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Summary. Mesh simplification and mesh compression are important pro-
cesses in computer graphics and scientific computing, as such contexts allow
for a mesh which takes up less memory than the original mesh. Current
simplification and compression algorithms do not take advantage of both
the central processing unit (CPU) and the graphics processing unit (GPU).
We propose three simplification algorithms, one of which runs on the CPU
and two of which run on the GPU. We combine these algorithms into two
CPU-GPU algorithms for mesh simplification. Our CPU-GPU algorithms
are the näıve marking algorithm and the inverse reduction algorithm. Exper-
imental results show that when the algorithms take advantage of both the
CPU and the GPU, there is a decrease in running time for simplification
compared to performing all of the computation on the CPU. The marking
algorithm provides higher simplification rates than the inverse reduction al-
gorithm, whereas the inverse reduction algorithm has a lower running time
than the marking algorithm.

Keywords: mesh simplification, mesh compression, graphics processing unit
(GPU), visualization.

1 Introduction

Three-dimensional geometric models of varying detail are useful for solving
problems in such areas as computer graphics [20], surface reconstruction [15],
computer vision [18], and communication [4]. Such models give rise to the
need for mesh simplification, mesh compression [14], and mesh optimization
[16]. This paper proposes new algorithms for mesh simplification utilizing
both the central processing unit (CPU) and the graphics processing unit
(GPU) found on most modern computers.
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Mesh simplification is the process of removing elements and vertices from a
mesh to create a simpler model. Mesh simplification can be applied in surface
reconstruction [3], three-dimensional scanning [17], computer animation [12],
and terrain rendering [10]. For example, when rendering a movie scene, a
model with extremely high detail is not required for a far away object.

Several serial CPU-based mesh simplification algorithms have been pro-
posed. Some algorithms use a simple edge-collapse operation [14], which in-
volves repeatedly collapsing edges into vertices to obtain a simplified mesh.
Others use a triangle-collapse operation [23]. While the triangle-collapse op-
eration yields more simplified meshes per operation [6], there are more cases
to handle when performing this operation. The algorithms we propose are
based on the edge-collapse operation for its simplicity.

Other algorithms focus on controlled vertex, edge, or element decimation
[24], where a vertex, edge, or element is removed from the mesh if it meets
the decimation criteria. Any resulting holes in the mesh are patched through
available methods such as triangulation. One other method for mesh simpli-
fication is vertex clustering [19]. When performing mesh simplification using
vertex clustering, vertices are clustered by topological location, and a new ver-
tex is created to represent each cluster. Elements can then be created through
surface reconstruction [15]. Our algorithms focus on neither decimation nor
clustering, as neither of these processes are designed to take advantage of the
available GPU concurrency.

A few parallel CPU-based algorithms based on the corresponding serial al-
gorithms have been proposed. One such parallel algorithm is based on vertex
decimation [11], where the importance of each vertex is evaluated, and ver-
tices with low importance are removed. A GPU-based implementation of this
algorithm has also been proposed [13] and is discussed later in this section.
However, we are interested in designing an algorithm that takes advantage
of both the CPU and GPU by splitting the simplification workload between
them. Thus, we avoid operations which involve a significant amount of com-
munication between the CPU and GPU, as the transfer rate between the
CPU and GPU is a significant bottleneck [25].

Other simplification algorithms focus on distributed systems [5] and effi-
cient communication between nodes. Such algorithms would suffer from the
same communication latency between the CPU and the GPU if implemented
to take advantage of the GPU. Another algorithm [9] focuses on greedily
splitting a mesh into equal submeshes and assigning each part to a CPU core
to be simplified by applying the edge-collapse operation. These techniques
could be used to implement a GPU-based algorithm. However, there is no
need to create submeshes for such an algorithm, as the GPU can simultane-
ously support many more threads than can a multi-core CPU. Instead, each
GPU thread can focus on one element.

Some GPU-based simplification algorithms have also been proposed. One
such algorithm offloads the computationally-intensive parts of vertex decima-
tion to the GPU [13], while leaving the data structure representing the mesh
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in main memory. While this approach is valid, it assumes that the CPU will
be available during the whole process. Another popular method [8] is based
on vertex clustering. A downside of this algorithm is that it assumes that the
surface mesh is closed and that there is access to the entire mesh during the
simplification process. This excludes streaming input models.

