
Reasoning over Biological Networks

Using Maximum Satisfiability

João Guerra and Inês Lynce

INESC-ID/Instituto Superior Técnico,
Technical University of Lisbon, Portugal
{jguerra,ines}@sat.inesc-id.pt

Abstract. Systems biology is with no doubt one of the most compelling
fields for a computer scientist. Modelling such systems is per se a major
challenge, but the ultimate goal is to reason over those systems. We fo-
cus on modelling and reasoning over biological networks using Maximum
Satisfiability (MaxSAT). Biological networks are represented by an influ-
ence graph whose vertices represent the genes of the network and edges
represent interactions between genes. Given an influence graph and an
experimental profile, the first step is to check for mutual consistency. In
case of inconsistency, a repair is suggested. In addition, what is common
to all solutions/optimal repairs is also provided. This information, named
prediction, is of particular interest from a user’s point of view. Answer
Set Programming (ASP) has been successfully applied to biological net-
works in the recent past. In this work, we give empirical evidence that
MaxSAT is by far more adequate for solving this problem. Moreover, we
show how concepts well studied in the fields of MaxSAT and CP, such
as backbones and unsatisfiable subformulas, can be naturally related to
this practical problem.

1 Introduction

The field of systems biology has seen a tremendous boost due to the advances
in molecular biology, which are responsible for the availability of large sets of
comprehensive data. The existence of large-scale data sets is a key motivation
for developing reliable algorithmic solutions to solve different problems in the
field. Understanding those problems comprises reasoning about them.

We address the problem of reasoning over biological networks, in particular
gene regulatory networks (GRNs), using influence graphs and the Sign Consis-
tency Model (SCM) to represent GRNs. Reasoning is performed using Boolean
Satisfiability (SAT) and Maximum Satisfiability (MaxSAT). These formalisms
seem to be particularly well suited to this problem given the Boolean domains of
the variables of the problem. SAT is used when reasoning can be formulated as
a decision problem, whereas MaxSAT is used when reasoning can be formulated
as an optimization problem.

This paper has three main contributions. First, we propose a SAT encoding
for modelling biological networks and checking their consistency. This encoding
has the advantage of making trivial the task of computing a prediction in case

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 941–956, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

942 J. Guerra and I. Lynce

of satisfiability, simply by using available tools for identifying backbones. Second,
a MaxSAT encoding is used to repair inconsistent biological networks. Third, we
propose an iterative solution, which invokes a MaxSAT solver, to compute pre-
dictions under inconsistency. Experimental results show that our contributions
outperform existing solutions and as a result solve (many) practical instances
which could not be solved by the existing alternatives. All the software imple-
mented in this work is available online1.

The paper is organized as follows. The next section introduces preliminar-
ies, namely influence graphs, SCM, SAT, MaxSAT and related work. Section
3 describes how SAT and MaxSAT can be applied to reasoning over biological
networks, including consistency checking, repairing and predicting. Section 4 is
devoted to the experimental evaluation of the solutions proposed. Finally, the
paper concludes and suggests future research directions.

2 Preliminaries

A gene regulatory network (GRN) is a kind of biological network in which we
are concerned with the interactions between genes. To be precise, genes do not
interact with each others directly, but rather through regulatory proteins (and
other molecules). Each gene is influenced by the concentration levels of the pro-
teins in its cellular context. Nonetheless, proteins are usually abstracted away
and we speak of interactions between genes.

GRN models can be classified as either static or dynamic and qualitative or
quantitative. Dynamic models describe the change of gene expression levels over
time, whilst static models measure the variation of the gene expression levels
between two steady states.

For many biological processes there is no detailed quantitative information
available, e.g. accurate experimental data on chemical reactions kinetics is rarely
available. This led to the creation of simpler models, the qualitative models.
Qualitative models only consider, for example, the sign of the difference between
the gene expression levels of two conditions. Despite being a simplification, these
models are useful when there is a lack of information about the biological pro-
cesses and still allow modelling the behaviour of a biological system correctly.
Qualitative formalisms have also been successfully applied to other areas besides
molecular biology (e.g. see [4]).

Our approach relies on a static qualitative model for GRNs and on the use
of SAT and MaxSAT to reason over it. To describe the model, we borrow the
notation introduced in [16,12].

For a survey of different models for GRNs refer to the relevant literature (e.g.
see [9]).

2.1 Influence Graphs and Sign Consistency Model

Influence graphs are a common representation for a wide range of qualitative
dynamical systems, notably biological systems [32]. These kind of graphs offer

1 http://sat.inesc-id.pt/~jguerra/rbnms/

http://sat.inesc-id.pt/~jguerra/rbnms/

Reasoning over Biological Networks Using Maximum Satisfiability 943

a logical representation of the interactions between the elements of a dynamic
system.

An influence graph is a directed graph G = (V , E , σ), where V is a set of
vertices representing the genes of a GRN, E is a set of edges representing
the interactions between the genes of the GRN and σ : E → {+,−} is a
(partial) labelling of the edges. An edge from a vertex u to a vertex v, with
u, v ∈ V , is denoted as u → v. Biologically, an interaction with label + (−)
represents the activation (inhibition) of gene transcription or protein activation
(inactivation).

To impose constraints between GRNs and experimental profiles we use the
Sign Consistency Model (SCM) [29], which is based on influence graphs. This
static qualitative model is particularly well suited for dealing with incomplete
and noisy data [16,12]. In the SCM, experimental profiles only contain qual-
itative information about the observed variation of the gene expression
levels.

