
Robust Untangling of Curvilinear Meshes

Jean-François Remacle1, Thomas Toulorge1, and Jonathan Lambrechts1,2
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Summary. This paper describes a technique that enables to generate high
order / curvilinear meshes in a robust fashion. Accurate estimates of jaco-
bian bounds are used for deriving an unconstrained optimization procedure.
Both 2D and 3D valid high order meshes are presented that demonstrate the
efficiency of the new technique.

1 Introduction

There is a growing consensus that state of the art Finite Volume technology
requires, and will continue to require too extensive computational resources to
provide the necessary resolution, even at the rate that computational power
increases. The requirement for high resolution naturally leads us to consider
methods which have a higher order of grid convergence than the classical
(formal) 2nd order provided by most industrial grade codes. This indicates
that higher-order discretization methods will replace at some point the finite
volume solvers of today, at least for part of their applications.

The development of high-order numerical technologies for CFD is un-
derway for many years now. For example, Discontinuous Galerkin methods
(DGM) have been largely studied in the literature, initially in a quite the-
oretical context [1], and now in the application point of view [2]. In many
contributions, it is shown that the accuracy of the method strongly depends
on the accuracy of the geometrical discretzation[3, 4, 5]. In consequences, the
following question should be asked: how do we get the high order meshes that
will be used by high order methods?

Modern mesh generation procedures take as input CAD models. In such
models, four kinds of model entities [6] are defined: model vertices G0

i that
are entities of dimension 0, model edges G1

i that are entities of dimension 1,
model faces G2

i that are entities of dimension 2 and model regions G3
i that

are entities of dimension 3.
Each model entity Gd

i has a shape, a geometry. The geometry of a model
entity depends on the solid modeler for its underlying representation. Solid
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modelers usually provide a parametrization of the shapes, i.e., a mapping
ξ ∈ Rd �→ x ∈ R3. The geometry of a model vertex G0

i is simply its 3-D
location, xi = (xi, yi, zi). The geometry of a model edge G1

i is its underlying
curve with its parametrization x(t), t ∈ [t1, t2]. The geometry of a model face
G2

i is its underlying surface with its parametrization x(u, v), (u, v) ∈ S ⊂ R2.
The geometry associated to a model region is R3.

There are also four kind of mesh entities: mesh vertices M0
i , mesh edges

M1
i , mesh faces M2

i and mesh regions M3
i that are said to be classified on

model entities1. The way of building a high order mesh is to first generate
a straight sided mesh. Then, mesh entities that are classified on the curved
boundaries of the domain are curved accordingly (see Figure 1).

For mesh edges that are classified on model edges (for example M1
2 � G1

1

on Figure 1), additional high order mesh points are added on the geometry
of the model edge. Then, high order points are added on mesh edges that
are classified on model faces (for example M1

1 � G2
1 on Figure 1). Finally,

high order points may be added on mesh faces that are classified on model
faces. The position of the the high order points can be chosen in such a way
that the geometrical error, i.e. the distance between the CAD model and the
mesh is minimized.

Model face G2
1

Mesh Curving

Model edge G1
1

Mesh edge M1
1 � G2

1

Mesh edge M1
2 � G1

1

Fig. 1. Straight sided mesh (left) and curvilinear (cubic) mesh (right)

The naive curving procedure described just above do not ensure that the
final curved mesh is only composed of valid elements. Figure 2 gives an illus-
tration of that important issue. Some of the curved triangles are tangled: they
self-intersect after having been curved. It is important to note that the mesh
would not be valid even if the curved edge was assigned the exact geometry
(blue curve on Figure 2).

Invalid elements may be detected by exploiting specific properties of the
Jacobian. In a recent paper [7], a general formulation has been developed

1 We use the symbol � for indicating that a mesh entity is classified on a model
entity.
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Curving Untangling

Fig. 2. Straight sided mesh (left) basic curvilinear (quadratic) mesh (center) with
tangled elements and untangled mesh (right)

for computing robust estimates of the geometrical validity of a curvilinear
element. Provable bounds on element Jacobians can be computed for high
order triangles, quads, tetrahedra, hexahedra and prisms.