We propose three simplification algorithms, one of which runs on the CPU
and two of which run on the GPU. We combine these algorithms into two
CPU-GPU algorithms for mesh simplification. The algorithms are based on
the edge-collapse operation, as it is an extremely simple and small-scale op-
eration, and it works even if there is no access to the entire mesh. The CPU
algorithm visits every available element and performs the edge-collapse op-
eration on the element if it is not yet marked as affected (defined in Section
2), as does one of the GPU algorithms. The other GPU algorithm takes full
advantage of the concurrency of the GPU and attempts to collapse a greater
number of edges each iteration.

In Section 2, we present our three mesh simplification algorithms: the CPU
simplification algorithm, a näıve GPU simplification algorithm, and a GPU
simplification algorithm based on reductions, which we combined into two
CPU-GPU algorithms. We discuss the correctness of the algorithms, as well.
In Section 3, we describe our experiments to test our CPU-GPU algorithms
for various CPU-GPU workload splits and then discuss our results. In Section
4, we conclude our work and discuss several possibilities for future work.

2 Simplification Algorithms

We propose three CPU- and GPU-based algorithms which work in tandem to
simplify a mesh. We combine our algorithms to produce two CPU-GPU mesh
simplification algorithms. The algorithms simplify meshes uniformly and ex-
haustively, ensuring maximal simplification occurs. All proposed algorithms
rely on the edge-collapse operation, which is defined below. Additionally, the
algorithms are lossless, which means that the operations can be applied in
reverse, and the original mesh can be recovered.

Our simplification algorithms rely on the edge-collapse operation [14],
which is defined as follows for an input mesh containing a set of vertices
V and a set of elements T.

For an edge e = (v1, v2) shared by elements T1 = (v1, v2, v3) and T2 =
(v4, v2, v1), define vm to be the midpoint of e. To collapse edge e, T1 and T2

are removed from the mesh, and any references to v1 or v2 are updated to
refer to vm. Figure 1 shows an edge-collapse operation on edge (v1, v2).

For the edge-collapse operation, the order of the vertices that make up
an element does not matter. If additional information, such as the original
positions of v1 and v2, is stored, the edge-collapse operation is reversible.
Therefore, compression or simplification algorithms based on this operation
are lossless, and the original mesh can be recovered by reversing these steps.
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Fig. 1. An edge-collapse on e = (v1, v2)

Our simplification algorithms allocate a portion of the mesh to the CPU
and the rest of it to the GPU to be simplified. We propose an extremely
simple method for allocation. For a CPU-GPU split k% where 0 ≤ k ≤
100 of a mesh M = (vertices, elements), the CPU simplifies the first k% of
the elements, and the GPU simplifies the remaining elements. The workload
splitting is performed once as a preprocessing step. Locks are used to ensure
that conflicting updates are not made in the simplification process.

Since edge-collapse operations should be performed uniformly on the mesh,
we mark the elements which have been affected by previous edge collapses so
that they do not take part in subsequent edge-collapse operations.

Define N(T ) for T = (va, vb, vc) to be elements which contain any of the
vertices va, vb, or vc. If edge e = (v1, v2) between elements T1 = (v1, v2, v3)
and T2 = (v4, v2, v1), for example, has been collapsed, then the elements
in N(T1) ∪ N(T2) are considered affected. The elements shaded in gray in
Figure 2 would be considered affected if edge (v1, v2) were collapsed.

Since each edge-collapse operation causes neighboring elements to become
affected, there is a hard limit on the number of edge-collapse operations, and
on the amount of simplification performed per iteration of the algorithm.

Fig. 2. Elements considered affected by edge-collapse of (v1, v2)
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Additional simplification may be obtained by performing additional iterations
of the algorithms.

2.1 CPU Edge-Collapse Algorithm

To simplify portions of the mesh using the CPU, we propose a simple edge-
collapse algorithm. The CPU edge-collapse algorithm iterates over all CPU-
assigned elements. Each element is examined to see if it is affected, and if
an element T = (v1, v2, v3) that is not affected is found, an edge-collapse is
performed on (v1, v2). When all elements are affected or have taken part in
an edge-collapse operation, the algorithm terminates. This ensures that the
edge-collapse operation is performed uniformly and exhaustively across the
elements assigned to the CPU, and that no one area is more or less simplified
or deformed. Pseudocode for the CPU edge-collapse simplification algorithm
is given in Algorithm 1.

