∞)(Order, Discount) constraints

264 M. Westergaard and F.M. Maggi

state. We have also annotated the states with the enabled and possible events.
An O means that Order is enabled, a D means that Discount is enabled, and
d means that Discount is possible. We see that in the initial state, Discount is
possible, but the state has an invariant and a τ transition to a state where Dis-
count no longer is possible. We can see that while Discount is possible, it is not
enabled, so producing an orange alert would be of little use. Instead, we produce
an orange alert for Order as we can see it leads us to another strongly connected
component where Discount still is possible and even enabled in this case. The
orange alert now moves to Discount where it rightly belongs.

4.3 Detection of Inconsistencies

If we modify the model in Fig. 1, adding a not succession constraint from Order
to Deliver with a time limit of 36 time units, we model that we may not deliver
goods within 36 time units from the order(e.g., due to local tax laws). We can
see that Pay has to be executed no more than 12 time units from Order and
Deliver no more than 12 time units from Pay, forcing delivery within 24 time
units of Order. This of course conflicts with the new constraint, and we get an
automaton accepting the empty language. We can detect this and point out the
conflict between the 3 constraints, and let the user alleviate it by removing one
or loosening one of the temporal constraints.

5 Implementation

In this section, we briefly describe our prototype implementation of Timed De-
clare in UppAal [12], a tool for analysis of timed automata.

UppAal makes it possible to design a model by defining process templates.
We have designed a process template for each of the (most commonly used)
constraints in Timed Declare. One such an example is shown in Fig. 12. In this
example, we have a template in the field to the left for each constraint. The
model shown is the UppAal implementation of the automaton from Fig. 2 test-
ing the succession [0,a](A, B) constraint. UppAal implements automata slightly
differently from what we want. Most importantly, it does not have a notion of
accepting states nor of synchronization. This is possible to get around, though.

To get around lack of synchronization, we use broadcast channels, which make
it possible for a single sender to synchronize with multiple recipients. We then
have a single driver (see Fig. 13) acting as sender and all the templates act as
receivers and hence progress as the driver dictates. The driver (Fig. 13 (left))
has two states, an initial state and a termination state. The driver is a real
flower-model, which allows for any (here of four) actions looping in the initial
state. Each time, we transmit on the corresponding broadcast channel (e.g., a!).
At some point, the driver decides to terminate, and communicates on done. If
we look back at the implementation of Fig. 2 in Fig. 12, we see that many events
receive on channels (e.g., A?). This will be synchronized with other automata
listening to the same channel. Furthermore, channels cannot advance without
receiving, so they just stay put for events that do not affect them.

Looking into the Future 265

Fig. 12. Our prototype in UppAal

We handle non-accepting states by indicating that they forbid communicating
on done. In our example, we see this construction from the middle state in Fig. 12.
It has a transition receiving on done but leading to a state with the invariant
false underneath it. This means that it is never a legal move to go there, so if the
automaton in Fig. 12 is in the middle state, the driver is prevented from sending
on done and hence terminating.

Listing 1. System declarations for the model in Fig. 1

� �

1 broadcast chan done , Order , Pay , De l ive ry , Discount , Advert isement ;

3 c1 = pr e c l e q (Order , Pay , 1 2) ;
4 c2 = suc c l e q (Pay , De l ivery , 1 2) ;
5 c3 = prec geq (Order , Discount , 1) ;
6 c4 = ex c l u s i v e ab s e n c e (Discount , 0 , 4 8) ;
7 c5 = re spon se geq (Discount , Advertisement , 4 8) ;
8 a = a l l (Order , Pay , De l ive ry , Discount , Advert isement) ;

10 system a , c1 , c2 , c3 , c4 , c5 ;
� �

Finally, we need to tie our symbolic names (A, B, and a) in Fig. 12 to actual
tasks. We notice near the top right of Fig. 12 that we have a field for parameters.
We here state that A and B are broadcast channel input parameters, and we have
declared a as an integer input parameter. We then tie the entire system together
in the System declarations, (the description is as simple as Listing 1). We first set
up a channel for each task (l. 1), then we instantiate the individual constraints
(ll. 3–7) and the driver (l. 8), and finally we start the system (l. 10). Now the
formal names are tied to actual names and we can run the model in the simulator

266 M. Westergaard and F.M. Maggi

Fig. 13. Our driver (left) and test (right)

in UppAal. We can also perform analysis. We can check if the model is non-
empty by checking if the driver (Fig. 13 (left)) can reach the finished state. We
can also instantiate the test in Fig. 13 (right) for each task and, when the found
state is reachable, indicating that it is possible to execute that event.

6 Conclusion

In this paper, we have introduced a timed version of Declare. Our version is
similar to the one in [8], but allows the use of time for more Declare constraints.
We give a semantics in terms of MTL, a timed version of LTL, and we repre-
sent these semantics through timed automata. We show how we can use these
automata to not only identify when a constraint is violated like in [8], but even
to provide a priori warnings that time constraints may be violated in the future
or that certain actions may become unavailable if not executed swiftly. We can
also detect that deadlines are impossible to meet prior to execution.

In this paper, we have considered tasks without duration taking place with
time spans between them. We are very interested in looking into giving tasks
duration. This can be done either by considering the start and completion of a
task as separate events or by looking at tasks as signals instead of events. When
we do so, it is obvious to start looking at the resource perspective as well, as it
may be that a model cannot be executed by a single person (for example if two 14
time unit tasks have to be executed within a 24 time unit period). For these cases
we can compute interesting statistics like how fast can a model be executed given
infinite resources, how fast can it be executed (if at all) using a given amount
resources, and how many resources are necessary to execute a model. We believe
that this can be extended to also provide plans for individual resources, and
we believe we can extend this to do planning for running multiple instances of
multiple models. This is very similar to providing operational support (except
where operational support tries to answer similar questions on-the-fly, we try to
answer them before the fact).

Here, we have used timed automata because they make it possible and easy
to do sophisticated analysis. It would also be very interesting to investigate how
moving to more advanced automata admitting creating fresh clocks skews the
balance between expressiveness and analysis.

Looking into the Future 267

We would also like to integrate the presented analysis facilities in Declare [13],
preferably in a backwards compatible way. One way to do that is to integrate
UppAal’s command line tool, which may definitely be good for analysis, but
less optimal for on-the-fly execution, as UppAal computes the product on-the-
fly while checking properties. We can, therefore, not precompute the enabled
and possible events, which is necessary to be able to provide orange and yellow
alerts. Another possibility is to use UppAal’s DBM library, which implements
difference-bound matrices [6] (a very efficient data-structure to implement timed
automata), and to leverage the automaton library already available in Declare.

References

1. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: Bal-
ancing between flexibility and support. Computer Science - Research and Devel-
opment 23, 99–113 (2009)

2. Alur, R., Dill, D.: A Theory of Timed Automata. Theoretical Computer Sci-
ence 126(2), 183–235 (1994)

3. Alur, R., Henzinger, T.: Real-time logics: complexity and expressiveness. In: Pro-
ceedings of Fifth Annual IEEE Symposium on Logic in Computer Science, LICS
1990, pp. 390–401 (June 1990)

4. Bauer, A., Leucker, M., Schallhart, C.: Comparing ltl semantics for runtime veri-
fication. Logic and Computation, 651–674 (2010)

5. Chesani, F., Mello, P., Montali, M., Torroni, P.: Verification of Choreographies
During Execution Using the Reactive Event Calculus. In: Bruni, R., Wolf, K. (eds.)
WS-FM 2008. LNCS, vol. 5387, pp. 55–72. Springer, Heidelberg (2009)

6. David, D.: Timing Assumptions and Verification of Finite-state Concurrent Sys-
tems. In: Sifakis, J. (ed.) CAV 1989. LNCS, vol. 407, pp. 197–212. Springer, Hei-
delberg (1990)

7. Koymans, R.: Specifying real-time properties with metric temporal logic. Real-
Time Systems 2, 255–299 (1990), http://dx.doi.org/10.1007/BF01995674,
10.1007/BF01995674

8. Montali, M.: Specification and Verification of Declarative Open Interaction Models.
LNBIP, vol. 56, pp. 1–383. Springer, Heidelberg (2010)

9. Pesic, M.: Constraint-Based Workflow Management Systems: Shifting Controls to
Users. Ph.D. thesis, Beta Research School for Operations Management and Logis-
tics, Eindhoven (2008)

10. Pesic, M., Schonenberg, H., van der Aalst, W.M.P.: Declare: Full support for
loosely-structured processes. In: IEEE International EDOC Conference 2007, pp.
287–300 (2007)

11. Thati, P., Roşu, G.: Monitoring algorithms for metric temporal logic specifications.
Electron. Notes Theor. Comput. Sci. 113, 145–162 (2005),
http://dx.doi.org/10.1016/j.entcs.2004.01.029

12. UppAal webpage, http://www.uppaal.org
13. Westergaard, M., Maggi, F.: Declare: A Tool Suite for Declarative Workflow Mod-

eling and Enactment. In: Ludwig, H., Reijers, H. (eds.) Business Process Man-
agement Demonstration Track (BPMDemos 2011). CEUR Workshop Proceedings,
vol. 820. CEUR-WS.org (2011)

http://dx.doi.org/10.1007/BF01995674
http://dx.doi.org/10.1016/j.entcs.2004.01.029
http://www.uppaal.org

Planlets: Automatically Recovering

Dynamic Processes in YAWL

Andrea Marrella, Alessandro Russo, and Massimo Mecella

Dipartimento di Ingegneria Informatica, Automatica e Gestionale
Sapienza Università di Roma, Rome, Italy

{marrella,arusso,mecella}@dis.uniroma1.it

Abstract. Process Management Systems (PMSs) are currently more
and more used as a supporting tool to coordinate the enactment of pro-
cesses. YAWL, one of the best-known PMSs coming from academia, al-
lows to define stable and well-understood processes and provides support
for the handling of expected exceptions, which can be anticipated at de-
sign time. But in some real world scenarios, the environment may change
in unexpected ways so as to prevent a process from being successfully
carried out. In order to cope with these anomalous situations, a PMS
should automatically recover the process at run-time, by considering the
context of the specific case under execution. In this paper, we propose the
approach of Planlets, self-contained YAWL specifications with recov-
ery features, based on modeling of pre- and post-conditions of tasks and
the use of planning techniques. We show the feasibility of the proposed
approach by discussing its deployment on top of YAWL.

Keywords: Process Management Systems, YAWL, recovery, planning.

1 Introduction

In the last years, the increasing demand in solutions for dynamic processes and
the need to provide support for flexible and adaptive process management has
emerged as a leading research topic in the BPM domain [15,20] and has led
to reconsider the trade-off between flexibility and support provided by existing
Process Management Systems (PMSs). Research efforts in this field try to en-
hance the ability of processes and their support environments to modify their
behavior in order to deal with contextual changes and exceptions that may oc-
cur in the operating environment during process enactment and execution. On
the one hand, existing PMSs like YAWL [17] provide the support for the han-
dling of expected exceptions. The process schemas are designed in order to cope
with potential exceptions, i.e., for each kind of exception that is envisioned to
occur, a specific contingency process (a.k.a. exception handler or compensation
flow) is defined. On the other hand, adaptive PMSs like ADEPT2 [19] support
the handling of unanticipated exceptions, by enabling different kinds of ad-hoc
deviations from the pre-modeled process instance at run-time, according to the
structural process change patterns defined in [18].

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 268–286, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Planlets: Automatically Recovering Dynamic Processes in YAWL 269

However, in a dynamic process the sequence of tasks heavily depends on the
specifics of the context (e.g., which resources are available and what particular
options exist at that time), and it is often unpredictable the way it unfolds.
The use of processes for supporting the work in highly dynamic contexts like
healthcare and emergency management has become a reality, thanks also to the
growing use of mobile devices in everyday life, which offer a simple way for
picking up and executing tasks. To deal with exceptions and uncertainty intro-
duced by such contexts, the need for flexible and easy adaptable processes has
been recognized as critical [10]. However, traditional approaches that try to an-
ticipate how the work will happen by solving each problem at design time, as
well as approaches that allow to manually change the process structure at run
time, are often ineffective or not applicable in rapidly evolving contexts. The
design-time specification of all possible compensation actions requires an exten-
sive manual effort for the process designer, that has to anticipate all potential
problems and ways to overcome them in advance, in an attempt to deal with the
unpredictable nature of dynamic processes. Moreover, the designer often lacks
the needed knowledge to model all the possible contingencies, or this knowledge
can become obsolete as process instances are executed and evolve, by making
useless his/her initial effort.

This paper, based on our previous work [11,12,1], introduces the notion of
Planlets, as self-contained YAWL nets where tasks are annotated with pre-
conditions, desired effects and post-conditions. The main characteristic of a
Planlet is in the ability to recover itself - if an exception arises - automati-
cally, without explicitly defining any recovery policy at design-time. This feature
is critical for processes executed in dynamic environments where requirements
and context can change rapidly and unpredictably. An external planner is in
charge of synthesizing the needed recovery procedure on-the-fly, by contextu-
ally selecting the compensation tasks from a specific repository linked to the
Planlet under execution.

The rest of the paper is organized as follows. Section 2 presents and discusses
related works. Section 3 introduces our running example that helps to clarify the
scope of the approach. Section 4 presents the general approach and shows how
it can be concretely built on top of the YAWL architecture, whereas Section 5
discusses task annotations and the use of planning techniques for automatically
recovering dynamic processes. Section 6 reports on experimental evaluation re-
sults and Section 7 concludes the paper by discussing limitations and future
developments of the approach.

2 Related Works

Recently, techniques from the field of artificial intelligence (AI) have been ap-
plied to process management. In [5], the authors present a concept for dynamic
and automated workflow re-planning that allows recovering from task failures.
To handle the situation of a partially executed workflow, a multi-step procedure
is proposed that includes the termination of failed activities, the sound suspen-
sion of the workflow, the generation of a new complete process definition and the

270 A. Marrella, A. Russo, and M. Mecella

adequate process resumption. In [9], the authors take a much broader view of
the problem of adaptive workflow systems, and show that there is a strong map-
ping between the requirements of such systems and the capabilities offered by
AI techniques. In particular, the work describes how planning can be interleaved
with process execution and plan refinement, and investigates plan patching and
plan repair as means to enhance flexibility and responsiveness. A new life cycle
for workflow management based on the continuous interplay between learning
and planning is proposed in [3]. The approach is based on learning business
activities as planning operators and feeding them to a planner that generates
the process model. The main result is that it is possible to produce fully ac-
curate process models even though the activities (i.e., the operators) may not
be accurately described. The approach presented in [13] highlights the improve-
ments that a legacy workflow application can gain by incorporating planning
techniques into its day-to-day operation. The use of contingency planning to
deal with uncertainty (instead of replanning) increases system flexibility, but
it does suffer from a number of problems. Specifically, contingency planning is
often highly time-consuming and does not guarantee a correct execution under
all possible circumstances. Planning techniques are also used in [4] to define
a self-healing approach for handling exceptions in service-based processes and
repairing faulty activities with a model-based approach. During the process exe-
cution, when an exception occurs, a new repair plan is generated by taking into
account constraints posed by the process structure and by applying or deleting
actions taken from a given generic repair plan, defined manually at design time.

If compared with the above works, the Planlet approach provides some
interesting features in dealing with exceptions: (i) it modifies only those parts
of the process that need to be changed/adapted by keeping other parts stable;
(ii) it synthesizes the recovery procedure at run-time, without the need to define
any recovery policy at design-time.

3 Running Example

As an application scenario, we consider an emergency management process de-
fined for train derailments and inspired by a real process used by the main Ital-
ian Railway Company. The corresponding YAWL process, introduced in [12],
is shown in Fig. 1.a. The process starts when the railway traffic control center
receives an accident notification from the train driver and collects some infor-
mation about the derailment, including the GPS location and the number of
coaches and passengers. In Fig. 2.a a possible map of the area is depicted as
a 4x4 grid of locations. For the sake of simplicity, we supposed that the train
is composed by a locomotive (located in loc(3,3)) and two coaches (located in
loc(3,2) and loc(3,1) respectively). Then, it may be required to cut off the power
in the area and to interrupt the railway traffic near the derailment scene. In par-
allel, after having collected additional information about the train (e.g., security
equipment) and emergency services available in the area, a response team can
be sent to the derailment scene. Such a team is composed by four first respon-
ders (in the rest of the paper, we refer to them also as actors) and two robots,

Planlets: Automatically Recovering Dynamic Processes in YAWL 271

Receive
Accident

Notification

Retrieve Info
on Emergency

Services

Retrieve
Train Info

Notify
Emergency

Services

Cut Off Power
in the Area

Build and Configure
Incident

Response Plan

Retrieve Railway
Traffic Info

[cut off required]
Interrupt

Railway Traffic

Manage
Emergency
in the Area

Restore
Railway

go
(loc(3,2))

go
(loc(3,1))

go
(loc(3,3))

takePhoto
(loc(3,2))

evacuate
(loc(3,1))

evacuate
(loc(3,3))

updStatus
(loc(3,2))

updStatus
(loc(3,1))

updStatus
(loc(3,3))

AND-Split

XOR-Split

XOR-Join

AND-Join

AND-Join

AND-Join

AND-Split

a) b)

Fig. 1. The YAWL process defined for a train derailment scenario (a), in which the
composite task “Manage Emergency in the Area” is a Planlet (b)

initially located in loc(0,0). We assume that the actors are equipped with mo-
bile devices (for picking up and executing tasks) and provide specific skills. For
example, actor a1 is able to take pictures and to extinguish fire, whereas a2
and a3 are in charge of evacuating people from train coaches. The connection
between mobile devices is supported by a network provided by a fixed antenna
(whose range is limited to the dotted squares in Fig. 2.a), and the robots rb1
and rb2 can act as wireless routers for extending the network range in the area.
A robot provides a connection limited to the locations adjacent (in any direc-
tion) to its position. Each robot can move in the area, but it is constrained to
be always connected to the main network. This is guaranteed if the intersection
between the squares covered by the main network and the squares covered by
the robot connection is not empty. A robot connected to the main network can
act as a “bridge”, allowing the other robot to be connected through it to the
main network. Robots have a battery that discharges a fixed quantity after each
movement. The actor a4, in charge of checking the correct working of the an-
tenna, can change the battery of a robot if empty. Collected information is used
for defining and configuring at run-time an incident response plan, defined by
a contextually and dynamically selected set of activities to be executed on the
field by first responders. Such activities are abstracted into the composite task1

“Manage Emergency in the Area” (cf. Fig. 1.b). The subnet is composed by
three parallel branches with tasks that instruct first responders to act for evacu-
ating people from train coaches, to take pictures and to assess the gravity of the
accident. Despite the simple structure of the incident response plan, the high
dynamism of the operating environment can lead to a wide range of exceptions.
In general, for dynamic processes there is not a clear, anticipated correlation be-
tween a change in the context and corresponding process changes. Suppose, for
example, that the task go(loc(3,3)) is assigned to actor a1 (cf. Fig. 1.b), which
reaches instead the location loc(0,3). This means that a1 is now located in a
different position than the desired one, and s/he is out of the network range.
Since all the actors/robots need to be continually inter-connected to execute the
process, the PMS has to find a recovery procedure that first instructs the robots

1 A composite task is a container for another YAWL sub-net, with its own set of
elements.

272 A. Marrella, A. Russo, and M. Mecella

Fig. 2. Area (and context) of the intervention

to move in specific positions for maintaining the network connection, and then
re-assign the task go(loc(3, 3)) to a1. It is unrealistic to assume that the process
designer can pre-define all possible compensation activities for dealing with this
exception (apparently simple), since the process may be different every time it
runs and the recovery procedure strictly depends on the actual contextual in-
formation (the positions of operators/robots, the range of the main network,
the battery level of each robot, etc.). For the same reason, it is also difficult to
manually define an ad-hoc recovery procedure at run-time, as the correctness
of the process execution is highly constrained by the values (or combination of
values) of contextual data.

4 The General Approach and Architecture

4.1 Introducing Planlets

Most of current PMSs are not sufficiently able to deal with dynamic processes,
as they do not automatically adapt process instance executions in order to align
them to the changes to the environment. In this paper we propose a solution
that builds on top of YAWL [17], and consists of annotating at design-time a
YAWL specification with additional information which allows process instances
to be automatically recovered. In particular, we assume the tasks of a YAWL
process specification to be annotated with pre-conditions, desired effects and
post-conditions. Failures arise either when associated pre-conditions for a task
are not satisfied at the time the task is to be started, or when post-conditions
do not hold after the execution of the task. Effects represent the changes that a
successful task execution imposes on the state of the world, reflecting the current
value of the contextual properties that constraint the process under execution.
Hence, the process designer just states what conditions have to be satisfied,
without having to anticipate how these can be fulfilled. In order to formalize the
concept, we introduce the definition of Planlet:

Planlets: Automatically Recovering Dynamic Processes in YAWL 273

Definition 1 (Planlet). Let Y N be a YAWL net, T be the tasks defined in Y N ,
and V be the set of variables defined in Y N . Let Expr(V) be the set of expres-
sions over the variables in V . A Planlet is a tuple (Y N,Pre, Post, Eff) where
(i) Pre : T → Expr(V) returns an expression representing the pre-conditions
of tasks in T ; (ii) Post : T → Expr(V) returns an expression representing the
post-conditions of tasks in T ; (iii) Eff : T → Expr(V) returns an expression
representing the effects of tasks T .

The role of pre/post-conditions and effects for a YAWL task is twofold: (i) pre-
conditions and post-conditions enable run-time process execution monitoring
and exception detection: they are checked respectively before and after task
executions, and the violation of a pre-condition or post-condition results in
an exception to be handled; (ii) along with the input/output parameters con-
sumed/produced by the task, pre-conditions and effects provide a complete spec-
ification of the task: this allows the task to be represented as an action in a
planning domain description and used for solving a planning problem built to
handle an exception.

At design-time, the annotated tasks are stored in a repository linked to the
Planlet specification, which may contain also other annotated tasks deriving
from previous executions on the same contextual domain. At run-time, while
instances of the YAWL specification are carried on, tasks become enabled. Every
time a task t ∈ T becomes enabled, expression Pre(t) is evaluated; similarly,
upon the completion of t, expression Post(t) is evaluated. If an evaluation returns
false upon enablement or completion of a task, the system is in an invalid state
and, hence, the YAWL specification instance needs to be adapted to come back
into the “right track”. In order to do that, the case execution is suspended, and
a recovery procedure is automatically synthesized. To provide more details, let
us assume that the current Planlet is δ0 = (δ1; δ2) in which δ1 is the part
of the Planlet already executed and δ2 is the part of the Planlet which
remains to be executed when an exception is identified. The adapted Planlet
is δ′0 = (δ1; δh; δ2). However, whenever a Planlet needs to be adapted, every
running task is interrupted, since the “repair” sequence of tasks δh = [t1, . . . , tn]
is placed before them. Thus, active branches can only resume their execution
after the repair sequence has been executed. This last requirement is fundamental
to avoid the risk of introducing data inconsistencies during a repair.

The automatic synthesis of the recovery procedure δh is enacted on-the-fly by
an external planner. A planner solves the problem to find a sequence of actions
that move a system state from the initial one to a target goal, using a prede-
fined set of admissible actions. Each action is associated the set of pre-conditions
Pre(t) in order for that step to be chosen, as well as the effects Eff(t) obtained
as result of the action’s execution. Along with defining the set of admissible ac-
tions, it is also crucial to define how the state is represented, since pre-conditions
and effects of actions are given in term of the chosen state representation. The
actions’ set and the state definition are often referred to as planning domain. The
standard representation language of planners to define actions and state is the
Planning Domain Definition Language (PDDL) [2]. In the context of adaptation

274 A. Marrella, A. Russo, and M. Mecella

of instances of YAWL specifications, each task specification is associated with
a different action in the planning domain; the task’s pre-conditions and effects
are translated in PDDL and associated to the corresponding action. In addition
to the so-created planning domain, when an exception arises, the invalid state
and the pre-condition (or post-condition) violated is given in input to a planner,
which can try to build a plan. If the plan exists, the planner is eventually going
to return it. In this case, the plan is converted into a sequence of YAWL tasks
which are assigned to qualifying participants. When the converted plan is carried
out, the original suspended process is restored for execution.

Let us consider the example introduced in Section 3. The composite activity
“Manage Emergency in the Area” may be modeled as a self-contained Planlet
specification(cf. Fig. 1.b), linked to a repository containing a set of emergency
management (annotated) tasks, that range from the simple activity of taking
pictures to the more complex extinguishment of a fire. An explicit representation
of contextual information (the connection of each actor to the network, the map
of the area, the battery charge level of each robot etc.) is needed for preserving
the correct Planlet execution. The same exception shown in Section 3 (the
actor a1 is not more connected to the network and s/he is in a position different
than the desired one) results in a post-condition failure, and now may be
easily catched and solved. The planner builds a planning problem by taking as
initial state the invalid state of the Planlet, and as goal a state where all
actors/robots are inter-connected to the network and a1 is in the desired location
loc(3,3). The recovery plan is automatically synthesized by contextually selecting
tasks from the repository linked to the Planlet. Suppose, for example, that the
two robots rb1 and rb2 have an empty battery. In such a case, the planner devises
on-the-fly a possible solution, composed by a sequence of 5 tasks2 [chargeBat-
tery(a4,rb1),move(rb1,loc(1,3)),go(a1,loc(3,3)),chargeBattery(a4,rb2),move(rb2,
loc(3,3))] that change the state of the world as shown in Fig. 2.b.

4.2 Incorporating Planlets into YAWL

The architectural extension and integration we designed takes advantage of
YAWL’s exception detection capabilities and leverages the flexibility of the
exlet-based handling techniques.

Exception Handling in YAWL. The exception handling capabilities pro-
vided by YAWL3 build on the conceptual framework presented in [14]. In order
to understand how exceptions are detected and handled in YAWL we refer to
the architecture in Fig. 3 (for now, do not consider the Planning Service and
the Planlet Repositories4). For each exception that can be anticipated, it is

2 The recovery plan is synthesized by taking care of the skills of process participants,
and their availability for task assignment and execution. Hence, each task composing
the plan is already associated to the participant that will execute it.

3 In this paper we refer to the final release of YAWL 2.1.
4 With the exclusion of the Planning Service and of the Planlet Repositories, the
picture refers to the architecture defined in [17].

Planlets: Automatically Recovering Dynamic Processes in YAWL 275

Selection Service

Rules Event
Logs

Specification
Store

YAWL
Engine

Worklet
Service

Planning
Service

Planner Sync

User

Rules
Editor

Event
Logs

external triggers

YAWL
Editor

Process
Repository

AXB

B

X

A Interface A

B Interface B

X Interface X

Exception Service

Planlet
Repositories

Worklets
Repository

Fig. 3. The YAWL architecture extended with the Planning Service

possible to define an exception handling process, named exlet, which includes a
number of exception handling primitives (for removing, suspending, continuing,
etc. a work item/case) and one or more compensatory processes in the form
of worklets (i.e., self-contained YAWL specifications executed as compensatory
processes [17]). Exlets are linked to specifications by defining rules (through the
Rules Editor graphical tool), in the shape of Ripple Down Rules specified as
if condition then conclusion, where the condition defines the exception trig-
gering condition and the conclusion defines the exlet. At run-time, exceptions
are detected and managed by the Exception Service [17]. The service determines
whether an exception has occurred and, if so, it executes the corresponding
exlet. If the exlet includes a compensation worklet, the service retrieves it from
the repository, loads it into the engine and executes it as a new separate case,
possibly in parallel with the parent case if it was not suspended by the exlet.

Enabling Planlets in YAWL. From an architectural perspective, as shown in
Fig. 3, planning capabilities are provided by a Planning Service that implements
the planning logic and algorithm. In order to define the role of the Planning
Service and clarify how it interacts with existing YAWL architectural compo-
nents and services, we follow the process and exception handling life-cycle, from
process design, enactment and monitoring to exception detection, handling and
(possibly) resolution. At design time, the process designer builds one or more
Planlet Repositories (or modifies the existing ones), by inserting/deleting an-
notated tasks and by (possibly) modifying the contextual domain linked to each
repository. Tasks involved in a Planlet specification are selected from a specific
Planlet repository, since they are thought to be enacted in a specific contex-
tual domain. Before executing a Planlet, the process designer instantiates the
initial values for the properties of the contextual domain. As shown in Section 5,
tasks pre- and post-conditions are automatically translated in YAWL pre- and
post-constraints. In order to delegate the exception handling to the Planning
Service, we introduce the possibility of mapping a compensation activity to the
Planning Service. By defining this mapping instead of explicitly selecting a com-
pensation worklet, the process designer configures the Exception Service so that

276 A. Marrella, A. Russo, and M. Mecella

Fig. 4. Planning Service activation hierarchy for exception handling

the generation of the compensation worklet is delegated to the Planning Ser-
vice. Fig. 4 shows an excerpt of the rule file defined for detecting and handling
a workitem-level pre-execution (or post-execution) constraint violation. Lines 1-
4 define the exception triggering condition (a pre- or a post-condition failure),
while lines 5-12 define the exception handling exlet (which consists of suspend-
ing the current case, performing some compensation activities and then resuming
the suspended case). In our extended version, the mapping of a compensation
task to the Planning Service is identified by a <target> element containing
the PlanningService value (line 9), in order to enact planning capabilities. If
we consider our running example, the compensation plan devised in Fig. 4 cor-
responds to the one needed for re-establishing the network connection between
actors/robots and for instructing actor a1 to move in the desired location.

Planning Service Activation.When the Exception Service activates the Plan-
ning Service, it provides as input all case data associated with the running case,
along with the detected violation over pre- and post-conditions. Based on this
information, and on the specifications of available tasks, stored in the repository
linked to the Planlet under execution, the Synchronization component of the
Planning Service is able to build the planning domain and to define a planning
problem, and submit them to the Planner module in charge of synthesizing a
recovery plan. If the Planner is able to successfully synthesize a compensation
plan, it stores it as an executable specification (i.e., a worklet) in the Worklets
Repository and notifies the Exception Service. The Exception Service is then
able to enact the execution of the compensation worklet as if it was manually
selected at design time, by loading the specification into the engine and launch-
ing it as a separate case. When the execution completes, output data produced
by the worklet are mapped back to the parent case and subsequent actions in
the exlet are executed. Following the exlet defined in Fig. 4, as the compensation
worklet synthesized by the Planner is supposed to recover from the constraint
violation, the suspended case can then be resumed and executed. If no valid
plan can be found by the Planner, a notification alert is sent to an administra-
tor, who is charge of handling the unsolved exception, e.g., manually building a
compensation process or just canceling the process case.

Planlets: Automatically Recovering Dynamic Processes in YAWL 277

5 Annotating YAWL Specifications in Planlets

A main step of our approach in YAWL consists of enriching the process model
with a specification of process tasks, in terms of pre-conditions, desired effects
and post-conditions, and with an explicit representation of the contextual do-
main needed for the correct process enactment.

In YAWL, each atomic task t can be linked to a decomposition. Decomposi-
tions can have a number of input and output parameters, each identified by a
name and characterized by a type dictating valid values it may store, and define
the so-called YAWL Service that will be responsible for task execution. As
process data are represented through net-level variables, inbound and outbound
mappings define how data is transferred from net variables to task variables and
vice-versa [17]. We propose to extend task specifications at the decomposition
level, with the possibility of defining pre-conditions, post-conditions and effects
as logical formulae and expressions over task parameters.

Defining and Representing Finite Domain Types. The definition of a
Planlet requires the specification of the data types that characterize the in-
formation manipulated by process instances and define the domains over which
predicates and functions are interpreted. In order to have a compact and finite
representation of a process state, given by the values assumed by process vari-
ables at a given point in the execution, all data types must correspond to finite
domains over which variables of that type can range; this requirement is im-
posed by the planning-based approach we propose. Examples of such domains
are finite integer intervals or sets of strings, and other enumerated domains. As
YAWL applies strong data typing and all data types are defined using XML
Schemas, this can be easily achieved by defining data types as XML Schemas
and using restrictions (e.g., via the enumeration constraint) to limit the content
of an XML element to a set of acceptable values. In our example, we need to
define data types for representing actors, robots5 and locations in the area (e.g.,
data type Loc = {loc00, loc10, . . . , loc33}), whose possible values are constant
symbols that univocally identify objects in the domain of interest.

Defining and Representing Predicates and Functions. Predicates can
be used to express properties of domain objects and relations over objects. A
predicate consists of a predicate symbol P and a set of typed parameters or ar-
guments6. Argument types (taken from the set of data types previously defined)
represent the finite domains over which predicates are interpreted. In our exam-
ple, we may need predicates for expressing the presence of a fire in a location or
whether a location is covered by the network signal provided by the main an-

5 Although emergency operators and robots can be considered as resources or services
able to execute tasks and can be represented in the organizational model provided
by YAWL, we also need to explicitly represent them in the process because we need
to define predicates and functions over these domains.

6 Predicates with no arguments, i.e., with arity 0, are allowed and can be considered
as propositions; they are directly represented as boolean variables.

278 A. Marrella, A. Russo, and M. Mecella

tenna, or relations, such as the adjacency between locations, i.e., Fire(loc : Loc),
Covered(loc : Loc), Adjacent(loc1 : Loc, loc2 : Loc).

In addition to basic predicates, we allow the designer to define derived predi-
cates. They are declared as basic predicates, with the additional specification of
a well-formed formula ϕ that determines the truth value for the predicate. In our
domain, we may need to express that an actor is connected to the network if s/he
is in a covered location or if s/he is in a location adjacent to a location where a
robot is located (and is thus connected through the robot); assuming we have de-
fined the data types Robot = {rb1, rb2} and Actor = {a1, a2, a3, a4}, we have:
Connected(act : Actor) {EXISTS(l1 : Loc, l2 : Loc, rbt : Robot) ((at(act) =
l1)AND(Covered(l1)OR (atRobot(rbt) = l2ANDAdjacent(l1, l2)))))}

Numeric and object functions allow to represent and handle numeric values
and domain objects as functions of other objects. Function declarations consist
of a function symbol f , a set of typed parameters7, and a return type. Numeric
functions have as return type an integer or a real number, whereas object func-
tions have a return type taken from the set of data types defined in the net
specification. The arguments of functions range over finite domains, and for ob-
ject functions the same requirement holds for result types. In our example, we
need to keep track of the battery level of the robots. This can be represented
through the numeric function batteryLevel(robot : Robot) : Integer.

Similarly, we can represent the position of actors and robots by defining the
following functional predicates that map actors and robots to their location:
at(actor : Actor) : Loc and atRobot(robot : Robot) : Loc.

State Variables Representation. The use of predicates and functions requires
that at run-time we represent the corresponding logical interpretations, as state
variables that hold (a) the truth value of the defined predicates over domain
objects, and (b) the values of the defined functions with respect to different
argument assignments. The interpretations are used to evaluate pre- and post-
conditions, and are modified as a result of task executions. As a consequence of
the declaration of a predicate or function, two new data types are automatically
generated and added to the XML data types definitions for the net:

T1. a complex data type that is able to represent the name of the predicate or
function and

– for predicates, all argument assignments for which the predicate holds8

(i.e., the current interpretation P I for the predicate);

– for functions, all argument assignments for which the function is defined,
along with the corresponding value9 (i.e., the current interpretation fI

for the function);

7 Numeric functions with no arguments are allowed, and can be considered as state
variables rather than constants, as their value may change during process executions;
they are represented as integer or float/double variables.

8 Basically, a set containing all object tuples for which the predicate is true.
9 Basically, a map where object tuples are mapped to objects.

Planlets: Automatically Recovering Dynamic Processes in YAWL 279

T2. a complex data type that is able to represent a predicate or function instance,
in terms of the name of the predicate or function, the set of arguments and
their assignment, and the truth value or numeric/object value of the predi-
cate or function with respect to the specific assignment; different parameters
of this type can be defined for process tasks, to be used for representing the
effects that they can have on the predicate or function interpretation.

For each predicate and function, a single net-level state variable of type T1 is
defined and it can be initialized so as to contain all values for the objects for
which the predicate is true or the function is defined in the initial state. Derived
predicates are not explicitly represented through net-level state variables, as
their interpretation can be always derived from the corresponding formula,
and they can not appear in task effects (but task effects can act on the basic
predicates and functions that appear in the formula, thus indirectly modifying
the truth value for the derived predicate).

Initial Interpretation for a Process Instance. It is given by an assignment
of values to the state variables that represent truth values for predicates (initial
facts) and initialization values for functions.

Pre-conditions, Post-conditions and Effects. They are defined at design
time as logical annotations associated with tasks in a Planlet. We assume a
first-order predicate logic with numeric and object functions, with the restriction
that free variables are not allowed and thus all variable symbols must be task
parameter names or occur in the scope of a quantifier. The language is clearly
inspired from PDDL, although we prefer an infix notation for the operators.
Task pre/post-conditions and effects are represented in task specifications via
the <precondition>, <effect> and <postcondition>markup elements. In our
example, consider the task labeled as go, which requires that an actor moves
from a location to another in the area. It defines two input parameters from
and to of type Loc, representing the starting and arrival locations, and an input
parameter actor of type Actor representing the emergency operator that executes
the task. An instance of this task can be executed only if s/he is currently at the
starting location and is connected to the network. As an effect of task execution,
the actor moves from the starting to the arrival location, but we need, as post-
condition, to verify whether the arrival location has been reached and the actor
is still connected to the network. We can thus define the following annotations:

<precondition>at(actor) == from AND Connected(actor)</precondition>

<effect>at(actor) = to</effect>

<postcondition>at(actor) == to AND Connected(actor)</postcondition>

The designer can distinguish between: (i) direct effects, i.e., effects that always
take place after an execution, and therefore the corresponding changes on the
state variables are automatically performed when the task completes (e.g., if
an effect of the form BatteryLevel(robot) += 5 is marked as automatic, after
task execution the value for BatteryLevel(robot) is directly increased by 5); and
(ii) supposed effects, i.e., effects that define changes that are assumed to be
performed only when the task is considered as an action in a planning domain.

280 A. Marrella, A. Russo, and M. Mecella

GPSS1 Sn

......

S
en

so
rs

S
er

vi
ce

s

a1

Output
at(a1) = loc33

YAWL
Engine

<atEffect>
 <name>at</name>
 <actor>a1</actor>
 <value>loc33</value>
</atEffect>

......

Y

Update net-level
interpretation variable

Fig. 5. A task effect represented as a variable assignment

Supposed effects can be interpreted as the effects that a task is supposed to
have, but the actual produced changes are defined at run-time as a result of the
concrete execution, such as the actual truth value of a predicate or the actual
value for a direct assignment. In our example, at(actor) = to is a supposed
effect, as the actual value for at(actor) is produced as a task output and may
be different from the desired one (i.e., the value of the to variable prescribed
in the effect). If the designer needs to verify if a task execution has produced
the intended effect, s/he has to define a corresponding post-condition (i.e., the
at(actor) == to).

Direct effects can be directly represented by generating an outbound mapping
with an XQuery expression that adds/removes a tuple to/from the state vari-
able representing predicate’s interpretation (for positive/negative predicates),
or updates the value for a tuple in the state variable representing function’s in-
terpretation (for assignment effects). In supposed effects, the actual values are
produced by workitem executions, and all predicates and functions that appear
in the effect expression have to be represented as task variables, so as to allow to
specify (according to task’s execution logic) the truth value for predicates or the
value for functions. To this end, we represent each predicate and function that
appears in the supposed effects as task parameters of type T2, where the predi-
cate/function name is given and fixed, the values for the argument variables (i.e.,
the grounding) are defined by the inbound mappings for task parameters and
the predicate/function actual value will be defined as a result of task execution.
For these variables, outbound mappings are then generated, including XQuery
expressions to update net-level state variables as for direct effects. Fig. 5 shows
an example of how a variable can be used to represent an effect and how the
actual value for at(a1) can be produced as output; we show that the output value
for at(a1) is produced by a sensor (i.e., a GPS device) supporting the worklist
handler. The produced value, in the example ’loc33’, is then used to update the
net variable representing the at interpretation to reflect that at(a1) �→ loc33.

State Model and Exceptions. In a Planlet, a process state S is given
by the token marking mS (as defined in [17] for YAWL nets) and the logical

Planlets: Automatically Recovering Dynamic Processes in YAWL 281

interpretation IS that assigns truth values to predicates and values to functions.
The initial state over which a process instance is executed is given by the
initial marking and an assignment of values to the state variables that represent
the initial interpretation for predicates and functions. When a task t becomes
enabled in a state S (as determined by mS), its execution can start only if the
task precondition formula ϕpre is true in IS , i.e., IS |= ϕpre. A task execution
changes the interpretation according to actual task effects (which for a successful
execution are given by the corresponding effects expression expreff) and leads
to a new state S′ where mS′ is the produced marking and IS′ is the new
interpretation. A completed task is considered as successfully executed if its
postcondition formula ϕpost is true in IS′ , i.e., IS′ |= ϕpost. At run time all
task executions are thus preceded and followed by the verification of whether
I |= ϕpre and I |= ϕpost

10. In this model, an exception occurs in a given state
with an interpretation I if a task is enabled but I �|= ϕpre or if a task has
completed but I �|= ϕpost.

From Pre-/Post-conditions to Pre-/Post-execution Constraints. As
part of its exception handling mechanism, YAWL supports the definition of
workitem-level pre- and post-execution constraints, as rules with conditions
that (i) are checked when the workitem becomes enabled and when it is
completed, and (ii) if violated, they trigger an exception and the execution
of an exception handling process (i.e., a YAWL exlet [14]). Conditions are
defined over case variables as strings of operands and arithmetic, comparison
and logical operators; conditional expressions may also take the form of boolean
XQuery expressions [17]. In our approach, we leverage on this built-in feature
and map the evaluation of pre- and post-conditions to the evaluation of pre
and post-execution constraints, by automatically translating ϕpre and ϕpost

formulae for each task into YAWL conditional expressions. While arithmetic,
comparison and logical operators in our annotation language directly map to
the operators supported by YAWL, predicates and functions can be resolved by
appropriate XQuery expressions11.

Representing Planlet Annotations in PDDL. In order to exploit our
planning-based recovery mechanism, every task/annotation/property associated
to a Planlet needs to be translated in PDDL. A PDDL definition consists of
two parts: the domain and the problem definition. The planning domain is built
starting by the definition of basic/derived predicates, object/numeric functions
and data types as shown in the previous sections, and by making explicit the
actions associated to each annotated task stored in the repository linked to the
Planlet under execution, together with the associated pre-conditions, effects
and input parameters. Basically, the planning domain describes how predicates
and functions may vary after an action execution, and reflects the contextual
properties constraining the execution of tasks stored in a specific Planlet

10 As ϕpre and ϕpost are closed formulae, their truth values can be considered as the
answers to the corresponding boolean queries, given the interpretation I.

11 We recall that no free variables are allowed and all formulae are closed.

282 A. Marrella, A. Russo, and M. Mecella

repository. Our annotation syntax allows to represent planning domains and
problems with the complexity of those describable in PDDL version 2.212 [2]. In
the following, we discuss how our annotations are translated into a PDDL file
representing the planning domain:

– the name and the domain of a data type corresponds to an object type in
the planning domain;

– basic and derived predicates have a straightforward representation as re-
lational predicates (templates for logical facts) and derived predicates (to
model the dependency of given facts from other facts);

– numeric functions correspond to PDDL numeric fluents, and are used for
modeling non-boolean resources (e.g., the battery level of a robot);

– object functions do not have a direct representation in PDDLv2.2, but may
be replaced as relational predicates. Since an object function f : Objectn →
Object map tuples of objects with domain types Dn to objects with co-
domain type U , it may be coded in the planning domain as a relational
predicate P of type (Dn, U);

– a given YAWL task, together with the associated pre-conditions and effects
and input parameters, is translated in a PDDL action schema. An action
schema describes how the relational predicates and/or numeric fluents may
vary after the action execution.

When an exception arises, on a same planning domain a new planning problem
is built at run-time, through the description of an initial state (that corresponds
to the invalid state of the process s) and the description of the desired goal (a
safe state s′, derived from the violated pre- or post-condition).

– for each data type defined in the planning domain, all the possible object
instances of that particular data type are explicitly instantiated as constant
symbols in the planning problem (e.g., the fact that a1, a2, a3, a4 are Actors,
rb1 and rb2 are Robots, loc00, ..., loc33 are Locations);

– a representation of the initial state of the planning environment is needed.
Basically, the initial state of the planning problem corresponds to an invalid
state (i.e., a state that needs to be fixed after a pre- or post-condition vi-
olation during the process execution). It is composed by a conjunction of
relational predicates, derived predicates (e.g., the information about which
actors/robots are currently connected to the network) and by the current
value of each numeric fluent (e.g., the battery charge level for each robot);

– the goal state of the planning problem is a logical expression over facts. In our
approach, the goal state is built in order to reflect a safe state to be reached
after the execution of a recovery procedure. Suppose that t is the task whose
pre-conditions Pre(t) (or post-conditions Post(t)) are not verified. The safe

12 PDDLv2.2 enables the representation of realistic planning domains, with actions and
goals involving numerical expressions, operators with universally quantified effects or
existentially quantified preconditions, operators with disjunctive or implicative pre-
conditions, derived predicates and plan metrics. However, currently, our formalism
does not allow to represent conditional and universally quantified effects.

Planlets: Automatically Recovering Dynamic Processes in YAWL 283

Table 1. Time performances of LPG-td for adaptation problems of growing complexity

Length of the Problem Avg. time needed for a Avg. length of a Avg. time needed for
recovery proc. instances sub-optimal sol. (sec) sub-optimal sol. a quality sol. (sec)

1 29 6,769 3 7,768
2 36 7,213 3 16,865
3 32 7,846 4 24,123
4 25 8,128 5 37,017
5 21 8,598 8 39,484
6 17 8,736 9 52,421
7 13 9,188 13 73,526
8 12 9,953 14 81,414

state s′ corresponding to the goal state is generated starting from the invalid
state s, by substituting the wrong facts that led to the exception with the
content of the pre-conditions (or post-conditions) violated.

6 Experiments

In order to investigate the feasibility of the Planlet approach, we performed
some testing to learn the time amount needed for synthesizing a recovery plan
for different adaptation problems. We made our tests by using the LPG-td plan-
ner13 [7]. Such a planner is based on a stochastic local search in the space of
particular “action graphs” derived from the planning problem specification. The
basic search scheme of LPG-td is inspired to Walksat [16], an efficient procedure
for solving SAT-problems. More details on the search algorithm and heuristics
devised for this planner can be found at [7,6]. We chose LPG-td as (i) it treats
the full range of PDDL2.2 [2] (that is characterized for enabling the representa-
tion of realistic planning domains) and (ii) even if it is primarily thought as a
satisficing planner, it is able to compute also quality plans under a pre-specified
metric. In fact, LPG-td has been developed in two versions: a version tailored
to computation speed, named LPG-td.speed, which produces sub-optimal plans,
and a version tailored for plan quality, named LPG-td.quality. LPG-td.speed
generates sub-optimal solutions that do not prove any guarantee other than the
correctness of the solution. LPG-td.quality differs from LPG-td.speed basically
for the fact that it does not stop when the first plan is found but continues until
a stopping criterion is met. In our experiments, the optimization criteria was
fixed as the minimum number of actions needed for the planner to reach the
goal. It is important to underline that satisficing planning is easy (polynomial),
while optimal planning is hard (NP-complete) [8]. The experimental setup was
performed with the test case shown in our running example. We stored in the
Planlet repository 20 different emergency management tasks, annotated with
28 relational predicates, 2 derived predicates and 4 numeric fluents, in order
to make the planner search space very challenging. Then, we provided 185 dif-
ferent planning problems of different complexity, by manipulating ad-hoc the

13 LPG-td was awarded at the 4th International Planning Competition (IPC 2004,
http://ipc.icaps-conference.org/) as the “top performer in plan quality”.

http://ipc.icaps-conference.org/

284 A. Marrella, A. Russo, and M. Mecella

values of the initial state and the goal in order to devise adaptation problems
of growing complexity14. As shown in Table 1, the column labeled as “Length
of the recovery procedure” indicates the smallest number of actions needed for
devising a plan of a specific length. Our purpose was to measure (in seconds)
the computation time needed for finding a sub-optimal solution and a quality
solution for problems that require a recovery procedure of growing complexity.
The column labeled as “Average length of a sub-optimal solution” indicates the
average number of actions that compose a sub-optimal solution for a problem of
a given complexity. A sub-optimal solution is found in less time than a quality
one, but generally it includes more tasks than the ones strictly needed. This
means that when the complexity of the recovery procedure grows, the quality of
a sub-optimal solution decreases. For example, as shown in table 1, on 21 differ-
ent planning problems requiring a recovery procedure of length 5, the LPG-td
planner is able to find, on average, a sub-optimal plan in 8,598 seconds (with
3 more tasks, on average) and a quality plan (which consists exactly of the 5
tasks needed for the recovery) in 39,484 seconds, without the need of any domain
expert intervention. Consequently, the approach is feasible for medium-sized dy-
namic processes used in practice15.

7 Conclusions

In this paper, we have introduced the concept of Planlets, self-contained
YAWL specifications featuring automatic adaptation for dynamic processes,
based on modeling of pre- and post-conditions of tasks and the use of planning
techniques. In contrast to most existing approaches, Planlet covers on
automatic adaptation for processes at runtime that do not need any human
interaction. We have shown the feasibility of the approach by discussing its
deployment on top of YAWL and by showing some experimental tests based on
a real process scenario. Such tests have provided useful insights on the cases
in which an automatic approach is convenient wrt. more traditional exception
handlers defined at design-time. The assumptions of classical planning (deter-
minism in the action effects, model completeness, etc.) we used for modeling
dynamic processes has a twofold consequence. On the one hand, we can exploit
the good performance of classical planners (e.g., LPG-td) to solve real-world
problems with a realistic complexity; on the other hand, classical planning
imposes some restrictions for addressing more expressive problems, including
incomplete information, preferences and multiple task effects. Future works will
include an extension of our approach dealing with the above aspects, with the
purpose to maintain the planning process very responsive.

14 Some test instances, together with the inputs for the planner, are available at the
URL: http://www.dis.uniroma1.it/ marrella/public/

Planlets CoopIS2012 TestCases.zip.
15 We did our tests by using an Intel U7300 CPU 1.30GHz Dual Core, 4GB RAM

machine.

http://www.dis.uniroma1.it/~marrella/public/Planlets_CoopIS2012_TestCases.zip
http://www.dis.uniroma1.it/~marrella/public/Planlets_CoopIS2012_TestCases.zip

Planlets: Automatically Recovering Dynamic Processes in YAWL 285

Acknowledgements. This work has been partly supported by the Sapienza
projects TESTMED and SUPER, by the Italian national PIA Calabria project
COSM Factory and by the EU projects Greener Buildings and SmartVortex. The
authors thank Arthur H.M. ter Hofstede and Massimiliano de Leoni for useful
insights and discussions.

References

1. de Leoni, M., Mecella, M., De Giacomo, G.: Highly Dynamic Adaptation in Process
Management Systems Through Execution Monitoring. In: Alonso, G., Dadam, P.,
Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 182–197. Springer, Heidel-
berg (2007)

2. Edelkamp, S., Hoffmann, J.: PDDL2.2: The Language for the Classical Part of the
4th International Planning Competition. Tech. rep., Albert-Ludwigs-Universitat
Freiburg, Institut fur Informatik (2004)

3. Ferreira, H., Ferreira, D.: An integrated life cycle for workflow management based
on learning and planning. Int. J. Coop. Inf. Syst. 15, 485–505 (2006)

4. Friedrich, G., Fugini, M., Mussi, E., Pernici, B., Tagni, G.: Exception handling for
repair in service-based processes. IEEE Trans. on Soft. Eng. 36, 198–215 (2010)

5. Gajewski, M., Meyer, H., Momotko, M., Schuschel, H., Weske, M.: Dynamic failure
recovery of generated workflows. In: DEXA 2005 (2005)

6. Gerevini, A., Saetti, A., Serina, I.: Planning through stochastic local search and
temporal action graphs in Lpg. J. Art. Int. Res. 20(1), 239–290 (2003)

7. Gerevini, A., Saetti, A., Serina, I., Toninelli, P.: Lpg-td: a fully automated planner
for PDDL2.2 domains. In: ICAPS 2004 (2004)

8. Helmert, M.: Complexity results for standard benchmark domains in planning. Art.
Int. 143, 219–262 (2003)

9. Jarvis, P., Moore, J., Stader, J., Macintosh, A., du Mont, A.C., Chung, P.: Ex-
ploiting AI technologies to realise adaptive workflow systems. In: AAAI Workshop
on Agent-Based Systems in the Business Context (1999)

10. Lenz, R., Reichert, M.: IT support for healthcare processes. Premises, challenges,
perspectives. Data Knowl. Eng. 61, 39–58 (2007)

11. Marrella, A., Mecella, M., Russo, A.: Featuring automatic adaptivity through work-
flow enactment and planning. In: CollaborateCom 2011 (2011)

12. Marrella, A., Mecella, M., Russo, A., ter Hofstede, A.H.M., Sardiña, S.: Making
YAWL and SmartPM interoperate: Managing highly dynamic processes by exploit-
ing automatic adaptation features. In: BPM, Demos (2011)

13. R-Moreno, M.D., Borrajo, D., Cesta, A., Oddi, A.: Integrating planning and
scheduling in workflow domains. Exp. Syst. with Applications 33(2) (2007)

14. Russell, N., van der Aalst, W.M.P., ter Hofstede, A.H.M.: Workflow Exception
Patterns. In: Martinez, F.H., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp.
288–302. Springer, Heidelberg (2006)

15. Schonenberg, H., Mans, R., Russell, N., Mulyar, N., van der Aalst, W.M.P.: Process
flexibility: A survey of contemporary approaches. In: CIAO! / EOMAS 2008 (2008)

16. Selman, B., Kautz, H.A., Cohen, B.: Noise strategies for improving local search.
In: AAAI 1994 (1994)

17. ter Hofstede, A.H.M., van der Aalst, W.M.P., Adams, M., Russell, N.: Modern
business process automation: YAWL and its support environment. Springer (2009)

286 A. Marrella, A. Russo, and M. Mecella

18. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support
features - enhancing flexibility in process-aware information systems. Data Knowl.
Eng. 66, 438–466 (2008)

19. Weber, B., Wild, W., Lauer, M., Reichert, M.: Improving exception handling by
discovering change dependencies in adaptive process management systems. In: BPI
2006 (2006)

20. Weske, M.: Formal foundation and conceptual design of dynamic adaptations in a
workflow management system. In: HICSS 2001 (2001)

Discovering Context-Aware Models

for Predicting Business Process Performances

Francesco Folino, Massimo Guarascio, and Luigi Pontieri

Institute for High Performance Computing and Networking (ICAR)
National Research Council of Italy (CNR)

Via Pietro Bucci 41C, I87036 Rende (CS), Italy
{ffolino,guarascio,pontieri}@icar.cnr.it

Abstract. Discovering predictive models for run-time support is an
emerging topic in Process Mining research, which can effectively help op-
timize business process enactments. However, making accurate estimates
is not easy especially when considering fine-grain performance measures
(e.g., processing times) on a complex and flexible business process, where
performance patterns change over time, depending on both case proper-
ties and context factors (e.g., seasonality, workload). We try to face such
a situation by using an ad-hoc predictive clustering approach, where dif-
ferent context-related execution scenarios are discovered and modeled
accurately via distinct state-aware performance predictors. A readable
predictive model is obtained eventually, which can make performance
forecasts for any new running process case, by using the predictor of
the cluster it is estimated to belong to. The approach was implemented
in a system prototype, and validated on a real-life context. Test results
confirmed the scalability of the approach, and its efficacy in predicting
processing times and associated SLA violations.

1 Introduction

Process mining techniques [11] are widely reckoned as a precious tool for the
analysis of business processes, owing to their capability to extract useful infor-
mation out of historical process logs, possibly providing the analyst with a high-
level process model. An emerging research stream (see, e.g., [6,13]) concerns the
induction of state-aware models for predicting some relevant performance met-
rics, defined on process instances. For example, in [13], an annotated finite-state
model is induced from a given log, where the states correspond to abstract rep-
resentation of log traces. Conversely, a non-parametric regression model is used
in [6] to build the prediction for a new (possibly partial) trace upon its similarity
to a set of historical ones, while evaluating traces’ similarity based on the com-
parison of their respective abstract views. The interest towards such novel mining
tools stems from the observation that performance forecasts can be exploited to
improve process enactments, through, e.g., task/resource recommendations [9]
or risk notification [5]. However, accurate forecasts are not easy to make for
fine-grain measures (like, e.g., processing times), especially when the analyzed

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 287–304, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

288 F. Folino, M. Guarascio, and L. Pontieri

process shows complex and flexible dynamics, and its execution schemes and
performances change over time, depending on the context. In fact, the need to
recognize and model the influence of context factors on process behavior is a
hot issue in BPM community (see, e.g., [14]), which calls for properly extending
traditional approaches to process modeling (and, hopefully, to process mining).
In general, a way to increase process model precision is to partition the log by
ad-hoc clustering methods [10,7,8], and to find a (more precise) model for each
cluster, while regarding this latter as evidence for a peculiar execution scenario
of the process. To the best of our knowledge, however, all previous clustering-
oriented process mining approaches only focused on control-flow aspects, with
no connections with the discovery of performance predictors.

In this paper we right attempt to overcome the above limitations by proposing
an ad-hoc predictive clustering approach, capable to detect different context-
related execution scenarios (or process variants), and to equip each of them
with a tailored performance-prediction model. Our ultimate goal is to find a
novel kind of predictive model, where performance forecasts for any (unfinished)
process instance, are made in two steps: the instance is first assigned to a refer-
ence scenario (i.e., cluster), whose performance model is then used to eventually
make the forecast. Technically, we extend and integrate a method for inducing
predictive performance models [13] and a logics-oriented approach to predictive
clustering [3], where the discovered model, named Predictive Clustering Tree
(PCT), takes the form of a decision-tree. Specifically, the discovery of such sce-
narios (i.e., clusters) is carried out by partitioning the log traces based on their
associated context features, which may include both internal properties of a case
(e.g. the amount of goods requested in an order management process) and exter-
nal factors that characterize the situation where it takes place (e.g., workload,
resource availability, and seasonality indicators). Notably, the complex struc-
ture of (performance-annotated) process logs makes a trivial application of PCT
learning methods likely ineffective and/or computationally expensive. We hence
devise a method for encoding each log trace in a propositional form, featuring
both its context properties and some associated performance measurements.

Organization. The rest of the paper is structured as follows. Section 2 intro-
duces some notation and basic concepts. The specific problem faced in the paper
and the proposed solution approach are described in Section 3. Section 4 dis-
cusses an implementation of the approach, and its usage in a real-life setting (as
well as the quality metrics used for the evaluation). After discussing experiment
results in Section 5, we finally draw a few concluding remarks in Section 6.

2 Formal Framework

Following a standard approach in the literature, we assume that for each pro-
cess instance (a.k.a “case”) a trace is recorded, encoding the sequence of events
happened during the relative enactment. Different data parameters (e.g., the
amount of goods asked in a order-handling process) can be kept for any process
instance, while each event is associated with a process task and a timestamp –

Discovering Context-Aware Models 289

we here disregard other event properties, such as, e.g., task parameters or execu-
tors.We also assume that a additional features can be associated with each trace
that characterize the context where it takes place, and capture environmental
factors (which may well influence performances).

Let us first denote by T and E the (fixed) reference universes of all (possibly
partial) traces and associated events that may appear in a log. Moreover, let
μ̂ : T → M the unknown function assigning a performance value to each trace
— w.r.t. to a given reference performance metrics and an associated spaceM of
values. Note that μ̂ abstractly indicates the final target of our search, in that we
aim at eventually predicting the values of the metrics on any novel enactment.
We also assume that two kinds of context properties are defined for a process
instance: (i) (“intrinsic”) case attributes A1, ... , Aq, with associated domains
DA1 , ... , DAq , resp., and (ii) (“extrinsic”) environmental features B1, ... , Br,
with domainsDB1 , ... , DBr , resp. – this latter kind of data are meant to capture
the state of the BPM system in the moment when the instance starts. Finally,
for any sequence s, let len(s) denote its length, and s[i] the element in position
i, for i = 1 . . . len(s). Finally, s(i] is its prefix of s of length i, for i = 1 . . . len(s),
and s(0] = 〈〉 (the empty sequence). Some further concepts and notation are
formally introduced next to conveniently refer to log contents.

