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Dedication to David L. Waltz

Dave Waltz will always be remembered in the constraint programming commu-
nity for his seminal work on arc consistency, a concept that lies at the heart of
constraint processing. Moreover, one of the remarkable things about Dave is that
constraint programming is only one of the fields in which his research served as
a catalyst.

Dave also performed great service to the computer science community, for
example as President of the Association for the Advancement of Artificial In-
telligence, which recently presented him with its Distinguished Service Award.
In recent years, he returned to the constraint programming community to serve
generously on the Advisory Board of the Cork Constraint Computation Centre.

The research that produced Dave’s pioneering contribution to constraint pro-
gramming is a sterling illustration of several principles basic to scientific research:

• Opportunity from Challenge
• Simplicity from Complexity
• Globality from Locality



VI Dedication to David L. Waltz

Dave’s PhD thesis extended work in early machine vision on three-dimensional
interpretation of two-dimensional line drawings. This involved assigning labels,
which indicated three-dimensional edge interpetations, like “convex” or “con-
cave”, to the lines around junctions in the line drawing, and then finding a
consistent assignment across the entire scene. In the “blocks world” being stud-
ied, there was a simple, powerful “constraint” requiring lines between junctions
to have the same label at both ends, e.g. an edge could not be convex at one end
and concave at the other. In seeking to provide the ability to interpret more com-
plex scenes, Dave added many more junction labelings. However, the increased
number of options to sift through presented a challenge, especially in the context
of the modest computing power available in those days.

Out of this challenge arose the prototypical arc consistency filtering algo-
rithm that became known as the “Waltz Algorithm”. The additional richness of
understanding that his new junctions added actually aided this process, helping
the filtering algorithm to eliminate possibilities and disambiguate scenes. Finally,
the filtering algorithm achieved a global effect simply by repeated, albeit cleverly
implemented, propagation of an “atomic”, local process.

In Dave’s own words, from his Ph.D. thesis:

There is one lesson which I think is important, perhaps more important
than any other in terms of the ways it might aid future research. For
a long time after I had found the ways of describing region illumina-
tions and edge decompositions, I tried to find a clever way to collapse
the large set of line labels these distinctions implied into a smaller and
more manageable set which would retain all the “essential” distinctions,
whatever they were. Frustrated in this attempt for quite a while, I finally
decided to go ahead and include every possible labeling in the program,
even though this promised to involve a good deal of typing. I hoped that
when I ran the program certain regularities would appear, i.e. that when
the program found a particular labeling for a junction it would always
find another as well, so that the two labelings could be collapsed into
one new one with no loss of information. Of course, as it turned out, it
was the fact that I had made such precise distinctions that allowed the
program to find unique labelings. The moral of this is that one should
not be afraid of semi-infinities; a large number of simple facts may be
needed to represent what can be deduced by computation using a few
general ideas.

The willingness to face “semi-infinities” fearlessly and turn them to advantage
may be seen as a thread running through Dave’s contributions to computer
science and society, including work that foreshadowed today’s world of internet
search engines and “big data”.

Dave embraced life with great enthusiasm. If he had attended the conference
this year, he would have been keen to hear about the latest directions in which
his seminal work has led. The proceedings are dedicated to this inspiring man.

July 2012 Eugene C. Freuder



Preface

This volume contains the proceedings of the Eighteenth International Conference
on Principles and Practice of Constraint Programming (CP 2012) that was held
in Quebec City, Canada, October 8–12, 2012.

The CP conference is the annual international conference on constraint pro-
gramming. It is concerned with all aspects of computing with constraints, includ-
ing theory, algorithms, environments, languages, models, systems, and applica-
tions such as decision making, resource allocation, and agreement technologies.

Beside the technical program, CP 2012 featured two special tracks. The for-
mer was the traditional application track, which focused on industrial and aca-
demic uses of constraint technology and its comparison and integration with
other optimization techniques (MIP, local search, SAT, etc.). The second track,
featured for the first time in 2012, concentrated on multidisciplinary papers:
cross-cutting methodology and challenging applications, collecting papers that
link CP technology with other techniques like machine learning, data mining,
game theory, simulation, knowledge compilation, visualization, control theory,
and robotics. In addition the track focused on challenging application fields with
a high social impact such as CP for life sciences, sustainability, energy efficiency,
web, social sciences, finance, and verification.

The interest of the research community in this conference was witnessed by
the record number of submissions received this year. We received 186 (long and
short) papers as follows: 139 papers submitted to the main track, 28 to the
multi-disciplinary track, and 18 to the application track.

The reviewing process was headed for the first time by a two-level program
committee, consisting of senior and program committee members. Senior PC
members were responsible for managing a set of papers in their respective areas
of expertise. The main reason for splitting the program committee was that
senior PC members physically met in Bologna for a two-day meeting on June 2–
3, 2012. Each paper was extensively discussed and additional last minute reviews
were added when needed. At the end of the reviewing process we accepted 48
papers for the main CP track, 8 papers for the application track, and 12 for the
multi-disciplinary track.

Amongst the accepted papers we selected a best paper: “A Generic Method
for Identifying and Exploiting Dominance Relations” by Geoffrey Chu and Peter
Stuckey. Also, we selected a best application paper: “Scheduling Scientific Ex-
periments on the Rosetta/Philae Mission” by Gilles Simonin, Christian Artigues,
Emmanuel Hebrard, and Pierre Lopez. Finally, we awarded two honorable men-
tions to Mohamed Siala, Emmanuel Hebrard, and Marie-José Huguet for the pa-
per “An Optimal Arc Consistency Algorithm for a Chain of Atmost Constraints
with Cardinality” and to Hannes Uppman for the paper “Max-Sur-CSP on Two
Elements”.



VIII Preface

This year, authors of all accepted papers were invited to make both an oral
presentation and a poster. This volume includes the papers accepted for the
three tracks and also contains extended abstracts of three invited talks. The
invited speakers who honored the conference with their presentations were Lau-
rent Michel (Connecticut University), with a talk on “Constraint Programming
and a Usability Quest”, Miguel F. Anjos (GERAD and École Polytechnique de
Montréal), who gave a talk on “Optimization Challenges in Smart Grid Opera-
tions”, and Barry O’Sullivan (Cork Constraint Computation Centre), who gave
a talk entitled “Where Are the Interesting Problems?”.

A tradition since CP 2001, the conference included a Doctoral Program,
which allowed PhD students to come to the conference, present a poster on their
PhD topic, and meet senior researchers working on constraint programming. I
am very grateful to Michele Lombardi and Stanislav Živný, who did a wonderful
job in organizing the Doctoral Program.

CP 2012 also included three tutorials on Monte-Carlo tree search (Michel
Sebag), on Optimization for Disaster Management (Pascal Van Hentenryck),
and on Constraint Programming with Decision Diagrams (Willem-Jan van Ho-
eve). In addition the Doctoral Program tutorial was given by Warren Powell on
Stochastic Optimization. Many thanks to all the tutorialists for their great job.

I would like to thank the whole program committee for the time spent in
reviewing papers and in (sometimes very long) discussions. A special thanks goes
to all the senior program committee members for their hard work in driving the
discussions and writing meta-reviews and for coming to the physical meeting in
Bologna. I appreciated the friendly and constructive atmosphere of the meeting
and the positive feedback that I received after the meeting. I personally think
the process could always be improved, but we all did our best to have a fair and
in-depth reviewing process.

I would like to thank Mark Wallace who coped with my conflicts of interest
regarding papers from my colleagues, Barry O’Sullivan and Helmut Simonis for
their great job in preparing and organizing the special tracks, and Pascal Van
Hentenryck who enthusiastically accepted to organize a panel and a call for
position papers on the “Future of Constraint Programming”.

The conference would not have been possible without the great job done by
the Conference Chairs Gilles Pesant and Claude-Guy Quimper. They took care
of the local organization and patiently tried to go along with my requests and
wishes.

For conference publicity I warmly thank Ian Miguel and Thierry Moisan, who
did a great job in advertising the conference and the workshops and in preparing
and continuously updating the conference web site. I am very grateful to Meinolf
Sellmann who acted as Workshop Chair and put together an exciting program
with five half-day workshops.

Louis-Martin Rousseau was the sponsorship chair and he did a wonderful job
in collecting funds from a number of sponsors. I would like to thank the sponsors
who make it possible to organize this conference: the Journal of Artificial Intel-
ligence, Cercle des Ambassadeurs de Québec, IBM, Institute of Computational



Preface IX

Sustainability, NICTA, SICS, Cork Constraint Computation Centre, and CIR-
RELT. My gratitude goes also to the Easychair support team who assisted me
in the use of the system for managing submissions.

I would like to thank my family. I spent evenings and nights working on the
CP program (submissions, reviews, proceedings) and replying to thousands of
emails. They constantly supported me and shared my enthusiasm.

Last but not least, I want to thank the ACP Executive Committee, who
honoured me with the invitation to serve as Program Chair of CP 2012. This
has been a great opportunity for me to live through an intense, exciting, and
informative experience. I hope I met at least some of their expectations for CP
2012.

October 2012 Michela Milano
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Martin Sachenbacher Technische Universität München
Helmut Simonis Cork Constraint Computation Centre
Stefan Szeider Vienna University of Technology
Pascal Van Hentenryck NICTA
Peter Van Roy Université catholique de Louvain
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Ignacio Castiñeiras, Milan De Cauwer, and Barry O’Sullivan

Space-Time Tradeoffs for the Regular Constraint . . . . . . . . . . . . . . . . . . . . . 223
Kenil C.K. Cheng, Wei Xia, and Roland H.C. Yap

Inter-instance Nogood Learning in Constraint Programming . . . . . . . . . . . 238
Geoffrey Chu and Peter J. Stuckey

Solving Temporal Problems Using SMT: Strong Controllability . . . . . . . . 248
Alessandro Cimatti, Andrea Micheli, and Marco Roveri

A Characterisation of the Complexity of Forbidding Subproblems
in Binary Max-CSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265

Martin C. Cooper, Guillaume Escamocher, and Stanislav Živný
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Constraint Programming and a Usability Quest

Laurent D. Michel
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In 2004, Jean-Francois Puget presented [2] an analysis of the “simplicity of
Use” of Constraint Programming from which he articulated a series of chal-
lenges to make Constraint Programming systems accessible and easier to use.
The core of the argument was a contrast between mathematical programming
and constraint programming tools. Mathematical programming adopts a model
and run paradigm, rely on a simple vocabulary to model problems (i.e., linear
constraints), support standard formats for sharing models and benefit from ex-
tensive documentation on how to model [5]. Constraint programming features a
model and search paradigm, rich modeling languages with combinatorial objects
and has a distinctive flavor of programming. While it can be construed as CP’s
Achilles’ heel, it is also its most potent strength and is supported by model-
ing aids [3,4]. The very existence of sophisticated parameter tuning solutions for
SAT solvers and Math Programming solvers to determine ideal parameters (e.g.,
ParamILS [1]) certainly cast a major shadow on the potency of the model and
run mantra that is evolving into model and search for the right parameters.

Accessibility to CP technology is a legit concern and the appeal of turnkey
solutions cannot be underestimated. CP tools are extremely pliable and uniquely
adapted to classes of problems where all else fails. Retaining CP’s flexibility while
delivering model and run solutions suitable for a large number of situations is
the position adopted here. This talk explores developments and solutions to
the apparent quandary. Specifically, it explores automatic search for Constraint-
Based Local Search, Scheduling, and finite-domain systems, generic black-box
search procedures, automatic parallelization and assisted hybridization.
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Abstract. A smart grid is the combination of a traditional power distri-
bution system with two-way communication between suppliers and con-
sumers. While this communication is expected to deliver energy savings,
cost reductions and increased reliability and security, smart grids bring
up challenges in the management of the power system, such as integrat-
ing renewable energy sources and incorporating demand-management ap-
proaches. We discuss how optimization-based techniques are being used
to overcome some of these challenges and speculate on ways in which
constraint programming could play a greater role in this area.

Keywords: optimization, smart grid, unit commitment, demand-reponse,
load curtailment.

Electricity is a critical source of energy for society. With increasing demand for
electricity and various constraints on new generation capacity, it is imperative to
increase the overall efficiency of the power system. This need has motivated the
concept of smart grids. A smart grid is the combination of a traditional power dis-
tribution system with two-way communication between suppliers and consumers.
For example, a smart grid will in principle support two-way interaction with
individual homes to achieve system-wide objectives [1]. Smart grids introduce
important challenges in the management of the resulting system. These include
integrating renewable energy sources such as wind and solar energy, managing
bidirectional flows of power, and incorporating demand-response. We present
two areas in which optimization-based techniques are being used to overcome
some of these challenges. We also aim to encourage the constraint programming
community to play a greater role in this area.

1 The Unit Commitment Problem

Given a set of power generators and a set of electricity demands, the unit commit-
ment (UC) problem wants to minimize the cost to produce the required amount
of electricity while ensuring that all generators operate within their physical lim-
its [5]. The solution to the problem consists of an optimal production schedule
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for each generator. Because of the operating constraints of the generator and the
behaviour of the power network, the UC problem is a nonlinear mixed-integer
optimization problem. Real-life instances of UC are typically large-scale and
difficult to solve. Traditionally, the problem has been solved using Lagrangian
relaxation. It can also be addressed using mixed-integer linear programming
(MILP) and this approach is now commonly used in practice. We present some
of our recent contributions to solving these MILP problems, including a tight-
ened representation of the polytope of feasible power generation schedules [4]
and the exploitation of symmetry in the presence of many generators with iden-
tical characteristics [3]. Important issues requiring further research will also be
discussed.

2 Optimal Load Curtailment

Electricity demand changes continuously and these fluctuations are often con-
siderable. With increasing demand for electricity and various constraints on new
generation capacity, an important objective is to decrease peaks in order to in-
crease the utilization of existing capacity and hence the overall efficiency of the
system. Demand-response aims to induce changes in the consumption patterns
of electricity consumers so as to reduce the peaks in power demand. Studies
have shown that schemes such as dynamic pricing have limited success, because
most consumers have limited price sensitivity [2]. Load curtailment refers to a
customer’s reduction of energy consumption upon request and in exchange for
financial compensation. Load curtailment is one of the demand-response initia-
tives proposed in Europe and America during the last decade [6]. The problem
of delivering load curtailments at minimum cost over a given time horizon leads
to challenging optimization models with a strong combinatorial structure and a
large search space. We will present some of our ongoing research in this area in
collaboration with a major load-curtailment service provider.
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Abstract. Constraint programming has become an important technol-
ogy for solving hard combinatorial problems in a diverse range of appli-
cation domains. It has its roots in artificial intelligence, mathematical
programming, operations research, and programming languages. In this
talk we will discuss a number of challenging application domains for con-
straint programming, and the technical challenges that these present to
the research community.

1 Introduction

Constraint programming (CP) is a technology for solving combinatorial optimi-
sation problems [3]. A major generic challenge that faces CP is scalability [2],
largely because the problems to which it is usually applied are computationally
intractable (NP-Hard). While CP has been successfully applied in domains such
as scheduling, timetabling, planning, inventory management and configuration,
many instances of these problems are extremely challenging for traditional CP
methods due to their hardness.

However, an emerging dimension of scale relates to problem size, and the
volume of data available that is relevant to solving a particular instance, e.g.
extremely large domain sizes, or very large extensionally defined constraints of
high arity. In 2009 information on the web was doubling every 18 months. It is
now believed that this occurs in less than 12 months. This exponential growth
in data, often referred to as the “big data” challenge, presents us with major
opportunities. For example, McKinsey Global Institute estimates that European
government administrations could benefit from over e 250 billion in operational
efficiencies by properly exploiting “big data”.

Another major challenge in real-world application domains is uncertainty [4,5].
For example, in scheduling, the duration of a task might be uncertain, while in
inventory management there might be uncertainty related to customer demand.
Surprising, even predicting the future does not imply that we can make better de-
cisions. The interactions between the choices that face us are usually interlinked
in complex ways. Being able to react appropriately to risk is more important
than knowing about the risk or even modelling it. The traditional “get data
– model – implement”–cycle is no longer sufficient in most domains. We often

� This work was supported by Science Foundation Ireland Grant 10/IN.1/3032.
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need to deal with large amounts of rapidly changing data whereby adaptation
becomes key. The study of managing complex sources of data upon which we
must make complex, risky, economic or environmentally important, decisions
provides a compelling context for constraint programming [1].

2 Challenge Domains

A number of important application domains are emerging due to the growth in
large-scale and complex computing infrastructure, a desire to improve business
efficiency, the need for improved quality in public services, and demands for sus-
tainable environmental planning. In this talk we will discuss several examples
including: data centre optimisation, e.g. energy management through workload
consolidation; innovative enterprise and public service delivery, e.g. optimising
access to diagnostic health services; optimised human mobility and smart cities,
e.g. integrating mobility mining and constraint programming; and, natural re-
source management, sometimes referred to as computational sustainability.

3 Technical Challenges

In this talk a set of specific technical challenges are presented, motivated by
the complexities of decision making in data-rich domains such as those high-
lighted above. There is the general challenge of integrating CP with other tech-
nical disciplines to provide a holistic solution to specific classes of problems,
or to address the requirements of particular application domains. Therefore,
CP must integrate with a variety of other technical domains in order to meet
these challenges such as: machine learning; data mining; game theory; simula-
tion; knowledge compilation; visualization; control theory; engineering; medicine
and health; bioscience; and mathematics. Domain-specific integrations must also
emerge in areas such as: life sciences, sustainability, energy efficiency, the web,
social sciences, and finance. A sample of such opportunities are discussed in this
talk.
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Abstract. Many constraint problems exhibit dominance relations
which can be exploited for dramatic reductions in search space. Domi-
nance relations are a generalization of symmetry and conditional symme-
try. However, unlike symmetry breaking which is relatively well studied,
dominance breaking techniques are not very well understood and are not
commonly applied. In this paper, we present formal definitions of dom-
inance breaking, and a generic method for identifying and exploiting
dominance relations via dominance breaking constraints. We also give a
generic proof of the correctness and compatibility of symmetry breaking
constraints, conditional symmetry breaking constraints and dominance
breaking constraints.

1 Introduction

In a constraint satisfaction or optimization problem, dominance relations de-
scribe pairs of assignments where one is known to be at least as good as the other
with respect to satisfiability or the objective function. When such dominance re-
lations are known, we can often prune off many of the solutions without changing
the satisfiability or the optimal value of the problem. Many constraint problems
exhibit dominance relations which can be exploited for significant speedups (e.g.,
[16,25,3,18,24,22,6,12]).

Dominance relations are a generalization of symmetry and conditional sym-
metry and offer similar or greater potential for reductions in search space. Unlike
symmetries however, dominance relations are not very widely exploited. Dom-
inance relations can be hard to identify, and there are few standard methods
for exploiting them. It it also often hard to prove that a particular method is
correct, especially when multiple dominance relations are being exploited simul-
taneously. These issues have been overcome in the case of symmetry, which is
why symmetry breaking is now standard and widely used. Dominance relations
have been successfully applied in a number of problems, but their treatment is
often very problem specific and yields little insight as to how they can be gen-
eralized. In this paper, we seek to advance the usage of dominance relations by
making the following contributions:

– We describe a generic method for identifying and exploiting a large class of
dominance relations using dominance breaking constraints.
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– We show that our method naturally produces symmetry breaking and con-
ditional symmetry breaking constraints as well (since they are simply special
cases of dominance breaking).

– We give a generic theorem proving the correctness and compatibility of all
symmetry breaking, conditional symmetry breaking and dominance breaking
constraints generated by our method.

The layout of the paper is as follows. In Section 2, we give our definitions. In
Section 3, we describe our method of identifying and exploiting dominance rela-
tions using dominance breaking constraints. In Section 4, we describe how our
method can be extended to generate symmetry and conditional symmetry break-
ing constraints as well. In Section 5, we discuss related work. In Section 6, we
provide experimental results. In Section 7, we discuss future work. In Section 8,
we conclude.

2 Definitions

To facilitate rigorous proofs in the later sections, we will give our own definitions
of variables, domains, constraints, constraint problems and dominance relations.
These are slightly different from the standard definitions but are equivalent to
them in practice.

Let ≡ denote syntactical identity,⇒ denote logical implication and⇔ denote
logical equivalence. We define variables and constraints in a problem independent
way. A variable v is a mathematical quantity capable of assuming any value from
a set of values called the default domain of v. Each variable is typed, e.g., Boolean
or Integer, and its type determines its default domain, e.g., {0, 1} for Boolean
variables and Z for Integer variables. Given a set of variables V , let ΘV denote
the set of valuations over V where each variable in V is assigned to a value
in its default domain. A constraint c over a set of variables V is defined by a
set of valuations solns(c) ⊆ ΘV . Given a valuation θ over V ′ ⊃ V , we say θ
satisfies c if the restriction of θ onto V is in solns(c). Otherwise, we say that
θ violates c. A domain D over variables V is a set of unary constraints, one
for each variable in V . In an abuse of notation, if a symbol A refers to a set
of constraints {c1, . . . , cn}, we will often also use the symbol A to refer to the
constraint c1 ∧ . . . ∧ cn. This allows us to avoid repetitive use of conjunction
symbols.

A Constraint Satisfaction Problem (CSP) is a tuple P ≡ (V,D,C), where V
is a set of variables, D is a domain over V , and C is a set of n-ary constraints.
A valuation θ over V is a solution of P if it satisfies every constraint in D
and C. The aim of a CSP is to find a solution or to prove that none exist. In
a Constraint Optimization Problem (COP) P ≡ (V,D,C, f), we also have an
objective function f mapping ΘV to an ordered set, e.g., Z or R, and we wish
to minimize or maximize f over the solutions of P . In this paper, we deal with
finite domain problems only, i.e., where the initial domain D constrains each
variable to take values from a finite set of values.
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We define dominance relations over full valuations. We assume that all objec-
tive functions are to be minimized, and consider constraint satisfaction problems
as constraint optimization problems with f(θ) = 0 for all valuations θ.

Definition 1. A dominance relation ≺ for COP P ≡ (V,D,C, f) is a transitive
and irreflexive binary relation on ΘV such that if θ1 ≺ θ2, then either: 1) θ1 is
a solution and θ2 is a non-solution, or 2) they are both solutions or both non-
solutions and f(θ1) ≤ f(θ2).

If θ1 ≺ θ2, we say that θ1 dominates θ2. Note that we require our dominance
relations to be irreflexive. This means that no loops can exist in the dominance
relation, and makes it much easier to ensure the correctness of the method. The
following theorem states that it is correct to prune all dominated assignments.

Theorem 1. Given a finite domain COP P ≡ (V,D,C, f), and a dominance
relation ≺ for P , we can prune all assignments θ such that ∃θ′ s.t. θ′ ≺ θ,
without changing the satisfiability or optimal value of P .

Proof. Let θ0 be an optimal solution. If θ0 is pruned, then there exists some
solution θ1 s.t. θ1 ≺ θ0. Then θ1 must be a solution with f(θ1) ≤ f(θ0), so θ1 is
also an optimal solution. In general, if θi is pruned, then there must exist some
θi+1 s.t. θi+1 ≺ θi and θi+1 is also an optimal solution. Since ≺ is transitive and
irreflexive, it is impossible for the sequence θ0, θ1, . . . to repeat. Then since there
are finitely many solutions, the sequence must terminate in some θk which is an
optimal solution and which is not pruned. ��

We can extend ≺ to relate search nodes in the obvious way.

Definition 2. Let D1 and D2 be the domains from two different search nodes.
If ∀θ2 ∈ solns(D2), ∃θ1 ∈ solns(D1) s.t. θ1 ≺ θ2, then we define D1 ≺ D2.

Clearly if D1 ≺ D2, Theorem 1 tells us that we can safely prune the search
node with D2. We call the pruning allowed by Theorem 1 dominance breaking
in keeping with symmetry breaking for symmetries.

Dominance relations can be derived either statically before search or dynam-
ically during search in order to prune the search space. It is easy to see that
static symmetry breaking (e.g., [7,10]) are a special case of static dominance
breaking. For example, consider the lex-leader method of symmetry breaking.
Suppose S is a symmetry group of problem P . Suppose lex(θ) is the lexicograph-
ical function being used in the lex-leader method. We can define a dominance
relation: ∀σ ∈ S, ∀θ, σ(θ) ≺ θ if lex(σ(θ)) < lex(θ). Then applying Theorem 1
to ≺ gives the lex-leader symmetry breaking constraint (i.e., prune all solu-
tions which are not the lex-leader in their equivalence class). Similarly, dynamic
symmetry breaking techniques such as Symmetry Breaking During Search [15]
and Symmetry Breaking by Dominance Detection [8,11] are special cases of dy-
namic dominance breaking. Nogood learning techniques such as Lazy Clause
Generation [23,9] and Automatic Caching via Constraint Projection [5] are also
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examples of dynamic dominance breaking. We will discuss these two methods in
more detail in Section 5.

Just as in the case of symmetry breaking, it is generally incorrect to simulta-
neously post dominance breaking constraints for multiple dominance relations.
This is because dominance relations only ensure that one assignment is at least
as good as the other (not strictly better than), thus when we have multiple dom-
inance relations, we could have loops such as θ1 ≺1 θ2 and θ2 ≺2 θ1, and posting
the dominance breaking constraint for both ≺1 and ≺2 would be wrong. We
have to take care when breaking symmetries, conditional symmetries and dom-
inances that all the pruning we perform are compatible with each other. As we
shall show below, one of the advantages of our method is that all the symmetry
breaking, conditional symmetry breaking and dominance breaking constraints
generated by our method are provably compatible.

Dominance breaking constraints can be particularly useful in optimization
problems, because they provide a completely different and complementary kind
of pruning to the branch and bound paradigm. In the branch and bound
paradigm, the only way to show that a partial assignment is suboptimal is to
prove a sufficiently strong bound on its objective value. Proving such bounds
can be very expensive, especially if the model does not propagate strong bounds
on the objective. In the worst case, further search is required, which can take an
exponential amount of time. On the other hand, dominance breaking can prune
a partial assignment without having to prove any bounds on its objective value
at all, since it only needs to know that the partial assignment is suboptimal.
Once dominance relations expressing conditions for suboptimality are found and
proved, the only cost in the search is to check whether a partial assignment is
dominated, which can often be much lower than the cost required to prove a
sufficiently strong bound to prune the partial assignment.

3 Identifying and Exploiting Dominance Relations

3.1 Overview of Method

We now describe a generic method for identifying and exploiting a fairly large
class of dominance relations using dominance breaking constraints. The idea is to
use mappings σ from valuations to valuations to construct dominance relations.
Given a mapping σ, we ask: under what conditions does σ map a solution to a
better solution? If we can find these conditions, then we can build a dominance
relation using these conditions and exploit it by posting a dominance breaking
constraint. More formally:

Step 1 Find mappings σ : ΘV → ΘV which are likely to map solutions to better
solutions.

Step 2 For each σ, find a constraint scond(σ) s.t. if θ ∈ solns(C∧D∧scond(σ)),
then σ(θ) ∈ solns(C ∧D).

Step 3 For each σ, find a constraint ocond(σ) s.t. if θ ∈ solns(C∧D∧ocond(σ)),
then f(σ(θ)) < f(θ).
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Step 4 For each σ, post the dominance breaking constraint db(σ) ≡ ¬(scond(σ)∧
ocond(σ)).

The following theorem proves the correctness of this method.

Theorem 2. Given a finite domain COP P ≡ (V,D,C, f), a set of mappings
S, and for each mapping σ ∈ S constraints scond(σ) and ocond(σ) satisfying:
∀σ ∈ S, if θ ∈ solns(C ∧D∧ scond(σ)), then σ(θ) ∈ solns(C ∧D), and: ∀σ ∈ S,
if θ ∈ solns(C ∧ D ∧ ocond(σ)), then f(σ(θ)) < f(θ), we can add all of the
dominance breaking constraints db(σ) ≡ ¬(scond(σ) ∧ ocond(σ)) to P without
changing its satisfiability or optimal value.

Proof. Construct a binary relation ≺ as follows. For each σ, for each θ ∈
solns(C ∧ D ∧ scond(σ) ∧ ocond(σ)), define σ(θ) ≺ θ. Now, take the transi-
tive closure of ≺. We claim that ≺ is a dominance relation. It is transitive by
construction. Also, by construction, θ ∈ solns(C ∧ D ∧ scond(σ) ∧ ocond(σ))
guarantees that σ(θ) is a solution and that f(σ(θ)) < f(θ). Thus ∀θ1, θ2, θ1 ≺ θ2
implies that θ1 and θ2 are solutions, and that f(θ1) < f(θ2). This means that
≺ is irreflexive and satisfies all the properties of a dominance relation, thus by
Theorem 1, we can prune any θ ∈ solns(C ∧D∧ scond(σ)∧ ocond(σ)) for any σ
without changing the satisfiability or optimality of P . Thus it is correct to add
db(σ) for any σ to P . ��
Note that there are no restrictions on σ. It does not have to be injective or
surjective. The db(σ) are guaranteed to be compatible because they all obey
the same strict ordering imposed by the objective function f , i.e., they prune a
solution only if a solution with strictly better f value exists. We illustrate the
method with two simple examples before we go into more details.

Example 1. Consider the Photo problem. A group of people wants to take a
group photo where they stand in one line. Each person has preferences regarding
who they want to stand next to. We want to find the arrangement which satisfies
the most preferences.

We can model this as follows. Let xi ∈ {1, . . . , n} for i = 1, . . . , n be variables
where xi represent the person in the ith place. Let p be a 2d integer array
where p[i][j] = p[j][i] = 2 if person i and j both want to stand next to each
other, p[i][j] = p[j][i] = 1 if only one of them wants to stand next to the other,
and p[i][j] = p[j][i] = 0 if neither want to stand next to each other. The only
constraint is: alldiff (x1, . . . , xn). The objective function to be minimized is given

by: f = −
∑n−1

i=1 p[xi][xi+1].

Step 1. Since this is a sequence type problem, mappings which permute the
sequence in some way are likely to map solutions to solutions. For simplicity,
consider the set of mappings which flip a subsequence of the sequence, i.e.,
∀i < j, σi,j maps xi to xj , xi+1 to xj−1, . . ., xj to xi.

Step 2. We want to find the conditions under which σ maps solutions to solutions.
Since all of these σ are symmetries of C ∧D, we do not need any conditions and
it is sufficient to set scond(σi,j) ≡ true.
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Step 3. We want to find the conditions under which f(σi,j(θ)) < f(θ). If we com-
pare the LHS and RHS, it is clear that the only difference is the terms p[xi−1][xj ],
p[xi][xj+1] on the LHS and the terms p[xi−1][xi], p[xj ][xj+1] on the RHS. So it is
sufficient to set ocond(σi,j) ≡ p[xi−1][xj ]+p[xi][xj+1] > p[xi−1][xi]+p[xj][xj+1].

Step 4. For each σi,j , we can post the dominance breaking constraint:
¬(p[xi−1][xj ] + p[xi][xj+1] > p[xi−1][xi] + p[xj ][xj+1]).
These dominance breaking constraints ensure that if some subsequence of the
assignment can be flipped to improve the objective, then the assignment is
pruned. �

Example 2. Consider the 0-1 knapsack problem where xi are 0-1 variables, we
have constraint

∑
wixi ≤W and we have objective f = −

∑
vixi, where wi and

vi are constants.

Step 1. Consider mappings which swap the values of two variables, i.e., ∀i <
j, σi,j swaps xi and xj .

Step 2. A sufficient condition for σi,j to map the current solution to another
solution is: scond(σi,j) ≡ wixj + wjxi ≤ wixi + wjxj . Rearranging, we get:
(wi − wj)(xi − xj) ≥ 0.

Step 3. A sufficient condition for σi,j to map the current solution to an assign-
ment with a better objective function is: ocond(σi,j) ≡ vixj+vjxi > vixi+vjxj .
Rearranging, we get: (vi − vj)(xi − xj) < 0.

Step 4. For each σi,j , we can post the dominance breaking constraint: db(σi,j) ≡
¬(scond(σi,j) ∧ ocond(σi,j)). After simplifying, we have db(σi,j) ≡ xi ≤ xj if
wi ≥ wj and vi < vj , db(σi,j) ≡ xi ≥ xj if wi ≤ wj and vi > vj , and db(σi,j) ≡
true for all other cases.

These dominance breaking constraints ensure that if one item has worse value
and greater or equal weight to another, then it cannot be chosen without choosing
the other also. �

3.2 Step 1: Finding Appropriate Mappings σ

In general, we want to find σ’s such that scond(σ) and ocond(σ) are as small
and simple as possible, as this will lead to dominance breaking constraints that
are easier to propagate and prune more. So we want σ such that it often maps a
solution to a better solution. σ’s which are symmetries or almost symmetries of
the problem make good candidates, since their scond(σ) will be simple, and all
else being equal, there is around a 50% chance that it will map the solution to one
with a better objective value. In general, we can try all the common candidates
for symmetries such as swapping two variables, swapping two values, swapping
two rows/columns in matrix type problems, flipping/moving a subsequence in a
sequence type problem, etc. Mappings which are likely to map an assignment to
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one with better objective value are also good candidates, since their ocond(σ)
will be simple. For example, in scheduling problems minimizing makespan, we
can try shifting items forwards in the schedule. There may also be problem
specific σ’s that we can try.

3.3 Step 2: Finding scond(σ)

We can calculate scond(σ) straightforwardly with the help of the following def-
inition.

Definition 3. Given a mapping σ : ΘV → ΘV , we can extend σ to map con-
straints to constraints as follows. Given a constraint c, σ(c) is defined as a
constraint over V such that θ satisfies σ(c) iff σ(θ) satisfies c.

For example, if c ≡ x1 + 2x2 + 3x3 ≥ 10, and σ swaps x1 and x3, then
σ(c) ≡ x3 + 2x2 + 3x1 ≥ 10. Or if c ≡ (x1, x2) ∈ {(1, 1), (2, 3), (3, 1)}, and
σ permutes the values (1, 2, 3) to (2, 3, 1) on x1 and x2, then σ(c) ≡ (x1, x2) ∈
{(3, 3), (1, 2), (2, 3)}.

It is easy to define σ(c), however, σ(c) may or may not be a simple logical
expression. For example, if c ≡ x1 + 2x2 ≥ 5 and σ swaps the values 1 and 2,
then σ(c) ≡ (x1 = 1 ∧ x2 = 1) ∨ (x1 = 2 ∧ x2 = 1) ∨ (x1 �= 1 ∧ x1 �= 2 ∧ x2 �=
1 ∧ x2 �= 2 ∧ x1 + 2x2 ≥ 5) which does not simplify at all.

For each σ, we want to find a sufficient condition scond(σ) so that if a solution
satisfied scond(σ), then σ maps it to another solution. A necessary and sufficient
condition is: C∧D∧scond(σ)⇒ σ(C∧D), i.e., C and D together with scond(σ)
must imply the mapped versions of every constraint in C and D.

We can construct scond(σ) as follows. We calculate σ(c) for each c ∈ C ∪D.
If it is not implied by C ∧ D, then we add a constraint c′ to scond(σ) such
that C ∧ D ∧ c′ → σ(c). For example, in the knapsack problem in Example 2,
σi,j(C) ≡ w1x1 + . . . + wixj + . . . + wjxi + . . . wnxn ≤ W . It is easy to see
that

∑
wixi ≤ W ∧ wixj + wjxi ≤ wixi + wjxj ⇒ σi,j(C), hence we could set

scond(σi,j) ≡ wixj + wjxi ≤ wixi + wjxj .
If σ is a symmetry of C ∧D then scond(σ) ≡ true. If σ is almost a symmetry

of C ∧D, then scond(σ) is usually fairly small and simple, because most of the
σ(c) are already implied by C ∧D.

3.4 Step 3: Finding ocond(σ)

We assume that the objective function f(θ) is defined over all assignments (not
just solutions). We first give a few definitions.

Definition 4. Given a function σ mapping assignments to assignments, we ex-
tend σ to map functions to functions as follows: ∀θ, σ(f)(θ) = f(σ(θ)).

Definition 5. Given two functions mapping assignments to the reals f and g,
we use f < g to denote a constraint such that: θ satisfies f < g iff f(θ) < g(θ).



A Generic Method for Identifying and Exploiting Dominance Relations 13

For each σ, we want to find a sufficient condition ocond(σ) so that if a solution
satisfied ocond(σ), then σ maps it to an assignment with a strictly better ob-
jective value. A necessary and sufficient condition is: C ∧ ocond(σ)⇒ σ(f) < f .
We can typically just set ocond(σ) ≡ σ(f) < f . For example, in both the Photo
and Knapsack examples above, we simply calculated σ(f) < f , eliminated equal
terms from each side, and used that as ocond(σ).

3.5 Step 4: Posting the Dominance Breaking Constraint

Once we have found scond(σ) and ocond(σ), we can construct the dominance
breaking constraint db(σ) ≡ ¬(scond(σ) ∧ ocond(σ)) and simplify it as much as
possible. If it is simple enough to implement efficiently, we can add it to the
problem. If not, we can simply ignore it, as it is not required for the correctness
of the method. It is quite common that the dominance breaking constraint for
different σ’s will have common subexpressions. We can take advantage of this to
make the implementation of the dominance breaking constraints more efficient.

4 Generating Symmetry and Conditional Symmetry
Breaking Constraints

The method described so far only finds dominance breaking constraints which
prune a solution when its objective value is strictly worse than another. We can
do better than this, as there are often pairs of solutions which have equally good
objective value and we may be able to prune many of them. Exploiting such sets
of equally good pairs of solution is called symmetry breaking and conditional
symmetry breaking. We show that with a slight alteration, our method will
generate dominance breaking constraints that will also break symmetries and
conditional symmetries.

We modify the method as follows. We add in a Step 0, and alter Step 3 slightly.

Step 0 Choose a refinement of the objective function f ′ with the property that
∀θ1, θ2, f(θ1) < f(θ2) implies f ′(θ1) < f ′(θ2).

Step 3* For each σ, find a constraint ocond(σ) s.t. if θ ∈ solns(C∧D∧ocond(σ)),
then f ′(σ(θ)) < f ′(θ).

We have the following theorem concerning the correctness of the altered method.

Theorem 3. Given a finite domain COP P ≡ (V,D,C, f), a refinement of the
objective function f ′ satisfying ∀θ1, θ2, f(θ1) < f(θ2) implies f ′(θ1) < f ′(θ2),
a set of mappings S, and for each mapping σ ∈ S constraints scond(σ) and
ocond(σ) satisfying: ∀σ ∈ S, if θ ∈ solns(C ∧ D ∧ scond(σ)), then σ(θ) ∈
solns(C∧D), and: ∀σ ∈ S, if θ ∈ solns(C∧D∧ocond(σ)), then f ′(σ(θ)) < f ′(θ),
we can add all of the dominance breaking constraints db(σ) ≡ ¬(scond(σ) ∧
ocond(σ)) to P without changing its satisfiability or optimal value.

Proof. The proof is analogous to that of Theorem 2.
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The db(σ) are guaranteed to be compatible because they all obey the same strict
ordering imposed by the refined objective function f ′, i.e., they prune a solu-
tion only if a solution with strictly better f ′ value exists. Theorem 3 is a very
useful result as it is generally quite difficult to tell whether different symme-
try, conditional symmetry or dominance breaking constraints are compatible.
There are lots of examples in literature where individual dominance breaking
constraints are proved correct, but no rigorous proof is given that they are cor-
rect when used together (e.g., [12,6,14]). The symmetry, conditional symmetry
or dominance breaking constraints generated by our method are guaranteed to
be compatible by Theorem 3, thus the user of the method does not need to prove
anything themselves. We now show with some examples how the altered method
can generate symmetry and conditional symmetry breaking constraints.

Example 3. Consider the Photo problem from Example 1. Suppose that in Step
0, instead of setting f ′ = f , we set f ′ = lex(f, x1, . . . , xn), the lexicographic least
vector (f, x1, . . . , xn). That is, we order the solutions by their objective value, and
then tie break by the value of x1, then by x2, etc. Clearly, f(θ1) < f(θ2) implies
f ′(θ1) < f ′(θ2) so it is a refinement. Now, consider what happens in Step 3. In
general, we have σ(lex(f1, . . . , fn)) < lex(f1, . . . , fn)⇔ lex(σ(f1), . . . , σ(fn)) <
lex(f1, . . . , fn) ⇔ (σ(f1) < f1) ∨ (σ(f1) = f1 ∧ σ(f2) < f2) ∨ . . . ∨ (σ(f1) =
f1 ∧ . . . ∧ σ(fn−1) = fn−1 ∧ σ(fn) < fn).

In this problem, we have: ∀i < j, ocond(σi,j) ≡ σ(f ′) < f ′ ≡ (p[xi−1][xj ] +
p[xi][xj+1] > p[xi−1][xi] + p[xj ][xj+1])∨ (p[xi−1][xj ] + p[xi][xj+1] = p[xi−1][xi] +
p[xj ][xj+1] ∧ x[j] < x[i]). There is an additional term in ocond(σi,j) which says
that we can also prune the current assignment if the flipped version has equal
objective value but a better lexicographical value for {x1, . . . , xn}. Thus db(σi,j)
not only breaks dominances but also includes a conditional symmetry breaking
constraint. Similarly, consider σ1,n. Because it is a boundary case, the terms in
σ(f) and f all cancel and we have ocond(σ1,n) ≡ x[n] < x[1], so db(σ1,n) ≡
x[1] ≤ x[n] which is simply a symmetry breaking constraint. �

Example 4. Consider the Knapsack problem from Example 2. In Step 0, we can
tie break solutions with equal objective value by the weight used, and then
lexicographically, i.e., f ′ = lex(f,

∑
wixi, x1, . . . , xn). In Step 3, we have: ∀i <

j, ocond(σi,j) ≡ σ(f ′) < f ′ ≡ ((vi − vj)(xi − xj) < 0) ∨ ((vi − vj)(xi − xj) =
0∧(wi−wj)(xi−xj) > 0)∨((vi−vj)(xi−xj) = 0∧(wi−wj)(xi−xj) = 0∧xj < xi).
In Step 4, after simplifying, in addition to the dominance breaking constraints
we had before, we would also have: db(σi,j) ≡ xi ≤ xj if wi > wj and vi = vj ,
db(σi,j) ≡ xi ≥ xj if wi < wj and vi = vj , and db(σi,j) ≡ xi ≤ xj if wi = wj and
vi = vj which is a symmetry breaking constraint. �

We can also apply the altered method to satisfaction problems to generate sym-
metry and conditional symmetry breaking constraints.

Example 5. The Black Hole Problem [14] seeks to find a solution to the Black
Hole patience game. In this game the 52 cards of a standard deck are laid out
in 17 piles of 3, with the Ace of spades starting in a “black hole”. Each turn, a
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card at the top of one of the piles can be played into the black hole if it is ±1
from the card that was played previously, with king wrapping back around to
ace. The aim is to play all 52 cards. We can model the problem as follows. Let
the suits be numbered from 1 to 4 in the order spades, hearts, clubs, diamonds.
Let the cards be numbered from 1 to 52 so that card i has suit (i − 1)/13 + 1
and number (i− 1)%13+ 1, where 11 is jack, 12 is queen and 13 is king. Let li,j
be the jth card in the ith pile in the initial layout. Let xi be the turn in which
card i was played. Let yi be the card which was played in turn i. We have:

x1 = 1 (1)

inverse(x, y) (2)

xli,j < xli,j+1 ∀1 ≤ i ≤ 17, 1 ≤ j ≤ 2 (3)

(yi+1 − yi)%13 ∈ {−1, 1} ∀1 ≤ i ≤ 51 (4)

We now apply our method. Since cards which are nearer to the top of the piles
are much more likely to be played early on, we choose a lexicographical ordering
which reflects this. We define f ′ = lex(xl1,1 , . . . , xl17,1 , . . . , xl1,3 , . . . , xl17,3). An
obvious set of mappings that are likely to map solutions to solutions is to swap
cards of the same number in the sequence of cards to be played. Consider σi,j

for i− j%13 = 0, i �= 1, j �= 1 where σi,j swaps xi and xj , and swaps the values
of i and j among {y1, . . . , y52}.

Now we construct scond(σi,j). For each constraint c in the problem, we need to
find a c′ such that C∧D∧c′ ⇒ σi,j(c) and add it to scond(σi,j). Clearly, the do-
main constraints and the constraints in (1), (2) and (4) are all symmetric in σi,j ,
so we do not need to add anything for them. However, there will be some con-
straints in (3) which are not symmetric in σi,j . For example, suppose we wished
to swap 3♠ and 3♥, and they were in piles: (2♠, 3♠, 5♣) and (1♦, 3♥, 6♦), where
3♠ is in lexicographically earlier pile than 3♥. The constraints in 3 which are not
symmetric in σi,j are those involving 3♠ or 3♥, i.e., 2♠ < 3♠, 3♠ < 5♣, 1♦ < 3♥
and 3♥ < 6♦. Their symmetric versions are 2♠ < 3♥, 3♥ < 5♣, 1♦ < 3♠ and
3♠ < 6♦ respectively, so we can set scond(σ2,15) ≡ 2♠ < 3♥∧ 3♥ < 5♣∧ 1♦ <
3♠∧ 3♠ < 6♦. To construct ocond(σi,j), we can set ocond(σi,j) ≡ σi,j(f

′) < f ′.
For this example, we have ocond(σ2,15) ≡ 3♥ < 3♠. Combining, we have
db(σ2,15) ≡ ¬(2♠ < 3♥ ∧ 3♥ < 5♣ ∧ 1♦ < 3♠ ∧ 3♠ < 6♦ ∧ 3♥ < 3♠). We
can use the constraints in the original problem to simplify this further. Since
3♠ < 5♣ is an original constraint and 3♥ < 3♠∧ 3♠ < 5♣ ⇒ 3♥ < 5♣, we can
eliminate the second term in db(σ2,15). Since 1♦ < 3♥ is an original constraint
and 1♦ < 3♥ ∧ 3♥ < 3♠ ⇒ 1♦ < 3♠, we can eliminate the third term in
db(σ2,15). The result is db(σ2,15) ≡ ¬(2♠ < 3♥ ∧ 3♠ < 6♦ ∧ 3♥ < 3♠). The
other cases are similar. �

Although the conditional symmetry breaking constraints derived in Example 5
are identical to those derived in [14], our method is much more generic and can be
applied to other problems as well. Also, no rigorous proof of correctness is given
in [14], whereas Theorem 3 shows that these conditional symmetry breaking
constraints are compatible. In this problem it is quite possible to derive multiple
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incompatible conditional symmetry breaking constraints which are individually
correct. For example, suppose in addition to (2♠, 3♠, 5♣) and (1♦, 3♥, 6♦), we
had a third pile (2♥, 3♦, 7♠), then the following conditional symmetry breaking
constraints are all individually correct: ¬(2♠ < 3♥ ∧ 3♠ < 6♦ ∧ 3♥ < 3♠),
¬(2♥ < 3♠∧3♦ < 5♣∧3♠ < 3♦), ¬(1♦ < 3♦∧3♥ < 7♠∧3♦ < 3♥), but they
are incompatible. For example, no matter which permutation of 3♠, 3♥, and 3♦
is applied, the partial solution 1♠, 2♥, 1♦, 2♥, 3♠, 4♠, 3♥, 4♦, 3♦ is pruned by
one of the three conditional symmetry breaking constraints. Our method will
never produce such incompatible sets of dominance breaking constraints.

Example 6. The Nurse Scheduling Problem (NSP) is to schedule a set of nurses
over a time period such that work and hospital regulations are all met, and as
many of the nurses’ preferences are satisfied. There are many variants of this
problem in the literature (e.g., [21,2]). We pick a simple variant to illustrate our
method. Each day has three shifts: day, evening, and overnight. On each day,
each nurse should be scheduled into one of the three shifts or scheduled a day
off. For simplicity, we can consider a day off to be a shift as well. We number the
shifts as day: 1, evening: 2, over-night: 3, day-off: 4. Each shift besides day-off
requires a minimum number ri of nurses to be rostered. Nurses cannot work for
more than 6 days in a row, and must work at least 10 shifts per 14 days. Each
nurse i has a preference pi,j for which of the four shift they wish to take on day
j. The objective is to maximize the number of satisfied preferences. Let n be the
number of nurses and m be the number of days. Let xi,j be the shift that nurse
i is assigned to on day j. Then the problem can be stated as follows:

Maximize

n∑
i=1

m∑
j=1

(xi,j = pi,j)

Subject to

among(ri,∞, [xk,j | 1 ≤ k ≤ n], i) ∀1 ≤ i ≤ 3, 1 ≤ j ≤ m (5)

among(1,∞, [xi,j | k ≤ j < k + 7], 4) ∀1 ≤ i ≤ n, 1 ≤ k ≤ n− 6 (6)

among(−∞, 4, [xi,j | k ≤ j < k + 14], 4) ∀1 ≤ i ≤ n, 1 ≤ k ≤ n− 13 (7)

Where among(l, u, [x1, . . . , xn], v) means that there are at least l and at most
u variables from among [x1, . . . , xn] which take the value v. We now apply our
dominance breaking method. Firstly, we can potentially get some symmetry or
conditional symmetry breaking in by refining the objective function to f ′ =
lex(f, x1,1, x2,1, . . . , xn,m). Let us consider mappings which are likely to map
solutions to solutions. An obvious set of candidates are mappings which swap
the shifts of two nurses on the same day, i.e., mappings σi1,i2,j which swap xi1,j

and xi2,j.
We wish to calculate scond(σi1,i2,j). For each c ∈ C ∪ D, we need to find c′

such that C ∧D∧ c′ ⇒ σi1,i2,j(c). It is easy to see that the constraints in (5) are
all symmetric in σi1,i2,j , so we do not need to add anything to scond(σi1,i2,j).
The constraints among(1,∞, [xi,j | k ≤ j < k + 7], 4) in (6) will be satisfied by
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σ(θ) iff: xi1,j �= 4 ∨ xi2,j = 4 ∨ among(1,∞, [xi,j | k ≤ j < k + 7, j �= i1], 4).
Similarly, the constraints among(−∞, 4, [xi,j | k ≤ j < k + 14], 4) in (7) will
be satisfied by σ(θ) iff: xi1,j = 4 ∨ xi2,j �= 4 ∨ among(−∞, 3, [xi,j | k ≤
j < k + 14, j �= i1], 4). Since the among conditions are probably too expen-
sive to check, we can simply throw them away. We lose some potential prun-
ing, but it is still correct, since we had a disjunction of conditions. So we add
xi1,j �= 4 ∨ xi2,j = 4 and xi1,j = 4 ∨ xi2,j �= 4 to scond(σi1,i2,j). Calculating
σ(f ′) > f ′ is straight forward. We simply try each pair of values for xi1,j and
xi2,j and see if swapping them improves the refined objective function. For ex-
ample, suppose i1 < i2, pi1,j = 4, pi2,j = 2, then ocond(σi1,i2,j) ≡ σ(f ′) <
f ′ ≡ (xi1,j , xi2,j) ∈ {(1, 4), (2, 1), (2, 3), (2, 4), (3, 1), (3, 4)}. Then db(σi1,i2,j) ≡
¬(scond(σi1,i2,j)∧ocond(σi1,i2,j)) ≡ (xi1,j , xi2,j) /∈ {(2, 1), (2, 3), (3, 1)}, which is
a table constraint encapsulating both dominance breaking and symmetry break-
ing constraints. �

5 Related Work

There have been many works on problem specific applications of dominance rela-
tions, e.g., the template design problem [25], online scheduling problems [16], the
Maximum Density Still Life problem, Steel Mill Design problem and Peaceable
Armies of Queens problem [24], the Minimization of Open Stacks problem [6],
and the Talent Scheduling Problem [12]. However, the methods used are typically
very problem specific and offer little insight as to how they can be generalized
and applied to other problems. The implementations of these methods are also
often quite ad-hoc (e.g., pruning values from domains even though they do not
explicitly violate any constraint), and it is not clear whether they can be cor-
rectly combined with other constraint programming techniques. In contrast, our
new method rests on a much stronger theoretical foundation and is completely
rigorous. Since our method simply adds constraints to the problem, the modified
problem is a perfectly normal constraint problem and it is correct to use any
other constraint programming technique on it. Another important advantage of
our method is that we are able to use any search strategy we want on the modi-
fied problem. This is not the case with many of the problem specific dominance
breaking methods as they rely on specific labeling strategies.

There are a small number of works on generic methods for detecting and ex-
ploiting dominance relations. Machine learning techniques have been proposed
as a method for finding candidate dominance relations [27]. This method works
by encoding problems and candidate dominance relations into forms amenable to
machine learning. Machine learning techniques such as experimentation, deduc-
tion and analogy are then used to identify potential dominance relations. This
method was able to identify dominance relations for the 0/1 knapsack prob-
lem and a number of scheduling problems. However, the main weakness of this
method is that it only generates candidate dominance relations and does not
prove their correctness. Each candidates has to be analyzed to see if they are
in fact a dominance relation. Then the dominance relation has to be manually
proved and exploited.
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Recently, several generic and automatic methods have been developed for
exploiting certain classes of dominance relations. These include nogood learning
techniques such as Lazy Clause Generation [23,9] and Automatic Caching via
Constraint Projection [5]. Both of these can be thought of as dynamic dominance
breaking, where after some domain D1 is found to fail, a nogood (constraint) n is
found which guarantees that if D2 violates n, then D2 is dominated by D1 and
must also fail. The nogood n is posted as an additional redundant constraint
to the problem. Lazy Clause Generation derives this n by resolving together
clauses which explain the inferences which led to the failure. Automatic Caching
via Constraint Projection derives n by finding conditions such that projection
of the subproblem onto the subset of unfixed variables yield a more constrained
problem. These methods are to a large extent complementary to the method
presented in this paper. None of these methods exhausts all possible dominances
occurring in a problem, and there are dominances which can be exploited by one
method but not another. Thus we can often use them simultaneously to gain an
even greater reduction in search space.

6 Experimental Results

We now give some experimental results for our method on a variety of problems.
We have already discussed how our method applies to the Photo Problem, Knap-
sack Problem, Black Hole Problem, and Nurse Scheduling. For these problems,
we generate random instances of several different sizes, with 10 instances of each
size. We also give experimental results for four further problems:

RCPSP. The resource constrained project scheduling problem (RCPSP) [4]
schedules n tasks using m renewable resources so that ordering constraints
among tasks hold and resource usage limits are respected. A standard domi-
nance rule for this problem, used in search, is that each task must start at time
0 or when another task ends, since any schedule not following this rule is do-
mainated by one constructed by shifting tasks earlier until the rule holds. We
use the instances from the standard J60 benchmark set [1] which are non-trivial
(not solved by root propagation) and solvable by at least one of the methods.

Talent Scheduling Problem. In the Talent Scheduling Problem [12], we have a
set of scenes and a set of actors. Each actor appears in a number of scenes and is
paid a certain amount per day they are on location. They must stay on location
from the first scene they are in till the last scene they are in. The aim is to find
the schedule of scenes x1, . . . , xn which minimize the cost of the actors. We set
f ′ = lex(f, x1, . . . , xn). We consider mappings which take one scene and move
it to another position in the sequence. We generate 10 random instances of size
14, 16, and 18.

Steel Mill Problem. In the Steel Mill Problem [13], we have a set of orders to
be fulfilled and the aim is to minimize the amount of wasted steel. Each order
i has a size and a color (representing which path it takes in the mill) and is to
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be assigned to a slab xi. Each slab can only be used for orders of two different
colors. Depending on the sum of the sizes of the orders on each slab, a certain
amount of steel will be wasted. We set f ′ = lex(f, x1, . . . , xn) and try mappings
where we take all orders of a certain color from one slab, and all orders of a
certain color from another slab, and swap the slabs they are assigned to. We
generate 10 random instances of size 40 and 50.

PC Board Problem. In the PC Board Problem [19], we have n × m compo-
nents of various types which need to be assigned to m machines. Each machine
must be assigned exactly n components and there are restrictions on the sets of
components that can go on the same machine. Each type of component gains a
certain utility depending on which machine it is assigned to and the goal is to
maximize the overall utility. We set f ′ = lex(f, x1,1, x1,2, . . . , xn,m) where xi,j is
the type of component assigned to the jth spot on the ith machine. We consider
mappings which swap two components on different machines. We generate 20
random instances of size 6× 8.

The experiments were performed on Xeon Pro 2.4GHz processors using the
CP solver Chuffed. For each set of benchmarks, we report the geometric mean
of time taken in seconds and the number of failed nodes for: the original prob-
lem with no dominance breaking of any form (base), with dominance breaking
constraints generated by our method (db), with Lazy Clause Generation (lcg),
and with dominance breaking constraints and Lazy Clause Generation (db+lcg).
A timeout of 900 seconds was used. Fastest times and lowest node counts are
shown in bold.

As Table 1 shows, adding dominance breaking constraints can significantly
reduce the search space on a variety of problems, leading to large speedups
which tend to grow exponentially with problem size. Our method can also often
be combined with Lazy Clause Generation for additional speedup (e.g., Photo,
Steel Mill, Talent Scheduling, Nurse Scheduling, PC Board). In some cases
(e.g., Knapsack, Black Hole), even though adding LCG on top of our method can
reduce the node count further, the extra overhead of LCG swamps out any ben-
efit. In other cases (e.g., RCPSP), adding our dominance breaking constraints
on top of LCG actually increases the run time and node count. In this problem,
the dynamically derived dominances from LCG are stronger than the static ones
that our method derives. Adding the dominance breaking constraints interferes
with and reduces the benefit of LCG. In general however, our method appears to
provide significant speedups over a wide range of problems for both non-learning
and nogood learning solvers.

7 Future Work

Although we have developed this method in the context of Constraint Program-
ming, the dominance relations we find can be applied to other kinds of search as
well. For example, MIP solvers, which use branch and bound, can also benefit
from the power of dominance relations, as they can encounter suboptimal partial
assignments which nevertheless do not produce an LP bound strong enough to
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Table 1. Comparison of the original model and the model augmented with dominance
breaking constraints

Problem base db lcg db+lcg
Time Nodes Time Nodes Time Nodes Time Nodes

Photo-14 1.09 57773 0.90 10967 0.30 5791 0.25 1962
Photo-16 8.38 441574 4.00 43373 6.49 44325 1.40 8960
Photo-18 60.68 2828622 22.09 206507 19.73 138926 6.25 24523
Knapsack-20 0.01 215 0.01 9 0.01 212 0.01 7
Knapsack-30 0.17 46422 0.01 91 0.85 45733 0.01 65
Knapsack-50 602 1× 108 0.01 684 900 1× 107 0.01 507
Knapsack-100 900 1× 108 0.40 54705 900 1× 107 1.05 37571
Black-hole 5.18 77542 0.08 607 0.97 2767 0.09 347
Nurse-15-7 900 9× 107 900 8× 107 1.72 55217 0.91 24258
Nurse-15-14 900 8× 107 900 8× 107 483.29 7× 106 140.95 1× 106

RCPSP 358.95 2779652 279.74 781399 4.07 7890 32.84 32770
Talent-Sched-14 1.66 39479 0.42 10122 0.45 4983 0.27 3189
Talent-Sched-16 16.08 349704 2.33 51993 3.71 27186 1.28 12336
Talent-Sched-18 252.05 5557959 13.88 299043 26.25 128810 4.28 31829
Steel-Mill-40 60.64 1× 106 22.00 451636 16.31 75293 4.53 27225
Steel-Mill-50 379.21 7× 106 231.95 3× 106 249.39 714451 32.24 129788
PC-board 547.93 4× 107 412.29 1× 107 20.28 156933 7.51 64320

prune the subproblem. Simple dominance rules such as fixing a variable to its
upper/lower bound if it is only constrained from below/above [17] are already
in use in MIP, but our method can produce much more generic dominance rules.
Similarly, local search can benefit tremendously from dominance relations, as
they can show when a solution is suboptimal and map it to another solution
which is better. Exploring how our method could be adapted for use in other
kinds of search is an interesting avenue of future work.

It may also be possible to automate many or all of the steps involved in our
method. Such automation would provide a great benefit for system users as they
will be able to feed in a relatively “dumb” model and have the system automati-
cally identify and exploit the dominances. Step 0 typically requires augmenting the
objective function with an appropriate lexicographical ordering of the variables.
For Step 1, there already exist automated methods for detecting symmetries in
problem instances [20,26]. Such methods can be adapted to look for good candi-
dates for σ. Step 2 and 3 involves algebraic manipulations which are not difficult
for a computer to do. The difficulty lies in Step 4, where we need to simplify the
logical expressions and determine whether the dominance breaking constraint is
sufficiently simple, efficient and powerful that it is worth adding to to problem.
Automating our method is another interesting avenue of future work.

8 Conclusion

We have described a generic method for identifying and exploiting dominance
relations in constraint problems. The method generates a set of dominance



A Generic Method for Identifying and Exploiting Dominance Relations 21

breaking constraints which are provably correct and compatible with each other.
The method also generates symmetry and conditional symmetry breaking con-
straints as a special case, thus it unifies symmetry breaking, conditional symme-
try breaking and dominance breaking under one method. Experimental results
show that the dominance breaking constraints so generated can lead to signifi-
cant reductions in search space and run time on a variety of problems, and that
they can be effectively combined with other dominance breaking techniques such
as Lazy Clause Generation.
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Abstract. The Rosetta/Philae mission was launched in 2004 by the European
Space Agency (ESA). It is scheduled to reach the comet 67P/Churyumov-
Gerasimenko in 2014 after traveling more than six billion kilometers. The Philae
module will then be separated from the orbiter (Rosetta) to attempt the first ever
landing on the surface of a comet. If it succeeds, it will engage a sequence of
scientific exploratory experiments on the comet.

In this paper we describe a constraint programming model for scheduling the
different experiments of the mission. A feasible plan must satisfy a number of
constraints induced by energetic resources, precedence relations on activities, or
incompatibility between instruments. Moreover, a very important aspect is re-
lated to the transfer (to the orbiter then to the Earth) of all the data produced by
the instruments. The capacity of inboard memories and the limitation of trans-
fers within visibility windows between lander and orbiter, make the transfer pol-
icy implemented on the lander’s CPU prone to data loss. We introduce a global
constraint to handle data transfers. The goal of this constraint is to ensure that
data-producing activities are scheduled in such a way that no data is lost.

Thanks to this constraint and to the filtering rules we propose, mission control
is now able to compute feasible plans in a few seconds for scenarios where min-
utes were previously often required. Moreover, in many cases, data transfers are
now much more accurately simulated, thus increasing the reliability of the plans.

1 Introduction

The international Rosetta/Philae project is an European consortium mission approved
in 1993, and is under the leadership of the German Aerospace Research Institute (DLR)
and ESA1. The spacecraft was launched in 2004 by Ariane 5, and is set to travel more
than six billion kilometers to finally reach and land on the comet 67P/Churyumov-
Gerasimenko in 2014 in order to analyze the comet structure. It will follow a complex
trajectory which includes four gravity assist maneuvers (3 x Earth, 1 x Mars) before
finally reaching the comet and enter its orbit. Then, the lander Philae will be deployed
and will land on the surface of the comet. Philae features ten instruments, each de-
veloped by a European laboratory, to accomplish a given scientific experiment when
approaching, or once landed on the comet. For instance, CIVA and ROLIS are two imag-
ing instruments, used to take panoramic pictures of the comet and microscopic images.

1 European Space Agency.

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 23–37, 2012.
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The Alpha Proton X-ray Spectrometer (APXS) analyses the chemical composition of
the landing site and its alteration during the comet’s approach of the Sun. This data will
be used to characterize the surface of the comet, to determine the chemical composition
of the dust component, and to compare the dust with known meteorite types.

The exploratory mission will have three phases. The SDL (Separation-Descent-
Landing) will run for 30 minutes during which many experiments will be done. The
FSS (First Science Sequence) will last 5 days. This phase is critical because the execu-
tion of the most energetically greedy experiments requires battery power. The quality of
this schedule conditions the longevity of the batteries and is therefore key to the success
of the mission. Finally, during the LTS phase (Long Term Science), scientific activities
will be resumed at a much slower pace, using the lander’s own solar panels to partially
reload the batteries. This phase will continue for months until the probe is destroyed
due to the extreme temperatures of the Sun.

This project is a collaboration with CNES2 in Toulouse (France). The goal of the
Scientific Operation and Navigation Centre (SONC) is to plan the sequence of experi-
ments and maneuvers to be done in each of these phases while making the best use of
the available resources. This project has many similarities with the (interrupted) Net-
Lander program [7]. A first software (called MOST) has been developed on top of the
Ilog-Scheduler/Solver library by an industrial subcontractor. Every instrument, subsys-
tem and experiment has been modeled precisely in this framework, and it is therefore
possible to check solutions with a high degree of confidence on their feasibility.

The main scientific experiments need to be scheduled to satisfy a number of con-
straints involving the concurrent use of energy (batteries), and of the main CPUs as
well as each instrument’s memory. Moreover, each experiment produces data that must
be transferred to the Earth. Each experiment has its own memory, collecting data as it is
produced. This data is then transferred to a central mass-memory, then sent to Rosetta
(the orbiter) when it is in visibility, i.e., above the horizon of the comet with respect
to Philae. All transfers from the experiments to the mass memory, and from the mass
memory to the orbiter are executed (that is, computed onboard) by the Command and
Data Management System (CDMS). The transfer policy of the CDMS may lead to data
loss when an experiment produces more data than its memory can store and its prior-
ity is not high enough to allow a transfer to the mass-memory. This is modeled within
MOST using RESERVOIR constraints [6]. Data-producing activities fill the reservoir,
while multiple pre-defined data transfer tasks of variable duration empty it. There are
numerous problems related to data transfers in spatial applications [5,2], however the
problem at hand is significantly different since plans are computed on the ground, and
the data transfer policy is beyond our control.

This modeling choice has several drawbacks and it quickly became apparent that it
was the critical aspect of the problem to tackle in order to find better solutions faster.
The first problem with this model is that data transfers are not accurately represented.
For each experiment, a sequence of tasks standing for data transfers are pre-defined.
Their duration is constrained so that the experiment with the highest priority is allowed
to transfer as much as possible, and no overlap is allowed among transfers. In the cur-
rent implementation there is a transfer task every 120 seconds over the horizon, with a

2 Centre National d’Etudes Spatiales.
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maximum duration of 120 seconds. This is too few to accurately represent the policy of
the CDMS, however, this is already too much for Ilog-Scheduler to handle (the planning
horizon may be up to one day, i.e., about 700 transfer tasks for each experiment).

Instead we propose to encapsulate data transfers into a global constraint. The de-
cision variables are start times of data-producing activities (data-producing rate and
duration are known in advance) and the priority permutation. This allows us to very
quickly check the satisfiability of a schedule with respect to data transfer. Moreover, we
can compute bounds allowing to filter out the domain of the variables standing for start
time of the data-producing activities. Unfortunately enforcing arc consistency or even
bounds consistency on this constraint is NP-hard, so we do not give a complete filtering
algorithm. However, our approach reduces the solving time dramatically: from hours in
some cases to seconds in all scenarios currently considered by the SONC. Moreover,
the result is much more accurate, to the point that some scenarios for which MOST
could not show that transfers were feasible can now be solved efficiently.

In Section 2 we briefly outline the energetic aspect of the problem and more formally
define the data transfer aspect. Then, in Section 3 we introduce our approach to mod-
eling data transfers. In particular we give an efficient satisfiability checking procedure
and two filtering rules for the introduced global constraint. Last in Section 5, we report
experimental results and compare results between old and new models.

2 Problem Description

Each experiment and subsystem can be seen as a list of activities to be scheduled.
Notwithstanding data transfers, the problem can be seen as a scheduling problem over
a set of experiments with relatively standard constraints.

Precedences: Activities within the same experiment might have precedence con-
straints; for instance, the Lander also carries a Sampling Drilling and Distribution de-
vice (SD2), that drills 20 cm into the surface, collect samples and drop them in an oven.
The oven then rotates to a position whereby it can be connected to the inlet of the gas
management system of another instrument: Ptolemy. At this point, the oven must be
heated so that volatiles are released and analysed by Ptolemy.

Cumulative Resources: Activities concurrently use the energy from batteries and solar
panels. The energy needed to run each task is supplied by an auxiliary power line. Each
auxiliary line is linked to a converter, and each converter is linked to the main power
line. At each level, the total instant power delivered cannot exceed a given threshold.
For each auxiliary power line, all the activities supplied by this line are constrained by
a CUMULATIVE constraint [1] with capacity equal to this threshold. Similarly another
CUMULATIVE constraint is associated to each converter, and a last one is associated to
the main power line, involving all activities of the problem.

State Resources: Each instrument can have multiple states along the schedule. Some
activities can trigger the modification of the state of an instrument, and the processing
of certain activities might be subject to some instruments being a given state. This is
modeled using predefined state resources constraints in Ilog-Scheduler.
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Data Transfer and Memory Constraints: Every experiment has its own memory. Some
activities produce data, temporarily stored on the experiment’s memory. Then this data
will be transferred onto the mass-memory and subsequently to the orbiter.

The CDMS controls all data transfers, from the experiments to the mass memory, and
from the mass memory to the orbiter. Within a plan, experiments are ordered according
to a priority function. Apart from this ordering, the CDMS is completely autonomous. It
transfers data from the experiment with highest priority among those with transferable
data. Moreover, it transfers data from the mass-memory to the orbiter whenever possi-
ble, that is, when there is some visibility. However, it does not ensure that all produced
data will eventually be transferred back to the Earth. When too much data is produced
simultaneously and not enough can be transferred on the mass-memory, or when there
is no visibility with the orbiter and therefore the mass-memory cannot be emptied, the
capacity of an experiment’s memory may be overloaded and data is lost.

The Mars-Express mission, launched in 2003 and still in operation, also featured a
data transfer planning problem, similar to Rosetta’s in many respects. In both cases,
data-producing activities are to be scheduled, data is kept into a number of memory
storage devices on board and periodically transmitted to the Earth during visibility win-
dows. However, a critical difference is that in Mars-Express, the transfers are actually
decisions to be made at the planning level. A flow model was proposed to address the
so-called Memory Dumping Problem in [4,8] and further improved in [10]. In our case,
however, the CDMS policy is a given. As a consequence, data loss can only be con-
trolled through the schedule of data-producing activities.

In other words, we shall consider data transfers as a global constraint on the start
times of activities ensuring that no data will be lost with respect to the CDMS policy.

3 A Global Constraint for Data Transfer

Except for the data transfer aspect, all the constraints above can be modeled using the
standard methods and algorithms [9] all available in Ilog-Scheduler. Hence, we focus on
data transfers and propose a global constraint to reason about this aspect of the problem.

From now on, we consider a set {E1, . . . , Em} of m experiments. An experiment
Ek = {tk1, . . . , tkn} is a set of data-producing tasks3, and is associated with a mem-
ory of capacity Mk. A task tki produces data for a duration pki at a rate πki in the
experiment’s memory. The lander possesses a mass memory of capacity M0, where
data can be transferred from experiments.

The CDMS is given as input a priority ordering on experiments. For i ∈ [1, . . . ,m],
we denote by P (i) the experiment at rank i in this ordering and its dual R(k) standing
for the rank of experiment Ek in the priority ordering (P (i) = k ⇔ R(k) = i). We
shall say that experiment Ek has higher priority than experiment Ej iff R(k) < R(j).

Data can only be transferred out to the orbiter when it is in visibility, that is in the
line of sight of the lander over the horizon of the comet. Visibility is represented as
a set of intervals {[a1, b1], . . . , [av, bv]} in the scheduling horizon which lengths

3 To simplify the notations, we assume that all experiments have the same number of activities.
This is of course not the case, however it does not affect the methods we introduce.
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and frequencies depend on the chosen orbit. We shall use V (t) as a Boolean function
which equals true iff time t is included in one of the visibility intervals. Moreover, data
is transferred in and out memories by block units of 256 bytes.

We consider the following decision variables: s11, . . . , smn, with domain in
[0, . . . , H ], standing for the start times of data-producing tasks {t11, . . . , tmn}, respec-
tively. Here we will assume that the priority permutation is fixed. Indeed there are often
few experiments and exploring all permutations would be easy.

The fact that data loss should be avoided can be seen as a relation (i.e., a constraint)
between the decision variables above. It is relatively easy to understand this relation
procedurally since the CDMS policy is deterministic. Given a priority ordering and a
fixed schedule of the data-producing activities, one can unroll the rules outlined above
to check whether the CDMS policy will lead to data loss or not.

In this section, we formally define the constraint DATATRANSFER([s11, . . . , smn])
ensuring that the schedule of tasks {t11, . . . , tmn} is such that no data is lost.

First, in Section 3.1 we discuss an “exact” definition based on following the transfer
of each block of data individually. However, this formulation is not practical, so we
propose an alternative model in Section 3.2. The basic idea is to represent all the data
produced by an activity as a continuous quantity. With this viewpoint, tasks that do
not produce data as fast as it can be transferred are challenging to model. Indeed, the
CDMS actually waits for a block of data to be completed before transferring it, and
can therefore use this waiting time to transfer data from other experiments with lower
priority. We approximate this “vertical” partition of the data bus, by a “horizontal”
partition, i.e., we consider that the bandwidth can be divided over parallel transfers.
This model allows us to represent memory usage very precisely, with a computational
complexity independent on the time horizon and on the amount of data produced.

3.1 CDMS Policy

In this section we detail the CDMS policy, then we define a constraint modeling the
relation between the start time of data-producing activities induced by this policy.

The CDMS transfers data by blocks of 256 bytes. Its policy is relatively simple
and can be described using a simple automated earliest transfer scheduling algorithm
(AETS). AETS runs the two following processes in parallel:

– Repeat: Scan experiments by order of priority until one with at least one block of
data on its memory is found. In that case, transfer one block from this experiment
to the mass memory unless the mass memory is full.

– Repeat: If the orbiter is visible, and there is at least one block of data on the mass
memory, then dump one block (transfer from the mass memory to the orbiter).

So we can define the DATATRANSFER constraint as the relation allowing only assign-
ments of start times and priorities such that given the CDMS policy (AETS), no block
of data is produced while the memory of the experiment is full.

In order to specify this constraint as precisely as possible we would need to consider
each block of data, and its associated transfer task, individually. More precisely, we need
πkipki transfer tasks for each data-producing activity tki. The release time of the jth
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block’s transfer task is ski + j(1/πki), where ski is the start time of tki. Moreover, the
start times and durations of these transfer tasks are functionally dependent on the start
times of data-producing activities and experiment priorities. This dependence relation
is a consequence of the AETS procedure.

The DATATRANSFER constraint is NP-complete to satisfy, hence NP-hard to filter.
Indeed, consider the particular case where memory capacities are all of exactly one
block of data, and the mass-memory is unlimited. In this case, each activity must trans-
fer a block to the mass-memory as soon as it is produced. In other words, we can see
a transfer task as non-interruptible. However, since there is a single transfer channel
to the mass-memory, no overlap is possible between these tasks. Since we have time
windows on the variables ski, this particular case is therefore equivalent to a disjunctive
unary resource, i.e., it is strongly NP-hard.

3.2 Approximated Definition

It is difficult to capture very precisely the behavior of the CDMS. Moreover, it is not
practical since it involves manipulating a very large number of transfer tasks. When
we consider a data-producing activity in isolation, the number of transfer tasks and
their frequency is easy to compute. However, when we consider several data-producing
activities with different priorities and unknown start times, this viewpoint becomes im-
practical. We therefore propose an alternative model that approximate very closely the
amount of transferred data with a reasonable time and space complexity.

The basic idea is straightforward. Consider a task tki that produces more data than
it can transfer τr(k,t) ≤ πki, with τr(k,t) the transfer rate at time t from an experiment
Ek to mass-memory. Suppose first that there is no task with higher priority. The transfer
can be seen as a continuous task of duration πkipki

τr(k,t)
. However there are three difficulties.

First, blocks are transferred from experiments memories to the mass memory at a
constant rate. However, when seeking which experiment to transfer from, the length of
the scanning process depends on the number of active experiments and on the priority
of the experiment eventually selected. An experiment Ek is active between the start of
its first activity and the end time of its last activity, or if the experiment memory is not
empty. The transfer rate is thus larger in practice for the higher priority experiments
as they are scanned first. To emulate this, we use variable transfer rates. The potential
transfer rate τr(k,t) depends on the number x of active experiments and on its relative
priority y among them. The actual value is read in a table which entries were measured
experimentally. The rate above applies to non-visibility periods. According to the same
principles, another table gives us the transfer rate τ ′

r(k,t) while in visibility (it is lower
due to the parallelism with memory dumps). Transfers between mass-memory and the
orbiter have a constant rate denoted τmm.

Second, transfer tasks can be interrupted, however, they are different from classic
preemptive tasks in that we do not decide when the interruption occurs. When an ex-
periment with higher priority starts producing data, it preempts any current transfer of
lower priority. This is easy to model since this is the unique context where an interrup-
tion can happen. If there is no experiment with higher priority to interrupt the transfer,
the usage of the experiment’s memory increases at rate πki−τr(k,t) during pki seconds.
Similarly, during πkipki

τr(k,t)
seconds the usage of the mass memory increases at rate τr(k,t).
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Production rate π = 1.5 blocks/s

Transfer rate τ = 3 blocks/s

1
π

1
τ 1

π
− 1

τ

0 1 2

Fig. 1. Example of exact data transfer

30 1 2

Transfer 1 :

Transfer 2 :

Fig. 2. Example of two data transfer tasks with
both model

The third difficulty concerns tasks producing data at a lower rate than the possible
transfer rate (i.e., τr(k,t) > πki). In this case, data is transferred one block at a time,
with a lag between each transfer to wait for the next block to be produced (see Fig. 1).

Other tasks of lower priority with non-empty memory can use these gaps to begin
the transfer of a block of data. In other words, the duration of the transfer of highest
priority is still very close to πkipki

τr(k,t)
seconds, however other transfer can be squeezed in

that same period. In order to simulate this, we consider that the data bus has a capacity
(bandwidth) normalized to 1. The demand of a task tki at time t is min(1, πki

τr(k,t)
).

Bandwidth is allocated recursively, according to priority (see Figure 2).
Let mt

k stand for the quantity of data in the memory of experimentEk at time t (with
t ∈ R) and mt

0 be the quantity of data in the mass-memory. Moreover, let πt
k stand for

the data-producing rate on experiment Ek at time t, let p(τ tk) stand for the potential
transfer rate of experiment Ek at time t if it was of highest priority and let τ tk stand for
the actual transfer rate from experiment Ek to the mass memory at time t.

Definition 1
DATATRANSFER(s11, . . . , smn)⇔

∀t, k, πt
k =

{
πki if ∃i s.t. ski ≤ t ≤ ski + pki
0 otherwise

(1)

∀t, k, p(τ tk) =

⎧⎨⎩
0 if mt

0 = M0 ∨ (mt
k = πt

k = 0)
τr(k,t) if mt

0 < M0 ∧ mt
k > 0

min(πt
k, τr(k,t)) otherwise

(2)

∀t, k, τ tk = min(p(τ tk), τr(k,t)(1−
∑R(k)−1

i=1

πt
P(i)

τr(P (i),t)
)) (3)

∀t, k, mt
k =

∫ t

0 (π
t
k − τ tk)dt (4)

∀t, mt
0 =

∫ t

0
(
∑m

k=1 τ
t
k − V (t)τmm)dt (5)

∀t, k, mt
k ≤Mk (6)

Equation 1 simply states that if a data-producing activity tki is running at time t, then
the data-producing rate πt

k of an experiment k at that time is equal to the data-producing
rate of tki, and it is zero otherwise.
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transfer (t1)

transfer (t2)

transfer (t1)

transfer (t2)

production (t1)

production (t2)

Fig. 3. Comparison of the two representations: two data-producing activities t1 and t2 (bottom);
The “exact” view of the corresponding transfers, sharing the transfer bus because of gaps due
to the low data-producing rate (middle); The alternative reformulation, where this is modeled as
sharing the bandwidth (top)

Equation 2 defines the expected transfer rate p(τ tk) of experiment Ek at time t if it is
not trumped by other experiments of higher priority. If there is no data on the memory
and no data being produced, or if the mass memory is full, this rate is zero. Otherwise,
if there is some data on memory, it can be transferred at the maximum available rate
(τr(k,t)). If the memory is empty, but data is being produced, we assume that it cannot
be transferred at a higher rate than it is produced.

Equation 3 gives the real transfer rate, i.e., taking into account experiments with
higher priorities. The experiment with highest priority uses the bandwidth proportion-
ally to the ratio between its expected transfer rate p(τ tk) and the maximum transfer rate
τr(k,t). Then the residual bandwidth is attributed using recursively the same rule.

Finally, equations 4 and 5 link the usage of the different memories to the sum of the
in and out transfer rates (πk and τk are used here as functions of t) while equations 6
ensure that memory capacity is never exceeded.

In Figure 3 we show the difference between the two models.

4 Checking and Filtering Algorithms

In this section we introduce a filtering procedure for the DATATRANSFER constraint.
We first introduce an efficient O(nm log(nm)) procedure for computing transfers and
memory usage of a given schedule. This procedure execute a sweep of the horizon
similar to that described in [3]. Besides checking whether the constraint is violated we
shall also use this algorithm to compute lower bounds in order to filter the domains.

4.1 Data Transfer Verification

Given a complete schedule of the data-producing activities, and a priority ordering,
we now describe an algorithm that computes the effective transfer rate (in the sense
of Definition 1) and the memory usage for each experiment over the whole horizon in
time O(nm log(nm)). Notice that both are step functions, moreover we will see that
there are at most O(nm) breaking points, so they can be stored on O(nm) bits. This
algorithm can be used to verify whether an assignment is consistent by simply checking
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that the usage of all experiments remains within the memory’s capacity. We shall also
use it to compute bounds on the memory usage of extreme scenarios (e.g., all tasks
set to their earliest start time). It sweeps the time horizon chronologically, computing
variations of various parameters only when certain events occur.

First, we build the list of events. Each event is time tagged and there are six types (for
O(nm) events in total): Start/end of visibility; Start/end of a data-producing activity;
Start/end of experiments. Then, we sort them in chronological order and explore them
in that order. For each time point t where at least an event occurs, we go through all
events occurring at t and update the following arrays accordingly:

– visibility stands for whether there is a visibility line at time t. It is flipped whenever
encountering a “Start of visibility” or “End of visibility” event;

– production(k) stands for the data-producing rate of experiment Ek at time t. It
is increased (resp. decreased) by the data-producing rate of the activity whenever
encountering a “Start of production” (resp. “End of production”) event;

– active stands for the number of active experiments at time t. It is increased (resp.
decreased) by one whenever encountering a “Start of experiment” (resp. “End of
experiment”) event.

At each step of the loop, we therefore know the complete state (data-producing rate
on each experiment, whether we are in visibility or not, and how many experiments
are active). Moreover, we also keep track of the memory usage with another array:
memory. We then compute what are the current transfers, and partition the bandwidth
between them. For each experiment Ek (visited by order of priority), if it has data
on memory, or if it is currently producing data, and if the bandwidth is not zero, we
create a transfer. We first compute its potential transfer rate τr(k,t) according to the rules
described above. If it has some data on memory, all of the bandwidth is attributed to this
transfer. Otherwise, its actual transfer rate is equal to the minimum between the nominal
transfer rate and the current data-producing rate: τ = min(production(k), τr(k,t)). The
ratio τ/τr(k,t) of the bandwidth is allocated to this transfer.

Then, for each experiment currently in transfer, we compute a theoretical deadline,
i.e., the date at which it will be emptied at this rate of transfer if nothing changes. Notice
that it can be never. Similarly, we compute a theoretical deadline for filling the mass-
memory. If the earliest of all these deadlines happens earlier than the next scheduled
event, we add it to the list of events. This type of events will do nothing on its own,
however, it will allow the algorithm to recompute the transfers according to the new
situation (the mass-memory being filled, or an experiment’s memory being empty).

Finally, the usage of each memory at time t is updated according to the transfers.
This algorithm has a worst case time complexity of O(nm log(nm)). The list of

events has initially O(nm) elements. There are two for each data-producing task, two
for each visibility window, and two for each experiment (we assume that the num-
ber of visibility windows is less than nm). Sorting them can therefore be done in
O(nm log(nm)) time. In the main loop, events are processed only once, and this takes
at most O(m) time. Moreover, in some cases, “deadline” events can be added during
the exploration of the event list. However, at most one such event can be added for each
event initially in the list. Indeed, consider a deadline event. It is created only if no other
event yet to process has an earlier date. In other words, transfer and data-producing
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rates as well as visibility do not change. The experiment memory that was emptied will
therefore stay empty at least until the next standard event. The same is true for deadline
event triggered by filled mass-memory: it will stay full at least until the next visibility
event. Therefore, the worst case time complexity of the main loop is O(nm).

4.2 Filtering Rules

In this section we introduce two propagation rules for the DATATRANSFER constraint.

Minimal transfer span: The first rule tries to guess a lower bound on the total span of a
subset of activities of the same experiment Ek. The intuition is that if data is produced
at a higher rate than it can be transferred out, the capacity of a memory could be reached
and data will be lost. In other words, given a set Ω ⊆ Ek of data-producing activities
of an experiment Ek , the total amount of data produced by these activities, minus what
can be stored on the memory of Ek, need to be transferred out. The duration of this
transfer is a lower bound on the span of this set of activities, i.e., the duration between
the minimum start time and maximum end time of any activity in this set.

The total amount of data produced by activities in Ω is equal to
∑

tki∈Ω πkipki.
At most Mk can be stored on the experiment’s own memory, hence at least∑

tki∈Ω πkipki−Mk has to be transferred out before the end of the last data-producing
activity. Let τ be the highest possible transfer rate for data out of the experiment’s own
memory. We can use this rate to derive a lower bound on the total duration of Ω:

(max
tki∈Ω

(eki)− min
tki∈Ω

(ski)) ≥
∑

tki∈Ω πkipki −Mk

τ
(7)

In real scenarios, data-producing activities of a given experiment cannot overlap, and in
many cases the order is known a priori. Assuming that the activities in Ω are ordered,
with tkf being the first task and tkl being the last task in Ω, we can often induce the

simpler constraint: ekl − skf ≥
∑

tki∈Ω πkipki−Mk

τ .

Example 1. Figure 4 depicts the application of this rule. We have two activities t1, t2,
the former producing π1 = 5 blocks/sec and the latter π2 = 4 blocks/sec, both for 70
seconds. Therefore, π1p1 + π2p2 = 630 blocks are produced. Assume that the memory
of this experiment has a capacity of 250 blocks. Consequently, 380 blocks need to
be transferred out in order to avoid data loss. Since the maximum transfer rate is 2
blocks/seconds, this transfer will take at least 190 seconds. We can conclude that the
end of t2 is at least 190 seconds after the start of t1. The grey scale gives the evolution
of the memory for t2 finishing exactly 190 seconds after the start of t1.

Moreover, we can take into account the data produced by activities of experiments of
higher priority, since their data transfers will preempt those of lower priority.

Consider an interval of time [a, b]. Any data produced by experiments of higher pri-
ority during this period must be transferred out before Ek can be allowed to transfer.

Let min(|tki ∩ [a, b]|) be the minimum size of a common interval between [a, b] and
[ski, ski+pki] for any value of ski. If |[a, b]∩[c, d]| stands for the size of the intersection
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Fig. 4. Example of minimal span constraint

of intervals [a, b] and [c, d], then :

min(|tki ∩ [a, b]|) =
min(|[a, b] ∩ [min(ski),min(ski) + pki]|, |[a, b] ∩ [max(ski),max(ski) + pki]|)

We can compute a lower bound Tk(a, b) on the time required to transfer the data pro-
duced by experiments of higher priority than k on the interval [a, b] as a lower bound
on the data produced, divided by the maximum transfer rate:

Tk(a, b) = (

j<R(k)∑
j=1

n∑
i=1

|tP (j)i ∩ [a, b]| ∗ πP (j)i)/τ

Given a subset Ω ⊆ Ek of experiment Ek, consider the time interval [a, b] between the
latest start time of any task in Ω (a = mintki∈Ω(max(ski))) and the earliest end time
of any task in Ω (b = maxtki∈Ω(min(ski) + pki)). The lower bound on the span given
above assumes continuity of the transfer, and by definition this duration must include
the interval [a, b]. Therefore, any interruption of the transfer during this period induces
the same delay on the minimal span of Ω. In other words, any time taken to transfer
data of experiments with higher priority during [a, b] (Tk(a, b)) can be simply added to
the lower bound above.

Hence we can tighten the constraint 7 as follows (with a = maxtki∈Ω(min(ski))
and b = mintki∈Ω(max(ski) + pki)):

(max
tki∈Ω

(eki)− min
tki∈Ω

(ski)) ≥
∑

tki∈Ω πkipki −Mk

τ
+ Tk(a, b) (8)

We apply this rule for every set of consecutive activities (with respect to their earliest
start times) of every experiment. There are n2m such sets, and computing the lower
bound takes at most O(nm) time. The whole procedure hence has a worst case time
complexity of O(n3m2).

Mass memory saturation: Since transfers from the lander to the orbiter are possible
only during visibility, the data can only accumulate on the mass-memory while not in
visibility. As a consequence, the period that precedes a visibility window is critical since
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the mass memory can be saturated hence blocking all transfers. When this happens,
data produced by an experiment remains on its memory at least until the next visibility
window, and it is possible to lose data when the experiment’s memory itself is saturated.

We use this observation to deduce that data-producing activities that would generate
too much data to hold on the mass memory and on their own memory should be either
advanced or postponed. Suppose that we know that at time t, the mass-memory will
necessarily be filled. It will remain so until the next visibility. Now, if an activity tki
produces more data in the interval between t and the next visibility window than its
own memory can hold, it will be lost. Indeed, no data can be transferred onto the mass-
memory as long as it is full, and it will start to be emptied only when the visibility
allows it. We can thus deduce that the activity tki must start either early enough to
produce before t or late enough so that the data in excess will be produced during the
visibility period (in order to have a chance to be transferred).

First, we show how to compute an upper bound t on the time when the mass-memory
will reach its maximum before a given visibility window. We consider a single visibility
cycle V = (a, v, b), where a < v < b denote, respectively, the end of the previous cycle,
the start of a visibility window, and the end of that visibility window. Let Ω(V) be the
set of data-producing activities that are necessarily scheduled within the interval [a, b].

Proposition 1. Scheduling all data-producing activities in Ω(V) to their latest start
time minimizes the memory usage of the mass-memory (mt

0) for all t ∈ [a, b].

Proof (sketch). Clearly if we consider a data-producing activity tki in isolation, setting
its start time to the latest possible time point (max(ski)) delays the transfer onto the
mass memory hence its memory usage for any time point in [a, b].

When multiple data-producing activities can run in parallel, experiments of high
priority can preempt transfer intervals of experiment of lower priority. Therefore, one
could advance a data-producing activity tjl in time in order to use the resource and
therefore delay the transfer of some of the data produced by tki. However, since the
transfer rate increases with the priority, for any time interval where the transfer of the
data produced by tjl preempts that produced by tki, data is being transferred to the
mass memory at a higher rate. Thus, advancing a data-producing activity tjl of higher
priority never helps minimizing the mass memory usage. ��

Given a visibility cycle V = (a, v, b), we can therefore get a lower bound on mt
0 on the

usage of the mass memory for any t in the interval [a, b] using the sweep algorithm. For
every task in Ω(V), we tentatively fix it to its latest start time and execute the sweep
algorithm. Hence, we can easily compute t, the smallest value of t for which mt

0 = mv
0.

Given an experiment Ek. We can bound the amount of data that can be produced by
any task of this experiment in the period [t, v] and stored without loss. There are mt

0

blocks of data already on the mass-memory, so M0−mt
0 is free. Moreover, up to Mk can

be stored on the experiment’s own memory, for a total of δk = M0 +Mk −mt
0 blocks.

Above this threshold, data produced by activities of experimentEk between t and v will
be lost. If |tki ∩ [t, v]| stands for the length of the overlap between an activity tki and
the interval [t, v], an activity tki produces |tki∩ [t, v]| ∗πki blocks of data in the interval
[t, v]. Therefore, the following relation must hold:

∑n
i=1(min(|tki ∩ [t, v]|) ∗πki) ≤ δk

from which we can deduce the following implied constraint:
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|tki ∩ [t, v]| ≤ (δk −
∑

j �=i∈[1,n]
(min(|tkj ∩ [t, v]|) ∗ πkj))/πki (9)

We run the sweep algorithm once to obtain the value of t. Then, for each experiment,
we can compute δk and in time O(n) the values of min(|tkj∩[t, v]| for each activity tki.
Finally we compute the implied constraint also in time O(n) (it takes constant time for
each activity, oncemin(|tkj∩[t, v]| is known). Finally we apply it only when it collapses
to a simple lower or upper bound on the start time ski of an activity tki. The total time
complexity of this filtering rule is thus O(nm log(nm) + nm) = O(nm log(nm)).

5 Experimental Results

All the previous algorithms and filtering rules have been implemented on the latest ver-
sion of MOST. We ran experimentations on different scenarios provided by the group
SONC of CNES. Each scenario consists in one, two or three experiments which must
be scheduled on a time window between 10 hours and 1 day. For each subset of experi-
ments, several variations are tested in order to assess uncertain parameters. For instance,
the visibility cycle depends on the exact mass and shape of the comet, the orbit selected
by Rosetta, and the landing site chosen for Philae, all of which are unknown. Some
scenarios have continuous visibility, while other have different periods for the visibility
cycles. The hardware onboard the probe will have travelled in extreme temperatures for
ten years, so the exact charge and efficiency of the batteries is also uncertain. Moreover,
engineers of SONC test a range of variations on other parameters such as the memory
capacity simply to stress-test the system (MOST).

5.1 Search Effort

We ran 8 scenarios and compared the results of the current version of MOST against
the ad-hoc propagator introduced in this paper. Both were run on quad-core Sun T 5120
running Solaris 2.10 with 8GB of RAM. The current version of MOST (denoted
MOST+ILCRESERVOIR) models data transfers using Ilog-Scheduler ILCRESERVOIR

constraints. In our version (denoted MOST+DATATRANSFER) we use only the first fil-
tering rule described in Section 4.2.4

We report the results in Table 1. We present for each scenario the set of experiments
involved, the memory capacities, and whether the visibility is continuous or not. Then
we give the number of fails calculated by Ilog-Scheduler during search, the initialization
time and finally the solving time.

We observe first that using our approach, solutions can be obtained without any fail,
whereas the previous model explored a much larger search tree. The reformulation using
ILCRESERVOIR constraints was indeed very loose, and did not allow to detect incon-
sistencies early. Moreover, to overcome this weakness, the scenarios produced by the
group SONC are overly constrained in order to cut possibilities and allow the solver to
converge more easily. Moreover, our propagator is relatively light and therefore more

4 The second filtering rule was not implemented when the experiments were run.
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Table 1. Old vs. new version of MOST on 8 standard scenarios

SCENARIO PARAMETERS MOST+ILC-RESERVOIR MOST +DATATRANSFER
Mk M Visi. Fail Init. time (s) Search time (s) Init. time (s) Search time (s)

Consert 500 17456 Periodic 295 4.06 20.07 .88 .08
Consert/Romap 500/250 17456 Periodic 7112 11.13 Time out .17 .
Consert/Romap 500/250 37456 Periodic 7051 11.03 Time out .17 .
SD2/Ptolemy 64/2000 17456 Periodic 234 26.71 41.72 3.37 .09
SD2/Ptolemy 64/2000 17456 Continuous 211 32.78 79.48 3.25 .08

SD2/Cosac/Civa 64/24000/4000 37456 Periodic 407 50.20 181.91 .75 .14
SD2/Cosac/Civa 64/24000/4000 17456 Periodic 413 50.84 179.19 .95 .15
SD2/Cosac/Civa 64/24000/4000 17456 Continuous 390 25.12 91.08 .82 .100

0
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0
0

00
0
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11
11

2
2

time effective, compared to the model using a large amount of transfer tasks throughout
the horizon for each reservoir constraint.

In fact, the model was so large that the initialization time is very high. The few
seconds of initialization time in our approach correspond to the rest of the model (cu-
mulative and unary resources) which is common to both implementations.

In two cases, no solution was found by MOST+ILCRESERVOIR within the 600 sec-
onds time cutoff. However, this is not explained (only) by performance issues. In fact,
these two scenarios do not have a valid solution under the old model, whereas they are
feasible.

5.2 A More Accurate Modeling

In MOST+ILCRESERVOIR, activities with very low data-producing rate are treated dif-
ferently because of rounding issues: It is assumed that the data is produced all at once
at the end of the activity. Therefore in these scenarios, transfers can be delayed by a
substantial amount compared to the real behavior of the CDMS.

Moreover, since transfer tasks have a frequency of 120 seconds, they cannot ac-
curately model situations where the CDMS frequently switches between different
transfers. The scenario Consert/Romap highlights this problem on SONC’s version
of MOST. Both experiments have small data-producing activities and small memory
capacities. Therefore, switches between transfers from these two experiments are ex-
tremely frequent. However, with MOST+ILCRESERVOIR it is not possible to switch
frequently enough since data-transfer tasks are preallocated every 120 seconds on the
time line. As a result, the model using the ILCRESERVOIR constraint has no solution,
whereas transfers are actually possible.

6 Conclusion

In this paper we have presented an application of constraint programming for the inter-
national spatial mission ROSETTA/PHILAE. We have identified that the main problem
is the management of data transfers and in particular, data loss. We have shown that
the previous constraint programming approach was not well-adapted to this problem
and we introduced a global constraint to forbid data-loss. In particular we proposed an
efficient sweep algorithm which checks and computes the feasibility of data transfers.
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We also have presented two propagation rules for the data transfer constraint. Overall,
our approach greatly improves the results both for computing times, and accuracy of
the solutions.
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Abstract. Max-Sur-CSP is the following optimisation problem: given a set of
constraints, find a surjective mapping of the variables to domain values that sat-
isfies as many of the constraints as possible. Many natural problems, e.g. Min-
imum k-Cut (which has many different applications in a variety of fields) and
Minimum Distance (which is an important problem in coding theory), can be ex-
pressed as Max-Sur-CSPs. We study Max-Sur-CSP on the two-element domain
and determine the computational complexity for all constraint languages (families
of allowed constraints). Our results show that the problem is solvable in polyno-
mial time if the constraint language belongs to one of three classes, and NP-hard
otherwise. An important part of our proof is a polynomial-time algorithm for enu-
merating all near-optimal solutions to a generalised minimum cut problem. This
algorithm may be of independent interest.

1 Introduction

In the constraint satisfaction problem (CSP) one is given a set of variables, a set of
domain values and a collection of constraints, and is asked to determine if there is
an assignment of values to the variables that satisfies all of the constraints. This gen-
eral framework unifies a huge class of computational problems. However, some natural
problems resist being formulated as CSPs and has motivated the introduction of several
variants of CSP, e.g. the maximum constraint satisfaction problem (Max-CSP), where
one tries to find an assignment that satisfies as many of the constraints as possible,
and the surjective constraint satisfaction problem (Sur-CSP), where one asks if there
is a surjective assignment that satisfies the constraints. Max-CSP has been intensively
studied and a wealth of results can be found in the literature; it is understood on small
domains [8,11,15,16,18], over some restricted classes of languages [19], and its approx-
imability is understood under the assumption of the unique games conjecture [23]. Also
Sur-CSP has been thoroughly investigated, mostly from a graph-theoretical perspective.
Deciding the complexity, even for small special cases, of this problem has however
turned out to be challenging, see [2,13,20,22].

Recently Bach and Zhou [1] introduced the maximum surjective constraint satisfac-
tion problem (Max-Sur-CSP) which in a natural way combines Max-CSP and Sur-CSP.
An example of a problem that is readily expressed as a Max-Sur-CSP, but not captured
in a good way as a Max-CSP or a Sur-CSP, is Minimum k-Cut. This is a problem
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from graph theory that has applications in a broad variety of fields both in science and
engineering. Many other variations of cut problems are also nicely described as Max-
Sur-CSPs. One such example is the minimum asymmetric cut problem [1]. Yet another
well studied example that is easily expressed as a Max-Sur-CSP is the Minimum Dis-
tance problem, a central problem in coding theory. The complexity of this problem was
unknown, but conjectured to be NP-complete, for nearly 20 years before Vardy [26]
turned the conjecture into a theorem. It might seem peculiar that the examples above
all deal with minimisation whereas Max-Sur-CSP is a maximisation problem. However,
switching between the two forms is easy. Consider e.g. the Minimum Cut problem; we
are given a graph and want to partition its vertices into two blocks so that the number
of edges crossing the block-boundaries is minimised. Clearly we may think of this also
as the maximisation problem in which we search for a partition that gives us as many
block-internal edges as possible.1

In this paper we focus on Max-Sur-CSP over the two-element domain and deter-
mine the computational complexity for all constraint languages (classes of allowed
constraints). We show that the problem either can be solved in polynomial time or is
NP-hard. The tractable languages are described. Furthermore, we prove that if there
is a polynomial-time algorithm that finds one optimal solution, then there is also a
polynomial-delay algorithm that enumerates all of them.

It is known that α-minimum cuts (cuts of weight no more than α times the weight of
a minimum cut) in a graph can be enumerated efficiently and that the number of such
cuts is bounded by a polynomial in the size of the graph [17,21,27]. We show that simi-
lar results carry over to a (slightly) generalised version of the minimum asymmetric cut
problem. This gives us a polynomial-time algorithm that plays an important role in our
classification. In fact, we show that the languages handled by this algorithm together
with languages in a previously known tractable class (the 2-monotone languages) make
up the only tractable fragments of Max-Sur-CSP. Hardness results emerge from con-
nections to the related problems Max-CSP and Sur-CSP, and the problem Minimum
Distance.

The organisation of the paper is as follows. Section 1.1 covers preliminaries and re-
lated work, Sect. 2 contains hardness results and the classification, and Sect. 3 contains
our algorithmic results.

1.1 Preliminaries and Related Work

We use the notation N = Z≥0, B = {0, 1}, [n] = {1, . . . , n}, 0 = (0, . . . , 0) and
1 = (1, . . . , 1). By ⊂ we mean proper subset. We use ≤ to denote the partial order
over Bn where s ≤ t if and only if si ≤ ti for every i ∈ [n]. By projs(x) we denote
a (generalised) projection of x described by the tuple s, e.g. proj(3,2)(a, b, c) = (c, b)

and proj(1,1,1)(a, b) = (a, a, a). The indicator function for a set A is denoted by χA,
i.e. χA(x) = 1 if x ∈ A and χA(x) = 0 otherwise. The arity of a tuple t (relation R) is
written ar(t) (ar(R)).

Let D (the domain) be a finite set and Γ (the constraint language) be a finite collec-
tion of finitary relations over D. We define the problems CSP(D,Γ ), Sur-CSP(D,Γ ),

1 Note that this kind of construction does not necessarily preserve approximability properties.



40 H. Uppman

Max-CSP(D,Γ ) and Max-Sur-CSP(D,Γ ) as follows. An instance, to any of the prob-
lems, is a function f : Dn → N defined as

f(x) =

m∑
i=1

wiχ
Ri(projsi(x))

through a collection of weights wi ∈ N, constraint relations Ri ∈ Γ , and constraint
scopes si ∈ [n]ar(Ri). The problems CSP(D,Γ ) and Sur-CSP(D,Γ ) are decision prob-
lems and asks for an answer to the questions: is there x ∈ Dn, respectively is there
x ∈ {y ∈ Dn : {y1, . . . , yn} = D}, such that f(x) =

∑m
i=1 wi? The problems Max-

CSP(D,Γ ) and Max-Sur-CSP(D,Γ ) are optimisation problems where a solution is an
element in Dn, respectively in {x ∈ Dn : {x1, . . . , xn} = D}, and an optimal solution
is a solution that maximises f .

Since we consider only the two-element domain, we will throughout the paper

– use Γ to refer to a finite set of finitary relations on B, and
– write CSP(Γ ) to mean CSP(B, Γ ), Max-CSP(Γ ) to mean Max-CSP(B, Γ ), etc.

We begin by setting up some notation. We let maj denote the majority operation on
B, i.e. the unique ternary operation that satisfies x = maj(x, x, y) = maj(x, y, x) =
maj(y, x, x) for every x, y ∈ B, we let neg denote the unary operation {0 �→ 1, 1 �→ 0},
and we let aff denote the operation (x, y, z) �→ x + y + z (mod 2). We lift the fini-
tary operations on B to powers of B by coordinate-wise application, e.g. max(x, y) =
(max(x1, y1), . . . ,max(xn, yn)) if x, y ∈ Bn. For any unary operation ϕ on B we take
this further and lift ϕ to any relation R on B by ϕ(R) = {ϕ(t) : t ∈ R}, and to any set
Γ of relations on B by ϕ(Γ ) = {ϕ(R) : R ∈ Γ}. A relation R is said to be ϕ-closed,
for some finitary operation ϕ on B, if ϕ(t1, . . . , tk) ∈ R for every t1, . . . , tk ∈ R. Fi-
nally, if ϕ and σ are binary operations on B, we say that a relation R ⊆ Bm admits
the (ϕ, σ) multimorphism if χR(x) + χR(y) ≤ χR(ϕ(x, y)) + χR(σ(x, y)) for every
x, y ∈ Bm [7].

A relation R over B is said to be 0-valid if 0 ∈ R, 1-valid if 1 ∈ R, Horn if R is min-
closed, dual Horn if R is max-closed [14], bijunctive if R is maj-closed [24], affine if
R is aff-closed [10,24] and 2-monotone if R admits the (min,max) multimorphism [6].
We say that a constraint language Γ is of a certain class if every relation in Γ is of this
class, e.g. Γ is Horn if every R ∈ Γ is Horn.

We are now ready to state some complexity results on the two-element domain.

Theorem 1 (Schaefer [24]). The problem CSP(Γ ) is
– in P if Γ is 0-valid, 1-valid, Horn, dual Horn, affine or bijunctive,
– and NP-complete otherwise.

Theorem 2 (Creignou [8] (see also [18])). The problem Max-CSP(Γ ) is
– in PO if Γ is 0-valid, 1-valid or 2-monotone,
– and APX-complete otherwise.

Theorem 3 (Creignou and Hébrard [9]). The problem Sur-CSP(Γ ) is
– in P if Γ is Horn, dual Horn, affine or bijunctive,
– and NP-complete otherwise.
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For CSP a complete classification is known also on the three-element domain [3], and
for Max-CSP the results has been extended to domains with up to four elements [15,16].

Some relations will show up from time to time, we let =B = {x ∈ B2 : x1 = x2},
≤B = {x ∈ B2 : x1 ≤ x2}, NANDk = Bk \ {1}, C0 = {0}, C1 = {1} and
Ak = {x ∈ Bk :

∑k
i=1 xi = 0 (mod 2)}.

Finally, we introduce two new classes of relations.

Definition 4. A relation R ⊆ Bm is called almost-min-min if there is I ⊆
⋃m

k=1[m]k

and relations {Ps : s ∈ I} ⊆ {=B,NAND1, . . . ,NANDk} so that R = {x ∈ Bm :∧
s∈I projs(x) ∈ Ps}. A relation R is called dual almost-min-min if neg(R) is almost-

min-min.

Note that a relation is almost-min-min if it (interpreted as a predicate) can be expressed
as a finite conjunction over (the predicates) =B and NANDk.

Example 5. The relation R = {(0, 0, 0), (0, 1, 1), (1, 0, 0)} is almost-min-min since
R = {x ∈ B3 : (x1, x2) ∈ NAND2 ∧ (x2, x3) ∈=B}.

2 Complexity Dichotomy

Our main result is the following dichotomy theorem.

Theorem 6. The problem Max-Sur-CSP(Γ ) is
– in PO if Γ is almost-min-min, dual almost-min-min or 2-monotone,
– and NP-hard otherwise.

Bach and Zhou [1] showed that, for any finite domain D and any finite set Δ of finitary
relations over D, the following holds.

Theorem 7. If Max-CSP(D,Δ) is in PO, then Max-Sur-CSP(D,Δ) is in PTAS, and if
Max-CSP(D,Δ) is APX-hard, then Max-Sur-CSP(D,Δ) is APX-hard.

Combining Theorems 6, 7 and 2 gives the following more nuanced classification.

Theorem 8. The problem Max-Sur-CSP(Γ ) is
– in PO if Γ is almost-min-min, dual almost-min-min or 2-monotone,
– otherwise it is NP-hard to solve exactly, but
• in PTAS if Γ is 0-valid or 1-valid,
• and APX-hard otherwise.

We can also show that if we can find one optimal solution, then we can enumerate all
(with polynomial delay). Polynomial-delay enumeration has in several settings related
to CSP been studied before, see e.g. [4,5,9,12,25,27].

Proposition 9. If Max-Sur-CSP(Γ ) is in PO, then there is a polynomial-delay algo-
rithm that enumerates every optimal solution to any instance of Max-Sur-CSP(Γ ).

In the rest of this section we will, with some help of algorithmic results from Sect. 3,
prove Theorem 6 and Proposition 9.

We will need to do reductions among problems. A key building block of many of
these reductions will be the following restricted form of (strict) implementations [11].
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Definition 10. Let {c1, . . . , cp} ⊆ B, S ⊆ Bq and R ⊆ Br. We say that the relation S
implements the relation R using constants c1, . . . , cp if there is s ∈ [r + p]q such that

R = {x ∈ Br : projs(x1, . . . , xr, c1, . . . , cp) ∈ S}. In this case we write S
c1,...,cp−−−−−→ R.

Example 11. Define R =

{
(0, 0, 0, 1),
(0, 0, 1, 1),
(0, 1, 0, 1)

}
. Note that R

1−→ C0 since C0 = {x ∈ B :

proj(1,1,1,2)(x, 1) ∈ R}, R −→ R since R = {x ∈ Bm : proj(1,2,3,4)(x) ∈ R} and

R
0,1−−→ NAND2 since NAND2 = {x ∈ B2 : proj(3,1,2,4)(x; 0, 1) ∈ R}.

We use implementations to construct polynomial-time reductions as follows.

Lemma 12. If {S,Cc1 , . . . , Ccp} ⊆ Γ and S
c1,...,cp−−−−−→ R, then Max-Sur-CSP(Γ∪{R})

≤p Max-Sur-CSP(Γ ).

Proof. We prove the lemma for the case when (c1, . . . , cp) = (0, 1), the other cases
are handled analogously. Let f : Bn → N be a Max-Sur-CSP(Γ ∪ {R}) instance
f(x) = f1(x) +

∑m
i=1 wiχ

R(projsi(x)). Let s be such that z ∈ R if and only if

projs(z; 0, 1) ∈ S. We know that such a tuple exists since S
0,1−−→ R. For every p, q ∈

[n] we create the instance

fp,q(x) = f1(x) +

m∑
i=1

wiχ
S(projs(projsi(x);xp, xq)) +MχC0(xp) +MχC1(xq),

where the weight M is chosen large enough (e.g. as twice the sum of all weights in the
instance f ) so that any optimal solution x to this instance satisfies xp = 0 and xq = 1,
assuming p �= q. This construction yields an instance of Max-Sur-CSP(Γ ) and can be
carried out in polynomial time. Note that for at least one pair (p, q) ∈ [n]2 any optimal
solution to fp,q is also an optimal solution to f . ��

Note that implementations are transitive in the following sense: if R, S and T are

relations over B such that R
c1,...,cu−−−−−→ S

d1,...,dv−−−−−→ T , then there is {e1, . . . , ew} ⊆
{c1, . . . , cu, d1, . . . , dv} such that R

e1,...,ew−−−−−→ T .
Another observation that will be useful to us several times is the following.

Lemma 13. Max-Sur-CSP(Γ )≤p Max-Sur-CSP(neg(Γ ))

Proof. Let f : Bn → N be an instance f(x) =
∑m

i=1 wiχ
Ri(projsi(x)) of Max-Sur-

CSP(Γ ) and let g the corresponding instance of Max-Sur-CSP(neg(Γ )), i.e. g(x) =∑m
i=1 wiχ

neg(Ri)(projsi(x)). It is not hard to verify that x ∈ Bn is an optimal solution
to g if and only if neg(x) is an optimal solution to f . ��

Affine Relations. We will here show hardness for some affine languages by establish-
ing a connection to the Minimum Distance problem. An instance of this NP-complete
[26] decision problem is a matrix H ∈ Bm×n and an integer w > 0. The question
is if there is x ∈ Bn such that 0 <

∑n
i=1 xi ≤ w and Hx = 0 (mod 2). We begin

by connecting Minimum Distance to Max-Sur-CSP for one of the most simple affine
relations.
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Lemma 14. Minimum Distance ≤p Max-Sur-CSP({A3}).

Proof. From an instance H ∈ Bm×n, w ∈ N of the Minimum Distance problem, we
can find si,j and ai such that the system Hx = 0 (mod 2) can be written

∑ai

j=1 xsi,j =

0 (mod 2), i ∈ [m]. Define the function fi : Bn+1+ai → N as

fi(x1, . . . , xn, y0, . . . , yai) = χC0(y0) +

ai∑
j=1

χA3(yj−1, xsi,j , yj) + χC0(yai).

Note that (x1, . . . , xn, y0, . . . , yai) ∈ Bn+1+ai maximises fi if and only if y0 = 0,
yj =

∑j
k=1 xsi,k (mod 2), and yai =

∑ai

j=1 xsi,j = 0 (mod 2). To solve the Minimum

Distance instance we can therefore create an instance f : Bn+(1+a1)+···+(1+am) → N
of Max-Sur-CSP({A3, C0}) as

f(x; y1; . . . ; ym) = n

m∑
i=1

fi(x; y
i) +

n∑
i=1

χC0(xi).

It is not hard to see (assuming the system Hx = 0 (mod 2) has a non-zero solution)
that if (x; y1; . . . ; ym) is any optimal solution to f , then x is a non-zero solution to
Hx = 0 (mod 2) of minimum weight,

∑n
i=1 xi. Comparing this weight with w then

answers the Minimum Distance instance. So, since A3 −→ C0, we are done. ��

From the following simple reduction we see that also the relation A4 is hard.

Lemma 15. Max-Sur-CSP({A3}) ≤p Max-Sur-CSP({A4})

Proof. Given an instance f : Bn → N of Max-Sur-CSP({A3}) defined by f(x) =∑m
i=1 wiχ

A3(projsi(x)), we construct the Max-Sur-CSP({A4}) instance g : Bn+1 →
N as g(x) =

∑m
i=1 wiχ

A4(proj(si;n+1)(x)). Note that g(0; 1) = g(1; 0) = 0, g(x, 0) =
f(x) and g(x, 1) = f(neg(x)) for every x ∈ Bn. So if (x1, . . . , xn, y) is an optimal
solution to g, then either x or neg(x) is an optimal solution to f . ��

Using the two previous lemmas we can prove hardness for many affine relations.

Lemma 16. If R ⊆ Bm is affine and (0-valid or 1-valid), then R is bijunctive or Max-
Sur-CSP({R}) is NP-hard.

Proof. Consider first the case when R is 0-valid and not bijunctive. Since R is not bi-
junctive there are t1, t2, t3 ∈ R such that maj(t1, t2, t3) �∈ R. Let s1 = aff(0, t2, t3),
s2 = aff(t1,0, t3) and s3 = aff(t1, t2,0). R is affine, so s1, s2, s3 ∈ R. We claim
maj(s1, s2, s3) �∈ R. To see this note that maj(s1i , s

2
i , s

3
i ) = 1 if |{t1i , t2i , t3i }| = 2

and maj(s1i , s
2
i , s

3
i ) = 0 if |{t1i , t2i , t3i }| = 1. So if maj(s1, s2, s3) ∈ R, then R ��

maj(t1, t2, t3) = aff(aff(t1, t2, t3),maj(s1, s2, s3),0) ∈ R, which clearly is a con-
tradiction. Let {p1, . . . , pk} be a partition of [m] such that i, j ∈ p� if and only if
(s1i , s

2
i , s

3
i ) = (s1j , s

2
j , s

3
j) and let ϕ : [m] → [k] be a function such that ϕ(i) = j if

i ∈ pj . Now R −→ R′ where R′ = {x ∈ Bk : proj(ϕ(1),...,ϕ(m))(x) ∈ R}. By con-
struction (s1i , s

2
i , s

3
i ) ∈ {0, (0, 1, 1), (1, 0, 1), (1, 1, 0)}, so ar(R′) ≤ 4. Note that R′ is

affine, 0-valid and not bijunctive. Consider the following cases.
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– If ar(R′) ≤ 2, then R′ is bijunctive, so this case never occurs.
– If ar(R′) = 3, thenA3 ⊆ R′ orR′ is bijunctive. Since maj(s1, s2, s3) �∈ R we have
1 �∈ R′. Also (1, 0, 0) �∈ R′ since otherwise 1 = aff((1, 0, 0), (0, 1, 1),0)) ∈ R′,
symmetrically (0, 1, 0), (0, 0, 1) �∈ R′, hence R′ = A3.

– If ar(R′) = 4, then wlog we can assume {(0, 0, 1, 1), (0, 1, 0, 1), (0, 1, 1, 0)} ⊆ R′.
• If 1 ∈ R′, then R′ is neg-closed since neg(x) = aff(1,0, x), so A4 ⊆ R′. It is

not hard to see (as in the previous case) that in this case R′ = A4.

• If 1 �∈ R′, then R′ −→ C0 (since R′ is 0-valid and not 1-valid) and R′
0−→ R′′

where R′′ = {x ∈ B3 : proj(4,1,2,3)(x; 0) ∈ R′}. By the same arguments as in
the case ar(R′) = 3 we can conclude that R′′ = A3.

This means that Max-Sur-CSP({R}) is NP-hard since by Lemmas 14 and 15, Minimum
Distance ≤p Max-Sur-CSP({A3}) ≤p Max-Sur-CSP({A4}).

What remains to be handled is the case when R is affine, 1-valid, not bijunctive and
not 0-valid. In this case neg(R) is affine, 0-valid and not bijunctive, so by the result
above and by Lemma 13 we are done. ��

Horn, Dual-Horn and Bijunctive Relations. Many constraint languages of the type
studied here are strong enough to express the constant-relations C0 and C1. This will
often make it easy for us to prove hardness results. A central lemma is the following.

Lemma 17. If ≤B∈ Γ , then Max-Sur-CSP(Γ ∪ {C0, C1}) ≤p Max-Sur-CSP(Γ ).

Proof. Let f : Bn → N be a Max-Sur-CSP(Γ ∪ {C0, C1}) instance

f(x) = f1(x) +

m0∑
i=1

w0
i χ

C0(xui) +

m1∑
i=1

w1
i χ

C1(xvi).

For every p, q ∈ [n] we create the instance

fp,q(x) = f1(x) +

m0∑
i=1

w0
i χ
≤B(xui , xp) +

m1∑
i=1

w1
i χ
≤B(xq, xvi)

+M
n∑

i=1

χ≤B(xp, xi) +M
n∑

i=1

χ≤B(xi, xq),

where the weight M is chosen large enough (e.g. as twice the sum of all weights in the
instance f ) so that any optimal solution x to this instance satisfies xp = 0 and xq = 1,
assuming p �= q. This construction yields an instance of Max-Sur-CSP(Γ ) and can be
carried out in polynomial time. Note that for at least one pair (p, q) ∈ [n]2 any optimal
solution to fp,q is also an optimal solution to f . ��

We will see that≤B can be implemented from many min-closed relations, the following
lemma handles one case.

Lemma 18. If R ⊆ Bm is min-closed, 1-valid and not max-closed, then R −→≤B or

R −→ C1 and R
1−→≤B.
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Proof. Consider first the case when R is 0-valid. Note that R is not neg-closed since
max(x, y) = neg(min(neg(x), neg(y))), so there is t ∈ R such that neg(t) �∈ R.
Hence, R −→≤B since ≤B= {x ∈ B2 : proj(1+t1,...,1+tm)(x) ∈ R}. We now turn to
the case when R is not 0-valid. In this case clearly R −→ C1. Note that R contains a
≤-minimum tuple t since if t1 and t2 are two ≤-minimal tuples in R, then min(t1, t2)
is another ≤-minimal tuple, hence t1 = t2. Assume t contains k zeroes and define
ϕ : [m] → [k + 1] as ϕ(i) = k + 1 if ti = 1 and ϕ(i) = |{j ∈ [i] : tj = 0}| if

ti = 0. Now R
1−→ R′ where R′ = {x ∈ Bk : proj(ϕ(1),...,ϕ(m))(x; 1) ∈ R}. Clearly

R′ is min-closed, 0-valid, 1-valid and not max-closed, so by the case above and the
transitivity of −→ we are done. ��

For convenience we introduce the operator, Ξ, that can be thought of as “removing
duplicated columns” from relations.

Definition 19. If R ⊆ Bm, we let Ξ(R) = proj(s1,...,sk)(R), where s1 < s2 < · · · <
sk and {s1, . . . , sk} = {i ∈ [m] : if j ∈ [m] and tj = ti for all t ∈ R, then j ≥ i}.

Example 20. If R =
{

(1, 1, 1, 1),
(1, 0, 1, 0)

}
then Ξ(R) =

{
(1, 1),
(1, 0)

}
.

We can now show that another collection of min-closed relations also implements≤B.

Lemma 21. Let R be a relation over B. If R is 0-valid and min-closed, then either

Ξ(R) admits the (min,min) multimorphism, or R −→≤B or R −→ C0 and R
0−→≤B.

Proof. The result holds for unary relations. Assume that it also holds for all relations of
arity strictly less than m. Let R be of arity m and consider the following cases.

– R �= Ξ(R)
Note that Ξ(R) is 0-valid and min-closed. Since R −→ Ξ(R) this means that the
result follows from the inductive hypothesis.

– R = Ξ(R)
• R is 1-valid
∗ If R is not neg-closed, then there is t ∈ R such that neg(t) �∈ R. In this

case R −→≤B since ≤B= {x ∈ B2 : proj(1+t1,...,1+tm)(x) ∈ R}.
∗ If R is neg-closed, then R = Bm. To prove this we pick any s ∈ Bm

and show that s ∈ R. For i ∈ [m], let si be the tuple where sii = si
and sij = 1 for all j �= i. We claim si ∈ R. Note that if sii = 1,
then si = 1 ∈ R. If sii = 0 we pick a set of tuples {yi,j}j∈[m] ⊆ R

such that yi,ji = 0 and yi,jj = 1 for j �= i. Such a set exists; we know
that there is at least one tuple q ∈ R such that qi �= qj and that R is
neg-closed, so we may set yi,j equal to either q or neg(q). This means,
since R is max-closed as max(x, y) = neg(min(neg(x), neg(y))), that
si = max(yi,1,max(. . .max(yi,m−1, yi,m) . . . )) ∈ R. Finally we have
that s = min(s1,min(. . .min(sm−1, sm) . . . )) ∈ R since R is min-
closed. Since R = Bm, clearly R admits the (min,min) multimorphism.

• R is not 1-valid
Assume that R does not admit the (min,min) multimorphism. Then, since R
is min-closed, there is a pair t1, t2 ∈ Bm such that t1 ∈ R, t2 �∈ R and
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min(t1, t2) �∈ R. Note that R −→ C0 since R is 0-valid and not 1-valid. Let
R′ be the projection of {x ∈ R : x ≤ t1} onto the coordinates {i : t1i = 1}.
Clearly R

0−→ R′. Note that R′ is 0-valid, min-closed, has arity strictly less than
m and does not admit the (min,min) multimorphism.
Note also that R′ = Ξ(R′). Assume this is false, then there are i, j such that
ti = tj for all t ∈ R′. Since R = Ξ(R) there is s ∈ R such that si′ �= sj′

where i′, j′ are the coordinates in R that corresponds to the coordinates i, j in
R′. Since R is min-closed t1 ≥ min(t1, s) ∈ R, so min(t1, s) is projected
to a tuple s′ ∈ R′ satisfying s′i �= s′j , which is a contradiction. Hence, by the

inductive hypothesis, R′
0−→≤B. ��

Relations that admit the (min,min) multimorphism have a simple structure.

Lemma 22. If R ⊆ Bm admits the (min,min) multimorphism, then there exists I ⊆⋃m
k=1[m]k so that R = {x ∈ Bm :

∧
s∈I projs(x) ∈ NAND|s|}.

Proof. The result holds for the unary relations. Assume it also holds for all relations of
arity strictly less than m, and let R be of arity m.

First note that if R is 1-valid, then R = Bm. We can therefore assume that R is
not 1-valid. For i ∈ [m], the relation proj(1,...,i−1,i+1,...,m)(R) admits the (min,min)

multimorphism. Let R′ = {x ∈ Bm : x ∈ NANDm∧
∧m

i=1 proj(1,...,i−1,i+1,...,m)(x) ∈
proj(1,...,i−1,i+1,...,m)(R)}. By the inductive hypothesis there is I ′ ⊆

⋃m
k=1[m]k such

that R′ = {x ∈ Bm :
∧

s∈I′ projs(x) ∈ NAND|s|}. Clearly R ⊆ R′. Assume R′ \R �=
∅. Let t be a≤-maximal element in R′\R and pick any i such that ti = 0. Since t ∈ R′

we have proj(1,...,i−1,i+1,...,m)(t) ∈ proj(1,...,i−1,i+1,...,m)(R), so since t �∈ R we must
have2 ti←1 ∈ R. But R admits the (min,min) multimorphism and t ≤ ti←1, so t ∈ R.
This is a contradiction, hence R′ = R. ��

Immediately from Lemma 22 we get the following result.

Corollary 23. If R ⊆ Bm and Ξ(R) admits the (min,min) multimorphism, then R is
almost-min-min.

We now summarise the hardness results for Horn, dual Horn and bijunctive relations.

Lemma 24. Let R be a finitary relation on B. If R is min-closed or max-closed, then
either R is 2-monotone, almost-min-min, dual almost-min-min, or Max-Sur-CSP({R})
is NP-hard.

Proof. Note that Max-CSP({R}) ≤p Max-Sur-CSP({R}). Assume R is min-closed
and consider the following cases.

– If R is 0-valid, then by Lemmas 17 and 21, Corollary 23 and Theorem 2 it follows
that R is 2-monotone or almost-min-min, or Max-Sur-CSP({R}) is NP-hard.

– If R is not 0-valid, then
• if R is not 1-valid, then R is 2-monotone or Max-Sur-CSP({R}) is NP-hard by

Theorem 2, and

2 By ti←x we mean (t1, . . . , ti−1, x, ti+1, . . . , tar(t)).
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• if R is 1-valid, then
∗ if R is not max-closed, then R is not 2-monotone and Max-Sur-CSP({R})

is NP-hard by Lemmas 17 and 18, and Theorem 2, and
∗ if R is max-closed, then neg(R) is min-closed, max-closed, 0-valid and

not 1-valid, so (by a previous case) neg(R) is 2-monotone or almost-min-
min, or Max-Sur-CSP({neg(R)}) is NP-hard. By Lemma 13 this means
that R is 2-monotone or dual almost-min-min, or Max-Sur-CSP({R}) is
NP-hard.

IfR is max-closed, then neg(R) is min-closed, so neg(R) is either 2-monotone, almost-
min-min, dual almost-min-min, or Max-Sur-CSP({neg(R)}) is NP-hard. This means,
according to Lemma 13, that R is either 2-monotone, almost-min-min, dual almost-min-
min, or Max-Sur-CSP({R}) is NP-hard. ��

Dichotomy. We are now ready to put the pieces from the last two subsections together.

Lemma 25. Γ is 2-monotone, almost-min-min or dual almost-min-min, or Max-Sur-
CSP(Γ ) is NP-hard.

Proof. Note that Sur-CSP(Γ ) ≤p Max-Sur-CSP(Γ ) and Max-CSP(Γ ) ≤p Max-Sur-
CSP(Γ ). So, by Theorem 2 we know that Γ is 2-monotone, 0-valid or 1-valid, or Max-
Sur-CSP(Γ ) is NP-hard.

Consider first the case, when Γ is 0-valid and not 2-monotone. Assume Max-Sur-
CSP(Γ ) is not NP-hard. By Theorem 3 we know that Γ is Horn, dual Horn, bijunctive
or affine. By Lemmas 16 and 24 we then get that every relation R ∈ Γ is either 2-
monotone, almost-min-min or dual almost-min-min. This means that every R ∈ Γ is
2-monotone or almost-min-min. To see this, note that if R is dual almost-min-min, then
Ξ(R) is both 0-valid and admits the (max,max) multimorphism, so Ξ(R) = Bm for
some m. Hence, Ξ(R) admits the (min,min) multimorphism and R is almost-min-min.
If Γ is not almost-min-min, then there exists R ∈ Γ that is not almost-min-min (and
not dual almost-min-min) and must therefore be 2-monotone and hence min-closed. By
Corollary 23 and Lemmas 21 and 17 we can conclude that Max-Sur-CSP(Γ∪{C0, C1})
≤p Max-Sur-CSP(Γ ). Note that Γ ∪ {C0, C1} is not 0-valid, not 1-valid and not 2-
monotone, so by Theorem 2, Max-Sur-CSP(Γ ∪ {C0, C1}), and therefore also Max-
Sur-CSP(Γ ), is NP-hard.

If Γ is 1-valid and not 2-monotone, then neg(Γ ) is 0-valid and not 2-monotone,
so we know that neg(Γ ) is almost-min-min or dual almost-min-min, or Max-Sur-
CSP(neg(Γ )) is NP-hard. Hence, by Lemma 13, Γ is almost-min-min or dual almost-
min-min, or Max-Sur-CSP(Γ ) is NP-hard. ��

Using results from Sect. 3 we can now prove Theorem 6 and Proposition 9.

Proof (of Theorem 6). Max-Sur-CSP(Γ ) is known to be in PO if Γ is 2-monotone [1].
In the case when Γ is almost-min-min the result follow from Theorem 36 (via the
definition of Min-Sur-CSP(Γ ) in Sect. 3), and in the case when Γ is dual almost-min-
min it follows by Lemma 13. Hardness follows from Lemma 25. ��
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Proof (of Proposition 9). We know by Theorem 6 that Max-Sur-CSP(Γ ) is in PO only if
Γ is almost-min-min, dual almost-min-min or 2-monotone. If Γ is 2-monotone, then so
is Γ∪{C0, C1}, and in this case we may enumerate every optimal solution with a simple
recursive algorithm (see e.g. [5,9]). If Γ is almost-min-min and we are given an instance
f : Bn → N of Max-Sur-CSP(Γ ), then either there is x ∈ Bn that satisfies every
constraint, in which case (since Γ is Horn) the result follows from [9], or Theorem 36
is applicable. The case when Γ is dual almost-min-min is completely symmetric to the
almost-min-min case. ��

3 A Generalised Minimum Cut Problem

In this section we focus on the problem Min-Sur-CSP({NANDk,=B}) (defined below)
which is a slight generalisation of the minimum asymmetric cut problem [1]. We will
show that we can enumerate all α-optimal solutions (solutions of cost no more than α
times the cost of an optimal solution) to an instance of this problem in polynomial time.
At the end of the section we also show how this generalises even further to languages
that are almost-min-min.

Let D be a finite set and Δ be a finite family of finitary relations over D, and let
χ̄R = 1 − χR. We define the problem Min-Sur-CSP(D,Δ) as follows. An instance is
a function f : Dn → N defined as

f(x) =

m∑
i=1

wiχ̄
Ri(projsi(x))

through a collection of weights wi ∈ N, constraint relations Ri ∈ Δ, and constraint
scopes si ∈ [n]ar(Ri). A solution is an element in {x ∈ Dn : {x1, . . . , xn} = D}, and
an optimal solution is a solution that minimises f . This problem is clearly very similar
to Max-Sur-CSP(D,Δ); instead of maximising the number of satisfied constraints, we
are minimising the number of unsatisfied ones. An optimal solution to an instance of
one of the problems is certainly also an optimal solution to the corresponding instance
of the other problem. However, the problems do differ when it comes to approximability
and near-optimal solutions – and this is something we will make use of.

Let f : Bn → N be an instance of Min-Sur-CSP({NANDk,=B}). We can wlog
assume that f = f1+f2 where f1 is an instance of Min-Sur-CSP({NANDk}) and f2 is
an instance of Min-Sur-CSP({=B}). We will throughout the section reserve f , f1 and
f2 to refer to these particular instances.

Note that we can always express f2 as f2(x) =
∑
{i,j}∈E w{i,j}χ̄

=B(xi, xj). So
finding a optimal solution to f2 is equivalent to solving the Minimum Cut problem on
the undirected graph ([n], E) with edge weights w{i,j}.

For notational convenience, we will treat f , f1 and f2 as functions 2[n] → N, i.e. we
write f(X) for f(χX(1), . . . , χX(n)).

Definition 26. For g : 2V → N, U ∈ 2V and α ∈ Q≥0, let

λ(g, U) = min{g(Y ) : ∅ ⊂ Y ⊂ U} and

Sol(g, U, α) = {X : ∅ ⊂ X ⊂ U and g(X) ≤ αλ(g, U)}.
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We define V = [n] and X = V \X . We will assume that λ(f2, V ) > 0 and show that
in this case Sol(f, V, α) can be computed in polynomial time for any fixed α ∈ N.

Note that f1 and f2 are functions 2V → N satisfying

f2(X) + f2(Y ) ≥ f2(X ∩ Y ) + f2(X ∪ Y ), (1)

f2(X) = f2(X), (2)

f2(X) + f2(Y ) ≥ f2(X \ Y ) + f2(Y \X), (3)

f2(Z) > 0 and (4)

f1(X) ≥ f1(X ∩ Y ) + f1(X ∩ Y ) (5)

for every X,Y ∈ 2V and every Z ∈ 2V such that ∅ ⊂ Z ⊂ V . Here (3) is implied by
(1) and (2) since f2(X) + f2(Y ) = f2(X) + f2(Y ) ≥ f2(X ∩ Y ) + f2(X ∪ Y ) =

f2(X ∩Y )+ f2(X ∪ Y ) = f2(Y \X)+ f2(X \Y ). We will in this section frequently,
often without mention, make use of these properties.

Our first step towards computing Sol(f, V, α) will be an algorithm for computing
Sol(f, V, 1). But, before stating this algorithm we will establish some properties of the
elements in Sol(f, U, 1), U ⊆ V .

Lemma 27. If U ⊆ V , Y ∈ Sol(f2, U, 1), X ∈ Sol(f, U, 1) and no Z exists such that
Z ⊂ Y and Z ∈ Sol(f2, U, 1), then Y ∩X ∈ {∅, X, Y }.

Proof. Assume that Y ∩ X �∈ {∅, X, Y }. We have f2(X) + f2(Y ) ≥ f2(X \ Y ) +
f2(Y \X) > f2(X \ Y ) + f2(Y ) since ∅ ⊂ Y \X ⊂ Y ⊂ U and Y is an inclusion-
minimal element in Sol(f2, U, 1). This means that f(X) = f1(X) + f2(X) ≥ f1(X \
Y ) + f2(X) > f1(X \ Y ) + f2(X \ Y ) = f(X \ Y ) and, since ∅ ⊂ X \ Y ⊂ U , that
X �∈ Sol(f, U, 1). We have thus reached a contradiction. ��

Lemma 28. If U ⊆ V , X ∈ Sol(f, U, 1) and X ⊇ Y for some Y ∈ Sol(f2, U, 1), then
X ∈ Sol(f2, U, 1).

Proof. Note that f2(X) ≥ f2(Y ) = f(Y ) − f1(Y ) ≥ f(Y ) − f1(X) ≥ f(X) −
f1(X) = f2(X), so f2(Y ) = f2(X). ��

Lemma 29. Sol(f2, U, α) can, for any U ⊆ V and any fixed α ∈ N, be computed in
polynomial time.

Proof. We have already remarked that Sol(f2, V, α) is the set of α-minimum cuts (cuts
of weight no more than α times the weight of a minimum cut) in a graph G with integer
edge-weights. This graph can be created in polynomial time, and it is known that the
set of all α-minimum cuts in any graph can be computed in polynomial time [27].

In the case when U ⊂ V , create for every u ∈ U the graph Gu from G by contracting
all vertices in (V \U)∪{u} into the single vertex u. Note that the set of α-minimum cuts
in Gu is a superset of {S ∈ Sol(f2, U, α) : u �∈ S}. Computing the set of α-minimum
cuts in Gu for each u ∈ U therefore allows us to compute Sol(f2, U, α). ��

It was shown by Karger [17] that the number of α-minimum cuts in a graph (V,E) is
less than |V |2α. This together with the proof of Lemma 29 gives us the following result.
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Lemma 30. If U ⊆ V and α ∈ N, then | Sol(f2, U, α)| ≤ |U |2α+1.

By Lemmas 27 and 28, we know that if U ⊆ V , X ∈ Sol(f, U, 1) and Y is an inclusion
minimal element in Sol(f2, U, 1), then either X ⊆ Y , X ⊆ U \Y or X ∈ Sol(f2, U, 1).
Using these properties we can compute Sol(f, U, 1) as follows.

SOLUTIONS(U)
1 if |U | = 1
2 return ∅
3 else
4 A := Sol(f2, U, 1)
5 Y := arbitrary inclusion minimal element in A
6 C := SOLUTIONS(Y )
7 D := SOLUTIONS(U \ Y )
8 E := A ∪ C ∪D ∪ {Y, U \ Y }
9 λ(f, U) := min{f(X) : X ∈ E}

10 return {X ∈ E : f(X) = λ(f, U)}
The correctness of the algorithm follows from earlier remarks, and from the algorithm
we get a simple upper bound on the number of elements in Sol(f, U, 1).

Lemma 31. If U ⊆ V , then | Sol(f, U, 1)| ≤ |U |4.

By using this bound, it is now easy to argue that the algorithm has a polynomial running
time.

Lemma 32. The algorithm SOLUTIONS computes Sol(f, U, 1) in polynomial time for
any U ⊆ V .

Proof. The recursion tree generated by SOLUTIONS has height less than or equal to |U |
and no more than |U | leafs, and therefore contains at most |U |2 vertices. By Lemmas 29,
30 and 31 the work needed in each vertex can be done in polynomial time. ��
Lemmas 27 and 28 describe some properties of elements in Sol(f, U, 1). The following
lemma gives us a somewhat similar result for the elements in Sol(f, U, α), U ⊆ V .

Lemma 33. If p > 3, U ⊆ V , X ∈ Sol(f, U, p
3 ), Y ∈ Sol(f2, U, 1) and ∅ �∈ {X \

Y, Y ∩X}, then either X ∈ Sol(f2, U, p+ 2) or {X \ Y,X ∩ Y } ⊆ Sol(f, U, p−1
3 ).

Proof. Let γ = p
p+2 . If X �∈ Sol(f2, U, p+ 2), i.e. f2(X) > (p+ 2)f2(Y ), then

f(X) = f1(X) + γf2(X) + 2
p+2f2(X)

> f1(X) + γf2(X) + 2f2(Y )

≥ f1(X) + γ(f2(X \ Y ) + f2(Y \X)) + f2(Y )

> f1(X) + γf2(X \ Y ) + γ(f2((Y \X) \ Y ) + f2(Y \ (Y \X)))

≥ f1(X) + γf2(X \ Y ) + γf2(X ∩ Y )

≥ f1(X \ Y ) + f1(X ∩ Y ) + γf2(X \ Y ) + γf2(X ∩ Y )

≥ γf(X \ Y ) + γf(X ∩ Y ).

Hence f(X ∩ Y ) < p+2
p f(X)− f(X \ Y ) ≤ p+2

p
p
3λ(f, U)− λ(f, U) = p−1

3 λ(f, U),

so X ∩ Y ∈ Sol(f, U, p−1
3 ). Symmetrically X \ Y ∈ Sol(f, U, p−1

3 ). ��
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By Lemma 33 we know that if U ⊆ V , X ∈ Sol(f, U, p3 ) and Y is an element in
Sol(f2, U, 1), then either X ⊆ Y , X ⊆ U \ Y , X ∈ Sol(f2, U, p + 2) or X is the
union of two slightly “better” sets – sets that are both in Sol(f, U, p−1

3 ). Using these
properties we can compute Sol(f, U, p3 ). Note that the algorithm does not just compute
Sol(f, U, p3 ), but the entire sequence Sol(f, U, 3

3 ), Sol(f, U,
4
3 ), . . . , Sol(f, U,

p
3 ).

NEAR-SOLUTIONS(U, α)
1 if |U | = 1
2 return (∅, . . . ,∅)
3 else
4 A := Sol(f2, U, 1)
5 Y := any element from A
6 (B3, . . . , B3α) := NEAR-SOLUTIONS(Y, α)
7 (C3, . . . , C3α) := NEAR-SOLUTIONS(U \ Y, α)
8 S3 := SOLUTIONS(U)
9 λ(f, U) := f(X) for some X ∈ S3

10 for p := 4 to 3α
11 Dp := Sol(f2, U, p+ 2)
12 E := {X ∪ Y : X ∈ Sp−1, Y ∈ Sp−1,∅ ⊂ X ∪ Y ⊂ U}
13 F := Bp ∪Cp ∪Dp ∪ E ∪ {Y, U \ Y }
14 Sp := {X ∈ F : f(X) ≤ p

3λ(f, U)}
15 return (S3, . . . , S3α)

The correctness of the algorithm follows from earlier remarks. From the algorithm we
get a simple upper bound on the number of elements in Sol(f, U, α).

Lemma 34. If U ⊆ V and p ∈ N, then | Sol(f, U, p3 )| ≤ |U |3
p

.

Proof. By Lemma 30 we know that | Sol(f2, U, p+2)| ≤ |U |2p+5. If p+ |U | = 0, then
clearly the result holds. Assume the lemma is true when p+ |U | < N and consider the
case when p+ |U | = N . If |U | = m ≥ 2 and p ≥ 3, then

| Sol(f, U, p
3 )| ≤ max

∅⊂Y⊂U
| Sol(f, Y, p

3 )|+ | Sol(f, U \ Y,
p
3 )|+ 2 + | Sol(f2, U, p+ 2)|

+ | Sol(f, U, p−1
3 )|2 ≤ max

0<k<m
k3

p

+ (m− k)3
p

+ 2 +m2p+5+ (m3p−1

)2

≤ 1 + (m− 1)3
p

+ 2 +m2p+5+m
2
33

p≤ (m− 1)3
p

+ 2m
2
3 3

p

= m3p((1− 1
m )3

p

+ 2m−3p−1

) ≤ m3p(1 − 1
m + 1

m ) = m3p = |U |3
p

,

and if m < 2 or p < 3 we clearly (since λ(f, V ) > 0) have | Sol(f, U, p3 )| ≤ |U |3
p

.
��

By using this bound, it is now easy to argue that the algorithm has a polynomial running
time.

Lemma 35. The algorithm NEAR-SOLUTIONS computes Sol(f, U, α) in polynomial
time for any U ⊆ V and any fixed α ∈ N.

Finally, we show that the ability to compute all α-optimal solutions to instances of
Min-Sur-CSP({NANDk,=B}) allows us to compute also the α-optimal solutions to
instances of Min-Sur-CSP(Γ ), for any Γ that is almost-min-min.
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Theorem 36. Let Γ be almost-min-min and α ∈ N. If g is any instance of Min-Sur-
CSP(Γ ), then either there is a solution x to g such that g(x) = 0, or all α-optimal
solutions to g can be enumerated in polynomial time.

