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Summary. A parametric meshing technique is presented with special em-
phasis to singularities in the parametric mapping. Singularities are locations
where the parametric mapping is highly distorted or even singular. In a
NURBS context, this arises when control points are clustered into the same
location in three dimensions. Limitations of parametric plane meshing in this
context are highlighted, and zero- and first-order surface approximations are
commented. In the context of the DOD CREATE-MG project, different CAD
kernels and mesh generators communicate as plugins through application pro-
gramming interfaces (API) . The parametric mesh generator is coupled to the
CAD through the Capstone APIs and is independent of a particular CAD
kernel. Some CAD kernels do not allow these geometrical constructions while
some tolerate it. It is therefore a necessity to handle these degenerate cases
properly. Examples illustrate the method ’s capabilities.
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angulation, advancing front method.

1 Introduction

It is often argued that two-dimensional parametric meshers are more robust
and faster than their three dimensional counterparts. In a two dimensional
parametric mesher, the three dimensional informations are brought back to
two dimensions through a metric. Therefore, the three dimensional length
computation is traded for a metric evaluation, which represents roughly the
same computational effort. However, we have met various difficulties with
this approach compared to a three dimensional vision, and propose therefore
to rely on the three dimensional information as much as possible.

Regarding parametric meshing in the literature, two main categories can
be identified, whether the information is purely two dimensional or not. In
the first category, Peraire et al. [21] propose a parametric approach with an
anisotropic advancing front where stretching is taken into account through
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coordinate rotations aligned with the stretching interpolated from the back-
ground grid. A regular element is then generated in that space and mapped
back to the parametric plane thereafter. Guan et al. [10] extend the advanc-
ing front technique to take into account parametric surfaces through a point
and edge shift operator to locally simulate the three dimensional proximity in
the two dimensional space. Cuillière [8] also mentions briefly the difficulty as-
sociated with closed surfaces. An advancing front technique is also proposed
that takes into account the metric of the first fundamental form. Reliance on
three dimensional information is not reported. The INRIA gamma project
has proposed an original approach for parametric surfaces that rely on an
anisotropic Delaunay insertion [5]. In [7], the anisotropic Delaunay kernel is
coupled with an advancing front point placement. The notion of geometric
mesh is emphasized in [12]. Finally, [6] try to remove the strong constrains
introduced by the geometry in case of small geometry entitites. In Lee [13],
a pure two-dimensional anisotropic advancing front is used without any ref-
erence to the three dimensional space.

In the second category, [24] proposes an anisotropic advancing front
method in the parametric plane. However, the information is not purely pla-
nar as a three dimensional size is stored and used for local queries, com-
plementing the two-dimensional metric. Angles are evaluated in the three
dimensional space. The computation of the optimal point in the Riemanian
space is also provided without relying on the spectral decomposition of the
metric and relies on the first fundamental form. The front strategy relies on
sorting the front edges with respect to their three dimensional size. In [23],
geometry is represented through bicubic Bezier patches. Singularities in the
parametrization are tackled through evaluation in the vicinity of purely sin-
gular points, where the tangent plane is not well defined. An advancing front
technique is performed only in the parametric space. However, some part of
the optimization process takes place in the three dimensional space.

As far as singularities in the parametric plane are considered, the literature
is rather scarce. In Rypl et al. [23], the case of repeated control points has
been considered on the boundary, where multiplicity appears either along one
direction due to a bad parametrization, or in both directions at the pole of an
octant of a sphere. As the main assumption is to consider singularities at the
boundary of the patch, an interpolation from the boundary towards the inside
of the surface is performed to recover meaningful informations. In Lee [13],
a secondary mapping is considered along a degenerated line. A composition
of both mappings is taken into account in the metric field. Therefore, line
singularity has been moved to point singularity where a treatment such as
reference [23] may be considered. In Lee et al. [14], offset layers of elements
are added around line degeneracies. However, no details are given to detect
these line singularities in a general setting. Singularities are also expected on
the boundaries of the patch.

In the context of the DOD CREATE-MG project, different CAD ker-
nels and meshers communicate as plugins through application programming
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interfaces (API). The mesh generator is therefore independent of a particu-
lar kernel as long as these APIs are implemented for a given kernel. Some
CAD kernels rely entirely on NURBS engines. In a bottom-up geometrical
construction, vertices, edges and surfaces are constructed explicitly as op-
posed to simple shapes being modified through geometrical operations such
as booleans, lofting or sweeping. Therefore, control points, weights and knots
may be precisely chosen to control the shape of the geometry. Sometimes,
it might be of interest to lump the control vertices of the NURBS surface
definition in order to create cones, or three or less sided surfaces, as shown in
this work. It is therefore a necessity to be able to handle these cases properly.

