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Abstract. This paper introduces a constraint model and solving tech-
niques for code generation in a compiler back-end. It contributes a new
model for global register allocation that combines several advanced as-
pects: multiple register banks (subsuming spilling to memory), coalesc-
ing, and packing. The model is extended to include instruction scheduling
and bundling. The paper introduces a decomposition scheme exploit-
ing the underlying program structure and exhibiting robust behavior for
functions with thousands of instructions. Evaluation shows that code
quality is on par with LLVM, a state-of-the-art compiler infrastructure.

The paper makes important contributions to the applicability of con-
straint programming as well as compiler construction: essential concepts
are unified in a high-level model that can be solved by readily available
modern solvers. This is a significant step towards basing code generation
entirely on a high-level model and by this facilitates the construction of
correct, simple, flexible, robust, and high-quality code generators.

1 Introduction

Compilers consist of a front-end and a back-end. The front-end analyzes the
input program, performs architecture-independent optimizations, and generates
an intermediate representation (IR) of the input program. The back-end takes the
IR and generates assembly code for a particular processor. This paper introduces
a constraint model and solving techniques for substantial parts of a compiler
back-end and contributes an important step towards compiler back-ends that
exclusively use a constraint model for code generation.

Today’s back-ends typically generate code in stages: instruction selection
(choose appropriate instructions for the program being compiled) is followed
by register allocation (assign variables to registers or memory) and instruction
scheduling (order instructions to improve their throughput). Each stage com-
monly executes a heuristic algorithm as taking optimal decisions is considered
either too complex or computationally infeasible. Both staging and heuristics
compromise the quality of the generated code and by design preclude optimal
code generation. Capturing common architectural features and adapting to new
architectures and frequent processor revisions is difficult and error-prone with
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heuristic algorithms. The use of a constraint model as opposed to staged and
heuristic algorithms facilitates the construction of correct, simple, flexible, and
robust code generators with the potential to generate optimal code.

Approach. The paper uses LLVM [1] for the compiler front-end and assumes
that instruction selection has already been done yielding a representation of
the input program in SSA (static single assignment). The paper extends SSA
by introducing LSSA (linear SSA), which represents programs as basic blocks
(blocks of instructions without control flow, blocks for short) and relations of
temporaries (program variables) among blocks.

A function in LSSA (the compilation unit in this paper) is used to generate a
model for global register allocation (assign temporaries to registers for an entire
function). The model combines several advanced aspects:

Multiple register banks also capture the spilling of temporaries to memory
as just another register bank due to lack of available processor registers.

Temporary coalescing attempts to assign related temporaries to the same
register in order to save move instructions.

Register packing can assign several small unrelated temporaries to the same
register. For example, two 16-bit temporaries can be assigned to the upper
and lower half of a 32-bit register.

Both multiple register banks and coalescing are modeled by optional copy in-
structions between temporaries identified as related in the LSSA representation.
The model is extended to include instruction scheduling and instruction bundling
(for executing several instructions in parallel). The single model accurately cap-
tures the interdependencies between register allocation and instruction schedul-
ing. Hence, it faithfully reflects the trade-off between conflicting decisions during
code generation.

The model is solved by decomposition, exploiting the underlying program
structure as explicated in LSSA. First, the relation of temporaries among blocks
is established followed by solving constraints for each block. The code generator
exhibits robust behavior for functions with thousands of instructions, where we
choose the bzip2 program as part of the standard SPECint 2006 benchmark
suite. Evaluation shows that code quality is on par with LLVM.

Key contributions. The paper makes the following contributions: – LSSA as a
new program form explicating program structure used for modeling; – a con-
straint model unifying register allocation and instruction scheduling; – in par-
ticular, the register allocation model unifies multiple register banks, spilling,
coalescing, and packing; and – a code generator based on a problem decompo-
sition showing promising code quality and robustness.

Related approaches. Optimal register allocation and instruction scheduling have
been approached with different optimization techniques, both in isolation and
as an integrated problem.
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Register allocation has been approached as an integer linear programming
(ILP) problem [2,3] and as a partitioned Boolean quadratic problem [4]. To
the best of our knowledge, there has been no attempt to solve global register
allocation with constraint programming (CP).