Definition 1 (Trace). A trace τ (∈ T) is a triple 〈v, ā, s〉 such that id is a
unique identifier, ā ∈ DA1 × ... × DAq) are its data, and s is a sequence of
events. For simplicity, let us also denote v = id(τ), ā = data(τ), s = seq(τ),
len(τ) = len(s), and τ [i] = s[i]. Moreover, env(τ) ∈ DB1 × ... × DBr are the
environment features associated with any trace τ , and context(τ) ∈ DA1 × ...×
DAq×DB1×...×DBr is the juxtaposition of vectors data(τ) and env(τ). Finally,
τ(i] = 〈vi, āi, si〉 is a prefix of τ , for i =0 .. len(τ), such that vi is a new identifier,
āi = ā, si = s(i], env(τ(i)] = env(τ), and context(τ(i)] = context(τ). �

Definition 2 (Log). A log L (over T) is a finite subset of T . Moreover, the
prefix set of L, denoted by P(L), is the set of all prefix traces that can be
extracted from L, i.e., P(L) = {τ(i] | τ ∈ L and 0 ≤ i ≤ len(τ)}. For any log L,
we will always assume that μ̂(τ) is known for any prefix trace τ ∈ P(L). �

Note that any prefix τ(i] in Def. 1 is a partial unfolding of τ sharing its context
data, while the last statement in Def. 2 can be handled by defining an auxiliary
function encoding μ̂ on the prefixes of past log traces – e.g., the (real) remaining
time of any prefix of such a trace τ is μ̂RT(τ (i]) = time(τ [len(τ)])− time(τ [i]).

2.1 State-Aware Performance Prediction

A Performance Prediction (Process) Model (PPM , for short), is for us a model
that can predict the performance value of any future process enactment, repre-
sented as a partial trace. Such a model, indeed, can be regarded as a function
μ : T → M that tries to estimate μ̂ all over the reference universe of traces.
Learning a PPM is then a special induction problem, where the training set is
represented as a log L, such that the value μ̂(τ) of the target measure is known

290 F. Folino, M. Guarascio, and L. Pontieri

for each (sub-)trace τ ∈ P(L). Different solutions were proposed to this prob-
lem [13,6], which share the idea of capturing the dependence of performance
values on traces (i.e., case histories) by regarding these latter at suitable ab-
straction levels.

Definition 3 (Trace Abstraction Functions). Let h ∈ (N)
⋃
{∞} be a

threshold on past history. A trace abstraction function absmode
h : T → R is a

function mapping each trace τ ∈ T to an element absmode
h (τ) in a space R of ab-

stract representations. For any τ ∈ T , while denoting n = len(τ) and j = n−h+1
if n > h and j = 1 otherwise, it is: (i) abslisth (τ) = 〈task(τ [j]), . . . , task(τ [n])〉;
(ii) absbagh (τ) = [(t, p) | t ∈ absseth (τ) and p = |{τ [k] | j ≤ k ≤ n, task(τ [k]) =
t}|], and (iii) absseth (τ) = {task(τ [j]), . . . , task(τ [n])}. �
Each α ∈ R is a high level representation for some traces, capturing some hidden
state of the process analyzed. In particular, the three concrete abstraction func-
tions defined above maps traces to sequences, sets and multisets, respectively,
of task identifiers, and specialize the functions presented in [13] – we here only
consider to abstract each trace event into its associated task, while disregarding
other event properties (e.g., executors). This restriction could be easily removed
from our approach – even though, often, using multiple properties for gener-
alizing may lead to a combinatorial explosion of the abstract representations
produced (and to overfitting patterns). In [13], a Finite State Machine (FSM)
model is derived, such that a one-to-one mapping exists between its states and
the representations produced by some abstraction function abs, while each tran-
sition is labelled with an event property (namely, a task label in our case). For
example, let us assume that abslist∞ is used, and that a, b and c refer to three
process tasks. Then, the resulting FSM model will feature a transition labelled
with c from state 〈a, b〉 to state 〈a, b, c〉, if there is some trace τ in the input log
such that abslist∞ (τ(i]) = 〈a, b〉 and abslist∞ (τ(i + 1]) = 〈a, b, c〉. In order to make
this model capable to make predictions (w.r.t. a measure μ), it is turned into
an Annotated Finite State Machine (A-FSM), by equipping each node s with a
bag gathering all the values that μ̂ takes at the end of any trace prefix τ ∈ P(L)
such that abs(τ) coincides with the abstraction of s. These measurements help
estimate the target measure for any new process instance reaching s, e.g. by
simply storing an aggregate statistics (e.g., the average) over them. In principle,
our clustering-based scenario discovery scheme could be combined with other
state-aware prediction techniques, for it is parametric to the kind of model that
is eventually learnt for each scenario. However, in this paper we only consider
using A-FSM models, and their associated learning method, to this purpose.

2.2 Predictive Clustering

The core idea of Predictive Clustering approaches [2] is that, once discovered
an appropriate clustering model, a prediction for a new instance can be based
only on the cluster where it is deemed to belong, according to some suitable
assignment function. The underlying belief is that the higher similarity between
instances of the same cluster will help derive a more accurate predictor – w.r.t.
one induced from the whole dataset.

Discovering Context-Aware Models 291

To this end, two kinds of features are considered for any element z in a given
space Z = X × Y of instances: descriptive features, denoted by descr(z) ∈ X ,
and target features, denoted by targ(z) ∈ Y – which are those to be predicted.

Then, a predictive clustering model (PCM), for a given training set L ⊆ Z,
is a function m : X → Y of the form m(x) = p(c(x), x), where c : X → N is a
partitioning function and p : N×X → Y is a prediction function.

An important class of such models are Predictive Clustering Trees (PCTs) [2,3],
where the cluster assignment function is encoded by a decision tree, which can
be learnt by recursively partitioning the training set. At each step, a split test
is greedily chosen, over one descriptive feature, which (locally) minimizes:

lossd(m,L)
∑
Ci

|Ci ∈ c(L)| / |T | ×
∑
z∈Ci

d(targ(z), p(z))2 (1)

where Ci ranges over the current partition of L, and d is a distance measure d over
Z. – When working with numeric targets, a good trade-off between scalability
and accuracy is typically achieved by simply instantiating d with the classical
Euclidean distance over target features only. In this case, targ(avg(Ci)) over the
target subspace can be also used as the local (constant) predictor of cluster Ci,
with avg(Ci) = |Ci|−1 ×

∑
z∈Ci

z – i.e., the cluster’s average/centroid.
A variety of PCT learning methods exists in the literature, which differ in the

type/number of target features (e.g., decision trees, regression trees, multi-target
regression models, clustering trees), or in the underlying representation of data
instances – namely, relational (e.g., system TILDE [2]) and propositional (e.g.,
system CLUS [1]). In our setting, we focus on the discovery of a multi-target
regression PCT out of propositional data, mainly owing to scalability reasons.

The core assumption under our work is that process performances really de-
pend on context factors. Hence, to predict the performances of any (partial) trace
τ , we regard its associated context data context(τ) as descriptive attributes.

We can now state the specific kind of performance model we want to discover.

Definition 4 (Context-Aware Performance Prediction Model (CA-PPM)).
Let L be a log on trace universe T , with context features context(T), and
μ̂ : T → M, be a performance measure, known for all τ ∈ P(L). Then,
a context-aware performance prediction model (CA-PPM) for L is a pair M =
〈c, 〈μ1, . . . , μk〉〉, encoding a predictive clustering model gM for μ̂, such that:
(i) c : context(T) → N, (ii) μi : T → M, for i ∈ c(context(T)), and (iii)
gM (τ)=μj(τ) with j=c(context(τ)). �
Notice that the dependence of the target measure on context features relies on
the separate modeling of different context-dependent execution scenarios (i.e.,
clusters), while the performance predictions are eventually based on a cluster
assignment function c, which estimates the membership of (possibly novel) pro-
cess instances to these scenarios. This model is a special kind of PPM model,
relying on a predictive clustering one. As such, it can be instantiated by com-
bining a predictive clustering tree (PCT) and multiple (performance-)annotated
FSM (A-FSM) models, as building blocks for implementing the functions c and
each μi, respectively, as discussed next.

292 F. Folino, M. Guarascio, and L. Pontieri

3 Problem Statement and Solution Approach

In principle, seeking an explicit encoding for the hidden performance measure μ̂,
based on a given log L, can be stated as the search for a CA-PPM (cf. Def. 4) min-
imizing some loss measure, like that in Eq. 1, possibly evaluated on an different
sample L′ ⊆ T than the one used as training set. However, to avoid incurring
in prohibitive computation times, we rather follow a heuristics approach, where
the problem is turned into a combination of two simpler ones, as defined below.

Definition 5 (Problem CAPP). Given a log L over T , and a performance
measure μ̂ only defined on P(L); Solve the following subproblems, sequentially:
[CAPP-S1]: find a function c (locally) minimizing the loss over a concise repre-
sentation of the given traces and associated measurements, irrespectively of the
cluster-wise prediction function q; and [CAPP-S2]: find a function q based on
the partition c(L) produced by c (keeping it fixed to as found before). �

Such a simplifying rephrasing of the problem frees us from the burden of simul-
taneously searching over both any possible partitioning c and all of its associated
prediction functions q. Moreover, we want to reuse existing tools for the induc-
tion of PCTs and of A-FSM models. This clearly requires to properly define the
structure of the training data used to learn a PCT model, since a näıve applica-
tion of PCT induction algorithms to log contents might lead to unsatisfactory
achievements in terms of both scalability and prediction accuracy.

To this end, we propose the adoption of a propositional view of the log, where
each (fully unfolded) trace in L acts as an individual training example. We
hence dismiss the natural idea of learning the clustering model based on all
partial traces in P(L) (and on their associated performance measurements), for
two reasons. First, if working explicitly with all partial traces, the number of
training samples will grow substantially, especially in the case where log traces
were generated by a process featuring complex and flexible control logics (i.e.,
many tasks and a high degree of non-determinism). More importantly, since
performance values tend to change notably along the course of a process instance
– this is right the rationale behind state-aware prediction approaches like [6,13]
– the learner may get confused when trying to separate groups of instances with
similar target measurements. Think, e.g., to the case of the remaining processing
time measure, which progressively decreases as a process enactment goes forward.

On the other hand, using full historical traces as clustering instances, we
must decide what are their associated targets, which the PCT learning algorithm
has to approximate at best. In fact, each trace τ corresponds to a sequence of
target values (μ̂(τ(1], . . . , μ̂(τ)), and we do not want to use sequences as cluster
prototypes, in order to keep the evaluation of candidate split tests fast enough.

As a heuristics solution, each trace is mapped into a vector space, where the
dimensions correspond to relevant states of the (hidden) process model. Such
target features are computed by way of the trace abstraction functions in Def. 3,
which attempt to transform, indeed, each trace into an abstract representation
of its enactment state, based on its past history.

Discovering Context-Aware Models 293

Input: A log L over a trace universe T , with data attributes A = A1, . . . , Aq, and
environment features B = B1, . . . , Br, a target measure μ̂ known over

P(L),
a trace abstraction function abs, and a relevance threshold σ ∈ [0, 1].

Output: A CA-PPM model for L (fully encoding μ̂ all over T).
Method: Perform the following steps:
1 Associate a vector context(τ) with each τ ∈ L, by computing features env(τ)
2 Compute a set PAσ(L, abs) of pivot state abstractions (cf. Def. 6)
3 Let PAσ(L, abs) = {α1, . . . , αs}
4 Build a performance sketch S for L using context vectors and PAσ(L, abs)
// S = {(id(τ), context(τ), 〈val(τ, α1), . . . , val(τ, αs)〉) |τ ∈ L} – cf. Eq.2

5 Learn a PCT T with classification (resp., prediction) function c (resp., q) using
context(τ) (resp., val(τ, αi), i=1..s) as descript. (resp., target) features, ∀τ ∈ L

6 Let L[1], . . . , L[k] denote the discovered clusters – with {1, . . . , k} = c(S)
7 for each L[i] do
8 Induce an FSM model f from L[i], using abs as abstraction function
9 Derive an A-FSM f+ model from f

10 Define prediction function μi : T →M (for cluster i) based on f+

11 end
12 return 〈 c, { μ1, . . . , μk} 〉

Fig. 1. Algorithm CA-PPM Discovery

Specifically, given an abstraction function abs : T → R, a “candidate” target
feature can be defined for each abstract (state) representation α ∈ R, such that
the value val(τ, α) of this feature for any trace τ is computed as follows:

val(τ, α) =

{
NULL, if abs(τ (i]) �= α ∀i ∈ {0, ..., len(τ)};
agg(〈 μ̂(τ (i1]), ..., μ̂(τ (is]) 〉), otherwise.

(2)

where {i1, ..., is} = {j ∈ Z | 0 ≤ j ≤ len(τ) and abs(τ (i]) = α}, and ij < ik for any
0 ≤ j < k ≤ s, while agg is a function aggregating a sequence of measure values
into a single one (e.g., the average, median, first, last in the sequence). Note
that, for all the tests in Section 5, we always selected the last sequence element.

AS the number of state abstractions may be high, some suitable strategy
is needed to select an optimal subset of them, as to prevent the PCT learner
from getting lost in a high-dimensional and sparse target space (yet taking long
computation times). To this end, we devise an ad-hoc, greedy, selection strategy,
to identify a restricted set of “pivot” state abstractions, which looks to be the
(locally) best ones in discriminating different performance profiles. The selection
criterion used to this purpose relies on a fixed scoring function φ : R×2T → [0, 1]
(which will be discussed in details later on), which assigns each state abstraction
α ∈ R to a score φ(α,L), quantifying the confidence in α making a profitable
target feature w.r.t. the search of a predictive clustering for L. More precisely:

Definition 6 (Pivot State Abstraction). Let L be a log, abs : T → R be
a trace abstraction function, and σ ∈ [0, 1] be a relevance threshold. Then, any

294 F. Folino, M. Guarascio, and L. Pontieri

a ∈ R is a pivot state abstraction for L and σ w.r.t. abs, if φ(α,L) ≥ σ. Moreover,
PAσ(L, abs) is the set of all pivot state abstractions for L and σ w.r.t. abs. �
Provided with a set of pivot state abstractions PAσ(L, abs) = {αj1, ..., αju},
subproblem CAPP-S1 can be eventually faced by solving a standard (multi-
regression) PCT induction on a dataset where: (i) each trace τ in the log corre-
sponds to a distinct instance, (ii) the vector context(τ) encodes the descriptive
features of τ and (iii) val(τ, αj1), ..., val(τ, αju) are the target features of τ . This
dataset, called in the following a performance sketch of L (w.r.t. abs and σ), of-
fers a propositional view over the log, enabling for a fast and effective calculation
of a predictive clustering model.

A detailed description of the different steps of our approach is given in the
CA-PPM Discovery algorithm, shown in Fig. 1. The meaning of its steps is quite
straightforward, as it coincide to the computation process discussed so far. How-
ever, it is worth remarking that the induction of an FSM model for each discov-
ered cluster (step 8), and its subsequent annotation with performance measure-
ments (step 9) are carried out by taking advantage of the techniques presented
in [13]. Notably, the performance measurements associated with each state in
the model are eventually aggregated into a single constant estimator (namely,
the average over them all), in the implementation of μ[i] (step 10). Moreover,
whenever a new trace τ generates an unseen sequence of states, as a simple
workaround, the function can be extended in a way that its next estimate for
τ will be based on the last valid one made for it. Finally, the selection of pivot
state features performed in step 2 hinges on the following scoring function:

φ(α,L) = 3

√
φvar(α,L)× φcorr(α,L)× φsupp(α,L) (3)

where φvar(α,L), φcorr(α,L), and φsupp(α,L) are all functions ranging on [0, 1].
Basically, function φvar(α,L) depends on the variability of the values pro-

duced by α on all input traces (i.e., {val(α, τ)|τ ∈ L}) and gives preference
to higher-variability features – the more the variability of trace measures the
higher the score. Function φcorr(α,L) measures instead the maximal correlation
between the value taken by the feature over each trace and the corresponding
value of each descriptive (context) feature – the higher the correlation the higher
the score. Finally, φsupp(α,L) simply is 2 × min(0.5, |{τ ∈ L | val(τ, α) > 0}|)
– low support state abstractions hardly help find significant groups of traces,
indeed. In a sense, the overall scoring function is biased towards features guar-
anteeing a good compromise between support, correlation with descriptive fea-
tures (which are the ones guiding the partitioning of log traces) and performance
values’ variability (in order to find clusters showing quite different performance
models).

Before leaving the section, let us observe that the peculiar feature selection
subproblem faced here is beyond the scope of the attribute selection capabilities
of the heuristics search method embedded in predictive clustering algorithms,
due to the fact that our candidate features correspond to target variables, and
not to predictor ones. This is also the reason why we cannot trivially reuse
feature-selection (i.e., attribute-selection) techniques available in the literature.

Discovering Context-Aware Models 295

Log Data

Trace
Mapping

Predictive
Clustering

Context
Extraction

Target
Features
Extraction

A-FSM
Evaluation

State
Evaluation

FSM
Induction

FSM
Annotation

Context Aware – Time Predictor (CA-TP) Plugin

Scenario Discovery Time Predictors Learning

Evaluation
Evaluation

Report

CA-PP
Model

Fig. 2. CA-TP plug-in architecture

4 Case Study: Time Prediction on a Logistics Process

After illustrating the prototype system, in Section 4.1, in the remainder of this
section, we discuss the experiments carried out on a real log data and the ob-
tained results. In particular, in Section 4.2, we first illustrate the application
scenario, by discussing the kind of data involved in it. Then, in Section 4.3,
we introduce the setting adopted to evaluate the quality of discovered models.
Finally, in Section 5, the results of tests performed on this scenario are evaluated.

4.1 The Prototype System: Plugin CA-TP

As a specialized version of algorithm CA-PPM Discovery, we implemented a
prototype system, named CA-TP (i.e., Context-Aware Time Prediction), which
can discover a CA-PPM for predicting the remaining processing time measure, in
order to assess the validity of the approach on practical situations. The prototype
system has been developed as plug-in for ProM framework [12], a popular Process
Mining framework. The logical architecture of the system is sketched in Figure 2,
where arrows between blocks stand for information flows. The whole mining
process is driven by the control logic of the the plug-in, while the other modules
basically replicate the main computation phases of the algorithm. By Log Data
we here denote a collection of process logs represented in the MXML [12] format.

The Scenario Discovery module is responsible for identifying behaviorally ho-
mogeneous groups of traces in terms of both context data and remaining times.
In particular, the discovery of different trace clusters is carried out by the Predic-
tive Clustering submodule which groups traces sharing both similar descriptive
and target values. This latter module leverages the CLUS system [1], a predictive
clustering framework for inducing PCT models out of propositional data. Such
a model is found by trying to optimize the multi-target regression models (w.r.t.
a given set of target attributes) of clusters obtained by partitioning the space of
descriptive attributes. In this regard, the Trace Mapping submodule acts as a
“translator” which converts all log traces into propositional tuples, according to
the (ARFF) format used in CLUS. As explained above, this mapping relies on
the explicit representation of both context data and target attributes, derived

296 F. Folino, M. Guarascio, and L. Pontieri

from the original (MXML) log. In particular, the Context Extraction module ex-
tract extrinsic (environmental) context features, including workload indicators
and aggregated time dimensions, and add them to the descriptive attributes of
each trace. Notice that this module takes advantage of auxiliary data structures
to efficiently search all log data that help capture the local context of any trace
τ . In particular, two indexes (based on search trees) over log traces are used,
which allow to quickly find all the traces that started or finished, respectively,
in a given time range. In fact, these indexes are meant to retrieve all the events
occurred during the enactment of τ , to reconstruct its context. Complementarily,
the Target Features Extraction submodule provides the Trace Mapping one with
an quasi-optimal set of trace abstractions (obtained by combining trace activi-
ties in lists/sets/bags, possibly bounded in their size by a parameter h), which
will be eventually used as target features for the predictive clustering step.

Log traces, labeled with cluster IDs, are delivered to the Time Predictors
Learning module, which, leveraging the approach in [13], derives a collection
of A-FSM models. More specifically, the submodule FSM Induction is used to
build a transition model for each cluster, whereas the FSM Annotation anno-
tates them with time information. As a final result, a CA-PPMmodel is eventually
built, which integrates multiple A-FSM models for scenario-specific time pre-
dictions, with a set of logical rules (corresponding to the leaves of a PCT model)
for discriminating among the discovered scenarios. For inspection purposes and
further analysis, the whole model is then stored in an ad-hoc repository.

Module Evaluator helps the user assess the quality of time predictions on the
test set, by leveraging two submodules: A-FSM Evaluation and State Evalua-
tion, which compute a series of standard error metrics for an entire A-FSM
model and for its individual states, respectively. The measures of all predictive
models are gathered and eventually combined into global measures (described
in Section 4.3), and arranged in a easily-readable report.

4.2 Application Scenario

Our approach has been validated on a real-life scenario, pertaining the handling
of containers in a maritime terminal. There, a series of logistic activities are reg-
istered for each container passing through the harbor. Massive volumes of data
are hence generated continually, which can profitably be exploited to analyze
and improve the enactment of logistics processes. In particular, we consider only
containers which both arrive and depart by sea, and focused on the different
kinds of moves they undergo over the “yard”, i.e., the main area used in the har-
bor for storage purposes. This area is logically partitioned into a finite number
of tri-dimensional slots, which are the units of storage space used for containers,
and are organized in a fixed number of sectors

The lifecycle of any container can be roughly summarized as follows. The
container is unloaded from a ship and temporarily placed near to the dock, un-
til it is carried to some suitable yard slot for being stocked. Symmetrically, at
boarding time, the container is first placed in a yard area close to the dock, and
then loaded on a cargo. Different kinds of vehicles can be used for moving a

Discovering Context-Aware Models 297

container, including, e.g., cranes, straddle-carriers (a vehicle capable of pick-
ing and carrying a container, by possibly lifting it up), and multi-trailers (a
train-like vehicle that can transport many containers). This basic life cycle may
be extended with additional transfers, classified as “house-keeping”, which are
meant to make the container approach its final embark point or to leave room for
other containers. More precisely, the following basic operations may be registered
for any container: (i) MOV, when it is moved from a yard position to another by
a straddle carrier; (ii) DRB, when it is moved from a yard position to another by
a multi-trailer; (iii) DRG, when a multi-trailer moves to get it; (iv) LOAD, when
it is charged on a multi-trailer; (v) DIS, when it is discharged off a multi-trailer;
(vi) SHF, when it is moved upward or downward, possibly to switch its position
with another container; (vii) OUT, when a dock crane embarks it on a ship.

In our experimentation, we focused on a subset of 5336 containers, namely
the ones that completed their entire life cycle in the hub along the first four
months of year 2006, and which were exchanged with four given ports around
the Mediterranean sea. To translate these data into a process-oriented form, we
viewed the transit of any container through the hub as a single enactment case
of a (unknown) logistic process, where each log event refers to one of the basic
operations above (i.e., MOV, DRB, DRG, LOAD, DIS, SHF, OUT) described above. Each
of these operations hence acts as one activity of the reference logistics process.

Context Data. Several data attributes are available for each container (i.e., each
process instance), which include, in particular, its origin and final destination
ports, its previous and next calls, diverse characteristics of the ship that unloaded
it, its physical features (e.g., size, weight), and a series of categorical attributes
concerning its contents (e.g., the presence of dangerous or perishable goods). In
addition to these internal properties of containers, some additional environmen-
tal features are associated with each container, which are meant to capture the
context surrounding its arrival to the port. In particular, in our experimentation,
we only considered two very basic environmental features: (i) a rough workload
indicator, simply coinciding with the number of containers still in the port at
time tc, and (ii) a series of low-granularity time dimensions derived from the
arrival time (namely, the hour, day of the week and month). Clearly, various
additional context variables could be defined, in general, for a process instance
(concerning, e.g., resource availability or refined workload indicators), possibly
depending on the specific application domain. However, we leave this issue to
future work. On the other hand, despite the narrow scope and simplistic nature
of these feature, the benefits of using them to detect performance prediction
scenarios were neat in our experimentation, as discussed later on.

4.3 Performance Measures and Evaluation Setting

With regard to the scenario above, we want to assess the quality of our approach
in predicting the (remaining) time needed to completely process a container (i.e.,
until the OUT activity is performed on it). Knowing in advance such a metrics is of
great value for harbor managers, in order to optimize the allocation of resources,

298 F. Folino, M. Guarascio, and L. Pontieri

and to possibly prevent, for instance, incurring in violations of SLA (service level
agreement) terms. In fact, certain typical SLAs establish that process enactments
must not last more than a Maximum Dwell Time (MDT); otherwise pecuniary
penalties will be charged to the trans-shipment company. By the way, besides
MDT, another important parameter for the scenario on hand is the average
dwell-time (ADT), i.e., the average sojourn time for containers in the terminal,
which will be also used next for normalizing time measures.

Among the variety of metrics available in the literature, in order to assess the
prediction accuracy of our models we resort (like in [13]) to the classic root mean
squared error (rmse), mean absolute error (mae), and mean absolute percent-
age error (mape). In order to reduce the estimation bias, errors are measured
according to a (10 fold) cross-validation procedure.

Formally, let us assume that τ ∈ P(L′) be a (possibly partial) trace in current
test fold L′ (amounting to 10% of L’s trace), and that μ̂RT(τ) (resp., μRT(τ))
denote the actual (resp., predicted) remaining time for τ . Then the individual
prediction errors associated with all the prefixes (i.e., partial enactments) of τ ’s
are measured as follows: (i) mae = (1/|P(L′)|) ×

∑
τ∈P(L′) |μ̂RT(τ) − μRT(τ)|; (ii)

rmse = (
∑

τ∈P(L′)(μ̂RT(τ)− μRT(τ))
2/|P(L′)|)1/2; and (iii) mape = (1/|P(L′)|) ×∑

τ∈P(L′)(|μ̂RT(τ)− μRT(τ)|) / μ̂RT(τ).

In addition to the average prediction errors above (providing actual loss mea-
sures), we will also evaluate the capability of a CA-PPM to support the prediction
of “overtime faults”, regarded as a specific form of SLA violations. To this end,
let us denote by τc a trace encoding the full history of a container c, and τc(i] be
its projection till some given step i. Then, an overtime fault for τc(i] is predicted
based on the likelihood �fault(τc(i]) that the total time μRT(τc(i]), which will
be eventually spent to fully handle c, does not exceed MDT. Precisely, letting
eT ime(τc(i]) denote the time already elapsed for c from its arrival at the system,
this likelihood is computed as follows:

�fault(τc) =

{
1− MDT

eTime(τc(i])+μRT(τc(i])
, if eT ime(τc(i]) + μRT(τc(i]) > MDT

0, if eT ime(τc(i]) + μRT(τc(i]) ≤MDT

For a suitably chosen risk tolerance threshold γrisk, an alert is eventually trig-
gered, while looking at the partial enactment τc(i], whenever �fault(τc(i]) > γrisk,
to notify the high risk of an incoming overtime fault – the greater the thresh-
old, the lower sensitivity to the detection of potential overtime faults. Then,
interpreting fault prediction as a classification problem with two given classes,
i.e., true vs. false overtime faults, we can measure the prediction accuracy
by computing the rates FN of False Negatives (i.e., overtime faults that were
not deemed as such) and FP of False Positive (i.e., normal cases signaled as
risky), as well as classical measures of Precision (i.e., P = TP/(TP + FP), Re-
call (i.e., R = TP/(TP +FN)), with TP denoting the number of true positives,
i.e., correctly predicted overtime faults. Incidentally, τc(i] is a true positive if
time(τ(len(τ))) > MDT , and true negative otherwise.

Discovering Context-Aware Models 299

5 Experiment Results

A series of tests were performed to assess the effectiveness and the efficiency of
our approach in discovering a CA-PPM for remaining time prediction, based on the
log described in the previous section. To this end, we tested our approach with
various configurations of its parameters. In the following, we will report results
obtained for different configurations of the two parameters associated with the
abstraction function absmode

h : the horizon limit h, and the abstraction mode ∈
{list, bag} – results with set-based abstractions are not shown here, due to their
minor relevance, as discussed afterwards. Conversely, a fixed configuration is
shown for threshold σ (namely, σ = 0.4), which was chosen pragmatically based
on a series of specific tests, omitted here for space reasons.

All error results shown next were averaged over 10 trials, whereas their re-
spective variance are not reported for the sake of brevity. Notice, however, that
standard deviations were always lower than 5% of the average for all the metrics.

Qualitative Results. Before illustrating quantitative results in detail, let us show
an example of one CA-PPM (when absh = absbag4 and σ = 0.4) induced from the
above log, in order to enable for a rough evaluation of the descriptive features of
the model – even though its main goal is to offer operational support by means
of performance predictions. In particular, the Figure 3 (a) reports, as a portion
of the clustering function, the decision rule corresponding to one of the clusters
found (namely, cluster 37), which actually corresponds to one of the leaves of the
PCT model discovered with CLUS. This rule allows for easily interpreting the
semantics of the cluster in terms of both container properties (namely, the origin
port PrevHarbor, the destination port NextHarbor, the navigation line that is
going to take it away NavLine OUT, the navigation line bringing it in the current
port NavLine IN), and environmental context data (namely, the basic workload
indicator Workload, based on instance counts, and aggregated time dimensions
ArrivalDay or ArrivalHour). Despite its simplicity, the rule helps characterize
a very peculiar, and yet relatively frequent scenario (the cluster gathers, indeed,
43 out of the 5336 traces) for the handling of containers.

As a matter of fact, the A-FSM model found for the same cluster (shown in
Figure 3 (b)) witnesses that for this peculiar configuration of context factors (i.e.,

IF
NextHarbor ∈ {VCE,KOP,FOS,GOA,SAL,VAR,

T XG,NYC,CND,MT R,ODS} AND
NavLine OUT= JMCS AND
NavLine IN ∈ {CPS,MSK,SEN,HLL,UAC} AND
PrevHarbor ∈ {ASH,MER,ALY,NYC,LEH,

HOU,HFA,EWR,ORF,CHS} AND
ArrivalDay ∈ {SAT,SUN} AND
Arrivalhour> 11.0 AND
Workload> 117.0

THEN
Cluster label = 37

(a) (b)

Fig. 3. Excerpt from a CA-PPM model for the harbor log, showing the (a) decision rule
and (b) A-FMS model of one of the clusters found – (a) and (b) are a sort of (data-
driven) descriptions for a context variant and its associated process variant, resp.

300 F. Folino, M. Guarascio, and L. Pontieri

context variant), the containers tend to undergo a very small, and quite specific,
paths over logistics operations. By the way, each node in the A-FSM is labelled
with the bag of (the 4 more recent) operations leading to it – e.g., the node
tagged with [MOV2, OUT] encodes all the traces in the cluster that undergo two
MOVs before leaving the yard (operation OUT). Along with labels, each node also
reports a constant prediction for the remaining time (normalized w.r.t. ADT).
Edge labels codify, instead, which operations can trigger the corresponding node
transition. For the sake of clarity, if a container is in the state labelled as [MOVE,
SHF] and a further MOV operation occurs, then the next state will be the one
associated with [MOV2, SHF]. Notably, this simple A-FMS model gave a neatly
positive contribution to the accuracy of the global CA-PPM model – very low
errors (namely, rmse = 0.138, mae = 0.080, and mape = 0.302) were produced,
indeed, on the test traces that were assigned to it.

Time Prediction Effectiveness. Table 1 summarizes the errors made in predict-
ing remaining times (normalized by the average dwell time ADT) for the case
of rmse and mae), using both our CA-TP plug-in and the prediction method
proposed in [13] (here denoted by FSM , and also employed as a base learner in
our approach). The tests were performed using different trace abstraction func-
tions absh, and keeping fixed threshold σ = 0.4. For the sake of comparison,
Table 2 also reports the percentage of error reduction (Δ%) obtained by CA-TP

w.r.t. FSM . Moreover, the results of CA-TP are further differentiated according
to which kinds of descriptive features were used. Specifically, CA-TP− refers to
the case where a CA-PPM is built only considering static container properties
(e.g., dimensions, origin/destination ports). Conversely, CA-TP+ indicates the
case where log traces are also associated with extrinsic context features (namely,
workload indicators and seasonality dimensions), in addition to their primitive
data attributes. These figures clearly show that our clustering-based method
performs always better than the baseline, no matter of the parameter setting.

By a closer look, two factors appear to affect more the performances: the usage
of derived context features and the value of history horizon h. In particular,
the advantage of using environment-driven features is neat, despite they were
very rough and partial, seeing as the average error reduction (computed over
all error metrics) of CA-TP+ is close to 37%, whereas CA-TP− “just” gets a 24%
improvement. As to h, it is easily seen that, although the benefits of using our
solution gets appreciable as soon as h > 1, the best performances are reached
for h = 4, when all kinds of errors shrink more than 65% w.r.t. the baseline (see
Table 2). Stretching the horizon beyond 8 seem to bring no further advantages
(apart minor improvements for the mape error with absBAG

8). This result is
not surprising, seeing as accuracy achievements might even fall when using high
values of h, due to the excessive level of detail on trace histories (and to the
consequent high risk of overfitting).

The effect of the abstraction mode looks less marked, as very similar (good)
results are found in both cases. Actually, whatever h and the kind of context
features, less than 1% error reduction is obtained (on all metrics) when adopting
bag abstractions, w.r.t. the case where lists were used. Finally, we notice that

Discovering Context-Aware Models 301

Table 1. Average prediction errors (computed via a 10-fold cross-validation), for CA-TP
and the baseline method (FSM), and different abstraction functions abstypeh (σ = 0.4)

Parameters (absmode
h) FSM [13] CA-TP− CA-TP+

mode h rmse mae mape rmse mae mape rmse mae mape

LIST

1 0.655 0.444 2.985 0.649 0.436 2.964 0.647 0.436 2.811
2 0.465 0.211 0.516 0.335 0.102 0.376 0.335 0.095 0.355
4 0.465 0.204 0.418 0.342 0.102 0.246 0.160 0.058 0.114
8 0.465 0.204 0.407 0.349 0.102 0.175 0.164 0.058 0.107
16 0.465 0.204 0.407 0.349 0.102 0.175 0.164 0.058 0.107

Total 0.503 0.253 0.947 0.409 0.169 0.787 0.298 0.141 0.699

BAG

1 0.655 0.444 2.985 0.649 0.436 2.964 0.647 0.436 2.811
2 0.473 0.218 0.560 0.342 0.109 0.404 0.342 0.102 0.375
4 0.465 0.211 0.420 0.335 0.095 0.248 0.156 0.058 0.118
8 0.465 0.211 0.420 0.342 0.095 0.170 0.156 0.058 0.107
16 0.465 0.211 0.420 0.342 0.095 0.170 0.156 0.058 0.107

Total 0.505 0.259 0.961 0.406 0.166 0.791 0.296 0.143 0.704

Grand Total 0.504 0.256 0.954 0.407 0.167 0.789 0.297 0.142 0.701

Table 2. Error reductions (%) – derived from Table 1 – achieved by CA-TP w.r.t. FSM

Parameters (absmode
h) CA-TP− (Δ%) CA-TP+ (Δ%)

mode h rmse mae mape rmse mae mape

LIST

1 -0.8% -1.6% -0.7% -1.2% -1.6% -5.8%
2 -28.1% -51.7% -27.2% -28.1% -55.2% -31.3%
4 -26.6% -50.0% -41.1% -65.6% -71.4% -72.8%
8 -25.0% -50.0% -57.0% -64.8% -71.4% -73.8%
16 -25.0% -50.0% -57.0% -64.8% -71.4% -73.8%

Total −18.8% −33.3% −16.8% −40.8% −44.3% −26.2%

BAG

1 -0.8% -1.6% -0.7% -1.2% -1.6% -5.8%
2 -27.7% -50.0% -27.8% -27.7% -53.8% -33.0%
4 -28.1% -55.2% -41.0% -66.4% -72.4% -72.0%
8 -26.6% -55.2% -59.6% -66.4% -72.4% -74.5%
16 -26.6% -55.2% -59.6% -66.4% -72.4% -74.5%

Total −19.6% −36.0% −17.7% −41.4% −44.9% −26.8%

Grand Total −19.2% −34.7% −17.3% −41.1% −44.6% −26.5%

poorer performances were obtained, in general, when using all methods with set-
oriented trace abstraction functions (i.e., absseth). However, since our approaches
confirmed, even in such a case, similar degrees of improvement over the baseline,
as those in Table 2, these results are not reported here for lack of space.

Fault Prediction Effectiveness. In general, the quality of overtime fault estima-
tion is measured w.r.t. a given maximum dwell-time MDT, set in predefined
agreements on service quality between the shipping lines and the terminal han-
dler. In our tests we fixed MDT = 2×ADT (namely, MDT=11.46 days).

Figure 4 sheds light on the ability our approach discriminate “over-time” from
“in-time” containers. To this purpose, we report both Precision and Recall scores
for different values of the risk threshold γrisk, when a fixed, good-working, con-
figuration of the underlying trace abstraction criterion (namely, absh=absBAG

4)
is used for both our approach and the baseline one [13] (FSM), and σ=0.4 in
our feature selection procedure. Notice that we only consider here the case where
our tool (referred to as CA-TP+ in the figure) is provided with all kinds of (both
intrinsic and extrinsic) context features available in the application scenario. As
expected, recall tends to worsen when increasing γrisk, while an opposite trend

302 F. Folino, M. Guarascio, and L. Pontieri

0 0,1 0,2 0,3 0,4 0,5 0,6 0.7
0

0,2

0,4

0,6

0,8

1

γ
risk

P
CA−TP

+

P
FSM

R
CA−TP

+

R
FSM

Fig. 4. Accuracy scores for the prediction of overtime faults by CA-TP+ and by the
baseline methods, when varying γrisk, while fixing σ =0.4, h=4, and absbagh

is perceived for precision results. Interestingly, when using lower values of γrisk
(i.e., a more aggressive warning policy) the capability of our approach to recog-
nize real overtime cases is compelling w.r.t. the baseline predictor – in particular,
an astonishing recall of 0.95 (vs. 0.64) is reached with γrisk=0. In general, re-
call scores are usually more important than precision ones in our scenario, since
containers “stuck” in the yard implies high monetary costs, and if effectively
recognizing them, suitable counter-measures could be undertaken – possibly re-
sorting to the usage of additional (storage/processing) resources, which are not
used in normal conditions for economical reasons. Clearly, such remedial policies
as well come with a cost, even though it is typically far lower than SLA-violation
penalties. Anyway, seeing as our method gets quite good precision scores over a
wide range of γrisk’s values, it is reasonable to expect that a suitable trade-off
can be reached, according to actual application requirements. More specifically,
notice that the precision scores of the two methods are very similar for any
value of γrisk (in particular, our method never work significantly worse than the
baseline one), and both flatten on 1 with γrisk = 0.4.

Scalability Analysis. Table 3 shows the average computation times (in seconds)
taken by CA-TP+ and by the method in [13] for building a prediction model, as well
as the number of clusters found in the first case (for completeness) – obviously, the
secondmethod does not perform any clustering of the log. Again, different abstrac-
tionmethods absmode

h and a fixed value ofσwere considered in the tests, whichwere
all performed on a dedicated computer, equipped with an Intel dual-core processor
and a 2GB (DDR2 1033 MHz) RAM, and running Windows XP Professional. For
both methods, the real computation times are reported in the columns denoted by
T ime. Conversely, T imepar corresponds to the time that would be spent in a vir-
tual scenario, where an idealistic “overhead-free”parallelization of our approach is

Discovering Context-Aware Models 303

Table 3. Number of clusters found by CA-TP+ , and computation times for CA-TP+ and
the baseline method, for different abstraction functions asbmode

h and σ = 0.4

Parameters (absmode
h) CA-TP+ FSM [13]

mode h Cluster# Time [sec] Timepar [sec] Time [sec]

LIST

1 9 16.8 7.4 3.9
2 51.3 20.0 9.7 5.6
4 63.8 19.6 7.9 10.7
8 57.9 20.2 8.1 16.0
16 57.9 92.3 32.6 89.8

Total 46.8 32 13.1 25.2

BAG

1 9 17 7.3 4.0
2 50.7 19.7 9.6 5.5
4 64 18.7 7.6 8.4
8 57.9 19.8 8.0 10.6
16 57.9 79.0 36.0 32.3

Total 46.68 30.9 13.7 12.2

Grand Total 46.74 31.4 13.4 18.7

used for concurrently learning the A-FSM models of all trace clusters. Although,
as expected, our approach takes always longer times than the baseline method, the
former achieves a satisfactory trade-off between effectiveness and efficiency.We are
further comforted by the idealistic estimates T imepar, which let us be confident
in the possibility of strengthen the scalability of our approach by resorting to a
parallel implementation of it.

6 Conclusions

In this paper we have proposed an ad-hoc predictive clustering approach to the
discovery of performance-oriented models, capable to provide performance fore-
casts at run time. Several innovative features distinguish our proposal from cur-
rent literature. In particular, by automatically reckoning process variants with
different performance patterns, prediction accuracy can be improved consider-
ably, as witnessed by test results in the paper. Further, as the clustering model
is represented via logical rules, the discovered process/context variants can be
easily interpreted and validated. This makes our approach helpful in the ex-post
analysis (revision, and consolidation) of tacit context-adaptation policies, and in
the design of contextualized process models, capable to adapt to context changes.
The methodology has been implemented as a plug-in in the ProM framework and
validated on a real case study. Empirical results confirm the efficacy of the ap-
proach in predicting processing times, and in helping foresee SLA violations, as
well as its scalability. As future work, we plan to investigate on making tighter
the link between the clustering phase and the induction of cluster predictors,
and on the usage of novel methods both for defining environment-related con-
text variables, and for selecting performance-relevant space abstraction, as well
as on combining our approach with other basic performance prediction meth-
ods (e.g., [6]), and adopting more refined models capable to capture concurrent
behaviors more effectively. In particular, it is worth considering the possibility
to automatically abstract and merge together similar states (e.g., by suitably

304 F. Folino, M. Guarascio, and L. Pontieri

extending methods like those in [4]), in order to obtain more compact and gen-
eralized intra-cluster proces models. Moreover, further efforts are needed in order
to make the approach fully exploitable in practical application contexts. In par-
ticular, it would be beneficial to complement the prediction of SLA violations
with explanations and suggestions about possible remedial actions.

References

1. CLUS: A predictive clustering system, http://dtai.cs.kuleuven.be/clus/
2. Blockeel, H., Raedt, L.D.: Top-down induction of first-order logical decision trees.

Artificial Intelligence 101(1-2), 285–297 (1998)
3. Blockeel, H., Raedt, L.D., Ramon, J.: Top-down induction of clustering trees. In:

Proc. of 15th Intl. Conference on Machine Learning (ICML1998). pp. 55–63 (1998)
4. Caragea, C., Silvescu, A., Caragea, D., Honavar, V.: Abstraction augmented

Markov models. In: Proc. of 2010 IEEE Int. Conf. on Data Mining (ICDM 2010),
pp. 68–77 (2010)

5. Conforti, R., Fortino, G., La Rosa, M., ter Hofstede, A.H.M.: History-Aware, Real-
Time Risk Detection in Business Processes. In: Meersman, R., Dillon, T., Herrero,
P., Kumar, A., Reichert, M., Qing, L., Ooi, B.-C., Damiani, E., Schmidt, D.C.,
White, J., Hauswirth, M., Hitzler, P., Mohania, M. (eds.) OTM 2011, Part I. LNCS,
vol. 7044, pp. 100–118. Springer, Heidelberg (2011)

6. van Dongen, B.F., Crooy, R.A., van der Aalst, W.M.P.: Cycle Time Prediction:
When Will This Case Finally Be Finished? In: Meersman, R., Tari, Z. (eds.) OTM
2008, Part I. LNCS, vol. 5331, pp. 319–336. Springer, Heidelberg (2008)

7. Folino, F., Greco, G., Guzzo, A., Pontieri, L.: Mining usage scenarios in business
processes: Outlier-aware discovery and run-time prediction. Data & Knowledge
Engineering 70(12), 1005–1029 (2011)

8. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models
by clustering log traces. IEEE Trans. on Knowl. and Data Engineering 18(8), 1010–
1027 (2006)

9. Schonenberg, H., Weber, B., van Dongen, B.F., van der Aalst, W.M.P.: Supporting
Flexible Processes through Recommendations Based on History. In: Dumas, M.,
Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 51–66. Springer,
Heidelberg (2008)

10. Song, M., Günther, C.W., van der Aalst, W.M.P.: Trace Clustering in Process Min-
ing. In: Ardagna, D., Mecella, M., Yang, J. (eds.) BPM 2008 Workshops. LNBIP,
vol. 17, pp. 109–120. Springer, Heidelberg (2009)

11. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G.,
Weijters, A.J.M.M.: Workflow mining: a survey of issues and approaches. Data &
Knowledge Engineering 47(2), 237–267 (2003)

12. van der Aalst, W.M.P., van Dongen, B.F., Günther, C.W., Mans, R.S., de Medeiros,
A.K.A., Rozinat, A., Rubin, V., Song, M., Verbeek, H.M.W., Weijters, A.J.M.M.T.:
ProM 4.0: Comprehensive Support for Real Process Analysis. In: Kleijn, J.,
Yakovlev, A. (eds.) ICATPN 2007. LNCS, vol. 4546, pp. 484–494. Springer, Hei-
delberg (2007)

13. van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on
process mining. Information Systems 36(2), 450–475 (2011)

14. de la Vara, J.L., Ali, R., Dalpiaz, F., Sánchez, J., Giorgini, P.: COMPRO: A
Methodological Approach for Business Process Contextualisation. In: Meersman,
R., Dillon, T.S., Herrero, P. (eds.) OTM 2010, Part I. LNCS, vol. 6426, pp. 132–149.
Springer, Heidelberg (2010)

http://dtai.cs.kuleuven.be/clus/

On the Role of Fitness, Precision, Generalization

and Simplicity in Process Discovery

Joos C.A.M. Buijs, Boudewijn F. van Dongen, and Wil M.P. van der Aalst

Eindhoven University of Technology, The Netherlands
{j.c.a.m.buijs,b.f.v.dongen,w.m.p.v.d.aalst}@tue.nl

Abstract. Process discovery algorithms typically aim at discovering
process models from event logs that best describe the recorded behavior.
Often, the quality of a process discovery algorithm is measured by quan-
tifying to what extent the resulting model can reproduce the behavior
in the log, i.e. replay fitness. At the same time, there are many other
metrics that compare a model with recorded behavior in terms of the
precision of the model and the extent to which the model generalizes the
behavior in the log. Furthermore, several metrics exist to measure the
complexity of a model irrespective of the log.

In this paper, we show that existing process discovery algorithms typ-
ically consider at most two out of the four main quality dimensions:
replay fitness, precision, generalization and simplicity. Moreover, exist-
ing approaches can not steer the discovery process based on user-defined
weights for the four quality dimensions.

This paper also presents the ETM algorithm which allows the user
to seamlessly steer the discovery process based on preferences with re-
spect to the four quality dimensions. We show that all dimensions are
important for process discovery. However, it only makes sense to consider
precision, generalization and simplicity if the replay fitness is acceptable.

1 Introduction

The goal of process mining is to automatically produce process models that
accurately describe processes by considering only an organization’s records of its
operational processes. Such records are typically captured in the form of event
logs, consisting of cases and events related to these cases.

Over the last decade, many such process discovery techniques have been de-
veloped, producing process models in various forms, such as Petri nets, BPMN-
models, EPCs, YAWL-models etc. Furthermore, many authors have compared
these techniques by focussing on the properties of the models produced, while
at the same time the applicability of various techniques have been compared in
case-studies.

Figure 1 shows four quality dimensions generally used to discuss results of
process discovery techniques, namely:

Replay Fitness. Replay fitness quantifies the extent to which the discovered
model can accurately reproduce the cases recorded in the log. Typical algo-
rithms guaranteeing perfect replay fitness are region-based approaches [7, 21]

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 305–322, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

306 J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst

“able to replay event log” “Occam’s razor”

“not overfitting the log” “not underfitting the log”

Fig. 1. Different quality dimensions for Process Model Discovery [3]

and the multi-phase miner [10]. Other techniques, such as the heuristics
miner [19] and some genetic algorithms [14] use replay fitness as their guid-
ing principle when discovering a process model, but do not guarantee optimal
results.

Simplicity. The complexity of a process model is captured by the simplicity
dimension. Process discovery algorithms often result in spaghetti-like process
models [3], which are process models that are very hard to read. A class of
process discovery algorithms that strongly focusses on simplicity is the class
of α-algorithms [3, 11, 20], derived from the original α algorithm [5]. These
discovery techniques generally result in simple models, but with poor replay
fitness and/or precision.

Precision. It is trivial to discover a simple process model that can reproduce
the event log. Such a model is generally referred to as the flower-model
[16] and is an extreme example of an underfitting process model. A flower
model is able to produce any arbitrary finite sequence of events. Therefore,
precision quantifies the fraction of the behavior allowed by the model which
is not seen in the event log. The region-based algorithms mentioned before
[7, 21] are good examples of algorithms that guarantee optimal precision, i.e.
they guarantee to allow only minimally more behavior than seen in the log.

Generalization. Finally, generalization assesses the extent to which the re-
sulting model will be able to reproduce future behavior of the process. In
that sense, generalization can also be seen as a measure for the confidence
on the precision. Consider for example a very precise model that captures
each individual case in the log as a separate path in the model. If there are
many possible paths, it is unlikely that the next case will fit. Examples of
generalizing algorithms are the fuzzy miner [13] and the heuristics miner
[19].

The overview above shows that many process discovery algorithms focus on one
or two of the dimensions. However, none of these algorithms is able to guide the
result towards a particular dimension.

In this paper, we also present the ETM algorithm, which is a genetic algorithm
able to optimize the process discovery result towards any of the four dimensions.
By making use of so-called process trees [8] this algorithm ensures that the
resulting model is a sound process model describing the observed log, while at
the same time, the model is optimal with respect to a weighted average over replay
fitness, simplicity, precision and generalization. Using the ETM algorithm, we

On the Role of Fitness, Precision, Generalization and Simplicity 307

can easily explore the effects of focussing on one dimension in isolation and on
combinations of these dimensions.

The remainder of this paper is structured as follows. In Section 2, we present
our ETM algorithm. Furthermore, we present one metric for each of the four
quality dimensions and we present process trees as a convenient means of mod-
eling sound process models. In Section 3, we then present a running example
which we use throughout the remainder of the paper. Using this example, we
show the quality of various existing process discovery algorithms in terms of the
presented metrics. Section 4 then shows the results of focussing on a subset of the
quality dimensions during process discovery. Here, we use our ETM algorithm to
show that such a narrow focus results in poor models. Section 5 shows the result
when considering all dimensions. In Section 6 we apply existing techniques and
our ETM algorithm on several real life event logs. Section 7 concludes the paper.

2 Process Trees and the ETM Algorithm

As stated in the introduction, we use the ETM algorithm to see the effects of
(not) considering either of the four quality dimensions in process discovery. To
this end, we first introduce process trees, which we use throughout the paper.

2.1 Process Trees

Traditional languages like BPMN, Petri nets, UML activity diagrams may be
convenient ways of representing process models. However, only a small fraction
of all possible models in these languages is sound, i.e. many models contain
deadlocks, livelocks and other anomalies. Especially for the results presented in
this paper, where the focus is on measuring the quality of the resulting models,
it is essential that such unsound constructs are avoided. Therefore, we choose to
use process trees to describe our models since all possible process trees represent
sound process models.

Figure 2 shows the possible operators of a process tree and their translation
to a Petri net. A process tree contains operator nodes and leaf nodes. Operator
nodes specify the relation between its children. Possible operators are sequence
(→), parallel execution (∧), exclusive choice (×), non-exclusive choice (∨) and
loop execution (�). The order of the children matters for the operators sequence
and loop. The order of the children of a sequence operator specify the order in
which they are executed (from left to right). For a loop, the left child is the ‘do’
part of the loop. After the execution of this ‘do’ part the right child, the ‘redo’
part, might be executed. After this execution the ‘do’ part is again enabled.
The loop in Fig. 2 for instance is able to produce the traces 〈A〉, 〈A,B,A〉,
〈A,B,A,B,A〉 and so on.

Although also making use of a tree structure, a slightly different approach is
taken by the Refined Process Structure Tree (RPST) [17]. The RPST approach
provides “a modular technique of workflow graphs parsing to obtain fine-grained
fragments with a single entry and single exit node” [17]. The content of these

308 J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst

A

B

B

A

A

B

A

B

Sequence

Exclusive Choice

Loop

Parallellism

Or Choice

A B

Fig. 2. Relation between process trees and block-structured Petri nets

fragments are graphs themselves and are not necessarily block-structured nor
sound. Each operator in a process tree however results in a block structured
process part with a single entry and single exit node. However, each block in
a process tree can only contain a predefined control flow construct, which are
shown in Figure 2. Therefore, workflow graphs decomposed into an RPST can
be more expressive than a process tree but an RPST is not necessarily sound
while a process tree always is.

2.2 Quality of Process Trees

To measure the quality of a process tree, we consider one metric for each of
the four quality dimensions. We based these metrics on existing work in each of
the four areas and we adopted them for process trees [1–3, 6, 9, 16]. We do not
present the precise formulae that compute the values of these metrics here, as
they do not matter for the results in this paper.

Replay Fitness quantifies the extent to which the model can reproduce the
traces recorded in the log. We use an alignment-based fitness computation
defined in [6] to compute the fitness of a process tree. Basically, this tech-
nique aligns as many events as possible from the trace with activities in an
execution of the model (this results in a so-called alignment). If necessary,
events are skipped, or activities are inserted without a corresponding event
present in the log. Penalties are given for skipping and inserting activities.
The final replay fitness score is calculated as follows:

Qrf = 1− cost for aligning model and event log

Minimal cost to align arbitrary event log on model and vice versa

where the denominator is the minimal costs when no match between event
log and process model can take place (e.g. worst case scenario). This is used
to normalize the replay fitness to a value between 0 and 1.

Simplicity quantifies the complexity of the model. Simplicity is measured by
comparing the size of the tree with the number of activities in the log. This

On the Role of Fitness, Precision, Generalization and Simplicity 309

is based on the finding that the size of a process model is the main factor
for perceived complexity and introduction of errors in process models [15].
Furthermore, since we internally use binary trees, the number of leaves of the
process tree has a direct influence on the number of operator nodes. Thus, if
each activity is represented exactly once in the tree, that tree is considered
to be as simple as possible. Therefore, simplicity is calculated as follows:

Qs = 1− #duplicate activities + #missing activities

#nodes in process tree + #event classes in event log

Precision compares the state space of the tree execution while replaying the log.
Our metric is inspired by [1] and counts so-called escaping edges, i.e. decisions
that are possible in the model, but never made in the log. If there are no
escaping edges, the precision is perfect. We obtain the part of the statespace
used from information provided by the replay fitness, where we ignore events
that are in the log, but do not correspond to an activity according to the
alignment. In short, we calculate the precision as follows:

Qp = 1−
∑

visited markings#visits ∗ #outgoing edges−#used edges
#outgoing edges

#total marking visits over all markings

Generalization considers the frequency with which each node in the tree needs
to be visited if the model is to produce the given log. For this we use the
alignment provided by the replay fitness. If a node is visited more often then
we are more certain that its behavior is (in)correct. If some parts of the tree
are very infrequently visited, generalization is bad. Therefore, generalization
is calculated as follows:

Qg = 1−
∑

nodes(
√
#executions)−1

#nodes in tree

The four metrics above are computed on a scale from 0 to 1, where 1 is optimal.
Replay fitness, simplicity and precision can reach 1 as optimal value. Generaliza-
tion however can only reach 1 in the limit i.e., the more frequent the nodes are
visited, the closer the value gets to 1. The flexibility required to find a process
model that optimizes a weighted sum over the four metrics can efficiently be
implemented using a genetic algorithm.

2.3 The ETM Algorithm

As discussed in Section 1 we propose the use of a genetic algorithm for the
discovery of process models from event logs. Evolutionary algorithms have been
applied to process mining discovery before in [4, 14]. Our approach follows the
same high-level steps as most evolutionary algorithms [12], which are shown
in Figure 3. The main improvements with respect to [4, 14] are the internal
representation and the fitness calculations. By using a genetic algorithm for
process discovery we gain flexibility: by changing the weights of different fitness
factors we can guide the process discovery.

310 J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst

By using process trees as our internal representation we only consider sound
process models. This drastically reduces the search space and therefore improves
the performance of the genetic algorithm. Furthermore, we can apply standard
tree change operations on the process trees to evolve them further. Finally, in our
fitness calculation we consider all four quality dimensions for process models:
replay fitness, precision, generalization and simplicity. The user can specify the
relative importance of each dimension beforehand. The ETM algorithm (which
stands for Evolutionary Tree Miner) will then favor those candidates that have
the correct mix of the different quality dimensions.

In general, our genetic algorithm follows the process as shown in Fig. 3. The
input of the algorithm is an event log describing observed behavior. In the initial
step a population of random process trees is generated where each activity occurs
exactly once in each tree. Next the four quality dimensions are calculated for
each candidate in the population. Using the weight given to each dimension the
overall fitness of the process tree is calculated. In the next step certain stop
criteria are tested such as finding a tree with the desired overall fitness. If none
of the stop criteria are satisfied, the candidates in the population are changed by
swapping subtrees between them (crossover) or by changing, adding or removing
nodes (mutation). After these changes the fitness is again calculated. This is
continued until at least one stop criterion is satisfied and the fittest candidate is
then returned.

Our genetic algorithm has been implemented as a plug-in for the ProM frame-
work [18]. We used this implementation for all experiments presented in the re-
mainder. The algorithm stops as soon as a perfect candidate was found, i.e. with
optimal fitness, or after 1.000 generations. In [8] we have shown that 1.000 gener-
ations are typically enough to find the optimal solution, especially for processes
with few activities. All other settings were selected according to the optimal
values presented in [8].

3 Running Example

Throughout the paper, we use a running example, describing a simple loan appli-
cation process of a financial institute, providing small consumer credit through
a webpage. When a potential customer fills in a form and submits the request
on the website, the process is started by activity A which is sending an e-mail

Result

Fig. 3. The different phases of the genetic algorithm

On the Role of Fitness, Precision, Generalization and Simplicity 311

Table 1. The event log

Trace # Trace #

A B C D E G 6 A D B C F G 1

A B C D F G 38 A D B C E G 1

A B D C E G 12 A D C B F G 4

A B D C F G 26 A C D B F G 2

A B C F G 8 A C B F G 1

A C B E G 1

Fig. 4. Petri net of a loan application pro-
cess. (A = send e-mail, B = check credit, C
= calculate capacity, D = check system, E
= accept, F = reject, G = send e-mail).

to the applicant to confirm the receipt of the request. Next, three activities are
executed in parallel. Activity B is a check of the customer’s credit history with a
registration agency. Activity C is a computation of the customer’s loan capacity
and activity D is a check whether the customer is already in the system. This
check is skipped if the customer filled in the application while being logged in
to the personal page, since then it is obsolete. After performing some computa-
tions, the customer is notified whether the loan was accepted (activity E, covering
about 20% of the cases) or rejected (activity F, covering about 80% of the cases).
Finally, activity G is performed, notifying the applicant of the outcome.

A Petri net of the loan application model is shown in Figure 4 and the log we
obtained through simulation is shown in Table 1.

3.1 Results of Process Discovery Algorithms

In order to validate that our small example provides enough of a challenge for
existing process discovery techniques, we applied several existing techniques,
many of which resulted in unsound process models. We translated the behavior
of each model to a process tree, in order to measure the quality of the result.
Where applicable, we stayed as close as possible to the parallel behavior of the
original model. Figures 5 to 11 show the results of the various algorithms.

Figures 5 to 11 clearly indicate that, on our small example, only the α-
algorithm was able to balance the four quality dimensions well. Several algo-
rithms even produce an unsound result. Moreover, the α-algorithm was “lucky”
for this small example. In general, this algorithm produces models that are not
fitting or not precise. Therefore, in Section 4, we first investigate combining var-
ious dimensions and show that all of them have to be considered in order to
discover a sound, easy to understand process model, accurately describing the log

→
→

G

×

FE

→
∧
∧

DC
B

A

f: 0,992 p: 0,995

s: 1,000 g: 0,889

Fig. 5. Result of the α algorithm [5] (sound)

312 J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst

→
→

G

×

FE

→
∧
∧
�

Dτ
C

B
A

f: 1,000 p: 0,784

s: 0,933 g: 0,830

Fig. 6. Result of the ILP miner [21] (Ensuring empty net after completion, sound)

→
∧
→
→

G

×

FE

∧

CB

D
A f: 0,992 p: 0,957

s: 1,000 g: 0,889

Fig. 7. Result of the language-based region theory [7] (The model is overly complex
and incomprehensible, but sound)

→
→

G

×

FE

→
×
∧

D

∧

CB

∧

CB

A
f: 1,000 p: 0,986

s: 0,875 g: 0,852

Fig. 8. Result of the heuristic miner [19] (Unsound, tokens are left behind.)