Regarding the organisation of the present work, Section 2 recalls the basics
of parametric surfaces. Section 3 recalls the method proposed in the present
work. Section 4 concentrates on the the treatment applied to singularities.
Finally, Section 5 illustrates the capabilities of the method.

2 Parametric Surfaces

In this section, parametric surfaces are reviewed, and necessary results are
reminded succinctly in order to prepare to the practical application of the
parametric mesh generators.

Let Σ ∈ R
3 be a parametric surface, representing the image of a domain

Ω ∈ R
2 as:

σ : Ω ∈ R
2 → Σ ∈ R

3 (1)

(u, v) → σ(u, v)

In a surface mesh generation context, two classical requirements would be
to respect a size provided in the three dimensional space, and possibly at
the same time, to refine areas where curvature is high to capture accurately
the geometry. The way to transfer a three dimensional information to the
parametric plane is to rely on the first fundamental form of the surface.
Similarly, the way to capture the surface variation is to rely on the second
fundamental form of the surface as described now.

For the first case, the first fundamental form of the surface [11, 4] reads:

I(du, dv) = Edu2 + 2F du dv +Gdv2 (2)

Given the tangent plane vectors (τu, τv), the previous coefficients read:

E = τu · τu (3)

F = τu · τv (4)

G = τv · τv (5)
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The first fundamental form relates how distances in the three dimensional
space are perceived from the two dimensional space [9]. For the second re-
quirement, principal curvature evaluation is necessary through the Wein-
garten map, which relies on the first and second fundamental form. The
second fundamental form is given by:

II(du, dv) = Ldu2 + 2M dudv +Ndv2 (6)

Given the normal vector n, the previous coefficients read:

L = −τu · nu (7)

M = −τu · nu − τv · nv (8)

N = −τv · nv (9)

Finally, the principal curvature radii and principal directions are the eigen-
values and eigenvectors of the Weingarten map:

−W =

(
L M
M N

) (
E F
F G

)−1

(10)

Therefore, the relevant metrics in the parametric plane are given in the first
case, where the mesh wants to obey a given size distribution by:

M1 =

(
τTu
τTv

)
M3D

(
τu τv

)
(11)

where M3D is a provided metric in the three dimensional space, and in the
second case, where a geometry approximation is sought, by:

M2 =

(
τTu
τTv

)(
v1 v2 n

)
⎛
⎝λ1 0 0

0 λ2 0
0 0 α

⎞
⎠

⎛
⎝ vT1

vT2
nT

⎞
⎠(

τu τv
)

(12)

where λi are the principal eigenvalues, vi are the principal eigenvectors and
α an arbitrary number as the expression simplifies due to orthogonality be-
tween the normal and the eigenvectors of the Weingarten operator. Metric
intersection [17] allows to generate a final metric which takes into account
both requirements.

3 Surface Mesh Generation

In this section, a comparison between a pure two dimensional and a three
dimensional mesh generator is conducted first. Then, the main steps of the
meshing strategy advocated in this paper are recalled. It is assumed that the
boundary edges have been unfolded in the parametric domain and a valid
two dimensional mesh has been obtained.
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3.1 Comparison between Pure Parametric and Three
Dimensional Meshing

During the implementation of the present mesh generator, numerous dif-
ficulties have been met when geometry is seen through a lumped metric
evaluation:

• When a sizing field is provided to the mesh generator, it is expected that
the final three dimensional straight mesh edges will conform to this size
distribution. However, the two dimensional mesh generator only evalu-
ates curved edges on the surface as the first fundamental form is used
to transfer the information. Even though both should be very close for
a very fine mesh, practical considerations such as time and memory re-
quirements may create a significant difference for relatively coarse meshes.
Assuming that the metric evaluation is infinitely precise, a length on a
curve is measured while ultimately the mesh edge length is the relevant
quantity.

• As noted in [24], the CAD parametrization is most of the time not uniform.
For a very accurate method such as the advancing front, an inaccuracy
in the metric evaluation gives rise to the wrong three dimensional size,
and added noise in the final three dimensional mesh. Three dimensional
informations will require a couple of iterations, which may be worth to
avoid a subsequent intense optimization stage.

