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Abstract. In this paper we explore the problem of reconstruction of
vector-valued images with additive Gaussian noise. In order to solve this
problem we use backward stochastic differential equations. Our numer-
ical experiments show that the new approach gives very good results
and compares favourably with deterministic partial differential equation
methods.

1 Introduction

Let D be a bounded, convex domain in R2, u : D → R3 be an original colour
image and u0 : D → R3 be a noisy observation of the form: u0 = u+ η, where η
means white Gaussian noise. Having u0 we have to reconstruct an original image
u. Presented problem is a classic example of an inverse problem [3].

Problem of denoising colour images using fully automatic and reliable methods
is one of the most important issues of digital image processing and computer
vision. Efficient and effective reconstruction of images is an essential element of
most image processing and recognizing algorithms. Algorithms of reconstruction
allow us to make initial treatment of data for further analysis, which is very
important especially in astronomy, biology and medicine.

The four most popular methods in reconstruction of images are statistic
methods, linear filtration, methods based on partial differential equations and
stochastic methods. Stochastic methods of denoising images mostly base on
theory of random Markov fields. Backward stochastic differential equations give
us a new approach to stochastic image processing. In bibliography one can only
find theoretical bases of usage of backward stochastic differential equations to
image reconstruction [1] and some practical results in the case of grey images [4].

A novel look on the reconstruction problem of gray images with using back-
ward stochastic differential equations was fruitful and gave results that are usu-
ally better than existing methods. The idea of this paper is to generalize these
results to images with values in Rn, in particular to colour images.
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The paper is organized as follows. Section 2 contains definitions and funda-
mental facts of stochastic analysis. In Section 3 we recall basic ideas from [4].
Section 4 provides new results to reconstruction of colour images. Section 5 is
devoted to presenting experimental results and comparing with PDE methods.

2 Mathematical Preliminaries

Let D ⊂ Rn be a domain with closure D and boundary ∂D. Let T > 0 and by
C([0, T ];Rn) denote the set of continuous functions f : [0, T ] → Rn.

Definition 1. Let y ∈ C([0, T ];Rn), y0 ∈ D. A pair (x, k) ∈ C([0, T ];R2n) is
called a solution to the Skorokhod problem associated with y and D if
1. xt = yt + kt, t ∈ [0, T ],
2. xt ∈ D, t ∈ [0, T ],
3. k is a function with bounded variation |k| on [0, T ], k0 = 0 and

kt =

∫ t

0

ns d|k|s, t ∈ [0, T ], |k|t =
∫ t

0

1{xs∈∂D} d|k|s, t ∈ [0, T ],

where ns = n(xs) is an inward normal unit vector at xs ∈ ∂D.

It is known that if D is a convex set, then there exists a unique solution to
the Skorokhod problem [11].

Definition 2. Let (Ω,F ,P) be a probability space.
1. An n-dimensional stochastic process X = {Xt; t ∈ [0, T ]} is a parametrised
collection of random variables defined on (Ω,F ,P) with values in Rn.
2. For each fixed ω ∈ Ω the function Xt(ω), t ∈ [0, T ] is called a trajectory of X
and is denoted by X(ω).
3. A filtration (Ft) = {Ft; t ∈ [0, T ]} is a nondecreasing family of sub-σ-fields of
F i.e. Fs ⊆ Ft ⊆ F for 0 ≤ s < t ≤ T .
4. A process X is (Ft) adapted if for each t ∈ [0, T ], Xt is Ft - measurable
random variable.

Definition 3. Let Y be an (Ft) adapted process with continuous trajectories,
Y0 ∈ D. We say that a pair (X,K) of (Ft) adapted processes is a solution
to the Skorokhod problem associated with Y and D, if for almost every ω ∈ Ω,
(X(ω),K(ω)) is a solution to the Skorokhod problem associated with Y (ω) and D.

Definition 4. Assume that we are given x0 ∈ D and σ : Rn → Rn×Rn. Let Y
be an (Ft) adapted process and by W = {Wt; t ∈ [0, T ]} denote an n-dimensional

Wiener process. A pair (X,KD) of (Ft) adapted processes is called a solution to
reflected stochastic differential equation (in short reflected SDE)

Xt = x0 +

∫ t

0

σ(s,Xs) dWs +KD
t , t ∈ [0, T ], (1)

if (X,KD) is a solution to the Skorokhod problem associated with

Vt = x0 +

∫ t

0

σ(s,Xs) dWs, t ∈ [0, T ] and D.
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The proof of existence and uniqueness of the solution to reflected SDEs can be
found in [11]. The process X satisfying (1) is a diffusion process with values in
domain D. The process X is called the process with reflection.

