
A 2nd Generation Parallel Advancing Front

Grid Generator

Rainald Löhner

CFD Center, Dept. of Computational and Data Science
M.S. 6A2, College of Science, George Mason University
Fairfax, VA 22030-4444, USA
rohner@gmu.edu

Summary. A scalable, parallel advancing grid generation technique has been
developed for complex geometries and meshes with large size variations. The
key innovation compared to previous techniques is the use of a domain-
defining grid that has the same fine surface triangulation as the final mesh
desired, but a much coarser interior mesh. In this way, the domain to be grid-
ded is uniquely defined, overcoming a shortcoming of previous approaches.
This domain-defining grid is then partitioned according to the estimated num-
ber of elements to be generated, allowing for a balanced distribution of work
among the processors. The domain defining grid is also used to redistribute
the elements and points after grid generation, and during the subsequent
mesh improvement.

Timings show that the proposed approach is scalable and able to produce
large grids of high quality in a modest amount of clocktime.

With the proposed parallel grid generator, a major impediment to a com-
pletely scalable simulation pipeline (grid generation, solvers, post-processing)
has been removed, opening the way for truly large-scale computations using
unstructured, body-fitted grids.

1 Introduction

The widespread availability of parallel machines with hundreds of thousands
of cores and very large memory, solvers that can harness the power of these
machines, and the desire to model in ever increasing detail geometrical and
physical features has led to a steady increase in the number of points and
elements used in field solvers. During the 1990s, grids in excess of 107 el-
ements became common for production runs in Computational Fluid Dy-
namics (CFD) [4, 5, 28, 68, 50] and Computational Electromagnetics (CEM)
[17, 53]. This tendency has continued during the first decade of the 21st cen-
tury, roughly following Moore’s law, i.e. gridsizes have increased by an order
of magnitude every 5 years. Presently, grids in of the order of 109 elements



458 R. Löhner

are commonly used for leading edge applications in the aerospace, defense,
automotive, naval, energy and electromagnetics sectors.

While many solvers have been ported to distributed parallel machines, grid
generators have, in general, lagged behind. One can cite several reasons for
this:

a) For many applications the CPU requirements of grid generation are orders
of magnitude less than those of field solvers, i.e. it does not matter if the
user has to wait several hours for a grid;

b) (Scalar) grid generators have achieved a high degree of maturity, general-
ity and widespread use, leading to the usual inertia of workflow (‘modus
operandi’) and aversion to change;

c) In recent years, low-cost machines with few cores but very large memories
have enabled the generation of large grids with existing (scalar) software;
and

d) In many cases it is possible to generate a mesh that is twice (2d times)
as coarse as the one desired for the simulation. This coarse mesh is
then h-refined globally. Global h-refinement is easily ported to multicore
and/or distributed memory machines. Moreover, many field solvers of-
fer h-refinement as an option. With only 1 level of h-refinement a mesh
of 125 Mels increases to 1 Bels, and to 15.6 Mels with two levels of
h-refinement.

For applications where remeshing is an integral part of simulations, e.g. prob-
lems with moving bodies [37, 51, 52, 6, 30, 43, 24] or changing topologies [7, 8],
the time required for mesh regeneration can easily consume a significant per-
centage of the total time required to solve the problem. This percentage
increases drastically if the grid generation portion is not completely paral-
lelized. Faced with this situation, a number of efforts have been reported on
parallel grid generation [38, 14, 61, 15, 54, 20, 10, 55, 68, 9, 11, 22, 60, 46,
12, 13, 29, 26, 63, 1, 2].

The two most common ways of generating unstructured grids are the Ad-
vancing Front Technique (AFT) [56, 57, 35, 36, 58, 59, 27, 19, 42, 46] and the
Generalized Delaunay Triangulation (GDT) [3, 21, 66, 67, 49, 10, 9, 12, 63, 1].
The AFT introduces one element at a time, while the GDT introduces a new
point at a time. Thus, both of these techniques are, in principle, scalar by na-
ture, with a large variation in the number of operations required to introduce
a new element or point. While coding and data structures may influence the
scalar speed of the ‘core’ AFT or GDT, one often finds that for large-scale
applications, the evaluation of the desired element size and shape in space,
given by background grids, sources or other means [47] consumes the largest
fraction of the total grid generation time. Furthermore, the time required
for mesh improvements (and any unstructured grid generator needs them) is
in many cases higher than the core AFT or GDT modules. Typical speeds



Parallel Advancing Front 459

for the complete generation of a mesh (surface, mesh, improvement) on cur-
rent Intel Xeon chips with 3.2GHz and sufficient memory are of the order of
0.5-2.0 Mels/min. Therefore, it would take approximately 2,000 minutes (i.e.
1.5 days) to generate a mesh of 109 elements. Assuming perfect paralleliza-
tion, this task could be performed in the order of a minute on 2,000 processors,
clearly showing the need for parallel mesh generation.