Proof. Let g : Bn → N be any instance of Min-Sur-CSP(Γ ) for which there is no
x ∈ Bn \ {0,1} such that g(x) = 0. For any function h : Bn → N, let λ(h) =
min{h(x) : 0 < x < 1} and Sol(h, α) = {x ∈ Bn : 0 < x < 1 and h(x) ≤ αλ(h)}.
We will show that we, in polynomial time, can compute Sol(g, α), for any fixed α ∈ N.

Recall that g is defined as g(x) =
∑m

i=1 wiχ̄
Ri(projsi(x)), where Ri = {x ∈

Bai :
∧ki

j=1 projpi,j (x) ∈ Pi,j} for some collection of relations {Pi,j : i ∈ [m], j ∈
[ki]} ⊆ {NAND1, . . . ,NANDa,=B}, where a = maxi∈[m] ai. We may wlog assume
that k1 = · · · = km and let k = k1. For every j ∈ [k], define hj : Bn → N as
hj(x) =

∑m
i=1 wiχ̄

Pi,j (projpi,j (projsi(x))). Set h(x) =
∑k

j=1 hj(x) and note that
h(x) ≤ kg(x) ≤ kh(x) for every x ∈ Bn. So if g(x) ≤ αλ(g), then h(x) ≤ kg(x) ≤
kαλ(g) ≤ kαλ(h) which means that Sol(g, α) ⊆ Sol(h, kα). To compute Sol(g, α) we
can therefore compute the larger set Sol(h, kα) and then throw the unwanted elements
out. Note that NANDu −→ NANDv if u ≥ v, so we can wlog assume that {Pi,j : i ∈
[m], j ∈ [k]} ⊆ {NANDa,=B}. This means that we can represent h as the sum of
a Min-Sur-CSP({NANDa}) instance h1 and a Min-Sur-CSP({=B}) instance h2. We
are therefore close to being able to compute Sol(h, kα) by the algorithms in Sect. 3.
However, we might have λ(h2) = 0, which prevents us from directly using Lemma 35.
To overcome this issue, let M = n2 and h′ = h′1 + h′2, where h′1(x) = Mh1(x)
and h′2(x) = Mh2(x) +

∑
(i,j)∈[n]2 χ̄

=B(xi, xj). Clearly λ(h′2) > 0. Note that if
h(x) ≤ kαλ(h), then h′(x) ≤ 2Mh(x) ≤ 2Mkαλ(h) ≤ 2kαλ(h′) since (because
h(x) ≥ g(x) > 0 for every Bn \{0,1}) we have Mh(x) ≤ h′(x) ≤ 2Mh(x) for every
x ∈ Bn \ {0,1}. Hence, Sol(h, kα) ⊆ Sol(h′, 2kα) and, by Lemma 35, we know that
Sol(h′, 2kα) ⊇ Sol(g, α) can be computed in polynomial time, for any fixed α. ��

4 Remarks and Open Ends

The ultimate goal in this direction of research would naturally be a complexity classifi-
cation for Max-Sur-CSP on any finite domain. Preferably both for computation of exact
and approximate solutions. This will likely not be easy, but we hope that our results to-
gether with [1] may act as a base to build from. However, there are also plenty of smaller
questions. One immediate question is if Proposition 9 holds also for Max-Sur-CSP on
larger domains. Another area to investigate is the bound in Lemma 34 of the number of
α-optimal solutions of an instance of Min-Sur-CSP({NANDk,=B}). A tighter bound
would certainly be interesting.
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Abstract. The ATMOSTSEQCARD constraint is the conjunction of a cardinality
constraint on a sequence of n variables and of n− q + 1 constraints ATMOST u
on each subsequence of size q.

This constraint is useful in car-sequencing and crew-rostering problems. In
[18], two algorithms designed for the AMONGSEQ constraint were adapted to this
constraint with a O(2qn) and O(n3) worst case time complexity, respectively.
In [10], another algorithm similarly adaptable to filter the ATMOSTSEQCARD

constraint with a time complexity of O(n2) was proposed.
In this paper, we introduce an algorithm for achieving Arc Consistency on

the ATMOSTSEQCARD constraint with a O(n) (hence optimal) worst case time
complexity. We then empirically study the efficiency of our propagator on in-
stances of the car-sequencing and crew-rostering problems.

1 Introduction

In many applications there are restrictions on the successions of decisions that can be
taken. Some sequences are allowed or preferred while other are forbidden. For instance,
in crew-rostering applications, it is often not recommended to have an employee work
on an evening or a night shift and then again on the morning shift of the next day.

Several constraints have been proposed to deal with this type of problems. The
REGULAR [12] and COST-REGULAR constraints [7] make it possible to restrict se-
quences in an arbitrary way. However, there might often exist more efficient algorithm
for the particular case at hand. For instance, filtering algorithms have been proposed
for the AMONGSEQ constraint in [6,10,19,18]. This constraint ensures that all subse-
quences of size q have at least l but no more than u values in a set v. This constraint is
often applied to car-sequencing and crew-rostering problems. However, the constraints
in these two benchmarks do not correspond exactly to this definition. Indeed, there are
often no lower bound restriction on the number of values (l = 0). Instead, the number
of values in the set v is often constrained by an overall demand.

In this paper we consider the constraint ATMOSTSEQCARD. This constraint, posted
on n variables x1, . . . , xn, ensures that, in every subsequence of length q, no more
than u are set to a value in a set v, and that over all the sequence, exactly d are set to
values in v. In car-sequencing, this constraint allows to state that given an option, no
sub-sequence of length q can involve more than u classes of cars requiring this option,

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 55–69, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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and that exactly d cars require it overall. In crew-rostering problems, one can state, for
instance, that a worker must have at least a 16h break between two 8h shifts, or that a
week should not involve more than 40h of working time, while enforcing a total number
of worked hours over the scheduling period.

The rest of the paper is organized as follows: In Section 2 we give a brief state of the
art of the sequence constraints. Then in Section 3, we give a linear time (hence optimal)
algorithm for filtering this constraint. Last, in Section 4 we evaluate our new propagator
on car-sequencing benchmarks, before concluding in Section 5.

2 CSP and SEQUENCE Constraints

A constraint satisfaction problem (CSP) is a triplet P = (X ,D, C) where X is a set
of variables, D is a set of domains and C is a set of constraints that specify allowed
combinations of values for subsets of variables. We denote by min(x) and max(x)
the minimum and maximum values in D(x), respectively. An assignment of a set of
variables X is a tuple w, where w[i] denotes the value assigned to the variable xi. A
constraintC ∈ C on a set of variablesX defines a relation on the domains of variables in
X . An assignment w is consistent for a constraint C iff it belongs to the corresponding
relation. A constraint C is arc consistent (AC) iff, for every value j of every variable xi

in its scope there exists a consistent assignment w such that w[i] = j, i.e., a support.
There are several variants of the SEQUENCE constraints, we first review them and

then motivate the need for the variant proposed in this paper: ATMOSTSEQCARD.
In the following definitions, v is a set of integers and l, u, q are integers. Sequence
constraints are conjunctions of AMONG constraints, constraining the number of occur-
rences of a set of values in a set of variables.

Definition 1. AMONG(l, u, [x1, . . . , xq], v)⇔ l ≤ |{i | xi ∈ v}| ≤ u

Chains of AMONG Constraints: The AMONGSEQ constraint, first introduced in [2],
is a chain of AMONG constraints of width q slid along a vector of n variables.

Definition 2. AMONGSEQ(l, u, q, [x1, . . . , xn], v) ⇔
∧n−q

i=0 AMONG(l, u,
[xi+1, . . . , xi+q], v)

The first (incomplete) algorithm for filtering this constraint was proposed in 2001 [1].
Then in [18,19], two complete algorithms for filtering the AMONGSEQ constraint were
introduced. First, a reformulation using the REGULAR constraint using 2q−1 states and
hence achieving AC in O(2qn) time. Second, an algorithm achieving AC with a worst
case time complexity of O(n3). Moreover, this last algorithm is able to handle arbi-
trary sets of AMONG constraints on consecutive variables (denoted GEN-SEQUENCE),
however in O(n4). Last, two flow-based algorithms were introduced in [10]. The first
achieves AC on AMONGSEQ in O(n3/2 logn logu), while the second achieves AC on
GEN-SEQUENCE in O(n3) in the worst case. These two algorithms have an amortised
complexity down a branch of the search tree of O(n2) and O(n3), respectively.
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Chain of ATMOST Constraints: Although useful in both applications, the AMONGSEQ

constraint does not model exactly the type of sequences useful in car-sequencing and
crew-rostering applications.

First, there is often no lower bound for the cardinality of the sub-sequences, i.e.,
l = 0. Therefore AMONGSEQ is unnecessarily general in that respect. Moreover, the
capacity constraint on subsequences is often paired with a cardinality requirement.

For instance, in car-sequencing, classes of car requiring a given option cannot be
clustered together because a working station can only handle a fraction of the cars
passing on the line (at most u times in any sequence of length q). The total number of
occurrences of these classes is a requirement, and translates as an overall cardinality
constraint rather than lower bounds on each sub-sequence.

In crew-rostering, allowed shift patterns can be complex, hence the REGULAR con-
straint is often used to model them. However, working in at most u shifts out of q is a
useful particular case. If days are divided into three 8h shifts, ATMOSTSEQ with u = 1
and q = 3 makes sure that no employee work more than one shift per day and that there
must be a 24h break when changing shifts. Moreover, similarly to car-sequencing, the
lower bound on the number of worked shifts is global (monthly, for instance).

In other words, we often have a chain of ATMOST constraints, defined as follows:

Definition 3. ATMOST(u, [x1, . . . , xq], v)⇔ AMONG(0, u, [x1, . . . , xq], v)

Definition 4. ATMOSTSEQ(u, q, [x1, . . . , xn], v) ⇔
∧n−q

i=0 ATMOST(u,
[xi+1, . . . , xi+q], v)

However, it is easy to maintain AC on this constraint. Indeed, the ATMOST constraint
is monotone, i.e., the set of supports for value 0 is a super-set of the set of supports for
value 1. Hence a ATMOSTSEQ constraint is AC iff each ATMOST is AC [4].

A good tradeoff between filtering power and complexity can be achieved by reason-
ing about the total number of occurrences of values from the set v together with the
chain of ATMOST constraints.1 We therefore introduce the ATMOSTSEQCARD con-
straint, defined as the conjunction of an ATMOSTSEQ with a cardinality constraint on
the total number of occurrences of values in v:

Definition 5. ATMOSTSEQCARD(u, q, d, [x1, . . . , xn], v)⇔

ATMOSTSEQ(u, q, [x1, . . . , xn], v) ∧ |{i | xi ∈ v}| = d

The two AC algorithms introduced in [19] were adapted in [18] to achieve AC on
the ATMOSTSEQCARD constraint. First, in the same way that AMONGSEQ can be
encoded with a REGULAR constraint, ATMOSTSEQCARD can be encoded with a
COST-REGULAR constraint, where the cost stands for the overall demand, and it is
increased on transitions labeled with the value 1. This procedure has the same worst
case time complexity, i.e., O(2qn). Second, the more general version of the polyno-
mial algorithm (GEN-SEQUENCE) is used, to filter the following decomposition of the
ATMOSTSEQCARD constraint into a conjunction of AMONG:

1 This modeling choice is used in [18] on car-sequencing.
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ATMOSTSEQCARD(u, q, d, [x1, . . . , xn], v)⇔
n−q∧
i=0

AMONG(0, u, [xi+1, . . . , xi+q], v) ∧ AMONG(d, d, [x1, . . . , xn], v)

Since the number of AMONG constraints is linear, the algorithm of van Hoeve et al.
runs in O(n3) on this decomposition. Similarly, the algorithm of Maher et al. runs in
O(n2) on ATMOSTSEQCARD, which is the best known complexity for this problem.

Global Sequencing Constraint: Finally, in the particular case of car-sequencing, not
only we have an overall cardinality for the values in v, but each value corresponds to
a class of car and has a required number of occurrences. Therefore, Puget and Régin
proposed to consider the conjunction of a AMONGSEQ and a GCC constraint. Let cl and
cu be two mapping on integers such that cl(j) ≤ cu(j) ∀j, and let D =

⋃n
i=1D(xi).

The Global Cardinality Constraint (GCC) is defined as follows:

Definition 6. GCC(cl, cu, [x1, . . . , xn])⇔
∧

j∈D cl(j) ≤ |{i | xi = j}| ≤ cu(j)

The Global Sequencing Constraint is defined as follows:

Definition 7. GSC(l, u, q, cl, cu, [x1, . . . , xn], v)⇔

AMONGSEQ(l, u, q, [x1, .., xn], v) ∧ GCC(cl, cu, [x1, .., xn])

The mappings cl and cu are defined so that for a value v, both cl(v) and cu(v) map to
the number of occurrences of the corresponding class of car. A reformulation of this
constraint into a set of GCC constraints was introduced in [15]. However, achieving AC

on this constraint is NP-hard [3]. In fact, so is achieving bounds consistency.2

3 The ATMOSTSEQCARD Constraint

In this section we introduce a linear filtering algorithm for the ATMOSTSEQCARD

constraint. We first give a simple greedy algorithm for finding a support with a O(nq)
time complexity. Then, we show that one can use two calls to this procedure to enforce
AC. Last, we show that its worst case time complexity can be reduced to O(n).

It was observed in [18] and [10] that we can consider Boolean variables and v = {1},
since the following decomposition of AMONG (or ATMOST) does not hinder propaga-
tion as it is Berge-acyclic [6]:

AMONG(l, u, [x1, . . . , xq], v)⇔
q∧

i=1

(xi ∈ v ↔ x′i = 1) ∧ l ≤
q∑

i=1

x′i ≤ u

Therefore, throughout the paper, we shall consider the following restriction of the
ATMOSTSEQCARD constraint, defined on Boolean variables, and with v = {1}:
Definition 8.

ATMOSTSEQCARD(u, q, d, [x1, . . . , xn])⇔
n−q∧
i=0

(

q∑
l=1

xi+l ≤ u) ∧ (

n∑
i=1

xi = d)

2 Comics note, Nina Narodytska.
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3.1 Finding a Support

Let w be an n-tuple in {0, 1}n, w[i] denotes the ith element of w, |w| =
∑n

i=1 w[i]
its cardinality, and w[i : j] the (|j − i| + 1)-tuple equal to w on the sub-sequence
[xi, . . . , xj ].

We first show that one can find a support by greedily assigning variables in a lex-
icographical order to the value 1 whenever possible, that is, while taking care of not
violating the ATMOSTSEQ constraint. More precisely, doing so leads to an assignment
of maximal cardinality, which may easily be transformed into an assignment of cardi-
nality d. This greedy rule, computing an assignment w maximizing the cardinality of
the sequence (x1, . . . , xn) subject to a ATMOSTSEQ constraint (with parameters u and
q), is shown in Algorithm 1.

First, the tuple w is initialized to the minimum value in the domain of each variable
in Line 1. Then, at each step i ∈ [1, . . . , n] of the main loop, c(j) is the cardinality of the
jth subsequence involving the variable xi, i.e. at step i, c(j) =

∑min(n,i+j−1)
l=max(1,i−q+j) w[l].

According to the greedy rule sketched above, we set w[i] to 1 iff it is not yet assigned
(D(xi) = {0, 1}) and if this does not violate the capacity constraints, that is, there is
no subsequence involving xi of cardinality u or more. This is done by checking the
maximum value of c(j) for j ∈ [1, . . . , q] (Condition 2). In that case, the cardinality of
every subsequence involving xi is incremented (Line 3). Finally when moving to the
next variable, the values of c(j) are shifted (Line 4), and the value of c(q) is obtained
by adding the value of w[i + q] and subtracting w[i] to its previous value (Line 5).
From now on, we shall denote−→w the assignment found by leftmost on the sequence
x1, . . . , xn. Moreover, we shall denote←−w the assignment found by the same algorithm,
however on the sequence xn, . . . , x1, that is, right to left. Notice that, in order to sim-
plify the notations,←−w [i] shall denote the value assigned by leftmost to the variable
xi, and not xn−i+1 as it would really be if we gave the reversed sequence as input.

Lemma 1. leftmost maximizes
∑n

i=1 xi subject to ATMOSTSEQ(u, q,
[x1, . . . , xn]).

Proof. Let −→w be the assignment found by leftmost, and suppose that there exists w
another assignment (consistent for ATMOSTSEQ(u, q, [x1, . . . , xn])) such that |w| >
|−→w |. Let i be the smallest index such that −→w [i] �= w[i]. By definition of −→w , we know
that −→w [i] = 1 hence w[i] = 0. Now let j be the smallest index such that −→w [j] < w[j]
(it must exists since |w| > |−→w |).

We first argue that the assignment w′ equal to w except that w′[i] = 1 and w′[j] = 0
(as in −→w ) is consistent for ATMOSTSEQ. Clearly, its cardinality is not affected by this
swap, hence |w′| = |w|. Now, we consider all the sum constraints whose scopes are
changed by this swap, that is, the sums

∑a+q−1
l=a w′[l] on intervals [a, a + q − 1] such

that a ≤ i < a+ q or a ≤ j < a+ q. There are three cases:

1. Suppose first that a ≤ i < j < a+ q: in this case, the value of the sum is the same
in w and w′, therefore it is lower than or equal to u.

2. Suppose now that i < a ≤ j < a+q: in this case, the value of the sum is decreased
by 1 from w to w′, therefore it is lower than or equal to u.
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Algorithm 1. leftmost
count← 0;

1 foreach i ∈ [1, . . . , n] do w[i]← min(xi);
foreach i ∈ [1, . . . , q] do w[n+ i]← 0;
c(1)← w[1];
foreach j ∈ [2, . . . , q] do c(j)← c(j − 1) + w[j];
foreach i ∈ [1, . . . , n] do

2 if |D(xi)| > 1 & maxj∈[1,q](c(j)) < u then
w[i]← 1;
count← count + 1;

3 foreach j ∈ [1, . . . , q] do c(j)← c(j) + 1;

4 foreach j ∈ [2, . . . , q] do c(j − 1)← c(j);
5 c(q)← c(q − 1) + w[i+ q]− w[i];

return w;

xi w
c

max
1 2 3 4

. 1 0 0 0 1 1
0 0 1 1 2 1 2
. 0 1 2 1 1 2
1 1 2 1 1 1 2
. 1 1 1 1 0 1
. 0 2 2 1 0 2
. 0 2 1 0 0 2
0 0 1 0 0 1 1
. 1 0 0 1 1 1
0 0 0 2 2 1 2
1 1 2 2 1 2 2
. 0 2 1 2 1 2
. 0 1 2 1 1 2
1 1 2 1 1 1 2
. 1 1 1 1 0 1
. 0 2 2 1 0 2

Fig. 1. An algorithm to compute an assignment satisfying ATMOSTSEQ(2, 4, [x1, . . . , xn]) with
maximal cardinality (left), and an example of its execution (right). Dots in the first column stand
for unassigned variables. The second column shows the computed assignment w, and the next
columns show the state of the variables c(1), c(2), c(3) and c(4) at the start of each iteration. The
last column stands for the maximum value among c(1), c(2), c(3) and c(4).

3. Last, suppose that a ≤ i < a + q ≤ j: in this case, for any l ∈ [a, a + q − 1], we
have w′[l] ≤ −→w [l] since j is the smallest integer such that −→w [j] < w[j], hence the
sum is lower than or equal to u.

Therefore, given a sequence w of maximum cardinality and that differs with −→w at rank
i, we can build one of equal cardinality and that does not differs from−→w until rank i+1.
By iteratively applying this argument, we can obtain a sequence identical to −→w , albeit
with cardinality |w|, therefore contradicting our hypothesis that |w| > |−→w |. ��
Corollary 1. Let−→w be the assignment returned by leftmost. There exists a solution
of ATMOSTSEQCARD(u, q, d, [x1, . . . , xn]) iff the three following propositions hold:

(1) ATMOSTSEQ(u, q, [x1, . . . , xn]) is satisfiable
(2)
∑n

i=1 min(xi) ≤ d
(3) |−→w | ≥ d.

Proof. It is easy to see that these conditions are all necessary: (1) and (2) come from
the definition, and (3) is a direct application of Lemma 1. Now we prove that they
are sufficient by showing that if these properties hold, then a solution exists. Since
ATMOSTSEQ(u, q, [x1, . . . , xn]) is satisfiable,−→w does not violate the chain of ATMOST

constraints as the value 1 is assigned to xi only if all subsequences involving xi have
cardinality u− 1 or less. Moreover, since

∑n
i=1 min(xi) ≤ d there are at least |−→w | − d

variables such that min(xi) = 0 and −→w [i] = 1. Assigning them to 0 does not violate
the ATMOSTSEQ constraint, hence there exists a support. ��
Lemma 1 and Corollary 1 give us a polynomial support-seeking procedure for
ATMOSTSEQCARD. Indeed, the worst case time complexity of Algorithm 1 is inO(nq).
There are n steps and on each step, Lines 2, 3 and 4 involveO(q) operations. Therefore,
for each variable xi, a support for xi = 0 or xi = 1 can be found in O(nq).

Consequently we have a naive AC procedure running in O(n2q) time.
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3.2 Filtering the Domains

In this section, we show that we can filter out all the values inconsistent with respect to
the ATMOSTSEQCARD constraint within the same time complexity as Algorithm 1.

First, we show that there can be inconsistent values only in the case where the car-
dinality |−→w | of the assignment returned by leftmost is exactly d: in any other case,
the constraint is either violated (when |−→w | < d) or AC, (when |−→w | > d). The following
proposition formalises this:

Proposition 1. The constraint ATMOSTSEQCARD(u, q, d, [x1, . . . , xn]) is AC if the
three following propositions hold:

(1) ATMOSTSEQ(u, q, [x1, . . . , xn]) is AC

(2)
∑n

i=1 min(xi) ≤ d
(3) |−→w | > d

Proof. By Corollary 1 we know that ATMOSTSEQCARD(u, q, d + 1, [x1, . . . , xn]) is
satisfiable. Let w be a satisfying assignment, and consider without loss of generality a
variable xi such that |D(xi)| > 1. Assume first that w[i] = 1. The solution w′ equal
to w except that w′[i] = 0 satisfies ATMOSTSEQCARD(u, q, d, [x1, . . . , xn]). Indeed,
|w′| = |w| − 1 = d and since ATMOSTSEQ(u, q, [x1, . . . , xn]) was satisfied by w it
must be satisfied by w′. Hence, for every variable xi s.t. |D(xi)| > 1, there exists a
support for xi = 0.

Suppose that w[i] = 0, and let a < i (resp. b > i) be the largest (resp. smallest)
index such that w[a] = 1 and D(xa) = {0, 1} (resp. w[b] = 1 and D(xb) = {0, 1}).
Let w′ be the assignment such that w′[i] = 1, w′[a] = 0, w′[b] = 0, and w = w′ other-
wise. We have |w′| = d, and we show that it satisfies ATMOSTSEQ(u, q, [x1, . . . , xn]).
Consider a subsequence xj , . . . , xj+q−1. If j + q ≤ i or j > i then

∑j+q−1
l=j w′[l] ≤∑j+q−1

l=j w[l] ≤ u, so only indices j s.t. j ≤ i < j + q matter. There are two cases:

1. Either a or b or both are in the sub-sequence (j ≤ a < j + q or j ≤ b < j + q). In
that case

∑i+q−1
l=j w′[l] ≤

∑i+q−1
l=j w[l].

2. Neither a nor b are in the sub-sequence (a < j and j + q ≤ b). In that case, since
D(xi) = {0, 1} and since condition (1) holds, we know that

∑i+q−1
l=j min(xl) < u.

Moreover, since a < j and j + q ≤ b, there is no variable xl in that sub-sequence
such that w[l] = 1 and 0 ∈ D(xl). Therefore, we have

∑i+q−1
l=j w[l] < u, hence∑i+q−1

l=j w′[l] ≤ u.

In both cases w satisfies all capacity constraints. ��
Remember that achieving AC on ATMOSTSEQ is trivial since AMONG is monotone.

Therefore we focus of the case where ATMOSTSEQ is AC, and |−→w | = d. In particular,
Propositions 2, 3, 4 and 5 only apply in that case. The equality |−→w | = d is therefore
implicitly assumed in all of them.

Proposition 2. If |−→w [1 : i− 1]|+ |←−w [i+ 1 : n]| < d then xi = 0 is not AC.

Proof. Suppose that we have |−→w [1 : i− 1]|+ |←−w [i+ 1 : n]| < d and suppose that there
exists an assignment w such that w[i] = 0 and |w| = d.
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= ≥
−→w 1

−→wL
0 ←−w d−L

xixj xj+q−1

L d− L

Fig. 2. Illustration of Proposition 4’s proof. Horizontal arrows represent assignments.

By Lemma 1 on the sequence x1, . . . , xi−1 we know that
∑i−1

l=1 w[l] ≤
|−→w [1 : i− 1]|.

By Lemma 1 on the sequence xn, . . . , xi+1 we know that
∑n

l=i+1 w[l] ≤
|←−w [i+ 1 : n]|.
Therefore, since w[i] = 0, we have |w| =

∑n
l=1 w[l] < d, thus contradicting the

hypothesis that |w| = d. Hence, there is no support for xi = 0. ��

Proposition 3. If |−→w [1 : i]|+ |←−w [i : n]| ≤ d then xi = 1 is not AC.

Proof. Suppose that we have |−→w [1 : i]| + |←−w [i : n]| ≤ d and suppose that there exists
an assignment w′ such that w′[i] = 1 and |w′| = d.

By Lemma 1 on the sequence x1, . . . , xi we know that
∑i

l=1 w
′[l] ≤ |−→w [1 : i]|.

By Lemma 1 on the sequence xn, . . . , xi we know that
∑n

l=i w
′[l] ≤ |←−w [i : n]|.

Therefore, since w′[i] = 1, we have |w′| =
∑i

l=1 w
′[l] +

∑n
l=i w

′[l] − 1 < d, thus
contradicting the hypothesis that |w′| = d. Hence there is no support for xi = 1. ��
Propositions 2 and 3 entail a pruning rule. In a first pass, from left to right, one can
use an algorithm similar to leftmost to compute and store the values of |−→w [1 : i]|
for all i ∈ [1, . . . , n]. In a second pass, the values of |←−w [i : n]| for all i ∈ [1, . . . , n]
are similarly computed by simply running the same procedure on the same sequence
of variables, however reversed, i.e., from right to left. Using these values, one can then
apply Proposition 2 and Proposition 3 to filter out the value 0 and 1, respectively. We
detail this procedure in the next section.

We first show that these two rules are complete, that is, if ATMOSTSEQ is AC, and
the overall cardinality constraint is AC then an assignment xi = 0 (resp. xi = 1) is
inconsistent iff Proposition 2 (resp. Proposition 3) applies. The following Lemma shows
that the greedy rule maximises the density of 1s on any subsequence starting on x1, and
therefore minimises it on any subsequence finishing on xn. Let leftmost(k) denote
the algorithm corresponding to applying leftmost, however stopping whenever the
cardinality of the assignment reaches a given value k.

Lemma 2. Let w be a satisfying assignment of ATMOSTSEQ(u, q, [x1, . . . , xn]). If
k ≤ |w| then the assignment −→w k computed by leftmost(k) is such that, for any
1 ≤ i ≤ n:

∑n
l=i
−→w k[l] ≤

∑n
l=i w[l].

Proof. Let m be the index at which leftmost(k) stops. We distinguish two cases.
If i > m, for any value l in [m + 1, . . . , n], −→w k[l] ≤ w[l] (since −→w k[l] = min(xl)),
hence

∑n
l=i
−→w k[l] ≤

∑n
l=i w[l]. When i ≤ m, clearly for i = 1,

∑n
l=i
−→w k[l] ≤∑n

l=iw[l] since |−→w k| ≤ |w|. Now consider the case of i �= 1. Since |−→w k| ≤ |w|, then
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=

=

≥
−→w 1 0 0. . . 0

−→wL−1
0 0 0. . . 1 ←−w d−L

0 0. . . 0

←−w d−L+1
0 0 0. . . 1

xixa

xb

L− 1 d− L + 1

Fig. 3. Illustration of Proposition 5’s proof. Horizontal arrows represent assignments.

∑n
l=i
−→w k[l] ≤ |w| −

∑i−1
l=1
−→w k[l]. Thus,

∑n
l=i
−→w k[l] ≤

∑n
l=iw[l] + (

∑i−1
l=1 w[l] −∑i−1

l=1
−→w k[l]). Moreover, by applying Lemma 1, we show that

∑i−1
l=1
−→w k[l] is maxi-

mum, hence larger than or equal to
∑i−1

l=1 w[l]. Therefore,
∑n

l=i
−→w k[l] ≤

∑n
l=iw[l].

��

Proposition 4. If ATMOSTSEQ(u, q, [x1, . . . , xn]) is AC, and |−→w [1 : i− 1]| +
|←−w [i+ 1 : n]| ≥ d then xi = 0 has a support.

Proof. Let −→w be the assignment found by leftmost. We consider, without loss of
generality, a variable xi such thatD(xi) = {0, 1} and |−→w [1 : i− 1]|+ |←−w [i+ 1 : n]| ≥
d and show that one can build a support for xi = 0. If −→w [i] = 0 or ←−w [i] = 0 then
there exists a support for xi = 0, hence we only need to consider the case where
−→w [i] =←−w [i] = 1.

Let L = |−→w [1 : i − 1]|, and let←−w d−L be the result of leftmost(d−L) on the sub-
sequence xn, . . . , xi. We will show that w, defined as the concatenation of−→w [1 : i− 1]
and←−w d−L[i : n] is a support for xi = 0.

First, we show that w[i] = 0, that is ←−w d−L[i] = 0. By hypothesis, since
|−→w [1 : i− 1]| + |←−w [i + 1 : n]| ≥ d, we have |←−w [i+ 1 : n]| ≥ d − L. Now con-
sider the sequence xi, . . . , xn, and let w′ be the assignment such that w′[i] = 0, and
w′ = ←−w [i+ 1 : n] otherwise. Since |w′| = |←−w [i+ 1 : n]| ≥ d − L, by Lemma 2,
we know that w′ has a higher cardinality than←−w d−L on any subsequence starting in i,
hence w[i] =←−w d−L[i] = w′[i] = 0.

Now we show that w does not violate the ATMOSTSEQ constraint. Obviously, since
it is the concatenation of two consistent assignments, it can violate the constraint only
on the junction, i.e., on a sub-sequence xj , . . . , xj+q−1 such that j ≤ i and i < j + q.

We show that the sum of any such subsequence is less or equal to u by comparing
with −→w , as illustrated in Figure 2. We have

∑j+q−1
l=j

−→w [l] ≤ u, and
∑i−1

l=j
−→w [l] =∑i−1

l=j w[l]. Moreover, by Lemma 2, since |−→w [i : n]| = |←−w d−L| = d − L we have∑j+q−1
l=i

←−w d−L[l] ≤
∑j+q−1

l=i
−→w [l] hence

∑j+q−1
l=i w[l] ≤

∑j+q−1
l=i

−→w [l]. Therefore,
we can conclude that

∑j+q−1
l=j w[l] ≤ u. ��

Proposition 5. If ATMOSTSEQ(u, q, [x1, . . . , xn]) is AC, |w[1 : i]| + |w[n : i]| > d
then xi = 1 has a support.

Proof. Let −→w and ←−w be the assignments found by leftmost, on respectively
x1, . . . , xn and xn, . . . , x1. We consider, without loss of generality, a variable xi such
that D(xi) = {0, 1} and |−→w [1 : i]| + |←−w [i : n]| > d and show that one can build a
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support for xi = 1. If −→w [i] = 1 or ←−w [i] = 1 then there exists a support for xi = 1,
hence we only need to consider the case where−→w [i] =←−w [i] = 0.

Let L = |−→w [1 : i]| = |−→w [1 : i− 1]| (this equality holds since −→w [i] = 0). Let
−→wL−1 be the assignment obtained by using leftmost(L − 1) on the subsequence
x1, . . . , xi−1, and let←−w d−L be the assignment returned by leftmost(d− L) on the
subsequence xn, . . . , xi+1.

We show that w such that w[i] = 1, equal to −→wL−1 on x1, . . . , xi−1 and to←−w d−L

on xi+1, . . . , xn, is a support.
Clearly |w| = d, therefore we only have to make sure that all capacity constraints

are satisfied. Moreover, since it is the concatenation of two consistent assignments, it
can violate the constraint only on the junction, i.e., on a sub-sequence xj , . . . , xj+q−1

such that j ≤ i and i < j + q.
We show that the sum of any such subsequence is less or equal to u by comparing

with −→w and←−w d−L (see Figure 3). First, observe that on the subsequence x1, . . . , xi−1,
−→wL−1 = −→w , except for the largest index a such that −→w [a] = 1 and w[a] = 0. Simi-
larly on xn, . . . , xi+1, we have←−w d−L = ←−w d−L+1, except for the smallest b such that
←−w d−L+1[b] = 1. There are two cases:

Suppose first that j > a. In that case,
∑j+q−1

l=j w[l] =
∑j+q−1

l=i
←−w d−L+1[l] if j +

q − 1 ≥ b, and otherwise it is equal to 1. It is therefore alway less than or equal to u
since i ≥ j (and we assume u ≥ 1).

Now suppose that j ≤ a. In that case, consider first the subsequence xj , . . . , xi.
On this interval, the cardinality of w is the same as that of −→w , i.e.,

∑i
l=j w[l] =∑i−1

l=j
−→wL−1[l] + 1 =

∑i
l=j
−→w [l]. On the subsequence xi+1, . . . , xj+q−1, observe that

|w[i + 1 : n]| = |−→w [i+ 1 : n]| = d− L, hence by Lemma 2, we have
∑j+q−1

l=i+1 w[l] =∑j+q−1
l=i+1

←−w d−L[l] ≤
∑j+q−1

l=i+1
−→w [l]. Therefore

∑j+q−1
l=j w[l] ≤

∑j+q−1
l=j

−→w [l] ≤ u. ��

3.3 Algorithmic Complexity

Using Propositions 2, 3, 4 and 5 one can design a filtering algorithm with the same
worst case time complexity as leftmost. In this section, we introduce a linear time
implementation of leftmost, denoted leftmost count, that returns the values of
−→w [1 : i] for all values of i (Algorithm 2).

It is easy to see that leftmost count has a O(n) worst case time complex-
ity. In order to prove its correctness, we will show that the assignment computed by
leftmost count is the same as that computed by leftmost.

Proof (sketch). We only sketch the proof here. The following three invariants are true
at the beginning of each step i of the main loop:

– The cardinality of the sub-sequence j is given by c[(i+j−2) mod q]+count[i−1].
– The number of sub-sequences of cardinality k is given by occ[n−count[i−1]+k].
– The cardinality maximum of any sub-sequence is given by max c.

1st invariant: The value of c[j] is updated in two ways in leftmost. First, at each
step of the loop the values in c[1] through to c[q] are shifted to the left. Therefore, there
is only one really new value. By using the modulo operation, we can update only one
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Algorithm 2. leftmost count
Data: u, q, [x1, . . . , xn]
Result: count : [0, . . . , n] �→ [0, . . . , n]
foreach i ∈ [1, . . . , n] do

w[i]← min(xi);
occ[i] = 0;

foreach i ∈ [0, . . . , n] do count[i]← 0;
c[0]← w[1];
foreach i ∈ [1, . . . , u] do occ[n+ i] = 0;
foreach i ∈ [1, . . . , q] do

w[n + i]← 0;
if i < q then c[i]← c[i− 1] + w[i+ 1]
occ[n+ c[i− 1]]← occ[n+ c[i− 1]] + 1;

max c← max({c[i] | i ∈ [0, . . . , q − 1]});
foreach i ∈ [1, . . . , n] do

1 if max c < u & |D(xi)| > 1 then
max c← max c + 1;
count[i]← count[i− 1] + 1;
w[i]← 1;

else count[i]← count[i− 1];
prev ← c[(i− 1) mod q];
next← c[(i+ q − 2) mod q] + w[i+ q]− w[i];
c[(i− 1) mod q]← next;
if prev �= next then occ[n+ next]← occ[n+ next] + 1;
if next + count[i] > max c then max c← max c + 1;
occ[n+ prev] ← occ[n+ prev] − 1;
if occ[n+ prev] = 0 & prev + count[i] = max c then

max c← max c− 1;

return count;
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Fig. 4. Example of the execution of Algorithm 3 for u = 4, q = 8, d = 12. The first line stands
for current domains, dots are unassigned variables (hence ub = 10). The two next lines give
the assignments −→w and ←−w obtained by running leftmost count from left to right and from
right to left, respectively. The third and fourth lines stand for the values of L[i] = |−→w [1 : i]| and
R[n− i+1] = |←−w [i : n]|. The fifth and sixth lines correspond to the application of, respectively,
Proposition 2 and 3. Last, the seventh line give the arc consistent closure of the domains.

of these values. Second, when w[i] takes the value 1, we increment c[1] up to c[q].
Since this happened exactly count[i− 1] times at the start of step i, we can simply add
count[i− 1] to obtain the same value as in leftmost.

2nd invariant: The data structure occ is a table, storing at index n+ k the number of
subsequences involving xi with cardinality k for the current assignment w. Therefore,
by decrementing the pointer to the first element of the table we in effect shift the entire
table. Here again the value of count[i− 1], or rather the expression (n− count[i− 1])
points exactly to the required starting point of the table.

3rd invariant: The maximum (or minimum) cardinality (of subsequences involving
xi) can change by a unit at the most from one step to the next. Therefore, when the
variable max c needs to change, it can only be incremented (when occ[n− count[i−
1] +max c+ 1] goes from the value 0 to 1) or decremented (when occ[n− count[i−
1] +max c] goes from the value 1 to 0). ��

Algorithm 3 computes the AC closure of a constraint ATMOSTSEQCARD(u, q,
d, [x1, . . . , xn]). In the first line, the AC closure of ATMOSTSEQ(u, q, [x1, . . . , xn])



66 M. Siala, E. Hebrard, and M.-J. Huguet

Algorithm 3. AC(ATMOSTSEQCARD)
Data: [x1, . . . , xn], u, q, d
Result: AC on ATMOSTSEQ CARD(u, q, d, [x1, .., xn])
AC(ATMOSTSEQ)(u, q, [x1, . . . , xn]);
ub← d−

∑n
i=1 min(xi);

L← leftmost count([x1, . . . , xn], u, q, d);
if L[n] = ub then

R← leftmost count([xn, . . . , x1], u, q, d);
foreach i ∈ [1, . . . , n] such thatD(xi) = {0, 1} do

if L[i] + R[n− i + 1] ≤ ub then D(xi)← {0};
if L[i− 1] + R[n− i] < ub then D(xi)← {1};

else if L[n] < ub then Fail

is computed. It ensures that the filtering rules introduced in this paper hold. For lack of
space, we do not give a pseudo-code for achieving AC on ATMOSTSEQ. However, it
can be done in linear time using a procedure similar to leftmost count. We want
to compute, for the assignment corresponding to the lower bound of each domain, if an
unassigned variable is covered by a subsequence of cardinality u for the lower bounds
of the domains. We do it using a truncated version of leftmost count: the values
of w[i] are never updated, i.e., they are set to the minimum value in the domain and we
never enter the if-then-else block starting at condition 1 in Algorithm 2. Moreover, we
store the value of max c for each value of i in a table that we can subsequently use
to achieve AC on ATMOSTSEQ, by going through it and assigning 0 to any unassigned
variable covered by at least one subsequence of cardinality u.

The remainder is a straight application of Propositions 2, 3, 4 and 5. We give an
example of its execution in Figure 4. The worst case time complexity of Algorithm 3 is
therefore O(n), hence optimal.

4 Experimental Results

We tested our filtering algorithm on two benchmarks: car-sequencing and crew-rostering.
All experiments ran on Intel Xeon CPUs 2.67GHz under Linux. For each instance, we
launched 5 randomized runs with a 20 minutes time cutoff.3 All models are imple-
mented using Ilog-Solver.

Since we compare propagators, we averaged the results across several branching
heuristics to reduce the bias that these can have on the outcome. For each considered
data set, we report the total number of successful runs (#sol). Then, we report the CPU
time (time) in seconds and number of backtracks (avg bts) both averaged over all suc-
cessful runs, instances and branching heuristics. Moreover, we report the maximum
number of backtracks (max bts) in the same scope. We emphasize the statistics of the
best method (w.r.t. #sol) for each data set using bold face fonts.

4.1 Car-Sequencing

In the car-sequencing problem [8,17], n vehicles have to be produced on an assembly
line, subject to capacity and demand constraints.

3 For a total of approximately 200 days of CPU time.
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Table 1. Evaluation of the filtering methods (averaged over all heuristics)

Method
set1 (70 × 34× 5) set2 (4 × 34× 5) set3 (5 × 34× 5) set4 (7× 34× 5)
#sol avg bts time #sol avg bts time #sol avg bts time #sol avg bts time

sum 8480 231.2K 13.93 95 1.4M 76.60 0 - > 1200 64 543.3K 43.81
gsc 11218 1.7K 3.60 325 131.7K 110.99 31 55.3K 276.06 140 25.2K 56.61

amsc 10702 39.1K 4.43 360 690.8K 72.00 16 40.3K 8.62 153 201.4K 33.56
amsc+gsc 11243 1.2K 3.43 339 118.4K 106.53 32 57.7K 285.43 147 23.8K 66.45

We use a standard model, implemented in Ilog-Solver. We have n integer variables
standing for the class of vehicles in each slot of the assembly line and nm boolean vari-
ables yji standing for whether the vehicle in the ith slot requires option j. The demand
for each class is enforced with a GCC [14]. We compare four models for the capac-
ity constraints coupled with the demand on each option (derived from the demand on
classes). In the first model (sum) a simple decomposition into a chain of sum constraints
plus an extra sum for the demand is used. In the second (gsc), we use one GSC con-
straint per option. In the third, (amsc), we use the AC procedure introduced in this paper
for the ATMOSTSEQCARD constraint. Finally, in the fourth (amsc+gsc) we combine
the GSC constraint with our filtering algorithm.

We use 34 different heuristics, obtained by combining different ways of exploring
the assembly line either in lexicographic order or from the middle to the sides); of
branching on affectation of a class to a slot or of an option to a slot; of selecting the
best class or option among a number of natural criteria (such as maximum demand,
minimum u/q ratio, as well as other criteria described in or derived from [5,16]).

We use benchmarks available in the CSPLib [9] divided into four sets of respectively
70, 4, 5 and 7 instances ranging from 100 to 400 cars. Instances of the third set are all
unsatisfiable all other are satisfiable.

The results are given in Table 1. In all cases, the best number of solved problems
is obtained either by amsc+gsc (for small or unsatisfiable instances), or by amsc alone
(for larger instances of set2 and set4). Overall, we observe that the GSC constraint
allows to prune much more values than ATMOSTSEQCARD. However, it slows down
the search by a substantial amount (we observed a factor 12.5 on the number of nodes
explored per second). Moreover, the amounts of filtering obtained by these two methods
are incomparable. Therefore combining them is always better than using GSC alone.

In [18] the authors applied their method to set1, set2 and set3 only. For their exper-
iments, they considered the best result provided by 2 heuristics (σ and min domain).
When using COST-REGULAR or GEN-SEQUENCE filtering alone, 50.7% of problems
are solved and when combining either COST-REGULAR or GEN-SEQUENCE with GSC,
65.2% of problems are solved (with a time out of 1 hour). In our experiments, in average
over the 34 heuristics and the 5 re-starts, ATMOSTSEQCARD and GSC solve respec-
tively 82.5% and 86.11% of instances and combining ATMOSTSEQCARD with GSC

solves 86.36% instances in a time out of 20 minutes.

4.2 Crew-Rostering

In this problem, working shifts have to be attributed to employees over a period, so that
the required service is met at any time and working regulations are respected. The latter
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Table 2. Evaluation of the filtering methods (averaged over all heuristics)

Benchmarks
underconstrained (5 × 2× 126) hard (5 × 2× 111) overconstrained (5 × 2× 44)
#sol avg bts max bts time #sol avg bts max bts time #sol avg bts max bts time

sum 1229 110.5K 10.1M 12.72 574 370.7K 13.4M 38.45 272 52.1K 5.7M 5.56
gsc 1210 6.2K 297.2K 29.19 579 23.5K 433.5K 77.78 276 7.7K 378.9 24.14

amsc 1237 34.2K 7.5M 5.82 670 213.4K 7.5M 31.01 284 51.3K 7.5M 6.22

condition can entail a wide variety of constraints. Previous works [11] [13] used allowed
(or forbidden) patterns to express successive shift constraints. For example, with 3 shifts
of 8 hours per day: D (day), E (evening) and N (night), ND can be forbidden since
employees need some rest after night shifts. In this paper we consider a simple case
involving 20 employees with 3 shifts of 8 hours per days where no employee can work
more than one 8h shift per day, no more than 5 days a week, and the break between
two worked shifts must be at least 16h. The planning horizon is of 28 days, and each
employee must work 34 hours per week in average (17 shifts over the 4 weeks period).

We use a model with one Boolean variable eij for each of the m employees and each
of the n shifts stating if employee i works on shift j. The demand dsj on each shift j is
enforced through a sum constraint

∑m
i=1 eij = dsj .The other constraints are stated using

two ATMOSTSEQCARD constraints per employee, one with ratio u/q = 1/3, another
with ratio 5/21, and both with the same demand d = 17 corresponding to 34 hours of
work per week. We compare three models. In the first (sum), we use a decomposition
in a chain of sum constraints. In the second (gsc), we use the GSC constraint to encode
it. Observe that in this case, since the domains are Boolean, the GCC within the GSC

constraint is in fact nothing more than a sum. Therefore, it cannot prune more than
ATMOSTSEQCARD (however it is stronger than the simple sum decomposition). In the
third model (amsc) we use the algorithm presented in this paper.

281 instances were generated, with employee unavailability ranging from from 18%
to 46% by increment of 0.1. We partition the instances into three sets, with in the first
126 instances with lowest unavailability (all satisfiable), in the third, the 44 instances
with highest unavailability (mostly unsatisfiable), and the rest in the second group.

We used two branching heuristic. In the first we chose the employee with minimum
slack, and assign it to its possible shift of maximum demand. In the second we use the
same criteria, but select the shift first and then the employee.

We report the results in Table 2. The AC algorithm achieves more filtering than the
sum decomposition and the GSC decomposition. However, depending on the heuristic
choices and the random seed, the size of the search tree is not always smaller. We
observe that our propagator is only marginally slower in terms of nodes explored per
second than the sum decomposition and much faster (by a factor 20.4 overall) than GSC.
It is able to solve 15.7% and 16.7% more problems within the 20 minutes cutoff in the
“hard” set than the GSC and sum decompositions, respectively.

5 Conclusion

We introduced a linear algorithm for achieving arc consistency on the
ATMOSTSEQCARD constraint. Previously, the best AC algorithm had a O(n2) time
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complexity [10]. However, it ran in O(n2 logn) time down a branch since subsequents
calls cost O(n log n), whilst our algorithm is not incremental hence requires up to
O(n2) steps down a branch.

The empirical evaluation on car-sequencing and crew-rostering benchmarks shows
that this propagator is useful on these applications.

Acknowledgments. We would like to thank Nina Narodytska for her precious help and
comments.
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Abstract. Two competing approaches to handling complex constraints
in satisfaction and optimization problems using SAT and LCG/SMT
technology are: decompose the complex constraint into a set of clauses;
or (theory) propagate the complex constraint using a standalone algo-
rithm and explain the propagation. Each approach has its benefits. The
decomposition approach is prone to an explosion in size to represent the
problem, while the propagation approach may require exponentially more
search since it does not have access to intermediate literals for explana-
tion. In this paper we show how we can obtain the best of both worlds
by lazily decomposing a complex constraint propagator using conflicts
to direct it. If intermediate literals are not helpful for conflicts then it
will act like the propagation approach, but if they are helpful it will act
like the decomposition approach. Experimental results show that it is
never much worse than the better of the decomposition and propagation
approaches, and sometimes better than both.

1 Introduction

Compared with other systematic constraint solving techniques, SAT solvers have
many advantages for non-expert users. They are extremely efficient off-the-shelf
black boxes that require no tuning regarding variable (or value) selection heuris-
tics. However, propositional logic cannot directly deal with complex constraints:
we need either to enrich the language in which the problems are defined, or to
reduce the complex constraints to propositional logic.

Lazy clause generation (LCG) or SAT Modulo Theories (SMT) approaches
correspond to an enrichment of the language: the problem can be expressed in
first-order logic instead of propositional logic. A specific theory solver for that
(kind of) constraint, called a propagator, takes care of the non-propositional
part of the problem, propagating and explaining the propagations, whereas the
SAT Solver deals with the propositional part. On the other hand, reducing
the constraints to propositional logic corresponds to encoding or decomposing
the constraints into SAT: the complex constraints are replaced by an equivalent
set of auxiliary variables and clauses.

The advantages of the propagator approach is that the size of the propagator
and its data structures are typically quite small (in the size of the constraint)
compared to the size of a decomposition, and we can make use of specific global
algorithms for efficient propagation. The advantages of the decomposition ap-
proach are that the resulting propagation uses efficient SAT data structures and

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 70–85, 2012.
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are inherently incremental, and more importantly, the auxiliary variables give
the solver more scope for learning appropriate reusable nogoods.

In this paper we examine how to get the best of each approach, and illustrate
our method on two fundamental constraints: cardinality and pseudo-Boolean
constraints.

An important class of constraints are the so-called cardinality constraints,
that is, constraints of the form x1 + · · · + xn # K, where the K is an integer,
the xi are Boolean (0/1) variables, and the relation operator # belongs to {�
,�,=}. Cardinality constraints are omnipresent in practical SAT applications
such as timetabling [1] and scheduling constraint solving [2]. Some optimization
problems, such as MaxSAT or close-solutions problems (see [3]), can be reduced
to a set of problems with a single cardinality constraint (see Section 4.1).

The two different approaches for solving complex constraints have both been
studied for cardinality constraints. In the literature one can find different de-
compositions using adders [4], binary trees [5] or sorting networks [6], among
others. The best decomposition, to our knowledge, is the cardinality network-
based encoding [7]. On the other hand, we can use a propagator for deal with
these constraints, and using either an SMT Solver [8] or LCG Solver [9].

Another important class of constraints are the pseudo-Boolean (PB) constraints,
that is, constraints of the form a1x1 + · · · + anxn # K, where K and ai are in-
tegers, the xi are Boolean (0/1) variables, and the relation operator # belongs
to {�,�,=}. These constraints are very important and appear frequently in ap-
plication areas such as cumulative scheduling [10], logic synthesis [11] or verifica-
tion [12].

In the literature one can find different decompositions of PB constraints using
adders [4,6], BDDs or similar tree-like structures [6,13,14] or sorting networks [6].
As before, LCG and SMT approaches are also possible.

To see why both approaches, both propagator and decomposition, have ad-
vantages consider the following two scenarios:

– Consider a problem with hundreds of large cardinality constraints where all
but 1 never cause failure during search. Decomposing each of these con-
straints will cause a huge burden on the SAT solver, adding many new
variables and clauses, all of which are actually useless. The propagation ap-
proach will propagate much faster, and indeed just the decomposition step
could overload the SAT solver.

– Consider the problem with the cardinality constraint x1+ · · ·+xn � K and
some propositional clauses implying x1 + · · · + xn � K + 1. The problem
is obviously unsatisfiable, but if we use a propagator for the cardinality
constraint, it will need to generate all the nCk explanations possible in order
to prove the unsatisfiability. However with a decomposition approach the
problem can be solved in polynomial time due to the auxiliary variables.

In conclusion it seems likely that in every problem there are some auxiliary
variables that will produce more general nogoods and will help the SAT solver,
and some other variables that will only increase the search space size, making
the problem more difficult. The intuitive idea of Lazy Decomposition is to try
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to generate only the useful auxiliary variables. The solver initially behaves as a
basic LCG solver. If it observes that an auxiliary variable would appear in many
nogoods, the solver generates it.

While there is plenty of research on combining SAT and propagation-based
methods, for example all of SAT modulo theories and lazy clause generation,
we are unaware of any previous work where a complex constraint is partially
decomposed. There is some recent work [15] where the authors implement an in-
cremental method for solving pseudo-Boolean constraints with SAT, by decom-
posing the pseudo-Booleans one by one. However, they do not use propagators
for dealing with the non-decomposed constraints, and the decomposition is done
in one step for a single constraint.

The remainder of the paper is organized as follows. In the next section we give
SAT and LCG/SMT solving as well as decompositions and propagator definitions
for both cardinality and psuedo-Boolean constraints. In Section 3 we define a
framework for lazy decomposition propagators, and instantiate it for cardinality
and psuedo-Boolean constraints. In Section 4 we show results of experiments,
and in Section 5 we conclude.

2 Preliminaries

2.1 SAT Solving

Let X = {x1, x2, . . .} be a fixed set of propositional variables. If x ∈ X then x
and x are positive and negative literals, respectively. The negation of a literal l,
written l, denotes x if l is x, and x if l is x. A clause is a disjunction of literals
x1∨. . .∨xp∨xp+1∨. . .∨xn, sometimes written as x1∧. . .∧xp → xp+1∨. . .∨xn.
A CNF formula is a conjunction of clauses.

A (partial) assignment A is a set of literals such that {x, x} �⊆ A for any x,
i.e., no contradictory literals appear. A literal l is true in A if l ∈ A, is false
in A if l ∈ A, and is undefined in A otherwise. True, false or undefined is the
polarity of the literal l. A clause C is true in A if at least one of its literals is true
in A. A formula F is true in A if all its clauses are true in A. In that case, A is a
model of F . Systems that decide whether a formula F has any model are called
SAT-solvers, and the main inference rule they implement is unit propagation:
given a CNF F and an assignment A, find a clause in F such that all its literals
are false in A except one, say l, which is undefined, add l to A and repeat the
process until reaching a fix-point.

Clauses are not the only constraints that can be defined over the propositional
variables. Sometimes some clauses of the formula are expressed more compactly
as a single complex constraint.

2.2 SMT/LCG Solver

An SMT solver or a LCG solver1 is a system for finding models of a formula
F and a set of complex constraints {ci}. It is composed of two parts: a SAT

1 In this paper we do not distinguish between SMT solvers and LCG solvers. The
two techniques are very similar and both of fit the sketch presented here, although
arguably the propagator centric view is more like LCG.
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solver engine and a propagator for every constraint ci. The SAT solver searches
a model of the formula and the propagators infer consequences of the assignment
and the set of constraints (this is, propagate), and, on demand of the SAT solver,
provide the reason of some of the propagated literals (called the explanation).

2.3 Cardinality Constraints

A cardinality constraint takes the form x1 + · · · + xn # K, where the K is an
integer, the xi are literals, and the relation operator # belongs to {�,�,=}.

Propagation. For a � constraint, the propagator keeps a count of the number
of literals of the constraint which are true in the current assignment. The prop-
agator increments this value every time the SAT solver assigns true a literal of
the constraint. The count is decremented when the SAT solver unassigns one of
these literals. When this value is equal to K, no other literal can be true: the
propagator sets to false all the remaining literals. The explanation for setting a
literal xj to false can be built by searching for the K literals {xi1 , . . . , xiK} of
the constraint which are true to give the explanation xi1 ∧xi2 ∧ · · · ∧xiK → xj .

Similarly, in a � constraint the propagator keeps a count of the literals which
are false in the current assignment. When this value is equal to n − K, the
propagator sets to true the non-propagated literals. A propagator for an equality
constraint keeps track of both values.

Cardinality Network Decomposition. A k-cardinality network of size n is
a logical circuit with n inputs and n outputs satisfying two properties:

1. The number of true outputs of the network equals the number of true inputs.
2. For every i with 1 � i � k, the i-th output of the network is true if and

only if there were at least i true inputs.

An example of cardinality networks are sorting networks e.g. [6], with size
O(n log2 n). An example is shown in Figure 1(b). The smallest decomposition
for a k-cardinality network is O(n log2 k) [7].
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Fig. 1. (A) A 2-comparator 2comp(x1, x2, y1, y2) is shown as a vertical bar joining two
lines. (b) An odd-even merge sorting network for n = 8. Each line segment (broken at
nodes) represents a Boolean variable.
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Cardinality networks are composed of 2-comparators. A 2-comparator is a
circuit 2comp(x1, x2, y1, y2) with inputs x1, x2 and outputs y1 = x1 ∨ x2 and
y2 = x1 ∧ x2 illustrated in Figure 1(a). 2-comparators can be easily encoded
into SAT through the Tseitin transformations [16] using the clauses: x1 → y1,
x2 → y1, x1 ∧ x2 → y2, x1 → y2, x2 → y2 and x1 ∧ x2 → y1. A cardinality
network can be decomposed into SAT by encoding all its 2-comparators.

Cardinality constraints can be decomposed into SAT through cardinality net-
works. For instance, a constraint x1 + · · · + xn � K can be decomposed in
two steps: firstly, we build a K + 1-cardinality network and encode it into SAT.
Secondly, we add the clause yK+1, where yK+1 is the K + 1-th output of the
network. Notice that this implies that no K +1 inputs (x1, x2, . . . , xn) are true,
since the K + 1-th output of a K + 1-cardinality network is true if and only if
there are at least K + 1 true inputs.

Similarly, the constraint x1 + · · · + xn � K can be decomposed into a K-
cardinality network by adding the clause yK , and x1 + · · · + xn = K can be
decomposed with aK+1-Cardinality Network adding the clauses yK and yK+1.

2

Example 1. Figure 1 shows an 8-cardinality network. Constraint x1+· · ·+x8 � 3
can be decomposed into SAT by adding the auxiliary variables z1, z2, . . . , z38;
the definition clauses x1 → z1, x2 → z1, x1 ∧ x2 → z2, x3 → z3, . . .; and the
unit clause z35.

2.4 Pseudo-Boolean Constraints

PB constraints are another kind of complex constraint. They take the form
a1x1 + · · · + anxn # K, where K and ai are integers, the xi are literals, and
the relation operator # belongs to {�,�,=}. In this paper we assume that the
operator # is � and the coefficients ai and K are positive. Other cases can be
easily reduced to this one (see [6]).

PB Propagator. The propagator must keep the current sum s during the
search, defined as the sum of all coefficients ai for which xi is true. This value
can be easily incrementally computed: every time the SAT solver sets a literal
xi of the constraint to true, the propagator adds ai to s, and when the literal is
unassigned by the SAT solver it subtracts ai. For each i ∈ {1, . . . , n} such that
xi is unassigned and K−s < ai, the propagator sets xi to false. The propagator
can produce explanations in the same way as in the cardinality case: if it has
propagated xj to false, xi1 ∧ · · · ∧ xir → xj , is returned as the explanation,
where xi1 , · · · , xir are all the literals of the constraint with true polarity.

PB Decomposition. PB decomposition into SAT can be made in two steps:
first, we build the reduced ordered binary decision diagram (BDD) [17] of the
PB constraint; second, we decompose the BDD into SAT.

2 Actually, cardinality networks for � constraints can be encoded into SAT only adding
the first 3 clauses of every 2-comparator. Similarly, in � constraints we only need
the last 3 clauses of 2-comparators [7].
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Fig. 2. (a) The BDD of PB constraint 2x1+3x2+5x3+6x4 � 7, and (b) the BDD with
long arcs to internal nodes replaced using intermediate nodes and with the intervals
given for each node. Each node represents the constraint shown to the right of the
BDD for the values of h given by the range.

A BDD of a PB constraint a1x1 + · · · + anxn � K is a decision diagram
that represents this constraint: it has a root node with selector variable x1,
the BDD of a2x2 + · · · + anxn � K − a1 as a true child and the BDD of
a2x2 + · · · + anxn � K as false child. Moreover, it is reduced, i.e., there is no
node with identical true and false child, and there are no isomorphic subtrees.

Example 2. Let us consider the PB constraint c ≡ 2x1 + 3x2 + 5x3 + 6x4 � 7.
The BDD of that constraint is shown in Figure 2(a). False (true) children are
indicated with dashed (solid) arrows. Terminal node 0 (1) represents the BDDs
of Boolean false (true) function.

This BDD represents the constraint in the following sense: assume x1 and x4

are true and x2 is false. The constraint is false no matter the polarity of x3, since
2x1 + 3x2 + 5x3 + 6x4 � 2x1 + 6x4 = 8 > 7. In the BDD of the figure 2(a),
if we follow the first solid arrow (since x1 is true), then the dashed arrow (x2 is
false) and finally the solid one (x4 is true), we arrive to the false terminal node:
that is, the assignment does not satisfy the constraint.

For lazy decomposition we will decompose the BDD one layer at a time from
the bottom-up. To simplify this process we create a (non-reduced) BDD which
does not have any arcs that skip a level unless they go direct to a terminal node,
by introducing artificial nodes. Figure 2(b) shows the resulting BDD for c.

Given a node ν with selector variable xi, we define the interval of ν as the set of
integers h such that aixi + · · ·+ anxn � h is represented by the BDD rooted at
node ν. This set is always an interval (see [14]). Figure 2(b) shows the intervals
of constraint 2x1 +3x2 + 5x3 + 6x4 � 7. The BDDs for a PB constraint can be
efficiently built, as shown in [18]. The algorithm, moreover, returns the interval
of every BDD’s node.

We follow the encoding proposed in [14]: for every node, we introduce a fresh
variable. Let ν be a node with selector variable xj and true and false children t
and f . We add the clauses ν → f and ν ∧ xj → t. We also add a unit clause
for setting the root of the BDD to true, and unit clauses setting the true and
false terminal nodes to true and false respectively.
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This encoding has the following property. Let A be a partial assignment of the
variables x1, x2, . . . , xn, and let ν be the node of the BDD of the PB constraint
c ≡ a1x1 + . . . + anxn � K, with selector variable xi and interval [α, β].
Then, the unit propagation of the partial assignment A and the encoding of the
constraint c produces:

– ν if and only if c ∧ A |= (aixi + · · ·+ anxn ≤ β).
– ν if and only if c ∧ A |= (aixi + · · ·+ anxn > β).

In other words, if a1x1 + · · ·+ ai−1xi−1 � K − β in a partial assignment, unit
propagation sets ν to true. If ν is false, unit propagation assures that a1x1 +
· · ·+ ai−1xi−1 � K − β − 1.

The way of ordering the constraint before constructing the BDD has a big
impact on the BDD size. Computing the optimal ordering with respect the BDD
size is a NP-hard problem [19], but experimentally the increasing order (a1 ≤
a2 ≤ · · · ≤ an) is shown to be a good choice. In this paper we use this order.

3 Lazy Decomposition

The idea of lazy decomposition is quite simple: a Lazy Decomposition (LD) solver
is, in some sense, a combination of a Lazy Clause Generation solver and an eager
decomposition. LD solvers, as LCG solvers, are composed of a SAT solver engine
(that deals with the propositional part of the problem) and propagators, each
one in charge of a complex constraint. The difference between LCG and LD
solvers lies in the role of the propagators: LCG propagators only propagate and
give explanations. LD propagators, in addition, detect which variables of the
decomposition would be helpful. These variables and the clauses from the eager
decomposition involving them are added to the SAT solver engine.

LD is not specific to a few complex constraints, but a general methodology.
Given a complex constraint type and an eager decomposition method for it, an
LD propagator must be able to perform the following actions:

– Identify (dynamically) which parts of the decomposition would be
helpful to learning: LD can be seen as a combined methodology that
aims to take advantage of the most profitable aspects of LCG and eager
decomposition. This point assures that the solver moves to the decomposition
when it is the best option.

– Propagate the constraint when any subset of the decomposition
has been added: The propagator must work either without decomposition
or with a part of it.

– Avoid propagation for the constraint which is handled by the cur-
rent decomposition: auxiliary variables from the eager decomposition have
their own meanings. The propagator must use these meanings in order to
efficiently propagate the constraint when it is partially decomposed. For ex-
ample, if the entire decomposition is added, we want the propagator to do
no work at all.
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In this paper we present two examples of LD propagators: the first one, for
cardinality constraints, is based on the eager decomposition of Cardinality Net-
works [7]. The second one, a propagator for pseudo-Boolean constraints, is based
on a BDD decomposition [14].

3.1 Lazy Decomposition Propagator for Cardinality Constraints

In this section we describe the LD propagator for a cardinality constraint of the
form x1+x2+ . . .+xn � K. LD propagators for � or = cardinality constraints
can be defined in a similar way.

According to Section 2.3, the decomposition of a cardinality constraint based
on cardinality networks consists in the encoding of 2-comparators into SAT.
A key property of the 2-comparator 2comp(x1, x2, y1, y2) of Figure 1(a) is that
x1+x2 = y1+y2. This holds since y1 = x1∨x2 and y2 = x1∧x2. Thus we can
define a 2-comparator decomposition step for 2-comparator 2comp(x1, x2, y1, y2)
as replacing the current cardinality constraint x1 + x2 + x3 + . . . + xn � K
by y1 + y2 + x3 + . . . + xn � K and adding a SAT decomposition for the
2-comparator. The resulting constraint system is clearly equivalent. The decom-
position introduces the new variables y1 and y2 to the SAT Solver engine.

The propagation of the LD propagator works just as in the LCG case. As
decomposition occurs the cardinality constraint that is being propagated changes
by substituting newly defined decomposition variables for older variables.

Example 3. Figure 1 shows an 8-cardinality network. A LD propagator for the
constraint x1 + . . . + x8 � 3 initially behaves as an LCG propagator for that
constraint. When variables z1, z2, . . . , z12 are introduced by decomposing the
corresponding six 2-comparators, the substitutions result in the cardinality con-
straint z5 + z6 + z7 + z8 + z9 + z10 + z11 + z12 � 3.

An LD propagator must determine parts of the decomposition that should be
added to the SAT solver. For efficiency, our LD solver adds variables only when
it performs a restart: restarts occurs often enough for generating the important
variables not too late, but occasionally enough to not significantly affect solver
performance. Moreover, it is much easier to add variables and clauses to the
solver at the root of search.

The propagator assigns a natural number acti, the activity, to every literal xi

of the constraint. Every time a nogood is constructed, the activity of the literals
belonging to the nogood is incremented by one. Each time the solver restarts
the propagator checks if the activities of the literals of the constraint are greater
than λN , where N is the number of conflicts since the last restart and λ is a
parameter of the LD solver.

If act i � λN then act i := act i/2. This is done in order to focus on the recent
activity. If act i > λN , there are three possibilities:

– If xi is not the input of a 2-comparator (i.e. an output of the cardinality
network) nothing is done.
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Fig. 3. The remaining undecomposed sorting network after decomposing some 2-
comparators with (a) 2comp(z12, z16, z27, z28) shown dotted, and (b) inputs leading
to 2comp(z18, z20, z25, z26) shown dotted.

– If xi is an input of a 2-comparator 2comp(xi, xj , y1, y2), and its other input
xj has been already generated by the decomposition, we perform a decom-
position step on the comparator.

– If xi is an input of a 2-comparator 2comp(xi, xj , y1, y2), and its other input
xj has not been generated by the decomposition yet, we proceed as follows:
let S = {xk1 , xk2 , . . . , xks} be the literals in the current constraint that, after
some decomposition steps, can reach xj . We perform a decomposition step
on all the comparators whose inputs both appear in S. Thus xj is “closer”
to being generated by decomposition.

Example 4. Assume the LD propagator for the constraint x1 + . . .+x8 � 3 has
generated some variables, so the current constraint is z9 + z17 + z18 + z12 + z5 +
z15 + z7 + z16 � 3. The remaining undecomposed cardinality network is shown
in Figure 3.1(a).

In a restart, if the activity of z12 is greater than λN we decompose the com-
parator 2comp(z12, z16, z27, z28) generating new literals z27 and z28 and using
them to replace z12 and z16 in the constraint.

However, if the activity of z18 is greater than λN , we cannot decompose
2comp(z18, z20, z25, z26) since z20 has not been generated yet. The literals reach-
ing z20 are z5, z15 and z7 (see Figure 3.1(b)). Since z5 and z7 are the inputs of
a 2-comparator 2comp(z5, z7, z13, z14), this comparator is encoded: z13 and z14
are introduced and they replace z5 and z7 in the constraint.

3.2 Lazy Decomposition Propagator for PB Constraints

In this section we describe the LD propagator for a PB constraint of the form
c ≡ a1x1 + · · · + anxn � K with ai > 0, since other PB constraints can be
reduced to this one.

Suppose B is the BDD for the PB constraint c. The decomposition of the
constraint works as follows: if ν is a node with selector variable xi and interval
[α, β], ν is set to true if a1x1 + · · · + . . . + ai−1xi−1 � K − β. If ν is set to
false, the encoding assures that a1x1 + · · · + ai−1xi−1 � K − β + 1. The LD
propagator must maintain this property for nodes ν which have been created as
a literal via decomposition.
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In our LD propagator, the BDD is lazily encoded from bottom to top: all nodes
with the same selector variable are encoded together, thus removing a layer from
the bottom of the BDD. Therefore, the LD propagator must deal with the nodes
ν at some level i which all represent expressions of the form aixi+· · ·+anxn � βν

or equivalently a1x1+ · · ·+ai−1xi−1 � K−βν . Suppose ν
′ is the node at level i

with highest βν where ν′ is currently false. The decomposed part of the original
PB constraint thus requires that a1x1 + · · · + ai−1xi−1 � K − βν′ − 1. Define
Ki = K − βν′ − 1, and nodei = ν′

The LD propagator works as follows. The propagator maintains the current
sum (lower bound) of the expression s = a1x1 + · · · + ai−1xi−1, just as in the
LCG case. If this value is greater than K−βν for some leaf node ν with selector
variable xi and interval [αν , βν ], this node variable ν is set to true. If some
leaf node ν (with selector variable xi and interval [αν , βν ]) is set to false, we
set Ki = K = βν − 1 and nodei = ν. If, at some moment, s + aj for some
1 � j < i where xj is undefined is greater than Ki, the propagator sets xj to
false. The explanation is the literals in x1, . . . , xi−1 that are true and nodei.

The policy for lazy decomposition is as follows. Every time a nogood is gener-
ated that requires explanation from the PB constraint c, an activity actc for the
constraint c is incremented. If at restart actc � μN where N is the number of
nogoods since last restart we decompose the bottom layer of c and set actc = 0.
Otherwise actc := actc/2.

Note that the fact that the coefficients ai in c are in increasing order is im-
portant. Big coefficients are more important to the constraint and hence their
corresponding variables are likely to be the most valuable for decomposition.

4 Experimental Results

The goals of this section are, first, to check that Lazy Decompositions solvers do
in fact significantly reduce the number of auxiliary variables generated and, sec-
ondly, to compare them to the LCG and eager decomposition solving approaches.
For some problems we include other related solving approaches to illustrate we
are not optimizing a very slow system.

All the methods are programmed in the Barcelogic SAT solver [20]. All exper-
iments were performed on a 2Ghz Linux Quad-Core AMD. All the experiments
used a value of λ = 0.3 and μ = 0.1. We experimented with different values
and found values for λ between 0.1–0.5 give similar performance, while values
for μ between 0.05–0.5 also give similar performance. While there is more to
investigate here, it is clear that no problem specific tuning of these parameters
is required.

4.1 Cardinality Optimization Problems

Many of the benchmarks on which we have experimented are pure SAT problems
with an optimal cardinality function (i.e., an objective function x1 + · · · + xn)
to minimize.
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These problems can be solved by branch and bound: first, we search for an
initial solution solving the SAT problem. Let O be the value of x1 + · · ·+ xn in
this solution. Then, we include the cardinality constraint x1+ · · ·+xn � O− 1.
We repeatedly solve replacing the cardinality constraint by x1+· · ·+xn � O−1,
where O is the last solution found. The process finishes when the last problem
is unsatisfiable, which means that O is the optimal solution.

Notice that this process can be used for all approaches considered. In the
cardinality network decomposition approach, the encoding is not re-generated
every time a new solution is found: we just have to add a unit clause setting
the O-th output variable of the network to false. LCG and LD solvers can also
easily be adapted as branch and bound solvers, by modifying the bound on the
constraint.

For all the benchmarks of this section we have compared the LCG solver
for cardinality constraints (LCG), the eager cardinality constraint decomposi-
tion approach (DEC), our Lazy Decomposition solver for cardinality constraints
(LD), and the three best solvers for industrial partial MaxSAT problems in
the past Partial MaxSAT Evaluation 2011: versions 1.1 (QMaxSAT1.1) and 4.0
(QMaxSAT4.0) of QMaxSAT [21] and Pwbo solver, version 1.2 (Pwbo) [22].

Partial MaxSAT. The first set of benchmarks we used were obtained from the
MaxSAT Evaluation 2011 (http://maxsat.ia.udl.cat/introduction/), industrial
partial MaxSAT category. The benchmarks are encodings of different problems:
filter design, logic synthesis, minimum-size test pattern generation, haplotype
inference or maximum-quartet consistency.

We can easily transform these problems into SAT problems by introducing
one fresh variable to any soft clause. The objective function is the sum of all
these new variables. Time limit was set to 1800 seconds per benchmark as in the
Evaluation. Table 1(a) shows the number of problems (up to 497) solved by the
different methods after, respectively, 15 seconds, 1 minute, etc.

In these problems the eager decomposition approach is much better than
the LCG solver. Our LD approach has a similar behavior to the decomposition
approach, but LD is faster in the easiest problems. Notice that with these results
we would be the best solver in the evaluation, even though our method for solving
these problems (adding a fresh variable per soft clause) is a very naive one!

Table 1. Number of instances solved of (a) 497 partial MaxSAT benchmarks and (b)
600 DES benchmarks

Method 15s 1m 5m 15m 30m

DEC 211 296 367 382 386

LCG 144 209 265 275 279

LD 252 319 375 381 386

QMaxSAT4.0 191 274 352 370 377

Pwbo 141 185 260 325 354

QMaxSAT1.1 185 278 356 373 383

Method 15s 1m 5m 15m

DEC 409 490 530 541

LCG 151 186 206 228

LD 370 482 528 539

QMaxSAT4.0 275 421 534 557

Pwbo 265 361 423 446

QMaxSAT1.1 378 488 537 556

SARA-09 411 501 537 549

(a) (b)
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Discrete-Event System Diagnosis Suite. The next benchmarks we used are
for discrete-event system (DES) diagnosis as presented in [23]. In these problems,
we consider a plant modeled by a finite automaton. Its transitions are labeled
by the events that occur when the transition is triggered. A sequence of states
and transitions on the DES is called a trajectory; it models a behavior of the
plant. Some events are observable, that is, an observation is emitted when they
occur. The goal of the problem is, knowing that there is a set of faulty events in
the DES, find a trajectory consistent with the observations that minimizes the
number of faults. As all the problems in this subsection, it is modeled by a set
of SAT clauses and a cardinality function to minimize.

In addition to the previously mentioned methods, we have also compared
the best SAT encoding proposed in [23] (denoted by SARA-09). It is a specific
encoding for these problems. Table 1(b) shows the number of benchmarks solved
by the different methods after 15 seconds, 1 minute, etc.

The best method is that described in [23]. However, DEC and LD methods
are not far from it. This is a strong argument for these methods, since SARA-
09 is a specific method for these problems while eager and lazy decomposition
are general methods. On the other hand, LCG does not perform well in these
problems, and LD performs more or less as DEC. Both versions of QMaxSAT
also performs very well on these problems.

Close Solution Problems. Another type of optimization problems is sug-
gested in [3]. In these problems, we have a set of SAT clauses and a model, and
we want to find the most similar solution (w.r.t the Hamming distance) to the
given model if we add some few extra clauses. Table 2(a) contains the number
of solved instances of the original paper after different times.

For the original problems LD is slightly better than eager decomposition (DEC)
and much better than the other approaches.

Since the number of instances of the original paper was small, we created
more instances. We selected the 55 satisfiable instances from SAT Competition
2011, industrial division, that we could solve in 10 minutes. For each of these 55
problems, we generated 10 close-solution benchmarks adding a single randomly
generated new clause (with at most 5 literals) that falsified the previous model.
100 of the 550 benchmarks were unsatisfiable, so we removed them (searching

Table 2. Number of instances solved of the (a) 40 original close-solution problems and
(b) 450 new close-solution problems

Method 15s 1m 5m 15m 60m

DEC 18 24 31 34 34

LCG 16 18 24 27 30

LD 19 26 31 34 36

QMaxSAT4.0 9 14 18 20 22

Pwbo 5 6 7 7 7

QMaxSAT1.1 6 11 16 17 19

Method 15s 1m 5m 15m 60m

DEC 143 168 208 226 243

LCG 181 223 242 255 268

LD 187 230 252 262 279

QMaxSAT4.0 55 55 63 69 80

Pwbo 102 144 179 204 215

QMaxSAT1.1 54 55 57 57 64

(a) (b)
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the closest solution does not make sense in an unsatisfiable problems). Table
2(b) shows the results on the remaining 450 instances.

For the new problems LCG and LD are the best methods with similar be-
haviour. Notice that for these problems the cardinality constraint size involves
all the variables of the problem, so it can be huge. In a few cases, the encoding
approach runs out of memory since the encoding needed more than 225 variables.
We considered these cases as a timeout.

4.2 MSU4

Another type of cardinality benchmarks also comes from the MaxSAT Evalu-
ation 2008. In this case we solved them using the msu4 algorithm [24], which
transforms a partial MaxSAT problem into a set of SAT problems with multiple
cardinality constraints.3

We have grouped all the problems that came from the same partial MaxSAT
problem, and we set a timeout of 900 seconds for solving all the family of prob-
lems. We had 1883 families of problems (i.e., there were originally 1883 partial
MaxSAT problems), but in many cases all the problems of the family could be
solved by any method in less than 5 seconds, so we removed them. Table 3(a)
contains the results on the remaining 479 benchmarks.

Table 3. (a) Number of families solved from 479 non-trivial MSU4 problems, and (b)
number of instances solved from 669 problems PB Competition-2011

Method 15s 1m 5m 15m

DEC 190 282 352 411

LCG 123 168 212 241

LD 263 336 410 435

Method 15s 1m 5m 15m 60m

DEC 318 354 390 407 427

LCG 372 387 400 415 433

LD 369 382 401 423 439

borg 280 406 438 445 467

(a) (b)

In these problems the LD approach is clearly the best, particularly in the first
minute. The reason is that for most of the problems, DEC is faster than LCG,
and LD performs similarly to DEC. But there are some problems where LCG is
much faster than DEC: in these cases, LD is also faster than LCG, so in total it
beats both other methods. Moreover, in some problems there are some important
constraints which should be decomposed and some other which shouldn’t. The
LD approach can do this, while DEC and LCG methods either decompose all the
constraints or none.

4.3 PB Competition Problems

To compare pseudo-Boolean propagation approaches we used benchmarks from
the pseudo-Boolean Competition 2011 (http://www.cril.univ-artois.fr/PB11/),

3 We thanks Albert Oliveras and Carlos Ansótegui for his assistance with these bench-
marks.
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category DEC-SMALLINT-LIN (no optimisation, small integers, linear con-
straints). In this problems we have compared the LCG, DEC and LD approaches
for PB constraints and the winner of the pseudo-Boolean Competition 2011, the
solver borg (borg) [25] version pb-dec-11.04.03. Table 3(b) contains the number
of solved instances (up to 669) after 15 seconds, 1 minute, etc.

In this case, LCG approach is better than DEC, while LD is slightly better than
LCG and much better than DEC since presumably it is worth decomposing some
of the PB constraints to improve learning, but not all of them. The borg solver
is clearly the best, but again it is a tuned portfolio solver specific for pseudo-
Boolean problems and makes use of techniques (as in linear programming solvers)
which treat all PB constraints simultaneously.

4.4 Variables Generated

One of the goals of Lazy Decomposition is to reduce the search space of the
problem. In this section we examine the “raw” search space size in terms of the
number of Boolean variables in the model.

Table 4 shows the results of all the problem classes. DEC gives the multiplica-
tion factor of Boolean variables created by eager decomposition. For example if
the original problem has 100 Boolean variables and the decomposition adds 150
auxiliary variables, we have 250 Boolean variables in total and the multiplication
factor will be 2.5. LD gives the multiplication factor of Boolean variables result-
ing from lazy decomposition. Finally aux. % gives the percentage of auxiliary
decomposition variables actually created using lazy decomposition. The values
in the table are the average over all the problems in that class.

In the optimization problems, there is just one cardinality constraint and most
of the time is devoted to proving the optimality of the best solution. Therefore,
the cardinality constraint appears in most nogoods since we require many ex-
planations to prove the optimality of the solution. For these classes, the number
of auxiliary variables we need is high 35-60 %. Still this reduction is significant.

In the MSU4 and PB problems, on the other hand, there are lots of complex
constraints. Most of them have little impact in the problem (i.e., during the
search they cause few propagations and conflicts). These constraints are not

Table 4. The average variable multiplication factor for (DEC) eager decomposition
and (LD) lazy decomposition, and the average percentage of auxiliary decomposition
variables created by lazy decomposition

Class of problems DEC LD aux. %

Partial MaxSAT 7.46 5.41 61.72

DES 1.55 1.16 26.62

Original close-solution 12.21 7.48 45.33

New close-solution 24.55 12.38 35.88

MSU4 1.77 1.01 2.18

PB Competition 44.21 17.52 3.24
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decomposed in the lazy approach. The LD solver only decomposes part of the
most active constraints, so, the number of auxiliary variables generated in these
problems is highly reduced.

5 Conclusions and Future Work

We have introduced a new general approach for dealing with complex constraints
in complete methods for combinatorial optimization, that combines the advan-
tages of decomposition and global constraint propagation. We illustrate this ap-
proach on two different constraints: cardinality and pseudo-Boolean constraints.
The results show that, in both cases, our new approach is nearly as good as the
best of the eager decomposition and global propagation approaches, and often
better. Note that the strongest results for lazy decomposition arise when we have
many complex constraints, since many of them will not be important for solving
the problem, and hence decomposition is completely wasteful. But we can see
that for the important constraints it is worthwhile to decompose.

There are many directions for future work. First we can clearly improve our
policies for when and what part of a constraint to decompose. We will also
investigate how to decide the right form of decomposition for a constraint during
execution rather than fixing on a decomposition prior to search. We also plan
to create lazy decomposition propagators for other complex constraints such as
linear integer constraints, regular, lex, and incorporate the technology into a full
lazy clause generation solver.
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Abstract. In the last few years, there has been a significant effort
in designing and developing efficient Weighted MaxSAT solvers. We
study in detail the WPM1 algorithm identifying some weaknesses
and proposing solutions to mitigate them. Basically, WPM1 is based
on iteratively calling a SAT solver and adding blocking variables
and cardinality constraints to relax the unsatisfiable cores returned
by the SAT solver. We firstly identify and study how to break
the symmetries introduced by the blocking variables and cardinality
constraints. Secondly, we study how to prioritize the discovery of
higher quality cores. We present an extensive experimental investigation
comparing the new algorithm with state-of-the-art solvers showing that
our approach makes WPM1 much more competitive.

1 Introduction

Many combinatorial optimization problems can be modelled as Weighted Partial
MaxSAT formulas. Therefore, Weighted Partial MaxSAT solvers can be used
in several domains as: combinatorial auctions, scheduling and timetabling
problems, FPGA routing, software package installation, etc.

The Maximum Satisfiability (MaxSAT) problem is the optimization version
of the satisfiability (SAT) problem. The goal is to maximize the number of
satisfied clauses in a SAT formula, in other words, to minimize the number of
falsified clauses. The clauses can be divided into hard and soft clauses, depending
on whether they must be satisfied (hard) or they may or may not be satisfied
(soft). If our formula only contains soft clauses it is a MaxSAT formula, and
if it contains both, hard and soft clauses, it is a Partial MaxSAT formula. The
Partial MaxSAT problem can be further generalized to the Weighted Partial
MaxSAT problem. The idea is that not all soft clauses are equally important.
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The addition of weights to soft clauses makes the formula Weighted, and lets
us introduce preferences between them. The weights indicate the penalty for
falsifying a clause. Given a Weighted Partial MaxSAT problem, our goal is to
find an assignment that satisfies all the hard clauses, and the sum of the weights
of the falsified clauses is minimal. Such an assignment will be optimal in this
context.

SAT technology has evolved to a mature state in the last decade. SAT solvers
are really successful at solving industrial decision problems. The next challenge is
to use this technology to solve more efficiently industrial optimization problems.
Although there has been important work in this direction, we have not reached
the success of SAT solvers yet. The present work is one more step in MaxSAT
technology to achieve full industrial applicability.

Originally, MaxSAT solvers such as WMaxSatz [12], MiniMaxSat [10],
IncWMaxSatz [13] and akmaxsat where depth-first branch and bound based.
Recently, there has been a development of SAT based approaches which
essentially iteratively call a SAT solver: SAT4J [5], WBO and MSUNCORE [14],
WPM1 [1], WPM2 [2], BINC and BINCD [11] and maxHS [8]. While branch
and bound based solvers are competitive for random and crafted instances, SAT
based solvers are better for industrial instances.

The WPM1, WBO and MSUNCORE solvers implement weighted versions
of the Fu and Malik’s algorithm [9]. Essentially, they perform a sequence of
calls to a SAT solver, and if the SAT solver returns an unsatisfiable core, they
reformulate the problem by introducing new auxiliary variables and cardinality
constraints which relax the clauses in the core. Further details are given in
section 3 and 5. In this work, we analyze in more detail the WPM1 algorithm
to identify and mitigate some weaknesses. The first weakness we have observed
is that the addition of the auxiliary variables naturally introduce symmetries
which should be broken to achieve better performance. The second weakness
has to do with the quality of the cores returned by the SAT solver. Since the
SAT solver is used as a black box, we need to come up with new strategies to
lead the solver to find better quality cores.

We have conducted an extensive experimental investigation with the best
solvers at the last MaxSAT evaluation and other solvers that did not take part
in the evaluation, but have been reported to show very good performance. We
can see that our current approach can boost radically the performance of the
WPM1 becoming the most robust approach.

This paper proceeds as follows: Section 2 introduces some preliminary
concepts; Section 3 presents the Fu and Malik’s algorithm; Section 4 describes
the problem of symmetries and shows how to break them; Section 5 presents
the WPM1 algorithm and describes the problem of the quality of the cores;
Section 6 introduces an stratified approach to come up with higher quality cores;
Section 7 presents some previous concepts needed to describe a general stratified
approach discussed in Section 8 and finally Section 9 presents the experimental
evaluation.
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2 Preliminaries

We consider an infinite countable set of boolean variables X . A literal l is either
a variable xi ∈ X or its negation xi. A clause C is a finite set of literals, denoted
as C = l1 ∨ · · · ∨ lr, or as for the empty clause. A SAT formula ϕ is a finite
set of clauses, denoted as ϕ = C1 ∧ · · · ∧ Cm.

A weighted clause is a pair (C,w), where C is a clause and w is a natural
number or infinity, indicating the penalty for falsifying C. A clause is called
hard if the corresponding weight is infinity, otherwise the clause is called soft.

A (Weighted Partial) MaxSAT formula is a multiset of weighted clauses

ϕ = {(C1, w1), . . . , (Cm, wm), (Cm+1,∞), . . . , (Cm+m′ ,∞)}

where the first m clauses are soft and the last m′ clauses are hard. The set of
variables occurring in a formula ϕ is noted as var(ϕ).

A total truth assignment for a formula ϕ is a function I : var(ϕ) → {0, 1},
that can be extended to literals, clauses, SAT formulas and MaxSAT formulas,
the following way:

I(xi) = 1− I(xi)
I(l1 ∨ . . . ∨ lr) = max{I(l1), . . . , I(lr)}
I({C1, . . . , Cm}) = min{I(C1), . . . , I(Cm)}
I({(C1, w1), . . . , (Cm, wm)}) = w1 · (1− I(C1)) + . . .+ wm · (1− I(Cm))

We define the optimal cost of a MaxSAT formula as

cost(ϕ) = min{I(ϕ) | I : var(ϕ)→ {0, 1}}

and an optimal assignment as an assignment I such that I(ϕ) = cost(ϕ).
We also define partial truth assignments for ϕ as a partial function I :

var(ϕ)→ {0, 1} where instantiated falsified literals are removed and the formula
is simplified accordingly.

Example 1. Given ϕ = {(y, 6), (x ∨ y, 2), (x ∨ z, 3), (y ∨ z, 2)} and I : {y, z} →
{0, 1} such that I(y) = 0 and I(z) = 0, we have I(ϕ) = {(x, 5), ( , 2)}. We also
have cost(I(ϕ)) = 2 and cost(ϕ) = 0.

Notice that, for any MaxSAT formula ϕ and partial truth assignment I, we
have cost(ϕ) ≤ cost(I(ϕ)). Notice also that when w is finite, the pair (C,w) is
equivalent to having w copies of the clause (C, 1) in our multiset.

We say that a truth assignment I satisfies a literal, clause or a SAT formula
if it assigns 1 to it, and falsifies it if it assigns 0. A SAT formula is satisfiable
if there exists a truth assignment that satisfies it. Otherwise, it is unsatisfiable.
Given an unsatisfiable SAT formula ϕ, an unsatisfiable core ϕc is a subset of
clauses ϕc ⊆ ϕ that is also unsatisfiable. A minimal unsatisfiable core is an
unsatisfiable core such that any proper subset of it is satisfiable.

The Weighted Partial MaxSAT problem for a weighted partial MaxSAT
formula ϕ is the problem of finding an optimal assignment. If the optimal cost
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is infinity, then the subset of hard clauses of the formula is unsatisfiable, and
we say that the formula is unsatisfiable. The Weighted MaxSAT problem is the
Weighted Partial MaxSAT problem when there are no hard clauses. The Partial
MaxSAT problem is the Weighted Partial MaxSAT problem when the weights of
soft clauses are all equal. The MaxSAT problem is the Partial MaxSAT problem
when there are no hard clauses. Notice that the SAT problem is equivalent to
the Partial MaxSAT problem when there are no soft clauses.

3 The Fu and Malik’s Algorithm

The first SAT-based algorithm for Partial MaxSAT algorithm was the Fu and
Malik’s algorithm described in [9]. It was implemented in the MaxSAT solver
msu1.2 [17,18], and its correctness was proved in [1].

The algorithm consists in iteratively calling a SAT solver on a working formula
ϕ. This corresponds to the line (st, ϕc) := SAT ({C | (Ci, wi) ∈ ϕ}). The SAT
solver will say whether the formula is satisfiable or not (variable st), and in
case the formula is unsatisfiable, it will give an unsatisfiable core (ϕc). At this
point the algorithm will produce new variables, blocking variables (BV in the
code), one for each soft clause in the core. The new working formula ϕ will
consist in adding the new variables to the soft clauses of the core, adding a
cardinality constraint saying that exactly one of the new variables should be
true (CNF (

∑
b∈BV b = 1) in the code), and adding one to the counter of falsified

clauses. This procedure is applied until the SAT solver returns sat.
For completeness, we reproduce the code of the Fu and Malik’s algorithm in

Algorithm 1.
Next we present an example of execution that will be used in the next section.

Example 2. Consider the pigeon-hole formula PHP 5
1 with 5 pigeons and one

hole where the clauses saying that no two pigeons can go to the same hole are
hard, while the clauses saying that each pigeon goes to a hole are soft:

ϕ = {(x1, 1), (x2, 1), (x3, 1), (x4, 1), (x5, 1), (x1 ∨ x2,∞), . . . , (x4 ∨ x5,∞)}

In what follows, the new b variables will have a super-index indicating the number
of the unsatisfiable core, and a subindex indicating the index of the original soft
clause.

Suppose that applying the FuMalik
algorithm, the SAT solver computes
the (minimal) unsatisfiable core C1 =
{1, 2}. Here we represent the core by
the set of indexes of the soft clauses
contained in the core. The new formula
will be as shown on the right. At this
point, the variable cost takes value 1.

ϕ1 = { (x1∨ b11 , 1),
(x2∨ b12 , 1),
(x3 , 1),
(x4 , 1),
(x5 , 1) } ∪
{(xi ∨ xj ,∞) | i �= j} ∪
CNF (b11 + b12 = 1,∞)
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Algorithm 1. The pseudo-code of the FuMalik algorithm (with a minor
correction).

Input: ϕ = {(C1, 1), . . . , (Cm, 1), (Cm+1,∞), . . . , (Cm+m′ ,∞)}
1: if SAT({Ci | wi =∞}) = (unsat, ) then return (∞, ∅)

�Hard clauses are unsatisfiable
2: cost := 0 �Optimal
3: while true do
4: (st, ϕc) := SAT({Ci | (Ci, wi) ∈ ϕ}) �Call to the SAT solver without weights
5: if st = sat then return (cost, ϕ)
6: BV := ∅ �Set of blocking variables
7: foreach Ci ∈ ϕc do
8: if wi �= ∞ then �If the clause is soft
9: b := new variable( )

10: ϕ := ϕ \ {(Ci, 1)} ∪ {(Ci ∨ b, 1)} �Add blocking variable
11: BV := BV ∪ {b}

12: ϕ := ϕ ∪ {(C,∞) | C ∈ CNF(
∑

b∈BV b = 1)}
�Add cardinality constraint as hard clauses

13: cost := cost+ 1

If the next unsatisfiable cores found by the SAT solver are C2 = {3, 4} and
C3 = {1, 2, 3, 4}, then the new formula will be:

ϕ2 = { (x1∨ b11 , 1),
(x2∨ b12 , 1),
(x3∨ b23 , 1),
(x4∨ b24 , 1),
(x5 , 1) } ∪
{(xi ∨ xj ,∞) | i �= j} ∪
CNF (b11 + b12 = 1,∞) ∪
CNF (b23 + b24 = 1,∞)

ϕ3 = { (x1∨ b11∨ b31, 1),
(x2∨ b12∨ b32, 1),
(x3∨ b23∨ b33, 1),
(x4∨ b24∨ b34, 1),
(x5 , 1) } ∪
{(xi ∨ xj ,∞) | i �= j} ∪
CNF (b11 + b12 = 1,∞) ∪
CNF (b23 + b24 = 1,∞) ∪
CNF (b31 + b32 + b33 + b34 = 1,∞)

After the third iteration, the variable cost has value 3. Finally, after finding the
core C4 = {1, 2, 3, 4, 5} we get the following satisfiable MaxSAT formula:

ϕ4 = { (x1∨ b11∨ b31∨ b41 , 1),
(x2∨ b12∨ b32∨ b42 , 1),
(x3∨ b23∨ b33∨ b43 , 1),
(x4∨ b24∨ b34∨ b44 , 1),
(x5∨ b45 , 1) } ∪
{(xi ∨ xj ,∞) | i �= j} ∪
CNF (b11 + b12 = 1,∞) ∪
CNF (b23 + b24 = 1,∞) ∪
CNF (b31 + b32 + b33 + b34 = 1,∞) ∪
CNF (b41 + b42 + b43 + b44 + b45 = 1,∞)
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At this point cost is 4. The algorithm will now call the SAT solver on ϕ4, and
the solver will return the answer “satisfiable”. The algorithm returns cost = 4.

4 Breaking Symmetries

It is well known that formulas that contain a great deal of symmetries cause
SAT solvers to explore many redundant truth assignments. Adding symmetry
breaking clauses to a formula has the effect of removing the symmetries, while
keeping satisfiability the same. Therefore it is a way to speed up solvers by
pruning the search space.

In the case of executions of the FuMalik algorithm, symmetries can appear
in two ways. On one hand, there are formulas that naturally contain many
symmetries. For instance, in the case of the pigeon-hole principle we can permute
the pigeons or the holes, leaving the formula intact. On the other hand, in each
iteration of the FuMalik algorithm, we modify the formula adding new variables
and hard constraints. In this process we can also introduce symmetries. In the
present paper, we are no concerned with eliminating natural symmetries of a
MaxSAT formula as in [16], since that might be costly, and it is not the aim of
the present work. Instead we will eliminate the symmetries that appear in the
process of performing the algorithm. In this case, it is very efficient to extract
the symmetries given our implementation of the algorithm.

Before we formally describe the process of eliminating the symmetries, we will
see an example.

Example 3. Consider again the pigeon-hole formula PHP 5
1 of Example 2. The

working formula ϕ3 from the previous section is still unsatisfiable, this is the
reason to find a fourth core C4. However, if we do not consider the clause x5 the
formula is satisfiable, and has 8 distinct models (two for each variable among
{x1, . . . , x4} set to true). Here, we show 2 of the models, marking the literals set
to true (we do not include the clauses xi ∨ xj , for i �= j and put the true literals
in boxes):

x1∨ b11 ∨ b31

x2∨ b12∨ b32

x3∨ b23 ∨ b33
x4 ∨ b24∨ b34

b11 + b12 = 1

b23 + b24 = 1

b31 + b32 + b33 + b34 = 1

x1∨ b11∨ b31

x2∨ b12 ∨ b32

x3∨ b23 ∨ b33
x4 ∨ b24∨ b34

b11 + b12 = 1

b23 + b24 = 1

b31 + b32 + b33 + b34 = 1

The previous two models are related by the permutation b11 ↔ b12, b
3
1 ↔ b32. The

two ways of assigning values to the b variables are equivalent. The existence of
so many partial models makes the task of showing unsatisfiability of the formula
(including x5) much harder.
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The mechanism to eliminate the symmetries caused by the extra variables is
as follows: suppose we are in the s iteration of the FuMalik algorithm, and we
have obtained the set of cores {ϕ1, . . . , ϕs}. We assume that the clauses in the
cores follow a total order. For clarity we will name the new variables of core ϕl

for l such that 1 ≤ l ≤ s as bli, where i is an index in ϕl. Now, we add the clauses:

bsi → b
l

j for l = 1, . . . , s−1 and i, j ∈ ϕl ∩ ϕs and j > i

This clauses implies that in Example 3 we choose the model on the left rather
than the one on the right.

Example 4. For the Example 3, after finding the third unsatisfiable core C3,
we would add the following clauses to break symmetries (written in form of
implications):

b31 → b
1

2

b33 → b
2

4

Adding these clauses, instead of the 8 partial models, we only have 4, one for
each possible assignment of xi to true.

After finding the fourth core C4, we also add (written in compact form):

b41 → (b
1

2 ∧ b
3

2 ∧ b
3

3 ∧ b
3

4)

b42 → (b
3

3 ∧ b
3

4)

b43 → (b
2

4 ∧ b
3

4)

5 The WPM1 Algorithm

Algorithm 2 is the weighted version of the FuMalik algorithm described in
section 3 [1,14] In this algorithm, we iteratively call a SAT solver with a weighted
working formula, but excluding the weights. When the SAT solver returns
an unsatisfiable core, we calculate the minimum weight of the clauses of the
core (wmin in the algorithm.). Then, we transform the working formula in the
following way: we duplicate the core having on one of the copies, the clauses with
weight the original minus the minimum weight, and on the other copy we put
the blocking variables and we give it the minimum weight. Finally we add the
cardinality constraint on the blocking variables, and we add wmin to the cost.

The process of doubling the clauses might imply to end up converting clauses
with weight say w into w copies of the clause of weight 1. When this happens,
the process becomes very inefficient. In the following we show a (tiny) example
that reflects this situation.

Example 5. Consider the formula ϕ = {(x1, 1), (x2,m), (x2,∞)}.
Assume that the SAT solver always includes the first soft clause in the

returned unsatisfiable core, even if this makes the core not minimal. After one
iteration, the new formula would be:

ϕ1 = {(x1 ∨ b11, 1), (x2 ∨ b12, 1), (x2,m− 1), (x2,∞), (b11 + b12 = 1,∞)}
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Algorithm 2. The pseudo-code of the WPM1 algorithm.

Input: ϕ = {(C1, w1), . . . , (Cm, wm), (Cm+1,∞), . . . , (Cm+m′ ,∞)}
1: if SAT({Ci | wi =∞}) = (unsat, ) then return (∞, ∅) �Hard clauses are

unsatisfiable
2: cost := 0 �Optimal
3: while true do
4: (st, ϕc) := SAT({Ci | (Ci, wi) ∈ ϕ}) �Call to the SAT solver without weights
5: if st = sat then return (cost, ϕ)
6: BV := ∅ �Blocking variables of the core
7: wmin := min{wi | Ci ∈ ϕc ∧ wi �=∞} �Minimum weight
8: foreach Ci ∈ ϕc do
9: if wi �= ∞ then

10: b := new variable()
11: ϕ := ϕ \ {(Ci, wi)} ∪ {(Ci, wi − wmin), (Ci ∨ b, wmin)}

�Duplicate soft clauses of the core
12: BV := BV ∪ {b}

13: ϕ := ϕ ∪ {(C,∞) | C ∈ CNF (
∑

b∈BV b = 1)}
�Add cardinality constraint as hard clauses

14: cost := cost+ wmin

If from now on, at each iteration i, the SAT solver includes the first clause along
with {(x2,m− i + 1), (x2,∞)} in the unsatisfiable core, then at iteration i, the
formula would be:

ϕi = { (x1 ∨ b11 ∨ · · · ∨ bi1, 1), (x2 ∨ b12, 1), . . . , (x2 ∨ bi2, 1), (x2,m− i), (x2,∞),
(b11 + b12 = 1,∞), . . . , (bi1 + bi2 = 1,∞)}

The WPM1 algorithm would need m iterations to solve the problem.

Obviously, a reasonable good SAT solver would return a better quality core
than in previous example. However, unless it can guarantee that it is minimal,
a similar example (but more complicated) could be constructed.

6 A Stratified Approach for WPM1

In Algorithm 3 we present a modification of the WPM1 algorithm that tries
to prevent the situation described in Example 5 by carrying out a stratified
approach. The main idea is to restrict the set of clauses sent to the SAT solver
to force it to concentrate on those with higher weights. As a result, the SAT
solver returns unsatisfiable cores with clauses with higher weights. These are
better quality cores and contribute to increase the cost faster. When the SAT
solver returns SAT, then we allow it to use clauses with lower weights.

In Algorithm 3 we use a variable wmax, and we only send to the SAT solver
the clauses with weight greater or equal than it. As in Algorithm 2, we start
by checking that hard clauses are satisfiable. Then, we initialize wmax to the
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Algorithm 3. The pseudo-code of the stratified approach for WPM1
algorithm.

Input: ϕ = {(C1, w1), . . . , (Cm, wm), (Cm+1,∞), . . . , (Cm+m′ ,∞)}
1: if SAT({Ci | wi =∞}) = (unsat, ) then return (∞, ∅)
2: cost := 0 �Optimal
3: wmax := max{wi | (Ci, wi) ∈ ϕ ∧ wi < wmax}
4: while true do
5: (st, ϕc) := SAT({Ci | (Ci, wi) ∈ ϕ ∧ wi ≥ wmax}) �Call without weights
6: if st = sat and wmax = 0 then return (cost, ϕ)
7: else
8: if st = sat then wmax := max{wi | (Ci, wi) ∈ ϕ ∧ wi < wmax}
9: else

10: BV := ∅ �Blocking variables of the core
11: wmin := min{wi | Ci ∈ ϕc ∧ wi �=∞} �Minimum weight
12: foreach Ci ∈ ϕc do
13: if wi �=∞ then
14: b := new variable()
15: ϕ := ϕ \ {(Ci, wi)} ∪ {(Ci, wi − wmin), (Ci ∨ b, wmin)}

�Duplicate soft clauses of the core
16: BV := BV ∪ {b}

17: ϕ := ϕ ∪ {(C,∞) | C ∈ CNF (
∑

b∈BV b = 1)}
�Add cardinality constraint as hard clauses

18: cost := cost+wmin

highest weight smaller than infinite. If the SAT solver returns SAT, there are
two possibilities. Either wmax is zero (it means that we have already sent all
clauses to the SAT solver) and we finish; or it is not yet zero, and we decrease
wmax to the highest weight smaller than wmax, allowing the SAT solver to use
clauses with smaller weights. If the SAT solver returns UNSAT, we proceed like
in Algorithm 2. This algorithm was submitted to the MaxSAT evaluation 2011
as WPM1 (version 2011). It was the best performing solver for the weighted
partial industrial category. The description of the solver was never published in
a paper before.

We can use better strategies to decrease the value of wmax. Notice that, in the
worst case, we could need more executions of the SAT solver than Algorithm 2,
because the calls that return SAT but wmax > 0 do not contribute to increase
the computed cost. Therefore, we need to find a balance between the number
of those unproductive SAT calls, and the minimum weight of the cores. For
example, one of the possible strategies is to decrease wmax until the following
condition is satisfied

|Ci | (Ci, wi) ∈ ϕ ∧ wi < wmax}|
|{wi | (Ci, wi) ∈ ϕ ∧ wi < wmax}|

> α
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or wmax = 0. This strategy tends to send more new clauses to the SAT solver
when they have bigger diversity of weights. In our implementation of WPM1
submitted to the MaxSAT evaluation 2012, we use this strategy, called diversity
heuristic, with α = 1.25.

The proof of the correctness of this algorithm is like the proof for WPM1.
The only additional point is that the new algorithm is forcing the SAT solver to
find some cores before others. In the proof of correctness of WPM1 there is no
assumption on what cores the SAT solver finds first.

7 MaxSAT Reducibility

Our algorithms solve a MaxSAT formula by successively transforming it until
we get a satisfiable formula. To prove the soundness of the algorithms it suffices
to prove that these transformations preserve the cost of the formula. However,
apart from this notion of cost-preserving transformation, we can define other
(stronger) notions of formula transformation, like MaxSAT equivalence and
MaxSAT reducibility.

Definition 1.
We say that ϕ1 and ϕ2 are cost-equivalent if cost(ϕ1) = cost(ϕ2).
We say that ϕ1 and ϕ2 are MaxSAT equivalent if, for any assignment
I : var(ϕ1) ∪ var(ϕ2)→ {0, 1}, we have cost(I(ϕ1)) = cost(I(ϕ2)).
We say that ϕ1 is MaxSAT reducible to ϕ2 if, for any assignment I :
var(ϕ1)→ {0, 1}, we have cost(I(ϕ1)) = cost(I(ϕ2)).

Notice that the distinction between MaxSAT equivalence and MaxSAT reduction
is the domain on the partial assignment. In one case it is var(ϕ1)∪ var(ϕ2), and
in the other var(ϕ1).

The notion of cost-preserving transformation is the weakest of all three
notions, and suffices to prove the soundness of the algorithms. However, it does
not allow us to replace sub-formulas by cost-equivalent sub-formulas, in other
words cost(ϕ1) = cost(ϕ2) does not imply cost(ϕ1 ∪ ϕ3) = cost(ϕ2 ∪ ϕ3). On
the other hand, the notion of MaxSAT equivalence is the strongest of all three
notions, but too strong for our purposes, because the formula transformations
we use does not satisfy this notion. When ϕ2 has variables not occurring in ϕ1,
it is convenient to use the notion of MaxSAT reducibility, that, in these cases,
is weaker than the notion of MaxSAT equivalence.

In the following we show some examples of the notions of Definition 1.

Example 6. The following example shows a formula transformation that
preserves the cost, but not MaxSAT reducibility. Consider ϕ1 = {(x, 2), (x, 1)}
and ϕ2 = {( , 1)}. We have cost(ϕ1) = cost(ϕ2) = 1, hence the transformation
of ϕ1 into ϕ2 is cost-preserving. However, ϕ1 is not MaxSAT reducible to ϕ2,
because the assignment I : {x} → {0, 1} with I(x) = 0, makes cost(I(ϕ1)) =
2 �= 1 = cost(I(ϕ2)).
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On the contrary, ϕ2 is MaxSAT reducible to ϕ1, because there is a unique
assignment I : ∅ → {0, 1}, and it satisfies cost(I(ϕ1)) = cost(I(ϕ2)). Hence,
MaxSAT reducibility is not a symmetric relation.

The following example shows that MaxSAT reducibility does not imply
MaxSAT equivalence. Consider ϕ1 = {(x, 2), (x, 1)} and ϕ3 = {( , 1), (x, 1), (x∨
y, 1), (x ∨ z, 1), (y ∨ z,∞)}. We have that ϕ1 is MaxSAT reducible to ϕ3.
To prove this, we must consider two interpretations I1 and I2, defined by
I1(x) = 0 and I2(x) = 1. In the first case, we obtain I1(ϕ1) = {( , 2)} and
I1(ϕ3) = {( , 2), (y, 1), (y ∨ z,∞)} that have the same cost 2. In the second
case, we obtain I2(ϕ1) = {( , 1)} and I2(ϕ3) = {( , 1), (z, 1), (y ∨ z,∞)} that
have also the same cost 1. However, ϕ1 and ϕ3 are not MaxSAT equivalent
because for I : {x, y, z} → {0, 1} defined by I(x) = I(y) = I(z) = 1 we have
cost(I(ϕ1)) = 1 �=∞ = cost(I(ϕ3)).

Finally, ϕ1 is MaxSAT equivalent to ϕ4 = {( , 1), (x, 1)}.
The notion of MaxSAT equivalence was implicitly defined in [7]. In this paper
a MaxSAT resolution rule that preserves MaxSAT equivalence is defined, and
proved complete for MaxSAT.

For lack of space we state without proof:

Lemma 1. (1) If ϕ1 is MaxSAT-reducible to ϕ2 and var(ϕ2) ∩ var(ϕ3) ⊆
var(ϕ1), then ϕ1 ∪ ϕ3 is MaxSAT-reducible to ϕ2 ∪ ϕ3.

(2) MaxSAT-reducibility is transitive: if ϕ1 is MaxSAT-reducible to ϕ2, ϕ2 is
MaxSAT-reducible to ϕ3, and var(ϕ1) ∩ var(ϕ3) ⊆ var(ϕ2), then ϕ1 is
MaxSAT-reducible to ϕ3.

Example 7. Notice that the side condition of Lemma 1 (1) is necessary. For
instance, if we take ϕ1 = {( , 1)}, ϕ2 = {(x, 1), (x,∞)} and ϕ3 = {(x, 1)},
where the side condition var(ϕ2) ∩ var(ϕ3) = {x} �⊆ ∅ = var(ϕ1) is violated, we
have that ϕ1 is MaxSAT reducible to ϕ2, but ϕ1 ∪ ϕ3 is not MaxSAT reducible
to ϕ2 ∪ ϕ3.

Similarly, the side condition in Lemma 1 (2) is also necessary. For instance, if
we take ϕ1 = {(x, 1), (x, 1)}, ϕ2 = {( , 1)} and ϕ3 = {(x, 1), (x,∞)}, where the
side condition var(ϕ1)) ∩ var(ϕ3) = {x} �⊆ ∅ = var(ϕ2) is also violated, we have
that ϕ1 is MaxSAT reducible to ϕ2 and this to ϕ3. However, ϕ1 is not MaxSAT
reducible to ϕ3.

There are two side conditions in Lemma 1 (1) and (2) (see Example 7) that
restrict the set of variables that can occur in the MaxSAT problems. However,
if we ensure that problem transformations only introduce fresh variables, i.e.
when ϕ1 is MaxSAT reduced to ϕ2, all new variables introduced in ϕ2 do not
occur elsewhere, then these conditions are trivially satisfied. In our algorithms,
all formula transformations satisfy this restriction.

8 Generic Stratified Approach

In Algorithm 4 we show how the stratified approach can be applied to any generic
weighted MaxSAT solver WPM. In the rest of the section we will describe what
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Algorithm 4. The pseudo-code of a generic MaxSAT algorithm that
follows a stratified approach heuristics.

Input: ϕ = {(C1, w1), . . . , (Cm, wm)}
1: cost := 0
2: wmax =∞
3: while true do
4: ϕwmax := {(Ci, wi) ∈ ϕ | wi ≥ wmax}
5: (cost′, ϕsat, ϕres) = WPM(ϕwmax)
6: cost = cost+ cost′

7: if cost =∞ or wmax = 0 then return (cost, ϕsat)
8: W =

∑
{wi | (Ci, wi) ∈ ϕ \ ϕwmax ∪ ϕres}

9: ϕsat = {(Ci,harden(wi,W )) | (Ci, wi) ∈ ϕsat}
10: ϕ = (ϕ \ ϕwmax ) ∪ ϕsat ∪ ϕres

11: wmax = decrease(wmax)

12: return (cost, ϕ)

13: function harden(w,W)
14: begin
15: if w > W then return ∞
16: else return w

properties the generic algorithm WPM has to satisfy in order to ensure the
correctness of this approach.

We assume that, given a weighted MaxSAT formula ϕ, WPM(ϕ) returns a
triplet (cost, ϕsat, ϕres) such that ϕ is MaxSAT reducible to {( , cost)}∪ϕsat∪
ϕres, ϕsat is satisfiable (has cost zero), and clauses of ϕres have cost strictly
smaller than wmax. Given ϕ, WPM1 return a pair (cost, ϕ′) where ϕ is MaxSAT
reducible to {( , cost)}∪ϕ′ and ϕ is satisfiable, hence satisfies the requirements
taking ϕres = ∅. Moreover, we can also think of WPM as an algorithm that
partially solves the formula, and returns a lower bound cost, a satisfiable part
of the formula ϕsat, and an unsolved residual ϕres.

The algorithm uses a variable wmax to restrict the clauses sent to the MaxSAT
solver. The first time wmax = ∞, and we run WPM only on the hard clauses.
Then, in each iteration we send clauses with weight wmax or bigger to WPM.
We add the return cost to the current cost, and decrease wmax, until wmax is
zero.

Algorithm 3 is an instance of this generic schema where WPM is a partial
execution of WPM1 where clauses generated during duplication with weight
smaller than wmax are put apart in ϕres.

Lines 8 and 9 are optional and can be removed from the algorithm without
affecting to its correctness. They are inspired in [15]. The idea is to harden all
soft clauses with weight bigger than the sum of the weights of the clauses not
sent to the WPM plus the clauses returned in ϕres. The proof of the correctness
of these lines is based in the following lemma (not proved for lack of space).
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Lemma 2. Let ϕ1 = {(C1, w1), . . . , (Cm, wm), (Cm+1,∞), . . . , (Cm+m′ ,∞)} be
a satisfiable MaxSAT formula, ϕ2 = {(C′1, w′1), . . . , (C′r, w′r)} be a MaxSAT
formula without hard clauses and W =

∑r
j=1 w

′
j. Let

harden(w) =

{
w if w ≤W
∞ if w > W

and ϕ′1 = {(Ci, harden(wi)) | (Ci, wi) ∈ ϕ1}. Then cost(ϕ1∪ϕ2) = cost(ϕ′1∪ϕ2).

Notice that we check the applicability of this lemma dynamically, recomputing
the value W in every iteration in line 8 of Algorithm 4.

Theorem 1. Assuming that WPM, given a formula ϕ, returns a triplet
(cost, ϕsat, ϕres) such that ϕ is MaxSAT reducible to {( , cost)} ∪ ϕsat ∪ ϕres,
ϕsat is satisfiable, and ϕres only contain clauses with weight strictly smaller
than wmax, Algorithm 4 is a correct algorithm for Weighted Partial MaxSAT.
Moreover, when for a formula ϕ, the algorithm returns (c, ϕ′), then c = cost(ϕ)
and any assignment satisfying ϕ′ is an optimal assignment of ϕ.

9 Experimental Results

We conducted our experimentation on the same environment as the MaxSAT
evaluation [4] (processor 2 GHz). We increased the timeout from half hour to two
hours, and the memory limit from 0.5G to 1G. The solvers that implement our
Weighted Partial MaxSAT algorithms are built on top of the SAT solver picosat
(v.924) [6]. The solver wpm1 implements the original WPM1 algorithm [1]. The
cardinality constraints introduced by WPM1 are translated into SAT through
the regular encoding [3]. This encoding assures a linear complexity on the size
of the cardinality constraint. This is particularly important for the last queries
where the size of the cores can be potentially close to the number of soft clauses.
We use the subscript b to indicate that we break symmetries as described in
section 4, s to indicate we apply the stratified approach and d to indicate that
we apply the diversity heuristic to compute the next wmax, both described
in section 6. wpm1 was the solver submitted to the 2009 and 2010 MaxSAT
evaluations, and wmp1s the one submitted to the 2011 evaluation. The hardening
soft clauses (lines 8 and 9 in Algorithm 4) had not impact in our implementations’
performance.

In the following we present results for the benchmarks of the Weighted Partial
MaxSAT categories of the MaxSAT 2011 evaluation. We compare our solvers
with the best three solvers of the evaluation, and other solvers which did not
compete but have been reported to exhibit good performance, such as, binc and
bincd [11], maxhs [8] and the Weighted CSP solver toulbar2 [19].

We present the experimental results following the same classification criteria
as in the MaxSAT evaluation. For each solver and set of instances, we present
the number of solved instances in parenthesis and the mean time required to
solve them. Solvers are ordered from left to right according to the total number
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of instances they solved. We present in bold the results for the best performing
solver in each set. ’# ’ stands for number of instances of the given set.

Table 1(a) presents the results for the industrial instances of the Weighted
Partial MaxSAT category. As we can see, our original solver wpm1 would have
ranked as the second best solver after wbo1.6. By breaking symmetries (wpm1b)
we solve 12 more instances than wbo1.6, and 20 more if we apply the stratified
approach. Combining both, we solve 28 more instances. The addition of the
diversity heuristic to the stratified approach has no impact for the instances of
this category. We do not present any result on branch and bound based solvers
since they typically do not perform well on industrial instances.

Table 1(b) presents the results for the crafted instances of the Weighted Partial
MaxSAT category. The best ranked solvers in this category for the MaxSAT
2011 evaluation were: incwmaxsatz, akmaxsat and wmaxsatz09, in this order. All
are branch and bound based solvers, which typically dominate the crafted and
random categories. We can see that our solver wpm1 shows a poor performance
in this category. However, by applying the stratified approach (wpm1s) we jump
from 84 solved instances to 184. If we also break symmetries (wpm1bs) we solve
224 instances, ranking as the third best solver respect to the participants of the
MaxSAT 2011 evaluation, very close to akmaxsat. If we compare carefully the
results of wpm1 and wpm1bs, we notice that there are two sets where wpm1
behaves much better (warehouses and random-net). This suggests that we must
make our stratified approach more flexible, for example, by incorporating the
diversity heuristic (wpm1bsd). Using wpm1bsd we solve up to 270 instances,
outperforming all the branch and bound solvers.

In [8] it is pointed out that instances with a great diversity of weights can be
a bottleneck for some Weighted MaxSAT solvers. To test this hypothesis they
generate 13 instances from the Linux upgradibility set in the Weighted Partial
MaxSAT industrial category preserving the underlying CNF but modifying the
weights to force a greater diversity. We have reproduced that experiment in
Table 1(c). As we can see, wpm1 compares well to the best performing solvers,
and by breaking symmetries (wpm1b) we reach the performance of maxhs and
wbo1.6. On the other hand, the stratified approach impacts negatively (wpm1s
or wpm1bs), but the diversity heuristic fixes this problem.

Taking into consideration the experimental results obtained in the different
categories, we can see that our approach wpm1bsd is the most robust solver for
Weighted PartialMaxSAT instances.We also checked the effectiveness of breaking
symmetries for UnweightedPartialMaxSAT instances. For industrial instanceswe
improve from 181 to 262 solved instances, and for crafted from 55 to 115.
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12. Li, C.M., Manyà, F., Mohamedou, N., Planes, J.: Exploiting Cycle Structures
in Max-SAT. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 467–480.
Springer, Heidelberg (2009)

13. Lin, H., Su, K., Li, C.M.: Within-problem learning for efficient lower bound
computation in Max-SAT solving. In: AAAI 2008, pp. 351–356 (2008)

14. Manquinho, V., Marques-Silva, J., Planes, J.: Algorithms for Weighted Boolean
Optimization. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 495–508.
Springer, Heidelberg (2009)

15. Marques-Silva, J., Argelich, J., Graça, A., Lynce, I.: Boolean lexicographic
optimization: algorithms & applications. Ann. Math. Artif. Intell. 62(3-4), 317–
343 (2011)

16. Marques-Silva, J., Lynce, I., Manquinho, V.: Symmetry Breaking for Maximum
Satisfiability. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS
(LNAI), vol. 5330, pp. 1–15. Springer, Heidelberg (2008)

17. Marques-Silva, J., Manquinho, V.: Towards More Effective Unsatisfiability-Based
Maximum Satisfiability Algorithms. In: Kleine Büning, H., Zhao, X. (eds.) SAT
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Distributed Tree Decomposition with Privacy
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Abstract. Tree Decomposition of Graphical Models is a well known method for
mapping a graph into a tree, that is commonly used to speed up solving many
problems. However, in a distributed case, one may have to respect the privacy
rules (a subset of variables may have to be kept secret in a peer), and the initial
network architecture (no link can be dynamically added). In this context, we pro-
pose a new distributed method, based on token passing and local elections, that
shows performances (in the jointree quality) close to the state of the art Bucket
Elimination in a centralized case (i.e. when used without these two restrictions).
Until now, the state of the art in a distributed context was using a Depth-First
traversal with a clever heuristic. It is outperformed by our method on two fami-
lies of problems sharing the small-world property.

1 Introduction

Tree decomposition was introduced in [21]. It aims at mapping the graphical represen-
tation of a problem into a tree such that all linked variables in the initial graph stay
linked (directly, or indirectly) in any node (also called cluster of the new tree). Once
decomposed, the solving time of the initial problem can be bounded for a large class of
problems. This nice property explains why tree decomposition has been widely studied,
in many centralized applications (graph theory [21], constraints optimization [16,5,15],
planning [13], databases [11,6], knowledge representation [14,22,10]), but also in dis-
tributed ones (distributed constraints optimization [19,3,7,17], ...). Intuitively, the de-
composition guides the reasoning mechanism through the network, and can bound the
number of messages. When dealing with distributed systems, it is indeed essential to
bound the maximal number of messages, for instance to ensure some quality of services.

When the problem is tree-decomposed, its complexity can be bounded by an expo-
nent of its width, which is the size of the largest cluster in the tree (minus 1). Many
applications rely on good tree decompositions, and many polynomial classes are based
on the existence of a good decomposition. Because of its exponential impact on the
bound, even a small improvement in the quality of the decomposition may lead to large
improvements in practice.

However, when the system is intrinsically distributed, or subject to privacy settings,
no peer can have a global view of the system, and new algorithms must be explored. For
instance, adding a link between two peers may not be feasible (only already existing
links can be allowed). In all previous approaches, the initial distributed system was
supposed to fulfil an additional strong characteristic: two peers that share a common
variable must be directly linked by the network.

In this paper, we propose to explore the general case, i.e. when links between peers
are not forced to follow the above characteristic. In this more general case, we propose

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 102–117, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Distributed Tree Decomposition with Privacy 103

a new distributed algorithm for distributed tree decomposition, based on local elections
with a token. Using a token was necessary to prevent concurrent decisions, which was
identified as one of the main issues for good jointree construction. We conclude this
paper by an experimental analysis of our algorithm on families of small-world net-
works, and show that the produced jointrees are significantly better than state of the art
distributed algorithms, while allowing more general networks.

2 Distributed Tree Decomposition

Introduced By Robertson and Seymour [21], the tree decomposition was applied in
many problems. It was noticeably used in circuit diagnosis in [9], in the centralized
case. In this work, Dechter and El Fattah considered a graphical model of the set of
equations describing the circuit. Each node of the graph is labelled by a variable, and
each edge models a semantic dependency between variables in the same equation.

Figure 1 shows a problem described by a conjunction of fi formulae signatures (e.g.
constraints, properties, theories). On the right we show the corresponding interaction
graph s.t. each node is labelled by a variable and there exists a link between two nodes
iff they appear in the scope of a same function. For example, in light grey, we surround
parts of the interaction graph modeling f1, f2 and f3 of the initial problem.

∧
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∧
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Fig. 1. Left: Centralized problem description. Right: The corresponding problem interaction
graph.

The tree decomposition of an interaction graph is a tree of clusters of variables hav-
ing the running intersection property and preserving the initial dependency schema of
variables. Here we recall the definition of [21], keeping in mind that a node corresponds
to a variable.

Definition 1 (tree decomposition [21]). A tree decomposition of a graph G is a pair
(χ, T ) in which T = (CT, F ) is a tree where the nodes cti ∈ CT are clusters names
and the edges F model the inter-dependencies between clusters, and χ = {χcti : cti ∈
CT } is a set of subsets of vertices(G) s.t. each subset χcti is the set of vertices of the
cluster cti. The tree decomposition fulfils the following properties:
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, ,

, ,

( , , 

Fig. 2. Tree decomposition of the interaction graph of Figure 1

1. ∪
cti∈CT

χcti = vertices(G),

All nodes in the initial graph are at least in a cluster, and the tree contains no new
variables (vertices compliance).

2. ∀{x, y} ∈ Edges(G),∃cti ∈ CT with {x, y} ∈ χcti

Each pair of variables connected by an edge in the initial graph must be found
together in a cluster (dependencies compliance).

3. ∀cti, ctj, ctk ∈ CT , if ctk is on the path from cti to ctj in T , then χcti ∩ χctj ⊆
χctk ,
Two clusters that contain the same node are connected by clusters that also contain
this node (running intersection).

The result of a tree decomposition is also called a jointree. Figure 2 represents the tree
decomposition of the interaction graph of Figure 1. In this figure, one can check that
each node labelled by a variable in the interaction graph belongs to at least one cluster of
the tree-decomposition. In addition, we can notice that clusters ct2, ct5, ct7, ct6, ct3 that
contain l1 are connected in the tree. Then, the running intersection property is satisfied
for l1. It is easy to check that the running intersection is satisfied for all variables.

2.1 Distributed Theories and Privacy

Let us point out that, in the interaction graph, each variable is directly connected to all
other variables that appear with it in at least one formula. Now, in a distributed context,
the framework is made up of peers, where each peer knows a subset of formulae and
can interact with its neighbourhood by messages in order to solve a global problem. In
that case we need to consider at the same time the network interactions between peers
defined by peers’ acquaintances and the semantic interactions between variables defined
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Fig. 3. Left: distributed problem of figure 1. Right: Its acquaintance graph.

by formulae (from a global point of view). In our approach, we model a distributed
setting of peers and formulae by the notion of acquaintance graph.

Definition 2 (acquaintance graph). Given a distributed problem setting defined on
variables V ars, an acquaintance graph G((P, V ), ACQ) is a graph defined by:

1. P = {Pi}i=1..n is the set of peers,
2. V : P → 2V ars is the node labelling function where V (pi) represents the vocabu-

lary used by pi to describe its problem.
3. ACQ ⊆ P×P defines the peers’ acquaintances i.e. the neighbourhood with which

each peer can exchange messages.

This definition of an acquaintance graph differs from [1], which represents a multi-
graph where edges are labelled by shared variables.

Figure 3 (right) shows an example of an acquaintance graph of a distributed theory
(left). We can emphasize that the acquaintance graph differs from the interaction graph.
p1 and p3 have in common the variable h, but they do not share it in the network via
a direct link like it would be the case in an interaction graph. Let us also point out
that, without loss of generality, we can assume that two peers sharing an acquaintance
link share also one or several variables. In addition, we will not allow the creation of
new acquaintance links once the acquaintance graph is given. This is a first restric-
tion for building a tree decomposition. One may also notice, figure 3, that a particular
set of variables (written li), are only in one peer. We will consider these variables “lo-
cal”, and the other ones “shared”. The privacy rule of our framework ensures that local
variables stay local, i.e. no local variable is sent to any other peer in the network.
This is our second restriction for building a tree decomposition. We can notice that the
tree decomposition shown in figure 4 does respect privacy while the one in figure 2
does not.
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2.2 Distributed Tree Decomposition

Because an acquaintance link between two peers may not follow the interaction graph
of variables, we need to adapt Definition 1 for the distributed context.

Definition 3 (Distributed Tree Decomposition (DTD)).
Let G((P, V ), ACQ) be the acquaintance graph of a distributed system. A tree of

clusters T ((CT, χ), F ) s.t. each cluster ct ∈ CT is labelled by a set of variables χ(ct),
is a distributed tree decomposition of G iff:

1.
⋃

p∈P
V (p) =

⋃
ct∈CT

χ(ct) (compliance of the vocabulary)

2. ∀p ∈ P, ∃ct ∈ CT s.t. V (p) ⊆ χ(ct) (compliance of variables dependency)
3. ∀ct, ct′, ct” ∈ CT , if ct′ is on the path from ct to ct” in T , then χ(ct) ∩ χ(ct”) ⊆

χ(ct′) (running intersection)
4. There exists a function γ : CT → P that represents the cluster provenance s.t.
∀{ct, ct′} ∈ F :

– γ(ct) = γ(ct′) or
– {γ(ct), γ(ct′)} ∈ ACQ

Each cluster is hosted by one peer. Neighbouring clusters are hosted by the same
peer or by neighbour peers in the acquaintance graph. (compliance of acquain-
tances)

5. ∀v ∈ V (p) s.t. ∀p′ �= p, v �∈ V (p′), ∀ct s.t. v ∈ χ(ct): γ(ct) = p
Local variables belonging to p can only appear in a cluster hosted by p. (privacy
rule)

In the above definition, the first three properties are similar to the classical tree de-
composition. If the later preserves the initial set of nodes and their dependencies, in our
definition, the distributed tree decomposition of an acquaintance graph preserves the set
of peer variables and their dependencies. We also need to add the fourth one, to adapt
our DTD definition to the distributed case. The compliance of acquaintances also forces
DTDs to have the following property: a cluster is hosted by one (and only one) peer,
and a peer hosts at least one cluster (if its formula is not empty), and possibly many.
In addition, all interactions between clusters are following the initial peer acquaintance.
Our privacy rule, in the context of DTD is expressed by the fifth property. All clusters
hosted by one peer p can contain any shared variable from any peer, but only local vari-
ables of p itself. If we look at figure 4, we see that all variables li stay at their initial
peer. At the opposite, shared variables h and g are sent to p4 for ensuring the running
intersection.

2.3 Tree Decomposition: Choose Your Father

Tree decomposition aims at directing the reasoning during search, or fixing a bound on
the reasoning task. Then, the complexity of most classical reasoning tasks is bounded
by the size of the largest obtained cluster. There is a strong link between the problem
of finding a good decomposition, a good forgetting order, and the graph triangulation
problem. However, in a distributed approach, only orders based on depth-first (DFS)



Distributed Tree Decomposition with Privacy 107

and breadth-first (BFS) searches have been proposed so far. Building a distributed de-
composition tree by BFS was first proposed by Elzahir et al. [7] for distributed CSPs.
GrunBach and Wu [12] proposed to apply the tree decomposition for software verifica-
tion, based on a BFS. However, we experimentally checked (not reported here) that the
quality of the decompositions by BFS order was significantly worse than those based
on DFS. So, we limit this section to the presentation of DFS-based orders and Bucket-
Elimination (BE) orders.

Distributed, Depth-First, Tree Decomposition. In distributed constraints optimiza-
tion, Distributed DFS (DDFS) is the state of the art [19,8]. Initially, a peer is chosen
as the root of the tree (this is a global decision). It chooses one of its neighbours and
sends it a special message. When a peer receives such a message for the first time, it
records the sender as its father. Then, it forwards this message to one of its neighbours
that have not yet been chosen by it. If all its neighbours have been visited, then it sends
the return message to its father. The DDFS algorithm sends messages through all edges
of the network of peers. Its complexity (in the number of non concurrent messages) is
2 ∗ |E|, where E is the set of edges.

Distributed Bucket Elimination. Bucket Elimination is a general method that can be
used for decomposition. It builds a tree of clusters from the leaves to the root of the
tree. When applied with the DFS order, BE does not have to build the tree, it follows
the DFS one: DFS induces a total order on viewed peers s.t., for each peer, each of its
neighbours is an ancestor or a descendant. Initially, an empty cluster χctp is associated
to each peer; then, for each peer pi, if it is a descendant of some peer pj then the
vocabulary common to the two peers pi, pj is added to the cluster χctpi

. Then, the
algorithm typically proceeds bottom-up in two stages: (1) a peer pi sends to its father
pj a projection pjctpi of the variables contained in χctpi

and belonging to one of its
ancestor; (2) when pj receives pjctpi from pi, it adds pjctpi in its cluster χctpi

. When
it has received a projection from all its children it projects to his father the variables of
χctpj

shared with one of its ancestors. For more details, the piece of work [3] assumes
a DTD based on Cluster Tree Elimination [4] applied to a decentralized context.

We show the jointree built by Distributed BE with DDFS and the Maximum Cardi-
nality Set (MSC) heuristic in figure 4. In the latter, privacy is preserved. One may notice
here that variables are shared among peers if needed. The notion of projection (pjctpi

in the above algorithm) will also appear in our algorithm. This notion is essential for
ensuring the running intersection property in the final jointree.

2.4 Good Properties of Centralized Methods

Centralized methods often rely on equivalent problems for tree decomposition, such as
graph triangulation. In this problem, one wants to add as few edges as possible to a
given graph in order to obtain a chordal graph (all cycles of length four or more have a
chord, which is an edge joining two non-adjacent nodes in the cycle). The triangulation
algorithm iteratively eliminates all nodes. At each iteration, (1) a variable is chosen;
(2) edges are added between pairs of nodes from its neighbours that are not already
connected (clique-fill); (3) the node is removed. The quality of a triangulation can be
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Fig. 4. Tree Decomposition given by BE and driven by DFS and MCS heuristic

trivially measured by the number of new edges. The node chosen at step (1) must add
as few edges as possible, in a short and in a long-term point of view. For instance, a
node in a clique with its entire neighbours is a very good candidate. A node with a
poorly connected neighbourhood is a bad choice. The heuristic Min-Fill-In is based on
this very simple observation. Each node is evaluated w.r.t. the number of new edges one
may have to add to fill its neighbourhood as a clique.

In order to get a global elimination order from the above algorithm, we must add
a fourth step: a cluster containing all the neighbourhood of the removed variable is
built (and memorized) at the new step. In this context, the Min-Fill-In algorithm can
be viewed as trying to reduce the size of the clusters. However, when adapting this
idea to the distributed case, it may not be possible to add links to any pair of peers.
In our formulation, the acquaintance graph is given, and no network link can be added
“on the fly”.

About concurrency, it is trivial to say that centralized methods are not concurrent.
However, we think that the non-concurrency property is essential to obtain good join-
trees. Let us consider a simple path v1 − ... − vn. One can check that the sequential
elimination of one or two variables (i.e. (v1, vn)) at ends of the path will lead to the
creation of clusters with at most two variables. Unfortunately, the concurrent elimina-
tions of at least three variables at the same time will lead to the creation of a cluster of
at least three variables. This example can easily be generalized for tree structured graph
or cyclic graph, and clearly illustrates the fact that even few concurrent decisions can
get any algorithm away from the optimal decomposition. In order to prevent those bad
decisions to be taken, we propose to use a token to limit concurrent choices.

3 Distributed Token Elimination

The idea of the algorithm is the following. Each peer votes for its best neighbour (in-
cluding itself). It has to decide, locally, which peer should be removed first. A peer that
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Fig. 5. Tree Decomposition obtained by the Token Elimination on the running example

has been chosen by all its neighbours can be removed (it is a sink node in the graph of
“best” choices). When removed, a peer builds a cluster of variables for the distributed
jointree, and memorizes it locally. This peer will be the root of a sub-jointree in the
final jointree. All the variables that are not local to this sub-tree are in its projection
(exactly in the same sense as it is used in BE, see 2.3). A removed peer remains active,
and participates to the elections until all its neighbourhood has also been removed (after
that, it will only be active for routing token messages).

In order to build a distributed jointree (DJT) at the end of the algorithm, we consider
the first removed peers as the leaves of the DJT. The final DJT is built bottom-up to
the root. This is done when all the peers have been eliminated. The algorithm has to
connect all the sub-jointrees together. Because we do not want to allow any new link in
the network, while ensuring the running intersection, this stage is a little bit tricky. Each
peer asks the network for its son by flooding its name and its projection, and when the
son answers, all peers on the path between them create new “connection” clusters with
all the variables needed for ensuring the running intersection property in the final DJT.
So, we have the following properties: First, during the whole algorithm, each cluster
is only in one peer. Second, before this last reconnection stage, each peer can only
contains one cluster (called the “main” cluster). Third, at the end of the algorithm, each
peer contains exactly one “main” cluster, and an unbounded number of “connection”
clusters.

An illustration of the final solution of our algorithm is shown in figure 5. One can es-
pecially notice that privacy is preserved, and that clusters, thanks to connection clusters,
are connected on the top of the initial peers network (see the P2 clusters).

Additionally, as reported section 2.4, we need to carefully handle concurrent deci-
sions. For this, a single token is circulating on the network, following the current votes.
Because the directed graph of “best” choices is not guaranteed to be strongly connected,
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we must add an escape strategy. For this, we suppose a cycle that goes through all nodes
exactly once. In our approach, we build this cycle by a DFS traversal of the peers.

3.1 Data Structures and Notations

The Score of a peer is the estimated size of its main cluster (the algorithm tries to
choose the next peer with minimal score). In addition, each peer maintains an array
score[] of the “cluster” score of its neighbours. This “cluster” score takes into account
the current projections of orphan sub-jointrees. More generally, this is where the heuris-
tics take place.

The Token circulating in the network is also decorated with precious information. It
contains, intuitively, the set of current orphan sub-jointrees that are being built, rooted
in removed peers so far. To allow any peer in the network to smartly choose which sub-
jointree to attach as a son, each sub-jointree also contains its projection, i.e. all the non
local variables of the sub-jointree.

neighbours∗ is the set of all the neighbours of a peer, including removed peers, and
itself. neighbours+ is the set of all the neighbours of a peer, including itself, but not
including removed peers. best is the “best” neighbour of a peer p, i.e. the peer having
the smallest value in the score[] array, including p.Children is the set of direct children
a peer has registered so far.

3.2 The Distributed Token Elimination Algorithm

DTE is given as Algorithm 1. Initially, the token is sent to one peer.

Local Elections. Each time a peer ptoken receives (or initially has) the token (line 2), it
organizes local elections (line 4) and waits for the votes of all its neighbours (including
removed ones). The reception of this message is treated in line 31. The computed score
of p takes into account the size of the set of variables made up from current projections
in the token (set of non local variables of sub-jointrees built so far), local variables and
shared variables with ancestors. The underlying idea of this score is to estimate the
size of the cluster if p, the peer that received the ELEC message (line 31), would be
removed at this point. The computed score of the peer p is sent back to ptoken but also
to all its other neighbours, line 33, and received line 37. So, if we get back to the initial
peer ptoken that organized the local election, it has updated its own score[] values for
all its neighbours, taking into account the current open projections in the token, and the
local election is closed.

One may notice here that score[] arrays have been updated only in the neighbour-
hood of ptoken, and thus the votes of the neighbours of ptoken are based only on partial
information: if p is a neighbour of ptoken, p only updates the scores of its neighbours
that are also connected to ptoken. All other peers are ranked according to an old value of
score[], that can be based on an old set of orphans sub-jointrees. At some point, we must
accept this, because this is just a heuristic, and trying to have a better estimation will
cost too much. However, one may also notice here that if no peer is elected, the token
remains the same, and follows the “best” links or the global cycle, eventually touching
all the peers at the end of the cycle. The algorithm will end because once a peer has
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updated its own score according to the token, if the token does not change (no peer is
removed), then its score will remain the same. If the token touches all the peers, all
score[] values will have been updated according to the same orphan sub-jointrees (this
remark is important for termination, we have the guarantee to find a node to remove
after at most one cycle, and in any case after visiting at most two times each edge).

At this step, after line 5, the peer ptoken has now two possibilities, removing itself
(see section 3.2), or giving the token to its best neighbour/cycle (see section 3.2).

Elected and Removed. When ptoken is a local minimum, i.e. all its neighbourhood,
including itself, has elected it, then it has two steps to perform before being removed
from the network. First, it needs to compute the new projection, and register itself as a
new potential orphan sub-jointree with this projection.

This is done from lines 9 to line 17 in the algorithm. Pjp is the projection of p over
its alive neighbourhood. Children is the set of peers that p has chosen as sons: all
the peers that are roots in the current orphan sub-jointrees with which p shares at least
one variable (these allow one to preserve the running intersection). Newχ is the set
of variables in the projections of orphan sub-jointrees that p has to take into account
when it will be removed, in addition to its own projection variables. So, for the new
sub-jointree rooted in p, its projection χp is computed in line 12. Now, p has to update
the set of sub-jointrees attached to the token. First, it removes its sons, then it adds itself
as a new sub-jointree. At last, it is important that p tells its neighbourhood it has been
removed (sending and acknowledging ELIM messages). During this stage, it is also
important to notice that all neighbours of p update their best values (including p itself).

We postpone the explanation of lines regarding the reconnection of sub-jointrees to
the end of the section.

Sending the Token. The idea of lines 24 to 29 is to let the token following the “best”
links in the graph, and rely on the static DFS order for escaping. So, if p is not its best
choice (not in a local minimum), then, if p still has alive neighbours, it sends the token
to the best of its alive neighbours. Otherwise, because neighbours+ initially contains
p itself, p has been removed with all its neighbours. In this case, we rely on the static
cycle built on the top of DFS to send the token and escape.

If p was its own best choice, we are in a local minimum, and we also need to escape.
Observing the fact that at least one of the alive neighbours is not considering p as
the best choice (if p was the best choice for all its neighbourhood, then it has just
been eliminated, and has sent the ELIM messages to its neighbourhood forcing its
neighbours to vote for another peer), we know that there is a peer with a better local
score than p if we follow any best link from any neighbour of p that has not voted for
it. So, in our solution, we propose to use this heuristic, as shown line 29.

Running Example. An example (limited to two steps) of the algorithm is given in
figure 6. First, suppose that the token was in p1. According to the votes, the token is
sent to p5. Then, as shown in figure 6 (left), p5 is selected for elimination (see the scores
in the figure). It adds its own projection set {d, g} (all its variable except local ones) to
the token and removes itself. The token then goes through p1 and p2 (following elections
results), and then (Figure 6 right) p2 is removed and updates the token accordingly. In
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χp2 { l2, a, b, h }
Score : 4
Vote : p2

χp3 {a, l3, h, b, c }
Score : 5
Vote : p2

χp1 {h, d, l1, e, g }
Score : 5
Vote : p5

χp5 { d, g, l5 }
Pjp5 :{d, g}
Score : 3
Vote : p5

χp4 {e, l4, l4', d, c,g }
Score : 6
Vote : p5

{( {d, g})}

χp2 { l2, a, b, h }
Pj p2 :{a, b, h}
Score : 4
Vote : p2

χp3 {a, l3, h, b, c }
Score : 6
Vote : p3

χp1 {h, d, l1, e, g,a, b }
Score : 7
Vote : p5

χp4 {e, l4, l4', d, c }
Score : 6
Vote : p3

{( {d, g}),
 ( {a, b, h}) }

Vote : p1

Fig. 6. Two iterations of Distributed Token Elimination on our example

the next step (not shown on the figure), the token will be sent to p3 which will remove
the couple (p2, {a, b, h}) from the token (p3 shares at least one variable in this set) and
will add the couple (p3, {h, c}) in the token (a and b are not anymore shared).