Given an influence graph G = (V , E , σ), an experimental profile μ : V →
{+,−} is a (partial) labelling of the vertices of the graph. Additionally, each
vertex of the graph is classified as either input or non-input. The labelling μ(v)
of a non-input vertex v ∈ V is consistent iff there is at least one edge that
explains its sign, i.e. one edge u → v ∈ E such that μ(v) = μ(u) · σ(u → v),
where · corresponds to the multiplication of signs in the multiplication of signed
numbers. For example, if μ(v) = + then either μ(u) = + and σ(u → v) = + or
μ(u) = − and σ(u → v) = −. Biologically, label + (−) means that there was
an increase (decrease) in the gene expression levels. Note that the definition of
consistency does not apply to input vertices.

An influence graph (model) G = (V , E , σ) and an experimental profile (data)
μ are mutually consistent iff there are total labellings σ′ : E → {+,−} and
μ′ : V → {+,−}, which are total extensions of σ and μ, respectively, such
that μ′(v) is consistent for every non-input vertex v ∈ V . When considering an
influence graph without an experimental profile, i.e. when μ is undefined for
every vertex of the graph, we talk about self-consistency of the graph [18].

Example 1. Figure 1 illustrates an influence graph (left) and an experimental
profile for that influence graph (right). The graph has three vertices, a, b and
c and five edges, a → b, a → c, b → a, b → c and c → b. All vertices are
non-input vertices. Lighter (green) edges ending with → have label +, whereas
darker (red) edges ending with � have label −. Likewise, in the experimental
profile, lighter (green) vertices have label +, darker (red) vertices have label −
and white vertices have no label.

In section 3 we will reason over this example.

2.2 Maximum Satisfiability

The Boolean Satisfiability (SAT) problem is the problem of deciding whether
there is an assignment to the variables of a Boolean formula that satisfies it.

944 J. Guerra and I. Lynce

c

a b

c

a b

Fig. 1. An influence graph (left) along with an experimental profile (right)

Without lack of generality, one may assume that the formula is in conjunctive
normal form (CNF). A CNF formula is a conjunction (∧) of clauses, where a
clause is a disjunction (∨) of literals and a literal is a Boolean variable (x) or
its negation (¬x). A CNF formula is satisfied iff all of its clauses are satisfied.
A clause is satisfied if at least one of its literals is satisfied. A literal x (¬x) is
satisfied iff the corresponding Boolean variable is assigned the value true (false).

The Maximum Satisfiability (MaxSAT) problem is closely related to SAT.
The goal in MaxSAT is to find an assignment that maximizes (minimizes) the
number of satisfied (unsatisfied) clauses.

There are a few interesting variants of the MaxSAT problem. One of them,
relevant to the application being of interest, is the Partial MaxSAT problem.
In Partial MaxSAT, some clauses are classified as hard, whereas the remaining
ones are classified as soft. The goal is to find an assignment that satisfies all
hard clauses and maximizes the number of satisfied soft clauses. Hard clauses are
usually represented within square brackets, whereas soft clauses are represented
within parentheses.

Example 2. Consider the following Partial MaxSAT formula F = [x1 ∨ x2 ∨
x3] ∧ [¬x1 ∨ x3] ∧ (¬x2) ∨ (¬x3). The two optimal solutions are {x1,¬x2, x3}
and {¬x1, x2,¬x3}. In any of these solutions, only one of the two soft clauses is
satisfied.

2.3 Related Work

The same problem of modelling and reasoning over biological networks has been
tackled in the past using Answer Set Programming (ASP) [16,12,15]. First, the
authors analyse whether a biological network is consistent. If the network is con-
sistent that means that there is a solution corresponding to total extensions of σ
and μ. Moreover, a prediction corresponding to the intersection of all solutions
is computed. If the network is inconsistent then minimal explanations for incon-
sistency are provided. As an alternative, an optimal repair is given. In addition,
the user is also given a prediction, which now summarizes what is common to
all optimal repairs. In ASP, the computation of predictions is achieved through
cautious reasoning [14].

Reasoning over biological networks with ASP can find similarities with con-
cepts well known in SAT and CP.

Reasoning over Biological Networks Using Maximum Satisfiability 945

Minimal explanations for inconsistency are often called minimal unsatisfiable
cores (MUCs) in CP [20] and minimal unsatisfiable subformulas (MUSes) in SAT
[24]. Repairing with MaxSAT may be related with the identification of MUSes
in SAT. A MaxSAT solution does not satisfy exactly one clause from each MUS
of the corresponding SAT formula. The number of unsatisfied clauses may be
less than the number of MUSes when some of the MUSes have a non-empty
intersection.

The identification of assignments common to all solutions corresponds to the
definition of backbone [28,23]. Backbones find applications not only in decision
problems, but also in optimization problems [30]. In the context of MaxSAT,
backbones have inspired the development of new search strategies [33,27] and
the same occurred in other domains (e.g. see [17,21]). Recent work in SAT has
focused on implementing efficient algorithms for identifying backbones in prac-
tical settings [26,34]. The solution developed in this paper follows one of the
solutions proposed for post-silicon fault localization [34].

More sophisticated models exist for GRNs and other biological networks using
CP solutions. An example is the framework developed by Corblin et al. [8,7,6].
The authors use a more complex formalism for modelling GRNs that allows
multivalued variables and uses transition rules, amongst other particularities.
For a survey of CP solutions to solve related biological problems refer to the
relevant literature (e.g. see [31,3,1]).

3 Reasoning with Satisfiability

Our goal is to provide SAT and MaxSAT solutions for reasoning over biological
networks. We begin by describing how to encode a GRN into SAT using the
model introduced in the previous section. This encoding allows to validate an
influence graph against an experimental profile. In case the graph and profile
are mutually inconsistent, the identification of repairs to restore consistency is of
interest. Building on the SAT encoding, we then introduce a MaxSAT encoding
that allows to repair the graph and/or profile in order to restore consistency.
In addition, we also provide information about what is common to all total
labellings, in the case of consistency, or to all optimal repairs, in the case of
inconsistency. This information is called prediction.