Unstructured grid generators based on the AFT may be parallelized by in-
voking distance arguments, i.e., the introduction of a new element only affects
(and is affected by) the immediate vicinity. This allows for the introduction
of elements in parallel, provided that sufficient distance lies between them.

Nearly two decades ago (when useful distributed memory parallel machines
first appeared) Löhner, Camberos and Merriam [38] introduced a parallel
AFT for 2-D applications. This was extended shortly afterwards to 3-D by
Shostko [61]. The spatial distribution of work was based on the subdivision
of a relatively fine background grid. While used for some demonstration runs,
this scheme was not general enough for a production environment. The back-
ground grid had to be adapted in order to be sufficiently fine for a balanced
workload. As only background grid elements covering the domain to be grid-
ded were allowed, complex in/out tests had to be carried out to remove refined
elements lying outside the domain to be gridded. Furthermore, element size
specified at CAD entities could not be ‘propagated’ into the domain, as is
the case in the scalar AFT, disabling an option favoured by many users and
rendering many grid generation data sets unusable. The otherwise positive
experience gained with this parallel AFT, and the rise of shared-memory
machines, prompted the search for a more general parallel AFT. The key
requirement was a parallel AFT that modified the mature, scalar AFT as
little as possible, while achieving significant speedups on common parallel
machines. This led to a shared-memory parallel AFT (based on OpenMP)
that applied the parallelism at the level of the current front, and not globally
[46]. This scheme has been used for more than a decade, and has yielded a
means of speeding up grid generation by an order of magnitude. Given that
the parallelism is invoked at the level of the front, the achievable scalability
is clearly limited.

The advent of machines with hundreds of thousands of processors has led
to a re-evaluation of the parallel grid generation options. It is clear that
for machines with such a high number of processors, every effort has to be
made to extract the maximum parallelism possible at every stage of the grid
generation. This means that the parallelism should not be front-based,
but volume-based. The easiest form of achieving volume-based parallelism
is by using a grid to define the regions to be meshed by each processor.
Optimally, this domain-defining grid (DDG) should have the same surface
triangulation as the desired, fine mesh, but could be significantly coarser in
the interior. In this way, the definition of the domain to be gridded is unique,
something that is notoriouly difficult to achieve by other means (such as



460 R. Löhner

background grids, bins or octrees). This domain-defining grid is then split so
that in each subdomain a similar number of elements is generated.

2 Desired Features for the Next-Generation Parallel
Mesher

Before describing the proposed 2nd generation parallel grid generator, we list
the main characteristics such a tool should offer:

- Use of the (fine) surface mesh specified by the user: this means that no
global h-refinement can/needs to be used; the key assumption is that this
surface mesh can not be coarsened and then subsequently h-refined;

- Maximum re-use of existing scalar grid generation software: it takes a
decade to build a robust, production-quality 3-D grid generator; therefore,
being able to reuse existing software would be extremely desirable;

- AFT or GDT: the two main ways of generating general unstructured grids
are the advancing front technique (AFT) and the Generalized Delaunay
Triangulation (GDT); the parallel grid generator should be able to use
any of these techniques;

- Maximum re-use of existing grid generation features/options, such as:
- mesh size specified via background grid;
- mesh size specified via sources;
- mesh size specified via CAD entities (points, lines, surfaces, domains);
- optimal space-filling tet options;
- link to boundary layer grids;

- Use of multicore parallel machines: given that massively parallel machines
will be composed of multicore chips, it would be highly desirable to exploit
effectively this type of architecture.

3 2nd-Generation Parallel Mesher

The key idea of the proposed 2nd-generation parallel mesh generator is the
use of two levels of grid generation:

- One to subdivide space into regions that will generate approximately the
same number of elements, and

- One that performs the parallel grid generation.

These two tasks, could, in principle, be carried out with different grid gener-
ation techniques/codes, making the approach very general. The procedure is
shown conceptually in Figures 1a-c.



Parallel Advancing Front 461

Coarse Mesh (To Define Space to be Gridded) Load Balancing for Fine Mesh Generation

After Load Balancing

Fig. 1. Splitting of Domain Defining Grid

c) After Meshing Interfaces 1/4, 2/3

a) After Meshing Each Subdomain b) After Meshing Interfaces 1/2, 3/4

Fig. 2. Parallel Grid Generation Technique



462 R. Löhner

4 Basic Advancing Front Technique

Before going on, we recall for the sake of clarity and completeness the main
algorithmic steps of the advancing front technique:
Assume given:

- AG1: A definition of the spatial variation of element size, stretchings,
and stretching directions for the elements to be created. In most cases,
this is accomplished via a combination of background grids, sources and
CAD-based information [47].

- AG2: A watertight, topologically consistent triangulation that is con-
mesurate with the desired element size and shape. This is the so-called
initial front.

- AG3: The generation parameters (element size, element stretchings and
stretching directions) for the faces of the initial front.