→
→

G

×

FE

→
∨
∨

DC
B

A

f: 1,000 p: 0,830

s: 1,000 g: 0,889

Fig. 9. Result of the Multi-phase miner [10] (Model is guaranteed “relaxed sound” and
the tree reflects this.)

→

G

→
∧

B

×
→
×

FE
C

×
→

E

∧

DC

∧

D

→

FC

A f: 1,000 p: 0,922

s: 0,737 g: 0,790

Fig. 10. Result of the genetic miner [14] (Unsound, tokens left behind.)

On the Role of Fitness, Precision, Generalization and Simplicity 313

→
→

G

×

FE

→
∧
∧
×

Dτ
C

B
A

f: 1,000 p: 0,893

s: 0,933 g: 0,830

Fig. 11. Result of the state-based region theory [21]

under consideration. Next, in Section 6, we show that only our ETM algorithm
is able to balance all quality dimensions for real life event logs.

4 Ignoring Quality Dimensions

The examples shown in figures 5 to 11 show that various existing process mining
techniques perform differently on all four quality dimensions and they often
provide unsound models. In this section, we use the ETM algorithm to discover
a process model on the given log, while varying which of the quality dimensions
should be considered. We show some optimal models that resulted from different
runs of the algorithm and discuss their properties.

4.1 Considering Only One Quality Dimension

Fig. 12a shows an example process tree that was discovered when focussing solely
on the replay fitness dimension. Although the tree is able to replay the event log
perfectly, the tree allows for more behavior than is seen in the event log. Since
adding parts to the process tree might improve replay fitness, and removing
parts never does, the process tree will keep growing until perfect replay fitness is
reached. This is bad for simplicity since activities will be duplicated (activities B
and D in Fig. 12a) and certain parts of the tree will never be used (the rightmost
B and the leftmost D are never used when replaying the event log).

In order to obtain trees that do not allow for behavior that is not observed
in the event log, we considered only the precision dimension in the genetic al-
gorithm. An example of such a tree is shown in Fig. 12b, which has a perfect
precision because it can only generate the trace 〈C,B,C〉. A process tree will
have perfect precision if each trace it can generate is used in an alignment. Since
the tree of Fig. 12b can only generate one trace, each alignment between event
log and the tree, will use this path of execution. However, the low replay fitness
score indicates that the tree in Fig. 12b has little to do with the behavior that
is recorded in the event log.

When only considering simplicity, we get trees such as the one in Fig. 12c,
where each activity is included exactly once. However, the tree does not really
describe the observed process executions in the event log well, which is indicated
by the low scores on replay fitness and precision.

Generalization measures the likeliness that a model contains future, not yet
observed behavior. When focussing solely on generalization, Fig. 12d shows the

314 J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst

process tree that has the best generalization score. As mentioned before, general-
ization cannot reach 1, as this would require all possible behavior to be observed
infinitely often. Since generalization takes the number of node visits into ac-
count, the score is improved if nodes are visited more often, where the visits are
again measured on the closest matching execution of the model for each trace.
By placing � operators high in the tree, and activities F and B in the ‘redo’
part, the loops and the nodes in the ‘do’ part are executed more often, hence
improving generalization.

4.2 Always Considering Replay Fitness

The discussion in the previous section showed that none of the quality dimensions
should be considered in isolation. Furthermore, we validated the choice of many
existing process discovery techniques to put emphasis on replay fitness, i.e. if the
replay fitness is not good enough, the other quality dimensions add little value
as the discovered model does not describe the recorded behavior. On the other
hand, achieving a perfect replay fitness is not always necessary or desired.

When focussing on replay fitness and precision, the goal is to find a process
model that describes all traces, and not much more, much like the region-based
algorithms the results of which are depicted in Figure 6, 7 and 11. In general, a
model that contains an initial exclusive choice between all unique traces in the
log has perfect precision and replay fitness. Each choice is taken at least once
and each trace in the event log is a sequence in the process model. This always
results in a perfect replay fitness. For our running example the process tree as
shown in Fig. 13a also has has both a perfect replay fitness and precision. Each
part of the process tree is used to replay a trace in the event log and no behavior
that is not present in the event log can be produced by the process tree. However,

∧
∧

∨

D

∧
×

B

∨

Eτ

×
×

DC
τ

∧
∧

AB

×

τF

G
f: 1,000 p: 0,341

s: 0,737 g: 0,681

(a) Only replay fitness

→

C

→

BC
f: 0,449 p: 1,000

s: 0,400 g: 0,797

(b) Only Precision

×

G

∧
�
×
�

EA
D

×

BC

F f: 0,504 p: 0,587

s: 1,000 g: 0,661

(c) Only Simplicity

�

B

�

F

∨

D

∨
×

AG
C

f: 0,961 p: 0,394

s: 0,923 g: 0,916

(d) Only Generalization

Fig. 12. Process trees discovered when considering each of the quality dimensions
separately

On the Role of Fitness, Precision, Generalization and Simplicity 315

since the tree is fairly big, the simplicity score is low and more importantly, the
generalization is not very high either. This implies that, although this model is
very precise, it is not likely that it explains any future, unseen behavior.

Next we consider replay fitness and simplicity, the result of which is shown in
Fig. 13b. When considering only replay fitness, we obtained fairly large models,
while simplicity should keep the models compact. The process tree shown in
Fig. 13b contains each activity exactly once and hence has perfect simplicity. At
the same time all traces in the event log can be replayed. However, the process
tree contains two ∧, one � and three ∨ nodes that allow for (far) more behavior
than is seen in the event log. This is reflected in the low precision score in
combination with the high generalization.

The process tree that is found when focussing on the combination of replay
fitness and generalization is shown in Fig. 13c. The process tree shows many
similarities with the process tree found when solely considering generalization.
Activity E has been added to the ‘do’ part of the � to improve the replay fitness.
However, it also reduces the generalization dimension since it is only executed
20 times. Furthermore, the tree is still not very precise.

In contrast to the trees in Section 4.1, the various process trees discussed in
this section mainly capture the behavior observed in the event log. However, they
either are overfitting (i.e. they are too specific) or they are underfitting (i.e. they
are too generic). Hence, considering replay fitness in conjunction with only one
other dimension still does not yield satisfying results. Therefore, in Section 4.3,
we consider three out of four dimensions, while never ignoring replay fitness.

→
→

G

×
→

F

→

CB

×
→
×

EF

→

BC

×
→
→

FB

∧

DC

→
×

EF

∧
→

CB
D

A
f: 1,000 p: 1,000

s: 0,560 g: 0,657

(a) Replay Fitness and Precision

∧

B

∧

A

�

E

∨

F

∨

C

∨

DG

f: 1,000 p: 0,387

s: 1,000 g: 0,892

(b) Replay Fitness and Simplicity

�
∨

BF

∨

E

∨

D

∨
∨

AG
C f: 1,000 p: 0,214

s: 1,000 g: 0,906

(c) Replay Fitness and General-
ization

Fig. 13. Process trees discovered when considering replay fitness and one of the other
quality dimensions

316 J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst

4.3 Ignoring One Dimension

We just showed that replay fitness, in conjunction with one of the other quality
dimensions, is insufficient to judge the quality of a process model. However, most
process discovery algorithms steer on just two quality dimensions. Hence we first
consider 3-out-of-4 dimensions.

Fig. 14 shows the three process trees that are discovered when ignoring one of
the quality dimensions, but always including replay fitness. Fig. 14a shows the
process tree found when ignoring precision. The resulting process tree is similar
to the one in Fig. 13c, which was based on replay fitness and generalization only.
The only difference is that the parent of A and G has changed from ∨ to ×. Since
this only influences precision, the other metrics have the same values and both
trees have the same overall fitness when ignoring precision.

The process tree which is discovered when ignoring generalization is the same
a when simplicity is ignored and is shown in Fig. 14b. This is due to the fact
that both simplicity and generalization are optimal in this tree. In other words,
when weighing all four dimensions equally, this tree is the best possible process
tree to describe the process.

Interestingly, this tree is the same as the result of the α-algorithm (Fig. 5).
However, as mentioned earlier, the α-algorithm is not very robust. This will also
be demonstrated in Section 6 using real life event logs.

5 Weighing Dimensions

The process trees shown in Fig. 14 have trouble replaying all traces from the
event log while maintaining a high precision. However, since process discovery is
mostly used to gain insights into the behavior recorded in the log, it is generally
required that the produced model represents the log as accurately as possible,
i.e. that both replay fitness and precision are high. By giving more weight to
replay fitness, while still taking precision into account, our genetic algorithm
can accommodate this importance. Fig. 15 shows the process tree resulting from
our algorithm when giving 10 times more weight to replay fitness than the other
three quality dimensions. As a result the process tree is able to replay all traces
from the event log while still maintaining a high precision.

�
∨

BF

∨

E

∨
∨
×

AG
D

C f: 1,000 p: 0,234

s: 1,000 g: 0,906

(a) no precision

→
→
→

G

×

FE

∧

D

∧

BC

A

f: 0,992 p: 0,995

s: 1,000 g: 0,889

(b) no generalization or no sim-
plicity

Fig. 14. Considering 3 of the 4 quality dimensions

On the Role of Fitness, Precision, Generalization and Simplicity 317

Let us compare this process tree with the process tree of Fig. 14b, which is
also the tree produced when all quality dimensions are weighted equally. It can
be seen that the price to pay for improving fitness was a reduction in precision.
This can be explained by looking at the change made to the process model:
activity D is now in an ∨ relation with activities B and C. Replay fitness is hereby
improved since the option to skip activity D is introduced. However, the process
tree now also allows for skipping the execution of both B and C. Something which
is never observed in the event log.

Furthermore, the process tree of Figure 15 performs better than the model
we originally used for simulating the event log as can be seen in Figure 16.
The original tree performs equal on replay fitness but worse on the other three
quality dimensions. Precision is worse because the state space of the original
model is bigger while less paths are used. Simplicity is also worse because an
additional τ node is used in the original tree, hence the tree is two nodes bigger
than optimal. Furthermore, since the τ node is only executed ten times, the
generalization reduces as well because the other nodes are executed more than
10 times, thus the average visits per node decreases.

6 Experiments Using Real Life Event Logs

In the previous sections we discussed the results of various existing process dis-
covery techniques on our running example. We also demonstrated that all four
quality dimensions should be considered when discovering a process model. In
this section we apply a selection of process discovery techniques, and our ETM
algorithm, on 3 event logs from real information systems. Using these event logs,
and the running example, we show that our ETM is more robust than existing
process discovery techniques.

In this section we consider the following event logs:

1. The event log L0 is the event log as presented in Table 1. L0 contains 100
traces, 590 events and 7 activities.

2. Event Log L1 contains 105 traces, 743 events in total, with 6 different
activities.

3. Event Log L2 contains 444 traces, 3.269 events in total, with 6 different
activities.

f: 1,000 p: 0,923

s: 1,000 g: 0,889

→
→

G

→
×

FE

∨

D

∧

CB

A

Fig. 15. Process tree discovered when re-
play fitness is 10 times more important
than all other dimensions

f: 1,000 p: 0,893

s: 0,933 g: 0,830

→
→

G

→
×

FE

∧
∧

BC

×

τD

A

Fig. 16. Process tree of the model used
for simulation (Translated manually from
Figure 4)

318 J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst

Table 2. Petri Net properties of discovered models.
Legend: s?: whether the model is sound (�) or unsound (✗);
#p: number of places; #t: number of transitions; #arcs: number of arcs.

L0 L1 L2 L3

s? #p #t #arcs s? #p #t #arcs s? #p #t #arcs s? #p #t #arcs

α-algorithm � 9 7 20 � 3 6 4 � 3 6 4 � 6 6 10

ILP Miner � 7 7 19 � 4 6 9 � 2 6 11 � 4 6 9

Heuristics ✗ 12 12 30 � 12 15 28 � 12 16 32 ✗ 10 11 23

Genetic ✗ 10 9 21 ✗ 13 20 42 ✗ 11 20 36 ✗ 10 11 25

4. Event Log L3 contains 274 traces, 1.582 events in total, with 6 different
activities.

Event logs L1, L2 and L3 are extracted from information systems of munici-
palities participating in the CoSeLoG1 project. Since some of the existing pro-
cess discovery techniques require a unique start and end activity, all event logs
have been filtered to contain only those traces that start with the most common
start activity and end with the most common end activity. Furthermore, activity
names have been renamed to the letters A. . .F.

From the process discovery algorithms discussed in Section 3.1 we selected four
well-known algorithms: the α-algorithm [5], the ILP-miner [21], the heuristics
miner [19] and the genetic algorithm by Alves de Medeiros [14]. Because we
do not have enough space to show all process models we show some important
characteristics of the resulting Petri nets in Table 2.

The α-algorithm and ILP Miner produce sound Petri nets for each of the 4
input logs. The Genetic Miner however never produces a sound Petri net and
the Heuristics Miner produces a sound solution for 2 out of the 4 event logs.

For each of the discovered Petri nets we created process tree representations,
describing the same behavior. If a Petri net was unsound, we interpreted the
sound behavior as closely as possible. For each of these process trees the evalua-
tion of each of the 4 metrics, and the overall average fitness, is shown in Table 3.

For event log L1 both the α-algorithm and the ILP miner find process models
that can replay all behavior. But, as is also indicated by the low precision, these
allow for far more behavior than observed in the event log. This is caused by
transitions without input places that can occur and arbitrary number of times.
The heuristics miner is able to find a reasonably fitting process model, although
it is also not very precise since it contains several loops. The genetic algorithm
finds a model similar to that of the heuristics miner, although it is unsound and
contains even more loops. The ETM algorithm finds a process tree, which is
shown in Figure 17a, that scores high on all dimensions. If we want to improve
replay fitness even more we can make it 10 times more important as the other

1 See http://www.win.tue.nl/coselog

http://www.win.tue.nl/coselog

On the Role of Fitness, Precision, Generalization and Simplicity 319

Table 3. Quality of Process Tree translations of Several Discovery Algorithms
(italic results indicate unsound models, the best model is indicated in bold)

L0 L1 L2 L3

α-algorithm

f: 0,992 p: 0,995 f: 1,000 p: 0.510 f: 1.000 p: 0.468 f: 0.976 p: 0.532

s: 1,000 g: 0,889 s: 0.923 g: 0.842 s: 0.923 g: 0.885 s: 0.923 g: 0.866

overall: 0,969 overall: 0,819 overall: 0,819 overall: 0,824

ILP Miner

f: 1,000 p: 0,748 f: 1.000 p: 0.551 f: 1.000 p: 0.752 f: 1.000 p: 0.479

s: 0,933 g: 0,830 s: 0.857 g: 0.775 s: 0.923 g: 0.885 s: 0.857 g: 0.813

overall: 0,887 overall: 0,796 overall: 0,890 overall: 0,787

Heuristics

f: 1,000 p: 0,986 f: 0.966 p: 0.859 f: 0.917 p: 0.974 f: 0.995 p: 1.000

s: 0,875 g: 0,852 s: 0.750 g: 0.746 s: 0.706 g: 0.716 s: 1.000 g: 0.939

overall: 0,928 overall 0,830 overall: 0,828 overall: 0,983

Genetic

f: 1,000 p: 0,922 f: 0,997 p: 0,808 f: 0.905 p: 0.808 f: 0.987 p: 0.875

s: 0,737 g: 0,790 s: 0,750 g: 0.707 s: 0,706 g: 0.717 s: 0.750 g: 0.591

overall: 0,862 overall: 0,815 overall: 0,784 overall: 0,801

ETM

f: 0,992 p: 0,995 f: 0,901 p: 0,989 f: 0,863 p: 0,982 f: 0,995 p: 1,000

s: 1,000 g: 0,889 s: 0,923 g: 0,894 s: 0,923 g: 0,947 s: 1,000 g: 0,939

overall: 0,969 overall: 0,927 overall: 0,929 overall: 0,983

quality dimensions. This results in the process tree as shown in Figure 17b. With
an overall (unweighed) fitness of 0, 884 it is better than all process models found
by other algorithms while at the same time having a perfect replay fitness.

Event log L2 shows similar results: the α-algorithm and the ILP miner are
able to find process models that can replay all behavior but allow for far more be-
havior. The heuristics miner and genetic miner again found models with several
loops. The ETM algorithm was able to find a tree, which is shown in Figure 18a,
that scores high on all dimensions but less so on replay fitness. If we emphasize
replay fitness 10 times more than the other dimensions, we get the process tree
as is shown in Figure 18b. Although replay fitness improved significantly, the
other dimensions, especially precision and simplicity, are reduced.

For event log L3 the observations for the last two event logs still hold. Both
the α-algorithm and the ILP miner provide fitting process models that allow for
far more behavior. Both the heuristics miner and the genetic algorithm result
in unsound models. However, the sound interpretation of the heuristics model
is the same as the sound process tree found by the ETM algorithm. Although
replay fitness is almost perfect, we can let the ETM algorithm discover a process
tree with real perfect replay fitness. This requires making it 1000 times more
important than the others and results in a process tree that has perfect replay
fitness but scores bad on precision. However, as we have seen before, this is a

320 J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst

→

F

→
→

E

→
�

DD

∨

CB

A

f: 0,901 p: 0,989

s: 0,923 g: 0,894

(a) All dimensions weight 1

→

F

�
×

E

×

D

∨
×

CA
B

τ

f: 0,996 p: 0,775

s: 0,923 g: 0,843

(b) Replay Fitness weight 10, rest 1

Fig. 17. Process Trees discovered for L1

→
→

F

�
×

CB

×
→

ED
B

A

f: 0,863 p: 0,982

s: 0,923 g: 0,947

(a) All dimensions weight 1

∧
�

D

→
×

B

∨

EC

∨

D

∨
×

AB

∨

C

×

τB

∧
→

τB

∧

F

×

AD

f: 0,964 p: 0,415

s: 0,571 g: 0,838

(b) Replay fitness weight 10, rest weight 1

Fig. 18. Process Trees discovered for L2

→

F

→

E

→
∨

DC

→

BA

f: 0,995 p: 1,000

s: 1,000 g: 0,939

(a) All dimensions weight 1

∧
∧
×

AF

∧
∨
∨

BD
C

F

∨

AE

f: 1,000 p: 0,502

s: 0,857 g: 0,900

(b) Replay fitness weight 1000,
rest weight 1

Fig. 19. Process Trees discovered for L3

common trade-off and the process tree is still more precise than the one found
by the ILP miner which also has a perfect replay fitness.

Investigating the results shown in Table 3 we see that on two occasions a
process model similar to the one found by the ETM algorithm was found by
another algorithm. However, the α-algorithm was not able to produce sensible
models for any of the three real life event logs. The heuristics miner once pro-
duced a process model of which the sound behavior matched the process tree
the ETM algorithm discovered. However, our algorithm always produced sound
process models superior to the others. Furthermore, the ETM algorithm can be
steered to improve certain dimensions of the process model as desired.

On the Role of Fitness, Precision, Generalization and Simplicity 321

7 Conclusion

The quality of process discovery algorithms is generally measured using four di-
mensions, namely replay fitness, precision, generalization and simplicity. Many
existing process discovery algorithms focus on only two or three of these dimen-
sions and generally, they do not allow for any parameters indicating to what
extent they should focus on any of these dimensions.

In this paper, we presented the ETM algorithm to discover process trees on a
log. This ETM algorithm can be configured to optimize for a weighted average
over the four quality dimension, i.e. a model can be discovered that is optimal
given the weights given to each parameter. Furthermore, the ETM algorithm is
guaranteed to produce sound process models.

We used our ETM algorithm to show that all four quality dimensions are
necessary when doing process discovery and that none of them should be left
out. However, the fitness dimension, indicating to what extent the model can
reproduce the traces in the log, is more important than the other dimensions.

Using both an illustrative example and three real life event logs we demon-
strated the need to consider all four quality dimensions. Moreover, our algorithm
is able to balance all four dimensions is a seamless manner.

References

1. Carmona, J., van Dongen, B.F., van der Aalst, W.M.P., Adriansyah, A., Munoz-
Gama, J.: Alignment Based Precision Checking. BPM Center Report BPM-12-10.
BPMcenter.org (2012)

2. van der Aalst, W., Adriansyah, A., van Dongen, B.: Replaying history on process
models for conformance checking and performance analysis. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 2(2), 182–192 (2012)

3. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer, Berlin (2011)

4. van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.: Genetic Process
Mining. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp.
48–69. Springer, Heidelberg (2005)

5. van der Aalst, W.M.P., Weijters, A.J.M.M., Maruster, L.: Workflow Mining: Dis-
covering Process Models from Event Logs. IEEE Transactions on Knowledge and
Data Engineering 16(9), 1128–1142 (2004)

6. Adriansyah, A., van Dongen, B., van der Aalst, W.M.P.: Conformance Checking
using Cost-Based Fitness Analysis. In: IEEE International Enterprise Computing
Conference (EDOC 2011), pp. 55–64. IEEE Computer Society (2011)

7. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process Mining Based on Re-
gions of Languages. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007.
LNCS, vol. 4714, pp. 375–383. Springer, Heidelberg (2007)

8. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: A Genetic Algorithm
for Discovering Process Trees. In: Proceedings of the 2012 IEEE World Congress
on Computational Intelligence. IEEE (to appear, 2012)

9. Calders, T., Günther, C.W., Pechenizkiy, M., Rozinat, A.: Using minimum descrip-
tion length for process mining. In: Proceedings of the 2009 ACM Symposium on
Applied Computing, SAC 2009, pp. 1451–1455. ACM, New York (2009)

322 J.C.A.M. Buijs, B.F. van Dongen, and W.M.P. van der Aalst

10. van Dongen, B.F.: Process Mining and Verification. Phd thesis, Eindhoven Uni-
versity of Technology (2007)

11. van Dongen, B.F., Alves de Medeiros, A.K., Wen, L.: Process Mining: Overview
and Outlook of Petri Net Discovery Algorithms. In: Jensen, K., van der Aalst,
W.M.P. (eds.) ToPNoC II. LNCS, vol. 5460, pp. 225–242. Springer, Heidelberg
(2009)

12. Eiben, A.E., Smith, J.E.: Introduction to evolutionary computing. Springer (2003)
13. Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining – Adaptive Process Simplifi-

cation Based on Multi-perspective Metrics. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)

14. Alves de Medeiros, A.K., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic
Process Mining: An Experimental Evaluation. Data Mining and Knowledge Dis-
covery 14(2), 245–304 (2007)

15. Mendling, J., Verbeek, H.M.W., van Dongen, B.F., van der Aalst, W.M.P., Neu-
mann, G.: Detection and Prediction of Errors in EPCs of the SAP Reference Model.
Data and Knowledge Engineering 64(1), 312–329 (2008)

16. Rozinat, A., van der Aalst, W.M.P.: Conformance Checking of Processes Based on
Monitoring Real Behavior. Information Systems 33(1), 64–95 (2008)

17. Vanhatalo, J., Völzer, H., Koehler, J.: The Refined Process Structure Tree. Data
and Knowledge Engineering 68(9), 793–818 (2009)

18. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.:
XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010.
LNBIP, vol. 72, pp. 60–75. Springer, Heidelberg (2011)

19. Weijters, A.J.M.M., van der Aalst, W.M.P.: Rediscovering Workflow Models from
Event-Based Data using Little Thumb. Integrated Computer-Aided Engineer-
ing 10(2), 151–162 (2003)

20. Wen, L., van der Aalst, W.M.P., Wang, J., Sun, J.: Mining Process Models
with Non-Free-Choice Constructs. Data Mining and Knowledge Discovery 15(2),
145–180 (2007)

21. van der Werf, J.M.E.M., van Dongen, B.F., Hurkens, C.A.J., Serebrenik, A.: Pro-
cess Discovery using Integer Linear Programming. Fundamenta Informaticae 94,
387–412 (2010)

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 323–341, 2012.
© Springer-Verlag Berlin Heidelberg 2012

ECO: Event Detection from Click-through Data
via Query Clustering

Prabhu K. Angajala, Sanjay K. Madria, and Mark Linderman

Department of Computer Science, Missouri University of Science and Technology, MO, USA
Air Force Research Lab, Rome, NY, USA

madrias@mst.edu

Abstract. In this paper, we propose an algorithm to detect real world events
from the click-through data. Our approach differs from the existing work as we:
(i) consider the click-through data as collaborative query sessions instead of
mere web logs proposed by many others (ii) integrate the semantics, structure,
and content of queries and pages, and (iii) aim to achieve the overall objective
via query clustering. The problem of event detection is transformed into query
clustering by generating clusters using hybrid cover graphs where each hybrid
cover graph corresponds to a real-world event. The evolutionary pattern for the
co-occurrence of query-page pairs in a hybrid cover graph is imposed over a
moving window period. Finally, we experimentally evaluated our proposed ap-
proach using a commercial search engine’s data collected over 3 months with
about 20 million web queries and page clicks from 650,000 users. Our method
outperforms the most recent event detection work proposed using complex me-
thods in terms of metrics such as number of events detected, F-measures, entro-
py, recall etc.

1 Introduction

The approximate size of today’s indexed World Wide Web is at least 45.93 billion
pages as per existing estimation [1] and is a rich collection of all the real world ob-
jects. Web is a great source of knowledge to be mined to learn about topics, stories,
events etc. Event detection is becoming increasingly popular because of its applicabil-
ity in several diversified areas. Therefore, the interpretation of “event” definition is
context-dependent. An event can be associated with reporting how many people/cars
have entered a building/freeway, web access logs, security logs, object trajectory in
video surveillance and business activity monitoring for business intelligence etc. In
our perspective and from the viewpoint of Web, an event can be understood as some
real-world activity that stirs a large scale querying and browsing activity. That is, it is
of more interest to users over a sizable window period which is unusual relative to
normal patterns of querying and browsing behavior.

Web is the collaborative work of many people; a few publishing, and all of them
querying and retrieving the information. Search engines record these activities in Web
logs called the click-through data and reflect the query and clicks activities of users.
Click-through data is more or less in the format shown in the Table 1 below:

324 P.K. Angajala, S.K. Madria, and M. Linderman

Table 1. Sample click-through data

AnonID Query Query Time Item Rank Click URL

7 Easter 2006-03-01 23:19:52 1 http://www.happy-easter.com

7 Easter eggs 2006-03-01 23:19:58 1 http://www.eeggs.com

To briefly explain the fields in Table 1, we begin with AnonID, the anonymous

User ID from whom the search engine received the request, followed by the query
issued by the user, the time the search engine received the request, the rank of the
page item clicked, the page clicked in response to the result among the set returned by
the search engine. Note that the click-through data format varies slightly from one
search engine to the other.

Three Web data types identified in previous [2] efforts are: content (text and mul-
timedia), structure (links that form a graph) and Web usage (transactions from Web
log). Web data mining encompasses a broad range of research topics like improving
page ranking, efficient indexing, query clustering, query similarity, query suggestions,
extracting semantic relations and event detection etc. All these areas are inter-related
and many use the click-through data as a starting point for their analysis. The seam-
less flow of advancement in developing better approaches in individual areas can be
pipelined to improve existing techniques in other inter-related fields. Our effort in this
paper is to integrate three Web data types and achieve the overall objective of event
detection via query clustering.

1.1 Motivation

The dynamics of click-through data was previously identified in [3]. The frequency of
queries and page clicks grow very fast when the real-world event approaches and
become weaker gradually after. The co-occurrence of a query-page pair in a given
window period is the number of times the pair appear together in the same row of
Table 1 in that window period. The dynamics of co-occurrences can sense the arrival
and pass over of the events. The work done by Greg [17] et al. gave an inside out
perspective about the query space, query sessions, user behavior and content space.
Interesting facts were revealed like about 28% of all queries are reformulations of
previous queries; an average query is reformulated 2.6 times; users formulate and
reformulate a series of queries in pursuit of a single task. The possibilities are new
queries, add/remove word(s) to/from queries, change word(s) in a query, get more
results for the same query, return to a previous queries etc. Our motivation is to clus-
ter such similar queries with similar evolutionary pattern corresponding to real world
events.

Our work differs from the existing work in one or more of the following ways:

(1) We consider the click-through data as collaborative query sessions (a time in-
terval which consists of all the query-page pairs from all users within this time inter-
val) rather than collection of individual entries of query-page pairs considered in
[3,4]. A query session captures a series of user interactions with the search engine

 ECO: Event Detection from Click-through Data via Query Clustering 325

with begin and end time period. The advantage of this approach is that in most of the
meaningful sessions users issue a series of related queries and click through the web
pages in the result set. They are semantically and temporally related to one another.
These meaningful query sessions as initial clusters can correspond to real world
events. User intensions are better understood by considering click-through data as
query sessions. Search engines click-through data is massive and the graphs generated
from the click-through data are overwhelmingly large. By considering click-through
data as collaborative query sessions, we can substantially reduce the complexity of the
problem.

(2) As we see, not every entry in the click-through data corresponds to real-world
events. Navigational queries account for 21% of the total query frequency [17] so
pruning irrelevant data can prepare a better ground for the approach. As an example,
in one sample of data, we found the frequency of queries and page clicks of popular
portal pages shown below in Table 2.

The frequencies are high but they really do not correspond to any real-world event.
So in the data cleaning, preparation and transformation phases of the web data min-
ing, we incorporate filtering methods to process the data. This step significantly im-
proved the quality of the results.

Table 2. Frequent query-page pairs of popular portals

Query Click URL Frequency

Google http://www.google.com 14236
Yahoo http://www.yahoo.com 181820

Aol http://www.aol.com 4774
Myspace http://www.myspace.com 17104
Ask.com http://www.ask.com 2213

Fig. 1. Demonstration of query-page pair dynamics for “Easter” over a six week period

326 P.K. Angajala, S.K. Madria, and M. Linderman

(3) We achieve the overall objective of event detections via query clustering. Event
detection process ends with clusters of query-page pairs that are semantically and
temporally related and corresponds to one or more events. We begin this process with
queries because the number of queries the search engine receives (number of ways in
which real-times queries are framed) are far less than the size of the Web i.e. Q<<P.
By this obvious fact, we believe that clustering can be done efficiently if we begin the
process with Q. Also, query keywords give some insight about the events. Queries
can be formulated in several ways in different contexts, although they all mean the
same and correspond to the same event. For example, Figure 1 shows the support of
query-pairs {“Easter”, www.happy-easter.com}, {“Easter Egg”, www.eeggs.com},
{“Easter Cards”, www.easter-cards.com}, {“Easter Recipes”, www.easter-
recipes.com} and {“Easter Poems”, www.poemsforfree.com}. All the four query-
page pairs have similar evolutionary pattern in the time window and correspond to the
same event “Easter” on April 16, 2006. As one can observe, the support increased
gradually up to the 3rd week of April and then decreased gradually. By early detection
of this kind of query clusters, event detection can be done efficiently. Therefore, we
incorporate query clustering into the event detection framework.

2 Related Work

In this section, we review some significant work in the literature on event detection
and query clustering. The beginning of event detection originates from the initial
work done on (TDT) Topic Detection and Tracking [11] to automatically detect topi-
cally related stories within a stream of news media. The objective of the work done on
retrospective and on-line detection [12] is to detect stories based on two tasks: retros-
pective detection and online detection. The retrospective detection aims to discover
previously unidentified events in accumulated collection while the on-line detection
tries to identify the on-set of news events from live news feeds in real-time. An at-
tempt on burst event detection was done by Fungs et al. [13] from chronologically
ordered documents as text streams. They proposed a parameter-free probabilistic ap-
proach called feature-pivot clustering to fully utilize the time information to deter-
mine set of bursty features in different time windows. The work done by Zhao et al.
[16] introduced the dynamic behavior idea to cluster web access sequences (WASs),
based on their evolutionary patterns of support counts. The intuition is that often
WASs are event/task- driven and partitioning WASs into clusters result in grouping of
similar/closer WASs. Later their work in [3] laid to the foundation for visitor-centric
approach to detect events by using click-through data. The query-page relationship is
represented as the vector-based graph. On the dual graph of a vector-based graph, a
two-phased graph cut algorithm is used to partition the dual graph based on (i) seman-
tic-based similarity and (ii) evolution pattern-based similarity to generate query-page
pairs that are related to events. However, their work does not perform any data prun-
ing and have query times the number of pages in the space. Later, another approach
was introduced by Chen et al. [4] by transforming the click-through data to the 2D
polar space by considering the semantic and temporal dimensions of the queries.
It then performs a subspace estimation to detect subspaces such that each subspace

 ECO: Event Detection from Click-through Data via Query Clustering 327

corresponds to queries of similar semantics, thus it complicates the solutions by doing
first subspace estimation and then the pruning of uninteresting spaces.

The query clustering work by Wen et al. [7] is on the Encarta encyclopedia. Their
approach was based on the two principles: (1) if users clicked on the same documents
for different queries then the queries are similar. (2) If a set of documents are often
selected for a set of queries then the terms in these documents are related to the terms
of the queries to some extent. In the effort of extracting semantic relations from query
logs, Baeza-Yates et al. [8] proposed a model to project queries in a vector space and
deduced some interesting properties in large graphs.

3 Event Detection Framework

The overview of our proposed event-detection framework is shown in Figure 2 and is
briefly explained in this section. Given the click-through data, we perform the data
cleaning, preprocessing and transformation tasks to refine the data. As shown in Ta-
ble-2, some portion of the click-through data does not correspond to real-world events
(like searching Google, Yahoo as keywords, or some pornographic keywords). The
percentage of irrelevant data is highly random depending upon the sample chosen.
Filtering this noise is a better step to prepare ground for further process. In order to
analyze the dynamics of increase and decrease of co-occurrences of query-page pairs,
we partition the click-through data in a sequence of collections based on user-defined
time granularity. Time granularities can be like a day, week, month etc. Different time
granularities are required to detect events over moving window sizes. Each collection
can be represented by a bipartite graph. We summarize the co-occurrences of query-
page pairs from all the collections into a summarized bipartite graph. Next, we trans-
form the problem of event detection into query clustering while capturing the rela-
tionship among queries and pages. For this purpose, we use the hybrid cover graph [8]
and employ a distance-based function that includes the semantics of the query and
pages to define the criteria for clustering. The summarized support from bipartite
graph (i.e, edges in hybrid cover graph, see Figure 2 and Figure 4) is used to emphas-
ize the dynamics of the queries and pages in the clusters to detect an event.

Fig. 2. Event detection framework overview

328 P.K. Angajala, S.K. Madria, and M. Linderman

4 Data Representation

Click-through data is collected in Web logs. As mentioned earlier, we consider the
click-through data as collaborative query sessions instead of individual query-page
records. The reason for the same is explained earlier in Section 1.1. As informally
defined earlier, a query session is wrapped by time boundaries; the beginning and the
end time. We segment users’ streams into sessions based on anonymous ID. Another
widely used technique [14] is based on the idea that two consecutive actions (either
query or click) are segmented into two sessions if the time interval between them
exceeds 30 minutes.

Definition 1: (Query session) A query session S= (Q, P), where Q={q1, q2…qm} is a
bag of queries issued through the search engine and P = {p1, p2….pn} is the set of
corresponding pages clicked by the user from the search result set, where n is not m.

Fig. 3. Summarized bipartite graph

A Bipartite graph, G = (V, E) where nodes in V represent queries and Web pages
and edges in E represent the strengths of the query-page pairs. Bipartite graphs are
widely used in the Web data mining domain [5, 6] to represent the relationship be-
tween queries and pages. An edge between a query and a page is formed if the page is
clicked in response to the query. Bipartite graphs can be visualized as mapping be-
tween the query set (Q) and the page set (P) as shown in Figure 3. We like in [3] par-
tition the click-through data C into sequence of collections <C1, C2... Cn> based on
user-defined time granularity like hour, day, week and month etc.

Definition 2: (Strength) of a query-page pair Ps,t = (qs, pt) in collection Ci is Si(Ps,t) = | , |∑ | , | , where 1 ≤ i ≤ n and (s, t) is a query-page pair. Strength is the ratio of the

co-occurrence of the query-page pair in collection Ci to C . This ratio so defined
keeps the value ≤ 1 and is easy to process rather than showing high co-occurrence
values withour normalization. Note that in Figure 3 the strength of (q1, p1) is summa-
rized as <0.35, 0.76> for two collections. Noisy query-page pairs that appear sporadi-
cally and potentially not related to any event have very low strengths.

In order to cluster queries with pages clicked, we need the efficient data structure
for their representation. Several graph algorithms are in existence which can be used
for this purpose. For example, Baza-Yates et al. [15] identified several types of query
graphs. In all such graphs, queries are nodes and an edge is drawn between two nodes

 ECO: Event Detection from Click-through Data via Query Clustering 329

if (i) the queries contain the same word(s) – word graph (ii) the queries belong to the
same session – session graph (iii) users clicked on the same URLs from the result sets
– cover graph. Word graph is hard to use because users formulate queries in different
ways but it is essential to capture the query semantics. Not all the queries from a
session correspond to some event so session graph is not the option. Both word and
session graphs fail to capture the semantics of pages clicked. Cover graph can be effi-
cient because for two queries with a commonly clicked page, the edge is represented
only once. Reducing the complexity of the graph structure with emphasis on page
clicks can simplify the problem and helps in easy representation. We extend the no-
tion of cover graph to hybrid cover graph, which is explained later. The notion of
commonly clicked documents [15] is as follows:

Definition 3: Query Instance is a query (set of words or sentences) plus zero or more
clicks related to that query. Formally: QI = (q, u*) where q = {words or phrase}, q
being the query, u a clicked URL and the query instance of query q is denoted by QIq
and QIc(u) denotes the set of its clicked URLs.

Definition 4: URL Cover is the set of all URLs clicked for a query. So for the query
q, Cp = QIc u .

The nodes in the hybrid cover graph are queries from the click-through data. Three
types of edges are possible between any two nodes: 1. Cover edge (represented by
normal line) is drawn if a page is clicked in common to both the queries 2. Similarity
edge (represented by dotted line) represents the similarity of the two queries; page
content and user click feedback. 3. Session similarity edge (represented by double line
==) is drawn if two queries are related to each other as a result of the association rule
mining of most of the sessions, referred as session inference. The criterion for similar-
ity over the similarity edge is based on distance function and session inferences.

Fig. 4. Hybrid Cover Graph

The hybrid cover graph shown in Figure 4 is formed by incorporating the features
of word and session graphs into the cover graph. Sim(q1, q3) is the similarity edge
that represents the similarity between the queries q1 and q3, which have common
URLs clicked in response to them. The vectors on each side of the page p2,
represented as <>p2<> indicate the summarized support of p2 with the corresponding
query nodes. SSim(q3, q4) is the session similarity between q3 and q4, which will be
explained in Section 5.

330 P.K. Angajala, S.K. Madria, and M. Linderman

5 Distance Function

Similarity between two queries correspond to nodes in a graph is based on our ap-
proach to integrate the semantics, structure, and content of queries and pages. Our
distance criterion is based on work done by Wen et al. [7] to cluster queries.

5.1 Similarity Based on Query Contents

Although short queries are harder to understand, queries are better understood by
considering them as keywords, words order and phrases. We perform stemming, stop
words elimination, phrase recognition and synonym labeling while adding a query to
the query semantics dictionary of a cluster. Let p, q be two queries.

Similarity based on Keywords or Phrases
Simkeyword (p, q) = KN (p, q)/Max (kn (p), kn (q))
where KN (p, q) = the number of common keywords in the queries p and q, kn (p)
= number of keywords in p.
Similarity based on String Matching
The comparison is the string-matching problem and can be computed by edit dis-
tance, i.e. number of edit operations required to unify two strings.
For letters and characters, Simedit (p, q) = EditDistance (p, q)

Similaritycontent = Simkeyword / Simedit (Simkeyword is based on the keywords)

5.2 Similarity Based on Session Feedback

A query can be expressed as a point in high-dimensional space [15] where each di-
mension corresponds to a unique URL i.e. a query can be given a vector representa-
tion based on all the different URLs in its cover. A weighted representation that takes
document frequencies into account is used. If p and q are two queries then Simvector

(from the author-centric point of view) is computed as:

Simvector =| |.| |
Session feedbacks from meaningful query sessions can help to relate topically similar
URLs. A simple way to take user feedbacks into consideration is by taking the norma-
lized value to see the similarity in terms of the commonly clicked URLs for the que-
ries. Simdoc represents visitor-centric (generated by users browsing activity) point of
view and

Simdoc= RD (p, q) / Max (|Cover (p)|, Cover (q)|) where RD (p, q) is the number of
commonly clicked URLs and |Cover (p)| is the number of URLs clicked for query p.

Simvector is presented from the author-centric (generated by publishers) point of
view, whereas Simdoc is from visitor-centric point of view. This tells how users have
chosen to click on these pages.

Similarityfeedback = Simvector* Simdoc

 ECO: Event Detection from Click-through Data via Query Clustering 331

Content-based measures tend to cluster queries with the same or similar terms whe-
reas session feedback-based measures tend to cluster page clicks related to the same
or similar topics.

Similarity (p, q) = α Similaritycontent + (1- α) * Similarityfeedback where α is the
weight factor.

Distance (p, q) = 1 / Similarity (p, q)

Larger the similarity, smaller the distance and the weights for content and session
feedback similarities are adjusted to obtain better results. An edge between two que-
ries p and q in the hybrid cover graph is drawn if Distance (p, q) ≤ Dmin, where Dmin is
the minimum distance.

Association Rules [9] can be applied to find queries that are asked together in many
of the query sessions. In the problem of finding related queries from query set Q, we are
interested in associations like X=>Y, where X, Y are subsets of Q, X ∩Y=Ø. The rule
X=>Y should have a support ≥ S min and confidence ≥ Cmin, where Smin and Cmin are
minimum support and confidence values. Suppose the rule q1=> q4 | given S and C
where S ≥ Smin and C ≥ Cmin is found then include the rule in the hybrid cover graph.

6 Clustering Process

For each query q ∈ Q, find the clusters (for first query, there is no cluster to compare
so it forms its own cluster, for subsequent queries, find distances among the clusters
obtained so far) with which the minimum distance condition is satisfied. Assign q to
those clusters. Two queries q1 and q2 fall into the same cluster if the distance be-
tween q1 and q2, D(q1,q2)<=Dmax. If the threshold distance condition is not satisfied
with any of the existing clusters then start a new cluster beginning with q.

Fig. 5. Clustering Process

For example, as shown in Figure 5, when a new query q5 comes in, its content is
compared with the semantics of the query dictionary formed from existing queries -
q1, q2, q3, q4. Then its page clicks from the summarized bipartite graph are compared
with the session feedback library of all the pages - p1, p2, p3, p4 for a given cluster. If
the distance D is ≤ Dmin then the query is added to the cluster, the query semantics are
added to the query semantics dictionary and its page clicks are added to the session
feedback library. If not, the query begins forming a new cluster.

332 P.K. Angajala, S.K. Madria, and M. Linderman

6.1 Event Detection Algorithm

There are several challenges in designing a query clustering technique. It should be
able to handle all types of attributes, scalable on massive datasets, work with high
dimensional data, handle outliers, have reasonable time complexity, be independent of
data order, and start without initial parameters (for example, the number of clusters).
DBSCAN [10] algorithm and its incremental version meet all the required conditions
and its average time complexity is O (n*log n).

Algorithm 2. Event Detection ECO –
Hybrid Cover Graph

Algorithm 1. ECO – Clustering Process

Our algorithm though inspired by the DBSCAN differs significantly from it. First,
the function in our approach is not density-based but distance-based and second, we
require only one scan of the queries through the click-through data. The criterion for
distance function is explained previously in Section 5. The event detection algorithm
is presented in two steps. Algorithm1 is for the clustering process and the later one is
for generating the hybrid cover graphs. The hybrid cover graphs are drawn with re-
spect to the comprehensive-reachable and comprehensive connected conditions of the
DBSCAN algorithm for the terminal nodes. The algorithm runs at different time
granularities to detect events of different window size like day, week and month etc.

 ECO: Event Detection from Click-through Data via Query Clustering 333

The summarized support values for the query-page pairs are analyzed using histo-
grams to ensure that the hybrid cover graph has an evolutionary pattern. The higher
ranking of nodes in the hybrid cover graph can be given for the connected dominating
set (nodes that essentially connect the graph), nodes with least distance and with
higher supports with their corresponding edges. The page rank of the edge can be
obtained as the ItemRank from the click-through data. The edges with better ranks
can be regarded as high quality Web pages clicked in relation to events.

Pruning irrelevant data is very important because the click-through data has mil-
lions of queries and pages. We reduced the size of the graph qualitatively and quanti-
tatively by eliminating: 1. Queries and pages that have low support values. By doing
so, some edges and nodes can be removed from the graph. These queries and pages
can be seen sporadically in the data. 2. Multi-topical URLs (pages that talk about
several topics or a very generic topic) by removing edges of low weight obtained
from criteria in Section 5. Low weight edges are more likely to represent poor quality
semantic relations.

7 Working Example

In this section, we explain the overall process by continuing the example initiated in
Section 1.1. Figure 1 shows the support of query-pairs P1 {“Easter”, www.happy-
easter.com}, P2 {“Easter Egg”, www.eeggs.com}, P3 {“Easter Cards”, www.easter-
cards.com}, P4 {“Easter Recipes”, www.easter-recipes.com} and P5 {“Easter
Poems”, www.poemsforfree.com}. The co-occurrence, support for the query page
pairs for the 6 week window period is shown in Tables 3 and 4. We show the similari-
ty computation for the queries “Easter” and “Easter Eggs”.

Table 3. Co-occurrence of query-page pairs over a 6 week window period

 31-March 7-April 14-April 21-April 28-April 04-May
P1 7000 8700 9900 1510 600 0
P2 9200 10500 16900 2740 1000 200
P3 300 1500 8200 9300 100 0
P4 1000 2900 3500 6900 0 0

P5 9100 8300 8500 9500 1200 0

Table 4. Support of query-page pairs over a 6 week window period

 31-March 7-April 14-April 21-April 28-April 04-May
P1 0.169 0.210 0.239 0.365 0.014 0

P2 0.141 0.161 0.259 0.420 0.015 0
P3 0.015 0.077 0.422 0.479 0.005 0
P4 0.058 0.170 0.205 0.564 0 0
P5 0.181 0.247 0.252 0.282 0.035 0

334 P.K. Angajala, S.K. Madria, and M. Linderman

Fig. 6. Illustration of “Easter” and “Easter Eggs” clustering

Simkeyword =1/2=0.5; Simedit=4, Similaritycontent = Simkeyword / Simedit=0.125
We computed Simvector= 1.2, Simdoc= 177/569=0.311,
Similarityfeedback = Simvector* Simdoc= 0.373
Similarity (“Easter”, “Easter Eggs”) = α Similaritycontent + (1- α) * Similarityfeedback,
where α is the weight factor and assume α=0.45.
Similarity (“Easter”, “Easter Eggs”) = 0.261,
Distance (p, q) = 1 / Similarity (p, q)

Let Distance = 1/0.261=3.83. Assume Dmin=3 then the queries “Easter” and “Easter
Eggs” should fall into the same cluster. The process is illustrated in Figure 6. Note
that only the portion of hybrid cover graph with nodes “Easter” and “Easter Eggs” is
shown because of the complexity of the graph. All the four query-page pairs are se-
mantically and temporally related and have similar evolutionary patterns in the win-
dow period and corresponding to the same event “Easter” on Aril 16, 2006. As one
can observe, the support increased gradually in the 3rd week of April and then de-
creased gradually. The criterion for distance function is explained in Section 5 and the
clustering process is explained in Section 6.

8 Performance Study

In this section, we study the performance of our event detection approach. First, we
describe the characteristics of the dataset used in experiments. Then we present the
experimental results and their comparison with some of the existing work.

8.1 Data Set

A real click-through dataset obtained from AOL search engine is used in our experi-
ments. The data is from March 2006 to May 2006, comprised of 500k query sessions,
consisting ~20 web million queries and click-through activities from 650k users. As
described in [17], each line in the data represents one of two types of activities: (i) a
query that was not followed by the use clicking on a result item. (ii) a click through
on an item in the result list returned from a query. In the later case, the pages appear

 ECO: Event Detection from Click-through Data via Query Clustering 335

as successive entries in the data. In our approach, as a query session is obtained as
successive pages corresponding to the same query from the same user. The timestamp
of the first page click in a query session is taken as the start time of the session.

8.2 Result Analysis

Our approach can also detect pre and post period events, where the current period is
referred to March through May, 2006. As discussed in Section 1.2 the co-occurrence
of query-page pairs corresponding to an event does not stop abruptly right after the
event but slows down at a faster rate. So pre and post period events can be detected by
analyzing such kind of a behavior. For example pre-period event “Winter Olympics
Torino, Italy” happened during February 10 through 26. We observed significant
interest decreasing at a faster rate in regard to this in early March data. Post-period
event “FIFA World Cup, Germany” during June 9 through July 9 is detected with
increasing interest at the end of the May data.

Our algorithm can detect events of different time granularity like day, week and
month. For an event, the traffic spreads around the event juncture like few days,
weeks, and months in time granularity before and after the event. Day events like the
death of Jack Wild, a famous British actor on March 1, the St. Patrick’s Day on
March 17 etc. are detected. Week events like the Philadelphia flower show, (a big
indoor flower show) during the week March 5 through 12, the Fleet week (public can
see USA Navy and Coast guard ships) during the week May 24 through 30 etc.
Monthly events span across bigger time frames and appeared throughout the data. The
famous American Idol 5 episode appeared March 1 through May 24 (finale), the In-
ternal Revenue Service (IRS) tax filing appeared March 1 through 31. Note that some
of the events are regular and previously known like the St. Patrick’s Day; Good Fri-
day etc. which recur every year. Some are previously unknown; like Simon Lindley,
an Organist received the “Coveted Spirit of Leeds” award on May 3, the release of the
movie V for Vendetta on March 17 etc. These events are not periodic and do not re-
cur. Our approach could detect both types of events and of different time granulari-
ties. Our approach detected a lot of events that are not recognized previously by the
existing work [3, 4] on the same dataset. Due to space restrictions we are not able to
include the full list of events detected. The complete list of events detected is shown
in Appendix.

8.3 Experimental Analysis

DECK [4] outperformed two-phase-clustering algorithm [3] so we compare the per-
formance of ECO with the DECK, DECK-NP [4] and DECK-GPCA [4] on the same
dataset. Number of events detected is a simple way to compare different approaches.
ECO could detect 96 events where as DECK detected only 35 events. ECO could not
detect 5 events in the list of 35 events detected by the DECK. On the other hand,
DECK did not detect 61 events that ECO could detect. On time granularity compari-
son, ECO could detect 80 day events, 8 week events and 8 month events. In the
events listed by DECK, 32 are day events, 3 are week events and no month events.

336 P.K. Angajala, S.K. Madria, and M. Linderman

As mentioned earlier, our approach could detect 1 pre-period, 83 current period and
12 post period events. The experimental results are shown in Figures 7 below.

The evaluation metrics, precision, recall, F-measure (F-1 score) and entropy are
used along with the number of events detected to compare the performance. Precision
is the ratio of number of correctly detected events to the overall discovered clusters.
Recall is the ratio of number of correctly detected events to the total number of
events. F-measure is computed based on the precision and recall as the weighted har-
monic mean of precision and recall. F-measure = 2 * precision * recall / (precision +
recall). For each generated cluster i, we compute Pij as the fraction of query-page
pairs (query sessions) representing the true event j. Then the entropy of the cluster i is
Ei = - ∑ log . The total entropy can be calculated as the sum of the entropies of

each cluster weighted by the size of each cluster: E = ∑ , where m is the number

of clusters, n is the total number of query-page pairs (query sessions) and ni is the size
of the cluster i. The experimental results are shown in Figures 8. ECO did fairly well
in terms of precision and recall for up to half of the data size. As the number of query
sessions increased, the number of query patterns increased so the number of noisy
query clusters increased which resulted in slight down fall in precision but not recall
and increased in entropy.

Fig. 7. Comparison of ECO with DECK on number of events detected

0

100

200

ECO DECK

Number of events detected

0

200

ECO DECK

Number of events detected and
undetected

Undetected

Detected

0

100

Pre Current Post-

Number of events detected in
pre, current and post periods

0

100

200

Day Week Month

Different time granularities

DECK

ECO

 ECO: Event Detection from Click-through Data via Query Clustering 337

Fig. 8. Precision, recall, F-measure and entropy of ECO and DECK

8.4 Effect of α

The factor α decides the weights for content-based similarity and feedback-based
similarity. We ran experiments varying the value of α, which is shown in Figure 9.
The number of events detected varied accordingly. At α=0.15, 31 events are detected.
As the weight for feedback-based similarity increased we started identifying new
clusters of events. At α=0.45 we got the best results in terms of events detected. As
the weight for feedback-based similarity increased further, the performance degraded.

Fig. 9. Impact of α on Event Detection

0

0.5

1

5k 10k 20k 50k 100k
No. of Query Sessions

Precision
ECO

DECK

DECK-
GPCA

DECK-
NP

0

0.5

1

1.5

No. of Query Sessions

Recall ECO

DECK

DECK-
GPCA

DECK-
NP

0

0.2

0.4

0.6

0.8

1

5k 10k 20k 50k 100k
No. of Query Sessions

F Measure
ECO

DECK

DECK-
GPCA
DECK-
NP

0

0.05

0.1

0.15

0.2

0.25

5k 10k 20k 50k 100k

No. of Query Sessions

Entropy
ECO

DECK

DECK-
GPCA

DECK-
NP

0

50

100

150

0.15 0.3 0.45 0.6 0.75 0.9
α value

No. of events detected

338 P.K. Angajala, S.K. Madria, and M. Linderman

9 Conclusions

In this paper, we proposed an approach called ECO for detecting events from the
click-through data. Firstly we performed data cleaning, transformation and prepara-
tion process to filter the noise and then partitioned the click through data into
collections of user defined granularity. Then we transformed the problem into query
clustering, simultaneously trying to integrate the content, structure and semantics of
the queries and clicked URLs. We introduced the hybrid cover graph to efficiently
represent the clusters of query- page pairs. The evolutionary pattern of the query-page
pairs is embedded into the hybrid cover graph as vectors over the edges to incorporate
the dynamics. Our results outperform the existing work [3,4] in terms of the number
of detected events, entropy measure, F-measure and recall.

References

[1] De Kunder, M.: The size of the World Wide Web. World Wide Web Size (September 04,
2009), http://www.worldwidewebsize.com

[2] Baeza-Yates, R.: Web Mining in Search Engines. In: Proceedings of the 27th Australa-
sian Conference on Computer Science, New Zealand, vol. 26 (2004)

[3] Zhao, Q., Liu, T.-Y., Bhowmick, S., Ma, W.-Y.: Event Detection from Evolution of
Click-through Data. In: Proceedings of KDD, Philadelphia, PA, USA (2006)

[4] Chen, L., Hu, Y., Nejdl, W.: DECK: Detecting Events from Web Click-Through Data.
In: Eighth IEEE International Conference on Data Mining (ICDM), pp. 123–132 (2008)

[5] Beeferman, D., Berger, A.: Agglomerative clustering of a search engine query log. In:
SIGKDD (2000)

[6] Xue, G.-R., Zeng, H.-J., Chen, Z., Yu, Y., Ma, W.-Y., Xi, W., Fan, W.: Optimizing web
search using web click-through data. In: ACM Proceedings of CIKM, pp. 118–126
(2004)

[7] Wen, J., Mie, J., Zhang, H.: Clustering user queries of a search engine. In: Proceedings of
the 10th International World Wide Web Conference (2001)

[8] Baeza-Yates, R., Tiberi, A.: Extracting Semantic Relations from Query Logs. In: Pro-
ceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pp. 76–85 (2007)

[9] Federal, B.F., Fonseca, B.M., De Moura, E.S.: Using Association Rules to Discover
Search Engines Related Queries. In: Proceedings of the 1st Conf. on Latin American
Web Congress (2003)

[10] Ester, M., Kriegel, H.-P., Jörg, S., Xu, X.: A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise. In: 2nd International Conference on
Knowledge Discovery, pp. 226–231 (1996)

[11] Allan, J., Rapka, R., Lavarenko, V.: On-line New Event Detection and Tracking. In:
SIGIR (1998)

[12] Yang, Y., Pierce, T., Carbonell, J.G.: A Study of Retrospective and On-line Event Detec-
tion. In: SIGIR 1998 (1998)

[13] Fung, G.P., Yu, J.X., Yu, P.S., Lu, H.: Parameter Free Bursty Events Detection in Text
Streams. In: Proceedings of VLDB (2005)

[14] White, R.W., Drucker, S.M.: Investigating Behavioral Variability in Web search. In: Pro-
ceedings of WWW, pp. 21–30 (2007)

 ECO: Event Detection from Click-through Data via Query Clustering 339

[15] Baeza-Yates, R.: Graphs from Search Engine Queries. In: van Leeuwen, J., Italiano,
G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS,
vol. 4362, pp. 1–8. Springer, Heidelberg (2007)

[16] Zhao, Q., Bhowmick, S.S., Gruenwald, L.: CLEOPATRA: Evolutionary Pattern-Based
Clustering of Web Usage Data. In: Ng, W.-K., Kitsuregawa, M., Li, J., Chang, K. (eds.)
PAKDD 2006. LNCS (LNAI), vol. 3918, pp. 323–333. Springer, Heidelberg (2006)

[17] Pass, G., Chowdhury, A., Torgeson, C.: A Picture of Search. In: the First ACM Interna-
tional Conference on Scalable Information Systems, Hong Kong (2006)

Appendix: List of Events Detected

Event
Time-
stamp

Pre-period events

Winter Olympics (Tori-
no 2006)

February
26th

Current-period events

Ash Wednesday March 1st

Jack Wild died March 1st

World Baseball Classic
March 3rd-

20th
48th Annual Heard Mu-

seum
 Fair

March 4th,
5th

78th Academy Awards March 5th

Triple Six Mafia won
Academy Award

March 5th

Philadelphia flower show
March 5th-

12th

Dubai Tennis Open ends March 6th

Big 12 Women's Basket-
ball Championship

March 7th-
12th

Big Ten Conference
Men's Basketball Tour-

nament

March 9th-
12th

NCAA men's Division I
Basketball Tournament

March
14th-April

3rd

Ides of March March 15th

John West salmon
commercial

March 15th

Ram Bahdur Bomjon March 16th

disappeared

V for Vendetta movie
released

March 17th

Saint Patrick’s day March 17th

NCAA Women's
Division I Basketball

Tournament

March
18th-April

4th

Los Angeles Marathon March 19th

Washington D.C. Cherry
Blossom Festival

March 25th

27th Annual Young
Artist Awards

March 25th

Buck Owens died March 25th

Rocio Durcal died March 25th

Bataan Memorial Death
March

March 26th

Indy racing league sea-
son started

March 26th

Solar eclipse in North
Africa

March 29th

Basic Instinct 2 movie
released

March 31st

April fool’s day April 1st

Liberty Bell Classic April 2nd

140th anniversary of
Baptist Union Baptist

Church
April 2nd

Good Friday April 14th

Scary movie 4 released April 14th

Easter April 16th

340 P.K. Angajala, S.K. Madria, and M. Linderman

Boston Marathon April 17th

Stanley Cup Playoffs April 21st

Launch of lucky lines by
Oregon Lottery

April 23rd

Italian Social Republic April 25th

Dolphins Massacre at
Zanzibar

April 28th

Steve Howe died April 28th

The 33rd Annual Day-
time Emmy Awards

April 28th

Pleasant valley baseball
tournament

April 29th

The Hobbit movie started April 31st

27th Sports Emmy
Awards

May 1st

David Blaine perfor-
mance at Lincoln Center

May 1st

Brooklyn Academy
added to NHRP

May 2nd

10000 days album re-
lease

May 2nd

Simon Lindley received
"Coveted Spirit of

Leeds" award
May 3rd

National Teachers day May 4th

Advanced Placement
Test

May 1st-
10th

Cindo de Mayo May 5th

Men's World Ice Hockey
Championship

May 5th-
21st

132nd Kentucky Derby May 6th

29th Annual Five Boro
Bike Tour

May 7th

Fort Collins Old Town
Marathon

May 7th

Chris Daughtry eliminat-
ed from American Idol 5

May 10th

Alligator attacks May 14th

Mother’s day May 14th

Tony Awards nomi-
nations

May 16th

The Amazing Race finale May 17th

Penny saved 1000$
worth

May 17th

Cannes Film Festival
May 17th-

28th

Big Island Film Festival
May 18th-

21st
The Davinci Code movie

release
May 19th

82nd Air Borne Division
show

May 20th

NASCAR Sprint All-Star
Challenge

May 20th

Strawberry Festival
May 21st,

22nd

10.5 Apocalypse Movie
release

May 21st

41st Annual Country
Music Awards

May 23rd

American Idol 5 ends May 24th

Fleet week
May 24th-

30th

Africa day May 25th

31st Annual Million
Dollar Beauty Ball

May 26th

Ultimate Fighting
Championship 60:
Hughes vs. Gracie

May 27th

The 90th Indianapolis
500

May 28th

Memorial day May 29th

Post-period events

The Omen movie release June 6th

06/06/06 Doomsday June 6th

FIFA World Cup (Ger-
many)

June 9th

National Golden glove
boxing championship

June 9th-
13th

60th Annual Tony
Awards

June 11th

Juneteenth Day June 17th

Antique car show in
Alabama

June 20th

 ECO: Event Detection from Click-through Data via Query Clustering 341

USA Outdoor Track and
Field Championships

June 21st-
25th

Air shows New England
June 24th,

25th

Ann Arbor art fair
July 19th-

21st
58th Annual Primetime

Emmy Awards
August 27th

Albuquerque Baloon
Festival

October
6th-15th

Month events

NBA Basketball playoff
March,
April

The Shoe show series
aired on Resonance FM

March,
April,
May

American Idol
March,
April,

May

Annual walleye run in
Fremont Ohio

March,
April,
May

IRS tax filing
March,
April

Greenland ice melt by
250%

March,
April

College Student Survey
March,
April

1199 home care worker
pay increase negotiations

March,
April

Business Opportunities

Summer - restaurants,
resorts, cruises, islands etc

April,
May

Requirements-Driven Qualitative Adaptation

Vı́tor E. Silva Souza, Alexei Lapouchnian, and John Mylopoulos

Department of Inf. Engineering and Computer Science, University of Trento, Italy
{vitorsouza,lapouchnian,jm}@disi.unitn.it

Abstract. Coping with run-time uncertainty pose an ever-present threat
to the fulfillment of requirements for most software systems (embedded,
robotic, socio-technical, etc.). This is particularly true for large-scale,
cooperative information systems. Adaptation mechanisms constitute a
general solution to this problem, consisting of a feedback loop that mon-
itors the environment and compensates for deviating system behavior.
In our research, we apply a requirements engineering perspective to the
problem of designing adaptive systems, focusing on developing a qualita-
tive software-centric, feedback loop mechanism as the architecture that
operationalizes adaptivity. In this paper, we propose a framework that
provides qualitative adaptation to target systems based on information
from their requirements models. The key characteristc of this framework
is extensibility, allowing for it to cope with qualitative information about
the impact of control (input) variables on indicators (output variables)
in different levels of precision. Our proposal is evaluated with a variant
of the London Ambulance System case study.