Figure 2 indicates that, without refining the mesh, the only way of gen-
erating a valid high order mesh is to curve not only mesh entities classified
on curved model entities, but also those that are initially straight sided. It is
necessary to propagate the curvature inside the domain through some kind of
smoothing scheme. Some smoothing schemes have been proposed in the litera-
ture. Those include linear smoothing techniques such as Laplacian smoothing
[8], Winslow smoothing [9] or linear elasticity with varying stiffness [8]. Even
though such simple techniques may often lead to interesting results, there is
no guarantee whatsoever that applying such a linear smoother will result in
an untangled mesh.

Other authors [10, 11, 12] make use of mesh adaptation techniques by
eliminating invalid elements by a combination of local mesh refinements, edge
and face swaps, and node relocations.

Finally, authors of [13] propose an approach to deform a given mesh into
a curved boundary conforming mesh through a nonlinear elasticity analogy.
This approach definitively result in a valid curvilinear mesh. Yet, computing
a non-linear mechanics problem including large deformations on a high-order
and highly stretched mesh is at least as complex as, let’s say, solving Navier-
Stokes equations on the same grid.

In this paper, we propose a robust smoothing scheme that allows to build
a curvilinear mesh for which every element is guaranteed to be valid at con-
vergence. This new untangling procedure does not rely on any analogy: it
specifically targets element jacobians and modifies node locations in such a
way that jacobian values sits in a predefined range.

In §2, we briefly recall the results of paper [7] on jacobian bounds. Sensi-
tivity of jacobians are computed with respect to the motion of mesh vertices.
The next section §3 is dedicated to the practical computation of both jaco-
bian bounds and their derivatives with respect to the motion of mesh vertices.
Then in §4, an objective function that specifically targets invalid jacobians
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is build. Constraints on jacobian positivity are imposed through log-barriers,
allowing the use of unconstrained optimization procedures. In §5, an opti-
mization strategy is described. The optimization starts with an invalid mesh
and the asymptote in the log barrier is progressively moved into the valid
region.

Finally, some examples are presented in §6 that demonstrate both the
robustness and the efficiency of the new methodology. Both 2D and 3D ex-
amples are presented with timings and jacobian ranges.

2 Validity Estimates of Curvilinear Meshes

Let us introduce the following notations. We call ne and nv the number of
elements and vertices of the mesh. Each element e of the mesh contains np

vertices.
We note Xe

i the position of the ith node of the element e in the straight
sided configuration and xe

i the location of the same node, yet in some de-
formed configuration.

The shape of an element e is defined geometrically through their nodes xe
i ,

i = 1 . . .Np and a set of Lagrange shape functions L(p)
i (ξ), i = 1 . . .Np at

order p that allow to map a reference element to the real one:

x(ξ) =

Np∑

i=1

L(p)
i (ξ) xe

i . (1)

Consider now the transformation x(X) that maps straight sided elements
onto curvilinear elements (see Figure 3). Mapping x(X) should be bijective
i.e. it should admits an inverse. This implies that the determinant of the
jacobian detx,X has to be strictly positive, for every value of ξ and η. It is
possible to write this determinant in terms of the ξ coordinates as:

detx,X =
detx,ξ

detX ,ξ
=

J(ξ, η)

Je
0

where Je
0 is the strictly positive and constant2 jacobian of the straight sided

element. Function x(X) is called the distorsion mapping. Its determinant
detx,X that we call the scaled jacobian should be as close to 1 as possible in
order not to degrade the quality of the straight sided element e.