Then:
While there are active faces left in the front:

- AF1: Select the next face ifout to be deleted from the front; in order
to avoid large elements crossing over regions of small elements, the face
forming the smallest new element is selected;

- AF2: For the face to be deleted:
- AF2.1: Select a ‘best point’ position for the introduction of a new

point ipnew;
- AF2.2: Determine whether a point exists in the already generated grid

that should be used in lieu of ipnew; if there is such a point, set this
point to ipnew;

- AF2.3: Determine whether the element formed with the selected point
ipnew crosses any given faces; if it does, select a new point as ipnew
and try again; if none can be found: skip ifout;

- AF3: Add the new element, (point, faces) to their respective lists;
- AF4: Find the generation parameters for the new faces;
- AF5: Delete the known faces(s) from the list of faces;

End While

Individual aspects of the technique (such as optimal data structures for speed,
robust checking of face intersections, filtering techniques to avoid unnecessary
work, etc.) may be found in [40, 47].

5 Generation of the Domain Defining Grid (Step 1)

Given that the number of elements and points decreases with the 3rd power
of the element size, a mesh with elements whose side-lengths are n times as
large as the desired one will only contain n−3 elements as the (fine) mesh
desired. The idea is then to generate, starting from the fine surface mesh, a
mesh whose elements are considerably larger than the grid desired. A factor



Parallel Advancing Front 463

of n = 10 will lead to a mesh that is generated in roughly 1/1000-th of the
time required for the fine mesh. For n = 20, the factor is 1/8000. The mesh
obtained, though, conforms to the general size distribution required by the
user, i.e. is completely general. Moreover, it allows to determine exactly and
easily which regions of space need to be gridded (one of the problematic
aspects of earlier parallel grid generators [38, 61, 46]). In the following, we
will denote this mesh as the domain-defining grid DDG.

In order to generate the DDG, the changes required to the basic advancing
front technique are restricted to the desired element size, which has to increase
rapidly as elements are generated in the volume:

- The generation parameters for the initial front (Step AG3 above) are
multiplied by the increase factor ci allowed for each face removed from
the front. Typical values are: ci = 1.5− 1.7.

- When a new point is added to the front, the grid generation parameters
of the points belonging to the face being removed ifout are multiplied
by ci and used instead of the usual ones (which are obtained from the
background grid and sources, see step AF4 above).

Note that as the advancing front technique always removes the face generat-
ing the smallest element from the front, no incompatibilities in element size
appear when these changes are invoked. Thus, the generation of the DDG is
of the same robustness as the basic underlying scalar AFT.

In practice one observes that the total number of extra points required to
fill up the complete volume is of the order of the points on the boundary
while element quality does not suffer.

6 Load Balancing of the Domain Defining Grid
(Step 2)

Given the DDG, the next task is to subdivide this mesh so as to obtain re-
gions in which roughly the same numbers of elements will be generated. A
number of load balancing techniques and codes have been developed over
the last two decades [65, 23, 64, 39, 31, 32]. In principle, any of these can
be used in order to obtain the subdivision required. For the results shown
here, we used (FESPLIT), which offers the possibility of subdividing grids
based on the advancing front/greedy, recursive coordinate/moment bisection,
or via spacefilling curves. Once an initial subdivision is obtained, FESPLIT
improves the load balance (e.g. surface to volume ratios, continuity of subdi-
visions, etc.) using a diffusion technique.

7 Generation of the Final Mesh (Step 3)

Once the subdivision of space is obtained, the mesh is generated in parallel.
The technique used here is the ‘inside-out’ procedure first described in [38,
61], and consists in 4 passes, which are exemplified in Figure 2.



464 R. Löhner

- Pass 1: The zones inside the subdivision domains are generated in parallel
(see Figure 2a);

- Pass 2: The zones bordering the regions, which are left empty after pass 1,
are meshed, in parallel, by pairing two domains at a time; by using a
colouring technique, most of these inter-domain regions can be meshed
completely in parallel (see Figure 2b);

- Pass 3: The zones bordering more than two regions (groups of domains),
which are left empty after pass 2, are meshed, in parallel, by combining
three or more domains at a time; as before, most of these inter-domain
regions can be meshed completely in parallel by using a colouring tech-
nique;

- Pass 4: If required, the remaining regions are meshed on processor 1.

The following changes to the basic advancing front technique are required in
order to obtain a reliable parallel meshing algorithm:

- If any of the points of the face to be removed lies outside the local DDG,
the face is marked as prohibited and skipped;

- If the ‘best point’ position for the introduction of a new point lies outside
the local DDG, the face is marked as prohibited and skipped;

- If any of the edges of the face to be removed ifout lies outside the local
DDG, the face is marked as prohibited and skipped; this test is carried
out by using a neighbour to neighbour traversal test between the points
of the edge;

- If ipnew is on the both the inter-processor boundary of the DDG and
the actual surface of the domain: the face is marked as prohibited and
skipped;

- When assigning the faces and points to the local DDG, a conservative
approach is taken; i.e. should an active front point coincide with the points
of the DDG, all the surrounding DDG elements are tested to see if the
point should be assigned to the present domain.