Keywords: requirements, goal models, adaptive systems, feedback
loops, qualitative reasoning.

1 Introduction

For software systems, as for humans and organizations alike, uncertainty is a
given: at any time, the system is uncertain about all the details of its envi-
ronment, or what might happen next. To cope with it, biological and social
agents are capable of adapting their behavior and their objectives. Consistently
with this, adaptation for software systems has become a focus of much research,
addressing questions such as “How do we design adaptive systems?”, “What
runtime support is needed?”, “How do we ensure that they have desirable prop-
erties, such as stability and quick convergence to an optimal behavior?”

We are interested in developing a set of design principles for adaptive software
systems. We define adaptation as the process of the system switching from one
behavior to another in order to continue to fulfill its requirements. Thus in
adaptation, requirements remain unchanged and an adaptation strategy consists
of choosing a suitable change of behavior to restore requirements fulfillment. Our
proposed framework assumes that requirements should be at the very center of
an adaptation mechanism, determining what constitutes normal behavior, what
is to be monitored and what are possible compensations in case of deviations.

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 342–361, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Requirements-Driven Qualitative Adaptation 343

In earlier work, we have characterized a class of requirements, called Aware-
ness Requirements (AwReqs) that determine what needs to be monitored by
an adaptive system [25]. In addition, we extended goal models (which repre-
sent system requirements, as proposed in [15]) by including control-theoretic
information concerning control variables and indicators, along with qualitative
differential relations that specify the impact of the former on the latter [23].

The main objective of this paper is to “close the loop” by proposing a frame-
work within which a failure of a monitored AwReq leads to a new behavior that
consists of selecting a new variant of the system’s goal model, and/or new values
for its control variables. The proposed mechanism is inspired by control theoretic
concepts, notably the PID controller [13], recast in qualitative terms and using
goal models to define both the desired output and the space of possible behaviors
for getting it. Its key features are the use of requirements models for run-time
adaptation and being highly extensible, allowing for different adaptation algo-
rithms to be used depending on the availability and precision of information. To
validate our proposal, we have implemented our framework and simulated our
adaptation algorithms using different scenarios.

The rest of the paper is organized as follows: Section 2 summarizes our pre-
vious research, which serves as the baseline for this work; Section 3 presents the
main contribution of this paper: an extensible framework for qualitative adap-
tation called Qualia; Section 4 describes how the framework was implemented
and evaluated using simulations; Section 5 compares our approach with related
work; Section 6 discusses challenges in handling multiple concurrent failures,
introducing some of our on-going and future work; finally, Section 7 concludes.

2 System Identification for Adaptive Systems

In our previous work [23,25], we have applied a requirements engineering per-
spective to the problem of designing adaptive systems, focusing on develop-
ing a qualitative software-centric, feedback loop mechanism as the architecture
that operationalizes adaptivity. Feedback loops introduce functionality to a sys-
tem proper, providing monitoring of specified indicators and making the system
aware of its own failures (i.e., aware of when not fulfilling its mandate). In these
cases, a possible adaptation solution is to change the value of one or more system
parameters which are known to have a positive effect on the necessary indicators.

In Control Theory, quantifying the effects of control input on measured output
is a process known as system identification [13]. In some cases (e.g., a thermo-
stat), and given the necessary resources, it is possible to represent the equations
that govern the dynamic behavior of a system from first principles (e.g., quan-
titative relations between the amount of gas injected in the furnace and the
change in temperature produced by it). For most adaptive information systems,
however, such models are overly complex or even impossible to obtain. For this
reason, in [23], we have proposed a systematic system identification method for
adaptive software systems based on qualitative reasoning.

Our proposal is based on Goal-oriented Requirements Engineering (GORE),
which is founded on the premise that requirements are stakeholder goals to be

344 V.E. Silva Souza, A. Lapouchnian, and J. Mylopoulos

Fig. 1. Part of the goal model for the A-CAD system [22] after system identification

fulfilled by the system-to-be along with other actors. Goals are elicited from
stakeholders and are analyzed by asking “why” and “how” questions [6]. Such
analysis leads to goal models which are partially ordered graphs with stake-
holder requirements as roots and more refined goals lower down, following ob-
vious AND/OR Boolean semantics for goal satisfaction. Goals are refined until
they reach a level of granularity where there are tasks an actor (human or sys-
tem) can perform. On the other hand, softgoals are special types of goals that
do not have clear-cut satisfaction criteria, and thus refined to measurable quality
constraints for satisfaction. Finally, domain assumptions indicate states of the
world that we assume to be true in order for the system to work. All of these
elements are part of the ontology for requirements proposed by Jureta et al. [15].

An example of a goal model representing system requirements can be seen in
Figure 1, which shows parts of the goal model of an Adaptive Computer-aided
Ambulance Dispatch system (A-CAD), used as a running example throughout
this paper. In the figure, triangles with points of ellipsis represent goal subtrees
that are not relevant for the explanations contained herein and, thus, were re-
moved to make the diagram simpler to read. The interested reader can refer
to [22] for complete models and descriptions of the A-CAD.

Other than the aforementioned goal model elements, the diagram also shows
some of the indicators and system parameters identified for the A-CAD. In
our research, we use Awareness Requirements (AwReqs) [25] to define indicators
of requirements convergence. AwReqs represent undesirable situations to which
stakeholders would like the system to adapt, in case they happen (e.g., failure
of critical requirements). Figure 1 shows eight of the sixteen AwReqs identified
for the A-CAD, e.g., quality constraint Dispatch occurs in 3 min should never
fail (AR11), AwReq AR1 should have 90% success rate (AR2), etc.

Requirements-Driven Qualitative Adaptation 345

Although AwReqs are not performance measurements per se, they are defined
in terms of these measures (in the above examples, dispatch time and success
rate), setting targets for requirement satisfaction. Currently, our framework uses
strictly AwReqs as indicators and, therefore, in this papers the terms indicator
and AwReq will be used interchangeably. The approach presented here could,
however, be adapted to other kinds of indicators, as long as they are monitored
and the system is made aware of their failures.

Parameters can be of two flavors. Variation points consist of OR-refinements
which are already present in high variability systems (i.e., systems that offer
different means of satisfying certain goals) and merely need to be labeled. E.g.,
the value of VP2 specifies if the system should assume the Gazetteer is working
and up-to-date or if staff members should Obtain map info manually.

Control variables are abstractions over large/repetitive variation points and
are represented by black diamonds attached to the elements of the model to
which they refer. For instance, LoA represents the Level of Automation of tasks
Determine best ambulances and Inform stations/ambulances, abstracting over
the (repetitive) OR-refinements that would have to be added to them in order
to represent such variability. LoA is an example of an enumerated variable (possi-
ble values are manual, semi-automatic and automatic), whereas MST (Minimum
Search Time), NoSM (Number of Staff Members working) and NoC (Number of
Calls, which is dependent on NoSM) are instead numeric.

Having identified the indicators to monitor and the parameters that can be
tuned at runtime, we can finally model the effect changes in the latter have on
the former in a qualitative way, which is done by means of differential relations.
Considering indicator AR11 as example, the A-CAD specification contains the
following relations (and subsequent descriptions):

Δ (AR11/NoSM) [0,MaxSM] > 0 (1)

Δ (AR11/LoA) > 0 (2)

Δ (AR11/MST) [0, 180] < 0 (3)

Δ (AR11/V P2) < 0 (4)

(1) More staff members increases the chance of satisfying AR11 ;
(2) The higher the level of automation, the faster the dispatching;
(3) Increasing the minimum search time makes dispatching take longer;
(4) Obtaining maps manually contributes negatively to a fast dispatching.

As the examples above show, the syntax Δ (i/p) > 0 represents the fact that if
parameter p is increased, so is indicator i. This syntax borrows from Calculus the
concept of differential equations: if i = f(p), a positive differential f ′ > 0 means
that the greater the value of p, the greater the value of i. Negative differentials are
analogous. Note that for variation points the convention is that they “increase”
from left to right. See [23] for further details.

Moreover, equations (1) and (3) exemplify the specification of boundaries for
the specified effect, the former using a variable that represents the maximum
number of staff members the ambulance service’s facilities can hold (to be spec-
ified later), the latter using numerical boundaries directly.

346 V.E. Silva Souza, A. Lapouchnian, and J. Mylopoulos

Finally, relations referring to the same indicator can be refined to specify: (a) if
a change in one parameter has greater effect than another; and (b) if changing
more than one parameter at the same time has cumulative effect on the indicator
(which is assumed to be the default behavior). In our running example, an order
has been established among the effects that different parameters have towards
AR11, as shown in Equation (5). Absolute values are used in order to properly
compare positive and negative effects.

|Δ (AR11/V P2) | > |Δ (AR11/LoA) | >
|Δ (AR11/MST) | > |Δ (AR11/NoSM) |

(5)

In the field of Qualitative Reasoning, there is a spectrum of choices of qualitative
representation languages, each of them providing a different level of precision
(sometimes referred to as resolution) [10]. Some examples of qualitative quantity
representation languages are [10]:

– Status abstraction: represents a quantity by whether or not it is normal;
– Sign algebra: represents parameters according to the sign of their underlying

continuous parameter — positive (+), negative (−) or zero (0). It is the
weakest form of representation that supports some kind of reasoning;

– Quantity space: represents continuous values through sets of ordinal rela-
tions, providing variable precision as new points of comparison are added;

– Intervals : similar to quantity space representation, consists of a variable-
precision representation that uses comparison points but also includes more
complete information about their ordinal relationship;

– Order of magnitude: stratify values according to some notion of scale, such
as hyper-real numbers, numerical thresholds or logarithmic scales.

The proposed representation for the information elicited through system identifi-
cation allows analysts to start with a very low level of precision (e.g., Δ (I/P) >
0, similar to sign algebra) and evolve this specification when more information
becomes available (e.g., Δ (I/P) [a, b] > 0, using landmarks as boundaries of
intervals). Such evolution can happen either horizontally (more information at
the same level of precision) or vertically (increasing the precision of a specific
information, e.g., Δ (I/P) = 2, meaning I = 2×P , quantitative precision). The
framework proposed in this paper can accommodate different levels of precision,
enabling more elaborate adaptation algorithms when more precise information
is available. The process and algorithms for refining precision of differential re-
lations among indicators and control variables as the system operates remains
an open problem on our to-do list.

3 A Framework for Qualitative Adaptation

As we have just seen, system identification adds to a requirements model qual-
itative information on how changes in system parameters affect indicators that
are deemed important by the stakeholders. With this information, it is already

Requirements-Driven Qualitative Adaptation 347

possible to propose an adaptation algorithm for when AwReqs fail at runtime, for
instance: (1) find all parameters that affect the failed AwReq positively; (2) cal-
culate the one(s) with the least negative impact on other indicators; (3) return
a new system configuration changing the value of this/these parameter(s).

In this paper, we address two particular limitations of our current approach:

– There are still a few pieces of information missing regarding the requirements
for adaptation. E.g., considering the algorithm proposed in the previous
paragraph, the following questions (among others) are still unanswered: how
many parameters should be changed and by how much? When calculating
negative impact to other indicators, should priorities (e.g., [17], § 3.3) among
them be considered? What if the AwReq fails again, should the previous
adaptation attempts be taken into account when deciding a new one?

– Moreover, the adaptation algorithm exemplified above is just one of many
possible algorithms that can be used given the available qualitative infor-
mation about the system’s dynamic behavior. Among the many possible
algorithms, the choice of which to use should belong to the stakeholders and
domain experts and, thus, be part of the system requirements specification.
The adaptation framework should be able to accommodate this.

Therefore, in this paper we propose a framework to operationalize adaptation
at runtime based on this qualitative information. We call this framework Qualia
(Qualitative adaptation). When made aware of a failure in an indicator, Qualia
adapts the system by conducting eight activities, as shown in Figure 2 and
described below (the numbers below match the ones in the figure):

1. One or more parameters modeled during system identification are chosen;
2. Based on the relation of this/these parameter(s) with the failed indicator,

Qualia decides by how much it/they should be changed;
3. The chosen parameter(s) are then incremented (consider decrements as neg-

ative increments for simplicity) by the calculated value(s);
4. The framework waits for the change to produce any effect on the indicator;
5. Qualia evaluates the indicator again after the waiting time;
6. In each cycle, Qualia may learn from the outcome of this change, possibly

evolving the adaptation mechanism and updating the model;
7. Finally, it decides whether the current indicator evaluation is satisfactory

and either concludes the process or starts over;
8. If it decides to start over, it reassesses the way adaptation was conducted in

the previous cycles, possibly adapting itself for the following cycle.

To accommodate the different levels of precision, we propose an extensible frame-
work by defining an interface for each activity in the process of Figure 2 and
providing default implementations that assume only the minimum amount of
information is available. Then, we allow designers to create and plug-in new
procedures into Qualia, possibly requiring more information about the system
in order to be applicable. We use the term adaptation algorithm to refer to
the set of procedures chosen to support the adaptation process. In the require-
ments specification, analysts should indicate which adaptation algorithms to use
in response to each indicator failure.

348 V.E. Silva Souza, A. Lapouchnian, and J. Mylopoulos

Fig. 2. The adaptation process followed by the Qualia framework

In the following sub-sections, we present three adaptation algorithms : the
Default Algorithm (§ 3.1), the Oscillation Algorithm (§ 3.2) and the PID-based
Algorithm (§ 3.3). To illustrate how Qualia can accommodate different levels
of precision, we also propose different procedures (§ 3.4) for the first step of its
process (Parameter Choice). An important remark here is that we do not make
any claim on which adaptation algorithm is better suited for any particular
context, but instead we just illustrate how this framework can be extended as
needed. The choice of algorithm to use is the responsibility of the analysts.

3.1 The Default Algorithm

As mentioned earlier, when adapting the system, Qualia executes the algorithm
that has been associated with the failure at hand by stakeholders or domain ex-
perts. When a particular algorithm is not specified, Qualia executes the Default
Algorithm, which requires minimum information from the requirements models:

– Indicators: Qualia has to be notified of indicator failure, hence the model
should specify what are the relevant indicators in a way such that another
component of the feedback loop is able to monitor them. For this purpose,
we use AwReqs (cf. Section 2) and its monitoring infrastructure [25];

– Parameters: to adapt to an indicator failure, there should be at least one
related parameter. Section 2 also described how this information is specified
through differential equations;

– Unit of increment: each numeric parameter must specify its unit of incre-
ment, because Qualia will not be able to guess it.

The unit of increment is important for the comparison among indicator/parame-
ter relations. E.g., the comparison |Δ (AR11/MST) | > |Δ (AR11/NoSM) | pre-
sented earlier as part of Equation (5), should be complemented by UNoSM = 1
and UMST = 10 seconds, meaning that changing MST by 10s improves AR11
more than changing NoSM by 1 staff member. Moreover, enumerated parameters
must be ordered (cf. [23]) and their unit of increment defaults to choosing the
next value in the order.

The Default Algorithm is composed of eight default procedures, one for each
activity of the process depicted earlier in Figure 2 (again, the numbers below
match the numbers in the figure):

Requirements-Driven Qualitative Adaptation 349

1. Random Parameter Choice: picks one parameter randomly from the set of
parameters related to the failed indicator, considering those which can still
be incremented by at least one unit (i.e., are within their boundaries).

2. Simple Value Calculation: decides the increment value for the chosen param-
eter, by multiplying the value of the parameter’s unit of increment U by the
indicator’s increment coefficient K, returning the value V = K × U .

The increment coefficient is an optional parameter (with default
value K = 1) that can be associated to each indicator in the spec-
ification to determine how critical it is to adapt to their failures.
Higher values of K will produce more significant changes, but the
requirements engineer should be aware of the risks of overshooting.
Note also that parameters should never exceed their boundaries.

3. Simple Parameter Change: changes the chosen parameter by the calculated
value, at the class level.

The class/instance terminology is inherited from our previous work [25]:
changes at the class level will affect the system “from now on”,
whereas changes at the instance level only affect the current execu-
tion of the system.

4. Simple Waiting: waits until the next time the indicator is evaluated by the
monitoring component of the feedback loop.

5. Boolean Indicator Evaluation: verifies if, after executing the first four steps
of the process, the next time the indicator succeeded.

6. No Learning: in the Default Algorithm, learning is skipped.
7. Simple Resolution Check : stops the process if the outcome of the indicator

evaluation (step 5) was positive, otherwise it iterates.
8. No Algorithm Reassessment : the Default Algorithm does not reassess or

adapts itself, but always executes the same procedures in every iteration.

Let us illustrate the above algorithm using the A-CAD. Imagine that for a given
emergency call received, an ambulance was not dispatched within three min-
utes, breaking indicator (AwReq) AR11 (quality constraint Dispatching occurs
in 3 min should never fail). Available parameters to improve this indicator are
NoSM, LoA, MST and VP2 (assuming all are within boundaries). For this example,
consider that the Random Parameter Choice procedure chose MST.

Imagine further that the specification says that KAR11 = 2 and we know that
UMST = 10s and, moreover, Equation (3) says that MST contributes negatively
to AR11. Therefore, the Simple Value Calculation procedure decides to decrease
MST by V = 2× 10s = 20s and, as a consequence, the Simple Parameter Change
procedure does so at the class level, i.e., for all dispatches following the one that
did not satisfy AR11, until further notice.

Since AR11 is evaluated at every dispatch, the next dispatch will resume
the process (Simple Waiting procedure) and the Boolean Indicator Evaluation
procedure will check if, after MST was reduced by 20s, the next dispatch took less
than 3 minutes to complete. If the 20s reduction was effective, then the Simple
Resolution Check procedure will stop the process; otherwise it will repeat the
same procedures as above.

350 V.E. Silva Souza, A. Lapouchnian, and J. Mylopoulos

Fig. 3. A scenario of use of the Oscillation Algorithm in the A-CAD

As mentioned earlier, the requirements engineer should include in the require-
ments specification which algorithm — i.e., which set of procedures — should
be used for each system failure. The Default Adaptation Algorithm can be rep-
resented by the empty set ∅, meaning that all the default procedures described
above will be used. Other algorithms, as will be described next, are represented
by naming the non-default procedures that compose them: the specified pro-
cedures replace their default counterparts (the one with the same interface),
keeping the default ones that have not been replaced.

3.2 The Oscillation Algorithm

One of the desired characteristics of control systems is to avoid overshooting its
control inputs. For instance, if an ambulance dispatch takes 3min10s, we decide
to reduce MST from 60s to 0s and the next dispatch takes only 2min10s, we have
overshot MST’s decrement by 50s. Granted, this overshoot could be corrected
whenever some other indicator (e.g., AR16, which controls if unnecessary ambu-
lances are sent to incident sites) fails and MST is chosen to be incremented. Still,
a good adaptation algorithm tries to avoid overshooting in the first place and,
in what follows, we present one such algorithm.

The Oscillation Algorithm works as depicted in Figure 3: back to the AR11 /
MST scenario, imagine that given the current circumstances, the optimal1 value
for MST is 45s. The controller obviously does not know it, so when AR11 fails,
it decreases MST to 40s, which actually solves the problem. However, instead of
stopping here, the algorithm assumes to have overshot the change, and thus
starts incrementing the same parameter in the opposite direction, using half of
the previous increment value. When MST is set to 50s, AR11 fails again,
which makes the controller switch increment direction and halve the increment
value one more time. This process goes on until one of the following conditions:

– The parameter is incremented to a value that it has already assumed before,
which means that we should be very close to the optimal value. E.g., if we

1 Here, we consider “optimal” the smallest change that fixes the problem, because we
assume every adaptation brings negative side effects to other indicators. If this is not
the case, one could just set the parameter to its maximum (minimum) value from
the start and no adaptation is necessary.

Requirements-Driven Qualitative Adaptation 351

continue the oscillations shown in Figure 3, MST will assume values 47s, 46s,
45s and then stop;

– The algorithm has already performed the maximum number of oscillations,
which is an optional attribute that can be assigned to a specific AwReq or to
the entire goal model. Here, we consider each inversion of increment direction
to be an oscillation (three, in the figure);

– The increment value is halved to an amount that is lower than the minimum
change value of the parameter at hand (optional). For instance, Figure 3
represents the case in which this value is 5s. Note that, for integer variables
such as MST, 1 is the lowest possible value.

In order to tune this algorithm, the framework also allows for the specification
of parameters’ halving factors different from the default value of 0.5. When
oscillating, the increment value will be multiplied by the specified factor. The
table below summarizes the Oscillation Algorithm:

Oscillation Algorithm

Specification {Oscillation Parameter Choice, Oscillation Value Calculation, Os-
cillation Resolution Check}

Properties – Maximum number of oscillations (optional);
– Minimum change value (optional);
– Halving factors (default = 0.5).

The Oscillation Resolution Check procedure assumes to have overshot when
the problem is fixed and begins the oscillations, whereas the Oscillation Value
Calculation procedure is responsible for determining when the value should be
increased or decreased and when it should be halved. The Oscillation Parameter
Choice procedure replaces the default, random one by choosing the parameter
randomly at first, but then maintaining the choice until the end of the oscilla-
tions. Later, in Section 3.4, other parameter choice procedures will be illustrated,
some of which could also be used here.

3.3 The PID-Based Algorithm

As mentioned in Section 1, our framework’s controller is inspired by control-
theoretic concepts, notably the Proportional-Integral-Differential (PID) controller.
This controller is widely used in the process control industry and provides an
efficient algorithm (described in most books on Control Theory, e.g., [13], Chap-
ter 9) to keep a single output of the target system as close as possible to the
specified, single reference input.

The question that arises then is the following: given its proven efficacy, would
it be possible to use the actual PID algorithm in our models? First, since the PID
algorithm works with single input/single output (SISO) and information systems
usually have multiple inputs/multiple outputs (MIMO), this algorithm would
work well only when the analyst can identify, for a given indicator, one single
parameter whose changes have a significant effect in the indicator’s outcome.
Moreover, since this algorithm requires a numeric value for the control error

352 V.E. Silva Souza, A. Lapouchnian, and J. Mylopoulos

and AwReqs (our indicators) are somewhat of a Boolean nature (success =
true|false), we need a way to extract a numeric value from them.

As detailed in [25], AwReqs can be divided in three categories: Delta AwReqs
impose constraints over properties of the domain (e.g., “number of ambulances
at the incident should not be greater than the number specified”), Aggregate
AwReqs determine requirements’ success rates (“75% of the ambulances should
arrive within 8 minutes”), and Trend AwReqs impose constraints over aggre-
gated success rates over time (“success rate of Get good feedback should not
decrease two weeks in a row”). Qualia will extract numeric control errors from
these types of AwReqs as follows:

– Delta AwReqs : if the property is numeric, calculate the difference between
desired and monitored values. In the above example, they are the specified
number and the actual number of ambulances at the incident;

– Aggregate AwReqs : calculate the difference between the desired and actual
success rates. Note that AwReqs of the form “R should never fail” can be
translated into “R should have 100% success rate”;

– Trend AwReqs : calculate the difference between the last two measured suc-
cess rates. In the above example, if the rate decreases in 7% in the first week
and then again by 4% in the second, the control error is 4%.

If the AwReq in question follows one of these patterns, the PID Algorithm can
be used. As the table below indicates, the algorithm affects Qualia’s procedures
for value calculation, indicator evaluation and resolution check.

PID-based Algorithm

Specification {PID Value Calculation, PID Indicator Evaluation, PID Resolution
Check}

Properties None.

3.4 Other Procedures

In the beginning of Section 3, we have stated that Qualia supports different levels
of precision by allowing for new procedures to be implemented and plugged
in to the framework for each of the eight activities in its adaptation process
(Figure 2). To illustrate how our proposed framework can be extended, we focus
here on the Parameter Choice activity and describe new procedures that execute
it differently from the default one, especially in the presence of more precise
information in the specification:

– Shuffle Parameter Choice: with the same amount of information used by
the Random Parameter Choice procedure, this procedure randomly puts
the system parameters in order during the first cycle and picks the next one
using this pre-defined sequence when switching parameters is required.

Requirements-Driven Qualitative Adaptation 353

A new property — repeat policy — determines when the parameter
choice procedure should repeat the last used value or switch to a
different one. Its default value is repeat while incrementable, but it
can be set to repeat M times, where M is also configurable.

– Ordered Effect Parameter Choice: if differential relations regarding the indi-
cator in question have been refined to provide comparison of their effect (as
explained in Section 2), this procedure orders the parameters according to
their effect on the indicator and uses them in this order.

Other than the repeat policy property, an order property is also rel-
evant to this procedure, specifying if relations should be placed in
ascending or descending order of effect (depending if stakeholders
would like to start with the parameters that have the greatest or
the smallest effect on the indicator). Moreover, if the set of relations
concerning an indicator is only partially ordered, the remaining pa-
rameters property specifies if the non-ordered relations should be
excluded from the list or shuffled at the end of it.

– Ordered Side Effect Parameter Choice: in case priorities among indicators
are given (using, e.g., [17]), this procedure orders the parameters according to
the priority of the indicators to which the parameter change would contribute
negatively. It is particularly suitable for lower-priority indicators that can,
in general, be sacrificed to maintain high-priority ones.

The side effect calculation property specifies if the average of the
priorities of the indicators that suffer side effects should be calculated
or if only the highest priority should be considered. The remaining
parameters and order properties are also relevant here.

– Ordered Maturation Time Parameter Choice: domain experts can specify
an optional attribute to differential relations called maturation time, which
indicates how long it takes for the changes in the related parameter to take
effect in the related indicator. Take, for instance, the scenario described in
Section 3.1, and say Qualia has chosen NoSM instead of MST to adapt for the
failure in AR11. Hiring and training a new staff takes a few days and, thus,
the framework should wait for this specified time before continuing. Hence,
this procedure will order the relations by their maturation times. As with
the other ordered parameter choice procedures, the order parameter is also
relevant here. Notice that relations’ maturation time attribute also affects
the Default Waiting procedure, illustrated earlier.

Finally, all of the procedures presented above can be further customized by
the number of parameters property, which defaults to 1, but can be set to any
positive integer, or even all parameters, mimicking the behavior of a multiple
input, single output (MISO) control system. As demonstrated throughout this
section, our proposed framework can be extended as needed by requirements
engineers, depending on stakeholder requirements.

354 V.E. Silva Souza, A. Lapouchnian, and J. Mylopoulos

Fig. 4. Overview of the Zanshin framework and the addition of Qualia

4 Implementation and Evaluation

To evaluate Qualia, the framework described in Section 3, we have implemented
it as a component of the Zanshin framework. Proposed in [24] (and available at
http://github.com/vitorsouza/Zanshin), Zanshin applies an Event-Condi-
tion-Action (ECA)-based process to adapt to AwReq failures by effecting changes
in other requirements in the model. Figure 4 shows an overview of the framework,
highlighting with thicker borders the components added by this paper.

The monitoring infrastructure of our previous work [25] has been used to
identify AwReq (indicator) failures from the log entries of the instrumented target
system. The Monitoring Service will then notify Zanshin’s Adaptation Service
about AwReq state changes (e.g., AR11 has succeeded, AR11 has failed, etc.). In
some cases, based on the system requirements, this component might conclude
that reconfiguration should be used, and asks the Reconfiguration Service for
one of its registered reconfiguration strategies. Qualia is registered as a strategy,
but Zanshin allows for other reconfiguration frameworks to be plugged-in (e.g.,
some existing frameworks are described as related work in Section 5). After the
selected reconfiguration strategy produces a new configuration, the Adaptation
Service sends it to the target system through a callback API.

The framework was implemented as a set of OSGi bundles and its require-
ments meta-models were specified using the Eclipse Modeling Framework (EMF),
as shown in Figure 5. Because of space constraints, the meta-model for require-
ments specifications in Zanshin will not be reported here, but the reader can
refer to [24] for its description. Figure 5 shows four elements from A-CAD’s goal
model, which were depicted earlier in Figure 1: root goal Generate optimized
dispatching instructions, softgoal Fast dispatching, its quality constraint (QC)
Dispatching occurs in 3 min and AwReq AR11, which targets that QC.

In the <strategies> tag, we can see that Qualia has been selected as recon-
figuration strategy for failures of AR11. Further below, the <configuration> tag
specifies parameter MST as a numeric control variable (ncv), with UMST set to
10 and initial value 60. Finally, the <relations> tag represents the differential
relation shown back in Equation (3): Δ (AR11/MST) [0, 180] < 0.

Based on experimental evaluation methods of Design Science [14], we devel-
oped simulations to mimic the behavior of the A-CAD in different possible run-
time scenarios, in order to evaluate the framework’s response to system failures.

http://github.com/vitorsouza/Zanshin

Requirements-Driven Qualitative Adaptation 355

� �

<?xml version ="1.0" encoding ="UTF -8"?>
<acad:AcadGoalModel ...>
<rootGoal xsi:type ="acad:G_GenDispatch">
...
<children xsi:type ="acad:S_FastDispatch"/> <!--7-->
...
<children xsi:type ="acad:Q_Dispatch" softgoal ="//@rootGoal/@children.7"/>

<!--12 -->
...
<children xsi:type ="acad:AR11" target="// @rootGoal/@children.12"

incrementCoefficient="2">
<condition xsi:type ="model:ReconfigurationResolutionCondition"/>
<strategies xsi:type ="model:ReconfigurationStrategy" algorithmId="qualia

">
<condition xsi:type ="model:ReconfigurationApplicabilityCondition"/>

</strategies>
</children > <!--26 -->

</rootGoal >
<configuration>
<parameters xsi:type ="acad:CV_MST" type="ncv" unit="10" value="60" metric

="integer "/>
</configuration>
<relations indicator="// @rootGoal/@children.26" parameter="//

@configuration/@parameters.0" lowerBound="0" upperBound="180"
operator ="ft" />

</acad:AcadGoalModel>
� �

Fig. 5. Part of the A-CAD requirements specified as an EMF model

The simulations send logging messages to the Monitoring Service, equivalent to
the ones that would have been sent by a real system, indicating a failure. For
instance, one of the implemented simulations produces log entries that indicate
that Dispatching occurs in 3 min was not satisfied, which triggers a failure of
AR11. Based on the EMF model of Figure 5, Zanshin activates Qualia, which
executes its Default Algorithm, described and illustrated in Section 3.1.

The result of this particular simulation is shown in Figure 6. In this output,
S represents the simulation (i.e., the target system), Z is Zanshin and Q is for
Qualia. Figure 5 shows that Qualia selected MST and reduced its value to 40s,
but another failure in AR11 followed, and therefore the parameter was again
reduced to 20s, which solved the problem.

Another simulation uses a randomly generated goal model with different num-
ber of parameters (from 100 to 1000, scaling up by 100 elements each time), all of
them related to a failing AwReq. Zanshin andQualia were timed in ten sequential
executions of this simulation and average times for each number of parameters,
as shown in Table 1, indicate linear scalability. In effect, by analyzing Qualia’s
default algorithm, one can conclude that its complexity is O(N × R), where N
is the number of parameters to choose and R is the number of differential rela-
tions in the model. With proper data structures, however, this complexity can
be further reduced. In [24], we showed that Zanshin also scales linearly to goal
models of increasing number of elements.

Qualia and Zanshin are part of a broader research proposal for the design of
adaptive systems using a control theoretic perspective founded on requirements.
Further evaluation efforts are in our future research plans, including experiments
with actual running systems, user surveys to evaluate our methods and modeling
language, then finally full-fledged case studies with partners in industry.

356 V.E. Silva Souza, A. Lapouchnian, and J. Mylopoulos

� �

S: A dispatch took more than 3 minutes !
Z: State change: AR11 (ref. Q_Dispatch) -> failed
Z: (S1) Created new session for AR11
Z: (S1) Selected strategy: ReconfigurationStrategy
Z: (S1) Exec. ReconfigurationStrategy(qualia; class)
Q: Parameters chosen: [CV_MST]
Q: To inc/decrement in the chosen parameters: [20]
S: Instruction received: apply -config ()
S: Parameter CV_MST should be set to 40
Z: (S1) The problem has not yet been solved ...
--
S: A dispatch took more than 3 minutes !
Z: State change: AR11 (ref. Q_Dispatch) -> failed
Z: (S1) ...
Q: Parameters chosen: [CV_MST]
Q: To inc/decrement in the chosen parameters: [20]
S: Instruction received: apply -config ()
S: Parameter CV_MST should be set to 20
--
S: A dispatch took less than 3 minutes .
Z: State change: AR11 (ref. Q_Dispatch) -> succeeded
Z: (S1) Problem solved. Session will be terminated.
� �

Fig. 6. Result of the A-CAD simulation in which AR11 fails

Table 1. Average time (in milliseconds) for executions of Qualia and Zanshin

Elements Qualia Zanshin

100 40.4 1, 187.5

200 1, 064.4 4, 416.3

300 2, 098.5 10, 122.3

400 3, 132.2 11, 851.1

500 4, 164.8 13, 097.7

Elements Qualia Zanshin

600 5, 212.6 14, 323.4

700 6, 244.4 15, 568.3

800 7, 283.3 18, 811.1

900 8, 314.6 20, 621.6

1000 9, 169.0 26, 135.4

5 Related Work

In the field of requirements-driven adaptation two well-known proposals are the
RELAX framework [27] and FLAGS [1], the former based on structured natural
language whereas the latter uses goal models. Both of them use fuzzy logic in or-
der to transform “crisp” (invariant) requirements into “relaxed” ones in order to
capture uncertainty. Additionally, in FLAGS, adaptive goals define countermea-
sures to be executed when goals are not attained, using ECA rules. The GAAM
approach [21] models quantifiable properties of the system as attributes, while
specifying the order of preference of adaptation actions towards goals in a pref-
erence matrix, and the desired levels of attributes of each goal in an aspiration
level matrix.

Several approaches in the literature propose adaptation through reconfigura-
tion, i.e., switching the system’s behavior by finding a new configuration for its
parameters. Wang & Mylopoulos [26] propose algorithms that suggest a new
configuration without components that have been diagnosed as responsible for
a failure; Nakagawa et al. [19] developed a compiler that generates architectural
configurations by performing conflict analysis on goal models; Fu et al. [11] use
reconfiguration to repair systems based on an elaborate state-machine diagram

Requirements-Driven Qualitative Adaptation 357

that represents the life-cycle of goal instances at runtime; Peng et al. [20] assign
preference rankings to softgoals and determine the best configuration using a
SAT solver; Khan et al. [16] apply Case-Based Reasoning to find the best con-
figuration; Dalpiaz et al. [5] propose an algorithm that finds all valid variants to
satisfy a goal and compares them based on their compensation/cancelation cost
and benefit (e.g., contribution to softgoals).

Like us, Filieri et al. [8] have also applied control theory to the problem of de-
signing adaptive systems with a requirements perspective, focusing on adapting
to failures in reliability and modeling requirements using Discrete Time Markov
Chains (DTMCs). There, transitions are labeled with control variables, whose
values can be set by a controller that decides the system’s settings in order to
keep satisfying the requirements. Well established control theoretic tools are used
to design such controller and the authors claim the approach can be extended to
deal with failures of different nature. An extension [9] proposes a more efficient
solution for dynamic binding of components and an auto-tuning procedure.

Our work is also related to design-time trade-off approaches, considering that
they could be tailored for the type of reasoning needed for run-time adaptation.
For instance, Heaven & Letier [12] use stochastic simulation in order to generate
quality values which are used to compute objective functions over a goal model,
simulating design decisions in order to compare and optimize them.

Compared to the above approaches, the novelty in our proposal is the use of
qualitative information about requirements, allowing analysts to start with the
minimum information at hand and add more as further details about the system
become available. In many cases, quantitative approaches might be difficult or
even impossible to apply accurately and reliably due to the relativity of numer-
ical values, incorrect mathematical judgment, non-linearity of value functions,
etc. [7]. Furthermore, we advocate for expressive, but simple requirements mod-
els, believing that heavy formalisms such as linear temporal logic, fuzzy logic
and DTMCs can, in some cases, place unnecessary burden on developers.

Qualitative reasoning has also been used by others to analyze system re-
quirements in a similar fashion to what we propose. Menzies & Richardson [18]
propose a matrix that depicts the contribution of process actions to interest-
ing indicators (positive, negative, unknown or none) and use stochastic simu-
lation to analyze this matrix and decide the best choice of actions, consider-
ing stakeholder-assigned utility values for each indicator. The proposed matrix
conveys the same kind of information as our differential equations, albeit our
models have considerably more expressive power. Elahi & Yu [7] also focus on
requirements trade-offs at design-time, making pair-wise comparison of alterna-
tives with respect to goals that were selected as indicators. We propose a more
concise and expressive means to represent such comparisons, namely differential
equations. Furthermore, both approaches focus on design-time decisions whereas
our proposal targets run-time adaptation.

Finally, the use of control-theoretic concepts in our research (advocated by
recent survey/roadmap papers such as [3,4]) comes from the fact that, in order
to be adaptive, systems need to implement some kind of monitor-adapt feedback

358 V.E. Silva Souza, A. Lapouchnian, and J. Mylopoulos

loop. Given our Requirements Engineering perspective, our approach makes ex-
plicit in the models both requirements for monitoring (indicators/AwReqs) and
adaptation (the chosen adaptation algorithms), allowing developers to design
adaptive systems all the way from requirements to implementation.

6 Discussion and Future Work

The models proposed in this approach are a first step towards a comprehensive
method for the specification of adaptation requirements based on GORE and
qualitative reasoning techniques. Moreover, the Qualia framework offers a pro-
totype for the operationalization of such requirements at runtime, alleviating
developers of most of the effort of implementing the features of a feedback loop.
Nonetheless, there is still a lot of work to be done, especially if we intend to
apply this research in practice, on real software development projects.

One assumption that might threaten the applicability of our proposal in
more complex systems is that of variable independence. Our proposed language
(cf. § 2) represents how changes in single parameters affect single indicators,
whereas in complex, adaptive systems, parameters (or indicators) cannot be
assumed to be independent of one another. Nonetheless, this simplification is
not accidental. State-of-the-art methods for modeling and controlling multiple
inputs/multiple outputs (MIMO) control systems — such as state/output feed-
back and Linear Quadratic Regulator (see [28], § 3.4) — can be very complex
and many software projects may not dispose of the necessary (human/time) re-
sources to produce models with such degree of formality. As mentioned in the
previous section, our approach is intended to be less heavy-handed in the for-
malism, while at the same time allowing analysts to model the requirements for
the system’s adaptation based on a feedback loop architecture.

Another considerable limitation of our current approach is the fact that its
adaptation process responds to failures of single indicators (AwReqs) and does
not consider the scenario in which multiple indicators fail concurrently and one
failed indicator’s adaptation might have an influence in another’s. Procedures
like Ordered Side Effect Parameter Choice, together with the specification of in-
dicators’ priorities (e.g., [17]), can help in avoiding undesirable situations such as
focusing on less-critical failures or even deadlocks, but more direct consideration
of concurrent failures is necessary to guarantee some level of consistency.

Therefore, we are currently working on extending Qualia by including a prior-
ity queue that would make the framework deal with more important failures first
(in case, e.g., large maturation times create long-running adaptation cycles); the
introduction of locks (as in database transaction processing) that would prevent
certain parameters form being changed because they affect indicators that have
been locked; and the ability of dealing with multiple failures in a single adapta-
tion loop. The latter would require new procedure implementations, especially
for the activities of Parameter Choice (e.g., choose parameters that do not have
negative effects on all failed indicators), Value Calculation (e.g., considering mul-
tiple increment coefficients), Waiting (e.g., consider the maturation time of all
failed indicators) and, obviously, Indicator Evaluation.

Requirements-Driven Qualitative Adaptation 359

On the methodology side, improvements such as the ellaboration of a graphical
representation in the goal model might make the adaptation specifications easier
to read; pre-defined policies can abstract the choice of adaptation algorithm and
its many attribute values in mnemonics such as “aggressive”, “conservative”,
etc.; moreover, a CASE tool would also greatly help analysts in following our
proposed approach.

Finally, more experiments, especially with real systems, would help us exam-
ine the kinds of adaptation scenarios that are possible and, thus, propose sensible
implementations for the Algorithm Reassessment and Learning activities, which
have received little attention so far. These would involve a repository of past ex-
periences, which would record failures, what was done to adapt and the outcome
of the adaptation. Then, on-line or off-line learning procedures could query this
repository in order to evolve the specification in general.

7 Conclusions

In this paper, we have proposed a framework within which a failure of require-
ments leads to a new behavior obtained by selecting a new variant of the system’s
goal model, and/or new values for its control variables. The proposed controller
is inspired by control theoretic concepts, notably the PID controller, recast in
qualitative terms and using goal models to define the desired output and the
space of possible behaviors for obtaining it. To validate our work, we have im-
plemented our framework and simulated its algorithms using different scenarios.

Our proposal is founded on the thesis that requirements should be at the
very center of any adaptation mechanism, determining what constitutes normal
behavior, what is to be monitored and what are possible compensations in cases
of deviations. Following Berry et al.’s envelope of adaptability [2], systems are
only able to adapt to “the extent to which the adaptation analyst can anticipate
the domain changes to be detected and the adaptations to be performed”.

Moreover, by separating the standard, “normal behavior” from the require-
ments for monitoring and adaptation, our approach provides abstractions that
can facilitate modeling and communication of requirements for systems that are
supposed to have several adaptation capabilities. As with any abstraction in
Software Engineer, our proposals should be applied when the benefits of having
these concepts in the models outweigh the cost of using the approach.

As the discussions illustrated earlier, the work presented here is the first step
towards a full qualitative adaptation framework that can operationalize most
stakeholder requirements for adaptation using a generic feedback loop.

Acknowledgments. We are grateful to our Trento colleagues for their feedback
to this work, which has been supported by the ERC advanced grant 267856
“Lucretius: Foundations for Software Evolution” (unfolding during the period of
April 2011 – March 2016) — http://www.lucretius.eu.

http://www.lucretius.eu

360 V.E. Silva Souza, A. Lapouchnian, and J. Mylopoulos

References

1. Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy Goals for Requirements-driven Adap-
tation. In: Proc. of the 18th IEEE International Requirements Engineering Con-
ference, pp. 125–134. IEEE (2010)

2. Berry, D.M., Cheng, B.H.C., Zhang, J.: The Four Levels of Requirements Engi-
neering for and in Dynamic Adaptive Systems. In: Proc. of the 11th International
Workshop on Requirements Engineering: Foundation for Software Quality, pp. 95–
100 (2005)

3. Brun, Y., Di Marzo Serugendo, G., Gacek, C., Giese, H., Kienle, H., Litoiu, M.,
Müller, H., Pezzè, M., Shaw, M.: Engineering Self-Adaptive Systems through Feed-
back Loops. In: Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J.
(eds.) Software Engineering for Self-Adaptive Systems. LNCS, vol. 5525, pp. 48–70.
Springer, Heidelberg (2009)

4. Cheng, B.H.C., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J.,
Becker, B., Bencomo, N., Brun, Y., Cukic, B., Di Marzo Serugendo, G., Dustdar,
S., Finkelstein, A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H.M.,
Kramer, J., Litoiu, M., Malek, S., Mirandola, R., Müller, H.A., Park, S., Shaw,
M., Tichy, M., Tivoli, M., Weyns, D., Whittle, J.: Software Engineering for Self-
Adaptive Systems: A Research Roadmap. In: Cheng, B.H.C., de Lemos, R., Giese,
H., Inverardi, P., Magee, J. (eds.) Software Engineering for Self-Adaptive Systems.
LNCS, vol. 5525, pp. 1–26. Springer, Heidelberg (2009)

5. Dalpiaz, F., Giorgini, P., Mylopoulos, J.: Adaptive socio-technical systems: a
requirements-based approach. In: Requirements Engineering, pp. 1–24 (2012)

6. Dardenne, A., van Lamsweerde, A., Fickas, S.: Goal-directed Requirements Acqui-
sition. Science of Computer Programming 20(1-2), 3–50 (1993)

7. Elahi, G., Yu, E.S.K.: Requirements Trade-offs Analysis in the Absence of Quan-
titative Measures: A Heuristic Method. In: Proc. of the 2011 ACM Symposium on
Applied Computing, pp. 651–658. ACM (2011)

8. Filieri, A., Ghezzi, C., Leva, A., Maggio, M.: Self-Adaptive Software Meets Con-
trol Theory: A Preliminary Approach Supporting Reliability Requirements. In:
Proc. of the 26th IEEE/ACM International Conference on Automated Software
Engineering, pp. 283–292. IEEE (2011)

9. Filieri, A., Ghezzi, C., Leva, A., Maggio, M.: Reliability-driven dynamic binding
via feedback control. In: Private Communication (2012)

10. Forbus, K.D.: Qualitative Reasoning. In: Computer Science Handbook, 2nd edn.,
ch. 62. Chapman and Hall/CRC (2004)

11. Fu, L., Peng, X., Yu, Y., Zhao, W.: Stateful Requirements Monitoring for Self-
Repairing of Software Systems. Tech. rep., FDSE-TR201101, Fudan University,
China (2010), http://www.se.fudan.sh.cn/paper/techreport/1.pdf

12. Heaven, W., Letier, E.: Simulating and Optimising Design Decisions in Quantita-
tive Goal Models. In: Proc. of the 19th IEEE International Requirements Engi-
neering Conference, pp. 79–88. IEEE (2011)

13. Hellerstein, J.L., Diao, Y., Parekh, S., Tilbury, D.M.: Feedback Control of Com-
puting Systems, 1st edn. Wiley (2004)

14. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design Science in Information Sys-
tems Research. MIS Quarterly 28(1), 75–105 (2004)

15. Jureta, I., Mylopoulos, J., Faulkner, S.: Revisiting the Core Ontology and Problem
in Requirements Engineering. In: Proc. of the 16th IEEE International Require-
ments Engineering Conference, pp. 71–80. IEEE (2008)

http://www.se.fudan.sh.cn/paper/techreport/1.pdf

Requirements-Driven Qualitative Adaptation 361

16. Khan, M.J., Awais, M.M., Shamail, S.: Enabling Self-Configuration in Autonomic
Systems using Case-Based Reasoning with Improved Efficiency. In: Proc. of the 4th
International Conference on Autonomic and Autonomous Systems, pp. 112–117.
IEEE (2008)

17. Liaskos, S., McIlraith, S., Sohrabi, S., Mylopoulos, J.: Representing and reasoning
about preferences in requirements engineering. Requirements Engineering 16(3),
227–249 (2011)

18. Menzies, T., Richardson, J.: Qualitative Modeling for Requirements Engineering.
In: Proc. of the 30th Annual IEEE/NASA Software Engineering Workshop, pp.
11–20. IEEE (2006)

19. Nakagawa, H., Ohsuga, A., Honiden, S.: gocc: A Configuration Compiler for Self-
adaptive Systems Using Goal-oriented Requirements Description. In: Proc. of the
6th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, pp. 40–49. ACM (2011)

20. Peng, X., Chen, B., Yu, Y., Zhao, W.: Self-Tuning of Software Systems through
Goal-based Feedback Loop Control. In: Proc. of the 18th IEEE International Re-
quirements Engineering Conference, pp. 104–107. IEEE (2010)

21. Salehie, M., Tahvildari, L.: Towards a Goal-Driven Approach to Action Selection in
Self-Adaptive Software. Software: Practice and Experience 42(2), 211–233 (2012)

22. Silva Souza, V.E.: An Experiment on the Development of an Adaptive
System based on the LAS-CAD. Tech. rep., University of Trento (2012),
http://disi.unitn.it/~vitorsouza/a-cad/

23. Silva Souza, V.E., Lapouchnian, A., Mylopoulos, J.: System Identification for
Adaptive Software Systems: A Requirements Engineering Perspective. In: Jeusfeld,
M., Delcambre, L., Ling, T.-W. (eds.) ER 2011. LNCS, vol. 6998, pp. 346–361.
Springer, Heidelberg (2011)

24. Silva Souza, V.E., Lapouchnian, A., Mylopoulos, J.: (Requirement) Evolution Re-
quirements for Adaptive Systems. In: Proc. of the 7th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, pp. 155–164.
IEEE (2012)

25. Silva Souza, V.E., Lapouchnian, A., Robinson, W.N., Mylopoulos, J.: Awareness
Requirements for Adaptive Systems. In: Proc. of the 6th International Symposium
on Software Engineering for Adaptive and Self-Managing Systems, pp. 60–69. ACM
(2011)

26. Wang, Y., Mylopoulos, J.: Self-Repair through Reconfiguration: A Requirements
Engineering Approach. In: Proc. of the 2009 IEEE/ACM International Conference
on Automated Software Engineering, pp. 257–268. IEEE (2009)

27. Whittle, J., Sawyer, P., Bencomo, N., Cheng, B.H.C., Bruel, J.M.: RELAX: In-
corporating Uncertainty into the Specification of Self-Adaptive Systems. In: Proc.
of the 17th IEEE International Requirements Engineering Conference, pp. 79–88.
IEEE (2009)

28. Zhu, X., Uysal, M., Wang, Z., Singhal, S., Merchant, A., Padala, P., Shin, K.:
What Does Control Theory Bring to Systems Research? ACM SIGOPS Operating
Systems Review 43(1), 62 (2009)

http://disi.unitn.it/~vitorsouza/a-cad/

Analyzing Design Tradeoffs in Large-Scale

Socio-technical Systems through Simulation
of Dynamic Collaboration Patterns

Christoph Dorn1, George Edwards2, and Nenad Medvidovic3

1 Institute for Software Research, University of California, Irvine, CA 92697-3455
cdorn@uci.edu

2 Blue Cell Software, Los Angeles, CA 90069, USA
george@bluecellsoftware.com

3 Computer Science Department, University of Southern California,
Los Angeles, CA 90089, USA

neno@usc.edu

Abstract. Emerging online collaboration platforms such as Wikipedia,
Twitter, or Facebook provide the foundation for socio-technical sys-
tems where humans have become both content consumer and provider.
Existing software engineering tools and techniques support the system
engineer in designing and assessing the technical infrastructure. Little
research, however, addresses the engineer’s need for understanding the
overall socio-technical system behavior. The effect of fundamental de-
sign decisions becomes quickly unpredictable as multiple collaboration
patterns become integrated into a single system.

We propose the simulation of human and software elements at the col-
laboration level. We aim for detecting and evaluating undesirable system
behavior such as users experiencing repeated update conflicts or software
components becoming overloaded. To this end, this paper contributes (i)
a language and (ii) methodology for specifying and simulating large-scale
collaboration structures, (iii) example individual and aggregated pattern
simulations, and (iv) evaluation of the overall approach.

Keywords: Design Tools and Techniques, System Simulation, Collabo-
ration Patterns, Large-scale Socio-Technical Systems.

1 Introduction

During the last two decades, numerous web-based, large-scale collaboration ser-
vices have emerged for social networking (e.g., Facebook), collaborative tagging
(e.g., Digg), content sharing (e.g., Youtube), knowledge creation (e.g., Wikipedia),
crowdsourcing (e.g., Amazon Mechanical Turk), and source code production
(e.g., GitHub). Recent research efforts have analyzed these systems in terms
of user incentives, participation, recruitment, decision making, and information
management [18,5]. Engineered for diverse purposes, these systems differ widely
in the underlying collaboration patterns of their users [6]. For example, Amazon

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 362–379, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Analyzing Design Tradeoffs in Large-Scale Socio-technical Systems 363

Mechanical Turk follows the master/worker pattern for task outsourcing, Face-
book links people in peer-to-peer social networks, Wikipedia manages shared
artifacts for collaborative editing, and Twitter provides publish/subscribe news
distribution.

Engineers of such systems have currently little support for anticipating the
system’s overall (i.e., socio-technical) behavior in large-scale deployments, in
terms of metrics such as the timeliness and load of messages, artifact changes,
queries, and so on. For example, a system architect for a knowledge creation
platform might be interested in the number of write conflicts given particular
contributor characteristics. Similarly, a crowdsourcing platform architect needs
to consider effects of task assignment strategies on task response time. A mi-
croblogging system architect may want to estimate the event propagation speed
for a given user subscription topology.

In general, an engineer aims to avoid negative behaviors such as information
overload, decision making based on stale data, accidental information disclosure,
or performance bottlenecks. These behaviors manifest themselves both within
user collaborations and within the software itself. Subscribing to many Wiki ar-
ticles, for example, may flood the user with updates and simultaneously overload
the software that aggregates change events (information overload). On the other
hand, a code repository user who is unaware of updates submitted by other users
may encounter numerous burdensome write conflicts when submitting changes
(information scarcity). The presence of multiple, aggregated patterns within a
single system further complicates the problem, as complex interactions result in
undesirable emergent behaviors that cannot be detected by observing individ-
ual patterns in isolation. System designers thus need sophisticated analysis to
identify such undesirable behavior and the conditions that create it.

Once engineers understand the implications of particular combination of user
behavior, collaboration patterns, and system configuration, they can apply sys-
tem constraints at design-time that prevent the undesired effects completely
or devise run-time adaptation mechanisms that mitigate those effects dynami-
cally. The resulting systems are more robust and may feature more coordina-
tion and awareness mechanisms that are well-understood and governed. Without
such support, systems may be brittle or restricted in terms of the provided col-
laboration mechanisms. For example, the successful mass-collaboration systems
mentioned above apply limits for technical or collaborative reasons. 1 We are,
however, interested in the effect of design decisions beyond simple constraints.

The primary technical challenge addressed in this paper is reasoning about the
expected emergent behavior in large-scale collaborative systems prior to imple-
mentation and deployment. To this end, we propose simulating the behavior of
web-scale collaboration systems in terms of collaborator structures, their actions,
and the supporting software infrastructure. Several prior research efforts target
important but only partial aspects of this problem, and thus fall short of deliver-
ing collaboration-centric design support. Existing work on simulating workflows or

1 Facebook has an upper limit of 5000 friend connections, Twitter places an initial
follow limit of 2000, and Wikipedia enforces rate limits on write requests.

364 C. Dorn, G. Edwards, and N. Medvidovic

crowdsourcing, for example, provides valuable insights into performance-improving
algorithms [14,17,22], but addresses only a single subdomain. Simulations of soft-
ware architectures and their implementation [8,2,15] focus on the software level
rather than human interaction. Finally, in the domain of statistical mechanics,
simulation and analysis of large-scale social networks remains very abstract [11,1].
General guidelines [12] for facilitating collaboration and user participation provide
a starting point for designing large-scale systems. They, for example, recommend
enabling users to edit and share data, but are insufficient for determining the spe-
cific effects within a given collaboration environment.

The primary contribution of this paper is a principled method for analyz-
ing complex collaboration architectures through simulation. In support of this
contribution, the paper describes:

– enhancements to an existing language for modeling collaboration patterns
that enable dynamic analysis (Sec. 3),

– example models of several individual collaboration patterns as well as a
model of their composition in a single system,

– specific techniques for scoping and targeting simulations to yield the most
useful results, and

– an evaluation of the overall approach demonstrating its feasibility and use-
fulness (Sec. 4).

The following section provides a motivating scenario (Sec. 2); with related work
in Section 5 and conclusion and outlook in Section 6.

2 Motivating Scenario

Building monitoring and security requires extensive collaboration among mem-
bers of a security team. These teams range in scope from a small group that
monitors an office building to hundreds of personnel in back offices and on-site
that monitor critical, geographically distributed infrastructure. Facility monitor-
ing systems that enable large-scale, flexible collaboration are subject to diverse
coordination requirements. In this paper, we will illustrate key concepts based
on such an example system composing collaboration patterns found in Twitter,
Wikipedia, and Amazon Mechanical Turk.

Consider a large-scale facility monitoring system (Fig. 1) involving several
different user roles: sensors, field agents, back-office agents, back-office analysts,
and team leaders. Sensors may be hardware and software components or people
with “eyes on the ground.” Field agents are located on site and directly monitor
data from sensors. Field agents are organized into teams assigned to a specific
building, floor, or area. Field agents may send alerts of suspicious activity to
back-office agents and flag relevant sensor data. Back-office agents investigate
suspicious behavior by aggregating information and assessing whether a threat
exists. Analysis of raw data from multiple video feeds, still images, and voice
recordings may overwhelm an assigned back-office agent and require additional
staff members on demand, in which case tasks can be assigned to a pool of back-
office analysts. The team leader is responsible for determining the appropriate

Analyzing Design Tradeoffs in Large-Scale Socio-technical Systems 365

response to an incident based on the aggregated, filtered information provided
by back-office agents.

Fig. 1. Aggregating Collaboration Patterns for Infrastructure Monitoring

Interaction among the various users and user groups in this scenario exhibits
several collaboration patterns. An engineer identifies following three potential
collaboration patterns that match the underlying coordination requirements: 1

Field agents will be provided with an interface for raising alerts and flagging
sensor feeds that may indicate suspicious behavior. Back-office agents will select
from a list of field agents from which they wish to receive alerts and flagged
sensor data. Field agents need not be aware of which or how many back-office
agents have selected to receive their alerts. Thus, information distribution will
be achieved through the publish/subscribe collaboration pattern.

2 Virtual log books will be used to record the occurrence of events and user
activities. Multiple log books may be created, each covering a different team,
time-period, or subject. Users will be able to retrieve the latest log book on
demand and make additions or modifications to it. Thus, the log books will
implement the shared artifact collaboration pattern.

3 Back-office agents who require a threat assessment will add work items to a
to-do list. Items in the to-do list will be automatically assigned to available back-
office analysts, who will review the relevant sensor data and indicate whether
a threat exists. In some cases, to minimize the potential for human error, the
same task may be assigned to multiple analysts so that their conclusions can
be compared for consistency. Thus, analysis tasks will be coordinated using the
master/worker collaboration pattern.