Instruction scheduling has typically been modeled as a resource-constrained
scheduling problem. Local instruction scheduling has been approached with both
CP [5,6] and ILP [7,8]. Proposed solutions for the global case include the use of
CP [9], ILP [10], and special-purpose optimization algorithms [11,12].

Different ILP and CP approaches have addressed the integration of both prob-
lems in a single model [13,14,15,16]. To the best of our knowledge, none of these
approaches deals with all essential aspects of global register allocation such as
coalescing and spilling.

The integration of instruction selection with these problems has also been
considered, using both CP [17] and ILP [18,19]. These approaches are limited to
single blocks, and it is unclear how to extend them to handle entire functions
robustly.

Plan of the Paper. Section 2 reviews SSA-based program representation whereas
Sect. 3 introduces LSSA used for the constraint model in the paper. A constraint
model for register allocation is introduced in Sect. 4 which is refined in Sect. 5
to integrate instruction scheduling. Section 6 discusses model limitations. Sec-
tion 7 introduces a decomposition scheme which is evaluated in Sect. 8. Section 9
concludes the paper and presents future work.

2 SSA-Based Program Representation

int factorial(int n) {

int f = 1;

while (n > 0) {

f = f * n; n--;

}

return f;

}

This section describes SSA (static single assign-
ment) as a state-of-the-art representation for pro-
grams where processor instructions have already been
selected. The factorial function, whose C source code
is shown to the right, is used as a running example
throughout the paper.

A function is represented by its control-flow graph (CFG). The CFG’s vertices
correspond to blocks and its arcs define the control flow (jumps and branches)
between blocks. A block consists of instructions and temporaries. Temporaries
are storage locations corresponding to program variables after instruction selec-
tion. Other types of operands such as immediate values are not of interest in
this context. An instruction is a triple represented as D ← op U , where D and
U are the sets of defined and used temporaries and op is the processor operation
that implements the instruction. For example, an instruction that uses a tem-
porary t to define a temporary t′ by executing the operation neg is represented
as t′ ← neg t. The remainder of the paper uses operations from MIPS32 [20], a
simple instruction set chosen for ease of illustration.

A program point is located between two consecutive statements. A temporary
is live at a program point if it holds a value that might be used by an instruction
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in the future. The live range of a temporary is the set of program points where
it is live. Two temporaries interfere if their live ranges overlap. A temporary is
live-in (respectively live-out) in a block if it is live at its entry (exit) point.

Architectural constraints and ABIs (application binary interfaces) predeter-
mine the registers to which certain temporaries are assigned. A temporary t that
is pre-assigned to a register r is represented by t�r.

SSA is a program form where temporaries are only defined once [21] (as is com-
mon, SSA in this paper means conventional SSA [22]). For programs where tem-
poraries are redefined, SSA inserts φ-functions among the natural instructions
derived from program statements and expressions. φ-functions disambiguate def-
initions of temporaries that depend on program control flow. For instance, in the
factorial function, the return value might be defined by int f = 1 or within the
while-loop. In SSA, a φ-function is inserted defining a new return value that
is equal to either 1 or to the the value of f computed in the loop. φ-functions
define a congruence among temporaries, where two temporaries are φ-congruent
if they are accessed by the same φ-function. Since φ-functions are not provided
by processor instruction sets, their resolution is a prerequisite for generating
executable code.

b1 t1�$ra, t2�$a0 ←
t3 ← li
t4 ← slti t2
← bne t4

b2

t5 ← φ t2, t8
t6 ← φ t3, t7
t7 ← mul t6, t5
t8 ← subiu t5
← bgtz t8

b3
t9 ← φ t3, t7
← jr t1
← t9�$v0

t2
φ
= t5

t3
φ
= t6

t3
φ
= t9

t9
φ
= t7

t5
φ
= t8

t6
φ
= t7

Fig. 1. MIPS32 instruction-selected function in SSA

SSA simplifies the computation of liveness and interference. Since this sim-
plification eases register allocation [23], SSA form is used as input to the code
generator. Fig. 1 shows the control-flow graph of the running example trans-
formed to SSA form with MIPS32 operations. Arc labels show the φ-congruence
connecting temporaries related by φ-functions. Temporaries t1, t2 and t9 are
pre-assigned to the return address ($ra), first argument ($a0) and first return
value ($v0) registers.