It is important to emphasize that all data is kept local. The list of elements
and point being generated, the active front, and all other arrays are stored
in the processor where they are being generated.

8 Redistribution of the Mesh (Step 4)

After the parallel advancing front has completed the mesh, the pieces gen-
erated in each of the individual passes will be scattered among the different
processors. This is particularly the case if a 4th Pass was required. In order to
arrive at a consistent mesh, the elements and points need to be redistributed
and doubly defined points need to be removed.

Given that for each point the host element in the DDG is known, and that
for each element of the DDG the processor it has been assigned to is also
known, it is an easy matter so send the elements and the associated points to



Parallel Advancing Front 465

the processors they need to be. Each element is sent (if required; the majority
already reside in the memory of the target processor) to the lowest processor
assigned via points from the DDG. Doubly defined points are removed using
an octree, so that this operation has O(N log(N)) complexity.

The next step is to find the correlation between the points of neighbouring
processors. In order to keep the procedure as general as possible, the following
algorithmic steps are taken:

- The bounding box of each domain is computed;
- The bounding boxes of other domains that overlap the bounding box of

each domain are determined; this determins a list of possible neighbouring
domains;

- Each pair of possible neighbouring domains is tested in depth using oc-
trees; in this way, the lists of neighbouring domains and points are ob-
tained (so-called send/receive lists).

9 Mesh Improvement (Step 5)

After the generation of the mesh using the parallel advancing front technique
(or any other technique for that matter) has been completed, the mesh quality
is improved by a combination of several algorithms, such as:

- Diagonal swapping,
- Removal of Bad Elements,
- Laplacian/Elasticity smoothing, and
- Selective mesh movement.

One should emphasize that mesh improvement may require CPU times that
are comparable to those required by the basic grid generation technique, mak-
ing it imperative to fully parallelize this necessary step as well. All of these
procedures have been implemented and are running in parallel (shared locally
via OMP and distributed globally via MPI). At the boundaries between pro-
cessors, the procedures listed above would require a considerable amount of
testing and information transfer. For this reason, it was decided not to allow
any changes for the external faces of each subdomain. In order to improve
the mesh in these regions as well, the DDG is redistributed among processors
for a second time. The first distribution is taken as a starting point. Then,
1-2 extra layers of elements are added to the each domain idomn from the
neighbouring domains jdomn for which idomn < jdomn. The elements of the
generated (and smoothed) mesh are then redistributed as before.

10 Examples

The 2nd generation parallel grid generator described above has been in op-
eration for approximately a year. It is still undegoing considerable changes



466 R. Löhner

and improvements, so the numbers quoted may improve over time. In the
sequel nproc denotes the number of mpi processes (i.e. subdomains), while
nprol denotes the number of shared-memory (OpenMP) cores used per mpi
process/subdomain. The total number of cores employed is then given by
ncore=nproc*nprol. The tables also quote the absolute (els/sec) and relative
(els/sec/core) grid generation speeds achieved. Note that for perfect scaling,
the relative grid generation speed should stay constant.

10.1 Garage

This example was taken from a blast simulation carried out for an office com-
plex. The outline of the domain, as well as the trace of the domain defining
grid partition on the surface is shown in Figure 3a. Figures 3a-c show the
trace of the domain defining grid partition on the surface as well as the fronts
after the parallel grid generation passes using 64 domains (mpi processors)
for a finer mesh. These steps are shown in more detail in Figures 3d-k. Table 1
gives a compilation of timings for different mesh sizes, domains and proces-
sors on different machines. One may note that: a) Generating the 121 M mesh
on one 8-core shared memory node (i.e. nproc=1, nprol=8) is slower than
the distributed memory equivalent (i.e. nproc=8, nprol=1); b) The number
of elements per core should exceed a minimum value (typically of the order
of 2-4 Mels) in order to reach a generation speed per core that is acceptable;
c) The local OMP scaling improves as the number of elements in each domain
is increased; d) It only takes on the order of five minutes to generate a mesh
of 121 Mels on 256 cores (nproc=32, nprol=8).

Fig. 3a-c. Garage: DDG and Parallel Grid Generation

10.2 Generic City Center

This example was taken from a recent blast and dispersion simulation. The
outline of the domain, as well as the active front after each of the parallel grid
generation passes for 32 processors (mpi domains) are shown in Figures 4a-c.
Figures 4d-n show the active front after the generation passes in more detail.
Table 2 gives a compilation of timings for different mesh sizes, domains and



Parallel Advancing Front 467

Fig. 3d-k. Garage: Front After Each Parallel Grid Generation Step

processors on different machines. One may observe the same general trends
as observed for the previous case.