In [7], it has been shown that it is possible to reliably detect invalid ele-
ments. In other words, it is possible to find reliable bounds to Jmin = minξ J
and to Jmax = maxξ J over the whole element. In [7], we first remark that
the jacobian J is a polynomial in ξ. Jacobian determinants J can then be

interpolated exactly as a linear combination of Bézier polynomials B(q)
i at a

2 Straight sided element jacobians are constant for simplical elements only, i.e.
triangles in 2D and tetrahedra in 3D.
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Fig. 3. Reference unit triangle in local coordinates ξ = (ξ, η) and the mappings
x(ξ), X(ξ) and X(x)

certain order q ≥ p over the element. Provable bounds for Jmin and Jmax are
then computed using some interesting properties of the Bézier polynomials.
Assuming that J is a polynomial at order q in ξ , we write

J(ξ) =

Nq∑

i=1

B(q)
i (ξ)Bi

and bounds can be computed as

min
ξ

J(ξ) ≥ min
i

Bi and max
ξ

J(ξ) ≤ max
i

Bi.

The following section is dedicated to the practical computation of the Bi’s
as well as their derivatives with respect to xe

i .

3 Computation of Bézier Coefficients and Their
Derivatives

The aim of our method is to be able to untangle both surfacic and vol-
ume meshes. For that, we assume that a point x has always 3 coordinates
x = {x, y, z}. Local coordinates ξ = {ξ, η, ζ} are also supposed to be three
dimensional. Yet, for surface meshes, we assume that vector

n =

{
∂x

∂ζ
,
∂y

∂ζ
,
∂z

∂ζ

}

is the constant unit normal vector to the straight sided element. With that
hypothesis, it is possible to compute the determinant of the jacobian at every
Lagrange node ξk = (ξk, ηk, ζk) at order q:
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Jk = J(ξk) =
∂x

∂ξ

∂y

∂η

∂z

∂ζ
+

∂z

∂ξ

∂x

∂η

∂y

∂ζ
+

∂y

∂ξ

∂z

∂η

∂x

∂ζ
−

∂z

∂ξ

∂y

∂η

∂x

∂ζ
− ∂x

∂ξ

∂z

∂η

∂y

∂ζ
− ∂y

∂ξ

∂x

∂η

∂z

∂ζ
. (2)

Considering that,

x =

Np∑

i=1

xe
iL(p)

i (ξk),

it is possible to compute the sensitivity of the jacobian at point k with respect
to the x coordinate of node i:

∂Jk
∂xe

i

=
∂L(p)

i

∂ξ

∂y

∂η

∂z

∂ζ
+

∂z

∂ξ

∂L(p)
i

∂η

∂y

∂ζ
+

∂y

∂ξ

∂z

∂η

∂L(p)
i

∂ζ
−

∂z

∂ξ

∂y

∂η

∂L(p)
i

∂ζ
− ∂L(p)

i

∂ξ

∂z

∂η

∂y

∂ζ
− ∂y

∂ξ

∂L(p)
i

∂η

∂z

∂ζ
. (3)

The same computation can be done for ∂Jk

∂ye
i
and ∂Jk

∂ze
i
. In practice, the following

matrix J of size Nq × 3Np + 1 is computed for every element e:

J =

⎡

⎢⎢⎢⎣

∂J1

∂xe
1

. . . ∂J1

∂xe
Np

∂J1

∂ye
1

. . . ∂J1

∂ye
Np

∂J1

∂ze
1

. . . ∂J1

∂ze
Np

J1

...
...

...
...

...
...

...
∂JNq

∂xe
1

. . .
∂JNq

∂xe
Np

∂JNq

∂ye
1

. . .
∂JNq

∂ye
Np

∂JNq

∂ze
1

. . .
∂JNq

∂ze
Np

JNq

⎤

⎥⎥⎥⎦

Assuming that T q
lk = B(q)

l (ξk) is the transformation matrix that enables to
compute Bézier coefficients Bl using Lagrange coefficients Jl, matrix

B =

⎡

⎢⎢⎢⎣

∂B1

∂xe
1

. . . ∂B1

∂xe
Np

∂B1

∂ye
1

. . . ∂B1

∂ye
Np

∂B1

∂ze
1

. . . ∂B1

∂ze
Np

B1

...
...

...
...

...
...