Algorithm 1. The CPU Edge-Collapse Simplification Algorithm

function mark-as-affected(element)
for all v ∈ element do

affected[v] ← true
end for

end function

function mark-as-collapsed((v1, v2))
for all T ∈ elements ⊃ {v1, v2} do

collapsed[T ] ← true
end for

end function

function CPU-Simplify(elements, vertices)
for all T = (v1, v2, v3) ∈ elements do

if T ∈N(affected elements) then
mark-as-affected(T )

else
collapse((v1, v2))
mark-as-collapsed((v1, v2))

end if
end for

end function

2.2 GPU Marking Algorithm

We propose a näıve GPU algorithm to simplify portions of the mesh based
on the edge-collapse operation. The näıve GPU marking simplification al-
gorithm works by searching through all elements assigned to the GPU one
at a time. If an element T = (v1, v2, v3) that is not affected is found, an
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edge-collapse is performed on (v1, v2), and all Tn ∈ N(T ) are concurrently
marked as affected. When all elements are affected or have taken part in an
edge-collapse operation, the algorithm terminates. This also ensures that the
edge-collapse operation is performed uniformly and exhaustively across all
elements assigned to the GPU, and that no one area is more or less simpli-
fied or deformed. The pseudocode for the näıve GPU marking simplification
algorithm is given in Algorithm 2.

Algorithm 2. The GPU Marking Simplification Algorithm

function GPU-Mark(mark, elements, vertices)
for all T ∈ N(mark) do GPU thread T : mark-as-affected(T )
end for

end function

function GPU-Mark-Simplify(elements, vertices)
for all T = (v1, v2, v3) ∈ elements do

if not marked(T ) then
collapse((v1, v2))
mark-as-collapsed((v1, v2))
GPU-Mark(T )

end if
end for

end function

2.3 GPU Inverse Reduction Algorithm

We propose a GPU mesh simplification algorithm that leverages the full
strength of the GPU. Unlike our previous algorithms in which one element
was examined at each iteration of the main loop to determine which elements
were not affected, we now examine twice as many elements per iteration, with
each element examined by a different GPU thread. To take full advantage of
the architecture of the GPU, a soft-grained blocking [21] method based on
test-and-set [1] is used to decide if any edge of an element should be collapsed.
We attempt to lock each vertex in an element by calling test-and-set on the
affected bit of each vertex in the element. Pseudocode for the GPU inverse
reduction simplification algorithm is given in Algorithm 3.

Correctness. The GPU-Simp-Try method attempts to lock each vertex of an
element by checking to make sure the vertex has not already been collapsed. If
it finds that a vertex has already been locked, it releases all previously-locked
vertices. Therefore, if a thread successfully locks v1, v2, and v3 for element t,
this means that no other thread has locked any tn ∈ N(t), either currently or
previously. Therefore, the algorithm simplifies the mesh both uniformly and
exhaustively, ensuring that no one area is too simplified or deformed.
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Algorithm 3. The GPU Inverse Reduction Simplification Algorithm

function GPU-Simp-Try(target = (v0, v1, v2), elements, vertices)
if affected(target) then

return
end if
if test-and-set(collapsed[v0]) = 0 then

if test-and-set(collapsed[v1]) = 0 then
if test-and-set(collapsed[v2]) = 0 then

collapse((v0, v1))
GPU-Mark(target)

end if
collapsed[v1 ] ← 0
collapsed[v0 ] ← 0

end if
collapsed[v0 ] ← 0

end if
end function

function GPU-IR-Simplify(elements, vertices)
i = |elements|

while i ≥ 1 do
if threadid mod i = 0 then

GPU-Simp-Try(elements[threadid])
end if
i = i div 2

end while
end function

3 Experiments

In this section, we describe the experiments which we designed to test the per-
formance of our mesh simplification algorithms. We implemented our mesh
simplification algorithms in C++ and compiled then using the NVIDIA C++
compiler included with the CUDA Toolkit [7]. We tested our algorithms
on the following six triangular surface meshes from computer graphics: ar-
madillo [26], bunny [26], gargoyle [2], hand [22], horse [22], and kitten [2],
which are shown in Figure 3. The computer used for our experiments was
a Dell XPS 17 laptop running Windows 7 Professional equipped with an
NVIDIA GeForce GT 550M GPU and an Intel Core i5-2430M CPU running
at 2.4 GHz with 3.90 GB of usable main memory.

