
A Robust 2-Refinement Algorithm in Octree

and Rhombic Dodecahedral Tree Based
All-Hexahedral Mesh Generation

Yongjie Zhang1,�, Xinghua Liang1, and Guoliang Xu2

1 Department of Mechanical Engineering, Carnegie Mellon University,
Pittsburgh, PA 15213, USA
jessicaz@andrew.cmu.edu

2 LSEC, Institute of Computational Mathematics, Academy of Mathematics and
System Sciences, Chinese Academy of Sciences, Beijing 100190, China

Summary. In this paper, we present a novel 2-refinement algorithm for
adaptive all-hexahedral mesh generation based on two tree structures: oc-
tree and rhombic dodecahedral tree. Given a smooth boundary surface, we
first use a pre-defined error function to detect the main surface features, and
build a strongly-balanced octree. Then a novel 2-refinement algorithm is de-
veloped to eliminate all hanging nodes in the octree, which is robust for any
unstructured meshes and induces a smooth transition with very little prop-
agation. Later, all elements outside and around the boundary are removed
to create the octree core mesh and a buffer zone. The boundary points on
the core mesh are projected onto the surface and form the final mesh. Moti-
vated from nature, a new tree structure based on rhombic dodecahedron is
introduced. Sharp features are also detected and preserved during mesh gen-
eration. Finally, pillowing, geometric flow and optimization-based smoothing
are applied to improve quality of the constructed meshes.

Keywords: 2-refinement, all-hexahedral mesh, octree, rhombic dodecahe-
dron, sharp feature.

1 Introduction

In finite element analysis, unstructured hexahedral (hex)meshes are by far pre-
ferred due to their superior performance over tetrahedral meshes in terms of
smaller element counts, increased accuracy and improved reliability. However,
there are only a few algorithms developed in the literature for all-hex mesh
generation. Among them, sweeping [7], paving/plastering [13] and whisker
weaving [4] are not fully automatic and they require user interactions. As a

� Corresponding author.

156 Y. Zhang, X. Liang, and G. Xu

promising solution, the grid-based method is widely used due to its robustness
and effectiveness.

In the grid-based method, a fitted 3D grid of hexes using octree is con-
structed, and then additional hexes are added at the boundaries to fill gaps
[11]. 2- and 3-refinement templates were developed for adaptive mesh gener-
ation. 2-refinement uniformly subdivides a selected hex into 8 smaller ones,
while 3-refinement results in a 1-to-27 split. Due to the ease of implementa-
tion, 3-refinement templates [12, 14] were studied first. However, 3-refinement
produces much more new elements and the transition region is not so smooth
as 2-refinement [11, 12]. In addition, 2-refinement yields better aspect ratio
than 3-refinement. The 2-refinement method has been thoroughly studied
in 2D quadrilateral mesh generation [8, 9]. However, the implementation of
2-refinement in 3D is still a challenge. The 2-refinement method was first
introduced for structured hex meshes only [3, 6, 12], and was improved later
using pillowing [2]. All these developments have difficulty in handling situ-
ations where two or more refined regions are adjacent to each other. They
require a great amount of propagation and cannot deal with concavity.

In this paper, we introduce a novel 2-refinement algorithm for unstructured
all-hex meshes. Given a smooth boundary surface, four steps are designed to
construct adaptive hex meshes based on two tree structures: octree and rhom-
bic dodecahedral (RD) tree. The key contributions of our work include: (1)
a novel 2-refinement method which is robust for any unstructured meshes
and yields a smooth transition with very little propagation. 3-refinement and
2-refinement are compared in detail; and (2) a novel rhombic dodecahedral
(RD) tree structure is introduced for all-hex mesh construction. Moreover,
sharp features are preserved and the mesh quality is improved using pillow-
ing, geometric flow and optimization-based smoothing. We have applied our
algorithm to several complicated geometries. Our algorithm is able to effi-
ciently capture the main details and sharp features (if have), and generates
meshes with good quality.

The remainder of this paper is organized as follows: Section 2 explains the
detailed algorithm for octree-based hex mesh generation using 2-refinement.
Section 3 introduces a new RD tree structure. Section 4 discusses sharp fea-
ture preservation and mesh quality improvement. Section 5 shows some ap-
plication results. Finally, Section 6 presents our conclusion.