3.1 Checking Consistency

An influence graph G = (V , E , σ) and respective experimental profile μ can be
encoded into SAT as follows. For the sake of clarity, the constraints will not be
presented in CNF. Translating such constrains to CNF should be a standard
task though.

Let us first introduce three types of Boolean variables. For each vertex v ∈ V ,
there is a Boolean variable inpv such that inpv is assigned the value true if v is
an input vertex and false otherwise. For each vertex v ∈ V , there is a Boolean
variable lvtxv (label vertex) such that lvtxv is assigned the value true/false if

946 J. Guerra and I. Lynce

the corresponding label μ(v) is +/−. Likewise, for each edge u → v ∈ E , there
is Boolean variable ledguv (label edge) such that ledguv is assigned the value
true/false if the corresponding label σ(u → v) is +/−.

An additional type of (auxiliary) variables is needed to represent the value of
μ · σ, which denotes the influence between vertices. For each edge u → v ∈ E ,
create a Boolean variable influv such that influv is assigned the value true/false
if μ(u) · σ(u → v) is +/−.

Let us now introduce the constraints, starting with the ones corresponding
to unit clauses. For each vertex v ∈ V , introduce a unit clause (inpv) if v is an
input vertex. Otherwise, introduce a unit clause (¬inpv). Given labellings μ/σ,
introduce one unit clause for each vertex/edge that has a label. (Remember that
μ and σ may be partial labellings and therefore not all vertices/edges may have
a corresponding label.) For each vertex v ∈ V with μ(v) = +/− introduce a
unit clause (lvtxv)/(¬lvtxv). For each edge u → v ∈ E with σ(u → v) = +/−
introduce a unit clause (ledguv)/(¬ledguv).
Example 3. Consider again the example in Figure 1. Encoding the influence
graph into SAT produces the following unit clauses: (¬inpa), (¬inpb), (¬inpc),
(ledgab), (¬ledgac), (ledgba), (ledgbc), (¬ledgcb). Moreover, encoding the exper-
imental profile into SAT produces the following unit clauses: (lvtxa), (¬lvtxb).

In order to define the value of variables infl a few additional constraints are
needed. The value of these variables is given by μ · σ. For each edge u → v, the
following constraints are added:

influv −→ (lvtxu ∧ ledguv) ∨ (¬lvtxu ∧ ¬ledguv)
¬influv −→ (lvtxu ∧ ¬ledguv) ∨ (¬lvtxu ∧ ledguv)

(1)

Finally, consistency must be ensured. An influence graph and an experimental
profile are mutually consistent if total extensions for μ and σ can be found
such that all non-input vertices are consistent. The consistency of a vertex v is
ensured by making use of variables influv where u may be any vertex to which
v is adjacent. For each vertex v, the following constraints are added:

inpv ∨ (lvtxv −→
∨

u

influv)

inpv ∨ (¬lvtxv −→
∨

u

¬influv)
(2)

Example 4. Equations 1 and 2 applied to vertex c of Figure 1 produce the fol-
lowing constraints:

inflac −→ (lvtxa ∧ ledgac) ∨ (¬lvtxa ∧ ¬ledgac),
¬inflac −→ (lvtxa ∧ ¬ledgac) ∨ (¬lvtxa ∧ ledgac),
inflbc −→ (lvtxb ∧ ledgbc) ∨ (¬lvtxb ∧ ¬ledgbc),
¬inflbc −→ (lvtxb ∧ ¬ledgbc) ∨ (¬lvtxb ∧ ledgbc),

Reasoning over Biological Networks Using Maximum Satisfiability 947

inpc ∨ (lvtxc −→ (inflac ∨ inflbc)),
inpc ∨ (¬lvtxc −→ (¬inflac ∨ ¬inflbc)).

A SAT call to the complete CNF encoding of the influence graph reveals that
the graph by itself is self-consistent. If we add the encoding of the experimental
profile, i.e. (lvtxa)∧ (¬lvtxb), another SAT call reveals that the influence graph
and the experimental profile are mutually inconsistent. Observe that vertex a
has only one incoming edge b → a with label +. Given that vertex b has label
−, vertex a cannot have label +.

3.2 Repairing

When an influence graph is inconsistent, whether by itself or mutually with an
experimental profile, one may consider repairing the graph and/or the profile
in order to restore consistency. The motivation is that some of the observations
may be unreliable. To this end, we allow three types of repair operations (and
combinations thereof): e, flip edges labels; i, make non-input vertices become
input vertices; and v, flip vertices labels. The goal is to identify cardinality-
minimal repairs.

Restoring consistency is an optimization problem that can be encoded into
Partial MaxSAT as follows. The SAT encoding described in the previous sec-
tion is still valid when allowing repairs. However, the unit clauses referring to
non-input vertices, vertices labels and edges labels can be unsatisfied if needed,
depending on the type of repair. Hence, these clauses can be made soft in the
Partial MaxSAT encoding. All other clauses, i.e. clauses encoding constraints
(1) and (2), are hard clauses. For repairs of type e, unit clauses referring to
edges labels are soft clauses. For repairs of type i, unit clauses referring to input
vertices are soft clauses. For repairs of type v, unit clauses referring to vertices
labels are soft clauses. All other unit clauses are hard clauses. The MaxSAT
solution will satisfy all hard clauses and the largest number of soft clauses. Note
that all soft clauses are unit clauses. The size of the repair corresponds to the
number of unsatisfied clauses. The actual repairs can be trivially obtained from
the unsatisfied clauses.