The goals of our experiments were to determine how much simplification
the meshes could withstand, how much time it takes to simplify the meshes
for various CPU-GPU splits, and how much memory is required for various
CPU-GPU splits to simplify the meshes using each algorithm.

For each mesh produced by our mesh simplification algorithms, we de-
termine the numbers of vertices and elements, the minimum and maximum
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(a) Armadillo (b) Bunny (c) Gargoyle

(d) Hand (e) Horse (f) Kitten

Fig. 3. Initial test meshes

element angles (in degrees), the minimum and average element areas, the
mesh volume, and the wall clock time (measured in seconds) for each algo-
rithm. Using these metrics, we were able to assess the quality of the meshes
and the algorithmic efficiency. For the wall clock time, we report averages
over 100 runs of the algorithm. Table 1 contains the values of the metrics for
the initial meshes.

Table 1. Metric values for the initial meshes

mesh # vertices # faces min ∠ max ∠ min area avg area volume

armadillo 172974 345944 0.034750 170.907 7.424e-08 1.840e-1 1.42690e+6

bunny 34834 69664 0.494800 177.515 7.925e-08 1.573e-2 7.54700e+3

gargoyle 863182 1726364 0.000215 179.820 3.638e-12 4.553e-2 1.63730e+6

hand 327323 654666 0.545000 177.995 5.161e-11 1.078e-4 1.64936e+1

horse 15366 30728 0.385500 177.119 1.118e-14 2.118e-6 1.58866e-3

kitten 137098 274196 0.004609 179.936 1.427e-08 8.846e-2 8.38625e+5

To examine the effects of splitting the mesh simplification workload
between the CPU and the GPU using the näıve marking algorithm, we com-
pared the time spent during the simplification process for the following CPU-
GPU workload splits 100-0, 95-5, 90-10, . . . , and 0-100 on each test case. The
time taken in seconds for the tested CPU-GPU splits for the bunny and gar-
goyle meshes can be seen in Figure 4. Such results are representative of those
obtained on small and large meshes, respectively. The percentage of running
time spent in the GPU is shown in Table 2; the 100-0 split is not shown since
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(a) Bunny (b) Gargoyle

Fig. 4. The time taken to simplify the bunny and gargoyle meshes for each CPU-
GPU split using the CPU-GPU näıve marking algorithm. As the CPU-GPU split
increases, the CPU workload increases, and the GPU workload decreases.

all of the time is spent on the CPU. The GPU memory usage for the tested
splits is shown in Table 3.

As seen in Figure 4, the gargoyle mesh shows an increase in running time,
whereas the bunny mesh exhibits a decrease in running time, with respect
to increasing the workload of the GPU. This indicates that if the mesh is
large, the running time decreases as the GPU workload increases, whereas
if the mesh is small, the reverse is true. This can be attributed to the extra

Table 2. The percentage of time spent on the GPU for various CPU-GPU splits
using the CPU-GPU näıve marking algorithm