2 Octree-Based Hex Mesh Generation

Given a closed smooth surface mesh as input, we design four steps to
generate adaptive all-hex meshes based on octree: adaptive octree construc-
tion, hanging node elimination via 2-refinement, buffer zone clearance, and
projection.

2-Refinement in Octree and Rhombic Dodecahedral Tree 157

2.1 Adaptive Octree Construction

As the first step, a cube is constructed which bounds the given surface mesh.
This cube is the root of the octree, as marked as level 0. Cells obtained after
refining the ith-level cell will be marked as level (i + 1). To detect surface
features, we introduce a feature sensitive error function [15], ERROR =
∑27

i=1
|fi+1(P)−fi(P)|

|∇fi(P)| , where f i(P) is the distance from node P at level i to

the surface. A total of 27 nodes need to be measured for each cell. For level
i, the function values of 12 edge middle points, 6 face middle points and
1 center point can be obtained through a trilinear interpolation. This error
function estimates the difference of the isosurface between two neighboring
levels. Given an error tolerance ε, we refine cells with a larger error (> ε).
In addition, to generate meshes with good aspect ratio, we limit the level
difference between two adjacent cells to be less than or equal to one. In the
end, a strongly balanced octree is obtained, see Fig. 1(a).

(a) (b)

Fig. 1. (a) A strongly balanced octree; and (b) the obtained result after pillowing

2.2 Robust 2-Refinement for Hanging Node Elimination

Among the existing solutions, template-based methods such as 3- and 2-
refinement are the most widely used to remove hanging nodes inside the
adaptive octree. In the 3-refinement algorithm [12, 14], each node is checked
and marked whether it needs to be refined according to a pre-defined error
function. Since there are eight nodes in one hexahedron, there are 28 =
256 possible configurations. Considering symmetry and complementary, five
distinct templates were summarized [14]. Each hexahedron belonging to them
are applied with one of the templates. The remaining hexahedra are then
converted to one of them according to a look-up table. This conversion is

158 Y. Zhang, X. Liang, and G. Xu

repeated until no more propagation is needed. Finally an adaptive octree
without hanging nodes is constructed. As we can see, 3-refinement is easy to
implement. However, when compared to 2-refinement which only produces
8 smaller hexahedra, a hexahedron using 3-refinement will be converted to
27 smaller ones. Obviously, 3-refinement produces much more new elements
and the transition region is not so smooth as 2-refinement. In addition, 2-
refinement yields better aspect ratio than 3-refinement.

The implementation of 2-refinement in 3D is still a challenge. The main
difficulty is how to limit the propagation during hanging node elimination.
Very few work has been done and they were limited to structured meshes
only [3, 11]. One attempt for an unstructured mesh was developed in [2], but
it requires an overall refinement of all elements beforehand, which increases
the element number rapidly by 7 times. Recently, Qian and Zhang [10] at-
tempted to apply 2-refinement to unstructured meshes. In this approach,
given a uniform unstructured mesh, some core regions are defined, then three
steps are adopted: refine the core region until the requirement for 2-refinement
is satisfied, split the transition layer into two layers such that each transition
element has only one transition face, and finally remove hanging nodes. This
method can generate adaptive hex meshes from uniform unstructured ones,
and provide smooth transition layers. However, the first step of this approach
involves a great amount of propagation, which sometimes may generate more
elements than using 3-refinement. Moreover, the second step can only work
for situations where all the refined regions are isolated.

In this paper we introduce a robust 2-refinement algorithm to remove hang-
ing nodes in the adaptive octree, which needs very little propagation. Here
are several definitions used in the following algorithm description.

Transition element: A transition element is an element connecting ele-
ments at two different levels.
Transition face: A transition face is a face in a transition element which is
also shared by an element at a lower level.
Transition node: A node on a transition face is named a transition node.
Non-manifold transition region: A non-manifold transition region is a
region where two or more refined regions are adjacent to each other. Other-
wise, if all the refined regions are isolated, it is called a “manifold transition
region”.