This encoding can be easily adapted to consider other repairs. The user could
manually indicate which repairs would be reasonable to perform. For example,
in some cases it can make sense to restrict repairs to a subset of vertices and
respective edges.

Example 5. As discussed in Example 4, the influence graph and experimental
profile illustrated in Figure 1 are mutually inconsistent. To identify repairs of
type e, the following clauses are declared as soft clauses: (ledgab), (¬ledgac),
(ledgba), (ledgbc), (¬ledgcb). The solution can be any one of the four cardinality-
minimal repairs, all of them with size two: {¬ledgab, ¬ledgba}, {¬ledgba, ledgac},
{¬ledgba, ¬ledgbc} and {¬ledgba, ledgcb}. Had been allowed only repairs of type
v, the clauses to be made soft would be: (lvtxa), (¬lvtxb). In this case, two
different optimal repairs with size one could be obtained: {¬lvtxa} and {lvtxb}.

948 J. Guerra and I. Lynce

3.3 Predicting

Analysing all possible solutions to a given problem instance can become a puz-
zling task when the number of solutions is too large. In this context, it is certainly
useful to know what is common to all solutions. Note that this concept applies
both to decision problems and optimization problems as long as (optimal) solu-
tions to a given problem instance can be found.

The intersection of all solutions to a given problem instance is called predic-
tion. This concept can be applied either to consistent problem instances when
checking consistency or to inconsistent problem instances when repairing. In SAT
and MaxSAT, the assignments which are common to all (optimal) solutions cor-
respond to the backbones of a given formula. However, when predicting, only
a subset of the variables is relevant. Still, approaches used for identifying back-
bones in SAT and MaxSAT can be adapted to compute predictions.

Predicting under consistency can be applied to the SAT encoding described in
Section 3.1 using a tool designed to identify backbone variables in SAT formulas.
A prediction can be obtained after filtering irrelevant variables from the set of
variables returned by the tool.

For the case of prediction under inconsistency, one has to consider the MaxSAT
encoding described in Section 3.2. The set of repairs common to all optimal so-
lutions can be obtained from the unit soft clauses that were not satisfied in all
optimal solutions. (Observe that each unsatisfied unit soft clause corresponds
to a repair.) Next we describe how a MaxSAT solver can be instrumented to
efficiently compute predictions.

A näıve approach consists in enumerating all solutions and computing their
intersection [26]. This approach requires n calls to a MaxSAT solver, being n the
number of optimal solutions. (In practice, this number can be reduced taking
into account that only a subset of the variables is relevant.) After each call, a
blocking clause corresponding to the negation of the computed solution is added
to the formula, in order to prevent the same solution from being found again in a
future call. Moreover, after each iteration the actual intersection of the solutions
computed so far is updated.

One key optimization to the näıve approach can make a significant difference.
Instead of adding one blocking clause for each solution found, there is only
one blocking clause, which corresponds to the prediction computed so far. This
implies that not all solutions have to be computed. Only a solution that reduces
the size of the current prediction can be computed at each iteration.

Algorithm 1 has been implemented to compute predictions under inconsis-
tency using the optimization described above. Similarly to the näıve approach,
this algorithm consists in retrieving different optimal solutions and reducing the
prediction at each iteration. (Again, we can take advantage of the fact that only
a subset of the variables is relevant.) But in practice less iterations are expected
to be required.

Given a partial MaxSAT formula F , the algorithm is initialized with an
optimum value, obtained from calling MaxSAT(F) and the initial prediction ,
obtained with function Get-Repairs. Each call to the MaxSAT solver returns

Reasoning over Biological Networks Using Maximum Satisfiability 949

Algorithm 1. Predicting under Inconsistency

Input : Partial MaxSAT Formula F
Output : Predicted Repairs of F , prediction

1 (out , opt , sol) ← MaxSAT(F) // compute initial solution
2 optimum ← opt
3 prediction ← Get-Repairs(sol)

4 while |prediction | �= 0 do
5 (out , opt , sol) ← MaxSAT(F ∪ [¬prediction]) // block current prediction
6 if out == UNSAT or opt > optimum then
7 break

8 prediction ← prediction ∩ Get-Repairs(sol) // update prediction

9 return prediction

a 3-tuple (out , opt , sol), where out corresponds to the outcome (either SAT or
UNSAT); opt corresponds to the optimal value, i.e. the number of unsatisfied
clauses; and sol corresponds to the variable assignments which result in the
optimum value.

The initial prediction corresponds to the set of repairs obtained from the first
MaxSAT solution. At each iteration, the MaxSAT solver is called with the initial
formula and the blocking clause corresponding to the current prediction, which is
added as a hard clause. If the new solution is still optimal, then the corresponding
repairs are intersected with the current prediction; otherwise the final prediction
has been found. Note that either the current prediction is reduced at each step
or the algorithm terminates. In this later case, the final prediction is returned.

Although the worst-case scenario of Algorithm 1 is as bad as the näıve
approach, it performs generally well for this domain, as we will see later in
Section 4.2.

Example 6. In Example 5 were listed four optimal repairs of type e for the influ-
ence graph and the experimental profile in Figure 1. The prediction corresponds
to the intersection of all the solutions, i.e. the set {¬ledgba}. A possible run of
Algorithm 1 could be to first find repair {¬ledgab, ¬ledgba}, thus next calling
the MaxSAT solver with the original formula and the clause [ledgab ∨ ledgba].
Suppose that afterwards repair {¬ledgba, ledgac} is found. So the next step is
to call the MaxSAT solver with the original formula and the clause [ledgba].
This call returns UNSAT and so the algorithm terminates. Only two calls to the
MaxSAT solver were needed, instead of the four calls of a näıve algorithm.