3 Program Representation for Register Allocation

This section introduces the program representation on which the model is based.

3.1 Register Allocation

Register allocation is the problem of assigning temporaries to either processor
registers (hereafter called registers) or memory. Since access to registers is orders
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of magnitude faster than access to memory, it is desirable to assign all tempo-
raries to registers. As the number of registers is limited, not all temporaries can
be assigned a register. A first way to improve register utilization is to store tem-
poraries only while they are live. This allows register allocation to assign several
temporaries to the very same register provided the temporaries do not interfere
with each other.

In general, even optimal register utilization does not guarantee the availability
of processor registers for all temporaries. In this case, some temporaries must be
stored in memory (that is, spilled). Since access to memory is costly, the decision
of which temporaries are assigned to memory and at which program point they
are assigned has high impact on the efficiency of the generated code.

The input program to register allocation may contain temporaries related by
copy instructions (that is, instructions that copy the content of one temporary
into another). Assigning these temporaries to the same register (that is, coalesc-
ing them) allows the removal of the corresponding copy instructions, improving
the efficiency and size of the code.

Each temporary has a certain bit width (hereafter just called width) which is
determined by the source data type that it represents. Many processors allow
temporaries of different widths to be assigned to different parts of the same
physical register. For example, Intel’s x86 has 16-bit registers (AX) that combine
pairs of 8-bit registers (AH, AL). For these processors, the ability to pack non-
interfering temporaries into different parts of the same physical register is a key
technique to improve register utilization [24].

Register allocation can be local or global. Local register allocation deals with
one block at a time, spilling all temporaries that are live at block boundaries.
Global register allocation yields better code by considering entire functions and
can keep temporaries in the same register across blocks.

3.2 Linear Static Single Assignment Form

The live range of a temporary depends on where it is defined and used by instruc-
tions. In a model that captures simultaneous register allocation and instruction
scheduling, the live ranges and their interferences are mutually dependent. Al-
though SSA makes live range and interference computation easier than in a
general program form, it is unclear how to model interference of temporaries
with variable live ranges that can span block boundaries and follow branches.

To overcome this limitation and enable simple and direct modeling of live
ranges, this paper introduces linear SSA (LSSA). LSSA is stricter than SSA in
that each temporary is only defined and used within a single block. This property
leads to simple, linear live ranges which do not span block boundaries and can
be directly modeled as in Sect. 4. Furthermore, this simplification enables a
problem decomposition that can be exploited for robust code generation, as
Sect. 7 explains.

This paper is the first to take advantage of the explicit congruence structure
that LSSA defines even though this structure appears in some SSA construction
approaches [25,26].



Constraint-Based Register Allocation and Instruction Scheduling 755

To restrict live ranges to single blocks, SSA φ-functions are generalized to
delimiter instructions (hereafter just called delimiters). These instructions are
placed at the block boundaries and are not part of the generated code. Each block
contains two delimiters: an in-delimiter which defines the live-in temporaries and
an out-delimiter which uses the live-out temporaries.

In LSSA, the live range of a temporary cannot span the boundaries of the block
where it is defined. Liveness across blocks in the original program is captured by
a new definition of temporary congruence, relating temporaries that represent
the same original temporary in different blocks. This congruence generalizes the
φ-congruence defined for SSA.

Fig. 2 shows the control-flow graph of the running example transformed to
LSSA. Arc labels show the generalized congruence. The temporary t1 which is
live across all branches in Fig. 1 corresponds to the congruent temporaries t1, t5
and t10 in Fig. 2, each of them having a linear live range. The figure shows that
the only link between blocks in LSSA is given by temporary congruences.

b1 t1�$ra, t2�$a0 ←
t3 ← li
t4 ← slti t2
← bne t4
← t1, t2, t3

b2

t5, t6, t7 ←
t8 ← mul t7, t6
t9 ← subiu t6
← bgtz t9
← t5, t8, t9

b3
t10, t11 ←

← jr t10
← t11�$v0

t1 ≡ t5
t2 ≡ t6
t3 ≡ t7

t1 ≡ t10
t3 ≡ t11

t10 ≡ t5
t11 ≡ t8

t6 ≡ t9
t7 ≡ t8

Fig. 2. MIPS32 instruction-selected function in LSSA

LSSA can be easily constructed from SSA by applying the following steps to
each block:

1. introduce delimiters;
2. for each live-in temporary, introduce a new definition by the in-delimiter; for

each live-out temporary, introduce a new use by the out-delimiter (applying
the liveness definition by Sreedhar et al. [22]);

3. remove all φ-functions;
4. connect the new definitions and uses with their corresponding live-in and

live-out temporaries by defining congruences.