Final Stage: Re-connecting All Sub-jointrees When the above algorithm finishes, it
ends with a forest of sub-jointrees, distributed on the network. Each node has its own
main cluster, fixed when the node was removed, but all the sub-jointrees have to be
merged in one jointree, by reconnecting them while respecting the running intersection.

The first peer that detects the termination broadcasts the Reconnection message in
the network (line 20). Then, (not shown here), each non-leaf peer p that receives this
message initiates the flooding algorithm 2: each p broadcasts a new message ReqCON
to the network with the set of its children. When receiving a message ReqCON for
the first time, a peer p records the sender p′ as a father link and broadcasts the message
to all its neighbourhood (excluding p′). Of course, due to the flooding mechanism, the
message ReqCON visits all links of the network (lines 4 to 6).

Now, when a peer has received the ReqCON message from all its neighbours (line
10), it initiates the answer by sending back the message AnsCON with the list of chil-
dren of the initial peer p (noted Wanted in the algorithm, lines 12 to 14). The message
then goes bottom-up in the tree, following all the fathers links created above. Now, each
peer that recognizes itself in the list attached to AnsCON when the message goes up
adds its own shared variables to the list of new shared variables (noted ProjChild in
the algorithm, lines 25 to 26). Those variables need to be added along the path to en-
sure the running intersection property. They are shared between the peer and its direct
neighbourhood. In addition, each time a peer receives AnsCON with a non empty list
projChild, it creates a new “connection” cluster containing all variables of projChild
(named conClusters(Wanted) in the algorithm for simplicity, lines 21 to 22).

Complexity Analysis. At the end of the Distributed Token Elimination n peers have
been eliminated. For each elimination the token will potentially visit all edges in both
directions (in the worst case) making a local election at each step. Afterwards, during
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Algorithm 1. Distributed Token Elimination

(2) p receives TOKEN(SubT ) from p′

(3) // local election
(4) ∀p′ ∈ neighbours∗, send ELEC(SubT ) to p′

(5) wait V OTE(bp′) from all p′ ∈ neighbours∗

(6)
(7) if (p has received V OTE(�) from all p′ ∈ neighbours∗)
(8) // Eliminate p (see section 3.2)
(9) Pjp ← ∪

p′∈neighbours+
Vp ∩ Vp′

(10) Children← ∪
(p′,V ′)∈SubT

p′ s.t. V ′ ∩ Vp �= ∅

(11) Newχ ← ∪
(p′,V ′)∈SubT

V ′ s.t. p′ ∈ Children

(12) χp ← Pjp ∪Newχ \ ∪
v∈Vp

s.t. v /∈ Pjp

(13) // Update Orphan Sub-Jointrees
(14) SubT ← SubT \ ∪

(p′,V ′)∈SubT
(p′, V ′) s.t. p′ ∈ Children

(15) SubT ← SubT ∪ (p, χp)
(16) send ELIM to all p′ ∈ neighbours∗

(17) wait AckELIM from all p′ ∈ neighbours∗

(18) if (Pjct = {{}})
(19) // re-connecting sub-jointrees (see section 3.2)
(20) broadcasts the Reconnection message in the network.
(21)
(22) // sending the token(see section 3.2)
(23) if (best �= p)
(24) if (neighbours+ �= ∅) // token passing
(25) send TOKEN(SubT ) to best
(26) else
(27) send TOKEN(SubT ) to succDFS(p

′)
(28) else
(29) send TOKEN(SubT ) to p” s.t. p as received V OTE(⊥) from p”

(31) p receives ELEC(SubT ) from p′

(32) score[p]← eval(SubT )
(33) send SCORE(score[p]) to its neighbours and wait AckSCORE
(34) best← min(score[])
(35) send V OTE(best == p′) to p′

(37) p receives SCORE(i) from p′

(38) score[p′]← i
(39) send AckSCORE to p′

(41) p receives ELIM from p′

(42) remove p′ from score and neighbours+

(43) best← min(score[])
(44) send AckELIM to p′
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Algorithm 2. Sub-jointrees reconnection

(2) p receives ReqCON(Wanted) from p′

(3) // top-down flooding
(4) if (father(Wanted) �= ∅)
(5) father(Wanted)← p′

(6) send ReqCON(Wanted) to neighbours− p′

(7)
(8) // bottom up connections
(9) nbMsg(Wanted) + +
(10) if (nbMsg(Wanted) == |neighbours|)
(11) if (p ∈ Children)
(12) send AnsCON(Wanted, {Pjp}) to father(Wanted)
(13) else
(14) send AnsCON(Wanted, {}) to father(Wanted)

(16) p receives AnsCON(Wanted, projChild) from p′

(17)
(18) if (Wanted == Children)
(19) sonLinks ← sonLinks ∪ p′ //for future use
(20) else
(21) foreach V ′ ∈ projChild
(22) conClusters(Wanted)← conClusters(Wanted) ∪ V ′

(23) nbMsg(Wanted) + +
(24) if (nbMsg(Wanted) == |neighbours|)
(25) if (p ∈Wanted)
(26) send AnsCON(Wanted, conClusters(Wanted)∪ Pjp) to father(Wanted)
(27) else
(28) send AnsCON(Wanted, conClusters(Wanted)) to father(Wanted)

the sub jointree reconnection phase, each peer will be required. Since the local election
requires a constant number of non concurrent messages and the time complexity of the
sub-jointrees connection is bound by the diameter of the graph, the time complexity of
the whole algorithm is in O(N ∗E). In addition, the algorithm is complete and correct
as soon as the initial graph respects the running intersection. The correctness and the
completeness of our algorithm can be ensured by the following remark: the execution of
our algorithm can be easily reduced to a particular execution of a centralized, classical,
decomposition tree algorithm.

4 Experimental Evaluation

We implemented a java-based simulator of a distributed system for analysing the perfor-
mance of our Distributed Token Elimination algorithm. We used a generator of small-
world networks, following the model generation of Barabassi and Albert [2] (called
BA Graphs) and Watts and Strogatz [24] (called WS Graphs). Let us point out that
BA Graphs are extremely heterogeneous. The degree of nodes follows a power law, a
strong characteristic of many real world problems (World Wide Web, email exchanges,
scientific citations, ...) [18]. WS Graphs are more homogeneous and have been used for
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Fig. 7. Width of obtained jointrees, average values over 10 experiments per point

modelling diagnosis circuits [20] or various CSP instances [23]. On this kind of net-
works, we were able to scale up to more than thousands of variables. Before analyzing
the results, let us also point out that we do not consider the privacy characteristics of
our algorithms in this experiment: all variables are shared; and we consider that each
peer has exactly one and only one variable for simplicity. However, as shown in the
algorithm, line 12, private variables are treated apart. They are automatically removed
from any projection the peer can send away. Thus, our experiment does not necessarily
have to take privacy into account.

We report in figure 7 the quality of the jointrees produced by our algorithm, Dis-
tributed Token Elimination, with a set of selected state of the art algorithms. Bucket
Elimination with the MinFill heuristic (BE-MinFill) is well known and represents the
current state of the art for centralized methods. We also report two DFS variants (Max-
imum Cardinality Set and no heuristic). The first one is certainly the most used in dis-
tributed systems. We report the Token Elimination algorithm with two variants. The first
one is the MinCluster (the one previously reported), and the second one MinProjection
(instead of scoring the peers with their potential cluster size, we score them according
to the size of the set of projection variables).

The reported results show a significant improvement of Token Elimination over DFS.
The obtained results, with the MinCluster variant, are now very close to BE on BA
Graph. Surprisingly, after 700 nodes TE-Minproj gives better decompositions than BE
on WS-Graph. Let us recall here that the jointrees built by Token Elimination are forced
to follow the original links in the initial graph, which is not the case of BE.

The above results must be nuanced by the cost of the distributed compilation
itself. As shown in figure 8, if DFS does not produce very good jointrees, it can pro-
duce them very quickly. BE needs more time, but produces the best jointrees. The to-
tal time needed by Token Elimination is clearly the worst on BA Graph figure, and
quickly increasing. However, let us point out that for WS Graph TE is faster than BE.
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Fig. 8. Average CPU time for compilation of jointrees over 10 experiments per point

Given the improvement in the quality of the obtained jointrees, we strongly believe
Token Elimination is a good solution, particularly suited to a distributed compilation
approach of the network.

5 Conclusion

In this paper, we proposed a new distributed method for building distributed jointrees.
Our method can handle privacy rules by keeping secrets secret (local variables stay lo-
cal), and allow the jointree to be built only on the top of existing links between nodes.
We show that this method can handle large structured instances and, even if the com-
pilation cost is clearly above the simple Distributed DFS algorithm, the quality of the
obtained jointree clearly outperforms DFS, even with a clever heuristic, and can even
surpass the quality of Bucket Elimination in its centralized version. We believe that our
algorithm can improved previous results in many distributed applications.
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provided during the reviewing process and Philippe Jégou for his fruitful remarks.
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Abstract. So-called Modern SAT solvers are built upon a few – but essential –
ingredients: branching, learning, restarting and clause database cleaning. Most
of them have been greatly improved since their first introduction, more than ten
years ago. In many cases, the initial reasons that lead to their introduction do not
explain anymore their current usage (for instance: very rapid restarts, aggressive
clause database cleaning). Modern SAT solvers themselves share fewer and fewer
properties with their ancestor, the classical backtrack search DPLL procedure.

In this paper, we explore restart strategies in the light of a new vision of
SAT solvers. Following the successful results of GLUCOSE, we consider CDCL
solvers as resolution-based producers of clauses. We show that this vision is par-
ticularly salient for targeting UNSAT formulae. In a second part, we show how
detecting sudden increases in the number of variable assignments can help the
solver to target SAT instances too. By varying our restart strategy, we show an
important improvement over GLUCOSE 2.0, the winner of the 2011 SAT Com-
petition, category Application SAT+UNSAT formulae. Finally we would like to
point out that this new version of GLUCOSE was the winner of the SAT Challenge
2012.

1 Introduction

Despite the important progress constantly observed in the practical solving of SAT/-
UNSAT problems, most of these components are commonly viewed as improvements
over the DPLL-62 [4] procedure. In many works, including recent ones, the vision of
CDCL (Conflict Driven Clause Learning, also called ”Modern SAT”) solvers [10,13] as
backtrack-search engines prevails. In this paper, we discuss this point of view and focus
our work on an essential ingredient of Modern SAT solvers: restarts. Restart strategies
used in CDCL solvers are also often understood as heirs of the DPLL framework. If
the search seems to not be close to finding a model, then a restart often means ”restarts
tree-search elsewhere”.

Restarting was first proposed to prevent the search tree from making mistakes in its
top decisions. This idea was formally observed by the Heavy Tailed distribution of CPU
time of DPLL-like solvers. However, initially, restarting was thought of as a witness of
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branching heuristics failure. Thus, restarts were not (i.e. after thousands of explored
branches) and, to ensure completeness of approaches, restarts were triggered according
to a geometric series. More recently, restarts strategies were following Luby series, a
linear increasing series.

In this work, we take an alternate vision of CDCL solvers. Our goal is to view them
as resolution-based ”clauses producers” instead of ”search-space explorers”. This vi-
sion is illustrated by our solver GLUCOSE. It was already embedded in GLUCOSE 1.0
[1], thanks to a good measure over learnt clauses, called LBD (Literal Block Distance),
however, some details of the restart strategy used in the version of GLUCOSE that par-
ticipated to the SAT Competition 2009 1 [8] were never published. Additionally, in this
paper, we describe a new restart strategy, used in GLUCOSE 2.1, that shows significant
improvements over GLUCOSE 2.0.2 This new restart strategy is twice as aggressive and
still does not have any guarantee that long runs will be allowed. This property, asso-
ciated with the fact that GLUCOSE 2.0 deleted 93% of the learnt clauses during the
SAT competition 2011,3 shows that GLUCOSE can hardly be considered as a system-
atic search solver, and is increasingly distant from the DPLL vision of Modern SAT
Solvers. We also show in this paper that such an aggressive strategy is especially good
for UNSAT problems. In order to allow an improvement also on SAT instances, we
propose to add a ”blocking” parameter to our strategy, which is able to postpone one
or many aggressive restarts when the solver seems to suddenly reach a global assign-
ment. Intuitively, our work tries to reconcile the two opposing forces working in CDCL
solvers. One (the UNSAT force) is trying to decrease the number of decision levels, by
learning good clauses. The other (the SAT force) is trying to increase the number of
decision levels, by assigning more and more variables.

2 Background

For lack of space, we assume the reader is familiar with Satisfiability notions (variables
xi, literal xi or ¬xi, clause, unit clause and so on). We just recall the global schema of
CDCL solvers [5,10]: a typical branch can be seen as a sequence of decisions (usually
with the VSIDS heuristic) followed by propagations, repeated until a conflict is reached.
Each decision literal is assigned at its own level shared with all propagated literals
assigned at the same level (a block is defined as all literals which are assigned at the
same decision level). Each time a conflict is reached, a nogood is extracted. The learnt
clause is then added to the clause database and a backjumping level is computed from it.
Solvers also incorporate other components such as restarts (see section 3) and a learnt
clause database reduction policy.

This last component is clearly crucial to solver performance. Indeed, keeping too
many learnt clauses will slow down the unit propagation process, while deleting too
many of them will break the overall learning benefit. Then, more or less frequently,

1 GLUCOSE 1.0 won the first prize in the category Application UNSAT, SAT Competition 2009.
2 GLUCOSE 2.0 won the first prize in the category Application SAT+UNSAT, 2011.
3 If we study all GLUCOSE’s traces of the 2011 competition, phase 2, in the categories Applica-

tions and Crafted, GLUCOSE 2.0 learnt 973,468,489 clauses (sum over all traces) but removed
909,123,525 of them during computation, i.e. more than 93end.



120 G. Audemard and L. Simon

half of the learnt clauses are removed from the database. Consequently, identifying
good learnt clauses - relevant to the proof derivation - is clearly an important challenge.
The first proposed quality measure follows the success of the activity based VSIDS
heuristic. More precisely, a learnt clause is considered relevant to the proof, if it is
involved more often in recent conflicts, i.e. usually used to derive asserting clauses.
Clearly, this deletion strategy is based on the assumption that a useful clause in the
past could be useful in the future. More recently, a more accurate measure called LBD
(Literal Block Distance) was proposed to estimate the quality of a learnt clause. This
measure is defined as follow [1]:

Definition 1 (Literal Block Distance (LBD)). Given a clause c, and a partition of its
literals into n subsets according to the current assignment, s.t. literals are partitioned
w.r.t their level. The LBD of C is exactly n.

Extensive experiments demonstrated that clauses with small LBD values are used more
often (in propagation and conflict) than those with higher LBD values [1]. Intuitively,
the LBD score measures the number of decisions that a given clause links together. It
was shown that ”glue clauses”, i.e., clauses of LBD 2, are very important. Then, this
new measure can be combined with a very agressive cleaning strategy: bad clauses are
often deleted.

Another important component for our purposes is the literal polarity to be chosen
when the next decision variable is selected, by the VSIDS heuristic. Usually, a default
polarity (e.g. false) is defined and used each time a decision literal is assigned. Based
on the observation that restarting and backjumping might lead to repetitive solving the
same subformulas, Pipatsrisawat and Darwiche [12] proposed to dynamically save for
each variable the last seen polarity. This literal polarity based heuristic, called phase
saving, prevents the solver from solving the same satisfiable subformulas several times.
As we will see in the next section, this component is crucial for rapid restarts.

3 State of the (Rest)Art

In CDCL solvers, restarting is not restarting. The solver maintains all its heuristic values
between them and restarts must be seen as dynamic rearrangements of variable depen-
dencies. Additionally, hidden restarts are triggered in all solvers: when a unit clause is
learnt (which is often the case in many problems, during the first conflicts), the solver
usually cancels all its decisions without trying to recover them, in order to immediately
consider this new fact. Thus, on problems with a lot of learnt unit clauses, the solver
will restart more often, but silently.

There has been substantial previous work in this area. We only review here the most
significant ones for our own purposes. In 2000 [6], the heavy-tailed distribution of back-
tracking (DPLL) procedures was identified. To avoid the high variance of the runtime
and improve the average performance of SAT solvers, it was already proposed to add
restarts to DPLL searches. As we will see, this explanation does not hold anymore for
explaining the performance of recent solvers.

In MINISAT 1.4 [5], a scheduled restart policy was incorporated, following a geo-
metric series (common ratio of 1.5, starting after 100 conflicts). In [7] the Luby series
[9] was demonstrated to be very efficient. This series follows a slow-but-exponentially
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increasing law like 1 1 2 1 1 2 4 1 1 2 4 8 1 1 2 1 ... Of course, in practice, this series is
multiplied by a factor (in general between 64 and 256). This series is interesting because
it was proven to be optimal for search algorithms in which individual runs are indepen-
dent, i.e., share no information. We will discuss the problems of this restart strategy
later.

It was proposed in [3] to nest two series, a geometric one and a Luby. The idea was
to ensure that restarts are guaranteed to increase (allowing the search to, theoretically,
be able to terminate) and that fast restarts occur more often than in the geometric series.
In [2], it was proposed to postpone any scheduled restart by observing the ”agility”
of the solver. This measure is based on the polarity of the phase saving mechanism
(see section 2). If most of the variables are forced against their saved polarity, then the
restart is postponed: the solver might find a refutation soon. If polarities are stalling, the
scheduled restart is triggered.

We should probably note here that the phase saving scheme [12] is crucial in the
case of fast restarts. Indeed, it allows the solver to recover most of the decisions (but
not necessarily in the same order) before and after the restart.

3.1 A Note on the Luby Restart Strategy

Luby restarts were shown to be very efficient even for very small values (a factor of 6
was shown to be optimal [7] in terms of number of conflicts). However, in most of the
CDCL solvers using Luby restarts, the CPU time needs to be taken into account and a
typical Luby factor is often between 32 and 256.

To have an intuition of the Luby behavior, if we take a constant ratio of 50 (to
compare it with GLUCOSE 2.1 that will be presented in the following section), after
1,228,800 conflicts, the CDCL solver will have triggered 4095 restarts, with an aver-
age of 300 conflicts per restart and one long run of 102,400 conflicts (and two runs
of 51,200 conflicts, four runs of 25,600 conflicts, . . . ). Thus, if a few top-level deci-
sions of the longest run were wrong, 8% of the total effort will be lost. Considering the
fact that this longest run is triggered without any special ”stronger” heuristic (one can
branch on very recent variables only for instance, leading this long run to a very local
sub-problem), this is a risky strategy. Clearly, there is room for improvements.

4 Faster and More Reactive Restarts for UNSAT

In the first version of GLUCOSE we experimented with a restart policy based on the de-
crease of decision levels. The aim was to encourage the solver to minimize the number
of decisions before reaching conflicts. We showed that, on many instances, the faster
the decreasing is, the better the performance (this observation was the initial motivation
for GLUCOSE). However, even if this strategy was used in [1], additional experiments
quickly pointed out the importance of good clauses (having a low LBD score). The
overall architecture of GLUCOSE was quickly fully-oriented to focus on LBD scores
only, so it was natural to rely on the production of good clauses instead of the produc-
tion of fewer decision levels as possible (this last measure was shown to be stalling
after a while, or even constantly increasing on some particular benchmarks. Taking
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Table 1. Number of solved instances with different values of X (size of the queueLBD). Results
are refined by category of benchmarks (SAT, UNSAT) and the margin ratio (0.7 or 0.8). Tests
were (here) conducted on SAT 2011 Application benchmarks only. The CPU CutOff was 900s.

X

K SAT? 50 75 100 200 300 400 500

0.7 N 89 86 86 81 85 75 80
0.8 N 93 93 90 86 85 87 82
0.7 Y 78 81 78 77 81 77 83
0.8 Y 78 77 76 79 76 78 74

LBD scores only into account was shown to be more informative). Thus, we decided to
change the restart policy of the version of GLUCOSE that participated to the SAT 2009
competition.

The idea behind our restart strategy is the following: since we want good clauses
(w.r.t. LBD), we perform a restart if the last produced ones have high LBDs. To do that,
if K times (0 < K < 1) the average of LBD scores of the last X conflicts was above
the average of all LBD scores of produced clauses so far, then a restart is triggered. To
be able to compute the moving average of the X last LBDs we use a bounded queue
(called queueLBD) of size X . Of course, whenever the bounded queue is not full, we
can not compute the moving average, then at least X conflicts are performed before
making a restart. We produce here a sketch of the algorithm that triggers restarts.

// In case of conflict
compute learnt clause c;
sumLBD+= c.lbd(); conflicts++;// Used for global average
queueLBD.push(c.lbd());
if(queueLBD.isFull() && queueLBD.avg()*K>sumLBD/conflicts) {

queueLBD.clear();
restart();

}

The magic constant K , called the margin ratio, provides different behaviors. The larger
K is, the fewer restarts are performed. In the first version of GLUCOSE, we use X =
100 and K = 0.7. These values were experimentally fixed to give good results on both
SAT and UNSAT problems. This strategy was not changed in GLUCOSE 2.0.

We show now how we can improve the value of X by observing the performance of
GLUCOSE on SAT/UNSAT problems. We must also say, as a preliminary, that improv-
ing SAT solvers is often a cruel world. To give an idea, improving a solver by solving
at least ten more instances (on a fixed set of benchmarks of a competition) is generally
showing a critical new feature. In general, the winner of a competition is decided based
on a couple of additional solved benchmarks.

Table 1 provides for two margin ratios (0.7 and 0.8, chosen for their good perfor-
mance), the number of solved instances from the SAT 2011 competition when changing
the size of the bounded queue (X). We also need to clarify that 0.7 was used in GLU-
COSE 1.0 and 2.0, while 0.8 was, also, already proposed in GLUEMINISAT [11]. As we
can see, the size X of the bounded queue has a major impact on UNSAT formulae, and
not much effect on SAT instances: for both values of K , the number of solved UNSAT
instances are clearly decreasing, while the SAT ones are stalling. Thus, bounded queue
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size of 50 seems to be a very good value for UNSAT problems. In order to understand
the impact of changing the bounded queue size, let us notice here that fixing X has
not only the effect of restarting more or less frequently (this is a strict minimal interval
length for restarts: no restart is triggered while the bounded queue is still not full), it has
also an important side effect: the longer the queue is, the slower it can react to impor-
tant but short variations. Large average windows can “absorb” short but high variances.
Thus, a small value for X will have a more reactive behavior, leading to even more
restarts.

As a short conclusion for this section, we see that, by assigning more reactive values
to the restart strategy of GLUCOSE 1.0, GLUEMINISAT used very good parameters for
UNSAT problems. This observation certainly explain why GLUEMINISAT won a first
prize in the UNSAT category in 2011. Next, we show how we can keep these parameters
while also allowing more SAT instances to be solved.

5 Blocking a Fast Restart When Approaching a Full Assignment

As mentioned above, learning good clauses should allow the solver to make fewer and
fewer decisions before reaching conflicts. However, we have clearly shown that reduc-
ing the bounded queue size has no outstanding effect on SAT instances. In this section,
we show how we can add a new blocking strategy for postponing restarts, when the
solver is approaching a global solution in order to improve our solver on SAT instances.

The problem we have is the following. GLUCOSE is firing aggressive clause deletion
(see section 2) and fast restarts. On some instances, restarts are really triggered every
50 conflicts. So, if the solver is trying to reach a global assignment, it has now only a
few tries before reaching it. Additionally, the aggressive clause deletion strategy may
have deleted a few clauses that are needed to reach the global assignment directly. The
idea we present here is to simply delay for one turn the next restart (the bounded queue
is emptied and the restart possibility will be tested only when it is full again) each time
the number of total assignments are significantly above the average measured during a
window of last conflicts (we chose a rather large window of 5,000 conflicts).

The total number of assignments (called trail size) is the current number of decisions
plus the number of propagated literals. Let us now formalize the notion of “significantly
above” expressed above. We need for this an additional margin value, that we will call
R. Our idea is to empty the bounded queue of LBD (see section 4), thus postponing a
possible restart, each time a conflict is reached with a trail size greater than R times the
moving average of the last 5,000 conflicts trail sizes (computed using an other bounded
queue called trailQueue). Of course, this can occur many times during an interval
of restarts, and thus the bounded queue can be emptied before it is again full, or can be
emptied many times during the interval. We produce here the sketch of the algorithm
that blocks restarts.

// In case of conflict
queueTrail.push(trail.size());
if(queueLBD.isFull() && queueTrail.isFull() &&trail.size()>R*queueTrail.avg()) {

queueLBD.clear();
}
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Table 2. Number of solved instances with different values of R with, in parenthesis, the average
number of conflicts between two restarts (“No” means no blocking). Tests were conducted on
SAT 2011 Application benchmarks only. The CPU CutOff was 900s.

R

(X,K) SAT? No 1.2 1.3 1.4 1.5

(100, 0.7) N 86 (4500) 85 (4700) 86 (3600) 83 (4600) 86 (4400)
(50, 0.8) N 93 (318) 89 (364) 93 (375) 94 (369) 93 (400)
(100, 0.7) Y 78 (8200) 77 (7700) 79 (7500) 76 (8600) 80 (12000)
(50, 0.8) Y 78 (433) 80 (710) 78 (750) 87 (520) 83 (561)

Table 2 helps us determine the right value for R, according to the different choices
of (X ,K): ((100, 0.7) and (50, 0.8)) Here are a few conclusions that can be drawn from
this Table:

– For UNSAT problems, we observe that the R value does not play any significant
role. If we take a look on the average number of conflicts between each restart
(average over all solved instances) we can notice that the size of the bounded queue
increases a lot the number of conflicts between each restart. Here, however, the
blocking strategy has no real impact.

– For SAT problems, we observe a few interesting things. First, varying the value of
the R parameter does not impact performance when (X,K) = (100, 0.7) (we also
observed this on larger values than 100). Second, for the couple (50, 0.8), blocking
restarts seems very promising. Restarts are very aggressive and the blocking strategy
it may be crucial to postpone a restart. Setting R to 1.4 is clearly the best choice.
The results improve the number of solved SAT instances by solving 9 additional SAT
benchmarks. We can also notice that, (1) the different values of R have an impact on
the average number of conflicts between two restarts and, (2) in case of SAT instances
the average number of conflicts is always greater than for UNSAT ones.

As a conclusion here, we experimentally show that playing on the R value has a great
impact on SAT instances, and almost no impact on UNSAT ones. This can be observed
by looking at the average number of conflicts between restarts. R = 1.4 allows larger
windows for SAT while maintaining small ones for UNSAT.

6 Experimental Evaluation of GLUCOSE 2.1

Progresses made in the practical solving of SAT instances are constantly observed and
important, even in the last few years. We illustrate here the progress made since our first
release of GLUCOSE 1.0, 3 years ago. To understand the progress made, we must also
notice that GLUCOSE 2.0 is based on MINISAT 2.2 (instead of MINISAT 2).

Our methodology was the following. We worked on GLUCOSE 2.1 on 2011 bench-
marks only, then tested our final ideas on all benchmarks (2009+2011 benchmarks).
Our aim was somehow to counterbalance the possibility that GLUCOSE 2.1 would have
been specialized for 2011 benchmarks (the 2.0 version had no access to them). As we
will see, we also measured an important improvement on benchmarks from the 2009
competition.
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Benchmarks nb SAT UNSAT Total SAT UNSAT Total SAT UNSAT Total

SAT2009 292 50 89 139 68 118 186 77 123 200
SAT2011 300 74 79 153 78 86 164 87 94 181

SAT2009+2011 536 113 157 270 136 192 328 148 204 352
(c) Number of solved benchmarks in different competitions

Fig. 1. a. Scatter plot: Each dot represents an instances, x-axis (resp. y-axis) the time needed by
version 2.0 (resp. 2.1) to solve it. Dots below the diagonal represent instances solved faster with
version 2.1 (log scale).
b. Cactus plot of 3 versions: The x-axis gives the number of solved instances and the y-axis the
time needed to solve them.
c. For each competition, the number of benchmarks (nb) is provided with, for each versions of
GLUCOSE, the number of solved instances.

First of all, the scatter plot in Figure 1(a) provides a graphical comparison of ver-
sion 2.0 and 2.1 on all instances. Since most dots are below the diagonal, it is clear
that version 2.1 is faster than 2.0. We also see on the traditional cactus plot shown in
Figure 1(b) the breakthrough improvements made in the last 3 years. The novelty of
GLUCOSE 2.1 vs GLUCOSE 2.0 is less important, but still significant and relies only on
the improvements presented in this paper.

Finally, Figure 1(c) details the obtained results on the 2 sets of benchmarks, with the
same CPU CutOff of 900 (of course benchmarks common to both sets are reported only
one time in last line). Clearly, the new version of GLUCOSE, based on more aggressive
restarts presented in this paper, obtained the best results.

7 Conclusion

In this paper we show how, by refining the dynamic strategy of GLUCOSE for UNSAT
problems, and adding a new and simple blocking strategy to it, that is specialized for
SAT problems, we are able to solve significantly more problems, more quickly. The
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overall idea of this paper is also to push a new vision of CDCL SAT solvers. We think
they may now be closer to resolution-based producers of good clauses rather than back-
track search engines.
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Abstract. Solving constraints over floating-point numbers is a critical
issue in numerous applications notably in program verification. Capa-
bilities of filtering algorithms over the floating-point numbers (F) have
been so far limited to 2b-consistency and its derivatives. Though safe,
such filtering techniques suffer from the well known pathological prob-
lems of local consistencies, e.g., inability to efficiently handle multiple
occurrences of the variables. These limitations also have their origins in
the strongly restricted floating-point arithmetic. To circumvent the poor
properties of floating-point arithmetic, we propose in this paper a new
filtering algorithm, called FPLP, which relies on various relaxations over
the real numbers of the problem over F . Safe bounds of the domains
are computed with a mixed integer linear programming solver (MILP)
on safe linearizations of these relaxations. Preliminary experiments on a
relevant set of benchmarks are promising and show that this approach
can be effective for boosting local consistency algorithms over F .

1 Introduction

Critical systems are more and more relying on floating-point (FP) computations.
For instance, embedded systems are typically controlled by software that store
measurements and environment data as floating-point number (F). The initial
values and the results of all operations must therefore be rounded to some nearby
float. This rounding process can lead to significant changes, and, for example,
can modify the control flow of the program. Thus, the verification of programs
performing FP computations is a key issue in the development of critical systems.

Methods for verifying programs performing FP computations are mainly de-
rived from standard program verification methods. Bounded model checking
(BMC) techniques have been widely used for finding bugs in hardware design [3]
and software [11]. SMT solvers are now used in most of the state-of-the-art BMC
tools to directly work on high level formula (see [2,9,11]). The bounded model
checker CBMC encodes each FP operation of the program with a set of logic
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functions on bit-vectors which requires thousands of additional variables and be-
comes quickly intractable [6]. Tools based on abstract interpretation [10,22] can
show the absence of run-time errors (e.g., division by zero) on program working
with FP numbers. Tools based on abstract interpretation are safe since they
over-approximate FP computations. However, over-approximations may be very
large and these tools may generate many false alerts, and thus reject many valid
programs. For instance, Chen’s polyhedral abstract domains [7] rely on coarse
approximations of floating-point operations that do not take advantage of the
rounding mode. Constraint programming (CP) has also been used for program
testing [13,14] and verification [8]. CP offers many benefits like the capability to
deduce information from partially instantiated problems or to exhibit counter-
examples. The CP framework is very flexible and simplifies the integration of
new solvers for handling a specific domain, for instance FP solvers. However, it
is important to understand that solvers over real numbers (R) cannot correctly
handle FP arithmetic. Dedicated constraint solvers are required in safe CP-based
framework and BMC-SMT tools for testing or verifying numerical software1.

Techniques to solve FP constraints are based on adaptations of classical con-
sistencies (e.g. box-consistency and 2B-consistency) over R [21], [20,5]. However
FP solvers based on these techniques do not really scale up to large constraint
systems. That is why we introduce here a new method to handle constraints
over the FP numbers by taking advantage of solvers over R. The basic tenet
is to build correct but tight relaxations over R of the FP operations. To en-
sure the tightness of the result, each FP operation is approximated according to
its rounding mode. For example, assume that x and y are positive normalized
FP numbers2, then the FP product x ⊗ y with a rounding mode set to −∞, is
bounded by α× (x× y) < x ⊗ y ≤ x × y where α = 1/(1 + 2−p+1) and p is the
size of the significand. Approximations for special cases have also been refined,
e.g., for the addition with a rounding mode set to zero, or for the multiplication
by a constant.

Using these relaxations, a problem over the FP numbers is first translated
into a set of nonlinear constraints over R. A linearization of the nonlinear con-
straints is then applied to obtain a mixed integer linear problem (MILP) over
R. In this process, binary variables are used to handle concave domains to pre-
vent too loose over-approximations. This last set of constraints can directly be
solved by available MILP solvers over R which are relieved from the drawbacks
of FP arithmetic. Efficient MILP solvers rely on FP computations and thus,
might miss some solutions. In order to ensure a safe behavior of our algorithm,
correct rounding directions are applied to the relaxation coefficients [19,4] and a
1 See FPSE (http://www.irisa.fr/celtique/carlier/fpse.html), a solver for FP

constraints coming from C programs.
2 A FP number is a triple (s, e, m) where s is the sign, e the exponent and m the

significand. Its value is given by (−1)s × 1.m × 2e. r and p are the size of the
exponent and the significand. The IEEE standard 754 defines the single format
with (r, p) = (8, 23) and the double format with (r, p) = (11, 52). A normalized FP
number’s significand has no non-zero digits to the left of the decimal point and a
non-zero digit just to the right of the decimal point.
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procedure [23] to compute a safe minimizer from the unsafe result of the MILP
solver is also applied. Preliminary experiments are promising and this new fil-
tering technique should really help to scale up all verifications tools that uses a
FP solver.

Our method relies on a high level representation of the FP operations and,
thus, does not suffer from the same drawbacks than bit vector encoding. The bit
vector encoding used in CBMC generates thousands of additional binary vari-
ables for each FP operation of the program. For example, an addition of two
32 bits floats requires 2554 binary variables [6]. The mixed approximations pro-
posed in [6] reduce the number of additional binary variables significantly but
the resulting system remains expensive in memory consumption. For instance,
a single addition with only 5 bits of precision still requires 1035 additional vari-
ables. Our method does also generate additional variables: temporary variables
are used to decompose complex expressions into elementary operations over the
FP numbers and some binary variables are used to handle the different cases of
our relaxations. However, the number of generated variables is negligible com-
pared to the ones required by a bit vector encoding.

1.1 An Illustrative Example

Before going into the details, let us illustrate our approach on a very simple
example. Consider the simple constraint

z = x⊕ y � x (1)

where x, y and z are 32 bits FP variables, and ⊕ and � are the addition and the
subtraction over F , respectively. Over the real numbers, such an expression can
be simplified to z = y. However, this is not true with FP numbers. For example,
over F and with a rounding mode set to the nearest, 10.0⊕ 10.0−8� 10.0 is not
equal to 10.0−8 but to 0. This absorption phenomenon illustrates why expressions
over the FP numbers cannot be simplified in the same way than expressions over
the real numbers.

Now, let us assume that x ∈ [0.0, 10.0], y ∈ [0.0, 10.0] and z ∈ [0.0, 10.08].
FP2B, a 2B-consistency [16] algorithm adapted to FP constraints [20], first per-
forms forward propagation of the domains of x and y on the domain of z using an
interval arithmetic where interval bounds are computed with a rounding mode
set to the nearest. Backward propagation being of no help here, the filtering
process yields:

x ∈ [0.0, 10.0], y ∈ [0.0, 10.0], z ∈ [0.0, 20.0]

This poor filtering is due to the fact that 2B-consistency algorithms cannot han-
dle efficiently constraints with multiple occurrences of the variables. A stronger
consistency like 3B-consistency [16] will reduce the domain of z to the interval
[0.0, 10.01835250854492188]. However, 3B-consistency will fail to reduce the do-
main of z when x and y occur more than two times, like in z = x⊕ y � x� y ⊕
x⊕ y � x.
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Algorithm FPLP, introduced in this paper, first builds safe nonlinear relax-
ations over R of the constraints over F derived from the program. Of course,
these relaxations are computed according to the rounding mode. Applied to
constraint (1), it yields the following relaxations over R:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(1− 2−p

(1−2−p) )(x + y) ≤ tmp1

tmp1 ≤ (1 + 2−p

(1+2−p) )(x + y)

(1− 2−p

(1−2−p) )(tmp1− x) ≤ tmp2

tmp2 ≤ (1 + 2−p

(1+2−p) )(tmp1− x)

z = tmp2

where p is the size of the significand of the FP variables. tmp1 approximates the
result of the operation x ⊕ y by means of two planes over R which encompass
all the results of this addition over F . tmp2 does the same for the subtraction.
Some relaxations, like the one of the product, include nonlinear terms. In such a
case, a linearization process is applied to get a MILP. Once the problem is fully
linear, a MILP solver is used to shrink the domain of each variable, respectively,
minimizing and maximizing it.

FPLP, which stands for Floating-Point Linear Program, implements the algo-
rithm previously sketched. A call to FPLP on constraint (1) immediately yields:

x ∈ [0, 10], y ∈ [0, 10], z ∈ [0, 10.0000023841859]

which is a much tighter result than the one computed by FP2B. Contrary to
3B-consistency, FPLP still gives the same result with FPLP provides the same
result for constraint z = x⊕ y�x� y⊕x⊕ y�x whereas 3B-consistency cannot
reduce the upper bound of z on the latter constraint.

1.2 Outline of the Paper

The rest of this paper is organized as follows: the next section introduces the
nonlinear relaxations over R of the constraints over F . The following section
shows how the nonlinear terms of the relaxations are linearized. Then, the fil-
tering algorithm is detailed and the results of our experiments are given before
concluding the paper.

2 Relaxations of FP Constraints

This section introduces nonlinear relaxations over R of the FP constraints from
the initial problem. These relaxations are the cornerstone of the filtering process
described in this paper. They must be correct, i.e., they must preserve the whole
set of solutions of the initial problem, and tight, i.e., they should enclose the
smallest amount of non FP solutions.

These relaxations are built using two techniques: the relative error and the
correctly rounded operations. The former is a technique frequently used to an-
alyze the precision of the computation. The latter property is ensured by any
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IEEE 754 compliant implementation of the FP arithmetic: a correctly rounded
operation is an operation whose result over F is equal to the rounding of the
result of the equivalent operation over R. In other word, let x and y be two FP
numbers, � and ·, respectively, an operation over F and its equivalent over R,
if � is correctly rounded then, x� y = round(x · y).

In the rest of this section, we first detail how to build these relaxations for a
specific case before defining the relaxations in the general cases. Then, we will
show how the different cases can be simplified.

2.1 A Specific Case

In order to explain how these relaxations are built, let us consider the case where
an operation is computed with a rounding mode set to −∞ and the result of this
operation is a positive and normalized FP number. Such an operation, denoted
�, could be any of the four basic binary operations from the FP arithmetic. The
operands are all supposed to have the same FP type, i.e., either float, double or
long double. Then, the following property holds:

Proposition 1. Let x and y be two FP numbers whose significand is represented
by p bits. Assume that the rounding mode is set to −∞ and that the result of
x � y is a normalized positive FP numbers smaller than maxf , the biggest FP
number, then the following property holds:

1
1 + 2−p+1

(x · y) < x� y ≤ (x · y)

where � is a basic operation over the FP numbers and, · is the equivalent oper-
ation over the real numbers.

Proof. Since IEEE 754 basic operations are correctly rounded and the rounding
mode is set to −∞, we have:

x� y ≤ x · y < (x� y)+ (2)

(x�y)+, the successor of (x�y) within the set of FP numbers, can be computed
by

(x� y)+ = (x� y) + ulp(x� y)

as, ulp, which stands for unit in the last place, is defined by ulp(x) = x+ − x.
Thus, it results from (2) that

x� y ≤ x · y < (x� y) + ulp(x� y)

From the second inequality, we have

1
x� y + ulp(x� y)

<
1

x · y
By multiplying each side of the inequality by x� y – which is a positive number
– we get

x� y

x� y + ulp(x� y)
<

x� y

x · y
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By multiplying each side of the above inequality by −1 and by adding one to
each side, we obtain

1− x� y

x · y < 1− x� y

x� y + ulp(x� y)
=

ulp(x� y)
x� y + ulp(x� y)

(3)

Now, consider ε, the relative error defined by

ε =
∣∣∣∣real_value− float_value

real_value

∣∣∣∣
ε is the absolute value of the difference between the result over R and the result
over F divided by the result over R. In the considered case, the result of x� y
being a positive normalized floating-point number and x · y ≥ x� y, the relative
error is given by

0 ≤ ε =
x · y − x� y

x · y = 1− x� y

x · y
Thus, thanks to (3), we have

0 ≤ ε <
ulp(x� y)

x� y + ulp(x� y)

z, the result of the operation x�y, is a binary positive and normalized FP number
that can be written z = 1.mz2ez , where mz has p bits. Moreover, ulp(z) =
2−p+12ez . Therefore,

0 ≤ ε <
2−p+12ez

mz2ez + 2−p+12ez
=

2−p+1

mz + 2−p+1

The value of the significand of a normalized FP number belongs to the interval
[1.0, 2.0[. An upper bound of the relative error ε is given by the minimum of
mz + 2−p which is reached when mz = 1. Thus

0 ≤ ε <
2−p+1

1 + 2−p+1

Since we have
ε =

x · y − x� y

x · y
we have

0 ≤ x · y − x� y

x · y <
2−p+1

1 + 2−p+1

and

0 ≤ x · y − x� y < (x · y)
2−p+1

1 + 2−p+1

By multiplying each side of the inequality by −1 and adding x · y to each side,
we finally obtain

1
1 + 2−p+1

(x ·y) < x�y ≤ x ·y �
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Table 1. Relaxations of x� y for each rounding mode where zr = x · y

Rounding Negative Negative Positive Positive
mode normalized denormalized denormalized normalized
to −∞ [(1 + 2−p+1)zr, zr] [zr −minf , zr] [zr −minf , zr] [ 1

(1+2−p+1)
zr, zr]

to +∞ [zr,
1

(1+2−p+1)
zr] [zr, zr + minf ] [zr, zr + minf ] [zr, (1 + 2−p+1)zr]

to 0
[
zr,

1
(1+2−p+1)

zr

]
[zr −minf , zr] [zr, zr + minf ] [ 1

(1+2−p+1)
zr, zr]

to nearest [(1 + 2−p

(1+2−p)
)zr, [zr − minf

2
, [zr − minf

2
[(1− 2−p

(1−2−p)
)zr,

(1− 2−p

(1−2−p)
)zr] zr +

minf

2
] zr +

minf

2
] (1 + 2−p

(1+2−p)
)zr]

2.2 Generalization

Table 1 summarizes the relaxations for each rounding mode in the different cases,
i.e., positive or negative FP numbers, as well as, normalized and denormalized
FP numbers. Each case has a dedicated correct and tight approximation built
in a way similar to the one of the case detailed in the previous subsection.

Note that tighter approximations for specific cases could also be computed.
For example, the approximation of an addition with a rounding mode sets to
±∞ could be slightly improved. In a similar way, the structure of the problem
is another source of improvements of the approximations. For example, 2 ⊗ x
being exactly computed3, it can directly be evaluated over R.

2.3 Simplified Relaxations

The main issue with the previous relaxations is that the solving process will have
to handle the different cases. As a result, for n basic operations, the solver has to
deal with 4n potential combinations of the relaxations. To decrease substantially
this complexity, we provide here a combination of the four cases of each rounding
mode into a single case.

Let us first consider the case where the rounding mode is set to −∞:

Proposition 2. Let x and y be two FP numbers whose significand size is p and,
assume that the rounding mode is set to −∞ and, that −maxf < x�y < maxf ,
then,

zr − 2−p+1|zr| −minf ≤ x� y ≤ zr

where minf is the smallest positive FP number, � and · are respectively a basic
binary operation over F and its equivalent over R, and zr = x · y.

Proof. In a first step, the normalized and denormalized approximations are com-
bined. If zr > 0 then 1

1+2−p+1 zr < zr. Thus,

1
1 + 2−p+1

zr −minf < zr −minf

3 Provided that no overflow occurs.
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Table 2. Simplified relaxations of x� y for each rounding mode (with zr = x · y)

Rounding mode The approximation of x� y

to −∞ [zr − 2−p+1|zr| −minf , zr]

to +∞ [zr, zr + 2−p+1|zr|+ minf ]

to 0
[zr − 2−p+1|zr| −minf ,

zr + 2−p+1|zr|+ minf ]

to the nearest
[zr − 2−p

(1−2−p)
|zr| − minf

2
,

zr + 2−p

(1−2−p)
|zr|+ minf

2
]

and
1

1 + 2−p+1
zr −minf <

1
1 + 2−p+1

zr

Therefore,
1

1 + 2−p+1
zr −minf < x� y ≤ zr, zr ≥ 0

When zr ≤ 0, we get

(1 + 2−p+1)zr −minf < x� y ≤ zr, zr ≤ 0

These two approximations can be rewritten as follows,{
zr − 2−p+1

1+2−p+1 zr −minf < x� y ≤ zr, zr ≥ 0
zr + 2−p+1zr −minf < x� y ≤ zr, zr ≤ 0

To combine the negative and positive approximations together we can use the
absolute value: {

zr − 2−p+1

1+2−p+1 |zr| −minf < x� y ≤ zr, zr ≥ 0
zr − 2−p+1|zr| −minf < x� y ≤ zr, zr ≤ 0

As max{ 2−p+1

1+2−p+1 , 2−p+1} = 2−p+1, we get

zr − 2−p+1|zr| −minf ≤ x� y ≤ zr �

The same reasoning holds for other rounding modes. Table 2 summarizes the
simplified relaxations for each rounding mode. Note that these approximations
define concave sets.

3 Linearization of the Relaxations

The relaxations introduced in the previous section contain nonlinear terms that
cannot be directly handled by a MILP solver. In this section, we describe how
these terms are approximated by sets of linear constraints.
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3.1 Absolute Value Linearization

Simplified relaxations that allow to handle all numerical FP values with a single
set of two inequalities require absolute values. Absolute values can either be
loosely approximated by three linear inequalities or by a tighter decomposition
based on big M rewriting method:⎧⎪⎪⎪⎨⎪⎪⎪⎩

z = zp − zn

|z| = zp + zn

0 ≤ zp ≤M × b

0 ≤ zn ≤M × (1− b)

where b is a boolean variable, zp and zn are real positive variables and, M is a
FP number such that M ≥ max{|z|, |z|}. The method separates zp, the positive
values of z, from zn, its negative values. When b = 1, z gets its positive values
and we have z = zp = |z|. If b = 0, z gets its negative values and we have
z = −zn and |z| = zn.

If the underlying MILP solver allows indicator constraints, the two last set of
inequalities can be replaced by:{

b = 0→ zp = 0
b = 1→ zn = 0

3.2 Linearization of Nonlinear Operations

Bilinear terms, square terms, and quotient linearizations are based on standard
techniques used by Sahinidis et al [24]. They have been also used in the Quad
system [15] designed to solve constraints over the real numbers. x×y is linearized
according to Mc Cormick [18]:

Let x ∈ [x, x] and y ∈ [y, y], then⎧⎪⎪⎪⎨⎪⎪⎪⎩
z − xy − yx + xy ≥ 0
−z + xy + yx− xy ≥ 0
−z + xy + yx− xy ≥ 0
z − xy − yx + xy ≥ 0

These linearizations have been proved to be optimal by Al-Khayyal and Falk [1].
Each time x = y, i.e., in case of z = x⊗ x, the linearization can be improved.

x2 convex hull is underestimated by all the tangents at x2 curve between x and
x and overestimated by the line that join (x, x2) to (x, x2). A good balance is
obtained with the two tangents at the bounds of x. Thus, x2 linearization yields:⎧⎪⎪⎪⎨⎪⎪⎪⎩

z + x2 − 2xx ≥ 0
z + x2 − 2xx ≥ 0
(x + x)x− z − xx ≥ 0
z ≥ 0
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The division takes advantage of the properties of real arithmetic: the essential
observation is that z = x/y is equivalent to x = z × y. Therefore, Mc Cormick
[18] linearizations can be used here. These linearizations need the bounds of z
which can directly be computed by interval arithmetic:

[z, z] = [∇(min(x/y, x/y, x/y, x/y)),
Δ(max(x/y, x/y, x/y, x/y))]

where ∇ and Δ are respectively the rounding modes towards −∞ and +∞.

4 Filtering Algorithm

The proposed filtering algorithm relies on the linearizations of the relaxations
over R of the initial problem to attempt to shrink the domain of the variables by
means of a MILP solver. Algorithm 1 details the steps of this filtering process.

First, function Approximate relaxes initial FP constraints to nonlinear con-
straints overR. Then, function Linearize linearizes the nonlinear terms of these
relaxations to get a MILP.

The filtering loop starts with a call to FP2B, a filtering process relying on
an adaptation of 2B-consistency to FP constraints that attempts to reduce the
bounds of the variables. FP2B propagates bound values to intermediate vari-
ables. The cost of this filtering process is quite light: it stops as soon as do-
main size reduction between two iterations is less than 10%. Thanks to function
UpdateLinearizations, newly computed bounds are used to tighten the MILP.
Note that this function updates variable domains as well as linearization coeffi-
cients.

After that, MILP is used to compute a lower bound and an upper bound
of the domain of each variable by means of function safeMin. This function
computes a safe global minimizer of the MILP.

This process is repeated until the percentage of reduction of the domains of
the variables is lower than a given ε.

4.1 Getting a Safe Minimizer

Using an efficient MILP solver like CPLEX to filter the domains of the variables
raises two important issues related to FP computations.

First, linearization coefficients are computed with FP arithmetic and are sub-
ject to rounding errors. Therefore, to avoid the loss of solutions, special attention
must be paid to the rounding directions. Correct linearizations rely on FP com-
putations done using the right rounding directions. For instance, consider the
linearization of x2 where x ≥ 0 and x ≥ 0:⎧⎪⎪⎪⎨⎪⎪⎪⎩

y + Δ(x2)−Δ(2x)x ≥ 0
y + Δ(x2)−Δ(2x)x ≥ 0
Δ(x + x)x− y −∇(xx) ≥ 0
y ≥ 0
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Algorithm 1. FPLP
1: Function FPLP (V,D, C, ε)
2: % V: FP variables
3: % D: Domains of the variables
4: % C: Constraints over FP numbers
5: % ε: Minimal reduction between two iterations
6: C′ ← Approximate (C);
7: C′′ ← Linearize (C′,D);
8: boxSize←

∑
x∈V

(xD − xD);

9: repeat
10: D′ ← FP2B(V,D, C, ε);
11: if ∅ ∈ D′ then
12: return ∅;
13: end if
14: C′′ ← UpdateLinearizations(C′′,D′);
15: for all x ∈ V do
16: [xD′ , xD′ ]← [safeMin(x,C′′), −safeMin(−x,C′′)];
17: if [xD′ , xD′ ] = ∅ then
18: return ∅;
19: end if
20: end for
21: oldBoxSize← boxSize;
22: boxSize←

∑
x∈V

(xD′ − xD′);

23: D ← D′

24: until boxSize ≥ oldBoxSize ∗ (1− ε);
25: return D;

This process that ensures that all the linearizations are safe is called within the
Linearize and UpdateLinearizations functions. For more details on how to
compute safe coefficients see [19,4].

Second, efficient MILP solvers use FP arithmetic. Thus, the computed min-
imizer might be wrong. The unsafe MILP solver is made safe thanks to the
correction procedure introduced in [23]. It consists in computing a safe lower
bound of the global minimizer. The safeMin function implements these correc-
tions and return a safe minimizer of the MILP.

5 Experiments

This section compares the results of different filtering techniques for FP con-
straints with the method introduced in this paper. Experiments have been done
on a laptop with an Intel Duo Core at 2.8Ghz and 4Gb of memory running under
Linux.

Our experiments are based on the following set of benchmarks:

– Absorb 1 detects if, in a simple addition, x absorbs y while Absorb 2 checks
if y absorbs x.
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Table 3. Experiments

2B 3B FPLP (without 2B) FPLP
Program n nT nB t(ms) t(ms) %(2B) t(ms) %(2B) t(ms) %(2B)

Absorb1 2 1 1 TO TO - 3 98.91 5 98.91
Absorb2 2 1 1 1 24 0.00 3 100.00 4 100.00
Fluctuat1 3 12 2 4 156 99.00 264 99.00 172 99.00
Fluctuat2 3 10 2 1 4 0.00 29 0.00 21 0.00
MeanValue 4 28 6 3 82 97.45 530 97.46 78 97.46
Cosine 5 33 7 5 153 33.60 104 33.61 43 33.61
SqrtV1 11 140 29 9 27198 99.63 1924 100.00 1187 100.00
SqrtV2 21 80 17 7 TO - 2337 100.00 1321 100.00
SqrtV3 5 46 8 5 573 53.80 185 54.83 82 54.83
Sine taylor 6 44 9 5 452 63.29 313 63.29 227 63.29
Sine iter 16 109 21 8 4503 39.20 5885 39.31 165 39.31
Qurt 6 21 3 4 26 43.56 163 43.56 38 43.56
Poly 6 51 9 5 1569 49.17 765 76.66 309 76.66
Newton 7 69 14 5 1542 45.16 479 45.16 195 45.16

– Fluctuat1 and Fluctuat2 are program pathes that come from a presenta-
tion of the Fluctuat tool in [12].

– MeanValue returns true if an interval contains a mean value and false oth-
erwise.

– Cosine is a program that computes the function cos() with a Taylor formula.
– SqrtV1 computes sqrt in [0.5, 2.5] using a two variable iterative method.
– SqrtV2 computes sqrt with a Taylor formula.
– SqrtV3 computes the square root of (x + 1) using a Taylor formula. This

program comes from CDFPL benchmarks4.
– Sine taylor computes the function sine using a Taylor formula.
– Sine iter computes the function sine with an iterative method and comes

from the SNU real time library5.
– Qurt computes the real and imaginary roots of a quadratic equation and

also comes from the SNU library.
– Poly tries to compare two different writings of a polynomial. This program

is available on Eric Goubault web page6

– Newton computes one or two iterations of a Newton on the polynomial x−
x3/6 + x5/120x7/5040 and comes from CDFPL benchmarks.

Table 3 summarizes experiment results for the following filtering methods: FP2B,
an adaptation of 2B-consistency to FP constraints that takes advantage of the
4 See http://www.cprover.org/cdfpl/.
5 See http://archi.snu.ac.kr/realtime/
6 See http://www.lix.polytechnique.fr/∼goubault/.
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property described in [17] to avoid some slow convergences, FP3B, an adaptation
of 3B-consistency to FP constraints, FPLP(without FP2B), an implementation
of algorithm 1 without the call to FP2B and, FPLP, an implementation of al-
gorithm 1. First column of table 3 gives program’s names, column 2 gives the
number of variables of the initial problem and column 3 gives the amount of
temporary variables used to decompose complex expressions in elementary op-
erations. Column 4 gives the number of binary variables used by FPLP. For each
filtering algorithm, table 3 gives the amount of milliseconds required to filter the
constraints (columns t(ms)). For all filtering algorithm but FP2B, table 3 gives
also the percentage of reduction compared to the reduction obtained by FP2B
(columns %(FP2B)). The time out (TO) was set to 2 minutes.

The results from table 3 show that FPLP achieves much better domain re-
ductions than 2B-consistency and 3B-consistency filtering algorithms. FPLP re-
quires more times than FP2B but the latter achieves a very weaker pruning on
theses benchmarks. This is exemplified by the two Absorb1 and SqrtV1 benches.
Here, FP2B suffers from the multiple occurrences of the variables. FPLP also
consistently outperforms FP3B : it almost always provides much smaller domains
and it requires much less time.

A comparison of FPLP with and without a call to FP2B shows that a co-
operation between these two filtering methods can significantly decrease the
computation time but does not change the filtering capabilities.

6 Conclusion

In this paper, we have introduced a new filtering algorithm for handling con-
straints over FP numbers. This algorithm benefits from the linearizations of the
relaxations over R of the initial constraints over F to reduce the domains of the
variables with a MILP solver. Experiments show that FPLP drastically improves
the filtering process, especially when combined with a FP2B filtering process.
MILP benefits from a more global view of the constraint system than local con-
sistencies, and thus provides an effective way to handle multiple occurrences of
variables.

Additional experiments are required to better understand the interactions
between the two algorithms and to improve their performances.
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Abstract. We describe a system which generates finite domain constraint models
from positive example solutions, for highly structured problems. The system is
based on the global constraint catalog, providing the library of constraints that
can be used in modeling, and the Constraint Seeker tool, which finds a ranked list
of matching constraints given one or more sample call patterns.

We have tested the modeler with 230 examples, ranging from 4 to 6,500 vari-
ables, using between 1 and 7,000 samples. These examples come from a variety
of domains, including puzzles, sports-scheduling, packing & placement, and de-
sign theory. When comparing against manually specified “canonical” models for
the examples, we achieve a hit rate of 50%, processing the complete benchmark
set in less than one hour on a laptop. Surprisingly, in many cases the system finds
usable candidate lists even when working with a single, positive example.

1 Introduction

In this paper we present the Model Seeker system which generates constraint models
from example solutions. We focus on problems with a regular structure (this encom-
passes matrix models [14]), whose models can be compactly represented as a small
set of conjunctions of identical constraints. We exploit this structure in our learning
algorithm to focus the search for the strongest (i.e. most restrictive) possible model.

In our system we use global constraints from the global constraint catalog [2] mainly
as modeling constructs, and not as a source of filtering algorithms. The global con-
straints are the primitives from which our models are created, each capturing some
particular aspect of the overall problem. Using existing work on global constraints for
mixed integer programming [20] or constraint based local search [16], our results are
not only applicable for finite domain constraint programming, but can potentially reach
a wider audience.

The input format we have chosen consists of a flat vector of integer values, allowing
for different representations of the same problem. We do not force the user to adapt his
input to any particular technology, but rather aim to be able to handle examples taken
from a variety of existing sources.
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In our method we extensively use meta-data about the constraints in the catalog,
which describe their properties and their connection. We have added a number of new,
useful information classes during our work, which prove to be instrumental in recog-
nizing the structure of different models.

The main contribution of this paper is the presentation of the implemented Model
Seeker tool, which can deal with a variety of problem types at a practical scale. The
examples we have studied use up to 6,500 variables, and deal with up to 7,000 samples,
even though the majority of the problems are restricted to few, and often unique solu-
tion samples. We currently only work with positive examples, which seems to provide
enough information to achieve quite accurate models of problems. As a side-effect of
our work we also have strengthened the constraint description in the constraint catalog
with new categories of meta-data, in particular to show implications between different
constraints.

Our paper is structured in the following way: We first introduce a running example,
that we will use to explain the core features of our system. In Section 2, we describe the
basic workflow in our system, also detailing the types of meta-data that are used in its
different components. We present an overview of our evaluation in Section 3, which is
followed by a discussion of related work (Section 4), before finishing with limitations
and possible future work in Section 5. For space reasons we can only give an overview
of the learning algorithm and the obtained results. A full description can be found in a
companion technical report at http://4c.ucc.ie/˜hsimonis/modelling/
report.pdf.

1.1 A Running Example

As a running example we use the 2010/2011 season schedule of the Bundesliga, the Ger-
man soccer championship. We take the data given in http://www.weltfussball.
de/alle_spiele/bundesliga-2010-2011/, replacing team names with num-
bers from 1 to 18. The schedule is given as a set of games on each day of the season.
Table 1 shows days 1, 2, 3, 18 and 19 of the schedule. Each line shows all games of
one day; on the first day, team 1 (at home) is playing against team 2 (away), team 3 (at
home) plays team 4, etc. The second half of the season (days 18-34) repeats the games
of the first half, exchanging the home and away teams, on day 18, for example, team 18
(at home) plays team 17, team 2 (at home) plays team 1, and so on. Overall, each team
plays each other twice, once at home, and once away in a double round-robin scheme.

Table 1. Bundesliga Running Example: Input Data

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
8 1 14 11 4 7 2 15 12 13 6 9 10 3 18 5 16 17
3 14 17 2 13 6 5 12 9 16 11 18 1 4 15 8 7 10

. . .
18 17 2 1 4 3 6 5 10 9 16 15 14 13 12 11 8 7
13 12 11 14 17 16 15 2 9 6 1 8 7 4 5 18 3 10

. . .

http://4c.ucc.ie/~hsimonis/modelling/report.pdf
http://4c.ucc.ie/~hsimonis/modelling/report.pdf
http://www.weltfussball.de/alle_spiele/bundesliga-2010-2011/
http://www.weltfussball.de/alle_spiele/bundesliga-2010-2011/
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As input data we receive the flat vector of numbers, we will reconstruct the matrix as
part of our analysis. Note that for most sports scheduling problems we will have access
to only one example solution, the published schedule for a given year, schedules from
different years encode different teams and constraints, and are thus incomparable.

2 Workflow

We will now describe how we proceed from the given positive examples to a candidate
list of constraints modeling the problem. The workflow is described in Figure 1. Data
are shown in green, software modules in blue/bold outline, and specific global constraint
catalog meta-data are shown in yellow/italics. We first give a brief overview of the
modules, and then discuss each step in more detail.

Transformation. In a first step, we try to convert the input samples to other, more
appropriate representations. This might involve replacing a 0/1 format with finite do-
main values, or converting different graph representations into the successor variable
form used by the global constraints in the catalog. For some transformations, we keep
both the original and the transformed representation for further analysis, for others we
replace the original sample with the transformed data.

Candidate
Generation

Candidate
Simplification

Meta-Data

Positive Samples

Transformation

Sequence Generation

Argument Creation

Constraint Seeker Call

Bottom-Up Dominance

Dominance Check

Trivia Removal

Candidate Conjunctions

Code Generation

Program

Domain Generation

Functional Dependency
Monotonicity

Constraint Checkers
Typical Restrictions

Aggregate

Implications
Contractible
Expandible

Density
Ranking

Fig. 1. Workflow in the Model Seeker
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Candidate Generation. The second step (Sequence Generation) tries to group the vari-
ables of the sample into regular subsets, for example interpreting the input vector as a
matrix and creating subsequences for all rows and all columns. In the Argument Cre-
ation step, we create call patterns for constraints from the subsequences. We can try
each subsequence on its own, or combine pairs of subsequences or use all subsequences
together in a single collection. We also try to add additional arguments based on func-
tional dependencies and monotonic arguments of constraints, described as meta-data in
the global constraint catalog. For each of these generated call patterns, we then call the
Constraint Seeker to find matching constraints, which satisfy all subsequences of all
samples. For this we enforce the Typical Restrictions, meta-data in the catalog, which
describe how a constraint is typically used in a constraint program. Only the highest
ranking candidates are retained for further analysis.

Candidate Simplification. After the seeker calls, we potentially have a very large list
of possible candidate conjunctions (up to 2,000 conjunctions in our examples), we now
have to reduce this set as much as possible. We first apply a Dominance Check to remove
all conjunctions of constraints that we can show are implied by other conjunctions of
constraints in our candidate list. Instead of showing the implication from first principles,
we rely on additional meta-data in the catalog, which describe implications between
constraints, but we also use conditional implications which only hold if certain argument
restrictions apply, and expandible and contractible [22] properties, which state that a
constraint still holds if we add or remove some of its decision variables. The dominance
check is the core of our modeling system, helping to remove irrelevant constraints from
the candidate list. In the last step before our final candidate list output the system removes
trivial constraints and simplifies some constraint pattern. This also performs a ranking
of the candidates based on the constraint and sequence generator used, trying to place
the most relevant conjunction of constraints at the top of the candidate list.

Code Generation. As a side effect of the initial transformation, we also create potential
domains for the variables of our problem. In the default case, we just use the range of
all values occurring in the samples, but for some graph-based transformations a more
refined domain definition is used. Given the candidate list and domains for the variables,
we can easily generate code for a model using the constraints. At the moment, we
produce SICStus Prolog code using the call format of the catalog. The generated code
can then be used to validate the samples given, or to find solutions for the model that
has been found.

After this brief overview, we will now discuss the different process steps in more
detail.

2.1 Transformation

In finite domain programming, there are implicit conventions on how to express mod-
els leading to effective solution generation. In our system, we can not assume that
the user is aware of these conventions, nor that the sample solutions are already pro-
vided in the “correct” form. We therefore try to apply a series of (currently 12) input
transformations, that convert between different possible representations of problems,
and that retain the form which matches the format expected by the constraint catalog.
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Table 2. Bundesliga Running Example: Transformed Problem

2 −1 4 −3 6 −5 8 −7 10 −9 12 −11 14 −13 16 −15 18 −17

−8 15 −10 7 −18 9 −4 1 −6 3 −14 13 −12 11 −2 17 −16 5

4 −17 14 −1 12 −13 10 −15 16 −7 18 −5 6 −3 8 −9 2 −11

. . .
−2 1 −4 3 −6 5 −8 7 −10 9 −12 11 −14 13 −16 15 −18 17

8 −15 10 −7 18 −9 4 −1 6 −3 14 −13 12 −11 2 −17 16 −5

. . .

In each case, some pre- and post-conditions must be satisfied for the transformation to
be considered valid. We now give some examples.

Converting 0/1 Samples. If a solution is given using only 0/1 values, there may be
a way of re-interpreting the sample as a permutation with finite domain variables. If
we consider the 0/1 values as an n × n matrix (xij) where each row and each column
contains a single one, we can transform this into a vector vi of n finite domain values
based on the equivalence

∀1≤i≤n∀1≤j≤n : xij = 1⇒ vi = j

This transformation is the equivalent of a channeling constraint between 0/1 and finite
domain variables, described for example in [19].

Using Successor Notation for Graph Constraints. Most graph constraints in the cat-
alog use a successor notation to describe circuits, cycles or paths, i.e. the value of a
node indicates the next node in the final assignment. But this is not the only way of
describing graphs. In the original Knight’s Tour formulation [31], the value of a node
is the position in the path, i.e. the first node has value one, the second value two, and
so on. We have defined transformations which map between these (and several other)
formats, while checking that the resulting graph can be compactly described.

Using Schreuder Tables. Another transformation is linked to sports scheduling prob-
lems. In many cases, users like to give the schedule as a list of fixtures, listing which
games will be played on each day. The first team is the home team, the second the away
team. For constraint models, the format of Schreuder tables [28], as shown in Table 2
for our running example, can lead to more compact models [24,30,17,18]. For each
time-point t over q rounds and for an even number of teams n, they can be obtained
from the fixture representation as follows:

∀1≤t≤q(n−1)∀1≤i≤�n/2 : x2i−1,t = k, x2i,t = l ⇒ vk,t = l, vl,t = −k

2.2 Sequence Generator

After the input transformation, we have to consider possible, regular substructures
which group the samples into subsequences. For space reasons again, we only give
some examples of the sequence generators used in our running example, the full list
(containing 21 generators) with their formal definition can be found in the technical
report, some were already described in [4].
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vector(n). This is the most basic sequence generator of treating all elements of the
sample as a single sequence of size n.

scheme(n, r, c, a, b). By far the most common sequence generator treats a sample of
length n as an r × c matrix, and creates non-overlapping blocks of size a× b, creating
n/ab sequences of size ab. The number of such partitions depends on the number of
factors of n, as n = rc. For our running example (Section 1.1) with 612 values, we
have to consider the matrices 2 × 306, 3 × 204, 4 × 153, 6 × 102, 9 × 68, 17 × 36,
18× 34, 34× 18, 36× 17, 68× 9, 102× 6, 153× 4, 204× 3 and 306× 2. Some of the
blocks created from these matrices lead to the same partition of the variables, only one
representative is kept.

repart(n, r, c, a, b). This sequence generator also treats the sample of size n as a r × c
matrix, and considers blocks of size a× b. But it groups elements in the same position
from each block, creating a× b sequences of size n/(ab).

For the running example, a total of 68 subsequence collections are generated. Note
that the subsequences often, but not always, have the same size. We also provide an
API where the user can provide his own sequence generators, this can be helpful to deal
with known, but irregular structure in the problem.

2.3 Argument Creation

In the next step of the operation, we convert the generated subsequences into call pat-
terns for the Constraint Seeker [3]. In order to consider more of the constraints in
the catalog, we have to provide different argument signatures by organizing the sub-
sequences in different ways, and by adding arguments.

Single, Pairs and Collection. In the first part we decide how we want to use the sub-
sequences. Consider we have k subsequences, each of length m. If we use each subse-
quence on its own, we create k call patterns with a single argument, each a collection
of m variables. This corresponds to the argument pattern used by alldifferent
constraints, for example. We can also consider pairs of subsequences, creating a call
patterns with two arguments, for k− 1 calls to a predicate like lex greater. Finally
we can use all subsequences as a single collection of collections, which creates one
call with a collection of k collections of m elements each. This would match a con-
straint like lex alldifferent. We generate all these potential calls in parallel, and
perform the steps described in the following two paragraphs.

Value Projection. For some problems (like our transformed, running example), a pro-
jection from the original domain to a smaller domain can lead to a more compact model.
If, for example, some of the values in the sample are positive, and others are negative,
we can try a projection using the absolute value or the sign of the numbers, in addition
to the original values.

Adding Arguments. Many global constraints use additional arguments besides the
main decision variables. If we do not generate these arguments in the call pattern,
we can not find such constraints with the Constraint Seeker. But just enumerating all
possible values for these additional arguments would lead to a combinatorial explo-
sion. Fortunately, we can compute values for these arguments in case of functional
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dependencies and monotonic arguments. This is similar to the argument generation dis-
cussed for the gcc constraint discussed in [8].

2.4 Constraint Seeker

The Constraint Seeker [3] will find a ranked list of global constraints that satisfy a
collection of positive and negative sample calls, using the available constraint checkers
of the catalog. We use this seeker as a black-box for all call patterns with all additional
argument values and value projections defined in the previous section.

Using Multiple, Positive Samples. The seeker first checks that the call signature
matches the constraint, then tries to evaluate the constraint on the samples. In our case,
these are the call patterns prepared in the previous step for all subsequences of all pos-
itive examples given. In our modeling system we currently do not consider negative
examples. They would require a slightly different treatment, as a negative example can
be rejected by just one constraint, while all positive examples must be accepted by all
constraints found.

Typical Restrictions. In addition to the restrictions that must hold for the constraint
to be applied, in our modeling tool we also check for the typical restrictions that are
specified in the catalog. The alldifferent constraint for example can be called
with an empty collection, but a typical use would have more than two variables in the
collection. The typical constraints are expressed using the same language as the formal
restrictions of the catalog, checking their validity thus does not require any additional
code.

Selecting Top-Ranked Elements. The Constraint Seeker returns a ranked list of can-
didates, this ranking is a combination of structural properties (functional dependencies
or monotonic arguments), implications between constraints, estimated solution density
and estimated popularity of the constraint described in [3]. In our system we only use
the top ranked element that satisfies all subsequences of all samples. This reduces the
number of candidates to be considered, while at the same time it does not seem to
exclude constraints that are required for the highly structured problems considered.

For our running example, we perform 1,099 calls to the Constraint Seeker, which
performs 82,458 constraint checks, and which results in 589 possible candidate con-
junctions. We now face the task of reducing this candidate list as much as possible,
keeping only interesting conjunctions.

2.5 Bottom-up Dominance

Some constraints like sum or gcc have the aggregate property, one can combine mul-
tiple such constraints over disjoint variable sets by adding the right hand sides or sum-
ming the counter values. As an example, we can combine

x1 + x2 = 5 ∧ x3 + x4 = 2⇒ x1 + x2 + x3 + x4 = 7

We want to remove aggregated constraints of this type, as they are implied by
conjunctions of smaller constraints. We perform a bottom-up saturation of combining
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constraints with the aggregate property up to a limited size, and remove any candidate
conjunctions where all constraints are dominated.

2.6 Dominance Check

The dominance check compares all conjunction candidates against each other (worst
case quadratic number of comparisons), and marks dominated entries. Note that dom-
inated entries may be used to dominate other entries, and thus can not be removed
immediately. We use a number of meta-data fields to check for dominance.

Implications. In our final candidate list, we are interested in only the strongest, most
restrictive constraints, all constraints that are implied by other candidate constraints can
be excluded. Note that this will sometimes lead to overly restrictive solutions, especially
if only a few samples are given.

Checking if some conjunction is implied by some other conjunction for a particular
set of input values is a complex problem, a general solution would require sophisticated
theorem proving tools like those used in [11] for a restricted problem domain. We do
not attempt such a generic solution, but instead rely on meta-data in the catalog linking
the constraints. That meta-data is useful also for understanding the relations between
constraints, and thus serves multiple purposes. This syntactic implication check is easy
to implement, but only can be used if both constraints have the same arguments.

Conditional Implications. For some constraints additional implications exist, but only
if certain restrictions apply. The cycle constraint for example implies the circuit
constraint, but only if the NCYCLE argument is equal to one. For conditional implications
the arguments do not have to be the same, but the main decision variables used must
match.

Contractibility and Expandability. Other useful properties are contractibility [22] and
expandibility. A constraint (like alldifferent) is contractible if it still holds if we
remove some of its decision variables. This allows us to dominate large conjunctions of
constraints with few variables with small conjunctions of constraints with many vari-
ables. Due to the way we systematically generate all subsequence collections, this is
often possible. In a similar way, some constraints like atleast are expandible, they
still hold if we add decision variables. We can again use this property to dominate some
conjunctions of constraints. Details and possible extensions have been described in [4].

Hand-Coded Domination Rules. Some dominance rules are currently hand-crafted
in the program, if the required meta-data have not yet been formalized in the catalog
description. Such examples can be an important source of requirements for the catalog
itself, enhancing the expressive power of the constraint descriptions.

2.7 Trivia Removal

Even after the dominance check, we can still have candidate explanations which are
valid and not dominated, but which are not useful for modeling. In the trivia removal
section, we eliminate or replace most of these based on sets of rules.

Functional Dependencies on Single Samples. In Section 2.3 we have described how
we can add some arguments to a call pattern for functional dependencies. In the case
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of pure functional dependencies [1], we have to worry about pattern consisting of a
single subsequence with a single sample. In that case, the constraint does not filter any
pattern, as for each pattern the correct value can be selected. We therefore remove such
candidates.

Constraint Simplification. At this point we can also try to simplify some constraints
that have particular structure. A typical example are lex chain constraints on a sub-
sequence, where already the first entries of the collections are ordered in strictly increas-
ing order. We can therefore replace the lex chain constraint on the subsequences
with a strictly increasing constraint on the first elements of the collections,
using a special first sequence generator. These constraints often occur as symmetry-
breaking restrictions in models, which we find if all the samples given respect the sym-
metry breaking.

Uninteresting Constraints. Even with the typical restrictions in the Constraint Seeker,
we often find candidates (like not all equal) which are not very interesting for
defining models. As a final safe-guard, we use a black-list to remove some combinations
of constraints and sequence generators that should not be included in our models.

2.8 Candidate List for Bundesliga Schedule

Table 3 shows the list of the candidate conjunctions generated for our transformed ex-
ample problem. Entries in green match a manually defined model, ten other candidates
are also proposed. The arguments of constraints in the Constraint Conjunction column
indicate any additional parameters, the ∗n indicates how many constraints form the con-
junction. The value projections absolute value and sign convert each element of
the input data, id denotes the identity projection.

Some of the constraints mentioned are perhaps unfamiliar, we provide a short defini-
tion. The constraint symmetric alldifferent([x1, .., xn]) [2, page 1854] in line
4 states that

∀1≤i≤n : xi ∈ [1, n];xi = j ⇐⇒ xj = i

It expresses the constraint that if team A plays team B on some day, then team B will
play team A. The constraints twin([〈x1, y1〉, ..., 〈xn, yn〉]) [2, page 1896] in lines 7,
19 and 20 state that

∀1≤i≤n : (xi = u ∧ yi = v)⇒ (∀1≤j≤n : xj = u ⇐⇒ yj = v)

These constraints express the fact that the tournament is played in two symmetric half-
seasons, with home and away games swapped. Note that constraints 8, 21 and 23 also
express this condition, but using an elements constraint, pairing positive and nega-
tive numbers. The alldifferent constraint in line 1 expresses that no repeat games
occur in the season, while that of line 5 states that all teams play on each day. The
strictly increasing constraint in line 9 results from the simplification of a sym-
metry breaking lex chain constraint. The gcc in line 14 states that each team plays
17 home (positive value) and 17 away (negative value) games. Finally, the among seq
constraint in line 22 states that no team has more than two consecutive away games.
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Table 3. Constraint Conjunctions for Problem Bundesliga

- Sequence Generator Projection Constraint Conjunction
1 scheme(612,34,18,34,1) id alldifferent*18
2 scheme(612,34,18,2,2) id alldifferent*153
3 scheme(612,34,18,1,18) id alldifferent*34
4 scheme(612,34,18,1,18) absolute value symmetric alldifferent([1..18])*34
5 scheme(612,34,18,17,1) absolute value alldifferent*36
6 repart(612,34,18,34,9) id sum ctr(0)*306
7 repart(612,34,18,34,9) id twin*1
8 repart(612,34,18,34,9) id elements([i,-i])*1
9 first(9,[1,3,5,7,9,11,13,15,17]) id strictly increasing*1

10 vector(612) id global cardinality([-18.. -1-17,0-0,1..18-17])*1
11 repart(612,34,18,34,9) id sum powers5 ctr(0)*306
12 repart(612,34,18,34,9) id sum cubes ctr(0)*306
13 repart(612,34,18,34,3) sign global cardinality([-1-3,0-0,1-3])*102
14 scheme(612,34,18,34,1) sign global cardinality([-1-17,0-0,1-17])*18
15 repart(612,34,18,17,9) sign global cardinality([-1-2,0-0,1-2])*153
16 repart(612,34,18,2,9) sign global cardinality([-1-17,0-0,1-17])*18
17 scheme(612,34,18,1,18) sign global cardinality([-1-9,0-0,1-9])*34
18 repart(612,34,18,34,9) sign sum ctr(0)*306
19 repart(612,34,18,34,9) sign twin*1
20 repart(612,34,18,34,9) absolute value twin*1
21 repart(612,34,18,34,9) sign elements([i,-i])*1
22 scheme(612,34,18,34,1) sign among seq(3,[-1])*18
23 repart(612,34,18,34,9) absolute value elements([i,i])*1
24 first(9,[1,3,5,7,9,11,13,15,17]) absolute value strictly increasing*1
25 first(6,[1,4,7,10,13,16]) absolute value strictly increasing*1
26 scheme(612,34,18,34,1) absolute value nvalue(17)*18

2.9 Domain Creation

By default, the domains of the variables in our generated models are the interval be-
tween the smallest and largest value occurring in the samples. Based on the transforma-
tion used, we can use more restricted domains for graph models like graph partitioning
and domination [15], where the domain of each variable/node specifies the initial graph.

2.10 Code Generation

The code generation builds flat models for the given instances. The programs consist of
five parts, we first define all variables with their domains, then state all restrictions due
to fixed values as assignments, state any projections used to simplify the variables, then
build the constraints in the catalog syntax, and finally call a generic value assignment
routine to search for a solution. We can use the generated model as a test to check if it
accepts the given samples, or to generate new solutions for the problem. Many puzzles
have a unique solution, we can count solutions of our program to see if the generated
model is restrictive enough to capture this property.
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It would be straightforward to generate the code for other systems than SICS-
tus Prolog, provided that the catalog constraints are supported. A version generating
FlatZinc[23] or XCSP [27] would be especially attractive to benefit from the variety of
backend solvers which support these formats.

3 Evaluation

Table 4 shows summary results for selected problems of our evaluation set. The prob-
lems range from sports scheduling (ACC Basketball Scheduling, csplib11; Bundesliga;
DEL2011 (German ice hockey league); Scotish Premier League (soccer); Rabodirect
Pro 12 (rugby)), to scheduling (Job-shop 10x10 [10]) and placement (Duijvestijn,
csplib9; Conway 5x5x5 [5]; Costas Array [12]), design theory (BIBD, csplib28; Kirk-
man [13]; Orthogonal Latin Squares [9]), event scheduling (Social Golfer, csplib10;
Progressive Party, csplib13) and puzzles. Details of these problems can be found in the
technical report mentioned before. Smaller problems are solved within seconds, even
the largest require less than 5 minutes on a single core of a MacBook Pro (2.2GHz)
with 8Gb of memory.

The columns denote: Transformation Id: the number of the transformation applied
(if any), Instance Size: the number of values in the solution, i.e. the number of variables
in the model, Nr Samples: the number of solutions given as input, Nr Sequences: the
number of sequence sets generated, Nr Seeker Calls: the number of times the Constraint
Seeker is called, Constraint Checks: the number of calls to constraint checkers inside
the seeker, Nr Relevant: the number of initial candidate conjunctions found by the Con-
straint Seeker, Nr Non Dom: the number of non-dominated candidates remaining after
the dominance checkers, Nr Specified: the number of conjunctions specified in the man-
ual, “canonical” model, Nr Models: the number of conjunctions given as output of the
Model Seeker, Nr Missing: how many of the manually defined conjunctions were not
found by the system, Hit Rate: the percentage rate of Nr Specified to Nr Models, a value
of 100% indicates that exactly the candidates of the canonical model were found, and
Time: the execution time in seconds.

For two of the problems, we only find part of the complete model. The Progressive
party problem [29] requires a bin-packing constraint that we currently do not recognize,
as it relies on additional data for the boat sizes, while the ACC basketball problem con-
tains several constraints which apply only for specific parts of the schedule, and which
can not be learned from a single solution. Also note that for the De Jaenisch prob-
lem [26], we show results with and without a transformation. This problem combines
a “near” magic square, found without transformation, with an Euler Knight tour, using
transformation 7.

For our full evaluation, we have used 230 examples from various sources. For 10 of
the examples no reasonable model was generated, either because we did not have the
right sequence generator, or we are currently missing the global constraint required to
express the problem. For a further 37 problems, only part of the model was found. This
is typically caused by some constraint requiring additional data, not currently given as
input, or by an over-specialization of the output, where the Model Seeker finds a more
restrictive constraint than the one specified manually. Overall, we considered 73 con-
straints in the Constraint Seeker, and selected 53 different global constraints as potential
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solutions. This is only a fraction of the 380 constraint in the catalog, many of the miss-
ing constraints have more complex argument signatures or use finite sets, which are
currently not available in SICStus Prolog.

Figure 2 shows the number of candidates found for all examples studied as a function
of the instance size, split between single samples and multiple samples. Note that the
plot uses a log-log scale. The results indicate that even with a single sample, the number
of candidate conjunctions found is quite limited, this drops further if multiple samples
are used.

Another view of all the results is shown in Figure 3. It shows the relationship be-
tween number of variables and execution time, again grouped by problems with a sin-
gle sample and problems for which multiple samples were provided. While no formal
complexity analysis has been attempted, as several subproblems are expressed as con-
straint problems, results seem to indicate a low-polynomial link between problem size
and execution time. The non-linear least square fit for the single sample problems is
8.5e−2x0.90, and for multiple samples 6.1e−3x1.45.
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12 Amazons All - 12 156 36 127 35596 55 9 5 8 0 62.50 2,64
8 Queens All - 8 92 20 100 12077 34 7 3 5 0 60.00 0.83
ACC Basketball Schedule - 162 1 109 1786 29117 772 263 23 36 7 n/a 9.17
BIBD (8,14,7,4,3) - 112 92 151 626 92461 232 112 4 15 0 26.67 26.01
Bundesliga 18 612 1 68 1099 52933 589 169 16 26 0 61.54 51.44
Conway 5x5x5 Packing - 102 1 60 184 2619 78 35 1 2 0 50.00 0.42
Costas Array 12 - 12 48 36 121 14820 42 2 2 2 0 100.00 1.01
DEL 2011 - 728 1 235 1334 66999 555 173 3 8 0 37.50 54.23
De Jaenisch Tour - 64 1 83 568 10130 283 58 2 13 0 15.38 1.66
De Jaenisch Tour 7 64 1 36 219 12952 113 67 1 1 0 100.00 0.46
Dominating Knights 8 9 64 2 36 141 11021 51 42 1 1 0 100.00 0.31
Duijvestijn 21 - 84 1 111 504 11625 240 102 1 12 0 8.33 1.77
Euler Knight Cube 4x4x4 7 64 1 36 208 12759 97 58 1 1 0 100.00 0.42
Job Shop 10x10 (10 sol) - 400 10 326 1521 80589 582 130 2 2 0 100.00 40.27
Kirkman Wikipedia - 105 1 40 179 2634 89 39 3 5 0 60.00 1.21
Leaper Tour 18x18 7 324 1 60 298 105955 140 61 1 1 0 100.00 2.18
Magic Square All - 16 7040 33 176 1068574 57 5 4 4 0 100.00 115.07
Magic Square Duerer - 16 1 33 212 2074 115 44 9 15 0 60.00 0.25
Orthogonal Latin Squares 10 - 200 1 147 910 15441 443 118 3 8 0 37.50 6.04
Progressive Party - 174 1 45 171 4279 61 31 4 3 1 n/a 0.70
Rabodirect Pro12 18 264 1 66 1041 46898 539 155 8 13 0 61.54 7.91
Scotish Premier League 18 396 1 68 992 58959 459 157 9 12 0 75.00 14.18
Social Golfer - 288 1 528 2813 69681 1221 256 5 36 0 13.89 61.93
Sudoku 81x81 - 6561 1 91 657 101075 334 68 3 5 0 60.00 244.16
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Fig. 2. Candidates as a Function of Problem Size (Variables)

Fig. 3. Execution Time as a Function of Problem Size (Variables)



154 N. Beldiceanu and H. Simonis

Table 5. Lines of Code / Run Time per Module over all 230 Examples

Module Lines Time [s] % of Total
Transformation 1,500 1 0.03
Sequence Generation 1,000 53 2.81
Argument Creation 1,000 150 7.84
Constraint Seeker Call 300 464 24.22
Bottom-Up Check 200 506 26.42
Dominance Check 800 739 38.61
Trivia Removal 500 1 0.03
Glue / IO / Test 2,000 - -

Table 5 shows the number of lines required for the different components of the sys-
tem, as well as accumulated execution times over all 230 examples measured for these
components. The programming effort is fairly evenly split amongst the different compo-
nents, while the two dominance checkers require nearly two-thirds of the total execution
time, with the constraint seeker using another quarter of the time. The system is writ-
ten in SICStus Prolog 4.2, and uses the Constraint Seeker [3] with an additional 6,500
lines of code, and the global constraint catalog meta-data description of 60,000 lines of
Prolog.

4 Related Work

Our approach of searching for conjunctions of identical constraints generalizes the idea
of matrix models [14], which are an often-used pattern in constraint modeling.

The method proposed is a special, restricted case of constraint acquisition [25],
which is the process of finding a constraint network from a training set of positive and
negative examples. The learning process operates on a library of allowed constraints,
and a resulting solution is a conjunction of constraints from that library, each constraint
ranging over a subset of the variables.

The most successful of these systems is the CONACQ system [6], which proposes
the use of version space learning to generate models interactively with the user, rely-
ing on an underlying SAT model to perform the learning. This is shown to work for
binary constraints, but the method breaks down for global constraints over an unlimited
number of variables.

In [7], the authors study the problem of determining argument values for global con-
straints like the gcc from example solutions, in the context of timetabling problems.
This is similar to the argument creation we describe in Section 2.3.

The more recent work of [21] considers the use of inductive logic programming for
finding models for problems given as a set of logic formulas. This can be powerful to
find generic, size-independent models for a problem, but again, it is unclear how to deal
with a library of given global constraints, which may not have a simple description as
logic formulas.

Our dominance check based on meta-data is related to the work described in [11],
where they use a theorem prover to find certain implications between constraints for a
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restricted domain. This does not rely on meta-data provided in the system, but instead
would require a very powerful theorem prover to work for a collection of constraints
for problems of the size considered here.

Common to all these results is that they have not been evaluated on a large variety
of problems, that they consider only a limited number of potential constraints, and that
problem sizes have been quite small.

5 Limitations, Future Work and Conclusions

We are currently only considering some 70 constraints in the global constraint catalog
in our seeker calls. Many of the missing constraints require additional information (cost
matrix, lookup tables) which have to be provided as additional input data to the system.
For some problems, such additional data, like a precedence graph, may also express
implicit, less regular sequence generators, which define for which variables a constraint
should be stated. Extending our input format to allow for such data would drastically
increase both the number of constraints that can be considered, as well as the range of
application problems that can be modelled.

Most other constraint acquisition systems use both positive and negative examples.
The negative examples are used to interactively differentiate between competing mod-
els of the system. We currently only use positive examples, but given recent results on
global constraint reification [1], we could extend our system to include this
functionality.

If we want to provide the functionality we have presented here to end-users, we
will have to consider issues of usability and interactivity, allowing the user to filter
and change constraint candidates, as well as being able to suggest custom sequence
generators tailored to a specific problem.

Ultimately, we are looking for a modeling tool which can analyze samples of dif-
ferent sizes, and generate a generic, size independent model. Building on top of our
existing framework, this would require to express both the sequence generator parame-
ters and any additional arguments for constraints in terms of a variable problem size, to
produce more compact, iterative code instead of the flat models currently generated.

Exploiting the idea that many highly structured combinatorial problems can be de-
scribed by a small set of conjunctions of identical global constraints, this paper proposes
a Model Seeker for extracting global constraint models from positive sample solutions.
It relies on a detailled description of the constraints in terms of meta-data in the global
constraint catalog. The system provides promising results on a variety of problems even
when working from a limited number of examples.

Acknowledgement. The help of Hakan Kjellerstrand in finding example problems is
gratefully acknowledged.
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Abstract. A propositional formula in Conjunctive Normal Form (CNF)
may contain redundant clauses — clauses whose removal from the for-
mula does not affect the set of its models. Identification of redundant
clauses is important because redundancy often leads to unnecessary com-
putation, wasted storage, and may obscure the structure of the problem.
A formula obtained by the removal of all redundant clauses from a given
CNF formula F is called a Minimal Equivalent Subformula (MES) of F .
This paper proposes a number of efficient algorithms and optimization
techniques for the computation of MESes. Previous work on MES com-
putation proposes a simple algorithm based on iterative application of
the definition of a redundant clause, similar to the well-known deletion-
based approach for the computation of Minimal Unsatisfiable Subfor-
mulas (MUSes). This paper observes that, in fact, most of the existing
algorithms for the computation of MUSes can be adapted to the compu-
tation of MESes. However, some of the optimization techniques that are
crucial for the performance of the state-of-the-art MUS extractors cannot
be applied in the context of MES computation, and thus the resulting
algorithms are often not efficient in practice. To address the problem of
efficient computation of MESes, the paper develops a new class of al-
gorithms that are based on the iterative analysis of subsets of clauses.
The experimental results, obtained on representative problem instances,
confirm the effectiveness of the proposed algorithms. The experimental
results also reveal that many CNF instances obtained from the practical
applications of SAT exhibit a large degree of redundancy.

1 Introduction

A propositional formula in Conjunctive Normal Form (CNF) is redundant if
some of its clauses can be removed without changing the set of models of the
formula. Formula redundancy is often desirable. For example, modern Conflict-
Driven Clause Learning (CDCL) Boolean Satisfiability (SAT) solvers learn re-
dundant clauses [33,1], which are often essential for solving practical instances of
SAT. However, redundancy can also be undesirable. For example, in knowledge
bases formula redundancy leads to the use of unnecessary storage and compu-
tational resources [25]. Another example is the undesirable redundant clauses in
the CNF representation of belief states in a conformant planner [37,36]. In the
context of probabilistic reasoning systems, concise representation of conditional
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independence information can be computed by removing redundant clauses from
certain propositional encodings [30]. More generally, given the wide range of ap-
plications of SAT, one can pose the question: does a given problem domain
encoder introduce redundancy, and if so, how significant is the percentage of
redundant clauses? Removal of redundancies can also find application in solv-
ing problems from different complexity classes, for example Quantified Boolean
Formulas (QBF). Besides propositional logic formulas, the problem of the identi-
fication of redundant constraints is relevant in other domains. Concrete examples
include Constraint Satisfaction Problems (CSP) [12,10,9], Satisfiability Modulo
Theories (SMT) [35], and Ontologies [19].

This paper addresses the problem of computing an irredundant subformula
E of a redundant CNF formula F , such that F and E have the same set of
models. Such subformula E will be referred to as a Minimal Equivalent Sub-
formula (MES) of F . Previous work on removing redundant clauses from CNF
formulas proposes a direct approach [7], which iteratively checks the definition
of redundant clause and removes the clauses that are found to be redundant.
While the direct approach is similar to the well-known deletion-based approach
for the computation of Minimal Unsatisfiable Subformulas (MUSes), most of the
techniques developed for the extraction of MUSes (e.g. see [18,14,27]) have not
been extended to the computation of MESes.

The paper has five main contributions, summarized as follows. First, the pa-
per shows that many of the existing MUS extraction algorithms can be extended
to the computation of MESes. Since efficient MUS extraction uses a number of
key techniques for reducing the total number of SAT solver calls — namely,
clause set refinement [13,29,28] and model rotation [28,4] — this paper analyzes
these techniques in the context of MES extraction. The second contribution of
the paper is, then, to show that model rotation can be integrated, and, in fact,
improved, in MES extraction, however clause set refinement cannot be used in
MES algorithms derived from the existing MUS algorithms. Third, the paper
proposes a reduction from MES computation problem to group-MUS computa-
tion problem [26,29]; this reduction enables the use of both model rotation and
clause set refinement for MES extraction. Fourth, given that the approach of
reduction to group-MUS can result in hard instances of SAT, the paper pro-
poses an incremental reduction of MES to group-MUS extraction, that involves
the separate analysis of subsets of clauses. Fifth, and finally, the paper develops
solutions for checking that computed MESes are correct. These solutions find
application in settings where independent certification is required.

Experimental results, obtained on representative satisfiable instances from
past SAT competitions, show that the new algorithms for MES computation
achieve significant performance gains over the basic algorithms, and allow tar-
geting redundancy removal for reasonably sized formulas. In addition, the exper-
imental results show that many CNF formulas, from a wide range of application
domains, contain a significant percentage of redundant clauses, in some cases
exceeding 90% of the original clauses.
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2 Preliminaries

Standard definitions for propositional logic are assumed. Propositional formulas
are defined over a set of propositional variables X = {x1, . . . , xn}. A CNF for-
mula F is a conjunction of disjunctions of literals (clauses), where a literal is
a variable or its complement. Unless otherwise stated, a CNF formula will be
referred to as a formula. Formulas are represented by letters with calligraphic
fonts, e.g. F , E , S, W , etc. When necessary, subscripts are used. Clauses are
represented by c or ci, i = 1, . . . ,m. A CNF formula can also be viewed as a
multiset of non-tautologous clauses where a clause is a (multi)set of literals. The
two representations are used interchangeably, and are clear from the context. A
truth assignment μ is a mapping from X to {0, 1}, μ : X → {0, 1}. The truth
value of a clause c or formula F , given a truth assignment μ, is represented as
c[μ] and F [μ], respectively. A truth assignment is a model if it satisfies all clauses
in F , i.e. F [μ] = 1. Two formulas F1 and F2 are equivalent, F1 ≡ F2, if they have
the same set of models. The negation of a clause c, denoted by ¬c represents a
conjunction of unit clauses, one for each literal in c. It will also be necessary to
negate CNF formulas, e.g. ¬F . The following CNF encoding for ¬F is used [34].
An auxiliary variable ui is associated with each ci ∈ F , defining a set of variables
U . For each li,j ∈ ci, create binary clauses (¬li,j ∨ ¬ui). Finally, create a clause
(∨ui∈Uui). This CNF encoding is represented as CNF(·). For example, CNF(¬c)
and CNF(¬F) denote, respectively, the CNF encoding of ¬c and ¬F described
above; both CNF(¬c) and CNF(¬F) can be used in set context to denote sets
of clauses. Calls to a SAT solver are represented with SAT(·).

2.1 MUSes and MESes

The following definition of Minimal Unsatisfiable Subformulas (MUSes) is
used [6].

Definition 1 (MUS). M⊆ F is a Minimal Unsatisfiable Subformula (MUS)
iff M is unsatisfiable and ∀S�M,S is satisfiable.

MUS extraction algorithms can be broadly characterized as deletion-based [8,3]
or insertion-based. Moreover, insertion-based algorithms can be characterized as
linear search [11] or dichotomic search [23,21]. Recent work proposed insertion-
based MUS extraction with relaxation variables and AtMost1 constraints [28]. In
practice, the most efficient MUS extraction algorithms are organized as deletion-
based but operate as insertion-based to allow the integration of essential pruning
techniques. These algorithms are referred to as hybrid [28]. Examples of pruning
techniques used to reduce the number of SAT solver calls include clause set trim-
ming (during preprocessing), clause set refinement andmodel rotation [13,29,28,4].
Clause set refinement [13,28] exploits the SAT solver false (or unsatisfiable) out-
comes to reduce the set of clauses that need to be analyzed. This consists of
removing clauses that are not included in the MUS being constructed, e.g. by
restricting the target set of clauses to the unsatisfiable subset computed by the
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SAT solver. In contrast, model rotation exploits the SAT solver true (or satisfi-
able) outcomes to also reduce the set of clauses that need to be analyzed. In this
case, models are used to identify clauses that must be included in the MUS being
constructed. Recent experimental data [28] indicates that these two techniques
are essential for MUS extraction on large application problem instances.

Motivated by several applications, MUSes and related concepts have been
extended to CNF formulas where clauses are partitioned into disjoint sets called
groups [26,29].

Definition 2 (Group-Oriented MUS). Given an explicitly partitioned un-
satisfiable CNF formula F = D∪G1 · · · ∪ Gn, a group oriented MUS (or, group-
MUS) of F is a subset F ′ = D∪Gi1 ∪ · · · ∪Gik of F such that F ′ is unsatisfiable
and, for every 1 ≤ j ≤ k, F ′ \ Gij is satisfiable.

The groupD in the above definition is called a don’t care group, and the explicitly
partitioned CNF formulas as above are referred to as group-CNF formulas.

MUSes are a special case (for unsatisfiable formulas) of irredundant subfor-
mulas [25]. The following definitions will be used throughout.

Definition 3 (Redundant/Irredundant Clause/Formula). A clause c ∈
F is said to be redundant in F if F\{c} � c or, equivalently, F\{c}∪CNF(¬c) �
⊥. Otherwise, c is said to be irredundant in F . A formula F is redundant if it
has at least one redundant clause; otherwise it is irredundant.

Irredundant subformulas of (redundant) formulas are referred to as irredundant
equivalent subsets [25] and as irredundant cores [24]. In this paper, irredundant
subformulas are referred to as Minimal Equivalent Subformulas (MESes), by
analogy with MUSes.

Definition 4 (MES). E ⊆ F is a Minimal Equivalent Subformula (MES) iff
E ≡ F and ∀Q�E ,Q �≡ F .

Clearly, an MES is irredundant. Moreover, deciding whether a CNF formula is
an MES is DP -complete [25]. In the case of group-CNF formulas, the concept of
group-oriented MES (group-MES) can be defined analogously to Definition 2.

2.2 Related Work

MUSes find a wide range of practical applications, and have been extensively
studied (see [18,14,27] for recent overviews, and [23,21,16,17] for connections
with CSP). The problem of computing minimal (or irredundant) representa-
tions of CNF formulas (and related problems) has been the subject of exten-
sive research (e.g. [2,20,7,25,24]). Complexity characterizations of redundancy
problems in logic can be found in [25]. An algorithm for computing an MES
based on the direct application of the definition of clause redundancy is stud-
ied in [7]. More recently, properties of MESes are studied in [24]. Approx-
imate solutions for redundancy removal based on unit propagation are pro-
posed in [15,31]. Applications (of restricted forms) of redundancy removal can
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Fig. 1. Approaches to MES extraction

be found in [22,37,36,15,25,30]. The importance of redundant clauses in CDCL
SAT solvers is addressed in [33,1]. Redundancy problems have been studied in
many other settings, e.g. [12,10,9,35,19].

3 MES Extraction Algorithms

This section develops several new approaches for computing one MES of a CNF
formula F . The first solution consists of adapting any MUS extraction algo-
rithm based on identification of so-called transition clauses, for MES extrac-
tion. Afterwards, key techniques used in MUS extraction are studied. Model
rotation [28,4] is applied to MES extraction, and it is argued that clause set
refinement [13,29,28] cannot be directly applied to MES extraction algorithms
resulting from adapting existing MUS extraction algorithms. Next, a reduction
from MES to group-MUS formulation [26,29] is developed, which enables the
use of both model rotation and clause set refinement. Although the reduction of
MES to group-MUS extraction enables the integration of key techniques, it is
also the case that the resulting instances of SAT are hard to solve. This section
concludes by developing an incremental reduction from MES to group-MUS ex-
traction, which produces much easier instances of SAT. Figure 1 summarizes the
approaches to MES extraction described in the remainder of this section.

3.1 From MUS Extraction to MES Extraction

A key definition in MUS extraction algorithms is that of transition clause [18].
A transition clause c is such that, if added to a satisfiable subformula R, the
resulting subformula is unsatisfiable. This definition can be generalized for MES
extraction as follows. Let R � F denote a (reference) subformula of F which is
to be extended to be equivalent to F . Observe that F �R, and so our goal is to
extend R with a clause c, such that R∪ {c}�F , and so R∪ {c} ≡ F .

Definition 5 (Witness of Equivalence). Let S denote a subformula of F ,
S � F , with S �F \ S, and let c ∈ F \ S. If S ∪ {c}�F \ (S ∪ {c}), then c is a
witness of S ∪ {c} ≡ F .
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Algorithm 1: Plain deletion-based MES extraction

Input : Formula F
Output: MES E

1 begin
2 S ← F
3 E ← ∅ // MES under-approximation

4 while S �= ∅ do
5 c← SelectRemoveClause(S) // Get a clause from S
6 W ← {c}
7 if SAT(E ∪ S ∪ CNF(¬W)) then
8 E ← E ∪ {c} // Add clause c to E if E ∪ S � c

9 return E // Final E is MES

10 end

Algorithm 2: Plain insertion-based MES extraction

Input : Formula F = {c1, . . . , cm}
Output: MES E

1 begin
2 W ← F
3 E ← ∅ // MES under-approximation

4 while W �= ∅ do
5 (S , cr)← (∅, ∅)
6 while SAT(E ∪ S ∪ CNF(¬W)) do
7 cr ← SelectRemoveClause(W) // Extend S while E ∪ S �W
8 S ← S ∪ {cr}
9 E ← E ∪ {cr} // cr is in MES

10 W ← S \ {cr}
11 return E // Final E is an MES

12 end

The above definition can now be used to adapt any MUS extraction algorithm
for MES extraction. The remainder of this section illustrates how this can be
achieved. Let F be a CNF formula partitioned as follows, F = E ∪R∪S. A sub-
formula R is redundant in F iff E∪S �R. Given an under-approximation E of an
MES of F , and a working subformula S � F , the objective is to decide whether
E and S entail all the other clauses of F . MUS extraction algorithms can be or-
ganized as (see Section 2.1): (i) deletion-based [8,3], (ii) insertion-based [11,38],
(iii) insertion-based with dichotomic search [23,21], and (iv) insertion-based with
relaxation variables [28].

The pseudo-code for deletion-based MES extraction is shown in Algorithm 1.
At each step, the algorithm uses an MES under-approximation E , a set of (re-
maining) clauses S, and a target clause c, to check whether E ∪ S � c. If this is
not the case, i.e. if E ∪ S � c, then c is witness of E ∪ S ∪ {c} ≡ F , and so c
is added to E ; otherwise, c is discarded. Observe that the deletion-based MES
extraction algorithm corresponds to the direct implementation of the definition
of redundant clause (e.g. see [7]).
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Algorithm 3: MES extraction with dichotomic search

Input : Formula F = {c1, . . . , cm}
Output: MES E

1 begin
2 W ← F
3 E ← ∅ // MES under-approximation

4 while W �= ∅ do
5 (min,mid,max)← (0, 0, |W|)
6 repeat
7 S ← {c1, . . . , cmid} // Extract sub-sequence of W
8 if SAT(E ∪ S ∪ CNF(¬(W \ S))) then
9 min← mid+ 1 // Extend S if E ∪ S �W \ S

10 else
11 max← mid // Reduce S if E ∪ S �W \ S
12 mid← �(min+max)/2�
13 until min = max
14 if min > 0 then
15 E ← E ∪ {cmin}
16 W ← {ci | i < min}
17 return E // Final E is an MES

18 end

The pseudo-code for insertion-based linear and dichotomic searchMES extrac-
tion are shown in Algorithms 2 and 3, respectively. Both algorithms iteratively
add clauses to set S while E ∪ S �W . The last clause included in S such that
E∪S �W is the witness of equivalence. The main difference between algorithms 2
and 3 is how the witness of equivalence is searched for.

Recent experimental data indicates that the most efficient MUS extraction
algorithms are deletion-based (or variants) [28]. Since insertion-based MES al-
gorithms require SAT solver calls with (possibly large) complemented formu-
las, deletion-based MES extraction algorithms are expected to outperform the
insertion-based ones. This is confirmed by the results in Section 5.

Efficient MUS extraction algorithms [13,29,28] must use a number of addi-
tional techniques for reducing the number of SAT solver calls. These techniques
include clause set refinement [13,28] and model rotation [28,4]. The next section
shows how model rotation can be used in MES extraction. In contrast, clause
set refinement cannot be applied in the algorithms described above.

Example 1. Let F = (x1) ∧ (x1 ∨ x3) ∧ (x2), and consider the execution of Algo-
rithm 1. First, clause (x1) is removed and the resulting formula is satisfiable with
x1 = 0, x2 = x3 = 1; hence (x1) is irredundant. Second, clause (x1 ∨ x3) is re-
moved and the resulting formula is unsatisfiable; hence (x1 ∨ x3) is redundant.
Moreover, the computed unsatisfiable core is {(x1), (¬x1)}, where (¬x1) is taken
from ¬(x1 ∨ x3). However, (x2) is not in the unsatisfiable core, but it cannot be
removed.
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As illustrated by the previous example, since MES extraction algorithms require
adding the negation of a subformula of F , the computed unsatisfiable cores
depend on this negation, which changes as the algorithm executes. Thus, a com-
puted unsatisfiable core provides no information about which clauses need not
be considered further. Despite this negative result, Sections 3.3 and 3.4 develop
solutions for MES extraction that enable clause set refinement.

3.2 Using Model Rotation in MES Extraction

The definition of irredundant clause (see Definition 3) can be associated with
specific truth assignments, that can serve as witnesses of irredundancy.

Proposition 1. A clause c ∈ F is irredundant in F if and only if there exists
a truth assignment μ, such that (F \ {c})[μ] = 1 and c[μ] = 0.

Proof. Follows directly from the definition of an irredundant clause and the
semantics of F \ {c} �� c. ��

In the context of MUS extraction, Proposition 1 is used as a basis of model
rotation [28,4] — a powerful optimization technique that in practice allows to
significantly reduce the number of calls to SAT solver, and results in multiple
orders of magnitude reduction in run-times of hybrid MUS extraction algorithms
on industrial problem instances (cf. [4]). Proposition 1 has also been used in the
context of local search for MUS extraction [32].

In the context of MES extraction, model rotation can be instrumented as
follows. If a SAT solver call returns satisfiable (see, for example, line 7 in Algo-
rithm 1), then we can use the model computed by the solver to look for other
irredundant clauses using Proposition 1. Note that the clauses of the negation of
the working formula (e.g. CNF(¬W) in Algorithm 1) can be disregarded, and the
objective is to modify the returned model such that exactly one other clause of
the working formula becomes falsified. Iteratively, each literal from the currently
falsified clause is flipped, and one checks whether the formula has another single
falsified clause, which can then be declared irredundant according to Proposi-
tion 1, without a SAT solver call. This process is continued recursively from the
newly detected irredundant clause.

Model rotation for MES extraction can be improved further. Since the for-
mula is satisfiable, model rotation may reach assignments where all clauses are
satisfied (note that this situation is not possible in MUS extraction). In this
case, rather than terminating the process, clauses with the smallest number of
satisfied literals are selected, the satisfied literals are flipped, and again one
checks whether the formula has a single unsatisfied clause. As demonstrated in
Section 5, this improved model rotation is very effective for redundancy removal.

3.3 A Reduction of MES to Group-MUS

As argued in Section 3.1, although MUS extraction algorithms can be modified
for MES extraction, clause set refinement [13,29,28] cannot be used. In the con-
text of MUS computation, this technique is paramount for reducing the number
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of SAT solver calls in instances with many redundant clauses. This section de-
velops a reduction of MES computation problem to group-MUS computation
problem [26,29] — recall Definition 2. A key advantage of this reduction is that
it enables clause set refinement.

Proposition 2 (MES to Group-MUS Reduction). Given a CNF formula
F , and any E ⊆ F , let RF(E) be the group-CNF formula D ∪

⋃
c∈E Gc, where

D = CNF(¬F) is the don’t care group, and Gc = {c}. Then, E is an MES of F
if and only if RF(E) is a group-MUS of RF (F).
Proof. We prove both directions simultaneously. Since RF (E) = CNF(¬F) ∪ E ,
we have that E �F (and so E ≡ F), if and only if RF (E) is unsatisfiable. Let c be
any clause of E . Then, by Proposition 1, c is irredundant in E if and only if there
exists an assignment μ, such that (E \ {c})[μ] = 1 and c[μ] = 0. Equivalently,
there is an extension μ′ of μ such that CNF(¬F)[μ′] = 1 and (E \ {c})[μ′] = 1,
i.e. RF(E \ {c}) is satisfiable. ��
Expressing the MES computation problem as a group-MUS computation prob-
lem enables the use of optimization techniques for (group-)MUS extraction in
computing irredundant CNF formulas. Most importantly, the clause-set refine-
ment becomes usable and effective again. We demonstrate this with the following
example.

Example 2. Consider the CNF formula F = (x1) ∧ (x1 ∨ yi ∨ yj), with 1 ≤ i <
j ≤ k, and k ≥ 2. All clauses with a literal in the y variables are redundant, for
a total of k(k−1)/2 redundant clauses. The reduction in Proposition 2 produces
the group-CNF formula RF (F) with the don’t care group D = CNF(¬F), and
a singleton group for each clause in F , i.e. G11 = {(x1)}, Gij = {(x1 ∨ yi ∨ yj)},
with 1 ≤ i < j ≤ k. For this example, let us assume that the group-MUS of
RF(F) is computed using a deletion-based algorithm. Let G11 be the first group
to be analyzed. This is done by removing the clause in G11 from the formula. The
resulting formula has a model μ, with μ(x1) = 0 and μ(yi) = μ(yj) = 1, with
1 ≤ i < j ≤ k. As a result, (x1) is declared irredundant, and added back to the
formula. Afterwards, pick one of the other groups, e.g. G12. If the corresponding
clause is removed from the formula, the resulting formula is unsatisfiable, and
so the clause is declared redundant. More importantly, a CDCL SAT solver will
produce an unsatisfiable core U ⊆ {x1}∪CNF(¬F). Hence, clause set refinement
serves to eliminate all of the remaining groups of clauses, and so the MES is
computed with two SAT solver calls. As noted earlier, MES algorithms based on
adapting existing MUS algorithms are unable to implement clause set refinement,
and so cannot drop k(k − 1)/2 clauses after the second SAT solver call.

Observe that the group-MUS approach to the MES extraction problem, i.e. using
the reduction in Proposition 2, is independent of the actual group-MUS extrac-
tion algorithm used. Hence, any existing group-MUS extraction algorithm can
be used for the MES extraction problem. In practice, given the significant per-
formance difference between deletion-based and insertion-based MUS extraction
algorithms [28], our implementation is based on deletion-based group-MUS ex-
traction and its most recent instantiation, i.e. the hybrid approach in [28].
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3.4 Incremental Reduction of MES to Group-MUS

A major drawback of the group-MUS approach is that for large input formulas
the resulting instances of SAT can be hard. This is due to the CNF encoding of
¬F that produces a large disjunction of auxiliary variables. A solution to this
issue is based on an incremental reduction of MES extraction to group-MUS
extraction. Let T be any subset of clauses of F — we refer to clauses of T as
target clauses, and to the set T itself as a chunk of F . The incremental reduction
is based on the observation that in group-MUS approach the redundancy of any
target clause c ∈ T can be established by analysing c with respect to CNF(¬T )
rather than CNF(¬F). This observation is stated precisely below.

Proposition 3. Let T ⊆ F be a set of target clauses. For any E ⊆ T , let RT (E)
be the group-CNF formula D ∪

⋃
c∈E Gc, where D = F \ T ∪ CNF(¬T ) is the

don’t care group, and Gc = {c}. Then, E is irredundant in F and F \ T ∪ E ≡ F
if and only if RT (E) is a group-MUS of RT (T ).

Note that RT (T ) is unsatisfiable. Also, in the case when the chunk T is taken to
be the whole formula F , the group-CNF formula RT (E) is exactly the formula
RF(E) from Proposition 2, and so the claim of Proposition 2 is a special case of
the claim of Proposition 3. We omit the proof of Proposition 3 as it essentially
repeats the steps of the proof of Proposition 2, using the definition of RT (E)
instead of RF(E).

For the general case, consider a partition F1, . . . ,Fk of F into chunks. Then,
an MES of F can be computed by applying the group-MUS approach of Propo-
sition 3 to each chunk. Proposition 3 is applied in order, with already computed
irredundant subformulas replacing the original (redundant) subformulas. Explic-
itly, for the iteration j, 1 ≤ j ≤ k, the input group-CNF formula in Proposition 3
is defined as follows:

D ∪
⋃

c∈Fj

Gc, with D = E1 ∪ . . . ∪ Ej−1 ∪ Fj+1 ∪ . . .Fk ∪CNF(¬Fj) (1)

as a don’t care group, where Ei, 1 ≤ i < j, is the computed irredundant set of
clauses in Fi, and, as before, Gc = {c}.
Proposition 4. Let F1, . . . ,Fk be a partition of F into chunks. Let Ej be the
set of clauses obtained from applying group-MUS extraction to formula in (1),
and by considering each Fj as the set of target clauses. Let E = E1∪E2∪ . . .∪Ek.
Then E is an MES of F 1.

Proof sketch. The proof uses induction on the sets Fj and Proposition 3 to prove
the following inductive invariant: for 1 ≤ j ≤ k, (

⋃
r≤j Er ∪

⋃
r>j Fr ) ≡ F ,

and the formula
⋃

r≤j Er is irredundant in F .
Base case: Take T = F1, and apply Proposition 3 to formula F .
Inductive step: For 1 < j ≤ k, take T = Fj, and apply Proposition 3 to the
formula

⋃
r<j Er ∪

⋃
r≥j Fr. Then, using the inductive hypothesis, establish the

required invariant. �

1 The proposition is stated slightly informally as to avoid additional notation.
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Algorithm 4: Deletion-based group-MUS extraction of MES with chunks

Input : Formula F = {F1, . . . ,Fk} with k chunks
Output: MES E

1 begin
2 for j ← 1 to k do // Analyze each of the k chunks

3 D = E1 ∪ . . . ∪ Ej−1 ∪Fj+1 ∪ . . . ∪Fk ∪ CNF(¬Fj) // Don’t care group

4 W = Fj // Target group of clauses Fj

5 Ej ← ∅ // Irredundant clauses in chunk j
6 while W �= ∅ do
7 c← SelectRemoveClause(W)
8 (st, ν,U) = SAT(D ∪ Ej ∪W)
9 if st = true then // If SAT, c is irredundant in F

10 Ej ← Ej ∪ {c}
11 (W, Ej)← Rotate(W, Ej , ν) // Apply model rotation

12 else
13 W ← U ∩W // Clause-set refinement

14 E = E1 ∪ . . . ∪ Ek
15 return E // E is an MES

16 end

While Proposition 4 can be used to compute an MES of an input formula F by
iteratively calling a group-MUS extractor, it can also be integrated into a uni-
fied algorithm to enable certain optimizations (e.g. incremental SAT solving).
Algorithm 4 shows the pseudo-code for deletion-based group-MUS approach to
MES extraction using chunks. Different chunk sizes can be considered. Con-
crete examples include chunks of size 1 or a single chunk aggregating all clauses
(i.e. the reduction to group-MUS defined in Proposition 2). For chunks of size
great than 1, the group-MUS approach has the ability to prove several clauses
redundant by using clause-set refinement. Generally, the chunk size in the group-
MUS approach controls the trade-off between the potential power of clause-set
refinement and the difficulty of the instances of SAT given to the SAT solver.

Nevertheless, an essential issue with Algorithm 4 is the selection of the size of
the chunks. The current implementation of the algorithm uses chunks of fixed
size, independently of the size of the formula. Alternative solutions include using
chunk sizes dependent on the size of the formula, and also adaptive chunk sizes.

4 Certification of Correctness

In some applications, it is paramount to guarantee that the computed subfor-
mula is indeed irredundant and, possibly more importantly, that each computed
irredundant subformula E is equivalent to the original CNF formula F . Given
a computed CNF formula E , it is simple to validate whether it is irredundant.
Essentially, one can run one of the algorithms outlined in earlier sections. The
problem of validating whether E ≡ F looks more challenging.



On Computing MESes 169

To check whether E ≡ F , it suffices to exhibit a truth assignment that is a
model of one formula and not of the other. This condition corresponds to testing
the satisfiability of the following CNF formula:

(E ∧ CNF(¬F)) ∨ (F ∧ CNF(¬E)) (2)

Clearly, the resulting instances of SAT are expected to be hard to solve, given
the disjunction and the negation of formulas in (2). Nevertheless, it is also the
case that E ⊆ F and so, F � E . Hence it is only necessary to check whether
E �F . Since F = E ∧R, E �F can be represented as E � E ∧R, or equivalently,
E ∧ (¬E ∨ ¬R)�⊥, which simplifies to E ∧ ¬R�⊥. This condition corresponds
to testing the satisfiability of the following CNF formula:

E ∪ CNF(¬R) (3)

If E ∪ CNF(¬R) has a model, then one can satisfy E while unsatisfying one or
more clauses in R. Hence, the two formulas would not be equivalent.

Although easier than (2), (3) can still result in hard instances of SAT (sim-
ilarly to what happens with the reduction of MES to group-MUS extraction).
A technique to reduce the complexity of the resulting instances of SAT is to
partition R into chunks, and check each chunk separately for equivalence. The
objective is to check whether E �R. If this condition holds, then E ≡ F ; other-
wise E �≡ F . If R is partitioned into a number of subformulas (or chunks), we
get R = R1∧ . . .∧Rk, and so the condition becomes, E �R1∧ . . .∧Rk, that can
also be represented as E ∧(¬R1∨ . . .∨¬Rk)�⊥. This condition holds if and only
if, ∀1≤j≤k , E ∧ ¬Rj �⊥. Hence, the use of chunks allows splitting a potentially
hard (and believed unsatisfiable) instance of SAT, into k (likely) easier (and also
believed unsatisfiable) instances of SAT.

5 Experimental Results

The algorithms described in the previous sections were implemented within the
MUS extraction framework of a state-of-the-art MUS extractor MUSer2 2; the
framework was configured to use SAT solver picosat-935 [5] in the incremental
mode. The experiments were performed on an HPC cluster, where each node
is dual quad-core Intel Xeon E5450 3 GHz with 32 GB of memory. Each algo-
rithm was run with a timeout of 1800 seconds and a memory limit of 4 GB per
input instance. To evaluate the algorithms, we selected 300 problem instances
from practical application domains of SAT used in past SAT competitions 3.
The instances were selected using the following criteria: the instance is solvable
within 1 second by picosat-935, and the number of clauses in the instance
is less than 100,000. These criteria were derived from the worst-case analysis
of deletion-based MES algorithms (whereby the number of SAT calls is linear
in the size of the input formula) and our previous experience with the effects
various optimization techniques in the context of MUS extraction.

2 http://logos.ucd.ie/wiki/doku.php?id=muser.
3 http://www.satcompetition.org/ .

http://logos.ucd.ie/wiki/doku.php?id=muser
http://www.satcompetition.org/
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Fig. 2. Cactus plot with the run times of all algorithms

The cactus plot4 in Fig. 2 provides an overview of the results of our experi-
mental study. The legend in this, and the subsequent plots, is as follows: DEL
represents the implementation of the deletion-based algorithm (Algorithm 1);
INS (resp. DICH) is the implementation of insertion-based (resp. dichotomic)
algorithms from Section 3.1; +MR indicates the addition of model rotation,
while +IMR indicates the addition of the improved version of model rotation
(cf. Section 3.2); GRP-MUS is the implementation of the reduction of MES to
group-MUS from Section 3.3; CHUNK-x is the implementation of the deletion-
based chunked group-oriented MUS algorithm from Section 3.3 with chunk size
x; VBS refers to a virtual best solver 5 — we elaborate on its composition shortly.

A number of conclusions can be drawn from the plot in Fig. 2. First, we note
that the improvements to the plain deletion-based algorithm (DEL) suggested
in Section 3.1, namely the addition of model rotation (DEL+MR) and the im-
proved model rotation (DEL+IMR), have a very significant positive effect on
the performance of the algorithm; also observe that the improved model rota-
tion provides a notable boost over model rotation. Further, it is clear that the
the insertion-based and the dichotomic algorithms, even with the addition of
IMR, do not scale. As a side note, the gap between the performance of these and
the deletion-based algorithm in the MES setting is significantly larger than that
in the MUS setting (see for example [28]) — this is due to the addition of the
negation of the working formula, which is unavoidable in the MES setting. We

4 Cactus plots show the sorted run times of algorithms over all instances and are
commonly used in SAT competitions to compare performance of multiple solvers.

5 VBS represents a solver obtained from running a number of algorithms in parallel.
It can be seen as a naive portfolio solver — we note that portfolio solvers are the
current tour de force in SAT solving.
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Fig. 3. Top and bottom-left: selected scatter plots (timeout 1800 sec.); color range
represents % of redundant clauses in an instance. Bottom-right: cumulative histogram
of the % of redundant clauses in the set of instances; note that the histogram is rotated
90◦ to be consistent with the cactus plot in Fig.2.

also observe the weak performance of the GRP-MUS approach — this is not sur-
prising, since for large formulas, GRP-MUS can produce hard instances of SAT;
this deficiency, in fact, was the motivation for the chunked approach. While
DEL+IMR is among the best performing algorithms, on most of the instances
it is significantly outperformed by the chunked group-oriented MUS algorithm
with chunk size 1000. However, CHUNK-1000 loses to DEL+IMR on some of
the hard instances — increasing the chunk size to 4000 pushes the performance
of the algorithm ahead, however a further increase of chunk size to 8000 begins
to affect the performance negatively. The VBS in Fig. 2 is constructed from
DEL+IMR, GRP-MUS, CHUNK-1000 and CHUNK-4000. The former two are
taken because they represent the extremes of the chunked approach — chunks
of size 1 for DEL+IMR and a single chunk of the size of the input formula for
GRP-MUS. The fact that the results for the VBS configuration (285 solved in-
stances) are clearly superior to any of the individual algorithms indicates that
the proposed algorithms are highly complementary, and are suitable for a multi-
core/portfolio implementation. We emphasize that the plain deletion-based DEL
is, to our knowledge, the current published state-of-the-art in MES computation,
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and so the algorithms proposed in this paper constitute a significant advance-
ment, with the best algorithms solving more than twice the number of instances
within the timeout.

The scatter plots in Fig. 3 provide additional insights into the performance of
some of the algorithms. The color code indicates the amount of redundant clauses
in the formulas: yellow (lighter) indicates close to 100%redundant clauses, whereas
blue (darker) indicates less than 20% redundant clauses. The top-left plot (DEL
vs. DEL+IMR) demonstrates the impact of improved model rotation (IMR) on
the performance of the deletion-based approach. We note that while IMR allows
to solve significantly more instances (263 vs 144 – see Fig. 2), the technique has
little impact on many highly redundant instances (yellow). This behaviour is ex-
pected as IMR can only help to detect irredundant clauses, and it was the motiva-
tion for the development of the group-MUS approach. The top-right plot of Fig. 3
(GRP-MUS vs. DEL+IMR) demonstrates the effectiveness of the group-MUS ap-
proach on the highly redundant instances. The plot clearly shows that the direct
and the group-MUS approaches are complementary – the former excels on mostly
irredundant instances, while the latter is best on highly redundant ones. This ob-
servation provides additional, empirical, justification for the development of the
chunked group-orientedMUS algorithm. The bottom-left plot (DEL vs. CHUNK-
4000) confirms the effectiveness of the chunked approach—we observe significant
performance improvements on instances with diverse degrees of redundancy.

The bottom-right plot in Fig. 3 presents the cumulative histogram of the de-
gree of redundancy in the problem instances used in our experiments. Note that
the instances were selected from the SAT competition benchmark sets prior to
the experiments, and so the selection was not biased by the degree of redundancy.
Nevertheless, approximately 2/3 of the instances have between 20% and 50% re-
dundant clauses, the remaining instances have over 50% redundant clauses, and
close to 5% of the instances have in excess of 90% redundant clauses. We conclude
that problem instances from practical applications may exhibit very significant
levels of redundancy.

6 Conclusions

This paper proposes novel algorithms for computing MESes. The main contri-
butions of the paper can be summarized as follows: (i) Adapting existing MUS
extraction algorithms for MES extraction; (ii) Development of model rotation
for MES extraction, and analysis of why clause set refinement cannot be applied;
(iii) Reduction of MES to group-MUS extraction, which enables both model ro-
tation and clause set refinement to be applied; (iv) Use of chunks for incremental
reduction of MES to group-MUS extraction, aiming at reducing the hardness of
instances of SAT when the formula includes the negation of a CNF formula; and
(v) Development of a solution for the independent certification of the correct-
ness of computed MESes. The experimental results indicate that the algorithms
proposed in this paper improve the direct approach [7] significantly, more than
doubling the number of instances that can be solved, and with significant per-
formance gains, which can exceed one order of magnitude.
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The experimental evaluation carried out in the paper demonstrates that the
developed algorithms are relevant for the practical applications of SAT. Indeed,
our results show that many real-world SAT instances have significant percent-
ages of redundant clauses. These findings clearly motivate revisiting the CNF
encoding techniques used for generating these instances.

Although in this paper we do not address group-MES computation problem
explicitly, the algorithms developed in the paper can be extended without dif-
ficulty to this setting. This could enable the identification and the removal of
redundant constraints in other domains, such as CSP [12,10,9], SMT [35], and
Ontologies [19]. This is the subject of future work.
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Abstract. In the centralized context, global constraints have been essential for
the advancement of constraint reasoning. In this paper we propose to include
soft global constraints in distributed constraint optimization problems (DCOPs).
Looking for efficiency, we study possible decompositions of global constraints,
including the use of extra variables. We extend the distributed search algorithm
BnB-ADOPT+ to support these representations of global constraints. In addi-
tion, we explore the relation of global constraints with soft local consistency in
DCOPs, in particular for the generalized soft arc consistency (GAC) level. We in-
clude specific propagators for some well-known soft global constraints. Finally,
we provide empirical results on several benchmarks.

1 Introduction

Distributed Constraint Optimization Problems (DCOPs) are commonly used for model-
ing many multi-agent coordination problems. DCOPs are formalized in terms of agents,
variables with finite domains and cost functions (a particular case of soft constraints
[12]). Cost functions are used to evaluate the cost of variable assignments. Agents
should find a complete value assignment with minimum sum of costs. It is usually
assumed that each agent handles a single variable, and it also knows about the domain
and cost functions associated with that variable.

In the centralized context, global constraints have been essential for the advancement
of constraint reasoning. The well-known alldifferent(T) global constraint means that all
the variables in the set T must assign a different value (independently of the cardinality
of T ). Soft global constraints are associated with a violation measure that defines the
costs of value assignments. For example, the soft-alldifferent(T) is associated with the
violation measure μvar (the number of variables in T that have to change their value to
satisfy that all are different), or with μdec (the number of pairs of variables in T with
the same value [14]).

In the distributed context, global constraints have been studied in the satisfaction
case [2]. However, to the best of our knowledge, no relation between DCOPs and soft
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Dx1 = {a} Dx2 = {a, b} Dx3 = {a, b}
x1 x2 x3 μvar

a a a 2
a a b 1
a b a 1
a b b 1

x1 x2 μvar

a a 1
a b 0

x1 x3 μvar

a a 1
a b 0

x2 x3 μvar

a a 1
a b 0
b a 0
b b 1

Fig. 1. (Left) soft-alldifferent global constraint with μvar violation measure; (right) a decom-
position in binary constraints. However, soft-alldifferent is not binary decomposable with μvar,
because μx1,x2,x3

var (a, a, a) = 2 �= μx1,x2
var (a, a) + μx1,x3

var (a, a) + μx2,x3
var (a, a) = 3.

global constraints have been established. In this paper, we advocate for the inclusion
of soft global constraints in DCOPs. We assume that a soft constraint instance can be
expressed as a cost function in the weighted model [12], so these terms are used in-
terchangeably in the paper. In DCOPs it is a common assumption that cost functions
are binary, that is, defined over two variables. However, not every cost function rela-
tion can be decomposed into an equivalent set of binary ones. For example, consider
the soft-alldifferent constraint with the violation measure μvar (represented by the cost
function that appears in Figure 1 left). Observe that the tuple (x1 = a, x2 = a, x3 = a)
has a different cost in the global formulation –involving all variables– and in the bi-
nary formulation (three cost functions in Figure 1 right). Hence, this soft constraint is
not binary decomposable with violation measure μvar.1 In general, most soft global
constraints are not binary decomposable, so working with their original formulations is
crucial for their effective inclusion in DCOPs.

Our proposal enhances DCOP expressivity since not every cost function can be ex-
pressed as a set of binary cost functions. We also investigate several decompositions
of soft global constraints, including decompositions with extra variables, looking for
the one that provides the best performance in DCOP solving. We extend the distributed
search algorithm BnB-ADOPT+ to support different decompositions of soft global con-
straints. In addition, we explore the relation of global constraints with soft local consis-
tency in DCOPs, in particular with the generalized soft arc consistency (GAC) level. On
the one hand, the quality of the bounds obtained as result of applying local consistency
is often better when the problem contains global constraints than when it contains an
equivalent binary formulation. On the other hand, enforcing GAC on global constraints
can be expensive using generic propagators. In the worst case, this is exponential in
the number of variables. However, efficient propagators have been proposed for some
global constraints that exploit constraint semantics, reaching the consistency level with
lower complexity (usually polynomial) than with generic propagators.

The paper is structured as follows. In Section 2 we define some concepts needed for
the rest of the paper. We analyze the decomposition of global constraints in a polyno-
mial number of fixed arity constraints in Section 3. We explain how to include global
constraints in DCOPs in Section 4, jointly with the extension of the distributed search
algorithm BnB-ADOPT+ to handle them (without and with GAC enforcement). We
provide an empirical evaluation of the proposed techniques in Section 5. Finally, we
conclude the paper in Section 6.

1 However soft-alldifferent is binary decomposable with violation measure μdec [14].
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2 Preliminaries

Concepts such as constraint optimization, soft global constraints and soft arc consis-
tency have been defined using a centralized point of view, but they can easily be gen-
eralized to the distributed context. Here we recall the original definitions, the DCOP
generalization and a short description of the BnB-ADOPT+ algorithm.

COP. A Constraint Optimization Problem (COP) is defined by (X ,D, C) where: X =
{x1, . . . , xn} is a set of variables. D = {Dx1 , . . . , Dxn} is a set of finite domains
such that Dxi is the value set for xi. C is a finite set of cost functions, where every
cost function C(T ) :

∏
xi∈T Dxi �→ N ∪ {0,∞} on the ordered subset of variables

T = (x1, . . . , xr) specifies the costs of every combination of values on T . It is worth
noting that hard constraints can be modelled in this formalism associating 0/∞ costs
with permitted/forbidden tuples, respectively. When a cost function C(T ) is evaluated
on a value tuple t we follow the notation: CT (t). The cost of a tuple t is calculated
adding all individual cost functions evaluated on t. If& is the lowest unacceptable cost,
a solution is a tuple t containing a complete variable assignment with cost lower than
&. An optimal solution is a solution with minimum cost.

These problems are in many cases solved using a branch-and-bound schema, usually
enhanced with sophisticated methods to improve lower bound computation (maintain-
ing some forms of local consistency at each node). This facilitates pruning of the current
branch and removal of future values, which improves performance.

Soft Global Constraints. A soft global constraint C is a class of soft constraints whose
arity is not fixed. Constraints with different arities can be defined by the same class.
For instance, soft-alldifferent(x1, x2, x3) and soft-alldifferent(x1, x4, x5, x6) are two
instances of the soft-alldifferent global constraint. The cost of global constraints is eval-
uated using a violation measure μ. A soft global constraint C with violation measure
μ is contractible iff μ is a non-decreasing function [10].2 A soft global constraint C
with violation measure μ admits a binary decomposition without extra variables iff
for any instance C(x1, . . . , xp) of C, there exists a set S of binary soft constraints
involving only variables x1, . . . , xp such that for any value tuple t on x1, . . . , xp,∑

C(xi,xj)∈S Cxi,xj (t[xi, xj ])= μ(t). We also say that C is semantically decompos-
able in S.

Soft Arc Consistency. We consider a COP: (i, a) means xi taking value a, & is the
lowest unacceptable cost, C(xi) is the unary cost function on xi values, Cφ is a zero
arity cost function that represents a lower bound of the cost of any solution. As [8,9],
we consider the following local consistencies:

• Node Consistency*: (i, a) is node consistent* (NC∗) if Cφ + Cxi(a) < &; xi is
NC∗ if all its values are NC∗ and there is a ∈ Dxi s.t. Cxi(a) = 0; a problem is
NC∗ if every variable is NC∗.

2 Function f on a sequence is non-decreasing if f(a) ≤ f(b), for every sequence a and b
such that a is a prefix of b [10]. The intuition behind is as follows: C with μ is contractible
when μ(a, b, c) ≤ μ(a, b, c, d) ≤ μ(a, b, c, d, e)...., so shortening by the right the sequence of
variables on which C is defined gives a valid lower bound to the cost of C. This is in relation
with the nested representation, defined in Section 4.
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• Generalized Arc Consistency*: (i, a) is generalized arc consistent (GAC) wrt. a
non-unary cost function C(T ), if there exist a value tuple t on T such that (i, a) ∈ t
andCT (t) = 0; xi is GAC if all its values are GAC wrt. every cost function involving
xi; a problem is GAC∗ if every variable is GAC and NC∗.

In the following we refer to NC∗ and GAC∗ as NC and GAC, without asterisk. GAC
can be reached by shifting costs from the problem and deleting values not NC. Cost
are shifted with equivalent preserving transformations in the following way: first pro-
jecting the minimum cost from non-unary cost functions to unary costs functions, and
then projecting the minimum cost from unary cost functions into Cφ. After projection,
node inconsistent values are deleted. When a value is deleted in xi, GAC is rechecked
on every variable that xi is constrained with, so a deleted value might cause further
deletions. The GAC check must be performed until no further values are deleted. The
systematic application of these operations (projection and deletion of node inconsistent
values) does not change the optimum (for details on projections and optimality, see [8]).

DCOP. A Distributed Constraint Optimization Problem (DCOP) [13] is defined by
(X ,D, C,A, α) where X ,D and C define a COP and: A = {a1, . . . , ap} is a set of
agents. α : X → A maps each variable to one agent. Solving a DCOP is an NP-
hard task. Agents communicate and coordinate while looking for the optimal solution
through messages. In this paper, it is assumed that: messages are never lost; messages
sent from one agent to another are delivered in the same order they were sent; α maps
a single variable to each agent, so we use the terms variable and agent interchangeably.

BnB-ADOPT+. BnB-ADOPT [16] is a reference algorithm for optimal DCOP solving.
Agents are arranged in a depth-first search (DFS) pseudo-tree and asynchronously per-
form a depth-first-branch-and-bound search until an optimal solution is found. Agents
may have a parent, children (connected by tree edges of the pseudo-tree), pseudopar-
ents and pseudochildren (connected by back-edges of the pseudo-tree) [13]. Each agent
self holds a context that is updated with message exchange. The context holds a set
of assignments involving self ancestors. Agents exchange the following messages:

• VALUE(i , j , val , th): agent i informs child or pseudochild j that it has taken value
val with threshold th;
• COST(k , j , context , lb, ub): agent k informs parent j that with context its bounds

are lb and ub;
• TERMINATE(i, j): agent i informs child j that agent i terminates.

A BnB-ADOPT agent executes the following loop: it reads and processes all incoming
messages and assigns a value. Then, it sends a VALUE to each child or pseudochild
and a COST to its parent. When BnB-ADOPT terminates, each agent has assigned the
optimum value for its variable. We use the BnB-ADOPT+ version [7], which saves
redundant messages. For more details, see [16,7].

3 Soft Global Constraint Decompositions in DCOP

In this Section we analyze the different forms of decomposing a soft global constraint
into a polynomial number of smaller constraints of fixed arity, in the DCOP context
(with the standard assumption that each agent owns a single variable).
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Fig. 2. Left: The soft-alldifferent(x1, x2, x3, x4) global constraint with the μdec violation mea-
sure. Center: Its binary decomposition, �=s stands for soft binary inequality. Right: Binary de-
composition in DCOP; agents are represented with discontinuous lines.

3.1 Decompositions without Extra Variables

As previously mentioned, some global constraints are semantically decomposable in
a set of binary constraints on the variables of the global constraint. For example, in
the hard case alldifferent is semantically decomposable in a clique of binary inequality
constraints between the variables involved in the global constraint. Passing to the soft
case, the soft-alldifferent global constraint with the violation measure μdec is semanti-
cally equivalent to a clique of soft binary inequalities. A soft binary inequality has 0
cost if the involved variables have different values and a cost of 1 if they have the same
value. Including the binary decomposition of a soft global constraint does not cause
extra difficulties in most DCOP solving algorithms (you are simply adding some extra
soft binary constraints that are treated as any other soft constraint). Figure 2 shows the
decomposition of soft-alldifferent into a clique of soft binary inequalities.

3.2 Decompositions with Extra Variables

In the hard case, there are global constraints that are not binary decomposable but
they can be decomposed in a polynomial number of smaller, fixed arity constraints
[4,3], if we allow a polynomial number of extra variables. For example, the hard
atmost[k, v](y1, ..., yp) global constraint establishes that value v cannot appear more
than k times in {y1, ..., yp}. Allowing p+1 extra variables {z0, z1, ..., zp}with domains
Dzj = {0, 1, ..., j}, p new ternary constraints:

if yi = v then zi = zi−1 + 1 else zi = zi−1 i : 1, ..., p

and one unary constraint:

zp ≤ k

It is easy to see that the original constraint is semantically equivalent to this set of new
constraints. Variables {z0, z1, ..., zp} are acting as counters: zi contains the number of
times value v appears in the original variables y1, ..., yi. Variables {z0, z1, ..., zp} are
called extra variables because they are not present in the original problem definition.
However, they are treated as any other problem variable.

Passing to the soft case, the soft-atmost[k, v](y1, ..., yp) has the following meaning:
if value v appears less than or k times in the set {y1, ..., yp} that assignment costs
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0, otherwise it costs the number of times v appears minus k. This soft constraint can
be decomposed with extra variables as follows. We keep the same extra variables as
in the hard decomposition {z0, z1, ..., zp} with the same domains Dzj = {0, 1, ..., j}.
Previous p ternary constraints remain as hard constraints modelled in the soft formalism
(permitted/forbidden tuples 0/∞ cost) plus the unary constraint that becomes the soft
one:

if zp ≤ k then cost = 0 else cost = zp − k

In tabular form with μ as cost, each ternary constraint generates a table similar to the
table on the left, while the unary constraint generates a table similar to the table on the
right:

zi−1 yi zi μ

c v c+ 1 0
c �= v c 0

otherwise ∞

zp μ

≤ k 0
> k zp − k

The proposed decomposition appears in Figure 3.3

Allowing extra variables in DCOP, a question naturally follows: which agent owns
these extra variables, which have no real existence? To solve this issue we propose to
add a number of virtual agents, to own these extra variables. While this approach allows
to keep the assumption that each agent owns a single variable, a new issue appears on the
existence and activity of virtual agents with respect to real agents. Previous approaches
have used the idea of virtual agents to accommodate modifications or extensions that
deviate from original problem structure [13]. In addition, all variables are treated in the
same way, one variable per agent, so no preference is given to a particular subset of
variables in front of others. Implementation maintains uniformity for all variables.

Virtual agents can be simulated by real agents. If some real agents have substantial
computational/communication resources, they can host some virtual agents. The precise
allocation of virtual agents depends on the nature of the particular application to solve.

4 Adding Soft Global Constraints in DCOP

We consider several ways to model the inclusion of a soft global constraint in DCOPs,
looking for the one that gives the best performance. The user chooses one of the three
representations and the solving is done on that representation. In the rest of this Section,
the term ”constraint” always mean ”soft constraint” (either global or not).

We assume that agents are ordered. The evaluation of a global constraint C(T ) by
every agent depends on the selected model. We analyze the three following representa-
tions:

• Direct representation. C is treated as a generic constraint of arity |T |. Only one
agent involved in the constraint evaluates it: the one that appears last in pseudo-tree
ordering.

3 Observe that local consistencies on decompositions of global cost functions has recently been
explored in [1].
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Fig. 3. Left: The soft-atmost[k, v](y1, ..., yp) soft global constraint. Center: Its decomposition in
p ternary and one unary constraint. Right: This decomposition in the distributed context; agents
are represented with discontinuous lines.

• Nested representation. If C is contractible, then C allows nested representation.
The nested representation of C(T ) with T = {xi1 , . . . , xip} is the set of con-
straints {C(xi1 , . . . , xij ) with j ∈ 2 . . . p}. For instance, the nested representation
of soft-alldifferent(x1, x2, x3, x4) is the set S = {soft-alldifferent(x1, x2), soft-
alldifferent(x1, x2, x3), soft-alldifferent (x1, x2, x3, x4)}. The nested representa-
tion has the following benefit. Since x2, x3 and x4 are the last agent of a constraint
in S, any of them is able to evaluate that particular constraint. When assignments
are made following the order x1, x2, x3, x4, every intermediate agent is able to ag-
gregate costs and calculate a lower bound of the current partial solution. Since C
is contractible, this bound increases monotonically on every agent. By this, it is
possible to calculate updated lower bounds during search and backtrack earlier if
the current solution has unacceptable cost.
• Bounded arity representation. If C is binary decomposable without extra variables,

agent self includes all constraints of the binary decomposition of C that involve
xself in their scope. Otherwise, if C is decomposable with extra variables, agent
self includes all constraints of the decomposition of C that involve xself in their
scope. On the contrary with previous representations (direct and nested), constraints
included by self are non-global.

Since the nested representation allows to calculate updated bounds and performs ef-
ficient backtracking, it is expected to be more efficient than the direct representation.
However not all global constraints are contractible, so the direct representation has to be
analyzed. In the bounded arity representation every intermediate agent is an evaluator,
as in the nested representation.