4 Experimental Evaluation

The experimental evaluation is driven by the goal of comparing the performance
of ASP solvers with the performance of SAT and MaxSAT solvers. With this
goal in mind, our evaluation is based on the same instances that were used to

950 J. Guerra and I. Lynce

evaluate the performance of ASP solvers in the past. These instances, as well as
the experiments performed, are detailed in the literature [16,12]. In one of the
experiments [16], ASP is used to solve randomly generated instances. The target
in this case is to check the consistency of each one of the problem instances.
In the other experiment [12], real instances are used and the target is to repair
unsatisfiable problem instances. In addition, prediction is applied only to the
instances for which a repair can be provided.

The computations were performed using the ASP solver clasp 2.0.6 together
with grounder gringo 3.0.4 [13], an improved version of the MiniSat 2.2.0
SAT solver [10] available from github, the backbone identification tool for SAT
minibones [26] and the MaxSAT solver MSUnCore 2.5 [25]. The experiments
were run on several Intel Xeon 5160 machines (dual-cores with 3.00 GHz of clock
speed, 4 MB of cache, 1333 MHz of FSB speed and 4 GB of RAM each), running
64-bit versions of Linux 2.6.33.3-85.fc13. All tools were configured to not take
advantage of any sort of parallelism.

All times are shown in seconds and correspond to the average execution times
taken by each tool for solving a set of problem instances. For each aborted
instance, the timeout value of 600 seconds is added to the total sum. The time
needed to translate each instance from raw data to ASP, SAT or MaxSAT format
is not taken into account, as it is negligible and similar for any of these three
formats.

4.1 Checking Consistency and Predicting under Consistency

The first experiment evaluates consistency checking and prediction under consis-
tency for the randomly generated instances. These instances have between 500
and 4000 vertices. The degree of a vertex is on average 2.5, following what is
assumed as standard in biological networks [22]. In total, there are 400 instances,
50 for each one of the eight different graph sizes (starting with 500 vertices and
up to 4000, with an increment of 500 vertices).

Table 1 shows the average run times for each graph size. We distinguish be-
tween consistent and inconsistent instances, denoted as sat and unsat, respec-
tively. The first columns relate to consistency checking. In these columns, ASP
refers to running gringo together with clasp using the VSIDS heuristic (the most
efficient heuristic according to [16]) and SAT refers to MiniSat.

The remaining columns relate to prediction under consistency. Prediction is
only applied to satisfiable instances. As before, ASP refers to running gringo
together with clasp using the VSIDS heuristic but now using the cautious rea-
soning mode (--cautious), which makes clasp compute the intersection between
all answer sets. SAT now refers to running minibones, which is used to compute
the backbones of SAT formulas.

The results are clear. Checking consistency is trivial for both ASP and SAT
solvers. As expected, larger instances require more time but still the time re-
quired is not significant. The results obtained with the ASP solver are in con-
formity with the results available in the literature [16]. Prediction for satisfiable
instances is also trivial. We believe that such information is very important from

Reasoning over Biological Networks Using Maximum Satisfiability 951

Table 1. Times for consistency checking and prediction under consistency

Consistency Prediction
ASP SAT ASP SAT

500
sat 0.11 0.01 0.15 0.05

unsat 0.10 0.00

1000
sat 0.26 0.02 0.42 0.18

unsat 0.23 0.01

1500
sat 0.42 0.03 0.79 0.39

unsat 0.37 0.01

2000
sat 0.58 0.03 1.26 0.69

unsat 0.51 0.01

2500
sat 0.75 0.04 1.88 1.08

unsat 0.66 0.01

3000
sat 0.91 0.06 2.79 1.57

unsat 0.79 0.02

3500
sat 1.08 0.07 3.97 2.14

unsat 0.95 0.02

4000
sat 1.24 0.05 5.37 2.82

unsat 1.10 0.02

a user’s point of view. Whereas analysing dozens or hundreds of solutions is in-
feasible in practice, knowing which assignments must belong to any solution is
certainly of interest.

Checking consistency and predicting under consistency is expected to scale
well for larger instances using either approach. Nevertheless, at the light of the
results obtained for real instances (see next section), extending this evaluation
method to larger instances did not seem to be the best way to follow.

4.2 Repairing and Predicting under Inconsistency

This second experiment was conducted using as test set the transcriptional regu-
latory network of Escherichia coli K-12 [11] along with two experimental profiles:
the Exponential-Stationary Growth Shift study [5] and the Heatshock experi-
ment [2].

The goal of this experiment is to evaluate the feasibility of (optimally) repair-
ing inconsistent problem instances, as well as of predicting under inconsistency, i.e.
computingwhich assignments are common to all optimal repairs.Weused the tran-
scriptional regulatory network ofEscherichia coli K-12, which contains 5140 inter-
actions between 1915 genes. Each one of the two profiles, Exponential-Stationary
Growth Shift and Heatshock, has slightly over 850 gene expression level variations,
which correspond to vertex labellings. For a better assessment of the scalability of
the approaches used, several data samples were generated by randomly selecting
5%, 10%, 20% and 50% of the whole data for each experimental profile. For each
percentage were generated 50 inconsistent instances. The whole test set is made of
400 instances. (In previous work [12] were used percentages 3%, 6%, 9%, 12% and
15% instead, but the better performance of the most recent versions of gringo and
clasp required the generation of more difficult instances.)