3.3 Copies

Spilling requires copying the contents of temporaries to new temporaries that can
then be assigned to different processor registers or to memory. This is captured
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in the model by extending the program representation with the copy instruction
type, similarly to Appel and George’s approach [3]. A copy replicates the content
of a temporary ts to a new temporary td. To allow ts and td to be assigned to
different types of locations such as registers or memory, the copy is implemented
by the execution of one of a set of alternative operations {o1, o2, . . . , on} and
represented as td ← {o1, o2, . . . , on} ts.

The way in which a program is extended with copies depends on the processor.
In load/store processors such as MIPS32, arithmetic/logic operations define and
use temporaries in registers. In this setting, register allocation needs to be able
to copy a temporary defined in a register to another register or to memory. If
a temporary has been copied to memory (that is, spilled), it must be copied
back to a register before its use by an arithmetic/logic operation. In MIPS32,
the program is extended with copies of the form td ← {move, sw} ts after the
definition of ts in a register and td ← {move, lw} ts before the use of td in a
register, where the operations move, sw and lw implement register-to-register,
register-to-memory and memory-to-register copies. Fig. 3 shows how the function
in Fig. 2 is extended with such copies.

b1
t1�$ra, t2�$a0 ←

t3 ← li
t4 ← slti t2
t5 ← {move, sw} t2
t6 ← {move, sw} t3
← bne t4
← t1, t5, t6

b2

t7, t8, t9 ←
t10 ← {move, lw} t8
t11 ← {move, lw} t9
t12 ← mul t11, t10
t13 ← subiu t10
t14 ← {move, sw} t12
t15 ← {move, sw} t13
← bgtz t13
← t7, t14, t15

b3
t16, t17 ←

t18 ← {move, lw} t17
← jr t16
← t18�$v0

t1 ≡ t7
t5 ≡ t8
t6 ≡ t9

t1 ≡ t16
t6 ≡ t17

t16 ≡ t7
t17 ≡ t14

t8 ≡ t15
t9 ≡ t14

Fig. 3. Function in LSSA extended with copies

4 Register Allocation and Packing

This section describes the constraint model for register allocation and packing.
The constraint model is parameterized with respect to a program in LSSA and
a processor. The entire model, extended with instruction scheduling, is shown in
Fig. 4. The main text contains references to the formulas (1-11) from the figure.
Sections 4.1 and 4.2 discuss local and global register allocation. Section 4.3 refines
the model to handle register packing.



Constraint-Based Register Allocation and Instruction Scheduling 757

4.1 Local Register Allocation

The variables in the constraint model are described in Fig. 4. A valid assignment
of the register (rt) and operation (oi) variables constitutes a solution to the
register allocation problem. When solving this problem in isolation, the issue
cycle (ci) and live range (lst, let) variables (1) are pre-assigned and can be seen
as program parameters. They act as variables when the model is extended with
instruction scheduling as described in Sect. 5.

Natural instructions and delimiters define the meaning of a program and
must be active (2). Unlike natural instructions and delimiters, a copy i might
be implemented by different operations or be inactive. To support the latter
case, the domain of its variable oi is extended with a virtual operation null (3).
Delimiters are implemented by virtual in and out operations. A solution to the
register allocation problem implies deciding whether a copy i is active (ai) and
which operation implements it (oi).

A processor typically contains one or more register banks which can be directly
accessed by instructions. Traditional register allocation treats memory and dif-
ferent register banks as separate entities, which leads to specialized methods for
different aspects of register allocation such as spilling and dealing with multiple
register banks. We consider a unified register array that fully integrates these
aspects. A unified register array is a sequence of register spaces. A space is a se-
quence of related registers. Spaces capture different processor register banks as
well as memory registers (representing memory locations on the runtime stack).
A memory space contains a practically infinite sequence of memory registers
(m1, m2, . . .). Fig. 5a shows the unified register array for MIPS32.