4.1 Search with BnB-ADOPT+

From now on, we differentiate between two types of constraint instances: global con-
straints (as a result of the direct and nested representations) and non-global constraints
(coming from bounded arity representation of global constraints, as well as particular
constraints that may exist in the considered problem).

BnB-ADOPT+ can be generalized to handle constraints of any arity. It is required
that each constraint is evaluated by the last of the agents involved in the constraint in
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the partial ordering of the pseudo-tree, while other agents have to send their values to
the evaluator. This simple strategy is mentioned in [16,13]. We assume that our version
of BnB-ADOPT+ includes this generalization.

We have extended the distributed search algorithm BnB-ADOPT+ [7] to support
global constraints. The following modifications are needed:

1. (self denotes a generic agent) self keeps a set of global constraints, separated from
the set of non-global constraints it is involved. Agent self knows about (and stores)
a constraint C iff self is involved in C. Every constraint C(T ) implicitly contains
the agents involved in T (neighbors of self ). For some global constraints, addi-
tional information can be stored. For example, for the soft-atmost[k, v] constraint,
parameters k (number of repetitions) and v (value) are stored.

2. During the search process, every time self needs to evaluate the cost of a given
value v, all local costs are aggregated. Non-global constraints are evaluated as
usual, and global constraints are evaluated according to their violation measure.

3. VALUE messages are sent to agents, depending on the constraint type:
• For a non-global constraint, VALUE messages are sent to all the children and

the last pseudochild in the ordering (the deepest agent in the DFS tree involved
in the constraint evaluates it; VALUE to children are needed because they in-
clude a threshold required in BnB-ADOPT; observe that for binary constraints
this is the original BnB-ADOPT behavior).
• For a global constraint, there are two options:

- For the direct representation, VALUE messages are sent to all the children
and the last pseudochild in the ordering (the deepest agent in the DFS
tree involved in the constraint evaluates it; VALUE to children are needed
because they include a threshold required in BnB-ADOPT). 4

- For the nested representation, VALUE messages are sent to all children and
all pseudochildren (any child or pseudochild is able to evaluate a constraint
of the nested representation).

4. COST messages include a list of all the agents that have evaluated a global con-
straint. This is done to prevent duplication of costs when using the nested represen-
tation and it is explained in the next paragraphs.

Figure 4 shows the pseudocode for cost aggregation in BnB-ADOPT+ (lines [1-4]).
Costs coming from non-global constraints are calculated as usual, aggregating all non-
global constraint costs evaluated on self value and the assignments of the current con-
text (lines [5-13]). Costs coming from global constraints are calculated in lines [14-27].
Although there is no need to separate non-global from global cost aggregation, we have
presented them in separate procedures for a better understanding of the new modifica-
tions.

For every global constraint of the set (globalConstraintSet) self creates a tuple with
the assignments in its current context (assignments, lines [17-19]). If self is the deep-
est agent in the DFS tree (taking into account the variables involved in the global con-
straint) then self evaluates the constraint (lines [20-21]). If self is an intermediate

4 In distributed search, a global constraint in the direct representation has the same treatment
as a non-global one. However, when GAC is enforced, global and non-global constraints are
treated differently (Section 4.2).
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(1) procedure CalculateCost(value)
(2) cost = cost + NonGlobalCostWithValue(value);
(3) cost = cost + GlobalCostWithValue(value);
(4) return cost;

(5) function NonGlobalCostWithValue(value)
(6) cost = 0;
(7) for each nonGlobal ∈ nonGlobalConstraintSet do
(8) assignments = new list(); assignments.add(self, value);
(9) for each (xi , di) ∈ context do
(10) if xi ∈ nonGlobal.vars then assignments.add(xi, di);
(11) if assignments.size == nonGlobal.vars.size then //self is the last evaluator
(12) cost = cost + nonGlobal.Evaluate(assignments);
(13) return cost;

(14) function GlobalCostWithValue(value)
(15) cost = 0;
(16) for each global ∈ globalConstraintSet do
(17) assignments = new list(); assignments.add(self, value);
(18) for each (xi , di ) ∈ context do
(19) if xi ∈ global.vars then assignments.add(xi, di);
(20) if assignments.size == global.vars.size then //self is the last evaluator
(21) cost = cost + global.μ.Evaluate(assignments);
(22) else //self is an intermediate agent in the restriction
(23) if NESTED representation then
(24) for each xi ∈ global.vars do
(25) if lowerGlobalEvaluators.contain(xi) then cost = cost + 0;
(26) else cost = cost + global.μ.Evaluate(assignments);
(27) return cost;

Fig. 4. Aggregating costs of binary and global cost functions

agent, it does the following. If representation is direct, self cannot evaluate the global
constraint: it does nothing and cost remains unchanged. If representation is nested, it
requires some care. A nested global constraint is evaluated more than once by interme-
diate agents and if these costs are simply aggregated duplication of costs may occur. To
prevent this, COST messages include the set of agents that have evaluated global con-
straints (lowerGlobalEvaluators). When a COST message arrives, self knows which
agents have evaluated its global constraints and contributed to the lower bound. If some
of them appear in the scope of C, then self does not evaluate C (lines [25-26]). By
doing this, the deepest agent in the DFS tree evaluating the global constraint precludes
any other agent in the same branch to evaluate the constraint, avoiding cost duplication.
Preference is given to the deepest agent because it is the one that receives more value
assignments and can perform a more informed evaluation. When bounds coming from
a branch of the DFS are reinitialized (this happens under certain conditions in BnB-
ADOPT, for details see [16]), the agents in the set lowerGlobalEvaluators lying on that
branch are removed.

4.2 Propagation with BnB-ADOPT+

Specific propagators exploiting the semantics of global constraints have been proposed
in the centralized case [9]. These propagators allow to achieve generalized arc consis-
tency in polynomial time whereas a generic propagator is exponential in the number of
variables in the scope of the constraint.

Soft local consistency is based on equivalent preserving transformations where costs
are shifted from non-unary cost functions to unary cost functions. The same technique
can be applied in distributed. We project costs from non-global/global cost functions to
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BnB-ADOPT+-UGAC messages:

VALUE(sender ,destination, value, threshold,�,Cφ)

COST(sender , destination, context[], lb, ub, subtreeContr, lowerGlobalEvaluators)

STOP(sender , destination, emptydomain)

DEL(sender ,destination, value)

Fig. 5. Messages of BnB-ADOPT+-UGAC. New parts wrt. BnB-ADOPT+ are underlined

unary cost functions and finally project unary costs to Cφ. After projections are made
agents check their domains searching for inconsistent values. For this, some modifica-
tions are needed:

• The domain of neighboring agents (agents connected with self by soft constraints)
are represented in self .
• A new DEL message is added to notify value deletions.
• COST and VALUE messages include extra information.

Following the technique proposed in [6], we maintain GAC during search performing
only unconditional deletions, so we call it unconditional generalized arc consistency
(UGAC). 5 An agent self deletes a value v unconditionally if this value is assured
to be sub-optimal and does not need to be restored again during the search process. If
selfcontains a value v not NC (Cself (v)+Cφ > &) then v can be deleted uncondition-
ally because the cost of a solution containing the assignment self = v is necessarily
greater than&. We also detect unconditional deletions in the following way. Let us con-
sider agent self executing BnB-ADOPT+. Suppose self assigns value v and sends the
corresponding VALUE messages. As response, COST messages arrive. We consider
those COST messages whose context is simply (self , v). This means that the bounds
informed in these COST messages only depend on self assignment (observe that the
root agent always receives such COST messages). If the sum of the lower bounds con-
tained in those COST messages exceeds &, v can be deleted unconditionally because
the cost of a solution containing the assignment self = v is necessarily greater than&.

As in [6], messages include information required to perform deletions, namely &
(the lowest unacceptable cost), Cφ (the minimum cost of any complete assignment),
the subtree contribution to Cφ (each node k computes the contribution to the Cφ of the
subtree rooted at k), and the set of agents lower than the current one that are evaluators
of global constraints in which the current is involved. These four elements travel in
existing BnB-ADOPT+ messages (the first two in VALUE messages, the last two in
COST messages). In addition, a new message DEL(self , k, v) is added, to notify agent
k that self deletes value v. The structure of these new messages appears in Figure 5.
When self receives a VALUE message, self updates its local copies of & and Cφ if
the values contained in the received message are better (lower & or higher Cφ). When
self receives a COST message from a child c, self records c subtree contribution to
Cφ and the list of lower agent global evaluators. When self receives a DEL message,
self removes the deleted value from its domain copy of the sender agent and performs

5 Previous results [5] indicate that conditional deletions do not always pay off in terms of com-
munication cost. Because of that, we concentrate here on unconditional deletions.
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(1) procedure ProjectFromAllDiffToUnary(global, v)
(2) graph = graphsSet.get(global); //the graph associated with global is fetched
(3) minCost = minCost + getMinCostFlow(graph);
(4) for each xi ∈ global.vars do
(5) minCost = minCost + CostWithFlow(graph, xi , v);
(6) if minCost > 0 then
(7) graph.getArc(xi, v).cost = cost − minCost;
(8) if xi = self then Cself (v) = Cself (v) + minCost;

(9) function getMinCostFlow(graph)
(10) graph.SuccesiveShortestPath();
(11) minCostF low = 0;
(12) for each arc ∈ graph.arcs do
(13) minCostF low = minCostF low + (arc.flow ∗ arc.cost);
(14) return minCostF low;

(15) function CostWithFlow(graph, xi, v)
(17) if graph.arc(xi, v).flow = 0 then return 0;
(19) path = graph.residualGraph.F indShortestPath(xi, v);//shortest path from v to xi in the residual graph
(20) flow = ∞; cost = 0; //calculate flow as the minimum capacity in this path
(21) for each arc ∈ path do
(22) if arc.capacity < flow then flow = arc.capacity;
(24) for each arc ∈ path do
(25) cost = flow ∗ arc.cost;
(26) return cost;

Fig. 6. Projection with soft-alldifferent global constraint

projections from the soft constraints involving the sender agent to its unary costs and to
Cφ. When & or Cφ change, Dself is tested for possible deletions.

This mechanism described to detect and propagate unconditional deletions is similar
to the one proposed in [6]. However, to reach the GAC level agents need to project
costs not only from binary cost functions, but from global cost functions as well. In
the following, we describe how to project binary and global costs specifically from the
soft-alldifferent and soft-atmost global constraints.

Projecting Cost with Bounded Arity Constraints. The projection of costs from cost
function C(T ) to the unary cost function Cxi(a), where T is a fixed set of variables,
xi ∈ T and a ∈ Dxi is a flow of costs defined as follows. Let αv be the minimum cost in
the set of tuples of C(T ) where xi = a (namely αa = mint∈tuples s.t. xi=aCT (t)). The
projection consists in adding αa to Cxi(a) (namely, Cxi(a) = Cxi(a)+αa, ∀a ∈ Dxi)
and subtracting αa from CT (t) (namely, CT (t) = CT (t) − αa, ∀t ∈ tuples s.t. xi =
a, ∀a ∈ Dxi). Every agent in T performs projections following a fixed order (projec-
tions are done first over higher agents in the pseudo tree). As a result, cost functions are
updated the same way in all agents.

Projecting Costs with soft-alldifferent. We follow the approach described in [9] for
the centralized case, where GAC is enforced on the soft-alldifferent constraint in poly-
nomial time, whereas it is exponential when a generic algorithm is used.

A graph for every soft-alldifferent constraint is constructed following [15]. This
graph is stored by the agent and updated during execution. Every time a projection
operation is required, instead of exhaustively looking at all tuples of the global con-
straint, the minimum cost that can be projected is computed as the flow of minimum
cost of the graph associated with the constraint [9]. Minimum flow cost computation
is based on the successive shortest path algorithm, which searches shortest paths in the
graph until no more flows can be added to the graph. Pseudocode appears in Figure 6.
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(1) procedure ProjectFromAtMostToUnary(global, v)
(2) if global.v = v and Dself .contains(v) then
(3) singletonCounter = 0; cost = 0;
(4) for each xi ∈ global.vars do
(5) if Dxi

.contains(v) and Dxi
.size() = 1 then

(6) singletonCounter = singletonCounter + 1;
(7) if singletonCounter > global.k then
(8) cost = singletonCounter − global.k;
(9) if cost > global.projectedCost then
(10) cost = temp;
(11) cost = cost− global.projectedCost;
(12) global.projectedCost = temp;
(13) if global.vars[0] = self then Cself (v) = Cself (v) + cost;

Fig. 7. Projection with soft-atmost[k, v] global constraint

Evaluation of these propagators in the distributed context is an extra issue because
it is not based on table look-ups. In the centralized case, they are usually evaluated by
their CPU time. An evaluation proposal appears in Section 5.

Projecting costs with soft-atmost. For the soft-atmost global constraint we propose the
following technique to project costs from the global constraint soft-atmost[k, v](T ) to
the unary cost functionsCxi(v). Agent xi counts how many agents in T have a singleton
domain {v}. If the number of singleton domains {v} is greater than k, a minimum cost
equal to the number of singleton domains {v} minus k can be added to the unary cost
Cxi(v) in one of the agents of the global constraint. We always project on the first agent
of the constraint (we choose the first agent because in case of value deletion the search
space reduction is larger). To maintain equivalence, the soft-atmost constraint stores
this cost, that will be decremented from any future projection performed. Pseudocode
appears in Figure 7.

5 Experimental Results

To evaluate the impact of including soft global constraints, we tested on several random
DCOPs sets including soft-alldifferent and soft-atmost global constraints. The first set
of experiments considers binary random DCOPs with 10 variables and domain size of
5. The number of binary cost functions is n(n−1)/2∗p1, where n is the number of vari-
ables and p1 varies in the range [0.2, 0.9] in steps of 0.1. Binary costs are selected from
an uniform cost distribution. Two types of binary cost functions are used, cheap and
expensive. Cheap cost functions extract costs from the set {0, ..., 10} while expensive
ones extract costs from the set {0, ..., 1000}. The proportion of expensive cost func-
tions is 1/4 of the total number of binary cost functions (this is done to introduce some
variability among binary tuple costs [6]). In addition to binary constraints, global con-
straints are included. The first set of experiments includes 2 soft-alldifferent(T ) global
constraints in every instance, where T is a set of 5 randomly chosen variables. The vi-
olation measure is μdec. The second set of experiments includes 2 soft-atmost[k,v](T )
global constraints in every instance, where T is a set of 5 randomly chosen variables,
k (number of repetitions) is randomly chose from the set {0, ..., 3} and v (value) is
randomly selected from the variable domain. The violation measure used is μvar. To
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Fig. 8. Experimental results of random DCOPs including (left) soft-alldifferent global constraints
with the violation measure μdec; (right) soft-atmost global constraints with the violation measure
μvar

balance binary and global costs, the cost of the soft-alldifferent and soft-atmost con-
straints is calculated as the amount of the violation measure multiplied by 1000.

We tested the extended versions of BnB-ADOPT+ and BnB-ADOPT+-UGAC able
to handle global constraints using a discrete event simulator. Computational effort is
evaluated in terms of non-concurrent constraint checks (NCCCs) [11]. Network load
is evaluated in terms of the number of messages exchanged. Execution considers the
different models to incorporate soft global constraints. For soft-atmost with μvar we
tested direct and nested representation, and the decomposition with extra variables. For
soft-alldifferent with μdec we tested the direct and nested representations, jointly with
its binary decomposition.

Specifically for UGAC enforcement, computational effort is measured as follows.
For the sets including soft-alldifferent global constraints, we use a special propagator
proposed in [9]. Every time a projection operation is required, instead of exhaustively
looking at all tuples of the global constraint (which would increment the NCCC counter
for every tuple), we compute the minimum flow of this graph. Minimum flow cost
computation is based on the successive shortest path algorithm. We can think of every
shortest path computation as a variable assignment of the global constraint.

We assess the computational effort of computing the shortest path algorithm as the
number of nodes of the graph where this algorithm is executed (looks reasonable for
small graphs, which is the case here). Each time the successive shortest path algorithm
is executed, we add this number to the NCCC counter of the agent.
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For the sets including the soft-atmost global constraints, every time the cost of the
violation measure is computed as the number of singleton domains {v} minus k, the
NCCC counter is incremented.

Figure 8 (left) contains the results of the first experiment including soft-alldifferent
with violation measure μdec. Figure 8 (right) contains the results of the second experi-
ment including soft-atmost with violation measure μvar.

From these results, we observe the following facts. First, for BnB-ADOPT+, the
nested representation offers the best performance both in terms of communication cost
and computation effort (number of messages and NCCCs, observe the logarithmic
scale), at substantial distance. In the direct representation, VALUE messages are sent
to all children and the last pseudochild in the global constraint, whereas in the nested
representation VALUE messages are sent to all children and all pseudochildren in the
global constraint. However the early detection of dead-ends compensates by far the
extra number of messages that should be sent in the nested representation.

Second, for BnB-ADOPT+, the nested representation is substantially better (in terms
of messages and NCCCs) than the binary decomposition (in soft-alldifferent) and than
the decomposition with extra variables (in soft-atmost). If an agent changes value, it
will send the same number of VALUE messages in the nested representation than in
the clique of binary constraints (assuming that the binary decomposition is a clique,
as happens with soft-alldifferent). However, in the nested representation receivers will
evaluate larger constraints (with arity greater than 2), so they are more effective and as
global effect this representation requires less messages than the binary decomposition.
The decomposition with extra variables includes many new variables in the problem,
causing many extra messages. These messages lead to more computational effort (more
NCCCs).

Third, for all the representations and for most of the problems considered, UGAC
maintenance always pays off (in terms of messages and NCCCs). In other words, BnB-
ADOPT+-UGAC consistently uses less computational and communication resources
than BnB-ADOPT+, no matter the used representation. Savings are substantial, spe-
cially for low and medium connectivities. Although UGAC causes to do more work
each time a message is exchanged, the reduction in messages is so drastic that the
overall effect is less computation (NCCC curves have the same shape as number of
messages). This important fact indicates the impact of this limited form of soft GAC
maintenance in distributed constraint optimization.

A closer look to the soft-alldifferent results of nested representation and binary de-
composition indicate that as connectivity increases, messages/NCCCs required by the
binary decomposition grow higher than those of the nested representation. The num-
ber of value deletions using the nested representation is higher than using the binary
decomposition (because pruning using global constraints is more powerful than using
the binary decomposition); as consequence, the search space is slightly smaller when
using the nested representation, and due to this, less messages are required for its com-
plete exploration. Processing less messages causes to decrease the computational effort
measured in NCCCs.

From these results, we conclude that the nested decomposition offers the best perfor-
mance, at a substantial distance of the other considered representations. Decomposition
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with extra variables using virtual agents and the direct representation are models to
avoid when representing contractible global constraints in distributed constraint opti-
mization. Enforcing UGAC pays off, causing nice savings in all representations.

6 Conclusions

In this paper we have introduced the use of soft global constraints in distributed con-
straint optimization. We have proposed several ways to represent soft global constraints
in a distributed constraint network, depending on soft global constraint properties. We
extended the distributed search algorithm BnB-ADOPT+ to support the inclusion of
global constraints. We evaluated its performance with and without the UGAC consis-
tency level (generalized arc consistency with unconditional deletions).

From this work, we can extract the following conclusions:

• the use of global constraints is necessary in distributed constraint optimization to
extend DCOP expressivity,
• considering two global constraints as a proof of concept, we show,

- if the added global constraint is contractible, the nested representation is the
one that, at substantial distance from others, offers the best performance both
in terms of communication cost (number of messages) and computational effort
(NCCCs),

- UGAC maintenance always pays off in terms of number of messages, causing
also less NCCCs in a very substantial portion of the experiments.

As future work, we plan to consider the extension of this work to other DCOP solving
algorithms, as well as extending the empirical evaluation to other global constraints.
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Abstract. Weighted average expressions frequently appear in the con-
text of allocation problems with balancing based constraints. In combi-
natorial optimization they are typically avoided by exploiting problems
specificities or by operating on the search process. This approach fails
to apply when the weights are decision variables and when the average
value is part of a more complex expression. In this paper, we introduce
a novel average constraint to provide a convenient model and efficient
propagation for weighted average expressions appearing in a combinato-
rial model. This result is especially useful for Empirical Models extracted
via Machine Learning (see [2]), which frequently count average expres-
sions among their inputs. We provide basic and incremental filtering
algorithms. The approach is tested on classical benchmarks from the OR
literature and on a workload dispatching problem featuring an Empirical
Model. In our experimentation the novel constraint, in particular with
incremental filtering, proved to be even more efficient than traditional
techniques to tackle weighted average expressions.

1 Introduction

A weighted average expression is a function in the form:

avg(v, w) =

∑n−1
i=0 vi · wi∑n−1

i=0 wi

(1)

where vi and wi respectively are the value and the weight of each term in the
average and the notation v, w refers to the whole vector of values/weights and
n is the number of terms. We assume all weights are non-negative. Moreover, we
assume avg(v, w) = 0 if all weights are 0. When appearing in a combinatorial
model, both the term values and weights of the expression may be variables, say
Vi and Wi. Weighted average expressions are found in a number of application
settings, such as balancing the workload of assembly lines, fair scheduling of
work shifts, uniform distribution of travel distances in routing problems.

Average expressions also frequently appear as inputs of Empirical Models.
Those are Machine Learning models (such as Neural Networks, Support Vector
Machines or Decision Trees), obtained via training (over a real world system or a
simulator) and encoded using some combinatorial optimization technology. Em-
pirical Models have been recently proposed as a mean to enable decision making
over complex systems [2]. The approach has in principle broad applicability, but
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the extracted models often feature average values as part of their input (e.g. [1]).
Hence the ability to deal with weighted average expressions is essential for the
applicability of such methods.

Research efforts so far have been focused on balancing issues (see the works on
the spread [7,9] and deviation constraint [10,11]). Balancing involves keeping
the average close to a target value and avoiding outliers. A general formulation
for a balancing constraint has been given in terms of p-norm in [10] and [8],
for the case where all weights are constant and equal to 1. In this situation the
average expression has fixed denominator and is therefore linear and easy to
handle. Hence, the spread and deviation constraint focus on providing more
powerful filtering by respectively taking into account restrictions on the variance
and on the total deviation.

There are however cases where non-constant weights are definitely handy. As-
sume we want to balance the average per-depot travel time in a Vehicle Routing
Problem with n vehicles and multiple depots. The assignment of a vehicle i to
depot j can be conveniently modeled as a {0, 1} variable Wi,j, leading to:

Yj =

∑n−1
i=0 Vi · Wi∑n−1

i=0 Wi
or

n−1∑
i=0

Vi · Wi = Yj ·
n−1∑
i=0

Wi (2)

where Vi is the travel distance for vehicle i and Yj is the average travel distance
for depot j. The left-most formulation requires the denominator to be strictly
positive. Unless the number of vehicles per depot is a-priori known, the sum of
Wi,j variables is non-fixed, the expression non linear and the resulting propaga-
tion weak, thus making non-uniform weights very difficult to deal with. Many
allocation problems with balancing restrictions raise similar issues.

In this paper, we introduce a novel average global constraint to provide a
convenient model and effective filtering for average expressions with non-uniform
weights. Unlike spread or deviation, we do not explicitly try to limit outliers,
since filtering for the average value is sufficiently challenging by itself. The paper
is structured as follows: in Section 2 we introduce the average constraint and
provide filtering algorithms with the assumption that all term values are fixed.
Several improvements to the basic algorithms are discussed in Section 3. In Sec-
tion 4 the efficiency and effectiveness of our filtering is investigated; moreover,
our approach is compared to an alternative method requiring no ad-hoc con-
straint and to the decomposed constraint from Equation (2). Finally, we show
how to deal with variable term values in Section 5 and we provide concluding
remarks in Section 6.

2 The Average Constraint

The average global constraint provides a convenient model and effective prop-
agation for weighted average expressions. We will initially assume that the term
weights are decision variables, while the values are constant: this setting captures
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Fig. 1. A: Initial weight configuration (wi ∈ {1..4}∀i); B: Upper bound configuration

most of the difficulties found by CP methods with weighted average expressions.
In the considered case, the constraint signature is:

average(vi, W, Y) (3)

where v is a vector containing the integer value of each term and W is a vector
of integer variables representing the weights. Weights must be non-negative, i.e.
for each variable we have min(Wi) ≥ 0 (where min(Wi) is the minimum value in
the domain of Wi). The integer variable Y stores the weighted average value. The
constraint maintains bound consistency on the expression:

Y = round

(∑n−1
i=0 vi · Wi∑n−1

i=0 Wi

)
(4)

where n is the number of terms and round(·) is the usual rounding operator.
The use of integer values and weights is a design choice, motivated by the lack
of support for real-valued variables in many current CP solvers. In the following,
we provide filtering algorithms for the constraint as from signature (3), while
the case of variable term values is considered in Section 5.

2.1 Computing Bounds on Variable Y

We focus on computing an upper bound for Y (a lower bound can be obtained
analogously). On this purpose, observe that all value necessarily appear in the
expression at least with minimum weight. Hence, the formula:∑n−1

i=0 vi ·min(Wi)∑n−1
i=0 min(Wi)

(5)

provides a first estimate of the weighted average, which can be increased or low-
ered by including some terms with non-minimal weight. It is convenient to think
of the expression as a system of physical springs with fixed anchored points, all
pulling a single bar (see Figure 1). Anchor points represents the term values
and the spring strengths are the weights. The initial estimate corresponds to a
configuration where each spring has minimum strength (see Figure 1A). Intu-
itively, increasing the spring strength of one of the right-most anchor points will
increase the average value. Formally, we have:



194 A. Bonfietti and M. Lombardi

Statement 1. Let w∗ be a fixed weight assignment. Then, increasing a weight
w∗j by an amount δ > 0 leads to an increased weighted average value iff:

vj >

∑n−1
i=0 vi · w∗i∑n−1

i=0 w∗i
(6)

where we assume the right most part of the inequality is 0 if all weights are 0.

The statement can be proved by algebraical manipulation of Equation (1). Note
that the effect of increasing a weight does not depend on δ: if increasing wi makes
the current estimate larger, then the maximum increment leads to the largest
increase. Hence we can improve the initial estimate by repeatedly choosing a vi
that satisfies the condition from Statement 1 and then maximizing wi.

The process may however stop at a local maximum if the vi are not properly
chosen. For example, in Figure 1A we may decide to maximize v2, since it is
higher than the current average estimate. However, this decision makes it im-
possible to reach the configuration from Figure 1B, corresponding to the actual
maximum of the average expression. Luckily, there exists a sequence of weight
increments guaranteed to stop at a global maximum.

Statement 2. The maximum value of the weighted average can be obtained
starting from Expression (5), by repeatedly maximizing the weight of the term j
with maximum vj, as long as the condition from Theorem 1 is satisfied.

Assume we have vj ≥ vi: then one can check that maximizing both wi and wj

cannot lead to a lower average than maximizing wj alone. Therefore, considering
wj before wi is safer than the opposite order. By induction we obtain that
the term with highest value should alway be considered first. In the example
from Figure 1, this kind of reasoning leads to the configuration in Figure 1B,
corresponding to the actual maximum.

A filtering rule to propagate changes of Wi domains to Y is given by the pseudo-
code in Algorithm 1. The algorithm computes the numerator and denominator of
Expression 5 (line 2), which are then updated by repeatedly maximizing weights
(lines 4-6) as long as the condition from Theorem 1 holds (line 3). The rounding
operation at line 6 is needed since Y is an integer variable. The worst case com-
plexity at search time is O(n), since the initial sorting operation (line 1) can be
done once for all at model loading time.

Algorithm 1. Filtering on max(Y)

Require: a change in the bound of some Wi domain
1: sort terms by decreasing vi
2: compute vub =

∑n−1
i=0 vi ·min(Wi) and wub =

∑n−1
i=0 min(Wi)

3: for i = 0 to n− 1, as long as vi >
vub /wub do

4: δ = max(Wi)−min(Wi)
5: vub = vub + vi · δ
6: wub = wub + δ
7: max(Y) ← round(vub/wub)



The Weighted Average Constraint 195

2.2 Computing Bounds on Variables Wi

Lower and upper bounds on the Wi variables can be deduced based on the domain
of Y. In this section we focus on the deductions performed from the domain max,
i.e. max(Y) (filtering with the minimum is analogous). In first place, note that if
max(Y) is equal to its maximum computed as from Section 2.1, no pruning on
the Wi domains is possible. If this is not the case, we may be able to do some
filtering. In particular we have:

∑n−1
i=0 vi · Wi∑n−1

i=0 Wi
≤ max(Y) (7)

Let us assume initially that there is at least a non-zero weight. Then we get:

n−1∑
i=0

Wi · rvi(Y) ≤ 0 with rvi(Y) = vi −max(Y) (8)

where we refer to rvi(Y) as reduced value or term i. The maximum slack is
obtained by minimizing Wi if the reduced value is positive and maximizing the
variable if the reduced value is negative. Formally:

ms(W, Y) =

n−1∑
i=0

rvi(Y) ·
{

min(Wi) if rvi(Y) > 0

max(Wi) otherwise
(9)

By keeping a single variable free, we get:

rvj(Y) · Wj ≤ −
n−1∑

i=0,i�=j

rvi(Y) ·
{

min(Wi) if rvi(Y) > 0

max(Wi) otherwise
(10)

The right-most member of the Equation (10) is constant and referred to as θj in
the followings. Then, depending on the sign of the reduced value we get either
a lower or an upper bound:

Wj ≤ θj/rvj(Y) if rvj(Y) > 0, Wj ≥ θj/rvj(Y) if rvj(Y) < 0 (11)

and no propagation in case rvj(Y) = 0. If all weights in θj are 0, then it may be
the case that all weights are zero and Equation (7) turns into:

vj · Wj
Wj

≤ max(Y) (12)

From which we can deduce that: 1) If max(Y) < 0, then Wi must be non-zero
since a weighted average is 0 if all weights are 0. 2) If vj > max(Y), then Wi
cannot be higher than 0. Note that if both the rules are triggered we have a fail.

The reasoning leads to Algorithm 2. Line 1 performs a de-round operation
(needed since all variables are integer). As a side effect, the expression vj−ymax
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Algorithm 2. Filtering from max(Y) to Wi variables

Require: a change in max(Y), or in the domain bounds of some Wi
1: Let ymax be the largest value v such that round(v) = max(Y). If ymax is greater or

equal to the maximum from Section 2.1, then immediately return.
2: Compute the maximum slack ms(W, Y) according to Equation (10), using ymax

instead of max(Y). Additionally, let wms be the corresponding sum of weights.
3: for j = 0 to n− 1 do
4: if vj − ymax > 0 then
5: θj = −(ms(W, Y)− (vj − ymax) ·min(Wj))
6: wθj = wms −min(Wj)
7: else
8: θj = −(ms(W, Y)− (vj − ymax) ·max(Wj))
9: wθj = wms −max(Wj)
10: if wθi = 0 then
11: if ymax < 0 then min(Wj)← 1
12: if vj > ymax then max(Wj)← 0
13: else
14: if vj − ymax > 0 then max(Wj) ←

⌊
θj/(vj−ymax)

⌋
15: if vj − ymax < 0 then min(Wj) ←

⌈
θj/(vj−ymax)

⌉

is used in the algorithm in place of the reduced value. The maximum slack is
computed at line 2. Then, for each term we compute the θi value at lines 5 and
8, by subtracting the contribution of term j from ms(W, Y); we also compute the
sum wθi of weights in θi (lines 6 and 9). If wθi = 0 we apply the filtering rules
from Equation (12) at lines 11-12, otherwise, we use the regular filtering rules
from Equation (11) at lines 14-15. The floor/ceil operations at lines 14-15 are
needed since all variables are integer. The overall time complexity is O(n).

3 Optimizations

Incremental Upper Bound and Maximum Slack Computation: It is
possible to improve the efficiency of the filtering algorithm via incremental com-
putation of the upper bound from Section 2.1 (let this be ub(W)) and the max-
imum slack ms(W, Y) from Section 2.2. The approach requires all terms to be
sorted by decreasing vj (this can be done once for all at model loading time).

Specifically, let vub, wub be the current numerator and denominator of ub(W).
Moreover, let jub be the index of the last term whose weight was maximized
by Algorithm 1. In case the domain minimum/maximum of some Wj variable
changes, new values for vub, wub and jub can be computed in two steps. In first
place, we have to perform the updates:

vub = vub + vj ·
{

max(Wj)new −max(Wj)old if j ≤ jub

min(Wj)new −min(Wj)old otherwise
(13)
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Algorithm 3. Update jub
while vjub >vub /wub do

δ = max(Wjub )−min(Wjub )
vub = vub + vjub · δ
wub = wub + δ
jub = jub + 1

Algorithm 4. Update jms

while vjms > ymax do
δ = min(Wjms )−max(Wjms )
vms = vms + vjms · δ
wms = wms + δ
jms = jms + 1

wub = wub +

{
max(Wj)new −max(Wj)old if j ≤ jub

min(Wj)new −min(Wj)old otherwise
(14)

Due to the resulting changes of ub(W), it may become necessary to maximize
one or more terms previously not satisfying the condition from Statement 1.
This can be done by means of Algorithm 3, which is analogous to lines 3-6 of
Algorithm 1, but makes use of the stored jub. Note that in case the domain of
more than a single Wi variable changes, then all the updates from Equation (13)
and (14) should be performed before running Algorithm 3. This behavior is easy
to implement if the solver provides a delayed constraint queue.

The incremental computation has constant space complexity, since only three
values need to be stored (vub, wub and jub). Updating vub and wub using Equa-
tion (13) and (14) has constant time complexity and the number of possible
updates from the root to a leaf of the search tree is O(n × max domain size).
In the important case of {0, 1} weights, no more than 2× n updates can occur.
Since the jub index cannot advance more than n times, the overall complexity is
O(n) along a full branch of the search tree.

Incremental computation for the maximum slack from Section 2.2 can be
achieved in a similar fashion. In first place, observe that Equation (9) can be
decomposed as ms(W, Y) = vms − max(Y) · wms, where the dependency on W is
omitted for sake of simplicity and:

vms =

n−1∑
i=0

vi ·
{

min(Wi) if if rvi(Y) > 0

max(Wi) otherwise
(15)

wms =

n−1∑
i=0

{
min(Wi) if if rvi(Y) > 0

max(Wi) otherwise
(16)

The values vms and wms can be updated incrementally similarly to vub and wub.
We then need to update the index jms of the last minimized element in the
maximum slack configuration, which can be done by means of Algorithm 4.

Reducing the Complexity of Term Weight Filtering: The techniques
described in the previous section make the computation of ub(W) and ms(W, Y)
very efficient. However, pruning the Wi variables as described in Algorithm 2 still
takes linear time and acts a bottleneck for the propagator complexity. It may be
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possible to achieve higher efficiency by exploiting ideas in [4]: here however we
apply a simpler technique, described in the case of positive reduced values (i.e.
terms j with j < jms from Section 3). The corresponding θj value is:

θj = −ms(W, Y) + rvj(Y) ·min(Wj) (17)

with ms(W, Y) ≤ 0. The upper bound computed by Algorithm 2 on Wj is
θj/rvj(Y)

and can be decomposed as:

θj
rvj(Y)

= −ms(W, Y)

rvj(Y)
+ min(Wj) (18)

We are interested in finding a sufficient condition to avoid the bound computation
for some Wj variables. Now, observe that for every k > j, we have:

−ms(W, Y)

rvj(Y)
+ min

i
{min(Wi)} ≤ −

ms(W, Y)

rvk(Y)
−min(Wk) (19)

since vk ≤ vj (due to the initial sorting step). In other words, the left-most
quantity in Equation (19) bounds the upper-bound value of all terms k with
k > j. Therefore, if at line 14 of Algorithm 1 we realize that:

−ms(W, Y)

rvj(Y)
+ min

i
{min(Wi)} ≥ max

i
{max(Wi)} (20)

we can immediately stop filtering all j < jms. In order to simplify the computa-
tion, we statically compute the minimum and maximum among all domains (i.e.
mini{min(Wi)} and maxi{max(Wi)}) at model loading time. As a result, checking
this stop condition has constant time complexity.

Avoiding Useless Activations of Term Weight Filtering: Finally, we can
rely on the stored jms value to reduce the number of calls to Algorithm 2. On
this purpose, observe that the bound computation at lines 14-15 is based on
the maximum slack. Note that in the ms(W, Y) expression (see Equation (9)) the
terms with positive rv(Y) appear with weight minimum, while the terms with
non-positive reduced value appear with maximum weight.

As a consequence, changes in max(Wi) with i > jms or changes in min(Wi)
with i ≤ jms do not change the value of the maximum slack and do no require
to run Algorithm 1. Hence, immediately after the execution of Algorithm 4 we
can check which Wi boundaries have changed after the last update, and avoid
performing additional filtering if this is not needed. The same does not hold for
changes of max(Y), that always require to re-execute Algorithm 2.

4 Experimental Results

The described approach was implemented in Google OR-tools [6] and tested
on two different benchmarks. In first place, we tackled a variant of the Single
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Source Capacitated Facility Location Problem (SSCFLP) [12] with a balancing
objective. The problem structure was suitable for different solution approaches,
respectively: a model with our average constraint, a model using the decomposed
formulation from Equation 2 and a method that employs an alternative search
strategy to avoid the use of an explicit average constraint. We performed a com-
parison to show that our method has is competitive with alternative approaches.

In a second experimentation we use the average constraint to provide input to
an Empirical Model, namely a Neural Network capturing the thermal behavior
of a multi-core CPU. The network is employed within a large-size workload
dispatching problem with a maximal efficiency objective. On this problem, we
compare only our constraint and the decomposed formulations, since the the
third method cannot be applied. Moreover, we take advantage of the large scale of
the instances to compare the performance of our incremental filtering algorithm
w.r.t its non-incremental version.

4.1 Balancing the Travel Cost in the SSCFLP

Problem Formulation. The Capacitated Facility Location Problems represent
a major class of location problems, well known in the OR-literature [12]. The
SSCFLP deals with opening facilities j at a set of candidate locations, to serve
at minimum cost a set of customers i distributed in a discrete space. Different
facility sites have distinct (fixed) opening costs fj . Each customer must be sup-
plied from a single facility and has a fixed demand di. The sum of the demands
for a single facility should not exceed its capacity sj . Assigning a customer to
a facility incurs a transportation charge ci,j . The usual goal of the problem is
to decide which facilities to open and to assign customers so as to minimize
the overall cost. Here, we consider instead a variant where the objective is to
minimize the worst-case average transportation cost per facility. Additionally,
we require that the total opening cost does not exceed the given threshold. We
adopt the following model (with n customers and m facilities):

min Z = max
j=0..m−1

Aj (21)

s.t.: Xi,j = 1⇔ (Wi = j) ∀j = 0..m− 1, i = 0..n− 1 (22)

0 ≤ Xi,j ≤ Yj ≤ 1 ∀j = 0..m− 1, i = 0..n− 1 (23)

n−1∑
i=0

di · Xi,j ≤ sj · Yj ∀j = 0..m− 1 (24)

m−1∑
j=0

fj · Yj ≤ Fmax (25)

average(cj , Xj, Aj) ∀j = 0..m− 1 (26)

The decision variable are:

Wi ∈ {0..m− 1} Wi = j iff customer i is assigned to facility j

Xi,j ∈ {0, 1} Xi,j = 1 iff customer i is assigned to facility j
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Yj ∈ {0, 1} Yj = 1 iff facility j is open

Aj ∈ {0.. inf} average transportation cost for each facility j

where Xj and cj are the subsets of Xi,j and ci,j that refer to facility j. Fmax is
the opening cost limit which was obtained in a preliminary experimentation.

Solution Methods. We solved the problem with three different approaches:

1. The model reported in the previous paragraph (referred to as avg), using
the incremental filtering for the average constraint.

2. A model (referred to as dec) where the average constraint is replaced by
its decomposed formulation from Equation 2.

3. A method (referred to as sweep) where the optimization problem is slit
into a sequence of satisfaction problems. Each subproblem is obtained by 1)
removing the Aj variables; 2) removing the cost function; 3) replacing the
average constraints with the following linear inequalities:

n−1∑
i=0

ci,j · Xi,j < z∗k ·
n−1∑
i=0

Xi,j ∀j = 0..m− 1 (27)

where z∗k for the first subproblem is a safe upper bound and z∗k for the k-th
problem in the sequence is equal to the cost of the solution the k−1-problem.

The avg and sweep approaches are equivalent in term of propagation, but
sweep has to explore a larger space due to the decoupling. The dec approach
results instead in weaker (but more efficient) propagation. In all cases, we use
tree search with random variable and value selection, performing restarts when a
fixed fail limit is reached (20000). This approach was chosen since the considered
instance size makes a heuristic approach more viable and because restarts make
the performance of all methods less erratic. We run the experiments on a subset
of the benchmarks by Beasley in the OR-lib [3], in particular the cap6X , cap7X ,
cap9X , cap10X , cap12X , and cap13X groups, having different configuration
number of facilities, customers and costs. All the experiments are run with a
time limit of 60 seconds on a 2.8 GHz Intel i7 and repeated 10 times per instance.

Results. Table 1 shows the average solution gaps over time (%) between the
avg, the dec and the sweep approach1. In particular, we measured the gap be-
tween the best solution found by both approaches at some pre-defined sampling
points (one per column in the table).

Note that the performance of the avg approach is considerably better than
dec, in spite of the fact that the heavy use of restarts favors approaches based
on weaker (and faster) propagation. This is likely due to the fact that for this

1 The gap for a single instance is Zsweep

Zavg

− 1, resp. Zdec

Zavg

− 1. The reported value is the
average gap for all instances in the group.
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Table 1. Average Solution Gap (%) for each benchmarks subset

Solution Gap (%)

Instance set vs. 1s 3s 5s 10s 30s 60s

cap6X
sweep 18.9 % 16.5 % 18.55 % 19.7 % 11.45 % 11.6 %

dec 37.2 % 47.5 % 49.225 % 17.8 % 6.725 % 7.9 %

cap7X
sweep 7 % 7.7 % 7.7 % 7.8 % 10.3 % 9.7 %

dec. 22.275 % 14.1 % 11.05 % 8.6 % 10.7 % 11.075 %

cap9X
sweep 25.8 % 31.025 % 30.775 % 28.525 % 23.95 % 22.075 %

dec. 62.1 % 66.125 % 65.025 % 36.75 % 12 % 12.75 %

cap10X
sweep 4.9 % 7.3 % 5.8 % 5.45 % 5.175 % 4.6%

dec. 8.75 % 8.6 % 6.7 % 5.775 % 6 % 5.9 %

cap12X
sweep 29 % 29 % 35.55 % 28.575 % 23.2 % 20 %

dec. 15.1 % 23.275 % 11.625 % 12.225 % 14.9 % 12.5 %

cap13X
sweep 4.95 % 4.475 % 4.075 % 4.95 % 4.4 % 3.625 %

dec. 10.9 % 6.95 % 7.15 % 6.7 % 5.7 % 4.6 %

problem the weighted average expressions appear straight in the cost function.
More surprisingly, avg works better than sweep, which is equivalent in term
of propagation effectiveness and faster in terms of propagation efficiency: ap-
parently, the overhead for the repeated replacement of constraints (27) has a
negative impact on the solver performance, which overcomes that of the more
complex filtering of the average constraint.

4.2 Empirical Models and Incremental Filtering

Problem Formulation. We consider a workload dispatching problem for a 48-
core CPU by Intel [5]. The platform features some temperature control policies,
which may slow down the execution to avoid overheating. We want to map a set
of n tasks i on the platform cores j so as to incur the smallest possible slow-
down due to the thermal controllers. As in many realistic settings, we assume
tasks are preemptive and have unknown duration. Each task must be assigned
to a platform core and is characterized by a parameter named CPI (Clock Per
Instruction): the smaller the CPIi value, the more computation intensive the
task and the higher the generated heat.

The thermal behavior of a core is also affected by the workload of neighbor-
ing cores. The resulting correlation between workload and platform efficiency
is strongly non-linear (due to the thermal controllers and thermal effects) and
very tough to model via conventional means. In [1] we proposed an approach
were such a complex function is captured via a Neural Network, trained over a
system simulator. Here, we consider a slightly simplified version of the problem,
corresponding to the following model (with n tasks and m = 48 cores):

max Z = min
j=0..m−1

Ej (28)
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s.t.: Ej = ANNj(temp, {Ak | core k neighbor of j}) ∀j = 0..m− 1 (29)

average(CPI, Xj, Aj) ∀j = 0..m− 1 (30)

n−1∑
i=0

Xi,j ≥ 1 ∀j = 0..m− 1 (31)

Xi,j = 1⇔ (Wi = j) ∀i = 0..n− 1, j = 0..m− 1 (32)

The decision variable are:

Wi ∈ {0..m− 1} Wi = j iff task i is assigned to core j

Xi,j ∈ {0, 1} Xi,j = 1 iff task i is assigned to core j

Aj ∈ {0..∞} average CPI of tasks assigned to core j

The Ej variables represent the efficiency of core j. The notation ANNj(·) stands for
the set of Neuron Constraints [2] corresponding the Neural Network we trained
for core j. In principle Ej should take real values in ]0, 1], in practice we use a
fixed precision integer representation.

Solution Method. We solved the problem using tree search with random vari-
able and value selection, performing restarts when a fixed fail limit is reached
(6000 fails). We compared our approach with a model making use of the decom-
posed average formulation, referred to as dec. Moreover, we used this problem
to investigate the speed-up of the incremental average filtering (referred to as
inc) over the non incremental one (referred to as no inc).

For the experimentation we used the benchmarks from [1], consisting of 3
groups, each counting 2 worksets of 10 instances2. Groups differ by the number
of tasks (120, 240, or 480). Worksets within each group correspond to different
task compositions: all instances in Workset I contain 75% low-CPI and 25% high-
CPI tasks, while the mix is instead 85%/15% for Workset II. Each instance was
solved 10 times with each method, on an 2.8 GHz Intel i7.

Results. Table 2 shows the results of the experimentation. The benchmarks are
divided according to the size of the instances (120, 240, and 480 tasks). For each
workset (I or II), each column in the table refers to a different sampling time
and shows the solution quality gap between avg and no inc, and between avg

and dec (the gap is computed analogously to the previous experimentation).
The table also reports the search speed, measured in terms of average number
of branches per second. As expected, the incremental approach is considerably
better then the non incremental one. Interestingly, avg has approximatively the
same branching speed on the 240 and 480 task instances, suggesting that the
propagator is processing a roughly constant number of weight variables (thanks
to the stopping condition from Section 3). Interestingly, avg often works better
than dec: the presence of a the network of Neuron Constraints makes in principle
the propagation on the average far less critical, and yet employing the global
average constraint seems to definitely pay off.

2 The benchmarks are available for download at http://ai.unibo.it/data/TAWD

http://ai.unibo.it/data/TAWD
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Table 2. Incremental Speed-up: solution efficiency and gaps

Average Solution Efficiency (%)

Inst. size Workset Algorithm 1 sec 3 sec 5 sec 10 sec 30 sec 60 sec

120

Set I
no inc 28.66 % 9.03 % 12.68 % 8.08 % 4.62 % 4.21 %

dec 0.74 % -5.71 % -5.64 % -4.67 % -3.86 % -2.25 %

Set II
no inc 18.14 % 11.06 % 11.01 % 4.41 % 6.07 % 3.83 %

dec 1.39 % -1.07 % 2.78 % 3.07 % 4.11 % 4.82 %

Average speed: (branch/secs) avg 4043.33 no inc 2571.88 dec 9332.96

240

Set I
no inc 7.58 % 12.14 % 9.19 % 5.85 % 4.23 % 3.97 %

dec 0.02 % 1.98 % 4.47 % 2.56 % 1.65 % 2.27 %

Set II
no inc 5.79 % 10.14 % 8.62 % 6.11 % 4.18 % 3.14 %

dec 3.98 % 1.47 % 2.49 % 2.78 % 3.36 % 2.35 %

Average speed: (branch/secs) avg 1845.00 no inc 949.31 dec 2904.68

480

Set I
no inc inf 24.01 % 25.38 % 12.65 % 4.06 % 2.51 %

dec 7.82 % 1.41 % 2.73 % 1.72 % 0.86 % 0.63 %

Set II
no inc inf 22.79 % 26.10 % 16.24 % 8.65 % 5.71 %

dec 6.58 % 2.60 % 3.65 % 5.13 % 4.26 % 3.61 %

Average speed: (branch/secs) avg 2119.86 no inc 635.75 dec 2797.21

5 Dealing with Variable Term Values

It is possible to extend the average constraint to deal with variable term values.
The resulting signature is:

average(V, W, Y) (33)

where V is a vector of integer variables. Variable term values allow to tackle a
broader class of problems, such as the routing example mentioned in Section 1.
Filtering for the new constraint signature requires a few modifications to the
procedures described in Section 2.1 and 2.2.

Computing Bounds on Variable Y: Obtaining an upper bound for Y is
relatively easy, due to the following theorem:

Theorem 1. Let v∗, w∗ be fixed assignments for V and W. Then, increasing a
value v∗j by an amount δ > 0 always leads to an increased weighted average value.

Proof. Directly follows from:∑n−1
i=0 v∗i · w∗i + δ · w∗j∑n−1

i=0 w∗i
≥
∑n−1

i=0 v∗i · w∗i∑n−1
i=0 w∗i

(34)

since δ > 0 and w∗j ≥ 0. ��

In other words, higher term values are always to be preferred. Hence, an upper
bound on Y can be computed by means of Algorithm 1 by replacing vi with



204 A. Bonfietti and M. Lombardi

max(Vi). Unlike for the fixed value case, however, the sorting operation at line
1 cannot be performed once for all at model loading time, so that the resulting
complexity is O(n log n).

Computing Bounds on Variables Wi: Bounds for the weight variables in the
fixed value case are based on Equation (8), from which the maximum slack value
is obtained. The equivalent formula when term values are non constant is:

n−1∑
i=0

Wi · (Vi −max(Y)) ≤ 0 (35)

The inequality is valid if
∑n−1

i=0 Wi can be > 0. The maximum slack corresponds
to an assignment of Vi variables, besides Wi. The following theorem holds:

Theorem 2. Let v∗, w∗ be fixed assignment for V and W. Then, decreasing a
value v∗j by an amount δ > 0 always leads to an increased slack.

The proof is analogous to that of Theorem 5. As a consequence, choosing the
minimum possible value for each Vi leads to maximum slack, i.e.:

ms =

n−1∑
i=0

(min(Vi)−max(Y)) ·
{

min(Wi) if min(Vi)−max(Y) > 0

max(Wi) otherwise
(36)

The full notation for the slack expression is ms(V, W, Y). By keeping a single term
free and the remaining ones in the maximum slack configuration, we obtain:

(Vj −max(Y)) · Wj ≤ θi (37)

which corresponds to Equation (10) in Section 2.2. The θi value is obtained
analogously to the case of fixed values. Moreover, we also use wθi to denote the
sum of the weights employed in the computation of θ. Equation (37) can be used
to obtain bounds for Wi and Vi.

In particular, the domain of variable Vi can be pruned as described in Algo-
rithm 5 (that should be integrated in Algorithm 2). Lines 2 and 5 are needed to
handle the Wi = 0 case. Lines 3 and 6 update the domain max of Vi according
to Equation (37). Note that the Wi assignment leading to the correct bound de-
pends on the sign of θi. The rounding operations at lines 3 and 6 are necessary
since Vi is an integer variable. Finally, ymax is defined as from Algorithm 2.

Bounds on the weight variable Wi can be obtained via Algorithm 6, which
should replace lines 14-15 in Algorithm 2. The maximum slack is obtained in
this case by assigning Vi to the minimum possible value. Then, depending on
the sign of the resulting reduced value and on the sign of θi we obtain either a
lower bound or an upper bound on Wi. As a particular case, line 3 corresponds
to a negative upper bound (hence to a fail) and line 5 to a negative lower bound
(hence to no pruning).
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Algorithm 5. Filtering on Vi
1: if θi < 0 then
2: if max(Wi) = 0 then fail

3: else max(Vi)←
⌊

θi
min(Wi)

+ ymax

⌋
4: else
5: if max(Wi) = 0 then do nothing

6: else max(Vi)←
⌊

θi
max(Wi)

+ ymax

⌋

Algorithm 6. Filtering on Wi
1: if θi < 0 then
2: if min(Vi)− ymax < 0 then

3: min(Wi)←
⌈

θ
min(Vi)−ymax

⌉
4: else fail
5: else
6: if min(Vi)− ymax ≤ 0 then
7: do nothing

8: else max(Wi)←
⌊

θ
min(Vi)−ymax

⌋

Similarly to Section 2.2, the case of wθ = 0 should be handle separately, since
it may compromise the assumption that

∑n−1
i=0 Wi > 0. In this case, we have:

Vi · Wi
Wi

≤ max(Y) (38)

If max(Y) < 0, then we have Vi ≤ max(Y) and the minimum allowed value for
Wi is 1. Conversely, if max(Y) ≥ 0 then we have Vi ≤ max(Y) if min(Wi) > 0, and
no propagation if min(Wi) = 0.

6 Concluding Remarks

We have introduced a novel global constraint to provide a convenient model
and effective filtering for weighted average expressions. The average constraint
can be fruitfully applied to allocation problems with balancing constraints or
objectives. Furthermore, average is a key enabler for optimization approaches
making use of a complex system models, extracted via Machine Learning. We
provided an efficient incremental filtering algorithm for the case with fixed term
values. This was used to successfully tackle a large scale combinatorial problem
featuring a Neural Network model learned from a system simulator. Finally,
we discussed how to perform non-incremental filtering when both term values
and weights are variable. Further developments of the constraint are strongly
connected to ongoing research on the hybridization of CP, Machine Learning
and Simulation.

Acknowledgement. This project if funded by a Google Focused Grant Program
on Mathematical Optimization and Combinatorial Optimization in Europe, with
title: “Model Learning in Combinatorial Optimization: a case study on thermal
aware dispatching”.
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9. Schaus, P., Deville, Y., Dupont, P., Régin, J.C.: Simplification and extension of
the spread constraint. In: Third Workshop on Constraint Propagation and Imple-
mentation, in CP 2006, pp. 72–92 (2006)
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Abstract. Bin packing is a ubiquitous problem that arises in many
practical applications. The motivation for the work presented here comes
from the domain of data centre optimisation. In this paper we present
a parameterisable benchmark generator for bin packing instances based
on the well-known Weibull distribution. Using the shape and scale pa-
rameters of this distribution we can generate benchmarks that contain a
variety of item size distributions. We show that real-world bin packing
benchmarks can be modelled extremely well using our approach. We also
study both systematic and heuristic bin packing methods under a variety
of Weibull settings. We observe that for all bin capacities, the number
of bins required in an optimal solution increases as the Weibull shape
parameter increases. However, for each bin capacity, there is a range of
Weibull shape settings, corresponding to different item size distributions,
for which bin packing is hard for a CP-based method.

1 Introduction

The one-dimensional bin packing problem is ubiquitous in operations research.
It is defined as follows. Given a set S = {s1, . . . , sn} of n indivisible items, each
of a known positive size si, and m bins each of capacity C, the challenge is to
decide whether we can pack all n items into the m bins such that the sum of sizes
of the items in each bin does not exceed C. The one-dimensional bin packing
problem is NP-Complete. Amongst the many applications of this problem are
timetabling, scheduling, stock cutting, television commercial break scheduling,
and container packing [3,5]. Bin packing is closely related to a variety of other
problems such as rectangle packing [30,29,33,6]. Recent work has focused on
geometric generalisations of bin packing [4].

Typical bin packing methods rely on either heuristics [1], genetic algorithms [7],
operations research methods [3], satisfiability techniques [11], or constraint pro-
gramming [23,28]. There are many known bounds on the optimal number of bins
which can be used in most of the techniques mentioned above [5,14,18].

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 207–222, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The motivation for the work presented here comes from the domain of data
centre optimisation. Workload consolidation involves ensuring that the total
amount of resource required by the set of jobs assigned to a server does not
exceed the capacity of that resource. The application of constraint programming
to this domain has only very recently attracted attention [12,21]. While there
are many benchmark suites for bin packing in the literature [7,13,24,26,27,35],
these are all artificial and lacking a practical basis. Typically, as for example in
the benchmarks by Scholl and Klein [24]1, item sizes are generated using either
uniform or normal distributions. As Gent has pointed out, current benchmark
suites in this area are often unrealistic and trivial to solve [9]. More recently, Re-
gin et al. [21] have called for more realistic benchmark suites for use in studying
large-scale data centre problems. It is this requirement that this paper fulfills.

Section 2 presents a parameterisable benchmark generator for bin packing
instances based on the well-known Weibull distribution [36]. Using the shape
and scale parameters of this distribution a variety of item size distributions can
be generated. In Section 3 we show that a number of real-world bin packing
benchmarks can be modelled extremely well using this approach, for example
the instances from the 2012 ROADEF/EURO Challenge which focuses on a data
centre problem provided by Google, as well as the bin packing components of a
several real world examination timetabling problems. We study the behaviour of
both systematic (Section 4) and heuristic (Section 5) bin packing methods under
a variety of Weibull settings. We show that our Weibull-based framework allows
for very controlled experiments in a bin packing setting in which the distribu-
tion of item sizes can be precisely controlled. We discuss how the difficulty of
bin packing is affected by the item size distribution and by bin capacity. Specif-
ically, we observed that for all bin capacities, the number of bins required in an
optimal solution increases as the Weibull shape parameter increases. However,
for each bin capacity, it seems that there is a range of Weibull shape settings,
corresponding to different item size distributions, for which bin packing is hard
for a CP-based method.

2 The Weibull Distribution

In probability theory and statistics, the Weibull distribution is a continuous
probability distribution. It is named after Waloddi Weibull, who presented the
distribution in a seminal paper in 1951 [36]. The Weibull distribution is defined
by a shape parameter, k > 0, and a scale parameter, λ > 0. The probability
density function, f(x; λ, k), of a random variable x distributed according to a
Weibull distribution is defined as follows:

f(x; λ, k) =

{
k
λ · (x

λ)k−1 · e−(x/λ)k

x ≥ 0,

0, otherwise

1 http://www.wiwi.uni-jena.de/Entscheidung/binpp/

http://www.wiwi.uni-jena.de/Entscheidung/binpp/
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The Weibull can model many distributions that naturally occur in a variety
of problem domains involving distributions of time horizons, time slots or lot
sizes [36].

Figures 1 and 2 present several examples of different distributions that can
be obtained by instantiating the Weibull distribution. Figure 1 presents four
different distributions for small values of the shape parameter, k. Clearly very
different regimes are possible, some exhibiting extremely high skew around the
value specified by the distribution’s scale parameter, λ. In Figure 2, larger values
of the shape parameter are considered. In these examples we can see that the
distribution exhibits lower variation as shape increases.

In this paper we propose using the Weibull distribution as the basis for a
parameterisable benchmark generator for bin packing instances in which the item
sizes are generated according to a Weibull distribution parameterised by specific
values of k and λ. Using these parameters a variety of item size distributions can
be generated. In Section 3 we show that some real-world bin packing benchmarks
can be modelled extremely well using a Weibull distribution.

3 Fitting Weibull Distributions to Real-world Instances

In this section we demonstrate the flexibility of the Weibull distribution in fitting
to a variety of bin packing problems coming from real-world applications. In
Section 3.1 we show a specific example of how well the Weibull distribution can
fit to a problem instance arising from the 2012 ROADEF/EURO Challenge. This
example will show, visually, the quality of the fit that can be obtained. However,
in Section 3.2 we present a more rigorous analysis of the goodness-of-fit that can
be achieved through the use of two standard statistical tests.

3.1 An Example Problem in Data Centre Management

The 2012 ROADEF/EURO Challenge2 is concerned with the problem of machine
reassignment, with data and sponsorship coming from Google. The subject of the
challenge is to find a best-cost mapping of processes, which have specific resource
requirements, onto machines, such that a variety of constraints are satisfied. A
core element of the problem are bin packing constraints stating that the total
amount of a given resource required by the processes assigned to a machine does
not exceed the amount available. An important element of this challenge is the
mapping of processes to machines such that the availability of each resource on
the machine is not exceeded by the requirements of the set of services assigned
to it. This subproblem is a multi-capacity bin packing problem: each machine
is a bin with many elements defined by the set of resources available, and each
process corresponds to an item that consumes different amounts of each resource.

Figure 3 presents an example probability distribution for Resource 10 from
instance a2(5) of the benchmarks available for the ROADEF/EURO Challenge.

2 http://challenge.roadef.org/2012/en/index.php

http://challenge.roadef.org/2012/en/index.php
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Fig. 3. An example of the quality of fit one can achieve when using a Weibull distri-
bution for a real-world bin packing problem. Here we present the data and Weibull
fit associated with Resource 10 of instance a2(5) from the 2012 ROADEF/EURO
Challenge sponsored by Google.

The probability density function that corresponds to the actual data is plotted
as a line. We can see clearly that this distribution is extremely skewed, with the
majority of the probability mass coming from smaller items. Another character-
istic of the data is the spread along the x-axis, showing that the range of likely
item sizes spans several orders-of-magnitude, and there is a very small possibility
of encountering extremely large items.

We used R, the open-source statistical computing platform [32], to fit a
Weibull distribution to this data, using maximum likelihood fitting [16]. Specif-
ically, we have used the R Weibull Distribution Maximum Likelihood Fitting
implementation by Wessa, which is available as an online service [37]. The re-
sulting Weibull is presented in Figure 3 as the circles imposed on the density
function from the data. By observation we can see that the fit is extremely good.
In the next section we will study the quality of fit more rigorously, demonstrating
that it is statistically significant.

3.2 Verifying the Goodness of Fit

We study a variety of benchmark bin packing problems. As mentioned above, the
2012 ROADEF/EURO Challenge provides a publicly available set of problem



212 I. Castiñeiras, M. De Cauwer, and B. O’Sullivan

instances that contains many bin packing instances. In addition to those, we
consider real-world examination timetabling benchmarks. The bin packing com-
ponent of these problems involves scheduling examinations (items) involving
specified numbers of students (item sizes), into rooms of specified capacity (bin
capacities) within time-slots (number of bins). We consider the data sets avail-
able from universities in Toronto, Melbourne and Nottingham [20]. These are
available from the OR library.3

We used two goodness-of-fit tests to evaluate whether or not the Weibull
distribution is capable of modeling the distribution of item sizes in these data
sets. We discuss each of these tests in the following sections.

The Kolmogorov-Smirnov Test. The two-sided Kolmogorov-Smirnov (KS)
test is a non-parametric test for the equality of continuous, one-dimensional,
probability distributions.4 As implemented in R, this test requires two sample
sets: one representing the observed data, and the other representing a sample
from the hypothesised distribution. In our setting, the observed data is repre-
sented by the item sizes from the benchmark we wish to model, while the second
set is a vector of items generated according to the best-fit Weibull distribution
with parameters (shape and scale) estimated from the observed data [22]. The
null hypothesis of this statistical test is that the two data sets come from the
same underlying distribution. For a 95% level of confidence, if the p-value from
the test is at least 0.05, then we cannot reject the null hypothesis.

The KS test was performed on all instances from our exam timetabling (ETT)
and ROADEF/EURO benchmark suites; the details of a randomly selected sub-
set are presented in Table 1. We can see that most of the ETT item size distribu-
tions can be accurately modeled by a Weibull distribution since the correspond-
ing p-values are above 5% (highlighted in bold). However, the KS test clearly
rejects the null hypothesis for the ROADEF/EURO instances, most likely due
to a both the size of the data sets and the presence of outliers in the tail of
the distribution. It is known that when dealing with large data sets with a small
number of large outliers, this test tends to underestimate the p-value. This means
that even if the null hypothesis is rejected the candidate distribution might still
characterise the data set [17]. For this reason we use a second test, the χ2, to
further validate the results.

The χ2 Test. As a complementary approach, we used the χ2 goodness-of-fit
test which is less sensitive to outliers in the sample data.5 The null hypothesis
is that the observed and expected distributions are not statistically different.
The procedure requires grouping items into γ categories according to their size.
Based on these categories, we can compute the expected number of values in each
category, assuming that the item sizes are drawn from a Weibull distribution with
shape and scale parameters estimated from the data set. The χ2 statistic is then
computed as:
3 http://people.brunel.ac.uk/~mastjjb/jeb/info.html
4 http://mathworld.wolfram.com/Kolmogorov-SmirnovTest.html
5 http://mathworld.wolfram.com/Chi-SquaredTest.html

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
http://mathworld.wolfram.com/Kolmogorov-SmirnovTest.html
http://mathworld.wolfram.com/Chi-SquaredTest.html
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χ2 =
γ∑

i=1

(Oi − Ei)2/Ei,

from which we can obtain the corresponding p-value, where Oi and Ei are the
observed and expected frequencies of each category i, respectively. We model
the tail of the distribution, in the standard way, by building a wider category
that counts all items in the tail of the distribution. The other γ − 1 categories
are equally sized.

As shown in Table 1, the null hypothesis cannot be rejected for any of the
benchmarks that are presented. Therefore, the conclusion is that the Weibull
distribution provides a good fit for the item size distributions in the benchmark
instances we considered. We conjecture that it will also do so in very many other
cases encountered in practice.

4 Systematic Search for Bin Packing

We consider the performance of a systematic constraint-based bin packing method
on a wide number of classes of Weibull-based bin packing benchmarks. Our ex-
periment involved varying the parameters of the Weibull distribution so that
item sets for bin packing instances could be generated. A range of bin capacities
were studied. The details of the experimental setup are described in Section 4.1.

4.1 Bin Packing Instances and Solver

Bin Packing Instances. We considered problems instances involving 100
items. We fixed the scale parameter, λ, of the Weibull to 1000. As experimental
parameters we varied both the capacity of the bins and the shape of the Weibull
distribution, generating 100 instances for each combination of parameters. The
capacities we considered were c × max(I), where c ∈ [1.0, 1.1, . . . , 1.9, 2.0] and
max(I) is the the maximum item size encountered in the instance. Therefore,
the capacity of the bins considered were at least equal to the largest item, or at
most twice that size.

For the shape parameter of the Weibull we considered a very large range:
[0.1, 0.2, . . . , 19.9], giving 199 settings of this parameter. By fixing the scale pa-
rameter to 1000 we considered item sizes that could span over three orders-of-
magnitude. To build our problem generator we used the Boost library [2]. This
is a C++ API that includes type definitions for random number generators and a
Weibull distribution, which is parameterized by the random number generator,
the shape and the scale. Iteration capabilities for traversing the distribution of
generated values are also provided. We generated 100 instances for each combi-
nation of shape and scale, giving 199 classes of item sets, providing 19,900 item
sets. For each of these sets we generated bin packing instances by taking each
set and associating it with a bin capacity in the range described above. In this
way we could be sure that as we changed bin capacity, the specific sets of items
to be considered was controlled.
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Table 1. The parameters of the best-fit Weibull distributions obtained for randomly
selected instances of a number of real-world examination timetabling benchmarks and
instances from the 2012 ROADEF/EURO Challenge sets. We present p-values for
both the KS and χ2 goodness-of-fit tests, highlighting in bold the results that show
a statistically significant fit. #(cat) and lbTail are the number of categories and the
lower bound of the category representing the tail for the χ2 test.

Weibull Best-fit KS test χ2 test
Set Instance shape scale p-value #(cat) lbTail p-value

E
T

T

Nott 1.044 43.270 0.7864 7 100 0.059
MelA 0.946 109.214 0.091 10 427 0.073
MelB 0.951 117.158 0.079 5 47 0.051
Cars 1.052 85.438 0.037 18 53 0.109
hec 1.139 138.362 0.436 10 293 0.204
yor 1.421 37.049 0.062 7 117 0.068

R
A

O
D

E
F

a12
3 0.447 104,346.70 0.005 30 163,000 0.105

a13
3 0.549 88,267.85 0.001 15 54,800 0.068

a25
1 0.562 67,029.83 0.000 30 470,000 0.768

a24
4 0.334 103,228.30 0.001 30 500,000 0.051

b3
6 0.725 40,469.74 0.000 20 185,000 0.060

b5
3 0.454 91,563.28 0.000 30 140,000 0.088

Hardware. Our experiments were run on an Intel Dual Core 2.4Ghz processor
with 4GB RAM memory, running Windows XP(SP3). Microsoft Visual Studio
2008 tools have been used for compiling and linking the C++ code.

Constraint-Based Bin Packing Model. For our experiments we have used
Gecode 3.7.0 [8]. The bin packing model used is the most efficient one included in
the Gecode distribution for finding the minimum number of bins for a given bin
packing instance [25]. This model employs the L1 lower bound on the minimum
number of bins by Martello and Toth [19]. It uses an upper bound based on
the first-fit bin packing heuristic which packs each item into the first bin with
sufficient capacity.

The model uses the following variables: one variable to represent the number
of bins used to pack the items; one variable per item representing which bin
the item is assigned to; and a variable per bin representing its load. The main
constraint included in the model is the global bin packing constraint proposed
by Paul Shaw [28], enforcing that the packing of items into bins corresponds to
the load variables. Those items whose size is greater than half of the bin capacity
are directly placed into different bins. If a solution uses a number of bins smaller
than the upper bound, then the load associated with unused bins is set to 0,
and symmetry breaking constraints ensure that this reasoning applies to the
lexicographically last variables first. Additional symmetry breaking constraints
ensure that search avoids different solutions involving permutations of items with
equal size.

The search strategy used is as follows. The variable representing the num-
ber of bins used in the solution is labelled first, and in increasing order, thus
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ensuring that the first solution found is optimal. The variables representing the
item assignments to bins, and the load on each bin, are then labelled using the
complete decreasing best fit strategy proposed by Gent and Walsh [10], which
tries to place the items into those bins with sufficient but least free space. In our
experiments a timeout of 10 seconds is used to ensure that our experiments take
a reasonable amount of time. We verified that increasing this to five minutes
does not significantly increase the proportion of solved instances. However, of
course, for some classes a large number of time-outs were observed, so further
empirical study is needed in those cases.

4.2 Scenario 1: Small Weibull Shape Parameter Values

In this section we explore the behaviour of a systematic search on bin packing
instances generated using our Weibull-based approach when considering small
values of the distribution’s shape parameter, specifically values ranging from 0.5
to 5.0 in steps of 0.1. Figure 4 presents the results – Figure 4(a) and Figure 4(b)
present the average time required to those instances solved within the timeout,
and the proportion of instances involved, respectively. In these plots we only
consider capacity factors 1.0, 1.5, and 2.0.

It is clear that the shape factor, which defines the spread of item sizes, has
a dramatic impact on the average time taken to find the optimal solution to a
bin packing instance. By referring back to Figure 1 one can observe how the
distribution of item sizes is changing. The lower values of the shape parameters
correspond to distributions that have greater skew towards smaller items. As the
shape parameter increases, consider value 1.5, there is a much greater range of
possible item sizes. Once we get to higher shape values, consider value 5.0, the
distribution of item sizes becomes more symmetric.

This shift in item size distribution impacts the difficulty of bin packing earlier
when the capacity of the bin is smaller. Consider the effort required when the bin
capacity is equal to the largest item, i.e. capacity factor 1.0, in Figure 4(a). The
range of shapes over which these problems are hard is quite narrow, and we shall
see in the next section, that this is influenced by the bin capacity associated with
the problem instance. This difficulty arises from the interaction between item
size distribution and bin capacity whereby finding the best combinations of items
to place in the same bin becomes challenging. As the shape parameter increases,
the range of item sizes again decreases which, given the small bin capacity, makes
the instance easy once more. For a bin capacity equal to the largest item size
the hard region corresponds to values of Weibull shape between 1.5 and 3.0.
Increasing the capacity of the bins dramatically increases the computational
challenge of the problems, since again, search effort is invested in finding a good
combination of items to fit into each bin. Clearly, from Figure 4(a), we can see
that problem difficulty increases very dramatically as bin capacity increases.

Using our proposed Weibull-based model for generating bin packing instances
we claim that not only can one model many real-world bin packing settings,
as shown earlier in this paper, but it is possible to carry out very controlled
experiments on the behaviour of bin packing methods, studying the effect of the



216 I. Castiñeiras, M. De Cauwer, and B. O’Sullivan

 0

 50

 100

 150

 200

 250

 300

 350

 400

0.5 1.0 2.0 3.0 4.0 5.0

m
ill

is
e
co

n
d
s

shape factor

c = 1.0
c = 1.5
c = 2.0

(a) Average running time for instances that did not timeout.

 0

 20

 40

 60

 80

 100

0.5 1.0 2.0 3.0 4.0 5.0

p
e
rc

e
n
ta

g
e

shape factor

c = 1.0
c = 1.5
c = 2.0

(b) Percentage of instances solved within the timeout.

Fig. 4. Average runtime and percentage of solved instances for values of the shape
parameter in the 0.5,. . . ,5.0 range

various aspects of the problem, such as bin capacity and item size distribution
in isolation, or together.

4.3 Scenario 2: Full Range of Shape Parameters

We have also performed a more wide ranging study of the interaction between
the shape of the Weibull distribution, bin capacity, and the hardness of bin
packing for a systematic method. In this section we will briefly present a set of
experiments that exhibit the various behaviours discussed above. We consider all
values of the shape parameter in our data set, 0.1 ≤ k ≤ 19.9. Figure 2 shows how
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Fig. 5. Average runtime and percentage of solved instances for values of the shape
parameter for range of Weibull shapes that is sufficiently wide to exhibit the easy-
hard-easy behaviour in search effort

the distributions with larger shape parameter values differ from those with the
smaller values studied above. Essentially, these distributions have lower spread
shown by successively taller density functions centering towards the value of the
scale parameter.

Figure 5 presents both the average running time (Figure 5(a)) of the instances
solved within the timeout and the percentage of instances that this corresponds
to (Figure 5(b)). The average number of bins associated with these instances is
presented in Figure 6.
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Fig. 6. Average number of bins associated with the optimal solutions to the instances
presented in Figure 5.

Again, in these plots we can see that, as before, problem difficulty peaks at a
specific value of Weibull shape for different values of capacity (Figure 5). From
Figure 6, which presents the average number of bins in an optimal solution, we
can extract the average number of items per bin for each class, since all of our
instances have 100 items. As before, the range of shapes over which search efforts
are hard, correspond to specific ranges of numbers of bins (or average number
of items per bin). Therefore, there is an obvious interrelationship between bin
capacity, item size distribution, and both problem hardness and numbers of items
per bin.

5 Bin Packing Heuristics

Our earlier experiments considered the performance of a systematic search
method for bin packing. In this section, for completeness, we use the same set
of instances to present bin packing performance when using some well-known
heuristics: MaxRest, FirstFit, BestFit and NextFit. Briefly these heuris-
tics operate as follows. MaxRest places the next item into the bin with max-
imum remaining space capacity; FirstFit places the next item into the first
bin that can accommodate it; BestFit places the next item into the bin that
will have the least remaining capacity once the item has been accommodated by
it; finally, NextFit keeps the last bin open and creates a new bin if the next
item cannot be accommodated in the current bin, which it will then close. For
our experiments we used a publicly available implementation of these heuris-
tics by Rieck.6 Because our benchmark generator produces instances that have
items sorted in decreasing order of size, the difference in performance between
6 http://bastian.rieck.ru/uni/bin_packing/

http://bastian.rieck.ru/uni/bin_packing/
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Fig. 7. The difference in the average number of bins required by each of the heuristics
and the optimal solutions - if a heuristic finds the optimal solution the difference is 0

MaxRest, FirstFit, and BestFit is very small, so we will only present results
for MaxRest, while NextFit will be presented separately.

Figure 7 presents the results, in each case showing the difference in the aver-
age number of bins as compared with the optimal value found by the system-
atic search method used earlier. A representative set of results for MaxRest,
FirstFit, and BestFit are presented in Figure 7(a) using MaxRest as the
example, while those for NextFit are presented in Figure 7(b). Interestingly
the quality of the solutions found using the MaxRest, FirstFit, and BestFit
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heuristics closely follows the difficulty of the problem when using a systematic
solver. This makes intuitive sense, since for these problems, finding a good com-
bination of items to give a good quality solution is difficult.

This performance contrasts starkly with that of the NextFit heuristic (Fig-
ure 7(b)) which does significantly worse than optimal across almost all values of
Weibull shape. While, the greediness of this heuristic does not pay off, the more
considered reasoning used by the other heuristic does, except when the problem
is even challenging for systematic search.

6 Conclusions

In this paper we have presented a parameterisable benchmark generator for bin
packing instances based on the well-known Weibull distribution. The motivation
for our work in this area comes from the domain of data centre optimisation and,
in particular, workload consolidation which can be viewed as multi-capacity bin
packing. We have demonstrated how our approach can very accurately model
real-world bin packing problems, e.g. those from the ROADEF/EURO Chal-
lenge, and from real-world examination timetabling problems. We also presented
an empirical analysis of both systematic search and heuristic methods for bin
packing based on a large benchmark suite generated using our approach, showing
a variety of interesting behaviours that are otherwise difficult to observe system-
atically. We observed that for all bin capacities, the number of bins required in an
optimal solution increases as the Weibull shape parameter increases. However,
for each bin capacity, there is a range of Weibull shape settings, corresponding
to different item size distributions, for which bin packing is hard for a CP-based
method.

In future work we will gather a large set of bin packing instances from real
world applications and compute best-fit Weibull distributions to them. In a
completely orthogonal direction, our approach provides a two parameter model
for item size distributions, giving us a three parameter bin packing model: bin
capacity, and Weibull shape and scale parameters. These parameters provide a
basis for tuning bin packing methods and generating portfolio-based bin packing
solvers that rely on these parameters for learning their best configuration.

The model we have presented here can, of course, be trivially extended to
produce benchmark generators for a variety of other important problems, such
as knapsacks, multi-processor scheduling, job shop scheduling, timetabling, to
name but a few. We have begun to develop these generators, with the ultimate
plan being a fully parameterised benchmark generator which we will integrate
into the Numberjack combinatorial optimisation platform,7 amongst others.
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Abstract. Many global constraints can be described by a regular ex-
pression or a DFA. Originally, the regular constraint, uses a DFA to
describe the constraint, however, it can also be used to express a table
constraint. Thus, there are many representations for an equivalent con-
straint. In this paper, we investigate the effect of different representations
on natural extensions of the regular constraint focusing on the space-time
tradeoffs. We propose a variant of the regular constraint, nfac(X), where
X can be an NFA, DFA or MDD. Our nfac algorithm enforces GAC di-
rectly on any of the input representations, thus, generalizing the mddc
algorithm. We also give an algorithm to directly convert an NFA rep-
resentation to an MDD for nfac(MDD) or mddc. Our experiments show
that the NFA representation not only saves space but also time. When the
ratio of the NFA over the MDD or DFA size is small enough, nfac(NFA)
is faster. When the size ratio is larger, nfac(NFA) still saves space and is
a bit slower. In some problems, the initialization cost of MDD or DFA
can also be a significant overhead, unlike NFA which has low initializa-
tion cost. We also show that the effect of the early-cutoff optimization is
significant in all the representations.

1 Introduction

Global constraints based on grammars can be used to express arbitrary con-
straints including other global constraints. The most well known is perhaps
the regular constraint [1] which can also express other global constraints, e.g.
contiguity, among, lex, precedence, stretch, etc. The regular constraint (originally)
takes a deterministic finite automata (DFA) as the constraint definition but
a non-deterministic finite automata (NFA) is also possible. On the other hand,
the table constraint defines an arbitrary constraint explicitly as a set of solutions.
Two efficient generalised arc consistency (GAC) algorithms for non-binary table

constraints are mddc [2] and str2 [3]. In mddc, the constraint is specified as a
multi-valued decision diagram (MDD)1 while str2 works with the explicit table.

We see then that there can be many input representations2 defining the same
set of solutions (tuples) to a constraint. However, it is well known that transform-
ing an NFA to a DFA can lead to an exponentially larger automata. The MDDs

1 An algorithm for constructing MDD from an explicit table constraint is given in [2].
2 These representations may be regarded as different constraint forms with equivalent
semantics.

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 223–237, 2012.
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corresponding to an NFA can also be large. Thus, there are different constraint
representation choices with different space requirements for the associated GAC
algorithms. Experiments in [3] also show that the representation size can deter-
mine solver runtime, mddc is faster than str2 when the MDD representation is
more compact and vice versa.3

In this paper, we investigate the space-time tradeoffs of the NFA, DFA and
MDD representations of the same equivalent constraint. We extend mddc to nfac

which can enforce GAC on a constraint defined as an NFA, DFA and MDD. An
algorithm which converts a constraint in NFA or DFA form directly to an MDD
is also given. We extend nfac to grammarc, which works on a grammar constraint
expressed in Greibach normal form.

We experiment with hard CSPs whose size differences in their NFA, DFA
and MDD representations are large. We show that the early-cutoff optimization
is a significant optimization for NFA, DFA and MDD in nfac. There are two
space-time tradeoffs. Firstly, the NFA representation is more efficient for the
nfac algorithm once the corresponding DFA or MDD becomes big enough. If
memory itself is an issue, e.g. the CSP has many large constraints, it may be
worthwhile to use NFA even when the DFA or MDD is smaller. Secondly, when
the size of the DFA or MDD is large enough, once the total time including
construction and initialization times are taken into account, the NFA can be
much faster then DFA or MDD. We also compare the nfac solver with regular and
find nfac to be faster.

1.1 Related Work

The regular constraint was introduced by Pesant [1]. He proposed a GAC algo-
rithm based on a layered graph data structure expanded from the DFA input
into the constraint. Furthermore, the layered graph algorithm can also be made
to process NFAs [5]. The regular constraint is generalized from automata as the
specification to context-free grammars using parsing algorithms [6,7]. GAC al-
gorithms based on the CYK parser, which requires the CFG in Chomsky normal
from (CNF), and the Earley parser, which is not restricted to CNF, are pro-
posed. [6] also proposed an NFA constraint propagator by encoding the NFA
transitions into a sequence of ternary constraints. The grammar constraint can
be converted into an automaton which is proposed by [8]. We investigate the
space-time tradeoffs once the constraint is in automata form to show when such
conversions are beneficial.

Arbitrary constraints can also be represented using multi-valued decision dia-
grams (MDDs) [9]. The bddc [10], mddc [2] and case [11] propagators achieve GAC
on various forms of an MDD constraint by traversing the graph in a depth-first
manner. The regular constraint can also be used as the propagator for MDD
constraints [2]. However, the question of space-time tradeoffs of MDD versus the
most naturally related representations, NFA and DFA, has not been experimen-
tally investigated in detail.

3 See also the results for str3 with table size [4].
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2 Background

A constraint satisfaction problem (CSP) P = (X,C) consists of a finite set X
of variables and a finite set C of constraints. Every variable xi ∈ X can only
take values from a finite domain dom(xi). An assignment (xi, a) denotes xi = a.
An r-ary constraint C ∈ C on an ordered set of r distinct variables x1, . . . , xr

is a subset of the Cartesian product
∏r

i=1 dom(xi) that restricts the values of
the variables in C can take simultaneously. The scope is the set of variables and
denoted by var(C). The arity of C is the size of var(C), and will usually be
denoted by r. Sometimes we write C(x1, . . . , xr) to make the scope explicit. A
set of assignments θ = {(x1, a1), . . . , (xr , ar)} satisfies C, and is a solution of
C, iff (a1, . . . , ar) ∈ C. Solving a CSP requires finding an assignment for each
variable from its domain so that all constraints are satisfied. Two constraints C1

and C2 are equivalent, written as C1 ≡ C2, iff θ ∈ C1 ⇐⇒ θ ∈ C2.
Consider a CSP P = (X,C). An assignment (xi, a) is generalized arc consistent

(GAC) [12] iff for every constraint C ∈ C such that xi ∈ var (C), there is a
solution θ of C where (xi, a) ∈ θ and a ∈ dom(xi) for every (xi, a) ∈ θ. This
solution is called a support for (xi, a) in C. A variable xi ∈ X is GAC iff (xi, a) is
GAC for every a ∈ dom(xi). A constraint is GAC iff every variable in its scope
is GAC. A CSP is GAC iff every constraint in C is GAC.

A non-deterministic finite state automaton (NFA) G = 〈Q,Σ, δ, q0, F 〉 consists
of a set Q of states, a set Σ of symbols,4 a transition function δ : Q× Σ �→ 2Q,
an initial state q0 ∈ Q, and a set F ⊆ Q of final states. G is known as a
deterministic finite state automaton (DFA) iff |δ(q, a)| = 1 for each q ∈ Q and
a ∈ Σ. If q′ ∈ δ(q, a), there is a transition or a directed edge from q to q′ via a.
|δ| = |{(q, q′)|q ∈ Q, q′ ∈ δ(q, a) for some a ∈ Σ}| is used to denote the number
of transitions in an NFA. Note that our definition does not allow for ε-transitions
in the NFA or DFA.

Let G = 〈Q,Σ, δ, q0, F 〉 be an NFA. An r-ary NFA constraint represented by
G is Φr

G({q0}, 1), which is recursively defined as

Φr
G(S, i) ≡

⎧⎨⎩
false : S = ∅
S ∩ F �= ∅ : i = r + 1∨

a∈Σ
(
xi = a ∧ Φr

G(δ
′(S, a), i+ 1)

)
: otherwise

where δ′(S, a) =
⋃

q∈S δ(q, a) and 1 ≤ i ≤ r + 1. We use tt to denote true and
ff to denote false.

A reduced multi-valued decision diagram (MDD) [9] is an acyclic DFA G =
〈Q,Σ, δ, q0, {tt}〉, such that for any states q, q′ ∈ Q, Φr

G({q}, i) ≡ Φr
G({q′}, i)

implies q = q′, where 1 ≤ i ≤ r + 1. In particular, a binary decision diagram
(BDD) [13] is an MDD where Σ = {0, 1}.

In the rest of this paper, an MDD or NFA constraint refers to a constraint
represented by an MDD or NFA respectively. A DFA constraint is a special
case of an NFA constraint where the automaton is deterministic. Fig. 1 gives a
graphical representation of equivalent NFA, DFA and MDD constraints.

4 W.L.O.G., we assume Σ be a set of integers in this paper.
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(a) (b) (c)

Fig. 1. (a) an NFA and (b) an equivalent DFA (non-minimized). Each (double) circle
with label i represents a (final) state qi. There is a directed edge from i to j iff qj ∈
δ(qi, a), where the edge is solid if a = 1 and dotted if a = 0. (c) an equivalent MDD
constraint for a 4-ary regular constraint represented by the NFA in (a) or the DFA in
(b).

3 NFA-to-MDD Conversion

We first present an algorithm to convert an r-ary NFA constraint into an equiv-
alent MDD constraint. One approach could be to first construct a DFA from
the NFA, e.g. by using the subset construction algorithm. The DFA can then
be traversed to generate solutions lexicographically which are then inserted into
an MDD using the mddify construction algorithm [2]. We propose instead to
convert directly from the NFA into the corresponding MDD constraint. More
precisely, given an NFA G = 〈Q,Σ, δ, q0, F 〉, the algorithm nfa2mdd creates an
MDD G′ = 〈Q′, Σ, δ, q′0, {tt}〉 such the r-ary constraints represented by G and
G′ are equivalent. The pseudo-code of the algorithm nfa2mdd is in Fig. 2. The
idea is to simulate the NFA [14] in a depth-first fashion and build the MDD from
bottom to up. In other words, it combines NFA-to-DFA conversion (or subset
construction) and trie-to-MDD construction.

The execution of the main procedure nfa2mdd-recur is as follows: If the current
subset S of states of the NFA G is at depth i = r + 1 (line 1), the unique final
state tt of the MDD G′ is returned iff S contains a final state of G. This is
because, by definition, any path from the start state to a final state corresponds
to a solution of Φr

G iff its length is r. Otherwise (i ≤ r), the traversal continues by
visiting collective successors for every a ∈ Σ, the initial domain of the variable
(line 3). The recursive call returns the start state q′a of the sub-MDD. If q′a
is not the failure state, the pair (a, q′a) is recorded (line 5), so the MDD only
contains paths leading to tt (true). Now, if all successors of the states in S lead
to a dead-end, the failure state ff will be returned (line 6), which means the
current sub-MDD has no solution. Otherwise, we need to create a (new) start
state for this sub-MDD. By definition, two equivalent (sub-)MDD constraints
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nfa2mdd(G, r)
// input: NFA G = 〈Q,Σ, δ, q0, F 〉 and arity r
begin

Q′ := ∅
initialize cache[], unique[] // dictionaries
δ′ := ∅
q′0 := nfa2mdd-recur({q0}, 1, r)
return 〈Q′, Σ, δ′, q′0, {tt}〉 // output: MDD G′

nfa2mdd-recur(S, i, r)
begin

1 if i = r + 1 then
if S ∩ F = ∅ then

return ff // failure state
else

return tt // final state (unique)

2 q′ := cache[〈S, i〉] // dictionary lookup
if q′ �= Null then return q′

3 E := ∅
for a ∈ Σ do

4 T :=
⋃

q∈S δ(q, a)

if T �= ∅ then
q′a := nfa2mdd-recur(T, i+ 1, r)

5 if q′a �= ff then E := E ∪ {〈a, q′a〉}

6 if E = ∅ then
q′ := ff

else
7 q′ := unique[E] // dictionary lookup

if q′ = Null then
8 make a new state q′

Q′ := Q′ ∪ {q′} // insert new state
for 〈a, q′a〉 ∈ E do

9 δ′(q′, a) := {q′a} // insert new transitions

unique[E] := q′

10 cache[〈S, i〉] := q′

return q′

Fig. 2. NFA to MDD Construction

should be represented by the same sub-MDD, so we use unique, implemented
as a dictionary, to store all created states in the MDD. With our bottom-up
construction, we can identify equivalent sub-MDDs easily by using E as a key
(line 7). When we cannot find an existing state, we generate a new one (line 8)
and the corresponding transitions (line 9).
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Proposition 1. nfa2mdd-recur constructs reduced MDDs.

Proof. According to the algorithm, one state q will be generated only when there
is no other state q′ that Φr

G({q}, i) ≡ Φr
G({q′}, i′). This guarantees that no two

different states q, q′ will be generated if Φr
G({q}, i) ≡ Φr

G({q′}, i′) and the MDD
being constructed is reduced.

The depth-first traversal will implicitly enumerate an exploration tree of size
|Σ|r. To reduce the size of the traversal, we make use of caching (lines 2 and
10) to ensure that any sub-MDD is only be expanded once. In the worst case,
nfa2mdd-recur visits O(2|Q|r) NFA states. This is also the maximum number of
slots in cache. However, the cache size can be smaller, thus trading time for
space. Note that if we convert an NFA into a DFA using subset construction the
time complexity will be O(22|Q|) since the DFA will have at most O(2|Q|) states.

Given an NFA G = 〈Q,Σ, δ, q0, F 〉 and arity r, the runtime and space com-
plexities of nfa2mdd are given as follows:

Proposition 2. The worst-case time complexity of nfa2mdd is O(|Q|2 · |Σ| ·
min{2|Q| · r, |Σ|r+1}).

Proof. In each call of nfa2mdd-recur, the caching operations on cache and unique
takes O(|Q|) and O(|Σ|) respectively. Every set union at line 4 can take O(|Q|2)
time. The last term accounts for the maximum number of recursive calls: (1)
each subset of Q is at most visited r times, and (2) the generation tree has
O(|Σ|r) non-leaf nodes.

In practice, the use of caching may significantly reduce the runtime.

Proposition 3. The worst-case space complexity of nfa2mdd is O(max{2|Q| ·|Q|·
r, |Σ|r · |Σ|}).

Proof. (1) for cache, the maximum number of slots is O(2|Q|r) and for each slot,
the key S takes O(|Q|) space in the dictionary entry, and (2) for unique, the
MDD size is in O(|Σ|r) and same as cache, each slot takes O(|Σ|) space.

To reduce this high memory requirement, we can trade time for space and restrict
the number of entries in cache and/or unique. In the latter case, the resulting
MDD may not be reduced, i.e., it may contain equivalent sub-MDDs.

Proposition 4. The output MDD G′ is in the worst case r times larger than
the DFA equivalent to the input NFA G, but it is exponentially smaller than the
DFA in the best case.

Proof. For the worst case, suppose nfa2mdd is run on a DFA equivalent to G.
Since nfa2mdd-recur visits every DFA state at most r times, there will be at most
r MDD states created for each DFA state. For the best case, consider an NFA
that represents the regular expression {0, 1}∗0{0, 1}n. The equivalent DFA has
2n nodes; whereas, for any fixed r > n, the corresponding MDD has r+1 states,
which represents the constraint (xr−n = 0) ∧

∧r
i=1 xi ∈ {0, 1}.
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nfac(G)
// enforce GAC on the constraint Φr

G(x1, . . . , xr)
// represented by the NFA G = 〈Q,Σ, δ, q0, F 〉
begin

11 clear(cache)
for i := 1 to r do

Ei := dom(xi) // no value has support yet

12 Δ := r + 1
nfac-recur(q0, 1, r) // update E1, . . . , Er

for i := 1 to Δ− 1 do
13 dom(xi) := dom(xi) \Ei // Ej = ∅ for all j ≥ Δ

nfac-recur(q, i, r)
begin

14 if i = r + 1 then
if q ∈ F then

return Yes
else

return No

15 st := cache[〈q, i〉]
if st �= Null then return st

st := No
16 for a ∈ dom(xi) do
17 for q′ ∈ δ(q, a) do

if nfac-recur(q′, i+ 1, r) = Yes then
st := Yes
Ei := Ei \ {a}

18 if i+ 1 = Δ and Ei = ∅ then
Δ := i
go to line 20

19 if i ≥ Δ then
go to line 20

20 cache[〈q, i〉] := st
return st

Fig. 3. nfac and nfac-recur

4 Maintaining GAC on an NFA Constraint

There are a number of algorithms to enforce GAC on an NFA constraint. In
this paper, we propose an algorithm which generalizes the mddc algorithm [2] for
MDD constraints to enforce GAC on NFA or DFA constraints. Fig. 3 shows the
algorithm nfac, which enforces GAC on an r-ary NFA constraint Φr

G(x1, . . . , xr)
represented by an NFA G = 〈Q,Σ, δ, q0, F 〉. The nfac algorithm can be applied
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to a constraint represented in NFA, DFA or MDD form as a DFA or MDD
constraint is a special case of an NFA.

Throughout the execution, for each xi, nfac keeps a set Ei of values in the
domain of xi which have no support (found yet). The function nfac-recur traverses
G recursively and updates E1, . . . , Er on the fly. Line 13 then removes for each
variable all values that have no support from its domain.

The function nfac-recur works as follows: If the current state q is at depth
i = r + 1 (line 14), Yes is returned iff q is a final state of G. This is because,
by definition, any path from the start state to a final state corresponds to a
solution of Φr

G iff its length is r. Otherwise (i ≤ r), the traversal continues for
every a ∈ dom(xi) (line 16) and every q′ ∈ δ(q, a) (line 17). In the case of a DFA
or MDD, the set δ(q, a) only contains one state for a DFA so the loop at line 17
will only be executed once.

Then if nfac-recur returns Yes, we will remove a from Ei because (xi, a) has at
least one support. Line 18 and 19 terminate the (outermost) iteration as soon
as every value in every domain of xi, xi+1, . . . , xr has a support. This is called
the early-cutoff optimization and it avoids traversing parts of the MDDs.5 At
last the function returns st, which is Yes if the current sub-NFA constraint is
satisfiable and No otherwise.

Proposition 5. When nfac-recur terminates, the value a ∈ Ei iff the assignment
(xi, a) has no support.

The use of caching at lines 15 and 20 guarantees nfac-recur traverses each sub-
NFA at most r times. The entries in cache are emptied by the procedure clear

(line 11). To make nfac incremental during search, we can implement cache with
the sparse set data structure used in mddc [2].

Given an NFA G = 〈Q,Σ, δ, q0, F 〉 and arity r, we have the following results
on the runtime and space complexity of nfac.

Proposition 6. The time complexity of nfac is O(|δ| · r).

Proof. With caching, each state in G is visited O(r) times, and the two for-loops
at line 16 traverse each outgoing edge of the state at most once (operations on
cache takes O(1) time [2]).

Proposition 7. The space complexity of nfac is O(|δ| + |Q| · r) if the cache is
maximal.

Proof. The first term corresponds to the number of transitions in G and the
second term gives the space requirement for cache (each entry in cache takes
O(1) space [2]).

However, if the cache has a fixed size, the space complexity becomes O(|δ|).

5 A form of early-cutoff is also applied in the str2 algorithm [3].
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grammarc(G)
21 // same as nfac() but calls grammarc-recur(S, 1, r)

grammarc-recur(α, i, r)
begin

22 if i = r + 1 then
if α is empty then

return Yes
else

return No

23 if |α| > r − i+ 1 then
return No

24 st := cache[〈α, i〉]
if st �= Null then return st

st := No
25 for a ∈ dom(xi) do
26 for head(α)→ aβ do

if grammarc-recur(β++tail(α), i+ 1, r) = Yes then
st := Yes
Ei := Ei \ {a}

27 if i+ 1 = Δ and Ei = ∅ then
Δ := i
go to line 29

28 if i ≥ Δ then
go to line 29

29 cache[〈α, i〉] := st
return st

Fig. 4. grammarc-recur

5 Extension of nfac to Grammar Constraints

The nfac algorithm can also be extended to the global grammar constraints. Our
algorithm grammarc, which enforces GAC on a constraint defined as a context-
free grammar (CFG) is shown in Fig 4. The algorithm requires the grammar
to be in Greibach normal form (GNF), namely, all productions are of the form
A→ aα where A is a non-terminal, a is a terminal and α is a (possibly empty)
sequence of non-terminals.6

The main difference with nfac is that it uses a sequence of non-terminals,
i.e. α and β are two sequences of non-terminals. We use the following notation:
|α| is the number of symbols in α; head(α) and tail(α) are the first symbol and
the sub-sequence of α following the first symbol respectively; and ++ is the
concatenation of two sequences. The grammarc calls grammarc-recur by passing

6 Any CFG G can be converted into an equivalent G′ in GNF. The size of G′ is O(|G|4)
in general, or O(|G|3) if G has no chain productions [15].
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Table 1. Sizes of NFA, DFA and MDD constraints in the benchmarks. The number
of CSP instances in each group is given by #instances.

NFA DFA MDD

Benchmark #instances size det size min size size

nfa-34-40-3-18 14 25 1005 843 4976
nfa-50-30-5-11 14 30 15287 15031 11617
nfa-36-30-5-15 9 40 48908 38479 123473
nfa-60-30-7-10 14 30 40865 40290 27766
nfa-57-30-7-12 12 30 39915 39790 81400
nfa-54-30-7-15 11 30 41018 40113 195927

the start symbol S of CFG. Once the grammarc-recur reaches level r + 1, Y es
will be returned if α is an empty string. At line 23, due to the arity of the
constraint, if the non-terminals left in current string are more than the terminals
needed, No will be returned (as the grammar is in GNF and every non-terminal
will generate at least one terminal). grammarc can also work with an ambiguous
grammar (line 26) and uses the early-cutoff optimization (line 27 and 28).

grammarc is an alternative algorithm to enforce GAC on grammar constraints.
We have not experimented with grammar constraints, and have focused on in-
vestigating time-space tradeoffs from automata representations to MDDs.7 We
expect that the use of cache and early-cutoff is still helpful in grammarc.

6 Experimental Results

Our implementations are in C++. The MDD construction with nfa2mdd is im-
plemented with the STL library for convenience. As STL is not so efficient, we
can expect that the runtime can be further improved but still the trends from
the experiments are clear. We implement nfac in Gecode 3.5.0 as it has an effi-
cient implementation of regular8 based on the layer graph updating algorithm in
[1]. The cache implementation in nfac follows [2] – using a sparse set (for fast
incrementality). Experiments were run on a Intel i7/960 @3.20GHz with 12G
RAM on 64-bit Linux. We use FSA Utilities 6.2769 to do the NFA generation
and dk.brics.automaton10 to do DFA determinization and minimization.

We want to investigate time-space tradeoffs, so the benchmarks need to have:
(i) sufficient variation in size between NFA, DFA and MDD representations
ranging from small to large; and (ii) be sufficiently hard with the chosen search
heuristic so that we are able to adequately exercise the GAC algorithms. Exist-
ing benchmarks do not meet our goals. We thus chose to generate hard random

7 This is because it is unclear how to generate hard grammar constraints which will
further exemplify the space-time tradeoffs above the ones in automata.

8 We also tested Gecode 3.7.3 and found similar runtimes to Gecode 3.5.0 in our tests.
9 It is implemented in Prolog, http://www.let.rug.nl/~vannoord/Fsa/fsa.html

10 It is implemented in Java, http://www.brics.dk/automaton/

http://www.let.rug.nl/~vannoord/Fsa/fsa.html
http://www.brics.dk/automaton/
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Table 2. (a) Average construction time of DFA and MDD CSPs ; and (b) Average
solving time of NFA, DFA, MDD and Gecode Regular CSPs (timeout is 3600s)

(a) Construction time (seconds)

DFA MDD

Benchmarks det time min time n2m time det2m time min2m time

nfa-34-40-3-18 0.6 0.6 1.0 0.4 0.4
nfa-50-30-5-11 24.0 72.0 16.8 6.8 6.4
nfa-36-30-5-15 66.0 534.7 83.9 58.4 56.5
nfa-60-30-7-10 115.9 556.9 69.6 34.2 33.0
nfa-57-30-7-12 108.4 522.1 113.3 60.6 60.0
nfa-54-30-7-15 103.8 517.7 182.6 119.5 115.3

(b) Solving time (seconds)

nfac-init nfacc nfacrc regular

Benchmarks NFA DFA MDD NFA DFA MDD NFA DFA MDD init DFA

nfa-34-30-3-18 0 0 0.1 7.1 5.4 5.6 15.5 28.9 23.0 0.1 19.6
nfa-50-30-5-11 0 1.3 1.0 11.5 10.6 8.0 26.9 116.0 32.3 1.8 73.0
nfa-36-30-5-15 0 2.7 6.7 54.7 66.5 54.6 132.9 1445.8 577.7 5.1 643.4
nfa-60-30-7-10 0 6.3 4.6 40.3 44.9 32.0 103.5 638.4 169.9 8.1 445.8
nfa-57-30-7-12 0 6.0 13.1 75.0 90.9 72.9 192.7 1524.7 576.2 7.9 855.6
nfa-54-30-7-15 0 5.8 31.0 88.7 123.4 112.5 220.6 (5 out) (4 out) 8.5 1249.2

CSPs for these goals using NFA constraints. We generate NFAs using FSA Util-
ities having deterministic density11 around 1.1 or 1.2 which gives a constraint
tightness following model RB and we found these to take sufficient runtimes to
exercise the GAC algorithms. Half of the states in Q are chosen as final states
to prevent the DFA/MDD from being small.

We generated 74 CSP instances in 6 different groups. The groups are named
using the notation nfa-c-v-d-r where c is the number of constraints, v is the
number of variables, d is the size of domain and r is the constraint arity. The sizes
of NFA, DFA, MDD are made differently, so as to avoid any bias to the different
algorithms considered. The average size of a single NFA and DFA constraint (in
number of states) and MDD constraint (in number of nodes) is given in Table 1.
The “det size” column gives the size of the DFA constructed from the NFA and
the “min size” column gives the size after minimizing the DFA. To illustrate the
size tradeoffs, one CSP instance in nfa-54-30-7-15 has has 1620 NFA states and
13K transitions in the NFA CSP; while the DFA CSP has 2.2M DFA states and
15.9M transitions; and the MDD CSP has 11M nodes and 76M edges.

First, we investigate the performance of our nfa2mdd algorithm. Table 2a gives
the average construction time of DFA and MDD CSPs from the respective NFA

11 Deterministic density of an NFA is defined as |δ|
|Q||Σ| . If the deterministic density

is 2, the equivalent DFA is expected to be exponentially larger [16]. However, the
resulting constraints are loose and the random CSPs easy to solve.
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Fig. 5. (a) Solver time compared with NFA or DFA versus input DFA or MDD size;
and (b) Regular compared with NFA versus input DFA size

CSP instance. The time to construct the NFA CSP instance itself is small because
the number of states is at most 40 and can be effectively ignored. A DFA CSP
can be built from the NFA CSP, e.g. using subset construction, the “det time”
column. The DFA constraints in the DFA CSP can also be minimized, the “min
time” column. There are several ways of building an MDD: (i) from the NFA
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Fig. 6. (a) shows the construction time over runtime for different original input rep-
resentations but ignoring initialization time; and (b) shows the total time ignoring
initialization across input representations across all benchmark instances. For an NFA,
the construction time is effectively 0, and the total time is nfac (nfa).

CSP to an MDD CSP using nfa2mdd on the NFA constraints, the n2m column;
(ii) from the non-minimized DFA CSP to an MDD CSP using nfa2mdd on the
DFA constraints, the det2m column; and (iii) from the minimized DFA CSP to
an MDD CSP, the min2m column. The total construction time for an MDD CSP
from each way is: (i) just n2m; (ii) “det time”+det2m; and (iii) “det time”+“min
time”+min2m. In our benchmarks, directly constructing the MDD from the
NFA is the fastest in most cases. Even constructing the DFA from NFA takes
significant time. Minimizing the DFA in these benchmarks is too costly except
for small instances. Later we compare construction time with solving time to
better understand the tradeoffs.

Secondly, we evaluate the efficiency of nfac to understand the space-time trade-
offs for enforcing GAC on the well known NFA, DFA and MDD representations.
We use a static variable ordering, max-deg, and lexicographic value ordering in
solving all the CSP instances to ensure the search space remains the same. Table
2b gives the solving runtime averaged over the CSP instances in a group. The
nfac-init column shows the time to initialize and load a previously constructed
CSP instance. The nfacc column gives the time to solve the CSP using the nfac

algorithm with the early-cutoff optimization while nfacrc is without the opti-
mization. Both sets of timings do not include the initialization time which is
already given.

Fig 5a shows the detailed space-time tradeoffs for each problem instance. The
notation nfac(X) denotes the nfac algorithm with early-cutoff on representation
X . The Y-axis shows the speedup for the indicated label, a ratio > 1 means
that nfac(nfa) is faster than nfac(dfa) or nfac(mdd). The X-axis shows the ratio
in the size of the input representation compared to the NFA. We see that when
the size ratio increases (for dfa/nfa > 1000 and for mdd/nfa > 3000); enforcing
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GAC using nfac on the NFA is faster than on the DFA or MDD. This shows that
nfac(nfa) will be more efficient than nfac(dfa) and nfac(mdd) (and also mddc)
when the size of DFAs and MDDs are large. We also show a similar comparison
between nfac(mdd) and nfac(dfa) (the � label, asterixed as the denominator is
different). It also shows a similar trend, nfac(dfa) can be faster than nfac(mdd)
as long as the size of the DFA is relatively small.

Fig 5b does a similar comparison of nfac(nfa) with the Gecode regular con-
straint. We see that regular is slower than nfac(nfa). Once the size of the DFA
becomes large, the size ratio > 1300, regular is about one order of magnitude
slower. In addition, if we compare nfacrc(mdd) with regular, even without the
early-cutoff optimization, it is still faster than regular except on the benchmark
group nfa-34-30-3-18, which has the smallest DFA size of all the benchmarks.

Since construction time is significant, we also compare the total time = con-
struction time + solving time, but not counting initialization time.12 Fig. 6a
shows that for the DFA and MDD representations, the construction time is not
only significant but in most cases exceeds the solving time (above the y=x diag-
onal). Note that nfac(nfa) is not in the diagram since the other representations
are constructed from the NFA form. Fig. 6b shows the total solving time for
each benchmark and choice of construction and input representation. It adds
nfac(nfa) back into the comparison. We see that now under the total time met-
ric, nfac with NFA outperforms almost all the other choices. The runner-up for
most instances is mddc with nfa2mdd(nfa).

Thirdly, we evaluate the effect of early-cutoff, which helps to avoid traversing
parts of the graphs in Table 2b. We see that the early cutoff optimization is effec-
tive in reducing the GAC time significantly across the board between NFA, DFA
and MDD. The optimization is more effective for DFAs and MDDs. regular is also
slower than nfac(nfa) and nfac(mdd) even without the early-cutoff optimization.

7 Conclusion

The regular constraint is an expressive and useful global constraint. There are
many input representations to define a regular constraint, the most well known
and natural ones being NFA, DFA and MDD. In this paper, we propose a new
GAC algorithm, nfac for the regular constraint, which can enforce GAC on a
constraint given in NFA, DFA and MDD directly. We also give a direct MDD
construction algorithm to convert from NFA constraints to MDD constraints.
We also extend nfac to deal with grammarc constraints.

The motivation for investigating different representations is to understand
better the time and space tradeoffs when the CSP is large in one representation
but smaller in another. We investigate the tradeoffs for CSPs with variations in
size ratio between all three representations. We show that the direct conversion
to an MDD constraint from an NFA one can be done more efficiently than
through the DFA. Although it is common to minimize the DFA, it may be

12 We have not included initialization time simply to avoid I/O from the CSP loading,
though, it might be even worse for large sizes.
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too costly when the DFA is large and the savings may not be sufficient. It
turns out that using an NFA representation not only saves space (which may be
significant) but also the total runtime (factoring in construction, initialization
and solving time). Thus, nfac(nfa) can save both space and time. However, when
the problem size is smaller, nfac(mdd) (or the mddc propagator) is faster but at
the cost of increased space over an NFA. We also show the importance of the
early-cutoff optimization originally shown in the mddc and str2 [3]. We also found
that the regular propagator using layered graphs was slower than nfac with all
input representations and we conjecture it is due to the use of the early-cutoff
and cache optimizations.
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Abstract. Lazy Clause Generation is a powerful approach to reducing
search in Constraint Programming. This is achieved by recording sets of
domain restrictions that previously led to failure as new clausal propaga-
tors called nogoods. This dramatically reduces the search and provides
orders of magnitude speedups on a wide range of problems. Current im-
plementations of Lazy Clause Generation only allows solvers to learn
and utilize nogoods within an individual problem. This means that ev-
erything the solver learns will be forgotten as soon as the current problem
is finished. In this paper, we show how Lazy Clause Generation can be
extended so that nogoods learned from one problem can be retained and
used to significantly speed up the solution of other, similar problems.

1 Introduction

Lazy Clause Generation (LCG) [8,5] is a powerful approach to reducing search
in Constraint Programming (CP). Finite domain propagation is instrumented
to record an explanation for each inference. This creates an implication graph
like that built by a SAT solver [7], which may be used to derive nogoods that
explain the reason for the failure. These nogoods can be propagated efficiently
using SAT unit propagation technology, and can lead to exponential reductions
in search space on many problems. Lazy clause generation provides state of
the art solutions to a number of combinatorial optimization problems such as
resource constrained project scheduling [9] and carpet cutting [10].

Current implementations of Lazy Clause Generation derive nogoods which
are only valid within the problem in which they were derived. This means the
nogoods cannot be correctly applied to other problems and everything that is
learned has to be thrown away after the problem is finished. There are many real
life situations where a user might want to solve a series of similar problems, e.g.,
when problem parameters such as customer demands, tasks, costs or availability
of resources change. Clearly, it would be beneficial if the nogoods learned in one
problem can be used to speedup the solution of other similar problems.

There are many methods that attempt to reuse information learned from
solving previous problems in subsequent problems. However, the information
learned by such methods differ significantly from those discussed in this paper.

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 238–247, 2012.
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Portfolio based methods (e.g., [11]) use machine learning or similar techniques
to try to learn which solver among a portfolio of solvers will perform best on
a new problem given characteristics such as the problem size or the properties
of its constraint graph. Methods such as [6] attempt to learn effective search
heuristics for specific problem domains by using reinforcement learning or similar
techniques. In the case where we wish to find the solution to a modified problem
which is as similar to the old solution as possible, methods such as [1], which
keep track of the value of each variable in the old solution and reuses it as a
search heuristic, can be effective. In the special case where we have a series of
satisfaction problems where each problem is strictly more constrained than the
previous one, e.g. satisfaction based optimization, all nogoods can trivially be
carried on and reused in the subsequent problems. In this paper, we are interested
in the more general case where subsequent problems can be more constrained,
less constrained, or simply different because the parameters in some constraints
have changed. We show how to generalize Lazy Clause Generation to produce
parameterized nogoods which can be carried from instance to instance and used
for an entire problem class.

2 Background

Let ≡ denote syntactic identity,⇒ denote logical implication and⇔ denote log-
ical equivalence. A constraint optimization problem is a tuple P ≡ (V,D,C, f),
where V is a set of variables, D is a set of domain constraints v ∈ Dv, v ∈ V , C
is a set of constraints, and f is an objective function to minimize (we can write
−f to maximize). An assignment θ assigns each v ∈ V to an element θ(v) ∈ Dv.
It is a solution if it satisfies all constraints in C. An assignment θ is an optimal
solution if for all solutions θ′, θ(f) ≤ θ′(f). In an abuse of notation, if a symbol
C refers to a set of constraints {c1, . . . , cn}, we will often also use the symbol C
to refer to the conjunction c1 ∧ . . . ∧ cn.

CP solvers solve CSP’s by interleaving search with inference. We begin with
the original problem at the root of the search tree. At each node in the search
tree, we propagate the constraints to try to infer variable/value pairs which
cannot be taken in any solution to the problem. Such pairs are removed from the
current domain. If some variable’s domain becomes empty, then the subproblem
has no solution and the solver backtracks. If all the variables are assigned and
no constraint is violated, then a solution has been found and the solver can
terminate. If inference is unable to detect either of the above two cases, the solver
further divides the problem into a number of more constrained subproblems and
searches each of those in turn.

In an LCG solver, each propagator is instrumented to explain each of its
inferences with a clause called the explanation. Each clause consists of literals of
the form x = v, x �= v, x ≥ v or x ≤ v where x is a variable and v is a value.

Definition 1. Given current domain D, suppose the propagator for constraint c
makes an unary inference m, i.e., c∧D ⇒ m. An explanation for this inference
is a clause: expl(m) ≡ l1 ∧ . . . ∧ lk → m s.t. c⇒ expl(m) and D ⇒ l1 ∧ . . . ∧ lk.



240 G. Chu and P.J. Stuckey

The explanation expl(m) explains why m has to hold given c and the current
domain D. We can consider expl(m) as the fragment of the constraint c from
which we inferred that m has to hold. For example, given constraint x ≤ y and
current domain x ∈ {3, 4, 5}, the propagator may infer that y ≥ 3, with the
explanation x ≥ 3→ y ≥ 3.

These explanations form an acyclic implication graph. Whenever a conflict is
found by an LCG solver, the implication graph can be analyzed in order to derive
a set of sufficient conditions for the conflict. This is done by repeatedly resolv-
ing the conflicting clause (the clause explaining the conflict) with explanation
clauses, resulting in a new nogood for the problem.

Example 1. Let C1 ≡ {x2 < x3, x1 + 2x2 + 3x3 ≤ 13}. Suppose we tried x1 = 1
and x2 = 2. We would infer x3 ≥ 3 from the first constraint with explanation:
x2 ≥ 2 → x3 ≥ 3. The second constraint would then fail with explanation:
x1 ≥ 1 ∧ x2 ≥ 2 ∧ x3 ≥ 3 → false. Resolving the conflicting clause with the
explanation clause gives the nogood: x1 ≥ 1 ∧ x2 ≥ 2→ false.

Let expls(n) be the set of explanations from which a nogood n was derived.
Then expls(n)⇒ n.

3 Parameterized Nogoods

Suppose we want to solve several similar problem instances from the same prob-
lem class. Currently, Lazy Clause Generation produces nogoods which are only
correct within the instance in which it was derived, thus we cannot carry such
nogoods from one instance to the next and reuse them. In this section, we show
how we can generalize the nogoods produced by Lazy Clause Generation to
parameterized nogoods which are valid for a whole problem class.

Each nogood derived by Lazy Clause Generation represents a resolution proof
that a certain subtree in the problem contains no solutions. For us to correctly
reuse this nogood in a different problem, we have to show that the resolution
proof is valid in the other problem. We have the following result:

Theorem 1. Let P1 ≡ (V,D,C1, f) and P2 ≡ (V,D,C2, f) be two constraint
optimization problems. Let n be a nogood derived while solving P1. If C2 ⇒
expls(n), then n is also a valid nogood for P2.

Proof. C2 ⇒ expls(n)⇒ n.

Theorem 1 tells us that if every explanation used to derive a nogood n is also
implied by a second problem P2, then n is also a valid nogood in P2.

Example 2. Let C1 ≡ {x1 < x2, x1+2x2 ≤ 9} and C2 ≡ {x1+1 < x2, x1+2x2 ≤
10}. Suppose we tried x1 = 3 in the first problem. We would infer x1 ≥ 3 →
x2 ≥ 4 from the first constraint, and the second constraint would then fail with
x1 ≥ 3 ∧ x2 ≥ 4 → false . The nogood would simply be x1 ≥ 3 → false . Now,
this nogood is also valid in the second problem because: x1 + 1 < x2 ⇒ x1 ≥
3→ x2 ≥ 4 and x1 +2x2 ≤ 10⇒ x1 ≥ 3∧ x2 ≥ 4→ false, so both explanations
used to derive the nogood are implied in the second problem.
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Note that the constraints in the second problem do not have to be the same
as the first. They can be stronger (like the first constraint in Example 2) or
weaker (like the second constraint in Example 2), and there can be more or
fewer constraints, as long as the constraints are strong enough to imply all the
explanations used to derive the nogood in the first problem.

To determine whether a nogood can be reused in a different problem, we need
an efficient way to keep track of whether all the explanations used to derive a
nogood are implied in the new problem. We can alter the problem models in
order to achieve this. Instead of modeling each instance as an individual con-
straint problem, we create a generic problem class model which is then param-
eterized to produce the individual instances. That is, we create a problem class
model Pclass ≡ (V ∪ Q,D,C, f), where Q are parameter variables. Individual
instances Pi are then created by fixing the variables in Q to instance specific
values Ri.

Example 3. Consider the graph coloring problem with n nodes. Let Q ≡ {ai,j |
i, j = 1, . . . , n} be a set of Boolean parameter variables representing whether
there is an edge between node i and j. We can define V ≡ {v1, . . . , vn}, D ≡
{vi ∈ {1, . . . , n}, C ≡ {ai,j → vi �= vj} and f = max(vi). Each instance would
then be created by setting the variables in Q to certain values to represent the
adjacency matrix for that instance.

In the traditional way of modeling, parameters are considered as constants and
we have separate problems for each problem instance. In our approach however,
parameters are variables and there is only a single problem for the entire problem
class. Since the parameters are now variables instead of constants, when LCG is
used on an instance, the explanations generated by the propagators will include
literals on the parameter variables. These additional literals describe sufficient
conditions on the parameter values to make the inferences valid. When such
parameterized explanations are resolved together to form a nogood, the nogood
will also have literals describing sufficient conditions on the parameter values to
make the nogood valid. Thus each nogood becomes a parameterized nogood that
is valid across the whole problem class. On instances where all the conditions
on the parameters are satisfied, the nogood will be active and will be able to
prune things as per normal. On instances where any of the conditions on the
parameters are not satisfied, the nogood will be inactive (trivially satisfied) and
will not prune anything.

Example 4. Consider three graph coloring instances: P1, where a1,2 = false ,
a1,3 = true, a2,3 = true, P2, where a1,2 = true, a1,3 = true, a2,3 = false , and
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P3, where a1,2 = true, a1,3 = true, a2,3 = true, illustrated in Figure 1. Suppose
in P1, we are looking for solutions with f ≤ 2 and we made search decisions
v1 = 1, v2 = 2. In the unparameterized model, we would use explanations:
f ≤ 2 → v3 ≤ 2, v1 = 1 → v3 �= 1, v2 = 2 → v3 �= 2, v3 �= 1 ∧ v3 �= 2 ∧ v3 ≤
2→ false and would derive a nogood v1 = 1∧ v2 = 2∧ f ≤ 2→ false. Now, it is
incorrect to apply this nogood in P2, because it is simply not true. For example
v1 = 1, v2 = 2, v3 = 2 is a perfectly valid solution for P2. In the parameterized
model, we would use the explanations: f ≤ 2→ v3 ≤ 2, v1 = 1 ∧ a1,3 → v3 �= 1,
v2 = 2 ∧ a2,3 → v3 �= 2, v3 �= 1 ∧ v3 �= 2 ∧ v3 ≤ 2 → false and would derive a
nogood a1,3∧a2,3∧v1 = 1∧v2 = 2∧f ≤ 2→ false , which correctly encapsulates
the fact that the nogood is only valid if the graph has edges between node 1 and
3 and node 2 and 3. The parameterized nogood can be correctly applied to any
instance of the graph coloring problem. It is inactive in P2 because a2,3 = false
in P2, but it might prune something in P3 because a1,3 = a2,3 = true in P3.

4 Implementation

Naively, we could implement the parameter variables as actual variables with
constraints over them. Then simply running the normal LCG solver on this
model will generate parameterized nogoods. However, such an implementation
is less efficient than using an instance specific model where the parameters are
considered as constants. For example, a linear constraint:

∑
aixi where ai are

parameters would be a simple linear constraint in an instance model, but would
be a quadratic constraint if we consider parameter variables as actual variables.
We can improve the implementation by taking advantage of the fact that the
parameters will always be fixed when we are solving an instance. To do this
we use normal propagators which treat parameters as constants, but alter their
explanations so that they include literals representing sufficient conditions on
the parameters to make the inference true.

For example, given a linear constraint a1x1 + a2x2 + a3x3 ≤ 10, a1 = 1, a2 =
2, a3 = 3 and current bounds x1 ≥ 1, x2 ≥ 2, we can infer x3 ≤ 1, and we would
explain it using: a1 ≥ 1 ∧ a2 ≥ 2 ∧ a3 ≥ 3 ∧ x1 ≥ 1 ∧ x2 ≥ 2→ x3 ≤ 1. Given a
constraint c which may be added to or removed from an instance depending on
a Boolean parameter b, we would modify the explanations for c’s inferences by
adding the literal b to each explanation. Given a cumulative constraint where task
durations, resource usage and the capacity of the machine are parameters, we
would add lower bound literals on the duration and resource usage of each task
involved in the inference, and an upper bound literal on the machine capacity to
each explanation. The modifications to the explanations of other parameterized
constraints are similarly straightforward and we do not describe them all.

A LCG solver can generate an enormous number of parameterized nogoods
during search, most of which are not particularly useful. Clearly, it would be
inefficient to retain all of these nogoods. We take advantage of the inbuilt capa-
bilities of LCG solvers for deleting useless nogoods. The LCG solver Chuffed

maintains an activity score for each nogood based on how often it is used. When



Inter-instance Nogood Learning in Constraint Programming 243

the number of nogoods in the constraint store reaches 100000, the least active
half are deleted. We only reuse the, at most 100000, parameterized nogoods
which survive till the end of the solve. At the beginning of each new instance,
we check each parameterized nogood to see if the conditions on the parameters
are satisfied. If not, we ignore the parameterized nogood, as it cannot prune
anything in this particular instance. If the conditions are satisfied, we add it to
the constraint store and handle it in the same way as nogoods learned during
search, i.e., we periodically remove inactive ones. This ensures that if the param-
eterized nogoods learned from previous instances are useless, they will quickly
be removed and will no longer produce any overhead.

4.1 Strengthening Explanations for Inter-instance Reuse

An important optimization in LCG is to strengthen explanations so that the
nogoods derived from it are more reusable. For example, consider a constraint:
x1 + 2x2 + 3x3 ≤ 13, and current domains: x1 ≥ 4, x2 ≥ 3. Clearly, we can
infer that x3 ≤ 1. Naively, we might explain this using the current bounds as:
x1 ≥ 4 ∧ x2 ≥ 3→ x3 ≤ 1. This explanation is valid, but it is not the strongest
possible explanation. For example, x1 ≥ 2 ∧ x2 ≥ 3 → x3 ≤ 1 is also a valid
explanation and is strictly stronger logically. Using these stronger explanations
result in stronger nogoods which may prune more of the search space. It is often
the case that there are multiple ways to strengthen an explanation and it is not
clear which one is best. For example, x1 ≥ 4 ∧ x2 ≥ 2→ x3 ≤ 1 is another way
to strengthen the explanation for the above inference.

In the context of inter-instance learning, there is an obvious choice of which
strengthening to pick. We can preferentially strengthen the explanations so that
they are more reusable across different problems. We do this by weakening the
bounds on parameter variables in preference to those on normal variables. For
example, if x1 was a parameter variable and x2 was a normal variable, we would
prefer the first strengthening above rather than the second, as that explanation
places weaker conditions on the parameter variables and will allow the nogood
to prune things in more instances of the problem class.

4.2 Hiding Parameter Literals

The linear constraint is particularly difficult for our approach as its explanations
often involve very specific conditions on the parameters, and these conditions
might not be repeated in other instances of the problem we are interested in.
For example, suppose:

∑k
i=1 aixi ≤ m where ai are positive parameter variables

and xi are normal variables. Suppose each ai is fixed to a value of ri, and each
xi is fixed to a value of bi and we have a failure. A naive explanation of this
inference would be of the form: ∧ki=1(ai ≥ ri ∧ xi ≥ bi) → false . This places a
lower bound condition on all of the ai involved in the linear constraint, which
may be hard to meet in any other instance of the problem. We can improve the
situation by decomposing long linear constraints into ternary linear constraints
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involving partial sum variables. This serves to “hide” some of the parameters
away and makes the explanation more reusable.

Example 5. Suppose we had constraints: x3 < x4 and a1x1+a2x2+a3x3+a4x4 ≤
29, and in this instance, the parameters are set to a1 = 1, a2 = 2, a3 = 3, a4 = 4.
Suppose we tried x1 = 1, x2 = 2, x3 = 3. We can infer that x4 ≥ 4 with
explanation x3 ≥ 3→ x4 ≥ 4. The second constraint then fails with explanation:
(a1 ≥ 1∧ a2 ≥ 2∧ a3 ≥ 3∧ a4 ≥ 4)∧ x1 ≥ 1∧ x2 ≥ 2∧ x3 ≥ 3∧ x4 ≥ 4→ false ,
leading to nogood: (a1 ≥ 1 ∧ a2 ≥ 2 ∧ a3 ≥ 3 ∧ a4 ≥ 4) ∧ x1 ≥ 1 ∧ x2 ≥ 2 ∧ x3 ≥
3→ false. The condition on the parameters: (a1 ≥ 1∧a2 ≥ 2∧a3 ≥ 3∧a4 ≥ 4) is
difficult to satisfy. However, suppose we decomposed the linear constraint into:
a1x1 + a2x2 ≤ s2, s2 + a3x3 ≤ s3, s3 + a4x4 ≤ 29. Now, after inferring x4 ≥ 4
from the first constraint, we would have a chain of inferences and explanations:
(a1 ≥ 1 ∧ a2 ≥ 2) ∧ x1 ≥ 1 ∧ x2 ≥ 2 → s2 ≥ 5, (a3 ≥ 3) ∧ s2 ≥ 5 ∧ x3 ≥ 3 →
s3 ≥ 14, (a4 ≥ 4) ∧ s3 ≥ 14 ∧ x4 ≥ 4 → false . The nogood would be derived
by resolving the last two clause with x3 ≥ 3→ x4 ≥ 4, which gives the nogood:
(a3 ≥ 3 ∧ a4 ≥ 4) ∧ s2 ≥ 5 ∧ x3 ≥ 3 → false. This nogood only has conditions
on a3 and a4 and is strictly stronger logically. By introducing the partial sum
variables, the conditions on a1 and a2 have been “hidden” into the bound literal
on s2 instead, producing a more reusable nogood.

5 Experiments

We evaluate our method on four problems. We briefly describe each problem,
their parameters, and situations where we may wish to solve several similar
instances of the problem.

Radiation Therapy Problem. In the Radiation Therapy Problem [2], a doctor de-
velops a treatment plan for a patient consisting of an intensity matrix describing
the amount of radiation to be delivered to each part of the treatment area. The
aim is to find the configuration of collators and beam intensities which minimizes
the total amount of radiation delivered and the treatment time. The intensities
are parameters. The doctor may alter the treatment plan (change some of the
intensities) and we may wish to re-optimize. We use instances of with 15 rows,
12 columns and a max intensity of 10.

Minimization of Open Stacks Problem. In the Minimization of Open Stacks
Problem (MOSP) [4], we have a set of customers each of which requires a subset
of the products. The products are produced one after another. Each customer
has a stack which must be opened from the time when the first product they
require is produced till the last product they require is produced. The aim is
to find the production order which minimizes the number of stacks which are
open at any time. The parameters are whether a customer requires a certain
product. Customers may change their orders and we may wish to re-optimize
the schedule. We use instances with 35 customers and a shared product density
of 0.2.
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Table 1. Comparison of solving (a) Radiation Therapy instances, (b) MOSP instances,
(c) Graph Coloring instances, and (d) Knapsack instances: from scratch (scratch) and
solving them making use of parameterized nogoods (para) from a similar instance

(a) Radiation Therapy (b) MOSP
diff scratch para reuse speedup
1% 7.10 23000 0.08 32 97% 88.8
2% 7.25 23219 0.31 433 93% 23.8
5% 7.03 22556 1.17 2496 81% 6.02
10% 7.57 23628 2.52 6198 74% 3.00
20% 7.68 23326 4.35 11507 55% 1.77

diff scratch para reuse speedup
1% 38.67 111644 1.03 921 93% 37.5
2% 41.65 114358 4.57 6700 88% 9.11
5% 42.80 111745 31.02 75600 71% 1.38
10% 47.80 95521 40.77 88909 57% 1.17
20% 27.37 86231 33.26 88186 45% 0.82

(c) Graph Coloring (d) Knapsack
diff scratch para reuse speedup
1% 15.12 54854 7.72 17026 74% 1.96
2% 18.78 61630 16.17 35994 61% 1.16
5% 23.65 70710 24.96 52026 35% 0.94
10% 45.14 96668 45.54 79763 20% 0.99
20% 48.12 101668 45.96 87431 9% 1.04

diff scratch para reuse speedup
1% 18.21 48714 6.74 11339 100% 2.70
2% 18.47 48640 7.32 13042 100% 2.52
5% 18.80 49154 16.91 37786 100% 1.11
10% 19.38 49298 21.12 44952 100% 0.92
20% 20.83 50007 24.15 49387 100% 0.86

Graph Coloring. The existence of an edge between each pair of nodes is a pa-
rameter. Edges may be added or removed and we may wish to re-optimize. We
use instances with 55 nodes and an edge density of 0.33.

Knapsack. In the 0-1 Knapsack Problem, the value, weight and availability of
items are parameters. New items might become available, or old ones might
become unavailable and we may wish to re-optimize. We use instances with 100
items.

For each of these problems, we generate 100 random instances. From each of
these base instances, we generate modified versions of the instance where 1%,
2%, 5%, 10% or 20% of the parameters have been randomly changed. The in-
stances are available online [3]. We solve these instances using the Lazy Clause
Generation solver Chuffed running on 2.8 GHz Xeon Quad Core E5462 proces-
sors. As a baseline, we solve every instance from scratch (scratch). To compare
with our method, we first solve each base instance and learn parameterized no-
goods from it. We then solve the corresponding modified versions while making
use of these parameterized nogoods (para). The geometric mean of the run times
in seconds and the nodes required to solve each set of 100 instances is shown in
Table 1. We also show the geometric mean of the percentage of parameterized
nogoods which are active in the second instance of each pair of instances (reuse),
and the speedup (speedup).

As can be seen from the results, parameterized nogoods can provide significant
reductions in node count and run times on a variety of problems. The speedups
vary between problem classes and are dependent on how similar the instance is to
one that has been solved before. Dramatic speedups are possible for Radiation
and MOSP when the instances are similar enough, whereas the speedups are
smaller for Knapsack and Graph Coloring. The more similar an instance is to one
that has been solved before, the greater the number of parameterized nogoods
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which are active in this instance and the greater the speedup tends to be. When
the instance is too dissimilar, parameterized nogoods provide little to no benefit.

The percentage of parameterized nogoods which are active in the second in-
stance is highly dependent on the problem class. This is because depending on
the structure of the problem, each parameterized nogood can involve a small or
large number of the instance parameters. The fewer the parameters involved, the
fewer the conditions on the parameters and the more likely it is that the nogood
will be reusable in another instance. The “hiding parameter literals” optimiza-
tion described in Section 4.2 is clearly beneficial for the Knapsack Problem,
raising the reusability to 100%. Without it, few of the parameterized nogoods
are active in the second instance and there is no speedup (not shown in table).
While parameterized nogoods must be active in order to provide any pruning,
there is no guarantee that an active nogood will actually provide “useful” prun-
ing. This can be seen in the results for Knapsack, where despite the fact that all
the parameterized nogoods can potentially prune something, they do not prune
anything useful when the second instance is too different from the first.

6 Conclusion

We have generalized the concept of nogoods, which are valid only for an in-
stance, to parameterized nogoods which are valid for an entire problem class. We
have described the modifications to a Lazy Clause Generation solver required to
generate such parameterized nogoods. We evaluated the technique experimen-
tally and found that parameterized nogoods can provide significant speedups on
a range of problems when several similar instances of the same problem need
to be solved. The more similar the instances are, the greater the speedup from
using parameterized nogoods.
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Abstract. Many applications, such as scheduling and temporal plan-
ning, require the solution of Temporal Problems (TP’s) representing con-
straints over the timing of activities. A TP with uncertainty (TPU) is
characterized by activities with uncontrollable duration. Depending on
the Boolean structure of the constraints, we have simple (STPU), con-
straint satisfaction (TCSPU), and disjunctive (DTPU) temporal prob-
lems with uncertainty.

In this work we tackle the problem of strong controllability, i.e. find-
ing an assignment to all the controllable time points, such that the
constraints are fulfilled under any possible assignment of uncontrol-
lable time points. We work in the framework of Satisfiability Modulo
Theory (SMT), where uncertainty is expressed by means of universal
quantifiers. We obtain the first practical and comprehensive solution for
strong controllability: the use of quantifier elimination techniques leads
to quantifier-free encodings, which are in turn solved with efficient SMT
solvers.

We provide a detailed experimental evaluation of our approach over
a large set of benchmarks. The results clearly demonstrate that the pro-
posed approach is feasible, and outperforms the best state-of-the-art
competitors, when available.

1 Introduction

Many applications require the scheduling of a set of activities over time, subject
to constraints of various nature. Scheduling is often expressed as a Temporal
Problem (TP), where each activity is associated with two time points, repre-
senting the start time and the end time, and with a duration, all subject to
constraints. Several kinds of temporal problems have been identified, depending
on the nature and structure of the constraints. If the constraints are expressible
as a simple conjunction of constraints over distances of time points, then we have
the so-called Simple Temporal Problem (STP). A more complex class is Temporal
Constraint Satisfaction Problem (TCSP), where a distance between time points
can be constrained to a list of disjoint intervals. Constraints in TCSP’s can
be seen as a restricted form of Boolean combinations. When arbitrary Boolean
combinations are allowed, we have a Disjunctive Temporal Problem (DTP). A
temporal problem is said to be consistent if there exists an assignment for the
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time points, such that all the constraints are satisfied [1]. Such an assignment is
called a schedule, and it corresponds to sequential time-triggered programs, that
are often used in control of satellites and rovers.

In many practical cases, however, the duration of activities is uncontrollable.
TP are thus extended with uncertainty in the duration of activities, thus ob-
taining the classes of STPU, TCSPU and DTPU. As in the case of consistency,
we look for a schedule. However, the schedule only determines the start of the
activities, and must satisfy the constraints for all the uncontrollable durations
of the activities. If such a schedule exists, the problem is said to be strongly
controllable [2].

In this paper, we propose a comprehensive and effective approach to strong
controllability of TPU. The approach relies on the Satisfiability Modulo The-
ory (SMT) framework [3]. This framework provides representation capabilities,
based on fragments of first order formulae. Reasoning is carried out within a
decidable fragments of first order logic, where interpretations are constrained to
satisfy a specific theory of interest (i.e. linear arithmetic). Modern SMT solvers
are a tight integration of a Boolean SAT solver, that is highly optimized for
the case split required by the Boolean combination of constraints, with dedi-
cated constraint solvers for the theories of interest. Moreover, some SMT solvers
provide embedded efficient primitives to handle quantifiers, and dedicated tech-
niques for quantifier-elimination are available. Several effective SMT solvers are
available (e.g. MathSAT [4,5], Z3 [6], Yices [7], OpenSMT [8]). SMT solving has
had increasing applications in many areas including Answer Set Programming
(ASP) [9], formal verification [10], and test case generation [11].

We tackle the strong controllability problem of TPUs by reduction to SMT
problems, that are then fed into efficient SMT solvers. First, we show how to
encode a TPU into the theory of quantified linear Real arithmetic (LRA) and,
by leveraging the specific nature of the problem, we optimize the encoding by
reducing the scope of quantifiers. The resulting formula can be fed to any SMT
solver for (quantified) LRA. Second, we present a general reduction procedure
from strong controllability to consistency, based on the application of quantifier
elimination techniques upfront. The resulting formulae can be directly fed into
any SMT solver for the quantifier-free LRA. This gives the first general compre-
hensive solver for strong controllability of TPUs. Third, we generalize the results
by Vidal and Fargier [2], originally stated for STPU, to the class of TCSPU. In
this way, we avoid the use of expensive general purpose quantifier elimination
techniques, with significant performance improvements.

The proposed approach has been implemented in a solver based on state-of-
the-art SMT techniques. To the best of our knowledge, this is the first solver
for strong controllability of TPUs. We carried out a thorough experimental eval-
uation, over a large set of benchmarks. We analyze the merits of the various
encodings, and demonstrate the overall feasibility of the approach. We also com-
pare the proposed approaches with state-of-the-art algorithms on consistency
problems. SMT solvers are competitive with, and often outperform, the best
known dedicated solving techniques.
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Structure of the Paper. In sections 2 and 3 we present some technical pre-
liminaries and background about SMT. In section 4 we formally define temporal
problems, while in section 5 we present several SMT encodings for consistency.
Encodings for strong controllability are described in section 6 and an overview
of the related work is given is section 7. We report the results of the performed
experimental evaluation in section 8, and in section 9 we draw some conclusions
and outline directions for future work.

2 Technical Preliminaries

Our setting is standard first order logic. The first-order signature is composed of
constants, variables, function symbols, Boolean variables, and predicate symbols.
A term is either a constant, a variable, or the application of a function symbol
of arity n to n terms. A theory constraint (also called a theory atom) is the
application of a predicate symbol of arity n to n terms. An atom is either a theory
constraint or a Boolean variable. A literal is either an atom or its negation.
A clause is a finite disjunction of literals. A formula is either true (&), false
(⊥), a Boolean variable, a theory constraint, the application of a propositional
connective of arity n to n formulae, or the application of a quantifier to an
individual variable and a formula. We use x, y, v, . . . for variables, and 	x, 	y, 	v, . . .
for vectors of individual or Boolean variables. Terms and formulae are referred
to as expressions, denoted with φ, ψ, . . . We write φ(x) to highlight the fact that
x occurs in φ, and φ(	x) to highlight the fact that each xi occurs in φ.

Substitution is defined in the standard way (see for instance [12]). We write
φ[t/s] for the substitution of every occurrence of term t in φ with term s. Let 	t
and 	s be vectors of terms, we write φ[	t/	s] for the parallel substitution of every
occurrence of ti (the i-th element of 	t) in φ with si.

We use the standard semantic notion of interpretation and satisfiability. We
call satisfying assignment or model of a formula φ(	x) a total function μ that
assigns to each xi an element of its domain such that the formula φ[	x/μ(	x)]
evaluates to &. A formula φ(	x) is satisfiable if and only if it has a satisfying
assignment.

Checking the satisfiability (SAT) of a formula consists in finding a satisfying
assignment for the formula. This problem is approached in propositional logic
with enhancements of the DPLL algorithm: the formula is converted into an
equi-satisfiable one in Conjunctive Normal Form (CNF); then, a satisfying as-
signment is incrementally built, until either all the clauses are satisfied, or a
conflict is found, in which case back-jumping takes place (i.e. certain assign-
ments are undone). Keys to efficiency are heuristics for the variable selection,
and learning of conflicts (see e.g. [13]).

3 Satisfiability Modulo Theories

Given a first-order formula ψ in a decidable background theory T, Satisfiability
Modulo Theory (SMT) [3] is the problem of deciding whether there exists a
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satisfying assignment to the free variables in ψ. For example, consider the formula
(x ≤ y)∧ (x+3 = z)∨ (z ≥ y) in the theory of real arithmetic (x, y, z ∈ R). The
formula is satisfiable and a satisfying assignment is {x := 5, y := 6, z := 8}. The
theory of real arithmetic interprets 3 as a real number and +,=, <,>,≤,≥ as
the corresponding operations and relations over R.

In this work we concentrate on the theory of Linear Arithmetic over the Real
numbers (LRA). A formula in LRA is an arbitrary Boolean combination, or
universal (∀) and existential (∃) quantification, of atoms in the form

∑
i aixi � c

where �∈ {>,<,≤,≥, �=,=}, every xi is a real variable and every ai and c is
a real constant. Given two real constants l, u such that l ≤ u, we denote with
t ∈ [l, u] the formula l ≤ t ∧ t ≤ u. Difference logic (RDL) is the subset of
LRA such that atoms have the form xi − xj � c. We denote with QF LRA and
QF RDL the quantifier-free fragments of LRA and RDL, respectively.

An SMT solver [3] is a decision procedure which solves the satisfiability
problem for a formula expressed in a decidable subset of First-Order Logic.
The most efficient implementations of SMT solvers use the so-called “lazy ap-
proach”, where a SAT solver is tightly integrated with a T-solver. The role of
the SAT solver is to enumerate the truth assignments to the Boolean abstrac-
tion of the first-order formula. The Boolean abstraction has the same Boolean
structure of the first-order formula, but “replaces” the predicates which con-
tain T information with fresh Boolean variables. The Boolean abstraction of
(x ≤ y)∧ (x+3 = z)∨ (z ≥ y) is a∧ (b∨ c), where a, b, c are fresh Boolean vari-
ables. The T-solver is invoked when the SAT solver finds a satisfying assignment
for the Boolean abstraction: the satisfying assignment to Boolean abstraction
maps directly to a conjunction of T atoms, which the T-solver can handle. If
the conjunction is satisfiable also the original formula is satisfiable. Otherwise
the T-solver returns a conflict set which identifies a reason for the unsatisfia-
bility. Then, the negation of the conflict set is learned by the SAT solver in
order to prune the search. Examples of solvers based on the “lazy approach” are
MathSAT [4] and Z3 [6].

In order to deal with quantifiers in LRA many techniques have been developed
and implemented in SMT solvers. Some solvers, like e.g. Z3 [6] natively support
quantifiers. However, many SMT solvers cannot deal with them. Several tech-
niques have been developed for removing quantifiers from an LRA formula (e.g.
Fourier-Motzkin [14], Loos-Weispfenning [15,16]): they transform an LRA for-
mula into an equivalent QF LRA formula. These techniques enable for the use of
solvers with no native support for quantifiers at a cost that is doubly exponential
in time and space in the original formula size [14,16,15].