The system design needs to achieve a balance of providing flexible, unrestricted
collaboration mechanisms that facilitate staff members reacting to unforeseen
situations while at the same time maintaining desirable system behavior. Staff
members, for example, must not experience log book write conflicts, messages

366 C. Dorn, G. Edwards, and N. Medvidovic

and alerts need to be delivered to all interested parties but simultaneously avoid
overloading the recipient, and tasks must finish in a timely manner and yield
the required quality. The following questions highlight some specific issues the
system designer might face:

1 How many field agents can a back-office agent reliably monitor before be-
coming overloaded? Should a limit be placed on how many field agents a back-
office agent can select to monitor?

2 How should access to the log book be regulated to prevent write conflicts?
Should staff members be required to obtain a lock before performing a write? If
not, how often can we expect conflicts to occur?

3 How many users should share each log book? What happens if a large
number of users are all trying to use the same log book?

4 How should tasks from the to-do list be allocated to available back-office
analysts? First-in-first-out or some other way?

To answer all these questions, analysis of individual patterns is insufficient. The
designer needs to consider system-wide, cascading implications such as the effect
of event bursts on crowd-based situation assessment, the effect of overloaded
crowd workers on timely event analysis, and the spike of write conflicts as staff
members condense event observations into shared log books.

3 Modeling and Simulation of Collaboration Patterns

Large-scale collaboration systems heavily rely on humans as providers and con-
sumers of information. Consequently, human behavior becomes an intrinsic as-
pect of the overall system. Given the inherent unpredictability of human behavior,
static analysis techniques (e.g., [16]) are insufficient for making informed decisions
about emergent behavior in a large-scale system. Instead, we focus on dynamic
analysis in the form of system simulation.

In contrast to detailed modeling of software components, we propose simu-
lating the interplay of humans and technology. In this context, the modeling
effort focuses on collaboration patterns [6], such as master/worker, shared arti-
fact, and publish/subscribe, rather than software architectures or architectural
styles, such as SOA or 3-tier client-server [19]. Our approach treats collabora-
tion patterns as “human architectures” consisting of people (human components)
and the systems they use to facilitate collaboration (collaboration connectors).
This achieves a clear distinction between work-centric roles (components) and
coordination-centric roles (connectors), as described in our previous work [7];
emphasizes modeling of human interactions independently from the underlying
design of the collaboration system used; and facilitates the identification of loci
for system collaboration constraints.

Our process for simulating large-scale collaborations consists of three basic
steps, usually performed in multiple iterations: (i) capturing collaboration pat-
terns in an executable model, (ii) defining scenarios, assumptions, and config-
urations for individual simulation runs, and (iii) evaluating and interpreting

Analyzing Design Tradeoffs in Large-Scale Socio-technical Systems 367

simulation results. These steps are described in Section 3.2. As a precondition, a
suitable modeling language for capturing collaboration patterns must be speci-
fied. We have created such a language as an extension of the human Architecture
Description Language (hADL [7], described in Section 3.1). This extended lan-
guage is sufficiently flexible to allow engineers to model their own patterns or
compositions of patterns, or they may extend the language further with pattern-
specific elements or properties.

We used the DomainPro 2 modeling and simulation tool suite to create mod-
els of collaboration patterns that conform to the extended hADL language and
run simulations of those models. DomainPro enables engineers to create custom
simulation languages through metamodeling and supports agent-based and dis-
crete event simulation semantics. In the following sections, the model diagrams
and simulation shown were all developed in DomainPro. However, our overall
approach is generic and could be easily applied using a different simulation en-
vironment.

Fig. 2. Master/Worker pattern in hADL. Action labels represent CRUD privileges:
Create, Read, Update, Delete. Collaboration objects exhibit optional references to
related objects.

3.1 Modeling Language for Collaboration Patterns

In order to create simulation models for human collaboration, we extended an
existing language, the human Architecture Description Language (hADL) [7],
with additional features and properties to capture dynamic system behavior. As
we will show, our extended hADL language can be used to capture a variety of
individual and composite collaboration patterns.

We will briefly revisit the relevant parts of hADL as it represents the foun-
dation for our simulation approach. In hADL, a collaboration pattern consists
of two types of active entities: human components and collaboration connectors.
A model of the master/worker pattern is shown in Fig. 2. The communication
media used by components (e.g., Master, Worker) and connectors (e.g., Job As-
signment) is represented by collaboration objects, such as messages (Task, Job,
Result), streams, and artifacts (Outcome). Human actions and object actions
restrict the interaction amongst components and connectors in terms of Create,
Read, Update, and Delete manipulation capabilities. Connecting human actions
and matching object actions gives rise to a collaboration pattern.
2 http://www.bluecellsoftware.com/

368 C. Dorn, G. Edwards, and N. Medvidovic

Just as software-centric architecture description languages provide a high-level
view of the system, hADL provides a view of human components, collaboration
connectors, collaboration objects, and their wiring. However, execution of collab-
oration patterns remains outside of hADL’s scope, and hADL does not address
the interdependencies amongst multiple patterns in a complex collaboration
system.

Fig. 3. The metamodel (extended hADL language) for defining collaboration patterns.
Domain-specific extensions are highlighted in bold/blue.

Fig. 3 shows how hADL was extended to support dynamic behavior and simu-
lation. A CollabSystem consists of Collaborators, which in turn play one or more
Roles. A role may be either a Component or a Connector, thus enabling the
Collaborator to assume a component role in one pattern and a connector role in
another pattern. Each Role includes a set of CollabSteps that define the actions
performed by the role. Each CollabStep represents a logical unit of work (e.g.,
sending a message, retrieving document content, processing a set of events). Col-
labSequences define the sequence (control flow) of CollabSteps. A CollabSystem
also includes CollabObjects, the means of communication in hADL. Triggers rep-
resent events, such as such timer timeouts, that initiate collaborator responses.
Additional links (i.e., TriggerFlow, FocusOnObjConn, TriggerRefConn, and Ob-
jectRefConn) provide object references to complete the core model.

The types enumerated above contain properties (shown in italics) that can be
varied to achieve different simulation behaviors. For example, CollabSteps have
an associated duration (time needed to complete), and Roles define probabili-
ties for engaging in different optional behaviors. These types and properties can

Analyzing Design Tradeoffs in Large-Scale Socio-technical Systems 369

be further extended with pattern-specific types or properties if engineers wish
to investigate additional aspects of a pattern. Fig. 3, for example, highlights
additional Component and Connector subtypes as well as Configuration prop-
erties for the Publish/Subscribe pattern in bold/blue. Note that we excluded
extensions for the other patterns used in the scenario and evaluation for sake of
clarity.

3.2 Modeling Collaboration Patterns

To develop a model of a collaboration pattern or composition of patterns, an en-
gineer may utilize our extended hADL language or a pattern-specific variant of
it. The engineer defines the structure and behavior of the pattern(s) by instanti-
ating the appropriate components and connectors and defining their interactions.
The model usually also includes a set of data structures that encapsulate the
system’s dynamic state. Specifically, the simulation designer needs to identify:

Structure: Just as software engineering patterns [10] provide best-practises
in programming, so do collaboration patterns [6] provide reusable structures
of human components, collaboration connectors, actions, collaboration objects,
and their relationships. Note that it is infeasible to explicitly model every Col-
laborator instance in large-scale systems. Hence, CollabObjects serve not only
as carriers of information, but may also perform an addressing function (e.g.,
recording subscriptions to topics). Fig. 4 depicts the simulation model for a
topic-centric publish/subscribe CollabSystem. The model combines both pub-
lisher and subscriber Roles within a single Agent. The PubSubMW Collaborator
assumes the role of a collaboration connector for event delivery. PubMsg and
NfyMsg provide the means of communication between Agent and PubSubMW.

Fig. 4. Topic-centric Publish/Subscribe pattern in DomainPro Designer

Output: Behavior metrics provide engineers with information about the sys-
tem’s dynamic behavior. For example, the Agent workload when processing in-
coming events may be of interest to engineers. For the PubSubMW, engineers
may be concerned with the number of notification messages/events processed
during various batch processing intervals.

370 C. Dorn, G. Edwards, and N. Medvidovic

Logic: The overall system behavior emerges from the interactions among
individual Collaborators’ behavior as well as the control flow among them. To
capture timing behavior, the simulation requires each CollabStep to specify its
duration, which may be a stochastic or random value. In Fig. 4, CollabSteps
such as Publish, Receive, and Forward contain the logic to create, read, and
process collaboration object content. Data is transferred between CollabSteps
either directly as input or indirectly by adding data or objects to an inbox (e.g.,
the EventCoord’s InQueue, or the EventProcesser’s InEvents).

Environment: CollabSteps and CollabSequences can be parameterized to
vary the simulation behavior. Example properties are the publisher’s event fire
rate, the middleware’s delivery delay, and the subscriber’s number of topics.

Having defined the simulation structure and behavior, a major challenge still
remains before executing and analyzing the simulation model. Complex, large-
scale collaboration systems typically exhibit a considerable set of configuration
parameters, such as connectivity, work duration, action probabilities, and simu-
lation duration, which quickly leads to an explosion in possible simulation con-
figurations. We propose two main mechanisms for reducing the configuration
space (which we then exemplary demonstrate in the next subsection).

First, we suggest introducing dependencies between multiple configuration
parameters. For example, all work durations can be defined as ratios of a core
execution duration. This limits testing efforts to determination of sensible de-
pendencies and limits simulation executions to a greatly reduced set of core
parameters.

Second, we recommend the separate evaluation of independent patterns before
aggregating them into the overall system. Doing so reveals the fundamental
behavior and functional limits of a particular pattern, subsequently reducing the
complexity of evaluating them as they are integrated into a composite system.

3.3 Scenario Model

Following the design methodology in the previous subsections, we provide one
possible simulation model for the monitoring system from the scenario.

Structure: The motivating scenario introduced five user types: sensors, field
agents, back-office agents, back-office analysts, and team leaders (recall Sec. 2).
Fig. 5 depicts the interaction topology.3 Field agents publishing information
about the same topic also update a common status report using the shared
artifact pattern. They thus adopt the publisher role in the pub-sub pattern and
the contributor role in the shared artifact pattern. Similarly, back-office agents
exhibit roles in three different patterns: publisher and subscriber, contributor,
and master. Back-office analysts perform the worker role in the master-worker
pattern. Collaboration connector tasks such as event distribution, artifact access
control, and task assignment are implemented in software.

Output: In the building monitoring system, one global performance metric is
the duration between when a critical situation occurs and when it is recognized
3 A readable visualization of the overall simulation model would exceed this paper’s

page margins. View it at: http://wp.me/P1xPeS-2F

Analyzing Design Tradeoffs in Large-Scale Socio-technical Systems 371

Fig. 5. Monitoring system simulation overview (simplified: collaboration connectors
omitted for sake of clarity)

and responded to by the team leader. Suppose engineers are interested in the
behavior under various load levels. The primary, external drivers of system load
are the frequencies of sensor events, notification messages, analysis tasks, and
log book updates. To make the simulation as realistic as possible, our model will
include periods of regular, low-level activity interrupted by bursts of activity.

Using our approach, engineers can compare the effect of design decisions on
system behavior, in terms of reaction to and recovery from increasing load levels.
For example, we will show how engineers can examine the effect of (i) dropping
events instead of processing all events, (ii) processing tasks in a last-in-first-out
(LIFO) manner versus first-in-first-out (FIFO), and (iii) obtaining a write lock
for the shared log book rather than updating on demand and resolving write
conflicts later. Relevant metrics in the model capture agent load/idle time, task
duration, time waiting to obtain a lock, and number of update conflicts. We
discuss the system’s emergent behavior and associated metrics in more detail for
each pattern in the following subsections.

Logic: The behavior of individual agents and roles in the model is specified
as follows. Within each collaborator, we separate activities associated with each
role played by the collaborator to allow for individual pattern analysis (recall
that some collaborators play multiple collaboration roles). Yet, creating such
composite patterns requires integrating control and data flow within a single
collaborator. Whereas the particular mechanism depends on the application, in
general events will trigger processing while data passes through “inboxes” to
the other pattern. As shown in Fig. 4, the Subscriber role enqueues all received
PubMsgs to the EventProcesser’s InEvents box and notifies the FieldAgentWork
method about new events. The publisher component in turn will dispatch new
PubMsg events from the EventProcesser via its ProcEvents box or otherwise
idle and/or create a random new message on its own.

Environment: Modeling different design alternatives in separate models is
not an option when aggregating multiple patterns, each having several configu-

372 C. Dorn, G. Edwards, and N. Medvidovic

ration options. Instead, we introduce parameters available for configuration at
simulation time to switch between design variants. In the shared artifact pat-
tern, for example, DoArtifactLocking determines whether CollabSequences to
GetLock, WaitLock, and ReleaseLock methods (shaded) will be active or by-
passed (Fig. 6).

Fig. 6. Model excerpt for evaluating opportunistic write access and lock-based write
access for updating a shared artifact

Following the recommendations in Section 3.2 on introducing configuration
dependencies and thus minimizing the number of tuning parameters, all human
execution methods derive their duration as a ratio of a core agent WorkExecu-
tionDuration setting. Similarly, we defined the amount of topics and log books
as a fixed rate of the number of sensors, respectively field agents.

4 Evaluation

The evaluation of our approach is two-fold. First, we show that modeling a com-
plex large-scale collaboration system is indeed feasible (Sec. 4.1). Second, we
demonstrate that our approach is beneficial during system architecture devel-
opment. To this end, we analyze design decision trade-offs for individual collab-
oration patterns (Sec. 4.2) and for the composite pattern (Sec. 4.3) from the
motivating scenario.

4.1 Feasibility

A feasible modeling approach should simultaneously facilitate simulations of
small as well as complex models without involving considerable design over-
head. We take the number of collaborators (Coll), components (Comp), con-
nectors (Conn), collaboration steps (i.e., methods) (CStep), collaboration ob-
jects (CObj), collaboration sequences (CSeq), triggers (Trig), and trigger flows
(TFlow) as an indicator for the modeling complexity. For the individual pat-
terns we count only elements involved in the respective simulation run. Table 1
demonstrates that even a composite model needs only a few elements to model
complex behavior. In our example, we minimized the number of collaborators
by integrating all agent behavior in a single collaborator type.

Analyzing Design Tradeoffs in Large-Scale Socio-technical Systems 373

Table 1. Model element count for individual and aggregated patterns. Note that each
simulation contains elements for determining the active and calm event intervals.

Pattern Coll Comp Conn CStep CObj CSeq Trig TFlow

Publish/Subscribe 2 3 1 7 5 7 4 6
Master/Worker 3 2 1 7 3 7 4 6
Shared Artifact 2 1 1 9 2 14 5 6
Composite 5 6 3 25 8 36 9 15

4.2 Simulating Individual Patterns

Master/Worker Simulation: Suppose engineers wish to evaluate the effect of
assigning tasks to back-office analysts in FIFO versus LIFO order. The master/-
worker model measures the number of open tasks, the number of idle workers,
and the task execution duration across time. We are interested in average task
duration and also how predictable duration is (i.e., whether two sequential tasks
tend to yield similar duration time).

Fig. 7 shows the data gathered from a simulation in which ten back-office
agents (masters) each generate a task every time unit with 40% probability or
otherwise idle. The pool of workers consists of twenty back-office analysts who
require three time units (t) to complete a task. Task bursts are generated every
56t and last for 28t. The simulation indicates whether the worker pool recovers
from the added load in a timely manner (i.e, whether the recovery duration is
less than the burst duration). During each burst, back-office agents double their
task creation likelihood, and cut their idle time in half (resulting in a fourfold
load increase). For each subsequent burst, the number of back-office agents in
burst mode increases by 10%. Once 3000 tasks have been generated, no new tasks
are created, allowing the analyst pool to finish all remaining tasks and obtain
comparable metrics (FIFO and LIFO yield overall 15.1t average duration).4

Table 2. Average task duration (dur) and average sequential duration difference (diff)
for FIFO and LIFO for the three phases of Fig.7.

FIFO LIFO

Interval (t) dur diff dur dur < 100 diff
Phase 1 Low 0-112 3.04 0.06 3.04 3.04 0.06
Phase 2 Med 113-280 7.57 0.25 10.21 6.92 6.51
Phase 3 High 281-450 26.14 0.29 24.04 12.44 13.82

FIFO and FIFO perform equally well for a low task load (Phase 1). Towards
the end of Phase 2, the worker pool reaches its recovery limit, as it cannot
process the load received during the burst phases rapidly enough. Note that LIFO
4 Due to page constraints, we cannot display the very similar behavior observed for

1,000 agents, 2,000 analysts, and 300,000 tasks.

374 C. Dorn, G. Edwards, and N. Medvidovic

processing results in the first few tasks (duration > 100t) to be completed during
simulation “cool down.” Considering all tasks, FIFO appears to be superior to
LIFO in this scenario. However, tasks that remain unprocessed for a very long
time may become irrelevant. For example, if we ignore task as useless after 100t,
LIFO provides better average task duration for relevant responses. (Table 2:
dur < 100). On the downside, LIFO causes large fluctuations in the durations
of sequential tasks (Table 2 diff), regardless of load level. A task completed in
minimum time might be followed by a task that potentially expires.

The simulation highlights various control parameters to steer the system be-
havior under load. Besides the main choice between FIFO and LIFO, engineers
may decide to limit task creation rates, limit the number of back-office agents,
increase the size of the analyst pool, or enforce task expiration dates. Evaluation
of more sophisticated mechanisms such as task priorities, variations of worker
performance, or dynamic switching between FIFO and LIFO merely requires
some additional modeling work.

Fig. 7. Task execution duration for FIFO
and LIFO with increasingly intense burst
intervals

Fig. 8. Average number of conflicts until
successful update

Shared Artifact Simulation: Use of a common logbook by multiple agents
in the monitoring system raises the question of how to control write access. En-
gineers face a trade-off between lock-based access and opportunistic access with
conflict detection. The former guarantees write success and constant write effort,
but may cause long wait times to obtain the lock. The latter promises immediate
write access at the chance of creating write conflicts, potentially imposing ad-
ditional work to resolve conflicts. Relevant metrics in the shared artifact model
(Fig. 6) capture the average duration to successfully complete an update and
the average probability of a conflict occurring during an update.

In the shared artifact simulation, a set of agents (playing the role of con-
tributors) access a single logbook. Periodically, each agent updates the logbook
with 20% probability or idles (i.e., works on something else) for 6t. An update
attempt takes 1t and specifies the last known artifact version and the update
scope. The scope ([0; 100]) describes the extent of the update (e.g., the portion of
the logbook modified) and is equivalent to the likelihood of a conflict among dif-
ferent versions (0% = never conflicting, 100% = always conflicting). The system

Analyzing Design Tradeoffs in Large-Scale Socio-technical Systems 375

behavior is simulated under fluctuating load, exhibiting bursts lasting 40t fol-
lowed by periods of baseline behavior lasting 20t. The remaining burst behavior
configuration and generation is identical to the master/worker simulation above.
Fig. 9 shows the update duration for twenty and ten contributors, respectively.

Fig. 9. Update duration for 20 (left) and 10 (right) contributors per artifact for lock-
based and opportunistic access at 100% and 70% conflict likelihood

The two strategies perform similarly at low load as lock waiting times remain
low and conflicts are infrequent. At medium load opportunistic updates show
significant duration benefit for 70% conflict likelihood. Note that with conflict
probability of 70% and 20 contributors, however, every update still fails on av-
erage more than once, which for humans is typically considered unacceptable
(Fig. 8). At high load, neither strategy remains sensible. Locking for this con-
figuration of contributors and write access duration hits its theoretical limit, in
which agents are constantly waiting for a lock (i.e., average update duration
of 10). Opportunistic access even yields average update durations well beyond
twice the regular idle duration.

Engineers might consider some or all of the following options in this scenario:
(i) (dynamically) restricting the number of contributors per artifact, (ii) enforc-
ing update rate limits, and/or (iii) facilitating shorter access durations. Fig. 9
(right) highlights how reducing the contributor base (compared to Fig. 9 (left))
results in a disproportionately large reduction in duration and conflicts. Even
then, with 10 contributors, 70% conflict probability produces one conflict per
update on average during burst intervals (Fig.8).

4.3 Simulating Composite Patterns

Having gained an understanding of the master/worker and shared artifact pat-
terns individually, we now focus on their aggregation, along with the pub/sub
pattern, to assess the complex system described in Section 4.1. Specifically, our
composite model simulates the effect of activity bursts on the analyst pool and
log book to reveal the impact on the time required to detect unsafe or insecure
situations. A typical simulation run for this scenario involves 600 collaborators,
100k events, 10k tasks, and 8k artifact updates within 1000t.

376 C. Dorn, G. Edwards, and N. Medvidovic

Activity bursts in the composite model are identical to those in the previous
simulations. Sensor events are tagged with a different situation ID for each 40t
interval of base or burst behavior. We measure the duration from the beginning
of an interval until the time the team leader first detects the ID from incom-
ing events. The load on field agents determines the scope of logbook updates
(i.e., the conflict likelihood) and the number of outgoing events. Those events
result in tasks being assigned to back-office analysts for processing before being
propagated to the team leader by back-office agents.

Fig. 10. Access conflicts for field agents
and back-office agents

Fig. 11. Situation detection duration for
lock-based and opportunistic access

Agents update the log-book after each iteration of event processing. Whereas
lock-based access allows the agent to continue working while waiting, opportunis-
tic access requires full attention and delays event processing while the update is
occurring. Lock-based access requires the agent to complete each update before
attempting a subsequent one.

In the composite model, field agents operate at the lock-based limit: 10 agents
per artifact, updating about every 5t, with update duration 1t. As Fig. 11 high-
lights, the lock waiting time directly impacts timely situation detection. How-
ever, opportunistic access comes at the cost of rising conflicts for field agents
with increasing event load. Back-office agents are less affected as only four share
a single artifact and are additionally shielded from high load by previous field
agent processing (Fig. 10).

Given the level of redundant events, LIFO clearly outperforms FIFO for
medium and high load (Fig. 11). The increasing task load delays situation detec-
tion with FIFO to such extent, that the last few situations remain undetected
within the simulation time.

In summary, the composite system simulation supports system design deci-
sions by highlighting (i) the impact of access strategies on the detection duration,
(ii) the impact of task queue style on situation detection success, (ii) the bottle-
necks (i.e., shared artifacts for field agents rather than back-office agents), (iv)
and the potential for dynamically switching between strategies. For example,
applying FIFO and opportunistic access at low load and switching to LIFO and
lock-based access at high load.

Analyzing Design Tradeoffs in Large-Scale Socio-technical Systems 377

Limitations: A simulation can only give detailed recommendations about
the optimum expert pool size, or the optimum number of experts per artifact
for precisely defined models of individual patterns. Simulations of complex socio-
technical systems can only cover particular aspects of interest, never all details.
Thus any results in terms of absolute numbers are unsuitable to be applied di-
rectly in a real world systems. Instead, the simulation enables system engineers
to compare the impact of different design decisions and decide what trade-offs
need to be made. The simulation outcome provides an understanding what mech-
anisms might fail earlier, which strategies behave more predictably, and which
configurations result in a more robust system. At the same time, a simulation
raises awareness of system metrics that are best suited for serving as indicators
of looming performance deterioration.

5 Related Work

Simulating system aspects for gaining an understanding of its behavior has been
proposed in many diverse areas. Scenario-driven dynamic analysis of distributed
architectures enables the system architect to compare design trade-offs [8]. Ex-
tensions to UML models such as sequence diagrams allows for tracking of perfor-
mance metrics [2]. Simulation ranges from modeling individual software compo-
nents [4] to large-scale service oriented systems [15] for the prediction of system
reliability or the development of adequacy criteria and test cases for distributed
systems [21]. Simulation of business process and workflows aims for detecting
bottlenecks, predicting cost and time, evaluating quality and flexibility, and
determining other performance metrics [14,23,17]. Research on crowdsourcing
applies simulation to demonstrate the effect of assessment tasks on skill evolu-
tion [22], to evaluate the impact of collaboration policies [20], or determine the
optimum number of replicated jobs per task [3].

These research efforts target important but only partial aspects of socio-
technical systems. Focusing only on a subdomain or only on the technical part,
they thus fall short of delivering collaboration-centric design support.

Social network analysis observes and analyzes general emerging system prop-
erties such as the power-law network topology [1] as well as system specific
properties such as the structure of discussion threads on Slashdot [11]. Such re-
search provides insights on how to simulate realistic structure and behavior of
large-scale collaborative efforts.

On the small scale end of the spectrum, team automata formalize the inter-
actions amongst multiple participants in groupware systems [9]. Although team
automata initially targeted Computer Supported Cooperative Work (CSCW)
systems to rigorously define and enforce collaboration protocols [16], their na-
ture lend them more to the analysis and design of security mechanisms. We be-
lieve that team automata are unsuitable for simulating socio-technical systems
where the exact participant behavior is a-priori unknown. The Construct group
simulation tool [13] overcomes these limitations but remains severely restricted
in the maximum amount of simultaneously active collaborators.

378 C. Dorn, G. Edwards, and N. Medvidovic

6 Conclusions

This paper presented a method for simulating complex collaboration structures in
support of understanding system design trade-offs. We extended the human Ar-
chitecture Description Language to obtain an executable model of collaboration
patterns. Exemplary simulations of the master-worker pattern, the shared-artifact
pattern, and their integration with the publish-subscribe pattern demonstrate fea-
sibility and benefit to the system designer.

Future work will focus on exploring these patterns in more detail and applying
the simulation framework for evaluating dynamic switching between strategies
(e.g., FIFO ⇔ LIFO) at runtime and evaluate our work in the scope of a real
world system. Simultaneously we intend to include additional human component
aspects such as learning, forgetting, skills, trust, or social connections.

Acknowledgment. This work is supported in part by the Austrian Science
Fund (FWF) under grant number J3068-N23.

References

1. Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Reviews of
Modern Physics 74, 47 (2002)

2. Balsamo, S., Marzolla, M.: Simulation modeling of uml software architectures. In:
Proc. of ESM 2003, the 17th European Simulation Multiconference, pp. 562–567.
SCS–European Publishing House (2003)

3. Brun, Y., Edwards, G., Young Bang, J., Medvidovic, N.: Smart redundancy for
distributed computation. In: Proceedings of the 31st International Conference on
Distributed Computing Systems (ICDCS 2011), pp. 665–676 (2011)

4. Cheung, L., Roshandel, R., Medvidovic, N., Golubchik, L.: Early prediction of soft-
ware component reliability. In: Proceedings of the 30th International Conference
on Software Engineering, ICSE 2008, pp. 111–120. ACM, New York (2008)

5. Doan, A., Ramakrishnan, R., Halevy, A.Y.: Crowdsourcing systems on the world-
wide web. Commun. ACM 54, 86–96 (2011)

6. Dorn, C., Taylor, R.N.: Analyzing runtime adaptability of collaboration patterns.
In: International Conference on Collaboration Technologies and Systems (CTS).
IEEE Computer Society, Los Alamitos (2012)

7. Dorn, C., Taylor, R.N.: Architecture-Driven Modeling of Adaptive Col-
laboration Structures in Large-Scale Social Web Applications, Tech.
Rep. UCI-ISR-12-5, University of California, Irvine (May 2012),
http://www.isr.uci.edu/tech_reports/UCI-ISR-12-5.pdf

8. Edwards, G., Malek, S., Medvidov́ıc, N.: Scenario-Driven Dynamic Analysis of
Distributed Architectures. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS,
vol. 4422, pp. 125–139. Springer, Heidelberg (2007)

9. Ellis, C.: Team automata for groupware systems. In: Proceedings of the Interna-
tional ACM SIGGROUP Conference on Supporting Group Work: The Integration
Challenge, GROUP 1997, pp. 415–424. ACM, New York (1997)

10. Gamma, E., Helm, R., Johnson, R.E., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading (1995)

http://www.isr.uci.edu/tech_reports/UCI-ISR-12-5.pdf

Analyzing Design Tradeoffs in Large-Scale Socio-technical Systems 379

11. Gómez, V., Kaltenbrunner, A., López, V.: Statistical analysis of the social net-
work and discussion threads in slashdot. In: WWW 2008: Proceeding of the 17th
International Conference on World Wide Web, pp. 645–654. ACM, NY (2008)

12. Gregg, D.G.: Designing for collective intelligence. Commun. ACM 53, 134–138
(2010)

13. Hirshman, B.R., Carley, K.M., Kowalchuck, M.J.: Specifying Agents in Construct.
Tech. Rep. CMU-ISRI-07-107, Carnegie Mellon University (July 2007)

14. Hlupic, V., Robinson, S.: Business process modelling and analysis using discrete-
event simulation. In: Proceedings of the 30th Conference on Winter Simulation,
WSC 1998, pp. 1363–1370. IEEE Computer Society Press, CA (1998)

15. Juszczyk, L., Dustdar, S.: Script-based generation of dynamic testbeds for soa. In:
Proceedings of the 2010 IEEE International Conference on Web Services, ICWS
2010, pp. 195–202. IEEE Computer Society, Washington, DC (2010)

16. Kleijn, J.: Team Automata for Cscw - a Survey. In: Ehrig, H., Reisig, W., Rozen-
berg, G., Weber, H. (eds.) Petri Net Technology for Communication-Based Sys-
tems. LNCS, vol. 2472, pp. 295–320. Springer, Heidelberg (2003)

17. Li, J., Fan, Y., Zhou, M.: Performance modeling and analysis of workflow.
IEEE Transactions on Systems, Man and Cybernetics, Part A: Systems and Hu-
mans 34(2), 229–242 (2004)

18. Malone, T.W., Laubacher, R., Dellarocas, C.: Harnessing crowds: Mapping the
genome of collective intelligence. Technology 1(2), 327–335 (2010)

19. Oreizy, P., Medvidovic, N., Taylor, R.N.: Runtime software adaptation: framework,
approaches, and styles. In: Companion of the 30th International Conference on
Software Engineering, pp. 899–910. ACM, New York (2008)

20. Psaier, H., Skopik, F., Schall, D., Juszczyk, L., Treiber, M., Dustdar, S.: A program-
ming model for self-adaptive open enterprise systems. In: Proceedings of the 5th
International Workshop on Middleware for Service Oriented Computing, MW4SOC
2010, pp. 27–32. ACM, New York (2010)

21. Rutherford, M.J., Carzaniga, A., Wolf, A.L.: Evaluating test suites and adequacy
criteria using simulation-based models of distributed systems. IEEE Trans. Softw.
Eng. 34(4), 452–470 (2008)

22. Satzger, B., Psaier, H., Schall, D., Dustdar, S.: Stimulating Skill Evolution in
Market-Based Crowdsourcing. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.)
BPM 2011. LNCS, vol. 6896, pp. 66–82. Springer, Heidelberg (2011)

23. Tumay, K.: Business process simulation. In: Simulation Conference Proceedings,
pp. 55–60 (December 1995)

Semantic and Locality Aware Consistency

for Mobile Cooperative Editing�

André Pessoa Negrão, João Costa, Paulo Ferreira, and Lúıs Veiga

INESC-ID/Instituto Superior Técnico
Rua Alves Redol 9, Lisboa, Portugal

{andre.pessoa,joao.da.costa}@ist.utl.pt,
{paulo.ferreira,luis.veiga}@inesc-id.pt

Abstract. This paper presents CoopSLA (Cooperative Semantic Local-
ity Awareness), a consistency model for cooperative editing applications
running in resource-constrained mobile devices. In CoopSLA, updates to
different parts of the document have different priorities, depending on
the relative interest of the user in the region where the update is per-
formed; updates that are considered relevant to the user are propagated
frequently, while less important ones are postponed. As a result, the
system makes a more intelligent usage of the network resources, since
1) fewer accesses to the network are issued, 2) bandwidth savings are
obtained by merging the delayed updates, and 3) reduced bandwidth
available is used more efficiently by propagating more relevant updates
sooner. These properties are of vital importance in the mobile environ-
ments we are addressing, in which devices have limited bandwidth and
battery power. We have implemented a collaborative version of Tex ed-
itor TexMaker using the CoopSLA approach. We present evaluation re-
sults that support our claim that CoopSLA is very effective in reducing
the overhead of replica synchronization without imposing limitations to
application models.

Keywords: Cooperative Editing, Optimistic Replication, Data Consis-
tency, Interest Management, Divergence Bounding.

1 Introduction

Cooperative editing applications enable geographically distributed users to con-
currently edit a shared document space over a computer network[3]. Recently,
these applications experienced an increase in popularity as a result of the ex-
pansion of the Internet and the rapid proliferation of mobile devices, such as
smart phones, PDAs and tablets[10]. These modern devices are now sophisti-
cated enough to allow its users to execute cooperative editing applications and
participate in editing sessions alongside more powerful devices – like desktops or
laptops – possibly mediated by cloud infrastructures.
� This work was partially supported by national funds through FCT – Fundação para

a Ciência e Tecnologia, under projects PTDC/EIA-EIA/102250/2008, PTDC/EIA-
EIA/108963/2008, PTDC/EIA-EIA/113993/2009 and PEst-OE/EEI/LA0021/2011.

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 380–397, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Semantic and Locality Aware Consistency for Mobile Cooperative Editing 381

A critical technique to support these new heterogeneous environments – that
mix resource constrained and powerful devices, interacting over wired and wire-
less networks – is to replicate the application data at the users’ devices and resort
to optimistic protocols to manage the consistency of the shared state. Optimistic
replication[12] has the potential benefit of improving performance, availability
and usability by allowing faster (local) access to the data. It also makes a more
efficient use of the resources since it does not require constant access to the
network for synchronization purposes. Optimistic mechanisms have been exten-
sively applied to cooperative editing, in particular the Operational Transfor-
mation paradigm[2,15,14,7] and, more recently, Commutative Replicated Data
Types[9,8,18,11,19].

While the state-of-the-art solutions provide a fair compromise between con-
sistency and performance, they still neglect two important aspects that can be
leveraged to improve the performance and overall usability and experience of
cooperative editing applications. First, they do not consider the variable and
highly dynamic characteristics of group work, in which different users are in-
terested (and work on) different parts of the document space: i) a user is more
interested in the zone(s) of the document that he is editing and a few other
observation points, rather than the whole document space equally, and ii) his
interest in the different sections of the document space varies over time. Second,
optimistic systems based on eventual consistency are typically prone to some
level of uncertainty and disruption: while the system is ensured to converge in
the future, there is limited or no support to determine how current is the data
observed by the user, and to establish and enforce clear bounds or guarantees
on that currentness.

In this work we argue that it is possible to make a more efficient and scal-
able usage of the network resources by taking the users’ interest into account.
To address this issue, we propose CoopSLA (Cooperative Semantic Locality
Awareness), a consistency model that unifies several well-know concepts of the
distributed systems field: interest management, locality-awareness and bounded
divergence. In CoopSLA updates are assigned a per-user priority level based on
its semantic distance to the user’s observation point(s) (Interest Management).
Updates to regions closer to the observation points are considered more rele-
vant and, thus, are awarded higher priority; priority decreases as the distance
to the observation point increases (Locality-Awareness). In each priority level,
updates are managed according to a parametrizable, multidimensional consis-
tency space that determines when they must be propagated, establishing clear
and well-known bounds to the divergence between the different replicas of the
system (Bounded Divergence).

With CoopSLA, we are able to make a more intelligent and semantically mean-
ingful usage of the network resources: by postponing updates with less priority,
the system can merge and aggregate them, minimizing accesses to the network
and reducing bandwidth; as a result of message aggregation, the latencies of the
more important messages are reduced at the expense of the less relevant ones.
These properties are of particular importance when mobile devices are in use,

382 A. Pessoa Negrão et al.

because wireless networks provide low bandwidth with high latency, which has
a significant impact on performance and interactivity[6], and frequent access to
the network resources greatly increases battery consumption[4]. Another impor-
tant aspect of CoopSLA is that it establishes bounds on the amount of replica
deviation allowed, providing users with stronger guarantees regarding the actual
consistency state of the document space.

We designed and implemented a middleware layer that enforces the CoopSLA
model on behalf of the applications. This allows current single-user applications
to be more easily adapted to support collaborative features and relieves program-
mers from the daunting task of designing and programming complex network and
replication protocols. Using the CoopSLA middleware, we implemented a col-
laborative version of the popular Tex editor TexMaker. We present experimental
results that support our claim that CoopSLA is very effective and flexible in
reducing the overhead of replica synchronization without imposing limitations
to application models and traditional semantics.

The paper is organized as follows. Section 2 introduces relevant concepts and
describes the main assumptions of our work. Section 3 describes the CoopSLA
consistency model in detail. Section 4 presents the main architectural aspects
of the CoopSLA middleware. Section 5 overviews the implementation of our
solution. Section 6 presents and discusses the experimental results. Related work
is presented in Section 7. Finally, Section 8 concludes the paper.

2 System Model

In a cooperative editing session, multiple geographically distributed users con-
currently edit a shared document space – for example, a Latex project, a wiki
or a Word document. Common to these scenarios is a hierarchical structure of
semantic regions, which are logical sub-divisions of the document space (like a
folder, a file, or a \section of a Latex document). Also, semantic regions may have
logical references to other regions (e.g., a Latex \ref or a link on a webpage).
When considering the interest of a user, both the structure of the document
space and the references between its components must be taken into account.

We model the document space as a rooted directed graph G = (V, E). Each
vertex V corresponds to a semantic region of the document space and there is
an edge (vi,vj) between vertices vi and vj iff there is a relation between the
two. We consider two types of relations: a structural edge connects two vertices
that have a parent/child relation that is part of the hierarchical organization of
the document (in a Latex document, for example, a \chapter has a structural
relation with each of its child \section); a semantic edge is a non-structural edge
that connects two vertices that have an application-specific reference between
them (e.g., a \ref in a Latex document or a link in a web page). Structural edges
define a subgraph S of G corresponding to the tree structure of the document
space.

We define a function d : V × V → N0 over the graph that represents the
semantic distance between two vertices of the graph. The semantic distance

Semantic and Locality Aware Consistency for Mobile Cooperative Editing 383

indicates the degree of correlation between two semantic regions of a document
according to some application-dependent and user-aware criteria. A lower value
denotes high correlation, while a higher value denotes low correlation.

We denote the participants of a cooperative editing session as cooperation
group and each participant is called node. Each node of the cooperation group
has a local view consisting of a full local replica of the shared application state
that may have bounded inconsistencies with relation to the latest state of the
application. Each replica consists of the document space graph G in which each
vertex also holds the contents of the corresponding semantic region. In this
context, we refer to a vertex of the graph as an object. Each object has one pri-
mary/master replica that holds its most recent value and one or more secondary
replicas that may have stale values. The consistency model makes no restrictions
as to which nodes of the cooperation group can be the master of an object.

3 A Semantic and Locality Aware Consistency Model

To capture the interest of a user in the different regions of a document, the
CoopSLA model incorporates the notion of a pivot. A pivot is a special object
that corresponds to a user’s observation point and according to which the con-
sistency requirements of the user’s view is managed. Broadly speaking, the pivot
determines, on a per-user basis, i) when an update to an object is allowed to
be postponed, and ii) under which conditions previously postponed updates are
required to be propagated to the user.

Different users have different pivots and each user may have multiple pivots,
each corresponding to a semantic region in which he is interested. In this section,
we describe the pivot-based CoopSLA consistency model in detail. For clarity,
we first describe the main concepts of the CoopSLA model considering only one
pivot (Sections 3.1 and 3.2). We briefly describe a generalization of the model
for multiple pivots in Section 3.3.

3.1 Consistency Field

Each user’s pivot p has a position in the application graph (p ∈ V). p can
change throughout the execution of the application, mirroring the dynamic in-
terest of the user in the document space. Moreover, a pivot generates a discrete
consistency-field composed of n consistency zones z1, ..., zn where: z1 is the inner
zone of radius r1 and centered in p; each zone zi ∈ {z2, ..., zn−1} corresponds to
the area with outer radius ri and inner radius ri−1 (the radius of zone zi−1); the
outer zone zn corresponds to the area beyond rn−1, the radius of zone zn−1. It
follows that the consistency zone zo of object o at semantic distance d(p, o) from
pivot p in the consistency-field is given by

zo =

⎧⎨
⎩

z1 iff d(p, o) ≤ r1

zi, 1 < i ≤ n − 1 iff ri−1 < d(p, o) ≤ ri

zn iff rn−1 ≤ d(p, o)
(1)

384 A. Pessoa Negrão et al.

Fig. 1. Example of Consistency Zones in a document structure

Figure 1 shows a simple example of a consistency field. The user’s descending
order of interest, based on which the consistency field is defined, is described in
Table 1; the table explains how, taking into account current pivot position, each
section of document is mapped to a given consistency zone.

In this example, the user is editing section C of a Latex document (left side
of Figure 1(a)); as a result, the pivot is placed in the corresponding C vertex of
the application graph (right side of Figure 1(a)). The consistency field generated
(left side of Figure 1(b)) assigns the highest priority to updates to section C,
the current editing section. Updates to sections A e G (respectively, the parent
and child sections of C) have lower priority than C, but higher than sections B
and D – the sections that are two graph hops away from C. Updates to section
E and F have the lowest priority.

3.2 Consistency Requirements

Each consistency zone zi has a corresponding consistency degree ci that specifies
the consistency requirements of the objects located within that zone. Consis-
tency degrees respect the property ci > ci+1, meaning that consistency degree
ci of consistency zone zi enforces stronger consistency than degree ci+1 of zone

Table 1. Example user interest

Priority Description Zone

1 Current editing section z1

2 Parent and child sections of current editing section z2

3 Close sections – sections two graph hops away. z3

4 Remaining sections z4

Semantic and Locality Aware Consistency for Mobile Cooperative Editing 385

zi+1. It follows from this property that consistency degrees (and, consequently,
requirements) become weaker as their semantic distance to the pivot increases.
Consistency degrees are described by 3-dimensional consistency vectors (κ) that
limit the maximum divergence between the local replica of an object and the
latest state of the object:

– Time (θ): Specifies how long (in seconds) an object is allowed to remain
without being refreshed with its latest value.

– Sequence (σ): Defines the maximum number of updates to an object that
are allowed to be postponed (missing updates).

– Value (ν): Specifies the maximum percentage divergence between the con-
tents of the local replica of an object and its primary replica. Value is an
application-dependent metric calculated by a special purpose function de-
fined by the application’s programmers.

CoopSLA guarantees that an object is updated whenever at least one of the
previous criteria is about to be violated. Consider, for example, a consistency
vector κ = [0.25, 6, 20]; an object within the consistency zone corresponding
to κ is guaranteed to be, at most, 0.25 seconds outdated, 6 updates behind the
primary replica or with contents diverging 20% from the object’s latest value.

3.3 Model Generalization

CoopSLA allows the definition of multiple pivots for each user. For example, if
a user is editing multiple files, each one of the editing points in the different
files may correspond to a different pivot. Furthermore, different pivots may have
different consistency requirements, as it is natural that the current editing point
is more relevant to the user. In a multi-pivot setup, an object’s consistency zone
is assigned with relation to its closest pivot.

The model also allows the definition of multiple views per user, which allows
different sets of objects to be characterized with different consistency require-
ments regarding the same pivot. Consider a pivot that corresponds to the para-
graph currently being edited by the user. In this scenario, a user may be more
interested in sections he created than in sections created by other users, regard-
less of how close they are to the user. With multiple views, user created objects
may be assigned more strict consistency requirements.

4 Architecture

CoopSLA is implemented by a middleware layer that abstracts the program-
mers from the aspects related to network communication and consistency en-
forcement. The middleware follows a client-server architecture, in which clients
edit the shared document space and the server propagates updates to each client
according to its consistency specifications. In this section we describe the main
architectural aspects of the CoopSLA middleware. We start by presenting an
overview of the system, after which we describe how it represents the document
space internally and how the consistency model is enforced.

386 A. Pessoa Negrão et al.

4.1 Overview

Following the CoopSLA replication model (see Section 2), the server holds a
full replica of the shared application state (i.e., the application graph G). The
server stores the primary replica of every object in the system and, thus, always
has the most recent version of the objects. When the server receives a client
update it applies it to its primary replica immediately; in contrast, it postpones
propagating the received updates to the clients, as long as their consistency
requirements are respected.

A client consists of the editing application stacked on top of the middleware.
It receives the input from the user, applies it to its local replica and submits
the corresponding update to the server. Clients do not communicate directly
with each other; update propagation is exclusively performed by the server.
Each client holds a full replica of the data; however, unlike the server, these are
secondary and, as a result, may have stale values that are managed according
to each client’s consistency specification.

The main task of the server is to enforce the CoopSLA consistency model. This
requires it to continuously monitor client updates and collect information about
the current consistency state of each client. Periodically, and when updates are
received at the server, it executes a validation algorithm that uses the collected
data to verify if the consistency requirements of the clients are still met; if not,
the server propagates the postponed (possibly merged) updates to the clients
that would, otherwise, violate their consistency specification.

4.2 Data Representation

The CoopSLA middleware represents the contents of each object of the graph
as a TreeDoc Commutative Replicated Data Type (CRDT)[9]. By doing so, we
enable replicas to converge without the need for complex conflict resolution pro-
tocols, which further enhances the relaxed synchronization properties provided
by CoopSLA. As a result of using TreeDoc, our system follows an operation trans-
fer design. This means that the update messages exchanged during an editing
session consist of add or remove operations, instead of the actual data.

Updates that have not yet been propagated to a client are stored at the server
in a per-client update queue. When adding a new update to a queue, the server
automatically merges add/remove operations that cancel each other. Even by
just using this mechanism, the results (Section 6) proved to be very encouraging.
Alternative (or complementary) merging solutions are still being implemented
and are out of the scope of this paper.

4.3 Monitoring Client Activity

To enforce the consistency model the server stores, for each client ci, the client’s
consistency specification (pivots, zones and degrees) and consistency state table
ψci . The latter stores, for each object oi: 1) the time elapsed since ci last received
updates regarding oi (ψci [θ, oi]), 2) the number of updates to oi that have not

Semantic and Locality Aware Consistency for Mobile Cooperative Editing 387

yet been sent to ci (ψci [σ, oi]), and 3) the value of oi the last time updates to it
were sent to ci (ψci [ν, oi]).

Enforcing each client’s consistency specifications requires the server to keep
track of the following critical events:

Content Updates. When the server receives a content update (and add or
remove request) it adds it to the update queues of the clients and updates the
sequence state ψci [σ] of every client ci. Next, it verifies if the new value of
the sequence metric of ci has reached the bound specified in ci’s consistency
specification; if so, it marks oi as dirty in ci’s dirty table. When processing the
next round of the validation algorithm, the server verifies that oi is dirty and, as
a result, refreshes the client’s state by propagating the updates needed to ensure
the client’s consistency specifications are met.

Structure Updates. Modifications to the structure of a document change the
distances between its regions. As a result, the placement of the objects within the
consistency fields of the clients change and new consistency requirements have to
be considered; thus the server is required to update its internal data structures
accordingly. Furthermore, because a structure update is also an update to the
document, the server also updates and re-evaluates the sequence state ψci [σ] of
each client for every object that moved to a different consistency zone.

Pivot Movement. As with structure updates, when a pivot moves the compo-
sition of its consistency zones change, resulting in new consistency requirements.
As a result, the server has to update the internal data structures representing
that client accordingly, as well as re-evaluating, for every object that moved to
a different consistency zone, the sequence state of the client. Note that in this
case ψci [σ] is not updated, since the movement of the pivot does not modify the
document space.

4.4 Consistency Enforcement

In each periodically executed round of the consistency validation algorithm, the
server checks if any update received since the last round resulted in a violation of
a client’s consistency specification. If so, the identified updates are propagated
to the client.

The validation algorithm verifies, for each client ci and each object oi, if the
object is within the limits imposed by the consistency zone defined by the client’s
pivot(s). Because ci may have multiple views and multiple pivots, the server must
first identify which pivot pi enforces the strongest consistency requirements for
oi. Then, it identifies the consistency zone of pi where oi lies, retrieving the
corresponding consistency vector κi.

Next, each dimension of the identified κi is tested. Verifying time (θ) and
sequence (σ) is straightforward: for σ, the server simply checks if the object has

388 A. Pessoa Negrão et al.

been previously marked as dirty (Section 4.3); for θ, it tests if the time elapsed
since the last time ci was updated with the latest version of oi exceeds θκi .

To verify ν, on the other hand, the server has to compare the current value
of oi with the client’s ψci [ν, oi], which would require it to store, for every client,
a copy of every object. To avoid the memory overhead of such a solution, the
server takes a snapshot of an object whenever updates regarding that object are
propagated to a client. Before taking a snapshot, however, it first verifies if a
snapshot of the object already exists; if it does, the server uses it, avoiding an
unnecessary copy of the object and saving memory.

5 Implementation

We implemented a prototype of the CoopSLA middleware and extended the
Linux version of the Latex editor Texmaker1 on top of it. In this section we
describe the main implementation details of the middleware (Section 5.1) and
the extension to Texmaker (Section 5.3) and explain how programmers interact
with the middleware and specify the CoopSLA consistency settings (Section 5.2).

5.1 Middleware

Each semantic region of the application graph is represented by an SRegion
object that contains a list of children subregions and a TreeDoc with the contents
of the region it represents. SRegions are uniquely identified by the server; this
identifier is used by clients to access the semantic region represented by the
object. The list is ordered by the semantic order of the children subregions
in the document space. SRegions also hold a programmer provided DataUnit
object containing application-specific information. It may be used, for example,
to implement links and references between SRegions.

Implementing the object snapshot approach described in Section 4.4 requires
rounds, snapshots and objects to be versioned. The round number rv is an integer
number that is incremented in every round. Snapshot and object versions are
assigned based on round versions: snapshot versions correspond to the rv of the
round in which the snapshot was taken; object versions correspond to the rv of
the round in which the object was last updated. To dispose of snapshots that
are no longer referenced we hold a list of the clients that reference the snapshot
and collect the latter when the list becomes empty.

To save memory, the per-client pending updates queues do not store actual
updates. Instead, it points to the updates stored in the global queue. Thus, the
global queue holds the updates received since the last round, as well as any
update that has not yet been sent to a client (i.e., is still referenced by a client’s
queue). When an update is no longer referenced by any client’s queue, it is
discarded.

1 http://www.xm1math.net/texmaker/

Semantic and Locality Aware Consistency for Mobile Cooperative Editing 389

5.2 Interfacing with Programmers

In our current implementation, programmers describe the consistency require-
ments using an XML file. When the client application starts, it invokes an API
registration function with the path to the XML file as its argument. The Coop-
SLA client then parses the file and sends a registration request to the server.

Programmers control the structure of the document by adding or removing
semantic regions using API functions (addSRegion/removeSRegion). Both func-
tions receive the parent of the new region, the region type and, optionally, a set
of semantic links to other regions. The region type is an application-dependent
string value used to identify the objects consistency zone for a particular pivot
(explained later in this section).

Programmers must provide two additional functions to be called by the mid-
dleware when checking a client’s consistency: valueDiff and getConsistency-
Zone. The valueDiff function is used to verify the value metric. It returns the
(application-specific) percentage difference between two versions of an object.
getConsistencyZone is a functions that, given a pivot, a graph object and the
graph path between the pivot and the object, returns the consistency zone of
the object regarding the pivot.

5.3 CoLaTex

To validate our system, we have extended the Tex editor Texmaker with co-
operative capabilities using its add-ons feature. Our add-ons consist of simple
functions that intercept the user’s modifications to the local replica of the shared
document, insert the updates received from the server into the Latex document
and track the user’s editing position.

We defined one pivot for each open file, each corresponding to the semantic
region being edited by the user within that file. We implemented an add-on that
allows the user to manually assign a region of the document to a consistency
zone. Our valueDiff function returns the percentage difference in number of
characters between two versions of an object. Table 2 describes the consistency
zones we used defined; the getConsistencyZone function returns the consis-
tency zone of an object based on the following considerations:

– Consistency Zone 0 includes the region in which the pivot is placed and its
direct children, i.e., the ones that are one graph-hop below the pivot.

Table 2. Consistency Zones

Zone Time (θ) Sequence (σ) Value (ν)

1 1 sec. 1 update 1%

2 10 sec. 15 updates 5%

3 40 sec. 100 updates 30%

4 2 min. 750 updates 60%

5 5 min. 1000 updates 90%

390 A. Pessoa Negrão et al.

– Consistency Zone 1 contains the direct parent – the region one graph-hop
above the pivot – and indirect children – identified by traversing the graph
downwards from the pivot, excluding the direct children – of the pivot.

– Consistency Zone 2 comprises the regions that belong to the same \chapter
as the pivot. If there is no explicit \chapter defined, we consider that the
document has one implicit chapter of which every section is a part of.

– Consistency Zone 3 includes the top-level sections of the remaining chap-
ters (\chapter) of the document. If the document does not have chapters,
zones two and three are merged and zone four is awarded the consistency
specifications originally defined for zone three.

– Consistency Zone 4 contains the regions that do not belong to any of the
previous zones.

6 Evaluation

We conducted a series of tests to experimentally validate our claim that Coop-
SLA makes a more efficient use of network resources by exploiting the locality of
interest of users. In particular, we intended to quantify the savings that Coop-
SLA obtains regarding the overall bandwidth required to propagate the updates
generated during an editing session and the access frequency to the network re-
sources. In the following sections we detail the experiments conducted. We first
describe the configuration of the simulation environment, and then present and
analyse the results obtained.

6.1 Simulation Environment

Clients are simulated by running a predetermined number of parametrized edit-
ing bots. Editing bots perform text insertions (write or paste), deletions (erase
or cut) and browse through the document space. Table 3 shows the decision tree
that models the behaviour of the bots used in our experiments.

Each simulation consisted in a five minute run during which bots executed
according to their decision tree, propagating the corresponding updates to the
server. The server monitored inbound and outbound messages, storing per-client
and overall values regarding bandwidth and number of exchanged messages.
Unless told otherwise, the results presented were obtained using the consistency
requirements described in Table 2. For simplicity, we chose to have only on pivot
per-client in the experiments.

Table 3. Bot decision tree

Add Remove Move

Read Write Paste Erase Cut To sides Up/down

60% 15% 3% 8% 3% 8% 3%

Semantic and Locality Aware Consistency for Mobile Cooperative Editing 391

(a) Average per-client inbound bandwidth. (b) Total server outbound bandwidth.

Fig. 2. Used bandwidth

We compared CoopSLA with a baseline TreeDoc implementation that prop-
agates updates to every user as soon as they arrive at the server. Throughout
this section we refer to this system as Total Consistency (TC), due to its eager
propagation approach.

The tests were conducted on Intel Core 2 Quad machines with 8GB Ram run-
ning Ubuntu Linux. The server executed on a dedicated machine with no other
user-level application running; clients were deployed on up to three machines.
The computers were connected through a LAN.

6.2 Evaluation Results

In the first set of experiments, we measured bandwidth and number of accesses
to the network at both the clients and the server. In these simulations we varied
the number of clients and the type of document space edited. We considered
three types of documents that differ mainly in size and structural complexity:
an article, a PhD thesis and a book.

Figure 2 presents the results obtained regarding bandwidth. We plotted the
results of both CoopSLA and TC for an increasing number of users and the
three types of documents we consider (article, thesis and book). The figures
show that CoopSLA is able to effectively reduce bandwidth usage both at the
client and the server side. Moreover, it shows that as the number of clients and
the size of the documents increase, CoopSLA is increasingly more efficient in ob-
taining bandwidth savings. This behaviour shows the scalability of the system,
and is especially relevant considering that as an editing project grows in size,
it is more likely that more users will cooperatively access it. The main reason
for these results is that in larger documents the average distance between the
editing regions of the users is higher; as a result, the probability of postponing
and, eventually, merging updates also increases. This fact is particularly evident
if we make a pairwise comparison between CoopSLA and TC for each document
type. With the article (CoopSLA Article and TC Article), the bandwidth sav-
ings obtained by CoopSLA are minimal, because the probability that an update

392 A. Pessoa Negrão et al.

(a) Average number of messages received
per-client.

(b) Total number of messages sent by the
server.

Fig. 3. Messages exchanged

occurs in a client’s pivot region (and, consequently, is propagated immediately)
is high2. If the document grows in size and complexity, the bandwidth savings
obtained by CoopSLA increase greatly: approximately 45% less bandwidth with
the thesis document (CoopSLA Thesis and TC Thesis) and 65% with the book
(CoopSLA Book and TC Book).

Another important conclusion that can be inferred from Figure 2 is that
CoopSLA is able to efficiently minimize one of the main drawbacks of the CRDT
approach, the size overhead of path identifiers. When a document is represented
as a CRDT, the size of the TreeDoc path identifiers increases as the document
grows. Because update messages exchange path identifiers, when a document
grows in size, the update messages follow the same pattern. Without CoopSLA,
the larger the document is, the larger update messages are; as a result, the
bandwidth required to update clients increases. With CoopSLA, on the other
hand, we take advantage of the accumulation of postponed messages at the
server to merge them before propagating them to the clients.

While the overall traffic generated by the clients is influenced by the specific
characteristics of TreeDoc, the number of update messages issued by each client
depends only on the editing pattern of the users. By measuring the number of
messages exchanged over the network, we are able to clearly isolate and analyse
the individual contribution of CoopSLA. Figure 3 shows the results of these
measurements for both CoopSLA and TC.

The results further confirm the ones regarding bandwidth. Figure 3 shows that
CoopSLA is able to reduce the number of messages received by each client and
those savings increase with the size and complexity of the edited document. Again,
these results are a direct consequence of CoopSLA’s ability to leverage the accu-
mulation of low-priority postponed messages by merging those that cancel each

2 Note, however, that we could have obtained better results by configuring the con-
sistency requirements of the pivot region to a less strict setting. We analyse the
influence of varying the parameters of CoopSLA later in this section.

Semantic and Locality Aware Consistency for Mobile Cooperative Editing 393

(a) Average per-client inbound bandwidth. (b) Total server outbound bandwidth.

Fig. 4. Bandwidth usage with different consistency requirements

other. As a result, CoopSLA discards unnecessary messages that would have, oth-
erwise, been propagated immediately to each client. This behaviour is desirable
not only because it has a direct influence on the reduction of the bandwidth re-
quirements, but also because it means that mobile devices using CoopSLA make
a less demanding usage of the network resources, which contributes to reduce bat-
tery consumption. Furthermore, these results provide an encouraging indication
of how CoopSLA would work with different operation-transfer strategies, like OT
or other CRDT implementations.

The results presented so far misleadingly indicate that when a document is
small, there is no advantage in using CoopSLA. However, CoopSLA allows appli-
cation programmers to specify consistency requirements arbitrarily, as they see
fit for their applications. As long as possible, a programmer should try to relax
the consistency requirements, always ensuring the application provides the re-
quired levels of interactivity. If necessary, however, the programmer can define
more demanding requirements. To show the flexibility of CoopSLA, we measured
the bandwidth usage of three CoopSLA consistency specifications that differ in
update propagation aggressiveness, as described in Table 4. The Relaxed specifi-
cation provides the weaker guarantees; in particular, it does not not require high-
priority updates to be propagated immediately. Aggressive is the most demanding
specification; it requires high-priority updates to be immediately propagated and

Table 4. Consistency Zones

Zone Relaxed Regular Aggressive

1 {θ=5,σ=10,ν=5} {θ=2,σ=5,ν=5} {θ=1,σ=1, ν=1}
2 {θ=20,σ=30,ν=10} {θ=10,σ=10,ν=5} {θ=5,σ=5,ν=5}
3 {θ=40,σ=100,ν=50} {θ=40,σ=100,ν=30} {θ=15,σ=15,ν=20}
4 {θ=120,σ=750,ν=60} {θ=90,σ=300,ν=60} {θ=30,σ=50 ν=50}
5 {θ=300,σ=1500,ν=90} {θ=180,σ=750,ν=80} {θ=60,σ=150,ν=50}

394 A. Pessoa Negrão et al.

the remaining zones to be updated frequently. Regular is an intermediate specifi-
cation that provides more relaxed consistency than Aggressive, but stricter than
Relaxed.

Figure 4 shows the results obtained; the bar labelled TC corresponds to the
version of the baseline TreeDoc implementation that does not use CoopSLA,
while the remaining bars correspond to the three specifications of Table 4. The
measurements were made using the Thesis document. As expected, the figure
shows that CoopSLA is more efficient when the consistency requirements are
more relaxed. This happens because relaxed consistency requirements allow for
a larger volume of updates to be retained at the server for longer periods; as
a result, the probability that two updates can be merged increases. Conversely,
when we increase the aggressiveness of the requirements, we reduce the volume
of updates that are retained at the server, thus reducing merge efficiency. How-
ever, even considering that CoopSLA is less effective with stronger consistency
requirements, the results show that even a fairly strict set of requirements is able
to obtain more than 20% bandwidth savings over the version that does not use
CoopSLA.