To the best of our knowledge, this paper presents the first application of a
unified register array to integrate different aspects of register allocation in the
context of native code generation.

Local register allocations can be projected onto a rectangular area. The hor-
izontal dimension represents the registers in the unified register array, whereas
the vertical dimension represents time in clock-cycles (see Fig. 5a). In this pro-
jection, each temporary t is represented as a rectangle with width(t) = 1. The
top and bottom coordinates of the rectangle reflect the issue cycle of its definer
and the last issue cycle of its users. The horizontal coordinate represents the
register to which the temporary is assigned (see Fig. 5b).

In this representation, two temporaries interfere when their rectangles over-
lap vertically. The non-overlapping rectangles constraint disjoint2 [27] enforces
interfering temporaries to be assigned to different registers (4). Fig. 6a shows
a register allocation for a given instruction schedule of block b1 from Fig. 2. In
this schedule, all temporaries interfere with each other and must be assigned to
different processor registers.

Due to architectural constraints, operations can only access their operands
in certain spaces. The operation that implements an instruction determines the
space to which its temporaries are allocated (5).

A copy i from a temporary src(i) to a temporary dst(i) is active when these
temporaries are not coalesced (6). Fig. 6b shows a register allocation for the
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Program parameters
B, I, T sets of blocks, instructions and temporaries
ins(b) set of instructions of block b
tmp(b) set of temporaries defined and used within block b
tmp(i) set of temporaries defined and used by instruction i
definer(t) instruction that defines temporary t
users(t) set of instructions that use temporary t
t ≡ t′ whether temporaries t and t′ are congruent
dep(b) dependency graph of the instructions of block b
ops(i) set of alternative operations implementing i (singleton for non-copies)
width(t) number of register atoms that temporary t occupies
t�r whether temporary t is pre-assigned to register r
src(i) source temporary of copy instruction i
dst(i) destination temporary of copy instruction i
freq(b) estimation of the execution frequency of block b

Processor parameters
space(i, op, t) register space in which instruction i implemented by op accesses t

forbidden(t) forbidden first assigned register atoms for temporary t
lat(op) latency of operation op

R set of processor resources
cap(r) capacity of processor resource r
use(op, r) units of processor resource r used by operation op

dur(op, r) duration of usage of processor resource r by operation op

Variables
rt ∈ N0 register to which temporary t is assigned
oi ∈ N0 operation that implements instruction i
ci ∈ N0 issue cycle of instruction i relative to the beginning of its block
ai ∈ {0, 1} whether instruction i is active
lst ∈ N0 start of live range of temporary t
let ∈ N0 end of live range of temporary t

Register allocation constraints

lst = cdefiner(t) ∀t ∈ T ; let = maxu∈users(t) cu ∀t ∈ T (1)

ai ∀i : (i is a natural instruction) ∨ (i is a delimiter) (2)

oi ∈ ops(i) ∪ {null} ∀i : i is a copy (3)

disjoint2({〈rt, rt + width(t), lst, let〉 : t ∈ tmp(b)}) ∀b ∈ B (4)

oi=op =⇒ rt∈space(i, op, t) ∀t∈tmp(i), ∀op∈ops(i), ∀i∈I (5)

rsrc(i) 
= rdst(i) ⇐⇒ ai ∀i : i is a copy (6)

rt = r ∀t ∈ T : t�r (7)

rt = rt′ ∀t, t′ ∈ T : t ≡ t′ (8)

rt /∈ forbidden(t) ∀t ∈ T (9)

Instruction scheduling constraints

ai ∧ aj =⇒ cj ≥ ci + lat(oi) ∀ (i, j) ∈ edges(dep(b)), ∀b ∈ B (10)

cumulative({〈ci,dur(oi, r),ai×use(oi, r)〉 : i∈ ins(b)} , cap(r)) ∀b∈B, ∀r∈R (11)

Fig. 4. Model parameters, variables, and constraints
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cy
cl

e 0

1

$v0 $v1 $a0 $a1

. . .

. . . $ra m1 m2 . . .

. . .

..
.

processor space memory space

. . .

. . .

..
.

..
. . . .