4 Temporal Problems

A Temporal Problem (TP) is a formalism that is used to represent temporal
constraints over time-valued variables representing time points. This formalism
is expressive enough to express Allen’s interval algebra [17] and also quantitative
constraints over intervals and time points. Two families of TP’s have been pre-
sented in literature over the years: TP without uncertainty, in which all the time
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points can be freely assigned by the solver [1,18]; TP with uncertainty (TPU),
in which only some of the time points can be assigned by the solver, while the
others are intended to be assigned by an adversary. As such, TPU’s can be seen
as a form of game between the solver and an adversarial environment [2,19].

Definition 1. A TPU is a tuple (Xc, Xu, Cc, Cf ), where Xc
.
= {b1, ..., bn} is the

set of controllable time points, Xu
.
= {e1, ..., em} is the set of uncontrollable

time points, Cc
.
= {cc1, ..., ccm} is the set of contingent constraints, and Cf

.
=

{cf1, ..., cfh} is the set of free constraints.

cci
.
= (ei − bji) ∈ [li, ui] cfi

.
=
∨Di

j=1(xi,j − yi,j) ∈ [li,j , ui,j]

such that: ji ∈ [1 . . . n], li, ui ∈ R, li ≤ ui, li,j , ui,j ∈ R∪ {+∞,−∞}, li,j ≤ ui,j,
Di is the number of disjuncts for the i-th constraint, xi,j , yi,j ∈ Xc ∪Xu

Intuitively, time points belonging to Xc are time decisions that can be controlled
by the solver, while time points in Xu are under the control of the environment.
A similar subdivision is imposed on the constraints: free constraints Cf are
constraints that the solver is required to fulfill, while contingent constraints
(Cc) are the assumptions that the environment will fulfill. As in [2] we consider
only contingent constraints that start with a controllable time point. Thus, each
uncontrollable time point is linked by exactly one contingent constraint to a
controllable time point. We remark that this assumption does not affect the
generality of the formalism, as for each contingent constraint (ei− ej) ∈ [l, u] we
can add an artificial new controllable time point b, and add (b − ej) ∈ [0, 0] to
the free constraints and (ei − b) to the contingent constraints.

A TP without uncertainty is a TPU (Xc, ∅, ∅, Cf ), i.e. the set of uncontrol-
lable time points is empty (from which it also follows that the set of contingent
constraints is empty).

Depending on the generality of the constraints in Cc and Cf , three classes of
TPU’s are identified [19]. Definition 1 in its general form identifies Disjunctive
Temporal Problem with Uncertainty (DTPU). If each constraint contains at most
two time points, the resulting problem is a Temporal Constraint Satisfaction
Problem with Uncertainty (TCSPU). If each constraint has exactly one disjunct
(i.e. Di = 1 for all i), we obtain a Simple Temporal Problem with Uncertainty
(STPU). Similarly, we can define the corresponding TP without uncertainty
(DTP [18], TCSP, and STP [1]).

We define an assignment to the time points as a total function from time points
to real values. Given a TP without uncertainty, checking consistency corresponds
to deciding the existence of an assignment that fulfills all the constraints of the
problem. We call such an assignment a consistent schedule, and we say that the
TP is consistent. Checking the consistency of a TPU (Xc, Xu, Cc, Cf ) is defined
as checking the consistency of the TP without uncertainty (Xc∪Xu, ∅, ∅, Cc∪Cf ).

Intuitively, when checking consistency of a TPU, the behavior of the environ-
ment is assumed to be “cooperative” with the solver. In this paper, we focus on
Strong Controllability (SC) [2] for a TPU, where the environment is adversarial.
SC consists in deciding the existence of a strong schedule, i.e. an assignment to
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controllable time points that fulfills the free constraints under any assignment of
uncontrollable time points that satisfies the contingent constraints. A TPU for
which there exists a strong schedule is said to be strongly controllable.

If a TPU is strongly controllable, it is also consistent. However, the converse
does not hold in general. Consider for example the STPU such that Xc = {A, B},
Xu = {C}, Cc = {(B − A) ∈ [1, 10]}, and Cf = {(C − A) ∈ [0, 12], (C − B) ∈
[1, 5]}. The problem is consistent, and a consistent schedule is {A = 0, B =
3, C = 5}. However, the problem is not strongly controllable because if the
duration of the interval B − A = 1, the window of opportunity for scheduling
C is [2, 6], that is disjoint from the window of opportunity when the duration is
equal to 10, that is [11, 12]. Since B−A is decided by the adversarial environment,
there is no strong schedule that allows the solver to win.

5 Encoding of Consistency Problems in SMT

We first focus on the consistency problem, i.e. the case in which there is no
uncontrollability. The consistency problem can be reduced to checking the sat-
isfiability of a quantifier-free formula modulo the LRA theory. The temporal
problem is consistent if and only if the corresponding SMT formula is satisfi-
able, and any satisfying assignment for the formula corresponds to a consistent
schedule for the problem.

The use of SMT to check the consistency of TP without uncertainty has been
investigated in the past (e.g. [20]). Here, consistency checking plays the role
of backend for strong controllability. In the following, we present several SMT
encodings, that turn out to have different performance in the solvers, depending
on the nature of the constraints.

In the following, we assume that a TP (Xc, ∅, ∅, Cf) is given. The first encoding
in SMT of the consistency problem can be directly obtained as follows: for every
time point in Xc we introduce a real variable, and we denote with 	Xc the vector
of such variables; each constraint in Cf is directly mapped on the corresponding
SMT formula; the encoding is the SMT formula shown in Equation 1.∧|Cf |

i=1

∨Di

j=1(((xi,j − yi,j) ≥ li,j) ∧ ((xi,j − yi,j) ≤ ui,j)) (1)

This encoding is linear in the size of the original TP, but does not exploit any
knowledge on the structure of the problem, and is thus referred to as näıve
encoding. In particular, we notice that the resulting SMT formula is not in CNF.

In the rest of this section we introduce three optimizations: the switch en-
coding (applicable to any TP), the switch encoding with mutual exclusion and
the hole encoding (both for TCSPs only). The switch encoding performs a CNF
conversion of the formula in Equation 1 by means of a polarity-based CNF la-

beling conversion [21]. To this extent, we introduce
∑|Cf |

i=0 Di Boolean “switch”
variables si,j , and the resulting encoding is the one in Equation 2.∧|Cf |

i=1 ((
∧Di

j=1((¬si,j ∨ ((xi,j − yi,j) ≥ li,j)) ∧
(¬si,j ∨ ((xi,j − yi,j) ≤ ui,j)))) ∧ (

∨Di

j=1 si,j))
(2)
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This encoding is also linear in the size of the original TP, and it directly produces
a CNF formula. We notice that the clauses involving theory atoms are binary;
furthermore, if a switch variable is assigned to false, the corresponding clauses
are satisfied without any theory reasoning. These factors have a positive impact
on the performance of the SMT solver.

If we focus on the TCSP class, we can exploit the problem structure to further
improve our encodings. In TCSP each constraint is composed of disjuncts of the
form t ∈ [lj , uj], where t is the difference of two variables, and for all j, lj ≤ uj

and uj < lj+1. Clearly, the disjuncts are mutually exclusive. However, with the
previous encoding it is left to the solver to discover this property. We strengthen
the switch encoding by statically adding mutual exclusion constraints of the
form (¬sh ∨ ¬sk), with h �= k. Adding this information to the encoding is a
form of static learning, and it can guide the Boolean search by pruning branches
that are unsatisfiable in the theory. The switch encoding with mutual exclusion
is presented in Equation 3.∧|Cf |

i=1 (
∧Di

j=1((¬si,j ∨ ((xi,j − yi,j) ≥ li,j)) ∧
(¬si,j ∨ ((xi,j − yi,j) ≤ ui,j))) ∧
(
∨Di

j=1 si,j) ∧ (
∧Di

j=1

∧Di

k=j+1(¬si,j ∨ ¬sk)))
(3)

This encoding is in CNF, but its size is quadratic in the size of the TP— or,
more specifically, in (maxi Di), i.e. the size of the longest clause.

A different encoding for the TCSP problem class is obtained as follows. For
each constraint, we constrain t ∈ [l1, uD], and we exclude the “holes” between
intervals, a hole being an open interval (uj , lj+1). The result is the hole encoding
reported in Equation 4.∧|Cf |

i=1 (((xi − yi) ≥ li,1) ∧ ((xi − yi) ≤ ui,Di) ∧
(
∧Di−1

j=1 ((xi − yi) ≤ ui,j) ∨ ((xi − yi) ≥ li,(j+1))))
(4)

This encoding is linear in the size of the original TP, does not introduce any
additional variable, and, most importantly, results in a 2-CNF formula. These
properties are noteworthy and will be exploited in the following sections.

Finally, we notice that Equation 4 is logically equivalent to Equation 1 (in the
applicable case of TCSP), while Equations 2 and 3 are only are equi-satisfiable to
it, because of the added switch variables. The solution to the temporal problem
is still obtained directly from any satisfying assignment, gathering the values for
the variables in 	Xc.

6 Encoding of SC Problems in SMT

We now consider the SC problem, in which some time points are not schedulable
by the solver, and are considered uncontrollable when looking for a schedule for
the controllable time points. We describe the reduction of the SC problem to
SMT. We developed a number of encodings that are satisfiable if and only if
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the temporal problem is strongly controllable, and such that a model of each
encoding yields a solution for the original problem.

In the following, we assume that a TPU (Xc, Xu, Cc, Cf ) is given.

6.1 Encodings into Quantified LRA

As in the previous section, each time point is associated with an SMT variable.
The encoding in Equation 5 is a direct logical mapping of the notion of strong
controllability; we call this encoding direct encoding.

∀ 	Xu.(Cc( 	Xc, 	Xu)→ Cf ( 	Xc, 	Xu)) (5)

Equation 5 is satisfiable if and only if there exists an assignment to the control-
lable variables Xc such that, for all assignments to the uncontrollable variables
Xu satisfying the contingent constraints Cc, the free constraints Cf are also
satisfied. In the above formula, the controllable variables are implicitly existen-
tially quantified. In case of satisfiability, the SMT solver returns a satisfying
assignment to the controllable variables that is exactly a strong schedule.

In order to enable further simplifications, we notice that contingent constraints
depend both on controllable and uncontrollable time points, and we re-code the
problem as follows. We rewrite each uncontrollable time point ei in terms of the
time difference with its starting time point bji by means of an uncontrollable
offset variable yi. For every contingent constraint cci = ei − bji ∈ [li, ui], let
yi ∈ R be the uncontrollable offset variable associated to ei such that: 0 ≤
yi ≤ ui − li and ei = bji + ui − yi. Intuitively, yi represents the offset w.r.t.
maximum duration, and can be used to rewrite all the constraints involving ei
in terms of bji and yi only. We formalize this rewriting as a function ρ such that

ρ(ei)
.
= bji + ui − yi. With a small abuse of notation, we denote with ρ( 	Xu) the

vector of formulae obtained by the application of ρ to all the elements of Xu.
To simplify the notation, we also introduce the vector 	Yu that is the vector of
uncontrollable offset variables (y1, ..., ym). Thanks to the redefinition of each ei
in terms of yi, the rewriting of the contingent constraints depends on 	Yu only.

Let Γ (	Yu) be the formula representing the conjunction of all the contingent

constraints after the recoding, and Ψ( 	Xc, 	Yu) be the conjunction of all the free

constraints rewritten in terms of 	Xc and 	Yu.

Γ (	Yu)
.
=
∧m

k=1(yk ∈ [0, (uk−lk)]) Ψ( 	Xc, 	Yu)
.
=
∧

c∈Cf
c[ 	Xu/ρ( 	Xu)]( 	Xc, 	Yu)

In this setting, the SC consists in finding a value for 	Xc that satisfies the free
constraints Ψ( 	Xc, 	Yu) under any possible value of 	Yu that satisfies Γ (	Yu).

The SC encoding in Equation 5 can be recoded as an LRA formula in the free
variables 	Xc as follows.

∀	Yu.(Γ (	Yu)→ Ψ( 	Xc, 	Yu)) (6)

We call this encoding offset encoding. This formulation corresponds to a quan-
tified SMT problem in LRA, and still requires a solver that supports quantified
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formulae, but the part of the encoding representing the contingent constraint is
now dependent on 	Yu only.

The main problem in the previous encodings is the scope of the universal
quantifier. Since the computational cost of quantification is very high, we can
rewrite the offset encoding in Equation 6 in order to obtain a possibly more
efficient encoding. Let us assume that Ψ( 	Xc, 	Yu) is written as a conjunction of

h clauses ψh( 	Xch ,
	Yuh

), where Xch ⊆ Xc and Yuh
⊆ Yu are the variables used in

the clause ψh. This assumption can be easily satisfied by converting Ψ( 	Xc, 	Yu)

in CNF. We can rewrite ¬Γ (	Yu) as Γ̄ (	Yu)
.
=
∨m

k=1((yk < 0) ∨ (yk > (uk − lk))).

Let Γ̄ (	Yu)|Yuk

.
=
∨

yk∈Yuk
((yk < 0) ∨ (yk > (uk − lk))).

Assuming the temporal problem is consistent, we have that
∧

h ∀	Yu.(Γ̄ (	Yu)∨
ψh( 	Xch ,

	Yuh
)) if and only if

∧
h ∀	Yuh

.(Γ̄ (	Yu)|Yuh
∨ψh( 	Xch ,

	Yuh
)), and we obtain

the distributed encoding of Equation 7.∧
h ∀	Yuh

.(Γ̄ (	Yu)|Yuh
∨ ψh( 	Xch ,

	Yuh
)) (7)

The size of the produced (quantified) formula is linear with respect to the original
TPU. This encoding still requires a solver that supports quantified formulae,
and contains as many quantifiers as clauses. However, each quantification is now
restricted to the offset variables Yuh

⊆ Yu occurring in each clause ψh. This
encoding also limits the scope of the universal quantifiers, which turns out to
be beneficial in practice. Intuitively, this is related to the fact that a number of
quantifier eliminations in LRA on smaller formulae may be much cheaper than
a single, monolithic quantifier elimination over a large formula.

6.2 Encodings into Quantifier-Free LRA

In order to exploit solvers that do not support quantifiers, we propose an en-
coding of strong controllability into a quantifier-free SMT(LRA) formula. This
is obtained by resorting to an external procedure for quantifier elimination.

We rewrite Equation 7 as
∧

h ¬(∃	Yuh
.(¬Γ̄ (	Yu)|Yuh

∧ ¬ψh( 	Xch ,
	Yuh

))), in or-
der to apply a procedure for the elimination of existential quantifiers from a
conjunction of literals (e.g. Fourier-Motzkin [14]). Notice that both Γ̄ (	Yu)|Yuh

and ψh( 	Xch ,
	Yuh

) are clauses, and thus their negations are both conjunctions of
literals. The result of each quantifier elimination is again a conjunction of liter-
als, which, once negated, yields a clause, in the following referred to as ψΓ

h (
	Xch).

The resulting encoding, reported in Equation 8, is called eager for-all elimination
encoding. ∧

h ψΓ
h (

	Xch) (8)

For the TCSPU class, it is not necessary to apply a general purpose quantifier
elimination procedure. Given the specific nature of the constraints, only few
cases are possible, and for each of them we use a pattern-based encoding, that
in essence precomputes the result of quantifier elimination. This result can be
thought of as generalizing to TCSPU the result proposed in [2] for the case
of STPU. We start from the distributed encoding of Equation 7, where each
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(sub)clause ψh is generated by the hole encoding. We treat each clause as a
separate existential quantification problem, and provide static results for each
case. The final result is logically equivalent to the corresponding ψΓ

h (
	Xch) in

Equation 8.
Each clause under analysis results from the encoding of a free constraint in the

TCSPU over variables v and w, with D intervals. Let t be v −w. The encoding
results in two unit clauses (t ≥ l1 and t ≤ uD), and in D − 1 binary clauses in
the form (t ≤ ui) ∨ (t ≥ li+1).

The static elimination procedure must deal with four possible cases, depending
on v and w being controllable or uncontrollable1. For the two unit clauses, we
proceed as in [2]. Here we show the more complex cases of binary clauses. Let
the binary clause have the form (v − w ≤ u) ∨ (v − w ≥ l) (notice that u < l
because u is the upper bound of the “lower” interval). When v is uncontrollable,
we write xv for its starting point, yv for its offset, and Lv and Uv for the lower
and upper bound of the contingent constraint relative to v2; similarly for w.

1. v ∈ Xc and w ∈ Xc. The clause does not contain quantified variables, and
therefore the quantifier can be simply removed.

2. v ∈ Xc and w ∈ Xu. The formula ¬Γ̄ (	Yu)|{yw} ∧ ¬ψ(v, xw , yw) can be rep-
resented by:

(0 ≤ yw) ∧ (yw ≤ Uw − Lw) ∧
(yw < l − v + xw + Uw) ∧ (xw − v + Uw + u < yw).

Using quantifier elimination over ∃yw.(¬Γ̄ (	Yu)|{yw} ∧ ¬ψ(v, xw , yw)), we ob-
tain the following formula (given that (l − u > 0) and (Uw − Lw > 0)):

((l − v + xw + Uw > 0) ∧ (l − v + xw + Lw ≤ 0)) ∨
((l − v + xw + Lw ≥ 0) ∧ (v − xw − u− Lw > 0)) .

Since in eager for-all elimination encoding we need the negation of the exis-
tential quantification we can rewrite the formula as follows:

((l − v + xw + Uw ≤ 0)∨(l − v + xw + Lw > 0)) ∧
((l − v + xw + Lw < 0)∨(v − xw − u− Lw ≤ 0)).

3. The case when v ∈ Xu and w ∈ Xc is dual:

((xv + Uv − w − u ≤ 0)∨(xv − w − u+ Lv > 0)) ∧
((xv − l − w + Lv ≥ 0) ∨(xv − w − u+ Lv < 0)).

4. v ∈ Xu and w ∈ Xu. The formula ¬Γ̄ (	Yu)|{yv ,yw} ∧ ¬ψ(xv, xw , yv, yw) is thus

¬Γ̄ (	Yu)|{yv ,yw} ∧ (v−w < l)∧ (v−w > u) which in turn can be rewritten as

(xv + Uv − xw − Uw + yw − l < yv) ∧
(yv < xv + Uv − xw − Uw + yw − u) ∧
(0 ≤ yv) ∧ (yv ≤ Uv − Lv) ∧ (−yw ≤ 0) ∧ (yw ≤ Uw − Lw).

1 The possible cases are actually eight but v−w ≥ k can be rewritten as w− v ≤ −k.
2 We assume Lv < Uv ; in the other cases the problem is not interesting.
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Using the assumptions detailed above and negating the quantification result,
we obtain the following formula:

((xv + Uv − xw − Uw − u > 0)∨(xv + Uv − xw − u− Lw ≤ 0)) ∧
((xv + Uv − xw − Uw − u < 0)∨(xv − xw − Uw − u+ Lv ≥ 0)) ∧
((xv − xw − Uw − l + Lv ≥ 0) ∨(xv − xw − l + Lv − Lw < 0)) ∧
((xv − xw − l+ Lv − Lw > 0) ∨(xv − xw − u+ Lv − Lj ≤ 0)).

The construction described above can be used in Equation 8. This specialized
quantification technique results in a 2-CNF formula that has size linear in the
original TCSPU. This is because the size of the hole encoding is linear, and for
each clause, we statically resolve the quantification by creating at most four new
binary clauses. As far as encoding time is concerned, for a TCSPU with m free
constraints, the encoding can be generated in O(m ∗ max(Di)log(max(Di)))
time, because of the sorting time needed in the hole encoding. This encoding
spares the computational cost of quantifier elimination and produces a highly
optimized QF LRA formula.

7 Related Work

The seminal work on strong controllability is [2]. The problem is tackled for
the limited case of STPU problem class. Vidal and Fargier identify a clever,
constant time quantification technique for SC reasoning, which is at the core of
their procedure. Compared to [2], we propose a comprehensive solution and an
implementation for the cases of TCSPU and DTPU. Furthermore, we generalize
to the case of TCSPU the specialized quantifier elimination techniques proposed
in [2] for STPU.

Strong controllability for the cases beyond STPU have been tackled in [19],
where specialized algorithms based on meta-CSP are proposed. The work in [19]
tackles the same problem addressed here; however, it is purely theoretical, and to
the best of our knowledge no implementation exists. Furthermore, the approach
is based on the use of explicit CSP search to deal with case splits, while we rely
on the symbolic expressive power of the SMT framework.

The use of SMT techniques to solve temporal problems is not new. The
most advanced work is presented in [20], where the TSAT++ tool is presented.
TSAT++ can be seen as a specialized SMT solver for DTP problems. The work
does not deal with strong controllability, and is limited to consistency for tem-
poral problems. The performance of TSAT++ relative to more modern SMT
solvers is analyzed in the next section, on temporal consistency problems.

As far as the consistency problem of STP is concerned, the work in [22] rep-
resents the state-of-the-art. Planken, de Weerdt and van der Krogt presented
an efficient algorithm for computing all-pairs shortest paths in a directed graph
with possibly negative Real weights. As pointed out by the authors, the proposed
algorithm can be used to solve STP (but not TCSP or DTP). We used their tool
in our experimental comparison for STP consistency. We remark that the focus
of our work is on the strong controllability (and not consistency) problem.
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We also mention two other forms of controllability for TPUs: weak control-
lability (WC) and dynamic controllability (DC). A TPU is said to be WC if,
for every possible evolution of the uncontrollable environment, there exists an
allocation to the controllable time points that fulfills the free constraints of the
problem. This notion is much weaker than SC, because the allocation strategy
for the controllable time points is allowed to depend on the allocation of the
uncontrollable time points. In this setting, the solver is assumed to be “clair-
voyant” and is able to decide its moves based on the past and also the future
moves of the opponent. In their seminal paper, Vidal and Fargier [2] address
the WC problem for the STPU class. Algorithms for deciding WC for TCSPU
and DTPU are provided in [23]. The use of SMT techniques to deal with weak
controllability has been recently investigated in [24], addressing both the de-
cision and the strategy extraction problems (i.e. the problem of checking if a
TPU is WC, and the problem of building a strategy for the solver). The work
presented in this paper, compared to [24], tackles a radically different problem.
An important difference between SC and WC is the shape of the solution: while
in SC a solution is a static assignment to controllable time points, in WC the
strategy requires conditional structures to be expressed. Thus, the use of SMT
techniques in [24] is also substantially different from what is done here.

DC is similar to WC, but the choices of the scheduler can be based on past
environment decisions only. As pointed out in [2], if a problem is SC then it is
also DC and if it is DC then it is also WC, but the implication chain is not
reversible. In [25] the authors focus on deciding DC for the STPU problem class,
while in [23] the result is extended for TCSPUs. However, no effective solutions
to DC exists for the DTPU problem class.

8 Experimental Evaluation

8.1 Implementation

We developed a tool that automatically encodes the various classes of temporal
problems in SMT problems. The tool can deal with consistency problems by
generating SMT (QF LRA) encodings. As for strong controllability problems,
the tool implements the two reductions to SMT (LRA) (with quantifiers), and
can obtain SMT (QF LRA) by applying quantifier elimination techniques. The
quantifier elimination step in the eager for-all elimination encoding is carried out
by calling the formula simplifier provide by Z3 [6], and a quantifier elimination
functionality built on top of MathSAT5 [5].

The tool is currently connected to three different SMT solvers: namely Math-
SAT4 [4], MathSAT5 [5] and Z3 [6]. Given that the encodings are written in
SMT-LIB2 (and also in SMT-LIB1 format), it would be straightforward to con-
nected it to any SMT solver that is able to parse the SMT-LIB language. We
remark however that our purpose is to compare the performance of the encod-
ings we propose, and not to compare the various SMT solvers. Z3 can be seen as
a representative for solvers that support quantified theories, and MathSAT as
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representative for quantifier-free solvers. We expect other solvers (e.g. Yices [7],
OpenSMT [8]) to exhibit a similar behavior (see [26]).

8.2 Experimental Set-Up

In order to experimentally assess the performance of the techniques presented in
this paper, we used a set of randomly-generated benchmarks. Consistency prob-
lems were generated using the random instance generator presented in [20]; the
same generator was extended to introduce random uncertainty, and to generate
strong controllability problems. The benchmark set contains 2108 instances for
each problem class in TP without uncertainty (STP, TCSP and DTP), and 1054
instances for each TPU class (STPU, TCSPU and DTPU). We used random in-
stance generators because they are typically used in literature (e.g. [20]), and
because they can be easily scaled to stress the solvers.

We executed all our experiments on a machine running Scientific Linux 6.0,
equipped with two quad-core Xeon processors @ 2.70GHz. We considered a mem-
ory limit of 2GB and a time-out of 300 seconds. The benchmarks and the results
are available from https://es.fbk.eu/people/roveri/tests/cp2012.

For consistency problems, we analyzed the performance of the various solvers
on the various encodings. We also compared our encodings with all the avail-
able solver for TP without uncertainty (i.e. Snowball for the case of STP, and
TSAT++).

For strong controllability problems, to the best of our knowledge there are no
solvers available. Thus, we only evaluated the different approaches, to highlight
the difference in performance and the respective merits.

8.3 Results for Consistency

The results for consistency problems are reported in Figure 1 (left). We plotted
in logarithmic scale the cumulative time in seconds to solve the considered set of
benchmarks. For STP problems, we compared the näıve encoding with various
algorithms available in the SnowBall3 [22] tool, and with TSAT++ [20]. (In the
case of STP, the other encodings coincide with the näıve encoding.) In TCSP
and DTP, we tested all the applicable encodings with all the SMT solvers under
analysis and with TSAT++. The plots show that the SMT approach is competi-
tive with dedicated techniques. MathSAT4 implements a dedicated algorithm for
the theory of difference logic [27], and is thus faster than MathSAT5, that uses
a general purpose algorithm for LRA [28]. Both solvers greatly benefit from the
hole encoding, compared to the switch encoding with mutual exclusion (switch
me) and the plain switch encoding. This encoding produces a formula that has
just one real variable for every time point and has at most two literals per clause:
this greatly simplifies the SMT search procedure by augmenting the number of
unit propagations and by reducing the size of the search space.

Z3 is extremely efficient, and the attempts to improve the encodings may result
in performance degradation. The TSAT++ solver is outperformed by state-of-
the-art SMT solvers, but again notice that the hole encoding yields substantial
improvements in performance.

https://es.fbk.eu/people/roveri/tests/cp2012
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Fig. 1. Results for experimental evaluation: consistency of STP (left-top), TCSP (left-
center), and DTP (left-bottom); strong controllability of STPU (right-top), TCSPU
(right-center) and DTPU (right-bottom)
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8.4 Results for Strong Controllability

The results for strong controllability are reported in Figure 1 (right). We plotted
in logarithmic scale the cumulative time in seconds to solve the considered set of
benchmarks. Differently from the consistency case, the time here considers also
the encoding time which dominates solving time for the case of quantifier-free
encodings. The quantified encodings (Direct, Offset and Distributed) are solved
with Z3. The quantifier-free encodings resulting from eager for-all elimination
are obtained by the application of three quantifier elimination procedures: the
internal simplifier of Z3 (EFE Z3qe), and two implementations in MathSAT5 of
the Fourier-Motzkin (EFE M5fm) and the Loos-Weispfenning (EFE M5lw) elim-
ination procedures. The resulting encodings are solved using Z3 and MathSAT5
on the quantifier-free theory of Reals.

The plots clearly show that both the offset and direct encodings quickly reach
the resource limits, and are unable to solve all the instances. The behavior of
the distributed encoding is slightly better than the eager for-all elimination ap-
proach. The difference can be explained in purely technological terms: the quan-
tifier elimination modules are called via pipe in our implementation; on the
other hand, when Z3 solves the distributed encoding, it can perform quantifier
elimination “in-memory”.

We notice the impact of the static quantification techniques (EFE Static),
when applicable (i.e. for TCSPU). The substantial difference in performance
resides only in the quantification technique, that all produce the same quantifier-
free formula.

9 Conclusions

In this paper, we presented a comprehensive approach to strong controllability
for temporal problems with uncertainty. The formalization is based on the SMT
framework, and encompasses constraints with arbitrary disjunctions. We deal
with uncertainty by means of logic-based quantifier elimination techniques. The
experiments demonstrate the scalability of the approach, based on the use of
efficient SMT solvers.

In the future, we will investigate the problem of searching schedules that opti-
mize a given cost function, and the addition of constraints over resources associ-
ated to activities. Finally, within the SMT-based framework, we will investigate
the case of dynamic controllability.
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Abstract. Tractable classes of binary CSP and binary Max-CSP have
recently been discovered by studying classes of instances defined by ex-
cluding subproblems. In this paper we characterise the complexity of all
classes of binary Max-CSP instances defined by forbidding a single sub-
problem. In the resulting dichotomy, the only non-trivial tractable class
defined by a forbidden subproblem corresponds to the set of instances
satisfying the so-called joint-winner property.

1 Introduction

Max-CSP is a generic combinatorial optimization problem which consists in find-
ing an assignment to the variables which satisfies the maximum number of a set
of constraints. Max-CSP is NP-hard, but much research effort has been devoted
to the identification of classes of instances that can be solved in polynomial time.

One classic approach consists in identifying tractable constraint languages, i.e.
restrictions on the constraint relations which imply tractability. For example, if
all constraints are supermodular, then Max-CSP is solvable in polynomial time,
since the maximization of a supermodular function (or equivalently the mini-
mization of a submodular function) is a well-known tractable problem in Oper-
ations Research [16]. Over two-element domains [7], three-element domains [12],
and fixed-valued languages [10], a dichotomy has been given: supermodularity
is the only basic reason for tractability. However, over four-element domains it
has been shown that other tractable constraint languages exist [13]. Another
classic approach consists in identifying structural reasons for tractability, i.e.
restrictions on the graph of constraint scopes (known as the constraint graph)
which imply the existence of a polynomial-time algorithm. In the case of binary
CSP the only class of constraint graphs which ensures tractability (subject to
certain complexity theory assumptions) are essentially graphs of bounded tree-
width [8,11]. It is well known that structural reasons for tractability generalise
to optimisation versions of the CSP [1,9].
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Recently, a new avenue of research has led to the discovery of tractable classes
of CSP or Max-CSP instances defined by forbidding a specific (set of) subprob-
lem(s). Novel tractable classes have been discovered by forbidding simple 3-
variable subproblems [3,6]. In the present paper we consider all classes of binary
Max-CSP instances defined by forbidding occurrences of a single subproblem.
The dichotomy that we give can be seen as an important first step towards a com-
plete characterisation of the complexity of classes of binary Max-CSP instances
defined by forbidding sets of subproblems.

To relate this to similar work on the characterisation of the complexity of
forbidden patterns [2], we should point out that a pattern can represent a set of
subproblems by leaving the compatibility of some pairs of assignments undefined.
Another difference between subproblems and patterns is that in a subproblem
all variable-value assignments are assumed distinct, whereas in a pattern two
assignments may represent the same assignment in an instance [2].

The complexity of classes of binary Max-CSP instances defined by local prop-
erties of (in)compatibilities have previously been characterised, but only for prop-
erties on exactly 3 assignments to 3 distinct variables [4]. In the present paper we
consider classes defined by forbidding subproblems of any size and possibly in-
volving several assignments to the same variable, thus allowing more refinement
in the definition of classes of Max-CSP instances.

2 Definitions and Basic Results

A subproblem P is simply a binary Max-CSP instance: variables are distinct, each
variable has its own domain composed of distinct values, and a cost of 0 or 1 is
associated with each pair of assignments to two distinct variables. In a Max-CSP
instance defined in this way, the goal of maximising the number of satisfied con-
straints is clearly equivalent to minimising the total cost. We consider that in any
subproblem or instance a constraint is given for each pair of distinct variables (even
if the constraint corresponds to a constant-0 cost function). We only consider sub-
problems with all binary constraints but no unary constraints. As we will show
later, our results are independent of the presence of unary constraints. It will some-
times be more convenient to consider an instance as a set of variable-value assign-
ments together with a function cost, such that cost(p, q) ∈ {0, 1} denotes the cost
of simultaneously making the pair of assignments p, q, together with a function var
such that var(p) indicates the variable associated with assignment p.
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Fig. 1. The instance I contains P and P ′ as subproblems but not P ′′
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A subproblem P occurs in a binary Max-CSP instance (or, equivalently, an-
other subproblem) I if P is isomorphic to some sub-instance of I obtained by
taking a subset U of the variables of I and subsets of each of the domains of
the variables in U . We also say that I contains P as a subproblem. To illustrate
this notion, consider the instance I and the three subproblems P, P ′, P ′′ shown
in Fig. 1. A bullet point represents a variable-value assignment, assignments to
the same variable are grouped together in the same oval, a dashed line between
points a and b means cost(a, b) = 1 and a solid line means cost(a, b) = 0. In this
example, subproblem P occurs in I with the corresponding isomorphism p �→ a,
q �→ b, r �→ c. Similarly, P ′ occurs in I with the corresponding isomorphism
t �→ c, u �→ d, v �→ a. On the other hand, P ′′ does not occur in I.

In this paper we denote by F(P ) the set of Max-CSP instances in which the
subproblem P is forbidden, i.e. does not occur. Thus if I, P ′ and P ′′ are as
shown in Fig. 1, I ∈ F(P ′′) but I /∈ F(P ′). If Σ = {P1, . . . , Ps} is a set of
subproblems, then we use F(Σ) or F(P1, . . . , Ps) to denote the set of Max-CSP
instances in which no subproblem Pi ∈ Σ occurs. The following lemma follows
from the above definitions, by transitivity of the occurrence relation.

Lemma 1. If ∀P ∈ Σ1, ∃Q ∈ Σ2 such that Q occurs in P , then F(Σ2) ⊆
F(Σ1).

We say that F(Σ) is tractable if there is a polynomial-time algorithm to solve
it. We say that F(Σ) is intractable if it is NP-hard. We assume throughout this
paper that P �= NP . Suppose that F(Σ1) ⊆ F(Σ2). Clearly, F(Σ1) is tractable
if F(Σ2) is tractable and F(Σ2) is intractable if F(Σ1) is intractable. Our aim
is to characterise the tractability of F(P ) for all subproblems P . We first show
that we only need to consider subproblems with domains of size at most 2.

Lemma 2. Let P be a subproblem with three or more values in the domain
of some variable and let F(P ) be the set of Max-CSP instances in which the
subproblem P is forbidden. Then F(P ) is intractable.

Proof. Max-Cut is intractable and can be reduced to Max-CSP on Boolean do-
mains [7]. Thus F(P ) is intractable since it includes all instances of Max-CSP
on Boolean domains. �

3 Subproblems on Two Variables

We now consider the subproblems on just two variables shown in Fig. 2. Modulo
independent permutations of the variables and of the two domains, these are the
only possible subproblems with domains of size at most 2.

Lemma 3. If Q1 is the subproblem shown in Fig. 2, then F(Q1) is intractable.

Proof. Let I be an instance in F(Q1). It is easy to see that all binary cost func-
tions between any pair of variables in I must be constant. Hence I is equivalent
to a trivial Max-CSP instance with no binary cost functions. �
Lemma 4. If Q0 and U are as shown in Fig. 2, then F({Q0, U}) is intractable.
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Fig. 2. Subproblems on two variables (showing inclusions between subproblems)

Proof. Max-Cut can be coded as Max-CSP over Boolean domains in which all
constraints are of the form Xi �= Xj . We can replace each constraint Xi �= Xj

by an equivalent gadget G with two extra variables Yij , Zij , where G is given by
¬Xi ∧ Yij , ¬Yij ∧¬Xj , Xi ∧¬Zij , Zij ∧Xj . It is easily verified that placing the
gadget G on variables Xi, Xj is equivalent to imposing the constraint Xi �= Xj ;
when Xi = Xj at most one of these constraints can be satisfied and when
Xi �= Xj at most two constraints can be satisfied.

For each pair of variables X , X ′ in the resulting instance of Max-CSP such
that there is no constraint between X and X ′, we place a binary constraint on
X, X ′ of constant cost 1. In the resulting Max-CSP instance, there are no two
zero costs in the same binary cost function. Thus, this polynomial reduction from
Max-Cut produces an instance in F({Q0, U}). Intractability of F({Q0, U}) then
follows from the NP-hardness of Max-Cut. �
Lemma 5. If Q2 and U are as shown in Fig. 2, then F({Q2, U}) is intractable.

Proof. As in the proof of Lemma 4, the proof is again by a polynomial reduction
from Max-Cut. This time each constraint Xi �= Xj is replaced by the gadget G′

where G′ is ¬Xi ∨Yij , ¬Yij ∨¬Xj , Xi ∨¬Zij , Zij ∨Xj. When Xi = Xj at most
three of these constraints can be satisfied and when Xi �= Xj all four constraints
can be satisfied.

For each pair of variables X, X ′ in the resulting instance of Max-CSP such
that there is no constraint between X and X ′, we place a binary constraint on
X, X ′ of constant cost 0. The resulting instance is in F({Q2, U}). �
This provides us with a dichotomy for subproblems on just two variables.

Theorem 1. If P is a 2-variable binary Max-CSP subproblem, then F(P ) is
tractable if and only if P occurs in Q1 (shown in Fig. 2).
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Proof. By Lemma 2, we only need to consider subproblems in which each domain
is of size at most two.

Since each of P0 and P1 occur in Q1, it follows from Lemma 3 and Lemma 1
that F(P0) and F(P1) are also tractable. Since Q0 occurs in R, T , V and Q2

occurs in S, W , it follows from Lemmas 4, 5 and Lemma 1 that F(Q0), F(Q2),
F(R), F(S), F(T ), F(U), F(V ), F(W ) are all intractable. This covers all the
possible subproblems with domains of size at most 2 as shown in Fig. 2. �

4 Subproblems on Three Variables

We recall the following result which follows directly from Theorem 5 of [4].

Lemma 6. A class of binary Max-CSP instances defined by forbidding a single
subproblem comprised of a triangle of three assignments to three distinct variables
is tractable if and only if the three binary costs are 0,1,1.

Binary Max-CSP instances in which the triple of binary costs 0,1,1 does not
occur in any triangle satisfy the so-called joint-winner property [6]. This class
has recently been generalised to the hierarchically-nested convex class which is a
tractable class of Valued CSP instances involving cost functions of arbitrary ar-
ity [5]. The following corollary is just a translation of Lemma 6 into the notation
of forbidden subproblems.

Corollary 1. Let A, B, C, D be the subproblems shown in Fig. 3. Then F(C) is
tractable, but F(A), F(B), and F(D) are intractable.

Lemma 7. Given the subproblem E shown in Fig. 3 and the set F(E) of Max-
CSP instances in which the subproblem E is forbidden, then F(E) is intractable.

Proof. The constraint graph of a Max-CSP instance is the graph 〈V, E〉 where V
is the set of variables and {Xi, Xj} ∈ E if there is a pair of assignments p, q with
var(p) = Xi, var(q) = Xj and such that cost(p, q) = 1. Clearly the constraint
graph of any instance in which E occurs contains a triangle. Max-Cut is NP-
hard even on triangle-free graphs [15]. Any such instance of Max-Cut coded as
an instance I of binary Max-CSP does not contain E as a subproblem since the
constraint graph of I is triangle-free. Hence F(E) is intractable. �
Lemma 8. The only 3-variable subproblem P for which the set F(P ) is tractable
is the subproblem C shown in Fig. 3.
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Fig. 3. Subproblems on three or four variables
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Proof. Let P be a 3-variable subproblem. For F(P ) to be tractable, P must not
have as a subproblem any of Q0, Q2, A, B, D, E which have all been shown to
define intractable classes (Lemmas 4, 5, 7 and Corollary 1). The only 3-variable
subproblem which does not contain any of Q0, Q2, A, B, D, E is C. The result
then follows from Lemma 1. �

5 Subproblems on More than Three Variables

It turns out that the tractable classes we have already identified, defined by
forbidden subproblems on two or three variables, are the only possible tractable
classes defined by forbidding a single subproblem. To complete our dichotomy,
we require one final lemma.

Lemma 9. If F is the subproblem shown in Fig. 3, then F(F ) is intractable.

Proof. It is known that Max-Cut on C4-free graphs is NP-hard [14]. To see this,
let G be a graph and G′ a version of G in which each edge is replaced by a path
composed of three edges. Clearly, G′ is C4-free and the maximum cut of G′ is of
the same size as the maximum cut of G.

When a Max-Cut instance on a C4-free graph is coded as a Max-CSP instance
I, the subproblem F cannot occur since there can be no length-4 cycles of non-
trivial constraints in I. Hence F(F ) is intractable. �
By looking at all possible combinations of edges in a subproblem, it is possible
to show that F is the only subproblem on four variables in which neither A,
B, D nor E shown in Fig. 3 occur. Since F(A), F(B), F(D) and F(E) are
intractable, then from Lemma 9 the classes of Binary Max-CSP instances defined
by forbidding a single subproblem on four or more variables are all intractable
and we can now state our dichotomy.

Theorem 2. If P is a binary Max-CSP subproblem, then F(P ) is tractable if
and only if P occurs either in Q1 (shown in Fig. 2) or in C (shown in Fig. 3).

It follows that F(P ) is tractable only for P = P0, P1, Q1 (shown in Fig. 2) or
C (shown in Fig. 3). It follows that the only non-trivial tractable class defined
by a forbidden subproblem corresponds to the set of instances satisfying the
so-called joint-winner property. The joint-winner property encompasses, among
other things, codings of non-intersecting graph-based or variable-based SoftAllD-
iff constraints together with arbitrary unary constraints [6]. It is worth pointing
out that Theorem 2 is independent of the presence of unary cost functions, in
the sense that tractable classes remain tractable when arbitrary unary costs are
allowed and NP-hardness results are valid even if no unary costs are allowed.

6 Forbidding Sets of Subproblems

Certain known tractable classes can be defined by forbidding more than one
subproblem. For example, in [4] it was shown that F({A, B}), F({B, D}) and
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F({A, D}) are all tractable (where A, B, C, D are the subproblems given in
Fig. 3). The most interesting of these three tractable classes is F({A, B}) which
is equivalent to maximum matching in graphs.

In this section we give a necessary condition for a forbidden set of subproblems
to define a tractable class of binary Max-CSP instances.

Definition 1. A subproblem (or an instance) P is Boolean if the size of the
domain of each variable in P is at most two.

A negative edge pair is a set of variable-value assignments p, q, r, s such that
var(p) = var(r) �= var(q) = var(s), cost(p, q) = cost(r, s) = 1 and p �= r. A
positive edge pair is a set of variable-value assignments p, q, r, s such that var(p)
= var(r) �= var(q) = var(s), cost(p, q) = cost(r, s) = 0 and p �= r.

A negative cycle is a set of variable-value assignments p1, . . . , pm, with m > 2,
such that the variables var(pi) (i = 1, . . . , m) are all distinct, cost(pi, pi+1) = 1
(i = 1, . . . , m) and cost(pm, p1) = 1. A positive cycle is a set of assignments
p1, . . . , pm (m > 2), such that the variables var(pi) (i = 1, . . . , m) are all distinct,
cost(pi, pi+1) = 0 (i = 1, . . . , m) and cost(pm, p1) = 0.

A negative pivot point is a variable-value assignment p such that there are
two assignments q, r with var(p), var(q), var(s) all distinct and cost(p, q) =
cost(p, r) = 1. A positive pivot point is an assignment p such that there are
two assignments q, r with var(p), var(q), var(s) all distinct and cost(p, q) =
cost(p, r) = 0.

Proposition 1. If Σ is a finite set of subproblems, then F(Σ) is tractable only
if

1. There is a Boolean subproblem P ∈ Σ such that P contains no negative edge
pair, no negative cycle and at most one negative pivot point, and

2. There is a Boolean subproblem Q ∈ Σ such that Q contains no positive edge
pair, no positive cycle and at most one positive pivot point, and

3. There is a Boolean subproblem B ∈ Σ such that B contains neither Q0 nor
Q2 (as shown in Fig. 2).

Proof. Suppose that condition (1) is not satisfied. We will show that F(Σ) is
NP-hard. Let t be an odd integer strictly greater than the number of variables
in any subproblem in Σ. As in Lemma 5 the proof is by a polynomial reduction
from Max-Cut. This time each constraint Xi �= Xj is replaced by the gadget Gt

where Gt is ¬Xi ∨ Y1, ¬Yk ∨ Yk+1 (k = 1, . . . , t− 1), ¬Yt ∨ ¬Xj , and Xi ∨ ¬Z1,
Zk ∨ ¬Zk+1 (k = 1, . . . , t− 1), Zt ∨Xj. The gadget Gt is equivalent to Xi �= Xj

since when Xi = Xj one of its constraints must be violated, but when Xi �= Xj

all of its constraints can be satisfied. For each pair of variables X, X ′ in the
resulting instance of Max-CSP such that there is no constraint between X and
X ′, we place a binary constraint on X, X ′ of constant cost 0.

The resulting instance I has no domain of size greater than two, and contains
no negative edge pair, no negative cycle of length at most t and no two negative
pivot points at a distance at most t. Let P ∈ Σ. Since (1) is not satisfied, and
by definition of t, either P has a domain of size more than two, or contains a
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negative edge pair, a negative cycle of length at most t or two negative pivot
points at a distance at most t. It follows that P cannot occur in I. Thus, we
have demonstrated a polynomial reduction from Max-Cut to F(Σ).

The proof for condition (2) is similar. This time each constraint Xi �= Xj is
replaced by the gadget G′

t given by ¬Xi ∧ Y1, ¬Yk ∧ Yk+1 (k = 1, . . . , t − 1),
¬Yt ∧¬Xj , and Xi ∧¬Z1, Zk ∧¬Zk+1 (k = 1, . . . , t), Zt ∧Xj. The gadget G′

t is
equivalent to the constraint Xi �= Xj ; when Xi = Xj at most t of its constraints
can be satisfied and when Xi �= Xj at most t+1 of its constraints can be satisfied.
For each pair of variables X , X ′ in the resulting instance of Max-CSP such that
there is no constraint between X and X ′, we place a binary constraint on X, X ′

of constant cost 1.
The resulting instance I has no domain of size greater than two, and contains

no positive edge pair, no positive cycle of length at most t and no two positive
pivot points at a distance at most t. Let P ∈ Σ. If condition (2) is not satisfied,
no P ∈ Σ can occur in I. Thus, this polynomial reduction is from Max-Cut to
F(Σ).

If condition (3) is not satisfied, then, by Lemma 1, F(Σ) contains all Boolean
instances in F(Q0, Q2). But F(Q0, Q2) is equivalent to the set of Boolean in-
stances of Max-CSP in which for each pair of variables Xi, Xj there is a constraint
between Xi and Xj with this constraint being either Xi = Xj or Xi �= Xj . This
set of Max-CSP instances is equivalent to the 2-Cluster Editing problem whose
decision version is known to be NP-complete [17]1. Hence F(Σ) is NP-hard if
condition (3) is not satisfied. �

7 Conclusion

We have given a dichotomy concerning the tractability of classes of binary Max-
CSP instances defined by forbidding a single subproblem. We have also given a
necessary condition for the tractability of classes defined by forbidding sets of
subproblems.

Classes defined by forbidding (sets of) subproblems are closed under permu-
tations of the set of variables and independent permutations of each variable
domain. An interesting avenue of future research is to place structure, such as
an ordering, on the set of variables or on domain elements within the forbidden
subproblems with the aim to uncover novel tractable classes.

References

1. Bertelé, U., Brioshi, F.: Nonserial dynamic programming. Academic Press (1972)
2. Cooper, M.C., Escamocher, G.: A Dichotomy for 2-Constraint Forbidden CSP Pat-

terns. In: AAAI 2012 (2012)
3. Cooper, M.C., Jeavons, P.G., Salamon, A.Z.: Generalizing constraint satisfaction

on trees: hybrid tractability and variable elimination. Artificial Intelligence 174(9-
10), 570–584 (2010)

1 We are grateful to Peter Jeavons for pointing out this equivalence.



A Characterisation of the Complexity of Forbidding Subproblems 273

4. Cooper, M.C., Živný, S.: Tractable Triangles. In: Lee, J. (ed.) CP 2011. LNCS,
vol. 6876, pp. 195–209. Springer, Heidelberg (2011)

5. Cooper, M.C., Živný, S.: Hierarchically Nested Convex VCSP. In: Lee, J. (ed.) CP
2011. LNCS, vol. 6876, pp. 187–194. Springer, Heidelberg (2011)

6. Cooper, M.C., Živný, S.: Hybrid tractability of valued constraint problems. Artifi-
cial Intelligence 175(9-10), 1555–1569 (2011)

7. Creignou, N., Khanna, S., Sudan, M.: Complexity classification of Boolean con-
straint satisfaction problems. SIAM Monographs on Discrete Mathematics and
Applications, vol. 7 (2001)

8. Dalmau, V., Kolaitis, P.G., Vardi, M.Y.: Constraint Satisfaction, Bounded
Treewidth, and Finite-Variable Logics. In: Van Hentenryck, P. (ed.) CP 2002.
LNCS, vol. 2470, pp. 310–326. Springer, Heidelberg (2002)

9. Dechter, R.: Constraint Processing. Morgan Kaufmann (2003)
10. Deineko, V., Jonsson, P., Klasson, M., Krokhin, A.: The approximability of Max

CSP with fixed-value constraints. Journal of the ACM 55(4) (2008)
11. Grohe, M.: The complexity of homomorphism and constraint satisfaction problems

seen from the other side. Journal of the ACM 54(1), 1–24 (2007)
12. Jonsson, P., Klasson, M., Krokhin, A.: The approximability of three-valued MAX

CSP. SIAM J. Comput. 35(6), 1329–1349 (2006)
13. Jonsson, P., Kuivinen, F., Thapper, J.: Min CSP on Four Elements: Moving beyond

Submodularity. In: Lee, J. (ed.) CP 2011. LNCS, vol. 6876, pp. 438–453. Springer,
Heidelberg (2011)

14. Kamiński, M.: max-cut and Containment Relations in Graphs. In: Thilikos, D.M.
(ed.) WG 2010. LNCS, vol. 6410, pp. 15–26. Springer, Heidelberg (2010)

15. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is NP-complete. Journal of Computer System Sciences 20(2), 219–230 (1980)

16. Orlin, J.B.: A faster strongly polynomial time algorithm for submodular function
minimization. Mathematical Programming Ser. A 118(2), 237–251 (2009)

17. Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete
Applied Mathematics 144, 173–182 (2004)



Optimisation Modelling for Software Developers

Kathryn Francis, Sebastian Brand, and Peter J. Stuckey

National ICT Australia, Victoria Research Laboratory,
The University of Melbourne, Victoria 3010, Australia

{kathryn.francis,sebastian.brand,peter.stuckey}@nicta.com.au

Abstract. Software developers are an ideal channel for the distribution
of Constraint Programming (CP) technology. Unfortunately, including
even basic optimisation functionality in an application currently requires
the use of an entirely separate paradigm with which most software de-
velopers are not familiar.

We suggest an alternative interface to CP designed to overcome this
barrier, and describe a prototype implementation for Java. The inter-
face allows an optimisation problem to be defined in terms of procedures
rather than decision variables and constraints. Optimisation is seam-
lessly integrated into a wider application through automatic conversion
between this definition and a conventional model solved by an external
solver.

This work is inspired by the language CoJava, in which a simulation
is automatically translated into an optimal simulation. We extend this
idea to support a general interface where optimisation is triggered on-
demand. Our implementation also supports much more advanced code,
such as object variables, variable-sized collections, and complex decisions.

1 Introduction

This paper is concerned with the usability of Constraint Programming (CP)
tools, specifically for general software developers. The reason we have chosen
to target general software developers is because they have the potential to pass
on the benefits of CP technology to many more end users by incorporating
optimisation functionality into application-specific software.

Much of the work on usability for CP is aimed at expert users involved in
research or the development of large scale industrial applications. For example,
modelling languages such as OPL [12] and MiniZinc [10] are designed to address
the requirement of these advanced users to easily experiment with different mod-
els and solving strategies, with a fine level of control.

Software developers aiming to incorporate basic optimisation functionality
into an application have no such requirement for experimentation and control,
as they do not have the expertise to benefit from this. Furthermore, it is highly
inconvenient to have to learn and use a separate paradigm in order to implement
a single application feature.

We propose an alternative interface to CP technology which hides from the
user all reference to CP specific concepts. The problem is defined within the
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procedural paradigm, by specifying the procedure used to combine individual
decisions and evaluate the outcome. Automatic translation from this definition
to a conventional CP model allows the problem to be solved using an external
constraint solver. The solution giving optimal values for decision variables is
then translated back into a structured representation of the optimal outcome.

This sort of interface would greatly improve the accessibility of CP for gen-
eral software developers. Procedural programmers are well practiced at defining
procedures, so most software developers will find this form of problem definition
easy to create and understand. Integration of optimisation functionality into a
wider application is also straightforward, as the programmer is freed from the
burden of writing tedious and error-prone code to manually translate between
two different representations of the same problem (one using types and structures
appropriate for the application, and another using primitive decision variables).

This project is inspired by the language CoJava [5] and uses the same core
technique to transform procedural code into declarative constraints. We extend
significantly beyond CoJava in a number of ways.

2 Background and Related Work

Constraint Programming. In order to apply CP techniques to a given satis-
faction or optimisation problem, it must first be modeled as a set of constrained
decision variables. The model can be defined using a special purpose modelling
language, or a CP library embedded within a host programming language; see
e.g. [11,8,9]. Such libraries typically provide data types to represent decision
variables, constraints, the model, and the solver. Although one does not have to
use a foreign language, it is necessary to understand CP modelling concepts and
to work directly with these to build a declarative model.

Simulation. An alternative approach to optimisation is to model the situation
using a simulation, and then experiment with parameters, searching for a good
selection. This technique, called simulation optimisation, treats the simulation
as a black box. It is inherently heuristic and thus unable to find provably optimal
solutions. For a survey of simulation optimisation, see e.g. [6,7].

Most research into simulation optimisation assumes that the true objective
function is not known: the simulation incorporates some non-determinism and
gives a noisy estimate of this function. If the simulation is actually deterministic
given a choice of parameters, then it is possible to convert the simulation code
into an equivalent constraint model and use this to find a provably optimal set
of parameters. Performing this conversion automatically was the goal of CoJava.

CoJava. The system described in this paper is inspired by and builds on tech-
niques developed for the language CoJava, introduced in [4] and described further
in [5]. CoJava is an extension to the Java language, intended to allow program-
mers to use optimisation technology to solve a problem modelled as a simulation.

The simulation is written in Java using library functions to choose random
numbers, assert conditions which must hold, and nominate a program variable
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as the optimisation objective. The CoJava compiler transforms the simulation
code into a constraint model whose solution gives a number to return for each
random choice so that all assertions are satisfied and the objective variable is
assigned the best possible value. The original code is then recompiled with the
random choices replaced by assignments to these optimal values. The result is a
program which executes the optimal execution path of the original simulation.

CoJava was later extended to SC-CoJava and CoReJava [2,1,3], introducing
simpler semantics, but also narrowing in focus to supply chain applications.

3 Contributions

Architecture. Despite using the same basic technique to translate procedural
code into a declarative constraint model, the purpose and architecture of our
system are fundamentally different to CoJava.

– Optimisation is triggered explicitly as required during program execution,
and problem instance data is not required at compile time. In CoJava, opti-
misation is implicit and takes place at compile time.

– Performing optimisation at run time allows us to support interactive appli-
cations, while CoJava is restricted to simulation-like programs. This is an
important distinction, as interactive applications can enable non-technical
end users to access optimisation technology independently.

– The code written by the programmer is pure Java and does not take on
any new semantics. CoJava on the other hand is an extension of the Java
language, with semantics which depend on the mode of compilation.

Supported Code. We dramatically expand on the type of code supported,
allowing a much more natural coding style.

– We extend support for non-determinism from arithmetic numeric and
Boolean types to arbitrary object types.

– We allow variable collections of objects such as sets, lists and maps to be
constructed and manipulated.

– We introduce generic higher level decisions to aid modelling, in contrast to
the approach taken in SC-CoJava of supplying application-specific library
components.

4 A Prototype for Java: The Programmer’s Perspective

This paper proposes an alternative interface to CP technology which allows an
optimisation problem to be specified through code which constructs a solution
using the results of pre-supplied decision making procedures, and code which
evaluates that solution, determining whether or not it is valid and calculating a
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measure of its quality. This idea is applicable to any host programming language,
although the precise design would obviously depend on the features of the lan-
guage. We describe here a proof-of-concept implementation for Java, consisting
of a Java library and a plug-in for the Eclipse IDE.

The library includes only three public classes/interfaces. To include optimi-
sation capability in an application, the programmer implements the Solution
interface, defining two methods: build and evaluate. The build method is passed
a ChoiceMaker object which provides decision making procedures, and uses these
to build a solution. The evaluate method calculates and returns the value of the
current solution, or throws an exception if the current solution is invalid.

Optimisation is triggered using the buildMinimal and buildMaximal methods
provided by the Optimiser class. These take a Solution object and apparently
call its build method with a special ChoiceMaker able to make optimal decisions,
so that a subsequent call to evaluate will return the minimal or maximal value
without encountering any exceptions. Additional versions of these methods with
an extra parameter allow the programmer to request the best solution found
within a given time limit.

The Eclipse plug-in performs compile time program manipulation to support
run time conversion into a conventional constraint model. This step is performed
transparently during program launch, or as an independent operation.

As an illustration of the system we consider a simple project planning appli-
cation.1 Input to the program is a list of tasks, each of which may have depen-
dencies indicating other tasks which must be scheduled at least a given number
of days earlier. The application chooses a day to schedule each task so that all
dependencies are satisfied and the project finishes as early as possible. The gen-
erated project plan is displayed to the user, who is then allowed to repeatedly
reschedule the project after adjusting the tasks and dependencies. Note that this
sort of interactive application cannot be achieved using the CoJava architecture.

The Solution interface is implemented by a class ProjectPlan, whose build and
evaluate methods are shown below. A ProjectPlan is initialised with a reference
to a list of tasks alltasks. The build method chooses a day for each task and passes
this to the task to be recorded. The evaluate method first checks that all task
dependencies are satisfied, and then calculates and returns the latest scheduled
day as the value of the solution.

void build(ChoiceMaker chooser) {
for(Task task : alltasks) {
int day = chooser.chooseInt(1, max);
task.setScheduledDay(day);

}
}

Integer evaluate() throws Exception {
for(Task task : alltasks)
if(!task.dependenciesSatisfied())
throw new Exception();

return getFinishDay();
}

An optimal project plan is obtained by passing a ProjectPlan to the buildMinimal
method of Optimiser (as we wish to find the solution with smallest evaluation

1 Example code is available online: www.csse.unimelb.edu.au/~pjs/optmodel/

www.csse.unimelb.edu.au/~pjs/optmodel/
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result). After this method is called the tasks currently recorded in tasklist will
have scheduled days corresponding to an optimal project plan. The application
displays the plan using the Task objects, and is then free to make changes to
the task list and dependencies (based on user input) before calling buildMinimal
again, which will update the scheduled days to once again represent an optimal
solution given the new tasks and dependencies.

5 A Prototype for Java: Implementation

To solve the optimisation problem specified by the build and evaluate methods of
a Solution object, an equivalent constraint model must be constructed and sent
to a solver. As the complete problem specification depends on the program state
when optimisation is requested, the constraint model cannot be constructed at
compile time. Our approach is to generate at compile time a transformed version
of the original code which can be used at run time to create a complete model
based on the current state.

5.1 Compile Time

The transformed version of the original code works with symbolic expressions
rather than concrete values. It builds an expression for the new value of each pos-
sibly affected field (thus capturing all possible state changes), and an expression
for the value of the solution.

The compilation process is illustrated in Figure 1. Fortunately it is not neces-
sary to create a transformed version of the entire program: only code used within
the build and evaluate methods is relevant to optimisation. Transformed versions
of the relevant methods are added to the project, and then this generated code
is compiled along with the original source code using a regular Java compiler.

The code transformation is based on that described for CoReJava [3]. The
logic of the original code is captured by executing all reachable statements,
while ensuring that assignments are predicated on the conditions under which
normal execution would reach the assignment. A variable assigned a new value
is constrained to equal the assigned value if the path constraint holds and the
old value otherwise. Pseudo-code showing the code generated for an assignment
statement is shown below, where P is the current path constraint, and C and V
are respectively the constraints and solver variables collected so far.

Fig. 1. The compile time operation
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x = e;
x′ := newVar(); V := V ∪ {x′}
C := C ∧ (x′ = if P then e else x)
x := x′

Where the original code contains a branch whose condition depends on the
outcome of some decision, the transformed code executes both branches.

if(condition){
<then-block>

}
else{
<else-block>

}

P0 := P
P := P0 ∧ condition
<translation of then-block>
P := P0 ∧ ¬condition
<translation of else-block>
P := P0

A throw statement introduces a constraint that the current path constraint must
evaluate to false (as normal execution is not allowed to reach this point).

We have found it helpful to introduce a separate type to represent variables
(local variables, method parameters, and fields), rather than using the expression
type directly. The Variable type provides a method to look up an expression for
the current value of the variable, and an assign method to replace assignment
statements. The types of affected local variables and method parameters are
changed to this Variable type, so that assignments can be handled correctly as
discussed above. The types of fields are not changed, instead when a field is
accessed for the first time a Variable is created and recorded against the object
and field name, and future uses of the same field refer to this Variable.

One complication not discussed in the CoJava work is return statements. A
return statement provides an expression for the return value of a method, but it
also indicates that the remainder of the method should not be executed. To cor-
rectly handle methods with multiple return statements, at each return a condition
is added to the path constraint for the remainder of the method ensuring that
all further assignments are predicated on not reaching this return statement. The
condition added is the negation of the part of the current path constraint falling
within the scope of the current method. The loop exit statements break and
continue are supported using the same technique. Return handling is illustrated
by the translation shown below (where a is a field of the current object):

int exampleMethod() {
if(a > 5) {

return a;
}
a = a + 1;

return a;

}

P0 := P
P := P0 ∧ (a > 5);
r := a // introduce variable r for return value
P := P0 ∧ ¬(a > 5) // add return constraint
a′ := newVar(); V := V ∪ {a′}
C := C ∪ (a′ = if P then (a+ 1) else a); a := a′

r′ := newVar(); V := V ∪ {r′}
C := C ∪ (r′ = if P then a else r); r := r′

P := P0; return r
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The transformed versions of affected methods are added to new classes, leaving
the original classes unchanged. The transformed methods are made static but
are given an extra argument for the object on which the method is called. A
further object of type ModelBuilder is threaded through all method calls to keep
track of state information. It maintains the path constraint, and also records
variables introduced by decision procedures and as intermediate variables, and
constraints caused by throw statements or introduced to constrain intermediate
variables.

5.2 Run Time

At run time, optimisation is triggered by a call to the Optimisermethod buildMin-
imal or buildMaximal, with an object implementing the Solution interface passed
as an argument. The Optimiser first uses reflection techniques to find the trans-
formed build and evaluate methods corresponding to the type of the received
Solution object, and then executes these methods.

The variables and constraints recorded in the ModelBuilder during execution
of the transformed methods, along with the objective expression returned by the
evaluate method, are used to generate a constraint problem which is then sent
to an external solver. We chose to express the problem in MiniZinc [10] because
it gives us an easy choice of constraint problem solvers.

The ModelBuilder also records a Variable object for each potentially updated
field. When a solution is obtained, the optimal decisions are substituted into the
expression giving the final value for each of these Variable objects, and reflection
techniques are used to update the corresponding fields accordingly. The run time
process is illustrated in Figure 2.

Returning to the project planning example, consider the method getFinish-
Day (Figure 3), which is called by the evaluate method of ProjectPlan. In the
transformed version of this method, when getScheduledDay is called on a task
the result is an integer expression which is not constant (as the task’s scheduled
day is assigned in the build method to the result of chooseInt). The greater-
than operator is therefore replaced with a method which creates a comparison
expression. This means that the if statement has a non-constant condition. As
discussed above, the body of the if statement is executed, but the condition (the
comparison expression) is added to the current path constraint at the beginning
of the then block, and removed at the end.

This means that when the assignment of finishDay is reached, the path con-
straint will not be constant, so finishDay is given a Variable type, and the assign

Fig. 2. The optimisation process, triggered on demand during application execution
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int getFinishDay() {
int finishDay = 1;
for(Task task : alltasks)

if(task.getScheduledDay() > finishDay)
finishDay = task.getScheduledDay();

return finishDay;
}

Fig. 3. ProjectPlan getFinishDay method, called from within evaluate

method is used in place of the assignment. The assign method creates a new
intermediate variable for the current value of finishDay, and records a constraint
that this new expression is equal to the assigned expression (this task’s sched-
uled day) if the path constraint (the greater-than comparison) evaluates to true,
and otherwise it is equal to the previous value. The expression finally returned
by getLatestDay is an intermediate variable constrained via a series of these
varUpdate constraints to equal the latest scheduled day.

The definition of varUpdate, and an example MiniZinc model for a project
with 3 tasks is shown in Figure 4. The three day variables in this model are core
decision variables introduced by calls to chooseInt. The finishDay variables are
intermediate variables used to represent the value stored in the finishDay vari-
able in the getFinishDay method discussed above. The varUpdate constraints also
originate from here, while the two constraints enforcing task dependencies orig-
inate from the evaluate method, each being the negation of the path constraint
when the throw statement was reached.

var 1..6: day0;
var 1..6: day1;
var 1..6: day2;
var {1,2,3,4,5,6}: finishDay31;
var {1,2,3,4,5,6}: finishDay33;
var {1,2,3,4,5,6}: finishDay35;
constraint (not (day1 < day0));
constraint (not (day2 < (1 + day1))) /\ (not (day2 < (2 + day0)));
constraint varUpdate(finishDay31,(day0 > 1),day0,1);
constraint varUpdate(finishDay33,(day1 > finishDay31),day1,finishDay31);
constraint varUpdate(finishDay35,(day2 > finishDay33),day2,finishDay33);
solve :: int search([day0, day1, day2], input order, indomain split, complete)

minimize finishDay35;

predicate varUpdate(var int: out, var bool: update, var int: new, var int: old) =
(out = [old,new][1+bool2int(update)]);

Fig. 4. MiniZinc model for project planning example
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5.3 Refining the Translation

Many values computed within the build and evaluate methods are unaffected by
the results of decisions. Measures to take this into account can reduce unnec-
essary complexity in the model. At compile time, translation is only required
for a method if at some time it is passed a non-constant argument, or if the
code within the method uses decision procedures provided by the ChoiceMaker,
changes the state of some object, or reads a field which is updated elsewhere in
translated code. Within a method, a variable that is never assigned to a value
that depends on the outcome of decisions, and is never assigned conditionally
depending on the outcome of a decision, does not need its type changed.

At run time, if the condition for a branching statement is constant, only the
corresponding branch is executed. Also, if the current path constraint is constant,
an assignment can overwrite the previous value of a variable unconditionally.
Actually, it is only required that the part of the path constraint which falls within
the variable’s scope is constant. If the part of the path constraint outside this
scope is not satisfied, then normal execution would never reach the declaration
of the variable, making its value irrelevant.

An example of this is illustrated in the translation below:

if(X) {

int sum = 0;
for(int item : list) {

sum = sum + item;
}
a = sum;

}

P0 := P
P := P0 ∧X
sum := 0
for item in list do

sum ′ := newVar(); V := V ∪ {sum ′}
C := C ∪ (sum ′ = sum + item); sum := sum ′

a′ := newVar(); V := V ∪ {a′}
C := C ∪ (a′ = if P then sum else a); a := a′

P := P0

The Boolean expression X is added to the path constraint for the duration of
the then block. The assignment to a (which is declared outside the if statement)
is conditional on X , but all assignments to sum are unconditional.

6 Object Variables

For real-world problems, natural code will almost always involve decisions at
the object level. We describe here our support for this, including a procedure
to choose one object from a collection. Note that this is a major extension over
CoJava, which restricts non-determinism to primitive typed variables only.

Let us consider a new version of the project planning application. This time,
resources are no longer infinite. Instead only a given number of hours are available
on each day. We introduce a Day class, with fields recording the day number and
the maximum number of hours available, as well as the number of hours currently
assigned. Each Task now also has a duration, and we need to ensure that the
total duration of all tasks assigned to a day does not exceed the hours available.
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The new build method for ProjectPlan is shown below. For each task a Day
object is chosen, and the task is assigned to this Day using the addTask method.
This method updates the hours assigned to the day, returning false if the total
is now greater than the available hours. If the return value is false an exception
is thrown to indicate that the solution is not acceptable.

public void build(ChoiceMaker chooser) throws Exception {
for(Task task : alltasks) {

Day chosenDay = chooser.chooseFrom(allDays);
if(!chosenDay.addTask(task))

throw new Exception(”Failed to add task”);
}

}

The object represented by chosenDay depends on the outcome of the choose-
From decision. This means that in the transformed version of the code we need
to be able to call addTask without knowing which Day object is the target.

In order to support this sort of code, we first need to be able to represent the
choice of an object using primitive solver variables. This is achieved by assigning
an integer key to each distinct object. Each expression with a non-primitive type
has a domain of possible objects, which can be translated into a corresponding
integer domain. This representation allows straightforward equality comparisons
between object expressions. The chooseFrom method simply creates a new ex-
pression whose domain is given by the provided collection, with a corresponding
integer decision variable.

The next consideration is field accesses. As with single objects, each accessed
field of an object expression is assigned a Variable object. This Variable must be
able to produce an expression for the current value of the field, and to accept
an expression for a newly assigned value. For object expressions, a special type
of Variable is used which has a reference to the Variable for the corresponding
field of each object possibly represented by the expression, as well as an integer
expression for the index of the chosen object.

When an expression for the current value is requested, an intermediate solver
variable is created and constrained to equal the current field expression for the
object at the chosen index. This is a simple element constraint.

An assignment must update the corresponding field for every object in the
expression’s domain. A new intermediate variable is created for each, and a
user-defined predicate fieldUpdate is used to ensure that all except the one at
the correct index are equal to the previous values, while the one at the correct
index is equal to the assigned expression if the current path constraint holds, or
the old value otherwise.

We also need to handle the calling of methods on object expressions. Fortu-
nately, the only way the target object affects the outcome of a method invocation
is through the values stored in its fields. This means that all uncertainty can be
pushed down to the field level. Translated methods are already converted to be
static with an argument indicating the object called on, so it is straightforward
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to allow this argument to be non-constant. Then, for each field access the Variable
retrieved is of the special type discussed above.

7 Variable Collections

Combinatorial problems commonly involve collections such as sets or lists. It
is therefore valuable to allow the use of these in the Solution code. It should
be possible not only to store variable objects in collections, but also to make
arbitrary changes to the collection in variable contexts, so that the resulting
size and composition of the collection depends on the outcome of decisions.
Furthermore, it should be possible to iterate over these variable collections.

Returning to the project planning example, imagine we are now allowed to
hire an external contractor to perform some tasks, paying an hourly rate plus a
callout fee for each day the contractor’s services are required. Instead of finishing
as early as possible we wish to minimise cost while meeting a deadline. Extracts
from the revised build and evaluatemethods for ProjectPlan are shown in Figure 5.

Day day = chooser.chooseFrom(days);
if(chooser.chooseBool()) {

contractedTasks.add(task);
contractorDays.add(day);

}

int cost = dayFee ∗ contractorDays.size();
for(Task t : contractedTasks) {

cost += hourlyRate ∗ t.duration();
}
return cost;

Fig. 5. Extracts from revised build and evaluate methods making use of collections

Note first that the chosen day for the task, a decision variable, is added to
the contractorDays set. Second, this set and the list of contracted tasks are both
updated conditionally depending on whether or not this task is to be contracted
out (as decided by the chooseBool method). The crucial aspect here is that the
for loop in the evaluate code iterates over a collection whose size depends on the
values of decision variables.

We have implemented a special purpose translation for the Set, List and Map
interfaces in order to support this kind of code. The VariableSet, VariableList
and VariableMap classes provide specialised transformed versions of (almost) all
methods included in these collection interfaces, using a special-purpose repre-
sentation for the state of the collection.

7.1 Sets, Lists and Maps

The VariableSet class represents a set using a list of possible members of the
set, and a corresponding list of Boolean expressions indicating whether or not
each item is actually in the set. Each possible item is also an expression which
may represent a choice between several actual objects. When a VariableSet is
initialised, all items are constant expressions, and the Boolean conditions are
true. It is only through operations on the set that variability is introduced.
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As an example of an operation we consider add. This method is required to
add the given item to the set if it is not already present, and return true if the
set has changed. The pseudo-code below defines the effect of calling add on a set
s having current state vs = 〈n, x1..n, c1..n〉, where n is the number of possible
members of the set, xi is the possible member at index i, and ci is the Boolean
condition indicating whether or not xi is actually in the set.

boolean result = s.add(y);

a :=
∧

i=1..n ¬(xi = y ∧ ci)
b := P ∧ a // P: path constraint
vs :=

〈
n+ 1, 〈x1..n, y〉, 〈c1..n, b〉

〉
result := a

The Boolean expression a represents the condition that y was not already in
the set. This expression is also used as the return value. It is possible for the
set to remain unchanged even if y was not already present, as the current path
constraint may not be satisfied. However, in this case execution would not reach
this method call, so the return value is irrelevant.

Clearly it is important to handle constants well, as otherwise the model be-
comes unnecessarily complex. For example, the add method does not add a new
possible item if one of the existing possible items is identical to the added item.
In this case the existing item’s Boolean condition is updated instead, and if this
is already constant and true, no change is required.

The VariableList class maintains a list of possible members in the same fashion
as VariableSet, but instead of a Boolean expression indicating whether or not the
item is present, an integer expression for each possible item indicates its (0-
based) index in the list, with all items not actually in the list having indices
greater than the length of the list. A separate integer expression is maintained
for the current length of the list.

The VariableMap class is implemented as an extension of the VariableSet class,
with an added expression for each possible key giving its currently assigned value.

7.2 Iteration

Iteration in Java is performed using the Iterator interface, with two methods:
hasNext to check whether there are remaining items, and next to retrieve the
next item. We support iteration over variable collections using a VariableIterator
class which implements the transformed versions of these operations. That is, the
hasNext method returns a Boolean expression which evaluates to true if at least
one of the remaining items is actually in the collection, while the next method
returns an expression for the next item.

Enhanced for loops (for example that on the right of Figure 5) are converted
into the equivalent while loop using an explicit iterator. At the beginning of each
loop iteration the hasNext method is called, and the resulting Boolean expression
is added to the path constraint, to be removed at the end of the loop body. When
the hasNext method returns an expression which is constant and false (as it does
when it runs out of possible members of the collection), the loop is terminated.
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Although the VariableSet state includes a list of expressions for possible mem-
bers of the set, the iterator cannot simply return these in order. To correctly
reflect loop exit logic all items which are actually in the set must be returned be-
fore any which are not. For this reason, each item returned by the VariableIterator
is actually a new expression which may represent any of the possible members of
the set. An integer variable is created for each returned item, giving the corre-
sponding index into the list of possible members. These indices are constrained
to ensure that an item which is not in the set is never returned before an item
which is in the set, and further (to avoid symmetry) that within these two groups
items are returned in order of index.

Iteration over lists is implemented similarly except that the order in which
items are returned is determined by the indices stored as part of the VariableList
state. For both lists and sets, the Boolean expression returned by hasNext is
simply a comparison between the number of items already returned and an
expression for the size of the collection.

Obviously constant detection is very important to avoid excessive complexity.
We have implemented some simplifications, such as returning all items which
are definitely in the set first, and excluding entirely any which are definitely not
in the set, but have not yet investigated all possible simplifications.

8 Complex Decisions

With support for variable collections, it becomes possible to provide more com-
plex decision procedures allowing decisions to be specified at a higher level. As an
illustration, let us return to the project planning example. Imagine that instead
of choosing a single worker for each task, we assign a team of workers. For each
task there are a set of allowed team sizes, and the task duration varies according
to the size chosen. Furthermore, tasks may be performed across multiple days,
as long as an integral number of hours is assigned to each day and the total
number of hours matches the task duration.

Below is a build method appropriate for this situation, making use of complex
decision procedures.

public void build(ChoiceMaker chooser) {
for(Task task : allTasks) {

int teamSize = chooser.chooseFrom(task.allowedTeamSizes());
int taskDuration = task.getDuration(teamSize);
Set<Worker> team = chooser.chooseSubset(allWorkers, teamSize);
Map<Day,Integer> chosenDays = chooser.allocate(taskDuration, allDays);
for(Worker worker : team)

worker.assignTask(task, chosenDays);
}

}

The procedure first chooses a team size and a corresponding team. Then the
total task duration is allocated to days using the allocate method. This method
decides how much of the given quantity (in this case the task duration) should
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be allocated to each object in the given collection (in this case the list of days).
Finally, the workers’ schedules are updated appropriately.

Not only do complex decision procedures greatly simplify the build method,
they also provide opportunities to make use of global constraints. For example,
the allocate method can make use of a global sum constraint to ensure that the
total quantity allocated is correct.

9 Experimental Results and Future Work

Having developed a working system, our next concern is performance. We present
in Table 1 preliminary experimental results demonstrating the relative perfor-
mance of the system compared with equivalent hand-written models. It is un-
realistic to expect that automatically generated models will be able to compete
with models produced by an expert. Our aim is to be able to handle problems
arising for small businesses or individuals. The results show that we still have
some work to do to achieve this goal. Note that compilation time is not shown
as this was insignificant: the entire suite compiles in 20 seconds (with around 15
seconds spent performing code transformation).

For most problems the vast majority of the total time is spent solving the
model (rather than generating it). This suggests the potential to greatly de-
crease the running time by improving the model. Our initial analysis of the
automatically generated models has led to the identification of two easily de-
tected programming patterns for which stronger constraints are available. The
table below shows the original Java code for each of these patterns, the con-
straints which would be generated using the standard transformation, and the
alternative stronger constraints.

Java code Standard translation Specialised translation

if(c) x++; var x’ = [x, x+1][bool2int(c)+1]; var x’ = x + bool2int(c);

if(a > x) x = a; var x’ = [x, a][bool2int(a > x)+1]; var x’ = max(x, a);

After adding a step during the model generation phase to automatically de-
tect just these two programming patterns and replace the constraints, we have
observed a significant improvement in performance on several benchmarks. We
anticipate further gains can be made by identifying other patterns for which
straightforward model refinements are beneficial. Some patterns may involve
larger portions of the code, for example a loop which sums a collection of values
or counts the number of objects satisfying some property.

A complementary approach is to attempt to exploit the structure of the gen-
erated models, which tend to be quite unidirectional. We may be able to take
advantage of this property for efficient propagation scheduling or through the
development of a specialised search strategy.

Other future work could design global constraints to improve the treatment
of collection operations as well as variable and field updates. There is also room
for further exploration of alternative representations which could be used for
the state of variable collections. The current implementations are correct but
certainly not as efficient as possible.
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Table 1. Experimental results for project planning example and various well-known
problems. In order the figures give the total time (secs) for the optimisation step, the
percentage of this total used by the solver, the new total time using basic model re-
finement with percentage improvement in brackets, the solving time for an equivalent
hand-written model, and the number of times faster this hand-written model is com-
pared with the improved total time. Timing figures are the average over 30 instances.

Problem Size Total Solving Improved Hand Factor

project planning 1 250 tasks 1.13 78.1% 0.69 (39%) 0.16 4.4
project planning 2 18 tasks 16.22 97.6% 13.31 (18%) 1.18 11.3
project planning 3 14 tasks 32.38 96.6% 26.38 (19%) 0.27 96.9
bin packing 8 items 8.67 98.2% 5.81 (33%) 0.34 17.2
golomb ruler 7 ticks 3.45 33.6% 3.41 (0.9%) 2.03 1.7
knapsack (0-1) 30 items 1.97 80.4% 1.95 (0.9%) 0.15 13.2
knapsack (bounded) 30 items 6.40 95.2% 6.36 (0.6%) 1.10 5.8
routing (pickup-del) 8 stops 6.48 96.5% 6.45 (0.6%) 0.33 19.7
social golfers 9 golfers 2.65 75.0% 2.60 (1.9%) 0.14 18.3
talent scheduling 8 scenes 39.47 99.7% 20.87 (47%) 2.20 9.5

10 Conclusion

If software developers with no specialised CP expertise could easily incorporate
CP technology into their applications, this would greatly increase its impact.

We have designed an alternative interface to CP which aims to be more intu-
itive and convenient for software developers. The necessary translation between
paradigms is automated, allowing the programmer to work exclusively with a
procedure based definition of the optimisation problem. This significantly re-
duces the burden on the programmer and allows straightforward integration of
optimisation functionality within a wider application.

A natural coding style is allowed with support for object variables, variable
collections, and high level decision procedures, building on and significantly ex-
tending techniques used to implement the language CoJava.

Preliminary experiments show that further work is required to achieve our
goal of performance sufficient for small business and personal applications, but
that there are gains to be made using very simple local adjustments to the model.
We have also identified several other avenues of investigation which may lead to
further improvements in performance.

Acknowledgments. NICTA is funded by the Australian Government as rep-
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Abstract. Bisection is a search algorithm for numerical CSPs. The main
principle is to select one variable at every node of the search tree and
to bisect its interval domain. In this paper, we introduce a new adaptive
variable selection strategy following an intensification diversification ap-
proach. Intensification is implemented by the maximum smear heuristic.
Diversification is obtained by a round-robin ordering on the variables.
The balance is automatically adapted during the search according to the
solving state. Experimental results from a set of standard benchmarks
show that this new strategy is more robust. Moreover, it is particularly
efficient for solving the well-known Transistor problem, illustrating the
benefits of an adaptive search.

1 Introduction

A Numerical Constraint Satisfaction Problem (NCSP) is a set of numerical con-
straints over continuous variables having interval domains. For the sake of sim-
plicity, we consider from now on square systems of equations f(x) = 0 where
f : [x]→ Rn is defined on a n-dimensional interval box [x]. Solving such a prob-
lem with interval methods generally consists in paving its solution set Σ(f, [x])
with interval boxes at a given precision. To this end, interval branch-and-prune
algorithms alternate contraction steps and branching steps until reaching small
enough boxes [7,6]. The contraction component typically combines the interval
Newton method and consistency techniques in order to prune the variable do-
mains. The branching step usually generates two sub-problems by bisecting the
domain of one variable. The variable selection strategy used in the branching
step is called here the bisection strategy.

Several general bisection strategies have been proposed [8,2,6,11]. MaxDom
selects the variable having the largest domain. The goal is to minimize the width
of intervals resulting from the evaluation of f using its natural interval extension.
MaxSmear is a greedy strategy that follows the same idea applied to the mean
value extension of f . To this end, the variable having the maximum smear value
is chosen. RR is a fair strategy using a round-robin ordering that leads to reg-
ularly select every variable. Even if MaxSmear is known to be good in average,
determining the good strategy for a given problem may not be easy. Moreover,
we have observed that MaxSmear is more useful when boxes are small enough.

We introduce in this paper a new adaptive bisection strategy implementing
a balance between MaxSmear and RR. This strategy can be more RR-oriented

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 290–298, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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in the early stages of the solving process to allow a diversification on the set
of all variables. A MaxSmear behavior can be strengthened during the search
according to the contraction of boxes. Our hybridization scheme is inspired from
greedy randomized adaptive search procedures [3]. It consists in making a fair
choice in a subset of the variables having the greatest smear values. The balance
is determined by the size of the subset containing the most interesting variables.
The benefits of this adaptation scheme are illustrated by the experimentations
on a large set of classical problems.

The bisection scheme and interval methods are presented in Section 2. The
new adaptive strategy is introduced in Section 3. The different strategies are
analyzed and compared using a set of classical benchmarks and the experimental
results are reported in Section 4. A conclusion follows.

2 Bisection Scheme

2.1 Interval Arithmetic

We consider (closed) intervals [u]
.
= [u, u]

.
= {u ∈ R : u � u � u}. The set of

intervals is denoted by IR. A n-dimensional interval box [u] is a vector of IRn

that can be seen as a Cartesian product [u1]×· · ·× [un]. The width of an interval
[u] is the difference w([u])

.
= u − u. The width of a box is the maximum width

taken componentwise. The hull of a set S ⊆ R is the interval �S
.
= [inf S, supS].

Interval operations are set extensions of real operations. An inclusion form
of a function g : Rn → R is an interval function [g] : IRn → IR such that
for all [u] ∈ IRn, u ∈ [u] implies g(u) ∈ [g] ([u]). An inclusion form can then
be used to enclose the range of a real function over an interval domain. The
natural extension of g is an inclusion form extending an explicit expression of
g by replacing every real operation by the corresponding interval operation and
every real number by its hull. The mean value extension of g is an inclusion form
obtained from a first-order approximation of g in a given interval domain.

2.2 Bisection Algorithm

A bisection algorithm calculates a set of boxes enclosing the solution set Σ(f, [x])
of a NCSP at a given precision ε > 0. This algorithm maintains a list of boxes
L until it becomes empty. At the beginning, [x] is added in L. At each step, one
box [u] is extracted from L and a contracted box [v] ⊆ [u] is computed. Then:

– [v] is discarded if it is empty;
– [v] is labelled as a solution box if its width is smaller than ε;
– otherwise [v] is bisected in two boxes [v′] and [v′′], which are added in L.

Bisecting [v] consists in choosing one variable xk such that the width of [vk] is
greater than ε. Let c be the midpoint of [vk]. Then two sub-boxes are created:

[v′] = ([v1] , . . . , [vk−1] ,
[
vk, c

]
, [vk+1] , . . . , [vn])

[v′′] = ([v1] , . . . , [vk−1] , [c, vk] , [vk+1] , . . . , [vn])
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The contraction procedure may combine consistency techniques and interval
methods. For instance 2B consistency [9] and box consistency [1] are able to
early reduce large boxes during the search at a moderate cost. The Newton
operator acts as a global constraint. In favorable cases, this operator is able to
contract small boxes enclosing the solutions with a quadratic convergence.

The efficiency of the bisection algorithm strongly depends on the coupling
of the bisection strategy and the contraction procedure. In fact, the bisection
strategy must be tuned to improve future contractions, hence reducing the size
of the search tree.

2.3 Bisection Strategies

The MaxDom heuristic selects the variable having the largest domain in the
current box [v]. The idea is to minimize the width of the evaluation of the
natural extension of f .

The MaxSmear heuristic aims at selecting the variable with respect to which
f varies most rapidly. Let [A] = ([aij ]) be an inclusion form of the Jacobian
matrix of f evaluated at [v]. The smear value of xi in [v] is defined as:

s(xi, [v])
.
= max

j=1,...,n
{max(|aji|, |aji|)} × w([vi])

The selected variable is the one having the maximum smear value. This choice
tends to minimize the width of the evaluation of the mean value extension of f .

The RR heuristic manages the variables in turn according to a given ordering.
Given the ordering x1 < x2 < · · · < xn, variable x1 is selected first, and then
x2, and so on, such that only the domains larger than ε are considered. This is
a fair strategy that leads to forget no variable.

It is admitted that the maximum smear heuristic is often the best one. How-
ever, the other heuristics can be more efficient for some problems. These remarks
argue for the design of an hybrid strategy. These techniques will be discussed in
the next section and a new adaptive strategy will be introduced.

3 Adaptive Bisection Strategy

3.1 Motivation

The smear criterion has been designed to improve a bisection algorithm that
used the interval Newton operator as a contraction procedure [8]. It turns out
that this operator solves an interval linear system derived from the mean value
extension. By choosing variables with the maximum smear values, the largest
interval coefficients of such linear systems will become narrower, hence increasing
the contraction power of the algorithm. However, the smear criteria may not
always be useful to distinguish the good variables. This is the case when the
intervals in the Jacobian matrix are large, which generally happens when the
domains are large or when the derivatives are overestimated.
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When solving difficult problems, it is common not to contract boxes in the
early stages of the bisection process. At this phase, the goal of bisection may be to
allow local consistencies to contract boxes. Given an equation fj(x1, . . . , xn) = 0,
the domain of xi in a box [u] can be reduced by considering an equivalent func-
tional form of the equation xi = g(x1, . . . , xi−1, xi+1, . . . , xn) and by intersecting
[ui] with the evaluation of the natural extension of g at [u]. The key point is
that the interval evaluation of g(x1, . . . , xi−1, xi+1, . . . , xn) may be tight enough
only after bisecting at least once the (n − 1) variables. For this purpose the
round-robin strategy is very useful.

Our conclusion is that the strategy must be adaptive. If the smear criteria are
not exploitable then the round-robin strategy has to be used. The problem is to
determine a balance between the two heuristics.

3.2 New Adaptive Strategy

We introduce a new adaptive bisection scheme composed of three consecutive
steps described hereafter. Let [v] be the current box to be bisected and let ε be
the desired precision.

First step: Selection of the candidate variables. The list of candidate variables
L is the set of variables whose domains in [v] are larger than ε. In practice, due
to the machine precision, the variables whose domains cannot be bisected must
also be excluded from L.

Second step: Generation of the RCL. The restricted candidate list (RCL) is a
subset of L defining the variables that will be eligible for bisection. Let s be the
vector of smear values s(xi, [v]) for all xi ∈ L. Let sl be the lowest value in s and
let su be the greatest value in s. Given a threshold S ∈ [sl, su], let RCL be the
set of all the variables xi ∈ L such that s(xi, [v]) � S. We propose to compute
the threshold as

S = sl + α(su − sl)

where α ∈ [0, 1] is a parameter controlling the size of the RCL. Fixing α = 1
clearly leads to the maximum smear heuristic. Fixing α = 0 implies RCL = L.

We assume that the smear values are interesting when the mean value exten-
sions are tight enough. As a consequence, the value of α must increase when the
smear values of the variables in L decrease. We then define

α = φ(ψ(s))

where φ : R+ �→ [0, 1] is continuous and decreasing and ψ(s) is a scalar of the
same order of the smear values in s. The ψ function can be defined as the mean
or the standard deviation. The φ function can be defined as

φ1(y) =
1

1 + βy

where β > 0 is a parameter determining the curvature of the function.
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Third step: Choice of the variable. The selected variable is the variable from
the RCL having the least number of bisections in the current branch of the
search tree. This approach mimics a round-robin strategy on a subset of the best
variables. As a consequence, the adaptive strategy is more round-robin-oriented
when α has a low value, and it behaves like the maximum smear heuristics when
α gets closer to 1.

4 Experimental Results

4.1 Problems and Solvers

We consider a set of 23 standard problems from the COCONUT benchmarking
suite. All the experiments were made on a Core I7/2.67GHz using the interval
solver Realpaver [4] based on the interval arithmetic library Gaol1. The con-
traction procedure combines 2B consistency, box consistency, and the interval
Newton operator. The precision is assigned to ε = 10−8. The number of bisection
steps is used as a measure to compare the different strategies. Solving times are
not given here since they vary in proportion to the numbers of bisection steps.

4.2 Results

The ψ function used to calculate a scalar from the smear vector s is the standard
deviation, which seems better than the mean. The φ function that transforms
ψ(s) to α is φ1 with β = 0.5, which gives good average behaviors.

General results. The experimental results are reported in Table 1. In each row
but the last two the problem name and its number of variables n are given.
MaxDom (maximum domain), RR (round-robin), Smear, and ABS (adaptive
bisection) are the number of bisection steps required to solve the problem with
the corresponding strategy. The last two rows are the sums per columns: Sum is
the sum of all values while TrimmedSum is equal to Sum minus the two largest
values and the two smallest values in the given column.

The problems are ordered according to the best strategy for solving them.
Problems from the first set are better solved with MaxDom. However, the other
heuristics compare very well. It seems that the variables are equally important
in these problems.

RR is the best for the second set of problems. MaxDom is clearly inefficient
for Neuro and the smear criteria must be used instead of the domain widths.
However, the smear-based strategy is not good for Combustion and the result
of ABS shows that it is useful to diversify the choice of variables. Here, it is
interesting to examine the evolution of α. In fact, α is close to 0 at the beginning
of the solving process; the smear values are huge and a round-robin choice is
preferred. The value of α increases according to the reduction of boxes and the
final values are close to 1, leading to a smear-based behavior. For Trigo1 the

1 http://sourceforge.net/projects/gaol/

http://sourceforge.net/projects/gaol/
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Table 1. Comparison of bisection strategies (number of bisections)

Problem n MaxDom RR Smear ABS

Chemistry 5 65 140 87 91
Kinematics2 8 2 692 3 476 2 795 2 812
PotraRheinboldt 20 154 708 159 184
Trigo2 10 1 115 1 747 1 414 1 178
Trinks 6 63 92 77 67
Yamamura 7 45 336 46 46

Celestial 3 3 361 2 599 4 258 3 074
Combustion 10 559 463 1 303 509
Neuro 6 1 288 779 6 367 7 223 7 215
Trigo1 10 1 258 1 244 2 086 2 071

Geineg 6 8 546 8116 1 707 2 400
I3 20 10 034 9 178 4 760 5 314
Kapur 5 2 791 1 651 231 323
Nbody 8 1 976 2 049 1 532 1 765

BroydenTri 20 24 723 23 23
Brown 10 12 443 5 850 6 827 4 996
CzaporGeddes2 4 17 165 5 880 6 101 5 569
DiscreteBoundary 40 6 126 6 6
Economics 6 1 108 1 530 1 063 1 023
Kinematics1 12 226 221 215 206
Nauheim 8 1 204 722 816 708
Solotarev 4 2 668 267 325 259
Transistor 9 112 795 121 765 83 711 42 085

Sum 1 469 077 175 250 126 765 81 924
TrimmedSum 67 473 44 089 35 802 32 595

good balance is not reached. This suggests that the value of β must be increased
for this problem in order to allow a more RR-oriented strategy.

The third set of problems illustrate the capabilities of the maximum smear
heuristics. MaxDom and RR are clearly outperformed. The loss of performances
of ABS is limited. The adaptation of α seems rather good, though this could be
improved.

The new strategy ABS is the best one for the last set of problems. The most
striking result concerns Transistor, which is known as a difficult problem with
exponential functions. The smear criteria are clearly useless for large boxes,
which is due to the evaluation of the exponential terms resulting in huge intervals.
At the end of the solving process, α is approximatively equal to 0.5 and the
strategy is balanced between RR and Smear.

The sum of values in the penultimate line shows that ABS is more robust,
allowing to significantly decrease the total number of bisection steps. There is
no problem for which ABS is much worse than the other strategies. Moreover,
ABS remains the best strategy if the extremal cases are not considered (see
TrimmedSum). The gains with respect to the other strategies are respectively
equal to 9% (MaxSmear), 26% (RR), and 52% (MaxDom). It is worth noticing
that ABS competes well even with default parameter settings.
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Filtering algorithms. It is interesting to test whether ABS remains efficient when
different filtering techniques are used. It turns out that very similar results (as
in Table 1) have been obtained with a modified algorithm including probing
operators [12]. In this case, the trimmed sums are equal to 19455 (MaxDom),
17409 (RR), 13142 (MaxSmear), and 12139 (ABS).

Growth of problem dimension. Three generic problems parameterized by the
dimension n are considered now. The results reported in Table 2 show that the
behaviour of ABS does not depend on the dimension for these problems. In
particular, ABS is the best strategy for solving Brown and Economics. However,
it seems that MaxDom can be useful, especially for Yamamura.

Table 2. Study of heuristics according to the dimension of problems

Problem n MaxDom RR Smear ABS

Yamamura 7 45 336 46 46
8 148 1 774 241 260
9 409 6 216 833 852
10 1 097 24 637 7 093 7 462

Brown 9 4 903 3 977 2 494 2 995
10 12 443 5 850 6 827 4 996
11 18 611 22 044 17 073 14 455
12 155 052 53 563 30 529 27 886

Economics 5 216 226 218 258
6 1 108 1 530 1 063 1 023
7 7 117 9 042 6 449 5 875
8 40 737 53 507 34 552 29 048

4.3 Parameter Tuning

The behavior of the ABS strategy depends on the φ function. Now we fix φ = φ1

and different values of β are tested. Profiles of the function are illustrated below.

φ

ψ(s)0 1 2
0

0.5

1
β = 0

β = 0.5

β = 10

The results are reported in Table 3. Problems from the first set are better solved
by the RR strategy and we clearly see that the performances decrease with β. On
the contrary, the second set of problems is favorable for the MaxSmear strategy
and the number of bisections decreases with β.
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Table 3. Behavior of ABS according to β in φ1 (number of bisections)

Problem n β = 100 β = 10 β = 1 β = 0.5 β = 0

Celestial 3 3042 3048 3069 3074 4258
Combustion 10 495 507 505 509 1406
Neuro 6 7059 7051 7151 7215 7273
Trigo1 10 1211 1616 2023 2071 2086

Geineg 6 6543 6485 3310 2400 1655
I3 20 9919 9407 6544 5314 4745
Kapur 5 323 323 323 323 255
Nbody 8 1809 1799 1794 1765 1541

Sum 30 401 30 236 24 719 22 671 23 219

The sums per columns are reported in the last line. The least number of
bisections is obtained for β = 0.5. As a consequence, this specific value has been
chosen as the default value. This value could probably be refined. Moreover,
dynamically tuning this parameter could be useful.

5 Conclusion

The adaptive bisection strategy introduced in this paper aims at selecting vari-
ables according to observations of the solving state. The smear values are used
to distinguish the good variables but more confidence is given when their mag-
nitude is small. Balancing the use of the MaxSmear and RR strategies leads to a
robust strategy that is also able to solve more efficiently some difficult problems.

The algorithm presented here is a general scheme and it can be parameterized
to implement many concrete algorithms. The computation of α could be refined
with other ψ and φ functions, possibly including automatic parameter tuning
strategies [5]. The relative smear criterion [11] could be more efficient than the
smear criterion. It could also be useful to learn the impact of variables [10].
Finally, more random strategies can be easily implemented, in particular for
calculating the value of α or for choosing the variable in the restricted candidate
list. In fact, we have tested such strategies but they are not robust in general.
However, we have observed interesting behaviors and very good performances
for some problems and this approach could be used as an experimental tool.

Acknowledgements. The author thanks Xavier Gandibleux and Christophe
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Abstract. We present an exact solution approach to the constrained
shortest path problem with a super additive objective function. This
problem generalizes the resource constrained shortest path problem by
considering a cost function c(·) such that, given two consecutive paths P1

and P2, c(P1∪P2) ≥ c(P1)+c(P2). Since super additivity invalidates the
Bellman optimality conditions, known resource constrained shortest path
algorithms must be revisited. Our exact solution algorithm is based on a
two stage approach: first, the size of the input graph is reduced as much
as possible using resource, cost, and Lagrangian reduced-cost filtering
algorithms that account for the super additive cost function. Then, since
the Lagrangian relaxation provides a tight lower bound, the optimal
solution is computed using a near-shortest path enumerative algorithm
that exploits the lower bound. The behavior of the different filtering
procedures are compared, in terms of computation time, reduction of
the input graph, and solution quality, considering two classes of graphs
deriving from real applications.

1 Introduction

Consider a directed graph G = (N,A), a set of resources K, a length le and
a resource consumption rke for each arc e in A and each resource k in K, the
problem of finding the shortest path between a pair of given vertices s and t
in N such that the consumption of each resource k does not exceed a given
upper limit Uk is known in the literature as the Resource Constrained Shortest
Path problem (RCSP). In this problem, the resource consumption of a path is
given as an additive (linear) function. Thus, representing a path P as list of
arcs, rk(P ) =

∑
e∈P rke . Similarly, the cost of P is additive in the arc lengths,

that is, c(P ) =
∑

e∈P le. The additivity property plays an important role in
the solution approaches since, given two consecutive paths P1 and P2, the cost
and the resource consumption of the union of the two paths are c(P1 ∪ P2) =
c(P1)+ c(P2) and rk(P1∪P2) = rk(P1)+ rk(P2). Note that RCSP is weakly NP-
hard even in the case of a single resource, and approximate algorithms perform
poorly in practice.

In this paper, we study a generalization of RCSP that considers super additive
cost functions, that is such that c(P1∪P2) ≥ c(P1)+ c(P2). This is motivated by

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 299–315, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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several applications. For instance, consider the allowances paid for extra hours
of works in a crew scheduling problem. Usually, allowances are not due for the
regular working hours, but a fixed allowance is paid for each hour exceeding the
regular working time. Indeed, allowances bring in the cost function a step-wise
component that makes the cost function super additive. Another application is
in the transportation context, where the passenger perceived travel times have
to be minimized. The travel time is perceived differently if it is below or above
a certain threshold, thus also in this case the sum of the perceived travel times
of two consecutive paths is smaller than the perceived travel time of the path
obtained by joining the two paths.

The additive RCSP has been widely studied in the literature, and for a recent
survey refer to [9]. Most of the existing algorithms follow a three stage approach:

1. Compute a lower bound (LB), usually via Lagrangian relaxations, and an
upper bound (UB) with some heuristic.

2. Exploit such bounds to remove nodes and arcs that cannot provably lead to
feasible or optimum paths.

3. Close the duality gap between the lower and the upper bound with a search
strategy.

In order to use this approach for RCSP with super additive cost functions, we
need to reconsider all the three stages, and this is the main contribution of our
paper. As shown in [20,7], in Constraint Programming terminology, phase two is
related to constraint filtering and propagation, and phase three to branch-and-
bound search. We review next the main literature on RCSP.

The seminal work in [8] is the first that combines a Lagrangian relaxation
to compute a lower bound, with k-shortest path enumeration to close the du-
ality gap. In [1], reduction techniques based on the resource consumption are
introduced to shrink the graph. In [3], RCSP is formulated as an integer linear
program, and a Lagrangian relaxation, solved via subgradient optimization, is
used to compute lower bounds and to perform additional problem reductions ex-
ploiting the near-optimal Lagrangian multipliers. To compute optimal solutions,
the authors use a branch-and-bound depth-first search, running their reduction
algorithm at every node of the search tree. In [15,25], the hull approach is intro-
duced to solve the Lagrangian relaxation in the case of a single resource, and, in
order to close the gap, paths are ranked by reduced costs and enumerated with
a k-shortest path algorithm. A near-shortest path algorithm, introduced in [14],
based on the reduced cost lengths is used instead of k-shortest path in [4]. In [16],
Lagrangian relaxations and preprocessing techniques are pushed to their limit,
since a Lagrangian relaxation is solved for every arc, while simultaneously per-
forming problem reductions. The authors show that, for difficult instances, the
computational overhead is paid-off by the graph reduction achieved. The compu-
tational experiments in [3] are among the few that consider up to 10 resources,
since in most of the cases, only one resource is considered in the experiments.

The works in [8,1,3,15,25,4,16] are all based on an enumerative search algo-
rithm to close the gap between the lower and upper bounds found in phase one.
Since the problem is weakly NP-hard, pseudo-polynomial labeling algorithms are



RCSPs with a Super Additive Objective Function 301

efficiently used to solve RCSP in practice. Recently in [5], a systematic compu-
tational comparison of different algorithms has shown that a labeling algorithm
that fully exploits all the information gathered during phases one and two is
the state-of-the-art algorithm for several types of graphs. Label-setting algo-
rithms strongly rely on the existence of dominance rules that permit to fathom
every dominated subpath. Since in many application there exist additional side-
constraints that can weaken or even vanish the strength of such dominance rules,
we have focused on enumerative search algorithms. A similar argument has mo-
tivated the use of CP in a recent route finder application developed by IBM
[13]. Other interesting approaches to RCSP are the use of constrained-based lo-
cal search as proposed in [17], and the branch-and-cut algorithm proposed in
[10]. The use of dominators could lead to more efficient implementation of the
reduction techniques [18].

The main applications of RCSP are in the context of column generation for ve-
hicle routing problems, where the pricing subproblem is formulated as an RCSP
on an auxiliary network. Similarly, also the Quality of Service routing in telecom-
munications [12,11] adopts the same approach. In column generation, the RCSP
is often defined on a directed acyclic graph (e.g., see [24]), for which general-
ized arc consistency on the resource consumption can be achieved in linear time
in the size of the graph [22]. For these reasons, our preliminary computational
test are focused on directed acyclic graph, though the proposed approach can
be directly applied to general graphs with non-negative arc lengths by using
a Dijkstra-like algorithm to compute additive shortest paths instead of using
dynamic programming.

Shortest path problems with non additive cost functions (but without resource
constraints) emerged as a core subproblem in finding traffic equilibria [6]. The
case of a single attribute shortest path is considered in [23], where the super
additive component is a composite (differentiable) function of a linear summation
on the arcs. The authors called their problem the Nonadditive Shortest Path
Problem (NASP), and they use the hull approach introduced in [15] to compute
lower bounds and a labeling algorithm to close the duality gap. The only other
work about non additive shortest path problems we are aware of is presented in
[19], where the authors solve multi-objective and multi-constrained non additive
shortest path problems via labeling algorithms that exploit so called gradient
dominance rules.

The outline of the paper is as follows. Section 2 introduces the notation and
the formal statement of the problem. Section 3 presents the two Lagrangian
relaxations used to compute lower bounds. Section 4 details the implementation
of our constrained path solver for super additive cost functions. Section 5 presents
computational results on random grid graphs used in the literature, and a set
of graphs extracted by a column generation algorithm for a crew scheduling
problem arising from real data. Finally, in Section 6 we discuss further research
topics.
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2 Problem Stament and Notation

Let G = (N,A) be a simple weighted directed graph, and let s and t be the
designated source and target node, respectively. For each arch e = (i, j) ∈ A, let
le denote its length and let rke be the quantity of the resource k consumed on
the arc e. Let K be a set of resources. The resource consumption is assumed to
be additive on the arcs along the path. For each resource k ∈ K a lower and an
upper bound Lk and Uk are given.

Definition 1. A path P in G is resource feasible if and only if

Lk ≤
∑
e∈P

rke ≤ Uk, ∀k ∈ K. (1)

Since we consider simple paths only, a path P is represented by a set of arcs.
With a slight abuse of notation, we denote by P1 ∪ P2 the union of the set of
arcs in P1 and P2, even if such union does not correspond to a path. Given a
path Pst from s to t and two subpaths Psi and Pit, we denote by Psi ' Pit the
concatenation of the two subpaths that yields the path Pst.

Considering two arc disjoint paths P1 and P2 we can introduce the following
definitions:

Definition 2. A cost function f(·) is additive if

f(P1 ∪ P2) = f(P1) + f(P2). (2)

Definition 3. A cost function f(·) is super additive if

f(P1 ∪ P2) ≥ f(P1) + f(P2). (3)

In our problem, the cost of a path P is the sum of an additive length function
l(·) and a super additive cost function f(·):

c(P ) = l(P ) + f(P ) =
∑
e∈P

le + f(P ). (4)

Clearly, cost function c(·) is super additive.
The problem of finding the shortest path P ∗st in G from s to t such that

constraints (1) are satisfied and the objective function (4) is minimized is called
the Resource Constrained Superadditive Shortest Path Problem (RCSP-S).

Note that super additivity invalidates the optimality conditions based on
the Bellmann’s equation, and therefore known algorithms for the resource con-
strained shortest path problem need to be revisited. This motivates our work.

In order to simplify the exposition, and at the same time to get closer to a real-
life application, we assume that the super additive function f(·) is a composite
non-decreasing function of a linear function in one of the resource, i.e., f(P ) =
f
(∑

e∈P r1e
)
. As an example, consider the allowances of extra working time:

they are usually a step-wise linear function of the overall time, that is you get
paid an allowance for each extra hour of work. In addition, to easy the notation
and without loss of generality, we only consider upper bounds on the resource
consumption, i.e. Lk = 0. Further on we will denote by rk(P ) =

∑
e∈P rke .
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3 Filtering Based on Costs and Reduced Costs

3.1 Resource-Based Filtering

Constrained shortest path algorithms usually exploit resource additivity to filter
out nodes and arcs of the graph that cannot lead to a feasible path. Considering
resource k, let F k denote the shortest path tree rooted at source node s (hereafter
called the forward tree), and let Bk be the shortest path tree in the reversed

graph of G, denoted by
←−
G , from the target node t (hereafter called the backward

tree). Note that the two trees F k and Bk are obtained with two shortest path
computations starting from s and using the forward arcs, and starting from t
and using the backward arcs, where the arc lengths are given by the resource k
consumption rkij . As the notation, r

k
i (F

k) and rki (B
k) are the minimum resource

consumptions from node s to i and from i to t, respectively.
Resource-based filtering is based on the following relations and a direct ap-

plication of resource additivity [1,3]. A node i can be removed from N whenever
rki (F

k) + rki (B
k) > Uk. Similarly an arc (i, j) can be removed from A whenever

rki (F
k) + rkij + rkj (B

k) > Uk. For instance, the first relation is valid because

rk(Psi) + rk(Pit) = rk(Psi ' Pit) and a path is resource feasible if and only if
rk(Psi ' Pit) ≤ Uk for each k ∈ K.

3.2 Cost-Based Filtering

For additive cost functions, we apply the same procedure to remove nodes and
arcs. First, we compute the forward and backward shortest path trees. Again,
this is done with two shortest path computations using the original arc lengths.
Then, for every node (arc) we check whether a feasible path passing by the node
(arc) improves the current best path. If it is not the case we filter out the node
(arc).

For super additive cost functions, we need to revise the two relations that
allow us to remove nodes and arcs. Due to (3), given a node i, the path obtained
concatenating the shortest paths from s to i and from i to t can have a cost
higher than the shortest path from s to t, as shown in the following example.

Example 1. Consider the cost function c(P ) =
∑

e∈P le+
(∑

e∈P r1e
)2
. Note that

in this cost function the super additive component depends on the consumption
of resource 1. This type of function is the same used in [23]. Consider the graph
in Figure 1, and suppose that we have found a path of total cost 32 (not shown
in the figure). The shortest path Psi from s to i is {(s, a), (a, i)} and has cost
5 + 5+ (1 + 1)2 = 14, and the shortest path Pit from i to t is {(i, b), (b, t)} with
cost 14. The path that we obtain as Psi 'Pit has cost (10+ 10)+ (2+ 2)2 = 36.
Since the cost is greater than 32, it is tempting to remove node i. However, the
path {(s, a), (a, i), (i, d), (d, t)}, that is not obtained as the concatenation of the
two shortest subpaths, has cost 25 + 22 = 29 < 36.

Let us consider a super additive non negative function f(·) that linearly depends
on the consumption of one resource. W.l.o.g let r1 be such a resource (for sim-
plicity, further on we will omit apex 1 in the function definition). In order to
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Fig. 1.

apply a filtering on the path costs, we need to compute four shortest path trees

per node, two in the original graph G and two in the reversed graph
←−
G . Let F l

and F r be the forward shortest path trees, the first with respect to arc lengths
le and the second with respect to the arc resource consumption re. Let Bl and
Br be the backward shortest path trees. Then we can filter out nodes and arcs
as follows.

Proposition 1. Given F l,F r, Bl, Br, and an upper bound of value UB, any
node i that satisfies the following relation:

li(F
l) + li(B

l) + f (ri(F
r) + ri(B

r)) ≥ UB (5)

can be removed from N . Any arc e = (i, j) that satisfies:

li(F
l) + le + lj(B

l) + f (ri(F
r) + re + ri(B

r)) ≥ UB (6)

can be removed from A.

Proof. The cost of the shortest path Pst = Psi ' Pit passing by a node i is:

c(Psi ' Pit) = l(Psi ' Pit) + f(Psi ' Pit)

= l(Psi) + l(Pit) + f(Psi ' Pit)

≥ li(F
l) + li(B

l) + f(Psi ' Pit)

≥ li(F
l) + li(B

l) + f(ri(F
r) + ri(B

r)),

since f(ri(F
r)+ri(B

r) is the least cost due to the super additive function. Thus
li(F

l) + li(B
l) + f(ri(F

r) + ri(B
r)) is a valid lower bound for any path passing

by node i, and if its value is greater than or equal to the upper bound, we can
safely remove node i from N . Similarly, we can prove relation (6). ��

Note that if we keep track of the path yielding the best upper bound, whenever
the target node t is no longer reachable from s, then the current best path is
proved to be optimum.
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3.3 Lagrangian Relaxation and Cost-Based Filtering

Let us introduce the arc-flow formulation of RCSP-S that we use to derive a
first standard Lagrangian relaxation. Let xij be a 0-1 variable that denotes if
arc (i, j) is part of the shortest path. Let r1 be the resource contributing to the
super additive cost function. The non-linear arc flow formulation of RCSP-S is
as follows:

min
∑

(i,j)∈A
lijxij + f

⎛⎝ ∑
(i,j)∈A

r1ijxij

⎞⎠ (7)

s.t.
∑

(i,j)∈A
xij +

∑
(j,i)∈A

xji =

⎧⎨⎩
−1 if i = s
0 if i �= s, i �= t

+1 if i = t
, ∀i ∈ N, (8)

∑
(i,j)∈A

rkijxij ≤ Uk, ∀k ∈ K, (9)

xij ∈ {0, 1}, ∀(i, j) ∈ A. (10)

Constraints (8) impose the flow balance, and constraints (9) force the upper
limits on the resource consumption.

Since the domain of the super additive function f(·) linearly depends on r1,
the linearization proposed in [23] for the NASP can be applied. Let us introduce
a new variable z that equals the consumption of resource r1 on the path, the
problem can be reformulated as follows:

min
∑
ij∈A

lijxij + f (z) (11)

s.t.
∑

(i,j)∈A
xij +

∑
ji∈A

xji =

⎧⎨⎩
−1 if i = s
0 if i �= s, i �= t

+1 if i = t
, ∀i ∈ N, (12)

∑
(i,j)∈A

rkijxij ≤ Uk, ∀k ∈ K, (13)

∑
(i,j)∈A

r1ijxij = z, (14)

xij ∈ {0, 1}, ∀(i, j) ∈ A. (15)

Since we are minimizing and f(·) is non-negative, the equality in constraint (14)
is replaced by inequality ’≤’.

The Lagrangian relaxation obtained by penalizing in the objective function
constraints (13) and (14) gives rise to two separable subproblems that can be
solved easly. Let λk, k ∈ K be the dual multipliers of constraints (13) and let β
be the dual multiplier of constraint (14). Both are restricted in sign to be non-
positive, i.e., λk ≤ 0 and β ≤ 0. The Lagrangian relaxation of problem (11)–(15)
is:
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Φ(λ, β) = min
∑

(i,j)∈A

(
lij +

∑
k∈K

λkr
k
ij + βr1ij

)
xij −

∑
k∈K

λkU
k + f (z)− βz

(16)

s.t.
∑

(i,j)∈A
xij +

∑
(j,i)∈A

xji =

⎧⎨⎩
−1 if i = s
0 if i �= s, i �= t

+1 if i = t
, ∀i ∈ N, (17)

xij ∈ {0, 1}, ∀(i, j) ∈ A. (18)

Note that variable z does not appear in any constraint, thus the problem decom-
poses into two independent subproblems. One subproblem involves variables xij

and is a simple shortest path problem without additional constraints and having
arc lengths defined by the reduced costs c̄ij(λ, β) = lij+

∑
k∈K λkr

k
ij +βr1ij . The

other problem involves only variable z and is a unidimensional unconstrained
optimization problem.

The Lagrangian dual is:

max
λ,β
{Φ(λ, β)} = max

λ,β

⎧⎨⎩−∑
k∈K

λkU
k +min

∑
(i,j)∈A

c̄(λ, β)ijxij + f (z)− βz

⎫⎬⎭
(19)

and its optimal solution can be obtained by standard mathematical programming
methods. Let (λ̄, β̄) be the optimal dual multipliers, and the values x̄ij and z̄ the
corresponding primal solutions, though not necessarily feasible for the original
problem. Let F (λ̄,β̄) and B(λ̄,β̄) be the forward and backward additive shortest
path trees according to reduced costs c̄ij(λ, β).

A simple lower bound to the Lagrangian dual is obtained by neglecting the
super additive component of the cost function thus we consider only the effects
of the resource constraints on the additive cost function. Even in a weaker way,
this evaluation can still filter out some nodes and arcs.

Proposition 2. Given F λ̄,Bλ̄,F r and Br, and an upper bound of value UB,
any node i that satisfies the following relation:

c̄i(F
λ̄) + c̄i(B

λ̄) + f (ri(F
r) + ri(B

r)) ≥ UB +
∑
k∈K

λ̄kU
k (20)

can be removed from N . Any arc e = (i, j) that satisfies:

c̄i(F
λ̄) + cλ̄e + c̄j(B

λ̄) + f (ri(F
r) + re + rj(B

r)) ≥ UB +
∑
k∈K

λ̄kU
k (21)

can be removed from A.

Proof. Note that c̄i(F
λ̄) + c̄j(B

λ̄)−
∑

k∈K λ̄kU
k is the Lagrangian lower bound

obtained using the optimal multipliers λ̄ and by setting β = 0. As in Proposition
(1), f (ri(F

r) + ri(B
r)) is a valid lower bound for shortest path with the super

additive function. ��
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Proposition 3. Given F (λ̄,β̄) and B(λ̄,β̄), and an upper bound of value UB, any
node i that satisfies the following relation:

c̄i(F
(λ̄,β̄)) + c̄i(B

(λ̄,β̄)) ≥ UB +
∑
k∈K

λ̄kU
k − f(z̄) + β̄z̄ (22)

can be removed from N . Any arc e = (i, j) that satisfies:

c̄iF
(λ̄,β̄) + c̄e(λ̄, β̄) + c̄j(B

(λ̄,β̄)) ≥ UB +
∑
k∈K

λ̄kU
k − f(z̄) + β̄z̄ (23)

can be removed from A.

Proof. (Sketch) In the Lagrangian dual we have the quantity (−
∑

k∈K λkU
k +

f (z) − βz) that does not depend on the path. Therefore, once we have solved
to optimality the Lagrangian dual and obtained the optimal values (λ̄, β̄, z̄) the
fixed quantity (−

∑
k∈K λ̄kU

k + f (z̄)− β̄z̄) can be added to reduced cost of any
shortest path passing by i to obtain a valid lower bound. ��

3.4 An Alternative Lagrangian Relaxation

The RCSP-S problem can be formulated using path variables instead of arc-flow
variables. This type of formulation is used in [15] for RCSP and in [23] for NASP.

The path-based formulation has a 0-1 variable yp for each path p in G. Let P
denote the collection of all paths of G. Given a path p, its super additive cost
is cp and, for each resource k, its resource consumption is rkp . The path-based
formulation is:

min
∑
p∈P

cpyp (24)

s.t.
∑
p∈P

yp = 1 (25)

∑
p∈P

rkpyp ≤ Uk ∀k ∈ k (26)

yp ∈ {0, 1} ∀p ∈ P . (27)

Note that this formulation is linear, differently from (11)–(15).
If we relax the integrality constraint (27) into yp ≥ 0, and consider the dual

of the so obtained LP relaxation, we get the following LP problem:

max u+
∑
k∈K

Ukuk (28)

s.t. u+
∑
k∈K

rkpu
k ≤ cp ∀p ∈ P (29)

uk ≤ 0 ∀k ∈ K. (30)
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The difference of this formulation in comparison with those in [15,23] resides
in the fact that path cp are here defined by the super additive cost function,
thus requiring ad hoc methods for solving the problem. When solving this prob-
lem with a cutting plane algorithm, the separation problem, amounts to solve a
NASP with the reduced costs equal to c̄e = ce+

∑
k∈K rke ū

k. In [15], the separa-
tion problem is an additive shortest problem, solvable in polynomial time, while
in our case the separation is a weakly NP-hard problem.

4 The Constrained Path Solver

Instead of implementing a global constraint in a general purpose constraint pro-
gramming solver, we have implemented our constrained path solver from scratch
using a simplified three stage approach, where the first two phases are joint and
executed at same time. First, the solver computes the Lagrangian relaxation and
filters out (i.e. it removes from G) every possible node and/or arc using resource,
cost, and reduced-cost filtering as presented in the previous section. Then, the
solver performs an exhaustive search, by enumerating every near-shortest path.

As originally proposed in [5], our filtering algorithm looks for improving fea-
sible solutions while filtering, since better UBs make cost filtering more effective
in practice. That is why we called our algorithm FilterAndDive. The shorter
path constraint discussed in [7,22] does not have the dive component, but it
additionaly detects those arcs that must be part of a feasible path. In our im-
plementation, reduced-cost filtering is done with both optimal and suboptimal
Lagrangian multipliers [21].

4.1 Constraint Filtering and Bounding

The constrained path solver executes a general filtering framework using different
arc-length functions. Hereafter, we denote by g(·) a generic arc-length function.
The arc-length functions that we consider for filtering are (i) the consumption
of each k-th resource to perform resource-based filtering, (ii) the super additive
cost function c(·) to check Proposition (1), and (iii) the Lagrangian reduced-cost
function parametric in (λ̄, β̄, z̄) to check Propositions (2) and (3).

Before applying the filtering for any function, we need to compute the for-
ward and backward shortest path trees. The current implementation deals with
directed acyclic graphs and uses dynamic programming to find shortest path
trees that has complexity linear in the size of the graph. We use a modified
shortest path algorithm that, besides the usual node distance and predecessor
labels, it stores also a tuple of labels 〈cost, reduced-cost, length, resources〉,
that is the distance labels for the other objective functions. The output of our
ShortestPath procedure is an “augmented” shortest path tree. The additional
information stored at each node is used to dive for improving paths. Indeed, given
a pair of forward and backward shortest path trees F g and Bg and an arc (i, j),
we use the tuple of labels stored at the nodes of the two trees, F g

i and Bg
j along

with the properties of arc (i, j) to check if Psi ' {i, j} ' Pjt is feasible. In the
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presence of a feasible path that improves also the cost of the incumbent, we
update the UB. In case LB ≥ UB we can also prove the optimality.

Algorithm 1 shows our FilterAndDive algorithm that filters out nodes and
arcs while diving for new incumbent solutions. It takes as input a directed graph
G = (N,A), a pair (LB,UB), a pair of forward and backward shortest path
trees (F g, Bg) and an upper limit Ug that depends on the arc-length function
g(·). The filtering algorithm uses three sub-procedures:

– PathCost(F g
i , e, B

g
j ): using the tuple of labels stored at each node, it com-

putes the cost of Psi ' {i, j} ' Pjt without building the path.
– PathFeasible(F g

i , e, B
g
j ): using the tuple of labels stored at each node, it

checks if Psi ' {i, j} ' Pjt is feasible without building the path.
– MakePath(F g

i , e, B
g
j ): using the predecessor labels stored in F g

i and Bg
j it

finds and stores the path Psi ' {i, j} ' Pjt.

While PathCost and PathFeasible require constant time, the time complex-
ity of filtering is linear in the graph size, to which we must add the complexity
of computing the shortest path trees, that amounts to another linear time com-
plexity in the graph size if we deal with acyclic graphs.

Algorithm 1. FilterAndDive(G,LB,UB, F g, Bg, Ug)

Input: G = (N,A) directed graph and distance function g(·)
Input: (LB, UB) lower and upper bounds on the optimal path
Input: F g, Bg forward and backward shortest path tree as function of g(·)
Input: Ug upper bound on the path length as function of g(·)
Output: An optimum path, or updated UB, or a reduced graph

1 foreach i ∈ N do
2 if F g

i +Bg
i > Ug then

3 N ← N \ {i}
4 else
5 foreach e = (i, j) ∈ A do
6 if F g

i + g(e) +Bg
j > Ug then

7 A← A \ {e}
8 else
9 if PathCost(F g

i , e, B
g
j ) < UB∧ PathFeasible(F g

i , e, B
g
j ) then

10 P ∗
st ←MakePath(F g

i , e, B
g
j );

11 Update UB and store P ∗
st;

12 if LB ≥ UB then
13 return P ∗

st (that is an optimum path)

14 else
15 A← A \ {e}

Note that our constraint solver can handle more complex rules than just
checking resource consumptions. However, the PathFeasible procedure should
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run in constant time or at most linear time, since it must be executed several
times.

Algorithm 2 details the algorithm that performs the Lagrangian reduced-
cost filtering. The first step consists of computing the Lagrangian dual using a
subgradient procedure as in [3], while paying attention to solve min{f(z)− βz}.
Then the optimal Lagrangian multipliers (λ̄, β̄) are used to define g(·) as the
reduced costs c̄ij(λ̄, β̄) = lij +

∑
k∈K λ̄kr

k
ij + β̄r1ij . Together with the optimal

value z̄, they are also used to define U (λ̄,β̄,z̄) = UB+
∑

k∈K λkU
k− f(z̄)+ β̄z̄. If

the shortest reduced-cost path is feasible, then it is an optimum path. Otherwise,
if the shortest reduced-cost path has a cost higher than UB, then the path
giving UB is the optimum path. If the shortest reduced-cost is higher than the
current lower bound, then we can update the lower bound. In any of these three
conditions holds, we can compute the shortest forward and backward reduced-
cost trees and call FilterAndDive with F (λ̄,β̄), B(λ̄,β̄), and U (λ̄,β̄,z̄).

Algorithm 2. Lagrangian Reduced Cost-based Filtering

Input: G = (N,A) directed graph
Input: (LB, UB) lower and upper bounds on the optimal path
Output: An optimum path, or updated (LB, UB), or a reduced graph

1 (λ̄, β̄), z̄ ← SolveLagrangianRelaxation;
2 g(·)←ReducedCostFunction(λ̄, β̄);

3 Ug ← UB +
∑

k∈K λkU
k − f(z̄) + β̄z̄ + ε;

4 F g ← ShortestPath(G, s, g(·));
5 if ct(F

g) ≥ UB then
6 return the path giving UB is optimum

7 if c̄t(F
g) > LB then

8 LB ← c̄t(F
g);

9 if PathFeasible(F g
t ) then

10 P ∗
st ←MakePath(F g

t );
11 return P ∗

st (that is an optimum path)

12 Bg ← ShortestPath(
←−
G, t, g(·));

13 FilterAndDive(G,LB,UB,F g, Bg, Ug);

Constraint propagation is quite simple: every time a call to the filtering algo-
rithm removes a node/arc or update UB, the filtering algorithm is called again
for each length function g(·).

4.2 Gap Closing: Near-Shortest Path Enumeration

The duality gap between the lower bound obtained with the Lagrangian relax-
ation and the value of the best feasible path obtained during the execution of
FilterAndDive is closed with a near-shortest path enumerative algorithm [14],
as in [4,16]. This algorithm is similar to a search algorithm in any traditional
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Constraint Programming solver: it uses a depth-first branch-and-bound. The fil-
tering algorithms, however, are only executed at the root node of the search tree
until propagation reaches a fix point, and this happens when any call to the
filtering algorithm (with any of the considered length function g(·)) has neither
removed an arc/node nor updated UB.

Algorithm 3 sketches our near-shortest path algorithms used to close the du-
ality gap. The depth-first search is implemented directly with a stack. For each
node we maintain a tuple of labels 〈cost, reduced-cost, length, resources〉. The
search algorithm computes once the backward search trees Bl and Bk for each
resource k ∈ K. The backward search trees are used to get heuristic distances
to the destination. Every time a node i is extracted from the stack, we check for
every outgoing arc e = (i, j) the following:

l(Psi) + le +Bl
j + f

(
r(Psi) + rij +Br

j

)
≥ UB, (31)

where l(Psi) and r(Psi) are the cumulated length and resource consumption from
s to i. Whenever the above relation holds or the path form s to j is infeasible, the
algorithm do not extend the search to node j. Similarly, the Lagrangian reduced-
costs are used to prune the vertices of the search tree that yield to paths whose
lower bounds are higher than UB (cumulated reduced-costs appear in the tuple
of labels stored Li at each node i).

5 Computational Results

The graphs we consider are both randomly generated and real-life instances.
The randomly generated instances are directed acyclic grid graphs with nega-
tively correlated arc lengths and resource consumptions. These type of graphs
proved to be harder to solve than real-life structured instances [11], where usually
lengths and resource consumptions are (weakly) correlated. As super additive

cost function, we define c(P ) = l(P ) +
(
r1(P )

)2
, the same function used in the

computational experiments in [23]. We use up to 10 resources. In addition, we
consider a set of real instances coming from a bus driver scheduling solver of an
Italian transportation company.

The path solver is implemented in C++ using the Boost Library and the
QSopt linear programming library [2] to solve by cutting plane problem (28)–
(30). The code is compiled with the gcc-4.3 compiler. All the tests were executed
on a MacBookPro dual core 2.4Ghz with 4GB of RAM.

Random grid graphs. Table 1 shows the effects of resource, cost, and reduced-cost
based filtering in terms of computation time in seconds, percentage of removed
arcs, and a “pessimistic” duality gap computed as UB−LB

LB × 100. We do not
report the gap for the resource-based filtering, because without considering costs
we do not have any significant lower bound. Each row gives the averages for 20
random graphs of the same size, but different costs and resource consumptions.
All the instances have at least a feasible solution, the limits on the resource
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Algorithm 3. Near-Shortest Path Enumeration

Input: G = (N,A) directed graph
Input: (LB, UB) lower and upper bounds on the optimal path
Data: S stack of visited vertices, L tuple of labels
Output: An optimum path P ∗

st

1 Compute backward shortest reduced-cost tree B(λ̄,β̄);
2 Initialize tuple of labels Ls;
3 S ← s;
4 forall the v ∈ N do
5 δ+(v)← forward star of v

6 while S is not empty do
7 v ←front(S);
8 if ∃e = (i, j) ∈ δ+(i) then
9 δ+(i)← δ+(i) \ (i, j) ;

10 if j /∈ S and EstimateCost(Li, e,B
(λ̄,β̄)
j ) < UB then

11 if PathFeasible then
12 if j = t then
13 P ∗

st ←MakePath; UB ← c(P ∗
st);

14 if LB ≥ UB then
15 return P ∗

st is an optimum path

16 else
17 S ← j; Lj ← Li � e;

18 else
19 S ← S \ {i}, δ+(i)← forward star of i;

consumption are not tight taken singularly, but their combination makes the
problem difficult.

Regarding the computation time, all the three types of filtering are efficient
and scale gracefully with the size of the graph. As the percentage of arcs removed,
it is clear that the reduced-cost filtering outperforms the other two. This is due to
the Lagrangian relaxation that takes into account at the same time the costs and
all the resource constraints. On the contrary, the resource-based filtering acts on
a single resource constraint at a time. The little effect of cost-based filtering is
due to the lack of tight upper bounds. Another important consequence of having
a smaller graph due to reduced-cost filtering is the ability to find increasingly
better lower and upper bounds that give very small duality gaps. We do not
report here computational results, but without the diving component none of
the cost filtering were so effective.

Bus driver scheduling. Table 2 shows a similar comparison but for real life in-
stances. We collected the instances by running a commercial column generation
algorithm, where the pricing subproblem is a RCSP with a (super additive)
step-wise function that models extra working time allowances. We selected 42
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Table 1. Comparison of filtering algorithms for directed acyclic graphs with n vertices,
more than 2n arcs, and 10 resources. Each row gives the averages over 20 instances.
Time is in seconds; Δ = m

m0
× 100 is the percentage of removed arcs (m0 = |A| is the

number of arcs in G, m is after filtering), for resources, cost, and reduced cost filtering,
respectively; gap is UB−LB

LB
× 100.

Resource Cost Reduced Cost

n Time Δ Time Δ Gap Time Δ Gap

1600 0.07 7.3% 0.09 9.7% 81.6% 0.10 92.3% 2.6%
6400 0.58 3.7% 0.81 7.4% 49.9% 0.68 94.8% 0.6%
25600 2.71 2.2% 3.59 4.2% 63.6% 2.76 95.3% 0.2%

Table 2. Comparison of filtering algorithms of real life instances. Here the gap is
computed on the optimum value Opt, i.e. gap is UB−Opt

Opt
× 100.

Graphs Resource Cost Reduced Cost Exact

n m Time Δ Time Δ Gap Time Δ Gap Time

4137 135506 0.77 22.5% 4.54 23.2% 71.3% 3.12 30.2% 0.0% 75.1

2835 132468 0.59 40.3% 4.40 41.0% 64.8% 2.35 45.4% 0.0% 30.6

3792 134701 0.92 30.2% 4.58 30.8% 88.7% 2.87 37.4% 0.0% 69.3

challenging instances. Each instance has 7 resources used to model complex reg-
ulation constraints. The instances refer to 3 different graphs, and each instance
has different additive arc length le. Since the duality gap is large, we report also
the computation time of the exact near-shortest path algorithm.

In this case, the resource-based filtering has more impact in reducing the
number of arcs. The cost based filtering takes longer, since it removes a few
arcs at the time, and therefore, it continues to trigger propagation, but with a
small effect in the quality of the solution found and on the numbers of removed
arcs. Apparently, the impact on the arc filtering due to reduced-cost filtering is
less impressive. However, note that the duality gap computed with respect to
the optimal solution is equal to zero, and the computation time is much less
than considering only the costs, in order to test the approach on a variety of
applications.

6 Conclusions

We have presented cost and reduced-cost based filtering algorithms for the RCSP
problem with a super additive objective function, where the super additivity
component is a composite function of a linear function. Reduced-cost filtering
exploits Lagrangian relaxations and is very effective for reducing the graph size
and to dive for improving solutions. The current implementation deals with
directed acyclic graphs, but we are currently extending the solver to cyclic graphs
with non-negative arc lengths.
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Abstract. Boolean satisfiability (SAT) solvers have improved enormously in per-
formance over the last 10–15 years and are today an indispensable tool for solv-
ing a wide range of computational problems. However, our understanding of what
makes SAT instances hard or easy in practice is still quite limited. A recent line
of research in proof complexity has studied theoretical complexity measures such
as length, width, and space in resolution, which is a proof system closely related
to state-of-the-art conflict-driven clause learning (CDCL) SAT solvers. Although
it seems like a natural question whether these complexity measures could be rel-
evant for understanding the practical hardness of SAT instances, to date there has
been very limited research on such possible connections. This paper sets out on
a systematic study of the interconnections between theoretical complexity and
practical SAT solver performance. Our main focus is on space complexity in res-
olution, and we report results from extensive experiments aimed at understanding
to what extent this measure is correlated with hardness in practice. Our conclu-
sion from the empirical data is that the resolution space complexity of a formula
would seem to be a more fine-grained indicator of whether the formula is hard
or easy than the length or width needed in a resolution proof. On the theory side,
we prove a separation of general and tree-like resolution space, where the lat-
ter has been proposed before as a measure of practical hardness, and also show
connections between resolution space and backdoor sets.

1 Introduction

In the last 10–15 years, SAT solvers have become a standard tool for solving a wide
variety of real-world computational problems [1]. Although all known SAT solvers have
exponential running time in the worst case, dramatic improvements in performance have
led to modern SAT solvers that can handle formulas with millions of variables. At the
same time, very small formulas with just a few hundred variables are known which are
completely beyond the reach of even the very best solvers. Understanding what makes
a SAT instance hard or easy for state-of-the-art SAT solvers is therefore a fundamental
problem. In particular, a natural, but not at all well-understood, question is whether one
can find a good measure on the practical hardness of SAT instances.

The current work addresses this question from the viewpoint of conflict-driven clause
learning (CDCL) solvers [2, 3, 4], which—applying efficient data structures, clause

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 316–331, 2012.
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learning, forgetting, restarting, phase saving, and other important schemes—form the
most prominent SAT solver paradigm today. Our goal is to explore possible connec-
tions between practical hardness—as witnessed by running times of CDCL solvers on
SAT instances—and proof complexity measures employed in the formal study of the
resolution proof systems that can be seen to underlie CDCL SAT solvers.

The main bottleneck for CDCL solvers—apart from the obvious exponential worst
case behavior—is the amount of memory used. In practice, it is completely infeasible to
store all clauses learned during a CDCL run, and one therefore needs to design a highly
selective and efficient clause caching scheme that learns and keeps the clauses needed
for the CDCL solver to finish fast. Thus, understanding time and memory requirements
for clause learning algorithms, and how these resources are related to each other, is a
question of great practical importance.

Proof complexity provides a possible approach for analyzing the potential and lim-
itations of SAT solvers by studying the formal systems of reasoning which the solvers
use to generate proofs. A lower bound for a proof system tells us that any algorithm,
even an optimal (non-deterministic) one making all the right choices, must necessarily
use at least the amount of a certain resource specified by this bound. In the other di-
rection, theoretical upper bounds on a proof complexity measure give hope that SAT
solvers can perform well with respect to the measure if an efficient search algorithm
can be designed. Whereas the plain Davis–Putnam–Logemann–Loveland procedure
(DPLL) [5, 6] is known to correspond to tree-like resolution, by recent theoretical ac-
counts (including [7, 8]) CDCL solvers can be understood as deterministic instantiations
of the general resolution proof system. In this context, the proof complexity measures
of length (a.k.a. size) and space are interesting since they in some sense model the run-
ning time and memory consumption of (optimal) CDCL solvers, while width is another
measure that seems relevant for practical performance in view of e.g. [9]. An informal
description of these measures is as follows (see Section 2 for the formal definitions):

Length: The number of clauses in a resolution proof.
Width: The size of a largest clause in a resolution proof.
Space: The number of clauses needed “on the board” in a self-contained presentation

of a proof, where inferences can only be made from what is currently on the board.

The length, width, or space of proving a formula is defined in the natural way by taking
the minimum over all possible proofs with respect to the measure in question. As will
be discussed in more detail below, these measures have been proven to form a strict
hierarchy in the sense that for any formula we have the (informally stated) relations

space ≥ width ≥ log length (1)

(scaling length so that all measures have the same magnitude—length can be exponen-
tial while space and width are always at most linear), and these inequalities can all be
asymptotically strict.

When discussing whether these theoretical complexity measures have any bearing on
the practical hardness of formulas, perhaps the most obvious candidate to start with is
length. Indeed, if the shortest resolution proof is very long then clearly no CDCL solver
can do well, since a resolution proof can be extracted from the run of such a solver.
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Thus a strong lower bound on length is a sure indicator of hardness. But in the opposite
direction, the fact that there exists a short resolution proof does not mean that this proof
is easy to find. On the contrary, [10] indicates that it might be computationally infeasible
to find any proof in reasonable length even given the guarantee that a short proof exists.
Therefore, length seems too “optimistic” as a measure of hardness in practice.

Turning next to width, if the shortest proof for a formula is very long, then the width
of a “narrowest” proof must by necessity also be large (simply by counting the number
of possible clauses). However, the fact that a resolution proof needs to be wide, i.e.,
has to contain some large clause, does not necessarily imply that the minimum length
is large [11]. Width is thus a stricter hardness measure than length. Recently, is was
shown in [9] (under some theoretical assumptions) that if the minimum width of any
resolution proof for a formula is w, then a CDCL solver (that does not at all care about
width per se) will with high probability decide the formula in time something like nw.
This seems to indicate that resolution width could be a measure that correlates well
with practical hardness for CDCL solvers. On the other hand, some of the technical
assumptions needed to establish this result seem somewhat idealized compared to how
CDCL solvers work in practice.

Since, as already discussed, memory consumption is a major concern in practice, the
related theoretical measure of space clearly seems interesting to study in this context.
Indeed, this was arguably the main reason why research into proof space complexity
was initiated in the late 1990s. It was shown in [12] that if there is no narrow proof for a
formula, then there is no small-space proof either. However, large space does not imply
anything about the width [13], and hence space is an even stricter hardness measure than
width. Intuitively, one could argue that for a formula with high space complexity, CDCL
solvers would need to learn many clauses and keep them in memory, and therefore such
formulas should be hard in practice. A stronger conjecture would be that it also holds
that if a formula has low space complexity—which also guarantees that there are both
short and narrow proofs—then a CDCL solver should (at least in principle) be able to
learn the few clauses needed to quickly produce a short proof.

The purpose of our work is to provide an empirical evaluation of these proof com-
plexity measures and their relevance for hardness in practice, focusing in particular on
space. Our work can be seen to implement a program outlined previously in [14]. It
should be noted, however, that [14] suggested tree-like space, i.e., space measured in
the subsystem of resolution producing only tree-like proofs, as a measure of practical
hardness. We will return to the question of general versus tree-like space later, but let us
just remark here that in tree-like resolution space is tightly correlated with length in the
sense that there is a short tree-like proof if and only if there is a space-efficient one [15]
(which is provably not true in general resolution by [13]). If tree-like space were a good
indicator of hardness in practice, this would mean that CDCL solvers could decide a
formula efficiently if and only if it had a short tree-like proof, which in turn would seem
to imply that in practice CDCL solvers cannot provide any significant improvements in
performance over plain DPLL solvers. This does not seem consistent with observations
that the former can vastly outperform the latter; observations that have been corrobo-
rated by theoretical papers arguing that CDCL proof search is closely related to general
resolution [7, 8] instead of mere tree-like resolution.
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1.1 Contributions of This Paper

The main contribution of this work is to provide a first extensive empirical evaluation of
the connections between resolution space complexity and practical hardness for CDCL
solvers. We remark that although [14] suggested this, as far as we are aware no such
evaluation has previously been carried out (and, indeed, has only been made possible
by recent advances in proof complexity providing formulas with the necessary theoret-
ical guarantees). We investigate to what extent resolution space correlates with running
times for state-of-the-art CDCL solvers. In the experiments, we employ highly struc-
tured SAT instances—so-called pebbling formulas—allowing us to make controlled
observations on the relation between space complexity and SAT solver performance.
Pebbling formulas are guaranteed to be very easy with respect to length (the short proof
consists of just listing the clauses of the formula in the right order and doing a very small
constant number of intermediate derivation steps in between each such clause) and also
with respect to width (the proofs just sketched will have width equal to the width of
the formula, which in all cases is a one-digit constant) but can be varied with respect
to their space complexity from constant all the way up to almost linear. This makes it
possible to study which level of granularity (if any) is the best one in the hierarchy of
measures in (1) when we are looking for indicators of hardness in practice. If length or
width were the most relevant measure, then CDCL solvers should behave in essentially
the same way for all formulas in our experiments. If, however, the more fine-grained
measure of space is a more precise indicator of hardness, then we would expect to see
a clear correlation between running times and theoretical space complexity. As we will
argue below, the conclusion from our experiments is that the latter case seems to hold.

Complementing the empirical evaluation, we also present some theoretical results
related to resolution space. In particular, we prove the first non-trivial separation of
general and tree-like resolution space. Previously, only a constant-factor separation was
known [16], meaning that it could not be ruled out that the two measures were essen-
tially the same except for small multiplicative constants. We improve this to a logarith-
mic separation, which, while still leaving room for further improvements, shows that
the measures are fundamentally different. This in turn motivates our focus on general
space as a measure of practical hardness for CDCL solvers. Furthermore, elaborating
on and extending related results in [14], we also address the relation between resolution
space and backdoor sets [17], a somewhat more practically motivated measure previ-
ously proposed as a proxy for practical hardness.