7 Related Work

In this section we discuss prior work on the two topics that are more closely
related with our work: divergence bounding and consistency in cooperative edit-
ing.

7.1 Divergence Bounding in Optimistic Replication

Designers of replicated systems typically choose between pessimistic and opti-
mistic consistency models[12]. In many cases, however, neither the performance
overheads imposed by strong consistency neither the lack of limits for inconsis-
tency are acceptable to applications. An interesting alternative called divergence
bounding consists in allowing updates to be managed optimistically, but define
under which conditions replicas are required to converge and how to enforce that
convergence. Real time guarantees [1], for example, allows replicas to remain stale
for a specified maximum time, before they are required to synchronize. Order
bounding, another simple solution, limits the number of updates that can be
applied to a local replica without synchronization[5].

The TACT[21] framework proposes a multi-dimensional approach to diver-
gence bounding that unifies in a single model three metrics: real-time guaran-
tees, order bounding and a novel metric called Numerical Error that bounds
the total number of updates, across all replicas, that can proceed before replicas
are forced to synchronize. Our work distinguishes from TACT by embodying
the notion of locality-awareness into the consistency model. This allows our sys-
tem to implicitly assign different priorities to different updates that may vary
throughout execution.

Vector Field Consistency (VFC) [13,17] is a consistency model for mobile
multiplayer games that enables replicas to define their consistency requirements

Semantic and Locality Aware Consistency for Mobile Cooperative Editing 395

in a continuous consistency spectrum. The novelty of the VFC model is that it
combines multi-dimensional divergence bounding with locality-awareness to im-
prove the availability and user experience while effectively reducing bandwidth
usage. Consistency between replicas strengthens as the distance between objects
decreases. To define these mutable divergence bounds, around pivots there are
several concentric ring-shaped consistency zones with increasing distance (ra-
dius) and decreasing consistency requirements (increasing divergence bounds).
Then, in each zone, like in TACT, programmers define a 3-dimensional vector:
time, sequence, value.

7.2 Consistency in Cooperative Editing

The issue of maintaining replica consistency in cooperative applications has been
extensively studied in the last two decades. The most representative solutions
fall into the Operational Transformation (OT)[2,15,14,7,16,20] category. In OT,
each locally generated operation is associated with a timestamp and broadcast to
the remaining sites. Then, each remote update received is transformed (e.g., by
adjusting its insert/delete index) in order to commute with concurrent operations
already applied to the shared document. As a result, transformed operations can
be executed without re-ordering previous applied operations.

OT transforms updates in order to make them commute. A recently introduced
alternative is to make every operation automatically commutative by represent-
ing the document as a Commutative Replicated Data Type (CRDT)[9,8,18,11,19].
The CRDT approach considers that a document is composed of a sequence of im-
mutable and uniquely identified elements that can be any non-editable component
of a document, like a character or a graphics file. Commutativity is achieved by
designing an identifier space that ensures that it is always possible to create a new
identifier between two existing ones[9].

To the best of our knowledge, neither approach (OT or CRDTs) considers the
dynamically changing interest of the users in the different semantic regions of a
document; instead, they propagate every update with the same static priority.
Moreover, CoopSLA can use either OT or CRDT as building blocks for update
propagation. As described in Section 4.2, in our current implementation we used
CRDTs.

8 Conclusion

In this paper we presented a semantic and locality aware consistency model
for cooperative editing applications. Our model, named CoopSLA, explores the
heterogeneous and dynamic interest of users in different regions of a document
space in order to reduce communications between the participants of an editing
session. CoopSLA assigns, on a per-user basis, different priorities to different up-
dates, based on the semantic distance between the place in the document where
the update is performed and the places in which the user is more interested.
Updates with high priority are sent frequently to the client, while low priority

396 A. Pessoa Negrão et al.

updates are postponed and, when possible, merged. Each priority level is char-
acterized by a multidimensional consistency degree that defines how many and
how long updates to a particular object are allowed to be postponed.

We implemented a middleware layer enforcing CoopSLA and extended the
popular Tex editor TexMaker with cooperative features using it. We conducted
a series of tests to experimentally evaluate the performance of CoopSLA. The
results presented in this paper support our claim that CoopSLA is very effec-
tive in reducing the overhead of replica synchronization without constraining
application models and respecting their consistency need.

References

1. Alonso, R., Barbara, D., Garcia-Molina, H.: Data caching issues in an infor-
mation retrieval system. ACM Trans. Database Syst. 15(3), 359–384 (1990),
http://doi.acm.org/10.1145/88636.87848

2. Ellis, C.A., Gibbs, S.J.: Concurrency control in groupware systems. In: SIGMOD
1989: Proceedings of the 1989 ACM SIGMOD International Conference on Man-
agement of Data, pp. 399–407. ACM, New York (1989)

3. Ellis, C.A., Gibbs, S.J., Rein, G.: Groupware: some issues and experiences. Com-
mun. ACM 34, 39–58 (1991), http://doi.acm.org/10.1145/99977.99987

4. Imielinski, T., Badrinath, B.R.: Mobile wireless computing: challenges in data man-
agement. Commun. ACM 37(10), 18–28 (1994)

5. Krishnakumar, N., Bernstein, A.J.: Bounded ignorance: a technique for increasing
concurrency in a replicated system. ACM Trans. Database Syst. 19(4), 586–625
(1994)

6. Li, D., Anand, M.: Majab: improving resource management for web-based appli-
cations on mobile devices. In: Proceedings of the 7th International Conference on
Mobile Systems, Applications, and Services, MobiSys 2009, pp. 95–108. ACM, New
York (2009), http://doi.acm.org/10.1145/1555816.1555827

7. Li, R., Li, D.: A new operational transformation framework for real-time group
editors. IEEE Transactions on Parallel and Distributed Systems 18(3), 307–319
(2007)

8. Oster, G., Urso, P., Molli, P., Imine, A.: Data consistency for p2p collaborative
editing. In: CSCW 2006: Proceedings of the 2006 20th Anniversary Conference on
Computer Supported Cooperative Work, pp. 259–268. ACM, New York (2006)

9. Preguiça, N., Marques, J.M., Shapiro, M., Letia, M.: A commutative replicated
data type for cooperative editing. In: ICDCS 2009: Proceedings of the 2009 29th
IEEE International Conference on Distributed Computing Systems, pp. 395–403.
IEEE Computer Society, Washington, DC (2009)

10. Preguiça, N., Martins, J.L., Domingos, H., Duarte, S.: Data management sup-
port for asynchronous groupware. In: Proceedings of the 2000 ACM Conference on
Computer Supported Cooperative Work, CSCW 2000, pp. 69–78. ACM, New York
(2000), http://doi.acm.org/10.1145/358916.358972

11. Roh, H.G., Jeon, M., Kim, J.S., Lee, J.: Replicated abstract data types: Building
blocks for collaborative applications. J. Parallel Distrib. Comput. 71(3), 354–368
(2011), http://dx.doi.org/10.1016/j.jpdc.2010.12.006

12. Saito, Y., Shapiro, M.: Optimistic replication. ACM Comput. Surv. 37(1), 42–81
(2005)

http://doi.acm.org/10.1145/88636.87848
http://doi.acm.org/10.1145/99977.99987
http://doi.acm.org/10.1145/1555816.1555827
http://doi.acm.org/10.1145/358916.358972
http://dx.doi.org/10.1016/j.jpdc.2010.12.006

Semantic and Locality Aware Consistency for Mobile Cooperative Editing 397

13. Santos, N., Veiga, L., Brandt, F.: Vector-Field Consistency for Ad-Hoc Gaming.
In: Cerqueira, R., Campbell, R.H. (eds.) Middleware 2007. LNCS, vol. 4834, pp.
80–100. Springer, Heidelberg (2007)

14. Shao, B., Li, D., Gu, N.: A fast operational transformation algorithm for mobile
and asynchronous collaboration. IEEE Transactions on Parallel and Distributed
Systems 21(12), 1707–1720 (2010)

15. Sun, C., Ellis, C.: Operational transformation in real-time group editors: issues,
algorithms, and achievements. In: CSCW 1998: Proceedings of the 1998 ACM
Conference on Computer Supported Cooperative Work, pp. 59–68. ACM, New
York (1998)

16. Sun, D., Sun, C.: Context-based operational transformation in distributed col-
laborative editing systems. IEEE Trans. Parallel Distrib. Syst. 20(10), 1454–1470
(2009), http://dx.doi.org/10.1109/TPDS.2008.240

17. Veiga, L., Negrão, A., Santos, N., Ferreira, P.: Unifying divergence bounding and
locality awareness in replicated systems with vector-field consistency. J. Internet
Services and Applications 1(2), 95–115 (2010)

18. Weiss, S., Urso, P., Molli, P.: Logoot: A scalable optimistic replication algorithm
for collaborative editing on p2p networks. In: ICDCS 2009: Proceedings of the
2009 29th IEEE International Conference on Distributed Computing Systems, pp.
404–412. IEEE Computer Society, Washington, DC (2009)

19. Wu, Q., Pu, C., Ferreira, J.: A partial persistent data structure to support consis-
tency in real-time collaborative editing. In: 2010 IEEE 26th International Confer-
ence on Data Engineering (ICDE), pp. 1707–1720 (March 2010)

20. Xia, S., Sun, D., Sun, C., Chen, D., Shen, H.: Leveraging single-user applications for
multi-user collaboration: the coword approach. In: CSCW 2004: Proceedings of the
2004 ACM Conference on Computer Supported Cooperative Work, pp. 162–171.
ACM, New York (2004)

21. Yu, H., Vahdat, A.: Design and evaluation of a conit-based continuous consistency
model for replicated services. ACM Trans. Comput. Syst. 20(3), 239–282 (2002),
http://doi.acm.org/10.1145/566340.566342

http://dx.doi.org/10.1109/TPDS.2008.240
http://doi.acm.org/10.1145/566340.566342

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 398–415, 2012.
© Springer-Verlag Berlin Heidelberg 2012

Foster an Implicit Community
Based on a Newsletter Tracking System

Tiago Lopes Ferreira and Alberto Rodrigues da Silva

Instituto Superior Técnico de Lisboa
Lisbon, Portugal

tiagohenrique@ist.utl.pt, alberto.silva@acm.org

Abstract. Communities have explored the virtual world as a tool to improve
their communication. However, when the number of interactions was managea-
ble in its face-to-face manner, the same was not true when the Internet became
the main communicator. The number of interactions grows at a pace that is very
hard for communities to control. As a consequence connections get lost or for-
gotten and communities lose the chance to perceive individuals’ relations. It is
in this gap that the “Newsletter Tracking System” (NTS) comes as an automatic
tool that allows communities to capture connections between individuals
through their interactions with newsletters. By storing the data on individuals’
interactions, NTS discovers implicit connections between individuals and fos-
ters an implicit community. In addition, it uses clustering algorithms to allow
communities to better understand how individuals relate to each other and it
proposes a “Connection Degree” model (CD) to measure the connections’
strength among individuals. NTS and CD were developed and evaluated within
Nano-Tera.ch scientific community. At the end, the results showed that implicit
communities can be an advantage for real communities to better organize indi-
viduals, share knowledge, and promote teamwork.

Keywords: Community, Newsletter Tracking System, Connection Degree, Im-
plicit Connection.

1 Introduction

New technologies have changed the way people interact by providing new approaches
to communicate, share, and stay connected to each other. The Internet has revolutio-
nized the computer and communication worlds like nothing before [13], and today it
reaches any field and affects the way society builds connections. People can create
their own network of contacts and share information with anyone around the world.
The more people interact, the more their network of interactions grows [15]. Like-
wise, communities started to change from groups to networks and to take advantage
of the Internet as communication tool [23]. In 1993, the concept of “Virtual Commun-
ities” [25] came to live and also the research on the relation between communities and
the Internet. Virtually, communities have no restriction on the number of connections
and the way they can explore them. When tracking all individuals’ connections was

 Foster an Implicit Community Based on a Newsletter Tracking System 399

extremely difficult in the physical world it becomes an easier target in the virtual
sphere. Technology brought people together as well as their own interests, curiosities,
hobbies, professions, and so on. Each time people go online they become exposed and
their interactions can be stored as connections with something or someone.

The connections can be defined as explicit connections, if they are clearly ex-
pressed by individuals (e.g. individuals’ friends or followers), or as implicit connec-
tions, every time they are implied (e.g. individuals’ interests). Facebook is a good
example on explicit and implicit connections. Although friend requests results from
the explicit activity of sending a request, the action of clicking a friends’ post can
result into an explicit relation between the user and the post subject and into an impli-
cit connection with another user who have clicked the same post.

Both explicit and implicit connections are important to understand individuals and
communities’ network. Explicit connections ensure the knowledge-base on individu-
als’ relations and implicit relations improve that knowledge. An explicit behavior “is
controllable, intended, made with awareness, and requires cognitive resources” [6].
Individuals have clear sense of explicit activities and this makes explicit relations
extremely important when defining individuals and communities’ networks. Howev-
er, the study on explicit connections can be very limited if individuals do not share
behavior and interests. To fill the gap, implicit connections can be used and exploded
as long as individuals continue to interact with content and people. Implicit connec-
tions are based on individuals’ unconscious interactions and can be tracked if they
occur virtually. In the presented study an interaction between an individual and the
newsletter is stored as an explicit connection between the individual and the subject.
Then the explicit connection “individual-subject” is translated into an implicit con-
nection “individual-individual”. Implicit connections are important to help a network
of connections to be evolved beyond individuals’ explicit behavior. The more interac-
tions an individual does, the stronger is the implicit knowledge in the network [21].

The problem arises when capturing and analyzing individuals’ implicit connections
at the rate they grow. Data management becomes difficult to handle and implicit pat-
terns harder to find. As consequence, “the connections between individuals, groups,
and information becomes lost, or forgotten, and individuals and groups become more
isolated” [11]. In the presented case-study of Nano-Tera.ch [16], a scientific commu-
nity at Switzerland, the governing bodies were aware of the complexity on capturing
researchers’ connections as the community grew. The goal of exploring implicit con-
nections was difficult to achieve due to the increase number of interactions and the
high complexity on capturing researchers’ interactions. Nano-Tera.ch was interested
in understanding how its community was implicit organized but had no way to cap-
ture and promote interactions between researches. In fact, Nano-Tera.ch needed an
automatic tool able to track the connections among researchers and organize them
into results. In addition, there was the goal of finding a way to classify implicit con-
nections in order to measure the connection’s strength and thus understand the con-
nections’ influence in the discovered universe.

The presented research developed a tool with Nano-Tera.ch to enable communities to
capture implicit connections between individuals and also to design a way to measure
the connection degree among individuals. The “Newsletter Tracking System” (NTS) is

400 T.L. Ferreira and A.R. da Silva

that developed web tool to discover implicit connections between individuals based on
their interactions with newsletters. Each interaction is stored and translated into a rela-
tion between the individual and the content. At the end, individuals that have interacted
will be related through newsletters’ content and therefore implicit related to each other.
The “Connection Degree” (CD) model is based on explicit and implicit behavior and it
proposes a way to measure the connections’ strength among individuals. Individuals are
organized into a network of connections and each connection is related to a connection
degree value expressing its strength in the network. The higher the connection degree is,
the higher the importance of the relationship is for the community.

This paper is structured in 6 sections. The presented introduction as the section 1
and the section 2 as the description of NTS as a tool for communities to explore im-
plicit connections. Section 3 explains the CD model and ends with section 4 where it
is described the results according to the practical case study of Nano-Tera.ch commu-
nity. By the end, section 5 explores some of the related work and section 6 presents
several research conclusions.

2 The Newsletter Tracking System

Communities have taken their step into the virtual world and have included the web
tools in their habits. Emails, forums and blogs became part of communities’ ways to
interact. However, when the number of connections between individuals increases,
the task of controlling the implicit growing is difficult to monitor.

Through interactions with newsletter the “Newsletter Tracking System” (NTS)
proposes a way to capture individuals’ interactions, discover implicit connections, and
so foster an implicit community. NTS uses electronic mail technology to reach indi-
viduals, and newsletters to promote interactions and discover implicit connections
among individuals. According to Bellotti Ducheneaut “even colleagues having offices
next to each other, or sitting in plain sight of each other, still use e-mail as a principal
communication medium” [5]. Also the fact that email is used worldwide and one of
the most known tools makes it one of the tools to better reach individuals and capture
interactions. The use of newsletters comes as the way to capture individuals’ interac-
tions. It gives communities the freedom to design their content and define the
newsletter according to individuals’ interests. In addition, communities can use their
newsletters to extract individuals’ interactions while keeping them updated.

In the context of the NTS, a newsletter is defined as a set of news collected into an
HTML file. Its content can be defined by several authors and thus result on a colla-
borative common information space. The periodicity (e.g. monthly) defines the pace
at which information reaches individuals and it is defined by the community itself.

2.1 System Overview

The NTS is an online tool that allows communities to foster an implicit community
based on individuals’ interactions with newsletters. In fact, the NTS supports the
relationship between the community and the individuals by providing the tracking
tool for the community (Fig. 1). The community itself is managed by a “Community

 Foster an Implicit Community Based on a Newsletter Tracking System 401

Manager” that is responsible for triggering the tasks at the NTS. Based on the goal of
“Fostering an Implicit Community”, the community manager depends on the NTS to
achieve it. This relationship is based on a goal dependency and expressed as a relation
“depender-dependee”1, where the “Community Manager” (the “depender”) depends
on the “Newsletter Tracking System” (the “dependee”) to achieve the goal.

Fig. 1. System Overview

The NTS is responsible for making the decisions that are necessary to achieve the
goal and the community manager does not care how the NTS goes about achieving it.
On the other hand the NTS has a resource dependency with the community manager.
The NTS depends on the community manager to provide the newsletter so it can per-
form the tasks, satisfy the goals, and also provide the resources. Without all the input
elements no further links can be followed and the model stops.

The relationship between the NTS and the individual is also based on goal and re-
source dependencies. In order to satisfy the goal of “Capturing Interactions”, the NTS
depends on the individuals to “Interact” with the “Newsletter” that is a resource de-
pendent on the NTS. The dependency happens in both directions. The NTS needs the
individuals to interact with the newsletter, and the individuals need the NTS to pro-
vide the newsletter in order to achieve the goal of interact. If some of the elements in
the relationships does not do its role as a “dependee”, both parts end up not achieving
their goals. The link between the goals “Interact” and “Capture Interactions”
represents a “means-ends” link. The mean of interact has an end of capture interac-
tions, which are then used for the NTS.

1 The used terminology as well as the presented schemas are based on i* framework defined

by Yu Eric [24]. It “conceives of software-based information systems as being situated in en-
vironments in which social actors relate to each other in terms of goals to be achieved, tasks
to be performed, and resources to be furnished” [9].

402 T.L. Ferreira and A.R. da Silva

The presented model is based on a dependency model of goals, where the actors
“Community Manager”, “Newsletter Tracking System”, and “Individual” are de-
pended on each other based on goals. The direction of the dependency link defines the
way the goal is achieved, i.e. which actor, task, or resource the goal depends on. Also,
on the relationships where the “Newsletter” is a resource, the “Community Manager”
represents the “depender” regarding the link with the NTS (the “dependee”), and the
“Individual” the “dependee” in the relation with the NTS.

In a deep exploitation of the NTS, this is based on the three main tasks of “Upload
Newsletter”, “Send Newsletter”, and “Analyze Data” (Fig. 2). The community man-
ager’s goal of foster an implicit community is decomposed into three different tasks
that are trigger by him and performed by the NTS. Although the relationship between
the community manager and the NTS is a goal dependency, it can be described as a
decomposition of three tasks that need to be performed in order to achieve the goal.

Fig. 2. Newsletter Tacking System Overview

The dependency links show the order in which tasks must be performed. Only the
tasks that do not have any dependency links going out can be performed right away
the community manager wants to meet his goal. In this case all the tasks are “depend-
ers” and need their “dependees” to run. By following the dependency links, the inter-
pretation is that the “Upload Newsletter” task can be performed as soon as the
“Community Manager” provides the “Newsletter”, then the “Send Newsletter” task,
and by the end the “Analyze Data” task. Thus, in order to the “Community Manager”
achieve the goal of “Foster an Implicit Community” he needs to trigger on the “New-
sletter Tracking System” the task “Upload Newsletter” by providing the “Newsletter”
as the input, then the “Send Newsletter” task, and finally ask for the system to “Ana-
lyze Data”. The task “Send Newsletter” has the end goal of “Capture Interactions”
that is needed to perform the last task of “Analyze Data”. Again the “Individual” is
responsible for meeting the goal of “Interact” and close the cycle of the dependency
links. Once all the dependency links are respected the goals can be reached and the

 Foster an Implicit Community Based on a Newsletter Tracking System 403

NTS is able to help communities to fostering an implicit community based on indi-
viduals’ interactions with newsletters.

2.2 Upload Process

The process of capture and detect implicit connections among individuals starts with a
community uploading a newsletter into the NTS. The upload process is described as
the first interaction between a community and the NTS. At this stage, a community
reveals its interest on capturing individuals’ interaction and on fosters an implicit
community. The process can be represented by Fig. 3 where the “Community Manag-
er” and the “Newsletter Tracking System” are the only actors. The model starts with
the dependency goal of “Upload Newsletter” between the community manager and
the NTS. In order to the community manager satisfy his goal of uploading the new-
sletter he needs the NTS to perform the task “Newsletter Uploading”. On the other
hands, the NTS needs the “Newsletter” resource given by the community manager.
Thus, he should first design the newsletter and then meet the goal of uploading it.

Fig. 3. Upload Process

The newsletter is described as the main resource for the system since it is the ele-
ment that is shared with individuals. The community manager is responsible for
choosing the content, designing the newsletter, and be aware of the newsletter’s im-
portance as a promoter of interactions. The better a newsletter meets the individuals’
needs, the higher the number of interactions. This responsibility is given to communi-
ties once they know better what individuals’ desire and expect.

As soon as the newsletter is ready to send, the community manager is able to in-
itiate the upload process by triggering the task “Newsletter Uploading” on the NTS
and providing the newsletter as a resource. At this stage the NTS is able to decompose
the task into two different tasks - “Identify Links’ Type” and “Identify Links’ Catego-
ries”. On the first task the NTS will process the newsletter and identify the type of all
the links. The type is defined as the way links can be illustrated and can be identified

404 T.L. Ferreira and A.R. da Silva

as “Text” if the link is represented by text or as “Image” is an image extends for the
link. This analysis allows communities to understand how individuals prefer the in-
formation to be exposed.

The next task of “Identify Links’ Categories” on the NTS depends on the “Com-
munity Manager” to perform it. For each link the community manager has to identify
its category in order to the NTS complete the process of uploading. The task depen-
dency is based on the community manager’s responsibility to define which categories
fit best the links. The NTS presents him the uploaded newsletter with all the links
followed by a combo box of categories, which is filled, based on a list of categories
provided by the community manager. This categorization is what allows the NTS to
discover implicit connections among individuals. Each time an individual clicks a
link, the action is stored as a relation between the individual and the category of the
link. At the end the individuals will be related with categories and implicit connected
to each other based on these categories.

2.3 Send Process

To meet the goal of discovering implicit connections among individuals, the commu-
nity needs to reach individuals’ emails and let the NTS to capture the interactions
with the newsletters. The process is described by Fig. 4 and starts with the goal of
“Send Newsletter”, triggered by the “Community Manager”, and task dependency on
the NTS “Sending Process”. Once the request reaches the NTS the task is decom-
posed into two different tasks, which according to the dependency links direction
should start with the “Links’ Tracking” task. However, the resource dependency on
the “Newsletter” comes from the community manager through the “Upload Process”.

Fig. 4. Send Process

Once the dependency links are respected the NTS starts the task of tracking the new-
sletter’s link by replacing them by malicious links. Each link is based on a standard
URL defined by the NTS and shaped according to the following schema.

base-url/code/user-id/link-id/newsletter-id/

 Foster an Implicit Community Based on a Newsletter Tracking System 405

The “base-url” represents a common prefix to all the links, namely the path to the
server where the NTS is working. The “code” defines one of the possible actions:
opening the email, clicking a link, sharing the newsletter, or seeing it online. The
“user-id” identifies the individual who trigged the action, the “link-id” which link was
clicked, and the “newsletter-id” the newsletter in what the action was performed. The
elements are all automatically generated by the NTS and put together in order to build
a tracked newsletter for each individual. The newsletters are then the key elements to
perform the task of “Send Emails”, where the community manager performs is last
interaction with the NTS by proving the “Mailing List” resource, which contains the
list of emails to which the newsletter is going to be sent.

The task of sending the emails with a tracked newsletter has the end of “Capture
Individuals’ Interaction”. Once the newsletter reaches the “Individual” all the remain-
ing process depends on him, namely on his interactions with the newsletter. The de-
pendency process starts with individuals opening their emails with the tracked
newsletter and ends with individuals’ clicking the links.

2.4 Tracking Process

The core component in the NTS boils down to the tracking process, where all individ-
uals’ interactions are capture and stored into the database. Each time an individual
clicks a link in the newsletter, the action is stored into the NTS as an interaction be-
tween the individual and the newsletter. The follow schema Fig. 5 explains how the
tracking process is managed in the NTS and how actors play their roles. “Individual”
plays the main role as the tracking process booster by performing the task of “Click a
Link” on the “Tracked Newsletter”. The task is then decomposed into the tasks
“Track Interaction” and “Get Real Link”.

Fig. 5. Tracking Process

Before storing the interaction the NTS performs the task of getting the real link. It
converts the tracked link into the original link to which the individual wants to navi-
gate. The task is completed when all the tasks under it are also performed. In this case
the contribution link “And” symbolizes that the parent “Get Real Link” is satisfied if

406 T.L. Ferreira and A.R. da Silva

the offspring “Forward Individual” is also satisfied. The NTS should satisfy the goal
of “Navigate to the Link” by translating the tracked link into the real link and forward
the individual. Once the individual navigates to the link, the NTS loses the individu-
al’s track and no more interactions are stored.

The task “Track Interaction” is based on the data storage of the interaction. At this
stage, the NTS stores all the information compiled on the tracked link. The system
stores the information about the clicked newsletter, link, individual, and time. The
information is stored into the database and used for data analysis. At the end, the task
of tracking the interaction has the end of “Discover Implicit Connections” among
individuals, where the “Community Manager” appears as the actor responsible for
triggering the processes in order to meet the goal.

From the newsletter design to the foster of an implicit community, the NTS is a so-
lution based on the actors “Individual” and “Community Manager” to get the re-
sources, perform the tasks, and achieve the goals. Through dependency links the
schemas show how the solution works and how all the pieces fit together.

2.5 Data Analysis

The captured data on individuals’ interactions is the most important asset and the one
that allows communities to foster implicit communities. The more data the NTS is
able to capture, the stronger will be the results on individuals’ implicit connections
and the greater the value of the discovered networks. The NTS is able to expose the
captured data by organizing it into visuals and allowing communities to export it.

Although the analysis on a particular newsletter is available right after the newslet-
ter is sent, it is up to the community manager decide when the analysis should be
carried out. To help on this decision the NTS provides overall information on the
newsletter, such as time passed – total number of days that have passed since the
newsletter was sent –, the total number of individuals who interacted with the new-
sletter, and the total number of clicks. This information is useful to have an overview
of the newsletter’s impact and to monitor the results. On a further analysis the NTS
divides the presentation of the data into a set of sections:

1. Links’ Type. Organizes the links by their type – “Text” or “Image” – and presents
the percentage of clicks on both types. The analysis allows communities to under-
stand the best approach to design newsletters. If individuals interact more with im-
age-based or text-based links.

2. Links’ Categories. Presents the categories of the newsletter followed by percen-
tage of clicks gather on each. At the end, communities will be able to understand to
which categories individuals showed more interest, and who was the category with
higher impact on individuals. This categorization is also used to relate individuals
with categories and thereby discover implicit connections among them.

3. Individuals’ Category Clustering. On clustering, the NTS uses individuals’ inte-
ractions to cluster them by categories. A relation “individual-link” is translated into
a relation “individual-category” and the individual is added to the category cluster
followed by his total number of clicks on the category. The clustering allows
communities to discover all the “category-individual” relations and thus followers.

 Foster an Implicit Community Based on a Newsletter Tracking System 407

4. Implicit Connections. The NTS translates the relations “individual-category” into
implicit connections “individual-individual” and assigns them a “Connection De-
gree” in order to communities have a way of measure the connections. The value is
based on individuals’ interactions with categories and on their explicit preferences
on the categories. However, in order to visualize the implicit community-based the
NTS uses external tools such as Vizster [12] and NodeXL [17].

5. Data Export. The process of exportation is what allows communities to export the
data in order to use it on external tools. The NTS enables the data to be exported in
the file formats of XLS and XML. The goal is to allow communities to exploit the
data the way they want and do not limit its exploitation to what NTS offers.

At this stage communities are able to have an overview of individuals’ implicit con-
nections. Once the newsletters reach individuals it all comes to individuals’ interac-
tions. The NTS will automate the process of sending the newsletters to individuals
and track each newsletter in order to capture interactions. The system is also respon-
sible for capture every click and translate it from a relation “individual-link” to a rela-
tion “individual-category”. At the end, the relations will be used to foster an implicit
community based on individuals’ implicit connections.

3 Connection Degree

With communities having the ability to discover implicit connections among individ-
uals, it becomes important to understand the value of each connection in the discov-
ered universe. In a scenario where all individuals click in all the categories, they will
be all implicit connected and the community will find it harder to take conclusions.
On the other hand, with a way to measure the value of each connection in the net-
work, the community will have the chance to create their own thresholds and filter the
implicit connections.

The connection degree model proposes a way to measure the connection strength
between every two individuals by calling it “Connection Degree” (CD). The higher
the CD, the stronger the relationship between two individuals. The CD model uses
both explicit and implicit connections to calculate the explicit and implicit degrees in
the CD. While the implicit degree is based individuals’ implicit connections, the ex-
plicit degree comes from individuals’ preferences on the newsletters’ categories.

An individual can express his categories interest by explicitly checking a category
as preferred. This process is done through the NTS, where individuals can navigate to
a “Preferences Page” through their newsletters and check or uncheck their preferences
on the categories. Thus, a checked category is understood as a positive preference, an
unchecked category as a negative preference, and an unknown preference when no
explicit action is performed. The explicit degree will affect the final CD in a “Catego-
ry Importance” () value, defined by the community and that represents the impor-
tance of the individuals’ preferences in the equation.

 : , 0, , 0 ≤ ≤1 (1)

408 T.L. Ferreira and A.R. da Silva

On the other hand, implicit degree is calculated based on individuals’ clicks on new-
sletters. The action of clicking a link is stored as an implicit connection between the
individual and the link, and between the individual and the link’s category. The con-
nections are then used to calculate the implicit degree equation on the CD. On the first
relations “individual-link”, the connections are organized into a matrix where
both rows () and columns () represent individuals and the values () the total
number of links that both individuals have clicked in common.

 (2)

Regarding the relations “individual-category”, individuals are also organized into a
matrix where rows represent all pairs of every two individuals , and columns
the categories (). The implicit value is then calculated based on the following equa-
tion.

 , , (3)

Where represents the total number of clicks that individual gave in the category and the the explicit degree (1) for the individual . The implicit value for
the two individuals , in the category () is then calculated based on the mini-
mum value of both individuals’ total number of clicks in the category times the sum
of both explicit degrees. The first part of the equation represents the minimum value
on the individuals’ categories-based relation and the second part expresses the indi-
viduals’ explicit interests on the categories. The explicit degrees are added to this
equation once it contains the calculation on individuals’ implicit connections per cat-
egory.

The next step translates the relations “individual-category” to the implicit relations
“individual-individual”. Individuals are organized into a matrix where rows
() and columns () represent individuals (and the values the sum of all (3) equa-
tions for all categories (∑ 3).

∑ , ∑ ,∑ , ∑ , (4)

The final value for the CD between every two individuals is calculated by performing
a syntax sum of both resulted matrix from (2) and (4) but with the multiplication op-
erator. At the end only one of the sides of the matrix is taken into account, i.e. a lower
or upper triangular matrix, and excluded the diagonal. This will ignore duplicated pair
and take only one CD into account.

 2 4 2 42 4 2 4 (5)

 Foster an Implicit Community Based on a Newsletter Tracking System 409

The multiplication of both values brings together the implicit connection on links and
categories, and reveals the final connection degree for every two individuals. The
multiplication as the final operator helps to highlight connections where a click can
make a difference. Once the results are based on newsletter’s interaction, each click
should have a significant value so it can positively influence the CD. The CD will
allow communities to compare and highlight the most important implicit connections.

The CD model brings to the NTS value on measuring implicit connections and al-
lows communities to have a better overview of the implicit community. The NTS is
responsible for capturing and discovering implicit connection and the CD model for
assigning every connection a CD value.

4 Evaluation: The Nano-Tera.ch Case Study

The evaluation of this research was done inside the Nano-Tera.ch community. A
scientific Swiss federal program with more than 40 projects on the subjects of “Secu-
rity”, “Heath”, and “Environment” [16]. Nano-Tera.ch diversity goes from different
projects to the hundreds of researchers around the world. Thus, in order to capture
knowledge on the Nano-Tera.ch community, the management structure at Nano-
Tera.ch decided to run the research project “Community Knowledge Development”
(CKD) [6]. Within other goals, the CKD was trying to understand how researchers
were related and how connections could be explored in order to improve researchers’
work and promote collaboration.

The research project CKD supported the development and the evaluation of both
NTS and CD model at Nano-Tera.ch community. This project took place during 6
months and the community management designed 6 newsletters to send to the com-
munity and to evaluate the system itself. However, the presented results are based on
the top 3 of the newsletters regarding interest and reliability. The overall information
on the newsletters was more than 3000 of emails sent (1000 per newsletter) and about
1200 of captured clicks. In addition, Nano-Tera.ch tried to maintain the same thou-
sand of individuals (i.e. emails sent) for every newsletter in order to collect data from
different sources but for the same individuals.

4.1 Links’ Type

The results focus on trying to understand to what kind of information-exposure indi-
viduals interact more - “Text” or “Image”. Each newsletter’s topic was introduced
with an “image” followed by the “text” to which individuals had the chance to inte-
ract and reach the same information. This analysis is important for communities to
better design newsletters. Individuals at Nano-Tera.ch community have showed their
strong interest on information as “Text” with more than 96% of interactions on links
linked to text and 4% on links assigned to an image.

4.2 Categories

Nano-Tera.ch decided to define a category for each of the research topics – Health,
Environment, and Security – plus a topic related with the community itself – Nano-
Tera.ch. The categories were all organized so that all were present in the newsletters.

410 T.L. Ferreira and A.R

At the end, the results show
Environment (27%) and Se
results on Heath can be po
were born on the Heath cate

4.3 Connection Degree

To illustrate the results on
Based on the Microsoft Ex
based on every input value
(edges) were organized into
to calculate edges’ width an
the implicit relations with a
connections and have a clea

The size of the nodes rep
performed and the label on
tion. The colors represent
sented connections. By loo
both individuals having mo
ters. Adding to this, thei
represented by cluster C. T
20 clicks in the newsletter
(cluster D). On the other si
high CD between them, fo
cluster F (“Environment”),
gories. The CDs at the clu
between individuals with a

4.4 Clusters Detection

The results on clustering d
[12]. Vizster is a social net
rithm to discover clusters in

A B

G H

R. da Silva

wed individuals preferences on Health (41%), followed
ecurity (23%), and finally Nano-Tera.ch (9%). In fact,
ssibly explained due to the higher number of projects t
egory and to the Nano-Tera.ch strong research on Health

e

the CD model it was used the external tool NodeXL [1
xcel, the NodeXL enables the exploration of a commun
. In this case, individuals (nodes) and implicit connecti
o a graph and the calculated CDs were used as input val
nd define edges’ labels. The presented results are based
a D higher than 7, in order to highlight the most import
arer view of the relevant nodes on the network (Fig. 6).

Fig. 6. Connection Degrees

presents the total number of clicks that the individual h
the edges the CD degree calculated to the implicit conn
the Girvan-Newman algorithm only applied to the p

oking at the results the higher CD has a value of 20, w
ore than 6 clicks on the exactly same links on the news
ir strong relation is based on the “Security” catego
The biggest node represents the individual with more t
rs and with a strong interaction on the “Health” categ
ide, individuals at the cluster A (“Nano-Tera”) have als
ollowed by the cluster B (“Health” and “Security”),
and the two isolated clusters G and H with almost all ca
ster C shows that the “Security” category is the strong
high CD.

detection were performed using the external tool Viz
work visualization system that uses Girvan-Newman al

n a network of connections.

C D F

d by
the

that
h.

17].
nity
ions
lues
d on
tant

have
nec-
pre-
with
slet-
ory,
than
gory
so a
the

ate-
gest

ster
lgo-

 Foster an Impli

The NTS organizes impl
nodes and connections as e
use Vizster to visualize NT
ters. The results on the Na
nized into 4 different cluste
based on individuals with s
individuals with high intere
highly interested on “Securi

4.5 Discussion

Once the data is gathered an
understand the results and
the Nano-Tera.ch case stud
Tera.ch offices. On links’ t
racting with a higher num
showed that individuals hav
content. A brief description
click it. On the other hand,
but a low level of interactio
“Text” allows individuals to

On categories, “Health”
preferences on the subject.
Health and the Nano-Tera.c
categories of “Environmen
number of projects and wi
fact that Nano-Tera.ch des

icit Community Based on a Newsletter Tracking System

Fig. 7. Clusters Detection

licit connections into a network by defining individuals
edges. Through data exportation, communities are able
TS discovered network and organize individuals into cl
ano-Tera.ch community showed that individuals are or
ers (Fig. 6). The details show that the Cluster #1 is mai
strong interest on “Nano-Tera” category; the Cluster #2
est on “Health”; and the Cluster #3 and #4 on individu
ity” and “Environment” respectively.

nd the results achieved, communities move efforts to be
extract their value. The presented discussion is based

dy and describes some of the conclusions reached at Na
type, individuals revealed their text-oriented focus by in
mber of text-based links than image-based. The res
ve a strong scientific focus and care about the newslette
n of a topic will better promote individuals to read it
images had a strong power on balancing newsletter des

on. In fact, “Images” help creating newsletter’s context
o go deeper in the subjects.
has proved its high number of interactions and individu
In fact, the results reflect the higher number of projects
ch main focus on Health issues. The balance between b

nt” and “Security” can be explained with the approxim
ith the proper division of the topics per newsletters. T
igned all newsletters with fresh news leads individuals

411

s as
e to
lus-
rga-
inly
2 on
uals

etter
d on
ano-
nte-
ults
ers’
and
sign
and

uals’
s on
both
mate
The
s to

412 T.L. Ferreira and A.R. da Silva

interact with almost all categories in order to stay updated. On the other hand, “Nano-
Tera.ch” category showed that individuals are interested in their own community.

By applying the Girvan-Newman algorithm through Vizster, Nano-Tera.ch can di-
vide individuals into 4 main clusters where relations represent implicit connections.
Clusters’ size showed that Cluster #2 is the biggest, followed by the Clusters #3, #4,
and #1, with their main categories on “Health”, “Security”, “Environment”, and “Na-
no-Tera.ch” respectively. The results showed that Nano-Tera.ch community is strong-
ly divided into its main categories and that individuals within a category have a strong
connection between them. The overlaps highlight individuals that connect categories
and are valuable nodes. In fact, those individuals turn out to be some of the most in-
fluential people in the community and with a high number of interactions. In the mid-
dle, Nano-Tera.ch has the most valuable individual, implicit connected to all clusters
and to a high number of individuals.

The final value on the CD allows communities to place implicit connection at the
same level and compare them. The CD model assigns to each connection a CD value
that describes how strong two individuals are related. CD is established between any
two of the main researchers at Nano-Tera.ch. Although they were connected on their
research area, the CDs on the cluster C show that the category has the strongest CD.
This fact can be translated to individuals being high related as a team. Moreover, the
result can be explained by the low interest on the other categories rather than “Securi-
ty”. The CD on the Cluster C is also high because individuals at security projects have
clicked on security links but ignored the other category links. It is also interesting to
note that CDs support the Girvan-Newman clustering algorithm by showing that indi-
viduals in a group have a strong CD between them. Even with a sample of all implicit
connections, the clustering algorithm continuous to cluster individuals into the four
main categories: “Nano-Tera”, “Security”, “Health”, and “Environment”.

Nano-Tera.ch used these results to promote collaboration between researchers and
to present to each research the people that showed interest on their work. Nano-
Tera.ch also identified the main followers and asked them to promote the newsletters
and to help reaching the maximum of researchers. In addition, the results were also
used to promote conferences on a topic that researchers showed interest and to answer
simple questions such as the number of interested people that may attend.

5 Related Work

The main work on using email as a source to extract information started with Schwatz
and Wood using email headers to extract shared interests between people through
graph theory [21]. However, that approach is very limited to the emails’ headers and
does not take into account the message’s body and the subject, which can be the rich-
est source on individuals’ interests. PeCo (Ogata and Yano, 1998) [18] collected us-
ers’ relationship through email headers (“From”, “To”, and “Subject”) but as well as
the previous solution does not focus on discovering and explore implicit connections
in a network. On the other hand, McArthur and Bruza discovered implicit connections
by mining semantic associations from people’s communications [11]. They proposed
a model called HALe that automatically creates a dimensional representation of words

 Foster an Implicit Community Based on a Newsletter Tracking System 413

based on the email corpus and uses it to discover a network of people implicitly con-
nected. However, that solution does not have any measure connections’ value.

Together with the referred works there are several track engines used for marketing
purposes, which are also able to send newsletters and track users’ interactions. An
example is the system developed by Foulger, Chipperfield, Cooper and Storms [7].
The system generates an email template and uses it to track all the receivers’ interac-
tions. However, the detection of key user through a connection degree can be harder
to achieve or difficult to understand once the model works in a black box.

Barão and Silva proposed an holistic and complex model to define the Relational
Capital Value (RCV) of organizations as well as online communities [2, 3]. Explicit
and also implicit relational connections (such as these discovered by the NTS) are
important for the RCV model application, hence for the determination of online
communities relational value.

6 Conclusion

The NTS allows communities to improve the quality of their knowledge on individu-
als’ relationships by introducing a web system able to send newsletters and gather
individuals’ interactions. Based on explicit and implicit connections NTS is able to
bring to light hidden relationships and to measure their CD trough the CD model.

At the end, communities are able to foster an implicit community and to explore
individuals’ connections based on analysis tools like NTS or exporting the data to
external tools for further analysis. The NTS brings value on its ability to capture and
expose individuals’ implicit relationships through a network. By designing newslet-
ters, communities are able to better understand individuals and to improve the way
they explore individuals’ implicit connections. We believe that the NTS and the CD
model can help communities to have a more valuable overview of their network.

Acknowledgements. This research was supported by the Strategic Executive Com-
mittee of Nano-Tera.ch which is a program financed by the Swiss Government. Spe-
cial thanks to all Community Knowledge Development team Dr. Peter Bradley, Dr.
Nitesh Khilwani, and Madhur Agrawal. Also to Prof. Chris Tucci from CSI/EPFL
who supported and trigged the project and to Mariana Araújo who boosted the new-
sletters’ design study.

The study was also support by national funds through FCT – Fundação para a
Ciência e a Tecnologia, under the project PEst-OE/EEI/LA0021/2011.

References

1. Aggarwal, C.: An introduction to social network data analytics. Springer Science And
Business Media, LLC 2011 (2011)

2. Barão, A., Silva, A.: A Model to Evaluate the Relational Capital of Organizations
(SNARE-RCO), Conference of Enterprise Information Systems (Centeris'2011), Springer
(2011)

414 T.L. Ferreira and A.R. da Silva

3. Barão, A., Silva, A.: How to value and monitor the relational capital of knowledge-
intensive organizations?, Research on Enterprise 2.0: Technological, Social, and Organiza-
tional Dimensions, IGI Global (2012)

4. Bell, G.: Building Social Web Applications. O'Reilly Media, Inc. (2009)
5. Bellotti, V., Ducheneaut, N., Howard, M., Smith, I., E. Grinter, R.: Quality Versus Quanti-

ty: E-Mail-Centric Task Management and Its Relation With Overload. Human-Computer
Interaction, vol. 20, pp. 89-138. , Lawrence Erlbaum Associates, Inc. (2005)

6. CKD research project: http://www.nano-tera.ch/members/263.php
7. Foulger, M., Chipperfield, T., Cooper, J., Storms, A.: System and method related to gene-

rating and tracking an email campaign. IC Planet (2006)
8. Harley, J., Blismas, N.: An Anatomy of Collaboration Within the Online Environment.

Springer-Verlag Berlin Heidelberg 2010, 14-34 (2010)
9. i* Wiki: http://istar.rwth-aachen.de

10. m. boy, d., B. Ellison, N.: Social Network Sites: Definition, History, and Scholarship. In:
Journal of Computer-Mediated Communication, vol. 13, pp. 210-230 (2008)

11. McArthur, R., Bruza, P.: Discovery of implicit and explicit connections between people
using email utterance. In: Kluwer Academic Publishers, pp. 21-40 (2003)

12. Heer, J., Boyd, D.: Vizster: Visualizing Online Social Networks. In: 2005 IEEE Sympo-
sium on Information Visualization (2005)

13. M. Leiner, B., G. Cerf, V., D. Clark, D., E. Kahn, R., Kleinrock, L., C. Lynch, D., Postel,
J., G. Roberts, L., S. Wolff, S.: The past and future history of the Internet. In: Communica-
tions of the ACM, vol. 40, pp. 102-108, New York (1997)

14. M Ridings, C., Gefen, D., A0072inze, B.: Some antecedents and effects of trust in virtual
communities. In: The Journal of Strategic Information Systems, vol. 11, pp. 271-295
(2002)

15. Musser, J., O’Reilly, T.: Web 2.0 Principles and Best Practices. O'Reilly Media, Inc.
(2006)

16. Nano-Tera.ch: http://www.nano-tera.ch/topdownbottomup/index.html
17. NodeXL: http://nodexl.codeplex.com/
18. Ogata, H., Yano, Y.: Collecting organizational memory based on social networks in colla-

borative learning. In: WebNet, pp. 822-827 (1998)
19. O’Reilly, T.: What Is Web 2.0: Design Patterns and Business Models for the Next Genera-

tion of Software. In: O'Reilly Media, Sebastopol (CA) USA, pp. 17-37 (2007).
20. Papacharissi, Z.: A Networked Self-Identity, Community and Culture on Social Network

Sites. Routledge (2010)
21. Schwartz, M., Wood, D.: Discovering shared interests among people using graph analysis

of global electronic mail traffic. In: Communication of the ACM (1993)
22. Swan, K.: Building Learning Communities in Online Courses: the importance of interac-

tion. In: Education, Communication & Information, vol. 2 (2002)
23. Wellman, B., Boase, J. Chen, W.: The Networked Nature of Community: Online and Of-

fline. In: It&Society, vol. 1, pp. 151-165 (2002)
24. Yu, E.: Modelling Strategic Relationships for Process Reengineering. Doctoral Disserta-

tion, University of Toronto (1996)
25. Zaphiris, P., Ang, C.: Social Computing and Virtual Communities. Chapman and

Hall/CRC, 1ª Edition (2009)

 Foster an Implicit Community Based on a Newsletter Tracking System 415

Appendix: Newsletter Tracking System Screenshots

Fig. 8. NTS Upload Page

Fig. 9. NTS Send Page

Vino4TOSCA: A Visual Notation

for Application Topologies Based on TOSCA

Uwe Breitenbücher, Tobias Binz, Oliver Kopp,
Frank Leymann, and David Schumm

Institute of Architecture of Application Systems, University of Stuttgart, Germany
Universitätsstraße 38, 70569 Stuttgart, Germany

lastname@iaas.uni-stuttgart.de

Abstract. A major difficulty in enterprise computing is the modeling of
complex application topologies consisting of numerous individual compo-
nents and their relationships. Especially in the context of cloud comput-
ing, the Topology and Orchestration Specification for Cloud Applications
(TOSCA) has been proposed recently for standardization to tackle this
issue. However, TOSCA currently lacks a well-defined visual notation
enabling effective and efficient communication in order to transport the
semantics of the encoded information to human beings. In this paper, we
propose a visual notation for TOSCA based on established usability re-
search which provides additional concepts for visual modularization and
abstraction of large application topologies.

Keywords: TOSCA, Modeling, Visual Notation, Application Topolo-
gies.

1 Introduction

Cloud computing enables significant benefits in terms of cost, flexibility, and
scale compared to traditional IT. An important issue is the automation needed
to achieve these advantages. The Topology and Orchestration Specification for
Cloud Applications (TOSCA [9]) provides a well-defined way to model composite
applications and to provide plans for automating their management [4].

Visual notations enable an effective communication because of the powerful
and highly parallel human visual system [7]. A well-designed visual notation eases
the comprehension of the content structure and enables an easier navigation. In
addition, visual notations are generally easier to learn and can be remembered
faster than textual syntax. Thus, they are appropriate to complement languages
which only provide textual notations such as XML. This leads to a separation
of concerns: Visual notations are used for fast and effective communication, the
original notation for the actual purpose and more detailed information process-
ing. However, TOSCA does not specify a visual notation to map the language
constructs to visual elements. The lack of a visual notation in other specifications
resulted in a number of different graphical renderings of the same model. One

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 416–424, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Vino4TOSCA 417

example is the Business Process Execution Language (BPEL) [8] for which dif-
ferent approaches to visualize elements regarding their shapes, icons, layout, etc.
exist. This becomes a problem when diagrams must be communicated between
people using different representations as it might lead to misunderstandings and
wrong interpretations. Thus, we advocate using only one common visual notation
in addition to the actual notation provided by the original language.

A major problem of existing visual notations is that they currently correspond
to what Alexander [1] calls an unselfconscious design culture: The design ratio-
nales are not based on explicit design principles. They are based on instinct,
imitation, and tradition. As a consequence, many visual notations, like UML, fo-
cus on semantics and lack an explicit design process for the visual syntax which
results in problems decreasing the usability of the notation. Therefore, we present
a Visual Notation for TOSCA (Vino4TOSCA) which is based on an explicit re-
quirements analysis regarding human cognition, usability, ergonomic influences,
and evidence-based principles. The remainder of the paper is structured as fol-
lows: In Sect. 2 we describe the fundamentals and related work whereon the
requirements for the notation in Sect. 3 are based. Section 4 describes the nota-
tion and Sect. 5 concludes the paper and gives an outlook on future work.

2 Fundamentals and Related Work

TOSCA [9] is a language to formally describe cloud applications and their man-
agement. The structure of an application is captured by a so-called Topology
Template, a graph with Node Templates and Relationship Templates, serialized
in XML. Node Templates represent the components of an application, for exam-
ple, an “application server”. Relationship Templates define how a particular node
relates to another node, for example, the “application server” node is “hosted on”
an “operating system” node. Templates are typed with Node Types and Relation-
ship Types respectively. Types define the meaning of the nodes and relationships
by specifying their properties and states of their lifecycle. TOSCA additionally
defines policies on nodes, management operations provided by the node, and de-
ployment artifacts implementing the functionality of the node. TOSCA does not
define concrete Node Types and Relationship Types as it only provides a way to
model them and to compose templates of several individual types into a topology.
Therefore, the modeler of an application is able to define new Node Types and
new Relationship Types. Node Types can be provided by software vendors as
building blocks to simplify the integration of their products into cloud applica-
tions. The operational aspects, key for each automated cloud environment, are
captured in so-called plans which are workflows capturing the management tasks
of an application. The management operations defined by nodes are orchestrated
by plans into higher level management functionalities, like deploying or scaling
up the application. This enables software developers to model their management
knowledge and experience explicitly into these plans which enables operating an
application without having all the deep technical knowledge required before.

418 U. Breitenbücher et al.

Moody [7] contributed a design theory, called “The Physics of Notations”,
focusing on the physical perceptual properties of notations regarding human
capabilities. The principles defined in this design theory are synthesized from
theory and empirical evidence. They are based on a theory of how visual nota-
tions communicate and provide the basis for the development of Vino4TOSCA.

Existing enterprise architecture modeling languages and notations such as
Acme [5] do not provide a visual notation which can be used for TOSCA, be-
cause they do not fulfill all requirements we introduce in Sect. 3 and consider as
absolutely necessary. In addition, the concept of managing applications by plans
differentiates TOSCA fundamentally from other application modeling languages
and thus needs special consideration.

3 Requirements Analysis

In this section we present requirements and design principles on the visual no-
tation which are necessary for an effective usage. They have been identified,
discussed, and validated by TOSCA users and members of the OASIS TOSCA
Technical Committee. In the following sections we use the symbol Rx, with x
being the number of the reference, to reference a certain requirement.

The prescriptive component in [7] defines nine principles for designing cogni-
tively effective visual notations to increase speed, ease, and accuracy with which
information can be understood by humans: R1 Semiotic Clarity, R2 Perceptual
Discriminability, R3 Semantic Transparency, R4 Complexity Management, R5
Cognitive Integration, R6 Visual Expressiveness, R7 Dual Coding, R8 Graphic
Economy, and R9 Cognitive Fit.

TOSCA-related requirements address the semantic constructs to obtain a tai-
lored notation: R10 Completeness (all information contained in Topology Tem-
plates must be representable), R11 Semantic Correctness (a valid Vino4TOSCA
diagram has to be a representation of a valid TOSCA Topology Template), R12
Extensibility (be extensible to show additional information), R13 Compact Rep-
resentation (support compact visual representation to tackle space problems).

The following requirements shall improve usability and user experience to
achieve a broad acceptance and user satisfaction. They are inspired by usability
standards (e. g., EN ISO 9241) and [10]. R14 Suitability for the Task (opti-
mization for modeling TOSCA Topology Templates), R15 Self-descriptiveness
(diagram and graphical symbols describe their meaning themselves), R16 Sim-
plicity (graphical elements must be easy and fast to draw), R17 User Satisfaction
(account for human preferences and enable visually appealing designs).

4 The Notation

Vino4TOSCA covers the modeling of TOSCA Topology Templates by Topology
Template Diagrams which mainly consist of Node Templates, Relationship Tem-
plates, and Groups (R11, R14). Modeling of plans is not part of the notation as
there are already existing languages and notations available (e. g., BPMN).

Vino4TOSCA 419

The notation allows defining profiles which are domain-specific visual languages
devised for specific needs, knowledge, and capabilities of users in a certain appli-
cation domain [6] (R9, R17). The main advantage of profiles is that tailoring en-
ables a strong cohesion to the domain properties and being effective and intuitive
for the task to be performed, e. g., a “Whiteboard Profile” defines how to draw a
Topology Template Diagram effectively by hand while an “Electronic-Design Pro-
file” can be used for creating a modeling software supporting more details (R14).
Profiles are allowed to constrain, but not to structurally modify the notation or
change its basic shapes. The notation provides visual variability for profiles as de-
scribed in Sect. 4.1 (R8), e. g., profiles may forbid the usage of groups or define line
colors. Some shapes offer Additional Information Areas which can be used by pro-
files to add any information which is not natively reflected by the notation (R10,
R12, R15). These areas may contain any text or graphic. Nevertheless, a profile
has to regard the requirements defined in Sect. 3, too.

To reduce the complexity of large diagrams, the notation must provide mecha-
nisms to group multiple elements visually into one single element. TOSCA Group
Templates are not sufficient as they are applied at the TOSCA model level. Thus,
grouping would influence the effective application topology. Therefore, the nota-
tion provides two additional concepts for visual grouping which are not part of
TOSCA itself: Visual Group and Visual Relationship Group. Both may reduce
complexity as they enable visual modularization and abstraction as well as re-
ducing the number of symbols by collapsing (R4, R13). The Visual Group may
also be used for integrating external diagrams homogenously (R5).

4.1 Visual Design Rationales

As the basic shapes of the notation must not be changed by profiles (R1) and
there is a need for a hand-drawable “Whiteboard Profile”, the notation has to
tackle human drawing issues (R16). We decided to use rounded shapes wherever
possible because of human drawing skills and preferences [2].

The notation uses the eight elementary visual variables of the Design Space
defined by Bertin [3] to visually encode information: Horizontal and vertical
position, shape, size, color, brightness, orientation, and texture (R6). They are
classified into three categories: (i) Fixed variables defined by the basic notation,
(ii) constrained variables defined by profiles, and (iii) free variables. While the
first two ones are defined strictly and must be followed when applying the nota-
tion (limitations and constraints), free variables can be used for individual mod-
eling of concrete diagrams (points of variability). The fixed visual variables are
the retinal variables shape, orientation, and texture of lines: The basic shapes,
their surrounding lines, and orientation are defined strictly and must not be
changed by profiles or instantiation. All other variables are free if they are not
constrained by a profile. Thus, if a profile does not constrain the visual variable
color it is also a free variable and different colors can be used wherever the basic
notation allows it. A profile is allowed to constrain the retinal variables color,
value, texture, and size for enabling a high value of cognitive effectiveness. Con-
straining variables by profiles enables adding new semantics for different tasks

420 U. Breitenbücher et al.

and/or audiences by creating visual dialects. Generally free visual variables are
the horizontal and vertical position of an element.

The basic notation employs icons for describing elements as they have a higher
information density and need less space for information presentation than text
(R3, R6, R7). Icons are recognized, processed, remembered, and learned more
easily and faster than textual information and preferred to abstract shapes by
humans [2]. They enable tailoring domain-specific visual languages by using dif-
ferent icons for each domain. All icons are placed on the top most left position of
the visual element because humans spend most of their attention to this place.

Text fonts are not defined by the basic notation. This may be done by profiles
as especially hand drawn profiles need this variability. To enable fast recognition
of textual information, text used to identify semantic elements differs in visual
appearance: A name is not decorated, an id is underlined, and the name or id of
the corresponding element type is enclosed by two parentheses (R3, R7, R15).

The notation does not define shapes for all elements of TOSCA, e. g., there
are no shapes defined for types (e. g., Node Types). This can be modeled as
additional information contained in the Additional Information Areas of the
template shapes.

4.2 Shapes

This section defines the visual syntax of the notation, i. e., the visual elements
and shapes. For each visual element we describe its shape in terms of form,
contained information, semantics, variability points, and visual design freedom.

The Node Template Shape shown in Fig. 1 represents the Node Template
as a rectangle with rounded corners surrounded by a solid line. There are five
possibilities to describe the corresponding Node Template: (i) An icon contained
in the Icon Area may represent the Node Template or the corresponding Node
Type, (ii) using name or (iii) id of the Node Template to identify it, (iv) using
name or (v) id of the corresponding Node Type to identify its type. A valid
Node Template Shape contains at least one of these five information items. If
multiple textual variants are combined, the visual order is given by the vertical
ordering in Fig. 1 (R7, R13). The Additional Information Area is a rounded
rectangle surrounded by a solid line which may be optionally attached below the
main shape to provide any additional visual information (variability point). It
is positioned behind the main shape so that both upper corners are hidden, as
depicted in Fig. 1. The Icon Area is allowed to contain any graphic or symbol.
The main shape is allowed to contain any graphic as background image, i. e.,
behind the Icon Area and the text blocks. Thus, various designs are possible as
well as monochrome-colored Node Template Shapes. The surrounding lines are
allowed to be colored, but the solid style must not be changed (R1).

The Relationship Template Shape shown in Fig. 2 represents the Relationship
Template as a single line with a small shape at each end (shown as question marks
in Fig. 2), e. g., an arrow. It visually connects any two Relational Elements, which
are Node Template Shape, Collapsed Group Template Shape, and Collapsed
Visual Group Shape. The semantics of a Relationship Template Shape sourcing

Vino4TOSCA 421

NodeTemplate.Name
NodeTemplate.Id

(NodeTemplate.NodeType.Name | Id)

Icon
Area

Additional Information Area

ProductDatabase
(MySQL Database)

Fig. 1. Node Template Shape and example

Additional Information Area

RelationshipTemplate.Name
RelationshipTemplate.Id

(RelationshipTemplate.RelationshipType.Name | Id)

Icon
Area (HTTPSConnection)

? ?