• The geometric approximation is most of the time embedded in the metric,
without explicitly verifying the relevancy of the information on the three
dimensional geometry. There is therefore no guarantee that a valid two
dimensional mesh based on some kind of appropriate metric will produce
a valid three dimensional surface mesh. As noted in [12], the metric guar-
antees a zero order approximation of the surface while a triangulation
requires implicitly a first order approximation, where the discrete tangent
plane approximates reasonably well the analytic one.

• The various three dimensional curves representing the boundaries of the
surfaces may have been obtained through complex geometrical operations
such as boolean, sweeping or filleting. A representation of these curves is
then sought in the parametric domain. This operation adds another layer
of approximation to the numerical precision of these curves. Therefore, the
evaluation of a curve from the parametric domain to the three dimensional
domain may give locations noticeably different from the original three
dimensional curve.

• Along the lack of guarantee to create optimal three dimensional triangles
from two dimensional triangles, the opposite case is extremely annoying
for highly non linear but real mappings. The mesh is only a linear repre-
sentation of the mapping. Therefore the validity of a linear triangle in the
plane may hinder the creation of its valid and optimal three dimensional
counterpart.
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• Necessary technicalities such as periodicities and degeneracies are com-
pletely removed in the three dimensional space.

Summing up, it is really not clear even on a pure efficiency basis if two
dimensional parametric mesh generators are faster than their three dimen-
sional counterparts, particularly when no quality argument has been taken
into account.

3.2 Algorithm

Once a mesh respecting the boundary has been obtained, the next step is to
generate an appropriate surface mesh for analysis. This task is subdivided
into two subtasks. The first part generates a mesh in the parametric domain
with pure two dimensional information. Edges are sorted in a binary tree and
the longest and shortest edge are extracted at each iteration. These edges are
possible candidates for split and collapse. Local operators are illustrated in
Figure 1. The second part generates a high quality mesh through an ad-
vancing front point placement. Compared to previous methods that couple
advancing front with global methods [18, 19], the creation of the element
generated by an advancing front method is strictly enforced, as described in
[1]. The hybrid advancing front strategy proposed in [1] is used. A valid mesh
is available at each iteration as only local operations are applied to the mesh.
The main algorithmic steps for a parametric mesh generator read:

As long as the front is not empty:

• Select an edge (ip1,ip2) in the front
• Compute the three dimensional size, normal and coordinates at the three

dimensional mid point.
• Based on the previous size, iteratively compute a three dimensional point

ipnew such that the new triangle to be well shaped in three dimensions
• March from each end point of the current edge towards ipnew :

– If there are points of the front too close to the new point, put them
in a stack and stop the progression

– If there are points of the front too close to the newly formed edges
(ip1,ipnew) and (ip2,ipnew), put them in a stack and stop the
progression

– If the front is topologically crossed, put the local points belonging to
the front in a stack and stop the progression

• If the progression has not been stopped, check for close points not belong-
ing to the front that could be used in lieu of ipnew.

• Else sort the current points of the stack with respect to the quality of the
triangle they form with the new edge. Set ipnew to this point and come
back to the beginning.

• If ipnew is not already in the mesh, insert it by splitting the face con-
taining it

• Recover edges (ip1,ipnew) and (ip2,ipnew)
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Fig. 1. Illustration of local operators

• Update the front
• Swap in front of the newly created element

Regarding the front strategy, different options are possible. If the three di-
mensional size is isotropic, then the sorting of the front based on the shortest
three dimensional length seems to be an attractive choice, as advocated in
[24]. The main reason of using a priority queue for the advancing front strat-
egy is to avoid large elements overlapping small elements [16]. It furthermore
allows for a denser point distribution as the small edges will fill less space.
However, based on experience, it was found that sorting the front based on
layers from the boundaries while locally correcting the size during an iteration
process was giving the most regular meshes.

If the three dimensional size is anisotropic, the discussion is more complex,
and has not received much attention in the literature. The shortest edge
length strategy does not imply in the anisotropic context that the smallest
element will be created. It however gives priority to elements with small angles
compared to elements with large angles, which are well known to provide
better interpolation properties [22, 3]. This deserves further investigation.

4 Singularities

As commented before, geometric degeneracies appear in a NURBS context
when control points are repeated. This may be useful for different reasons:

• Create simple shapes such as a cone, a sphere or part of it with NURBS.
• Remove from the basic four sided NURBS patch a side to obtain a three

sided surface in the three dimensional space.
• Create discontinuities in the geometric model, either on the boundaries

or inside. For example, trailing edges of wings may be created with-
out topological entities by defining discontinuities inside the geometrical
surface.
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• Create complex shapes with few surfaces in order to avoid intersection
computations and approximate reparametrization of curves into the para-
metric plane.