...
∂BNq

∂xe
1

. . .
∂BNq

∂xe
Np

∂BNq

∂ye
1

. . .
∂BNq

∂ye
Np

∂BNq

∂ze
1

. . .
∂BNq

∂ze
Np

BNq

⎤

⎥⎥⎥⎦ . (4)

that contains both the Bézier coefficients Bl as well as their gradients with
respect to the position of nodes of element e is calculated through a single
matrix-matrix product: Blj = T q

lkJkj .
It is then possible to use the Bi’s and their gradients in a gradient-based

optimization procedure. In what follows, an objective function that contains
the Bi’s and that allow to control the quality of elements is constructed.

4 An Objective Function for Curvilinear Mesh
Optimization

This section describes the objective function f(xe
i ) that will serve for untan-

gling invalid curved elements though an unconstrained optimization proce-
dure. We design a function
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f = E + F
that is composed of two parts E and F .

Our assumption is that the method is provided with a straight-sided mesh
of high quality. This mesh has potentially been defined to satisfy multiple
criteria, such as a predetermined size field, or anisotropic adaptation. When
curving these kinds of meshes, we want to preserve as much as possible all
these features of the mesh, which means keeping the nodes as close as possible
to their initial positions in the straight sided mesh.

To this end, we will want to introduce some kind of energy E associated
with the displacement of the nodes x−X, i.e. a positive quadratic form that
is a measure of the distance between the straight sided nodes X and their
position x in the curved mesh:

E(K,xi) =
1

2

∑

e

Np∑

i=1

Np∑

i=1

(xe
i −Xe

i )Kij(x
e
j −Xe

j) ≥ 0 (5)

where K is a symmetric positive matrix of size 3nv×3nv and where Kij is of
size 3× 3. In this paper, we choose K as the identity matrix multiplied by a
constant factor κ. The determination of κ, even though it is not determinant
in the convergence of the procedure, will be detailed in the examples section
§6.

The second part of the functional F deals with jacobian positivity. We
use a log barrier [14] in order to avoid jacobians that are too small and a
quadratic function to penalize jacobians that are too high:

F(ε,xi) =

ne∑

e=1

Nq∑

l=1

F e
l (x

e
i , ε)

with

F e
l (x

e
i , ε) =

[
log

([
1 + 2ε

1 + ε

]
Be

l (x
e
i )

Je
0

− ε

1 + ε

)]2
+

(
Be

l (x
e
i )

Je
0

− 1

)2

, (6)

that is defined in such a way that F blows up when Be
l = εJe

0 , but still
vanishes whenever Be

l = Je
0 . Barrier methods are among the most power-

ful class of algorithms available for attacking general nonlinear optimization
problems. These techniques will converge to at least a local minimum in
most cases, regardless of the convexity characteristics of the objective func-
tion and constraints [15]. Figure 4 shows the evolution of our barrier function
for ε = 0.3.

In the optimization process, we distinguish three sort of mesh vertices.
Some mesh vertices M0

i � G1
j are classified on model edges. Such a vertex

can only be moved along G1
j i.e. its position only depends on one single

parameter t, t being the parameter of the curve. We have therefore

df

dt
=

∂f

∂xe
i

· dx
e
i

dt
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Fig. 4. Evolution of the barrier function F (Je
l ) for ε = 0.3

with
dxe

i

dt the tangent vector to the curve at point t that can be computed
with the CAD model API.

Other vertices that are classified on model faces M0
i � G2

j can only be
moved on the surface. In this case, two parameters u and v are associated to
those vertices. We have therefore

∂f

∂u
=

∂f

∂xe
i

· ∂x
e
i

∂u
and

∂f

∂v
=

∂f

∂xe
i

· ∂x
e
i

∂v

with
∂xe

i

∂u and
∂xe

i

∂v the two tangent vectors to the surface at point (u, v). Those
can be computed using the CAD model.

Vertices that are classified on model regions have a complete freedom to
move in every direction of the 3D space. Finally, mesh vertices that are clas-
sified on model vertices have no freedom to move.

5 Optimization Strategy

The problem of untangling curvilinear meshes has been defined as

min
xi

f(xi,K, ε), i = 1, . . . , nv.