% of GPU time

mesh 95-5 90-10 85-15 80-20 75-25 70-30 65-35 60-40 55-45 50-50

armadillo 9.2 14.5 19.6 24.6 29.4 34.1 38.6 43.1 47.5 51.7

bunny 5.4 8.8 12.1 15.2 18.2 21.1 23.9 26.5 29.0 31.4

gargoyle 10.4 15.8 21.1 26.3 31.3 36.1 40.8 45.4 49.9 54.3

hand 9.4 14.8 20.0 25.1 29.9 34.7 39.3 43.9 48.4 52.7

horse 5.0 8.0 10.9 13.6 16.2 18.7 21.1 23.3 25.4 27.4

kitten 8.2 13.4 18.4 23.2 27.9 32.5 36.8 41.2 45.5 49.6

mesh 45-55 40-60 35-65 30-70 25-75 20-80 15-85 10-90 5-95 0-100

armadillo 55.8 59.8 63.6 67.4 70.9 74.3 77.5 80.6 83.4 86.0

bunny 33.6 35.7 37.7 39.5 41.3 42.9 44.4 45.8 47.2 48.5

gargoyle 58.6 62.7 66.7 70.5 74.2 77.7 81.0 84.2 87.2 89.1

hand 56.9 61.0 64.8 68.7 72.3 75.8 79.0 82.2 84.2 87.8

horse 29.2 30.9 32.5 33.9 35.3 36.5 37.6 38.6 39.4 40.1

kitten 53.6 57.4 61.1 64.8 68.2 71.4 74.5 77.4 80.1 82.5



484 S.M. Shontz and D.M. Nistor

Table 3. The amount of memory used, in KB, by the GPU during simplification for
each CPU-GPU split for both the CPU-GPU näıve algorithm and the CPU-GPU
inverse reduction algorithm

Amount of memory used on the GPU (KB)

mesh 95-5 90-10 85-15 80-20 75-25 70-30 65-35 60-40 55-45 50-50

armadillo 2568 2770 2973 3176 3378 3581 3784 3986 4189 4392

bunny 517 558 599 640 680 721 762 803 844 884

gargoyle 12813 13824 14836 15847 16859 17871 18882 19894 20905 21917

hand 4859 5242 5626 6009 6393 6777 7160 7544 7927 8311

horse 228 246 264 282 300 318 336 354 372 390

kitten 2035 2196 2356 2517 2678 2838 2999 3160 3320 3481

mesh 45-55 40-60 35-65 30-70 25-75 20-80 15-85 10-90 5-95 0-100

armadillo 4595 4797 5000 5203 5405 5608 5811 6014 6216 6419

bunny 925 966 1007 1048 1089 1129 1170 1211 1252 1293

gargoyle 22928 23940 24951 25963 26974 27986 28998 30009 31021 32032

hand 8695 9078 9462 9845 10229 10613 10996 11380 11763 12147

horse 408 426 444 462 480 498 516 534 552 570

kitten 3642 3802 3963 4124 4284 4445 4606 4766 4927 5088

time taken to allocate memory in the GPU and to copy the data from main
memory to the GPU cache in addition to the time required for simplification.

We obtain the following metrics after 10 iterations of the algorithm with a
CPU-GPU split of 0-100: numbers of vertices and faces, minimum and max-
imum element ages, minimum and average element areas, mesh volume, and
the percentages of vertex and face simplification. The values of the metrics
can be seen in Table 4.

Simplification using the CPU-GPU näıve marking algorithm does not af-
fect the mesh volume significantly. It does, however, increase the average area
of each element, which is to be expected. Additionally, the simplification rate
is approximately 14% to 15% for one iteration of the algorithm.

Table 4. Metric values for the meshes after 10 iterations of the näıve CPU-GPU
marking algorithm

mesh # vertices # faces min ∠ max ∠ min area avg area volume

armadillo 56469 111617 3.091e-2 179.86 3.901e-07 6.077e-1 1.42548e+6

bunny 9979 20129 1.477e-1 179.645 6.242e-06 5.759e-2 7.56014e+3

gargoyle 278305 629188 3.688e-4 179.981 8.967e-08 1.143e-1 1.64053e+6

hand 99635 213061 1.969e-2 179.912 2.674e-09 3.937e-4 1.65117e+1

horse 5428 10927 1.874e-2 179.339 1.032e-11 7.162e-6 1.58650e-3

kitten 39991 87997 1.530e-2 179.799 2.320e-06 5.259e-1 8.38547e+5
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(a) Bunny (b) Gargoyle

Fig. 5. The resulting meshes after three iterations of the CPU-GPU näıve marking
algorithm

We also consider the simplification rate after performing multiple itera-
tions of the näıve CPU-GPU marking algorithm on the test meshes. The
simplification rates for 10 iterations of the algorithm run on the bunny and
gargoyle meshes can be see in Tables 5 and 6, respectively.