Let (FW
t ) be a filtration generated by an l-dimensional Wiener process W ,

ξ ∈ L2(Ω,FT , P,R
k) be a square integrable random variable and let f : Ω ×

[0, T ]×Rk → Rk be a Lipschitz continuous function in the space variable.

Definition 5. A solution to the backward stochastic differential equation (BSDE)
associated with ξ and f is a pair of (FW

t ) adapted processes (Y, Z) with values in

Rk ×Rk×l satisfying E
[∫ T

0
‖Zs‖2 ds

]
< ∞ and

Yt = ξ +

∫ T

t

f(s, Ys)ds−
∫ T

t

Zs dWs, t ∈ [0, T ].

See [7] for the proof of existence and uniqueness of the solution to BSDEs.

3 Reconstruction of Gray Levels Images

A general model of the image reconstruction is the following:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Xt = x+

∫ t

0

σ(s,Xs) dWs +KD
t ,

Yt = ξ +

∫ T

t

f(s, Ys, Xs)ds−
∫ T

t

Zs dWs, t ∈ [0, T ],

where ξ depends on u0 and the process X .
Note that, the process X has values in domain of the image D and is driven

by a function σ, the process Y has values in codomain of the image and is
driven by a function f . Moreover, the value of the process Y at time t = 0 is
the reconstructed pixel u(x).

3.1 Stochastic Representation of Solution to the Heat Equation

Before presenting a general method, we will illustrate our ideas by constructing
a model which is equivalent to a commonly used filter, namely, the convolution
of the noise image with two-dimensional Gaussian mask. We suppose for a while
that the image is given by a function defined on the whole plane. Put⎧⎨

⎩
Xt = W x

t , t ∈ [0, T ],

Yt = u0(XT )−
∫ T

t

Zs dWs, t ∈ [0, T ],
(2)

where W x is two-dimensional Wiener process starting from x ∈ D. From (2) we
deduce⎧⎪⎨
⎪⎩

Xt = W x
t , t ∈ [0, T ],

Y0 = u0(XT )−
∫ T

0

Zs dWs = E (u0(XT )) =

∫
R2

1

2πT
e−

|x−y|2
2T u0(y) dy.

(3)
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A value of the process Y at time t = 0 is the reconstructed pixel u(x). Therefore,
by (3) the image is the convolution of the noisy image with two-dimensional
Gaussian mask.

While discussing the above example, we assumed that the image is the func-
tion given on the whole plane. Since we want to consider the image as a function
defined on the bounded, convex set, we have to introduce a new assumption for
X . We assume that X is a stochastic process with reflection with values in D.
In this case X is a Wiener process with reflection, which we can write as

⎧⎨
⎩

Xt = W x
t +KD

t , t ∈ [0, T ],

Yt = u0(XT )−
∫ T

t

Zs dWs, t ∈ [0, T ].

3.2 Anisotropic Diffusion

In the case of smoothing filters we will consider BSDEs associated with ξ =
u0(XT ) and f(t, y) = 0, where X is a diffusion process with reflection. Following
[13] we provide a construction of a model where process X diffuses along edges.
This condition may be achieved by imposing

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Xt = x+

∫ t

0

[
− (Gγ∗u0)x2(Xs)

|∇(Gγ∗u0)(Xs)| , 0
(Gγ∗u0)x1(Xs)

|∇(Gγ∗u0)(Xs)| , 0

]
dWs +KD

t ,

Yt = u0(XT )−
∫ T

t

Zs dWs, t ∈ [0, T ]

(4)

where uxi(y) =
∂u
∂xi

(y). In particular Y0 = E [u0(XT )].
To avoid false detections due to noise, u0 is convolved with a Gaussian kernel

Gγ(x) =
1

2πγ2 e
− |x|2

2γ2 (in practice 3× 3 Gaussian mask).