Before applying the 2-refinement templates introduced by Schneiders [11, 12],
as shown in Fig. 2, to unstructured all-hex meshes, we need to solve the
following two problems: (1) The coupling of transition elements. The 2-
refinement template in Fig. 2(a) is applied to a block of four transition
elements sharing an edge, see Fig. 2(b). We need to ensure that there is
such a block for each transition element, especially for unstructured meshes
with arbitrary valence number. Then an efficient way to implement the

2-Refinement in Octree and Rhombic Dodecahedral Tree 159

(a) (b) (c)

Fig. 2. 2-refinement templates for octree [11, 12]. (a) 2-refinement templates; (b)
the way to apply 2-refinement templates; and (c) another template to remove the
remaining hanging nodes.

(a) (b) (c) (d)

Fig. 3. Pillowing for concave (a-b) and convex (c-d) cases. Solid nodes are nodes
on the boundary of the refined region, circles are interior to the refined region. Red
points are transition nodes, and blue points are duplicated nodes. Blue region is
the refined region, and pink region is the pillowed layer.

2-refinement template must be developed since it has to be flipped for each
pair of elements sharing a face in that block (marked as “I” and “II” in
Fig. 2(b)). (2) The concavity in the octree in which there are elements with
more than one transition face. There is no template to handle such transition
elements. This problem exists in 3-refinement methods as well.

The first problem can be easily solved by refining all the elements sur-
rounding each irregular transition node in the adaptive octree. However, it
is not so easy to solve the second one. This can be achieved by isolating the
refined region completely using the pillowing technique, which duplicates the
corresponding transition nodes for the transition elements and inserts new
layers. After that, each transition element will have one and only one tran-
sition face. The pillowing procedure duplicates each transition node along
the average normal direction of its neighboring transition faces. The distance
between a node and its duplicate is half the minimum length of its neighbor-
ing edges, as shown in Fig. 3. After the isolation of the refined regions, the
template in Fig. 2(a) is utilized to eliminate hanging nodes.

During pillowing, we need to pay extreme attention to non-manifold tran-
sition regions. For an octree, these non-manifold cases happen in a 8-element

160 Y. Zhang, X. Liang, and G. Xu

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. Pillowing for non-manifold transition regions. Colored elements are at level
i, and others are at level (i + 1). Red, blue and green points are duplicated two,
three and four times, respectively.

(a) (b)

Fig. 5. (a) Adaptive octree with hanging nodes; and (b) hanging nodes are removed
via 2-refinement

block, in which each element may be refined (at level i + 1) or not refined
(at level i). Obviously, there are 28 = 256 possible configurations. Out of
these configurations, only the blocks with 2 ∼ 6 refined elements may have
non-manifold cases. Considering symmetry and complementary, eight dis-
tinct cases are summarized, which can be overcome by duplicating the non-
manifold nodes, as shown in Fig. 4. Colored elements are at level i, and others
are at level (i+ 1). During pillowing, we duplicate the non-manifold node m

2-Refinement in Octree and Rhombic Dodecahedral Tree 161

(a) (b)

(c) (d) (e)

Fig. 6. Comparison between 2- and 3-refinement. (a, b) 2-refinement method in-
troduced in [10], before (a) and after (b) removing hanging nodes. Mesh sizes are
(9,503; 7,545) and (16,052; 13,868), respectively; (c) 3-refinement, with a mesh size
of (14,278; 12,442); (d) 3-refinement with pillowing, with a mesh size of (12,141;
10,464); and (e) our 2-refinement method, with a mesh size of (10,342; 9,098). In
“(m;n)”, m is the vertex number and n is the element number. Yellow is the refined
region, and pink is the transition region. Note that the yellow region in (a) is the
initial refined region for (b-e).

162 Y. Zhang, X. Liang, and G. Xu

times, where m is the number of refined regions surrounding it. For example,
the red, blue and green points need to be duplicated two, three and four
times, respectively. For the remaining cases, the elements at level i need to
be refined such that they are converted to the above solvable ones. Fig. 1(b)
shows a pillowing result in 2D, and Fig. 5 shows the adaptive octree of a head
model before and after removing hanging nodes.