Table 5. The simplification percentages of the bunny mesh over multiple iterations
of the CPU-GPU näıve marking algorithm and the CPU-GPU inverse reduction
algorithm

Simplification Percentage Simplification Percentage
Näıve Marking Algorithm Inverse Reduction Algorithm

iter # vertices # faces %v simp %f simp # vertices # faces %v simp %f simp

0 34834 69664 — — 34834 69664 — —

1 30102 60194 13.6 13.6 31442 62278 10.6 10.6

2 26103 52183 25.1 25.1 27980 55954 19.7 19.7

3 22772 45487 34.6 34.7 25216 50383 27.6 27.7

4 19976 39846 42.7 42.8 22809 45567 34.5 34.6

5 17603 35026 49.5 49.7 20657 41261 40.7 40.8

6 15588 30942 55.3 55.6 18762 37463 46.1 46.2

7 13870 27413 60.2 60.6 17069 34064 51.0 51.1

8 12396 24391 64.4 65.0 15548 31013 55.4 55.5

9 11093 21703 68.2 68.8 14230 28349 59.1 59.3

10 9979 20129 71.4 71.1 13043 25936 62.6 62.8

The simplification rate hovers around 64% to 71% for both vertices and
faces after 10 iterations. After three iterations, we can see that there are
visible areas where simplification occurred on the bunny mesh as shown in
Figure 5. This is not the case on the larger meshes. After 10 iterations, the
bunny, horse, and kitten meshes as shown in Figure 6 exhibit an extreme
loss of detail. The armadillo lost some detail in the head area, and the other
meshes do not show too much loss of detail. This reinforces the notion that
larger meshes can be simplified more without seeing any visible effects.
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Table 6. The simplification percentage of the gargoyle mesh over multiple iterations
of the CPU-GPU näıve marking algorithm and the CPU-GPU inverse reduction
algorithm

Simplification Percentage Simplification Percentage
Näıve Marking Algorithm Inverse Reduction Algorithm

iter # vertices # faces %v simp %f simp # vertices # faces %v simp %f simp

0 863182 1726364 — — 863182 1726364 — —

1 735345 1470688 14.8 14.8 779354 1558590 9.7 9.7

2 646764 1292036 25.1 25.2 704379 1408640 18.4 18.4

3 573431 1142601 33.6 33.8 639370 1276589 25.9 26.1

4 512166 1042650 40.7 39.6 581774 1161369 32.6 32.7

5 458718 952966 46.9 44.8 531048 1059586 38.5 38.6

6 412135 872794 52.3 49.4 486874 970716 43.6 43.8

7 371523 801356 57.0 53.6 446693 889413 48.3 48.5

8 336120 737405 61.1 57.3 410960 816781 52.4 52.7

9 305243 680268 64.6 60.6 379788 753007 56.0 56.4

10 278305 629188 67.8 63.6 351150 693992 59.3 59.8

(a) Armadillo (b) Bunny (c) Gargoyle

(d) Hand (e) Horse (f) Kitten

Fig. 6. The resulting meshes after 10 iterations of the CPU-GPU näıve marking
algorithm

Tables 5 and 6 show the vertex and face simplification percentages as a
function of iteration in each mesh. Note that %v simp and %f simp represent
the percentages of vertex and face simplification, respectively, in these tables.
The amount of simplification performed each iteration decreases. This sug-
gests that as the vertex and element counts increase, the decrease in running
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time achieved by using the GPU simplification algorithm instead of the CPU
simplification algorithm increases as well.

To examine the effects of splitting the mesh simplification workload be-
tween the CPU and the GPU using the inverse reduction algorithm, we
recorded the time spent during the simplification process for various CPU-
GPU splits on all test cases. We tested the following CPU-GPU workload
splits: 100-0, 95-5, 90-10, . . . , and 0-100. The time taken in seconds for the
CPU-GPU splits can be seen in Figure 7. The proportion of running time
spent in the GPU for the tested is shown in Table 7. The GPU memory usage
for the tested splits is shown in Table 3.

(a) Bunny (b) Gargoyle

Fig. 7. The time taken to simplify each test case for every split using the CPU-GPU
inverse reduction algorithm. As the CPU-GPU split increases, the CPU workload
increases, and the GPU workload decreases.