952 J. Guerra and I. Lynce

Table 2. Times for repair and prediction under inconsistency

Exponential-Stationary Growth Shift

e i v ei ev iv eiv

Repair (ASP)

5% 0.67 0.35 0.27 0.67 0.59 0.41 0.69
10% 0.64 0.35 0.27 0.82 0.75 0.38 1.35
20% 0.94 0.36 0.28 18.28 7.05 0.67 77.98 (3)
50% 2.89 0.35 0.29 587.48 (48) 572.02 (46) 481.16 (35) 600.00 (50)

Prediction (ASP)

5% 0.65 0.33 0.26 0.68 0.58 0.39 0.67
10% 0.61 0.32 0.26 0.75 0.67 0.36 0.96
20% 0.90 0.32 0.26 1.80 3.28 0.51 13.86
50% 1.92 0.32 0.27 41.71 320.30 302.43 (4) –

Repair (MaxSAT)

5% 0.22 0.22 0.21 0.17 0.17 0.17 0.17
10% 0.24 0.24 0.23 0.20 0.20 0.20 0.20
20% 0.37 0.35 0.34 0.29 0.29 0.29 0.29
50% 0.74 0.73 0.72 0.60 0.59 0.59 0.59

Prediction (MaxSAT)

5% 0.41 0.41 0.39 0.44 0.45 0.45 0.45
10% 0.60 0.58 0.54 0.78 0.76 0.76 0.79
20% 1.41 1.18 0.99 2.11 1.95 1.99 1.97
50% 4.55 3.06 2.26 9.32 7.71 7.83 7.58

Heatshock

e i v ei ev iv eiv

Repair (ASP)

5% 0.69 0.35 0.27 0.66 0.60 0.33 0.67
10% 0.69 0.35 0.27 0.99 0.83 0.34 1.50
20% 1.27 0.34 0.27 112.94 (8) 10.61 0.39 42.02
50% 279.43 (21) 0.35 0.28 572.03 (47) 504.76 (37) 202.10 (12) 600.00 (50)

Prediction (ASP)

5% 0.67 0.33 0.26 0.66 0.59 0.30 0.66
10% 0.68 0.33 0.27 0.88 0.70 0.30 1.39
20% 0.91 0.31 0.27 17.86 1.07 0.33 9.88
50% 43.76 0.31 0.26 28.01 276.07 (3) 126.58 (1) –

Repair (MaxSAT)

5% 0.21 0.21 0.20 0.17 0.16 0.16 0.16
10% 0.25 0.24 0.24 0.21 0.19 0.19 0.19
20% 0.39 0.38 0.30 0.31 0.25 0.25 0.25
50% 1.02 0.88 0.61 0.86 0.50 0.51 0.50

Prediction (MaxSAT)

5% 0.43 0.42 0.39 0.48 0.40 0.41 0.40
10% 0.76 0.63 0.56 1.06 0.71 0.71 0.68
20% 1.98 1.46 1.01 3.44 1.68 1.58 1.61
50% 15.14 4.96 2.43 31.71 7.88 6.79 6.58

Reasoning over Biological Networks Using Maximum Satisfiability 953

Table 3. Times for repair and prediction under inconsistency (100% instances)

Exponential-Stationary
Heatshock

Growth Shift

Repair Prediction Repair Prediction
ASP MaxSAT ASP MaxSAT ASP MaxSAT ASP MaxSAT

e 4.97 1.46 3.56 13.49 600.00 2.88 – 99.97
i 0.33 1.41 0.30 5.97 0.30 2.77 0.27 16.15
v 0.31 1.43 0.29 4.38 0.28 1.22 0.28 7.73

e i 600.00 1.17 – 28.70 600.00 2.19 – 222.43
e v 600.00 1.14 – 22.01 600.00 0.94 – 26.50
i v 600.00 1.16 – 18.55 600.00 0.94 – 21.45

e i v 600.00 1.14 – 17.25 600.00 0.96 – 16.40

Table 2 shows the average run times for the ASP and MaxSAT approaches.
Timeouts, shown within parentheses, represent that the imposed time limit of
600 seconds was exceeded before finding a solution. Observe that there were
no timeouts for the MaxSAT runs. In the experiment, we allowed the following
repair operations and combinations thereof (previously introduced in Section
3.2): e, flip edges signs; i, make non-input vertices become input vertices; and
v, flip vertices signs. This results in 7 types of repairs, thus 400 · 7 = 2800
instances. Observe that the possibility of making a vertex become an input (i
repair operation) makes that vertex trivially consistent.

The repairing phase determines which instances will be used in the prediction
phase. It would make no sense to apply prediction to instances for which not
even one optimal repair was provided within the time limit. Hence, prediction is
applied only to the instances for which repairing was successful.

The results presented in Table 2 were obtained using gringo together with
clasp using flag --opt-heuristic=1 for better performance. To compute the pre-
dictions, clasp applies cautious reasoning to all optimal solutions (--cautious,
--opt-all=<opt-value>, with <opt-value> being the optimal repair value). To
repair an instance using MaxSAT we used MSUnCore. For prediction, we used
Algorithm 1, described in Section 3.3. Note that the operation corresponding to
the first line of the algorithm was already computed during the repair phase and
therefore the computation is not repeated.

The results are again clear. ASP aborts 357 out of 2800 instances in the repair
phase, plus 8 instances in the prediction phase, whereas MaxSAT solves all the
instances in a few seconds. MaxSAT is far more adequate than ASP to repair
inconsistent instances. Many instances could not be repaired within the time
limit of 600 seconds with ASP. As a result, prediction could not be applied to
these instances. This is true for the two experimental profiles. In contrast, the
MaxSAT solver is able not only to repair all instances, but also to do it in a few
seconds. Similar results are obtained for prediction. The number of calls to the
MaxSAT solver range from 1 to 52 (on average from 1.08 to 28.30). There seems
to be no clear relation between the number of times the MaxSAT solver is called
and the prediction size.