As a comparison, we choose a head mesh in Fig. 6 as an example, only
refining the eyes and the nose using 2- and 3-refinement. The 2-refinement
method proposed in [10] requires an initial uniform hexahedral mesh with the
specified refined regions, as show in Fig. 6(a). The result after eliminating
all the hanging nodes is shown in Fig. 6(b). We can see that a great amount
of propagation is needed for this method (see the large yellow region), and
the resulting mesh is not symmetric. In 3-refinement, the templates can only
handle elements with one transition edge or face. If there are elements with
two or more transition faces, which normally form concavities, then a refine-
ment is needed and it is very easy to propagate to a large region, see the
yellow region in Fig. 6(c). This drawback can be overcome by pillowing, see
Fig. 6(d), but it will decrease the mesh quality. Fig. 6(e) is the result of our
2-refinement method, which is the best of the five results. It can provide a
smooth transition between different levels with very little propagation. In ad-
dition, our method introduces the fewest number of new nodes and elements.

2.3 Buffer Zone Clearance

After generating the adaptive octree, we delete elements outside or close to
the boundary surface to obtain a hexahedral core mesh. We call such a pro-
cedure buffer zone clearance. For example, if the shortest distance from any
vertex to the boundary is less than a pre-defined threshold εs, all elements
sharing this vertex are deleted. Here we choose εs =

1
2max(si), where si is the

size of the ith element sharing this vertex. To generate good-quality elements
around the boundary, we design the following two operations to improve the
boundary of the core mesh:

(a) (b) (c) (d)

Fig. 7. Buffer zone clearance and projection to the surface. (a-c) Three cases in
buffer zone clearance; and (d) the buffer layer construction.

2-Refinement in Octree and Rhombic Dodecahedral Tree 163

(1) Delete single elements which only share a point, an edge or a face with
other elements, as shown in Fig. 7(a&b). If not doing so, these elements may
induce incorrect connectivity during the following projection procedure and
hinder mesh quality improvement.

(2) Delete elements that have non-manifold connectivity on the boundary,
as shown in Fig. 7(c). Again, these elements may induce wrong connectivity
when we project boundary nodes to the surface.

2.4 Projection

As the last step, we project all the boundary points of the core mesh to the
surface. Then the buffer layer is generated by connecting the boundary points
and their corresponding projection points, see Fig. 7(d). To obtain elements
with better quality, the buffer layer can be split into two layers such that
more freedoms are provided for quality optimization later. Fig. 8(a) shows
an example of buffer zone clearance, Fig. 8(b) is the result after projection.
Obviously, the mesh quality needs to be improved (see Section 4).

(a) (b) (c)

Fig. 8. Buffer zone clearance and projection. (a) The core mesh after buffer zone
clearance; (b) the mesh after projection; and (c) the final mesh after smoothing.
Yellow is the core mesh, and pink is the two buffer layers.

3 RD-Tree Based Mesh Generation

Besides cubes, the rhombic dodecahedron (RD) in Fig. 9(a) can be used to
tessellate 3D space. The RD structure naturally exists in the world. Honey-
comb consists of tessellating cells, each of which is a hexagonal prism capped
with a half RD; some minerals like garnet form a RD crystal habit; and the
RD structure appears in the unit cells of diamond as well. As shown in Fig.
9(a), a RD has 14 nodes, 24 equilong edges and 12 rhombic faces. For all the
faces, the dihedral angle is 120◦. Moreover, by adding a center point, a RD
can be split into four identical rhombic hexahedra by two ways, as shown in
Fig. 9(b & c).

164 Y. Zhang, X. Liang, and G. Xu

(a) (b) (c) (d)

Fig. 9. Rhombic dodecahedron (a) and its two decompositions (b-c). (d) A uniform
RD tree.

(a) (b) (c)

Fig. 10. The meshing results of a sphere using the RD tree. (a) The result after
buffer zone clearance; (b) the result after projection; and (c) the final mesh after
smoothing. Yellow is the core mesh, and pink is the two buffer layers.

Different from using a bounding box for the octree-based method, here
a uniform RD tree is built by tessellating RD elements to cover the whole
surface mesh, see Fig. 9(d). The RD tree is then converted to a hex tree
by splitting all the RD elements into hexes. During splitting, for each RD
element we check the valence of each vertex and choose the template in Fig.
9(b-c) which minimizes the overall valence number for the final hex tree, see
Table 1. It is obvious that the hex tree contains a lot of irregular points with
a valence number other than eight. Fig. 10 shows the meshing results of a
sphere based on the RD tree. By comparing with Fig. 8, we can observe that
using RD tree can provide more unstructured elements with a lot of irregular
nodes, and the elements follow different orientations.