The CPU-GPU inverse reduction algorithm shows an increase in running
time on the horse mesh, whereas it shows a decrease in running time on the
armadillo, bunny, gargoyle, hand, and kitten meshes with respect to an in-
creasing workload on the GPU. If the mesh is large, the time taken decreases
as the GPU workload increases. If the mesh is small, the reverse trend holds.
This is due to the extra time taken for memory allocation in the GPU and for
copying the data from main memory to the GPU cache, shown in Table 3, in
addition to the time required for simplification. Also, because the inverse re-
duction algorithm is more efficient than the näıve marking algorithm, we see
that the time taken to simplify the bunny mesh decreases as the GPU work-
load increases, now decreasing anywhere between 5.55% for the bunny mesh
to 11.48% for the gargoyle mesh when the GPU is given the full workload
when compared to the näıve algorithm.

The following metrics were collected after 10 iterations of the algorithm
with a CPU-GPU split of 0-100: vertex and face counts, minimum and max-
imum element angles (in degrees), minimum and average element area, mesh
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Table 7. The percentage of time spent using the GPU for various CPU-GPU splits
using the inverse reduction algorithm

% GPU time

mesh 95-5 90-10 85-15 80-20 75-25 70-30 65-35 60-40 55-45 50-50

armadillo 8.2 13.3 18.2 22.8 27.4 31.9 36.2 40.5 44.7 48.7

bunny 5.0 8.3 11.5 14.4 17.3 20.1 22.7 25.5 27.6 29.8

gargoyle 9.2 14.4 19.5 24.4 29.2 33.8 38.3 42.6 46.8 51.0

hand 8.3 13.5 18.4 23.1 27.8 32.5 36.9 41.3 45.6 49.7

horse 4.7 7.7 10.5 13.1 15.7 18.1 20.4 22.5 24.6 26.5

kitten 7.4 12.4 17.2 21.8 26.3 30.7 34.8 38.9 43.0 46.8

mesh 45-55 40-60 35-65 30-70 25-75 20-80 15-85 10-90 5-95 0-100

armadillo 52.6 56.4 59.8 63.4 66.7 69.7 72.4 75.0 77.2 79.0

bunny 31.9 33.9 35.7 37.4 39.1 40.5 41.9 43.2 44.5 45.7

gargoyle 55.1 58.9 62.7 66.2 69.7 73.0 76.0 79.0 81.7 83.4

hand 53.7 57.6 61.1 64.9 68.3 71.4 74.2 76.9 79.2 81.1

horse 28.2 28.8 31.4 32.6 33.9 34.9 35.9 36.8 37.5 38.1

kitten 50.7 54.3 57.8 61.3 64.5 67.5 70.3 73.0 75.6 77.1

Table 8. Values of the metrics for the meshes after 10 iterations of the CPU-GPU
inverse reduction algorithm

mesh # vertices # faces min ∠ max ∠ min area avg area volume

armadillo 65091 129131 2.271e-2 179.949 1.656e-07 5.190e-1 1.42659e+6

bunny 13043 25936 5.214e-2 179.805 1.000e-07 4.455e-2 7.55771e+3

gargoyle 351150 693992 3.044e-3 179.991 3.046e-08 1.211e-1 1.64145e+6

hand 132063 259374 1.449e-2 179.920 8.594e-10 2.940e-4 1.64892e+1

horse 6623 12719 1.251e-2 179.520 6.054e-11 5.698e-6 1.58656e-3

kitten 53725 106863 1.076e-2 179.912 1.476e-06 2.404e-1 8.38289e+5

volume, and vertex and face simplification percentages. The values for these
metrics for the tenth iteration can be seen in Table 8.

Simplification using the inverse reduction algorithm does not affect the
volume of the test cases significantly. It does, however, increase the average
area of each element, which is to be expected. Additionally, the simplification
rate is approximately 9% to 10% after one iteration of the algorithm, which is
much lower than that of the näıve algorithm. This demonstrates the tradeoff
between speed and rate of compression.

We also consider the simplification rate after performing 10 iterations of the
CPU-GPU inverse reduction algorithm on the test meshes. The simplification
rates for performing 10 iterations of the algorithm on the bunny and gargoyle
meshes can be seen in Tables 5 and 6, respectively.