• Create complex shapes with few surfaces in order to drive a shape opti-
mization and being able to continuously deform the CAD surface.

From a meshing viewpoint, the downside of using repeated control points
arises when derivatives of the parametric mapping are to be asked. Repeated
control points give null derivative vectors in the direction of the repetition.
Therefore, the tangent plane, the normal vector, or the principal curvatures,
and all computations relying on derivatives of the parametric mapping are
ill defined. As seen in Section 2, the parametric plane transfers the three
dimensional sizing information through the use of the tangent plane and
the first fundamental form. The singularity of the tangent plane will give
rise to null eigenvalues in the metric, and equivalently an infinite size in
the parametric domain. Even though numerical cut offs may be used for a
safe implementation, a two dimensional mesher becomes blind around these
points. Furthermore, this phenomenon only worsens as the mesh is refined, as
the singularity is not confined locally, but spreads at least up to the next row
of control points. This drawback is solely due to derivatives of the mapping.
Therefore, only zeroth order information may be used, as the geometry is
nevertheless valid.

From a geometric viewpoint, normal evaluation is extremely important to
evaluate the validity of the three dimensional surface mesh. The normal vector
is typically normed so that only its direction is relevant. At the opposite, the
tangent plane contains directions and parametric mapping informations. We
first devised a regularization method which is able to provide relevant normal
computations around singularities. This will be describe in the first part.
However, this does not remove the degeneracies of the parametric mapping
and special techniques have been therefore sought. This is presented in the
next part.

4.1 Tangent Plane and Normal Evaluation

In this part, only normal direction is sought. Note that, regarding the normal
computation, a unique discrete normal may always exist [2] in the three
dimensional space, as long as there is enough visibility around it. Once a
normal becomes available, the advancing front procedure may be defined
[15, 20]. Based on this remark, a three dimensional evaluation of the normal
is proposed to treat theses cases in a uniform approach. Singularities are
seldom in the whole patch. Even though a fast detection should be designed
to treat them, the cost of the treatment is not really relevant due to the very
low probability of hitting a singularity. The idea proposed in this paper is to
regularize the parametrization in a discrete and local manner. If a singularity
is identified by a collinear or incomplete tangent plane, the normal at the
singularity may still be computed relying on relevant neighboring normals
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Fig. 2. The normal and tangent plane evaluation is averaged through various points
close to the singularity. The first row of points in the parametric domain collapses
to the cone tip. Various rows may be used to average the normal.

in the three dimensional space. The difficulty is due to the fact that the
relevant three dimensional values may define a complex parametric bounding
box in the parametric plane. Neighboring relevant values may be close in
the parametric domain but still the average may require a large extent such
as the tip of a cone, as illustrated on Figure 2, in order to obtain a well
balanced normal. Therefore, two criteria must be taken into account, namely
the non singularity of the tangent plane and the three dimensional proximity.
A relevant axis aligned box is hence sought iteratively in the parametric
domain around the singular point by iteratively looking for a non singular
tangent plane in the u and v direction. A small parametric value is initially
set, and is progressively increased if no complete tangent plane is found, or a
close three dimensional distance to the singular point is found. As a relevant
bounding box is found, a regular grid of points is created and the tangent
plane at these points is queried. If they are valid, the normals are computed,
accumulated and averaged in an appropriate form [2] to provide the final
normal.

4.2 Meshing Singularities

The main idea here consists in always relying on zeroth order computation,
namely point location evaluations in order to avoid the drawbacks evoked
before. As noticed in the introduction, some ideas were presented in the
literature. They do not however treat the generality of cases met in practice.

In this work, two main steps are involved in meshing around a singularity.
The first consists in obtaining well positioned points, the second consists
in creating the connectivities between these points. A singular edge in the
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Fig. 3. A degenerate pole of an octant of a sphere

parametric domain implies that one of the parametric directions is singular at
some location and will surround the singularity for values close to the singular
parametric values, while the other direction goes into the singularity. In the
three dimensional space, this is very close to the geodesic polar map on the
surface [11]. The idea consists therefore in meshing layers of elements around
the singularity until the mapping becomes reasonable. In the parametric plane
however, these layers do not match a u- or v-isoline. In the three dimensional
space, edges abut on this singularity. Therefore, the average size of these
edges is given for each layer generated.