2 Proof Complexity Preliminaries

We now give a brief overview of the relevant proof complexity background; for more
details, see e.g. [18]. We assume familiarity with CNF formulas, which are conjunctions
of clauses, where a clause is a disjunction of literals (unnegated or negated variables,
with negation denoted by overbar). It is convenient to view clauses as sets, so that there
is no repetition of literals and order is irrelevant. A k-CNF formula has all clauses of
size at most k, which is implicitly assumed to be some (small, say one-digit) constant
throughout this paper. Below we will focus on k-CNF formulas to get cleaner statements
of the theoretical results (analogous results hold in general but are not as simple to state).
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A resolution refutation π : F (⊥ of an unsatisfiable CNF formula F , also known as
a resolution proof for F , is an ordered sequence of clauses π = (D1, . . . , Dτ ) such
that Dτ = ⊥ is the empty clause containing no literals, and each line Di, 1 ≤ i ≤ τ ,
is either one of the clauses in F (axioms) or is derived from clauses Dj , Dk in π with
j, k < i by the resolution rule B∨x C∨x

B∨C (where the clause B ∨ C is the resolvent of
the clauses B ∨ x and C ∨ x on x). With every resolution proof π we can associate
a graph Gπ by having a sequence of vertices vi labelled by the clauses Di on a line
in order of increasing i, and with edges from vj and vk to vi if Di was derived by
resolution from Dj and Dk. Note that there might be several occurrences of a clause D
in the proof π, and if so each occurrence gets its own vertex in Gπ.

The length L(π) of a resolution proof π is the number of clauses in it (counted with
repetitions). The width W(C) of a clause C is |C|, i.e., the number of literals, and the
width W(π) of a proof π is the size of a largest clause in π. The space (sometimes
referred to as clause space) of a proof at step i is the number of clauses Cj , j < i,
with edges to clauses Ck , k ≥ i, plus 1 for the clause Ci derived at this step. That is,
intuitively space measures the number of clauses we need to keep in memory at step i,
since they were derived before step i but will be used to infer new clauses after step i
(or possibly at step i). The space of a proof is the maximum space over all steps in
the proof. Tree-like (clause) space is defined in exactly the same way except that the
graph Gπ representing π is constrained to be a (binary) tree.

We next briefly review what is known about these measures. As shown in [19, 20]
and many later papers, the length of refuting a CNF formula F can be exponential in
the size of F (measured as the total number of literals counted with repetitions), and it
is easy to show that the worst case is at most exponential. For width, clearly the size of
the formula (and, in particular, the number of distinct variables in it) is an upper bound,
and there are matching lower bounds up to constant factors [21]. If a formula has a
narrow proof then this proof must also be short (simply by counting the total number
of distinct clauses). The opposite does not necessarily hold as proven in [11] (although
very strong lower bounds on width do imply strong lower bounds on length by [21]).

Just as for width, although somewhat less obviously, space is also at most linear
(even for tree-like space) as shown in [15], and again there are matching lower bounds,
e.g., in [22, 23]. In [12] it was shown that if a formula can be refuted in small space, this
implies there is also a small-width proof (although in general this will not be the same
proof). The converse of this is false in the strongest sense possible—there are formulas
with constant-width proofs that require almost linear (i.e., worst-case) space [13]. Since
space upper-bounds width, and also width upper-bounds length as discussed above, it
follows that upper bounds on space imply upper bounds on length. Conversely, in [15]
it was shown that small length implies small space for the restricted case of tree-like
resolution. In general resolution, however, the fact that a formula is refutable in small
length says essentially nothing about the space complexity [13].

3 Pebbling Formulas

To study the proof complexity measures of length, width and space, and to relate them to
the practical hardness of CNF formulas, we focus on so-called pebbling formulas (also



Relating Proof Complexity Measures and Practical Hardness of SAT 321

known as pebbling contradictions). Our main motivation for using pebbling formulas is
that, as explained below, recent theoretical advances allow us to construct such formulas
with varying (and fully specified) space complexity properties while keeping the length
and width complexity fixed.

Pebbling formulas are so called since they encode instances of pebble games played
on directed acyclic graphs (DAGs). Wee refer to the survey [24] for more information
about such games. The pebbling formula over G associates one variable with each ver-
tex, postulates the source vertices (with no incoming edges) to be true and the (unique)
sink vertex (with no outgoing edges) to be false, and then specifies that truth propagates
from the sources to the sink. More formally, as defined in [21] the pebbling formula
PebG over a DAG G consists of:

– for all source vertices s in G, a unit clause s (source axioms),
– for all non-sources v with incoming edges from the vertex set pred(v) of immediate

predecessors of v, the clause
∨

u∈pred(v) u ∨ v (pebbling axioms),
– for the (unique) sink z of G, the unit clause z (sink axiom).

If G has n vertices and max fan-in �, then PebG is an unsatisfiable (1+�)-CNF formula
with n+ 1 clauses over n variables. For all graphs used in this paper we have � = 2.

Pebbling formulas are not of much use to us as such—they are very easy with respect
to all proof complexity measure we have discussed, and are easily seen to be solvable
simply by unit propagation. However, they can be transformed into much more inter-
esting formulas by substituting Boolean functions for the variables as follows.

Given any CNF formula F , we can fix a Boolean function f : {0, 1}d �→ {0, 1} and
substitute every variable x in F by f(x1, . . . , xd), where x1, . . . , xd are new variables
that do not appear anywhere else. Then we expand this out to get an equivalent CNF
formula over this new set of variables. For a small example, if we let ⊕ denote binary
exclusive or, then the clause x ∨ y after substitution becomes ¬(x1 ⊕ x2) ∨ (y1 ⊕ y2)
which is expanded out to the set of clauses

{x1 ∨ x2 ∨ y1 ∨ y2, x1 ∨ x2 ∨ y1 ∨ y2, x1 ∨ x2 ∨ y1 ∨ y2, x1 ∨ x2 ∨ y1 ∨ y2} . (2)

(For general f there might be some choices in exactly how to do this expansion, but such
implementation details do not affect this discussion so we ignore them for brevity.)

The pebbling price of a DAG G measures how much space is needed to pebble G.
As shown in [13, 25], making substitutions in pebbling formulas using robust func-
tions f , meaning that the truth value of f can never be fixed by just assigning to one
variable, yields substituted CNF formulas for which the space complexity of the formula
coincides with the pebbling price of G.1 The canonical example of a robust function is
exclusive or. A non-robust function is ordinary or, but [26, 27] show that even for this
function the same connection holds at least for certain fairly general families of graphs.
This means that if we pick the right graphs, we can generate CNF formulas with known

1 Actually, this is an oversimplification and formally speaking not correct—the space will be
somewhere in between the deterministic black and the (smaller) non-deterministic black-white
pebbling price, but these two measures are within a small constant factor for all graphs consid-
ered in this paper so this is immaterial. We emphasize that all constants involved are explicitly
known and are very small, with the single exception of the gtb graphs discussed below.
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Table 1. DAG families and properties of the resulting CNF formula families

Name Description Space cplx

pyr〈h〉seq Sequence of pyramid graphs of (constant) height h Θ(h)

width〈w〉chain Chain graph of (constant) width w Θ(w)

bintree Complete binary tree Θ(log n)

pyrofpyr Pyramid of height 4
√
n with each node expanded to pyramid Θ( 4

√
n)

pyrseqsqrt Sequence of pyramids of (growing) height 4
√
n Θ( 4

√
n)

pyramid Pyramid graph of (growing) height
√
n Θ(

√
n)

gtb DAGs from [28] with butterfly graphs as superconcentrators Θ(n/ log2 n)

space complexity. In addition, it is easy to show that any pebbling formula, even after
substitution, can be refuted in (small) constant width and (small) linear length.2 Thus,
in this way we can get formulas that are uniformly very easy with respect to length and
width, but for which the space complexity varies.

Such formulas would seem like excellent benchmarks for testing the correlation be-
tween theoretical complexity measures and hardness in practice, and in particular for in-
vestigating at which level of granularity theoretical hardness should be measured given
the hierarchy in (1). If the minimum width, or length, of a proof for a formula F were
good indicators of whether F is hard or easy, then we would expect to get similar run-
ning times for pebbling formulas over all graphs of the same size (when fixing the
substitution function). If the more fine-grained measure of space is a more precise in-
dicator, however, we would expect running time to correlate with space complexity.
Carrying out large-scale experiments along these lines and analyzing the results is the
main practical contribution of this paper. When designing such experiments, one needs
to choose (a) graphs from which to generate the benchmarks, and (b) substitution func-
tions to apply. We discuss this next.

An overview of our choice of graph families and their space complexities is given
in Table 1. Let us first explain two important building blocks. A pyramid of height h
is a layered DAG with h+ 1 layers, where there is one vertex in the highest layer, two
vertices in the next layer, et cetera, down to h+1 vertices in the lowest layer, and where
the ith vertex at layer L has incoming edges from the ith and (i + 1)st vertices at layer
L − 1. A chain of width w is a layered graph with w vertices at each layer, and with
vertices i and i− 1 at layer L− 1 having edges to vertex i in layer L (modw).

To obtain two different types of graphs of constant space complexity, we consider
sequences of pyramids of constant height h with the sink of each pyramid connected
to the leftmost source of next pyramid (pyr〈h〉seq) and chains of constant width w
(width〈w〉chain). Another graph family that should yield easy formulas are complete
binary trees (bintree), the space complexity of which is equal to the height of the tree.

To get “medium-hard” DAGs, we use pyramids in two different ways. In pyramid-
of-pyramids graphs (pyrofpyr) we take a pyramid of height h and expand each of its

2 We will not elaborate on exact constants due to space constraints, but all k-CNF formulas
considered have 4 ≤ k ≤ 9 and the refutation width coincides with the formula width. As to
length, a pebbling formula generated with binary XOR substitution and having L clauses is
refutable in length 2.25 · L, and the blow-up for other substitution functions is similar.



Relating Proof Complexity Measures and Practical Hardness of SAT 323

Table 2. Substitution functions

Name Description Output CNF encoding (for d = 3 variables)

or d OR of d vars x1 ∨ · · · ∨ xd x1 ∨ x2 ∨ x3

xor d parity of d vars x1 ⊕ · · · ⊕ xd x1 ∨ x2 ∨ x3, xi

∨
j �=i xj , i = 1, 2, 3

maj d majority of d vars 2(x1+· · ·+xd) > d x1 ∨ x2, x1 ∨ x3, x2 ∨ x3

eq d all d vars equal x1 = · · · = xd x1 ∨ x2, x1 ∨ x2, x1 ∨ x3, x1 ∨ x3

e1 d exactly one of d x1 + · · ·+ xd = 1 x1 ∨ x2 ∨ x3, x1 ∨ x2, x1 ∨ x3, x2 ∨ x3

s id if-then-else x1?x2 : x3 x1 ∨ x2, x1 ∨ x3

vertices v to pyramid of same height h with sink zv. Every incoming edge to v is drawn
to all sources of the pyramid, and all outgoing vertices from v are drawn from zv. It is
an easy argument that the space complexity is roughly 2h and the size of the graph is
roughly h4, so the space complexity grows like 4

√
n for graphs of size n. Another way

of getting graphs of the same space complexity is to use the same construction as in
pyr〈h〉seq above but employ graphs of height 4

√
n. These are our pyrseqsqrt graphs.

Finally to get “really hard” graphs we consider two well-known graph families. The
first one is simply pyramids of height (and hence space complexity)

√
n. The second is

based on DAGs with maximal space complexity Θ(n/ logn) [28]. These graphs cannot
be used as-is, however. The bound in [28] is asymptotic, with the smallest instances of
huge size (due to the need for so-called superconcentrators of linear size). Therefore,
we modify the construction to use much simpler, but asymptotically worse, supercon-
centrators made from butterfly graphs. It is not hard to verify that the proofs in [28] still
go through, and we get much smaller graphs (gtb) that we can actually use to generate
CNF formulas, at the price of paying a log factor in the space complexity.

When choosing the substitution functions to apply for pebbling formulas generated
from graphs in these families, we want to achieve two objectives. On the one hand, we
would like the functions to be robust (as explained above). On the other hand, how-
ever, we do not want too large a blow-up in formula size when substituting functions
for variables. Again due to space constraints, we cannot go into too much details, but
Table 2 presents our choice of substitution functions, which seem to provide a good
trade-off between the two goals, and describes their CNF encodings. Note that we also
use the (non-robust) standard non-exclusive or functions, which nevertheless provably
preserves the space complexity (albeit with worse guarantees for the hidden constants)
for all graph families considered here except the gtb family.

4 Improved Separation of General and Tree-Like Resolution Space

Before reporting on the empirical part of this work, we return to the question motivated
by [14] of whether tree-like space or general space is likely to be the most relevant
space measure when it comes to hardness. We already explained in the introduction the
reasons for our skepticism regarding tree-like space as a good hardness measure for
CDCL. In this section, we complement this with a more theoretical argument, showing
that the tree-like and general resolution space measures are different. Our logarithmic
separation, stated next, improves on the constant-factor separation in [16] which is all
that was known previously.
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Theorem 1. There are families of 4-CNF formulas {Fn}∞n=1 of size Θ(n) such that
their space complexity in general resolution is O(1) whereas the tree-like space com-
plexity grows like Θ(log n).

Proof. To prove Theorem 1, we apply the equivalence of the tree-like space of a CNF
formula F and Prover-Delayer game on F as described in [16]. The Prover asks about
variable assignments, and the delayer answers true, false or ∗ to each query. If the
answer is ∗, Prover picks an assignment adversarially but Delayer scores a point. The
game ends when Prover has forced a partial truth value assignment that falsifies some
clause of F . If Delayer can score exactly p points with an optimal strategy, then the
tree-like space complexity is p+ 2, and the opposite also holds.

Consider a graph that is just a line (v1, v2, . . . , vn) of length n with edges from each
vertex vi to the next vertex vi+1 on the right. Let Fn be the pebbling formula over this
graph with substitution by (binary) XOR ⊕ as described in Section 3.

It is immediate that the general resolution space complexity is constant. Just start
with the leftmost node v1, for which the XOR of the two associated variables holds
in view of the source axioms. Then derive step by step, using pebbling axioms, that if
the XOR holds at one vertex vi, then this implies it also holds at the next vertex vi+1.
Finally we reach the rightmost vertex vn, where the sink axioms say that XOR does not
hold. Contradiction.

Now we give a Delayer strategy that scores log2 n points. For every vertex, the first
time Prover asks about any of the two variables associated to the vertex Delayer an-
swers ∗ and scores. The first time Prover asks about a second variable, Delayer looks
whether the vertex vi is in the leftmost or rightmost half of (the remaining part of) the
graph. In the former case, Delayer answers so that the XOR of the two variables is sat-
isfied, which gives a problem instance of the same type of at least half the size over
(vi+1, . . . , vn). In the latter case, Delayer makes sure the XOR is false. Then Prover
has to continue playing in (v1, . . . , vi−1) to falsify the formula since the rest is now
satisfiable. Since Prover can only halve the size of the graph for each second question,
and Delayer scores a point for each first question, the tree-like space complexity is
Ω(log n), and since Prover can use precisely this strategy, the space bound is tight. �

As a final remark, let us note that this proof works equally well for CNF formulas
generated from the pyr〈h〉seq and width〈w〉chain graphs in Section 3.

5 Experimental Evaluation

This section summarizes results of our experiments running state-of-the-art CDCL SAT
solvers on pebbling formulas with varying resolution space.3 As benchmarks, we used
CNF formulas that we generated for all combinations of the graphs mentioned in Ta-
ble 1 (we used pyr〈h〉seq with h ∈ {1, 3, 5, 10} and width〈w〉chain with h ∈ {2, 5, 10};
overall 12 graph families) and the substitution functions mentioned in Table 2 (we

3 The only experiments previously reported for CDCL solvers on pebbling formulas we are
aware of were on “grid formulas”, i.e., formulas over pyramids with or 2 using zChaff, with a
somewhat different motivation [29].
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used e1 3, maj 3, or 2, or 3, or 4, s id, xor 2, eq 3; overall 8 functions) yielding a
total of 96 families of CNF formulas. Due to the massive amount of data produced,
here we only provide a snapshot of the results. Complete data for all experiments
as well as a more detailed description of the formula instances used can be found at
http://www.csc.kth.se/˜jakobn/publications/cp12/.

5.1 Experiment Setup

For the experiments, we used the CDCL solvers Minisat 2.2.0 [30] and Lingeling4 [31].
We ran the solvers on all CNF families in two modes: ”as-is”, and with all preprocessing
(and all inprocessing for Lingeling) disabled. The experiments were run under Linux
on a Intel Core i5-2500 3.3-GHz quad-core CPU with 8 GB of memory. We limited the
run-time of each solver to 1 hour per instance.

5.2 Results

First recall that the only parameter that varies among the different formula families is
their resolution space complexity. Namely, for each of the 96 families, every formula
with n variables has O(1) resolution width and O(n) resolution length, with small
hidden constants depending on the substitution function only; only the resolution space
varies from O(1) to Ω(n/ log2 n) as explained in Section 3.

Overall, the results show a notable difference in running times between different
families. In particular, we observed that the hardest families with respect to space com-
plexity are also hardest in practice. In other words, for these families we observed a
clear correlation between space complexity and practical hardness. While there are
some observed exceptions (mainly in the lower-end spectrum of the space complexity),
there is a positive correlation between run-times and resolution space for almost all of
the families.

An example of the results for both of the solvers with preprocessing turned off is
given in Figure 1. For clarity, we only include the following 5 families in each plot
(listed in non-increasing order of space complexity, cf. Table 1): pyr1seq, bintree, pyrse-
qsqrt, pyramid, and gtb.

One reason to run experiments over all combinations of graphs and substitution func-
tion is to distill the dependence on space and filter out other factors if possible. For
instance, different substitution function can (and will) have different properties in prac-
tice although their theoretical guarantees are the same. By aggregating results over all
substitution functions instead of just considering one or two functions, we get an over-
all picture. This is summarised in Table 3, which gives average run-times per instance,
normalized by the number of variables and calculated over all considered substitution
functions with and without preprocessing. In particular, for each family, we take run-
times/size (where size is the number of variables in the formula) for each instance, and
sum all these numbers for the chosen family and then take an arithmetic mean; that is,
(run-time1/size1 + . . .+ run-timek/sizek)/k. The families in Table 3 are listed in non-
increasing order of space complexity (cf. Table 1). The numbers, which are multiplied
by 104, show that the average run-times (without preprocessing, first column) correlate

4 Version 774, with an option to disable pre- and inprocessing, was provided by Armin Biere.

http://www.csc.kth.se/~jakobn/publications/cp12/
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Fig. 1. Results without preprocessing

strongly with space complexity, the bintree family being the only significant exception.
However, bintree graphs have an exceptionally large number (half) of source nodes,
which get translated into simpler clauses compared to clauses from non-source nodes.
(For a majority of the substitution functions, namely or 2, xor 2, maj 3, e1 d, and s id,
most or all of the resulting clauses are binary.)

Table 3. Average run-times for all families

Time [seconds] × 10e4
formula family no preprocessing with preprocessing
gtb 637.65 9.36
pyramid 569.13 1.14
pyrofpyr 234.17 9.45
pyrseqsqrt 122.77 1.64
bintree 12.27 0.27
width10chain 59.87 5.79
pyr10seq 44.12 2.70
width5chain 56.77 5.97
pyr5seq 31.60 2.09
pyr3seq 33.35 1.24
width2chain 45.24 3.25
pyr1seq 39.43 0.36

5.3 Effects of Preprocessing

While a clear correlation between space complexity and solver running times was ob-
served on a variety (but not all) of the formula families, we observed that preprocessing
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Fig. 2. Results with preprocessing

and inprocessing resulted in rather different results. In particular, as exemplified in Fig-
ure 2, although smaller correlations can still be observed (especially for Lingeling),
preprocessing appears to even out many of the observed differences in the data for
the solvers without preprocessing. While this is an observation that clearly sets apart
the preprocessing techniques from the behavior of the core CDCL techniques, we do
not find it too surprising. Simply, the theoretical space measure that we study can be
expected to correlate more or less well with what is going on during clause learning.
When preprocessing is applied to a formula F , however, what is fed to the clause learn-
ing solver is another formula F ′ for which we have no theoretical guarantees as to the
space complexity (it can a priori be both lower and higher). Furthermore, the fact that
our benchmarks have been chosen specifically to be very easy with respect to length and
width also means that they are likely to be amenable to the kind of heuristics used in
preprocessing. We see much scope for future work here, including ideas how to modify
formulas so that they have the same theoretical guarantees but so that these guarantees
are more likely to “survive” the preprocessing stage.

5.4 Considerations

We remark that one reasonable objection is that since our benchmarks are pebbling
formulas generated from graph it is not clear that we are measuring space complexity
per se—maybe we are measuring some other, unrelated graph property. And indeed,
some graph properties, such as the number of source nodes, translate into properties of
the formulas (many small clauses) that are not captured by the space complexity.

This problem is hard to get around, however. Resolution space complexity seems
likely to be PSPACE-complete, and it is an easy argument that is is NP-hard to ap-
proximate in any meaningful way, so we cannot expect to be able to determine the space
complexity of arbitrary formulas. Instead, we have to pick special instances where we
know the space complexity for other reasons, which is the case for the pebbling formula
families considered in our experiments.
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6 Relating Resolution Space and Backdoors

Compared to the proof complexity hardness measures of resolution length, width, and
space, a more practically motivated well-known hardness measure is the size of (strong)
backdoor sets. Backdoors sets were first studied in [17], and this and subsequent works
have shown that real-world SAT instances often have small backdoors, which might
offer an explanation why modern SAT solvers perform notably well on such instances.

The definition of backdoor sets is made with respect to a polynomial-time sub-
solver A. Given a subsolver A and a unsatisfiable formula F , a (strong) backdoor set S
is a subset of the variables in F such that for every truth assignment ρ over S, the sub-
solver A determines unsatisfiability of F�ρ.5 The algorithm A might be, for instance,
unit propagation, polynomial-time restricted DPLL, or a 2-SAT algorithm.

In [14], it was shown that given a subsolver that only accepts formulas with tree-like
resolution space k, a CNF formula F , and a strong backdoor set S of F , the tree-like
resolution space of F is bounded from above by |S| + k. In fact, when restricting to
such abstract subsolvers that only accept formulas with tree-like resolution space k,
the minimum backdoor set size is a proper upper bound for tree-like resolution space.
However, [14] does not seem to elaborate too much on what such abstract subsolvers
might be. Our following theorem states the relationship between resolution space and
backdoor sets in a more concrete way.

Theorem 2. The following claims hold for any CNF formula F over n variables.

1. If F has a backdoor set B of size b with respect to 2-CNF, then the space complexity
of F is at most b+O(1).

2. If F has a backdoor set B of size b with respect to unit propagation, then the space
complexity of F is at most b+O(1).

3. If F has a backdoor set B of size b with respect to DPLL running in time poly(n),
then the space complexity of F is at most b+O(logn).

Proof. Suppose that ρ is a (partial) truth value assignment to the b variables in the back-
door set B, and that Cρ is the unique minimal clause falsified by ρ. Then if πρ is a reso-
lution refutation of F�ρ in clause space s, by plugging in F instead of F�ρ we get from
πρ a resolution derivation of the clause Cρ in the same space s. Also, it is easy to show
that the set of clauses {Cρ | ρ all total assignments to B} can be refuted by a (tree-like)
resolution refutation πB in simultaneous space b+O(1) and length 2b+1. Thus, if each
clause Cρ is derivable in clause space at most s, then we can combine these derivations
πρ with the refutation πB of the set of clauses {Cρ | ρ all total assignments to B} to get
a refutation of F in space b + s+O(1), simply by running πB , and whenever a clause
Cρ is needed (which will only be once per clause) call on πρ as a subroutine.

What remains is to upper bound the space complexity of F�ρ.

1. Any 2-CNF formula can be refuted by resolution in clause space at most 4 [15].
2. Unit propagation can be seen as a resolution proof DAG that is a long chain with

every chain vertex having a unique predecessor except for its predecessor on the
chain. Such a proof is in (tree-like) clause space 3.

5 F�ρ denotes F restricted by ρ, i.e., with variables set according to ρ after which the formula
is simplified by removing satisfied clauses and unsatisfied literals from clauses.



Relating Proof Complexity Measures and Practical Hardness of SAT 329

3. If DPLL runs in time nc, then it produces a tree-like resolution proof in size nc.
According to [15], tree-like resolution length L implies that one can do length L
and space logL+O(1) simultaneously. Hence we have space b+O(logn). �

Recently, the concept of learning-sensitive backdoors [32] was proposed as a concept
more tightly connected with CDCL solvers than the original definition of backdoors. It
was shown that strong learning-sensitive backdoors can be exponentially smaller than
traditional backdoors [32]. It remains an interesting open question whether general res-
olution space is bounded from above by the size of learning-sensitive backdoors, i.e.,
whether small learning-sensitive backdoors imply low (general) resolution space com-
plexity.

7 Concluding Remarks

This paper advances and expands on the program outlined first in [14], namely, to shed
light on possible connections between theoretical complexity measures and practical
hardness of SAT, and in particular on whether space complexity is a good indicator
of hardness. We provide an extensive empirical evaluation on the correlation between
resolution space and practical hardness, running state-of-the-art CDCL SAT solvers
on benchmark formulas with theoretically proven properties based on recent results in
proof complexity. To the best of our knowledge, no such experiments have previously
been done, and we consider this a conceptually important step towards the more gen-
eral goal of relating complexity of SAT solving in theory and practice. Furthermore,
complementing the empirical evaluation, we prove new theoretical results related to
resolution space, in particular separating general and tree-like resolution space and thus
showing that the two measures are indeed different. We also address the relation be-
tween resolution space and backdoor sets.

Regarding the empirical work, while the results presented here do not provide con-
clusive evidence for resolution space being the ”ultimate right measure” of practical
hardness (it may be safe to assume that theory and practice most often do not behave
exactly identically), the important observation is that we do see nontrivial correlations.
We therefore argue that our results are consistent with the hypothesis that resolution
space complexity should be a relevant measure of hardness in practice for CNF for-
mulas. In particular, space might be a more precise indicator of practical hardness than
length or width, in the sense that the latter two measures give too optimistic estimates
for formulas which have very low length or width complexity but which might never-
theless be hard for state-of-the-art CDCL SAT solvers to solve in practice.

We have already discussed at the end of Section 5 why the experiments by neces-
sity had to be run on designed combinatorial benchmark formulas rather than on real-
world instances. Another possible issue is that to truly understand the relation between
practical hardness on one hand, and length, width and space complexity on the other,
one would need experiments that vary all three parameters. However, while this a pri-
ori seems like a very reasonable request, the hierarchy between these measures in (1)
means that such experiments unfortunately are provably impossible to perform. As soon
as the length or width complexity increases, the space complexity will increase as well.
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Thus, all we can hope to study is whether space provides a more precise indication of
hardness than is given by width or length.

We view our work as only a first step in an interesting line of research, and see many
important questions to investigate further. One such question closely related to the cur-
rent paper would be to study the recent theoretical results on trade-offs between proof
length and proof space for resolution in [25, 33], and perform experiments on whether
these results translate into trade-offs between running time and memory consumption
for CDCL solvers in practice.
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Abstract. We revisit the SEQBIN constraint [1]. This meta-constraint subsumes
a number of important global constraints like CHANGE [2], SMOOTH [3] and
INCREASINGNVALUE [4]. We show that the previously proposed filtering algo-
rithm for SEQBIN has two drawbacks even under strong restrictions: it does not
detect bounds disentailment and it is not idempotent. We identify the cause for
these problems, and propose a new propagator that overcomes both issues. Our
algorithm is based on a connection to the problem of finding a path of a given
cost in a restricted n-partite graph. Our propagator enforces domain consistency
in O(nd2) and, for special cases of SEQBIN that include CHANGE, SMOOTH and
INCREASINGNVALUE in O(nd) time.

1 Introduction

Global constraints are some of the jewels in the crown of constraint programming.
They identify common structures such as permutations, and exploit powerful math-
ematical concepts like matching theory, and computational techniques like flow algo-
rithms to deliver strong pruning of the search space efficiently. Particularly eye-catching
amongst these jewels are the meta-constraints: global constraints that combine together
other constraints. For example, the CARDPATH meta-constraint [3] counts how many
times a constraint holds down a sequence of variables. The SEQBIN meta-constraint
was recently introduced in [1] to generalize several different global constraints used
in time-tabling, scheduling, rostering and resource allocation. It also generalizes the
CARDPATH constraint where the constraint being counted is binary. Our aim is to re-
visit the SEQBIN meta-constraint and give a new and efficient propagation algorithm.

2 Background

We write D(X) for the domain of possible values for X , lb(X) for the smallest value
in D(X), ub(X) for the greatest. We will assume values range over 0 to d. A constraint
is domain consistent (DC) if and only if when a variable is assigned any of the values
in its domain, there exist compatible values in the domains of all the other variables of
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the constraint. Such an assignment is called a support. A constraint is bound consistent
(BC) if and only if when a variable is assigned the lower or upper bound in its domain,
there exist compatible values between the lower and upper bounds for all the other vari-
ables. Such an assignment is called a bound support. A constraint is bounds disentailed
when there exists no solution such that each variable takes value between its lower and
upper bounds. A constraint is monotone if and only if there exists a total ordering ≺ of
the domain values such that for any two values v, w if v ≺ w then v can be replaced
by w in any support [5]. We define π = (πbottom := 0 ≺ . . . ≺ d =: πtop). A binary
constraint is row-convex if, in each row of the matrix representation of the constraint,
all supported values are consecutive (i.e., no two values with support are separated by a
value in the same row without support) [6]. We use xi,j to represent the variable-value
pair Xi = j. Let C be a binary constraint. We write (j, k) ∈ C if C allows the tuple
(j, k). Consider a soft binary constraint C. We denote the cost of the tuple c(j, k). If
(j, k) ∈ C then c(j, k) = 0 and c(j, k) = 1 otherwise. Given two sets of integers
S and R, we denote S ' R = {s+ r | s ∈ S, r ∈ R}. Given a constant c, we write
S ' c = {s+ c | s ∈ S}. We denote I[X ] an instantiation of the variable sequence
X = [X1, . . . , Xn].

3 The SEQBIN Constraint

The SEQBIN meta-constraint ensures that a binary constraint B holds down a sequence
of variables, and counts how many times another binary constraint C is violated.

Definition 1. Given an instantiation I[N,X1, . . . , Xn] and binary constraints B and
C, the meta-constraint SEQBIN(N,X,C,B) is satisfied if and only if for any i ∈ [1, n−
1], (I[Xi], I[Xi+1]) ∈ B holds, and I[N ] is equal to the number of violations of the
constraint C, (I[Xi], I[Xi+1]) /∈ C, in I[X ] plus 1.

Note that we add 1 for consistency with the definition of SEQBIN in [1].

Example 1. Consider the SEQBIN(N, [X1, . . . , X7], C,B) constraint where N = {3},
B is TRUE and C(Xi, Xj) is a monotone constraint with one satisfying tuple (1, 1) ∈ C,
D(X1) = D(X3) = D(X5) = D(X7) = 1 and D(X2) = D(X4) = D(X6) =
{0, 1}. Consider an instantiation I[N = 3, X1 = 1, X2 = 0, X3 = 1, . . . , X7 = 1].
The constraint C is violated twice: (X1 = 1, X2 = 0) and (X2 = 0, X3 = 1). Hence,
the cost of the assignment is N = 2 + 1 = 3. ��

A number of global constraints can be used to propagate SEQBIN including
REGULAR [7,8], cost REGULAR [9], CARDPATH [3] and SLIDE [5]. However, all are
more expensive than the propagator proposed here. A thorough analysis of related work
is presented in [1]. We will assume that, as a preprocessing step, all binary constraints
B are made DC which takes just O(nd) time for monotone B. We say that an instanti-
ation I[X ] is B-coherent iff (I[Xi], I[Xi+1]) ∈ B, i = 1, . . . , n. A value v ∈ D(Xi)
is B-coherent iff there exists a B-coherent instantiation I[X ] with I[Xi] = v.
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Fig. 1. A 9-partite graph that corresponds to the SEQBIN constraint from Example 1. Dashed
edges have cost one and solid edges have zero cost.

3.1 A Graph Representation of SEQBIN

We present a connection between finding a solution of the SEQBIN constraint and the
problem of finding a path of a given cost in a special n-partite graph where the cost of an
edge is either 0 or 1. We start with a description of the graph G(V,E). For each variable-
value pair xi,j we introduce a vertex in the graph that we label xi,j , V = {xi,j |i =
1, . . . , n, j ∈ D(Xi)}. For each pair (xi,j , xi+1,v) we introduce an edge iff the tuple
(j, v) ∈ B, hence, E = {(xi,j , xi+1,v)|i = 1, . . . , n− 1, j ∈ D(Xi), v ∈ D(Xi+1) ∧
(j, v) ∈ B}. An edge (j, v) is labeled with c(j, v). Note that vertices xi,j , j ∈ D(Xi),
form the ith partition as they do not have edges between them. Moreover, there are edges
only between neighbor partitions i and i + 1, i = 1, . . . , n − 1. Hence, the resulting
graph is a special type of n-partite graph that we call layered. To keep the presentation
clear, we introduce dummy variables X0 and Xn+1 with a single vertex 0∗, and edges
from x0,0∗ to all vertices (values) of X1 with cost 1, and from all vertices of Xn to
xn+1,0∗ with cost 1. To simplify notation, we label a vertex xi,j that is at the ith layer
simply as j in all figures. We also use solid lines for edges of cost zero and dashed lines
for edges of cost one. As variables correspond to layers in the graph we refer to layers
and variables interchangeably. Similarly, as variable-value pairs correspond to vertices
in the graph we refer to vertices at the ith layer and values in D(Xi) interchangeably.
Given two values j at the ith layer and v at the (i + 1)th layer we say that j/v is a
support value for v/j iff there exists an edge (j, v) in the graph.

Example 2. Consider the SEQBIN(N, [X1, . . . , X7], C,B) constraint from Example 1.
Figure 1 shows the corresponding graph representation of the constraint. ��

We now describe an algorithm, PATHDP to find a path of a given cost in a lay-
ered graph. PATHDP is a special case of the dynamic programming algorithm for
the knapsack problem where all items have unit costs. Both the existing propagator
for SEQBIN and our new one are specializations of PATHDP. Another specializa-
tion of PATHDP is the propagator for cost REGULAR [9]. We denote by c(X) the
set of all possible numbers of violations achieved by an assignment to X : c(X) =
{k | I is B-coherent ∧ c(I) = k} and similarly c(xi,j) = {k | I is B-coherent ∧
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I[Xi] = j ∧ c(I) = k}. We denote the forward cost from the variable Xi to Xn by
cf (xi,j) = {k | I[Xi, . . . , Xn] is B-coherent ∧ I[Xi] = j ∧ c(I) = k}. This set
contains all the distinct costs that are achievable by paths from the vertex xi,j to the
vertex xn+1,0∗ . We write lbf(xi,j) = min(cf (xi,j)) and ubf(xi,j) = max(cf (xi,j)).
Similarly, we denote the backward cost from the variable X1 to Xi by cb(xi,j) = {k |
I[X1, . . . , Xi] is B-coherent∧ I[Xi] = j ∧ c(I) = k}. It contains all the distinct costs
that are achievable by paths from the vertex x0,0∗ to the vertex xi,j . We denote by
lbb(xi,j) = min(cb(xi,j)) and ubb(xi,j) = max(cb(xi,j)).

Algorithm 1. The pseudocode code for the PATHDP algorithm
1: procedure PATHDP ( G(V,E))
2: for i = n→ 0; j ∈ D(Xi) do 
 Compute the forward cost
3: cf (xi,j) = ∅
4: for k ∈ D(Xi+1), (j, k) ∈ B do
5: cf (xi,j) = cf (xi,j)

⋃
(cf (xi+1,k) � c(j, k))

6: for i = 1→ n + 1; j ∈ D(Xi) do 
 Compute the backward cost
7: cb(xi,j) = ∅
8: for k ∈ D(Xi−1), (k, j) ∈ B do
9: cb(xi,j) = cb(xi,j)

⋃
(cb(xi−1,k) � c(k, j))

10: for i = 0→ n + 1; j ∈ D(Xi) do 
 Compute the total cost
11: c(xi,j) = cf (xi,j) � cb(xi,j)

PATHDP performs two scans of the layered graph, one from Xn to X1 to compute
forward costs, and one from X1 to Xn to compute backward costs. The backward pass
processes one layer at a time and computes the set cf (xi,j) for each variable Xi and
value j ∈ D(Xi) (lines 2–5). Dually, the forward pass computes for each variable Xi

and value j ∈ D(Xi), the backward cost cb(xi,j)(lines 6–9). Finally, for each vertex the
set of costs achievable on paths from x0,0∗ to xn+1,0∗ that pass through xi,j is cf (xi,j)'
cb(xi,j). To match the semantics of SEQBIN, we compute cf (xi,j) ' cb(xi,j) ' (−1)
for each vertex.

The time complexity for SEQBIN using PATHDP is O(n2d2) : the number of distinct
costs is at most n, so getting the union of two cost sets takes O(n) time. Each vertex
has at most d outgoing edges, so the set cf (xi,j) can be computed in O(nd) time for
each xi,j . There are O(nd) vertices in total, giving the stated complexity of O(n2d2).

Example 3. Consider the SEQBIN(N, [X1, . . . , X7], C,B) constraint from Example 1.
Figure 1 shows the forward cost cf (xi,j), the backward cost cb(xi,j) and the total cost
cf (xi,j) ' cb(xi,j) ' (−1), j ∈ D(Xi), i = 0, . . . , 8 in gray rectangles. We have one
rectangle for each variable-value pair Xi = j. Consider, for example, the vertex ‘1’ at
layer X5. We compute the forward cost cf (x5,1) = (cf (x6,0) ' c(1, 0)) ∪ (cf (x6,1) '
c(1, 1)) = {3} ∪ {1} = {1, 3} and the backward cost cb(x5,1) = (cb(x4,0)' c(0, 1))∪
(cb(x4,1) ' c(1, 1)) = {3, 5} ∪ {1, 3} = {1, 3, 5}. Then cf (x5,1) ' cb(x5,1 ' (−1) =
{1, 3} ' {1, 3, 5} ' (−1) = {1, 3, 5, 7}. ��

Lemma 1. Let G(V,E) be a layered graph constructed from the SEQBIN(N,X,C,B)
constraint as described above. There exists a bijection between B-coherent assignments
I[X ] of cost s and paths in the graph G(V,E) of cost s+ 1.
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3.2 Revisiting SEQBIN

A domain consistency algorithm for the SEQBIN(N,X,C,B) constraint, SEQBINALG

was proposed in [1] under the restriction that B is a monotone constraint. In this section
we identify two drawbacks of this algorithm that make it incomplete. We show that
SEQBINALG does not detect bounds disentailment and it is not idempotent even if B is
a monotone constraint. It was observed idependently in [10] that SEQBINALG does not
enforce DC. However, the authors do not explicitly explain the source of the problems
of SEQBINALG and only identify a very restricted class of SEQBIN instances where
SEQBINALG does enforce DC.

We will identify the main reason that SEQBINALG fails to enforce DC. This is
important to develop a new algorithm that does enforce DC in O(nd2) time when
B is monotone. SEQBINALG uses Algorithm 1 to compute only the lower and up-
per bounds of the forward and backward cost (Lemma 1 and 2 in [1]). Namely, us-
ing the notations in [1], we compute s(xi,j) = lb(cf(xi,j)), s(xi,j) = ub(cf (xi,j)),
p(xi,j) = lb(cb(xi,j)) and p(xi,j) = ub(cb(xi,j)) in O(nd2). SEQBINALG is based on
these values and runs in 4 steps [1]:

Phase 1 Remove all non B-coherent values in D(X).
Phase 2 For all values in D(X), compute s(xi,j), s(xi,j), p(xi,j) and p(xi,j).
Phase 3 Adjust the min and max value of N with respect to s(X) and s(X).
Phase 4 Using the result of Phase 3 and Proposition 4 [1], prune the remaining B-

coherent values.

The correctness of SEQBINALG relies on Proposition 3. Unfortunately, this proposition
is not correct, and the algorithm is consequently incomplete.

Proposition 3 (in [1]). Given an instance of SEQBIN(N,X,C,B) with monotone
B, SEQBIN(N,X,C,B) has a solution iff [s(X), s(X)] ∩ N �= ∅ where s(X) =
minj∈D(X1) s(x1,j) and s(X) = maxj∈D(X1) s(x1,j).

Issue 1. Bounds disentailment.

Lemma 2. The algorithm SEQBINALG for SEQBIN(N,X,C,B) with monotone B
does not detect bounds disentailment.

Proof. Consider the SEQBIN(N, [X1, . . . , X7], C, TRUE) constraint in Example 1. The
constraint TRUE is monotone. Consider N = 4. Then s(X) = 1 and s(X) = 7. Hence,
[1, 7]∩ {4} �= ∅. However, there is no solution with cost 4. The problem with the proof
of Proposition 3 in [1] is the last sentence which claims that there is a solution for each
value k ∈ [s(x1,v), s(x1,v)] for some v. This is not true as Example 1 demonstrates.
Note also that [s(xi,j) + p(xi,j), s(xi,j) + p(xi,j)] ∩ {4} �= ∅. Hence, according to
Proposition 4 [1] each variable-value pair is DC which is also incorrect. ��

Issue 2. Idempotency. As a consequence of not detecting bounds disentailment,
SEQBINALG is also not idempotent.

Lemma 3. The filtering algorithm SEQBINALG for SEQBIN(N,X,C,B) with mono-
tone B is not idempotent.
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Fig. 2. A 7-partite graph that corresponds to the SEQBIN constraint from the proof of Lemma 3.
Dashed edges have cost one and solid edges have cost zero. (a) shows initial costs; (b) shows
costs after X3 = 0 is pruned.

Proof. Consider the SEQBIN(N, [X1, . . . , X7], C,B) where N = {3}, B =
{(j, k)|j, k ∈ [0, 3], (j, k) �∈ (0, 0), (1, 0)}. C(Xi, Xj) is a monotone constraint with
three satisfying tuples (2, 0), (0, 2), (0, 3) ∈ C. Finally, D(X1) = {0}, D(X2) =
{1, 2}, D(X3) = D(X4) = {0, 2} and D(X5) = {3}. Figure 2(a) shows the graph
representation of the example. Note that c(x3,0) ∩ N = {2} ∩ {3} = ∅. Hence, the
value 0 is pruned from D(X3). Therefore, the value X4 = 2 loses its support with cost
2 (Figure 2(b)). The new cost of x4,2 is {4, 5} ∩N = ∅ and the value 2 is pruned from
D(X4). Note that the removal of X4 = 2 triggers further propagation as X2 = 2 loses
its support of cost 5, and 2 is removed from D(X2) at the next step. ��

We note that if B is not monotone, SEQBINALG may need O(n) iterations to reach its
fixpoint and Proposition 2 in [1] only works if B is monotone.

Remedy for SEQBINALG. As seen in Lemmas 2–3, the main cause of incomplete-
ness in SEQBINALG is that the set of costs for each vertex is a set rather than an
interval even when B is monotone. One way to overcome this problem is to restrict
SEQBIN(N,X,C,B) to those instances where it is an interval. This approach was taken
in [10] where SEQBIN(N,X,C,B) was restricted to counting-continuous constraints.

Definition 2. The constraint SEQBIN(N,X,C,B) is counting-continuous if and only
if for any instantiation I[X ]with k stretches in which C holds, for any variable Xi ∈ X ,
changing the value of Xi in I[X ] leads to k, k + 1, or k − 1 violations.

This restriction ensures that the structure of the cost for each variable-value pair is
an interval and, indeed, the filtering algorithm SEQBINALG enforces DC. However,
this approach has a number of drawbacks. First, restricting SEQBIN(N,X,C,B) to
counting-continuous with monotone B excludes useful combinations of B and C. Ex-
ample 1 shows that SEQBIN(N,X,C is monotone, B is TRUE) does not satisfy this
property. Secondly, many practically interesting examples [1] that can be propagated
in O(nd) time do not satisfy these conditions. As was observed in [10], constraints
CHANGE{=, �=} = SEQBIN(N,X,C ∈ {=, �=}, TRUE) and SMOOTH are not counting-
continuous. The INCREASINGNVALUE constraint which is SEQBIN(N,X,=,≤) vio-
lates the condition that B is monotone. The only remaining constraint that satisfies these
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restrictions on B and C is CHANGE{<,≤} = SEQBIN(N,X,C ∈ {<,≤}, TRUE).
Unfortunately, the proof relies on the claim that C is monotone, which is false for
C ∈ {<,≤}. Thirdly, we do not currently have a test to check if SEQBIN(N,X,C,B)
is counting-continuous. Despite the problems pointed out above, the filtering algorithm
SEQBINALG enforces DC on INCREASINGNVALUE and CHANGE(C ∈ {<,≤}) in
O(nd) as the counting-continuous property together with the row and column convex-
ity of C are sufficient to achieve this complexity.

In this work we take a different approach. We focus on an extension of the algorithm
to handle non-interval cost sets. The challenge is to perform this extension in O(nd2) as
the generic dynamic programming algorithm PATHDP that handles sets natively runs
in O(n2d2) time. Note that if the cost structure is an unrestricted set of values then
the time complexity of PATHDP is going to be hard to improve as it is a specialization
of a well-studied dynamic programming algorithm for the knapsack problem where all
items have unit cost. Hence, we show that the structure of the costs for a variable-value
pair is restricted if B is monotone. This allows us to perform union operations on sets
in O(1) time rather than O(n).

3.3 Cost Structure

We show that the structure of the cost for each variable-value pair is restricted. First,
we introduce definitions to formalize the structure of forward and backward costs.

Definition 3. A set S is a zipper set if it can be obtained from an interval [a, b] by
removing all odd or all even values. We denote a zipper set as [a ∼ b].
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Fig. 3. A 10-partite graph that corresponds to the SEQBIN constraint from Examples 4–6. Dashed
edges have cost one and solid edges have zero cost.

Note that in a zipper set [a ∼ b], a and b have the same parity. If both are odd, [a ∼ b]
is an odd zipper set, while if both are even, [a ∼ b] is an even zipper set.

Definition 4. A set S is an i·zipper set if it can be written as [a ∼ b] ∪ [b, c] ∪ [c ∼ d],
a ≤ b < c ≤ d. We denote an i·zipper set as [a ∼ b− c ∼ d]. If a = b, we write the set
as [b − c ∼ d] and if c = d we write it as [a ∼ b− c].

Given an i·zipper set [a ∼ b] ∪ [b, c] ∪ [c ∼ d], we denote the left part [a ∼ b] as l · zip,
the middle part [b− c] as i · val and the right part [c ∼ d] as r · zip.
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Example 4. Consider the SEQBIN(N, [X1, . . . , X8], C,B) constraint that Figure 3
presents. We only show the forward cost sets. For example, the forward cost set cf (x3,5)
is a zipper [1 ∼ 5], cf (x5,4) = [2 ∼ 4] is an even zipper and cf (x3,5) = [1 ∼ 5] is an
odd zipper. An example of an i·zipper set is cf (x1,3) = [1 ∼ 5− 8]. ��

Our filtering algorithm is based on the following theorem.

Theorem 1. Consider a SEQBIN(N,X,C,B) constraint with monotone B and ar-
bitrary C. Let [b, c], c > b be the maximal interval such that [b, c] ⊆ cf (xi,v),
i = 1, . . . , n, v ∈ D(Xi). If such an interval does not exist we define [b, c] = ∅. Then
the following holds for any value j, k, {j, k} ∈ D(Xi) and i = 1, . . . , n:

1. Uniqueness. The set cf (xi,v) is either a zipper or i·zipper set.
2. Overlapping. If cf (xi,j) and cf (xi,k) are i·zipper sets, cf (xi,j) = [a ∼ b− c ∼ d]

and cf (xi,k) = [s ∼ r − q ∼ t], then [b, c] ∩ [r, q] �= ∅.
3. Structure.
• Bounded holes. If cf (xi,j) is an i·zipper set, [a ∼ b − c ∼ d] then b − a ≤ 4

and d− c ≤ 4
• Closeness. |lbf(xi,j)− lbf(xi,k)| ≤ 2 and |ubf(xi,j)− ubf(xi,k)| ≤ 2.

Theorem 1 shows that the structure of cf (xi,j), j ∈ D(Xi) is limited to few distinct
structures of sets: a zipper and an i·zipper. This allows us to deal with such restricted
sets efficiently. We give an overview of the proof. We identify two key properties of
the problem. The first property is that for all but at most two layers the cost structure
is homogeneous. All costs cf (xi,j) are either zippers or i·zippers. Moreover, layers that
only contain zippers (i·zippers) are consecutive. The layers [n2, . . . , n] only contain
zippers for some n2. The layers [1, . . . , n1] only contain i·zippers for some n1 < n2.
There are at most two heterogeneous layers between these sequences.

Example 5. Consider Figure 3. We only show the forward cost cf (xi,j) for each
variable-value pair in a gray rectangle. The homogeneous consecutive layers [n2 =
4, . . . , n = 8] only contain zippers. The two heterogeneous consecutive layers [2, 3]
contain zippers and i·zippers. The homogeneous consecutive layers [0, n1 = 1] only
contain i·zippers. ��
The second property is that if we consider all cost sets at one layer then their
lower(upper) bounds are at most distance two from each other. This is stated as the
closeness property of the structure in Theorem 1. Section 3.4 proves the first property
and Section 3.5 proves the second property. The rest of the proof of Theorem 1 uses
induction on the number of layers, taking these properties into account. Due to lack
of space, these proofs are in the Appendices in [11]. Appendix C.1 proves Theorem 1
for the sequence of layers that only contain cost sets that are zippers. Moreover, it
imposes an additional property on the structure of zippers. Appendix C.2 proves Theo-
rem 1 for the two heterogeneous layers. This is the most tedious part of the proof using
enumeration of all possible distinct structures of the forward(backward) cost. This enu-
meration is feasible because of the properties of the cost structure in the first sequence.
Appendix C.3 proves Theorem 1 for the last sequence that only contains i·zippers. We
show that no new cost structures may appear in this sequence. Overall, we prove that
there are a bounded number of cost structures at each layer.
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3.4 Partitioning of Layers

The proof of Theorem 1 is based on the following lemma that partitions variables
X1, . . . , Xn into three groups based on the structure of the forward costs (the back-
ward costs are similar, but the partition may be different).

Lemma 4. Consider a SEQBIN(N,X,C,B) with monotone B and arbitrary C. Let
Xt = j be the first variable in the reverse order of variables such that there exists a
value j and an interval [a, b], a < b such that [a, b] ⊆ cf (xt,j), i.e., for all t′ ∈ [t+1, n],
j ∈ D(Xt′), there does not exist [a′, b′], a′ < b′, such that [a′, b′] ⊆ cf (xt′,j). Then
for all cf (xs,j), j ∈ D(Xs), s ∈ [1, t− 2], there exists an interval [as,j , bs,j ] such that
[as,j , bs,j] ⊆ cf (xs,j).

Proof. Consider the pair of variables Xt and Xt−1. We recall that we consider variables
in the reverse order form n to 0. Let v be the maximum value in the total order π such
that v ∈ D(Xt−1). By the monotonicity of B and the fact that B(Xt−1, Xt) is DC,
we conclude that (v, j) ∈ B. Otherwise, if (v, j) /∈ B, the value j had to be pruned
from D(Xi) by enforcing DC on B(Xt−1, Xt) as v is the top value in the ordering in
D(Xt−1). Therefore, there exists an interval [c, d] ∈ {[a, b], [a+ 1, b+ 1]}, c < d such
that [c, d] ⊆ cf (xt−1,v).

Consider the pair of variables Xt−1 and Xt−2. Due to monotonicity of B we know
that (k, v) ∈ B, q ∈ D(Xt−2) as v is the top value in π such that v ∈ D(Xt−1).
Hence, v is a support for all k and cf (xt−2,k) must contain an interval as cf(xt−2,k) =⋃

w∈D(Xt−1)
(cf (xt−1,w) ' c(j, w)) and [c, d] ⊆ cf (xt−1,v), v ∈ D(Xt−1). Hence,

there exists an interval [c′, d′], c′ < d′ such that [c′, d′] ⊆ cf (xt−2,k) for all k ∈
D(Xt−2) including the top value in the ordering π, k′, such that k′ ∈ D(Xt−2). We
repeat the argument for layers s, s ∈ [1, . . . , t− 3]. ��

Corollary 1. Consider a SEQBIN(N,X,C,B) with monotone B and arbitrary C.
Then there are three blocks of consecutive variables [X1, Xn1 ] ∪ [Xn1+1, Xn2−1] ∪
[Xn2 , Xn] with n1 < n2 ≤ n1 + 3, i.e., the size of the partition [Xn1+1, Xn2−1] is at
most 2, and:

Zipper block. For all i, j, i ∈ [n2, n], j ∈ D(Xi), there does not exist an interval
[a, b] ⊆ [1, πtop], a < b, such that [a, b] ⊆ cf (xi,j).

Zipper + i·Zipper block. There exist i, j, i ∈ [n1 + 1, n2 − 1], j ∈ D(Xi) and an
interval [a, b] ⊆ [1, πtop], a < b, such that [a, b] ⊆ cf (xi,j).

i·Zipper block. For all i, j, i ∈ [1, n1], j ∈ D(Xi) there exists an interval [a, b] ⊆
[1, πtop], a < b, such that [a, b] ⊆ cf (xi,j).

Example 6. Consider Figure 3. The zipper block includes [X4, . . . , X8]. The zipper +
i·zipper block includes variables X2 and X3. The i·zipper block contains X1. ��

3.5 Closeness of Costs

We show that if B is a monotone constraint then the forward cost of the values of
a variable cannot deviate too much from each other. Hence, we prove the closeness
property of the cost structure in Theorem 1.
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Lemma 5. Consider a SEQBIN(N,X,C,B) with monotone B and arbitrary C. Con-
sider a variable Xi, i = [1, . . . n]. Then for any two values j, k ∈ D(Xi), j ≺ k, either
ubf(xi,j) ∈ [ubf(xi,k), ubf(xi,k) + 1] or ubf(xi,k) ∈ [ubf (xi,j), ubf(xi,j) + 2].

Proof. By induction on the distance from n. The base case is trivial, as ubf(xn,i) =
lbf(xn,i) = 1 for all i. Suppose this holds for all Xt+1, . . . , Xn. We show that it holds
for Xt. Let v be a value such that ubf(xt,k) = ubf(xt+1,v) + c(k, v) and w be a value
such that ubf(xt,j) = ubf(xt+1,w) + c(j, w).
Property 1. If w = v or ubf(xt+1,v) = ubf(xt+1,w) then lemma holds. Proof: This
follows from the assumption that all costs in C are zero or one. Hence, |ubf(xt,j) −
ubf(xt,k)| ≤ 1.
Property 2. The tuple (k, w) ∈ B. Proof: This follows from monotonicity of B and the
assumption that j ≺ k and from (j, w) ∈ B.
Property 3. If w ≺ v then (j, v) ∈ B. Proof: This follows from monotonicity of B and
the assumptions w ≺ v and (j, w) ∈ B.
Property 4. If (j, v) ∈ B then w = v. Proof: In this case the bipartite
subgraph over four vertices k, j, v, w is complete (Figure 4(a)). Hence, v′ =
argmaxw,v(ubf (xt+1,v), ubf(xt+1,w)) is a potential support for both ubf(xt,j) and
ubf(xt,k) and w and v coincide.

From Properties 1–4 we know that we only have to prove Lemma in the following
case: v ≺ w, v �= w, ubf(xt+1,v) �= ubf(xt+1,w) and (j, v) /∈ B.

By the induction hypothesis, there exist two cases: ubf(xt+1,v) ∈
[ubf(xt+1,w), ubf (xt+1,w) + 1] or ubf(xt+1,w) ∈ [ubf (xt+1,v), ubf(xt+1,v) + 2].

Case 1. We assume ubf(xt+1,v) ∈ [ubf(xt+1,w), ubf (xt+1,w) + 1]. As
ubf(xt+1,v) �= ubf(xt+1,w) we know that ubf(xt+1,v) = ubf(xt+1,w) + 1. We de-
note p = ubf(xt+1,w). Figure 4(b) shows this case. Note as costs of the edges are zero
or one, ubf(xt,k) ∈ {p+ 1, p+ 2}. On the other hand, ubf(xt,j) ∈ {p, p+ 1}. Hence,
ubf(xt,k) ∈ [ubf(xt,j), ubf(xt,j) + 2] as required.

Case 2. We assume ubf(xt+1,w) ∈ [ubf(xt+1,v), ubf(xt+1,v)+2] (Figure 4 (c)) and
since ubf(xt+1,v) �= ubf (xt+1,w), ubf(xt+1,w) > ubf(xt+1,v). As v ≺ w the value w
is a support value for both j and k. Hence, either v = w or ubf(xt+1,v) = ubf(xt+1,w).
This contradicts v �= w and ubf(xt+1,v) �= ubf (xt+1,w). ��
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Fig. 4. Computation of the forward cost upper bound, ubf (xi,j), (a)–(c) and the forward cost
lower bound, lbf (xi,j), (d)–(f). Note that we do not distinguish between 0 and 1 cost edges.
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Lemma 6. Consider a SEQBIN(N,X,C,B) with monotone B and arbitrary C. Then,
either lbf(xi,j) ∈ [lbf(xi,k), lbf (xi,k) + 2] or lbf(xi,k) ∈ [lbf(xi,j), lbf(xi,j) + 1] for
all variables Xi and values j ≺ k.

Proof. Analogous to Lemma 5 (Figure 4, (d)–(f)). ��

We omit the rest of the proof here due to space limitation (see Appendix B–C ). We only
mention Appendix C.1, Lemma 15 that refines Theorem 1 for layers in the zipper block
as we use this result in Section 4. Lemma 15 shows that at the ith layer in the zipper
block, i ∈ [n1 + 3, n], there are at most 4 possible distinct sets cf (xi,j), j ∈ D(Xi).

3.6 Total Cost

Lemma 7. Consider a SEQBIN(N,X,C,B) constraint with monotone B and arbi-
trary C. The set c(xi,j) = cf (xi,j) ' cb(xi,j) ' (−1), j ∈ D(Xi), i = 1, . . . , n is
either a zipper or an i·zipper set. For any i·zipper set c(xi,j) = [a ∼ b− c ∼ d] it holds
b− a ≤ 4 and d− c ≤ 4. Moreover, c(xi,j) can be computed in O(1) time.

Proof. It is sufficient to consider c(xi,j) = cf (xi,j) ' cb(xi,j) as a shift by a constant
does not change the structure of the set. As cf (xi,j) and cb(xi,j) satisfy Theorem 1,
they are either zipper or i·zipper sets. We consider 3 cases.

Case 1. Both cf (xi,j) and cb(xi,j) are zipper sets. Consider zipper sets cf (xi,j) =
[a ∼ b] = {a, a+2, . . . , b} and cb(xi,j) = [c ∼ d] = {c, c+2, . . . , d}. Then c(xi,j) =
{a+ c, a+ 2 + c, . . . , b+ c, b+ c+ 2, . . . , . . . b + d} = [(a+ c) ∼ (b+ d)].

Case 2. Both cf (xi,j) and cb(xi,j), are i·zipper sets. Consider cf (xi,j) = [a ∼
b − r ∼ q] and cb(xi,j) = [c ∼ d − f ∼ e]. We consider the most general case where
a < b, r < q, c < d and f < e.

We perform the operation ' in three steps, c(xi,j) = c1 ∪ c2 ∪ c3 where c1 =
cf (xi,j) ' [d, f ] = [a + d, q + f ], c2 = cf (xi,j) ' [c ∼ d] = [(a + c) ∼ (b +
d)] ∪ [b + c, r + d] ∪ [(r + c) ∼ (b + q)], and c3 = cf (xi,j) ' [f ∼ e] = [(a +
f) ∼ (b + e)] ∪ [b + f, r + e] ∪ [(r + f) ∼ (e + q)]. As (b + c) ≤ (b + d) and
(r + c) ≤ (r + d) we get c2 = [(a+ c) ∼ (b + c)− (r + d) ∼ (b + q)]. Similarly, we
get c3 = [(a+ f) ∼ (b + f)− (r + e) ∼ (e+ q)].

Finally, c(xi,j) = c1∪c2∪c3 = [(a+c) ∼ (min((b+c), (a+d))−max((r+e), (q+
f)) ∼ (e+ q)]. Consider the value min((b+ c), (a+d)− (a+ c)). If b+ c ≤ a+d then
we have (b+c)−(a+c) = b−a ≤ 4. If a+d ≤ b+c then we have (a+d)−(a+c) =
d− c ≤ 4. Similarly, we prove the result (e+ q)−max((r + e), (q + f)) ≤ 4. Hence,
the statement of the lemma holds.

Case 3. Exactly one of {cf(xi,j), cb(xi,j)} is a zipper set. Similar to Case 2.
Complexity. In all three cases above, the proof is constructive and we give an analytic

expression to compute c(xi,j). Hence, this can be done in O(1) time. ��

Example 7. Suppose cf (xi,j) = [2 ∼ 6−8 ∼ 12] and cb(xi,j) = [10 ∼ 16−20 ∼ 22].
Both cf (xi,j) and cb(xi,j) are i·zipper sets. Hence, to compute c(xi,j) = (cf (xi,j) '
cb(xi,j)'(−1)) we use the expression [(2+10) ∼ (min((6+10), (2+16))−max((8+
22), (12 + 20)) ∼ (12 + 22)] ' (−1) = [11 ∼ 15− 31 ∼ 33]. ��
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4 Domain Consistency Algorithm

In this section we present SEQBINALGNEW, a domain consistency algorithm for
SEQBIN(N,X,C,B) with monotone B. It has the same structure as SEQBINALG:

Phase 1 Remove all non B-coherent values in the domains of X .
Phase 2 For all values in the domains of X , compute cf (xi,j) and cb(xi,j).
Phase 3 Prune the domain of N with respect to cf (x0,0∗).
Phase 4 Prune the remaining B-coherent values.

The main complexity bottleneck is Phase 2 and Phase 4. If we do not put any restrictions
on B and C then it takes O(n2d2) in total to compute these sets. We show that the
complexity of SEQBINALGNEW decreases as we put restrictions on constraints B and
C. With respect to phase 3, we note that the cardinality of both D(N) and cf (x0,0∗) is
at most n, so their intersection can be computed in time O(n).

4.1 Domain Consistency Algorithm in O(nd2) with Monotone B

Phase 2 of SEQBINALGNEW. We exploit the structure of the costs established by The-
orem 1 to improve PATHDP (Phase 2). We show that lines 4–5 and 8–9 can be done in
O(d) time if B is monotone.

Lemma 8. Consider a SEQBIN(N,X,C,B) constraint such that B is monotone. For
all j ∈ D(Xi), i ∈ [1, . . . , n], cf (xi,j) =

⋃
v∈D(Xi+1)

(cf (xi+1,v) ' c(j, v)) can be
computed in O(d) time.

Proof. We partition all supports v into two groups based on the value of c(j, v). The first
group S0 contains values such that c(j, v) = 0 and the second group S1 contains values
such that c(j, v) = 1. We find c1 =

⋃
v∈S0

cf (xi+1,v) and c2 =
⋃

v∈S1
cf (xi+1,v).

Then we find cf (xi,j) = c1 ∪ (c2 ' 1). We prove the lemma for c1 (c2 is analogous.)

Compute c1. We assume that p is the smallest lower bound among the forward cost sets
of the values in S0 and q+2 is the greatest upper bound: p = minv∈S0 lbf(xi+1,v) and
q + 2 = maxv∈S0 ubf (xi+1,v). We refer to l · zip of cf (xi+1,v) as l · zip(xi+1,v) to
simplify notation (similarly, for the other two parts i · val and r · zip). By Theorem 1
we know that lb(l · zip(xi+1,v)) ∈ [p, p + 2], ub(r · zip(xi+1,v)) ∈ [q, q + 2], lb(i ·
val(xi+1,v)) ∈ [p, p+ 6] and ub(i · val(xi+1,v)) ∈ [q − 4, q + 2]. Hence, we compute
the 20 indicator values J l·zip

y (v), y ∈ [p, p + 2], Jr·zip
y (v), y ∈ [q, q + 2], J i·vallb

y (v),
y ∈ [p, p + 6], and J i·valub

y (v), y ∈ [q − 4, q + 2], v ∈ S0. For example, we define
J l·zip
y (v) = 1, iff lb(l · zip(xi+1,v)) = y and J l·zip

y (S0) = maxv∈S0 J
l·zip
y (v), y ∈

[p, p+2]. Similarly, we compute the other 19 indicators. This can be done in O(d) time
with a linear scan over cf (xi+1,v), v ∈ S0. Then we can compute

⋃
v∈S0

cf (xi+1,v) =
[a∗ ∼ b∗ − c∗ ∼ d∗] in 4 steps, each of which takes O(1) time.

Union of i · val. Theorem 1 shows that all i · val sets must overlap. Hence, the union
of i · val(xi+1,j) forms an interval. We find the minimum value y, y ∈ {p, . . . , p+ 6}
such that J i·vallb

y (S0) = 1. If such a value y exists then we set b∗ = y. Then we find the

largest value y′ ∈ {q − 4, . . . , q + 2} such that J i·valub

y′ (S0) = 1 and set c∗ = y′. Note
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that if y exists then y′ exists. If y does not exist we know that all cf (xi+1,v), v ∈ S0 are
zipper sets and we set b∗ = c∗ = ∅.

Union of l ·zip. Suppose b∗ �= ∅. We find indicators J l·zip
y (S0), y ∈ [p, p+2], that are

set to one. Set p′ to the minimum among [p, p+2], for which there exists J l·zip
p′ (S0) = 1.

If J l·zip
p+1 (S0) = 1 and J l·zip

p (S0) = 1 or J l·zip
p+2 (S0) = 1 or b∗ ∈ {p, p + 2} then set

a∗ and reset b∗, so that a∗ = b∗ = min(p + 1, p′) otherwise set a∗ = p′ and leave b∗

unchanged. Union of r · zip is similar to union of l · zip.
Union of zippers. Suppose b∗ = ∅. Then we determine which of 4 distinct sets

(Appendix C.1, Lemma 15) are present among c1f (xi+1,v), v ∈ S0. As there are at most
4 such that are zippers we can union them in O(1) time and identify the values a∗, b∗, c∗

and d∗.
We can compute c1 ∪ (c2 ' 1) in O(1). We omit the proof here due to space consid-

erations (see Appendix D, Lemma 19).

Complexity. For each j ∈ D(Xi), i ∈ [1, . . . , n], the forward cost set cf (xi,j), can be
computed in O(d). As we have O(nd) such sets, the total time complexity is O(nd2).
One way to reduce this complexity is to compute cf(xi,j) in O(1). ��

Corollary 2. Phase 2 of the algorithm SEQBINALGNEW runs in O(nd2) time.

Phase 4 of SEQBINALGNEW. We present the final phase of SEQBINALGNEW.

Lemma 9. Consider a SEQBIN(N,X,C,B) constraint such that B is monotone. For
each i ∈ [1, . . . , n], the total time complexity to compute c(xi,j) ∩ D(N) �= ∅, j ∈
D(Xi), is O(d). The total time complexity of Phase 4 is O(nd).

Proof. Preprocessing of D(N). We use a preprocessing step to compute cumulatively
sums soddv and sevenv to collect information about the presence of odd and even values
in D(N). Hence, sodd0 = 0, soddj+1 = soddj + (j ∈ D(N) ∧ j is odd ), j ∈ [1, . . . , πtop].
Similarly, we compute sevenj .This can be done in O(d). Then the value soddj1 − soddj2−1

shows how many odd values of D(N) are in the interval [j2, j1].
Performing the check. By Lemma 7 we know that c(xi,j) is either zipper or i·zipper.

If c(xi,j) is an even zipper set [a ∼ b] we check if sevenb − sevena−1 �= 0. If so the variable-
value pair Xi = j is supported. Similarly, if c(xi,j) is an odd zipper set. Suppose c(xi,j)
is an i·zipper set [a ∼ b− c ∼ d]. Then, we can check separately whether each of three
parts [a ∼ b] ∪ [b − c] ∪ [c ∼ d] has an intersection with D(N) using the cumulative
sum values. Hence, the check can be done in O(1) time. There are O(d) sets c(xi,j),
j ∈ D(Xi). Hence, the total time complexity of one layer is O(d).

Complexity. The graph has O(n) layers. So, the total time complexity is O(nd). ��

4.2 DC Algorithm with Monotone B and Row and Column Convex C

Finally, we show that if C is row and column convex then SEQBINALGNEW runs in
O(nd) time. The only remaining bottleneck is Phase 2.

Lemma 10. Consider a SEQBIN(N,X,C,B) constraint such that B is monotone and
C is row and column convex under that same ordering π that gives monotonicity. The
sets cf (xi,j) and cb(xi,j), j ∈ D(Xi), i ∈ [1, . . . , n], can be computed in time O(d).
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Proof. We give an algorithm to compute cf (xi,j). Computing cb(xi,j) is similar. Re-
call that in PATHDP (lines 4–5), cf (xi,j) =

⋃
v∈D(Xi+1),(j,v)∈B (cf (xi+1,v) ' c(j, v)).

Since B is monotone, the set of B supports of Xi = j, Supports(xi,j) = {v|(j, v) ∈
B ∧ v ∈ D(Xi+1)}, forms the interval [a, vt], vt ≤ πtop for some a such that vt is that
maximum value in D(Xi+1).

As C is row convex, the interval [a, vt] is partitioned into 3 subintervals [a, vt] =
[a, b]∪ [b, c]∪ [c, vt] such that c(j, v) = 1, v ∈ [a, b]∪ [c, vt] and c(j, v) = 0, v ∈ [b, c]
and we can write cf (xi,j) = c1 ∪ c2 ∪ c3 where c1 =

⋃
v∈[a,b]∩D(Xi+1)

cf (xi+1,v) '
1, c2 =

⋃
v∈[b,c]∩D(Xi+1)

cf (xi+1,v) and c3 =
⋃

v∈[c,d]∩D(Xi+1)
cf (xi+1,v) ' 1. We

exploit the fact that c1, c2, c3 are computed over intervals to avoid recomputation of the
indicator values for each c(xi,j), as was necessary in Lemma 8. We do this with an
O(d) time preprocessing step that allows us to then compute each c(xi,j) in O(1). This
reduces the complexity of lines 2–5 from O(n2d2) to O(nd).

The preprocessing step consists in computing cumulative sums over the indicator
values in an interval. For each indicator value Jz

y , z ∈ {l · zip, r · zip, i · val}, we
compute the array cszy(i), which counts the number of values in [1, i] for which the
indicator value is 1. For example, csl·zipy (0) = 0, csl·zipy (v) = csl·zipy (v−1)+J l·zip

y (v),
y ∈ [p, p+2], v ∈ D(Xi+1). To compute the cumulative sums we do a linear scan over
cf (xi+1,v), v ∈ D(Xi+1). Given these sums we can compute whether, for example,
lb(l · zip(xi+1,v)) = y, v ∈ [a′, b′] in constant time by checking whether csl·zipy (b′) −
csl·zipy (a′ − 1) > 0.

The rest of the proof is identical to Lemma 8 (subsection ‘Compute c1’.). It takes
O(1) time to compute c1 given the cumulative sums. We do this for d sets cf (xi,j) and
the preprocessing step takes O(d), so the total time complexity is O(d). ��

Corollary 3. Lemma 10 holds if the negation of C is row and column convex under the
same ordering π that gives monotonicity.

Proof. The only difference from the proof of Lemma 10 is that the interval [a, vt] of
supports of each value j ∈ D(Xi) is partitioned into [a, vt] = [a, b] ∪ [b, c] ∪ [c, vt],
such that c(j, v) = 0, v ∈ [a, b] ∪ [c, vt] and c(j, v) = 1, v ∈ [b, c]. ��

Example 8. Suppose cf (xi+1,v), v ∈ [1, 2, 3] contain the following forward costs:
cf (xi+1,1) = [1 ∼ 5 − 8 ∼ 12], cf (xi+1,2) = [3 ∼ 5 − 6 ∼ 10] and cf (xi+1,3) =
[2 ∼ 6− 8 ∼ 10]. The min value p is 1 and the max value q+2 is 12. First we compute
cumulative sums. The table below shows the non-zero vectors of cumulative sums.

v v v v
Cumulative sums 0 1 2 3 Cumulative sums 0 1 2 3 Cumulative sums 0 1 2 3 Cumulative sums 0 1 2 3

csl·zip1 (v) [0 1 1 1] csr·zip10 (v) [0 0 1 2] cs
i·vallb
5 (v) [0 1 2 2] cs

i·valub
6 (v) [0 0 1 1]

csl·zip2 (v) [0 0 0 1] csr·zip12 (v) [0 1 1 1] cs
i·vallb
6 (v) [0 0 0 1] cs

i·valub
8 (v) [0 1 1 2]

csl·zip3 (v) [0 0 1 1]

Suppose that the values 1, 2 and 3 are supports for cf (xi,1) = [a∗ ∼ b∗ − c∗ ∼ d∗].
Using Lemma 10, we find ∪j=[1,3]i·val(xi+1,j) = [5−8]∪[5−6]∪[6−8] = [5−8]. So
b∗ = 5 and c∗ = 8 Then, we check if there exists lb(l · zip(xi+1,j)) = y, y ∈ {1, 2, 3}
using cumulative sums. For y ∈ {1, 2, 3} we get that csl·zipy (3) − csl·zipy (0) > 0.
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So we set a∗ and reset b∗ so that a∗ = b∗ = min(2, 1) = 1. Finally, we check if
there exists ub(r · zip(xi+1,j)) = y, y ∈ {10, 11, 12}. For y ∈ {10, 12} we get that
csr·zipy (3) − csl·zipy (0) > 0. Moreover, the value q + 1 = 11 does not occur among
ub(r · zip(xi+1,j)). Hence, we set d∗ = 12. This gives cf (xi,1) = [1− 8 ∼ 12] ��

Corollary 4. The filtering algorithm SEQBINALGNEW enforces domain consistency
on CHANGE and SMOOTH in O(nd) time.

Proof. CHANGE is SEQBIN(N,X,C ∈ {=, �=, <,≤, >,≥}, TRUE). This satisfies
Lemma 10 as {=, <,≤, >,≥} are row/column convex as is the negation of {�=}.
SMOOTH is SEQBIN(N,X,C is {|Xi−Xi+1| > cst}, TRUE), cst ∈ N , is the negation
of row/column convex constraint {|Xi −Xi+1| ≤ cst}. ��

Corollary 5. The filtering algorithm SEQBINALGNEW enforces domain consistency
on INCREASINGNVALUE in O(nd) time.

Proof. INCREASINGNVALUE(X,N) is SEQBIN(X,N,≤,=) [1]. This version of
the SEQBIN constraint is counting-continuous and therefore c(xi,j) is an interval.
Hence, all costs cf , cb are intervals. Moreover, = is row and column convex, so
SEQBINALGNEW reduces to SEQBINALG and enforces GAC in O(nd). ��

Finally, we note that we can slightly generalize SEQBIN so that it does not require the
same B and C for every pair of variables as the proof of Theorem 1 does not rely on
the property that B and C are the same for each pair of consecutive variables.

5 Conclusions

The SEQBIN meta-constraint subsumes a number of important global constraints like
CHANGE, SMOOTH and INCREASINGNVALUE. We have shown that the filtering al-
gorithm for SEQBIN proposed in [1] has two drawbacks even under strong restric-
tions: it does not detect bounds disentailment and it is not idempotent. We identified
the cause for these problems, and proposed a new propagator that overcomes both
issues. Our algorithm is based on a connection to the problem of finding a path of
a given cost in a restricted n-partite graph. Our propagator enforces domain consis-
tency in O(nd2) and, for special cases of SEQBIN that include CHANGE, SMOOTH,
and INCREASINGNVALUE, in O(nd) time.
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Abstract. Despite the success of modern SAT solvers on industrial instances,
most of the progress relies on intensive experimental testing of improvements or
new ideas. In most cases, the behavior of CDCL solvers cannot be predicted and
even small changes may have a dramatic positive or negative effect. In this paper,
we do not try to improve the performance of SAT solvers, but rather try to im-
prove our understanding of their behavior. More precisely, we identify an essen-
tial structural property of industrial instances, based on the Eigenvector centrality
of a graphical representation of the formula. We show how this static value, com-
puted only once over the initial formula casts new light on the behavior of CDCL
solvers.

We also advocate for a better partitionning of industrial problems. Our experi-
ments clearly suggest deep discrepancies among the families of benchmarks used
in the last SAT competitions.

1 Introduction

Despite the impressive progress made in the practical solving of SAT problems in re-
cent years, little work has been done to experimentally study the behavior of those
so-called “Modern SAT Solvers”. Those solvers are based on a variant of the back-
track search DPLL [4] procedure with learning [7]. While the lookahead architecture of
DPLL solvers was relatively easy to understand (all the power of solvers were based on
efficient pruning heuristics), the behavior of CDCL (Conflict Driven Clause Learning
algorithms, i.e. the ”Modern SAT solvers”) is highly unpredictable, due to its lookback
architecture and dynamic branching heuristics.

Nowadays the picture is quite complex: we know the ingredients to build an effi-
cient SAT solver (highly reactive heuristic, resolution-based learning, frequent restarts,
frequent clause database reduction), and we are constantly improving them. However,
we can hardly explain why those ingredients are so efficient on ”real-world” problems.
It is claimed that those instances have a particular structure, well suited to the CDCL
mechanisms. But what exactly is this particular structure? It is understood that real
world instances are different from uniform random instances, but only recently has
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some progress been made toward characterizing this structure by finding that these in-
stances exhibit modularity [1,2]. It is also known [8] that many real-world instances
share the small-world property of graphs.

In this paper, we use a new approach to identify hidden structure in “application”
instances. First, we base our approach on a directed graph representation of the formula
that separates positive and negative literals, which is close to the factor graph repre-
sentation. Because some industrial instances are really huge, we compute the eigenvec-
tor centralities of the vertices by an efficient iterative algorithm inspired by the Google
PageRank algorithm. It provides a very good approximation of the centrality of a clause
or a literal in the formula. Intuitively, this measure gives us the frequency with which an
infinite random walk in the graph will traverse this vertex. Second, we relate this static
measure, computed only once on a preprocessed instance, to measures computed dur-
ing the search of a CDCL solver. Our experiments are performed with a typical CDCL
solver (GLUCOSE). Finally, we show how some structural properties of the initial for-
mula may guide the CDCL search. Moreover, we clearly show that the granularity of
SAT problems in the SAT competitions is now too coarse: some families of benchmarks
exhibit distinct behavior.

2 Eigenvector Centrality on SAT Directed Graphical Models

Due to lack of space, we assume the reader is familiar with CDCL solvers.

2.1 The SAT Directed Graphical Model

In previous work, SAT instances were studied via the Variable Incidence Graph (VIG)
or the Clause-Variable Incidence Graph (CVIG) [2]. Those graphs are undirected. In
the VIG representation, each variable of the initial formula is encoded by exactly one
vertex in the graphical model. An edge is added between the vertices of two variables
if they both occur in at least one clause in the initial formula. In the CVIG, the graph
is bipartite (each clause and each variable correspond to exactly one vertex). An edge
links a clause vertex and a variable vertex iff the variable occurs in the clause.

Variations are possible. Weights can be added, for instance (links induced by shorter
clauses being stronger). In the factor graph representation [3], based on CVIG, edges
are additionally labelled by the polarity of the variables in the CVIG graph.

Our graphical representation is contructed such that a random walk on it mimics a
random walk of a repair algorithm that would try to satisfy as many clauses as possible.
The graph is bipartite and vertices are labeled by clauses and literals (not variables).
There is an edge from a clause C to a literal l iff l occurs positively in the clause. There
is also an edge from a literal l′ to a clause C′ iff the literal l′ occurs negatively in the
clause. A random walk on this graph mimics the operation of a naive algorithm which
repairs a global assignment by randomly selecting a clause, randomly flipping a variable
that does not satisfy it and then moving on to a clause that is not satisfied by the new
value of that variable, repeating the process until it finds a satisfying assignment.
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2.2 The Pagerank Algorithm

The PageRank algorithm [5] is an efficient iterative algorithm approximating the sta-
tionary distribution of a random walk on a graph. It computes an approximation of
eigenvector centrality and is particularly well suited to large graphs, such as the web.
To ensure and accelerate convergence, it uses a damping factor, that allows the random
walk to jump, with a small probability, to any vertex, uniformly at random.

The centrality of a literal Cl is exactly the approximation of the eigenvector centrality
of the vertex returned by the above algorithm. We extend it to the centrality of a variable
by taking the geometric average over the two literals, Cvx =

√
Cx

2 + C¬x
2. In the rest

of this paper, we use both literal and variable centrality.
Once we have computed the centrality of all vertices in the graph, it is possible to

infer additional information. For instance, a vertex being the most central of its neigh-
borhood is likely to be on the fringe [6] between communities.

2.3 Pagerank on SAT Problems

We used a damping factor of 0.95 (Google used 0.85) and an accepted total error of
1e − 9 (sum of the changes of all vertices during one iteration). In most cases, the
algorithm converged after a few hundred iterations.

We chose to use the Satelite preprocessor on all instances before computing the cen-
trality and running the CDCL solver, for two reasons. First, the real instances passed to
CDCL solvers are, in most of the cases, filtered by preprocessing, so it makes sense to
work with the same input as the CDCL solver. Second, preprocessing get rid of noise
like unit clauses which may complicate computation (the Markov chain of a graph that
represents unit clauses is not ergodic) and produce measures that have a worse fit.

In our experiments, we tested all 658 benchmarks from SatRace 2008, SatCompeti-
tion 2009 and 2011, in the Application category. We fixed a cutoff of 5 Million conflicts,
but placed no bound on CPU time.

3 Observations and Analysis of CDCL Behavior

3.1 Centrality of Variables for Decisions / Propagations

In this first part, we focus only on variable centrality (not literal). We study the cen-
trality of variables picked by the branching heuristic. In figure 1(left), we compare the
average centrality of picked variables against the average centrality of all variables. In
this figure, as in the rest of the figures in this paper, each point representing one in-
stance. This figure clearly shows that picked variables are the most central variables in
the formula. They are almost always above the average centrality of the formula. This
may be one factor of the efficiency of the VSIDS heuristics: by branching on central
variables, it encourages decomposition of the formula.

The comparison with the figure 1 (right) is also very interesting. Propagated variables
are, in almost all the cases, more central than average. However, closer examination
shows that the points on the left cluster below those on the right. This raises the question
of whether decision variables are more central than propagated variables. We answer
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Fig. 1. (Left) Average Centrality of Picked Variables (x-axis) against Average Centrality of all
Variables (y-axis). (Right) Average Centrality of Propagated Variables (x-axis) against Average
Centrality of all Variables (y-axis).
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Fig. 2. Average Centrality of Variables (x-axis) occurring in conflict clauses against Average Cen-
trality of all Variables (y-axis) occurring in learnt clauses

this question (positively) in section 3.4, by first refining the benchmarks into families: a
few families of benchmarks display opposite behaviors and no clear global picture can
be drawn without splitting the set of benchmarks into families.

3.2 Centrality of Variables Occurring in Conflicts and Learnt Clauses

In this experiment, we compare the centrality of conflict clauses (clauses found to be
empty during search) against learnt clauses. Because it was impractical to recompute the
centrality of the entire formula at each conflict, we measure, for a clause, its centrality as
the average of the centrality of its variables (this is again not based on literal centrality).

The results, shown in figure 2, clearly state that learnt clauses contain more central
variables than conflict clauses. This is a surprising result. If learnt clauses link together
central variables, it intuitively follows that conflict clauses should also be central, but
this is not the case. One explanation may come from the notion of fringe (see section
2.2). Learnt clauses may be built upon a few variables from fringes. Conflicts could
be detected inside a cluster, thus having no fringe variables in it. This is clearly worth
further investigation.
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Fig. 3. (Left) Average Centrality of Learnt Literals during conflict analysis (x axis) against the
Average Centrality of all learnt literals. (Right) Average Centrality of Learnt Literals during the
first quartile of the computation (x axis) against the Average Centrality of all learnt literals.

3.3 Centrality of Learnt Unit Clauses

Unit clauses learnt during search are particularly important. They clearly simplify the
problem, and may be considered as witnesses of which parts of the search space the
solver has explored. Typically, in an UNSAT instance, the solver will learn unit clauses
at a rate that is relatively high in the beginning of the search and slows as the search
goes on, suggesting that each new unit clause is harder and harder to prove. In this
experiment, we explore whether there is a relationship between the “hardness” of a
literal (when it was learnt) and its centrality. We also note here that this behavior is also
observed on SAT instances, but is not general. On some problems, the solver learns no
unit clauses until the very end.

There are in fact two kinds of unit clauses that can be learnt. When conflict analy-
sis produces a unit clause, the solver immediately adds this literal as a new fact in the
formula and, in many cases, a few other unit clauses are immediately propagated. We
distinguish this first literal from the propagated literals, even though they were propa-
gated at the root of the search tree, and call it a “really” learnt literal.

From now on, we consider literal centrality instead of variable centrality. First, figure
3 (left) shows the different kind of unit clauses learnt. This figure clearly shows that
the “really” learnt literal is the most central one. Intuitively, other literals simply follow
from that assignment. This is compatible with our hypothesis of CDCL solvers working
on fringes. This can also be explained by the fact that the branching heuristic favors
more central variables (see figure 1). Thus, central literals are the most likely to be
learnt first.

We now answer the initial question of this subsection. The answer is given in figure 3
(right). We compare the average centrality of the first quartile of all learnt literals against
the centrality of the learnt literals during the whole computation (until the formula is
solved or the cutoff is reached). Even if it is not clearly above the y = x line, there is a
general tendency showing that centrality of learnt literals tends to increase as the search
progresses (the regression line is clearly above the line). This result is interesting for
several reasons. First, it explains in part how CDCL solvers focus on particular parts of
the search space. Second, it casts new light on parallelization of SAT solvers. In order to
efficiently parallelize a CDCL solver, we need to understand which parts of the search
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Fig. 4. Average Centrality of Picked Literals against Average Centrality of Propagated Literals,
refined by series of benchmarks

space the solver explores, in order to distribute the work evenly. More precisely, by
knowing which parts of the search space are relevant to the current proof, it is possible
to distribute the effort by giving each process a relevant and precise part of the proof to
build, instead of only ensuring orthogonal searches. Moreover, it shows that, intuitively,
each unit clause may have a price, in terms of proof length. That means that trying to
prove it by orthogonal search may not be the best choice (each search will have to pay
more or less the same price).

3.4 Using Families of Benchmarks for Refining Results

We now refine our study by selecting subfamilies among the 653 benchmarks we tested.
It is indeed hard to identify general tendencies, because of the discrepancy between
different families. We start with figure 4. It shows that, in general, CDCL solvers branch
on central literals and propagate less central ones. Most of the instances are below the
y = x line except a few families. For instance, the crypto problems (gss, gusmd5) do
not follow this trend. This result suggests that these families of instances might benefit
from specialized CDCL solvers.

The first UIP literal [9], during conflict analysis, is also an essential ingredient of
CDCL solvers. Figure 5 shows that, except for a few families (smtlib, velev, vmpc),
the FUIP literal tends to be one of the most central literal in learnt clauses. Despite the
discrepancy between decision literals and propagated literals, even in crypto problems,
first UIP literals tend to be very central (see the very small cloud of the gss problems
for instance).
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clauses. Most of the instances are below the line y = x except a few families.

3.5 Influence of the Biases of Variables on the Search

Once the centrality of literals has been computed, one may define the biases of a vari-
able as the tendency of the random walk to visit more often the variable positively
or negatively. In this last experiment, we explore the relationship between this ten-
dency and the actual CDCL search. The biases of a variable x is defined as bi(x) =
(Cxpos − Cxneg)/(Cxpos + Cxneg), and takes values between -1 and 1. We also de-
fined the “observed Biases” as ob(x)(Nxpos−Nxneg)/(Nxpos+Nxneg). In the above
notations, Cxpos (resp. Cxneg) is the centrality of literal x (resp. ¬x). Nxpos (resp.
Nxneg) is the number of times the literal x (resp. ¬x) is propagated during the CDCL
search (until the solution is found, or the bound of 5M conflicts is reached).

In order to study the possible relationships between bi(x) and ob(x), we computed
the disagreement between them, d(x) = |bi(x) − ob(x)| (a value between 0 and 2).
A value of 1, for instance, means that the CDCL solver did not follow the predic-
tion given by bi(x). A value of 0 means that it strictly follows it, and a value of 2
means that it systematically take the opposite. We also refined the predictive power of
bi(x) by considering that only variables having |bi(x)| > 0.5 are “biased”, meaning
that the bias value is significant. We do the same for ob(x) by considering it as mean-
ingful if the measure for the variable x is based on more than 10 assignments during
search. The x-axis of figure 6 takes all variables into account (even variables with bi-
ases of 0, or variables that were never assigned during search), while the y-axis takes
only biased and meaningful variables. Note that the existence of biased variables is not
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guaranteed. On some instances, there was only a few biased variables. However, as
shown figure 6, some instances show strong correlation between the two values, es-
pecially when restricting the cases to biased variables. Clearly, no general rule can be
drawn here. However, benchmarks from the same families generally cluster around a
common disagreement value.

4 Conclusion

We have shown in this paper that the the centrality of literals and variables in indus-
trial SAT instances is correlated with various aspects of the behavior of CDCL solvers
during search. Let us recall that the centrality is computed only at the beginning. The
values we compute do not change during search. Despite this approximation, the re-
sults we obtained clearly show that centrality plays an important role. This is also one
of the first experimental studies of CDCL solvers, that link such a static measure to
their actual behavior. We also showed that, even in the application category, families
of benchmarks show a large discrepancy in their behavior. This clearly suggests that a
finer granularity of categories is needed, in order to specialize solvers and continue to
improve them.

However, we were not yet able to turn these observations into predictions and guess,
for instance, which parts of the search space the solve is likely to explore or which literal
are likely to be first UIP literals or unit clauses. Our quest to explain and understand the
CDCL solvers needs more experimental study of those complex systems we built.
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Abstract. Parity constraints, common in application domains such as circuit ver-
ification, bounded model checking, and logical cryptanalysis, are not necessarily
most efficiently solved if translated into conjunctive normal form. Thus, special-
ized parity reasoning techniques have been developed in the past for propagating
parity constraints. This paper studies the questions of deciding whether unit prop-
agation or equivalence reasoning is enough to achieve full propagation in a given
parity constraint set. Efficient approximating tests for answering these questions
are developed. It is also shown that equivalence reasoning can be simulated by
unit propagation by adding a polynomial amount of redundant parity constraints
to the problem. It is proven that without using additional variables, an exponen-
tial number of new parity constraints would be needed in the worst case. The
presented classification and propagation methods are evaluated experimentally.

1 Introduction

Encoding a problem instance in conjunctive normal form (CNF) allows very efficient
Boolean constraint propagation and conflict-driven clause learning (CDCL) techniques.
This has contributed to the success of propositional satisfiability (SAT) solvers (see
e.g. [1]) in a number of industrial application domains. On the other hand, an in-
stance consisting only of parity (xor) constraints can be solved in polynomial time
using Gaussian elimination but CNF-based solvers relying only on basic Boolean con-
straint propagation tend to scale poorly on the straightforward CNF-encoding of the
instance. To handle CNF instances including parity constraints, common in application
domains such as circuit verification, bounded model checking, and logical cryptanal-
ysis, several approaches have been developed [2,3,4,5,6,7,8,9,10,11,12,13]. These ap-
proaches extend CNF-level SAT solvers by implementing different forms of constraint
propagation for parity constraints, ranging from plain unit propagation via equivalence
reasoning to Gaussian elimination. Compared to unit propagation, which has efficient
implementation techniques, equivalence reasoning and Gaussian elimination allow
stronger propagation but are computationally much more costly.

In this paper our main goal is not to design new inference rules and data structures
for propagation engines, but to develop (i) methods for analyzing the structure of par-
ity constraints in order to detect how powerful a parity reasoning engine is needed
to achieve full forward propagation, and (ii) translations that allow unit propagation to
simulate equivalence reasoning. We first present a method for detecting parity constraint
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sets for which unit propagation achieves full forward propagation. For instances that do
not fall into this category, we show how to extract easy-to-propagate parity constraint
parts so that they can be handled by unit propagation and the more powerful reason-
ing engines can take care of the rest. We then describe a method for detecting parity
constraint sets for which equivalence reasoning achieves full forward propagation. By
analyzing the set of parity constraints as a constraint graph, we can characterize equiv-
alence reasoning using the cycles in the graph. By enumerating these cycles and adding
a new linear combination of the original constraints for each such cycle to the instance,
we can achieve an instance in which unit propagation simulates equivalence reasoning.
As there may be an exponential number of such cycles, we develop another transla-
tion to simulate equivalence reasoning with unit propagation. The translation is polyno-
mial as new variables are introduced; we prove that if introduction of new variables is
not allowed, then there are instance families for which polynomially sized simulation
translations do not exist. This translation can be optimized significantly by adding only
a selected subset of the new parity constraints. Even though the translation is meant
to simulate equivalence reasoning with unit propagation, it can augment the strength
of equivalence reasoning if equivalence reasoning does not achieve full forward prop-
agation on the original instance. The presented detection and translation methods are
evaluated experimentally on large sets of benchmark instances.

2 Preliminaries

An atom is either a propositional variable or the special symbol & which denotes the
constant “true”. A literal is an atom A or its negation ¬A; we identify ¬& with ⊥ and
¬¬A with A. A traditional, non-exclusive or-clause is a disjunction l1 ∨ · · · ∨ ln of
literals. Parity constraints are formally presented with xor-clauses: an xor-clause is an
expression of form l1 ⊕ · · · ⊕ ln, where l1, . . . , ln are literals and the symbol ⊕ stands
for the exclusive logical or. In the rest of the paper, we implicitly assume that each
xor-clause is in a normal form such that (i) each atom occurs at most once in it, and
(ii) all the literals in it are positive. The unique (up to reordering of the atoms) normal
form for an xor-clause can be obtained by applying the following rewrite rules in any
order until saturation: (i) ¬A⊕ C � A⊕ &⊕ C, and (ii) A⊕A⊕ C � C, where
C is a possibly empty xor-clause and A is an atom. For instance, the normal form of
¬x1 ⊕ x2 ⊕ x3 ⊕ x3 is x1 ⊕ x2 ⊕ &, while the normal form of x1 ⊕ x1 is the empty
xor-clause (). We say that an xor-clause is unary/binary/ternary if its normal form has
one/two/three variables, respectively. We will identify x ⊕ & with the literal ¬x. For
convenience, we can represent xor-clauses in equation form x1 ⊕ ... ⊕ xk ≡ p with
p ∈ {⊥,&}; e.g., x1 ⊕ x2 is represented with x1 ⊕ x2 ≡ & and x1 ⊕ x2 ⊕ & with
x1 ⊕ x2 ≡ ⊥. The straightforward CNF translation of an xor-clause D is denoted by
cnf(D); for instance, cnf(x1⊕x2⊕x3⊕&) = (¬x1∨¬x2∨¬x3)∧ (¬x1∨x2∨x3)∧
(x1 ∨ ¬x2 ∨ x3) ∧ (x1 ∨ x2 ∨ ¬x3). A clause is either an or-clause or an xor-clause.

A truth assignment τ is a set of literals such that & ∈ τ and ∀l ∈ τ : ¬l /∈ τ . We
define the “satisfies” relation |= between a truth assignment τ and logical constructs as
follows: (i) if l is a literal, then τ |= l iff l ∈ τ , (ii) if C = (l1 ∨· · ·∨ ln) is an or-clause,
then τ |= C iff τ |= li for some li ∈ {l1, . . . , ln}, and (iii) if C = (l1 ⊕ · · · ⊕ ln) is
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an xor-clause, then τ |= C iff τ is total for C (i.e. ∀1 ≤ i ≤ n : li ∈ τ ∨ ¬li ∈ τ ) and
τ |= li for an odd number of literals of C. Observe that no truth assignment satisfies the
empty or-clause () or the empty xor-clause (), i.e. these clauses are synonyms for⊥.

A cnf-xor formula φ is a conjunction of clauses, expressible as a conjunction

φ = φor ∧ φxor, (1)

where φor is a conjunction of or-clauses and φxor is a conjunction of xor-clauses. A
truth assignment τ satisfies φ, denoted by τ |= φ, if it satisfies each clause in it; φ is
called satisfiable if there exists such a truth assignment satisfying it, and unsatisfiable
otherwise. The cnf-xor satisfiability problem studied in this paper is to decide whether
a given cnf-xor formula has a satisfying truth assignment. A formula φ′ is a logical
consequence of a formula φ, denoted by φ |= φ′, if τ |= φ implies τ |= φ′ for all truth
assignments τ that are total for φ and φ′. The set of variables occurring in a formula φ
is denoted by vars(φ), and lits(φ) = {x,¬x | x ∈ vars(φ)} is the set of literals over
vars(φ). We use C [A/D] to denote the (normal form) xor-clause that is identical to C
except that all occurrences of the atom A in C are substituted with D once. For instance,
(x1 ⊕ x2 ⊕ x3) [x1/(x1 ⊕ x3)] = x1 ⊕ x3 ⊕ x2 ⊕ x3 = x1 ⊕ x2.

2.1 The DPLL(XOR) Framework

To separate parity constraint reasoning from the CNF-level reasoning, we apply the re-
cently introduced DPLL(XOR) framework [10,12]. The idea in the DPLL(XOR) frame-
work for satisfiability solving of cnf-xor formulas φ = φor ∧ φxor is similar to that in
the DPLL(T ) framework for solving satisfiability of quantifier-free first-order formulas
modulo a background theory T (SMT, see e.g. [14,15]). In DPLL(XOR), see Fig. 1 for
a high-level pseudo-code, one employs a conflict-driven clause learning (CDCL) SAT
solver (see e.g. [1]) to search for a satisfying truth assignment τ over all the variables
in φ = φor∧φxor. The CDCL-part takes care of the usual unit clause propagation on the
cnf-part φor of the formula (line 4 in Fig. 1), conflict analysis and non-chronological
backtracking (line 15–17), and heuristic selection of decision literals (lines 19–20)
which extend the current partial truth assignment τ towards a total one.

To handle the parity constraints in the xor-part φxor, an xor-reasoning module M is
coupled with the CDCL solver. The values assigned in τ to the variables in vars(φxor)
by the CDCL solver are communicated as xor-assumption literals to the module (with
the ASSIGN method on line 6 of the pseudo-code). If l̃1, ..., l̃m are the xor-assumptions
communicated to the module so far, then the DEDUCE method (invoked on line 7) of
the module is used to deduce a (possibly empty) list of xor-implied literals l̂ that are
logical consequences of the xor-part φxor and xor-assumptions, i.e. literals for which
φxor ∧ l̃1 ∧ ... ∧ l̃m |= l̂ holds. These xor-implied literals can then be added to the cur-
rent truth assignment τ (line 11) and the CDCL part invoked again to perform unit
clause propagation on these. The conflict analysis engine of CDCL solvers requires
that each implied (i.e. non-decision) literal has an implying clause, i.e. an or-clause
that forces the value of the literal by unit propagation on the values of literals appear-
ing earlier in the truth assignment (which at the implementation level is a sequence of
literals instead of a set). For this purpose the xor-reasoning module has a method EX-
PLAIN that, for each xor-implied literal l̂, gives an or-clause C of form l′1 ∧ ... ∧ l′k ⇒ l̂,
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solve(φ = φor ∧ φxor):
1. initialize xor-reasoning module M with φxor

2. τ = 〈〉 /*the truth assignment*/
3. while true:
4. (τ ′, confl) = UNITPROP(φor, τ ) /*unit propagation*/
5. if not confl : /*apply xor-reasoning*/
6. for each literal l in τ ′ but not in τ : M .ASSIGN(l)
7. (l̂1, ..., l̂k) = M.DEDUCE()
8. for i = 1 to k:
9. C = M.EXPLAIN(l̂i)

10. if l̂i = ⊥ or ¬l̂i ∈ τ ′: confl = C, break
11. else if l̂i /∈ τ ′: add l̂Ci to τ ′

12. if k > 0 and not confl :
13. τ = τ ′; continue /*unit propagate further*/
14. let τ = τ ′

15. if confl : /*standard Boolean conflict analysis*/
16. analyze conflict, learn a conflict clause
17. backjump or return “unsatisfiable” if not possible
18. else:
19. add a heuristically selected unassigned literal in φ to τ
20. or return “satisfiable” if no such variable exists

Fig. 1. The essential skeleton of the DPLL(XOR) framework

i.e. ¬l′1 ∨ ... ∨ ¬l′k ∨ l̂, such that (i) C is a logical consequence of φxor, and (ii) l′1, ..., l
′
k

are xor-assumptions made or xor-implied literals returned before l̂. An important spe-
cial case occurs when the “false” literal⊥ is returned as an xor-implied literal (line 10),
i.e. when an xor-conflict occurs; this implies that φxor ∧ l̃1 ∧ ... ∧ l̃m is unsatisfiable. In
such a case, the clause returned by the EXPLAIN method is used as the unsatisfied clause
confl initiating the conflict analysis engine of the CDCL part (lines 10 and 15–17). In
this paper, we study the process of deriving xor-implied literals and will not describe in
detail how implying or-clauses are computed; the reader is referred to [10,12,13].

Naturally, there are many xor-module integration strategies that can be considered
in addition to the one described in the above pseudo-code. For instance, if one wants
to prioritize xor-reasoning, the xor-assumptions can be given one-by-one instead. Simi-
larly, if CNF reasoning is to be prioritized, the xor-reasoning module can lazily compute
and return the xor-implied literals one-by-one only when the next one is requested.

In addition to our previous work [10,12,13], also cryptominisat [9,11] can be seen to
follow this framework.

3 Unit Propagation

We first consider the problem of deciding, given an xor-clause conjunction, whether the
elementary unit propagation technique is enough for always deducing all xor-implied
literals. As we will see, this is actually the case for many “real-world” instances.



Classifying and Propagating Parity Constraints 361

⊕-Unit+:
x C

C [x/�]
⊕-Unit−:

x⊕� C

C [x/⊥]

Fig. 2. Inference rules of UP; The symbol x is variable and C is an xor-clause

The cnf-xor instances having such xor-clause conjunctions are probably best handled
either by translating the xor-part into CNF or with unit propagation algorithms on parity
constraints [8,9,13] instead of more complex xor-reasoning techniques.

To study unit propagation on xor-clauses, we introduce a very simple xor-reasoning
system “UP” that can only deduce the same xor-implied literals as CNF-level unit prop-
agation would on the straightforward CNF translation of the xor-clauses. To do this,
UP implements the deduction system with the inference rules shown in Fig. 2. A UP-
derivation from a conjunction of xor-clauses ψ is a sequence of xor-clauses D1, . . . , Dn

where each Di is either (i) in ψ, or (ii) derived from two xor-clauses Dj , Dk with
1 ≤ j < k < i using the inference rule ⊕-Unit+ or ⊕-Unit−. An xor-clause D is UP-
derivable from ψ, denoted ψ (up D, if there exists a UP-derivation from ψ where D
occurs. As an example, let φxor = (a⊕d⊕e)∧(d⊕c⊕f)∧(a⊕b⊕c). Fig. 3(a) illustrates
a UP-derivation from φxor ∧ (a)∧ (¬d); as ¬e occurs in it, φxor ∧ (a)∧ (¬d) (up ¬e and
thus unit propagation can deduce the xor-implied literal ¬e under the xor-assumptions
(a) and (¬d).

Definition 1. A conjunction φxor of xor-clauses is UP-deducible if for all l̃1, ..., l̃k, l̂ ∈
lits(φxor) it holds that (i) if φxor∧ l̃1∧...∧ l̃k is unsatisfiable, then φxor∧ l̃1∧...∧ l̃k (up ⊥,
and (ii) φxor ∧ l̃1 ∧ ... ∧ l̃k |= l̂ implies φxor ∧ l̃1 ∧ ... ∧ l̃k (up l̂ otherwise.

Unfortunately we do not know any easy way of detecting whether a given xor-clause
conjunction is UP-deducible. However, as proven next, xor-clause conjunctions that
are “tree-like”, an easy to test structural property, are UP-deducible. For this, and also
later, we use the quite standard concept of constraint graphs: the constraint graph of an
xor-clause conjunction φxor is a labeled bipartite graph G = 〈V,E, L〉, where

– the set of vertices V is the disjoint union of (i) variable vertices Vvars = vars(φxor)
which are graphically represented with circles, and (ii) xor-clause vertices Vclauses =
{D | D is an xor-clause in φxor} drawn as rectangles,

– E = {{x,D} | x ∈ Vvars ∧D ∈ Vclauses ∧ x ∈ vars(D)} are the edges connecting
the variables and the xor-clauses in which they occur, and

– L labels each xor-clause vertex x1 ⊕ ...⊕ xk ≡ p with the parity p.

A conjunction φxor is tree-like if its constraint graph is a tree or a union of disjoint trees.

Example 1. The conjunction (a⊕ b⊕ c)∧ (b⊕ d⊕ e)∧ (c⊕ f ⊕ g⊕&) is tree-like; its
constraint graph is given in Fig. 3(b). On the other hand, the conjunction (a⊕ b⊕ c) ∧
(a⊕ d⊕ e) ∧ (c⊕ d⊕ f) ∧ (b⊕ e⊕ f), illustrated in Fig. 3(c), is not tree-like.

Theorem 1. If a conjunction of xor-clauses φxor is tree-like, then it is UP-deducible.

Note that not all UP-deducible xor-clause constraints are tree-like. For instance, (a ⊕
b) ∧ (b ⊕ c) ∧ (c⊕ a⊕ &) is satisfiable and UP-deducible but not tree-like. No binary
xor-clauses are needed to establish the same, e.g., (a⊕ b⊕ c)∧ (a⊕ d⊕ e)∧ (c⊕ d⊕
f) ∧ (b⊕ e⊕ f) considered in Ex. 1 is satisfiable and UP-deducible but not tree-like.
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Fig. 3. A UP-derivation and two constraint graphs

3.1 Experimental Evaluation

To evaluate the relevance of this tree-like classification, we studied the benchmark in-
stances in “crafted” and “industrial/application” categories of the SAT Competitions
2005, 2007, and 2009 as well as all the instances in the SAT Competition 2011 (avail-
able at http://www.satcompetition.org/). We applied the xor-clause extrac-
tion algorithm described in [11] to these CNF instances and found a large number of
instances with xor-clauses. To get rid of some “trivial” xor-clauses, we eliminated unary
clauses and binary xor-clauses from each instance by unit propagation and substitution,
respectively. After this easy preprocessing, 474 instances (with some duplicates due to
overlap in the competitions) having xor-clauses remained. Of these instances, 61 are
tree-like.

As shown earlier, there are UP-deducible cnf-xor instances that are not tree-like.
To find out whether any of the 413 non-tree-like cnf-xor instances we found falls into
this category, we applied the following testing procedure to each instance: randomly
generate xor-assumption sets and for each check, with Gaussian elimination, whether
all xor-implied literals were propagated by unit propagation. For only one of the 413
non-tree-like cnf-xor instances the random testing could not prove that it is not UP-
deducible; thus the tree-like classification seems to work quite well in practice as an ap-
proximation of detecting UP-deducibility. More detailed results are shown in Fig. 4(a).
The columns “probably Subst” and “cycle-partitionable” are explained later.

As unit propagation is already complete for tree-like cnf-xor instances, it is to be ex-
pected that the more complex parity reasoning methods do not help on such instances.
To evaluate whether this is the case, we ran cryptominisat 2.9.2 [9,11] on the 61 tree-
like cnf-xor instances mentioned above in two modes: (i) parity reasoning disabled with
CNF input, and (i) parity reasoning enabled with cnf-xor form input and full Gaus-
sian elimination. The results in Fig. 4(b) show that in this setting it is beneficial to use
CNF-level unit propagation instead of the computationally more expensive Gaussian
elimination method.

3.2 Clausification of Tree-Like Parts

As observed above, a substantial number of real-world cnf-xor instances are not
tree-like. However, in many cases a large portion of the xor-clauses may appear in

http://www.satcompetition.org/
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SAT Competition
2005 2007 2009 2011

instances 857 376 573 1200
with xors 123 100 140 111

probably UP 19 10 18 15
tree-like 19 9 18 15

probably Subst 20 21 52 40
cycle-partitionable 20 13 24 40  1
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Fig. 4. Instance classification (a), and cryptominisat run-times on tree-like instances (b)

tree-like parts of φxor. As an example, consider the xor-clause conjunction φxor having
the constraint graph shown in Fig. 5(a). It is not UP-deducible as φxor ∧ a ∧ ¬j |= e
but φxor ∧ a ∧ ¬j � (up e. The xor-clauses (i), (g ⊕ h ⊕ i ⊕ &), (e ⊕ f ⊕ g), and
(d ⊕ k ⊕ m ⊕ &) form the tree-like part of φxor. Formally the tree-like part of φxor,
denoted by treepart(φxor), can be defined recursively as follows: (i) if there is a D =
(x1 ⊕ ...⊕ xn ⊕ p) with n ≥ 1 in φxor and an n− 1-subset W of {x1, ..., xn} such that
each xi ∈W appears only in D, then treepart(φxor) = {D}∪ treepart(φxor \D), and
(ii) treepart(φxor) = ∅ otherwise.

One can exploit such tree-like parts by applying only unit propagation on them and
letting the more powerful but expensive xor-reasoning engines take care only of the
non-tree-like parts. Sometimes such a strategy can lead to improvements in run time.
For example, consider a set of 320 cnf-xor instances modeling known-plaintext attack
on Hitag2 cipher with 30–39 stream bits given. These instances typically have 2600–
3300 xor-clauses, of which roughly one fourth are in the tree-like part. Figure 5(b)
shows the result when we run cryptominisat 2.9.2 [9,11] on these instances with three
configurations: (i) Gaussian elimination disabled, (ii) Gaussian elimination enabled, and
(iii) Gaussian elimination enabled and the tree-like parts translated into CNF. On these
instances, applying the relatively costly Gaussian elimination to non-tree-like parts only
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Fig. 5. A constraint graph (a), and run-times of cryptominisat on Hitag2 instances (b)
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Fig. 6. Relative tree-like part sizes and run-times of non-tree-like instances

is clearly beneficial on the harder instances, probably due to the fact that the Gaussian
elimination matrices become smaller. Smaller matrices consume less memory, are faster
to manipulate, and can also give smaller xor-explanations for xor-implied literals. On
some other benchmark sets, no improvements are obtained as instances can contain no
tree-like parts (e.g. our instances modeling known-plaintext attack on TRIVIUM cipher)
or the tree-like parts can be very small (e.g. similar instances on the Grain cipher). In
addition, the effect is solver and xor-reasoning module dependent: we obtained no run
time improvement with the solver of [10] applying equivalence reasoning.

We also ran the same cryptominisat configurations on all the 413 above mentioned
non-tree-like SAT Competition benchmark instances. The instances have a large num-
ber of xor-clauses (the largest number is 312707) and Fig. 6(a) illustrates the relative
tree-like part sizes. As we can see, a substantial amount of instances have a very sig-
nificant tree-like part. Figure 6(b) shows the run-time results, illustrating that applying
Gaussian elimination on non-tree-like instances can bring huge run-time improvements.
However, one cannot unconditionally recommend using Gaussian elimination on non-
tree-like instances as on some instances, especially in the “industrial” category, the run-
time penalty of Gaussian elimination was also huge. Clausification of tree-like parts
brings quite consistent improvement in this setting.

4 Equivalence Reasoning

As observed in the previous section, unit propagation is not enough for deducing all xor-
implied literals on many practical cnf-xor instances. We next perform a similar study
for a stronger deduction system, a form of equivalence reasoning [10,12]. Although it
cannot deduce all xor-implied literals either, on many problems it can deduce more and
has been shown to be effective on some instance families. The look-ahead based solvers
EqSatz [2] and march eq [7] apply same kind of, but not exactly the same, equivalence
reasoning we consider here.

To study equivalence reasoning on xor-clauses, we introduce two equally powerful
xor-reasoning systems: “Subst” [10] and “EC” [12]. The first is simpler to implement
and to present while the second works here as a tool for analyzing the structure of xor-
clauses with respect to equivalence reasoning. The “Subst” system simply adds two
substitution rules to UP:
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⊕-Eqv+:
x⊕ y ⊕& C

C [x/y]
and ⊕-Eqv−:

x⊕ y C
C [x/y ⊕&]

The “EC” system, standing for Equivalence Class based parity reasoning, has the infer-
ence rules shown in Fig. 7. As there are no inference rules for xor-clauses with more
than three variables, longer xor-clauses have to be eliminated, e.g., by repeatedly ap-
plying the rewrite rule (x1⊕x2⊕ . . .⊕xn) � (x1 ⊕ x2 ⊕ y) ∧ (¬y ⊕ x3 ⊕ ...⊕ xn),
where y is a fresh variable not occurring in other clauses. We define Subst- and EC-
derivations, the relations (Subst and (ec, as well as Subst- and EC-deducibility similarly
to UP-derivations, (up, and UP-deducibility, respectively.

Example 2. Figure 8 shows (parts of) Subst- and EC-derivations from φxor∧(a)∧(¬j),
where φxor is the xor-clause conjunction shown in Fig. 5(a).

As shown in [12], on cnf-xor instances with xor-clauses having at most three variables,
Subst and EC can deduce exactly the same xor-implied literals. Thus, such an instance
φxor is Subst-deducible if and only if it is EC-deducible.

The EC-system uses more complicated inference rules than Subst, but it allows
us to characterize equivalence reasoning as a structural property of constraint graphs.
The EC rules Conflict, ⊕-Unit2, and ⊕-Unit3 are for unit propagation on xor-clauses
with 1–3 variables, and the rules ⊕-Imply and ⊕-Conflict for equivalence reasoning. To
simplify the following proofs and translations, we consider a restricted class of xor-
clauses. A conjunction of xor-clauses φxor is in 3-xor normal form if (i) every xor-
clause in it has exactly three variables, and (ii) each pair of xor-clauses shares at most
one variable. Given a φxor, an equi-satisfiable 3-xor normal form formula can be ob-
tained by (i) eliminating unary and binary xor-clauses by unit propagation and sub-
stitution, (ii) cutting longer xor-clauses as described above, and (iii) applying the fol-
lowing rewrite rule: (x1 ⊕ x2 ⊕ x3) ∧ (x2 ⊕ x3 ⊕ x4) � (x1 ⊕ x2 ⊕ x3) ∧ (x1 ⊕
x4 ⊕ &). In this normal form, ⊕-Conflict is actually a shorthand for two applications
of ⊕-Imply and one application of Conflict, so the rule ⊕-Imply succinctly character-
izes equivalence reasoning. We now prove that the rule ⊕-Imply is closely related to
the cycles in the constraint graphs. An xor-cycle is an xor-clause conjunction of form
(x1⊕x2⊕y1 ≡ p1) ∧ · · · ∧ (xn−1⊕xn⊕yn−1 ≡ pn−1) ∧ (x1⊕xn⊕yn ≡ pn), abbrevi-
ated with XC (〈x1, ..., xn〉, 〈y1, ..., yn〉, p) where p = p1 ⊕ ... ⊕ pn. We call x1, ..., xn

the inner variables and y1, ..., yn the outer variables of the xor-cycle.

x x⊕�
⊥

x⊕p1 x⊕y⊕p2
y ⊕ (p1⊕p2⊕�)

x1⊕x2⊕p1⊕� . . . xn−1⊕xn⊕pn−1⊕� x1⊕xn⊕y⊕p
y ⊕ (p1 ⊕ p2 ⊕ . . .⊕ pn−1 ⊕ p)

(a) Conflict (b) ⊕-Unit2 (d) ⊕-Imply

x⊕p1 x⊕y⊕z⊕p2
y ⊕ z ⊕ (p1⊕p2⊕�)

x1⊕x2⊕p1⊕� ... xn−1⊕xn⊕pn−1⊕� xn⊕x1⊕pn⊕�
provided that p1⊕ . . .⊕pn=�

⊥
(c) ⊕-Unit3 (e) ⊕-Conflict

Fig. 7. Inference rules of EC; the symbols x, xi, y, z are all variables while the pi symbols are
constants ⊥ or �



366 T. Laitinen, T. Junttila, and I. Niemelä
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(a) a Subst-derivation (b) an EC-derivation

Fig. 8. Subst- and EC-derivations from φxor ∧ (a) ∧ (¬j), where φxor is given in Fig. 5(a)

Example 3. The cnf-xor instance shown in Fig. 5(a) has one xor-cycle (a⊕b⊕c⊕&)∧
(c⊕ d⊕ e) ∧ (b ⊕ d⊕ j), where b, c, d are the inner and a, e, j the outer variables.

A key observation is that the ⊕-Imply rule can infer a literal exactly when there is an
xor-cycle with the values of the outer variables except for one already derived:

Lemma 1. Assume an EC-derivation π = D1, . . . , Dn from ψ = φxor ∧ l̃1 ∧ ... ∧ l̃k,
where φxor is a 3-xor normal form xor-clause conjunction. An xor-clause (y ≡ p⊕p′1⊕
... ⊕ p′n−1) can be added to π after a number of other derivation steps using ⊕-Imply
on the xor-clauses {(x1⊕x2 ≡ p1⊕p′1), ..., (xn−1⊕xn ≡ pn−1⊕p′n−1), (x1⊕xn⊕y ≡
pn)} if and only if there is an xor-cycle XC (〈x1, ..., xn〉, 〈y1, ...yn−1, y〉, p) ⊆ φxor

where p=p1⊕...⊕pn such that for each yi ∈ {y1, ..., yn−1} it holds that ψ (ec (yi≡p′i).

4.1 Detecting When Equivalence Reasoning Is Enough

The presence of xor-cycles in the problem implies that equivalence reasoning might be
useful, but does not give any indication of whether it is enough to always deduce all
xor-implied literals. Again, we do not know any easy way to detect whether a given
xor-clause conjunction is Subst-deducible (or equivalently, EC-deducible). However,
we can obtain a very fast structural test for approximating EC-deducibility as shown
and analyzed in the following.

We say that a 3-xor normal form xor-clause conjunction φxor is cycle-partitionable if
there is a partitioning (Vin, Vout) of vars(φxor) such that for each xor-cycle XC (X,Y, p)
in φxor it holds that X ⊆ Vin and Y ⊆ Vout. That is, there should be no variable that
appears as an inner variable in one xor-cycle and as an outer variable in another. For
example, the instance in Fig. 5(a) is cycle-partitionable as ({b, c, d}, {a, e, f, ...,m}) is
a valid cycle-partition. On the other hand, the one in Fig. 3(c) is not cycle-partitionable
(although it is UP-deducible and thus EC-deducible). If such cycle-partition can be
found, then equivalence reasoning is enough to always deduce all xor-implied literals.

Theorem 2. If a 3-xor normal form xor-clause conjunction φxor is cycle-partitionable,
then it is Subst-deducible (and thus also EC-deducible).

Detecting whether a cycle-partitioning exists can be efficiently implemented with a
variant of Tarjan’s algorithm for strongly connected components.



Classifying and Propagating Parity Constraints 367

To evaluate the accuracy of the technique, we applied it to the SAT Competition
instances discussed in Sect. 3.1. The results are shown in the “cycle-partitionable” and
“probably Subst” columns in Fig. 4(a), where the latter gives the number of instances
for which our random testing procedure described in Sect. 3.1 was not able to show that
the instance is not Subst-deducible. We see that the accuracy of the cycle-partitioning
test is (probably) not perfect in practice although for some instance families it works
very well.

4.2 Simulating Equivalence Reasoning with Unit Propagation

The connection between equivalence reasoning and xor-cycles enables us to consider
a potentially more efficient way to implement equivalence reasoning. We now present
three translations that add redundant xor-clauses in the problem with the aim that unit
propagation is enough to always deduce all xor-implied literals in the resulting xor-
clause conjunction. The first translation is based on the xor-cycles of the formula and
does not add auxiliary variables, the second translation is based on explicitly com-
municating equivalences between the variables of the original formula using auxiliary
variables, and the third translation combines the first two.

The redundant xor-clause conjunction, called an EC-simulation formula ψ, added to
φxor by a translation should satisfy the following: (i) the satisfying truth assignments of
φxor are exactly the ones of φxor ∧ ψ when projected to vars(φxor), and (ii) if l̂ is EC-
derivable from φxor∧(l̃1)∧...∧(l̃k), then l̂ is UP-derivable from (φxor∧ψ)∧(l̃1)∧...∧(l̃k).

Simulation without Extra Variables. We first present an EC-simulation formula for
a given 3-xor normal form xor-clause conjunction φxor without introducing additional
variables. The translation adds one xor-clause with the all outer variables per xor-cycle:

cycles(φxor) =
∧

XC (〈x1,...,xn〉,〈y1,...,yn〉,p)⊆φxor

(y1 ⊕ ...⊕ yn ≡ p)

For example, for the xor-clause conjunction φxor in Fig. 5(a) cycles(φxor) = (a ⊕ e ⊕
j ⊕&). Now φxor ∧ cycles(φxor)∧ (a)∧ (¬j) (up e although φxor ∧ (a) ∧ (¬j) � (up e.

Theorem 3. If φxor is a 3-xor normal form xor-clause conjunction, then cycles(φxor) is
an EC-simulation formula for φxor.

The translation is intuitively suitable for problems that have a small number of xor-
cycles, such as the DES cipher. Each instance of our DES benchmark (4 rounds, 2
blocks) has 28–32 xor-cycles. We evaluated experimentally the translation on this bench-
mark using cryptominisat 2.9.2, minisat 2.0, minisat 2.2, and minisat 2.0 extended with
the UP xor-reasoning module. The benchmark set has 51 instances and the clauses of
each instance are permuted 21 times randomly to negate the effect of propagation order.
The results are shown in Fig. 9(a). The translation manages to slightly reduce solving
time for cryptominisat, but this does not happen for other solver configurations based
on minisat, so the slightly improved performance is not completely due to simulation of
equivalence reasoning using unit propagation. The xor-part (320 xor-clauses of which
192 tree-like) in DES is negligible compared to cnf-part (over 28000 clauses), so a great
reduction in solving time is not expected.
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Although equivalence reasoning can be simulated with unit propagation by adding
an xor-clause for each xor-cycle, this is not feasible for all instances in practice due to
the large number of xor-cycles. We now prove that, without using auxiliary variables,
there are in fact families of xor-clause conjunctions for which all EC-simulation for-
mulas, whether based on xor-cycles or not, are exponential. Consider the xor-clause
conjunction D(n) = (x1 ⊕ xn+1 ⊕ y) ∧

∧n
i=1(xi⊕xi,a⊕xi,b) ∧ (xi,b⊕xi,c⊕xi+1) ∧

(xi⊕xi,d⊕xi,e)∧ (xi,e⊕xi,f⊕xi+1) whose constraint graph is shown in Fig. 9(b). Ob-
serve that D(n) is cycle-partitionable and thus Subst/EC-deducible. But all its EC-
simulation formulas are at least of exponential size if no auxiliary variables are allowed:

Lemma 2. Any EC-simulation formula ψ for D(n) with vars(ψ) = vars(D(n)) con-
tains at least 2n xor-clauses.

Simulation with Extra Variables: Basic Version. Our second translation Eq(φxor)
avoids the exponential increase in size by introducing a quadratic number of auxil-
iary variables. A new variable eij is added for each pair of distinct variables xi, xj ∈
vars(φxor), with the intended meaning that eij is true when xi and xj have the same
value and false otherwise. We identify eji with eij . Now the translation is

Eq(φxor) =
∧

(xi⊕xj⊕xk≡p)∈φxor

(eij⊕xk⊕&≡p)∧(eik⊕xj⊕&≡p)∧(xi⊕ejk⊕&≡p)∧

∧
xi,xj,xk∈vars(φxor),i<j<k

(eij ⊕ ejk ⊕ eik ≡ &)

where (i) the first line ensures that if we can deduce that two variables in a ternary xor-
clause are (in)equivalent, then we can deduce the value of the third variable, and vice
versa, and (ii) the second line encodes transitivity of (in)equivalences. The translation
enables unit propagation to deduce all EC-derivable literals over the variables in the
original xor-clause conjunction:

Theorem 4. If φxor is an xor-clause conjunction in 3-xor normal form, then Eq(φxor) is
an EC-simulation formula for φxor.
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Eq�(φxor): start with φ′
xor = φxor and V = vars(φxor)

1. while (V �= ∅):
2. xj ← extract a variable v from V minimizing | vars({C ∈ φ′

xor | v ∈ vars(C)}) ∩ V |
3. for each (xi⊕xj⊕eij≡pij),(xj⊕xk⊕ejk≡pjk)∈φ′

xor such thatxi,xk∈V ∧xi �=xj �=xk

4. if (xi ⊕ xk ⊕ y ≡ p′ik) ∈ φ′
xor

5. eik ← y; pik ← p′ik
6. else
7. eik ← new variable; pik ← �
8. φ′

xor ← φ′
xor ∧ (xi ⊕ xk ⊕ eik ≡ pik)

9. φ′
xor ← φ′

xor ∧ (eij ⊕ ejk ⊕ eik ≡ pij ⊕ pjk ⊕ pik)
10. return φ′

xor\φxor

Fig. 10. The Eq� translation

Simulation with Extra Variables: Optimized Version. The translation Eq(φxor) adds
a cubic number of clauses with respect to the variables in φxor. This is infeasible for
many real-world instances. The third translation combines the first two translations by
implicitly taking into account the xor-cycles in φxor while adding auxiliary variables
where needed. The translation Eq�(φxor) is presented in Fig. 10. The xor-clauses added
by Eq�(φxor) are a subset of Eq(φxor) and the meaning of the variable eij remains the
same. The intuition behind the translation, on the level of constraint graphs, is to iter-
atively shorten xor-cycles by “eliminating” one variable at a time by adding auxiliary
variables that “bridge” possible equivalences over the eliminated variable. The line 2 in
the pseudo-code picks a variablexj to eliminate. While the correctness of the translation
does not depend on the choice, it is sensible to pick a variable that shares xor-clauses
with fewest variables because the number of xor-clauses produced in lines 3–9 is then
smallest. The loop in line 3 iterates over all possible xor-cycles where the selected
variable xj and two “neighboring” non-eliminated variables xi,xk may occur as inner
variables. The line 4 checks if there already is an xor-clause that has both xi and xk. If
so, then in line 5 an existing variable is used as eik capturing the equivalence between
the variables xi and xk . If the variable pik is &, then eik is true when the variables xi

and xk have the same value. The line 9 adds an xor-clause ensuring that transitivity of
equivalences between the variables xi, xj ,and xk can be handled by unit propagation.

Example 4. Consider the xor-clause conjunction φxor = (x1⊕x2⊕x4)∧(x2⊕x3⊕x5)∧
(x5⊕x7⊕x8)∧(x4⊕x6⊕x7) shown in Fig. 11(a). The translation Eq�(φxor) first selects
one-by-one the variables in {x1, x3, x6, x8} as each appears in only one xor-clause.
The loop in lines 3–9 is not executed for any of them. The remaining variables are
V= {x2, x4, x5, x7}. Assume that x2 is selected. The loop in lines 3–9 is entered with
values xi=x4, xj=x2, eij=x1, xk=x5, ejk=x3, pij=&, and pjk=&. The condition in
line 4 fails, so the xor-clauses (x4⊕x5⊕e45≡&) and (x1⊕x3⊕e45≡&),where e45 is a
new variable, are added. The resulting instance is shown in Fig. 11(b). Assume that x5 is
selected. The loop in lines 3–9 is entered with values xi=x4, xj=x5, eij=e45, xk=x7,
ejk=x8, pij=&, and pjk=&. The condition in line 4 is true, so eik=x6, and the xor-
clause (x6⊕x8⊕e45≡&) is added in line 9. The final result is shown in Fig. 11(c).
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(a) (b) (c)

Fig. 11. Constraint graphs illustrating how the translation Eq� adds new xor-clauses

Benchmark φ = Original φ ∧ Eq(φ) φ ∧ Eq�(φ)
vars xor-clauses vars xor-clauses vars xor-clauses |φ∧Eq(φ)|

|φ∧Eq�(φ)|
DES (4 rounds 2 blocks) 3781 320 7× 106 9 × 109 3813 416 2.2× 107

Grain (16 bit) 9240 6611 43× 106 131 × 109 71670 3957571 33212.0
Hitag2 (33 bit) 6010 3747 18× 106 36× 109 21092 338267 106904.4
TRIVIUM (16 bit) 11485 8591 66× 106 252 × 109 351392 30588957 8252.1

Fig. 12. Comparison of the translation sizes for Eq and Eq� on cipher benchmarks

Theorem 5. If φxor is an xor-clause conjunction in 3-xor normal form, then Eq�(φxor)
is an EC-simulation formula for φxor.

The translation Eq� usually adds fewer variables and xor-clauses than Eq. Fig. 12 shows
a comparison of the translation sizes on four cipher benchmarks. The translation Eq
yields an impractically large increase in formula size, while the translation Eq� adds
still a manageable number of new variables and xor-clauses.

Experimental Evaluation. To evaluate the translation Eq�, we ran cryptominisat 2.9.2,
and glucose 2.0 (SAT Competition 2011 application track winner) on the 123 SAT 2005
Competition cnf-xor instances preprocessed into 3-xor normal form with and without
Eq�. The results are shown in Fig. 13. The number of decisions is greatly reduced,
and this is reflected in solving time on many instances. Time spent computing Eq� is
measured in seconds and is negligible compared to solving time. On some instances,
the translation adds a very large number of xor-clauses (as shown in Fig. 14a) and the
computational overhead of simulating equivalence reasoning using unit propagation
becomes prohibitively large. For highly “xor-intensive” instances it is probably better
to use more powerful parity reasoning; cryptominisat 2.9.2 with Gaussian elimination
enabled solves majority of these instances in a few seconds. A hybrid approach first
trying if Eq� adds a moderate number of xor-clauses, and if not, resorting to stronger
parity reasoning could, thus, be an effective technique for solving cnf-xor instances.

Strengthening Equivalence Reasoning by Adding Xor-Clauses. Besides enabling
unit propagation to simulate equivalence reasoning, the translation Eq�(φxor) has an
another interesting property: if φxor is not Subst-deducible, then even when φxor ∧
l̃1 ∧ ... ∧ l̃n � (Subst l̂ for some xor-assumptions l̃1, ..., l̃n, it might hold that φxor ∧
Eq�(φxor) ∧ l̃1 ∧ ... ∧ l̃n (Subst l̂. For instance, let φxor be an xor-clause conjunction
given in Fig. 14(b). It holds that φxor ∧ (x) |= (z) but φxor ∧ (x) � (Subst (z). However,
φxor ∧ Eq�(φxor) ∧ (x) (Subst (z); the constraint graph of φxor ∧ Eq�(φxor) is shown in
Fig. 14(c).
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Fig. 13. Experimental results with/without Eq� (cryptominisat on the left, glucose on the right)
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Fig. 14. (a) number of xor-clauses in our SAT’05 instances, (b) a non-Subst-deducible instance
that becomes Subst-deducible with Eq�in (c)

5 Conclusions

We have given efficient approximating tests for detecting whether unit propagation or
equivalence reasoning is enough to achieve full propagation in a given parity constraint
set. To our knowledge the computational complexity of exact versions of these tests is
an open problem; they are certainly in co-NP but are they in P?

We have shown that equivalence reasoning can be simulated with unit propagation
by adding a polynomial amount of redundant parity constraints to the problem. We
have also proven that without introducing new variables, an exponential number of new
parity constraints would be needed in the worst case. We have found many real-world
problems for which unit propagation or equivalence reasoning achieves full propaga-
tion. The experimental evaluation of the presented translations suggests that equivalence
reasoning can be efficiently simulated by unit propagation.
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Abstract. Minimax Weighted Constraint Satisfaction Problems (formerly called
Quantified Weighted CSPs) are a framework for modeling soft constrained prob-
lems with adversarial conditions. In this paper, we describe novel definitions and
implementations of node, arc and full directional arc consistency notions to help
reduce search space on top of the basic tree search with alpha-beta pruning for
solving ultra-weak solutions. In particular, these consistencies approximate the
lower and upper bounds of the cost of a problem by exploiting the semantics
of the quantifiers and reusing techniques from both Weighted and Quantified
CSPs. Lower bound computation employs standard estimation of costs in the
sub-problems used in alpha-beta search. In estimating upper bounds, we propose
two approaches based on the Duality Principle: duality of quantifiers and dual-
ity of constraints. The first duality amounts to changing quantifiers from min to
max, while the second duality re-uses the lower bound approximation functions
on dual constraints to generate upper bounds. Experiments on three benchmarks
comparing basic alpha-beta pruning and the six consistencies from the two dual-
ities are performed to confirm the feasibility and efficiency of our proposal.

Keywords: constraint optimization, soft constraint satisfaction, minimax game
search, consistency algorithms.

1 Introduction

The task at hand is that of a constraint optimization problem with adversaries control-
ling parts of the variables. As an example, we begin with a generalized version of the
Radio Link Frequency Assignment Problem (RLFAP) [7] consisting of assigning fre-
quencies to a set of radio links located between pairs of sites, with the goal of preventing
interferences. The problem has two types of constraints. One type prevents radio links
that are close together from interfering with one another, by restricting the links not
to take frequencies with absolute differences smaller than a threshold. In practice, the
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threshold is measured depending on the physical environment, and is often overesti-
mated. The second type of constraints are technological constraints, where each con-
straint ensures the distance between frequencies of a radio link from site A to B and
its reverse radio link from site B to A must be equal to a constant. If the problem is
unsatisfiable, one approach is to find assignments violating the first type of constraints
as little as possible. Suppose now a certain set of links are placed in unsecured areas,
and adversaries (e.g. terrorists/spies) may hijack/control these links. We are not able to
re-adjust the frequencies for the other links immediately to minimize the interferences
on the functioning ones. One interesting question for this type of scenarios is to find fre-
quency assignments such that we can minimize the degree of radio links affected for the
worst possible case (i.e. finding the best-worst case). The prime goal is to understand
how well we can defend against the worst adversaries for planning purposes.

The example is optimization in nature, and the adversaries originate from the un-
controllable frequencies being assigned on the links in unsecured areas. The question
can be translated to minimizing the interferences for all possible combinations of fre-
quency adjustments the adversaries can control. One way to solve this problem is by
tackling many COPs [2]/WCSPs [15], where each of them minimizes the interferences
conditioned on a specific combination of frequency adjustments controlled by the ad-
versaries. Another way is to model the problem as a QCSP [5] by finding whether there
exists combinations of frequency adjustments for us for all frequency placements by the
adversaries such that the total interferences is less than a cost k. To avoid solving mul-
tiple sub-problems, Minimax Weighted Constraint Satisfaction Problems (MWCSPs)
(previously called Quantified Weighted Constraint Satisfaction Problems) [16] are pro-
posed to tackle such problems, combining quantifier structures from QCSPs to model
the adversaries and soft constraints from WCSPs to model costs information. Previ-
ous work defines a solution as a complete assignment representing the best-worst case,
gives an introduction on how to adopt alpha-beta prunings to tackle the problem in
branch and bound, and suggests two sufficient pruning conditions to achieve prunings
and backtrackings.

When tackling game problems, more specifically two-person zero-sum games with
perfect information [22,23], games can be solved at different levels. Allis [1,13] pro-
poses three solving levels for games: ultra-weakly solved, weakly solved, and strongly
solved. Ultra-weakly solved means the game-theoretic value of the initial position has
been determined, which means we can determine the outcome of the scenario when
both players are playing perfectly (i.e. best-worst case). Weakly solved means a strat-
egy, noted as winning strategy [4] in QCSPs, has been determined for the initial position
to achieve the game-theoretic value against any opposition. Strongly solved is being
used for a game for which such a strategy has been determined for all legal positions.
Once a game is solved at a stronger level, the game is automatically solved at weaker
ones. Finding solutions at stronger levels, however, implies substantially higher com-
putation requirements. In particular in terms of space, ultra-weak solutions are linear in
size, while the other two stronger ones are exponential. In bi-level programs, there are
cases in which we can assume there is a unique optimum for the follower or we are con-
cerned with only the moves for the leader [11]. Finding ultra-weak solutions for these
cases are sufficient, and the generalized RLFAP is an example. In adversarial game



Consistencies for Ultra-Weak Solutions in MWCSPs Using the Duality Principle 375

playing, many game search algorithms, e.g. minimax and alpha-beta [24], computes
strategies assuming optimal plays to reduce computation costs. In fact, even determin-
ing just the ultra-weak solution in an offline manner is also an important and interesting
line of research, e.g. a recent breakthrough on checkers [25].

The main focus of this paper is to further introduce novel consistency notions for
solving ultra-weak solutions, by approximating the lower and upper bounds of the cost
of the problem. Lower bound computation employs standard estimation of costs in the
sub-problems used in alpha-beta search. In estimating upper bounds, we adopt the Prin-
ciple of Duality in (integer) linear programming, which suggest to convert an original
(primal) problem to its dual form and tackle the problem using both forms. We con-
sider two dualities: duality of quantifiers and duality of constraints. The first approach
allows us to formulate upper bound approximation functions by changing quantifiers
in the lower bound functions from min to max, while the second approach re-uses the
lower bound approximation functions on dual constraints to generate upper bounds.
Discussions on whether our proposed techniques are applicable to the computation of
the two stronger solutions will be given. Experimental evaluations on three benchmarks
are performed to compare six consistencies defined using the two dualities to confirm
the feasibility and efficiency of our proposal.

2 Background

In the first part, we give definitions and semantics of MWCSPs, followed by an exam-
ple. In the second part, sufficient conditions allowing us to perform backtracking/prun-
ings used in alpha-beta search are highlighted.

2.1 Definitions and Semantics

A Minimax Weighted Constraint Satisfaction Problem (MWCSP) [16] P is a tuple
(X ,D, C,Q, k), where X = (x1, . . . , xn) is defined as an ordered sequence of vari-
ables, D = (D1, . . . , Dn) is an ordered sequence of finite domains, C is a set of soft
constraints, Q = (Q1, . . . , Qn) is a quantifiers sequence where Qi is either max
or min associated with xi, and k is the global upper bound. We denote xi = vi
an assignment assigning value vi ∈ Di to variable xi, and the set of assignments
l = {x1 = v1, x2 = v2, . . . , xn = vn} a complete assignment on variables in X ,
where vi is the value assigned to xi. A partial assignment l[S] is a projection of l onto
variables in S ⊆ X . C is a set of (soft) constraints, each CS of which represents a func-
tion mapping tuples corresponding to assignments on a subset of variables S, to a cost
valuation structure V (k) = ([0...k],⊕,≤). The structure V (k) contains a set of integers
[0...k] with standard integer ordering≤. Addition⊕ is defined by a⊕b = min(k, a+b).
For any integer a and b where a ≥ b, subtraction , is defined by a , b = a − b if
a �= k, and a , b = k if a = k. Without loss of generality, we assume the existence
of C∅ denoting the lower bound of the minimum cost of the problem. If it is not de-
fined, we assume C∅ = 0. The cost of a complete assignment l in X is defined as:
cost(l) = C∅ ⊕

⊕
Cs∈C Cs(l[S]).

In an MWCSP, ordering of variables is important. Without loss of generality, we
assume variables are ordered by their indices. We define a variable withmin (max resp.)
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quantifier to be a minimization variable (maximization variable resp.). Let P [xi1 =
ai1 ][xi2 = ai2 ] . . . [xim = aim ] be the sub-problem obtained from P by assigning
value ai1 to variable xii , assigning value ai2 to variable xi2 ,. . . , assigning value aim to
variable xim . Let firstx(P) be a function returning the first unassigned variable in the
variable sequence. If there are no such variables, it returns ⊥. Suppose l is a complete
assignment of P . The A-cost(P) of an MWCSP P is defined recursively as follows:

A-cost(P) =

⎧⎪⎨⎪⎩
cost(l), if firstx(P) = ⊥
max(Mi), if firstx(P) = xi and Qi = max

min(Mi), if firstx(P) = xi and Qi = min

where l is the complete assignment of the completely assigned problem P (i.e.
firstx(P) = ⊥), and Mi = {A-cost(P [xi = v])|v ∈ Di}. An MWCSP P is satisfi-
able iff A-cost(P) < k.

Fig. 1. Constraints for Example 1
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Fig. 2. Labeling Tree for Example 1

Fig. 3. Constraints for Example 2

We now define three solution concepts for
MWCSPs based on the definition of A-costs.
An ultra-weak solution of an MWCSP P is a
complete assignment {x1 = v1, . . . , xn = vn}
s.t. A-cost(P) = A-cost(P [x1 = v1] . . . [xi =
vi]), ∀1 ≤ i ≤ n. Solving an ultra-weak solution
corresponds to finding the scenario when both
players are playing perfectly. To capture weak
(strong resp.) solutions, we re-use the concept
of winning strategies [4]. Without loss of gen-
erality, we assume the max player is the adver-
sary. A weak solution (strong solution resp.) is a
set of functions F , where each function fi ∈ F corresponds to a min variable xi.
Let Gi be the set of domains of max variables (all variables resp.) preceding xi, i.e.
Gi = {Dj ∈ D|Qj = max∧j < i} (Gi = {Dj ∈ D|j < i} resp.). We define
fi : ×Dj∈GiDj �→ Di. If Gi is an empty set, then fi is a constant function returning
values from Di. Let P ′ be a sub-problem of an MWCSP P , where the next unassigned
variable xi is a min variable, and l be the set of assigned values for max variables (all
variables resp.) xj where j < i. For weak solutions, we further require the assigned
values of min variables xj where j < i in P ′ follow fj . We require all fi to satisfy:
A-cost(P ′[xi = fi(l)]) = A-cost(P ′). In other words, we require fi(l) to return the
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best value for the min player, and the set of functions F will then be a best strategy
for the min player. This work focuses on ultra-weak solutions. Note that computing
ultra-weak solutions essentially computes the A-costs of an MWCSP, which are de-
fined based on constraints and quantifiers, and in general, computing the A-costs of an
MWCSP is PSPACE-hard [16]. A special case is that if all the quantifiers of an MWCSP
are min quantifiers, finding an ultra-weak solution is equivalent to finding a complete
assignment l with the minimum costs (i.e. argminl cost(l)). The problem reduces [16]
to a WCSP.

Example 1. We use the generalized Radio Link Frequency Assignment Problem in-
troduced in the previous section as an example. The problem consists of four links
l1, l2, l3, and l4. Two of the links l1 and l2 connect sites A and B, and the other two
links l3 and l4 connect sites B and C. Link l2 (l4 resp.) is the reverse link for l1 (l3
resp.). There is a variable xi in the MWCSP P for each link li, which is used to rep-
resent the chosen frequency for link li. Site C is not secure and links l3 and l4 are
subject to control. We need to pay costs if two links interfere with each other. There-
fore, we want to find frequency assignments for l1 and l2 such that we can minimize
the total costs for interference in the worst case. We set the quantifier sequence in P
as (Q1 = min, Q2 = min, Q3 = max, Q4 = max). For simplicity, we assume links
l1 and l3 have two frequency choices, and the other two links have three. We measure
the costs for interference only for links l1 and l3, and links l2 and l4. These costs will
be modeled by constraints on variables x1 and x3, and also on variables x2 and x4.
In addition, we maintain the technological constraint between links l1 and l2, which
will be modeled by a binary constraint on variables x1 and x2. Figure 1 indicates there
is one unary constraint C4 and three binary constraints C1,2, C1,3, and C2,4. For the
unary constraint, non-zero unary costs are depicted inside a circle and domain values
are placed above the circle. For binary constraints, non-zero binary costs are depicted
as labels on edges connecting the corresponding pair of values. Only non-zero costs
are shown. We set the global upper bound k to be 11. By following the partial labeling
tree in Figure 2, we can easily infer the A-cost of the subproblem P ′ = P [x1 = a] is
7, and {x1 = a, x2 = a, x3 = b, x4 = a} is one of the ultra-weak solutions for the
sub-problem P ′.