10.3 Shuttle Ascent Configuration

This example has been used repeatedly for benchmarking purposes. The out-
line of the domain may be seen in Figure 5a. The trace of the domain defining
grid partition on the surface is shown in Figures 5b,c. Figures 5d,e show the
active front after the first generation pass using 8 domains (mpi processors).
This mesh had approximately 120 Mels. Table 3 gives a brief compilation of
timings.

Table 1. Garage

Machine nproc nprol ncore nelem CPU [sec] AbsSpeed [els/sec] RelSpeed [els/sec/core]

Xeon(1) 1 8 8 120 M 2,293 52,333 6,542
SGI ITL 8 1 8 121 M 1,605 75,389 9,423
SGI ITL 8 8 64 121 M 516 234,496 3,664
Cry AMD 8 1 8 121 M 2,512 48,169 6,021
Cry AMD 16 1 16 121 M 1,954 61,924 3,870
Cry AMD 32 1 32 121 M 1,209 100,082 3,128
SGI ITL 32 8 256 121 M 316 383,293 1,497
Cry AMD 64 1 64 972 M 6,048 160,714 2,511
SGI ITL 64 8 512 1010 M 2,504 403,354 788



468 R. Löhner

Fig. 3d-n. Generic City Center: Parallel Grid Generation

Fig. 4a-c. Generic City Center: Domain Defining Grid Partition and Parallel Grid

Generation



Parallel Advancing Front 469

Table 2. Generic City Center

Machine nproc nprol ncore nelem CPU [sec] AbsSpeed [els/sec] RelSpeed [els/sec/core]

Cry AMD 32 1 32 135 M 1,824 74,013 2,312
SGI ITL 16 8 128 135 M 556 242,805 1,897
SGI ITL 32 1 32 135 M 977 138,178 4,318
SGI ITL 32 2 64 135 M 754 179,045 2,797
SGI ITL 32 4 128 135 M 571 236,427 1,847
SGI ITL 32 8 256 135 M 488 276,639 1,080

Fig. 5a-c. Shuttle: Outline of Domain and DDG Partition

Fig. 5d,e. Shuttle: Front After 1st Parallel Grid Generation Pass



470 R. Löhner

Table 3. Shuttle

Machine nproc nprol ncore nelem CPU [sec] AbsSpeed [els/sec] RelSpeed [els/sec/core]

Xeon 8 1 8 27 M 872 30,963 3,870
Xeon 8 1 8 108 M 3,128 34,526 4,315

11 General Observations

While the first parallel grid generation pass (i.e. generating elements inside
each domain) scales perfectly, the scaling can degrade quikly for the subse-
quent passes (i.e. those that mesh the inter-domain boundary regions). The
recourse taken here is to simply generate the remaning elements in one pro-
cessor once the global number of remaning faces drops below 0.5 Mfaces. We
are presently working on ways to mitigate this ‘logarithmic trap’.

12 Conclusions and Outlook

A scalable, parallel advancing grid generation technique has been developed
for complex geometries and meshes with large size variations. The key in-
novation compared to previous techniques is the use of a domain-defining
grid that has the same fine surface triangulation as the final mesh desired,
but a much coarser interior mesh. In this way, the domain to be gridded
is uniquely defined, overcoming a shortcoming of previous approaches. This
domain-defining grid is then partitioned according to the estimated number
of elements to be generated, allowing for a balanced distribution of work
among the processors. The domain defining grid is also used to redistribute
the elements and points after grid generation, and during the subsequent
mesh improvement.

Timings show that the proposed approach is scalable and able to produce
large grids of high quality in a modest amount of clocktime.

With the proposed parallel grid generator, a major impediment to a com-
pletely scalable simulation pipeline (grid generation, solvers, post-processing)
has been removed, opening the way for truly large-scale computations using
unstructured, body-fitted grids.

Acknowledgement. This research used resources of the Oak Ridge Leadership
Computing Facility at the Oak Ridge National Laboratory, which is supported by
the Office of Science of the U.S. Department of Energy under Contract No. DE-
AC05-00OR22725, and also resources of the DoD High Performance Computing
Modernization Program. This support is greatfully acknowledged.



Parallel Advancing Front 471

References

1. Alleaume, A., Francez, L., Loriot, M., Maman, N.: Large OutofCore Tetrahedral
Meshing. In: Proc. 16th International Meshing Roundtable, October 15-17.
Sandia National Laboratory (2007)

2. Andrae, H., Ivanov, E., Gluchshenko, O., Kudryavtsev, A.: Automatic Parallel
Generation of Tetrahedral Grids by Using a Domain Decomposition Approach.
J. Comp. Math. and Math. Phys. 48(8), 1448–1457 (2008)