For an adaptive tree based on RD, each rhombic hex is refined based on the
feature sensitive function, and then pillowing and 2-refinement are applied to
eliminate hanging nodes in the RD-based hex tree (see Fig. 11). Note that
the RD tree is unstructured, the pillowing method in Section 2.2 cannot be

2-Refinement in Octree and Rhombic Dodecahedral Tree 165

Table 1. Statistics of valence number before and after splitting optimization

Number of Valence 1 2 3 4 5 6 7 8 9 10 12

One-direction splitting 112 546 172 1647 0 420 0 0 60 216 1334
Optimized splitting 110 441 133 1284 35 599 47 565 19 534 740

(a) (b) (c)

Fig. 11. RD-based adaptive hex tree construction. (a) Adaptive hex tree after
pillowing and 2-refinement; and (b-c) zoom-in pictures of (a) before (b) and after
(c) pillowing and 2-refinement.

(a) (b) (c) (d)

Fig. 12. Four pillowable patches. The red node is a transition node.

directly applied. Here a generalized method is developed. All elements at the
lower level surrounding a transition node are classified into different patches
based on their connectivity, such that each patch is manifold. Four kinds of
patches, as shown in Fig. 12, can be pillowed easily. The remaining situa-
tions need to be refined to make them pillowable. This procedure induces
propagation in the RD tree. When pillowing is done, 2-refinement templates
are applied to eliminate all the hanging nodes, see Fig. 11(c). The following

166 Y. Zhang, X. Liang, and G. Xu

(a) (b)

Fig. 13. Adaptive all-hex meshes of the head model. (a) The octree-based method;
and (b) the RD tree based method.

buffer zone clearance and projection procedures are similar to the octree-
based method. Fig. 13 shows two adaptive all-hex meshes of the head model
based on the octree and the RD tree, respectively.

Remark: For both octree and the RD tree, our 2-refinement algorithm intro-
duces very little propagation in eliminating hanging nodes. This is because
the pillowing method can efficiently isolate transition faces, and thus it is able
to handle non-manifold transition regions. From these two tree structures, we
can observe that our 2-refinement algorithm is robust for not only structured
meshes but also unstructured ones with a lot of irregular nodes.

4 Sharp Feature Preservation and Quality
Improvement

A lot of input surface meshes, such as CAD models, contain sharp features
which are important and cannot be neglected. The sharp feature preservation
algorithm has been proposed in [10]. We suppose all the sharp features are
provided along with the given surface mesh, see Fig. 14(a). We firstly identify
each joint point Pjoint shared by multiple sharp curves, and find the closest
node in the generated mesh. Each sharp curve has two joint points, Pstart

and Pend. A shortest path is found between them using Dijkstra’s algorithm
[1], and then each node on this path is projected to the sharp curve. Three
criteria are used to set the priority: (1) For sharp curves, the longer one is

2-Refinement in Octree and Rhombic Dodecahedral Tree 167

(a) (b)

(c) (d)

Fig. 14. Sharp feature preservation for the hook model. (a) The input sharp curves,
and the generated smooth mesh using the octree-based method in Section 2; (b)
the final mesh with sharp feature preservation; (c) cross section of the final mesh
based on octree; and (d) cross section of the final mesh based on the RD tree.

preserved first; (2) for joint points, the node whose adjacent edge forms a
smaller angle to the sharp curve is preferred; and (3) for nodes on the path,
the node with a minimal projection distance is chosen. Fig. 14 shows a result
for sharp feature preservation.

Quality improvement is important for mesh generation. Here we choose
the scaled Jacobian to measure the mesh quality [16]. For each node x in
a hex, three edge vectors are defined as ei = xi − x (i = 1, 2, 3). Then
the Jacobian matrix is defined as J = [e1, e2, e3], and Jacobian is defined as
Jacobian(x) = det(J). If e1, e2 and e3 are normalized, det(J) is also called the
scaled Jacobian. For mesh quality improvement, geometric flow is first applied

168 Y. Zhang, X. Liang, and G. Xu

to improve the overall quality of the mesh [16, 17]. Then, optimization-based
smoothing is adopted to improve the worst quality element of the mesh [5].
The combination of geometric flow and optimization-based smoothing can
generally result in good-quality for smooth hexahedral meshes. However, for
meshes with sharp features, pillowing [10] is required which can guarantee
that there are no element with more than two edges lying on the sharp curves,
and no element with more than one face lying on the same surface patch.