(a) unified register array

t

issue of definer(t)

last issue of users(t)

(b) temporary

Fig. 5. Geometric interpretation of local register allocation

block b1 in Fig. 3, where dotted arrows connect copy-related temporaries. t2
and t5 are coalesced, rendering their copy inactive. The copy from t3 to t6 is
implemented by sw and represents a spill to m1. This frees $v0 from cycle 2
onwards and allows t4 to reuse it, reducing the set of used processor registers
from {$v0, $v1, $a0, $ra} in Fig. 6a to {$v0, $a0, $ra} in Fig. 6b.

Some temporaries are pre-assigned to registers (7).

$v0 $v1 $a0 $a1

. . .

. . . $ra m1 m2 . . .

. . .

cy
cl

e

0

1

2

3

4

5

in

li

slti

bne

nop

out

t1t2
t3

t4

(a) without copies

$v0 $v1 $a0 $a1

. . .

. . . $ra m1 m2 . . .

. . .cy
cl

e

0

1

2

3

4

5

6

in

li

sw

slti,null

bne

nop

out

t1

t2t3

t4

t5
t6

null

sw

(b) spilling t3 enables reuse of $v0

Fig. 6. Two register allocations for block b1

4.2 Global Register Allocation

In LSSA, the global relation between temporaries is solely captured by temporary
congruences, which leads to a direct extension of the local problem. Temporaries
whose live ranges span block boundaries are decomposed in LSSA into congruent
temporaries with linear live ranges. Congruent temporaries resulting from this
decomposition represent the same original temporary and are assigned to the
same register (8).

4.3 Register Packing

The register allocation model described in this section is extended with register
packing following the approach of Pereira and Palsberg [28]. Registers are decom-
posed into register atoms. An atom is the minimum part of a physical register
that can be referenced by an operation (for example, AH in x86). A space is a
sequence of atoms, each of which corresponds to a column in the unified register
array. width(t) becomes a program parameter giving the number of atoms that
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the temporary t occupies. The variable rt represents the first of the atoms to
which t is assigned. Enforcing non-interference among temporaries assigned to
the same register (4) thus becomes isomorphic to rectangle packing.

AX BX CX
AH AL BH BL CH CL

...cy
cl
e 0

1

t1
t2

t3

t4

Most processors restrict the combinations of atoms
out of which wider registers can be formed. For example,
double-width temporaries such as t2 and t4 in the figure
to the right cannot be assigned to {AL, BH} or to {BL, CH}
in the 16-bit x86 register array. Such forbidden atoms
are removed from the register variable domains (9).

5 Instruction Scheduling and Bundling

This section describes how to extend the register allocation model with instruc-
tion scheduling and bundling.

Local instruction scheduling. To model instruction scheduling, the issue cycle ci
of each instruction i and the (derived) live range (lst, let) of each temporary t
become variables (1).

in

li stli

bne

out

1
(t

1
,t

2
)

1
1 (t2)

1 (t3)
1

1 (t4)

2

Flow of data and control cause dependencies among
instructions. The dependencies in a block b form a de-
pendency graph dep(b) with instructions as vertices. For
example, the figure to the right shows dep(b1) from Fig. 2.
Solid, dashed and dotted arcs respectively represent data,
control and artificial dependencies. The latter are added to
make delimiters first and last in any topological ordering.
These dependencies dictate precedence constraints among
instructions. The minimum issue distance in a precedence
(i, j) is equal to the latency of the parent lat(oi). Precedence constraints are only
effective when both instructions are active (10).

Operations share limited processor resources such as functional units and data
buses. This is naturally captured as a task-resource model with a cumulative
constraint [29] for each processor resource and block. These constraints include
a task for each active instruction in the block (11).

Instruction bundling. Very Long Instruction Word and Explicitly Parallel In-
struction Computing processors can issue several instructions every clock cycle.
To exploit this capability, instructions must be combined into valid bundles satis-
fying precedence (10) and processor resource (11) constraints [30]. The presented
scheduling model already subsumes bundling, by interpreting sets of instructions
issued in the same cycle as bundles and giving the appropriate processor resource
configuration.

6 Model Limitations

This section discusses some model limitations to be addressed in the future.
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. . .
tj ← ti

. . .
← . . . , ti, tj , . . .