3. Baker, T.J.: Developments and Trends in Three-Dimensional Mesh Generation.
Appl. Num. Math. 5, 275–304 (1989)

4. Baum, J.D., Luo, H., Löhner, R.: Numerical Simulation of a Blast Inside a
Boeing. AIAA-93-3091 747 (1993)

5. Baum, J.D., Luo, H., Löhner, R.: Numerical Simulation of Blast in the World
Trade Center. AIAA-95-0085 (1995)

6. Baum, J.D., Luo, H., Löhner, R., Yang, C., Pelessone, D., Charman, C.: A
Coupled Fluid/Structure Modeling of Shock Interaction with a Truck. AIAA-
96-0795 (1996)

7. Baum, J.D., Luo, H., Löhner, R.: The Numerical Simulation of Strongly Un-
steady Flows With Hundreds of Moving Bodies. AIAA-98-0788 (1998)

8. Baum, J.D., Luo, H., Mestreau, E., Löhner, R., Pelessone, D., Charman, C.: A
Coupled CFD/CSD Methodology for Modeling Weapon Detonation and Frag-
mentation. AIAA-99-0794 (1999)

9. Blelloch, G.E., Hardwick, J.C., Miller, G.L., Talmor, D.: - Design and Imple-
mentation of a Practical Parallel Delaunay Algorithm. Algorithmica 24, 243–
269 (1999)

10. Chew, L.P., Chrisochoides, N., Sukup, F.: Parallel Constrained Delaunay Mesh-
ing. In: Proc. 1997 Workshop on Trends in Unstructured Mesh Generation
(June 1997)

11. Chrisochoides, N., Nave, D.: Simultaneous Mesh Generation and Partition-
ing for Delaunay Meshes. In: Proc. 8th Int. Meshing Roundtable, South Lake
Tahoe, pp. 55–66 (October 1999)

12. Chrisochoides, N., Nave, D.: Parallel Delaunay Mesh Generation Kernel. Int.
J. Num. Meth. Eng. 58, 161–176 (2003)

13. Chrisochoides, N.: Parallel Mesh Generation. In: Bruaset, A.M., Tveito, A.
(eds.) Numerical Solution of Partial Differential Equations on Parallel Com-
puters, pp. 237–259. Springer (2005)

14. de Cougny, H.L., Shephard, M.S., Ozturan, C.: Parallel Three-Dimensional
Mesh Generation. Computing Systems in Engineering 5, 311–323 (1994)

15. de Cougny, H.L., Shephard, M.S., Ozturan, C.: Parallel Three-Dimensional
Mesh Generation on Distributed Memory MIMD Computers. Tech. Rep.
SCOREC Rep. #7, Rensselaer Polytechnic Institute (1995)

16. de Cougny, H., Shephard, M.: - Parallel Volume Meshing Using Face Removals
and Hierarchical Repartitioning. Comp. Meth. Appl. Mech. Eng. 174(3-4), 275–
298 (1999)

17. Darve, E., Löhner, R.: Advanced Structured-Unstructured Solver for Electro-
magnetic Scattering from Multimaterial Objects. AIAA-97-0863 (1997)

18. Freitag, L.A., Ollivier Gooch, C.: Tetrahedral Mesh Improvement Using Swap-
ping and Smoothing. Int. J. Num. Meth. Eng. 40, 3979–4002 (1997)



472 R. Löhner

19. Frykestig, J.: Advancing Front Mesh Generation Techniques with Application
to the Finite Element Method. Pub. 94:10. Chalmers University of Technology,
Göteborg, Sweden (1994)

20. Galtier, J., George, P.L.: Prepartitioning as a Way to Mesh Subdomains in
Parallel. In: Special Symposium on Trends in Unstructured Mesh Generation,
pp. 107–122. ASME/ASCE/SES (1997)

21. George, P.L., Hecht, F., Saltel, E.: Automatic Mesh Generator With Specified
Boundary. Comp. Meth. Appl. Mech. Eng. 92, 269–288 (1991)

22. George, P.L.: Tet Meshing: Construction, Optimization and Adaptation. In:
Proc. 8th Int. Meshing Roundtable. South Lake Tahoe (October 1999)

23. von Hanxleden, R., Scott, L.R.: Load Balancing on Message Passing Architec-
tures. J. Parallel and Distr. Comp. 13, 312–324 (1991)

24. Hassan, O., Bayne, L.B., Morgan, K., Weatherill, N.P.: An Adaptive Unstruc-
tured Mesh Method for Transient Flows Involving Moving Boundaries. In: Pa-
pailiou, K.D., Tsahalis, D., Périaux, J., Knörzer, D. (eds.) Computational Fluid
Dynamics 1998, pp. 662–674. Wiley (1998)

25. Ito, Y., Shih, A.M., Erukala, A.K., Soni, B.K., Chernikov, A., Chrisochoides,
N., Nakahashi, K.: Parallel Unstructured Mesh Generation by an Advancing
Front Method. J. Mathematics and Computers in Simulation 75(5-6), 200–209
(2007)