In order to generate the points, the middle point of the singular edge in
the parametric domain is first computed. The direction normal and tangential
to the singular edge are computed. This middle point is the initial guess of
a zeroth order smoothing where the smoothing is applied independently in
both directions. The normal direction allows the current point to be closer
or further to the singularity. The tangential direction controls roughly the
orthoradial direction close to the singularity only. Beginning from both end
points of the edges that abut on the singularity, which may be the same point
in the three dimensional space, the point that is at a given distance of the layer
from the singularity and at equidistance from the two edge points is sought. If
no distance is violated, the point is stored and the same approach is performed
recursively. In Figure 3, an octant of a sphere is represented with a singular
pole. Relying on the first two edges AB1 and AC1 an average size is computed
. The parametric edge B1C1 is split and the point equidistant from B1 and C1
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at the correct distance from the singularity is sought. The same procedure is
repeated for both edges B1B2 and C1C2. The main difficulty comes from the
fact that the mapping is highly distorted. A small change in the parametric
plane does not produce a small change in the three dimensional space. A local
scale in the three dimensional space should be first found and all candidates
points are created with this local length. The smoothing in the direction
towards the singularity is driven by the three dimensional distance to the
singularity. The distance in the direction tangential to the singularity is driven
by the distance to the plane equidistant to the two ancestor points.

The connection of these points relies on the hierarchical character of the
previous point creation. A point is created from two ancestors and hence
receives a level number in this process corresponding to the depth of the
recurrence. For the creation of each new stripe, a stack of new points is
created. The goal is therefore to find the best way to connect these two stripes
of points. For each two stripes of points, both stripes are scanned concurrently
until a match is obtained on the recurrence level. Once a match has been
found, each substripe is meshed with a local one dimensional advancing front
procedure as it boils down to choosing a diagonal to connect both sub stripes.
Finally, an optimization on each layer is performed in order to obtain the
smoothest geometry.

5 Numerical Examples

In this section, numerical examples are provided to illustrate the quality and
robustness of the method.

5.1 Cone

This example may certainly be the simplest example with a singularity. Figure
4 shows the mesh of the cone. It consists in 48·103 triangles and 24·103 points.
A zoom close to the tip is shown in Figure 5. For this particular example,
only one single layer of elements has been created, as the degeneracy was not
judged sufficient to keep on adding layers.

By refining the mesh close to the singularity, it affects more the meshing
process as shown in Figure 6. This time, around 15 layers are necessary to
get away from the singularity, as shown in Figure 6.

5.2 Propeller Wing

For this example, a highly twisted propeller wing has been chosen. The topol-
ogy of the wing is complicated as only the trailing edge and the edge from the
junction with the body are present. The wing surface is therefore completely
wrapped over the trailing edge. Furthermore, a singular point arises at the
tip of the wing. The mesh is displayed in Figure 8. The mesh contains 24 ·103
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Fig. 4. Cone example

Fig. 5. Zoom on the cone tip

points and 73 · 103 triangles and has been refined with regard to curvature.
A zoom close to the tip of the wing is displayed on Figure 9 and another
zoom shows the singularity on Figure 10. It is clearly seen that no artifacts
in the mesh appear, and a high quality mesh has been obtained close to the
singular point location. In this example, five layers have been needed to get
away from the singularity.

5.3 Generic Fighter

This example illustrates the geometry of a generic fighter. It is composed of
14 faces. The wing tips on the back are composed with one NURBS surface
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Fig. 6. Refined cone

Fig. 7. Zoom on the refined cone tip
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Fig. 8. Mesh for a propeller wing

Fig. 9. Zoom close to the tip of the propeller wing

Fig. 10. Tip of the singularity on the propeller wing

each. The mesh is composed of 68 · 103 points and 137 · 103 triangles. The
wing and stabilizer of the fighter are displayed in Figures 12 and 13. Each
of the wings and stabilizers have a singular point. Again, singularities have
been handled properly.
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Fig. 11. Mesh for a generic fighter

Fig. 12. Close up of the wing fighter near the wing tip

Fig. 13. Close up of the wing fighter near the back of the fighter
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6 Conclusion

A new parametric meshing technique has been presented. Parts of the mesh
generation have been highlighted. Particular emphasis has been given to the
treatment of singularities in the parametric mapping, which cause havoc to
parametric meshers. The main idea consists in relying only on zeroth order
information and creating semi structured layers of meshes around the singu-
larities. Examples have been shown that illustrate the quality and robustness
of the method.
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