There is a variety of methods that allow to solve unconstrained minimization
problems. Here, we have tested a number of alternatives: IPOPT [16], LBFGS
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[17] and conjugate gradients [18]. At the end, the use of conjugate gradients
seemed to be the best choice in term of computational efficiency.

The most important part of the optimization strategy is to define the right
sequence of optimization problems.

• The optimization should not applied to the whole mesh but locally. Blobs
of elements that surround an invalid element are constructed. Mesh ver-
tices that are on the boundary of the blob are fixed.

• Appropriate scaling is applied to optimization variables that are asso-
ciated to parametric coordinates of mesh vertices that are classified on
either a model edge or a model face.

• The mesh being initially wrong, the evaluation of (6) returns “not a num-
ber”. We compute therefore a sequence of optimization problems with
“moving barriers”.

The optimization strategy is described in Algorithm 1.

Algorithm 1. Optimization strategy

1 Compute element blobs Bk, k = 1 . . . NB ;
2 for k = 1 to NB do
3 repeat

4 compute κ = mine minl
Be

l
Je
0
, e ∈ Bi, l ∈ [1, Nq ];

5 if κ < ε then
6 set ε̄ = 1.1 κ;
7 else
8 set ε̄ = ε;

9 solve minxi f(xi,K, ε̄) for all elements of blob Bk;

10 until ε̄ < ε;

As an example, consider a coarse 3D tetrahedral mesh of a sphere, as
presented in Figure 5. The surface of the sphere is described in the CAD
system as one only patch that covers the whole range of sherical coordinates.
In order to challenge our optimization strategy, high order nodes that are
classified on the surface have been added along lines in the parameter plane.
More precisely, high order points are added on every edge that is classified
on the surface of the sphere in such a way that this edge remains straight
sided in the parameter plane. Elements that are close to the poles are very
distorded and the resulting mesh that is presented in the middle image of
Figure 5 is clearly wrong. Our untangling strategy has then been successfully
applied to the invalid mesh: the final valid mesh that is presented in Figure
5 has all elements with scaled jacobians in the range [0.9, 1.1]. Less than one
second was required for converging.
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Fig. 5. Example of mesh untangling with mesh vertices motions on manifolds. The
straight sided mesh (left) is made quadratic (center) and is subsequently untangled
(right).

6 Examples

In this section, the new optimization scheme is applied to several 2D and 3D
high order meshes. In our experiments, the untangling of 2D meshes, even
when those are complex, is a matter of seconds. Figure 6 presents a quadratic
mesh of a three component wing. Structured boundary layers have been gen-
erated on the three components. Untangling the quadratic mesh has taken
2.2 seconds. A cubic mesh has also been generated and has been untangled in

Using optimization Using optimization

Elastic analogyElastic analogy

Fig. 6. Quadratic boundary layer mesh of a three component wing configuration
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5.3 seconds. The worst jacobian is in both quadratic and cubic cases equal to
0.3. A comparison between linear elastic analogy and the present approach
for the quadratic mesh. A simple elastic analogy approach is known to fail
in providing a valid mesh in presence of highly stretched boundary layer
elements [13].

As a first 3D example, Figure 7 shows a quadratic mesh of a mechani-
cal part. The initial linear mesh is composed of 59,760 quadratic tetrahedra
among which 1,566 were invalid. The untangling procedure has been applied
to 14 separated blobs. About 132 seconds were necessary to optimize the
mesh.

Fig. 7. Untangling of a quadratic mesh

Figure 8 shows a coarse cubic mesh of another mechanical part. The opti-
mization procedure has been applied to one single blob and 60 seconds were
necessary to untangle the mesh.
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Linear mesh Cubic mesh involving 177 invalid tetrahedra

Untangled mesh with Jmin = 0.14 View of the volume mesh.

Fig. 8. Untangling of a coarse cubic mesh

7 Conclusions

A new procedure for untangling high order meshes is presented. It allows to
efficiently generate high order meshes both in 2D and in 3D. The method
relies on robust estimates of element jacobians. In further work, the influence
of the jacoboians on finite element solution will be explored.
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