Fig. 2. Relationship Template Shape and HTTPSConnection example

GroupTemplate.Name
GroupTemplate.Id

GroupTemplate.Name
GroupTemplate.Id

+

Icon
Area

Icon
Area

VisualGroup.Name
VisualGroup.Id

VisualGroup.Name
VisualGroup.Id

+

Icon
Area

Icon
Area

Fig. 3. Expanded / Collapsed Group Template Shapes and Visual Group Shapes

Group.Name
Group.Id

+

Icon
Area

Group.Name
Group.Id

Icon
Area

Fig. 4. Expanded and Collapsed Visual Relationship Group Shapes

GroupTemplate.Name
GroupTemplate.Id

+

Icon
Area

NodeTemplate.Name
NodeTemplate.Id

(NodeTemplate.NodeType.Name | Id)

Icon
Area

min max min max

Fig. 5. Multiple instances of Node Template and Group Template

or targeting a Collapsed Visual Group Shape or Collapsed Group Template
Shape is that it points to a hidden Relational Element inside the group. The
basic notation neither defines a special line style nor shapes which may be used
at the line endings. It is only prohibited to use the same dashed line style as
the Visual Group Shapes (R2). The two shapes at the line endings may use any
free visual variable. There are five possibilities to describe the corresponding

422 U. Breitenbücher et al.

Relationship Template: (i) An icon contained in the Icon Area representing the
Relationship Template or the corresponding Relationship Type, (ii) using name
or (iii) id of the Relationship Template to identify it, (iv) using name or (v) id
of the corresponding Relationship Type to identify its type (R7). The Icon Area
is placed on the left of the textual information which is positioned above the
line if it is horizontal or at any side if the line is vertical or diagonal. A valid
Relationship Template Shape contains at least one of these five information items.
The visual order of the elements and an HTTPSConnection example are shown
in Fig. 2. The Additional Information Area is a rectangle surrounded by a solid
line which may be attached below touching the line if it is horizontal or sideways
otherwise in order to provide additional information about the template.

The Group Template is represented by two different shapes shown in Fig. 3
on the left: The Expanded Group Template Shape is a solid line surrounding
elements which are grouped. There is no special shape defined. At the top left
position there is the possibility to describe the Group Template Shape by a left-
aligned icon or textually by using a name or id. All combinations of them are
allowed but at least one has to be used. The collapsed Group Template Shape is
an oval surrounded by a solid line. A small square with a plus sign positioned at
the bottom center of the shape indicates the collapsed state hiding the contained
elements. Inside the oval there must be at least one of the following: An icon,
the name, or the id of the Group Template (R7). The free usage of the Icon Area
and color of the surrounding line are the only free variables. The background of
these two shapes must not be filled with any color or image.

The Visual Group Shapes shown in Fig. 3 on the right are equal to Group
Template Shapes with the difference that the surrounding lines are dashed. The
semantics is to group elements visually only. The shapes may also be used to
represent the integration of other diagrams (R5): Its name or id is used to identify
the integrated diagram, especially in collapsed state. The visual variability is
equal to Group Template Shapes.

The two Visual Relationship Group Shapes shown in Fig. 4 are used to visually
group and hide Relationship Template Shapes connecting Relational Elements.
The expanded variant consists of two dashed lines between any two Relational
Elements and at least contains two Relationship Template Shapes. The element
can be described by a left-aligned icon or textually by using a name or id of the
group above the lines. All combinations of them are allowed but at least one
has to be used. The Collapsed Visual Relationship Group Shape (right shape
in Fig. 4) is a dashed line with a small square containing a plus sign inside
positioned at the center of the line connecting any two Relational Elements. The
shape’s semantics is that it visually groups and hides the Relationship Templates
between two Relational Elements. Above the line there must be at least one of
the following: An icon, the name, or id of the group (R7). The free usage of the
Icon Area and the color of the lines are the only free variables which can be used
to design these two shapes. The background must not be filled with any color or
image.

Vino4TOSCA 423

TOSCA Node Templates and Group Templates have two attributes repre-
senting the number of allowed instances, e. g., multiple instances of a service
component: min and max. Multiple instances are represented by drawing a sec-
ond solid line partly covered by the original shape and writing the min value at
the left and the max value at the right above the main shape as shown in Fig. 5.

5 Conclusion and Outlook

We presented a Visual Notation for TOSCA based on a scientific development ap-
proach taking the “Physics of Notation” theory and a well-defined requirements
analysis into account. The presentation includes a visual model which explicitly
defines the elements, relations, and representations. For the time being, an eval-
uation of the notation was not possible for the following reasons: First, TOSCA
has been published quite recently and the users of this language are collecting
experience with the language itself just now. Second, to judge the expressive-
ness of the visual model, one needs to really work with them. Therefore, we
implemented the proposed visual notation in an open source web-based TOSCA
modeling environment prototype1 in the CloudCycle2 project, which is one early
adopter of TOSCA. After a broader usage, we will evaluate the notation using
a questionnaire. In addition, we plan to evaluate several new profiles as well as
to develop a new diagram type to integrate the proposed notation with process
modeling notations such as BPMN. On the official Vino4TOSCA Web page3 we
present application examples, profiles, and the meta-model of the notation.

Acknowledgments. This work was partially funded by the BMWi project
CloudCycle (01MD11023).

References

1. Alexander, C.: Notes on the Synthesis of Form. Harvard University Press (1964)
2. Bar, M., Neta, M.: Humans prefer curved visual objects. Psychological Sci-

ence 17(8), 645–648 (2006)
3. Bertin, J.: Semiology of graphics. University of Wisconsin Press (1983)
4. Binz, T., Breiter, G., Leymann, F., Spatzier, T.: Portable Cloud Services Using

TOSCA. IEEE Internet Computing 16(03), 80–85 (2012)
5. Garlan, D., Monroe, R.T., Wile, D.: Acme: Architectural Description of

Component-Based Systems. In: Foundations of Component-Based Systems, pp. 47–
68. Cambridge University Press (2000)

6. de Lara, J., Vangheluwe, H.: Defining visual notations and their manipulation
through meta-modelling and graph transformation. J. Vis. Lang. Comput. 15(3-4),
309–330 (2004)

7. Moody, D.L.: The “physics” of notations: a scientific approach to designing visual
notations in software engineering. In: ICSE, pp. 485–486 (2010)

1 http://www.cloudcycle.org/en/valesca/
2 http://www.cloudcycle.org/en/
3 http://www.vino4tosca.org

http://www.cloudcycle.org/en/valesca/
http://www.cloudcycle.org/en/
http://www.vino4tosca.org

424 U. Breitenbücher et al.

8. OASIS: Web Services Business Process Execution Language Version 2.0 – OASIS
Standard (2007)

9. OASIS: Topology and Orchestration Specification for Cloud Applications Version
1.0 Working Draft 07 (June 2012), http://www.tosca-open.org

10. Petre, M., de Quincey, E.: A gentle overview of software visualisation. Psychology
of Programming Interest Group (PPIG) (September 2006)

http://www.tosca-open.org

BOINC-MR: MapReduce

in a Volunteer Environment�

Fernando Costa, Lúıs Veiga, and Paulo Ferreira

Distributed Systems Group, INESC-ID
Technical University of Lisbon

R. Alves Redol, 9
1000-029 Lisboa, Portugal
fcosta@gsd.inesc-id.pt

Abstract. Volunteer Computing (VC) harnesses computing resources
from idle machines around the world to execute independent tasks, fol-
lowing a centralized master/worker model.

We present BOINC-MR, a system able to run MapReduce applica-
tions on top of BOINC, the most popular VC middleware in existence.
We describe BOINC-MR’s architecture and evaluate its performance
with a typical MapReduce application. Our results show that BOINC-
MR yields a performance increase of 64% in application turnaround time
and close to 50% reduction in bandwidth usage in the server side, when
compared to the unmodified BOINC system.

Keywords: Volunteer Computing, MapReduce, Adaptive Middleware.

1 Introduction

The use of personal computers’ computational power as a tool for science has
steadily increased in popularity. To this end, Volunteer Computing (VC) systems
have been extremely successful in bringing large numbers of donated compute
cycles together to form a large-scale virtual supercomputer. Applications running
on this infrastructure tackle problems from a wide range of scientific subjects,
from physics to biology, and are tailored for highly parallel number-crunching
computations.

BOINC [2] is a VC middleware that currently supports over 40 projects and
bolsters a user base of around 450 thousand active machines, making it the most
popular system in the world, rivaling the world’s supercomputers in computing
power. In its current implementation, the network topology is restricted to a
strict master/worker scheme, generally with a fixed set of centrally managed
project computers distributing and retrieving results from network participants.

� This work was partially supported by national funds through FCT – Fundação para
a Ciência e Tecnologia, under projects PTDC/EIA-EIA/102250/2008, PTDC/EIA-
EIA/108963/2008, PTDC/EIA-EIA/113993/2009 and PEst-OE/EEI/LA0021/2011.

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 425–432, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

426 F. Costa, L. Veiga, and P. Ferreira

Such a centralized architecture is the source of a potential bottleneck in the
continuing evolution of Volunteer Computing systems. As projects gain in popu-
larity and their user-bases expand, network and storage requirements can easily
become more demanding, thus increasing the load on the server(s). There are
worrying signs of stagnation in the number of active users and projects [1], and
emerging problems in data distribution and storage [6].

Thus, one must look at alternative computing paradigms that may help Vol-
unteer Computing reach its untapped potential. MapReduce is a widely used
computing paradigm, proposed by Google [8], that has obtained considerable
support in Cloud Computing communities due to its simplicity, scalability and
performance in commodity clusters.

Our goal is to support MapReduce on top an insecure, unreliable VC envi-
ronment, by taking advantage of the vast improvements in network infrastruc-
ture and disk storage in the last mile of the Internet. In this paper, we present
BOINC-MR, a BOINC prototype that can run MapReduce jobs, and evaluate
its performance in a real-world scenario.

This paper is organized as follows: Section 2 gives background on BOINC
and MapReduce; Section 3 discusses the concepts we have just mentioned in
more depth; experimental results are presented in Section 4; Section 5 introduces
related work; and Section 6 concludes.

2 Background

This section introduces the BOINC system and MapReduce programming par-
adigm we based our research on.

In order to distribute its work units , each BOINC [2] project has to build its
data and executable code as well as setup and maintain their individual servers
and databases. Result validation is obtained through the use of task replicas, so
that upon task completion, a quorum must be reached by a majority of users
before an output can be considered correct.

Most Desktop Grids, such as BOINC or XtremWeb [3], have centralized ar-
chitectures, in which a server or coordinator is responsible for scheduling task
execution. There are exceptions [5], but they are either insignificant in scope or
tailored to a different environment.

Such architectures and the limited support for complex applications may have
brought on a significant problem: the number of active projects has stagnated.
This in turn has lead to a 15% decrease in the number of active users [1], a
number that is expected to dwindle unless new alternatives are presented that
may spark the interest of volunteers.

MapReduce is a software framework for parallel data-intensive computations
recently popularized by Google [8]; it is able to represent a wide range of applica-
tions, by providing an abstraction for parallel execution (”map”) and aggregation
of results (”reduce”).

MapReduce input is initially split into several chunks, each to be executed
by an independent ”map” task, assigned to each worker by a centralized master

BOINC-MR: MapReduce in a Volunteer Environment 427

Fig. 1. BOINC-MR Map Phase Fig. 2. BOINC-MR Reduce Phase

node. Each worker node processes the map task it was given, and reports its
completion to the master. For the ”reduce” step, a predetermined number of
reduce tasks are created, whose goal is to perform join operations on the map
outputs. All reduce inputs are therefore outputs from the previous map task.
Throughout the rest of the paper, we will be referring to them as map outputs.
Once all map outputs have been downloaded, the reduce task is executed and
its final result is saved.

3 BOINC-MR Architecture

BOINC-MR supports the MapReduce paradigm in an unreliable, unsecured In-
ternet environment. One of our main goals was to improve performance when
adapting MapReduce to BOINC. In order to achieve this, BOINC-MR decentral-
izes data distribution and removes unnecessary overhead from the central server
by leveraging inter-client transfers. MapReduce is an ideal framework to eval-
uate the impact of our proposition, since the map stage produces intermediate
results that are used as input by reduce tasks.

Map tasks are embarrassingly parallel, with no dependencies or any shared
data between them, which allowed us to use the traditional scheduling mecha-
nism when dealing with this step. The BOINC-MR map stage is shown in Fig. 1:
(1) A user (mapper) starts by requesting work from the projects central server;
(2) The server takes into account the workload of each mapper, as well as its
hardware and availability information, and dispatches work units that fit the
request; (3) Each mapper downloads input and executable files from the data
server, and runs the application. The computation results are then returned to
the central server. The server keeps track of which mapper is holding each output
file by storing that information in the database.

The reduce stage is depicted in Fig. 2: (1) A user (reducer) requests work
from the projects central server; (2) The scheduler appends to each reduce task
information the address (IP and port) of mappers holding output for the same
job; (3) The reducer then has the possibility of downloading the required input

428 F. Costa, L. Veiga, and P. Ferreira

files directly from the mappers. The server also stores a copy, thus providing
a failover mechanism in case of error and guaranteeing data availability. After
downloading all required files, each reducer executes its task and returns the
final result to the server.

3.1 BOINC-MR Client

A BOINC-MR client requests work by sending the server a message with host
characteristics and other information necessary for task scheduling. If there is
work available, the server reply includes information on the task to be executed
(mentioned in step (2) of Fig. 1 and 2). This task information allows clients to
identify which tasks belong to MapReduce jobs.

Once a map task is obtained, the BOINC-MR client acts as mapper and
runs the executable to produce the results. Mappers who have finished their
task make their output available for reducers to download. We consider mappers
to be hosting map outputs for as long as the files are available for download.
A BOINC-MR client only accepts incoming requests for its output files, while
rejecting messages that do not comply to a predefined file request template.
Each mapper will stop accepting connections if one of the following situations
occur: the BOINC-MR client is shut down; the MapReduce job has completed
successfully; or the mapper has reached a timeout in total hosting time.

If a BOINC-MR client obtains a reduce task, it becomes a reducer. After
parsing the task information (sent in step (2) of Fig. 2), the reducer is able
to identify which map output files can be downloaded directly from mappers
and which files are only available in the server. The BOINC-MR reducer always
attempts to download from a mapper before resorting to the server. Each map
output file may have multiple mappers hosting it, so the reducer goes through
each mapper in the list in order. The mapper address list is ordered randomly
at the server side, to prevent the overloading of a single BOINC-MR mapper.

We use a fall back mechanism for failed inter-client downloads. After n failed
attempts to download an output file directly from mappers, the reducer resorts
to downloading all missing files from the server.

3.2 MapReduce in BOINC Server

The BOINC-MR server must ensure a timely and valid transition between map
and reduce steps. It must be able to deal with both BOINC-MR and BOINC
clients, and provide information that allows each client to handle each task
according to is characteristics. In order to differentiate map tasks from ”normal”
(non MapReduce) ones, we modify their templates by adding ”<mapreduce>”
tags with additional information such as job id and stage.

The BOINC-MR server uses an additional general configuration file to co-
ordinate between stages and handle task creation. This file is responsible for
defining global MapReduce parameters for each job, such as the number of map
and reduce tasks. The server uses a dynamic work unit creation mechanism,
which is activated as soon as all map tasks have been returned and validated.

BOINC-MR: MapReduce in a Volunteer Environment 429

Fig. 3. Weight of Map and Reduce stage
in MapReduce job

Fig. 4. Network Upload Bandwidth on
server with 50 nodes

This mechanism takes all the information provided by the mappers hosting file
outputs to edit the necessary templates and insert reduce work units into the
server’s database.

Therefore, all reduce tasks sent to BOINC-MR clients (reducers) have the lo-
cation of the required input data, as IP addresses of mappers and as the projects
data server address (URL). It is worth noting that providing the server URL al-
lowed us to guarantee retro-compatibility with unmodified BOINC clients.

4 Experiments

To evaluate our prototype, we use PlanetLab [4], a distributed testbed designed
for applications deployed over the Internet. We present the results and imple-
mentation details in this section.

We use either 25 or 50 PlanetLab nodes as clients, and one node to act as
server. To evaluate our scenarios, we create a BOINC project to run the word
count MapReduce application. In word count, each map task receives a text
document as input, counts the number of words in it and outputs an intermediate
file with “word 1” pairs for each word found. The reduce step collects all the
map intermediate outputs and aggregates them into one final output. In our
experiments, we use an initial input file of 1GB, divided into 100 chunks (10MB),
each to be handled by a different map task.

Our goal is to measure the performance of BOINC-MR when running MapRe-
duce applications, especially in two axis: application turnaround and server
bandwidth usage.

4.1 Network Bandwidth and Application Turnaround

We use either 25 or 50 client nodes, while the BOINC-MR server replicates
each task twice. Figure 3 shows the application turnaround time results. The
BOINC column corresponds to a scenario with 50 unmodified BOINC clients.
BOINC-MR-50 and BOINC-MR-25 represent 50 and 25 nodes, respectively, run-
ning BOINC-MR. While the difference in the Map stage is not significant, with

430 F. Costa, L. Veiga, and P. Ferreira

BOINC-MR doing slightly better, the Reduce stage shows remarkable improve-
ments. This speedup is due to the fact that BOINC-MR employs inter-client
transfers, and because the server spends more time uploading files with BOINC
clients. Therefore, it has a higher chance of experiencing higher load due to other
images running on its PlanetLab node. With respect to BOINC-MR clients, 25
nodes (BOINC-MR-25) performed worse than 50 nodes (BOINC-MR-50) in the
reduce stage. This was due to a smaller number of nodes hosting the map out-
put files. Overall, BOINC-MR takes less than half the time (46%) needed by the
unmodified BOINC to complete the MapReduce job.

In order to more accurately evaluate the overhead on the server, we measure
its bandwidth usage when running BOINC-MR clients. We do not present the
results of network traffic from clients to the server since the server downloads
the same amount of data from either BOINC-MR or BOINC clients. In both
cases, the server has to download the map and reduce output from each client.

Figure 4 presents the data uploaded by the central data server, when using
either BOINC-MR or BOINC clients. As BOINC-MR is faster than BOINC, its
experiment ends earlier, after 7000 seconds, while BOINC clients only finish at
the 12.000 second mark. We can observe an initial increase in uploaded data in
both scenarios, which corresponds to the distribution of map inputs from the
server to the clients. Around second 2000, the map tasks seem to have been
deployed since we reach a plateau in both scenarios, which is only interrupted
when the reduce step begins. The server running with BOINC-MR clients has
a slight increase around second 4000 when it starts uploading the reduce task
executable file to clients. On the scenario with BOINC clients, however, we can
witness a steep slope in upload bandwidth from the central server to clients
around second 5000. The server, being the sole owner of reduce input files, must
upload all the data to clients. The server in the BOINC-MR scenario ends up
with around 2600MBytes of uploaded data. On the other hand, using BOINC
clients forces the server to upload close to 5200MBytes. This means that the
BOINC-MR client can cut the server’s upload bandwidth consumption in half.

4.2 Replication Factor

At this point, we evaluate the impact of the replication factor on the map task.
Figure 5 shows the results for our experiments with 2 and 3 replicas for the
map task. BOINC-2 and BOINC-3 represent the original BOINC client, with a
replication factor of 2 and 3, respectively. BOINC-MR2 and BOINC-MR3 are the
corresponding BOINC-MR clients. For the unmodified BOINC, using a higher
replication factor helped speedup both the map and reduce stage. This can be
explained by the lower impact of a slower node. With only 2 replicated tasks,
both results are needed to validate the work unit, which means that any node
holding a task can slow down the whole computation by not returning it in time.
Having 3 nodes makes the slower one redundant.

In the BOINC-MR client scenarios, we can see a slight speedup in the map
stage which is attributed to the aforementioned lower impact of slower nodes.
However, using 3 map task replicas produced worse results in the reduce step.

BOINC-MR: MapReduce in a Volunteer Environment 431

Fig. 5. Turnaround time of BOINC and
BOINC-MR clients

Fig. 6. Reduce task execution time in
different hosts

This was unexpected since having 1 more mapper to download map outputs from
should improve inter-client transfer speed. There are two explanations for these
results. First, the current version of our prototype does not use any heuristic
or complex algorithm when choosing which node to download each map output
from. Secondly, we can witness a recurring event that is presented in Fig. 6. In
cases with low replication such as this (2 reduce task replicas), one reducer’s
output cannot be discarded as there is no third or fourth reducer running. If
a slower reducer is able to obtain several tasks it will reduce the application
turnaround time. In Fig. 6, we can see that node 97 is 5 times slower than any
other node. This means that, even after all the other reducers have returned their
output, the MapReduce job will only end when this node returns its results.

5 Related Work

Combining the concepts of Cloud and Volunteer Computing has already been
proposed in [9], in which the authors studied the cost and benefits of using clouds
as a substitute for volunteers or servers.

There are two projects that have adapted MapReduce to a desktop grid.
MOON (MapReduce On opportunistic eNvironments) [10] is a Hadoop1 exten-
sion that adds adaptive task and data scheduling mechanisms for an enterprise
desktop grid.

The work that most closely resembles ours was presented in [11], and, as
MOON, introduces MapReduce to desktop grids. XtremWeb has been used in
much smaller scale than BOINC, however, and its typical use scenario consists
of a federation of research labs.

6 Conclusion

We have presented BOINC-MR, a working prototype that allows MapReduce
applications to run on top of a VC system, BOINC. Our results have shown that

1 Apache Hadoop. http://hadoop.apache.org/

432 F. Costa, L. Veiga, and P. Ferreira

we can have a significant improvement in both performance and server band-
width efficiency if we tailor this paradigm to our wide area environment. We have
shown that BOINC-MR takes less than half the time (46%) needed by the un-
modified BOINC to complete a word count MapReduce job. Furthermore, using
BOINC-MR clients can cut bandwidth consumption in half on the server side,
by successfully leveraging client’s resources. We have also detected an excessive
impact of slower nodes on application turnaround, when clients with limited
bandwidth obtain a large number of tasks.

References

1. Anderson, D.P.: Boinc status report. In: The 7th BOINC Workshop (2011)
2. Anderson, D.P.: Boinc: A system for public-resource computing and storage. In:

Proceedings of the 5th IEEE/ACM International Workshop on Grid Computing,
GRID 2004, pp. 4–10. IEEE Computer Society, Washington, DC (2004)

3. Cappello, F., Djilali, S., Fedak, G., Herault, T., Magniette, F., Néri, V., Lody-
gensky, O.: Computing on large-scale distributed systems: Xtremweb architecture,
programming models, security, tests and convergence with grid. Future Gener.
Comput. Syst. 21, 417–437 (2005)

4. Chun, B., Culler, D., Roscoe, T., Bavier, A., Peterson, L., Wawrzoniak, M., Bow-
man, M.: Planetlab: an overlay testbed for broad-coverage services. SIGCOMM
Comput. Commun. Rev. 33, 3–12 (2003)

5. Cirne, W., Brasileiro, F., Andrade, N., Costa, L., Andrade, A., Novaes, R., Mow-
bray, M.: Labs of the world, unite!!? Journal of Grid Computing 4, 225–246 (2006)

6. Costa, F., Kelley, I., Silva, L., Fedak, G.: Optimizing data distribution in desktop
grid platforms. Parallel Processing Letters (PPL) 18(3), 391–410 (2008)

7. Cunsolo, V.D., Distefano, S., Puliafito, A., Scarpa, M.: Volunteer computing and
desktop cloud: The Cloud@Home paradigm. In: Eighth IEEE International Sym-
posium on Network Computing and Applications, pp. 134–139. IEEE (July 2009)

8. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters.
Commun. ACM 51, 107–113 (2008)

9. Kondo, D., Javadi, B., Malecot, P., Cappello, F., Anderson, D.P.: Cost-benefit
analysis of cloud computing versus desktop grids. In: Proceedings of the 2009 IEEE
International Symposium on Parallel & Distributed Processing, IPDPS 2009, pp.
1–12. IEEE Computer Society, Washington, DC (2009)

10. Lin, H., Ma, X., Archuleta, J., Feng, W.C., Gardner, M., Zhang, Z.: Moon: Mapre-
duce on opportunistic environments. In: Proceedings of the 19th ACM Interna-
tional Symposium on High Performance Distributed Computing, HPDC 2010, pp.
95–106. ACM, New York (2010)

11. Tang, B., Moca, M., Chevalier, S., He, H., Fedak, G.: Towards mapreduce for
desktop grid computing. In: Proceedings of the 2010 International Conference on
P2P, Parallel, Grid, Cloud and Internet Computing, 3PGCIC 2010, pp. 193–200.
IEEE Computer Society, Washington, DC (2010)

Parallel Processing
for Business Artifacts with Declarative Lifecycles

Yutian Sun1,2,�, Richard Hull2,�, and Roman Vaculı́n2

1 Department of Computer Science, UC Santa Barbara, USA
2 IBM T J Watson Research Center, USA

Abstract. The business artifact (a.k.a. business entity) approach to modeling and
implementing business operations and processes is based on a holistic marriage
of data and process and enables a factoring of business operations based on key
business-relevant conceptual entities. The recently introduced Guard-Stage-
Milestone (GSM) artifact meta-model provides a hierarchical and declarative ba-
sis for specifying artifact lifecycles, and is substantially influencing OMG’s
emerging Case Management Modeling Notation standard. In previous papers one
characterization of the operational semantics for GSM is based on the incremental,
strictly serial firing of Event-Condition-Action (ECA) like rules. This paper de-
velops a parallel algorithm equivalent to the sequential one in terms of externally
observable characteristics. Optimizations and analysis for the parallel algorithm
are discussed. This paper also introduces a simplification of the GSM meta-model
that provides more flexibility and makes checking for well-formedness of GSM
models simpler and more intuitive than in the preceding works on GSM.

1 Introduction

Business artifacts (a.k.a. business entities with lifecycles) are emerging as an impor-
tant conceptual basis for modeling and implementing business processes and operations
[7,5]. Unlike process-centric approaches, business artifacts enable a holistic marriage
of the data- and process-centric perspectives, and permit a factoring of a scope of busi-
ness that is often robust in the face of changes in the underlying business. A declarative
approach to business artifacts, called Guard-Stage-Milestone (GSM) was recently in-
troduced [2,5], and is substantially influencing OMG’s emerging Case Management
Modeling Notation [1]. Citations [2,5] introduce the operational semantics for GSM
and provide three equivalent formulations for it. One of these, which enables a direct
implementation, is based on the incremental, serial firing of Event-Condition-Action
(ECA) like rules, with each incoming event processed in strict sequence. This paper
develops an optimized parallel algorithm for executing GSM processes with improved
throughput and response time, and we also introduce a simplified GSM meta-model.

A GSM model typically consists of several artifact types, where each artifact type
corresponds to a class of key business-relevant conceptual entities that progress through
the business. Each artifact type includes an information model, which holds all business-
relevant information about an artifact instance as it progresses, and a lifecycle model,
which represents the ways that the artifact instance might progress. In GSM, mile-
stones correspond to business-relevant operational objectives that an artifact instance
might achieve, stages correspond to meaningful clusters of activity that are intended to

� This author supported in part by NSF grant IIS-0812578.

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 433–443, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

434 Y. Sun, R. Hull, and R. Vaculı́n

achieve milestones, and guards control when stages can be opened for execution. The
stages may be nested, and may be running in parallel. The processing is controlled by
declarative expressions, called sentries. Each guard is a sentry, and sentries are used to
control when stages should open or close and when milestones get achieved or invali-
dated. The use of sentries provides a declarative basis for GSM, and nesting of stages
provides abstraction and modularity. For ease of exposition, in the current paper we fo-
cus on the restricted case where there is only one artifact type and one artifact instance.
The results presented here naturally generalize to the multi-type/multi-instance context.

The most straightforward approach to operational semantics of GSM, called in-
cremental semantics, is based on the incremental, strictly sequential firing of Event-
Condition-Action (ECA) rules. In response to a single incoming event, the GSM system
will fire all relevant rules (e.g., for opening/closing of stages or achieving/invalidating of
milestones) until no more can be fired; after which the next incoming event can be pro-
cessed. In practical projects using GSM [9] when many incoming events are occurring
in a short time the incremental semantics may create a bottleneck in the system. Such
situations often occur in the context of collaborative problem solving [4] which can be
naturally well supported by GSM. A typical pattern in collaborative problem solving
involves a “shared artifact” [3] which serves as a coordination point of possibly many
users and other processes. Shared artifacts are targets of possibly many concurrently
incoming events and optimized implementations are needed to avoid bottlenecks.

The major contribution of the present paper is a parallel algorithm for the execution
of GSM models. In particular, we (a) use a graph analysis to “target” the set of sentries
that might need to be tested, (b) introduce a pipelining technique so that the impact
of multiple incoming events on an artifact instance can be processed in parallel, and
(c) enable parallel execution of computation steps that stem from a single incoming
event. We show that the developed parallel algorithm is equivalent with the sequential
algorithm. A second contribution is to introduce a simplified GSM meta-model that is
more streamlined than the meta-model of [5,2]. In the simplified model, milestones are
by default separated from stages, and the definition of well-formedness is simplified.

Section 2 provides a motivating example. The formal GSM meta-model and the oper-
ational semantics are presented in Section 3. Section 4 focuses on an optimized sequen-
tial algorithm and a parallel algorithm respectively. Section 5 reviews related work, and
Section 6 concludes the paper. Due to space limitations the presentation here is terse;
additional details and proofs of correctness are in the full paper [8].

2 A Motivating Example

This section presents an example illustrating the key features of the GSM meta-model
and the importance of developing a parallel algorithm for executing GSM processes.

The running example is taken from the domain of IT Proposal Creation. The pro-
posal preparation work is highly collaborative, with each proposal involving 10’s of
contributing participants and it tends to be bursty, with a flurry of activity in the days
leading up to the proposal release. Whenever a worker inputs information into the
shared workspace for a proposal, this may trigger several automated steps (e.g., sanity
checks on what was just entered, updates to schedules, launching of automated routines
such as recomputing component pricing, and/or launching of other human activities).
Because of the bursty nature of the work, maximizing throughput is important. Because

Parallel Processing for Business Artifacts with Declarative Lifecycles 435

g2

m3 (Proposal Agreed)

ID custo
mer

credit

.

Data Attributes Status Attributes

Milestones Stages

h2

g6

g4

g3

g1

 S2: Refine Proposal

 S1: Create Initial
 Proposal

 S3: Submit
 Proposal

g7
 S4:

Revise
Technical
Aspects

g8 g11

 S6:
 Check
 Credit

g10

h1

+
m1 (Proposal
Permitted)

m4 (Proposal Declined)

price

m6 (Level B
Credit Approved)

m5 (Level A
Credit Approved)

m9 (Aggressive Pricing Approved) m10 (Customer Credit Acceptable)

g5

m6 (price
Determined)g9 S5:

Determine
Price

m5

m2 (Refinement
Approved)

Fig. 1. Part of GSM model for Proposal Creation application

guards milestones
g3: on +m1 m2 achiever: on refinedProposalReady()
g4: on +m4 m5 achiever: on revisedTechnicalReady()
g5: on resumeRefinement() m5 invalidator: on +S4
g7: on +S2 m6 achiever: on priceDetermined(price)
g8: on offerManagerRequest() m6 invalidator: on +S6
g9: on +m5 m7 achiever: on creditAppr(creditLevel) if creditLevel = “A”
g10: on +m6 and if not m7 & not m8 m8 achiever: on creditAppr(creditLevel) if creditLevel = “B”
g11: on +m6 and if price>500K & not m8 m9 achiever: on AggressivePricingExecApproval()
terminators m9 invalidator: on AggressivePricingRescinded()
h1: on suspendCreation() m10 achiever: if price <= 500K & (not m7 or not m8)
h2: on suspendRefinement() m10 achiever: if price > 500K & m8
For each stage S with milestone m, each
achiever for m is also a terminator for S

m10 invalidator: on +S6 if price > 500K & not m8

Fig. 2. Selected sentries for Example 2.1

a step by some worker (e.g., giving an approval or submitting some information) may
lead to an immediate follow-up step by the same worker or a close collaborator, mini-
mizing response time is also important.

Example 2.1 Figure 1 illustrates a small part of a GSM model that can support Pro-
posal Creation, and Figure 2 shows several sentries for that model. The information
model of the business artifact is shown along the bottom of Figure 1, and top layers of
the lifecycle model are shown above. The three top-level phases of activity, depicted
as GSM stages with rounded corner boxes, are Create Initial Proposal (S1), Refine
Proposal (S2), and Submit Proposal (S3). Stage Refine Proposal is typically executed
several times. Stages can be arranged hierarchically, as illustrated in Refine Proposal.
(Although not illustrated in this example, distinct stages may execute in parallel.)

GSM milestones are shown as circles. Several milestones are naturally associated
with the completion of stages, e.g., Refine Proposal ends when an executive approves
the refinement. Other milestones are free-standing. For example, Customer Credit

436 Y. Sun, R. Hull, and R. Vaculı́n

Acceptable will become true if the proposal price is � $500K and the client has a Level
A credit rating, and if the proposal price is > $500K and the client has a Level B credit
rating. Milestones can be tested as Boolean values by conditions anywhere in the GSM
model.

Guards, which control when stages can be opened for execution, are shown as di-
amonds. Guard g1 on Create Initial Proposal is a “bootstrapping” guard; when it is
triggered a new artifact instance is created. In some cases it is convenient to have a
terminator for a stage, shown using a bowtie. For example h2 on Refine Proposal is a
terminator that can be triggered if a worker indicates that this stage should be suspended
(e.g., because the client has stated that they are withdrawing their request). Unlike mile-
stones, guards and terminators cannot be tested as Booleans.

We now briefly describe a representative scenario where fast response is important.

Example 2.2 Three representative substages are shown in Refine Proposal, namely Re-
vise Technical Aspects, Determine Price, and Check Credit. In practice, Revise Techni-
cal Aspects would have a number of substages dealing with hardware, software, work-
force, logistics, etc. Determine Price might involve several substages, and for this ex-
ample we assume that they are all automated (e.g., for determining costs associated
with various portions of the technical aspects, for computing shipping costs and taxes,
for adding everything up). Only a subset of these substages would be relevant for a
given execution of Determine Price. There may be other stages analogous to Determine
Price, e.g., for determining risk, impact on branding, or impact on competitive posi-
tioning. The Check Credit stage might be triggered if a newly computed price is higher
than the credit level already approved for the customer.

After a management-level worker approves a changed part of the Revise Technical
Aspects stage, there will be processing to recompute the price, which will then lead to a
feedback that either confirms that the client credit is still acceptable, or indicates that a
higher-level Credit Check must be performed. It is desirable that this feedback be given
to the worker within just a couple of seconds.

3 Guard-Stage-Milestone Meta-model

This section presents the syntax and operational semantics of the GSM meta-model. The
focus is one GSM model that involves a single artifact type. Due to space limitations,
the presentation is largely informal; formal definitions may be found in [8].

As illustrated in Section 2, a Guard-Stage-Milestone model (or GSM model) includes
both an information model and a lifecycle model. This is typically denoted as a 5-
tuple Γ = (Att, EType, Stg, Mst, Lcyc), where the components are, respectively, the
set of attributes (partitioned into the set Attdata of data attributes and Attstatus of status
attributes; the set of (incoming) event types; the set of stages; the set of milestones; and
the lifecycle model (which is defined below).

The domain of each data attribute A, denoted Dom(A), is assumed to include the
undefined value ⊥. For each milestone m, there is a Boolean milestone status attribute
also denoted by m in Attstatus; this is true if the milestone has been achieved and not
since invalidated, and false otherwise. For each stage S there is a Boolean stage status
attribute also denoted by S ; this is true if the stage is open and false otherwise.

Artifact instances of GSM model Γ interact with the external environment by send-
ing and receiving typed external events with event types defined in EType. There are two

Parallel Processing for Business Artifacts with Declarative Lifecycles 437

types of external events: incoming events that are received from the external environ-
ment and outgoing events that are sent to the external environment. An event instance
(or simply, event) consists in an event type and a payload, specified as a family of at-
tribute/value pairs. As a notational convenience, the attributes here are drawn from the
set of data attributes of Γ. When an artifact instance incorporates an incoming event,
the attributes mentioned in the payload are updated according to the values

The actual “work” of a GSM model is performed by tasks, which are contained
in atomic stages. Tasks are invoked through message sending. The two types of task
relevant for this paper can: (a) generate 1-way messages (when invoked they wait for
a “handshake” indicating success or failure); (b) generate 2-way service calls (when
invoked they wait for the service call return from the called service or a time-out mes-
sage). (Upon completion of a 2-way service call generated by a task, an incoming mes-
sage is received by the artifact instance, and the atomic stage associated with the task
is closed.) In GSM, computational tasks (including assignments of attribute values) are
modeled using 2-way service calls.

A sentry for GSM model Γ is an expression of form ‘on < event expression > if <
condition >’; or ‘on < event expression >’; or ‘if < condition >’. The event expression
may have one of the following forms: Incoming event expression: E, where E ∈ EType
(intuitively, it gets satisfied if an event of type E occurs); Internal event expression:
For each milestone m this includes +m and −m; and for each stage S this includes +S
and −S . Intuitively, +m is triggered when m is achieved, −m when m is invalidated, +S
when S is opened, and −S when S is closed. As illustrated in Section 2, the guards
and terminators associated with stages are sentries. Also, milestones have associated
achieving sentries and invalidating sentries.

The lifecycle model of a GSM model Γ = (Att, EType, Stg, Mst, Lcyc), is the tu-
ple Lcyc = (Substages, Task, Submilestones, Guards, Terminators, Ach, Inv) where the
components are, respectively a function that maps each stage to its family of substages
(where the substage relationship forms a forest); a function that maps each atomic stage
to the unique task that it contains; a function that maps a subset of the milestones to
stages that they are contained in; a function that associates guards to stages; a func-
tion that associates terminators to stages; a function that associates achieving sentries
to milestones; and a function that associates invalidating sentries to milestones.

A snapshot of a GSM model Γ is an assignment Σ that maps each attribute of Γ to
a value in its domain (which includes ⊥ for data attributes). Snapshots are required to
satisfy the GSM invariant, namely that if a stage S is closed (i.e., if status attribute S
is assigned the value false) then all of its child stages are also closed. In the following
we also need the notion of pre-snapshot; this is an assignment Σ for Γ that might not
satisfy the GSM invariant.

Citation [2] introduces three equivalent formulations of the operational semantics of
GSM, called incremental, fixpoint, and closed-form (which is expressed in first-order
logic); in the current paper we focus exclusively on the incremental formulation. This
is based on responding to an incoming external event by repeated application of Event-
Condition-Action (ECA) like rules until no further rules can be fired. The ECA-like
rules are formed from the sentries of the GSM model. Because negation is present in
the ECA-like rules, some restrictions are placed on GSM models, and on the order of
rule application. These restrictions, described below, are analogous to those found in
stratified datalog and logic programming.

438 Y. Sun, R. Hull, and R. Vaculı́n

A fundamental notion in GSM is that of Business Step (B-step). These are concep-
tual atomic units of business-relevant processing, and correspond to the effect of in-
corporating one incoming event into a snapshot of GSM model Γ. B-steps have the
form of 4-tuples (Σ, e, Σ′,Gen), where Σ, Σ′ are snapshots, e is an incoming external
event, and Gen is a set of outgoing external events. Under the incremental formula-
tion, this 4-tuple is a B-step if there is a sequence of pre-snapshots Σ = Σ0, Σ1 =

ImmEffect(e, Σ), Σ2, . . . , Σn = Σ
′ where, speaking intuitively, Σ1 corresponds to the di-

rect incorporation (called “immediate effect”, denoted as ImmEffect) of event e into Σ,
and Σi+1 corresponds to the application of a sentry to Σi for i ∈ [2..n]. (For simplicity of
exposition below, we also permit Σi+1 to be identical to Σi for some i.) Further, Gen is
the set of outgoing events caused by the tasks that are launched during the sequence. In
the formal model, computation of this sequence of pre-snapshots is assumed to happen
in a single instant of time, and the set Gen of events is transmitted to the external envi-
ronment in one batch immediately after Σ′ is computed. We sometimes write a B-step
as a triple (Σ, e, Σ′) if Gen is understood from the context.

Example 3.1 In Fig. 1, suppose now S 1, S 3, S 5 and S 6 are closed and S 2 and S 4 are
open. A new B-step can be triggered by receiving event revisedTechnicalReady. In this
B-step, m5 will be achieved and so stage S 4 will close. Since g9 is +m5, the B-step will
also open stage S 5. After that no further sentries are applicable and the B-step ends.

B-steps must satisfy two properties, called Inertial and Toggle-Once. Speaking intu-
itively, inertial means that if Σ and Σ′ differ on some status attribute, then there must be
some sentry that justifies the change. Toggle-Once means that in a sequence as given
above, a status attribute can change value at most once. This corresponds to the intuition
that everything business-relevant about a B-step should be observable by looking at the
snapshots before and after the B-step.

We now describe how the sentries of Γ are used to create the ECA-like rules, called
here ‘Prerequisite-Antecedent-Consequent’ (PAC) rules. The “prerequisite” component
of these rules helps to enforce the Toggle Once property. (In most naturally arising GSM
schemas, the “prerequisite” component is not needed.)

Definition: A Prerequisite-Antecedent-Consequent (PAC) rule ρ, for GSM model Γ is
a tuple (π, α, γ), where: (Prerequisite) π is a formula on attributes in Att; (Antecedent)
α is a sentry based on attributes in Att, internal events over Attstatus, and external event
types EType; and (Consequent) γ is an internal event �σ, where � ∈ {+,−} and σ ∈
Attstatus.

Returning to the incremental semantics, suppose that a partial sequence Σ = Σ0, Σ1 =

ImmEffect(e, Σ), Σ2, . . . , Σi has already been constructed. A PAC rule (π, α, γ) is appli-
cable to (Σ, Σi) if Σ |= π and Σi |= α. In this case, Σi+1 may be formed by modifying Σi

according to the status change called for in γ.
A GSM model Γ is well-formed if the graph defined next is acyclic. This graph is

also central to the parallelization developed in Section 4.

Definition: The extended polarized dependency graph (EPDG) of GSM model Γ, de-
noted EPDG(Γ) is a graph where the node setV includes: for each event type E, nodes
+E; for each milestone m, nodes +m and −m; and for each stage S , nodes +S and −S .
The edge set E is defined as follows. (Here “�,�′” are polarities, and range over {+,−};
σ, σ′ are not necessarily distinct status attributes; and (π, α, γ) as a PAC rule in ΓPAC .)

Parallel Processing for Business Artifacts with Declarative Lifecycles 439

Basis Prerequisite Antecedent Consequent
Explicit rules
PAC-1 Guard: if on ξ if ϕ is a guard of S . (Include term S ′

if S ′ is parent of S .)
¬S on ξ if ϕ ∧S ′ +S

PAC-2 Terminator: if on ξ if ϕ is an terminator of S . S on ξ if ϕ −S
PAC-3 Milestone achiever: if m is a milestone and on ξ if ϕ

is an achieving sentry for m. (Include term S ′ if S ′ is
parent of m.)

¬m on ξ if ϕ ∧S ′ +m

PAC-4 Milestone invalidator: if m is a milestone and on ξ if
ϕ is an invalidating sentry for m.

m on ξ if ϕ −m

Invariant preserving rule
PAC-5 If S is a child stage of S ′ S on −S ′ −S

Fig. 3. Prerequisite-Antecedent-Consequent Rules of a GSM Model

+S2

+m1

+m4

+resume
Refinement

+S4

+offerManager
Request

+m5

+S5

+S6
+m6

+m7

+m8

-m7

-m8

+m2

+refined
ProposalReady

+revised
TechnicalReady

-m5

+price
Determined

-m6

+creditAppr
+m9

+Aggressive
PricingExecApproval

-m9

+Aggressive
PricingRescinded +m10

-m10
-S4 -S5

-S6

-S2

-S1

-S3

Fig. 4. (Extended) Polarized Dependency Graph

– If α includes in its triggering event ξ the internal event expression �′σ′, and γ is
�σ, then include edge (�′σ′,�σ).

– If α includes in its condition the expression σ′ and γ is �σ, then include edges
(+σ′,�σ) and (−σ′,�σ).

– If a guard g (or a terminator h) of a stage S contains a triggering event of type E, or
a data attribute from the payload of E, then include edge (+E,+S) (or (+E,−S)).

– If an achieving (or invalidating) sentry of milestone m contains a triggering event
of type E, or a data attribute from the payload of E, then include edge (+E,+m) (or
(+E,−m)).

Intuitively, an edge (�σ,�′σ′) is included in the EPDG if possible impacts on �σ
should be finalized before the PAC rules impacting �′σ′ are considered. We may also
use the notion of “PDG” [8] (EPDG without +E nodes, where E is an event type) in the
remainder of this paper.

Fig. 4 shows to part of the EPDG for the GSM model of Example 2.1 (the solid nodes
and edges form the “PDG”). Here, there is an edge from +m5 to +S 5, because the guard
g9 on S 5 includes +m5. Also, both +m8 and −m8 point to m10 in the EPDG, because m8

is mentioned in the if part of an achiever of m10.
When constructing a B-step using the incremental construction, the PAC rules are

considered in an order based on a topological sort of the PDG A key result of [2] states
that if Γ is well-formed and e is applicable to Σ, then there is exactly one snapshot Σ′
(and one set Gen) such that (Σ, e, Σ′,Gen) is a B-step. In particular, the construction of
Σ′ is independent of the topological sort used for rule application.

440 Y. Sun, R. Hull, and R. Vaculı́n

As discussed in [8], in some corner cases after completion of a B-step (Σ, e, Σ′,Gen)
some PAC rule might be applicable to Σ′. In this paper we consider only GSM models
Γ for which this does not arise: such GSM models are called “orphan-free”.

4 Parallelized Business Steps: Algorithm with Parallelism

The reason to propose the parallel algorithm for GSM is to solve the bottleneck that may
occur when events are evaluated in a strictly sequential manner. The proposed parallel
algorithm uses the following techniques. (1) Targeting: When processing a single B-
step, it is sufficient to traverse only a subset of the PDG graph instead of the entire
graph (introduced in this section); (2) Pipelining: B-steps can be evaluated in parallel.
(3) Parallelism within a single B-step: Even within a B-step, some evaluations can be
done in parallel.

We start by introducing the targeting algorithm which serves as a basis for the paral-
lel algorithm. This approach reduces the number of PDG nodes that need to be evalu-
ated in every B-step. We show the equivalence between the targeting algorithm and the
sequential one.

Assuming an orphan-free and well-formed GSM model, the following “targeting
algorithm” performs one B-step for an incoming event e of type E:

– For each reachable node v from (+E) in topological order
• If v is +E, then apply immediate effect with e.
• Otherwise, apply each PAC rule associated with v.

Theorem 4.1 (Informal) The targeting algorithm and the incremental algorithm share
the same operational semantics.

The proof of Theorem 4.1 is in [8]. If the multi-threaded mechanism is used in the GSM
engine, one optimization using the targeting algorithm can be obtained by evaluating
two nodes that have no partial relationship in parallel. We use this idea in the parallel
algorithm to handle multiple events.

Example 4.2 In Fig. 4, if event “priceDetermined” comes, instead of traversing the
whole PDG, only nodes +m6, +S 6, −S 5, −m6, +m10, and −m10 need to be visited in
topological order. Furthermore, since −S 5, +m10, and +S 6 share no partial relationship,
these three nodes can be evaluated in parallel.

The targeting algorithm provides the basis for parallelizing B-steps. Suppose two events
of different types arrive at about the same time and the EPDG subgraphs of the two event
types have no intersection in terms of nodes. Naturally, it is possible to traverse the two
subgraphs and apply the corresponding PAC rules in parallel. On the other hand, if there
are some nodes shared by the two subgraphs, the parallel algorithm needs to make sure
that PAC rules associated with the shared nodes for the event that arrived earlier are ap-
plied before those associated with the later event. We assume that incoming events and
the corresponding B-steps are labeled by increasing numbers (or logical timestamps)
that correspond to the order in which events occurred. The parallel algorithm will use
these numbers to make sure that during the concurrent B-steps, the ordering of events
is not violated.

Parallel Processing for Business Artifacts with Declarative Lifecycles 441

In the algorithms, we use the following notation. Given a GSM model Γ and its
EPDG (V,E), each node v ∈ V is associated with two sets denoted as will visit(v)
and has visited(v), whose elements are positive integers. Given a status attribute σ, the
complement of node +σ (or −σ) is node −σ (or +σ), denoted as co(−σ) (or co(+σ)).

For each incoming event, there are three high-level steps of how B-steps are pro-
cessed in parallel: labeling, evaluation, and removal.

1. Labeling: In order to understand which node is available for immediate processing,
it is necessary to label them first. Suppose the kth event arrives which is of type E, then
add k to will visit(v) of each EPDG node v that is reachable from +E. This “labeling
policy” is based on the result of the targeting algorithm.

2. Evaluation: Once the numbers are labeled for the kth event, the B-step k can start to
evaluate its corresponding reachable nodes similar to targeting algorithm (by applying
the PAC rules or the immediate effect). A B-step k can evaluate a node v, if v satisfies
the following evaluation policy: (1) k is the smallest number in will visit(v); and (2) k
is smaller than each number in will visit(u) and will visit(co(u)), where u is a node and
(u, v) is an edge; and (3) k is no greater than each number in will visit(co(v)).

3. Removal: Once B-step k applies the PAC rules or the immediate effect on a node v, k
is moved from will visit(v) to has visited(v) which indicates that the B-step k has visited
v already. This removes the ordering restriction and will unblock the later B-steps, so
that they can apply PAC rules on the shared nodes.

Theorem 4.3 (Equivalence theorem, informal) .The parallel algorithm and the tar-
geting algorithm are equivalent in terms of the observable behavior.

The formal statement and the proof of Theorem 4.3 is in [8]. Theorem 4.3 guarantees
that the parallel algorithm can correctly handle multiple incoming events in parallel and
generate the same snapshots, outgoing events, and query answers as if all incoming
events and queries are processed sequentially.

In [8], an optimized algorithm is provided. Based on the optimized version, it can be
shown that the complexity in the worst case is no worse than the targeting algorithm;
while much better than targeting algorithm in terms of order in the best case.

5 Related Works

The GSM paradigm used here is based on the business artifact model originally intro-
duced in [7,6], but using a declarative basis [2,5].

There is a strong relationship between the GSM model and Case Management [13,12];
both approaches focus on conceptual entities that evolve over time, and support ad hoc
styles of managing activities. The GSM framework provides a formal operational se-
mantics [2,5]. The core GSM constructs are being incorporated into the emerging OMG
Case Management Modeling Notation standard [1], and there is ongoing work to adapt
the GSM semantics to that context.

DecSerFlow [11] is inherently more declarative than GSM. GSM can be viewed as a
reactive system that permits the use of a rich rules-based paradigm for determining, at
any moment in time, what activities should be performed next.

There is a loose correspondence between the artifact approach and proclets [10]; both
approaches factor a BPM application into “bite-size” pieces that interact through time.

442 Y. Sun, R. Hull, and R. Vaculı́n

Proclets do not emphasize the data aspect, and support only message-based proclet
interaction. In addition to supporting messages, GSM permits interaction of artifact
instances through condition testing and internal event triggering.

Citation [3] presents a framework for supporting web-based collaborative business
processes. They use a construct called task artifact to hold the complete collaboration
state, and to help manage the response to incoming events. An interesting research
question is to explore whether GSM could provide a useful approach for specifying
possible lifecycles of task artifacts.

6 Conclusions

Business artifacts with Guard-Stage-Milestone (GSM) lifecycle models offer a flexi-
ble, declarative, and modular way to support collaborative business processes. The core
constructs of GSM are being incorporated into the emerging OMG Case Management
Modeling Notation standard. This paper presents an algorithm to support parallel ex-
ecution of GSM processes, which can be especially useful in the context of highly
collaborative and/or web-scale business processes. The paper also introduces a GSM
meta-model that simplifies the previously published one.

An important next step is to implement and benchmark the parallel algorithm pre-
sented here, on both synthetic and “real” processes, to determine the practical gains in
throughput and response time yielded. More broadly, it will be useful to examine exist-
ing and future application areas for GSM and Case Management to identify other ways
to optimize overall performance.

References

1. BizAgi, Cordys, IBM, Oracle, SAP AG, Singularity (OMG Submitters) and Agile Enterprise
Design, Stiftelsen SINTEF, TIBCO, Trisotech (Co-Authors). Proposal for: Case Manage-
ment Modeling and Notation (CMMN) Specification 1.0, Document bmi/12-02-09, Object
Management Group (February 2012)

2. Damaggio, E., Hull, R., Vaculı́n, R.: On the Equivalence of Incremental and Fixpoint Se-
mantics for Business Artifacts with Guard-Stage-Milestone Lifecycles. In: Rinderle-Ma, S.,
Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 396–412. Springer, Heidelberg
(2011)

3. Dorn, C., Taylor, R.N., Dustdar, S.: Flexible social workflows: Collaborations as human ar-
chitecture. IEEE Internet Computing 16(2), 72–77 (2012)

4. Dustdar, S.: Caramba - a process-aware collaboration system supporting ad hoc and collabo-
rative processes in virtual teams. Distributed and Parallel Databases 15(1), 45–66 (2004)

5. Hull, R., et al.: Business artifacts with guard-stage-milestone lifecycles: Managing artifact
interactions with conditions and events. In: Proc. 5th ACM Intl. Conf. on Distributed Event-
based Systems, DEBS 2011, pp. 51–62. ACM, New York (2011)

6. Kumaran, S., Nandi, P., Heath, T., Bhaskaran, K., Das, R.: Adoc-oriented programming. In:
SAINT, pp. 334–343 (2003)

7. Nigam, A., Caswell, N.S.: Business artifacts: An approach to operational specification. IBM
Syst. J. 42, 428–445 (2003)

8. Sun, Y., Hull, R., Vaculı́n, R.: Parallel processing for business artifacts with declarative life-
cycles (full version). IBM internal technical report, available on request (2012)

9. Vaculı́n, R., et al.: Declarative business artifact centric modeling of decision and knowledge
intensive business processes. In: Proc. Intl. Conf. on Enterprise Distributed Objects Confer-
ence (EDOC), pp. 151–160 (2011)

Parallel Processing for Business Artifacts with Declarative Lifecycles 443

10. van der Aalst, W.M.P., et al.: Proclets: A framework for lightweight interacting workflow
processes. Int. J. Cooperative Inf. Syst., 443–481 (2001)

11. van der Aalst, W.M.P., Pesic, M.: Decserflow: Towards a truly declarative service flow lan-
guage. In: The Role of Business Processes in Service Oriented Architectures 2006 (2006)

12. van der Aalst, W.M.P., Weske, M.: Case handling: a new paradigm for business process
support. Data Knowl. Eng. 53, 129–162 (2005)

13. Zhu, W.-D., et al.: Advanced Case Management with IBM Case Manager,
http://www.redbooks.ibm.com/redpieces/abstracts/sg247929
.html?Open

http://www.redbooks.ibm.com/redpieces/abstracts/sg247929.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg247929.html?Open

Automatically Generating and Updating

User Interface Components
in Process-Aware Information Systems

Jens Kolb, Paul Hübner, and Manfred Reichert

Institute of Databases and Information Systems
Ulm University, Germany

{jens.kolb,paul.huebner,manfred.reichert}@uni-ulm.de
http://www.uni-ulm.de/dbis

Abstract. The increasing adoption of process-aware information sys-
tems (PAISs) has resulted in a large number of implemented business
processes. To react on changing needs, companies need to be able to
quickly adapt these process implementations. Current PAISs only pro-
vide mechanisms to evolve the schema of a process, but do not allow for
support the automated creation and adaptation of user interfaces (UIs).
The latter may have a complex logic and comprise conditional elements
or database queries. Creating and evolving UIs manually is a tedious and
error-prone task. This paper introduces a set of patterns for transform-
ing fragments of a business process, whose activities are performed by
the same user role, to UIs of the PAIS. In particular, UI logic can be ex-
pressed using the same notation as for process modeling. Furthermore, a
transformation method is introduced, which applies these patterns to au-
tomatically derive UIs by establishing a bidirectional mapping between
process model and UI. This mapping allows propagating UI changes to
the process model and vice versa. Overall, our approach enables process
designers to rapidly develop and update complex UIs in PAISs.

1 Introduction

Process-aware information systems (PAISs) separate process execution from ap-
plication code. Hence, a separation of concerns is realized based on explicit pro-
cess models. When initially capturing business processes in process models, focus
is put on business aspects, while technical aspects concerning process execution
are excluded. Usually, respective process models cover the users’ activities at a
fine-grained level (cf. Fig. 1a). Hence, before deploying such a process model in
a PAIS, it must be revised and customized. For example, several human tasks,
forming a process fragment in the process model, may be combined into one
activity in the executable process model (cf. Fig. 1b). This activity is then im-
plemented by a user interface (UI) component in the PAIS, e.g., a user form
whose logic corresponds to the one of the initial process fragment (cf. Fig. 1c).
Based on this logic, for example, form elements may be disabled when selecting
a certain check box, or web services may be called in the background. Overall,

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 444–454, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.uni-ulm.de/dbis

Automatic User Interface Generation 445

both the implementation and maintenance of the UI components in a PAIS is a
cumbersome and costly task. This hinders quick adaptations of process imple-
mentations [1].

Select
Customer

Choose
Contact

Type

Edit
Address

Review
Account

Accept
Message

Decline
Message

Create
Customer

Clerk

Clerk

Clerk

Clerk

Manager

Manager

Manager Approve
Account

Clerk Manager

Edit
Customer

CustId:int

Approve Account: Man...
Edit Customer: Clerk UI

Choose Contact Type

Edit Address
Street

City

E-MailContact

a) Initial (Business) Process Model b) Executable Process Model c) User Interface Components

Activity
XOR

AND

Data Element SESE block
(Single Entry Single Exit)

Fig. 1. Deriving UI Components from a Business Process Model

The process evolution of the processes implemented in a PAIS is a critical
success factor for any company. Such an evolution requires changes of the pro-
cess models and their associated UI components. Process model evolution is a
well-understood feature in modern PAISs [2,3]. There exist editors for defining
simple UI components of the PAIS (e.g., moving or renaming input fields in a
UI). However, complex changes of the logic of UIs can not be done by users, but
require process implementers. Moreover, the automatic propagation of changes
made in the UI components to the process model and vice versa is not supported.
We address these issues through the automatic generation of UI components out
of process fragments, and present patterns for transforming process fragments
to UI components. While elementary transformation patterns (ETP) transform
single activities to simple UI elements, complex transformation patterns (CTP)
enable the mapping of entire process fragments and their logic to UI compo-
nents, showing the same behaviour as the process fragment. Next, we provide an
advanced transformation method that allows generating UI components out of a
process model based on the user roles assigned to activities. This method allows
propagating changes of UI components to the process model and vice versa. Our
transformation method decreases the effort for evolving PAIS to changing needs.
The paper is structured as follows: Section 2 introduces basic notions. Section
3 describes common patterns for transforming process model fragments to UI
components. Section 4 presents a method for transforming process models to UI
components, which is based on transformation patterns and role-based process
views. Section 5 discusses related work and Section 6 summarizes the paper.

2 Basic Notions

A process model is described in terms of a directed graph whose node set com-
prises activities, gateways, and data elements. An activity either corresponds to
a human task and thus requires user interactions, or to a service representing an
automated task. In turn, gateways can be categorized into AND, XOR and Loop
and are used for modeling parallel/conditional branchings and loops. Edges be-
tween activities and/or gateways represent precedence relations, i.e., the control

446 J. Kolb, P. Hübner, and M. Reichert

flow of the process model (cf. Fig. 1a). Furthermore, data elements comprise
primitive data elements and complex ones. Primitive data elements cover ele-
mentary data values of the process model and have one of the following types:
integer, float, boolean, string, date, or URI. Based on this, the data flow is de-
fined by a set of directed edges connecting data elements and activities. Writing
a data element is expressed through an edge pointing from an activity to the
data element. In turn, reading a data element is expressed by an edge from this
data element to the activity. We presume that process models are well-structured
[4], i.e., sequences, branchings (of different semantics), and loops are specified
as blocks with well-defined start and end nodes having the same gateway type.
These blocks, also known as SESE (single-entry-single-exit) blocks (cf. Fig. 1a),
may be nested, but are not allowed to overlap.

3 User Interface Transformation Patterns

The goal of our research is to identify and apply a general set of UI transfor-
mation patterns to map process fragments to UI components. To achieve this
goal, we first describe a three-step method, which we apply for identifying UI
transformation patterns (cf. Fig. 2). Step 1 analyzes and evaluates PAIS projects
in which we were involved. More precisely, we analyze the process models from
these projects as well as their technical implementation. Step 2 analyzes existing
PAISs and their support for UI generation. Step 3 scans related literature. The
empirical results are used to specify general UI transformation patterns. Based
on these patterns, Step 4 develops a transformation method for the automatic
generation of role-specific UI components (cf. Section 4).