2.2 Pruning Conditions in B and B

MWCSPs can be solved by applying alpha-beta pruning in branch and bound
search [16] (Figure 4), by treating max and min variables as max and min players re-
spectively. Alpha-beta pruning utilizes two bounds, α and β, for storing the current best
costs for max and min players. We rename α and β as lower lb and upper ub bounds to
fit with the common notations for bounds in constraint and integer programming. We
initialize lb (ub resp.) to the lowest (largest resp.) possible costs, i.e. 0 (k resp.), and
maintain the two bounds during assignments by the branch and bound. When a smaller
costs (larger costs resp.) for min (max resp.) variable is found after exploring sub-trees,
ub (lb resp.) will be updated (line 6 and 8 ). If lb ≥ ub, then one of the previous branch
must dominate over the current sub-tree, and we can perform backtrack (line 9).

Lee, Mak, and Yip [16] give pruning conditions that allow further derivation of con-
sistency notions, and we introduce them as follows. Let P [x1..i−1 = v1..i−1, xi = v]
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1 function alpha_beta(P,lb,ub):
2 if firstx(P) == ⊥: return cost(P)
3 i = firstx(P)
4 for v in Di:
5 if Qi == min:
6 ub = min(ub, alpha_beta(P[Xi=v],lb,ub))
7 else:
8 lb = max(lb, alpha_beta(P[Xi=v],lb,ub))
9 if ub <= lb: break

10 return (Qi == min)?ub:lb

Fig. 4. Alpha-beta for MWCSPs

denote the subproblem P [x1 = v1][x2 = v2]...[xi−1 = vi−1][xi = v]. Formally, we
consider two conditions: ∃v ∈ Di s.t. ∀v1 ∈ D1, ..., vi−1 ∈ Di−1:

A-cost(P [x1..i−1 = v1..i−1, xi = v]) ≥ ub (1)

A-cost(P [x1..i−1 = v1..i−1, xi = v]) ≤ lb (2)

where ub and lb are the upper and lower bounds in alpha-beta prunings respectively.
When either of the above conditions is satisfied, we can apply prunings according to
Table 1.

Table 1. When can we prune/backtrack

A-cost ≥ ub ≤ lb

Qi = min prune v backtrack
Qi = max backtrack prune v

Checking Condition (1)/(2) by finding the
exact value of the A-cost for each sub-
problem is computationally expensive. Alter-
natively, we allow approximating functions
to perform bounds approximations. Function
ubaf(P , xi = v) (lbaf(P , xi = v) resp.) is
an upper bound (a lower bound resp.) approximation function if it approximates the
A-cost for the set S of sub-problems, where:

S = {P [x1..i−1 = v1..i−1,xi = v]|∀v1 ∈ D1, . . . , vi−1 ∈ Di−1}
s.t. ∀P ′ ∈ S,A-cost(P ′) ≤ ubaf(P , xi = v)

(≥ lbaf(P , xi = v) resp. )

From the definition, we can easily obtain:

lbaf(P , xi = v) ≥ ub =⇒ Condition (1)

ubaf(P , xi = v) ≤ lb =⇒ Condition (2)

By implementing lbaf()/ubaf() with good approximations, we can identify non-ultra-
weak solution values from variable domains or perform backtracking earlier in search
according to Table 1.

3 Consistency Techniques

In WCSPs, consistency notions [15,9] not only utilize constraint semantics, but also
take the costs of constraints into account. This section discusses how we utilize costs
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information from unary constraints and binary constraints to formulate node and (full
directional) arc consistencies. We start by giving an lbaf() for node consistency called
nclb(), which formulates lower bounds by gathering unary costs. We then further de-
scribe a stronger lbaf() for (full directional) arc consistency called aclb(). To approx-
imate upper bounds, we propose two approaches by utilizing the Duality Principle:
duality of quantifiers and duality of constraints. In the last part, we discuss how to
strengthen our consistency notions, by incorporating techniques in WCSPs. We write
Ci for the unary constraint on variable xi, Ci,j for the binary constraint on variables xi

and xj where i < j, Ci(u) for the cost returned by the unary constraint when u is as-
signed to xi, and Ci,j(u, v) for the cost returned by the binary constraint when u and v
are assigned to xi and xj respectively. To simplify our notations, we write the minimum
costs minu∈Dj Cj(u) and maximum costs maxu∈Dj Cj(u) of a unary constraint Cj as
minCj and maxCj respectively. We further write QjCj to mean minCj if Qj = min,
and maxCj if Qj = max.

3.1 Node Consistency: Lower Bound

We first give the definition for nclb(). We will then sketch the proof showing nclb() is
an lbaf() using a lemma. Without loss of generality, we now consider unary MWCSPs,
which are MWCSPs with unary constraints only. We will show that computingA-costs
for any sub-problems of unary MWCSPs are efficient (linear time), and therefore, com-
puting the lower bound for these sub-problems are efficient. We then show using the
same procedure on general MWCSPs, by viewing unary constraints only, the bound is
still correct.

Definition 1. The nclb(P , xi = v) function approximates the A-cost for a set S of
sub-problems {P [x1..i−1 = v1..i−1, xi = v]|∀v1 ∈ D1, . . . , vi−1 ∈ Di−1}. Define

nclb(P , xi = v) ≡ C∅ ⊕ (
⊕
j:j<i

minCj)⊕ (Ci(v))⊕ (
⊕
j:i<j

QjCj)

where Qj ∈ Q is the quantifier for variable xj where j > i.

Lemma 1. The A-cost of an MWCSP P with only unary constraints is equal to⊕n
i=1 QiCi.

The proof of Lemma 1 follows directly from the definition of A-costs for MWCSPs.

Theorem 1. The function nclb(P , xi = v) is a lower bound approximating function
lbaf(P , xi = v).

Lemma 1 suggests the computation of A-costs for unary MWCSPs can be done in
O(nd), where n is the number of variables and d is the maximum domain size. There-
fore, computing the A-costs for any sub-problems is also efficient. The function nclb()
can be seen as a function extracting A-costs for the sub-problem in S with minimal
A-costs following Lemma 1, by partitioning unary constraints into three groups: (a)
Cj , j < i, (b) Ci, and (c) Cj , j > i. We skip the detailed reasoning on how to choose
costs for these unary constraints. If P has only unary constraints, we can observe func-
tion nclb() computes not only a correct lower bound for S, but also the exact A-cost for
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the sub-problem with minimum costs. Note that MWCSPs may have binary constraints
and even high-arity constraints, but, these constraints must give positive costs to the
problem. Therefore, by considering only unary constraints of general MWCSPs, nclb()
still returns a correct lower bound.

Example 2. We re-use Example 1. Suppose we are at sub-problemP ′ = P [x1 = a] and
we have just visited the further sub-problemP ′[x2 = a] which have a new upper bound
of 7. Before visiting P ′[x2 = b], we try to prune some values according to Table 1 using
the new upper bound. Figure 3 shows the constraint graph for P ′. Suppose now nclb()
is applied and no unary costs for bounded variables, i.e. C∅ = 0. We want to check if
the value b can be pruned from D2. In the sub-problem P ′[x2 = b], the quantifier Q3

and Q4 are both max, and they will take at least the maximum unary cost maxC3 and
maxC4. We have C∅ + C2(b) + maxC3 +maxC4 = 0 + 0 + 4 + 3 = 7 ≥ ub. The
cost of any assignment in the sub-problem P ′[x2 = b] is at least 7. The value b can
therefore be removed from domain D2. Notice that such a node cannot be pruned by
basic alpha-beta pruning.

3.2 Arc Consistency: Lower Bound

To obtain stronger lower bound, we further define function aclb() based on nclb(). With-
out loss of generality, we restrict our attention to MWCSPs which have only unary
constraints and one binary constraint. We will show that computing any sub-problems
for these MWCSPs are efficient (polynomial time), and therefore, computing the lower
bound for these sub-problems are again efficient. By similar argument, viewing unary
constraints plus one binary constraint on general MWCSPs, the bound is still correct.

Definition 2. The aclb[Ci,j ](P , xi = v) function approximates the A-cost for the set S
of sub-problems {P [x1..i−1 = v1..i−1, xi = v]|∀v1 ∈ D1, . . . , vi−1 ∈ Di−1}. Define

aclb[Ci,j ](P , xi = v) ≡ C∅ ⊕ (
⊕
k:k<i

minCk)⊕ (Ci(v))

⊕ (
⊕

k:i<k∧j �=k

QkCk)⊕ ( Qj
u∈Dj

{Cj(u)⊕ Ci,j(v, u)})

where Qj ∈ Q is the quantifier for variable xj , and Qk ∈ Q is the quantifier for variable xk

where k > i and k �= j.

The first three terms are the same as in nclb(). The fourth term is equivalent to the
last term in nclb(), except we do not consider costs for constraint Cj , which will be
considered in the fifth term.

Lemma 2. The A-cost of an MWCSPP = (X ,D, C,Q, k) with only unary constraints
and one binary constraint Ci,j is equal to⊕

k∈[1...n]\{i,j}
Qk

u∈Dk

Ck(u)⊕ Qi
u∈Di

[ Qj
v∈Dj

[Ci(u)⊕ Cj(v)⊕ Ci,j(u, v)]]

where Qi, Qj , Qk ∈ Q.
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The proof of Lemma 2 follows from the definition of A-costs. Theorem 2 follows.

Theorem 2. The function aclb[Ci,j ](P , xi = v) for binary constraint Ci,j is a lower
bound approximating function lbaf(P , xi = v).

Note that Definition 2 is only one possible approach to define a lower bound approxi-
mation function for AC, following Lemma 2. It is designed in such a way that only one
binary constraint is used in bounds calculation for costs estimation, and our approach
is similar to AC in QCSPs [20,12]. It is natural for us to further ask for stronger/tighter
functions which consider more than one binary constraint. Note that in classical local
consistency enforcement such as: AC in CSPs [2]; AC* in WCSPs [15]; and (Q)AC [20]
in QCSPs, we usually handle one (binary) constraint at a time. Consistency enforcement
will be performed many times at each node of the search tree, and considering multiple
constraints at a time may cause a huge increase in time complexity. We have to main-
tain a balance between amount of reasoning at each search node and amount of pruning
achieved. There are stronger consistency notions with efficient algorithms which con-
sider more than one binary constraint, e.g. Max Restriced Path Consistency [10] in CSPs
and OSAC [8] in WCSPs/VCSPs. Investigations on stronger notions for MWCSPs is
an interesting future work. One possibility to enhance aclb is to consider a subset of
constraints that forms a tree, and employ a dynamic programming approach to enforce
such stronger consistencies.

3.3 NC and AC Upper Bounds by the Duality Principle

In linear programming, duality [21,27] provides a standard way to obtain lower bounds
(for minimization problems). In fact, the Principle/Theory of Duality [21] suggests that
we can convert the original (primal) problem to its dual form, and tackle the problem
by using both forms. In QCSPs, dual consistency [5] was defined by creating the dual
QCSP problem, involving negation of the original constraints. We will now show how
to implement upper bound approximation functions ncub() and acub() by using the
duality principle in MWCSPs.

Duality of Constraints. One approach to create ncub()/acub() is to utilize the con-
straint duality property, which is similar to dual consistency [5] in QCSPs. We first
define the dual problem of an MWCSP.

Definition 3. Given an MWCSP P = (X ,D, C,Q, k). The dual problem of P is an
MWCSP P† = (X ,D, C†,Q†, k) s.t. for a complete assignment l,

C∅ ⊕
⊕
CS∈C

CS(l[S]) = −1× (C†
∅ ⊕

⊕
C

†
s∈C†

C†
S(l[S]))

where the valuation structure ofP† is ([−k...k],⊕,≤), Q†
i = min if Qi = max, and Q†

i = max

if Qi = min.

We can observe that A-cost(P) = −1×A-cost(P†), and a straightforward method to
construct the dual constraints in the dual problem is to multiply costs for all constraints
in the original problem by −1. We then show how we utilize the dual problem to check
ubaf(P , xi = v) ≤ lb (Condition 2) for an MWCSP P .
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Theorem 3. Given an MWCSP P and its dual problem P†. Suppose there is a lower
bound approximation function lbaf().

lbaf(P†, xi = v) ≥ −1× lb =⇒ Condition (2).

The proof of Theorem 3 can be shown by observing the labeling tree of the dual prob-
lem, and inferring lbaf(P†, xi = v) × −1 is an upper bound approximation function
for the original problem. In fact, the upper bound ub† (lower bound lb† resp.) of P† is
equal to −1 times the lower bound lb ( upper bound ub resp.) of P . Therefore, we fur-
ther define ub† = −1× lb, and lb† = −1× ub. We then implement ncub() and acub(),
via checking the nclb() and aclb() for the dual problem.

Definition 4. An MWCSP P is dual constraint node consistent (DC-NC) iff ∀xi ∈
X , ∀v ∈ Di : nclb(P , xi = v) < ub ∧ nclb(P†, xi = v) < ub†.

Definition 5. An MWCSP P is dual constraint arc consistent (DC-AC) iff P is DC-
NC, ∀Ci,j ∈ C, ∀v ∈ Di : aclb[Ci,j ](P , xi = v) < ub, and ∀C†ij ∈ C†, ∀v ∈ Di :

aclb[C
†
ij ](P†, xi = v) < ub†.

Theorem 4. DC-AC is strictly stronger than DC-NC.

The proof follows from the definitions.

Duality of Quantifiers. Another way to check condition (2) for an MWCSP P is to
scrutinize functions implementing ubaf(P , xi = v), by repeating similar reasonings
for nclb() on unary MWCSPs (plus a binary constraint). The idea is to use the duality
of quantifiers, by replacing min quantifiers to max in the reasoning process. Recall we
have three groups of unary constraints to consider. One direct way is to consider the
maximum costs, instead of minimum costs from constraints in the first group (group
(a)), hence changing quantifiers from min to max. However, using the resulting up-
per bound approximation functions, by reasoning on unary MWCSPs is incorrect for
general MWCSPs. We cannot neglect costs given by high arity constraints. One way
to make the bound correct is to add the maximum costs for constraints which will not
be covered in the function, and we pre-compute these costs before search. Function
ncub(P , xi = v) and acub(P , xi = v) are given as follows, and we write maxC� to
mean the maximum costs for constraints which are not considered in the function.

Definition 6. The ncub(P , xi = v) function approximates the A-cost for a set S of
sub-problems {P [x1..i−1 = v1..i−1, xi = v]|∀v1 ∈ D1, v2 ∈ D2, . . . , vi−1 ∈ Di−1}.
Define:

ncub(P , xi = v) ≡ C∅ ⊕ (
⊕
j:j<i

maxCj)⊕ (Ci(v))⊕ (
⊕
j:i<j

QjCj)⊕ (maxC�)

where Qj ∈ Q is the quantifier for xj , j > i.

We can easily observe maxC� is equal to
⊕

j,k:j �=k maxCjk if there are only unary
and binary constraints.
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Definition 7. The function acub[Ci,j ](P , xi = v) approximates the A-cost for the set
S of sub-problems: {P [x1..i−1 = v1..i−1, xi = v]|∀v1 ∈ D1, v2 ∈ D2, . . . , vi−1 ∈
Di−1}. Define:

acub[Ci,j ](P , xi = v) ≡ C∅ ⊕ (
⊕
j:j<i

maxCj)⊕ (Ci(v))⊕ (
⊕

k:i<k∧j �=k

QkCk)

⊕Qju∈Dj
{Cj(u)⊕ Ci,j(v, u)} ⊕ (maxC�)

where Qk is the quantifier for variable xk where k > i and k �= j, and Qj is the quantifier for
variable xj .

If there are only unary and binary constraints, maxC� is equal to
⊕

Ck,l∈B maxCk,l,
where B = {Ck,l ∈ C|k �= l} − {Ci,j}. We now define the node and arc consistencies
by utilizing the constructed functions.

Definition 8. An MWCSP P is dual quantifier node consistent (DQ-NC) iff ∀xi ∈
X , ∀v ∈ Di : nclb(P , xi = v) < ub ∧ ncub(P , xi = v) > lb.

Definition 9. An MWCSP P is dual quantifier arc consistent (DQ-AC) iff P is DQ-NC,
and ∀Ci,j ∈ C, ∀v ∈ Di : aclb[Ci,j ](P , xi = v) < ub ∧ acub[Ci,j ](P , xi = v) > lb.

Theorem 5. DQ-AC is strictly stronger than DQ-NC.

The proof follows from the definitions.

3.4 Consistency Enforcement

To enforce DC-NC and DC-AC, one major step is to compute nclb() and aclb(), by
computing costs from unary and binary constraints in both the original and dual MWC-
SPs. For DQ-NC and DQ-AC, we compute ncub() and acub() instead of the dual. To
achieve these consistencies, we perform prunings/backtrackings according to Table 1.
Similar to cascade propagation [2] in CSPs, a value of a variable being pruned may
trigger prunings of other values in other variables and re-computation of the lbaf() and
ubaf() functions. In addition, prunings caused by lower bound approximations may
tighten upper bound approximations (and vice versa), and triggers extra prunings. Our
propagation routine repeats until no values can be further pruned, or backtracks occur.

3.5 Strengthening Consistencies by Projection/Extension

Consistency algorithms for WCSPs use an equivalence preserving transformation called
projection [9] to move costs from higher arity constraints to lower arity ones to extract
and store bound information. Some further utilizes extension [9], which is the inverse
of projection, to increase the consistency strength. We propose to re-use WCSP con-
sistencies, especially the parts related to projections and extensions, to strengthen the
approximating functions for MWCSPs.

WCSPs consistencies consist of two kinds of conditions: one for pruning and one
for projection/extension. Since their pruning conditions are unsound w.r.t. MWCSPs,
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we adopt only their projection/extension conditions so as to strengthen DC-NC, DC-
AC, DQ-NC, and DQ-AC. The projection/extension conditions for NC*, AC*, and
FDAC* [15,14] are as follows:

proj-NC* :∀Ci, ∃v ∈ Di : Ci(v) = 0

proj-AC* : proj-NC* ∧ ∀Ci,j ,∀vi ∈ Di,∃vj ∈ Dj : Ci,j(vi, vj) = 0 ∧
∀Ci,j ,∀vj ∈ Dj ,∃vi ∈ Di : Ci,j(vi, vj) = 0

proj-FDAC* : proj-AC* ∧ ∀Ci,j : i < j,∀vi ∈ Di,∃vj ∈ Dj : Ci,j(vi, vj)⊕ Cj(vj) = 0

Note that the enforcing algorithm for proj-FDAC* may decreases unary costs for max
variables and increases unary costs for min variables; hence weakening the approx-
imating functions. We tackle this issue by re-ordering the variables when enforcing
proj-FDAC*, with max variables first. To further enforce these projecting conditions
on the dual problem in DC-NC/DC-AC, we need to perform normalization, by trans-
ferring costs from C∅ to constraints with negative costs until all constraints except C∅

return non-negative costs. We now re-define DC-NC, DC-AC, DQ-NC, and DQ-AC, to
allow users plugging in general projection/extension conditions τ .

Definition 10. An MWCSP P is DC-NC[τ] (DC-AC[τ] resp.) iff P is DC-NC (DC-AC
resp.), and all projection/extension conditions τ for both P and the dual problem P†
are satisfied. An MWCSP P is DQ-NC[τ] (DQ-AC[τ] resp.) iff P is DQ-NC (DQ-AC
resp.), and all the projection/extension conditions τ for P are satisfied.

Previous work [16] shows experimental results on an implementation of DQ-NC[proj-
NC*] and DQ-AC[proj-AC*], where DQ-NC[proj-NC*] and DQ-AC[proj-AC*] are
named as node and arc consistency respectively.

3.6 Tackling Stronger Solution Definitions

This section discusses the scopes and limitations of our techniques on solving MWCSPs
for the other two stronger solved levels: weakly solved and strongly solved.

In terms of space, the solution sizes for solving MWCSPs ultra-weakly, weakly, and
strongly vary from O(n), O((n −m)dm), to O(dn) respectively, where n is the total
number of variables, m ≤ n is the number of variables owned by adversaries, and
d is the maximum domain size of the MWCSP. A direct consequence is that we need
exponential space to store weak/strong solutions during search, and most often, compact
representations to represent weak/strong solutions are more desirable.

In terms of prunings in branch and bound tree search, a sound pruning condition
when solving a weaker solution concept may not hold in stronger ones. This is caused
by the removal of the assumption of optimal/perfect plays when dealing with stronger
solution concepts. For example in alpha-beta prunings, when the min player obtains
an A-costs which is lower than the lb (i.e. max player’s last found best), we cannot
immediately backtrack if we want to tackle weakly solved solutions, where we assume
the max player is the adversary. The reason behind is that we cannot assume the max
player must play a perfect move. We have to consider all moves for the max player. The
situation is similar if we assume the min player is the adversary. By similar reasonings
and inductions, we cannot perform prunings/backtrackings for the ≤ lb column (≥ ub
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column resp.) in Table 1 if we want to tackle weakly solved solutions, assuming themax
player (min player resp.) is the adversary. For solving strong solutions, the situation is
even worse. We cannot assume optimal plays for both players. Therefore, we have to
find A-costs for all sub-problems, and all prunings/backtrackings conditions in Table 1
cannot be used. In general, the fewer sound pruning/backtracking conditions available,
the larger search space we have to search. By using tree search, we can observe finding
stronger solutions is much harder than weaker ones.

When tackling real-life problems, one can ask for solutions which solve the problem
in an intermediate level. For example, if the adversaries have multiple optimal strate-
gies, we can require solutions containing responses to every different optimal choice
the adversaries may choose. In this case, the solved level lies between ultra-weak and
weak. One way to handle is to relax the bound updating procedure for the lower bound
(upper bound resp.) in alpha-beta pruning (Line 6 and 8 in Figure 4), where we assume
the max (min resp.) player is the adversary. When a larger lower bound lb (smaller
upper bound ub resp.) is found, we update the lower bound to lb − 1 (upper bound to
ub + 1 resp.). The major focus of this work is to give consistency notions to improve
the search in finding the best-worst case, i.e. ultra-weak solutions, of a game.

4 Performance Evaluation

In this section, we compare our solver in seven modes: Alpha-beta pruning,
DC-NC[proj-NC*], DQ-NC[proj-NC*], DC-AC[proj-AC*], DQ-AC[proj-AC*], DC-
AC[proj-FDAC*], and DQ-AC[proj-FDAC*]. Values are labeled in static lexicographic
order. We generate 20 instances for each benchmark’s particular parameter setting. Re-
sults for each benchmark are tabulated with average time used (in sec.) and average
number of tree nodes encountered. We take average for solved instances only. If there
are any unsolved instances, we give the number of solved instances beside the average
time (superscript in brackets). Winning entries are highlighted in bold. A symbol ‘-’
represents all instances fail to run within the time limit. The experiment is conducted
on a Core2 Duo 2.8GHz with 3.2GB memory. We have also performed experiments on

Table 2. Randomly Generated Problem

Alpha-beta DC-NC[proj-NC*] DC-AC[proj-AC*] DC-AC[proj-FDAC*]
(n, d, p) Time #nodes Time #nodes Time #nodes Time #nodes

(12, 5, 0.4) 68.20 5,967,461 5.89 131,468 2.54 30,165 2.13 20,397
(12, 5, 0.6) 52.05 4,782,541 4.63 101,690 2.61 26,093 2.24 16,178
(14, 5, 0.4) 263.04(18) 19,770,953 52.72 948,783 19.33 198,476 14.82 117,155
(14, 5, 0.6) 271.72(17) 17,249,858 70.12 1,185,087 29.97 246,459 23.11 143,197
(16, 5, 0.4) 517.24(2) 26,269,025 332.65(19) 4,617,612 121.78 1,047,900 102.82 706,913
(16, 5, 0.6) 693.31(2) 36,315,673 461.68(16) 6,157,070 259.51 1,816,642 208.52 1,054,326

QeCode DQ-NC[proj-NC*] DQ-AC[proj-AC*] DQ-AC[proj-FDAC*]
(n, d, p) Time #nodes Time #nodes Time #nodes Time #nodes

(12, 5, 0.4) - – 3.68 158,179 3.23 53,845 4.27 58,619
(12, 5, 0.6) - - 2.85 118,401 3.24 41,596 4.17 45,698
(14, 5, 0.4) - - 33.39 1,135,378 26.20 369,185 41.74 482,053
(14, 5, 0.6) - - 46.81 1,510,946 45.85 450,407 68.63 522,715
(16, 5, 0.4) - - 217.13 5,780,075 141.07 1,654,538 173.96 1,745,527
(16, 5, 0.6) - - 364.51(19) 9,401,844 341.71 3,071,036 362.12(17) 2,659,294
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Table 3. Graph Coloring Game

Alpha-beta DC-NC[proj-NC*] DC-AC[proj-AC*] DC-AC[proj-FDAC*]
(v, c, d) Time #nodes Time #nodes Time #nodes Time #nodes

(14, 4, 0.4) 19.88 1,572,978 6.71 122,266 3.20 37,252 1.90 16,732
(14, 4, 0.6) 24.12 1,730,473 10.38 185,111 5.88 59,359 3.48 23,515
(16, 4, 0.4) 167.75 10,050,800 48.37 688,200 22.67 221,484 12.09 92,875
(16, 4, 0.6) 166.83 9,213,029 45.71 625,944 27.03 212,934 15.64 85,920
(18, 4, 0.4) 784.47(3) 33,914,968 288.90 2,839,962 114.63 792,220 65.58 357,457
(18, 4, 0.6) - - 350.29 3,400,265 163.70 993,099 80.06 343,146

QeCode DQ-NC[proj-NC*] DQ-AC[proj-AC*] DQ-AC[proj-FDAC*]
(v, c, d) Time #nodes Time #nodes Time #nodes Time #nodes

(14, 4, 0.4) - - 4.52 170,843 3.36 63,298 3.74 53,722
(14, 4, 0.6) - - 7.29 269,179 6.36 99,972 6.88 74,187
(16, 4, 0.4) - - 34.43 1,002,145 23.21 363,539 24.36 281,229
(16, 4, 0.6) - - 33.82 949,861 29.19 352,694 31.99 280,426
(18, 4, 0.4) - - 204.86 4,095,993 118.65 1,315,346 140.95 1,207,566
(18, 4, 0.6) - - 267.23 5,295,433 180.38 1,711,948 182.66 1,270,797

Table 4. Generalized Radio Link Frequency Assignment Problem

Alpha-beta DC-NC[proj-NC*] DC-AC[proj-AC*] DC-AC[proj-FDAC*]
(i, n, d, r) Time #nodes Time #nodes Time #nodes Time #nodes

(1, 24, 4, 0.2) - - 86.38 442,362 50.54 74,182 53.85 55,988
(0, 24, 4, 0.4) - - 148.87 828,286 105.95 295,743 128.01 286,122
(1, 22, 6, 0.2) - - 618.93 3,580,885 307.58 352,439 309.63 299,361
(0, 24, 6, 0.2) - - 1230.33(19) 6,822,412 500.18 738,245 479.50 651,762

QeCode DQ-NC[proj-NC*] DQ-AC[proj-AC*] DQ-AC[proj-FDAC*]
(i, n, d, r) Time #nodes Time #nodes Time #nodes Time #nodes

(1, 24, 4, 0.2) - - 45.62 449,164 50.75 77,286 47.08 62,734
(0, 24, 4, 0.4) - - 96.55 1,046,150 101.49 451,090 208.79 692,470
(1, 22, 6, 0.2) - - 338.42 3,719,348 374.34 374,385 309.96 368,643
(0, 24, 6, 0.2) - - 682.60(19) 7,224,677 539.69 803,087 434.99 812,048

QeCode, a solver for QCOPs [3], by transforming the instances to QCOPs according to
the transformation in previous work [16].

4.1 Randomly Generated Problems and Graph Coloring Games

We re-use benchmark MWCSP instances and graph coloring game instances by Lee,
Mak, and Yip [16]. The random MWCSP instances are generated with parameters
(n, d, p), where n is the number of variables, d is the domain size for each variable,
and p is the probability for a binary constraint to occur between two variables. There
are no unary constraints which makes the instances harder, and the costs for each bi-
nary constraint are generated uniformly in [0..30]. Quantifiers are generated randomly
with half probability for min (max resp.), and the number of quantifier levels vary from
instances to instances. For the graph coloring game instances, numbers are used instead
of colors, and the graph is numbered by two players. We partition the nodes into two
sets A and B. Player 1 (Player 2 resp.) will number set A (B resp.). The goal of player
1 is to maximize the total difference between numbers of adjacent nodes, while player
2 wishes to minimize. The aim is to help player 1 extracting the best-worst case. We
generate instances with parameters (v, c, d), where v is an even number of nodes in the
graph, c is the range of numbers allowed to place, and d is the probability of an edge
between two vertices. Player 1 (Player 2 resp.) is assigned to play the odd (even resp.)
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numbered turns, and the node corresponding to each turn is generated randomly. Time
limit for both benchmarks are 900 seconds. Table 2 and 3 show the results.

4.2 Generalized Radio Link Frequency Assignment Problem (GRLFAP)

We generate the GRLFAP according to two small but hard CELAR sub-instances [7],
which are extracted from CELAR6. All GRLFAP instances are generated with parame-
ters (i, n, d, r), where i is the index of the CELAR sub-instances (CELAR6-SUBi), n is
an even number of links, d is an even number of allowed frequencies, and r is the ratio
of links placed in unsecured areas, 0 ≤ r ≤ 1. For each instance, we randomly extract
a sequence of n links from CELAR6-SUBi and fix a domain of d frequencies. We ran-
domly choose -(r×n+1)/2. pairs of links to be unsecured. If two links are restricted
not to take frequencies fi and fj with distance less than t, we measure the costs of
interference by using a binary constraint with violation measure max(0, t− |fi − fj |).
We set the time limit to 7200 seconds. Table 4 shows the results.

4.3 Results and Discussions

For all benchmarks, all six consistencies are significantly faster and stronger than alpha-
beta pruning.

Comparing the two duality approaches, we observe duality of constraints (DC) is
stronger than duality of quantifiers (DQ), and we conjecture for any projection/exten-
sion conditions τ , DC-NC[τ ] (DC-AC[τ ] resp.) is stronger than DQ-NC[τ ] (DQ-AC[τ ]
resp.). Note that enforcing projection/extension conditions on DQ-NC/DQ-AC may
strengthen one approximation function, and weaken the other at the same time. DC-
NC/DC-AC extracts costs from different copies of constraints and resolve this issue.

For all benchmarks, DQ-NC[proj-NC*] runs faster than DC-NC[proj-NC*]. In ran-
domly generated problems and the graph coloring game, DC-AC[proj-(FD)AC*] runs
faster than DQ-AC[proj-(FD)AC*], with DC-AC[proj-FDAC] the fastest. In GRLFAP,
DQ-NC[proj-NC*] runs faster than the others for smaller instances and stronger consis-
tencies are faster for larger ones. Enforcing proj-FDAC* is more computational expen-
sive than proj-AC* and proj-NC*, and implementing duality of constraints requires im-
plementing two copies of constraints. Therefore, stronger consistencies are worthwhile
for larger instances, but not for smaller ones due to the large computational over-head.

It is worth noting DQ[proj-FDAC*] prunes less than DQ[proj-AC*], suggested by
the fact that adding stronger projection/extension conditions from WCSPs naively may
not always strengthen our approximation functions. We have to further consider quan-
tifier information.

All QCOP instances for even the smallest parameter settings for all benchmarks fail
to run within the time limit. QCOPs are, in fact, more general [16] than MWCSPs. By
viewing a more specific problem, it is natural for us to devise consistency techniques
outperforming QeCode.

5 Concluding Remarks

We define and implement node and (full directional) arc consistency notions to reduce
the search space of an alpha-beta search for MWCSPs, by approximating lower and
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upper bounds of the cost of the problem. Lower bound computation employs standard
estimation of costs in the sub-problems and we propose two approaches: duality of
quantifiers and duality of constraints, based on the Duality Principle in estimating up-
per bounds. Details on strengthening the approximation functions by re-using WCSPs
consistencies are given. We also discuss capabilities and limitations of our approach on
other stronger solution concepts. Experiments on comparing basic alpha-beta pruning
and the six consistencies from the two dualities are performed.

There are two closely related frameworks, where both tackle constraint problems
with adversaries. Brown et al. propose adversarial CSPs [6], which focuses on the case
where two opponents take turns to assign variables, each trying to direct the solution
towards their own objectives. Another related work is Stochastic CSPs [26], which can
represent adversaries by known probability distributions. We seek actions to minimize/-
maximize the expected cost for all the possible scenarios. Our work is similar in the
sense that we are minimizing the cost for the worst case scenario.

Possible future work includes: consistency algorithms for high arity (soft) constraints
similar to those for WCSPs [18,19,17], value/variable ordering heuristics, theoretical
comparisons on different consistency notions, tackling stronger solutions, and online
algorithms.
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Abstract. WCSP is a framework that has attracted a lot of attention during the
last decade. In particular, many filtering approaches have been developed on the
concept of equivalence-preserving transformations (cost transfer operations), us-
ing the definition of soft local consistencies such as, for example, node consis-
tency, arc consistency, full directional arc consistency, and existential directional
arc consistency. Almost all algorithms related to these properties have been intro-
duced for binary weighted constraint networks, and most of the conducted exper-
iments typically include networks with binary and ternary constraints only. In this
paper, we focus on extensional soft constraints (of large arity), so-called soft ta-
ble constraints. We propose an algorithm to enforce a soft version of generalized
arc consistency (GAC) on such constraints, by combining both the techniques of
cost transfer and simple tabular reduction, the latter dynamically maintaining the
list of allowed tuples in constraint tables. On various series of problem instances
containing soft table constraints of large arity, we show the practical interest of
our approach.

1 Introduction

The Weighted Constraint Satisfaction Problem (WCSP) is an optimization framework
used to handle soft constraints, which has been successfully applied in many applica-
tions of Artificial Intelligence and Operations Research. Each soft constraint is defined
by a cost function that associates a violation degree, called cost, with every possible
instantiation of a subset of variables. Using the (bounded) addition ⊕, these costs can
be combined in order to obtain the overall cost of any complete instantiation. Finding a
complete instantiation with a minimal cost is known to be NP-hard.

Several properties, such as Node Consistency (NC) and Arc Consistency (AC), intro-
duced in the early 70’s for the Constraint Satisfaction Problem (CSP), have been studied
later in the context of WCSP. Since then, more and more sophisticated developments
about the best form of soft arc consistency have been proposed over the years: full di-
rectional arc consistency (FDAC) [3], existential directional arc consistency (EDAC)
[6], virtual arc consistency (VAC) and optimal soft arc consistency (OSAC) [4], among
others. Cost transfer, which is the general principle behind the algorithms enforcing
such properties, preserves the semantics of the soft constraints network while concen-
trating costs on domain values (unary constraints) and a global constant cost (nullary
constraint). Quite interestingly, cost transfer algorithms have been shown to be partic-
ularly efficient to solve real-world problem instances, especially when soft constraints
are binary or ternary (see http://costfunction.org for many such problems).

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 390–405, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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For soft constraints of large arity, cost transfer becomes a serious issue because the
risk of combinatorial explosion has to be controlled. A first solution is to postpone cost
transfer operations until the number of unassigned variables (in constraint scopes) is
sufficiently low. However, it may dramatically damage the filtering capability of the
algorithms, in particular at the beginning of search. A second solution is to adapt soft
local consistency algorithms to certain families of global soft constraints. This is the
approach followed in [14,15] where the concept of projection-safe soft constraint is
introduced. A third solution is to decompose soft constraints (cost functions) into soft
constraints of smaller arity [7]. Decomposition of global soft constraints can also be
envisioned [1]. Unluckily, not all soft constraints can be decomposed.

To enforce the property, known as Generalized Arc Consistency (GAC) on soft table
constraints, i.e., soft constraints defined extensionally by listing tuples and their costs,
we propose to combine two techniques, namely, Simple Tabular Reduction (STR) [16]
and cost transfer. Basically, whenever some domain values are deleted during prop-
agation or search, all tuples that become invalid are removed from constraint tables.
This allows us to identify values that are no longer consistent with respect to GAC.
Interestingly, because all valid tuples of tables are iterated over, it is easy and cheap to
compute minimum costs of values. This is particularly useful for performing efficiently
projection operations that are required to establish GAC.

The paper is organized as follows. In the first section, we present the technical back-
ground about WCSP. Next, we present the data structures and the algorithms used in our
approach GACw-WSTR. We prove the correctness and discuss the complexity of our
method. Finally, we introduce some new series of benchmarks and show the practical
interest of our approach.

2 Technical Background

A weighted constraint network (WCN) P is a triplet (X ,C , k) where X is a finite
set of n variables, C is a finite set of e soft (or weighted) constraints, and k > 0
is either a natural integer or ∞. Each variable x has a (current) domain, denoted by
dom(x), which is the finite set of values that can be (currently) assigned to x; the
initial domain of x is denoted by dominit(x). d will denote the greatest domain size.
An instantiation I of a set X = {x1, . . . , xp} of p variables is a set {(x1, a1), . . .,
(xp, ap)} such that ∀i ∈ 1..p, ai ∈ dominit(xi); each ai is denoted by I[xi]. I is valid
on P iff ∀(x, a) ∈ I, a ∈ dom(x). Each soft constraint cS ∈ C involves an ordered set
S of variables, called its scope, and is defined as a cost function from l(S) to {0, . . . , k}
where l(S) is the set of possible instantiations of S. When an instantiation I ∈ l(S) is
given the cost k, i.e., cS(I) = k, it is said forbidden. Otherwise, it is permitted with
the corresponding cost (0 being completely satisfactory). Costs are combined with the
specific operator⊕ defined as: ∀α, β ∈ {0, . . . , k}, α⊕β = min(k, α+β). The partial
inverse of ⊕ is , defined by: if 0 ≤ β ≤ α < k, α , β = α − β and if 0 ≤ β < k,
k , β = k. A unary (resp., binary) constraint involves 1 (resp., 2) variable(s), and a
non-binary one strictly more than 2 variables. For any constraint cS , every pair (x, a)
such that x ∈ S ∧ a ∈ dom(x) is called a value of cS .

For any instantiation I and any set of variables X , let I↓X = {(x, a) | (x, a) ∈
I∧x ∈ X} be the projection of I on X . If cS is a soft constraint and I is an instantiation
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of a set X ⊇ S, then cS(I) will be considered to be equal to cS(I↓S) (in other words,
projections will be implicit). For a WCN P and a complete instantiation I of P , the cost
of I is

⊕
cS∈C cS(I). The usual (NP-hard) task of Weighted Constraint Satisfaction

Problem (WCSP) [12] is, for a given WCN, to find a complete instantiation with a
minimal cost.

Many forms of soft arc consistency have been proposed during the last decade (e.g.,
see [4]). We now briefly introduce some of them. Without any loss of generality, the
existence of a nullary constraint c∅ (a constant) as well as the presence of a unary con-
straint cx for every variable x is assumed. A variable x is node-consistent (NC) iff
∀a ∈ dom(x), c∅ ⊕ cx(a) < k and ∃b ∈ dom(x) | cx(b) = 0. Some other consisten-
cies introduced for WCSP are AC* [9,12], FDAC [3], EDAC [6], VAC and OSAC [4].
Algorithms enforcing such properties are based on equivalence-preserving transforma-
tions (EPT) that allow safe moves of costs among constraints: the cost of any complete
instantiation is preserved. Two basic cost transfer operations are called project and
unaryProject (see e.g., [4]). The former projects a given cost from a non-unary soft
constraint to a unary constraint; for example, it is possible to project on cx(a) the min-
imum cost of a value (x, a) on a soft constraint cS , which is minI∈l(S)∧I[x]=acS(I).
The latter projects a given cost from a unary constraint to the nullary constraint c∅. We
shall note φ(P ) the enforcement of property φ (e.g., AC, EDAC, . . .) on the (W)CN P .
For non-binary soft constraints, generalized arc consistency (GAC), a well-known CSP
property, has also been adapted to WCSP [5,4]. We first need to introduce the notion of
extended cost. The extended cost of an instantiation I ∈ l(S) on a soft constraint cS ,
includes the cost of I on cS as well as the nullary cost c∅ and the unary costs for I of
the variables in S. It is defined by ecost(cS , I) = c∅ +

∑
x∈S cx(I[x]) + cS(I); we

shall say that I is allowed on cS iff ecost(cS , I) < k.

Definition 1. A soft constraint cS is GAC-consistent iff:

– ∀I ∈ l(S), cS(I) = k if ecost(cS , I) = k.
– for every value (x, a) of cS , ∃I ∈ l(S) | I[x] = a ∧ cS(I) = 0.

Below, we propose an alternative to this definition of GAC for WCSP, and call it weak
GAC (GACw for short).

Definition 2. A value (x, a) of a soft constraint cS is GACw-consistent on cS iff ∃I ∈
l(S) | I[x] = a∧cS(I) = 0∧ecost(cS , I) < k. A soft constraint cS is GACw-consistent
iff every value of cS is GACw-consistent.

GAC is stronger than GACw because it identifies instantiations of constraint scopes that
are inconsistent. However, when domains are the only point of interest, we can observe
that the set of values deleted when enforcing GAC on a soft constraint cS is exactly the
set of values deleted when enforcing GACw on cS .

Finally, one alternative approach to cost transfer methods is the algorithm PFC-
MRDAC [8,11,10]. This is a classical branch and bound algorithm that computes lower
bounds at each node of the search tree and that is used in our experimentation.
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3 GACw-WSTR

The algorithm we propose, called GACw-WSTR, can be applied to any soft table con-
straint cS whose default cost is either 0 or k. Such constraints occur quite frequently in
practice. For example, among the 31 packages of WCSP instances listed on
http://costfunction.org, 19 packages contain instances where the default
cost of all soft table constraints is 0, and 5 packages contain instances where a vari-
ous proportion of soft table constraints have a default cost equal to 0. This means that
our approach can be applied on more than 61% of the packages currently available
on this website. In this section, we first describe the data structures, then we intro-
duce the algorithm GACw-WSTR, and finally we study its properties (correctness and
complexity).

3.1 Data Structures

A soft table constraint cS is a constraint defined by a list table[cS] of t tuples1 (built over
S), a list costs[cS ] of t integers, and an integer default[cS]. The ith tuple in table[cS]
is given as cost the ith value in costs[cS ]. Any implicit tuple, i.e., any tuple that is not
present in table[cS], is given as (default) cost the value default[cS].

An important feature (inherited from STR) of the algorithm we propose is the cheap
restoration of its structures when backtracking occurs. The principle is to split each
constraint table into different sets such that each tuple is a member of exactly one set.
One of these sets contains all tuples that are currently valid: tuples in this set constitute
the content of the current table. For simplicity, data structures related to backtracking
are not detailed in this paper (see [13]).

For a (soft) constraint table cS , the following arrays provide access to the disjoint
sets of valid and invalid tuples within table[cS]:

– position[cS] is an array of size t that provides indirect access to the tuples of
table[cS]. At any given time, the values in position[cS] are a permutation of {1, 2,
. . . , t}. The ith tuple of cS is table[cS][position[cS][i]], and its cost is given by
costs[cS ][position[cS][i]].

– currentLimit[cS] is the position of the last current tuple in table[cS]. The cur-
rent table of cS is composed of exactly currentLimit[cS] tuples. The values in
position[cS] at indices ranging from 1 to currentLimit[cS] are positions of the
current tuples of cS .

The top half of Figure 1 illustrates the use of our data structures for a given constraint.
The array table is composed of 7 tuples (ranging in lexicographic order from τ0 to
τ6). For each tuple, an associated cost is given by the array costs. The array position
provides an indirect access to the tuples. The last valid tuple of the table is marked by
a pointer: currentLimit. Initially all tuples of the table are valid and the current table
is composed of exactly currentLimit tuples. In our example the value of c∅ is set to
0 and the upper-bound k is set to 5. The data structure c1 represents the unary cost of

1 A tuple can be seen as an instantiation over the variables of the scope of a constraint.

http://costfunction.org
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Fig. 1. Example of our data structures and their evolution after removing a from dom(x)

each value (x, a). The data structure position′′ represents the state of position after
applying our algorithm. Changes in this data structure will be explained in Section 3.2.

As in [13], we also introduce two sets of variables, called Ssup and Sval. On the
one hand, as soon as all values in the domain of a variable have been detected GACw-
consistent, it is futile to continue to seek supports for values of this variable. We there-
fore introduce the set Ssup of uninstantiated variables (from the scope of the constraint)
whose domains contain each at least one value for which a support has not yet been
found. All main operations in our algorithm will only handle variables in Ssup. To
update Ssup, we use an array to count the number nbGacValues [cS ][x] of GACw-
consistent values identified for each variable x.

On the other hand, at the end of an invocation of GACw-WSTR for a constraint cS ,
we know that for every variable x ∈ S, every tuple τ such that τ [x] �∈ dom(x) has
been removed from the current table of cS . If there is no backtrack and dom(x) does
not change between this invocation and the next invocation, then at the time of the next
invocation it is certainly true that τ [x] ∈ dom(x) for every tuple τ in the current table of
cS . In this case, there is no need to check whether τ [x] ∈ dom(x); efficiency is gained
by omitting this check. We implement this optimization by means of set Sval, which is
the set of uninstantiated variables whose domain has been reduced since the previous
invocation of GACw-WSTR. To set up Sval, we need to record the domain size of each
variable x ∈ S right after the execution of GACw-WSTR on cS : this value is recorded
in lastSize[cS][x].
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For enforcing GACw on a given constraint cS , we need to compute minimum costs
of values on cS . This can be achieved at low cost while traversing the current table of cS .
We just need an arrayminCosts [cS ] to record those minimum costs; minCosts [cS ][x][a]
will denote the minimum cost of (x, a) on cS Finally, when the default cost of cS is 0, it
is useful to count the number nbTuples [cS ][x][a] of valid explicit tuples for each value
(x, a), so as to determine whether a valid implicit tuple may exist.

To conclude this section, we briefly discuss how transfers of tuple costs can be im-
plemented. Actually, to keep unchanged our table representation (i.e., keeping the same
list of explicit tuples), we need to adopt the solution proposed in [5,12], which has a
reasonable O(|S|d) complexity. The principle is to keep original values in costs[cS ]
while recording in an auxiliary structure called deltas[cS] the cumulated cost of all
projections performed with respect to each value. The current cost of a given tuple
τ (at position index in our representation) is then computed as follows: cS(τ) =
costs[cS ][index],x∈S deltas[cS][x][τ [x]].

3.2 Algorithm

Whereas STR for crisp table constraints just requires simple iterations, for soft table
constraints, we have to handle several potential iterations over table tuples (due to cost
transfer operations). This is what we show now with Algorithm 10 that enforces GACw

on any soft table constraint cS whose default cost is either 0 or k. The first instruction
is a call to Function initialize, Algorithm 5, which initializes both sets Ssup and Sval.
More precisely, Ssup is initialized to contain future variables only, which is exactly
S \ past(P ); the set past(P ) denotes the set of variables of the WCN P explicitly
instantiated by the search algorithm. The set Sval contains the future variables whose
domains have been changed since the last call to the algorithm (for the same constraint
cS). At line 6 of Algorithm 5, we have |dom(x)| which is the size of the current domain
of x, and lastSize[cS][x] which is the size of the domain of x, the last time the specific
constraint cS was processed; initially we have lastSize[cS][x] = −1 for every pair
composed of a constraint cS and a variable x in S. Additionally, Sval also contains the
last assigned variable, denoted by lastPast(P ) here, if it belongs to the scope of the
constraint cS . Indeed, after any variable assignment x = a, some tuples may become
invalid due to the removal of values from dom(x). The last assigned variable is the only
instantiated variable for which validity operations must be performed.

First, let us assume that default[cS] = k. In this case, a call to Function traverse-k,
Algorithm 7, is performed at line 4 of Algorithm 10. Lines 1-4 of Algorithm 7 allow
us to initialize the arrays nbGacValues [cS ] and minCosts [cS ]: initially, no value has
been proved to be GACw-consistent and no tuple with a cost lower than k has been
found. Then the loop at lines 6 − 24 successively processes all current tuples of the
table of cS . At line 10 of Algorithm 7, a validity check is performed on tuple τ when
cnt > 2 (the operator ‘or else’ uses a short-circuit evaluation). This means that validity
checks are only performed during the two first traversals of the table (i.e., two first calls
to traverse-k) because after the second traversal, no other value can be deleted. The
validity check is performed by Function isValidTuple, Algorithm 3, that deals only with
variables in Sval. At line 11 of Algorithm 7, the extended cost of τ is computed (see
Algorithm 4) and compared with k when cnt > 1. This means that such a computation
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is only performed during the first traversal of the table because the extended cost of any
tuple on cS remains constant after that traversal (projections do not modify extended
costs as shown by Lemma 1). If tuple τ (whose cost is γ) is both valid and allowed, the
array minCosts [cS ] is subject to potential update (line 16). Besides, when the cost γ of
τ is 0, we know that we have just found a support for (x, a) on cS , so we can increment
nbGacValues [cS ][x] (line 18), and discard x from Ssup (line 20) in case (x, a) was the
last value in dom(x) without any proved support. In constant time at line 23 a tuple τ
that is either invalid or forbidden is removed from the current table: actually it is moved
to the end of the current table before the value of currentLimit[cS] is decremented.

The next instruction of Algorithm 10 is a call to Function pruneVars (Algorithm
6). This function allows us to remove all values proved to be inconsistent wrt GACw:
they are the values (x, a) such that minCosts [cS ][x][a] = k. When at least one value is
removed from the domain of a variable x, x is added to the set Y val (line 6). Besides,
after processing x, the value of lastSize[cS][x] is updated to record the new domain
size (line 9). In Y sup, we only keep variables for which at least one support must be
sought (line 8). Finally, the sets Y sup and Y val become the new Ssup and Sval. Note
that Ssup and Sval are not handled exactly as in STR2 [13], the difference residing
mainly in Algorithm 6.

The main loop of Algorithm 10 aims at making successive projections in order to
exhibit a support for each remaining value of cS . All variables in Ssup require such
operations. Each such variable is picked in turn at line 9, and projections (potentially
followed by a unary projection) are performed at lines 10-16. If Ssup still contains at
least one variable, the counter cnt is incremented, and traverse-k is called again. This
new call permits to update the array minCosts [cS ] as well as the set Ssup.

Now, let us assume that default[cS] = 0. In that case, Function traverse-0 (Algo-
rithm 9) is called instead of Function traverse-k, at lines 6 and 22 of Algorithm 10.
The main difference between traverse-0 and traverse-k is that forbidden tuples must
be kept in order to be able to count the number of valid tuples in the current table.
Counting is managed at lines 5 and 16. Once the current table has been iterated over,
we need to look for the existence of a valid implicit tuple for each value (lines 27-31).
Function allowedImplicitTuple determines whether there exists such a valid implicit
tuple containing the value (x, a).

The bottom half of Figure 1 illustrates the evolution of the data structure minCosts
during a call to Algorithm 7. We suppose that the event x �= a has triggered a reconsid-
eration of the constraint. Note that before calling Algorithm 7 the structure minCosts
has been initialized (with value k) using Algorithm 5 and the set Ssup contains all the
unassigned variables involved in the scope of the constraint. First, tuple τ1 is consid-
ered. This tuple is valid (all values of the tuple belong to the current domains) and the
tuple is also allowed since the extended cost of the tuple is equal to 0 (which is less
than k = 5). Then the data structure minCosts is updated for each value of τ1. Next
τ4 is considered. Due to x �= a, τ4 is no more valid. So τ4 is swapped with the last valid
tuple and the pointer currentLimit is decremented. In the figure, a cross identifies the
removed tuple. The minimal cost of (x, a) remains k. The structure minCosts′ depicts
the state of minCosts after considering tuples τ1, τ4 and τ5. Next when considering τ2,
this tuple is identified as not allowed because its extended cost is equal to k = 5. Hence,
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Algorithm 1. project(cS : soft constraint, x: variable, a: value, α: integer)

1 cx(a)← cx(a)⊕ α
2 deltas[cS][x][a] ← deltas[cS][x][a]⊕ α;

Algorithm 2. unaryProject(x: variable, α: integer)

1 foreach value a ∈ dom(x) do
2 cx(a)← cx(a)� α

3 c∅ ← c∅ ⊕ α

Algorithm 3. isValidTuple(cS : soft constraint, τ : tuple): Boolean

1 foreach variable x ∈ Sval do
2 if τ [x] /∈ dom(x) then
3 return false

4 return true

Algorithm 4. ecost(cS: soft constraint, γ: integer, τ : tuple): integer

1 return c∅
⊕

x∈S cx(τ [x])⊕ γ

Algorithm 5. initialize(cS : soft constraint)

1 Ssup ← ∅ ; Sval ← ∅
2 if lastPast(P ) ∈ S then
3 Sval ← Sval ∪ {lastPast(P )}
4 foreach variable x ∈ S | x /∈ past(P ) do
5 Ssup ← Ssup ∪ {x}
6 if |dom(x)| �= lastSize[cS][x] then
7 Sval ← Sval ∪ {x}

Algorithm 6. pruneVars(cS : soft constraint)

1 Y sup ← ∅, Y val ← ∅
2 foreach variable x ∈ Ssup do
3 foreach a ∈ dom(x) do
4 if minCosts [cS ][x][a] = k then
5 remove a from dom(x)

6 add x to Y val

7 else if minCosts [cS ][x][a] > 0 then
8 add x to Y sup

9 lastSize[cS ][x]← |dom(x)|
10 Sval ← Y val ; Ssup ← Y sup
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Algorithm 7. traverse-k(cS: soft constraint, cnt: integer)

1 foreach variable x ∈ Ssup do
2 nbGacValues [cS ][x]← 0
3 foreach a ∈ dom(x) do
4 minCosts [cS ][x][a]← k

5 i← 1
6 while i ≤ currentLimit [cS ] do
7 index← position [cS ][i]
8 τ ← table[cS][index] // current tuple
9 γ ← costs[cS][index]�x∈S deltas[cS][x][τ [x]] // tuple cost

10 valid← cnt > 2 or else isValidTuple(cS , τ )
11 allowed← cnt > 1 or else ecost(cS, γ, τ ) < k
12 if valid ∧ allowed then
13 foreach variable x ∈ Ssup do
14 a← τ [x]
15 if γ < minCosts[cS ][x][a] then
16 minCosts [cS ][x][a]← γ
17 if γ = 0 then
18 nbGacValues [cS ][x] + +
19 if nbGacValues [cS ][x] = |dom(x)| then
20 Ssup ← Ssup \ {x}

21 i← i+ 1

22 else
23 swap(position[cS ], i, currentLimit [cS ])
24 currentLimit [cS ]−−

τ2 is removed. The structure minCosts′′ represents the state of minCosts after con-
sidering all tuples. Finally, as all values of w have a minimal cost equal to 0, it means
that all values have at least a support in this constraint. The variable w can then be safely
removed from Ssup. One can apply a similar reasoning for the variable z. Actually, the
value (z, b) will be removed when Algorithm 6 is called (since its minimal cost is equal
to k), and since all the other values have a support then z can be safely removed from
Ssup. Note that if τ2 had not been removed (by omitting to compute its extended cost),
the minimal cost of (z, b) would have been 3 (instead of k). Consequently this value
would not have been removed. After the execution of Algorithms 7 and 6, the set Ssup

only contains variables x and y.

3.3 Properties

Lemma 1. Let cS be a soft constraint, and (x, a) be a value of cS . The extended cost
of every tuple τ ∈ l(S) remains constant, whatever the operation project(cS , x, a, α)
or unaryProject(x, α) is performed (Proof omitted)



Propagating Soft Table Constraints 399

Algorithm 8. allowedImplicitTuple(cS : soft constraint, x: variable, a: value)

1 foreach τ ∈ l(S) | τ [x] = a do
2 if ¬binarySearch(τ ,table [cS ]) then
3 return true

4 return false

Algorithm 9. traverse-0(cS: soft constraint, cnt: integer)

1 foreach variable x ∈ Ssup do
2 nbGacValues [cS ][x]← 0
3 foreach a ∈ dom(x) do
4 minCosts [cS ][x][a]← k
5 nbTuples [cS ][x][a]← 0

6 i← 1
7 while i ≤ currentLimit [cS ] do
8 index← position [cS ][i]
9 τ ← table[cS][index] // current tuple

10 γ ← costs[cS][index]�x∈S deltas[cS][x][τ [x]] // tuple cost
11 valid← cnt > 2 or else isValidTuple(cS , τ )
12 allowed← ecost(cS , γ, τ ) < k
13 if valid then
14 foreach variable x ∈ Ssup do
15 a← τ [x]
16 nbTuples [cS ][x][a] + +
17 if allowed ∧ γ < minCosts[cS ][x][a] then
18 minCosts [cS ][x][a]← γ
19 if γ = 0 then
20 nbGacValues [cS ][x] + +
21 if nbGacValues [cS ][x] = |dom(x)| then
22 Ssup ← Ssup \ {x}

23 i← i+ 1

24 else
25 swap(position[cS ], i, currentLimit [cS ])
26 currentLimit [cS ]−−

27 foreach variable x ∈ Ssup do
28 nb← |Πy∈S|y �=xdom(y)|
29 foreach a ∈ dom(x) do
30 if nbTuples [cS ][x][a] �= nb ∧minCosts [cS ][x][a] > 0 then
31 if allowedImplicitTuple(cS, x, a) then
32 minCosts [cS ][x][a]← 0
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Algorithm 10. GACw-WSTR(cS: soft constraint)

1 initialize(cS)
2 cnt ← 1
3 if default[cS] = k then
4 traverse-k(cS , cnt)
5 else
6 traverse-0(cS , cnt) // default[cS ] = 0

7 pruneVars(cS)
8 while Ssup �= ∅ do
9 pick and delete x from Ssup

10 α← +∞
11 foreach a ∈ dom(x) do
12 if minCosts [cS ][x][a] > 0 then
13 project(cS, x, a,minCosts [cS ][x][a])

14 α← min(α, cx(a))

15 if α > 0 then
16 unaryProject(x,α)

17 if Ssup �= ∅ then
18 cnt++
19 if default[cS ] = k then
20 traverse-k(cS , cnt)
21 else
22 traverse-0(cS , cnt) // default[cS ] = 0

Under our assumptions, a preliminary observation is that we do not have to keep track of
the effect of projections project(cS , x, a, α) on the default cost. Indeed, if default[cS] =
k, we have k , α = k and if default[cS] = 0 a projection is only possible when no
implicit tuple exists with x = a.

Proposition 1. Algorithm 10 enforces GACw on any soft table constraint cS such that
default[cS] = k.

Proof. Let (x, a) be a value of cS (before calling Algorithm 10), and let the value α =
minCosts[cS ][x][a] be obtained (for the minimum cost of (x, a) on cS) just before ex-
ecuting line 7 of Algorithm 10. On the one hand, if α = k then it means that there is no
explicit valid tuple τ in the current table such that τ [x] = a∧ecost(cS , τ) < k (because
all explicit tuples have just been iterated over by Function traverse-k called at line 4).
Besides, as the default cost is k, there is no implicit tuple τ such that ecost(cS , τ) < k.
We can conclude that (x, a) is inconsistent w.r.t. GACw. This is the reason why when
pruneVars is called at Line 7, this value (x, a) is removed (see Line 5 of Algorithm
6). On the other hand, if α < k, it means that there exists a non-empty set X of valid
tuples τ such that τ [x] = a ∧ ecost(cS , τ) < k. Let us first consider the call to Func-
tion pruneVars at line 7. For every value (y, b) removed at line 5 of Algorithm 6, we
have minCosts[cS ][y][b] = k, which implies that for every τ ∈ X , we have τ [y] �= b



Propagating Soft Table Constraints 401

(otherwise minCosts[cS ][y][b] would have been α). Consequently, all tuples in X re-
main valid and allowed after the execution of pruneVars. Those tuples, present in X ,
will remain valid and allowed throughout the execution of the algorithm because after
executing pruneVars, no more values can be deleted, and cost transfer operations do
not modify extended costs (see Lemma 1). This guarantees that all values detected in-
consistent by GACw are deleted during the call to pruneVars. Now, for (x, a), either
minCosts[cS ][x][a] incidentally becomes 0 by means of cost transfers concerning vari-
ables other than x, or 0 < minCosts[cS ][x][a] < k at the moment where x is picked at
line 9 of Algorithm 10. When executing lines 11-14, all values of x are made GACw-
consistent. So, this is the case for (x, a). We have just proved that every deleted value
is inconsistent w.r.t. GACw, and that every remaining value is GACw-consistent. ��

Proposition 2. Algorithm 10 enforces GACw on any soft table constraint cS such that
default[cS] = 0.

The proof (omitted here) is similar to that of Proposition 1, with the additional consid-
eration of implicit valid tuples. Notice that Algorithm 10 enforces both GACw and NC
on any soft table constraint whose default cost is either k or 0.

We now discuss the complexity of GACw-WSTR for a given constraint cS . With
r = |S| being the arity of cS , the space complexity is O(tr) for structures table[cS]
and costs[cS ], O(t) for position[cS], O(r) for Ssup, Sval, lastSize[cS] and nbGac
V alues[cS], O(rd) for minCosts[cS ], nbTuples[cS] and deltas[cS]. Overall, the
worst-case space complexity is O(tr + rd). The time complexity is O(r) for initial-
ize, O(rd + tr) for traverse-k and O(rd) for pruneVars. Importantly, the number of
turns of the main loop starting at line 8 of Algorithm 10 is at most r because a variable
can never be put two times in Ssup; the complexity for one iteration is O(d) for lines
10-16 augmented with that of traverse-k or traverse-0. Overall, the worst-case time
complexity of GACw-WSTR when default[cS] = k is O(r2(d + t)). On the other
hand, the time complexity of allowedImplicitTuple is O(rt log(t)) because the loop at
line 1 of Algorithm 8 is executed at most t times. Indeed, each call to binarySearch is
O(r log(t)) and the loop is stopped as soon as a valid tuple cannot be found in the table.
traverse-0 is O(rd+tr) for lines 1-26 and O(r2dt log(t)). Finally, the worst-case time
complexity of GACw-WSTR when default[cS] = 0 is O(r3dt log(t)).

4 Benchmarks

We have performed a first experimentation using a new series of Crossword instances
called crossoft, which can be naturally represented by soft table constraints. Given a
grid and a dictionary, the goal is to fill the grid with words present in the dictionary.
To generate those instances, we used three series of grids (Herald, Puzzle, Vg) and
one dictionary, called OGD, that contains common nouns (with a cost of 0) and proper
nouns (with a cost r, where r is the length of the word). Penalties are inspired from the
profits associated with words as described on the french web site
http://ledefi.pagesperso-orange.fr.

http://ledefi.pagesperso-orange.fr
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We have performed a second experimentation using random WCSP instances. We
have generated different classes of instances by considering the CSP model RB [17].
With some well-chosen parameters, Theorem 2 in [17] holds: an asymptotic phase tran-
sition is guaranteed at a precise threshold point. CSP instances from model RB were
translated into WCSP instances by associating a random cost (between 1 and k) with
each forbidden CSP tuple, and considering a default cost for implicit tuples equal to 0.
This guarantees the hardness of the generated random WCSP instances. Using k = 10,
we generated 5 series of 10 WCSP instances of arity 3; rb-r-n-d-e-t-s is an instance of
arity r with n variables, domain size d and e r-ary constraints of tightness t (generated
with seed s). A second set was obtained by translating random CSP instances (with arity
equal to 10) into WCSP. Such a translation was also used for the series renault-mod.

Next, we have performed experimental trials with a new series of instances called
poker based on the version Texas hold ’em of poker. The goal is to fill an empty 5 × 5
board with cards taken from the initial set of cards so as to obtain globally the best hands
in each row and column. The model used to generate the instances is the following: there
is a variable per cell representing a card picked in the initial set of cards. In Poker-n the
initial set of cards contains n cards of each suit and only combinations of at least 2 cards
are considered. Of course, putting the same card several times on the grid is forbidden.
The cost of each hand is given below:

Royal
Flush

Straight
Flush

Four of
a Kind

Full
House

Flush Straight
Three of
a Kind

Two
Pairs

Pair
High
Card

0 1 2 3 4 5 6 7 8 9

Finally, we have experimented our approach on real-world series from
http://costfunction.org/en/benchmark. We have used the ergo and the
linkage series which are structured WCSP instances with constraints of arity larger
than 3.

5 Experimental Results

In order to show the practical interest of our approach to filter soft table constraints
of large arity, we have conducted an experimentation (with our solver AbsCon) using
a cluster of Xeon 3.0GHz with 1GiB of RAM under Linux. We have implemented a
version of PFC-MRDAC, where minimum costs (required by the algorithm to compute
lower bounds) are obtained by calling Functions traverse-0 and traverse-k. At each
step of the search, only one call to either Function traverse-0 or Function traverse-k
is necessary for each soft table constraint because PFC-MRDAC does not exploit cost
transfer operations (due to lack of space, we cannot give full details). This version will
be called PFC-MRDAC-WSTR, whereas the classical version will be called here PFC-
MRDAC-GEN. We have also implemented the algorithm GACw-WSTR and embedded
it in a backtrack search algorithm that maintains GACw. This search algorithm is also
able to maintain AC* and FDAC, instead of GACw. Note that PFC-MRDAC-GEN,
“maintaining AC*” and “maintaining FDAC” iterate over all valid tuples in order to
compute lower bounds or minimum costs. To control such iterations (that are exponen-
tial with respect to the arity of constraints), we have pragmatically tuned a parameter

http://costfunction.org/en/benchmark
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Table 1. Number of solved instances per series (a time-out of 1,200 seconds was set per instance)

PFC-MRDAC- Maintaining-
Series #Inst WSTR GEN GACw-WSTR AC* FDAC

crossoft-herald 50 33 10 47 11 11

crossoft-puzzle 22 22 9 22 18 18

crossoft-vg 64 14 6 14 7 7

poker 18 10 2 10 5 5

rand-3 (rb) 48 20 29 20 32 30

rand-10 20 20 0 20 0 0

ergo 19 13 10 15 15 17

linkage 30 0 0 0 1 9

renault-mod 50 50 32 50 50 47

that delays the application of the algorithm until enough variables are assigned. We have
conducted an experimentation on the benchmarks described in the previous section. A
time-out of 1, 200 seconds was set per instance. The variable ordering heuristic was
wdeg/dom [2] and the value ordering heuristic selected the value with minimal cost.

The overall results are given in Table 1. Each line of this table corresponds to a series
of instances: crossoft-ogd, rand-3, ergo,. . . The total number of instances for each se-
ries is given in the second column of the table. For each series, we provide the number
of solved instances (optimum proved) by each method within 20 minutes. For series
crossoft, the algorithms PFC-MRDAC-WSTR and “maintaining GACw-WSTR” solve
more instances than the generic algorithms. We obtain the same kind of results with
poker. Unsurprisingly, the STR approaches are not so efficient on RB series (rand-3),
which can be explained by the low arity of the constraints (which are ternary) involved
in these instances. On random problems with high arity (involving 10 variables) results
are clearly better: generic algorithms can not solve any of these instances. Finally, for
ergo and linkage series, results are not so significant. Indeed these instances have ei-
ther constraints with low arity or variable domains with very few values (for example,
the maximum domain size is 2 for the instance cpcs422b). When the size of variable
domains is small, Cartesian products of domains grow slowly with the constraint arity,
and so generic algorithms iterating over valid tuples can still be competitive.

Table 2 focuses on some selected instances with the same comparison of algorithms.
We provide an overview of the results in terms of CPU time (in seconds). On instances
of series crossoft and poker, our approach (PFC-MRDAC-WSTR and GACw-WSTR)
outperforms the generic ones whatever the envisioned solving approach (i.e., with or
without cost transfer) is. Note that results for maintaining AC* and FDAC are quite
close. Instances of these two problems have constraints with high arity and variables
with rather large domains. Therefore, the STR technique is well-adapted. Note that for
various instances, generic approaches can not find and prove optimum solutions before
the time limit whereas STR-based algorithms solve them in a few seconds.
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Table 2. CPU time (in seconds) to prove optimality on various selected instances (a time-out of
1,200 seconds was set per instance)

PFC-MRDAC- Maintaining-
Instances WSTR GEN GACw-WSTR AC* FDAC

crossoft-ogd-15-09 26.5 > 1, 200 25.2 273 269

crossoft-ogd-23-01 > 1, 200 > 1, 200 565 > 1, 200 > 1, 200

crossoft-ogd-puzzle-18 6.29 > 1, 200 6.66 > 1, 200 > 1, 200

crossoft-ogd-vg-5-6 0.4 155 0.77 31.5 32.3

poker-5 0.26 92.4 0.24 1.39 1.5

poker-6 0.38 463 0.39 6.58 6.99

poker-9 0.79 > 1, 200 0.63 782 1022

poker-12 1.51 > 1, 200 0.89 > 1, 200 > 1, 200

rb-3-12-12-30-0.630-0 4.13 1.2 3.61 0.79 0.86

rb-3-16-16-44-0.635-2 94.3 7.41 51.6 2.31 3.11

rb-3-20-20-60-0.632-0 614 34.4 830 24.3 23.3

pedigree1 > 1, 200 > 1, 200 890 819 35.0

barley > 1, 200 > 1, 200 40.7 23 20.3

cpcs422b 7.4 113 8.61 58.3 111

link 68.6 > 1, 200 5.41 4.55 6.5

rand-10-20-10-5-9 3.94 > 1, 200 2.39 > 1, 200 > 1, 200

rand-10-20-10-5-10 5.27 > 1, 200 2.67 > 1, 200 > 1, 200

renault-mod-12 1.74 680 1.39 6.01 14.4

renault-mod-14 2.49 > 1, 200 1.49 6.83 14.9

6 Conclusion

In this paper, we have introduced a filtering algorithm that enforces a form of general-
ized arc consistency, called GACw, on soft table constraints. This algorithm combines
simple tabular reduction and cost transfer operations. The experiments that we have
conducted show the viability of our approach when soft table constraints have large
arity, whereas usual generic soft consistency algorithms are not applicable to their full
extent. The algorithm we propose can be applied to any soft table constraint with a de-
fault cost of either 0 or k, which represents a large proportion of practical instances.
A direct perspective of this work is to generalize our approach to soft table constraints
with any default cost.

Acknowledgments. This work has been supported by both CNRS and OSEO within
the ISI project ’Pajero’.
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Abstract. WCSP is an optimization problem for which many forms of soft local
(arc) consistencies have been proposed such as, for example, existential direc-
tional arc consistency (EDAC) and virtual arc consistency (VAC). In this paper,
we adopt a different perspective by revisiting the well-known property of (soft)
substitutability. First, we provide a clear picture of the relationships existing be-
tween soft neighborhood substitutability (SNS) and a tractable property called
pcost which allows us to compare the cost of two values (through the use of
so-called cost pairs). We prove that under certain assumptions, pcost is equiva-
lent to SNS but weaker than SNS in the general case since we show that SNS
is coNP-hard. We also show that SNS preserves the property VAC but not the
property EDAC. Finally, we introduce an algorithm to enforce pcost that benefits
from several optimizations (early breaks, residues, timestamping). The practical
interest of maintaining pcost together with AC*, FDAC or EDAC, during search.
is shown on various series of WCSP instances.

1 Introduction

The Valued Constraint Satisfaction Problem (VCSP) [18] is a general optimization
framework used to handle soft constraints, which has been successfully applied to many
applications in Artificial Intelligence and Operations Research. A problem instance is
modeled in this framework by means of a set of variables and a set of cost functions
defined over a valuation structure. Each cost function determines a violation degree for
each possible instantiation of a subset of variables. These degrees (or costs) can then be
combined using the operator ⊕ of the valuation structure in order to obtain the overall
cost of any complete instantiation. One can broadly classify the different VCSP instan-
tiations according to the properties of the operator⊕: those where⊕ is idempotent (e.g.,
min) and those where ⊕ is monotonic (e.g., +).

Interchangeability is a general property of constraint networks introduced in [10].
Two values a and b for a variable x are interchangeable if for every solution I where x is
assigned b, Ix=a is also a solution, where Ix=a means I with x set to a. Full interchange-
ability has been refined into several weaker forms such as neighborhood interchange-
ability, k-interchangeability, partial interchangeability, relational interchangeability and
substitutability. Interchangeability and substitutability have been used in many contexts;
see e.g. [11,3,7,14]. A partial taxonomy of these two properties can be found in [12].

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 406–421, 2012.
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A generalization of interchangeability and substitutability for soft constraints has
been given in [1]. For example, a value a for a variable x is soft substitutable for an-
other value b in the domain of x if for every complete instantiation I involving (x, a),
the cost of I is less than or equal to the cost of Ix=b. Observation of this property
can be used to delete value b for x whereas preserving optimality. Identifying full
substitutability is not tractable, but is is known [1] that neighborhood substitutabil-
ity, a limited form of substitutability where only constraints involving a given variable
are considered, can be computed in polynomial time when ⊕ is idempotent (provided
that the arity of constraints be bounded). However, when ⊕ is monotonic, as it is the
case for the VCSP specialization called WCSP (Weighted CSP), there is no clear pic-
ture although dominance rules related to soft neighborhood substitutability have been
used [13,8].

In this paper, we focus on soft neighborhood substitutability (SNS) for WCSP. We in-
troduce a property based on cost pairs, called pcost, that allows us to identify efficiently
soft substitutable values. We prove that under certain assumptions, pcost is equivalent
to SNS. However, in the general case, and especially when the WCSP forbidden cost
k is not∞, pcost is weaker than SNS. Actually, identifying a soft neighborhood value
is coNP-hard. We also study the relationships between SNS and known soft arc consis-
tency properties such as Existential Directional Arc Consistency (EDAC) [9] and Vir-
tual Arc Consistency (VAC) [5]. We prove that SNS preserves VAC but not necessarily
EDAC. Finally, we develop a pcost algorithm that benefits from a very moderate best-
case time complexity, and we show experimentally that it can be successfully combined
with EDAC during search.

2 Technical Background

A constraint network (CN) P is a pair (X ,C ) where X is a finite set of n variables,
also denoted by vars(P ), and C is a finite set of e constraints. Each variable x has
a (current) domain, denoted by dom(x), which is the finite set of values that can be
(currently) assigned to x; the initial domain of x is denoted by dominit(x). The largest
domain size will be denoted by d. Each constraint cS involves an ordered set S of
variables, called the scope of cS , and represents a relation capturing the set of tuples
allowed for the variables in S. A unary (resp., binary) constraint involves 1 (resp.,
2) variable(s), and a non-binary one strictly more than 2 variables. An instantiation I
of a set X = {x1, . . . , xp} of p variables is a set {(x1, a1), . . ., (xp, ap)} such that
∀i ∈ 1..p, ai ∈ dominit(xi); X is denoted by vars(I) and each ai is denoted by I[xi].
An instantiation I on a CN P is an instantiation of a set X ⊆ vars(P ) ; it is complete if
vars(I) = vars(P ). I is valid on P iff ∀(x, a) ∈ I, a ∈ dom(x). I covers a constraint
cS iff S ⊆ vars(I). I satisfies a constraint cS with S = {x1, . . . , xr} iff (i) I covers
cS and (ii) the tuple (I[x1], . . . , I[xr]) ∈ cS . An instantiation I on a CN P is locally
consistent iff (i) I is valid on P and (ii) every constraint of P covered by I is satisfied by
I . A solution of P is a complete locally consistent instantiation on P ; sols(P ) denotes
the set of solutions of P .

A weighted constraint network (WCN) P is a triplet (X ,W , k) where X is a finite
set of n variables, as for CSP, W is a finite set of e weighted constraints, also denoted
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by cons(P ), and k > 0 is a natural integer or ∞. Each weighted constraint wS ∈
W involves an ordered set S of variables (its scope) and is defined as a cost function
from l(S) to {0, . . . , k} where l(S) is the set of possible instantiations of S. When a
constraint wS assigns the cost k to an instantiation of S, it means that wS forbids this
instantiation. Otherwise, it is permitted with the corresponding cost (0 is completely
satisfactory). Costs are combined with the specific operators ⊕ defined as: ∀a, b ∈
{0, . . . , k}, a⊕ b = min(k, a+ b).

For any instantiation I and any set of variables X , let I↓X = {(x, a) | (x, a) ∈
I∧x ∈ X} be the projection of I on X . We denote by Ix=a the instantiation I↓X\{x}∪
{(x, a)}, which is the instantiation obtained from I either by replacing the value as-
signed to x in I by a, or by extending I with (x, a). The set of neighbor constraints
of x is denoted by Γ (x) = {cS ∈ cons(P ) | x ∈ S}. When Γ (x) does not contain
two constraints sharing at least two variables, we say that Γ (x) is separable. If cS is
a (weighted) constraint and I is an instantiation of a set X ⊇ S, then cS(I) will be
considered to be equal to cS(I↓S) (in other words, projections will be implicit). If C
is a set of constraints, then vars(C) = ∪cSS is the set of variables involved in C; if
I is an instantiation such that vars(C) ⊆ vars(I), then costC(I) = ⊕cS∈CcS(I) is
the cost of I obtained by considering all constraints in C. For a WCN P and a com-
plete instantiation I of P , the cost of I is then costcons(P )(I) which will be simplified
into cost(I). The usual (NP-hard) task of Weighted Constraint Satisfaction Problem
(WCSP) is, for a given WCN, to find a complete instantiation with a minimal cost. CSP
can be seen as specialization of WCSP (when only costs 0 and k are used) and WCSP
[16] can be seen as a specialization of the generic framework of valued/semiring-based
constraints [2].

Many forms of soft arc consistency have been proposed during the last decade. We
briefly introduce them in the context of binary WCNs. Without any loss of generality,
the existence of a zero-arity constraint c∅ (a constant) as well as the presence of a unary
constraint cx for every variable x is assumed. A variable x is node-consistent (NC*)
iff ∀a ∈ dom(x), c∅ ⊕ cx(a) < k and ∃b ∈ dom(x) | cx(b) = 0. A variable x is
arc-consistent (AC*) iff x is NC* and ∀a ∈ dom(x), ∀cxy ∈ Γ (x), ∃b ∈ dom(y) |
cxy(a, b) = 0 (b is called a simple support of a). A WCN is AC* iff each of its variable
is AC* [15,16]. A WCN is full directional arc-consistent (FDAC) [4] with respect to an
order < on the variables if it is AC* and ∀cxy | x < y, ∀a ∈ dom(x), ∃b ∈ dom(y) |
cxy(a, b) = cy(b) = 0 (b is called a full support of a). A WCN is existential arc-
consistent (EAC) [9] if it is NC* and ∀x ∈ vars(P ), ∃a ∈ dom(x) | cx(a) = 0 ∧
∀cxy ∈ Γ (x), ∃b ∈ dom(y) | cxy(a, b) = cy(b) = 0 (a is called the existential
support of x). A WCN is existential directional arc-consistent (EDAC) with respect to
an order < on the variables if it is EAC and FDAC with respect to <. For any WCN
P , we can derive an associated CN Bool(P ) by considering constraint relations that
only allow tuples with cost zero in P . P is virtual arc-consistent (VAC) [5] if the arc
consistency closure of Bool(P ) does not involve a variable with an empty domain,
denoted by AC(Bool(P )) �= ⊥. A WCN is optimal soft arc-consistent (OSAC) if no
SAC transformation (see [6]) applied to it increases c∅. OSAC is stronger than VAC,
which itself is stronger than EDAC, when comparing the values of c∅. We shall note
φ(P ) the enforcement of property φ (e.g., AC, EDAC, . . .) on the (W)CN P .
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3 Soft Substitutability

In this section, we introduce soft neighborhood substitutability. Initially, interchange-
ability and substitutability are properties that have been introduced for CSP [10]. From
now on, we consider given a (W)CN P .

Definition 1. Let x ∈ vars(P ) and {a, b} ⊆ dom(x),

– (x, a) is (fully) substitutable for (x, b) on P iff for every solution Ix=b of P , Ix=a

is also a solution of P ;
– (x, a) is (fully) interchangeable with (x, b) on P iff (x, a) is substitutable for (x, b)

and (x, b) is substitutable for (x, a).

For example, consider a CN P such that vars(P ) = {x, y, z} and sols(P ) =
{(a, a, a), (a, b, b), (b, a, a), (c, a, a), (c, b, b)}. The values (x, a) and (x, c) are inter-
changeable and both are substitutable for (x, b). When only a single solution is sought,
we can remove a value that is interchangeable with another value (or for which a value
is substitutable). Such removal preserves the satisfiability of the problem instance but
not the full set of solutions.

From now on, we shall focus on substitutability that has been generalized [1] for
WCSP as follows:

Definition 2. Let x ∈ vars(P ) and {a, b} ⊆ dom(x), (x, a) is soft substitutable for
(x, b) on P iff for every complete instantiation I of P , cost(Ix=a) ≤ cost(Ix=b).

When (x, a) is soft substitutable for (x, b), b can be removed from dom(x) without
changing the cost of the optimal solution(s) of P . Indeed, possible solutions of P with
(x, b) are lost, but it is guaranteed that solutions with (x, a) are at least as good.

Because identifying substitutable values involves handling complete instantiations,
this is subject to combinatorial explosion. However, there is a form of local substi-
tutability, called neighborhood substitutability [10,1], that may be helpful.

Definition 3. Let x ∈ vars(P ) and {a, b} ⊆ dom(x), (x, a) is soft neighborhood sub-
stitutable for (x, b) on P iff for every complete instantiation I of P , costΓ (x)(Ix=a) ≤
costΓ (x)(Ix=b).

We shall say that (x, b) is SNS-eliminable (on P ) when there exists a value (x, a) such
that (x, a) is soft neighborhood substitutable for (x, b). It is rather immediate that soft
neighborhood substitutability implies soft (full) substitutability (but the reverse is not
true). Interestingly enough, soft (neighborhood) substitutability allows compensation
between constraint costs. Such compensation is made possible by the presence of all
intermediate costs in the valuation structure, that is to say, the costs different from 0
and k. A simple illustration is given by Figure 1. There are two binary constraints cxy
and cxz and three trivial unary constraints (all unary costs are equal to 0). Binary costs
are depicted as labeled edges, and zero costs are not shown. Note that (x, a) is soft
substitutable for (x, b).

Definition 3 requires to consider each instantiation of vars(Γ (x)), which has a high
computational cost. Considering each constraint individually allows to reduce this cost,
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Fig. 1. (x, a) is soft substitutable for (x, b)

but in this case, it is highly desirable to be able to identify cost compensations between
constraints. One straightforward way to do this is to compute a sum of minimal cost
differences over all constraints, as mentioned in [13,8]. Unfortunately, these differences
of costs introduce subtle problems when k �=∞. This is illustrated as follows:

Example 1. Consider the two families of constraints Ci = {ci | i ∈ 1..n} and C′i =
{c′i | i ∈ 1..n′} defined as:

x yi ci
a c 0

b c 1

x zi c′i
a d 1

b d 0

When n = k and n′ = k+1, (x, a) and (x, b) are interchangeable because both are for-
bidden (i.e., have maximum cost k). However, ∀ci ∈ Ci, costci(Ix=b)−costci(Ix=a) =
1 and ∀c′i ∈ C′i, costc′i(Ix=b) − costc′i(Ix=a) = −1. In the summation over the con-
straints in Γ (x) = Ci ∪ C′i , the resulting value is -1 which would indicate that b has
globally a lower cost than a, which is false since both a and b have a cost of k. To
identify correctly this case of substitution when k �= ∞, it is necessary to use a non
commutative operator, which prevents us from using the usual -.

4 Computing Soft Substitutability

We now focus on soft neighborhood substitutability, and more precisely on the com-
plexity of identifying SNS-eliminable values. We start with some related work. For
the general framework VCSP, efficient algorithms for computing neighborhood substi-
tutability exist [1] when the aggregation operator of the VCSP valuation structure is
idempotent. For the framework FCSP (Fuzzy CSP), the notion of fuzzy neighborhood
substitutability is proposed in [4]: it is shown that fuzzy neighborhood substitutable
values can be identified efficiently when the aggregation operator of the FCSP valua-
tion structure is strictly monotonic or when it is the operator max. More recently, the
possibility of computing dominance forms weaker than soft neighborhood substitutabil-
ity has been proposed in [13]. However, no qualitative study was led. This is what we
propose now for WCSP.

First, we introduce cost pairs as our basic computation mechanism (this is related
to what has been proposed in [4] for FCSP). Indeed, one way to circumvent the afore-
mentioned problems with subtraction is to use only addition defined on pairs of costs.
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This method is analogous to the construction of integers as equivalence classes of
ordered pairs of natural numbers where a pair (β, α) represents the integer β − α.
We define + (addition) on pairs of costs by (β, α) + (β′, α′) = (β + β′, α + α′)
(this is the regular + and not ⊕) and the comparison of a pair of costs with zero by
(β, α) ≥ 0 ⇔ β ≥ α. Pairs are ordered by the relation ≤ defined as (β, α) ≤
(β′, α′) ⇔ β − α < β′ − α′ ∨ (β − α = β′ − α′ ∧ α < α′). In a sense, the pair
(β, α) conveys the difference β − α but also the information min(β, α) which is lost
when a simple subtraction is used. Computing cost pairs on each constraint separately
is sufficient for identifying certain soft neighborhood substitutable values: it suffices to
reason from (sum) minimum differences of costs.

Definition 4. Let x ∈ vars(P ) and {a, b} ⊆ dom(x),

– the cost pair of (x, b) w.r.t. (x, a) on cS ∈ Γ (x) is defined as pcost(cS , x : a →
b) = minI∈l(S){(cS(Ix=b), cS(Ix=a))};

– the cost pair of (x, b) with respect to (x, a) on P is defined as pcost(x : a→ b) =∑
cS∈Γ (x) pcost(cS , x : a→ b).

Proposition 1. Let x ∈ vars(P ) and {a, b} ⊆ dom(x). If pcost(x : a → b) ≥ 0 then
(x, a) is soft neighborhood substitutable for (x, b) on P .

Proof. For a constraint cS , let Ics be the instantiation of S−{x} which yields the min-
imal cost pair in minI∈l(S){(cS(Ix=b), cS(Ix=a))}. By definition, pcost(cS , x : a →
b) = (cS(I

cS
x=b), cS(I

cS
x=a)). By definition of min on cost pairs, we have ∀I, ∀cS ∈

Γ (x), (cS(Ix=b), cS(Ix=a)) ≥ (cS(I
cS
x=b), cS(I

cS
x=a)). By summing up, we obtain ∀I ,∑

cS∈Γ (x)(cS(Ix=b), cS(Ix=a)) ≥
∑

cS∈Γ (x)(cS(I
cS
x=b), cS(I

cS
x=a)). By hypothesis, we

have pcost(x : a→ b) ≥ 0, so
∑

cS∈Γ (x)(cS(I
cS
x=b), cS(I

cS
x=a)) ≥ 0, and consequently

∀I,
∑

cS∈Γ (x)(cS(Ix=b), cS(Ix=a)) ≥ 0. From definition of + and ≤ on cost pairs, we
can derive ∀I,

∑
cS∈Γ (x) cS(Ix=b) ≥

∑
cS∈Γ (x) cS(Ix=a) which implies ∀I,min(k,∑

cS∈Γ (x) cS(Ix=b)) ≥ min(k,
∑

cS∈Γ (x) cS(Ix=a)). Since ∀ai ∈ {0, . . . , k}, a1 ⊕
. . . ⊕ an = min(k, a1 + . . . an}, we can conclude that ∀I,

⊕
cS∈Γ (x) cS(Ix=b)) ≥⊕

cS∈Γ (x) cS(Ix=a)). Hence, (x, a) is soft neighborhood substitutable for (x, b) on P .
��

The converse of Proposition 1 is not true in the general case. One first case where it
is false is when the scope of non-binary constraints intersect on more than one vari-
able (non separable neighborhood). In this situation, constraints cannot be considered
individually.

Example 2. Let’s consider four variables x, y, z t such that dom(x)={a, b}, dom(y) =
{c, d}, dom(z) = dom(t) = {e}, and two ternary constraints cxyz, cxyt defined by the
following cost table:

x y z t cxyz cxyt
a c e e 1 0

b c e e 0 1

a d e e 0 1

b d e e 1 0
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It is easily seen that (x, a) is soft neighborhood substitutable for (x, b) but pcost(cxyz,
x, a→ b) = pcost(cxyt, x, a→ b)=(0, 1) and therefore pcost(x, a→ b)=(0, 2) �≥ 0.

So a first condition for the converse of Proposition 1 to hold it that Γ (x) be separable
(which is the case of binary normalized networks).

Another case where the converse of Proposition 1 is false is when k �= ∞. Con-
sidering the WCN of example 1 with n = k and n′ = k + 1, we can observe that
pcost(x : a → b) = (n, n′) = (k, k + 1) �≥ 0. However, both (x, a) and (x, b) imply
cost k and therefore (x, a) is substitutable for (x, b) (and conversely). On this example,
it might seem a good idea to use ⊕ instead of + in the definition of the addition of
pairs. However, Example 3 shows that this would lead to the incorrect identification of
substitutable values.

Example 3. Consider the unary constraint cx and the family of binary constraints Ci =
{ci | i ∈ 1..n} defined by:

x yi ci
a a 2

a b 0

b a 1

b b 0

x cx
a 1

b 0

Clearly, (x, a) is not substitutable for (x, b). With the sum of pairs defined with + and
n = k, pcost(x, a → b) = (n, 2n + 1) �≥ 0. If the sum of pairs was defined with ⊕,
we would obtain (k, k) ≥ 0. Note that even if (k, k) was interpreted as k − k = 0 or
as k − k = k (absorbing element), the problem would remain: in both cases, we would
have (k, k) ≥ 0.

Interestingly, there are some situations where, even when k �= ∞, using cost pairs
allows us to identify exactly neighborhood substitutable values.

Proposition 2. Let x ∈ vars(P ) and {a, b} ⊆ dom(x) such that Γ (x) is separable
and pcost(x, a → b) = (β, α) with α < k. If (x, a) is soft neighborhood substitutable
for (x, b) on P then pcost(x : a→ b) ≥ 0.

Proof. Since by hypothesis Γ (x) is separable, one can define the instantiation Imin

on vars(Γ (x)) \ {x} as the union for each constraint Cs ∈ Γ (x) of the instantiations
IcS defined in the proof of Proposition 1. Imin is such that pcost(cS , x : a → b) =
(cS(I

min
x=b ), cS(I

min
x=a )).

By hypothesis, ∀I, costΓ (x)(Ix=b) ≥ costΓ (x)(Ix=a) which can be rewritten as
∀I,
⊕

cS∈Γ (x) cS(Ix=b) ≥
⊕

cS∈Γ (x) cS(Ix=a). This is especially true for I = Imin

therefore
⊕

cS∈Γ (x) cS(I
min
x=b ) ≥

⊕
cS∈Γ (x) cS(I

min
x=a ), giving min(k, β) ≥min(k, α)

where β =
∑

cS∈Γ (x) cS(I
min
x=b )) and α=

∑
cS∈Γ (x) cS(I

min
x=a ). By definition, pcost(x :

a → b) = (β, α) and therefore pcost(x : a → b) ≥ 0 iff β ≥ α. Now, if α < k,
min(k, α) = α and min(k, β) ≥ min(k, α)⇒ β ≥ α ⇒ pcost(x : a→ b) ≥ 0 (this
is true for both β < k and β ≥ k). Note that when α ≥ k, min(k, β) ≥ min(k, α) �⇒
β ≥ α, a counter example being β = k and α = k + 1. ��
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Corollary 1. Let x ∈ vars(P ) and {a, b} ⊆ dom(x) such that Γ (x) is separable
and pcost(x : a → b) = (β, α) with α < k. If (β, α) < 0 then (x, a) is not soft
neighborhood substitutable for (x, b) on P .

When pcost(x : a → b) = (β, α) with α ≥ k, deciding if (x, a) is soft neighborhood
substitutable for (x, b) is much harder. Indeed, this problem is co-NP hard.

To prove this, we introduce the Multiple-choice Double Cost Problem (MCDP). We
show that MCDP is NP-complete and exhibit a polynomial reduction of the MCDP
problem to soft neighborhood substitutability.

Multiple-choice Double Cost Problem (MDCP) Given m sets E1, E2, . . ., Em of ob-
jects such that each object oj ∈ Ei has a cost value rij ∈ Z+ as well as a secondary
cost value sij ∈ Z+. Given a maximal cost C ∈ Z+, the MDCP problem consists in
deciding if it is possible to choose one object from each set such that the sum of the
costs of these selected objects does not exceed C and does not exceed the sum of the
secondary costs as well. This problem may be formulated as:∑m

i=1

∑
j∈Ei

rijxij ≤ C,∑m
i=1

∑
j∈Ei

rijxij ≤
∑m

i=1

∑
j∈Ei

sijxij ,∑
j∈Ei

xij = 1, i = 1, . . . ,m,
xij ∈ {0, 1}, i = 1, . . . ,m, j ∈ Ei.

Proposition 3. The multiple-choice double cost problem is NP-complete.

Proof. Membership to NP is immediate. For NP-hardness, we reduce Multiple-choice
Knapsack problem (MCKP known to be NP-hard [17]) to Multiple-choice Double Cost
Problem. For MCKP, we have also m sets, and each object is given a profit pij ∈ Z+

as well as a weight wij ∈ Z+. Given a minimal profit P ∈ Z+ and a maximal weight
W ∈ Z+, the MCKP decision problem is formulated as:∑m

i=1

∑
j∈Ei

wijxij ≤W ,∑m
i=1

∑
j∈Ei

pijxij ≥ P ,∑
j∈Ei

xij = 1, i = 1, . . . ,m,
xij ∈ {0, 1}, i = 1, . . . ,m, j ∈ Ei.

To encode a MCKP instance into a MDCP instance, we keep the same structure (sets)
and define:

C = qW −mP ,
rij = qwij − P, i = 1, . . . ,m, j ∈ Ei,
sij = mpij + rij − P, i = 1, . . . ,m, j ∈ Ei.

with q = 2mP . With such a value for q, one can show that all values C, rij and sij
belong to Z+. The first MDCP equation can be transformed as follows:∑m

i=1

∑
j∈Ei

rijxij ≤ C

⇒
∑m

i=1

∑
j∈Ei

(qwij − P )xij ≤ qW −mP

⇒
∑m

i=1

∑
j∈Ei

qwijxij −mP ≤ qW −mP because exactly m variables xij are set
to 1
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⇒
∑m

i=1

∑
j∈Ei

wijxij ≤W .
The second MDCP equation can be transformed as follows:∑m

i=1

∑
j∈Ei

rijxij ≤
∑m

i=1

∑
j∈Ei

sijxij ,
⇒ 0 ≤

∑m
i=1

∑
j∈Ei

(mpij − P )xij by simplifying rij from both sides,
⇒ 0 ≤

∑m
i=1

∑
j∈Ei

mpijxij −mP because exactly m variables xij are set to 1,
⇒ P ≤

∑m
i=1

∑
j∈Ei

pijxij . ��

Proposition 2 states that pcost allows us to exactly identify soft neighborhood substi-
tutable values when two conditions are verified: γ(x) is separable and pcost(x, a →
b) = (β, α) with α < k. In the following proposition, by construction, we deal with
instances such that γ(x) is separable. However, nothing is imposed on α, with the con-
sequence that some SNS-eliminable values cannot be detected in polynomial time.

Proposition 4. Deciding if a value is soft neighborhood substitutable for another on a
WCN (X ,W , k) where k �=∞ is coNP-hard.

Proof. Any MDCP instance can be reduced to the problem of deciding whether a value
(x, a) is not soft substitutable for a value (x, b) on a WCN P . From the MDCP in-
stance, we build the WCN P as follows. vars(P ) contains a variable x such that
dom(x) = {a, b} and a variable yi for each set Ei ; the domain of yi contains the
objects oi1, oi2, . . . of Ei. cons(P ) contains exactly m binary soft constraints wxyi : we
have wxyi({(x, a), (yi, oij)}) = sij and wxyi({(x, b), (yi, oij)}) = rij . k is set to C.
Determining if (x, a) is not soft substitutable for (x, b) on P is equivalent to finding
an instantiation I of vars(Γ (x)) such that costΓ (x)(Ix=a) > costΓ (x)(Ix=b) which is
equivalent to

∑
cS∈Γ (x) cs(Ix=b) < k ∧

∑
cS∈Γ (x) cs(Ix=a) >

∑
cS∈Γ (x) cs(Ix=b).

The first (resp. second) condition encodes the first (resp. second) inequality of the
MDCP. Since variables xij of the MDCP instance correspond to the assignment of
variables yi in the WCSP (xij = 1 ⇔ yi = oij), the third equation of the MDCP
instance is directly encoded in the WCSP instance. ��

5 Relationships with Soft Arc Consistency

After introducing soft neighborhood substitutability closure, this section presents some
results relating soft neighborhood substitutability to various forms of soft arc consistency.

Definition 5. The soft neighborhood substitutability closure (or SNS-closure) of a WCN
P , denoted by SNS(P ), is any WCN obtained after iteratively removing SNS-eliminable
values until convergence.

Since this operation is not confluent, SNS(P ) is not unique. When we use the pcost
approach to identify SNS-eliminable values, we note PSNS (P ).

Proposition 5. Let P be an EDAC-consistent WCN. SNS(P ) is not necessarily EDAC-
consistent.

Proof. Consider the WCN P depicted in Figure 2(a). Note that P is EDAC-consistent
w.r.t. the order w > x > z > y, and that (w, a) and (z, a) are respectively soft
neighborhood substitutable for (w, b) and (z, b), since pcost(w, a → b) = (0, 0) and
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Fig. 2. EDAC versus SNS

pcost(z, a → b) = (0, 0). There exists a unique SNS-closure of P , P ′ = SNS(P ),
which is depicted in Figure 2(b). Clearly, P ′ is not EDAC-consistent since (x, b) and
(y, b) have no support on cxy . ��

Lemma 1. Let P be a VAC-consistent WCN, x ∈ S and {a, b} ⊆ dom(x) such that
(x, b) is AC-consistent in Bool(P ). If pcost(x : a → b) ≥ 0 on P then (x, a) is
neighborhood substitutable (in the CSP sense [10]) for (x, b) on Bool(P ).

Proof. We suppose that P is VAC-consistent and (x, b) is AC-consistent in Bool(P ).
Because (x, b) is AC-consistent in Bool(P ), we know that for every constraint cS ∈
Γ (x), there exists an instantiation I of S such that I[x] = b and cS(I) = 0 (by con-
struction of Bool(P )). This means that on every such constraint cS , pcost(cS , x : a→
b) ≤ 0. As by hypothesis pcost(x : a → b) ≥ 0, for every constraint cS ∈ Γ (x), we
have necessarily pcost(cS , x : a → b) = 0. We can deduce that for every constraint
cS ∈ Γ (x), for every instantiation I of S such that I[x] = b and cS(I) = 0, the in-
stantiation I ′ = Ix=a is such that cS(I ′) = 0. Finally, we can conclude that (x, a) is
neighborhood substitutable for (x, b) on Bool(P ). ��

Proposition 6. Let P be a VAC-consistent WCN, x ∈ vars(P ) and {a, b} ⊆ dom(x).
If pcost(x : a→ b) ≥ 0 on P then P \ {(x, b)} is VAC-consistent.

Proof. On the one hand, suppose that (x, b) is AC-consistent in Bool(P ). From the pre-
vious lemma, we know that (x, a) is neighborhood substitutable for (x, b) on Bool(P ),
and so we have AC(Bool(P )) �= ⊥ ⇔ AC(Bool(P \ {(x, b)})) �= ⊥. Because P
is VAC-consistent, necessarily P \ {(x, b)} is VAC-consistent. On the other hand, sup-
pose that (x, b) is not AC-consistent in Bool(P ). Clearly we have AC(Bool(P )) =
AC(Bool(P \ {(x, b)})), and so P \ {(x, b)} is VAC-consistent (since P is VAC-
consistent). ��

Corollary 2. Let P be a WCN. If P is VAC-consistent then SNS(P ) is VAC-consistent.

The previous corollary also holds for OSAC (because OSAC is stronger than VAC).

6 Algorithms

In this section, we introduce an algorithm to enforce AC*+PSNS (that can be easily
adapted to EDAC+PSNS, for example). The main idea is always to start identifying
SNS-eliminable values from a WCN that is AC*-consistent. This allows us to reduce
the computation effort by using early breaks and residues.
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The main procedure is Algorithm 1. As usual, we use a set, denoted by Q, to store
the variables whose domain has been recently reduced. Initially, Q is initialized with all
variables (line 4). Then, at line 6, a classical AC* algorithm, denoted here by W-AC*,
is run (for example, this may be W-AC*2001 [16]), before soliciting a function called
PSNSr. The calls to W-AC* and PSNSr are interleaved until a fixed point is reached
(i.e., Q = ∅).

Function PSNSr , Algorithm 2, iterates over all variables in order to collect SNS-
eliminable values into a set called Δ. This set is initialized at line 1 and updated at lines
6 and 8. Let us imagine that all SNS-eliminable values (that can be identified by means
of pcost) for a variable x have been deleted, and that the domains of all variables in
the neighborhood of x remain the same (while possible reductions happen elsewhere).
Clearly, there is no need to consider x again for seeking SNS-eliminable values. This
is the point of line 3. Here, timestamps are used. By introducing a global counter time
and by associating a time-stamp stamp[x] with every variable x as well as a time-stamp
substamp with function PSNSr, it is possible to determine which variables should be
considered. The value of stamp[x] indicates at which moment a value was most recently
removed from dom(x), while the value of substamp indicates at which moment PSNSr

was most recently called. Variables time, stamp[x] for each variable x and substamp
are initialized at lines 1 to 3 of Algorithm 1. The value of time is incremented whenever
a variable is added to Q (line 13 of Algorithm 2 and this must also be performed inside
W-AC*) and whenever PSNSr is called (line 9). All SNS-eliminable values collected
in Δ are removed while updating Q for the next call to W-AC* (lines 10 to 12).

Algorithm 1. AC*-PSNS(P : WCN)
Output: P , made AC*-consistent and PSNS-closed

1 time ← 0 ;
2 substamp ← −1 ;
3 stamp[x]← 0,∀x ∈ vars(P ) ;
4 Q← vars(P ) ;
5 repeat
6 PSNS r (W -AC∗(P,Q)) ;
7 until Q �= ∅;

Algorithm 3 allows us to compute the pcost of (x, b) with respect to (x, a). Because
we know that the WCN is currently AC*-consistent, we have the guarantee that the
pcost of (x, b) with respect to (x, a) on any non-unary constraint cS where x ∈ S is
less than or equal to 0. This means that we can never compensate a pair (β, α) s.t.
α > β with a pair (β′, α′) s.t. α′ < β (once the pair of unary costs has been taken into
account). A strong benefit of that observation is the possibility of using early breaks
during such computations. This is performed at lines 3, 6 and 13. Residues are another
mechanism used to increase the performance of the algorithm. For every variable x,
and every pair (a, b) of values in dom(x), we store in residues [x, a, b] the constraint cS
which guarantees that (x, b) is not SNS-eliminable by (x, a), if it exists. The residual
constraint takes priority (lines 4 to 6); this way, if it compensates the initial unary cost,
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Algorithm 2. PSNSr(P : WCN AC*-consistent)

1 Δ← ∅ ;
2 foreach x ∈ vars(P ) do
3 if ∃y ∈ Γ (x) | stamp[y] > substamp then
4 foreach (a, b) ∈ dom(x)2 | b > a do
5 if pcost(x, a→ b) ≥ 0 then
6 Δ← Δ ∪ {(x, b)} ;
7 else if pcost(x, b→ a) ≥ 0 then
8 Δ← Δ ∪ {(x, a)} ;

9 substamp ← time++ ;
10 foreach (x, a) ∈ Δ do
11 remove (x, a) from dom(x) ;
12 Q← Q ∪ {x} ;
13 stamp[x]← time++ ;

Algorithm 3. pcost(x, a→ b): cost pair

1 pcst ← (cx(b), cx(a)) ;
2 if pcst < 0 then
3 return pcst

4 pcst ← pcst + pcost(residues [x, a, b], x, a→ b) ;
5 if pcst < 0 then
6 return pcst

7 foreach cS ∈ Γ (x) | cS �= residues [x, a, b] do
8 d← pcost(cS , x, a→ b) ;
9 if d < (cx(a), cx(b)) then

10 residues [x, a, b]← cS ;

11 pcst ← pcst + d ;
12 if pcst < 0 then
13 return pcst

14 return pcst

Algorithm 4. pcost(cS , x : a→ b): cost pair

1 pcst ← (1, 0) ;
2 foreach I ∈ l(S \ {x}) do
3 if (cS(Ix=b), cS(Ix=a)) < pcst then
4 pcst ← (cS(Ix=b), cS(Ix=a)) ;

5 return pcst

we avoid unnecessary work. It is updated at lines 9-10. Note that we can initialize
the array residues with any arbitrary constraints (not shown in the algorithm), and
that Algorithm 4 necessarily returns a value less than or equal to 0 (this explains the
initialization of pcst to (1, 0) at line 1).
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We now discuss the complexity of PSNSr while assuming (for simplicity) that the
WCN is binary. The space complexity is O(nd2) due to the use of the structure residues .
The time complexity of Algorithm 4 is O(d), and the time complexity of Algorithm 3
is O(1) in the best case (if it is stopped at line 3) and O(qd) in the worst case, where
q = |Γ (x)|. Discarding line 3, the time complexity of Algorithm 2 is O(nd2) in the
best case and O(nd3e) in the worst-case. Of course, Algorithm 2 can be called several
times at line 6 of Algorithm 1, so we obtain a worst-case time complexity in O(n2d4e).
However, we have observed in our experiments that the number of successive calls to
PSNSr is quite limited in practice (as we were predicting). Besides, imagine now that
we call AC*-PSNS after the assignment of a value to a variable x (i.e., during search).
In the best case (from a complexity point of view), no removal is made by W -AC∗,
and so, we just consider the neighbors of x, due to line 3 of Algorithm 2, which gives
a best-case time complexity in O(qd2). This last result leans us toward experimenting
maintaining AC*-PSNS during search.

7 Experimental Results

To show the practical value of removing SNS-eliminable values, we have conducted an
experimentation using the series of WCSP instances available at http://carlit.
toulouse.inra.fr/cgi-bin/awki.cgi/BenchmarkSand a cluster of Xeon

Table 1. Mean results obtained on various series (a time-out of 1,200 seconds was set per in-
stance)

Series AC* AC* FDAC FDAC EDAC EDAC
+PSNS +PSNS +PSNS

celar #sol (cpu) 5 (337) 4 (231) 6 (316) 6 (341) 6 (344) 7 (461)
#inst=7 avg-sub 0 3 0 6 0 4
driver #sol (cpu) 18 (103) 18 (52) 19 (39.3) 19 (19.7) 19 (68.5) 19 (56.8)
#inst=19 avg-sub 0 1 0 1 0 1
geom #sol (cpu) 5 (37.4) 5 (12.4) 5 (18.8) 5 (11.0) 5 (21.0) 5 (12.0)
#inst=5 avg-sub 0 0 0 1 0 0

mprime #solv (cpu) 4 (9.82) 8 (17.4) 4 (11.6) 8 (12.0) 5 (206) 8 (21.0)
#inst=8 avg-sub 0 1 0 1 0 1
myciel #sol (cpu) 3 (122) 3 (77.0) 3 (72.9) 3 (34.3) 3 (80.4) 3 (37.8)
#inst=3 avg-sub 0 2 0 3 0 3

scens+graphs #sol (cpu) 1 (20.4) 3 (113) 8 (242) 7 (186) 6 (266) 5 (19.8)
#inst=9 avg-sub 0 8 0 8 0 8
spot5 #sol (cpu) 0 0 3 (20.5) 3 (12.6) 3 (20.1) 3 (11.4)
#inst=3 avg-sub 0 0 0 0 0 0

warehouse #sol (cpu) 12 (286) 12 (46.2) 18 (166) 24 (139) 28 (53.2) 29 (79.8)
#inst=34 avg-sub 0 4 0 7 0 27

#solved 48 53 66 75 75 79

http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/BenchmarkS
http://carlit.toulouse.inra.fr/cgi-bin/awki.cgi/BenchmarkS


WCSP Integration of Soft Neighborhood Substitutability 419

Table 2. Illustrative results obtained on some problem instances

Instances AC* AC* FDAC FDAC EDAC EDAC
+PSNS +PSNS +PSNS

cap101 cpu 232 42.1 1.6 1.62 1.48 1.12
#nodes 242K 242K 835 835 75 75
avg-sub 0 1 0 2 0 15

cap111 cpu >1,200 >1,200 633 162 3.03 2.74
#nodes − − 72,924 72,924 439 199
avg-sub 0 2 0 3 0 12

capmo1 cpu >1,200 >1,200 >1,200 >1,200 >1,200 984
#nodes − − − − − −
avg-sub 0 15 0 23 0 64

driverlog02ac cpu 253 49.5 10.6 7.99 19.3 13.5
#nodes 4,729K 701K 19,454 8,412 19,444 8,402
avg-sub 0 0 0 0 0 0

driverlogs06 cpu >1,200 >1,200 187 61.0 218 80.1
#nodes − − 2,049K 609K 2,049K 609K
avg-sub 0 0 0 0 0 0

mprime04ac cpu >1,200 30.9 >1,200 15.7 >1,200 43.7
#nodes − 189K − 22,373 − 20,381
avg-sub 0 0 0 1 0 1

myciel5g-3 cpu 38.1 19.6 3.87 4.18 4.36 4.57
#nodes 518K 168K 10,046 9,922 6,159 6,128
avg-sub 0 2 0 3 0 2

celar7-sub1 cpu 925 820 147 145 135 86.4
#nodes 9,078K 1,443K 732K 91,552 796K 70,896
avg-sub 0 6 0 9 0 6

graph07 cpu >1,200 261 3.11 3.58 3.86 4.3
#nodes 6,156K 145K 1,112 647 1,796 1,514
avg-sub 0 23 0 9 0 4

scen06-24 cpu >1,200 >1,200 1,061 >1,200 >1,200 >1,200
#nodes − − − 375K − −
avg-sub 0 2 0 6 0 7

spot5-29 cpu >1,200 >1,200 30.1 18.0 47.2 22.5
#nodes − − 343K 174K 352K 185K
avg-sub 0 0 0 0 0 0

3.0GHz with 1 GB of RAM under Linux. Our goal is to observe the relative efficiency of
solving WCSP instances when maintaining AC*, AC*+PSNS, FDAC, FDAC+PSNS,
EDAC, and EDAC+PSNS. For variable ordering during search, we use the simple static
heuristic max degree which is independent of the pruning efficiency of the different al-
gorithms, as in [8] where some experiments have been performed with a partial form of
SNS enforced during a preprocessing stage.
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Table 1 shows the average results obtained on various series. For each series, the
number of considered instances (#inst) is given below the name of the series. We have
discarded the instances that have not been solved by at least one of the algorithms,
within 1,200 seconds. Here, a solved instance means that an optimal solution has been
found and proved. In Table 1, the number (#sol) of instances solved within 1,200 sec-
onds is given as well as the average CPU time over these solved instances. The average
number (avg-sub) of SNS-eliminable values deleted during search (at each step) is also
given (rounded to the nearest integer). On RLFAP instances (celar, scens, graphs), the
benefit of using PSNS is rather erratic, but on planning (driver, mprime), coloring (my-
ciel, geom), spot and warehouse instances, we can see a clear advantage of embedding
PSNS. Overall, maintaining PSNS is cost-effective as it usually offers a benefit both in
terms of solved instances (see last line of the table) and CPU time.

Table 2 presents the results obtained on some representative instances. It is inter-
esting to note that on the warehouse instances (here, cap101, cap111 and capmo1),
enforcing PSNS does not entail a reduction of the size of the search tree (see the val-
ues of #nodes). However, PSNS permits to significantly reduce the size of the domains,
making propagation of soft constraints quicker. On celar7-sub1, note that (maintain-
ing) EDAC+PSNS is only about 50% faster than EDAC while the number of nodes has
been divided by 10. This means that on such instances, PSNS is rather expensive, which
maybe lets room for further improvements.

8 Conclusion

In this paper, we have investigated the property of soft neighborhood substitutability
for weighted constraint networks, and have found a sufficient condition on substitutions
that can be identified by an algorithm of reasonable complexity (restricted to the neigh-
borhood and polynomial). We have proved that, even in simple cases, when k �= ∞,
the problem of deciding whether a value is soft neighborhood substitutable for another
is coNP-hard. We have also given some properties linking substitutability and soft arc
consistencies. Finally, we have proposed an algorithm that exploits early breaks and
residues and shown experimentally that it can be helpful during search.

Acknowledgments. This work has been supported by both CNRS and OSEO within
the ISI project ’Pajero’.
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Abstract. Breaking the exponential number of all symmetries of a constraint sat-
isfaction problem is often too costly. In practice, we often aim at breaking a subset
of the symmetries efficiently, which we call target symmetries. In static symmetry
breaking, the goal is to post a set of constraints to break these target symmetries
in order to reduce the solution set and thus also the search space. Symmetries
of a problem are all intertwined. A symmetry breaking constraint intended for a
particular symmetry almost always breaks more than just the intended symme-
try as a side-effect. Different constraints for breaking the same target symmetry
can have different side-effects. Conventional wisdom suggests that we should se-
lect a symmetry breaking constraint that has more side-effects by breaking more
symmetries. While this wisdom is valid in many ways, we should be careful
where the side-effects take place. A symmetry σ of a CSP P = (V,D, C) is
preserved by a set of symmetry breaking constraints Csb iff σ is a symmetry of
P ′ = (V,D, C ∪ Csb). We give theorems and examples to demonstrate that it
is beneficial to post symmetry breaking constraints that preserve the target sym-
metries and restrict the side-effects to only non-target symmetries as much as
possible. The benefits are in terms of the number of symmetries broken and the
extent to which a symmetry is broken (or eliminated), resulting in a smaller so-
lution set and search space. Extensive experiments are also conducted to confirm
the feasibility and efficiency of our proposal empirically.

1 Introduction

Symmetries are common in Constraint Satisfaction Problems. Several methods [9,4]
are proposed to avoid the exploration of search space segments with assignments that
can be generated by representatives of symmetry classes. One common way is to add
dedicated constraints statically at the modeling stage to eliminate symmetries [22], such
as the LEXLEADER method [3]. A symmetry breaking constraint leaves only canonical
solutions with their symmetrically-equivalent solutions eliminated. It prunes the search
space in two ways: remove the symmetrically equivalent search branches, and trigger
constraint propagation with other constraints and vice versa. They affect both the size
of the solution set and the search tree of the problem.

There are some tractable classes of symmetries [7] and also methods to simplify
the constraints [21]. However, in general more symmetry breaking constraints need to
be posted in order to eliminate more symmetries. When the propagation overhead of
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symmetry breaking constraints outweighs the time saved in exploring the search space,
there is no longer better efficiency [20]. Eliminating all symmetries are too costly. Usu-
ally we only eliminate a subset of them, which we call target symmetries. Jefferson et
al. [15] has given algorithms to generate a good set of target symmetries. While post-
ing constraints for only the target symmetries, we show we can actually eliminate more
symmetries and achieve a smaller solution set by carefully choosing the constraints.

When and how the choice of symmetry breaking constraints will affect the number of
solutions are discussed systematically. We point out how the side-effects of symmetry
breaking constraints in breaking other symmetries are common. To eliminate the same
symmetry set, we have alternative choices which cause different side-effects, breaking
or eliminating extra symmetries. We formally define the situation in which a symmetry
is not removed by a symmetry breaking constraint: preservation. A symmetry σ of a
CSP P = (V ,D, C) is preserved by a set of symmetry breaking constraints Csb iff
σ is a symmetry of P ′ = (V ,D, C ∪ Csb). Although, at first sight, constraints that
break more symmetries as side-effects seem to be good choices, we should distinguish
between side-effects on target symmetries and those on non-target symmetries.

We propose that symmetry breaking constraints aiming at some target symmetries
should be selected to preserve other target symmetries and restrict the side-effects to
non-target symmetries as much as possible. We analyze through the solution reduction
ratio to show why preserving target symmetries can actually help us to eliminate more
symmetries and thus are better choices. By carefully choosing symmetry breaking con-
straints to achieve specific side-effects, we achieve smaller solution set size and better
efficiency. We also give observations on other factors that we should pay attention to
when choosing symmetry breaking constraints.

A running example is given throughout the paper to demonstrate our ideas and re-
sults. Experimental results on four problems in the literature confirm empirically that
models constructed using symmetry preservation achieve better efficiency up to one
order of magnitude both in terms of runtime and search space.

2 Background

A constraint satisfaction problem (CSP) is a triple P = (V ,D, C), consisting of a set
of variables V , each v ∈ V with a finite domain of possible values D(v) and a set of
constraints C, each defined over a subset of variables specifying the allowed combina-
tion of values. An assignment gives each variable a value from its domain. A solution
α is an assignment that satisfies all constraints. We use sol(P) to denote the set of all
solutions of P .

A symmetry for a CSP is a bijection on the set of all assignments that maps solu-
tions to solutions, and thus also non-solutions to non-solutions. Two common types
of symmetry are variable symmetry and value symmetry. A variable symmetry is a
bijective mapping σ on the indices of variables. If [X1, ..., Xn] = [d1, ..., dn] is a so-
lution then [Xσ(1), ..., Xσ(n)] = [d1, ..., dn] is also a solution. A value symmetry is
a bijective mapping θ on the values. If [X1, ..., Xn] = [d1, ..., dn] is a solution then
[X1, ..., Xn] = [θ(d1), ..., θ(dn)] is also a solution. There are also constraint symme-
tries [2] that act on both variables and values. Our results are general and work with
every kind of symmetries.
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The symmetry group GΣ of a set of symmetries Σ is formed by closing Σ under
composition. A symmetry class of GΣ is a subset S of symmetrically-equivalent as-
signments of P . If an assignment α ∈ S, then ∀σ ∈ GΣ , σ(α) ∈ S. A symmetry class
contains either all solutions or no solutions. Symmetry classes of GΣ partition sol(P),
with solutions in the same symmetry class mapped to one another under symmetries in
GΣ . Without loss of generality, by symmetry classes, we refer to the ones in sol(P).
A simple running example with variable and value symmetries will be used to illustrate
various concepts throughout the paper.

Example 1. The Diagonal Latin Square problem (DLS(n)) aims to assign numbers 1
to n to the cells of an n × n board with no numbers occurring more than once in each
row, column and the 2 diagonals. For convenience, we call the one extending from left
top diagonal 1, and that from left bottom diagonal 2. We use a matrix model [Xij ] of
n2 variables, each representing a cell and with domain {1, ..., n}. Problem constraints
consist of ALLDIFF [24] on each row, column and the 2 diagonals.

The variable symmetries of DLS include the geometric symmetry group Ggeo of
size 8: horizontal reflection σrx(Xij) = Xi(n+1−j), vertical reflection σry , diagonal
reflections σd1(Xij) = Xji and σd2, rotational symmetries σr90, σr180 and σr270, and
the identity symmetry σid. The values in DLS are interchangeable, which means the
permutation of values Gval preserves solution. The following 4 solutions of DLS(5) are
in the same geometric symmetry class. Solution σrx(α) can be obtained by flipping α
over the vertical axis.

α
1 2 3 4 5
2 4 5 3 1
5 3 2 1 4
3 1 4 5 2
4 5 1 2 3

σrx(α)
5 4 3 2 1
1 3 5 4 2
4 1 2 3 5
2 5 4 1 3
3 2 1 5 4

σd1(α)
1 2 5 3 4
2 4 3 1 5
3 5 2 4 1
4 3 1 5 2
5 1 4 2 3

σrx ◦ σd1(α)
4 3 5 2 1
5 1 3 4 2
1 4 2 5 3
2 5 1 3 4
3 2 4 1 5

Define row([Xij ]) ≡ [X11, ..., X1n, X21, ..., X2n, ..., Xn1, ..., Xnn]. To eliminate σrx,
we can post the LEXLEADER constraint: row([Xij ]) ≤lex [X1n, ..., X11, X2n, ...,
X21, ..., Xnn, ..., Xn1]. From problem constraints we infer X11 �= X1n and simplify
the LEXLEADER constraint to:

X11 < X1n (1)

To eliminate σd1, we can post constraint row([Xij ]) ≤lex [X11, ..., Xn1, X12, ...,
Xn2, ..., X1n, ..., Xnn], which can be simplified since X11 = X11 and X1n �= Xn1:

[X12, ..., X1n] ≤lex [X21, ..., Xn1] (2)

3 Effects of Symmetry Breaking Constraints

This section reports our observations and views based on existing results from the liter-
ature. We first introduce some definitions related to symmetry breaking constraints. We
are concerned with the actual set of symmetries out of the whole symmetry group on
which we post symmetry breaking constraints. We systematically discuss the effects of
symmetry breaking constraints on the final solution set size as split into two cases.
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3.1 Properties of Symmetry Breaking Constraints

We first introduce some useful concepts for the rest of the paper. Suppose a CSP
P = (V ,D, C) contains symmetries Σ and Csb is a set of symmetry breaking con-
straints such that P ′ = (V ,D, C ∪ Csb). Here and throughout, sol(P , Csb) is a short
hand for sol(P ′), which is sol((V ,D, C ∪ Csb)).

We adapt the following definitions from Katsirelos and Walsh [18]. A set of sym-
metry breaking constraints Csb breaks a symmetry σ ∈ Σ iff there exist a solution
α ∈ sol(P ′) such that σ(α) /∈ sol(P ′). A set of symmetry breaking constraints Csb

eliminates a symmetry σ ∈ Σ iff for each solution α ∈ sol(P ′), σ(α) /∈ sol(P ′). We
define a stronger version of elimination. Csb fully eliminates a symmetry σ ∈ Σ iff for
each solution α ∈ sol(P ′), ∀k ∈ Z, if σk(α) �= α then σk(α) /∈ sol(P ′). This defi-
nition is to ensure there is at most one solution left by Csb in each symmetry class of
G{σ}. Csb breaks/(fully) eliminates a symmetry set Σ iff Csb breaks/(fully) eliminates
each σ ∈ Σ. A set of symmetry breaking constraints is sound/complete to a symmetry
set Σ iff it leaves at least/exactly one solution in each symmetry class of GΣ .

In the following, we use CΣ to denote a set of symmetry breaking constraints that
eliminates Σ, and let P ′ = (V ,D, C ∪ CΣ). We say that CΣ is sound/complete to mean
that CΣ is sound/complete to Σ. Symmetry breaking constraints can be derived by pre-
defining a canonical variable ordering [26] and forcing the canonical solution to be
always smaller (bigger) than its symmetrically-equivalent counterpart. The canonical
variable ordering is the row-wise ordering row([Xij ]) in the running example. Any
permutation on row([Xij]) can serve as a possible ordering. We consider other specific
orderings by moving X1n and Xn1 forward in row([Xij ]) and their simplified symme-
try breaking constraints to eliminate σd1 are shown respectively as follows:

canonical ordering : [X11, X1n, Xn1, X12, ..., Xnn]→ Cσd1
: X1n < Xn1 (3)

canonical ordering : [X11, Xn1, X1n, X12, ..., Xnn]→ Cσd1
: Xn1 < X1n (4)

These two canonical orderings result in the same constraint to eliminate σrx as
row([Xij ]). We are interested in whether the solution set size is affected by picking
other canonical ordering or using other methods to eliminate symmetries Σ. There are
two possibilities: a symmetry group is eliminated entirely or partially.

3.2 Eliminating a Symmetry Group Entirely

We can easily see that CΣ is complete to Σ if CΣ is sound to Σ and Σ is a symmetry
group, i.e. Σ = GΣ .

Theorem 1. Given a CSP, any sound set of symmetry breaking constraints eliminating
the same symmetry group results in exactly the same solution set size.

Proof. A sound set of symmetry breaking constraints eliminating a symmetry group
is complete. Symmetry classes formed in the solution space under a symmetry group
are fixed. By picking exactly one solution from each symmetry class of G, we gain
a solution set with the same size as the number of symmetry classes, no matter what
constraints we use to eliminate the symmetries. ��
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Many CSPs have exponentially-sized symmetry group. There exist efficient meth-
ods [6,7] that eliminate all symmetries in some tractable classes of symmetries such as
piecewise variable and value symmetry. Also in special cases such as all different prob-
lems [21], a linear number of constraints can eliminate all symmetries. However, elim-
inating the whole symmetry group is intractable and too costly in general. We aim to
eliminate a subset [20]. We call this subset of symmetries we intend to eliminate as tar-
get symmetries. In practice, target symmetries are usually a generator set [1] for which
there exist efficient methods to eliminate and can be generated automatically [15].

3.3 Eliminating a Symmetry Group Partially

We demonstrate how the choice of symmetry breaking constraints affects the solu-
tion set size when only the target symmetries Σ are eliminated. Representatives se-
lected from each symmetry class of G{σi} (σi ∈ Σ) intersects to form the remain-
ing solutions in the symmetry classes of GΣ . The final solution set is determined
by the intersection of canonical solutions of each symmetry breaking constraints:
sol(P ,∪σi∈ΣCσi) = ∩σi∈Σsol(P , Cσi). Even if each Cσi is complete, which means
the size of each sol(P , Cσi

) is fixed, picking different canonical solutions of each con-
straint makes the intersection significantly different.

Example 2. We give a simple example considering again σrx and σd1 in the DLS prob-
lem. We compare the result of combining constraint (1) with either constraint (3) or
constraint (4). Picking constraint (3) we obtain {X11 < X1n, X1n < Xn1}, a total
ordering on the variable sequence [X11, X1n, Xn1]; picking constraint (4), we obtain
{X11 < X1n, Xn1 < X1n}, making X1n the biggest value out of the three. Because
X11 and Xn1 are not ordered in {X11 < X1n, Xn1 < X1n}, the size of sol(P , {X11 <
X1n, Xn1 < X1n}) is twice as that of sol(P , {X11 < X1n, X1n < Xn1}) .

We want to formulate a set of symmetry breaking constraints to get a minimum intersec-
tion, but we should avoid selecting an unsound set that misses solutions. For example
in the DLS problem, to eliminate σrx, we can post X11 < X1n; to eliminate σr90 (90
degree rotational symmetry), we can post X11 > max {X1n, Xn1, Xnn}. Combining
the two constraints results in the empty solution set.

The number of symmetry classes of GΣ is the minimum size for the intersection,
since completeness is the best we can achieve for CΣ = ∪σi∈ΣCσi . In other words, we
can eliminate the symmetry group GΣ by eliminating each σi. This is always possible
if we can use table constraints to specify exactly which representatives to retain as solu-
tions. In practice, however, table constraints are difficult to craft and problem-specific,
and we are limited by the available symmetry breaking methods in existing constraint
programming system. Thus, eliminating each σi is not always sufficient to eliminate all
symmetries when Σ �= GΣ . We need to find practical ways to prove soundness and
achieve as small a solution set as possible. Our proposal is based on the side-effects of
symmetry breaking constraints.

4 Side-Effects of Symmetry Breaking Constraints

We assume that every symmetry breaking constraint aims at breaking a target symmetry.
The side-effect of a symmetry breaking constraint is its effect in breaking symmetries
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other than the target symmetry. We show that side-effects are common in symmetry
breaking constraints and study how strong and widespread side-effects could be. Dif-
ferent choices of symmetry breaking constraints aiming at the same target symmetry
can have different side-effects. For symmetries that are not affected, we say they are
preserved. Then we show that selecting constraints that restrict the side-effects to non-
target symmetries and preserve other target symmetries can gain us smaller solution set.
We support our claims with theoretical analysis, examples and experimental results.

4.1 Side-Effects Are Common

Our general study on side-effects are inspired by several examples in the literature.
Katsirelos et al. [18,17] shows in examples a constraint eliminating symmetry σrx also
breaks the symmetry σr90, and the DOUBLELEX constraint eliminates also the value
interchangeability in the EFPA problem in addition to the row and column symmetries.
We are going to show that these side-effects of symmetry breaking constraints are com-
mon and in many cases inevitable. Given a CSP P with symmetry GΣ , each pair of
solutions in a symmetry class are mapped to each other under some symmetry σ ∈ GΣ .

Theorem 2. Given a CSP P with symmetries GΣ . Suppose Cσi eliminates symmetry
σi ∈ GΣ and it reduces the number of solutions in one symmetry class of GΣ to at least
two. Then ∃σj ∈ GΣ such that σi �= σj and σj is broken by Cσi .

Proof. Supposeα1, α2∈sol(P , Cσi
) andσi(α1) �=α1. Thenσi(α1) is not in sol(P , Cσi

)
and there must exist a symmetry σj linking α2 and σi(α1). Since α2 ∈ sol(P , Cσi

) but
σj(α2)(= σi(α1)) is not in sol(P , Cσi

), σj is broken by Cσi by definition. ��

As a symmetry breaking constraint can break other symmetries in addition to its target
one, we analyze the possible number of symmetries broken or eliminated as side-effects
with the help of Figure 1. Suppose the symmetry group GΣ is of size m and a symmetry
class S is of size n, n ≤ m. We assume n = m for ease of discussion. A symmetry
class is represented as a directed graph and the following notions are used.

– circle node: solution.
– solid arrow directed edge with specific symmetry label: symmetry mapping. If an

edge from node 1 to node 2 is labeled with σj and suppose node 1 is solution α,
then node 2 is σj(α).

– dash line cut: symmetry breaking constraint. The effect of a symmetry breaking
constraint Cσi on the symmetry class is a cut on the graph that partitions the nodes
(solutions) into two parts, S1 with n1 nodes satisfying the constraint and S2 with
n2 nodes violating it , as shown in Figure 1(a).

– dot-dash edge: edge labeled with target symmetry σi and removed by the cut Cσi .

Each pair of nodes have edges in between them in both directions. Each node has totally
n − 1 out-going edges and n − 1 in-coming edges, each labeled with a distinct sym-
metry σ ∈ GΣ , as shown in Figure 1(b). The cut by Cσi removes 2 × n1 × n2 edges,
among which 2× n1 edges are labeled with σi. n2−1

n2
of the removed edges are labeled

with other symmetries. We quantify the number of symmetries broken or eliminated by
analyzing the result of the cut in the graph.
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Fig. 1. A Symmetry Class of Ggeo

– Symmetry σj is broken iff there exists an edge labeled with σj removed by the cut.
– Symmetry σj is eliminated iff no edges in S1 are labeled with σj .

# Broken Symmetries. Whenever an edge labeled with σj is cut, symmetry σj is
broken by Cσi . If an edge labeled with σj is cut, there must exist an edge labeled with
σj from S1 to S2 is cut. This is due to the closure of symmetries, which means there
must exist a finite path from a node to itself consisting of only edges labeled with σj .
All solutions in S1 are in sol(P , Cσi) while no solution in S2 belong to sol(P , Cσi).
Therefore the symmetry σj linking a solution α ∈ S1 to σj(α) ∈ S2 is broken. For each
node in S1/S2, there must exist n2/n1 edges labeled with distinct symmetries linking
it to nodes in S2/S1. At least max {n1, n2} symmetries including the target symmetry
are broken by the symmetry breaking constraint. At least half the number of symmetries
out of all are broken by a complete symmetry breaking constraint that aims at a single
symmetry.

# Eliminated Symmetries. According to the definition of elimination, symmetries that
do not label any edges in S1 are eliminated. For each solution in S1, there must exist
n1 − 1 symmetries linking it to the others S1. At least n1 − 1 symmetries are not yet
eliminated. Take Figures 1(c) and (d) as examples, one to two symmetries are not yet
eliminated. A smaller n1 means smaller number of edges n1 × (n1 − 1) are left in S1.
A small size S1 usually indicates that less symmetries are left un-eliminated.

If we choose different symmetry breaking constraints to eliminate the same target sym-
metry, the cut is different and respectively the side-effects are different. The side-effects
can be different in the number of symmetries broken/eliminated or the specific sym-
metries broken/eliminated. We demonstrate it using a simple example. To eliminate
symmetry σr90 in the DLS example, we can use constraint X11 < min {X1n, Xn1,
Xnn} or X1n < min {X11, Xn1, Xnn}. The effect of each constraint on the symmetry
class is shown in Figures 1(c) and (d) respectively. Constraint X11 < min {X1n, Xn1,
Xnn} eliminates all but σd1 while constraint X1n < min {X11, Xn1, Xnn} eliminates
all but σd2. We say the constraint preserves symmetry σd1/σd2.

4.2 Symmetry Preservation

We formally define symmetry preservation in the following:
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Definition 1. Given a CSP P = (V ,D, C) with a symmetry σ. The symmetry σ is
preserved by a set of symmetry breaking constraints Csb iff σ is a symmetry of P ′ =
(V ,D, C ∪ Csb).

In other words, elements of each symmetry class of σ are either entirely removed from
the solution set of P or retained as solutions by Csb. Even if Csb removes all solutions
(i.e. making them non-solutions) of σ’s symmetry class in P , σ is not removed in the
new problem P ′ since now σ still maps all such non-solutions to non-solutions, and is
still a symmetry. A symmetry σ is preserved by Csb iff the cut by Csb does not remove
any edges labeled with σ. For example in Figure 1(c), the edges labeled with symmetry
σd1 are not removed. A set of symmetries Σ is preserved iff each σ ∈ Σ is preserved.

There are two nice properties of symmetry preservation. First, eliminating some sym-
metries can eliminate their composition under preservation.

Theorem 3. Given a CSP P with symmetry σi and σj . If symmetry breaking constraint
Cσi preserves symmetry σj , then σi ◦ σj and σj ◦ σi are eliminated by Cσi ∪ Cσj .

Proof. As shown in Figure 2, we have three disjoint sets A = sol(P , Cσi ∪ Cσj ), B =
sol(P , Cσi)− sol(P , Cσi ∪ Cσj ), E = sol(P)− sol(P , Cσi). Suppose α ∈ A. By defi-
nition, symmetry σi links solutions (a) from A to E, (b) from B to E and (c) within E.
Symmetry σj links solutions (a) within B, (b) within E and (c) from A to B. Therefore
σj(α) ∈ B and σi(α) ∈ E, σi ◦ σj(α) ∈ E and σj ◦ σi(α) ∈ E. Since A and E are
disjoint, both σi ◦ σj(α) and σj ◦ σi(α) are not in sol(P , Cσi ∪ Cσj ). ��

σiσi

σi

σj

σj

E

AB

σj

σi

α

Fig. 2. σi preserve σj

Similarly, if a set of symmetry breaking constraints CG1 preserves symmetry group G2,
then ∀σi ∈ G1, σj ∈ G2, σi ◦ σj and σj ◦ σi are eliminated by CG1 ∪ CG2 . Second,
when a symmetry set is preserved, if two symmetry breaking constraints are sound with
respect to their target symmetries, their combination is also sound.

Theorem 4. Given a set of symmetries Σ = Σ1 ∪ Σ2. If CΣ1 is sound and preserves
Σ2, then CΣ2 being sound implies CΣ1 ∪ CΣ2 being sound.

Proof. Based on the definition of preservation, if CΣ1 preserves Σ2 then Σ2 is still a
symmetry set of the new problemP ′ = (V ,D, C ∪ CΣ1

). No matter what CΣ2 is, as long
as it is sound to P ′, it is able to regenerate all solutions of sol(P , CΣ1

) via symmetries
in Σ2. Then sol(P) can be completely regenerated from sol(P , CΣ1

) via symmetries
in Σ1 since CΣ1 is sound. ��
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4.3 Solution Reduction by Symmetry Breaking Constraints

From the previous discussion, we can separate the effect of symmetry breaking con-
straints on other symmetries into three cases: eliminate, break and preserve. Our goal
is to eliminate as many symmetries as possible and thus achieve smaller solution set by
eliminating the target symmetries efficiently. What kind of effect is better?

The side-effects are common but we can choose to let the side-effects act on different
symmetries. In the following, we show that symmetry breaking constraints that preserve
other target symmetries and have more side-effects on non-target symmetries are better
in the sense of symmetries eliminated and solution set size. We show how different side-
effects may affect the final solution set size through analyzing the solution reduction by
the symmetry breaking constraints.

The maximum solution reduction ratio |sol(P)|
|sol(P,Cσ1)|

by a sound symmetry breaking
constraint is achieved when it is complete to its target symmetry. Assume constraints
are posted one by one and soundness must be ensured at each iteration. If the symmetry
classes of σ2 are left partially by Cσ1 , the solution reduction ratio by Cσ2 in the new

problem is smaller than that in the origin problem: |sol(P,Cσ1)|
|sol(P,Cσ1∪Cσ2)|

< |sol(P)|
|sol(P,Cσ2)|

.
The origin solution set size of DLS(5) is 960. Posting constraint (1) X11 < X1n to
eliminate σry results in 480 solutions with reduction ratio 2. Posting it after symmetry
σrx is eliminated by X11 < Xn1 results in 320 solutions out of 480 with reduction
ratio 1.5.

This analysis also gives us insight into one reason why the efficiency we gained
from eliminating more symmetries becomes weaker. When more constraints are added
and their side-effects become stronger, not only the propagation overhead of constraints
increases but also the available space that can be pruned becomes smaller. We consider
this as an important factor behind partial symmetry breaking [20]. However, we can still
achieve maximum solution reduction ratio when Cσ1 preserves σ2. Without explicitly
handling the composition symmetries, we are able to eliminate them as side-effects of
eliminating the target symmetries when preserving other target symmetries.

A significant advantage of this approach is that, instead of introducing new con-
straints, we are able to eliminate more symmetries by selecting carefully the symmetry
breaking constraints, which potentially entails better runtime.

4.4 Preservation Examples

Based on the previous theoretical analysis, we give three examples of achieving smaller
solution set size by preserving symmetries. Two are from a big family of problems that
can be modeled into matrix and contain a lot of symmetries.

Geometric Symmetries and Value Interchangeability. We consider again the DLS
problem and show different side-effects on the geometric symmetry group when elim-
inating value symmetries. We compare 6 choices of distinct value symmetry breaking
constraints: fixing the value of (a) the first row, (b) the first column, (c) middle row, (d)
middle column, (e) diagonal 1 and (f) diagonal 2, as shown from left to right in Fig-
ure 3. All of the constraints result in the same solution set size according to Theorem 1.
The side-effects of each choice is: (a) eliminate Ggeo, (b) eliminate Ggeo, (c) eliminate
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Fig. 3. Different Side-effect of CGval

Ggeo \ {σry}, (d) eliminate Ggeo \ {σrx}, (e) eliminate Ggeo \ {σd1} and (f) eliminate
Ggeo \ {σd2}. After posting consistent constraints to eliminate Ggeo for each, the so-
lution set sizes of (a) and (b) are twice of those of the rest. The reason is obvious: the
preserved symmetry σry/σrx/σd1/σd2 is further eliminated in (c)/(d)/(e)/(f) respectively
and another half solution reduction is gained.

Matrix Symmetries and Value Interchangeability. A common symmetry group in
CSP is the matrix symmetries [5]. Since the size of the matrix symmetry group is super-
exponential, usually only row and column symmetries are considered as target symme-
tries. Methods like DOUBLELEX [5] and SNAKELEX [11], built upon LEXLEADER [3],
are efficient in eliminating row and column symmetries, but they do not eliminate the
matrix symmetries in general. In order to preserve target symmetries, we consider the
multiset ordering constraint≤m [8].

Enforcing lexicographical ordering in one dimension breaks the symmetries in the
other dimension, but enforcing multiset ordering in one dimension preserves the permu-
tation symmetries in the other dimension. However, multiset ordering may not force a
unique ordering, and thus eliminates fewer symmetries and is weaker than lexicograph-
ical ordering. However, combining it with lex ordering may eliminate more symmetries
than combining both lex orderings. Based on Theorem 3, if multiset ordering determine
a unique ordering in one dimension, combining it with lexicographical ordering in the
other dimension eliminates the matrix symmetries. We cannot guarantee multiset order-
ing achieve unique ordering in many problems, but we show in the following that the
solution set left by the combination can be much smaller than the one left by both≤lex.

We take the Cover Array Problem CA(t, k, g, b) from CSPLib prob045 as example
and use the integrated model [14], which channels an original model and a compound
model. The original model contains a b × k matrix X of integer variables with domain
{1..g}. The compound model contains a b×

(
k
t

)
matrix of integer variable with domain

{1..gk}. The original model contains matrix symmetries and value interchangeability in
each column. In the following, we consider tow sets of target symmetries and compare
our approach with those in the literature respectively.

– Considering row and column symmetries as target symmetries, we compare with
the popular approach DOUBLELEX, denoted as dLex. Now we explain our choice
of constraints. The number of columns k is smaller than the number of rows b
in satisfiable Cover Array instances CA(t, k, g, b). Since multiset ordering is rel-
atively weaker, we choose to post it between columns. We simulate the multi-
set ordering constraint [8] using the Global Cardinality Constraint [25]: ∀i, 0 ≤
i ≤ k, gcc([X1i, . . . , Xbi], [1, . . . , g], [O1i, . . . , Ogi]). Multiset ordering between
columns of the original model ∀1 ≤ i < j ≤ k, [X1i, . . . , Xbi] ≤m [X1j , . . . , Xbj ]
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is achieved by enforcing lex ordering on the cardinality variable sequences ∀1 ≤
i < j ≤ k, [O1i, . . . , Ogi] ≤lex [O1j , . . . , Ogj ]. We denote it as mLex.

– Considering row, column and value symmetries as target symmetries, we compare
with the combination of DOUBLELEX and PRECEDENCE [19] constraints on each
column, denoted as dLex-V. PRECEDENCE [19] is a global constraint to elim-
inate value interchangeability. The value interchangeability of each column are
corresponding to variable interchangeability of the cardinality variable sequence
[O1i, . . . , Ogi] of each column i. We can simply enforce an ordering on the cardi-
nality variable sequence O1i ≤ · · · ≤ Ogi for each column i to break the value
symmetries. The combination of these value symmetry breaking constraints and
mLex is denoted as mLex-V.
The value symmetry breaking constraints ∀i, 1 ≤ i ≤ k,O1i ≤ · · · ≤ Ogi in
mLex-V preserve both row and column permutations. For any solution obeying
the constraints, permutating the rows does not change the number of occurrences
of values [O1i, . . . , Ogi] in each column i. Moreover, each column has the same
ordering constraints on the cardinality variables and permutating the columns
still obeys the constraints. When multiset ordering and value symmetry breaking
constraint are complete respectively, the linear-size set of constraints mLex-V
eliminates all symmetries of size b!× k!× (g!)k.