3.3 Backward Diffusion

In the case of enhancing images we will consider BSDEs associated with ξ =
u0(x) and f(t, y) = c(y − u0(Xt)), where X is a Wiener process with reflection
and c > 0 is some constant. In accordace with Theorem 3 in [4] the reconstructed
image u(x)

u(x) = Y m
0 =

m−1∑
k=0

akE
[
u0(W

x
tk +KD

tk)
]
, tk =

kT

m

is a combination of convolutions of the noisy image and two dimensional Gaus-
sian mask with coefficients ak where a0 > 0, ak < 0, for k = 1, ...,m − 1 and∑m−1

k=0 ak = 1. This mean that the kernel of filtering is made up of positive
weight for central pixel and negative weights for neighborhood pixels and finally
is a model of enhancing filter. As it was shown in [4] if parameter c is greater
than the result is more enhancing.
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4 Reconstruction of Vector-Valued Images

Now we concentrate on images with values in R3. A very common idea to re-
store vector-valued images is to use scalar diffusion on each channel of a noisy
image. But one fastly notices that this scheme is useless, since each image chan-
nel evolves independently with different smoothing geometries. To avoid this
blending effect, the regularization process have to be driven in a common and
coherent way for all the vector image channels. In order to execute that we use
Di Zenzo geometry [5,6].

Let u : D → R3 be a vector-valued image and x ∈ D be fixed. Consider

the function Fx : V → R, Fx(v) =
∣∣∂u
∂v (x)

∣∣2 , where V = {v ∈ R2; |v| = 1}.
We are interested in finding the arguments θ+(u, x), θ−(u, x) and corresponding
values λ+(u, x) = Fx(θ+(u, x)), λ−(u, x) = Fx(θ−(u, x)) which maximize and
minimize the function Fx, respectively.

Note that Fx can be rewritten as Fx(v) = Fx([v1, v2]
T ) = vTG(x)v, where

G(x) =

⎡
⎢⎢⎢⎢⎢⎢⎣

3∑
i=1

(
∂ui

∂x1
(x)

)2

,

3∑
i=1

∂ui

∂x1
(x)

∂ui

∂x2
(x)

3∑
i=1

∂ui

∂x1
(x)

∂ui

∂x2
(x),

3∑
i=1

(
∂ui

∂x2
(x)

)2

⎤
⎥⎥⎥⎥⎥⎥⎦
.

The interesting point about G(x) is that its positive eigenvalues λ+(u, x),
λ−(u, x) are the maximum and the minimum of Fx while the orthogonal eigen-
vectors θ+(u, x) and θ−(u, x) are the corresponding variation orientations.

Three different choices of vector gradient normsN(u, x) have been proposed in
the literature N(u, x) =

√
λ+(u, x), N(u, x) =

√
λ+(u, x)− λ−(u, x), N(u, x) =√

λ(u, x) + λ−(u, x). In presented examples we have used N(u, x) =
√
λ+(u, x)

as a natural extension of the scalar gradient norm viewed as the value of maxi-
mum variations.

4.1 Anisotropic Diffusion

Replacing in equation (4) |∇(u, x)| and [ux1(x), ux2(x)]
T respectively by N(x, u)

and θ+(u, x) = [θ1+(u, x), θ
2
+(u, x)]

T we obtain the following model of anisotropic
diffusion for vector-valued images:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Xt = x+

∫ t

0

⎡
⎣−

θ1
+(Gγ∗u0,Xs)

N((Gγ∗u0)(Xs))
, 0

θ2
+(Gγ∗u0,Xs)

N((Gγ∗u0)(Xs))
, 0

⎤
⎦ dWs +KD

t ,

Yt = u0(XT )−
∫ T

t

Zs dWs, t ∈ [0, T ]

(5)

and in particular u(x) = Y0 = E [u0(XT )].
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4.2 Backward Diffusion

Theorem 1. Let u0 : R2 → Rn, x ∈ R2, f(t, y) = c(y − u0(W
x
t )), where W x

is two-dimensional Wiener process starting from x, c > 0. If (Y, Z) is a solution
to BSDE associated with ξ = u0(x) and f then

lim
m→+∞Y m

0 = lim
m→+∞

m−1∑
k=0

akE
[
u0(W

x
tk
)
]
= lim

m→+∞

m−1∑
k=0

ak(G√
tk

∗ u0)(x) = Y0,

where a0 =
(
1 + cT

m

)m − cT
m , ak = − cT

m

(
1 + cT

m

)k
, tk = kT

m , k = 0, 1, ...,m− 1

(G0 ≡ δ is a Dirac function) and
∑m−1

k=0 ak = 1.

The above theorem is a generalization of results from [4] and its proof is silmilar
to the proof of Theorem 3 in [4].

Since the image is a function defined on the bounded set we have to con-
sider Wiener process with reflection with values in domain D. Finally we have
the following model of backward diffusion for vector-valued images:

u(x) = Y m
0 =

m−1∑
k=0

akE
[
u0(W

x
tk

+KD
tk
)
]
, (6)

where Y m is process with values in Rn.