954 J. Guerra and I. Lynce

Despite the clear trend in favour of the MaxSAT approach, the next step would
be to evaluate more difficult problem instances. The most difficult instances
would be the ones where the complete experimental profiles are used. This results
in 7 instances for each profile, one for each combination of repair operations.
Detailed results are given in Table 3. From these 14 instances, the ASP solver
was able to repair 3 instances while the MaxSAT solver was able to repair all
the instances, taking on average less than 3 seconds. Prediction was successfully
applied to all the instances but one for which the ASP solver was able to provide
a repair. MaxSAT was able to predict all the instances.

Even though the MaxSAT solver is able to provide a prediction taking on
average 20 seconds, two outliers exist. Both outliers refer to the Heathstock
profile, one to the e repair operation and the other to the ei combination.
The first requires 99.97 seconds and the second requires 222.43 seconds. Com-
pared to the remaining instances, these are the ones requiring more calls to
the MaxSAT solver (35 and 94, respectively). However, these instances are not
the ones with a larger prediction. Actually, the hardest instance has prediction
size 0, which means that there are at least two disjoint optimal repairs. If two
disjoint optimal repairs had been identified at the first two iterations, then no
more iterations would have been needed. This fact suggests instrumenting the
MaxSAT solver to find diverse solutions [19], which will be investigated in the
future.

Evaluating the accuracy of prediction is out of the scope of this evaluation.
Accuracy results have already been provided for the ASP approach [12]. The
accuracy of prediction is quite high, being always above 90%. Given that both
approaches are equivalent, it makes no sense to repeat such evaluation.

5 Conclusions and Future Work

We have studied how SAT and MaxSAT can be applied to reasoning over biolog-
ical networks. The use of SAT and MaxSAT is certainly adequate, given that the
domains of the variables of the actual problem are Boolean. SAT and MaxSAT
encodings have been shown to be more competitive than other approaches used
in the past, namely Answer Set Programming (ASP).

As future work we will consider other optimization criteria for repairs. For
example, subset-minimal repairs, as already suggested by Gebser et al. [12].
Finding subset-minimal repairs comprises proving that removing any repair from
the proposed solution no longer allows to achieve consistency. Additional types
of repairs could be considered as well, such as adding edges to the influence
graph [12]. As already mentioned, the proposed MaxSAT encoding can easily
accommodate other types of repairs.

Another direction for the future is the evaluation of different algorithmic ap-
proaches to compute predictions under inconsistency. Ideas coming from existing
algorithms for backbone identification in SAT [26] can be discussed as a starting
point.

Reasoning over Biological Networks Using Maximum Satisfiability 955

Acknowledgements. This work is partially supported by the Portuguese
Foundation for Science and Technology (FCT) under the research project AS-
PEN (PTDC/EIA-CCO/110921/2009) and by INESC-ID multiannual funding
from the PIDDAC program funds. We thank the reviewers for their insightful
comments.

References

1. Workshops on Constraint Based Methods for Bioinformatics (WCB) (2005-2012)
2. Allen, T., Herrg̊ard, M., Liu, M., Qiu, Y., Glasner, J., Blattner, F., Palsson, B.:

Genome-scale analysis of the uses of the escherichia coli genome: model-driven
analysis of heterogeneous data sets. Journal of Bacteriology 185(21), 6392–6399
(2003)

3. Barahona, P., Krippahl, L., Perriquet, O.: Bioinformatics: a challenge to constraint
programming. In: Hybrid Optimization, vol. 45, pp. 463–487. Springer (2011)

4. Bobrow, D.: Qualitative reasoning about physical systems: an introduction. Arti-
ficial Intelligence 24(1-3), 1–5 (1984)

5. Bradley, M., Beach, M., de Koning, A., Pratt, T., Osuna, R.: Effects of fis on
escherichia coli gene expression during different growth stages. Microbiology 153(9),
2922–2940 (2007)

6. Corblin, F., Bordeaux, L., Fanchon, E., Hamadi, Y., Trilling, L.: Connections and
integration with SAT solvers: a survey and a case study in computational biology.
In: Hybrid Optimization, vol. 45, pp. 425–461. Springer (2011)

7. Corblin, F., Fanchon, E., Trilling, L.: Applications of a formal approach to decipher
discrete genetic networks. BMC Bioinformatics 11, 385 (2010)

8. Corblin, F., Tripodi, S., Fanchon, E., Ropers, D., Trilling, L.: A declarative
constraint-based method for analyzing discrete genetic regulatory networks. Biosys-
tems 98(2), 91–104 (2009)

9. de Jong, H.: Modeling and simulation of genetic regulatory systems: a literature
review. Journal of Computational Biology 9(1), 67–103 (2002)

10. Eén, N., Sörensson, N.: An Extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004)

11. Gama-Castro, S., Jiménez-Jacinto, V., Peralta-Gil, M., Santos-Zavaleta, A.,
Peñaloza-Spinola, M., Contreras-Moreira, B., Segura-Salazar, J., Muñiz-Rascado,
L., Mart́ınez-Flores, I., Salgado, H., Bonavides-Mart́ınez, C., Abreu-Goodger, C.,
Rodŕıguez-Penagos, C., Miranda-Ŕıos, J., Morett, E., Merino, E., Huerta, A.,
Treviño-Quintanilla, L., Collado-Vides, J.: RegulonDB (version 6.0): gene regula-
tion model of escherichia coli k-12 beyond transcription, active (experimental) an-
notated promoters and textpresso navigation. Nucleic Acids Research 36(Database
Issue), 120–124 (2008)