Limited coalescing. The constraint model employs a simple
definition of interference with a direct geometrical interpreta-
tion: two temporaries interfere when the rectangles represent-
ing their live ranges overlap. Copy-related temporaries that
do not interfere can often be coalesced, rendering their copy instructions inac-
tive and saving execution cycles. That is the case, for example, for t2 and t5
in Fig. 6b. Relaxed definitions of interference have been proposed which expose
more coalescing opportunities [31]. In the example to the right, ti and tj can be
coalesced into a single temporary since both hold the same value. However, in
the constraint model this makes their rectangles overlap, which is not allowed.
This limitation, shared by the related register allocation approaches mentioned
in the introduction, is significantly mitigated in the constraint model by the
possibility of rearranging live ranges through instruction scheduling.

. . .
t2 ← {move, sw} t1

. . .
t3 ← {move, lw} t2
. . .← op t3

. . .
t4 ← {move, lw} t2
. . .← op t4

. . .

Spilling reused temporaries. Once a temporary is spilled, it
must be loaded into a register before every use. If the tempo-
rary is used multiply, it might be desirable to load it to a regis-
ter once and keep it there for the remaining uses. The example
to the right illustrates this limitation: if t1 is spilled to mem-
ory by a sw operation, t2 must be loaded into a register twice
by lw operations, once for each operation op. Fortunately, in
SSA most of the temporaries are only used once [32], and this percentage is even
larger in LSSA since SSA temporaries are further decomposed.

7 Decomposition-Based Code Generation

This section introduces a decomposition scheme and a code generator that ex-
ploit the properties of LSSA.

The main property of LSSA is that temporaries are live in single blocks only.
All temporaries accessed by delimiters (global temporaries) are pre-assigned or
congruent to temporaries in other blocks. For example, the global temporaries in
Fig. 3 are {t1, t2, t5, t6, t7, t8, t9, t14, t15, t16, t17, t18}. The only link between differ-
ent blocks in the model is given by the congruence constraints (8), which relate
the register variables rt of global temporaries. Thus, once these variables are as-
signed, the rest of the register allocation and instruction scheduling problem can
be solved independently for each block. For example, assuming that {t2, t5} and
{t3, t6} have been coalesced, the problem variables that remain to be assigned
for block b1 in Fig. 3 are the register {rt3 , rt4} and issue cycle variables.

Based on this observation, we devise a decomposition scheme that significantly
reduces the search space. It proceeds by first solving the global problem (assign-
ing the rt variables of global temporaries) and then solving a local problem for
each block (assigning the remaining variables).

The objective is to minimize execution cycles according to an estimate of
block execution frequency:

minimize
∑

b∈B

freq(b)× max
i∈ins(b)

ci (12)
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Fig. 7 depicts the architecture of the code generator. SSA functions are trans-
formed to LSSA and extended with copies as described in Sect. 3. Then, a
satisfaction problem with all constraints is solved, assigning global temporaries
to registers. This assignment constitutes a global solution. As variable selection
heuristic, the global solver branches first on the largest temporary congruence
class ({t6, t9, t14, t17} in Fig. 3). As value selection heuristic, it performs a cost-
benefit analysis to determine the most effective register for each temporary. The
benefit component estimates the saved spilling overhead, while the cost compo-
nent is based on an estimate of the increased space occupation. This analysis
is parameterized with an aggressiveness factor to direct the heuristic towards
either the benefit or the cost component. In the example, all temporaries are as-
signed to processor registers regardless of this parameter, since spilling is costly
and the processor register space occupation is low.

modeler global solver local solver

SSA
function

LSSA
function

local problems

local solutions

assembly
code

Fig. 7. Architecture of the code generator

Once a global solution is found, an optimization problem with all but the
congruence constraints (8) is solved for each block, seeking a locally optimal as-
signment of the remaining variables. This assignment constitutes a local solution.
The search starts by branching on the copy activation variables ai, trying first to
inactivate the copy. Then, the solver branches on the ci variables in topological
dependency order, selecting the earliest cycle first. Finally, local temporaries are
assigned to registers by assigning their rt variables. The global and local solu-
tions are then combined and the total cost is computed. This process is repeated,
increasing the aggressiveness of the global solver in each iteration until it proves
optimality or reaches a time limit.