26. Ivanov, E.G., Andrae, H., Kudryavtsev, A.N.: Domain Decomposition Ap-
proach for Automatic Parallel Generation of Tetrahedral Grids. Int. Math. J.
Comp. Meth. in App. Math. 6(2), 178–193 (2006)

27. Jin, H., Tanner, R.I.: Generation of Unstructured Tetrahedral Meshes by the
Advancing Front Technique. Int. J. Num. Meth. Eng. 36, 1805–1823 (1993)

28. Jou, W.: Comments on the Feasibility of LES for Commercial Airplane Wings.
AIAA-98-2801 (1998)

29. Kadow, C., Walkington, N.: Design of a Projection-Based Parallel Delaunay
Mesh Generation and Refinement Algorithm. In: Proc. Fourth Symp. on Trends
in Unstructured Mesh Generation (2003)

30. Kamoulakos, A., Chen, V., Mestreau, E., Löhner, R.: Finite Element Modelling
of Fluid/ Structure Interaction in Explosively Loaded Aircraft Fuselage Panels
Using PAMSHOCK/PAMFLOW Coupling. In: Conf. on Spacecraft Structures,
Materials and Mechanical Testing, Noordwijk, The Netherlands (March 1996)

31. Karypis, G., Kumar, V.: A Parallel Algorithm for Multilevel Graph Partitioning
and Sparse Matrix Ordering. J. of Parallel and Distributed Computing 48, 71–
85 (1998)

32. Karypis, G., Kumar, V.: Parallel Multilevel k-way Partitioning Scheme for Ir-
regular Graphs. SIAM Review 41(2), 278–300 (1999)

33. Larwood, B.G., Weatherill, N.P., Hassan, O., Morgan, K.: Domain Decomposi-
tion Approach for Parallel Unstructured Mesh Generation. Int. J. Num. Meth.
Eng. 58(2), 177–188 (2003)

34. Liu, J., Kailasanath, K., Ramamurti, R., Munday, D., Gutmark, E., Löhner,
R.: Large-Eddy Simulations of a Supersonic Jet and Its Near-Field Acoustic
Properties. AIAA J. 47(8), 1849–1864 (2009)

35. Löhner, R.: Some Useful Data Structures for the Generation of Unstructured
Grids. Comm. Appl. Num. Meth. 4, 123–135 (1988)

36. Löhner, R., Parikh, P.: Three-Dimensional Grid Generation by the Advancing
Front Method. Int. J. Num. Meth. Fluids 8, 1135–1149 (1988)



Parallel Advancing Front 473

37. Löhner, R.: Three-Dimensional Fluid-Structure Interaction Using a Finite El-
ement Solver and Adaptive Remeshing. Comp. Sys. in Eng. 1(2-4), 257–272
(1990)

38. Löhner, R., Camberos, J., Merriam, M.: Parallel Unstructured Grid Generation.
Comp. Meth. Appl. Mech. Eng. 95, 343–357 (1992)

39. Löhner, R., Ramamurti, R.: A Load Balancing Algorithm for Unstructured
Grids. Comp. Fluid Dyn. 5, 39–58 (1995)

40. Löhner, R.: Extensions and Improvements of the Advancing Front Grid Gen-
eration Technique. Comm. Num. Meth. Eng. 12, 683–702 (1996)

41. Löhner, R.: Regridding Surface Triangulations. J. Comp. Phys. 126, 1–10 (1996)
42. Löhner, R.: Progress in Grid Generation via the Advancing Front Technique.

Engineering with Computers 12, 186–210 (1996)
43. Löhner, R., Yang, C., Cebral, J., Baum, J.D., Luo, H., Pelessone, D., Charman,

C.: Fluid-Structure-Thermal Interaction Using a Loose Coupling Algorithm and
Adaptive Unstructured Grids. AIAA-98-2419 (1998)

44. Löhner, R.: Renumbering Strategies for Unstructured- Grid Solvers Operating
on Shared- Memory, Cache- Based Parallel Machines. Comp. Meth. Appl. Mech.
Eng. 63, 95–109 (1998)

45. Löhner, R., Yang, C., Oñate, E.: Viscous Free Surface Hydrodynamics Using
Unstructured Grids. In: Proc. 22nd Symp. Naval Hydrodynamics, Washington,
D.C. (August 1998)

46. Löhner, R.: A Parallel Advancing Front Grid Generation Scheme. Int. J. Num.
Meth. Eng. 51, 663–678 (2001)

47. Löhner, R.: Applied CFD Techniques, 2nd edn. J. Wiley & Sons (2008)
48. Löhner, R., Cebral, J.R., Camelli, F.F., Appanaboyina, S., Baum, J.D.,

Mestreau, E.L., Soto, O.: Adaptive Embedded and Immersed Unstructured
Grid Techniques. Comp. Meth. Appl. Mech. Eng. 197, 2173–2197 (2008)