The simplification rate for both vertices and faces after 10 iterations of the
algorithm hovers around 57% to 63%. After three iterations, there are visible
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(a) Bunny (b) Gargoyle

Fig. 8. The resulting meshes after three iterations of the CPU-GPU inverse reduc-
tion algorithm

(a) Armadillo (b) Bunny (c) Gargoyle

(d) Hand (e) Horse (f) Kitten

Fig. 9. The resulting meshes after 10 iterations of the CPU-GPU inverse reduction
algorithm

areas where repeated simplification occurred on the bunny mesh as shown in
Figure 8, but this is not the case on the larger meshes. After 10 iterations, the
bunny, horse, and kitten meshes exhibit an extreme loss of detail, as shown in
Figure 9. The armadillo lost some detail in the head; the other meshes do not
show too much loss of detail. This suggests that the larger a mesh is initially,
the more that it can be simplified without any visible negative effects.

Table 7 shows the simplification percentages as a function of the number of
iterations for the vertices and faces in each mesh. The simplification percent-
ages increase at a decreasing rate. This suggests that as a mesh increases in
size, the decrease in running time achieved by using the GPU simplification
algorithm instead of the CPU simplification algorithm increases as well.
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4 Conclusions and Future Work

In this paper, we have proposed two lossless CPU-GPU surface mesh simplifi-
cation algorithms. Our algorithms are based on the GPU marking algorithm,
which uses multiple GPU threads to concurrently mark elements as affected,
and the GPU inverse reduction algorithm, which attempts to perform the
edge-collapse operation on twice as many edges at each step compared to
GPU marking algorithm. Both algorithms were tested on numerous triangu-
lar surface meshes from computer graphics. The combinations of the CPU al-
gorithm with the two GPU algorithms are novel. In particular, the CPU-GPU
algorithms leverage the concurrency of the GPU to accelerate the simplifica-
tion of our surface meshes. The algorithms can be used in various areas of
computer graphics, such as video games and computer imaging, where there
is a clear benefit in creating a series of meshes from a single source mesh or
a simplified version of an original mesh. They may also be useful for real-
time visualization of triangular surface meshes used in scientific computing
applications.

The simplification rate and running time of the CPU-GPU algorithms
depended on multiple factors, including the GPU algorithm selected. Both
CPU-GPU algorithms used the same amount of GPU memory for any specific
CPU-GPU split, as they both needed to keep track of the same numbers of
vertices and elements on the GPU. As the GPU workload was increased, the
amount of GPU memory used increased as well. For both algorithms, as the
size of a mesh increased, the decrease in simplification time increased, as the
GPU workload was increased. The simplification rate of approximately 68%
that the CPU-GPU marking algorithm achieved was higher than the simplifi-
cation rate of approximately 59% that was achieved by the inverse reduction
algorithm, over ten iterations. This slight increase in simplification rate pro-
vided by the marking algorithm was counterbalanced by an increase of 5.55%
to 11.48% in the running time when the GPU was given the full workload.
Further simplification is possible if the simplification algorithm were run for
a larger number of iterations. This suggests that the GPU marking algorithm
should be used when a larger simplification rate per iteration is needed and
running time is not a limiting factor. However, the GPU inverse reduction
algorithm should be used when time is a limiting factor or when a lesser
simplification rate per iteration is required, such as for smaller meshes.

Our results show that certain areas of the surface mesh were repeatedly
simplified over multiple iterations, causing the meshes to look excessively
simplified in these areas, since element ordering determines the simplification
order. Reordering the mesh elements as a preprocessing step would likely
minimize the repeated simplification of mesh elements in a given area. Mesh
optimization may also be useful for improving the quality of the surface mesh
elements.
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It would also be interesting to implement a hybrid mesh simplification
algorithm that takes advantage of the speed of the GPU inverse reduc-
tion algorithm and the simplification rate of the GPU marking algorithm.
This could potentially increase the simplification rate as well as decrease
the running time of the simplification algorithm. Further algorithmic speed
may be accomplished through the utilization of additional CPU cores or
additional GPUs, which could take full advantage of parallelism. This may
prove to be especially useful for real-time graphics and scientific visualization
applications.
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