5 Experimental Results

Some results from our evaluation experiments regarding BSDE method and
classic PDE methods: total variation [9] (in short TV) and Perona-Malik [8] (in
short PM) for colour images [5,10] are presented in: Table 1, Table 2 and Fig. 1,
Fig. 2. The results refer to RGB images: Lenna, house and peppers corrupted

Table 1. SSIM

Image Lenna Lenna house house peppers peppers
Method\Standard deviation ρ = 30 ρ = 40 ρ = 30 ρ = 40 ρ = 30 ρ = 40

PM 0.8422 0.8203 0.7528 0.7291 0.8373 0.8073

TV 0.8723 0.8333 0.7884 0.7550 0.8692 0.8249

BSDE (5) 0.8823 0.8449 0.7896 0.7566 0.8705 0.8342

Table 2. PSNR

Image Lenna Lenna house house peppers peppers
Method\Standard deviation ρ = 30 ρ = 40 ρ = 30 ρ = 40 ρ = 30 ρ = 40

PM 29.0295 27.6992 28.7392 27.4461 28.6412 27.3377

TV 29.4952 28.2040 29.2119 27.7876 28.8832 27.5218

BSDE (5) 29.3037 28.2205 29.5891 28.2195 28.7124 27.5597
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Fig. 1. a) Original Lenna image b) Noisy image: ρ = 40 c) PM d) TV e) BSDE (5)
f) Original peppers image g) Noisy image: ρ = 30 h) PM i) TV j) BSDE (5) k) BSDE
(6): c = 0.6, SSIM=0.8641, PSNR=28.2813 l) BSDE (6): c = 0.8, SSIM=0.8561,
PSNR=27.5979
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Fig. 2. a) Original house image b) ρ = 30, c) PM d) TV e) BSDE (5) f) BSDE
(6): c = 0.4: SSIM=0.7762, PSNR=29.5289 g) BSDE (6): c = 0.6, SSIM=0.07589,
PSNR=29.1452 h) BSDE (6): c = 0.8, SSIM=0.7270, PSNR=28.2127 i) BSDE (6):
c = 1, SSIM=0.6760, PSNR=26.8126

(independent all channels) with the Gaussian noise with standard deviation ρ.
Noisy images have been reconstructed with using vector analysis in RGB space.
The maximum values of SSIM and PSNR are given in tables. PSNR is defined
by the following formula:

PSNR(U, Û) = 10 log10

(
2552

MSE(U, Û)

)
,

MSE(U, Û) =

∑M
i=1

∑N
j=1 ‖U(i, j)− Û(i, j)‖2

3 · N ·M , ‖(r, g, b)‖ =
√
r2 + g2 + b2,

where M , N are the image dimensions, U(i, j) and Û(i, j) denote the original
and the restored RGB vector, respectively. Definition of SSIM error to gray scale
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can be found in [12]. In order to count SSIM to RGB color space, we apply SSIM
measure to each individual color component and next we average the result [2].
Parameters of SSIM were set to the default values as recommended by [12].

Fig. 1 c,d,e,h,i,j, and Fig. 2 c,d,e, show images with maximum value of SSIM.
In Fig. 1 k,l, and Fig. 2 f,g,h,i, we can see results obtained after applying back-
ward diffusion (6) to Fig. 1 j, and Fig. 2 e, respectively. It is clear that if param-
eter c is greater than the result is more enhancing.

6 Conclusion

In this paper we have introduced a new method of colour image reconstruc-
tion. The idea presented here is the alternative to PDE vector-valued models
and provide a new methodology based on advanced tools of stochastic analysis.
Comparing figures one can observe that images created by the stochastic me-
thods are visually more pleasant. The reason for it is that PDE methods show
clear evidence of a block image, but this stair-case effect is reduced in our al-
gorithm. Moreover analysing the measuring of image quality shows that BSDE
methods perform better (for SSIM test) or are comparable to results of TV
method (for PSNR test).

References

1. Abraham, R., Riviere, O.: Forward-backward stochastic differential equations and
PDE with gradient dependent second order coefficients. ESAIM P&S 10, 184–205
(2006)
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5. Deriche, R., Tschumperlé, D.: Diffusion PDE’s on vector-valued images: local ap-
proach and geometric viewpoint. IEEE Signal Processing Magazine 19(5), 16–25
(2002)

6. Di Zenzo, S.: A note on the gradient of a multi-image. Comput. Vis. Graph. Image
Process. 33(1), 116–125 (1986)
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