5 Results and Discussion

Several models are used to test our algorithm, including two smooth head
models, see Figs. 13 & 15, the Buddha, see Fig. 16, and three CAD models
with sharp features, see Figs. 14, 17 and 18. We use both the octree and the
RD tree to generate adaptive all-hex meshes so that we can compare these
two different tree structures. Our results were computed on a PC equipped
with a 2.93 GHz Intel X3470 CPU and 8GB of Memory.

Statistics of these meshes are given in Table 2. After applying quality
improvement techniques, all the hexahedral meshes are in reasonable good
quality. The pillowing plus 2-refinement algorithm is applied to all the models.
Although there are various kinds of non-manifold transition regions in these
meshes, our approach is able to handle all of them with only a small amount
of propagation. Moreover, the results also indicate that our feature sensitive
function can effectively capture important features on the surface, such as
the nose and eyes in these two head models.

(a) (b)

Fig. 15. Adaptive all-hex meshes of the Igea model. (a) The octree-based method;
and (b) the RD tree based method.

2-Refinement in Octree and Rhombic Dodecahedral Tree 169

Our algorithm also works for CAD models, as shown in Figs. 14, 17 and 18.
For CAD models, we restrict the surface meshes to be uniform and only the
interior region of these models are adaptive. Because pillowing is adopted in
our algorithm, every surface element in these meshes has at most two edges
lying on the same curve, and at most one surface lying on the same surface
patch, which leads to good quality meshes.

By comparing the octree-based and RD tree based methods, we can observe
that octree provides more structured elements, and the transition between
two different levels are smoother. Therefore, the octree-based meshes are
preferred in finite element analysis. However, the RD tree may be better for
some specific applications. For example, the RD tree structure can better
represent the honeycomb and some minerals like garnet.

(a) (b)

Fig. 16. Adaptive all-hex meshes of the Buddha model. (a) The octree-based
method; and (b) the RD tree based method.

170 Y. Zhang, X. Liang, and G. Xu

(a) (b)

Fig. 17. Adaptive all-hex meshes of the Hook2 model. (a) The octree-based
method; and (b) the RD tree based method.

(a) (b)

Fig. 18. Adaptive all-hex meshes of the Varco3 model. (a) The octree-based
method; and (b) the RD tree based method.

2-Refinement in Octree and Rhombic Dodecahedral Tree 171

Table 2. Mesh statistics of the resulting models

Model Method
Mesh Size Scaled Jacobian Time

(vertex; element) [worst; best] (s)

Head
Octree (64,258; 56,419) [0.013; 1.0] 169
RD tree (51,985; 45,336) [0.016; 1.0] 95

Igea
Octree (110,352; 98,087) [0.023; 1.0] 237
RD tree (74,012; 65,198) [0.017; 1.0] 122

Buddha
Octree (105,887; 93,193) [0.017; 1.0] 871
RD tree (200,259; 175,037) [0.012; 1.0] 1920

Hook
Octree (28,426; 25,563) [0.012; 1.0] 14
RD tree (34,709; 28,624) [0.013; 1.0] 21

Hook2
Octree (33,296; 30,212) [0.011; 1.0] 17
RD tree (21,377; 17,616) [0.013; 1.0] 35

Varco3
Octree (53,646; 48,516) [0.011; 1.0] 38
RD tree (49,901; 42,064) [0.015; 1.0] 92

6 Conclusions

In this paper, we present a novel algorithm which can generate unstruc-
tured adaptive all-hex meshes using two tree structures and 2-refinement.
For any given smooth surface, four steps are designed to construct adap-
tive hex meshes with reasonable good quality. Compared to 3-refinement and
other 2-refinement approaches, our 2-refinement method introduces very little
propagation and is capable of handling complicated non-manifold transition
regions. Moreover, a new RD tree structure is introduced besides the octree.
For CAD models, sharp features are preserved. Finally, mesh quality is im-
proved. In the future we will test more models to make our code more robust
and efficient.