8 Evaluation

Two essential characteristics of the code generator are examined by the ex-
periments: the quality of the generated code and its solving time. The global
and local solvers are implemented with the constraint programming system
Gecode 3.7.3 [33]. As input, we have used functions from the C program bzip2 as
a representative of the standard SPECint 2006 benchmark suite, optimized the
intermediate code of each function and selected MIPS32 instructions using the
LLVM 3.0 compiler infrastructure. The instruction-selected functions are passed
as input to the code generator for this experiment. The global and local solvers
are run with a time limit of 10 and 3 seconds respectively. All experiments are
run using sequential search on a Linux machine with a quad-core Intel Core
i5-750 processor and 4 GB of main memory.
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(b) solving time vs. instructions

Fig. 8. Evaluation of the decomposition-based code generator

Code quality. Lack of post-code-generation support (including generation of as-
sembly directives) prevents running the generated code. Therefore, to measure
its quality, we estimate the number of execution cycles by computing the value of
the objective function (12). This measure is computed for the code generated by
both our system and LLVM’s register allocator (based on priority-based color-
ing [34]) and instruction scheduler (based on list-scheduling [35]). These LLVM
components are run with the following flags: -O3 -enable-mips-delay-filler

-disable-post-ra -disable-tail-duplicate -disable-branch-fold. This
comparison is meaningful since a) the input to the LLVM components is the
same as to our system, and b) the optimization flags given to LLVM are aligned
with the objective function (12). For example, -O3 emphasizes speed at the pos-
sible expense of code size. Furthermore, the same optimization level is enforced
after code generation by disabling tail duplication and branch folding in LLVM.

From a total of 106 functions in bzip2, the code generator pre-processes and
solves 86 functions. The remaining ones cannot yet be pre-processed by the
modeler module (see Fig. 7) because of lack of support for the MIPS32 floating-
point extension and incompleteness of the interface to LLVM’s instruction selec-
tor. Fig. 8a shows the estimated execution cycles of each solved function. The
figure shows that the code generator is competitive with LLVM, a state-of-the-
art compiler infrastructure, in terms of code quality. The cases in which LLVM
generates better code are due to a) few of the 86 functions being solved opti-
mally because of global and local time-outs, and b) the limitations discussed
in Sect. 6, which in particular prevent coalescing certain copies in blocks that
belong to deeply nested loops.

Solving time. The global and local solvers dominate the execution time of the
code generator. Fig. 8b shows, for each function in the first experiment, the
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average time to solve the constraint problems and the number of instructions.
The average is calculated on 10 iterations, where the maximum coefficient of
variation per function is 10%. The figure reveals a sub-quadratic relation between
solving time and size of the compiled functions, confirming the robustness of the
code generator for functions with thousands of instructions. This robust behavior
is due partially to the effect of solver time-outs on all non-trivial functions.

9 Conclusion and Future Work

This paper introduces a constraint model capturing global register allocation
and local instruction scheduling as two main tasks of code generation. In par-
ticular, the model of register allocation combines all essential aspects in this
problem: generalized spilling, coalescing and register packing. The paper intro-
duces LSSA to enable a direct model of global register allocation and a problem
decomposition. A code generator is presented that exploits this decomposition to
achieve robust behavior. Experiments show that it generates code that is com-
petitive with a state-of-the-art compiler infrastructure for functions of thousands
of instructions.

Future work. This paper presents an important step towards basing code gener-
ation entirely on a high-level model as opposed to limited heuristic algorithms.
There is considerable future work in this direction. A first step is to address
the limitations from Sect. 6. Also, although the code generator shows robust
behavior, there is still a significant efficiency gap with respect to state-of-the-
art compiler infrastructure such as LLVM. We have identified several oppor-
tunities to improve the efficiency of the code generator by applying standard
modeling techniques: breaking symmetries in the dependency graph [6] and in
the register array, strengthening the geometric reasoning on the register array
by coalescing-aware custom propagators and inferring implied constraints to im-
prove propagation are some examples. Another possible improvement is to refine
the decomposition described in Sect. 7 into a Benders-like scheme [36], where
the local solver feeds back problem knowledge to the global solver.

We plan to study how to extend the model from this paper with instruction
selection and other code generation problems to further improve code quality.
Finally, we intend to evaluate the generality and flexibility of the model by tar-
geting more challenging architectures such as digital signal processors and Intel’s
x86. We conjecture that the additional difficulties imposed by these architectures
will only but highlight the advantages of a constraint-based approach.
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