UI
Transformation

Patterns

Research
Question

UI
Transformation

Method
Step 2: Analyze PAISs

Step 1: BPM Projects Evaluation

Step 3: Literature Screening

Step 4: Develop
Trans. Method

Fig. 2. Transformation Pattern Identification Method

3.1 Elementary Transformation Patterns

Elementary transformation patterns (ETP) enable the transformation of single
process model elements to simple UI elements. For example, an activity may
be transformed into a simple user form. Thereby, the respective ETP considers
activity input/output data elements and maps them to form elements.

ETP1 (Human Activity Transformation) transforms a single activity to
a Form Group Element (FGE) (cf. Table 1); i.e., for each human activity of a
process model, an FGE is generated. In modern PAIS, usually, such an FGE is
represented by a dialog window.

Automatic User Interface Generation 447

Table 1. ETP1: Human Activity Transformation

ETP1: Human Activity Transformation
Description: A human activity of a business process model (i.e., an activity to be performed

by a human resource) is transformed into a Form Group Element (FGE). An
FGE corresponds to a UI element that contains UI elements for displaying or
editing data.

Example: A clerk must perform an activity, in which customer data is edited.

Edit
Customer

Data
⇒

Edit Customer

FGE

Problem: To perform a human activity within a PAIS, a user interaction is required.

Implementation: An FGE can be implemented in terms of a dialog window. In the context of
CTPs, an FGE constitutes a grouping element of the UI.

ETP2 (Service Activity Transformation)1 creates application stubs for
automated tasks not performed by a user (e.g., fetching data from a database).
ETP2 is needed to generate complete UI components enabling interactions with
both users and backend systems (cf. Section 3.2).

ETP3 (Data Flow Transformation)1 transforms data elements and data
flow edges to UI elements. ETP3 as well as related patterns ETP3.1-ETP3.3
generate Field Elements (FE) within an FGE; i.e., when generating the FGE
(cf. ETP1), the data elements and edges of a process activity are transformed to
input/output FEs of a UI component. In this context, sub-patterns ETP3.1 and
ETP3.2 are applied to indicate whether the FE is read-only or editable. Finally,
ETP3.3 transforms the type of a data element to a specific FE; e.g., a boolean
data element is transformed to a radio button element with two choices.

3.2 Complex Transformation Patterns

Complex Transformation Patterns (CTPs) allow transforming entire fragments
of a process model, whose activities shall be performed by the same user, to
UI components. When creating such a UI component both the control and data
flow of the process fragment are considered. Hence, each generated UI component
covers parts of the overall process logic. By combining role-specific activities in
the same UI component, unnecessary UI context switches can be avoided. To
structure such a UI component, tab elements—called Tab Container Elements
(TCE)—are used. A CTP interconnects TCEs according to the control flow of
the process fragment to which it is applied. Single activities and data elements
related to the process fragment are transformed using ETPs.

CTP1 (Process Model Transformation). generates a User Interface Dialog
(UID) for process fragments whose activities are processed by the same user role
(cf. Table 2). AUID is a toplevel container,which is representedby a dialogwindow
in the PAIS containing UI elements representing activities and data elements.

1 A more detailed description of all ETPs can be found in [5].

448 J. Kolb, P. Hübner, and M. Reichert

Table 2. Pattern Descriptions for Patterns CTP1 and CTP2

CTP1: Process Model Transformation
Description: For a particular process fragment, a surroundingUser Interface Dialog (UID),

i.e., a toplevel container window, is generated. Following this, all other UI
elements related to activities of this fragment are generated based on ETPs
and CTPs, and are then embedded in the UID.

Example: All interactions with a clerk shall be done using the same UI component.

Process
Fragment Select

Customer

Choose
Contact

Type

Edit
Address

Create
Customer

Send
Decision ⇒

Account Creation: Clerk UI

UID

Problem: The UI elements related to the activities and data elements of a particular
process fragment need to be mapped to a toplevel container window. The
UI flow logic (e.g., the ordering in which field elements may be displayed or
written) corresponds to the control flow of the given process fragment.

Implementation: For each process fragment, a UID element (dialog window) is generated.

CTP2: Sequence Block Transformation
Description: A sequence of activities (and SESE blocks) is transformed into a sequence of

Tab Container Elements (TCE) to be processed in the same sequential order.
Example: A clerk first edits the customer data and then the corresponding contact data.

Edit
Customer

Edit
Contact

Sequence Block

⇒
Account Creation: Clerk UI

Edit Customer

Edit Contact

Edit Customer

TCE

Problem: Human activities, performed in sequence by the same user (role), shall be ac-
complished using the same UI component, instead of using separate UI com-
ponents (e.g., dialog windows) for each activity.

Implementation: For each activity (or SESE block), a TCE element is created. The order in
which these TCEs are processed relates to the one of the respective activities.

CTP2 (Sequence Block Transformation) deals with the transformation of
a sequence of activities (and SESE blocks respectively) to TCEs (cf. Table 2).
For each activity (or SESE block) of the sequence, a TCE element is generated
and linked to other TCEs according to the given activity sequence.

CTP3 (Parallel Block Transformation) transforms parallel activities (or
SESE blocks) of a process fragment to UI elements within the same UID. These
elements may then be accessed concurrently (cf. Table 3). The UI component is
similar to the one of a single activity (cf. ETP1). However, CTP3 not only covers
the transformation of activities arranged in parallel, but enables the concurrent
processing of SESE blocks arranged in parallel to the respective UI elements.

CTP4 (XOR Block Transformation)2 transforms an XOR branching of
a process fragment to a UI component. CTP4 generates independent TCEs for
each branch of the XOR branching. The decision, which branch and hence which
TCE shall be selected, is made during run-time; e.g., whether the TCE element
for creating a new customer or the one for editing an existing customer shall

2 A more detailed description of this pattern can be found in [5].

Automatic User Interface Generation 449

Table 3. Pattern Descriptions for Patterns CTP3 and CTP6

CTP3: Parallel Block Transformation
Description: A parallel block and its activities are mapped to a single TCE for their pro-

cessing. This TCE allows for their concurrent execution.

Example: While editing the address of a customer, the contact type the customer wants
to use for communication can be entered in parallel.

Choose
Contact

Type

Edit
Address

AND Block

⇒
Account Creation: Clerk UI

Edit Contact (AND)

Choose Contact Type

Edit Address

Problem: Activities (or SESE blocks) of a process fragment, which are performed in
parallel by the same user (role), shall be mapped to the same UI component;
UI elements then must be displayable/editable concurrently.

Implementation: When applying CTP3, for each parallel branch, FGEs are added to the TCE.

CTP6: Background Activity Transformation

Description: While human activities are performed by human resources, service activities
may automatically fetch or save data concurrently in the background.

Example: A user selects a customer name in order to edit respective customer data. After
selecting the name, in the background, all available customer information is
retrieved from the database and displayed to the user.

Background Activity Block

Fetch
Data

Select
Customer

Edit
Customer

String:CustomerID Customer:CustomerData

Background
Activity

⇒
Account Creation: Clerk UI

Select Customer

Edit Customer

Edit Customer
CustomerID:
CustomerID data element
triggers the background
activity which fetches the
respective customer data set

Problem: A service activity needs to be executed concurrently to human activities per-
formed by the same user (role). This requires the concurrent fetching/storing
of data from a database as well as the automated and dynamic displaying of
new form elements.

Implementation: Dynamic forms, which contain background activities, need a change listener
mechanism to detect user inputs and to react on them.

be displayed. In particular, run-time data for deciding which branch of an XOR
branching shall be executed is required.

CTP5 (Loop Block Transformation)2 transforms a loop block to elements
of a UI component. For each loop, CTP5 generates a TCE and corresponding
UI elements for nested activities or SESE blocks (cf. CTP1). Additionally, a
decision element is required to decide whether to exit the loop after completion
of a particular iteration or trigger the next loop iteration either based on data
elements processed during loop execution (e.g., evaluating data for validity) or
external criteria (e.g., calling someone until getting an answer).

CTP6 (Background Activity Transformation) reflects the need for dynam-
ically loading data elements by a service activity (cf. Table 3). More precisely,
data has to be fetched from or stored to a backend system, while the user con-
currently works on human activities.

450 J. Kolb, P. Hübner, and M. Reichert

4 Transforming Process Models to User Interfaces

Section 4.1 shows how the presented patterns are used to transform process frag-
ments to UI components of the PAIS. Further, we discuss how process fragments
can be adapted through changes of the UI components (cf. Section 4.2).

4.1 User Interface Transformation Method

To transform a process model, consisting of several process fragments, to mul-
tiple UI components, we introduce a five step method (cf. Fig. 3). Thereby, the
number of generated UI components depends on the number of different user
roles involved in the process.

Select
Customer

Choose
Contact

Type

Edit
Address

Review
Account

Accept
Message

Decline
Message

Create
Customer

Send
Decision

Process View

TCE
XOR
Edit

Customer

User Interface Dialog (UID)

Tab Container Element (TCE)Control Flow Block

Activity Form Group Element (FGE)

Data Element Field Element (FE)

C
TP

A
pp

lic
at

io
n

ET
P

A
pp

lic
at

io
n

Initial Process Model

Process Model User Interface

Account Creation: Clerk UI

Edit Customer (XOR)

Edit Contact (AND)

Send Decision
Choose Contact Type

Edit Address
Street

City

E-MailContact

Account Creation: Clerk UI

Edit Customer (XOR)

Edit Contact (AND)

Send Decision
Choose Contact Type

Edit Address

Account Creation: Clerk UI

Edit Customer (XOR)

Edit Contact (AND)

Send Decision

Account Creation: Clerk UI

Step 1: Role-Specific View Creation

Step 2: User Interface Creation

Step 3: Block Transformation

Step 4: Activity Transformation

Step 5: Data Transformation

TCE
SEQ

TCE
AND
Edit

Contact

FGE
Edit

Address

FGE
Choose
Contact
Type

FE
Contact

FE
City

FGE
Create
Customer

TCE

Send
Decision

...

FE
Street

UID

Create Account

FE
Address

...

User Interface Model

Clerk

Clerk

Clerk

Clerk

ClerkManager

Manager

Manager

User Roles

Select
Customer

Choose
Contact

Type

Edit
Address

Create
Customer

Send
Decision

Select
Customer

Choose
Contact

Type

Edit
Address

Create
Customer

Send
Decision

Select
Customer

Choose
Contact

Type

Edit
Address

Create
Customer

Send
Decision

FGE
Select

Customer

Select
Customer

Choose
Contact

Type

Edit
Address

Create
Customer

Send
Decision

ContactAddress

Fig. 3. Transformation Method

Step 1. Role-specific process views [6,7,8] are created for the given process model.
A process view abstracts from certain aspects of the process model (e.g., it only
contains activities of a particular user role). In our context, a role-specific process
view constitutes the basis for creating a role-specific UI component.
Step 2. For each process view, a User Interface Dialog (UID) is created. A UID
acts as a toplevel container including all UI elements required for processing the
activities of a process view. For this purpose, CTP1 is applied (cf. Table 2).

Automatic User Interface Generation 451

Step 3. CTP2-6 are applied to transform complete process fragments to UI
elements. For each CTP applied, a Tab Container Element (TCE) is generated.
Each TCE is represented in the tab bar area (cf. Fig. 3, Step 3). When clicking
such an item, the corresponding UI elements are displayed. If there are nested
SESE blocks, they are displayed in a hierarchical tree in the tab bar area.
Step 4. Single activities (ETP1+2) are transformed into Form Group Elements
(FGE). Basically, each FGE represents one activity in the process model. In case
of a parallel branching, multiple activities are displayed on a TCE element in
the UI (cf. Fig. 3, Step 4).
Step 5. Data elements of the process view are transformed to Field Elements
(FE) and positioned within an FGE. There exist different kinds of FEs depending
on the data type of the respective data element (cf. pattern ETP3.3 in [5]).

The internal structure of the resulting UI component is represented through
a User Interface Model (UIM) (cf. Fig. 4b). This tree-based schema describes
the UI structure generated by our transformation method.

4.2 Synchronizing Process Model and UI Changes

After generating complex UI components for a process model through process
views and deploying them in the PAIS, users may want to modify the UI. Ba-
sically, two categories of UI changes can be distinguished. Local changes are
changes not affecting the associated process view. For example, assume that a
user re-positions the FGE Edit Address within the TCE Edit Contact (AND)
in Fig. 4a. Such a change would not affect the execution order of the activities
in the process view, i.e., it only affects the visual representation of the UI com-
ponent. Hence, the change needs not be propagated to the view. Global changes
modify the logic of the UI and the control flow of associated process views as
well (e.g., adding FGE Edit Phone Number and respective FE Phone, cf. Fig.
4a). The correct position of the change within the UIM can be determined by
the hierarchical structure of the UI (cf. Fig. 4b). The changes of the UIM are
then propagated to the process view; note that the latter is represented by the
UIM. Finally, the change of the process view has to be propagated to the basis
process model on which the view is created. For this propagation the concepts
developed in the proView3 project can be applied [9,10].

5 Related Work

Task Models describe the actions to be performed by a user when interacting
with an information system. Different variants of task models exist [11]. These
approaches describe the goals, steps and operations of a UI. Concurrent Task
Trees (CTT), in turn, provide a hierarchical model supporting various types of
tasks (e.g., automatic vs. manual task) and relationships between tasks (e.g.,
sequential vs. parallel execution) [12].

3 http://www.dbis.info/proView

452 J. Kolb, P. Hübner, and M. Reichert

Account Creation: Clerk UI

Edit Customer (XOR)

Edit Contact (AND)

Send Decision

Edit Phone Number

Choose Contact Type

Edit Address
Street

City

E-MailContact

Phone

TCE
SEQ

TCE
XOR

Edit Customer

TCE
AND

Edit Contact

FGE
Choose

Contact Type

FGE
Edit Phone
Number

FE
Contact

FE
City

FE
Phone

FGE
Select

Customer

FGE
Create
Customer

TCE

Send Decision

...... ...

... ...

TCE: Tab Container Element
FGE: Form Group Element
FE: Field Element

Edit Phone
Number

Select
Customer

Choose
Contact Type

Edit
Address

Create
Customer

Send
Decision

ContactAddress

Phone

a) Inserting New Form Elements b) Adapting the UI Model

FE
Street

c) Adapting Process Model

UID

Create Account

FE
Address

FGE
Edit

Address

Fig. 4. Adapting Process Models through Changes in the UI Component

Model-Driven UI Development applies the principles of Model-Driven De-
velopment to UI development. Although a lot of competing approaches exist,
an accepted standard is missing [13,14]. FlowiXML [15], for example, provides
a methodology to develop UIs for business processes, taking the organizational
structure as well as the process model into account. However, it does not al-
low for the automated generation of UIs. Based on FlowiXML, [16] describes
user tasks through task models (i.e., CTT) within a process model. Based on
these models, an abstract UI description is generated and transformed into a
UI component at run-time. This approach allows for changes based on UIs and
discusses how to manually align them with process models. However, automatic
propagation is not supported. [17] transforms a process model into a human in-
teraction perspective, which allows specifying data elements, user roles, tasks,
and UI layout. After manually refining them, corresponding UIs are generated
during run-time. Furthermore, data-centered process management offers a dif-
ferent (i.e., data-centered) view on processes. In particular, state transitions of
process-related data elements are described. Based on this, UIs can be generated
as well [18].

UI Generation in Existing PAIS is able to create UIs automatically (e.g.,
IBM Lombardi [19]). Single activities of a process model can be transformed into
simple UIs, taking associated data elements into account (cf. ETPs). More com-
plex scenarios are not covered. None of the approaches allows for the automatic
generation of complex UIs based on process models. The adaptation of process
models based on changes of the UI is only considered rudimentarily.

6 Conclusion

In this paper, we showed how UI components can be automatically created from
entire process fragments and process models respectively. For this purpose, el-
ementary and complex transformation patterns were identified and described.

Automatic User Interface Generation 453

Furthermore, a transformation method, which applies these patterns to create
complex UIs based on process views, was introduced. Our approach further en-
ables the propagation of UI changes (e.g., adding new input fields) to the asso-
ciated process model and vice versa. Finally, we implemented our UI generation
approach in a powerful proof-of-concept prototype [5]. In summary, our approach
will contribute to reduce costs for PAIS development and maintenance.

Future research will address the execution aspects of process models and as-
sociated UIs as well. In this context, features such as jumping back to an already
edited UI element will be supported by adapting the process instance.

References

1. Pradeep, H.: Process-User Interface Alignment: New Value From a New Level of
Alignment. Align Journal (October 3, 2007)

2. Weber, B., Reichert, M., Mendling, J., Reijers, H.A.: Refactoring Large Process
Model Repositories. Computers in Industry 62(5), 467–486 (2011)

3. Reichert, M., Dadam, P.: ADEPTflex - Supporting Dynamic Changes of Workflows
Without Losing Control. Journal of Intelligent Inf. Sys. 10(2), 93–129 (1998)

4. La Rosa, M., Wohed, P., Mendling, J., ter Hofstede, A.H.M., Reijers, H.A., van
der Aalst, W.M.P.: Managing Process Model Complexity Via Abstract Syntax
Modifications. IEEE Transactions on Industrial Informatics 7(4), 614–629 (2011)

5. Kolb, J., Hübner, P., Reichert, M.: Model-Driven User Interface Generation and
Adaptation in Process-Aware Information Systems. Technical report, UIB 2012-04,
Ulm University (2012)

6. Reichert, M., Kolb, J., Bobrik, R., Bauer, T.: Enabling Personalized Visualization
of Large Business Processes through Parameterizable Views. In: Proc. ACM SAC
2012, Riva del Garda (Trento), Italy (2012)

7. Kolb, J., Reichert, M., Weber, B.: Using Concurrent Task Trees for Stakeholder-
centered Modeling and Visualization of Business Processes. In: Oppl, S.,
Fleischmann, A. (eds.) S-BPM ONE 2012. CCIS, vol. 284, pp. 237–251. Springer,
Heidelberg (2012)

8. Bobrik, R., Reichert, M., Bauer, T.: View-Based Process Visualization. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 88–95.
Springer, Heidelberg (2007)

9. Kolb, J., Kammerer, K., Reichert, M.: Updatable Process Views for User-centered
Adaption of Large Process Models. In: Proc. Intl. Conf. on Service Oriented Com-
puting (ICSOC 2012), Shanghai, China (to appear, 2012)

10. Kolb, J., Kammerer, K., Reichert, M.: Updatable Process Views for Adapting Large
Process Models: The proView Demonstrator. In: Proc. of the Business Process
Management 2012 Demonstration Track, Tallinn, Estonia (to appear, 2012)

11. Limbourg, Q., Vanderdonckt, J.: Comparing Task Models for User Interface Design.
The Handbook of Task Analysis for Human-Computer Interaction 6 (2004)

12. Paternò, F., Mancini, C., Meniconi, S., Maria, V.S.: ConcurTaskTrees: A Dia-
grammatic Notation for Specifying Task Models. In: Proc. IFIP TC13 Int’l Conf.
on Human-Computer Interaction, pp. 362–369 (1997)

13. Traetteberg, H., Molina, P.J.: Making Model-Based UI Design Practical: Usable
and Open Methods and Tools. In: Proc. IUI 2004, pp. 376–377 (2004)

14. Lu, X.: Model Driven Development of Complex User Interface. In: Proc. MoDELS
2007, Workshop on Model Driven Development of Advanced User Interfaces (2007)

454 J. Kolb, P. Hübner, and M. Reichert

15. Garcia, J.G., Vanderdonckt, J., Calleros, J.M.G.: FlowiXML: A Step Towards De-
signing Workflow Management Systems. Int’l Journal of Web Engineering and
Technology 4(2), 163–182 (2008)

16. Sousa, K., Mendonça, H., Vanderdonckt, J., Rogier, E., Vandermeulen, J.: User
Interface Derivation from Business Processes: A Model-Driven Approach for Or-
ganizational Engineering. In: Proc. ACM SAC 2008, pp. 553–560 (2008)

17. Sukaviriya, N., Sinha, V., Ramachandra, T., Mani, S., Stolze, M.: User-Centered
Design and Business Process Modeling: Cross Road in Rapid Prototyping Tools.
In: Baranauskas, C., Abascal, J., Barbosa, S.D.J. (eds.) INTERACT 2007. LNCS,
vol. 4662, pp. 165–178. Springer, Heidelberg (2007)

18. Künzle, V., Reichert, M.: PHILharmonicFlows: Towards A Framework for Object-
Aware Process Management. Journal Software Maintenance and Evolution: Re-
search & Practice 23(4), 205–244 (2011)

19. Yang, S., Sun, Y., Waterhouse, J., Lau, D., Al-Hamwy, T.: Modeling and Imple-
menting a Business Process Using WebSphere Lombardi Edition 7.1. In: Proc.
CASCON 2010, pp. 374–375 (2010)

Embedding ‘Break the Glass’

into Business Process Models

Silvia von Stackelberg, Klemens Böhm, and Matthias Bracht

Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany

Abstract. Break the Glass (BTG) is an important feature for authoriza-
tion infrastructures, as it provides flexible access control in exceptional
cases. Current realizations have two drawbacks: They neglect the need
to manage authorization steps, and they do not take immediate process
context into account. Our approach in turn embeds BTG functionality
into business processes (BPs): The steps to perform BTG and the obli-
gations compensating a BTG access for data are parts of the BPs. To
support process designers in embedding BTG steps and obligations, we
introduce an expressive annotation language for specifying BTG tasks
for BP models. In particular, our language allows process designers to
take BP context into account and to specify security constraints for role
holders performing BTG tasks. Using our approach, one can efficiently
specify and use context-aware BTG functionality for BPs.

Keywords: Security, process model annotation language, immediate
context.

1 Introduction

Problem Statement. Security mechanisms are important for Business Process
Management (BPM). For instance, authorization constraints specify which roles
may perform a task or access certain data. However, such mechanisms sometimes
are too rigid, and more flexibility is needed. To illustrate, emergencies (e.g., in E-
health) and disaster management necessitate rights to access data in exceptional
situations. Thus, a trade-off between security on the one hand and flexibility on
the other hand needs to be facilitated.

The so-called Break the Glass (BTG) principle provides flexibility by allowing
users to overcome access denials in exceptional cases [1]. The designer specifies
in advance who, in particular situations, will have access rights he normally does
not have. In line with [5], the prerequisites to ”break the glass” from the applica-
tion perspective are: (1) regular access is denied, (2) BTG access is foreseen for
the exceptional case, (3) a user explicitly asks for access, (4) optionally, another
user has to agree to this access. We call the sequence of steps when users ask for
exceptional access BTG steps in the following. Next, obligations typically are
part of BTG, i.e., operations that compensate1 for the security violations. Obli-
gations can be triggered immediately after breaking the glass (synchronously)
or later (asynchronously).

1 We use the term compensation for the execution of obligations. As a data access
cannot be undone, it is at least mitigated by compensating actions.

R. Meersman et al. (Eds.): OTM 2012, Part I, LNCS 7565, pp. 455–464, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

456 S. von Stackelberg, K. Böhm, and M. Bracht

Example 1 (E-Health). In the regular case, only dedicated persons, such as
the family doctor of a patient, are authorized to access health-record data of
patients. We assume that this data is stored externally and policies (e.g., sticky
policies) specify authorizations for data access. In a life-threatening situation,
other members of the medical staff might need access to the data. ByBreaking the
Glass, physicians who are not authorized in the regular case access the record
in a controlled way. An exceptional access results in many obligations, such
as auditing the data access, informing the familiy doctor, among others. We
exemplarily focus on O1: At the end of the treatment process, the physician has
to send a report to the family doctor. Here, the point of time when sending the
report depends on the BP context, i.e., when the treatment of the patient has
been finished. This obligation is asynchronous because it refers to a later point
in time.

We envision integrating BTG functionality into BPMS. This is new and chal-
lenging, because existing approaches providing authorization infrastructures for
BTG (e.g., [1], [5], and [9]) do not cover the following aspects: (1) Modelling
BTG steps and obligations as part of the BP and executing them. (2) Consid-
ering BP-specific features, BP context in particular.

Regarding (1), related work leaves the execution of BTG steps and obliga-
tions to the application and views them as black boxes. However, a BTG access
typically consists of several steps. The same holds for obligations. This asks for
mechanisms to embed BTG steps and obligations into the BP, since the mod-
elling of such steps and their execution is exactly the purpose of BPMSs.

The development of context-aware systems is a challenging research area.
Most approaches take environmental context into account. Immediate process
context in turn is information that characterizes the process itself. It refers to
the execution state of a process instance, such as the state of tasks, associated
actors, or objects to be accessed [12]. Regarding (2), combining immediate BP
context with BTG functionality has several advantages, as we will explain in
Section 2. But existing work does not take immediate BP context for BTG
realizations into account.

Goals and Challenges: Our overall goal is to integrate BTG functionality into
the BP and to have it executed by a BPMS. By doing so, we take BP context
into account. To accomplish this, this paper focuses on the following goals:
– Facilitating the embedding of BTG steps and obligations into BPs. Without

any support for the embedding, process designers have to model both the
process logic and the security constraints for BTG functionality by hand.
This requires profound security knowledge and thus is error prone; and it
is time-consuming. Thus, there should be support at the process-modelling
level. By using annotations for process models (e.g., [7], [11], and [14]), de-
signers can rely on the modelling primitives they are used to. We develop an
annotation language for BP models representing BTG functionality.

– Context-aware annotation language. As BP context is important for BTG
functionality, the annotation language has to provide support for the cou-
pling of contextual information with BTG tasks.

Embedding ‘Break the Glass’ into Business Process Models 457

We leave the design and realization of an infrastructure supporting context-
aware BTG to a future publication.

The goals lined out above are challenging, for the following reasons:

– As the embedding of BTG functionality into BP is new, the design of an
expressive annotation language asks for a systematic requirements analysis.

– This results in the specification of a comprehensive set of expressions to
represent BTG functionality (e.g., which tasks have to be performed, who is
authorized).

– Current systems do not feature the coupling of immediate BP context with
BTG functionality. To support this, we develop a representation of BP con-
text process dessigners can easily use.

Contributions: We have developed new concepts to embed BTG functionality
at the BP modelling layer. ”Embedding” means that potential BTG steps and
obligations are integrated into a BP, and BP context is taken into account. In
particular, we make the following contributions:

– Motivation. We list advantages of using immediate context information for
BTG functionality. As context can be any information, we provide expres-
sions for the specification of context relevant for an application.

– Specification of an annotation language allowing to represent BTG steps
and obligations. In particular, it allows to specify actors involved in BTG
steps and BP-context-specific constraints for BTG options. By using these
constructs, process designers can smoothly embed BTG support into BPMS.
We specify a generic process fragment the BPMS has to execute in order to
fulfill the specifications contained in annotations.

Paper structure: We motivate context-aware BTG functionality in Section 2.
Section 3 lists requirements. Section 4 describes the annotation terms for BP
models. Section 5 discusses related work, and Section 6 concludes.

2 Motivation for Contextual BTG Functionality

Immediate BP context relevant for BTG can be information on the core BP re-
garding the functional, behavioral, organizational, operational, and data aspects
of process instances. We borrow these categories from [12]. – Coupling BTG
functionality with BP context has the following advantages:

(1) BTG steps may comprise BP-context-specific constraints: BP schemas
allow to impose control-flow constraints on BTG steps. For example, in the E-
health scenario, there might be a task to determine the urgency of a treatment.
A physician might be allowed for BTG only if this task has been performed.
Such a constraint can be expressed by referring to the execution state of a BP
instance. However, existing BTG approaches do not allow to specify this.

(2) Specification of constraints for obligations: Constraints for the execution
of obligations can be specified in the same way as for BTG steps. In our scenario,

458 S. von Stackelberg, K. Böhm, and M. Bracht

there might be one or several physicians involved in an treatment. An example of
a constraint is to send an email only when several physicians have been involved.

(3) Specification of BP context for obligation parameters: In general, obliga-
tions are parameterized. For example, an obligation might say that an individual
who accesses a data object in parallel to a BTG access on this data must be in-
formed about the respective BTG action. In our example, the system must pass
the email address of that individual to the application executing the obliga-
tion. By using BP-context information on associated actors, the system might
determine the receivers of the email automatically.

(4) Triggering asynchronous obligations: Synchronous obligations are trig-
gered immediately, together with the BTG action. Asynchronous obligations are
triggered at an absolute or a relative point in time. In our example, the execution
state of a BP determines when an obligation takes place (i.e., send the patient
report when the last task of the treatment is finished). Being able to refer to
execution states of tasks gives way to asynchronous obligations.

As these advantages are essential, it is important to combine BTG function-
ality with BP context.

3 Requirements for Annotation Language

To identify requirements on a language allowing to specify BTG functional-
ity, we have analyzed BTG use cases in two different real-world scenarios, an
E-employment and an E-health application. Following these analyses, a BTG-
annotation-language must support the following aspects:

R1: Security constraints for BTG users: BTG functionality has to be pro-
vided in a controlled way, i.e., it must be specified at design time who shall
obtain the BTG rights, namely to break the glass, to access data, and to repair
the glass. Thus, the BTG vocabulary must distinguish different types of users
involved in a BTG action. The vocabulary must allow to specify authorization
and authentication constraints for these users.

R2: BP-context-specific constraints: It must be possible to specify the start
time for BTG steps or obligations, i.e., when the tasks have to be performed,
by taking the BP context into account. In particular, asynchronous obligations
that rely on BP-context-specific conditions must be possible. Example 1 has
motivated this. Further, it should be possible to represent conditions for the ex-
ecution of BTG steps and obligations, i.e., whether tasks have to be performed.
To illustrate, one might specify that an obligation is needed only if an external
physician has worked on the emergency treatment. The specification of BP con-
text must be user-friendly [6]. This means that process designers should not have
to deal with the BP-engine-internal representation of BP context, but should be
able to specify BP context at the abstraction level of BP models.

R3: Parameters for obligations: It must be possible to specify BP-context-
specific parameters of obligations (e.g., associated actors), cf. Example 1.

Embedding ‘Break the Glass’ into Business Process Models 459

4 Design

In this section we describe how we embed options for breaking the glass into BP
models. We first describe the different BTG roles and motivate annotating pro-
cess models with BTG functionality. We then say how we represent BP context.
Finally, we describe the annotation language in brief.

4.1 BTG Roles

We introduce roles having BTG rights in the following. In line with [2], we
distinguish three types of users involved in a BTG option: the first type are
users who have the right to break the glass, i.e., users who activate a BTG case
(e.g., patients who decide). We call the corresponding role BTG Activator Role.
Second, the BTG Access Role are users who have the right to access a resource
if BTG has happened (physicians in our example). In practice, it is possible that
process participants have both rights. Third, the BTG Compensator Role are
users who are allowed to perform obligations in the BTG case.

4.2 Embedding BTG Functionality into Business Processes

Our idea is to integrate BTG steps into the application process. Thus, the BP
Engine controls their execution.

The question now is how to realize this embedding. We see several alternatives,
with two extremes: to represent them within the process model or to dynamically
adapt process instances at runtime if needed (ad-hoc adaptation).

With the first extreme, process designers embed any options for breaking the
glass in the BP model, using conventional modelling primitives. Process events
and gateways can represent these options for exception handling. This means
that a process instance can perform any BTG case or not. This is likely to
lead to very complex BP models, because a single BTG case already consists of
a sequence of tasks and might have many corresponding obligations. However,
BTG functionality is only needed in exceptional cases, and whether it is needed
is known only at runtime. This observation leads to the second extreme, namely
to enable ad-hoc changes at runtime, meaning that process instances deviate
from the specified process model. This can be interpreted as a case of exception
handling, and it affects only single process instances. Process designers have
to specify allowed deviations in advance. This approach requires a BP Engine
that is capable to deal with ad-hoc changes at runtime. Currently, there is only
little support in BP Engines for this (e.g., by the AristaFlow BPM Suite [3]).
If platform-independence is an issue, a solution currently cannot rely on these
features.

Design Decision: Our approach is a middle ground. We let process designers
specify BTG options in a BP model2 with specific annotation vocabulary. The

2 In line with our security-annotation language, we represent BTG annotations in
BPMN process models. But our BTG approach is sufficiently general to be applied
to other process-model-languages.

460 S. von Stackelberg, K. Böhm, and M. Bracht

BPMS transforms these annotations by extending the BP schema with canned
process fragments and executes them as part of the BP. By means of annotation
terms, process designers specify who will have the various BTG rights for data
and the constraints for enabling BTG.

4.3 Formalizing BP Context

It is the task of the Engine to manage BP context. As BP context is important
for BTG, we need a way to represent it in the BP model. One way is to specify
constraints for BP context relevant for BTG by using the internal representation
of the BP Engine. But this is error-prone and time-consuming, since process
designers typically are not familiar with the internal representations.

Design Decision: We propose a vocabulary to represent BP context in BTG
annotations. We formalize BP context on the abstraction level of BP models by
introducing functions for tasks and data that return values representing the BP
context. These functions enable the specification of associated actors, tasks, and
data objects to be used for the representation of temporal and causal BP-context
constraints in the annotations. The BPMS transforms these specifications into
representations the BP Engine can handle. This addresses R2.

We define the syntax and semantics of BP contraints in [13]. In brief, a BP-
context constraint is a Boolean expression, using at least one of the following
functions:

– The functions performer(task), data-user(object), owner(object) re-
turn subjects related to a BP instance, namely the actor performing a task
instance, the actor accessing a data object, and the data owner respectively.

– The functions start-time-exec(task) and end-time-exec(task) return
the start and end times of the execution of a task.

– The functions start-time-access(object)and end-time-access(object)
return the start time and end time of access to a data object.

– data-access(task) returns the set of data objects accessed by a task.

This set of functions is sufficient for the applications we have studied. Using these
functions, process designers can represent a comprehensive set of BP-context-
constraints within annotations for BTG steps and obligations.

Example 2 (BP Context Constraints). To express that BTG is only allowed
for adults, we set exec=performer(activity-ID).age ≥ 18. We specify an
asynchronous start time depending on the execution time of a task by start =
end-time-exec(activity-ID). To say that an obligation has to be executed if
several performers are involved we formulate exec= performer(activity-ID-1)

�= performer(activity-ID-2).

4.4 Specification of BTG Steps for BP Models

Our annotation language features the specification of security aspects and of
BP-context constraints as follows: To represent authorizations for BTG steps, we

Embedding ‘Break the Glass’ into Business Process Models 461

need two out of three BTG roles, namely BTG Activator Role and BTG Access
Role. This accounts for R1. These role holders have the right to perform par-
ticular BTG tasks. The specifications for BTGActivator and BTGAccessor can
have optional authentication refinements. Further, one can specify constraints
on the start or the execution of BTG steps by means of parameters start and
exec. The first one states when the BTG steps have to be executed, and which
constraint must hold at this point in time. In contrast, exec specifies constraints
that must hold for executing BTG steps in general. One BTG action can have
many obligations, and obligation specifications can be complex. Thus, annota-
tions contain a list of obligation-IDs which have to be executed when the glass
has been broken. We annotate each obligation separately for the BP model.

A BTG annotation, starting with ”�BTG:”, contains a set of assignments
for a specified vocabulary, and ends with ””. The parameter right specifies
the nature of the access to a data object for which the glass can be broken. The
assignments for object and right are obligatory. [13] gives a complete definition
of the syntax and the semantics.

Example 3 (E-health (cont.). Figure 1 displays the excerpt of a process model
representing the visit of a patient to a physician [13]. To enable BTG function-
ality for health records of patients, we make use of the BTG-annotation term
for activity ”Check health-record availability”. Figure 1 graphs the annotation.

Fig. 1. Annotation of Activity ”Check health-record availability”

The meaning of the annotation is as follows: To provide the BTG option, a
process designer assigns patients whose health record might be accessed to BTG
Activator. In our case, the patients have to agree to break the glass. As this is a
security-relevant task, the process designer asks for authentication for the BTG
Activator. In other words, the patient now has to authentify himself, and this
needs to be modelled. The authentication specification says that the IdP must

462 S. von Stackelberg, K. Böhm, and M. Bracht

authenticate a patient by the AuthnBTGActivator attributes social insurance
number and identity-card number. The data to be accessed are health records of
the patients. We set ”read” access rights for the BTG case. The condition start

specifies that the glass can only be broken if the patient is the owner of the data
object. The parameter obligation specifies that O1 must be executed.

A BTG annotation means that the BPMS has to provide options for BTG steps,
as described in Section 4.2. To embed these steps into the BP, we rely on the
fundamental technique of process fragments, enabling to re-use parts of pro-
cess structures. Using our approach, executable BPs require specifications for
BP-context constraints as well as for security (data access, authorizations and
authentications for role holders). The BTG annotations contain these specifica-
tions, and our secure BPMS transforms them to the extended process model. By
doing so, process fragments are generic and can be used in any BP model.

Figure 2 shows the process fragment for BTG steps. It represents the execu-
tion order for BTG tasks as well as conditions on BP-context constraints. The
annotated role assignments specify authorizations for role holders.

Fig. 2. Process Fragment for BTG steps

In line with annotations for BTG steps, we provide a vocabulary to describe
obligation and represent them as language primitives. [13] gives a complete def-
inition of the syntax and the complete semantics. The specification fulfills R3.
Regarding the transformation, the system substitutes each BTG annotation with
a BTG-process fragment, specifies the extended BP model, and generates the
access-control policy.

5 Related Work

Regarding the integration of BTG into business processes, work from three re-
search threads is of particular relevance: access-control policies for BTG, context-
aware, security-related research for BPs, and security-annotation languages.

Embedding ‘Break the Glass’ into Business Process Models 463

BTG access control policies: Several approaches realize BTG by implementing
access control policies ([1], [8], [5] and [9]). But they do not feature support for
BP context, due to their generic nature, and do not address the management
of BTG steps and obligations from the perspective of the application, as we do.
Our approach in turn does not focus on a BTG-enabled access-control-policy lan-
guage, but on an infrastructure for embedding BTG functionality into business
processes. We manage BTG authorization functionality to some degree by tasks
being part of the BP. To illustrate, the BPMS executes process branches with
BTG options, instead of offering BTG options by the authorization component,
as in [5]. Our approach makes access control rules for BTG easier.

Context-aware security support: According to the classification in [12], our work
focuses on immediate context. We thereby also consider security and privacy
aspects. The activity and object context in [10] is similar to our understanding
of immediate context. Most recent work on context-aware BP (e.g., [9]) is con-
fined to the context of the environment, which we do not address. We employ
BP context for security aspects. [10] summarizes well-known approaches on BP-
context-aware access control methods. To bind access rights to the execution
time of tasks (strict least privilege), the approaches use immediate BP context
(e.g., [10]). Further, the realization of Binding and Separation of Duties [4] re-
quires immediate context information at runtime. Our purpose differs from the
discussed approaches. We address context-aware BTG functionality.

Security modelling languages: [7], [11], [14], among others, propose annotation
languages to represent security constraints in BP models, but lack in two as-
pects: None of them takes BTG into account; None of them provides features to
represent BP context as part of the annotation language. Our language is the
first to cover this.

To our knowledge, our approach is unique in that we embed BP-context-
constraints into the BTG-annotation-language, and use this contextual informa-
tion for the embedding of process fragments by taking authorization rules into
account.

6 Conclusions

The ”Break the Glass” concept facilitates controlled access to data in exceptional
situations. To our knowledge, this article has been first to provide BTG func-
tionality for business processes. As breaking the glass and compensating a BTG
action require several tasks, BTG steps and obligations should be embedded in
processes. We have shown that using BP context for BTG tasks is essential.

To disburden the process designer from modelling BTG steps and obligations
by hand, we have proposed a vocabulary for annotating the process model with
BTG functionality. In particular, we take BP context into account. This reduces
the design effort significantly.

464 S. von Stackelberg, K. Böhm, and M. Bracht

Acknowledgements. This research has received funding from the Seventh Frame-
work Programme of the European Union (FP7/2007-2013) under grant agreement no

216287 (TAS3 - Trusted Architecture for Securely Shared Services) as well as by the
European Social Fund and by the Ministry Of Science, Research and the Arts Baden-
Württemberg.

References

1. Brucker, A.D., Petritsch, H.: Extending Access Control Models with Break-glass.
In: SACMAT (2009)

2. Chadwick, D. (ed.): Design of Identity Management, Authentication and Autho-
rization Infrastructure, TAS3 Deliverable 7.1, Version 3.0.1 (2010)

3. Dadam, P., Reichert, M., Rinderle-Ma, S., Lanz, A., Pryss, R., Predeschly, M.,
Kolb, J., Ly, L.T., Jurisch, M., Kreher, U., Göser, K.: From ADEPT to AristaFlow
BPM Suite: A Research Vision Has Become Reality. In: Rinderle-Ma, S., Sadiq, S.,
Leymann, F. (eds.) BPM 2009. LNBIP, vol. 43, pp. 529–531. Springer, Heidelberg
(2010)

4. Bertino, E., Martino, L., Paci, F., Squicciarini, A.: Security for Web Services and
Service-Oriented Architectures. Springer (2010)

5. Ferreira, A., Chadwick, D., Farinha, P., Correia, R., Zao, G., Chilro, R., Antunes,
L.: How to securely break into RBAC: The BTG-RBAC model. In: ACSAC, pp.
23 –31 (2009)

6. Hallerbach, A., Bauer, T., Reichert, M.: Context-based configuration of process
variants. In: TCoB, pp. 31–40 (2008)

7. Mülle, J., von Stackelberg, S., Böhm, K.: Modelling and Transforming Security
Constraints in Privacy-Aware Business Processes. In: SOCA, pp. 1–4 (2011)

8. Alqatawna, J., Rissanen, E., Sadighi, B.: Overriding of Access Control in XACML.
In: POLICY, pp. 87–95 (2007)

9. Marinovic, S., Craven, R., Ma, J., Dulay, N.: Rumpole: A Flexible Break-glass
Access Control Model. In: SACMAT, pp. 73–82 (2011)

10. Park, S.H., Eom, J.H., Chung, T.M.: A Study on Access Control Model for Context-
Aware Workflow. In: INC, IMS and IDC, pp. 1526–1531 (2009)

11. Rodŕıguez, A., Fernández-Medina, E., Piattini, M.: A BPMN extension for the
modeling of security requirements in business processes. Trans. Inf. Syst. – IE-
ICE E90-D, 745–752 (2007)

12. Rosemann, M., Recker, J.C., Flender, C.: Contextualisation of business processes.
Int. Journ. of Business Process Integration and Management 3(1), 47–60 (2008)

13. von Stackelberg, S., Böhm, K., Bracht, M.: Embedding BTG into Business Pro-
cesses (2012), http://dbis.ipd.kit.edu/1860.php

14. Wolter, C., Schaad, A.: Modeling of Task-Based Authorization Constraints in
BPMN. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS,
vol. 4714, pp. 64–79. Springer, Heidelberg (2007)

http://dbis.ipd.kit.edu/1860.php

Author Index

Abdullah, Haris II-797
Abushnagh, Yousef II-871
Adams, Michael I-212
Afsarmanesh, Hamideh II-825
Aı̈t-Ameur, Yamine II-879
Akbarinia, Reza II-825
Almendros-Jiménez, Jesús M. II-915
Álvarez, Hernán II-763
Amyot, Daniel II-700
Angajala, Prabhu K. I-323
Ayat, Naser II-825

Baldoni, Roberto II-492
Baron, Mickaël II-897
Barone, Daniele II-700
Bazhar, Youness II-879
Bellatreche, Ladjel II-879, II-897
Bereta, Konstantina II-932
Bergamaschi, Sonia II-645, II-736
Binz, Tobias I-416
Biswas, Debmalya II-511
Böhm, Klemens I-455
Borgida, Alex II-700
Bouzeghoub, Mokrane I-128
Bracht, Matthias I-455
Breitenbücher, Uwe I-416
Breitman, Karin K. II-646
Brook, Matthew II-871
Buccafurri, Francesco II-855
Buijs, Joos C.A.M. I-305

Cabanillas, Cristina I-56
Casanova, Marco A. II-646
Chakroun, Chedlia II-879
Chowdhury, Nafisa Afrin II-664
Comi, Antonello II-855
Conforti, Raffaele I-212
Cortes-Cornax, Mario I-110
Costa, Fernando I-425
Costa, João I-380
Cruz, Isabel II-645
Cuzzocrea, Alfredo II-527

Dadam, Peter I-1
Dalpiaz, Fabiano I-232

Damova, Mariana II-807
da Silva, Alberto Rodrigues I-398
Datcu, Mihai II-932
De Giacomo, Giuseppe I-194
de Macêdo, José A.F. II-646
de Oliveira, Anderson Santana II-470
De Virgilio, Roberto II-780
Di Ciccio, Claudio I-194
Di Martino, Beniamino II-628
Dorn, Christoph I-362
Dou, Dejing II-664
Dumitru, Corneliu Octavian II-932
Dupuy-Chessa, Sophie I-110

Edwards, George I-362
Englund, Cristofer II-752
Espinoza-Molina, Daniela II-932

Farinella, Tania II-736
Felli, Paolo I-194
Ferreira, Paulo I-380, I-425
Ferreira, Tiago Lopes I-398
Ferscha, Alois II-469, II-602
Ficco, Massimo II-628
Fleischhacker, Daniel II-718
Fokou, Géraud II-897
Folino, Francesco I-287
Furtado, Antonio L. II-646

Garbis, George II-932
Gater, Ahmed I-128
Ge, Mouzhi II-682
Giorgini, Paolo I-232
Grigori, Daniela I-128
Grönvall, John-Fredrik II-752
Grubert, Jens II-863
Guarascio, Massimo I-287

Hepp, Martin II-682
Hitzler, Pascal II-807
Hölzl, Gerold II-602
Horkoff, Jennifer II-700
Hu, Yuxiao I-194
Hübner, Paul I-444
Hull, Richard I-433

466 Author Index

Iordache, Raluca I-182

Jain, Prateek II-807
Jean, Stéphane II-879, II-897
Jiang, Lei II-700
Jiménez, Claudia II-763
Joshi, Amit Krishna II-807

Kaczmarski, Krzysztof II-843
Kantere, Verena I-146
Karpathiotakis, Manos II-932
Khouri, Selma II-897
Kolb, Jens I-444
Kopp, Oliver I-416
Koubarakis, Manolis II-932
Kovaceva, Jordanka II-752
Kurz, Marc II-602
Kyzirakos, Kostis II-932

Lamanna, D. Davide II-492
Lapouchnian, Alexei I-342
La Rosa, Marcello I-212
Lax, Gianluca II-855
Letier, Emmanuel I-110
Leymann, Frank I-416
Lincoln, Maya I-74
Linderman, Mark I-323
Lindman, Magdalena II-752
Lodi, Giorgia II-492
Lohrmann, Matthias I-38
Lotz, Volkmar II-470

Madria, Sanjay K. I-323
Maggi, Fabrizio Maria I-20, I-250
Marrella, Andrea I-268
Matei, Alexandru I-110
Mecella, Massimo I-194, I-268
Medvidovic, Nenad I-362
Molch, Katrin II-932
Moldoveanu, Florica I-182
Monakova, Ganna I-92
Morgan, Graham II-871
Mowbray, Miranda II-475
Muñoz-Escóı, F.D. II-549
Mylopoulos, John I-342, II-700

Negrão, André Pessoa I-380
Nikolaou, Charalampos II-932
Nixon, Lyndon II-863
Nuutila, Esko II-797

Pallardó-Lozoya, M.R. II-549
Papanikolaou, Nick II-620
Paulo, J. II-584
Pearson, Siani II-469, II-475
Pereira, J. II-584
Pinheiro, Ângela M.A. II-646
Po, Laura II-736
Pontieri, Luigi I-287

Reichert, Manfred I-2, I-38, I-444
Reis, P. II-584
Reitmayr, Gerhard II-863
Resinas, Manuel I-56
Rieu, Dominique I-110
Rinderle-Ma, Stefanie I-1
Rinne, Mikko II-797
Rodriguez-Castro, Bene II-682
Rosaci, Domenico II-855
Ruiz-Cortés, Antonio I-56
Ruiz-Fuertes, M.I. II-549
Russo, Alessandro I-268

Saccá, Domenico II-527
Sacramento, Eveline R. II-646
Salnitri, Mattia I-232
Schumm, David I-416
Schunselaar, Dennis M.M. I-20
Schwarz, Gottfried II-932
Scicluna, James II-863
Sharp, Craig II-871
Sheth, Amit P. II-807
Sidorova, Natalia I-20
Simão, José II-566
Sioutis, Michael II-932
Sousa, A. II-584
Souza, Vı́tor E. Silva I-342
Srinivasa, Srinath II-789
Stuckenschmidt, Heiner II-718
Sun, Yutian I-433

ter Hofstede, Arthur H.M. I-212
Tineo, Leonid II-763
Törmä, Seppo II-797
Tran, Huy I-164

Ushaw, Gary II-871

Vacuĺın, Roman I-433
Valduriez, Patrick II-825
van der Aalst, Wil M.P. I-20, I-305

Author Index 467

van Dongen, Boudewijn F. I-305
Vassos, Stavros II-932
Veiga, Lúıs I-380, I-425, II-566
Venticinque, Salvatore II-628
Verma, Kunal II-807
Vidal, Vânia M.P. II-646
Vidyasankar, Krishnamurthy II-511
Völker, Johanna II-718
von Stackelberg, Silvia I-455

Wasser, Avi I-74

Westergaard, Michael I-250

Yeh, Peter Z. II-807

Yu, Eric II-700

Zdun, Uwe I-164

Zhou, Xiaofang I-1

	Title
	General Co-Chairs’ Message for OnTheMove 2012
	Organization
	Table of Contents
	Cooperative Information Systems (CoopIS) 2012
	CoopIS 2012 PC Co-Chairs Message
	Process and Data: Two Sides of the Same Coin?
	Introduction
	Data-Driven and Object-Aware Processes
	Application Example
	Basic Characteristics

	A Framework Enabling Data-Driven and Object-Aware Processes
	Illustrating Example
	Selected Components of the PHILharmonicFlows Framework

	Related Work
	Summary
	References

	Business Process Design
	Configurable Declare: Designing Customisable Flexible Process Models
	Introduction
	Declare: A User-Friendly Declarative Language
	Configurable Declare
	Configuration Steps
	Abstraction
	Configuring Constraints

	Methodology and Case Study
	Setting the Context
	Configuring Constraints
	Case Study

	Conclusion
	References

	Efficacy-Aware Business Process Modeling
	Introduction
	Methodology and Outline
	Background
	Related Work
	Available Results from Previous Work

	Business Process Model Efficacy
	Efficacy-Aware Business Process Models
	Efficacy Assessment Method and Sample Validation
	Conclusion
	References

	Automated Resource Assignment in BPMN Models Using RACI Matrices
	Introduction
	RACI Matrices
	Binding Information for Resource Assignment
	RASCI Meta Model with Binding Information
	Using a RASCI Matrix to Specify Resource Assignments in BPMN Models
	Resource Assignment Expressions in 2.0
	Generation of RASCI-Aware Models

	Implementation
	Related Work
	Conclusions and Future Work
	References

	Semantic Machine Learning for Business Process Content Generation
	Introduction
	Related Work
	The Semantic Descriptor Model
	A Descriptor Model for Process Design

	The Learning Descriptor Space
	Method for Automated Generation of Business Process Content
	Suggesting the First Process Activity
	Refining the Currently Suggested Process Activity
	Suggesting the Next Process Activity
	Preparing a Set of Output Options
	Applying a Learning Mechanism

	Case Study and Experiments
	Case Study: An Example for Designing a New Process Model
	Experiments

	Conclusions
	References

	Process Verification and Analysis
	Hierarchical Process Verification in a Semi-trusted Environment
	Introduction
	Running Example
	Approach Overview and Paper Structure

	Nested Process Graph Theory
	Activity Modelling and State Axioms
	Parent-Child Axioms
	Process Structure Axioms

	Property Assertions
	Activity Occurrence Specifications
	Temporal Properties Specifications
	Data Dependent Properties

	Hierarchical Process Verification Using Process Theory
	Representing Subprocess Abstractions
	Verifying Process Requirement
	Application to the Case Study
	Performance Discussions

	Related Work
	Summary and Future Work
	References

	Intentional Fragments: Bridging the Gap between Organizational and Intentional Levels in Business Processes
	Introduction
	BPMN 2.0 Process Models and KAOS Goal Models
	Running Example Modelled in BPMN 2.0
	Goal-Oriented Requirements Modelling in KAOS

	Relating Business Process Models and Goal-Oriented Models
	The Meta-model Relating BPMN 2.0 and KAOS
	The Intentional Fragment

	Case Study
	The Evaluation Protocol
	First Exercise: Identifying Goals from Intentional Fragments
	Second Exercise: Identifying Intentional Fragments from Goals
	Third Exercise: Identifying New Intentional Fragments and New Goals
	Conclusions about the Evaluation

	Applications of the Intentional Fragment Concept
	Inferring a Goal Model that Justifies the Process Model
	Alignment between the Process Model and the Goal Model

	Related Work
	Conclusion and Future Work
	References

	Indexing Process Model Flow Dependencies for Similarity Search
	Introduction
	Background and Definitions
	Process Model Representation for Fast Retrieval
	Indexing Process Models
	Indexing the Activities of the Repository
	Indexing Process Types

	Process Retrieval
	Activity Matches Searcher
	Process Matches Searcher
	Process Composition Searcher

	Implementation and Experiments
	Related Work
	Conclusion
	References

	Service-Oriented Architectures and Cloud
	A Framework for Cost-Aware Cloud Data Management
	Introduction
	Related Work
	Operation of a Cloud Data Service Provider
	Cloud Data Services
	Cloud Economic Policies
	Cloud Layering Architecture

	Cost-Aware Data Management
	Service Cost Model
	Data Management Regret Scheme
	Prediction Model
	Pricing Scheme

	Associative Framework Modules
	Estimator of Data Service Correlation
	A Middleware for Workload Execution
	Incorporating Risk Management

	Current State of Work and Future Plans
	Conclusion
	References

	Event-Driven Actors for Supporting Flexibility and Scalability in Service-Based Integration Architecture
	Introduction
	Case Study
	Dynamic Event-Driven Actors (DERA)
	DERA Primitive Concepts
	DERA Architecture
	Event Actor Substitution

	Implementation – Case Study Revisited – Evaluation
	DERA Implementation
	Case Study Revisited
	Event Actor Substitutions
	Performance and Scalability Evaluation

	Related Work
	Conclusion
	References

	A Conditional Lexicographic Approach for the Elicitation of QoS Preferences
	Introduction
	The Problem of Expressing Preferences
	Existing Methods and Approaches
	The Conditional Lexicographic Approach
	Conclusions and Future Work
	References

	Goal-Based Composition of Stateful Services for Smart Homes
	Introduction
	Framework
	Case Study
	Solver
	Experiments on the Case Study
	Conclusions
	References

	Security, Risk, and Prediction
	Automated Risk Mitigation in Business Processes
	Introduction
	Background and Running Example
	Approach
	Evaluation
	Related Work
	Conclusion
	References

	Aligning Service-Oriented Architectures with Security Requirements
	Introduction
	Baseline
	Security Requirements with STS-ml
	BPMN with Security Extensions

	The R/A Alignment Problem
	The R/A Alignment Problem Explained
	Security Requirements Evolution
	Service Composition Evolution

	Supporting R/A Alignment: A Methodological Approach
	Conceptual Mapping R/A
	Security Requirements Instantiation

	Compliance Checking
	Non-disclosure
	Non-Repudiation

	Discussion
	References

	Looking into the Future
	Introduction
	Background
	Declare and Running Example
	Timed Automata
	Metric Temporal Logic
	RV-MTL: A Metric Temporal Logic for Runtime Verification

	TimedDeclare
	Timed Automata for Declare

	Analysis
	Colored Alerts to Provide a Priori Advice
	Constraint Interaction
	Detection of Inconsistencies

	Implementation
	Conclusion
	References

	Planlets: Automatically Recovering Dynamic Processes in YAWL
	Introduction
	Related Works
	Running Example
	The General Approach and Architecture
	Introducing Planlets
	Incorporating Planlets into YAWL

	Annotating YAWL Specifications in Planlets
	Experiments
	Conclusions
	References

	Discovery and Detection
	Discovering Context-Aware Models for Predicting Business Process Performances
	Introduction
	Formal Framework
	State-Aware Performance Prediction
	Predictive Clustering

	Problem Statement and Solution Approach
	Case Study: Time Prediction on a Logistics Process
	The Prototype System: Plugin CA-TP
	Application Scenario
	Performance Measures and Evaluation Setting

	Experiment Results
	Conclusions
	References

	On the Role of Fitness, Precision, Generalization and Simplicity in Process Discovery
	Introduction
	Process Trees and the ETM Algorithm
	Process Trees
	Quality of Process Trees
	The ETM Algorithm

	Running Example
	Results of Process Discovery Algorithms

	Ignoring Quality Dimensions
	Considering Only One Quality Dimension
	Always Considering Replay Fitness
	Ignoring One Dimension

	Weighing Dimensions
	Experiments Using Real Life Event Logs
	Conclusion
	References

	ECO: Event Detection from Click-through Data via Query Clustering
	Introduction
	Motivation

	Related Work
	Event Detection Framework
	Data Representation
	Distance Function
	Similarity Based on Query Contents
	Similarity Based on Session Feedback

	Clustering Process
	Event Detection Algorithm

	Working Example
	Performance Study
	Data Set
	Result Analysis
	Experimental Analysis
	Effect of α

	Conclusions
	References

	Requirements-Driven Qualitative Adaptation
	Introduction
	System Identification for Adaptive Systems
	A Framework for Qualitative Adaptation
	The Default Algorithm
	The Oscillation Algorithm
	The PID-Based Algorithm
	Other Procedures

	Implementation and Evaluation
	Related Work
	Discussion and Future Work
	Conclusions
	References

	Collaboration
	Analyzing Design Tradeoffs in Large-Scale Socio-technical Systems through Simulationof Dynamic Collaboration Patterns
	Introduction
	Motivating Scenario
	Modeling and Simulation of Collaboration Patterns
	Modeling Language for Collaboration Patterns
	Modeling Collaboration Patterns
	Scenario Model

	Evaluation
	Feasibility
	Simulating Individual Patterns
	Simulating Composite Patterns

	Related Work
	Conclusions
	References

	Semantic and Locality Aware Consistency for Mobile Cooperative Editing
	Introduction
	System Model
	A Semantic and Locality Aware Consistency Model
	Consistency Field
	Consistency Requirements
	Model Generalization

	Architecture
	Overview
	Data Representation
	Monitoring Client Activity
	Consistency Enforcement

	Implementation
	Middleware
	Interfacing with Programmers
	CoLaTex

	Evaluation
	Simulation Environment
	Evaluation Results

	Related Work
	Divergence Bounding in Optimistic Replication
	Consistency in Cooperative Editing

	Conclusion
	References

	Foster an Implicit Community Based on a Newsletter Tracking System
	Introduction
	The Newsletter Tracking System
	System Overview
	Upload Process
	Send Process
	Tracking Process
	Data Analysis

	Connection Degree
	Evaluation: The Nano-Tera.ch Case Study
	Links’ Type
	Categories
	Connection Degree
	Clusters Detection
	Discussion

	Related Work
	Conclusion
	References

	Short Papers
	Vino4TOSCA: A Visual Notation for Application Topologies Based on TOSCA
	Introduction
	Fundamentals and Related Work
	Requirements Analysis
	The Notation
	Visual Design Rationales
	Shapes

	Conclusion and Outlook
	References

	BOINC-MR: MapReduce in a Volunteer Environment
	Introduction
	Background
	BOINC-MR Architecture
	BOINC-MR Client
	MapReduce in BOINC Server

	Experiments
	Network Bandwidth and Application Turnaround
	Replication Factor

	Related Work
	Conclusion
	References

	Parallel Processing for Business Artifacts with Declarative Lifecycles
	Introduction
	A Motivating Example
	Guard-Stage-Milestone Meta-model
	Parallelized Business Steps: Algorithm with Parallelism
	Related Works
	Conclusions
	References

	Automatically Generating and Updating User Interface Components in Process-Aware Information Systems
	Introduction
	Basic Notions
	User Interface Transformation Patterns
	Elementary Transformation Patterns
	Complex Transformation Patterns

	Transforming Process Models to User Interfaces
	User Interface Transformation Method
	Synchronizing Process Model and UI Changes

	Related Work
	Conclusion
	References

	Embedding ‘Break the Glass’ into Business Process Models
	Introduction
	Motivation for Contextual BTG Functionality
	Requirements for Annotation Language
	Design
	BTG Roles
	Embedding BTG Functionality into Business Processes
	Formalizing BP Context
	Specification of BTG Steps for BP Models

	Related Work
	Conclusions
	References

	Author Index