12. Gebser, M., Guziolowski, C., Ivanchev, M., Schaub, T., Siegel, A., Thiele, S., Veber,
P.: Repair and prediction (under inconsistency) in large biological networks with
answer set programming. In: International Conference on Principles of Knowledge
Representation and Reasoning, pp. 497–507 (2010)

13. Gebser, M., Kaufmann, B., Kaminski, R., Ostrowski, M., Schaub, T., Schneider,
M.: Potassco: the Potsdam answer set solving collection. AI Communications 24(2),
107–124 (2011)

14. Gebser, M., Kaufmann, B., Schaub, T.: The Conflict-Driven Answer Set Solver
clasp: Progress Report. In: Erdem, E., Lin, F., Schaub, T. (eds.) LPNMR 2009.
LNCS, vol. 5753, pp. 509–514. Springer, Heidelberg (2009)

956 J. Guerra and I. Lynce

15. Gebser, M., König, A., Schaub, T., Thiele, S., Veber, P.: The BioASP library: ASP
solutions for systems biology. In: IEEE International Conference on Tools with
Artificial Intelligence, pp. 383–389 (2010)

16. Gebser, M., Schaub, T., Thiele, S., Veber, P.: Detecting inconsistencies in large
biological networks with answer set programming. Theory and Practice of Logic
Programing 11(2-3), 323–360 (2011)

17. Gregory, P., Fox, M., Long, D.: A New Empirical Study of Weak Backdoors. In:
Stuckey, P.J. (ed.) CP 2008. LNCS, vol. 5202, pp. 618–623. Springer, Heidelberg
(2008)

18. Guziolowski, C., Veber, P., Le Borgne, M., Radulescu, R., Siegel, A.: Checking
consistency between expression data and large scale regulatory networks: a case
study. Journal of Biological Physics and Chemistry 7(2), 37–43 (2007)

19. Hebrard, E., Hnich, B., O’Sullivan, B., Walsh, T.: Finding diverse and similar so-
lutions in constraint programming. In: AAAI Conference on Artificial Intelligence,
pp. 372–377 (2005)

20. Hemery, F., Lecoutre, C., Sais, L., Boussemart, F.: ExtractingMUCs from constraint
networks. In: European Conference on Artificial Intelligence, pp. 113–117 (2006)

21. Hsu, E.I., Muise, C.J., Christopher Beck, J., McIlraith, S.A.: Probabilistically Es-
timating Backbones and Variable Bias: Experimental Overview. In: Stuckey, P.J.
(ed.) CP 2008. LNCS, vol. 5202, pp. 613–617. Springer, Heidelberg (2008)

22. Jeong, H., Tombor, B., Albert, R., Oltvai, Z., Barabási, A.-L.: The large-scale
organization of metabolic networks. Nature 407(6804), 651–654 (2000)

23. Kilby, P., Slaney, J., Thiébaux, S., Walsh, T.: Backbones and backdoors in satisfi-
ability. In: AAAI Conference on Artificial Intelligence, pp. 1368–1373 (2005)

24. Marques-Silva, J.: Minimal unsatisfiability: models, algorithms and applications.
In: IEEE International Symposium on Multiple-Valued Logic, pp. 9–14 (2010)

25. Marques-Silva, J., Manquinho, V.: Towards More Effective Unsatisfiability-Based
Maximum Satisfiability Algorithms. In: Kleine Büning, H., Zhao, X. (eds.) SAT
2008. LNCS, vol. 4996, pp. 225–230. Springer, Heidelberg (2008)

26. Marques-Silva, J., Mikoláš, J., Lynce, I.: On computing backbones of propositional
theories. In: European Conference on Artificial Intelligence, pp. 15–20 (2010)

27. Menäı, M.: A two-phase backbone-based search heuristic for partial MAX-SAT –
an initial investigation. In: Industrial and Engineering Applications of Artificial
Intelligence and Expert Systems, pp. 681–684 (2005)

28. Monasson, R., Zecchina, R., Kirkpatrick, S., Selman, B., Troyansky, L.: De-
termining computational complexity from characteristic ‘phase transitions’. Na-
ture 400(6740), 133–137 (1999)

29. Siegel, A., Radulescu, O., Le Borgne, M., Veber, P., Ouy, J., Lagarrigue, S.: Quali-
tative analysis of the relation between DNA microarray data and behavioral models
of regulation networks. Biosystems 84(2), 153–174 (2006)

30. Slaney, J., Walsh, T.: Backbones in optimization and approximation. In: Interna-
tional Joint Conference on Artificial Intelligence, pp. 254–259 (2001)

31. Soliman, S.: Constraint programming for the dynamical analysis of biochemical
systems – a survey. Technical Report Deliverable 1.6, ANR CALAMAR, ANR-08-
SYSC-003 (2011)

32. Soulé, C.: Mathematical approaches to differentiation and gene regulation.
Comptes Rendus Biologies 329(1), 13–20 (2006)

33. Zhang, W., Rangan, A., Looks, M.: Backbone guided local search for maximum
satisfiability. In: International Joint Conference on Artificial Intelligence, pp. 1179–
1184 (2003)

34. Zhu, C., Weissenbacher, G., Sethi, D., Malik, S.: SAT-based techniques for deter-
mining backbones for post-silicon fault localisation. In: IEEE International High
Level Design Validation and Test Workshop, pp. 84–91 (2011)

	Reasoning over Biological Networks Using Maximum Satisfiability
	Introduction
	Preliminaries
	Influence Graphs and Sign Consistency Model
	Maximum Satisfiability
	Related Work

	Reasoning with Satisfiability
	Checking Consistency
	Repairing
	Predicting

	Experimental Evaluation
	Checking Consistency and Predicting under Consistency
	Repairing and Predicting under Inconsistency

	Conclusions and Future Work
	References