49. Marcum, D.L., Weatherill, N.P.: Unstructured Grid Generation Using Iterative
Point Insertion and Local Reconnection. AIAA J. 33(9), 1619–1625 (1995)

50. Mavriplis, D.J., Pirzadeh, S.: Large-Scale Parallel Unstructured Mesh Compu-
tations for 3-D High-Lift Analysis. ICASE Rep. 99-9 (1999)

51. Mestreau, E., Löhner, R., Aita, S.: TGV Tunnel-Entry Simulations Using a
Finite Element Code with Automatic Remeshing. AIAA-93-0890 (1993)

52. Mestreau, E., Löhner, R.: Airbag Simulation Using Fluid/Structure Coupling.
AIAA-96-0798 (1996)

53. Morgan, K., Brookes, P.J., Hassan, O., Weatherill, N.P.: Parallel Processing
for the Simulation of Problems Involving Scattering of Electro-Magnetic Waves.
In: Demkowicz, L., Reddy, J.N. (eds.) Proc. Symp. Advances in Computational
Mechanics (1997)

54. Okusanya, T., Peraire, J.: Parallel Unstructured Mesh Generation. In: Proc.
5th Int. Conf. Num. Grid Generation in CFD and Related Fields, Mississippi
(April 1996)

55. Okusanya, T., Peraire, J.: 3-D Parallel Unstructured Mesh Generation. In:
Proc. Joint ASME/ASCE/SES Summer Meeting (1997)

56. Peraire, J., Vahdati, M., Morgan, K., Zienkiewicz, O.C.: Adaptive Remeshing
for Compressible Flow Computations. J. Comp. Phys. 72, 449–466 (1987)

57. Peraire, J., Peiro, J., Formaggia, L., Morgan, K., Zienkiewicz, O.C.: Finite
Element Euler Calculations in Three Dimensions. Int. J. Num. Meth. Eng. 26,
2135–2159 (1988)



474 R. Löhner

58. Peraire, J., Morgan, K., Peiro, J.: Unstructured Finite Element Mesh Genera-
tion and Adaptive Procedures for CFD. AGARD-CP-464, 18 (1990)

59. Peraire, J., Morgan, K., Peiro, J.: Adaptive Remeshing in 3-D. J. Comp. Phys.
(1992)

60. Said, R., Weatherill, N.P., Morgan, K., Verhoeven, N.A.: Distributed Parallel
Delaunay Mesh Generation. To Appear Comp. Meth. Appl. Mech. Eng. (1999)

61. Shostko, A., Löhner, R.: Three-Dimensional Parallel Unstructured Grid Gen-
eration. Int. J. Num. Meth. Eng. 38, 905–925 (1995)

62. Tilch, R., Tabbal, A., Zhu, M., Decker, F., Löhner, R.: Combination of Body-
Fitted and Embedded Grids for External Vehicle Aerodynamics. Engineering
Computations 25(1), 28–41 (2008)

63. Tremel, U., Sorensen, K.A., Hitzel, S., Rieger, H., Hassan, O., Weatherill, N.P.:
Parallel Remeshing of Unstructured Volume Grids for CFD Applications. Int.
J. Num. Meth. Fluids 53(8), 1361–1379 (2006)

64. Vidwans, A., Kallinderis, Y., Venkatakrishnan, V.: A Parallel Load Balancing
Algorithm for 3-D Adaptive Unstructured Grids. AIAA-93-3313-CP (1993)

65. Williams, D.: Performance of Dynamic Load Balancing Algorithms for Unstruc-
tured Grid Calculations. CalTech Rep. C3P913 (1990)

66. Weatherill, N.P.: Delaunay Triangulation in Computational Fluid Dynamics.
Comp. Math. Appl. 24(5/6), 129–150 (1992)

67. Weatherill, N.P., Hassan, O.: Efficient Three-Dimensional Delaunay Triangula-
tion with Automatic Point Creation and Imposed Boundary Constraints. Int.
J. Num. Meth. Eng. 37, 2005–2039 (1994)

68. Yoshimura, S., Nitta, H., Yagawa, G., Akiba, H.: Parallel Automatic Mesh
Generation Method of Ten-Million Nodes Problem Using Fuzzy Knowledge
Processing and Computational Geometry. In: Proc. 4th World Cong. Comp.
Mech., Buenos Aires, Argentina (July 1998)


	A 2nd Generation Parallel Advancing Front Grid Generator
	Introduction
	Desired Features for the Next-Generation Parallel Mesher
	2nd-Generation Parallel Mesher
	Basic Advancing Front Technique
	Generation of the Domain Defining Grid (Step 1)
	Load Balancing of the Domain Defining Grid(Step 2)
	Generation of the Final Mesh (Step 3)
	Redistribution of the Mesh (Step 4)
	Mesh Improvement (Step 5)
	Examples
	Garage
	Generic City Center
	Shuttle Ascent Configuration

	General Observations
	Conclusions and Outlook
	References