Acknowledgement. This research was supported in part by Y. Zhang’s ONR-
YIP award N00014-10-1-0698 and an AFOSR grant FA9550-11-1-0346, which are
gratefully acknowledged.

References

[1] Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische
Mathematik 1, 269–271 (1959)

[2] Ebeida, M.S., Patney, A., Owens, J.D., Mestreau, E.: Isotropic conforming
refinement of quadrilateral and hexahedral meshes using two-refinement tem-
plates. Int. J. Numer. Meth. Engng 88(10), 974–985 (2011)

172 Y. Zhang, X. Liang, and G. Xu

[3] Edgel, J.: An adaptive grid-based all hexahedral meshing algorithm based on
2-refinement. MS Thesis, Brigham Young University (2010)

[4] Folwell, N., Mitchell, S.: Reliable whisker weaving via curve contraction. Eng.
Comput. 15(3), 292–302 (1999)

[5] Freitag, L.A.: On combining Laplacian and optimization-based mesh smooth-
ing techniques. Trends in Unstructured Mesh Generation, ASME 220, 37–43
(1997)

[6] Ito, Y., Shih, A., Soni, B.: Octree-based reasonable-quality hexahedral mesh
generation using a new set of refinement templates. Int. J. Numer. Methods
Eng. 77(13), 1809–1833 (2009)

[7] Knupp, P.M.: Next-generation sweep tool: a method for generating all-hex
meshes on two-and-one-half dimensional geometries. In: 7th Int. Meshing
Roundtable, pp. 505–513 (1998)

[8] Liang, X., Ebeida, M., Zhang, Y.: Guaranteed-quality all-quadrilateral mesh
generation with feature preservation. Comp. Meth. Appl. Mech. Engr. 199(29-
32), 2072–2083 (2010)

[9] Liang, X., Zhang, Y.: Hexagon-based all-quadrilateral mesh generation with
guaranteed angle bounds. Comp. Meth. Appl. Mech. Engr. (2011) (accepted)

[10] Qian, J., Zhang, Y.: Automatic unstructured all-hexahedral mesh generation
from B-Reps for non-manifold CAD assemblies. Engineering with Computers
(2012), doi: 10.1007/s00366-011-0232-z

[11] Schneiders, R.: Refining quadrilateral and hexahedral element Meshes. In: 5th
Int. Meshing Roundtable, pp. 383–398 (1996)

[12] Schneiders, R., Schindler, R., Weiler, F.: Octree-based generation of hexahedral
element meshes. In: 5th Int. Meshing Roundtable, pp. 205–216 (1996)

[13] Staten, M.L., Kerr, R.A., Owen, S.J., Blacker, T.D.: Unconstrained paving
and plastering: progress update. In: 15th Int. Meshing Roundtable, pp. 469–
486 (2006)

[14] Zhang, Y., Bajaj, C.: Adaptive and quality quadrilateral/hexahedral meshing
from volumetric Data. Comput. Meth. Appl. Mech. Eng. 195(9-12), 942–960
(2006)

[15] Zhang, Y., Bajaj, C., Sohn, B.-S.: 3D finite element meshing from imaging
data. Comput. Meth. Appl. Mech. Eng. 194(48-49), 5083–5106 (2005)

[16] Zhang, Y., Bajaj, C., Xu, G.: Surface smoothing and quality improvement of
quadrilateral/hexahedral meshes with geometric flow. Commun. Numer. Meth.
Eng. 25(1), 1–18 (2009)

[17] Zhang, Y., Xu, G., Bajaj, C.: Quality meshing of implicit solvation models
of biomolecular structures. Computer Aided Geometric Design 23(6), 510–530
(2006)

	A Robust 2-Refinement Algorithm in Octree
and Rhombic Dodecahedral Tree Based All-Hexahedral Mesh Generation
	Introduction
	Octree-Based Hex Mesh Generation
	Adaptive Octree Construction
	Robust 2-Refinement for Hanging Node Elimination
	Buffer Zone Clearance
	Projection

	RD-Tree Based Mesh Generation
	Sharp Feature Preservation and Quality Improvement
	Results and Discussion
	Conclusions
	References