Experiments are conducted on a Sun Blade 1000 (900MHz) running ILOG Solver 6.0.
Variables are labeled in row-wise ordering. We conduct experiments on four instances
of CA(t, k, g, b) with different problem sizes. They vary in (1) the number of columns
k in the original model, (2) the number of columns

(
k
t

)
in the compound model and (3)
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Fig. 5. Comparison of Runtime in Cover Array Problem

domain size g in the original model and gt in the compound model. We show the growth
of solution set size in log scale in base 10 in Figure 4 and runtime in Figure 5 as the
number of rows b increases.

We can see that mLex/mLex-V always have fewer solutions than dLex/dLex-V,
which supports that preservation can achieve smaller solution set size. The distance
between the curve of dLex and dLex-V is relatively smaller than that between mLex
and mLex-V. The value symmetry breaking constraints in mLex-V preserve the row
and column permutations such that combining them achieves good solution reduction.
In all instances, the growth of dLex and dLex-V are similar, but the growth of mLex is
smaller than both. Although mLex has more solutions than dLex-V in small instances,
the solution set size of mLex becomes smaller at certain point. Constraints selected
under preservation may even break or eliminate more symmetries as side-effects than
those intended for a bigger set of target symmetries.

Interestingly, mLex-V has zig-zag curves. When b is even in instances with g = 2,
the solution set size is relatively bigger. We conjecture that the occurrence of each value
in each column are equal with high probability when b has factor g and less value
symmetries are broken.

Comparing the runtime of each approach in Figure 5, although the performance of
mLex/mLex-V is not as good in small instances, it is better as b grows. The runtime of
mLex is smaller than dLex-V when g = 2 but bigger when g = 3.

Piecewise Variable and Value Symmetries. Piecewise variable and value symmetries
are identified as a tractable class of symmetries in CSPs [7]. There exists a linear-size
set of constraints [6] that remove super-exponential number of symmetries. This set
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of constraints [6] is inclusively a case of symmetry preservation: the value symmetry
breaking constraints preserve the variable symmetries and therefore all composition
symmetries are eliminated as side-effects.

5 Interactions with Problem Constraints

We have discussed how to achieve smaller solution set and thus better efficiency when
intending to eliminate the same target symmetries. In this section, we give observations
on ways to further reduce the search space. This results in extra advantages even when
we post symmetry breaking constraints that obtain the same solution set size.

Further Simplification. Sometimes, a symmetry breaking constraint can be simplified
to an equivalent but cheaper one with the help of problem constraints, e.g. when there
is an ALLDIFF constraint on all the variables [21]. Reduction rules [10] can be applied
to reduce the number and arity of a conjunction of symmetry breaking constraints. We
find that the degree of simplification can be different when choosing different alterna-
tives. For example, to eliminate symmetry σd1 in the DLS problem, we can post either
LEXLEADER constraint (2) [X12, . . . , X1n] <lex [X21, . . . , Xn1] or inequality con-
straints (3) X1n < Xn1 or (4) Xn1 < X1n. Each choice cuts half of the solution set.
Constraint (3) and (4) are preferred since it is cheaper and likely to entail better runtime.

To achieve simpler constraints, we can try different symmetry breaking constraints,
especially those derived from canonical variable orderings that start with variables
bounded by more problem constraints and other symmetry breaking constraints. The
choice also affects how well symmetry breaking constraint interacts with problem con-
straints in terms of pruning.

Increasing Constraint Propagation. Symmetry breaking constraints are constraints
and have interactions with other constraints. A number of new global constraints [13,16]
that combines the symmetry breaking constraints with problem constraints are intro-
duced to increase constraint propagation. We give an example of increasing constraint
propagation by simply choosing another symmetry breaking constraint.

Example 3. Among various choices to eliminate the value symmetries of DLS(5), we
pick three for discussion: fix the value of the first row, the middle column or the main
diagonal. Variables in the center is constrained by four ALLDIFF constraints; variables
in the diagonal line is constrained by three ALLDIFF constraints; and the rest by two
ALLDIFF constraints. Figure 6 shows the remaining search space after the propagation.
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Fig. 6. remaining search space of DLS(5) - eliminate Gval
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With the same solution set size, the remaining search space after propagation once
when fixing the main diagonal is less than one hundredth of that when fixing the first
row or middle column even in a small instance (n = 5). Even with the same number
of solutions, different symmetry breaking constraints cooperate variously with prob-
lem constraints and other symmetry breaking constraints in terms of propagation. They
may trigger different pruning power on variable domains when combined with prob-
lem constraints, some reducing dramatically more search space than others. Constraints
that share variables with more or tighter problem constraints potentially trigger more
propagation.

6 Experimental Results

This section evaluates how our choices of symmetry breaking constraints derived
through preservation and the simple tips from Section 5 can influence solution set size
and efficiency. In particular, we compare against the common practice reported in the
literature. All problems can be formulated as matrix models containing both variable
and value symmetries. We denote the symmetry breaking constraints derived from row-
wise ordering as ROWWISE. The experiments are measured on a 3GHz Intel Core2 Duo
PC with 3.2 GB RAM running Ubuntu 10.04.1 and Gecode-3.7.0. Depth first search is
used and variables are searched in row-wise ordering with value tried in increasing or-
der. We report the number of solutions, runtime and number of fails. Running time is
expressed in seconds. Best results are highlighted in bold.

Our choices of symmetry breaking constraints for the first two benchmarks are as
described in the first example of Section 4.4. Taking into account the interaction with
problem constraints, constraints (5) and (6) in Figure 3 trigger more propagation and
leave a smaller search tree. We choose (5) for experiments. Simplified constraint is
posted for the un-eliminated symmetry σd1. The set of symmetry breaking constraint
of Our Method is {[X11, . . . , Xnn] = [1, . . . , n], X1n < Xn1}. We compare with
ROWWISE and VAR+OCC in the literature.

Diagonal Latin Square. Table 1 shows results of constraints derived from row-wise
ordering and those we selected from preservation. All solutions are searched above the
double line and one solution for the rest. Our method has half the number of solutions
as that of ROWWISE. Benefiting from both preservation and the interaction with prob-
lem constraints, we have smaller number of fails that imply smaller search tree. With
instance n = 11, the runtime of searching for one solution of our method is seven orders
of magnitude better.

NNQueen. The problem is to place n colored queens on a n × n chessboard, such
that no lines contain more than one queen with the same color. We model the prob-
lem as an n2 variable matrix model and enforce an ALLDIFF constraint for each line.
It also has geometric symmetries and value interchangeability. We compare with the
symmetry breaking constraints by Puget [23]: VAR={X11 < X1n, X11 < Xn1, X11 <
Xnn, X12 < X21} to eliminate geometric symmetries and a set of OCC constraints to
eliminate value symmetries. Results presented in Table 2 show we gain better efficiency
due to eliminating more symmetries.
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Table 1. Diagonal Latin Square

n
ROWWISE Our Method

#sol time #fails #sol time #fails
5 8 0.001 7 4 0.001 1
6 128 0.029 3000 64 0.004 652
7 171200 12.981 1413K 85600 1.954 163K

8 1 0.002 140 1 0.001 17
9 1 40.04 4327K 1 0.001 25
10 1 0.031 2025 1 0.002 175
11 1 12052 1204124K 1 0.005 339

Table 2. NNQueen

n
VAR+OCC Our Method

#sol time #fails #sol time #fails
5 2 0.001 7 1 0.001 0
6 0 0.002 96 0 0.001 55
7 4 0.195 6201 2 0.038 2496
8 0 65.75 1824K 0 16.47 1258K
9 0 10660 232274K 0 2349 153952K

Error Correcting Code - Lee Distance (ECCLD). The problem is from CSPLib
prob036. It requires to find the maximum number b of codes of length n drawn from 4
symbols {1, 2, 3, 4} such that the Lee distance between any pair of codes is exactly c.
The Lee distance between two symbols a and b is min {|a− b|, 4− |a− b|}. We model
it into a b × n matrix with domain {1..4}. In order to illustrate the effect on solution
set size, we transform the optimization problem to a satisfaction one by setting b in
advance. Due to limited runtime, we constrain the problem size by limiting b. In general,
to which dimension multiset ordering should be applied is problem specific. Different
from the Cover Array Problem, we find that the best performance of the combination
of multiset ordering and lexicographical ordering is achieved by ≥mR,≤lexC (multiset
ordering between rows and lexicographical ordering between columns). We compare
with DOUBLELEX [5] and SNAKELEX [11]. We can see from Table 3 that≥m R,≤lex

C is better in both solution set size and runtime when b ≤ n but worse roughly when
n < b.

Table 3. Error Correcting Code - Lee Distance

(n, c, b)
DOUBLELEX SNAKELEX ≥m R,≤lex C
#sol time #fails #sol time #fails #sol time #fails

(4,4,8) 32469 65.7 780K 29384 86.9 996K 53972 81.6 928K
(5,2,10) 87 7.98 42K 107 10.9 78K 1040 11.7 80K
(5,6,4) 710731 45.2 426K 748248 29 660K 213700 23.8 320K
(5,6,5) 1441224 148 3378K 1468811 236 5661K 379456 79.6 1779K
(5,6,6) 297476 344 7090K 299821 602 11749K 76528 204 3717K
(6,4,4) 4698842 194 4036K 5061729 225 5341K 1909044 115 2270K
(6,4,5) 29345816 3340 72477K 29668229 3480 81624K 11166072 1772 36960K
(6,8,4) 59158 22.6 1175K 55618 29.8 1822K 13163 12 588K
(8,4,4) 35626714 2172 48002K 38629753 2554 63380K 13403304 1108 73211K

Conclusion. There are several methods [12,18,15] concerning the choice of the sym-
metry breaking constraints, such as model restarts [12] and dynamic posting [18] that
reduce the conflict with search heuristic, and Jefferson et al.’s work [15] that chooses
a better subset of symmetries to break, and use Crawford’s [3] ordering constraints to
generate the constraints. Our approach focuses on choosing better symmetry breaking
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constraints for a fixed set of target symmetries in the modeling stage so as to increase
symmetry breaking or constraint interaction. The previous approach and ours are com-
plementary to each other. Combining the approaches will be interesting future work.

Our goal is to find a set of symmetry breaking constraints that aims at only target
symmetries but turns out to eliminate more symmetries. After analyzing the common
side-effects of symmetry breaking constraints, we propose to select symmetry breaking
constraints that preserve other target symmetries and restrict the side-effects to non-
target symmetries. Unfortunately, our methods in the current form require the insight
of a human modeler and automating it is non-trivial with our initial experience. The ad-
vantages of preserving target symmetries are demonstrated both analytically and empir-
ically. We compare with approaches in the literature for problems in which eliminating
all symmetries is not tractable. Without introducing new overhead, our approach can
achieve smaller solution set and possibly better efficiency. To achieve symmetry preser-
vation, different choices of symmetry breaking constraint need to be considered. It is
interesting to investigate more flexible alternatives of symmetry breaking constraints
that can preserve symmetries and propagate well with other constraints.
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Abstract. This paper presents a sweep based algorithm for the cu-
mulative constraint, which can operate in filtering mode as well as in
greedy assignment mode. Given n tasks, this algorithm has a worst-
case time complexity of O(n2). In practice, we use a variant with better
average-case complexity but worst-case complexity of O(n2 log n), which
goes down to O(n log n) when all tasks have unit duration, i.e. in the
bin-packing case. Despite its worst-case time complexity, this algorithm
scales well in practice, even when a significant number of tasks can be
scheduled in parallel. It handles up to 1 million tasks in one single cu-
mulative constraint in both Choco and SICStus.

1 Introduction

In the 2011 Panel of the Future of CP [6], one of the identified challenges for
CP was the need to handle large scale problems. Multi-dimensional bin-packing
problems were quoted as a typical example [10], particularly relevant in the
context of cloud computing. Indeed the importance of bin-packing problems
was recently highlighted in [12] and is part of the topic of the 2012 Roadef
Challenge [13].

Till now, the tendency is to use dedicated algorithms and metaheuristics [17]
to cope with large instances. Following the line of research initiated with the geost
constraint [2], our main objective is to provide global constraints that can han-
dle a significant sub-problem while scaling well in a traditional CP solver. Typi-
cally, filtering algorithms focus on having the best possible deductions [9,20,21],
rather than on scalability issues. This explains why all existing papers on cumu-
lative [9,16,20,21] and bin-packing [18,7,14] usually focus on small size problems
(i.e., typically less than 200 tasks up to 10000 tasks) but leave open the scala-
bility issue. Like what was already done for the geost constraint, which handles
up to 2 million boxes, our goal is to come up with a lean filtering algorithm for
cumulative. In order to scale well in terms of memory, we design a lean filtering
algorithm, which can also be turned into a greedy algorithm that benefits from
the filtering of the lean filtering algorithm while fixing tasks. This approach

� Partially founded by the SelfXL project (contract ANR-08-SEGI-017).

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 439–454, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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allows to avoid the traditional memory bottleneck problem of CP solvers due
to trailing or copying data structures [15], while still benefitting from filtering.
Moreover, like for geost our lean filtering algorithm and its derived greedy as-
signment mode are compatible in the sense that they can both be used at each
node of the search tree, i.e., first call the greedy mode for trying to find a so-
lution and, if that doesn’t work, use the filtering mode to restrict the variables
and continue the search.

This paper focuses on the cumulative constraint, originally introduced in [1]
for modeling resource scheduling problems:

cumulative([s0, . . . , sn−1], [d0, . . . , dn−1], [e0, . . . , en−1], [h0, . . . , hn−1], limit)

where [s0, . . . , sn−1], [e0, . . . , en−1] are non-empty lists of domain variables,1 and
[d0, . . . , dn−1], [h0, . . . , hn−1] are lists of non-negative integers and limit is a non-
negative integer. The cumulative constraint holds if (1-2) are true:

∀t ∈ [0, n− 1] : st + dt = et (1)

∀i ∈ N :
∑

t∈[0,n−1]:
i∈[st,et)

ht ≤ limit (2)

Section 2 recalls the 2001 sweep algorithm for cumulative [3] and provides a crit-
ical analysis of its major bottlenecks. Then, Section 3 presents the new sweep
based filtering algorithm and its greedy mode. Section 4 evaluates its imple-
mentations in both Choco [19] and SICStus [5] and compares them with the
2001 implementations [3] in both systems, as well as to a dedicated bin-packing
constraint used in Entropy [8].

2 A Critical Analysis of the 2001 Sweep Algorithm

The algorithm is based on the sweep idea, which is widely used in computational
geometry [4]. In constraint programming, sweep was used for implementing the
non-overlapping constraint [2] as well as the cumulative constraint [3].

In 2 dimensions, a plane sweep algorithm solves a problem by moving a vertical
line from left to right. The algorithm uses two data structures:

– The sweep-line status, which contains some information related to the current
position δ of the vertical line.

– The event point series, which holds the events to process, ordered in increas-
ing order according to the abscissa.

The algorithm initializes the sweep-line status for the starting position of the ver-
tical line. Then the line “jumps” from event to event; each event is handled and
inserted or removed from the sweep-line status. In our context, the sweep-line

1 A domain variable v is a variable that ranges over a finite set of integers; v and v
respectively denote the minimum and maximum value of variable v.
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scans the time axis in order to build a pessimistic cumulated resource consump-
tion profile (PCRCP) and to perform checks and pruning according to this profile
and to limit . So the algorithm is a sweep variant of the timetable method [11].
Before defining the notion of PCRCP let us first introduce a running example
that will be used throughout for illustrating the different algorithms.

Example 1. Consider four tasks t0, t1, t2, t3 which have the following start, duration,
end and height :

• t0 : s0 = 0, d0 = 1, e0 = 1, h0 = 3,
• t1 : s1 ∈ [0, 2], d1 = 2, e1 ∈ [2, 4], h1 = 3,
• t2 : s2 ∈ [2, 4], d2 = 3, e2 ∈ [5, 7], h2 = 3,
• t3 : s3 ∈ [5, 7], d3 = 1, e3 ∈ [6, 8], h3 = 3,

subject to the constraint cumulative([s0, s1, s2, s3], [d0, d1, d2, d3], [e0, e1, e2, e3],
[h0, h1, h2, h3], 5). Since task t0 starts at instant 0 and since t1 cannot overlap t0
without exceeding the resource limit 5, the earliest start of t1 is adjusted to 1. Since
task t1 occupies interval [2, 3) and since t1 and t2 also cannot overlap for the same
reason, the earliest start of t2 is adjusted to 3. Since task t2 occupies interval [4, 6)
and since t2 and t3 also cannot overlap, the earliest start of t3 is adjusted to 6. The
purpose of the sweep algorithm is to perform such filtering in an efficient way. � 

Given a set of tasks T , the PCRCP of the set T consists of the aggregation of
the compulsory parts of the tasks in T , where the compulsory part of a task is
the intersection of all its feasible instances. On the one hand, the height of the
compulsory part of a task t at a given time point i is defined by ht if i ∈ [st, et)
and 0 otherwise. On the other hand, the height of the PCRCP at a given time
point i is given by

∑
t∈T ,

i∈[st,et)
ht.

Continuation of Example 1 (Compulsory Part of a Task). Task t0 and t2 initially have
a non-empty compulsory part: task t0 uses 3 resource units on interval [0, 1), while task
t2 uses 3 resource units on interval [4, 5). After reaching the fixpoint, task t1 also has
a non-empty compulsory part: task t1 uses 3 resource units on interval [2, 3) while the
compulsory part of t2 now occupies interval [4, 6). � 

Event Point Series. In order to build the PCRCP and to prune the start of
the tasks, the sweep algorithm considers the following types of events:

– Profile events for building the PCRCP correspond to the latest starts and
the earliest ends of the tasks for which the latest start is strictly less than
the earliest end (i.e. the start and the end of a non-empty compulsory part).

– Pruning events for recording the tasks to prune, i.e. the not yet fixed tasks
that intersect δ.

Table 1 (top) describes the different types of events, where each event cor-
responds to a quadruple 〈event type, task generating the event , event date,
available space increment〉. These events are sorted by increasing date.

Continuation of Example 1 (Generated Events). The following events are generated
and sorted by increasing date: 〈SCP , 0, 0,−3〉, 〈PR, 1, 0, 0〉, 〈ECP , 0, 1, 3〉, 〈PR, 2, 2, 0〉,
〈SCP , 2, 4,−3〉, 〈ECP , 2, 5, 3〉, 〈PR, 3, 5, 0〉. � 
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Table 1. Event types for the 2001 sweep (top) and the dynamic sweep (bottom) with
corresponding condition for generating them. The last event attribute is only relevant
for event types SCP , ECP and ECPD .

Generated Events (2001 algo.) Conditions

〈SCP , t, st,−ht〉 and 〈ECP , t, et,+ht〉 st < et

〈PR, t, st, 0〉 st �= st

New Events Events (2001 algo.) Conditions

〈SCP , t, st,−ht〉 〈SCP , t, st,−ht〉 st < et

〈ECPD , t, et,+ht〉 〈ECP , t, et,+ht〉 st < et

〈CCP , t, st, 0〉 st ≥ et

〈PR, t, st, 0〉 〈PR, t, st, 0〉 st �= st

Sweep-Line Status. The sweep-line maintains three pieces of information:

– The current sweep-line position δ, initially set to the date of the first event.
– The amount of available resource at instant δ, denoted by gap, i.e., the

difference between the resource limit and the height of the PCRCP.
– A list of tasks Tprune , recording all tasks that potentially can overlap δ.

The sweep algorithm first creates and sorts the events wrt. their date. Then, the
sweep-line moves from one event to the next event, updating gap and Tprune .
Once all events at δ have been handled, the sweep algorithm tries to prune
all tasks in Tprune wrt. gap and interval [δ, δ′) where δ′ is the next sweep-line
position, i.e. the date of the next event. More precisely, given a task t ∈ Tprune
such that ht > gap, the interval [δ−dt+1, δ′) is removed from the start of task t.

Continuation of Example 1 (Illustrating the 2001 Sweep Algorithm). The sweep algo-
rithm reads the two events 〈SCP , 0, 0,−3〉, 〈PR, 1, 0, 0〉 and sets gap to 5−3 and Tprune
to {t1}. During a first sweep, the compulsory part of task t0 (see Part (A) of Figure 1)
permits to prune the start of t1 since the gap on [0, 1) is strictly less than h1.The prun-
ing of the earliest start of t1 during the first sweep causes the creation of a compulsory
part for task t1 which is not immediately used to perform more pruning (see Part (B)).
It is necessary to wait for a second sweep to take advantage of this new compulsory
part to adjust the earliest start of task t2. This last adjustment causes the extension
of the compulsory part of t2 on [4, 6) (see Part (C)). A third sweep adjusts the earliest
start of task t3 which cannot overlap t2. A fourth and last sweep is performed to find
out that the fixpoint was reached (see Part (D)). � 

Weakness of the 2001 Sweep Algorithm

➀ [Too static] The potential increase of the PCRCP during a single sweep is
not dynamically taken into account. In other words, creations and extensions
of compulsory parts during a sweep are not immediately used to perform
more pruning while sweeping. Example 1 illustrates this point since the sweep
needs to be run four times before reaching its fixpoint.
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Fig. 1. Parts (A), (B), (C) and (D) respectively represent the earliest positions of the
tasks and the PCRCP, of the initial problem described in Example 1, after a first sweep,
after a second sweep and after a third sweep

➁ [Often reaches its worst-case time complexity]The worst-case time
complexity of the 2001 sweep algorithm is O(n2) where n is the number of
tasks. This complexity is often reached in practice when most of the tasks
can be placed everywhere on the time line. The reason is that it needs at
each value of δ to systematically re-scan all tasks that overlap δ. Profiling
the 2001 implementation indicates that the sweep algorithm spends up to
45% of its overall running time scanning the list of potential tasks to prune.

➂ [Creates holes in the domains] The 2001 sweep algorithm removes in-
tervals of consecutive values from domain variables. This is a weak point,
which prevents handling large instances since a variable cannot just be com-
pactly represented by its minimum and maximum values.

➃ [Does not take advantage of bin-packing] For instances where all
tasks have duration one, the worst time complexity O(n2) is left unchanged.

3 The Dynamic Sweep Algorithm

This section presents our contribution, a new sweep algorithm that handles the
four performance issues of the 2001 sweep algorithm raised at the end of Sect.2,
i.e., points ➀ to ➃. We first introduce some general design decisions of the
new sweep algorithm as well as the property the algorithm maintains, and then
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describe it in a similar way the 2001 original sweep algorithm was presented in
Sect. 2. We first present the new event point series, then the new sweep-line
status, and the overall algorithm. Finally we prove that the property initially
introduced is maintained by the new algorithm and give its complexity in the
general case as well as in the case where all task durations are fixed to one.

The first difference from the 2001 sweep is that our algorithm only deals with
domain bounds, which is a good way to reduce the memory consumption for the
representation of domain variables (see Point ➂ of Sect. 2).2 Consequently, we
need to change the 2001 algorithm, which creates holes in the domain of task
origins. The new sweep algorithm filters the task origins in two distinct sweep
stages. A first stage, called sweep min, tries to adjust the earliest starts of tasks
by performing a sweep from left to right, and a second stage tries to adjust the
latest ends by performing a sweep from right to left. The greedy mode of the
new sweep algorithm will be derived from sweep min, in the sense that it takes
advantage of the propagation performed by sweep min and fixes the start of
tasks rather than adjusting them. W.l.o.g, we focus from now on the first stage
sweep min since the second stage is completely symmetric.

As illustrated by Example 1, the 2001 sweep algorithm needs to be re-run
several times in order to reach its fixpoint (i.e., 4 times in our example). This
is due to the fact that, during one sweep, restrictions on task origins are not
immediately taken into account. Our new algorithm, sweep min, dynamically
uses these deductions to reach its fixpoint in one single sweep. To deal with this
aspect, our new sweep algorithm introduces the concept of conditional events,
i.e., events that are created while sweeping over the time axis.

We first give the property that holds when sweep min reaches its fixpoint.
This property will be proved at the end of this section.

Property 1. Given a cumulative constraint with its set of tasks T and its resource
limit limit , sweep min ensures that:

∀t ∈ T , ∀i ∈ [st, et) : ht +
∑

t′∈T \{t}:
i∈[st′ ,et′ )

ht′ ≤ limit (3)

Property 1 ensures that, for any task t of the cumulative constraint, one can
schedule t at its earliest start without exceeding the resource limit wrt. the
PCRCP for the tasks of T \{t}. We now present the different parts of the new
sweep algorithm.

3.1 Event Point Series

In order to address point ➀ [Too static] of Sect. 2, sweep min should handle
the extension and the creation of compulsory parts caused by the adjustment
of earliest starts of tasks in one single sweep. We therefore need to modify the

2 Note that most Operation Research scheduling algorithms only adjust the earliest
start and latest ends of tasks.
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events introduced in Table 1. The bottom part presents the events of sweep min
and their relations with the events of the 2001 algorithm.

– The event type 〈SCP , t, st,−ht〉 for the start of compulsory part of task t is
left unchanged. Note that, since sweep min only adjusts earliest starts, the
start of a compulsory part (which corresponds to a latest start) can never
be extended to the left.

– The event type 〈ECP , t, et, ht〉 for the end of the compulsory part of task t
is converted to 〈ECPD , t, et, ht〉 where D stands for dynamic. The date of
such event corresponds to the earliest end of t (also the end of its compulsory
part) and may increase due to the adjustment of the earliest start of t.

– A new event type 〈CCP , t, st, 0〉, where CCP stands for conditional compul-
sory part, is created for each task t that does not have any compulsory part.
At the latest, once the sweep-line reaches position st, it adjusts the earliest
start of t. Consequently the conditional event can be transformed into an
SCP and an ECPD events, reflecting the creation of compulsory part.

– The event type 〈PR, t, st, 0〉 for the earliest start of t is left unchanged.

On the one hand, some of these events have their dates modified (see ECPD).
On the other hand, some events create new events (see CCP). Consequently,
rather than just sorting all events initially, we insert them by increasing date
into a heap called hevents .

Continuation of Example 1 (New Generated Events for sweep min). The following
events are generated and sorted according to their date: 〈SCP , 0, 0,−3〉, 〈PR, 1, 0, 0〉,
〈ECPD,0,1, 3〉, 〈CCP,1,2, 0〉, 〈PR, 2, 2, 0〉, 〈SCP , 2, 4,−3〉, 〈ECPD,2,5,3〉,
〈PR, 3, 5, 0〉, 〈CCP,3,7, 0〉. � 

3.2 Sweep-Line Status

The sweep-line maintains the following pieces of information:

– The current sweep-line position δ, initially set to the date of the first event.
– The amount of available resource at instant δ, denoted by gap, i.e., the

difference between the resource limit and the height of the PCRCP.
– Two heaps hconflict and hcheck for partially avoiding

point ➁ [Often reaches its worst-case time complexity] of Sect. 2.
W.l.o.g. assume that the sweep-line is at its initial position and that we
handle an event of type PR (i.e., we try to find out the earliest possible
start of a task t).

• If the height of task t is strictly greater than the available gap at δ, we
know that we have to adjust the earliest start of t. In order to avoid
re-checking each time we move the sweep-line whether or not the gap is
big enough wrt. ht, we say that t is in conflict with δ. We insert task t
in the heap hconflict , which records all tasks that are in conflict with δ,
sorted by increasing height, i.e. the top of the heap hconflict corresponds
to the smallest value. This order is induced by the fact that, if we need to
adjust the earliest start of a task t, all earliest task starts with a height
greater than or equal to ht also need to be adjusted.
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• If the height of task t is less than or equal to the available gap at δ, we
know that the earliest start of task t could be equal to δ. But to be sure,
we need to check Property 1 for t (i.e., T = {t}). For this purpose we
insert t in the heap hcheck , which records all tasks for which we currently
check Property 1. Task t stays in hcheck until a conflict is detected (i.e., ht

is greater than the available gap, and t goes back in hconflict ) or until the
sweep-line passes instant δ + dt (and we have found a feasible earliest
start of task t wrt. Property 1). In the heap hcheck , tasks are sorted
by decreasing height, i.e. the top of the heap hcheck corresponds to the
largest value, since if a task t is not in conflict with δ, all other tasks of
hcheck of height less than or equal to ht are also not in conflict with δ.
In the following, empty(h) returns true if the heap h is empty, false
otherwise. Function get top key(h) returns the key of the top element in
the heap h. We introduce an array of integers mins, which stores for each
task t in hcheck the value of δ when t was added into hcheck .

3.3 Algorithm

The sweep min algorithm performs one single sweep over the event point series
in order to adjust the earliest start of the tasks wrt. Property 1. It consists of a
main loop, a filtering part and a synchronization part. This last part is required
in order to directly handle the deductions attached to the creation or increase
of compulsory parts in one single sweep. In addition to the heaps hcheck and
hconflict we introduce an array of booleans evup for which the tth entry indicates
whether events related to the compulsory part of t were updated or not. It is set
to true once we have found the final values of the start and end of the compulsory
part of t. We introduce a list newActiveTasks, which records all tasks that have
their PR event at δ. The primitive adjust min start(t , v) adjusts the minimum
value of the start variable of task t to value v.

Main Loop. The main loop (Algorithm 1) consists of:

– [INITIALIZATION] (lines 3 to 5). The events are generated and inserted into
hevents according to the conditions given in Table 1. The hcheck and hconflict

heaps are initialized as empty heaps. The list newActiveTasks is initialized
as an empty list. δ is set to the date of the first event.

– [MAIN LOOP] (lines 7 to 24). For each date the main loop processes all the
corresponding events. It consists of the following parts:

• [HANDLING A SWEEP-LINE MOVE] (lines 9 to 16). Each time the sweep-
line moves, we update the sweep-line status (hcheck and hconflict) wrt. the
new active tasks, i.e. the tasks for which the earliest start is equal to δ. All
the new active tasks that are in conflict with δ in the PCRCP are added
into hconflict (lines 9 and 10). For tasks that are not in conflict we check
whether the sweep interval [δ, δ′) is big enough wrt. their durations. Tasks
for which the sweep interval is too small are added into hcheck (line 10).
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1: function sweep min(n, s[0..n−1], s[0..n−1], e[0..n−1], d[0..n−1], h[0 ..n−1 ]) : boolean
2: [INITIALIZATION]

3: hevents ← generation of events wrt. n, st, st, d, et and h and Table 1.
4: hcheck , hconflict ← ∅; newActiveTasks ← ∅
5: δ ← get top heap(hevents); δ

′ ← δ; gap ← limit
6: [MAIN LOOP]

7: while ¬empty(hevents) do
8: [HANDLING A SWEEP-LINE MOVE]

9: if δ �= δ′ then
10: while ¬empty(newActiveTasks) do
11: extract first task t from newActiveTasks
12: if ht > gap then add 〈ht, t〉 in hconflict

13: else if dt > δ′ − δ then add 〈ht, t〉 in hcheck ; minst ← δ
14: else evupt ← true
15: if ¬filter min(δ, δ′, gap) then return false
16: δ ← δ′

17: [HANDLING CURRENT EVENT]

18: δ ← synchronize(hevents , δ)
19: extract 〈type , t, δ, dec〉 from hevents

20: if type = SCP ∨ type = ECPD then gap ← gap + dec
21: else if type = PR then newActiveTasks ← newActiveTasks ∪ {t}
22: [GETTING NEXT EVENT]

23: if empty(hevents) ∧ ¬filter min(δ,+∞, gap) then return false
24: δ′ ← synchronize(hevents , δ)
25: return true

Algorithm 1. False if a resource overflow is detected, true otherwise.

Then filter min (see Alg. 2) is called to update hcheck and hconflict and to
adjust the earliest start of tasks for which a feasible position was found.
• [HANDLING CURRENT EVENT] (lines 18 to 21). Conditional events (CCP)
and dynamic events (ECPD) at the top of hevents are processed (see
Alg. 3). The top event is extracted from the heap hevents . Depending
of its type (i.e., SCP or ECPD), the gap of the available resource is
updated, or (i.e., PR), the task is added into the list of new active tasks.
• [GETTING NEXT EVENT] (lines 23 to 24). If there is no more event in

hevents , filter min is called in order to empty the heap hcheck , which may
generate new compulsory part events.

The Filtering Part. Algorithm 2 processes tasks in hcheck and hconflict in order
to adjust the earliest start of the tasks. The main parts of the algorithm are:

– [CHECK RESOURCE OVERFLOW] (line 3). If the available resource gap is neg-
ative on the sweep interval [δ, δ′), Alg. 2 returns false meaning a failure
(i.e. the resource capacity limit is exceeded).

– [UPDATING TOP TASKS OF hcheck ] (lines 5 to 11). All tasks in hcheck of
height greater than the available resource gap are extracted.
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1: function filter min(δ, δ′, gap) : boolean
2: [CHECK RESOURCE OVERFLOW]

3: if gap < 0 then return false
4: [UPDATING TOP TASKS OF hcheck ]

5: while ¬empty(hcheck ) ∧ (empty(hevents) ∨ get top key(hcheck) > gap) do
6: extract 〈ht, t〉 from hcheck

7: if δ ≥ st ∨ δ −minst ≥ dt ∨ empty(hevents) then
8: adjust min start(t,minst)
9: if ¬evupt then update events of the compulsory part of t; evupt ← true
10: else
11: add 〈ht, t〉 in hconflict

12: [UPDATING TOP TASKS OF hconflict ]

13: while ¬empty(hconflict ) ∧ get top key(hconflict) ≤ gap do
14: extract 〈ht, t〉 from hconflict

15: if δ ≥ st then
16: adjust min start(t, st)
17: if ¬evupt then update events of the compulsory part of t; evupt ← true
18: else
19: if δ′ − δ ≥ dt then
20: adjust min start(t, δ)
21: if ¬evupt then update events of the compulsory part of t; evupt ← true
22: else
23: add 〈ht, t〉 in hcheck ; minst ← δ
24: return true

Algorithm 2. Tries to adjust earliest starts of tasks in hcheck and hconflict wrt.
the sweep interval [δ, δ′) and the available resource gap and returns false if a
resource overflow is detected, true otherwise.

• A first case to consider is when task t has been in hcheck long enough
(i.e. δ −minst ≥ dt, line 7), meaning that the task is not in conflict on
interval [minst , δ), whose size is greater than or equal to dt. Consequently,
we adjust the earliest start of task t to value minst .

• A second case to consider is when δ has passed the latest start of task
t (i.e. δ ≥ st, line 7). That means task t was not in conflict on interval
[minst , δ) either, and we can adjust its earliest start to minst .

• A third case is when there is no more event in the heap hevents

(i.e. empty(hevents), line 7). It means that the height of the PCRCP
is equal to zero and we need to empty hcheck .

• Otherwise, the task is added into hconflict (line 11).

– [UPDATING TOP TASKS OF hconflict ] (lines 13 to 23). All tasks in hconflict

that are no longer in conflict with δ are extracted. If δ has passed the latest
start of task t, we know that t cannot be scheduled before its latest position.
Otherwise, we compare the duration of t with the sweep interval and decide
whether to adjust the earliest start of t or to add it into hcheck .
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1: function synchronize(hevents , δ) : integer
2: [UPDATING TOP EVENTS]

3: repeat
4: if empty(hevents) then return −1
5: sync ← true; 〈date , t, type , dec〉 ← consult top event of hevents

6: [PROCESSING DYNAMIC EVENT]

7: if type = ECPD ∧ ¬evupt then
8: if t ∈ hcheck then update event date to minst + dt
9: else update event date to st + dt
10: evupt ← true; sync ← false;
11: [PROCESSING CONDITIONAL EVENT]

12: else if type = CCP ∧ ¬evupt ∧ date = δ then
13: if t ∈ hcheck ∧minst + dt > δ then
14: add 〈SCP , t, δ,−ht〉 and 〈ECPD , t,minst + dt, ht〉 into hevents

15: else
16: add 〈SCP , t, δ,−ht〉 and 〈ECPD , t, et, ht〉 into hevents

17: evupt ← true; sync ← false;
18: until sync
19: return date

Algorithm 3. Checks that the event at the top of hevents is updated and returns
the date of the next event or null if hevents is empty.

The Synchronization Part. Before each extraction or access to hevents , Alg. 3
checks and updates the top event and returns the next event date. The main
parts of the algorithm are:

– [UPDATING TOP EVENTS] (lines 3 to 18). Dynamic and conditional events
require to check whether the next event to be extracted by Alg. 1 needs to
be updated or not. The repeat loop updates the next event if necessary until
the top event is up to date.

– [PROCESSING DYNAMIC EVENT] (lines 7 to 10). An event of type ECPD must
be updated if the related task t is in hcheck or in hconflict . If t is in hconflict ,
it means that t cannot start before its latest starting time st. Consequently,
its ECPD event is pushed back to the date st + dt (line 9). If t is in hcheck ,
it means that its earliest start can be adjusted to minst. Consequently, its
ECPD event is updated to the date minst + dt (line 8).

– [PROCESSING CONDITIONAL EVENT] (lines 12 to 17). When the sweep-line
reaches the position of a CCP event for a task t, we need to know whether
or not a compulsory part for t is created. As evupt is set to false, we know
that t is either in hcheck or in hconflict . If t is in hconflict the task is fixed to
its latest position and related events are added into hevents (line 16). If t is
in hcheck , a compulsory part is created iff minst + dt > δ (lines 13-14).

Continuation of Example 1 (Illustrating the Dynamic Sweep Algorithm). The sweep
algorithm first reads the two events 〈SCP , 0, 0,−3〉, 〈PR, 1, 0, 0〉 and sets gap to 2.
Since the height of task t1 is greater than the available resource gap, t1 is added into
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hconflict (see Alg. 1 line 12 and Fig. 2 Part (A)). The call of filter min only checks
that the gap is non-negative. Then, the sweep-line moves to the position 1, reads the
event 〈ECPD, 0, 1,+3〉 and sets gap to 5. The call of filter min with δ = 1, δ′ = 2
and gap = 5 retrieves t1 from hconflict and inserts it into hcheck (see Alg. 2, line 23). In
synchronize (called in Alg. 1 line 24), the next event 〈CCP , 1, 2, 0〉 is converted into two
events 〈SCP , 1, 2,−3〉 and 〈ECPD , 1, 3,+3〉 standing for the creation of a compulsory
part on interval [2, 3) for the task t1 (see Fig. 2 Part (B)). Note that the creation
of the compulsory part occurs after the sweep-line position, which is key to ensuring
Property 1. � 
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Fig. 2. Parts (A), (B) and (C) represent the earliest positions of the tasks and the
PCRCP at different values of δ. Part (A) is when δ = 0 just before the call of filter min
(Alg. 1 line 15). Part (B) is when δ = 1 just after the call of synchronize (Alg. 1 line
24). Part (C) is when δ = 4 just after the call of synchronize (line 24).

3.4 Correctness and Property Achieved by sweep min

We now prove that after the termination of sweep min(Alg. 1), Property 1 holds.
For this purpose, we first introduce the following lemma.

Lemma 1. At any point of its execution, sweep min(Alg. 1) cannot generate a
new compulsory part that is located before δ.

Proof. Since the start of the compulsory part of a task t corresponds to st, which
is indicated by its CCP or SCP event, and since sweep min only prunes earliest
starts, the compulsory part of t cannot start before this event. Consequently, the
latest value of δ to know whether the compulsory part of t is created is st. This
case is processed by Alg. 3, lines 12 to 17.

The end of the compulsory part of a task t corresponds to et and is indicated
by its ECPD event. To handle its potential extension to the right, the earliest
start of t must be found before the sweep extracts its ECPD event. This case is
processed by Alg. 3, lines 7 to 10. ��

Proof (of Property 1). Given a task t, let δt and mint respectively denote the
position of the sweep-line when the earliest start of t is adjusted by sweep min,
and the new earliest start of t. We successively show the following points:
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① When the sweep-line is located at instant δt we can start task t at mint

without exceeding limit , i.e.

∀t′ ∈ T \{t}, ∀i ∈ [mint, δt) : ht +
∑

t′∈T \{t}:
i∈[st′ ,et′ )

ht′ ≤ limit

The adjustment of the earliest start of task t to mint implies that t
is not in conflict on the interval [mint, δt) wrt. the PCRCP. Condition
get top key(hcheck) > gap (Alg. 2 line 5) ensures that the adjustment in
line 8 does not induce a resource overflow on [mint, δt), otherwise t should
have been added into hconflict . Condition get top key(hconflict ) ≤ gap (Alg. 2
line 13) implies that task t is in conflict until the current sweep-line position
δ. If δ ≥ st (line 15) the conflict on [st, δt) is not “real” since the compul-
sory part of t is already taken into account in the PCRCP. Alg. 2 (line 20),
the earliest start of task t is adjusted to the current sweep-line position,
consequently the interval [mint, δt) is empty.

② For each value of δ greater than δt, sweep min cannot create a compulsory
part before instant δt. This is implied by Lemma 1, which ensures that
sweep min cannot generate any compulsory part before δ.

Consequently once sweep min is completed, any task t can be fixed to its earliest
start without exceeding the resource limit limit . ��
Property 2. [Correctness.] For any task t, there is no feasible position before its
earliest start mint wrt. the PCRCP.

Proof. By contradiction. Given a task t, let omint be its earliest start before
the execution of sweep min. If the earliest start of t is pruned during the sweep,
i.e.mint > omint, then t is in conflict at a time point in the interval [omint,mint)
(see Alg. 2, line 11). Consequently condition δ − minst > dt (Alg. 2, line 7) is
false, which ensures that there is no earliest feasible position before mint. ��

3.5 Complexity

Given a cumulative constraint involving n tasks, the worst-case time complexity
of the dynamic sweep algorithm is O(n2 logn). First note that the overall worst-
case complexity of synchronize over a full sweep is O(n) since conditional and
dynamic events are updated at most once. The worst-case O(n2 logn) can be
reached in the special case when the PCRCP consists of a succession of high
peaks and deep, narrow valleys. Assume that one has O(n) peaks, O(n) valleys,
andO(n) tasks to switch between hcheck and hconflict each time. A heap operation
costs O(log n). The resulting worst-case time complexity is O(n2 logn).3 For bin-
packing, the two heaps hconflict and hcheck permit to reduce the worst-case time
complexity down to O(n log n). Indeed, the earliest start of the tasks of duration
one that exit hconflict can directly be adjusted (i.e. hcheck is unused).

3 Note that when the two heaps are replaced by a list where for each active task we
record its status (in checking mode or in conflict mode), we get an O(n2) worst-case
time complexity which, like the 2001 algorithm, is reached in practice.
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3.6 Greedy Mode

The motivation for a greedy assignment mode is to handle larger instances in
a CP solver. This propagation mode reuses the sweep min part of the filtering
algorithm in the sense that once the minimum value of a start variable is found,
the greedy mode directly fixes the start to its earliest feasible value wrt. Prop-
erty 1 rather than adjusting it. Then, the sweep-line is reset to this start and the
process continues until all tasks get fixed or a resource overflow occurs. Thus the
greedy mode directly benefits from the propagation performed while sweeping.

4 Evaluation

We implemented the dynamic sweep algorithm on Choco [19] and SICStus [5].
Benchmarks were run with an Intel i7 at 2.93 GHz processor on one single core,
memory limited to 13GB under Mac OS X 64 bits.

In a first experiment, we ran random instances of cumulative and bin-packing
problems. Instances were randomly generated with a density close to 0.7. For
a given number of tasks, we generated two different instances with the average
number of tasks overlapping a time point equal to 10 (denoted by ttu1 ) resp.
100 (denoted by ttu2 ). For cumulative problems, we compared the time needed
to find a first solution using fail-first search with the 2001 sweep algorithm
(denoted by sweep), the dynamic sweep (denoted by dynamic) and the greedy
mode (denoted by greedy). For bin-packing problems, we also tested a dedicated
filtering algorithm (denoted by fastbp) coming from Entropy [7], an open-source
autonomous virtual machine manager. The Choco results are shown in Fig. 3 (top
and middle). The SICStus results (omitted) paint a similar picture. We notice a
significant difference from the 2001 algorithm due to an inappropriate design of
the code for large instances in Choco (iterating over objects). SICStus is up to 8
times faster than Choco on sweep and twice as fast on dynamic and greedy. The
dynamic sweep is always faster than the 2001 sweep with a speedup increasing
with the number of tasks (e.g., for 8000 tasks up to 7 times in Choco and 5 times
in SICStus). The dynamic sweep algorithm is also more robust than the 2001
algorithm wrt. different heuristics. For the bin-packing case (ttu2), greedy could
handle up to 10 million tasks in one cumulative constraint in SICStus in 8h20m.

In a second experiment, we ran the J30 single-mode resource-constrained
project scheduling benchmark suite from PSPLib 4, comparing sweep with dy-
namic. Each instance involves four cumulative constraints on 30 tasks and several
precedence constraints. The variable with the smallest minimal value was chosen
during search. The SICStus results are shown in Fig. 3 (bottom). The left hand
scatter plot compares run times for instances that were solved to within 5%
of the optimal makespan within a 1 minute time-out by both algorithms. The
right hand scatter plot compares backtrack counts for instances that timed out
in at least one of the two algorithms. Search trees are the same for sweep and
dynamic, and a higher backtrack count means that propagation is faster, and so

4 http://129.187.106.231/psplib/, (480 instances)
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Fig. 3. Runtimes on random instances (top and middle). Comparing runtimes and
backtrack counts on PSPLib instances (bottom).

both plots confirm the finding that the dynamic sweep outperforms the 2001 one
by a factor up to 3, and not just for problems stated with a single constraint.

5 Conclusion

We have presented a new sweep based filtering algorithm, which dynamically
handles deductions while sweeping. In filtering mode, the new algorithm is up
to 8 times faster than the 2001 implementation. In assignment mode, it allows
to handle up to 1 million tasks in both Choco and SICStus. Future work will
focus on the adaptation of this algorithm to multiple resources.

Acknowledgments. Thanks to S. Demassey for providing the fastbp constraint.
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Abstract. MinSAT is the problem of finding a truth assignment that minimizes
the number of satisfied clauses in a CNF formula. When we distinguish between
hard and soft clauses, and soft clauses have an associated weight, then the prob-
lem, called Weighted Partial MinSAT, consists in finding a truth assignment that
satisfies all the hard clauses and minimizes the sum of weights of satisfied soft
clauses. In this paper we define a novel encoding from Weighted Partial MinSAT
into Weighted Partial MaxSAT, which is also valid for encoding Weighted Partial
MaxSAT into Weighted Partial MinSAT. Moreover, we report on an empirical
investigation that shows that our encoding significantly outperforms existing en-
codings on weighted and unweighted Min2SAT and Min3SAT instances.

1 Introduction

Solving NP-complete decision problems by reducing them to the propositional satis-
fiability problem (SAT) is a powerful solving strategy that is widely used to tackle
both academic and industrial problems. Recently, the success of SAT has led to explore
MaxSAT formalisms such as Weighted MaxSAT and Weighted Partial MaxSAT [10]
for solving practical optimization problems. Nowadays, MaxSAT formalisms are quite
competitive on certain domains, and we believe that the development of new solving
techniques and the annual celebration of a MaxSAT Evaluation [1–3] will act as a driv-
ing force to incorporate MaxSAT technology in industrial environments.

In this paper we focus on MinSAT, which is close to MaxSAT but the goal now is
to minimize the cost of satisfied clauses instead of maximizing that cost. Specifically,
we focus on the Weighted Partial MinSAT problem, where instances are formed by a
set of clauses, each clause is declared to be either hard or soft, and each soft clause has
an associated weight. Solving a Weighted Partial MinSAT instance amounts to finding
an assignment that satisfies all the hard clauses, and minimizes the sum of the weights
of satisfied soft clauses. On the one hand, we distinguish between constraints that are
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compulsory (hard) and constraints that can be relaxed (soft). On the other hand, we
establish a priority among soft constraints by assigning them a weight that represents
the significance of the constraint.

Although MinSAT and MaxSAT are both extensions of SAT, their solving techniques
are quite different as well as complementary in the sense that problems that are beyond
the reach of current MaxSAT solvers can be solved with MinSAT solvers, and vice
versa [14, 15]. Because of that, we believe that it makes sense to define suitable encod-
ings from MinSAT (MaxSAT) into MaxSAT (MinSAT). To the best of our knowledge,
there exist two papers addressing this kind of encodings [8, 13]. In [13], a number of
encodings were defined to reduce (unweighted) MinSAT to Partial MaxSAT. One draw-
back of that work is that the defined encodings do not generalize to Weighted Partial
MinSAT. More recently, Kügel [8] has defined the so-called natural encoding (c.f. Sec-
tion 3), which inspired the present work.

In this paper we define a novel encoding, called natural flow network encoding, from
Weighted Partial MinSAT into Weighted Partial MaxSAT which, as Kügel’s encoding,
is also valid for encoding Weighted Partial MaxSAT into Weighted Partial MinSAT. Our
encoding improves Kügel’s encoding by allowing to detect earlier more contradictions,
and by performing a more efficient treatment of weights. Moreover, we report on an
empirical investigation that shows that our encoding significantly outperforms existing
encodings on weighted and unweighted Min2SAT and Min3SAT instances.

The paper is structured as follows. Section 2 introduces basic concepts that are used
in the rest of the paper. Section 3 presents first the natural encoding, and then the natural
flow network encoding. Section 4 reports on the empirical investigation, and Section 5
presents the conclusions.

2 Preliminaries

A literal is a propositional variable or a negated propositional variable. A clause is a
disjunction of literals. A weighted clause is a pair (c, w), where c is a clause and w, its
weight, is a natural number or infinity. A clause is hard if its weight is infinity; otherwise
it is soft. A Weighted Partial MinSAT (MaxSAT) instance is a multiset of weighted
clauses φ = {(h1,∞), . . . , (hk,∞), (c1, w1), . . . , (cm, wm)}, where the first k clauses
are hard and the last m clauses are soft. For simplicity, in what follows, we omit infinity
weights, and write φ = {h1, . . . , hk, (c1, w1), . . . , (cm, wm)}. Notice that a soft clause
(c, w) is equivalent to having w copies of the clause (c, 1),1 and that {(c, w1), (c, w2)}
is equivalent to (c, w1 + w2).

A truth assignment is a mapping that assigns to each propositional variable either 0
or 1. The cost of a truth assignment I for φ is the sum of the weights of the soft clauses
satisfied by I . The Weighted Partial MinSAT problem for an instance φ consists in find-
ing an assignment with minimum cost that satisfies all the hard clauses (i.e, an optimal
assignment), while the Weighted Partial MaxSAT problem consists in finding an as-
signment with maximum cost that satisfies all the hard clauses. The Weighted MinSAT
(MaxSAT) problem is the Weighted Partial MinSAT (MaxSAT) problem when there
are no hard clauses. The Partial MinSAT (MaxSAT) problem is the Weighted Partial

1 From a complexity point of view, this transformation can be exponential in the worst case.
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MinSAT (MaxSAT) problem when all soft clauses have weight 1. The (Unweighted)
MinSAT (MaxSAT) problem is the Partial MinSAT (MaxSAT) problem when there are
no hard clauses. The SAT problem is the Partial MaxSAT or the Partial MinSAT prob-
lem when there are no soft clauses.

A flow network is a directed graph G = (V,E) with two distinguished vertices:
the source s, with no incoming edges, and the sink t, with no outgoing edges. We will
assume that every vertex v ∈ V is in some path from s to t. Every edge (u, v) has a
non-negative integer weight, called the capacity c(u, v) of (u, v); if (u, v) �∈ E, then
c(u, v) = 0. The capacity represents the maximum amount of flow that can pass through
an edge. A flow is a real-valued function f : V × V → R+ subject to the following
constraints: (i) for all u, v ∈ V , 0 ≤ f(u, v) ≤ c(u, v) (capacity constraint: the flow
of an edge cannot exceed its capacity), and (ii) for all u ∈ V \ {s, t},

∑
v∈V f(u, v)−∑

v∈V f(v, u) = 0 (conservation of flows: the sum of the flows entering a vertex must
equal the sum of the flows exiting a vertex, except for the source and the sink).

The value of a flow |f | is defined as follows: |f | =
∑

v:(s,v)∈E f(s, v) =∑
u:(u,t)∈E f(u, t). It represents the amount of flow passing from the source to the

sink. The maximum flow problem for a flow network G consists in finding a flow of
maximum value on G (i.e., to route as much flow as possible from the source to the
sink).

3 Encodings from MinSAT (MaxSAT) into MaxSAT(MinSAT)

3.1 The Natural Encoding (NE)

Kügel has recently defined an encoding, called Natural Encoding (NE), from Weighted
Partial MinSAT into Weighted Partial MaxSAT, which is also valid for encoding
Weighted Partial MaxSAT into Weighted Partial MinSAT. Encoding NE does not in-
troduce auxiliary variables and just increases the number of clauses by a factor of the
clause size. Furthermore, any optimal assignment of the MaxSAT instance is an optimal
assignment of the MinSAT instance, and vice versa.

Given a Weighted Partial MinSAT instance, encoding NE consists in creating a
Weighted Partial MaxSAT instance with the same hard clauses, and replacing every
soft clause with its negation in clausal form. Since negation has to preserve the num-
ber of unsatisfied clauses, the negation in conjunctive normal form of the soft clause
(c, w) = (l1 ∨ l2 ∨ · · · ∨ lk, w), denoted by CNF(c, w), is defined as follows:2

CNF(c, w) = (¬l1, w) ∧ (l1 ∨ ¬l2, w) ∧ · · · ∧ (l1 ∨ l2 ∨ · · · ∨ ¬lk, w)

Example 1. Let φ = {x1 ∨ x2, (x1 ∨ x3, 2), (¬x2 ∨ x3, 3)} be a Weighted Partial
MinSAT instance. Encoding NE generates the following Weighted Partial MaxSAT in-
stance:

{x1 ∨ x2, (¬x1, 2), (x1 ∨ ¬x3, 2), (x2, 3), (¬x2 ∨ ¬x3, 3)}.
2 Recall that this negation was first used for defining resolution-like inference in MaxSAT [4, 9].

Also recall that if an assignment falsifies (c, w), then it satisfies all the clauses in CNF(c, w);
and if an assignment satisfies (c, w), then it falsifies exactly one clause in CNF(c, w).
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Encoding NE relies on the following equations:

wpmin({h1, . . . , hk, (c1, w1), . . . , (cm, wm)}) =
wpmax({h1, . . . , hk, CNF(c1, w1), . . . , CNF(cm, wm)})
wpmax({h1, . . . , hk, (c1, w1), . . . , (cm, wm)}) =
wpmin({h1, . . . , hk, CNF(c1, w1), . . . , CNF(cm, wm)})

where wpmin(φ) is the maximum sum of weights of falsified soft clauses in the MinSAT
instance φ, and wpmax(φ) is the minimum sum of weights of falsified soft clauses in
the MaxSAT instance φ. Recall that branch-and-bound MinSAT (MaxSAT) solvers find
an optimal solution by maximizing (minimizing) the sum of weights of falsified clauses.

3.2 The Natural Flow Network Encoding (NFNE)

In this section we define a novel encoding, called Natural Flow Network Encoding
(NFNE), that improves Kügel’s encoding. Encoding NFNE relies on the following ob-
servation: the way of definining CNF(c, w) is not unique, it depends on the ordering
in which we consider the literals of the clause, and this ordering is important because
contradictions are detected if complementary unit clauses are derived. For example,
CNF(x1 ∨ x2 ∨ x3, w) can be defined as either (¬x1, w), (x1 ∨ ¬x2, w), (x1 ∨ x2 ∨
¬x3, w), or (¬x2, w), (x2 ∨ ¬x1, w), (x2 ∨ x1 ∨ ¬x3, w), or . . . Furthermore, there are
cases where it is advantageous to split a weighted clause (c, w) into several clauses in
such a way that each one of these clauses generates a different unit clause when we
derive CNF(c, w).

For example, in order to encode the clauses {(x1 ∨ x2, 5), (¬x1 ∨ x3, 2), (¬x2 ∨
¬x4, 3)} into MaxSAT, we split (x1∨x2, 5) into the clauses (x1∨x2, 2) and (x1∨x2, 3),
derive the unit clause (¬x1, 2) in CNF(x1 ∨ x2, 2), derive the unit clause (¬x2, 3) in
CNF(x1 ∨ x2, 3), derive the unit clause (x1, 2) in CNF(¬x1 ∨ x3, 2), and derive the unit
clause (x2, 3) in CNF(¬x2 ∨ ¬x4, 3), then we derive an empty clause with weight 5
when the complementary unit clauses of the obtained Partial MaxSAT instance are re-
solved. If (x1 ∨ x2, 5) is not split, we derive an empty clause with weight at most 3.

Our aim is to define an encoding that splits weighted clauses and selects the literals
in such a way that the number of complementary unit clauses that are derived is maxi-
mized. To this end, we represent the soft clauses in a flow network G and then compute
a maximum value flow on G using the Ford-Fulkerson algorithm [7].

Given a Weighted Partial MinSAT instance φ = {h1, . . . , hk, (c1, w1), . . . , (cm,
wm)}, without tautological clauses, over the set of propositional vari-
ables {x1, . . . , xn}, we create a flow network G with set of vertices
{s, t, c+1 , . . . , c+m, c−1 , . . . , c−m, x1, . . . , xn,¬x1, . . . ,¬xn}, and having the follow-
ing edges:

1. There is an edge (s, c+i ) with capacity wi for all 0 ≤ i ≤ m.
2. There is an edge (c−i , t) with capacity wi for all 0 ≤ i ≤ m.
3. There is an edge (xi,¬xi) with capacity

∑m
i=0 wi for all 0 ≤ i ≤ m.

4. There is an edge (c+i , xj) with capacity wi for each clause (ci, wi), 0 ≤ i ≤ m,
containing the literal xj for all 0 ≤ j ≤ n.
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5. There is an edge (¬xj , c
−
i ) with capacity wi for each clause (ci, wi), 0 ≤ i ≤ m,

containing the literal ¬xj for all 0 ≤ j ≤ n.

Given a flow f of maximum value on G, we derive a Weighted Partial MaxSAT instance
φ′ as follows:

1. The hard clauses of φ′ and φ are the same.
2. For each path P from s to t of the form s→ c+i → xj → ¬xj → c−k → t that does

not contain edges with flow 0, add the soft clauses of CNF(ci, f(c
+
i , xj)) having as

unit clause (¬xj , f(c
+
i , xj)), and the soft clauses of CNF(ck, f(¬xj , c

−
k )) having as

unit clause (xj , f(¬xj , c
−
k )). Clauses corresponding to edges belonging to several

paths are added only once.
3. For each soft clause (ci, wi) ∈ φ, add the soft clauses of CNF(ci, wi − ws

i ) if wi >
ws

i , where ws
i =

∑n
k=1 f(c

+
i , xk) +

∑n
k=1 f(¬xk, c

−
i ). In this case, there is no

constraint on the literal used to generate the unit clause. We use the first literal in
lexicographical ordering.
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Fig. 1. Flow network for the MinSAT instance φ = {(c1, w1), (c2, w2), (c3, w3), (c4, w4)} =
{(x1 ∨ x2, 7), (¬x1 ∨ x3, 2), (¬x2 ∨ ¬x3, 3), (¬x1 ∨ x2, 1)}

Example 2. Let φ = {(c1, w1), (c2, w2), (c3, w3), (c4, w4)} = {(x1 ∨ x2, 7), (¬x1 ∨
x3, 2), (¬x2 ∨ ¬x3, 3), (¬x1 ∨ x2, 1)} be a Weighted Partial MinSAT instance. For
deriving the NFNE encoding, we first build the graph G = (V,E) of Figure 1, and
compute a flow of maximum value. Each edge of G has a label of the form f/c, where
f is the edge flow value and c is the edge capacity.

We have 3 paths where there is no edge with flow value 0:

1. P1 = s→ c+1 → x1 → ¬x1 → c−2 → t. From this path, we derive the soft clauses
φ′1 = {CNF(x1 ∨ x2, 3), CNF(¬x1 ∨ x3, 2)}, deriving unit clauses (¬x1, 3) and
(x1, 2).

2. P2 = s → c+1 → x1 → ¬x1 → c−4 → t. From this path, we derive the
soft clauses φ′2 = CNF(¬x1 ∨ x2, 1), deriving unit clause (x1, 1). We do not add
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CNF(x1 ∨ x2, 3) because the edge associated with these clauses was considered in
path P1.

3. P3 = s→ c+1 → x2 → ¬x2 → c−3 → t. From this path, we derive the soft clauses
φ′3 = {CNF(x1 ∨ x2, 3), CNF(¬x2 ∨ ¬x3, 3)}, deriving unit clauses (¬x2, 3) and
(x2, 3).
Moreover, we should add the clauses CNF(x1 ∨ x2, 1) because w1 = 7 and ws

1 = 6.
In summary, the resulting encoding φ′ is formed by φ′1∪φ′2∪φ′3∪CNF(x1 ∨ x2, 1).

4 Experimental Results

We conducted experiments for comparing the performance of encoding NFNE with the
performance of the encoding NE defined in [8], where it was shown that NE is signifi-
cantly better than the encodings defined in [13]. As benchmarks we used weighted and
unweighted Min2SAT and Min3SAT instances as in [8]. We do not use the more applied
instances in [14] (maxclique and combinatorial auctions) because all their soft clauses
are unit and, in this case, there is no difference between the unit clauses generated with
NE and NFNE. Benchmarks were solved on a 2.70 Ghz intel XEON E5-2680 CPU with
Linux and 8 Gb memory, using a cutoff time of 1800 seconds.

The solvers used in our empirical investigation are:

– Maxsatz [11, 12]: MaxSatz is a representative branch-and-bound Weighted Partial
MaxSAT solver that is particularly efficient on random MaxSAT instances. We used
the version submitted to the 2011 MaxSAT Evaluation.

– MinSatz: The implementation of the Weighted Partial MinSAT solver used in [14].
It is the only publicly available exact Weighted Partial MinSAT solver.

We generated weighted and unweighted Min2SAT instances with 160, 180 and 200
variables, the clause-to-variable ratio being 4, 5 and 6 for each number of variables.
The Min3SAT instances have 70, 80 and 90 variables, and the clause-to-variable ratio
also ranges from 4 to 6. For each number of variables, and for each ratio, 50 instances
were generated and solved. The weight of each weighted clause is randomly generated
between 1 and 10. These instances are generated in the same way as in the MaxSAT
Evaluation.

Table 1 and Table 2 compare the performance of MinSatz and MaxSatz when solv-
ing the unweighted random Min2SAT and Min3SAT instances. The MinSAT instances
solved with MaxSatz were encoded using encoding NE of Kügel and our new encoding
NFNE. Each entry gives the number of instances solved within 1800 seconds (in brack-
ets), and the average run time of the instances solved within the cutoff time (including
the time needed to generate the encodings), as well as the average search tree size of
these solved instances.

As Table 1 shows, MaxSatz using encoding NE is slower than the dedicated MinSAT
solver MinSatz on Min2SAT instances, essentially because the search tree is too large
for these instances. On the contrary, encoding NFNE is substantially better than NE,
and makes MaxSatz even faster than MinSatz on Min2SAT instances. We observe that
NFNE especially allows to reduce the search tree size of MaxSatz for these instances,
by deriving more empty clauses more quickly than NE.
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Table 1. Number of instances solved within 30 minutes (in brackets), average run times in sec-
onds, and search tree size of MaxSatz and MinSatz for random unweighted Min2SAT instances.
C/V is the clause-to-variable ratio.

instance MinSatz MaxSatz(NE) MaxSatz(NFNE)
#var C/V time size time size time size
160 4 0.01(50) 3511 1(50) 17953 0.01(50) 455
180 4 0.01(50) 5191 4(50) 44210 0.01(50) 790
200 4 4(50) 10227 32(50) 228807 0.01(50) 2143

160 5 10(50) 17005 35(50) 212903 0.01(50) 3372
180 5 36(50) 47446 138(49) 718034 1(50) 7348
200 5 95(50) 99360 509(46) 2143832 4(50) 13502

160 6 96(49) 104737 184(50) 769490 2(50) 11047
180 6 354(44) 313081 759(38) 2623855 19(50) 55947
200 6 703(30) 519333 820(5) 2249294 75(50) 193008

Table 2. Number of instances solved within 30 minutes (in brackets), average run times in sec-
onds, and search tree size of MaxSatz and MinSatz for random unweighted Min3SAT instances.
C/V is the clause-to-variable ratio.

instance MinSatz MaxSatz(NE) MaxSatz(NFNE)
#var C/V time size time size time size
70 4 0.01(50) 4906 3(50) 55817 0.01(50) 15081
80 4 2(50) 22031 23(50) 252116 7(50) 77994
90 4 6(50) 46174 82(50) 735247 21(50) 184906

70 5 2(50) 19330 15(50) 145294 6(50) 64111
80 5 15(50) 84226 77(50) 584794 36(50) 279558
90 5 103(50) 481784 443(50) 2961189 215(50) 1401195

70 6 12(50) 66989 42(50) 314221 23(50) 178947
80 6 88(50) 374512 286(50) 1814812 154(50) 947687
90 6 528(47) 1944530 1078(28) 5458486 707(38) 3580599

Table 2 shows that encoding NFNE is always substantially better than encoding NE
on Min3SAT instances, although the gain is less spectacular than for Min2SAT. Observe
that NFNE could be further improved for Min3SAT (or MinkSAT for k ≥ 3), since after
determining the first literal to derive the unit clause, we have the choice of the second
literal for the binary clause. For example, in order to encode the soft clauses {(x1∨x2∨
x3, 1), (¬x1∨x3∨x4, 1)}, we can derive the unit clause (¬x1, 1) and the binary clause
(x1∨¬x3, 1) (by choosing x3 for the binary clause) from CNF(x1 ∨ x2 ∨ x3, 1), and the
unit clause (x1, 1) and the binary clause (¬x1 ∨ ¬x3, 1) from CNF(¬x1 ∨ x3 ∨ x4, 1),
so that MaxSAT resolution can derive an empty clause from the two unit clauses, and
an unit clause (¬x3, 1) from the two binary clauses.

Table 3 and Table 4 show the results for weighted Min2SAT and Min3SAT. Encod-
ing NFNE is always significantly better than encoding NE. The performance difference
between NFNE and NE for weighted instances appears to be larger than for unweighted
instances. In fact, MaxSatz using NFNE solves 73 weighted Min2SAT instances more
than MaxSatz using NE, while MaxSatz using NFNE solves 62 unweighted Min2SAT
instances more than MaxSatz using NE. In addition, MaxSatz using NFNE solves
21 weighted Min3SAT instances more than MaxSatz using NE, while MaxSatz using
NFNE solves 10 unweighted Min3SAT instances more than MaxSatz using NE. Recall
that, in the weighted case, NFNE allows to split the weight of clauses to maximize the
weight of complementary unit clauses, while NE does not.
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Table 3. Number of instances solved within 30 minutes (in brackets), average run times in sec-
onds, and search tree size of MaxSatz and MinSatz for random weighted Min2SAT instances.
C/V is the clause-to-variable ratio.

instance MinSatz MaxSatz(NE) MaxSatz(NFNE)
#var C/V time size time size time size
160 4 0.01(50) 9037 3(50) 18045 0.01(50) 385
180 4 1(50) 11363 14(50) 46142 0.01(50) 529
200 4 3(50) 13661 64(50) 193995 0.01(50) 772

160 5 2(50) 11299 46(50) 124140 0.01(50) 730
180 5 6(50) 15170 193(50) 398049 0.01(50) 1049
200 5 23(50) 24030 544(37) 979496 3(50) 2201

160 6 19(50) 18011 348(50) 647277 1(50) 1438
180 6 69(50) 31774 876(33) 1427495 5(50) 2653
200 6 168(48) 55038 1218(7) 1873148 17(50) 5402

Table 4. Number of instances solved within 30 minutes (in brackets), average run times in sec-
onds, and search tree size of MaxSatz and MinSatz for random weighted Min3SAT instances.
C/V is the clause-to-variable ratio.

instance MinSatz MaxSatz(NE) MaxSatz(NFNE)
#var C/V time size time size time size
70 4 0.01(50) 2214 5(50) 21095 1(50) 3121
80 4 0.01(50) 4198 28(50) 83732 5(50) 7764
90 4 2(50) 8283 101(50) 245622 19(50) 20496

70 5 1(50) 4394 20(50) 51106 7(50) 9219
80 5 6(50) 14310 110(50) 209113 43(50) 41907
90 5 29(50) 42583 445(48) 723592 181(50) 129093

70 6 6(50) 12013 61(50) 109430 35(50) 33545
80 6 34(50) 45771 343(50) 492617 210(50) 144586
90 6 145(50) 155974 1002(26) 1166419 689(45) 389266

5 Conclusions

Observing that MaxSAT and MinSAT solving techniques are very different, and com-
plementary in the sense that problems beyond the reach of the current MaxSAT solvers
can be solved using MinSAT solvers and vice versa, we have proposed a new encoding
from MinSAT into MaxSAT, which can also be used to encode MaxSAT into MinSAT,
allowing to solve MinSAT problems using MaxSAT solvers, and vice versa. The new
encoding is based on modeling the relationships between clauses and literals via flow
networks, in which a maximum flow can be computed using the Ford-Fulkerson algo-
rithm no matter how clauses and literals are ordered. This approach allows to maximize
the sum of weights of complementary unit clauses in the resulting MaxSAT instance, so
that empty clause with the maximum weight can be derived quickly. Moreover, we con-
ducted experiments that show that the new encoding is significantly better on weighted
and unweighted Min2SAT and Min3SAT instances.

In the future, we plan to improve the new encoding for MinkSAT (k ≥ 3), because
we could yet derive additional unit clauses after deriving the empty clauses. Another
possible future research direction, pointed out by a reviewer, is to investigate how the
reformulation techniques proposed by Boros & Hammer for Max2SAT [5], and Cooper
et al. for the valued CSP framework [6] compare with the flow network techniques we
have defined in the present paper.
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Abstract. The minimal label problem (MLP) (also known as the deductive clo-
sure problem) is a fundamental problem in qualitative spatial and temporal rea-
soning (QSTR). Given a qualitative constraint network Γ , the minimal network
of Γ relates each pair of variables (x, y) by the minimal label of (x, y), which is
the minimal relation between x, y that is entailed by network Γ . It is well-known
that MLP is equivalent to the corresponding consistency problem with respect to
polynomial Turing-reductions. This paper further shows, for several qualitative
calculi including Interval Algebra and RCC-8 algebra, that deciding the mini-
mality of qualitative constraint networks and computing a solution of a minimal
constraint network are both NP-hard problems.

1 Introduction

Spatial and temporal information is pervasive and increasingly involved in both industry
and everyday life. Many tasks in real or virtual world demand sophisticated spatial and
temporal reasoning systems. The qualitative approach to spatial and temporal reasoning
(QSTR) provides a promising framework and has boosted research and applications in
areas such as natural language processing, geographical information systems, robotics,
content-based image retrieval (see e.g. [5]).

Concentrating on different aspects of the space and/or time, dozens of qualitative re-
lation models have been proposed, which are called qualitative calculi in QSTR. While
Point Algebra [2] and Interval Algebra [1] are two most popular qualitative temporal
calculi, the Cardinal Relation Algebra [13] and the RCC-8 algebra [18] are two popular
qualitative spatial calculi which model directional and, respectively, topological spatial
information. Roughly speaking, a qualitative calculus has a fixed (usually infinite) uni-
verse of entities (e.g., temporal points in the real line) and uses a finite vocabulary (viz.,
basic relations, e.g., <,> and =) to model the relationship between the entities. In a
qualitative calculus, basic relations are used to represent the knowledge of which we
are certain, while non-basic relations (e.g.,≤,≥) are used for uncertain knowledge.

In QSTR, spatial or temporal information is usually represented in terms of basic
or non-basic relations in a qualitative calculus, and reasoning tasks are formulated as
solving a set of qualitative constraints (called a qualitative constraint network). A qual-
itative constraint is a formula of the form xRy, which asserts that variables x and y
should be interpreted by two entities in the universe such that relation R holds between
them, where R could be a basic or non-basic relation. The consistency problem is to
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decide whether a set of constraints can be satisfied simultaneously, i.e., whether there
is an interpretation of all the variables such that the constraints are all satisfied by this
interpretation. Note that the universe of a qualitative calculus is usually infinite, which
implies that the general techniques developed in the community of classical CSP can
hardly be applied directly. Even though, researches have successfully solved the consis-
tency problem in a number of qualitative calculi including Point Algebra [2], Interval
Algebra [1,17] and the RCC-8 algebra [19].

The minimal label problem (MLP) (also known as the deductive closure problem) is
another fundamental problem in QSTR, which is equivalent to the corresponding con-
sistency problem with respect to polynomial Turing-reductions. A qualitative constraint
network Γ is called minimal if for each constraint, say xRy, R is the minimal label of
(x, y), i.e., R is the minimal relation between x, y that is entailed by Γ .

Since its introduction in 1974, minimal constraint network [16] has drawn attention
from both classical CSP (see [10] and references therein) and QSTR [4,9] researchers.
In a recent paper [10], Gottlob proved that, in classical CSP, it is NP-hard to com-
pute a solution of a minimal constraint network, which confirms a conjecture proposed
by Dechter [6]. Inspired by this work, we investigate the same problem for minimal
constraint networks in the context of QSTR. For partially ordered Point Algebra (in
which two points can be incomparable), Interval Algebra, Cardinal Relation Algebra,
and RCC-8 algebra, we find that deciding the minimality of constraint networks is in
general NP-hard. Furthermore, we prove that it is also NP-hard to compute solutions
of minimal RCC-8 constraint networks, though it was assumed in [4] that this can be
easily accomplished. In fact, for all qualitative calculi mentioned above, it is NP-hard
to compute even a single solution of a minimal constraint network.

The remainder of this paper proceeds as follows. Section 2 introduces basic notions
as well as the qualitative calculi discussed in this paper. Section 3 shows that computing
a solution of a minimal constraint network in partially ordered Point Algebra and RCC-
8 algebra is NP-hard, while Section 4 proves the same result for Cardinal Relation
Algebra and Interval Algebra. The last section concludes the paper.

2 Preliminaries

In this section, we introduce basic notions in qualitative constraint solving and the four
important qualitative calculi to be discussed later.

2.1 Qualitative Calculi

QSTR is mainly based on qualitative calculi. Suppose U is the universe of spatial or
temporal entities. Write Rel(U) for the Boolean algebra of binary relations on U . Bi-
nary qualitative calculi (cf. e.g.[14]) on U are finite Boolean subalgebras of Rel(U).
Note thatM contains the universal relation (denoted by ?) which is defined as U × U .

Let M be a qualitative calculus on U . We call a relation α in M a basic relation
if it is an atom inM. The converse of a binary relation α, denoted by α∼, is defined
as α∼ = {(x, y) : (y, x) ∈ α}. We next recall the well-known Point Algebra (PA)
[20,2,3], Cardinal Relation Algebra (CRA) [8,13], Interval Algebra (IA) [1], and RCC-
8 algebra [18], which are all closed under converse.
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Definition 1 (partially ordered Point Algebra [3]). Let (U,≥) be a partial order. The
following three relations on U (where a � b denotes that (a, b) is not in relation ≥),

> = {(a, b) ∈ U × U : a ≥ b, b � a},
< = {(a, b) ∈ U × U : a � b, b ≥ a},
|| = {(a, b) ∈ U × U : a � b, b � a},

together with the identity relation =, are a jointly exhaustive and pairwise disjoint
(JEPD) set of binary relations on U . The Point Algebra is the Boolean subalgebra
generated by {<,>,=, ||}.

The following definition is a special case where ≥ is a total order.

Definition 2 (totally ordered Point Algebra [20]). Let (U,≥) be a totally ordered set.
The (totally ordered) Point Algebra is the Boolean subalgebra generated by the JEPD
set of relations {<,>,=}, where <,>,= are defined as in Definition 1.

Note that there are eight relations for totally ordered Point Algebra, viz. the three basic
relations <,>,=, the empty relation, and the four non-basic nonempty relations ≤,≥
, �=, ?, where ? is the universal relation.

Definition 3 (Cardinal Relation Algebra [8,13]). Let U be the real plane. The Cardi-
nal Relation Algebra (CRA) is generated by the nine JEPD relations NW,N,NE,W ,
EQ,E, SW, S, SE defined in Table 1 (a).

Table 1. (a) Definitions of basic CRA relations between points (x, y) and (x′, y′) (b) Illustra-
tions of CRA relations, where P1 NW Q and P2 E Q

Relation Converse Definition
NW SE x < x′, y > y′

N S x = x′, y > y′

NE SW x > x′, y > y′

W E x < x′, y = y′

EQ EQ x = x′, y = y′

(a) (b)

The Cardinal Relation Algebra can be viewed as the Cartesian product of two totally
ordered Point Algebras (with R as their domains).

Definition 4 (Interval Algebra [1]). Let U be the set of closed intervals on the real
line. Thirteen binary relations between two intervals x = [x−, x+] and y = [y−, y+]
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Table 2. Basic IA relations and their converses between intervals [x−, x+] and [y−, y+]

Relation Symbol Converse Meaning
before p pi x− < x+ < y− < y+

meets m mi x− < x+ = y− < y+

overlaps o oi x− < y− < x+ < y+

starts s si x− = y− < x+ < y+

during d di y− < x− < x+ < y+

finishes f fi y− < x− < x+ = y+

equals eq eq x− = y− < x+ = y+

are defined by the order of the four endpoints of x and y (see below). The Interval
Algebra is generated by these JEPD relations.

Definition 5 (RCC-8 Algebra[18]1). Let U be the set of nonempty regular closed sets
on the real plane. The RCC-8 algebra is generated by the eight topological relations

DC,EC,PO,EQ,TPP,NTPP,TPP∼,NTPP∼,

where EQ,DC,EC,PO,TPP and NTPP are defined as in Table 5, and TPP∼

and NTPP∼ are the converses of TPP and NTPP respectively.

Table 3. Definitions for basic RCC-8 relations between plane regions a and b, where a◦, b◦ are
the interiors of a, b respectively

Relation Meaning Relation Meaning Relation Meaning
EQ a = b EC a ∩ b �= ∅, a◦ ∩ b◦ = ∅ TPP a ⊂ b, a �⊂ b◦

DC a ∩ b = ∅ PO a �⊆ b, b �⊆ a, a◦ ∩ b◦ �= ∅ NTPP a ⊂ b◦

Illustrations for basic RCC-8 relations are provided in Figure 2.1. Note that regions
in general may have multiple pieces or holes.

Fig. 1. Illustration for basic RCC-8 relations

1 We note that the RCC algebras have interpretations in arbitrary topological spaces. In this
paper, we only consider the interpretation in the real plane.
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2.2 Constraint Networks and Minimal Networks

A qualitative calculusM provides a constraint language by using formulas of the form
viαvj , where vi, vj are variables and α is a relation inM. Formulas of the form viαvj
are called constraints (in M). If α is a basic relation in M, viαvj is called a basic
constraint. The consistency problem overM can then be formulated as below.

Definition 6. [5] LetM be a qualitative calculus on universe U , and S be a subset of
M. The consistency problem CSPSAT(S) (in qualitative calculusM) is defined as:

Instance: A 2-tuple (V, Γ ). Here V is a finite set of variables {v1, · · · , vn}, and Γ
is a finite set of binary constraints of the form xαy, where α ∈ S and x, y ∈ V . 2

Question: Is there an assignment ν : V → U s.t. all constraints in Γ are satisfied?

If an assignment ν satisfies all constraints in Γ , we say ν is a solution of Γ and Γ is
satisfiable or consistent.

Note that Point Algebras rely on the underlying (partial or total) orders. Consequently,
the consistency of an instance in PA depends on both the underlying (partial or total)
order and the constraint network. However, we are usually more interested in the con-
straint network than in the particular underlying structure. Meanwhile, for the totally
ordered Point Algebra, it is clear that if an instance is consistent in some Point Algebra,
then it is also consistent in the PA generated by the total order (R,≤), i.e., any finite
total order can be embedded into (R,≤). Therefore, we fix the underlying total order as
(R,≤) for all totally ordered PA constraint networks. Similarly, we fix the underlying
partial order for partially ordered PA as (N+,0), where a 0 b if there is an integer k
such that a = bk, as any finite partial order can be embedded into (N+,0).

The consistency problem as defined in Dfn. 6 has been investigated for many dif-
ferent qualitative calculi (see e.g. [1,2,17,19,15,3]). In particular it is shown in [2] that
the consistency problem for the totally ordered Point Algebra can be solved in O(n2),
where n is the number of variables. For most other qualitative calculi including the
partially ordered PA, IA, CRA, and RCC-8, the consistency problems are NP-hard.
Nonetheless, researchers have proved that the consistency problems CSPSAT(S) are
tractable for some subsets S in the qualitative calculi. Such a set S is called a tractable
subclass. A tractable subclass is called maximal if it has no proper superset which is
tractable. Maximal subclasses of IA and RCC-8 have been identified, see [17,7,19].

A set of constraints Γ is called a basic constraint network if Γ contains exactly one
basic constraint for each pair of variables. When only basic constraint networks are
considered, the consistency problems of all qualitative calculi mentioned in Section 2
can be decided in O(n3) time by enforcing path-consistency (cf. [12]).

Definition 7 (refinement, scenario). LetM be a qualitative calculus. Suppose (V, Γ )
and (V, Γ ′) are two constraint networks over the same variable set V in M, where
Γ = {viαijvj}ni,j=1 and Γ ′ = {viβijvj}ni,j=1. We say (V, Γ ′) is a refinement of (V, Γ ),
if for any 1 ≤ i, j ≤ n it holds that βij ⊆ αij . We say (V, Γ ′) is a scenario of (V, Γ ) if
it is a basic constraint network.

2 We may simply denote the instance by Γ when V is clear or less important.
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A refinement of a constraint network is a network with stronger constraints. Scenar-
ios are the finest refinements. It is clear that a constraint network is consistent iff it has a
consistent scenario. As we have mentioned, for all qualitative calculi considered in this
paper, the consistency of a scenario can be determined by checking path-consistency.

Next we introduce the concept of minimal network (cf. [16]).

Definition 8 (minimal network). Let Γ = {viαijvj}ni,j=1 be a constraint network in
qualitative calculusM. We say Γ is minimal, if for any 1 ≤ i, j ≤ n and any basic
relation b ⊆ αij inM, the refinement of Γ obtained by refining αij to b is consistent.

There are two important problems regarding minimal networks. First, how to decide
whether a network is minimal and how to compute the equivalent minimal network
(i.e., the minimal constraint network with the same solution set). Second, how to get
one (or all) solution(s) of a minimal constraint network. In what follows, we call the
problem of deciding whether a constraint network in qualitative calculusM is minimal
the minimality problem inM.

For the minimality problem, we note that the problem can be decided in polynomial
time for tractable subclasses, as we only need to check the consistency of at most n2B
networks, where n is the number of variables and B is the number of basic relations.
Meanwhile, if the equivalent minimal network of an input network can be computed in
polynomial time, then the minimality problem is also tractable (we may simply com-
pare a network to its equivalent minimal network). In this sense, the minimality problem
is simpler than the consistency problem and the problem of computing equivalent net-
work, which are both known to be NP-hard in general. However, it is not clear before
this paper whether a polynomial algorithm exists for the minimality problem. This paper
proves that the problem is NP-hard for all qualitative calculi introduced above except
the totally ordered Point Algebra.

The main interest of this paper is the second problem. We prove that, for all qualita-
tive calculi mentioned above except the totally ordered Point Algebra, it is also NP-hard
to compute a single solution of a minimal constraint network.3 We do not distinguish
the semantic difference between ‘computing a solution’ and ‘computing a consistent
scenario’. This is because, on one hand, polynomial algorithms to construct solutions
for consistent scenarios have been proposed for all qualitative calculi discussed in this
paper (see e.g.[11]); and on the other hand, a consistent scenario can always be com-
puted in polynomial time from a solution.

A strategy has been introduced in [10] to prove the NP-hardness of computing a
solution of a minimal constraint network in classical CSP. We use the same strategy in
QSTR. The general framework is as follows, whereM is a qualitative calculus in which
the consistency of any basic network (scenario) can be decided in polynomial time.

– Construct a polynomial reduction R from an NP-hard problem N (variants of the
SAT problem in this paper) to the consistency problem CSPSAT(M) forM.

– Show any CSPSAT(M) instance generated by R is either inconsistent or minimal.

3 Note that computing a solution of a constraint network is not a decision problem (i.e., prob-
lem with answer either ‘yes’ or ‘no’). So the ‘NP-hardness’ here means that, if we have a
polynomial algorithm that computes a solution of a minimal network, then we can provide a
polynomial algorithm that solves an NP-complete problem [10].
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We claim that the existence of such a reduction R implies the NP-hardness of computing
a solution of a minimal constraint network inM. This is because, if some polynomial
algorithm A is able to compute a solution (or a consistent scenario) of a minimal con-
straint network with upper bounding time p(x) (x is the size of input instance), then the
following polynomial algorithmA∗ would solve the NP-hard problemN , where i is an
instance ofN .

– Compute the CSPSAT(M) instance R(i) by the reduction R.
– Call AlgorithmA with input R(i).
– If A does not halt in p(size(R(i))) time, return ‘No’.
– Verify whether the output ofA is a solution of R(i). If not, return ‘No’.
– Return ‘Yes’.

Because the consistency of any scenario inM can be determined in polynomial time,
we knowA∗ is a polynomial algorithm. We next show that AlgorithmA∗ is sound. First,
suppose i is a positive instance ofN . Then R(i) is a minimal constraint network by the
assumption of R. So Algorithm A should return a solution of R(i) in p(size(R(i)))
time, and thus A∗ returns the correct output ‘Yes’. Second, suppose i is a negative
instance of N , in which case R(i) is inconsistent, and Algorithm A gets an invalid
input. So Algorithm A may either not halt in p(size(R(i))) time, or halt with some
output which is not a solution of R(i) (as R(i) is inconsistent). In both cases, Algorithm
A∗ returns ‘No’. Therefore,A∗ is sound and we conclude that computing a solution of
a minimal network in qualitative calculusM is NP-hard.

Note that the reduction R above (if it exists) is also a polynomial reduction from the
NP-hard problemN to the minimality problem inM. Therefore the existence of R also
implies the NP-hardness of the minimality problem inM.

Theorem 1. LetM be a qualitative calculus in which the consistency of basic networks
can be decided in polynomial time. Suppose there exists a polynomial reduction R from
an NP-hard problem to the consistency problem inM such that any CSPSAT(M) in-
stance generated by R is either inconsistent or minimal. Then the minimality problem
inM is NP-complete. Furthermore, it is also NP-complete to compute a solution of a
minimal constraint network inM.

2.3 Variants of the SAT Problem

The NP-hardness results provided in the following sections are achieved by polyno-
mial reductions from special variants of the SAT problem introduced below. Note that
Definition 9 is original while Definition 10 comes from [10].

Definition 9 (symmetric SAT). We say a SAT instance φ is symmetric, if for any truth
value assignment ν : Var(φ) → {true, false}, ν satisfies φ iff ν satisfies φ, where ν is
defined by ν(p) = true if ν(p) = false, and ν(p) = false if ν(p) = true, for p ∈ Var(φ).

It is clear that any unsatisfiable SAT instance is a symmetric instance.

Lemma 1. There exists a polynomial-time transformation that transforms each SAT
instance φ into a symmetric instance φ′, such that φ is satisfiable iff φ′ is satisfiable.
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Proof. Suppose φ =
∧m

j=1 cj is a SAT instance with propositional variables Var(φ) =

{p1, p2, · · · , pn} and clauses cj =
∨tj

k=1 lj,k, where lj,k are literals. For a literal l,
its negation, denoted by l, is defined to be ¬pi if l = pi, or pi if l = ¬pi. Define
cj =

∨tj
k=1 lj,k. Clearly, a truth value assignment ν satisfies cj iff ν satisfies cj .

Now we define a SAT instance φ′ with Var(φ′) = Var(φ) ∪ {q} and 2m clauses,

φ′ =
m∧
i=1

(ci ∨ q) ∧
m∧
i=1

(ci ∨ ¬q).

It is straightforward to verify that φ is satisfiable iff φ′ is satisfiable. ��

Gottlob introduced the following concept of k-supersymmetry of SAT instances (k ≥ 1)
and proved that any SAT instance can be transformed into a k-supersymmetric instance
while preserving its satisfiability.

Definition 10 (k-supersymmetric SAT, [10]). Let φ be a SAT instance. We say φ is k-
supersymmetric, if either it is unsatisfiable, or for any set of k propositional variables
Vk ⊆ Var(φ), and any partial truth value assignment ν to Vk , there is an extension of ν
which satisfies φ.

Lemma 2 ([10]). For each fixed integer k ≥ 1, there exists a polynomial-time trans-
formation that transforms a SAT instance φ into a k-supersymmetric instance φk , such
that φ is satisfiable iff φk is satisfiable.

It is clear that a symmetric SAT instance is also 1-supersymmetric and a (k + 1)-
supersymmetric instance is also k-supersymmetric. The following lemma synthesizes
Lemmas 1 and 2.

Lemma 3. For each fixed integer k ≥ 1, there exists a polynomial-time transformation
that transforms a SAT instance φ into a symmetric and k-supersymmetric instance φ∗,
such that φ is satisfiable iff φ∗ is satisfiable.

Proof. We first transform φ into a symmetric SAT instance φ′ by Lemma 1, then trans-
form φ′ into a k-supersymmetric instance φ∗ using the second transformation described
in [10, Lemma 2]. It can be straightforwardly verified that this transformation preserves
symmetry. Therefore φ∗ is symmetric and k-supersymmetric. This procedure is poly-
nomial as both of the two transformations are polynomial. ��

3 Partially Ordered Point Algebra and RCC-8

We first prove that computing a solution of a minimal constraint network in partially
ordered Point Algebra is NP-hard. We achieve this by devising a reduction from the
symmetric and 3-supersymmetric SAT problem to the consistency problem in partially
ordered PA. Let φ =

∧m
j=1 cj be a symmetric and 3-supersymmetric SAT instance

with Var(φ) = {p1, p2, · · · , pn} and clauses cj =
∨tj

k=1 lj,k. We construct a constraint
network (Vφ, Γφ) in partially ordered PA.



472 W. Liu and S. Li

The variable set is Vφ = V0 ∪ V1 ∪ · · · ∪ Vm, where V0 = {xi, yi : 1 ≤ i ≤ n} and
Vj = {wj,k : 1 ≤ k ≤ tj}. The constraints in Γφ are as follows, where wj,tj+1 = wj,1.

– For xi, yi ∈ V0, xi {<,>} yi,
– For k �= k′, wj,k {<,>} wj,k′ ,
– If lj,k = pi, then xi {<,>} wj,k+1, yi {<,>} wj,k, xi || wj,k, yi || wj,k+1,
– If lj,k = ¬pi, then xi {<,>} wj,k, yi {<,>} wj,k+1, xi || wj,k+1, yi || wj,k,
– For j �= j′ and any w ∈ Vj , w

′ ∈ Vj′ , w || w′,
– For any other pair of variables (u, v) ∈ Vφ, u {<,>, ||} v.

We next provide a brief explanation. We use variables xi, yi ∈ V0 to simulate propo-
sitional variable pi. The case that xi < yi (xi > yi, resp.) corresponds to pi being
assigned true (false, resp.). Variables in Vj simulate clause cj in φ, where the rela-
tionship (< or >) between wj,k and wj,k+1 corresponds to literal lj,k in cj . Suppose
lj,k ∈ {pi,¬pi}. Then the constraints between xi, yi, wj,k, wj,k+1 as specified above
establish the connection between the relation of xi and yi and that of wj,k and wj,k+1,
which simulates the dependency of lj,k on pi. In detail, if lj,k = pi (¬pi, resp.), then
the relation between wj,k and wj,k+1 should be the same as (opposite to, resp.) that
between xi and yi. For example, if lj,k = pi, then xi < yi implies xi < wj,k+1 (other-
wise, we shall have wj,k+1 < xi < yi and yi ||wj,k+1, which is inconsistent). Similarly
we have yi > wj,k and wj,k < wj,k+1 in such case. See Figure 2 for illustration. By
these constraints, we relate the case wj,k < wj,k+1 (wj,k > wj,k+1, resp.) to that lj,k
being assigned true (false, resp.).

(a) constraints (b) a partial solution

Fig. 2. Passing the relation between xi and yi to that between wj,k and wj,k+1

Clause cj rules out the assignments that assign all the literals lj,k false. Because φ
is a symmetric SAT instance, any assignment ν that assigns all literals lj,k true would
also falsify φ (otherwise, φ should also be satisfied by ν, which fails to satisfy cj).
Correspondingly, (Vφ, Γφ) is inconsistent if wj,1 > wj,2 > · · · > wj,tj > wj,1 or
wj,1 < wj,2 < · · · < wj,tj < wj,1. Note that we only constrain variables in Vj by
enforcing a total order and propagating the configuration of V0 to them. In summary,
by introducing of variables in Vj (and related constraints), we forbid two certain kinds
of configurations of V0, which respectively correspond to assignments of Var(φ) that
assign all literals in cj true or false.
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Proposition 1. Let φ be a symmetric SAT instance, and (Vφ, Γφ) be the constraint net-
work as constructed above. Then φ is satisfiable iff (Vφ, Γφ) has a consistent scenario.

Proof (sketch). Suppose φ is satisfiable and ν : Var(φ)→ {true, false} is a truth value
assignment that satisfies φ. We construct a consistent scenario for (Vφ, Γφ).

The constraints between variables in V0 are as follows, see Figure 3 for illustration.

– If ν(pi) = true, then xi < yi; otherwise xi > yi,
– Let bigi (smalli resp.) be the big one (small one resp.) in {xi, yi}. Then for i �= i′,

bigi || bigi′ , smalli || smalli′ , smalli < bigi′ .

Fig. 3. Constraints between variables in V0 in the scenario, where {bigi, smalli} = {xi, yi}

Assume lj,k ∈ {pi,¬pi}. The constraints between xi, yi, wj,k and wj,k+1 are de-
cided by the constraint between xi and yi, as we have explained before the proof. The
scenario should provide a total order on Vj consistent to the determined orders of wj,k

and wj,k+1. Such a total order always exists, because the determined orders contain no
circles (due to the fact that ν satisfies clause cj). Pick arbitrary one if such total orders
are not unique.

It remains to refine constraints of the form u {<,>, ||} v, where u ∈ V0 and v ∈ Vj

for some j. Part of these constraints need to be refined to < (or >) due to the transitivity
of < (or >). The rest are refined to ||.

We now get a scenario, the consistency of which can be verified by checking its
path-consistency. We omit the details here.

Now suppose (Vφ, Γφ) has a consistent scenario. We define a truth value assignment
ν by ν(pi) = true if xi < yi in the scenario, or ν(pi) = false otherwise. For each clause
cj in φ, it can be checked that ν satisfies cj because the constraints about variables in
Vj in the scenario are consistent. Therefore, φ is satisfiable. ��

The PA network (Vφ, Γφ) in the reduction above has 2n + T variables, where n =
|Var(φ)|, and T = t1 + t2 + · · · + tm is the number of all literals in the SAT in-
stance. Therefore the reduction is polynomial. We next prove, by exploiting the 3-
supersymmetry of the SAT instance φ, that (Vφ, Γφ) is minimal if φ is satisfiable.

Proposition 2. Suppose φ is a symmetric and 3-supersymmetric SAT instance. Let
(Vφ, Γφ) be the constraint network as constructed above. If φ is satisfiable, then (Vφ, Γφ)
is a minimal constraint network.
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Proof (sketch). First note that (Vφ, Γφ) contains three forms of constraints, viz. u || v,
u{<,>}v and u{<,>, ||}v. We aim to show the latter two forms of non-basic con-
straints can be refined to any basic constraint without violating the consistency. We
have proved that (Vφ, Γφ) has a consistent scenario, say, (Vφ, Γ0). Let (Vφ, Γ1) be the
scenario of (Vφ, Γφ) which refines non-basic constraints in the opposite way, i.e.,

– Constraint u{<,>}v is refined to u < v (u > v resp.) if it is refined to u > v
(u < v resp.) in Γ0.

– Constraint u{<,>, ||}v is refined to u < v (u > v, u || v resp.) if it is refined to
u > v (u < v, u || v resp.) in Γ0.

It can be proved that scenario (Vφ, Γ1) is path-consistent (otherwise (Vφ, Γ0) would not
be path-consistent) and hence consistent.

Now we need only to show that constraint u{<,>, ||}v in (Vφ, Γφ) can be refined to
any of u < v, u > v and u || v. There are only two possible cases of such u and v:

– u ∈ {xi, yi} and v ∈ {xi′ , yi′} for some i �= i′.
– u ∈ {xi, yi} and v = wj,k for some i, j, k such that lj,k, lj,k+1 �∈ {pi,¬pi}.

For the first case, w.l.o.g., we may suppose u = xi and v = xi′ . Because φ is 3-
supersymmetric and hence 2-supersymmetric, there exists a truth value assignment ν
which satisfies φ and ν(pi) = true, ν(pi′) = true. So we may get a consistent scenario
of (Vφ, Γφ) as in the proof of Proposition 1 according to ν. In this scenario, we have
xi < yi, xi′ < yi′ and xi || xi′ . Therefore, there exists a consistent scenario of (Vφ, Γφ)
in which xi || xi′ . Similarly, we may obtain consistent scenarios in which xi < xi′ or
xi > xi′ , by other truth value assignments on pi and pi′ .

The second case is slightly complicated and is briefly described here. W.o.l.g., sup-
pose we want to refine constraint xi{<,>, ||}wj,k to xi < wj,k, xi > wj,k and
xi || wj,k respectively. For xi < wj,k, we need an assignment ν which satisfies φ and
ν(pi) = true, ν(lj,k−1) = true and ν(lj,k) = false. Such assignment ν exists as φ is 3-
supersymmetric. We are able to get a scenario as in the proof of Proposition 1 in which
we further require wj,k to be the maximal element in Vj (note wj,k > wj,k−1, wj,k+1 as
ν(lj,k−1) = true and ν(lj,k) = false). In this scenario either xi < wj,k or xi || wj,k. In
the latter case, we replace it with xi < wj,k, which does not jeopardize the consistency
as xi is in the smaller part of V0 and wj,k is the maximal element in Vj . So we get
a consistent scenario in which xi < wj,k . The other two cases are similar, where for
xi > wj,k we need ν(pi) = false and wj,k to be the minimal element in Vj , and for
xi || wj,k we need ν(pi) = true and wj,k to be the minimal element. ��

Now we have the following conclusion for partially ordered Point Algebra.

Theorem 2. Computing a solution of a minimal network in partially ordered Point
Algebra is NP-complete.

Proof. By Propositions 1, 2 and Theorem 1, we know that computing a solution (or
a consistent scenario) of a minimal network in partially ordered PA is NP-hard. The
problem is in NP as we may guess a consistent scenario by indeterminism. ��

The above technique can be directly applied to the RCC-8 algebra.
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Theorem 3. Computing a solution of a minimal network in RCC-8 is NP-complete.

Proof. Given a symmetric and 3-supersymmetric 3-SAT instance φ, we may construct
an instance of the consistency problem in RCC-8 by substituting PA relations <,>, ||
in the reduction provided above with RCC-8 relations NTPP,NTPP∼,PO respec-
tively. Propositions 1 and 2 still hold and can be proved in the same way. Therefore,
computing a solution of a minimal RCC-8 network is NP-complete. ��

4 Cardinal Relation Algebra and Interval Algebra

This section shows that computing a solution for a minimal CRA or IA constraint net-
work is also NP-hard. The proof is similar to but simpler than that in previous section,
as 3-supersymmetry is no longer necessary. We first introduce some abbreviations that
may clarify the specification of constraints. For a CRA relation α, We use

a|b α c|d to denote constraints a α c, a α d and b α c, b α d,
a

b
α

c

d
to denote constraints a α c and b α d.

Now we discuss the Cardinal Relation Algebra. Suppose φ =
∧m

j=1 cj is a symmetric

SAT instance with Var(φ) = {p1, p2, · · · pn} and clauses cj =
∨tj

k=1 lj,k. We now
construct a CRA constraint network (Vφ, Γφ). The spatial variables for propositional
variable pi are still xi and yi, while 2tj spatial variables cj,k, dj,k(k = 1, 2, · · · , tj) are
introduced for clause cj (which has tj literals). So the variable set is Vφ = V0 ∪ V1 ∪
· · · ∪ Vm, where V0 = {xi, yi : 1 ≤ i ≤ n} and Vj = {cj,k, dj,k : 1 ≤ k ≤ tj}.

Fig. 4. Overview of the configuration of (Vφ, Γφ)

We describe the relative locations of variables which are implied by the CRA con-
straints in Γφ. The variables in V0 will be located in the leftmost column (Column 0) in
Figure 4. Among them, xi and yi will be located in the dashed small box which is in the
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i-th row. Meanwhile, xi is either to the northwest of or to the southeast of yi. Formally,
we impose the following CRA constraints, where 1 ≤ i < i′ ≤ n,

xi {NW, SE} yi, xi|yi NW xi′ |yi′ .

The case that xi is to the northwest (southeast resp.) of yi corresponds to that pi is
assigned true (false resp.).

The 2tj variables cj,k, dj,k(1 ≤ k ≤ tj) in Vj are all located in Column j in Figure 4.
For the vertical positions, suppose lj,k ∈ {pi,¬pi}, then cj,k and dj,k are located in the
i-th row. Precisely, we impose

xi

yi
W

cj,k
dj,k

,
xi

yi
{NW, SW} dj,k

cj,k
,

and

cj,k {NW, SE} dj,k if lj,k = pi, or cj,k {NE, SW} dj,k if lj,k = ¬pi.

That is to say, cj,k (dj,k resp.) is to the east of xi (yi resp.). By these constraints, the
CRA relation between cj,k and dj,k is decided by the relation between xi and yi and
literal lj,k (being positive or negative). In fact, it is straightforward to check that the
horizontal relation (i.e., west or east) between cj,k and dj,k is in accordance with the
truth value assigned to literal lj,k (true or false), see Figure 5. The relative positions (or
constraints) between cj,k, dj,k and xi′ , yi′ where i �= i′ can be completely decided by
the constraints above.

(a) lj,k = pi (b) lj,k = ¬pi

Fig. 5. Passing the relation between xi and yi to that between cj,k and dj,k, assuming xi NW yi

We now discuss the constraints between variables in Vj . Suppose u ∈ {cj,k, dj,k}
and v ∈ {cj,k′ , dj,k′} are two variables in Vj , where k �= k′. Suppose lj,k ∈ {pi,¬pi}
and lj,k′ ∈ {pi′ ,¬pi′} for some i �= i′ (if i = i′ then either one literal can be re-
moved, or the clause is unsatisfiable and we may simply construct an inconsistent CRA
instance). We consider the constraint between u and v in the vertical direction and in
the horizontal direction separately. The vertical relation between u and v is determined
by i and i′, as u is in the i-th row and v is in the i′-th row.
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The horizontal relation between u and v is the key point which connects the SAT
instance φ and the CRA constraint network (Vφ, Γφ). Note that the j-th clause cj in
φ rules out the assignments that assign all literals lj,k false. Therefore, we expect that
(Vφ, Γφ) forbids the case that all dj,k are to the left (i.e., northwest or southwest) of
cj,k for k ∈ {1, 2, · · · , tj}. To this end, dj,k and cj,k+1 are required to lie on the same
vertical line, while any other pair of variables in Vj are required not to, where tj + 1 is
considered as 1. It is clear that dj,k (or equivalently cj,k+1) being to the west of cj,k for
all k ∈ {1, 2, · · · , tj} is not realisable.

Note that the above constraints also forbid the case that all dj,k are to the right (i.e.,
northeast of southeast) of cj,k for k ∈ {1, 2, · · · , tj}. This does not cause problems
since φ rules out the assignments that assign all literals lj,k in cj true by its symmetry.

Now we consider the constraint between u ∈ Vj and v ∈ Vj′ for j �= j′. Suppose
u ∈ {cj,k, dj,k}, v ∈ {cj′,k′ , dj′,k′}, where lj,k ∈ {pi,¬pi}, lj′,k′ ∈ {pi′ ,¬pi′}. The
horizontal relation between u and v is determined by j and j′ (u is in Column j and v
is in Column j′). For the vertical constraint, note that u and v are located in the i-th and
i′-th rows respectively. Therefore the case that i �= i′ is clear. If i = i′, cj,k and cj′,k′

are both to the east of xi, while dj,k and dj′,k′ are both to the east of yi. So we specify
the following constraints if j < j′. The case when j > j′ is similar.

cj,k
dj,k

E
cj′,k′

dj′,k′
,

cj,k
dj,k
{NW,SW} dj′,k′

cj′,k′
.

Proposition 3. Given a symmetric SAT instance φ, suppose (Vφ, Γφ) is the CRA in-
stance as constructed above. Then φ is satisfiable iff (Vφ, Γφ) has a consistent scenario.

Proof. This part can be straightforwardly proved by the connection between φ and
(Vφ, Γφ) described above. We omit the details here. ��

Therefore, we have a reduction from symmetric SAT to CSPSAT(CRA). Note that for
a symmetric SAT instance φ with n propositional variables and T literals, the CRA
instance (Vφ, Γφ) consists 2n+ 2T spatial variables. So the reduction is polynomial.

Proposition 4. Suppose φ is a satisfiable symmetric SAT instance. Then the CRA con-
straint network (Vφ, Γφ) constructed above is minimal.

Proof. We need to prove that, after refining a non-basic constraint to any basic relation
it contains, the network is still consistent. Note that the CRA relation in any non-basic
constraints of (Vφ, Γφ) is exactly the union of two basic relations. Suppose Γ0 is a
consistent scenario of (Vφ, Γφ). Let Γ1 be the scenario obtained by refining non-basic
constraints in (Vφ, Γφ) to the basic constraint different from the one in Γ0. Scenario
Γ1 is also consistent by path-consistency (otherwise, Γ0 can not be path-consistent).
Therefore, each non-basic constraint in (Vφ, Γφ) can be refined to any basic constraint
(either in scenario Γ0 or in scenario Γ1). So (Vφ, Γφ) is a minimal CRA network. ��

Theorem 4. Computing a solution of a minimal CRA network is NP-complete.

Proof. The theorem can be proved in the same way as Theorem 2.

For Interval Algebra, observing that interval [a, b] (where a < b) naturally corresponds
to the point (a, b) on the half plane, we can prove the following theorem.
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Theorem 5. Computing a solution of a minimal IA network is NP-complete.

Proof (sketch). We may translate the reduction for CRA into a reduction for IA by
replacing CRA relations with IA relations as in the following table.

CRA relation NW N NE W EQ E SW S SE
IA relation di si oi fi eq f o s d

We then may prove Propositions 3 and 4 for IA in the same way. ��

5 Conclusion and Future Work

In this paper we have discussed the minimal constraint networks in qualitative spatial
and temporal reasoning. We have proved for four major qualitative calculi (viz., par-
tially ordered Point Algebra, Cardinal Relation Algebra, Interval Algebra and RCC-8
algebra) that deciding the minimality of networks and computing solutions of minimal
constraint networks are both NP-complete problems. We have provided a polynomial
reduction from a specialized SAT problem to the consistency problem of each qualita-
tive calculus, which maps positive SAT instances to minimal constraint networks. The
reduction exploits the symmetry of qualitative calculi, as it uses ‘symmetric’ intractable
subclasses of relations, for example, {||, {<,>}, {<,>, ||}} in partially ordered Point
Algebra, and {PO, {NTPP,NTPP∼}, {NTPP,NTPP∼,PO}} in RCC-8.

The work of Gottlob [10] reveals the intractability of solving minimal constraint net-
works in classical CSP (with finite domains). This paper discussed the same problem,
but in the context of QSTR. In this situation, the domains are infinite, and the con-
straints are all taken from a fixed and finite set of relations in a qualitative calculus. The
minimality problem in such a qualitative calculus can also be regarded as a ‘special’
problem in classical CSP. The NP-hardness of the general problem proved by Gottlob
(where 2-supersymmetry is enough for the binary case) does by no means imply the
NP-hardness of the special problems considered in this paper, where symmetry (and
3-supersymmetry for CRA and IA) are required.
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Abstract. The constraint satisfaction problem (CSP) and its quantified
extensions, whether without (QCSP) or with disjunction (QCSP∨), cor-
respond naturally to the model checking problem for three increasingly
stronger fragments of positive first-order logic. Their complexity is often
studied when parameterised by a fixed model, the so-called template. It
is a natural question to ask when two templates are equivalent, or more
generally when one “contain” another, in the sense that a satisfied in-
stance of the first will be necessarily satisfied in the second. One can also
ask for a smallest possible equivalent template: this is known as the core
for CSP. We recall and extend previous results on containment, equiva-
lence and “coreness” for QCSP∨ before initiating a preliminary study of
cores for QCSP which we characterise for certain structures and which
turns out to be more elusive.

1 Introduction

We consider the following increasingly stronger fragments of first-order logic:

1. primitive positive first-order ({∃,∧}-FO)
2. positive Horn ({∃, ∀,∧}-FO)
3. positive equality-free first-order ({∃, ∀,∧,∨}-FO); and,
4. positive first-order logic ({∃, ∀,∧,∨,=}-FO)

The model checking problem for a logic L takes as input a sentence of L and a
structure B and asks whether B models L. The structure B is often assumed to
be a fixed parameter and called the template; and, unless otherwise stated, we
will assume implicitly that we work in this so-called non-uniform setting.

For the above first three fragments, the model checking problem is better
known as the constraint satisfaction problem CSP(B), the quantified constraint
satisfaction problem QCSP(B) and its extension with disjunction which we shall
denote by QCSP∨(B). Much of the theoretical research into CSPs is in respect
of a large complexity classification project – it is conjectured that CSP(B) is
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always either in P or NP-complete [10]. This dichotomy conjecture remains un-
settled, although dichotomy is now known on substantial classes (e.g. structures
of size ≤ 3 [18,3] and smooth digraphs [12,1]). Various methods, combinatorial
(graph-theoretic), logical and universal-algebraic have been brought to bear on
this classification project, with many remarkable consequences. A conjectured
delineation for the dichotomy was given in the algebraic language in [4].

Complexity classifications for QCSPs appear to be harder than for CSPs. Just
as CSP(B) is always in NP, so QCSP(B) is always in Pspace. No overarching
polychotomy has been conjectured for the complexities of QCSP(B), as B ranges
over finite structures, but the only known complexities are P, NP-complete and
Pspace-complete (see [2,17] for some trichotomies). It seems plausible that these
complexities are the only ones that can be so obtained.

Distinct templates may give rise to the same model-checking-problem or pre-
serve acceptance,

(L -equivalence) for any sentence ϕ of L , A models ϕ ⇔ B models ϕ
(L -containment) for any sentence ϕ of L , A models ϕ ⇒ B models ϕ.

We will see that containment and therefore equivalence is decidable, and often
quite effectively so, for the four logics we have introduced.

For example, when L is {∃,∧}-FO, any two bipartite undirected graphs that
have at least one edge are equivalent. Moreover, there is a canonical minimal
representative for each equivalence class, the so-called core. For example, the
core of the class of bipartite undirected graphs that have at least one edge is the
graph K2 that consists of a single edge. The core enjoys many benign properties
and has greatly facilitated the classification project for CSPs (which corresponds
to the model-checking for {∃,∧}-FO): it is unique up to isomorphism and sits
as an induced substructure in all templates in its equivalence class. A core may
be defined as a structure all of whose endomorphisms are automorphisms. To
review, therefore, it is well-known that two templates A and B are equivalent iff
there are homomorphisms from A to B and from B to A, and in this case there
is an (up to isomorphism) unique core C equivalent to both A and B such that
C ⊆ A and C ⊆ B.

The situation for {∃, ∀,∧}-FO and QCSP is somewhat murkier. It is known
that non-trivial A and B are equivalent iff there exist integers r and r′ and
surjective homomorphisms from Ar to B and from Br′ to A (and one may give
an upper bound on these exponents) [7]. However, the status and properties of
“core-ness” for QCSP were hitherto unstudied.

We might call a structure B a Q-core if there is no {∃, ∀,∧}-FO-equivalent
A of strictly smaller cardinality. We will discover that this Q-core is a more
cumbersome beast than its cousin the core; it need not be unique nor sit as an
induced substructure of the templates in its class. However, in many cases we
shall see that its behaviour is reasonable and that – like the core – it can be very
useful in delineating complexity classifications.

The erratic behaviour of Q-cores sits in contrast not just to that of cores, but
also that of the U -X-cores of [15], which are the canonical representatives of
the equivalence classes associated with {∃, ∀,∧,∨}-FO, and were instrumental
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in deriving a full complexity classification – a tetrachotomy – for QCSP∨ in [15].
Like cores, they are unique and sit as induced substructures in all templates in
their class. Thus, primitive positive logic and positive equality-free logic behave
genially in comparison to their wilder cousin positive Horn.

Continuing to add to our logics, in restoring equality, we might arrive at
positive logic. Two finite structures agree on all sentences of positive logic iff
they are isomorphic – so here every finite structure satisfies the ideal of “core”.
When computing a/the smallest substructure with the same behaviour with
respect to the four decreasingly weaker logics – positive logic, positive equality-
free, positive Horn, and primitive positive – we will obtain possibly decreasingly
smaller structures. In the case of positive equality-free and primitive positive
logic, as pointed out, these are unique up to isomorphism; and for the U -X-
core and the core, these will be induced substructures. A Q-core will necessarily
contain the core and be included in the U-X-core. This phenomenon is illustrated
on Table 1 and will serve as our running example.

Table 1. different notions of ”core” (the circles represent self-loops)

{∃, ∀,∧,∨,=}-FO {∃,∀,∧,∨}-FO {∃,∀,∧}-FO {∃,∧}-FO
A4 A3 A2 A1

31

2 5

4 6

0

31

2 5

4

0

2

0

1 0

isomorphism U -X-Core Q-core Core

The paper is organised as follows. In § 2, we recall folklore results on CSP.
We move on to QCSP∨ in § 3, where we recall results on coreness and spell
out containment for {∃, ∀,∧,∨}-FO that were only implicit in [15]. In § 4, we
move on to QCSP and recall results on the decidability of containment from [7]
together with new lower bounds before initiating a study of Q-cores. In § 5, we
show that Q-cores behaves well for a number of classes and in § 6 that it can
be used to delineate complexity classification. In § 7, we propose a method to
compute Q-cores. Due to space restriction, several proofs are missing or are only
sketched, they can be found in extenso in the full version of this paper [14].

2 The Case of CSP

Unless otherwise stated, we consider structures over a fixed relational signature
σ. We denote by A the domain of a structure A and for every relation symbol
R in σ of arity r, we write RA for the interpretation of R in A, which is a
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r-ary relation that is RA ⊆ Ar. We write |A| to denote the cardinality of the
set A. A homomorphism (resp., strong homomorphism) from a structure A to
a structure B is a function h : A → B such that (h(a1), . . . , h(ar)) ∈ RB,
if (resp., iff) (a1, . . . , ar) ∈ RA. We will occasionally consider signatures with
constant symbols. We write cA for the interpretation of a constant symbol c and
homomorphisms are required to preserve constants as well, that is h(cA) = cB.

Containment for {∃,∧}-FO is a special case of conjunctive query containment
from databases [5]. Given a finite structure A, we write ϕA for the so-called
canonical conjunctive query of A, the quantifier-free formula that is the con-
junction of the positive facts of A, where the variables v1, . . . , v|A| correspond
to the elements a1, . . . , a|A| of A.
Theorem 1 (Containment). Let A and B be two structures. The following
are equivalent.

(i) for every sentence ϕ in {∃,∧}-FO, if A |= ϕ then B |= ϕ.
(ii) The exists a homomorphism from A to B.
(iii) B |= ∃v1∃v2 . . . v|A|ϕA.

where ϕA denotes the canonical conjunctive query1of A.
It is well known that the core is unique up to isomorphism and that it is an
induced substructure [13]. It is usually defined via homomorphic equivalence,
but because of the equivalence between (i) and (ii) in the above theorem, we
may define the core as follows.

Definition 2. The core B of a structure A is a minimal substructure of A such
that for every sentence ϕ in {∃,∧}-FO, A |= ϕ if and only if B |= ϕ.

Corollary 3 (equivalence). Let A and B be two structures. The following are
equivalent.

(i) for every sentence ϕ in {∃,∧}-FO, A |= ϕ if and only if B |= ϕ.
(ii) There are homomorphisms from A to B and from B to A.
(iii) The core of A and the core of B are isomorphic.

As a preprocessing step, one could replace the template A of a CSP by its core
B (see Algorithm 6.1 in [8]). However, the complexity of this preprocessing step
would be of the same order of magnitude as solving a constraint satisfaction
problem.2 This drawback, together with the uniform nature of the instance in
constraints solvers, means that this preprocessing is not exploited in practice to
the best of our knowledge.

The notion of a core can be extended and adapted suitably to solve important
questions related to data exchange and query rewriting in databases [9]. It is also
very useful as a simplifying assumption when classifying the complexity: with
the algebraic approach, it allows to study only idempotent algebras [4].

1 Most authors consider the canonical query to be the sentence which is the existential
quantification of ϕA.

2 Checking that a graph is a core is coNP-complete [11]. Checking that a graph is the
core of another given graph is DP-complete [9].
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3 The Case of QCSP with Disjunction

For {∃, ∀,∧,∨}-FO, it is no longer the homomorphism that is the correct concept
to transfer winning strategies.

Definition 4. A surjective hypermorphism f from a structure A to a structure
B is a function from the domain A of A to the power set of the domain B of B
that satisfies the following properties.

– (total) for any a in A, f(a) �= ∅.
– (surjective) for any b in B, there exists a in A such that f(a) � b.
– (preserving) if R(a1, . . . , ai) holds in A then R(b1, . . . , bi) holds in B , for

all b1 ∈ f(a1), . . . , bi ∈ f(ai).

Lemma 5 (strategy transfer). Let A and B be two structures such that there
is a surjective hypermorphism from A to B. Then, for every sentence ϕ in
{∃, ∀,∧,∨}-FO, if A |= ϕ then B |= ϕ.

Example 6. Consider the structures A4 and A3 from Table 1. The map f given
by f(x) := {x} for 0 ≤ x ≤ 5 and f(6) := {4} is a surjective hypermorphism from
A4 to A3. The map g given by g(x) := {x} for x ∈ {0, 1, 2, 3, 5}and g(4) := {4, 6}
is a surjective hypermorphism from A3 to A4. The two templates are equivalent
w.r.t. {∃, ∀,∧,∨}-FO.

We can define ΘA,|B| a canonical sentence of {∃, ∀,∧,∨}-FO that is defined in
terms of A and |B| and that is modelled by A by construction.

Lemma 7. Let A and B be two structures. If B |= θA,|B| then there is a surjective
hypermorphism from A to B.

Theorem 8 (Containment for {∃, ∀,∧,∨}-FO). Let A and B be two struc-
tures. The following are equivalent.

(i) for every sentence ϕ in {∃, ∀,∧,∨}-FO, if A |= ϕ then B |= ϕ.
(ii) The exists a surjective hypermorphism from A to B.
(iii) B |= θA,|B|

where ΘA,|B| is a canonical sentence of {∃, ∀,∧,∨}-FO that is defined in terms
of A and |B| and that is modelled by A by construction.

Let U and X be two subsets of A and a surjective hypermorphism h from A to
A that satisfies h(U) =

⋃
u∈U h(u) = A and h−1(X) = A where h−1(X) stands

for {a ∈ A : ∃x ∈ X s. t. x ∈ h(a)}. Let B be the substructure of A induced
by B := U ∪ X . Then f and g, the range and domain restriction of h to B,
respectively, are surjective hypermorphisms between A and B witnessing that
A and B satisfy the same sentence of {∃, ∀,∧,∨}-FO.3 Note that in particular
h induces a retraction of A to a subset of X ; and, dually a retraction of the

3 f := h�B (the usual function restriction) and for any x in A, g(x) := h(x) ∩B.
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complement structure 4 of B to a subset of U . Additional minimality conditions
on U ,X and U∪X ensure that B is minimal.5 It is also unique up to isomorphism
and within B the set U and X are uniquely determined. Consequently, B is called
the U -X-core of A (for further details see [15]) and may be defined as follows.

Definition 9. The U -Xcore B of a structure A is a minimal substructure of A
such that for every sentence ϕ in {∃, ∀,∧,∨}-FO, A |= ϕ if and only if B |= ϕ.

Example 10. The map h(0) := {0}, h(1) := {1}, h(2) := {0, 2}, h(3) := {0, 3},
h(4) := {4}, h(5) := {0, 5}, h(6) := {4, 6}, is a surjective hypermorphism from
A4 to A4 with U = {2, 3, 5} and X := {0, 1, 4} (in general U and X need not be
disjoint). The substructure induced by U ∪X is A3. It can be checked that it is
minimal.

The U -X-core is just like the core an induced substructure. There is one im-
portant difference in that U -X-cores should be genuinely viewed as a minimal
equivalent substructure induced by two sets. Indeed, when evaluating a sentence
of {∃, ∀,∧,∨}-FO, we may assume w.l.o.g. that all ∀ variables range over U and
all ∃ variables range over X . This is because we can “pull” any move of ∀ into U
and “push” any successful move of ∃ into X in the spirit of Lemma 5. Ultimately,
we may extract a winning strategy for ∃ that can restrict herself to play only on
X , even if ∀ plays arbitrarily [15, Lemma 5]. Hence, as a preprocessing step, one
could compute U and X and restrict the domain of each universal variable to U
and the domain of each universal variable to X . The complexity of this process-
ing step is no longer of the same magnitude and is in general much lower than
solving a QCSP∨.

6 Thus, even when taking into account the uniform nature of
the instance in a quantified constraints solver, this preprocessing step might be
exploited in practice. This could turn out to be ineffective when there are few
quantifier alternation (as in bilevel programming), but should be of particular
interest when the quantifier alternation increases. Another interesting feature
is that storing a winning strategy over U and X together with the surjective
hypermorphism h from A to A, allows to recover a winning strategy even when
∀ plays in an unrestricted manner. This provides a compression mechanism to
store certificates.

4 The Case of QCSP

In primitive positive and positive Horn logic, one normally considers equalities
to be permitted. From the perspective of computational complexity of CSP and
QCSP, this distinction is unimportant as equalities may be propagated out by

4 It has the same domain as A and a tuple belongs to a relation R iff it did not in A.
5 This is possible since given h1 s.t. h1(U) = A and h2 such that h−1

2 (X) = A, their
composition h = h2 ◦h1 (where h(x) :=

⋃
y∈h1(x)

h2(y)) satisfies both h(U) = A and

h−1(X) = A.
6 The question of U -X-core identification is DP-complete, whereas QCSP∨ is Pspace-
complete in general.
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substitution. In the case of positive Horn and QCSP, though, equality does al-
low the distinction of a trivial case that can not be recognised without it. The
sentence ∃x∀y x = y is true exactly on structures of size one. The structures K1

and 2K1, containing empty relations over one element and two elements, respec-
tively, are therefore distinguishable in {∃, ∀,∧,=}-FO, but not in {∃, ∀,∧}-FO.
Since we disallow equalities, many results from this section apply only to non-
trivial structures of size ≥ 2. Note that equalities can not be substituted out
from {∃, ∀,∧,∨,=}-FO, thus it is substantially stronger than {∃, ∀,∧,∨}-FO.

For {∃, ∀,∧}-FO, the correct concept to transfer winning strategies is that of
surjective homomorphism from a power. Recall first that the product A×B of two
structures A and B has domain {(x, y) : x ∈ A, y ∈ B} and for a relation symbol
R, RA×B := {

(
(a1, b1), . . . , (ar, br)

)
: (a1, . . . , ar) ∈ RA, (b1, . . . , br) ∈ RB}; and,

similarly for a constant symbol c, cA×B := (cA, cB). The mth power Am of A is
A× . . .×A (m times).

Lemma 11 (strategy transfer). Let A and B be two structures and m ≥ 1
such that there is a surjective homomorphism from Am to B. Then, for every
sentence ϕ in {∃, ∀,∧}-FO, if A |= ϕ then B |= ϕ.

Example 12. Consider an undirected bipartite graph with at least one edge G
and K2 the graph that consists of a single edge. There is a surjective homomor-
phism from G to K2. Note also that K2 × K2 = K2 + K2 (where + stands for
disjoint union) which we write as 2K2. Thus, K2

j = 2j−1K2 (as × distributes
over +). Hence, if G has no isolated element and m edges there is a surjective

homomorphism from K1+log2 m
2 to G.

This examples provides a lower bound for m which we can improve.

Proposition 13 (lower bound). For any m ≥ 2, there are structures A and B
with |A| = m and |B| = m+1 such that there is only a surjective homomorphism
from Aj to B provided that j ≥ |A|.

Proof (sketch). We consider a signature that consists of a binary symbol E
together with a monadic predicate R. Consider for A an oriented cycle with m
vertices, for which R holds for all but one. Consider for B an oriented cycle with

Fig. 1. the power of oriented cycles is a sum of oriented cycles
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m vertices, for which R does not hold, together with a self-loop on which R
holds. The square of A will consists of |A| = m oriented cycles with m vertices:
one cycle will be a copy of A, all the other will be similar but with two vertices
on which R does not hold (this is depicted on Figure 1 in the case m = 3: white
vertices do not satisfy R while black ones do). It is only for j = m that we will
get as an induced substructure of Aj one copy of an oriented cycle on which R
does not hold as in B.

There is also a canonical {∃, ∀,∧}-FO-sentence which turns out to be inΠ2-form,
that is with a quantifier prefix of the form ∀�∃�.
Theorem 14 (Containment for {∃, ∀,∧}-FO [7]). Let A and B be two non-
trivial structures. The following are equivalent.

(i) for every sentence ϕ in {∃, ∀,∧}-FO, if A |= ϕ then B |= ϕ.
(ii) There exists a surjective homomorphism from Ar to B, with r ≤ |A||B|.
(iii) B |= ψA,|B|

where ψA,|B| is a canonical sentence of {∃, ∀,∧}-FO with quantifier prefix ∀|B|∃�
that is defined in terms of A and modelled by A by construction.

Following our approach for the other logics, we now define a minimal represen-
tative as follows.

Definition 15. A Q-core B of a structure A is a minimal substructure of A
such that for every sentence ϕ in {∃, ∀,∧}-FO, A |= ϕ if and only if B |= ϕ.

A2

A2

(a) A2 ×A2.

0

0

1
3

420

1

0
(b) Homomorphism to A′

3.

1

2

0

4

3

(c) A′
3

Fig. 2. surjective homomorphism from a power

Example 16. Consider A3 and A2 from Table 1. We consider the subgraph A′3
of A3 as depicted on Figure 2c. The map f(0) := 0, f(1) := 1, f(2) := 2,
f(3) := 0, f(4) := 0 is a surjective homomorphism from A′3 to A2. The square
of A2 is depicted on Figure 2a; and, a surjective homomorphism from it to A′3
is depicted on Figure 2b. Thus A′3 and A2 are equivalent w.r.t. {∃, ∀,∧}-FO. In
a similar fashion but using a cube rather than a square, one can check that A3

and A2 are equivalent w.r.t. {∃, ∀,∧}-FO. One can also check that A2 is minimal
and is therefore a Q-core of A3, and a posteriori of A4.
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The behaviour of the Q-core differs from its cousins the core and the U -X-core.

Proposition 17. The Q-core of a 3-element structure A is not always an in-
duced substructure of A.

Proof. Consider the signature σ := 〈E,R,G〉 involving a binary relation E and
two unary relations R and G. Let A and B be structures with domain {1, 2, 3}
with the following relations.

EA := {(1, 1), (2, 3), (3, 2)} RA := {1, 2} GA := {1, 3}
EB := {(1, 1), (2, 3), (3, 2)} RB := {1} GB := {1}

Since B is a substructure of A, we have B−→→ A. Conversely, the square of A2

contains an edge that has no vertex in the relation R and G, which ensures that
A2 −→→ B (see Figure 3). Observe also that no two-element structure C, and a
fortiori no two-element substructure of A agrees with them on {∃, ∀,∧}-FO.

RGRG

R GRG

A

A

RG R G

G

R R

G

B

A2

2

3

2

3

11 1 1

1

1

1

1 G

R

Fig. 3. example of two distinct 3-element structures (signature, E binary and two
unary predicates R and G) that are equivalent w.r.t. {∃,∀,∧}-FO

We do not know whether the Q-core of a structure is unique. We will explore in
the following section Q-cores over some special classes and show that it behaves
well in these cases.

5 Q-cores over Classes

5.1 The Boolean Case

A Boolean structure B has domain B := {0, 1}. The results of this section apply
to arbitrary (not necessarily finite) signatures.

Theorem 18. Let A and B be Boolean structures that are equivalent w.r.t.
{∃, ∀,∧}-FO. Then A and B are isomorphic.
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In the extended logic {∃, ∀,∧,=}-FO, it follows that every structure of size at
most 2 satisfies the ideal of core. For {∃, ∀,∧}-FO we can only say the following.

Proposition 19. Every Boolean structure B is either a Q-core, or its Q-core is
the substructure induced by either of its elements. In particular, the Q-core of
B is unique up to isomorphism and is an induced substructure of B.

5.2 Unary Structures

Let σ be a fixed relational signature that consists of n unary relation symbols
M1,M2, . . . ,Mn. A structure over such a signature is deemed unary. Let w be
a string of length n over the alphabet {0, 1}. We write w(x) as an abbreviation
for the quantifier-free formula

∧
1≤i≤n,w[i]=1 Mi(x). An element a of a unary

structure A corresponds naturally to a word w, namely the word with maximal
Hamming weight s.t. w(a) holds. The unary structure A satisfies the canonical
universal sentence ∀y w∀(y), where w∀ is the conjunction of the words associated
with each element.

Proposition 20. The Q-core of a unary structure A is the unique substructure
of A defined as follows. The Q-core of A is the core A′ of A if they share the
same canonical universal sentence and the disjoint union of A′ with a single
element corresponding to w∀ where ∀y w∀(y) is the canonical universal sentence
of A, otherwise.

5.3 Structures with an Isolated Element

We say that ϕ is a proper {∃, ∀,∧}-FO-sentence, if it has at least one universally
quantified variable x that occurs in some atom in the quantifier-free part.

Let σ be a signature that consists of finitely many relation symbols Ri of
respective arity ri. We will consider the set of minimal proper {∃, ∀,∧}-FO-
sentences w.r.t. σ, that is all formulae of the form ∀x1∃x2 . . .∃xri Ri(x̄), where
the tuple x̄ is a permutation of the variables x1, x2, . . . xri where x1 has been
transposed with some other variable. There are r(σ) = ΣRi∈σri such formulae.

Theorem 21. Let A be a σ-structure. The following are equivalent.

1. A does not satisfy any proper {∃, ∀,∧}-FO-sentence.
2. A does not satisfy any of the r(σ) minimal proper {∃, ∀,∧}-FO-sentences

w.r.t. σ.
3. Ar(σ) contains an isolated element (that does not occur in any relation).

Proof (sketch for digraphs). Assume that the signature σ consists of a sin-
gle binary symbol E. The minimal proper sentences are ∀x1∃x2E(x1, x2) and
∀x1∃x2E(x2, x1) and we have r(σ) = 2.

A directed graph which does not satisfy them will satisfy their negation
∃x1∀x2¬E(x1, x2) and ∃x1∀x2¬E(x2, x1). A witness for the existential x1 in the
first sentence will be a source, and in the second sentence a sink, respectively.
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The first point implies trivially the second. The converse is essentially trivial
for digraphs (less so in general). The second point is equivalent to the last: the
isolated element in the square A2 is of the form “source × sink”.

Corollary 22. The Q-core of a structure A that does not satisfy any proper
{∃, ∀,∧}-FO-sentence is the unique substructure of A that may be found as fol-
lows. The Q-core of A is the core A′ of A, if A′r(σ) contains an isolated element,
and the disjoint union of A′ and an isolated element, otherwise.

Remark 23. Checking whether a structure with an isolated element is a Q-core is
of the same complexity as checking whether it is a core, it is co-NP-complete [12].

6 The Usefulness of Q-Cores

Graphs are relational structures with a single symmetric relation E. We term
them reflexive when any vertex has a self-loop; partially reflexive (p.r.) to em-
phasise that any vertex may or may not have a self-loop; and, irreflexive when
they have none. A p.r. tree may contain self-loops but no larger cycle Cn for
n ≥ 3. A p.r. forest is the disjoint union of p.r. trees.

Since p.r. forests are closed under substructures, we can be assured that a
Q-core of a p.r. forest is a p.r. forest. It is clear from inspection that the Q-core
of p.r. forest is unique up to isomorphism, but we do not prove this as it does
not shed any light on the general situation. The doubting reader may substitute
“a/ all” for “the” in future references to Q-cores in this section.

The complexity classifications of [16] were largely derived using the properties
of equivalence w.r.t. {∃, ∀,∧}-FO. This will be the central justification for the
following propositions.

Let K�
i and Ki be the reflexive and irreflexive i-cliques, respectively. Let [n] :=

{1, . . . , n}. For i ∈ [n] and α ∈ {0, 1}n, let α[i] be the ith entry of α. For
α ∈ {0, 1}∗, let Pα be the path with domain [n] and edge set {(i, j) : |j − i| =
1} ∪ {(i, i) : α[i] = 1} . For a tree T and vertex v ∈ T , let λT (v) be the shortest
distance in T from v to a looped vertex (if T is irreflexive, then λT (v) is always
infinite). Let λT be the maximum of {λT (v) : v ∈ T }. A tree is loop-connected
if the self-loops induce a connected subtree. A tree T is quasi-loop-connected
if either 1.) it is irreflexive, or 2.) there exists a connected reflexive subtree T0
(chosen to be maximal) such that there is a walk of length λT from every vertex
of T to T0.

6.1 Partially Reflexive Forests

It is not true that, if H is a p.r. forest, then either H admits a majority polymor-
phism, and QCSP(H) is in NL, or QCSP(H) is NP-hard. However, the notion
of Q-core restores a clean delineation.

Proposition 24. Let H be a p.r. forest. Then either the Q-core of H admits a
majority polymorphism, and QCSP(H) is in NL, or QCSP(H) is NP-hard.
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Proof. We assume that graphs have at least one edge (otherwise the Q-core
is K1). Irreflexive forests are a special case of bipartite graphs, which are all
equivalent w.r.t. {∃, ∀,∧}-FO, their Q-core being K2 when they have no isolated
vertex (see example 12) and K2 +K1 otherwise.

We assume from now on that graphs have at least one edge and one self-loop.
The one vertex case is K�

1 . We assume larger graphs from now on. If the graph
contains an isolated element then its Q-core is K1 + K�

1. Assume from now on
that the graph does not have an isolated element.

We deal with the disconnected case first. If the graph is reflexive, then its
Q-core is K�

1 + K�
1. Otherwise, the graph is properly partially reflexive in the

sense that it embeds both K�
1 and K1. If the graph has an irreflexive component

then its Q-core is K2 + K�
1. If the graph has no irreflexive component, then its

Q-core is K�
1 + P10λ where λ is the longest walk from any vertex to a self-loop.

The equivalence follows from analysing surjective homomorphism from suitable
powers and requires some work. The minimality follows from the fact that the
Q-core must not satisfy ∀x∃y1, . . . , yλ−1 E(x, y1)∧E(y1, y2)∧. . .∧E(yλ−2, yλ−1)
and must be disconnected .

We now follow the classification of [16]. If a p.r. forest contains more than
one p.r. tree, then the Q-core is among those formed from the disjoint union of
exactly two (including the possibility of duplication) of K1, K�

1 , P10λ , K2. Each
of these singularly admits a majority polymorphism, therefore so does any of
their disjoint unions.

We now move on to the connected case, i.e. it remains to consider p.r. trees
T . If T is irreflexive, then its Q-core is K2 or K1, which admit majority polymor-
phisms. If T is loop-connected, then it admits a majority polymorphism [16]. If
T is quasi-loop-connected, then it is QCSP-equivalent to one of its subtrees that
is loop-connected [16] which will be its Q-core. In all other cases QCSP(T ) is
NP-hard, and T does not admit majority [16].

6.2 Irreflexive Pseudoforests

A pseudotree is a graph that involves at most one cycle. A pseudoforest is the
disjoint union of a collection of pseudotrees.

Proposition 25. Let H be an irreflexive pseudoforest. Then either the Q-core
of H admits a majority polymorphism, and QCSP(H) is in NL, or QCSP(H) is
NP-hard.

Proof. We follow the classification of [17]. If H is bipartite, then its Q-core is
either K2, K1, K2 + K1 (see [7]) and this admits a majority polymorphism.
Otherwise its Q-core contains an odd cycle, which does not admit a majority
polymorphism, and QCSP(H) is NP-hard.

7 Computing a Q-Core

We may use Theorem 14 to provides a first algorithm (Algorithm 1). This does
not appear very promising if we wish to use Q-cores as a preprocessing step.
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Algorithm 1. a naive approach to compute the Q-cores

input : A structure A
output : The list L of Q-cores of A
initialisation: set L := {A}
forall the substructure B of A do

if there exists a surjective homomorphism from A|A||B|
to B then

if there exists a surjective homomorphism from B|B||A|
to A then

Remove any structure containing B in L;
Add B to L;

end

end

end
output : List of Q-cores L

We will propose and illustrate a general and less naive method to compute Q-
cores by computing U -X-core and cores first.

Another nice feature of cores and U -X-cores which implies their uniqueness
is the following: any substructure C of A that agrees with it on {∃,∧}-FO (re-
spectively on {∃, ∀,∧,∨}-FO) will contain the core (respectively the U -X-core).
Consequently, the core and the U -X-core may be computed in a greedy fash-
ion. Assuming that the Q-core would not satisfy this nice property, why should
this concern the Q-core? Well, we know that any Q-core will lie somewhere be-
tween the U -X-core and the core that are induced substructures: this is a direct
consequence of the inclusion of the corresponding fragments of first-order logic
and their uniqueness. Moreover, according to our current knowledge, checking
for equivalence appears, at least on paper, much easier for {∃, ∀,∧,∨}-FO than
{∃, ∀,∧}-FO: compare the number of functions from A to the power set of B

(2|B|
|A|

= 2|B|×|A|) with the number of functions from Ar to B (|B||A|r) where
r could be as large as |A||B| and can certainly be greater than r ≈ |A| (see
Proposition 13). So it make sense to bound the naive search for Q-cores.

Furthermore, we know that the U -X-core can be identified by specific sur-
jective hypermorphisms that act as the identity on X and contain the identity
on U [15] which makes the search for the U -X-core somewhat easier than its
definition suggest (see Algorithm 2).

Observe also that X must contain the core C of the U -X-core B, which
is also the core of the original structure A (this is because h induces a so-
called retraction of A to the substructure A|X induced by X). Thus we may
compute the core greedily from X . Next, we do a little bit better than using
our naive algorithm, by interleaving steps where we find a substructure that is
{∃, ∀,∧}-FO-equivalent, with steps where we compute its U -X-core (one can find
a sequence of distinct substructures B,D and B′ such that B is a U -X-core, which
is {∃, ∀,∧}-FO-equivalent to D, whose U -X-core B′ is strictly smaller than B,
see Example 26). Algorithm 3 describes this proposed method informally when
we want to compute one Q-core (of course, we would have no guarantee that we
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Algorithm 2. a greedy approach to compute the U -X-core

input : a structure A.
output : the U -X-core of A.
variables : U and X two subsets of A.
variable : h a surj. hypermorphism from A to A s.t. h(U) = A and

h−1(X) = A.
variable : B an induced substructure of A such that B = U ∪X.
initialisation: set U := A, X := A, B := A, h the identity
repeat

guess a subset U ′ of U and a subset X ′ of X;
let h′ be a map from B to B;
forall the x′ in X ′ do set h′(x′) := {x′};
forall the u′ in U ′ \X ′ do guess x′ in X ′ set h′(u′) := {u′, x′} ;
forall the z′ in B \ (U ′ ∪X ′) do

guess x′ in X ′ set h(z′) := {x′};
guess u′ in U ′ set h(u′) := h(u′) ∪ {z′};

end
if h′ is a surj. hypermorphism from B to B then

set B to be the substructure of B induced by U ′ ∪X ′;
set U := U ′, X := X ′ and h := h′ ◦ h;

end

until U and X are minimal ;
output : B.

get the smallest Q-core, unless the Q-core can be also greedily computed, which
holds for all cases we have studied so far).

In Algorithm 3, we have purposely not detailed line 3. We could use the
characterisation of {∃, ∀,∧}-FO-containment via surjective homomorphism from
a power of Theorem 14 as in Algorithm 1. Alternatively, we can use a refined
form of (iii) in this Theorem and use the canonical sentences in Π2-form ψB,m1

and ψD,m2 , with m1 := min(|D|, |U |) and m2 := |U |.
The test would consists in checking that B satisfies ψD,m2 (where we may rel-

ativise to universal variables to U and existential variables to X) and D satisfies
ψB,m1 . This is correct because we know that we may relativise every universal
variable to U within B. Thus, it suffices to consider Π2-sentences with at most
|U | universal variables.

Example 26. We describe a run of Algorithm 3 on input A := A4. During the
initialisation, we compute its U -X-core B := A3 and discover that U = {2, 3, 5}
and X = {0, 1, 4}. We compute C := A1, the core of the substructure induced by
X . Next the algorithm guesses a substructure D of B that contains C: e.g. it takes
for D the substructure induced by {0, 1, 2, 3, 4}. It checks succesfully equivalence
w.r.t. {∃, ∀,∧}-FO (trivially, there is a surjective homomorphism from A3 to D;
and, one may compose the natural surjective homomorphism from D × D to
P0100 × P100 with a suitable surjective homomorphism from the latter to A3).
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Algorithm 3. bounded Search for a Q-core

input : a structure A
output : a Q-core B of A
initialisation: compute the U -X-core of A as in Algorithm 2;
set B to be the U -X-core;
set C to be the core C of the substructure of B induced by X;

1 repeat
2 guess D a substructure of B that contains C;
3 check that B and D are equivalent w.r.t. {∃,∀,∧}-FO;
4 set B to be the U -X-core of D;

5 until B is minimal ;
output : B.

Next the algorithm computes the U ′-X ′-core B′ of D which is the substructure
induced by the union of U ′ = {2, 3} with X ′ = {0, 1} (witnessed by h′(0) = {0},
h′(1) = {1}, h′(2) = {0, 2}, h′(3) = {1, 3, 4}, h′(4) = {0}). This substructure
B′ is isomorphic to P0100. The algorithm sets B := B′ and starts over. It stops
eventually and outputs A2 as it is minimal.

8 Conclusion

We have introduced a notion of Q-core and demonstrated that it does not enjoy
all of the properties of cores and U -X-cores. In particular, there need not be a
unique minimal element w.r.t. size in the equivalence class of structures agreeing
on {∃, ∀,∧}-FO-sentences. However, we suspect that the notion of Q-core we give
is robust, in that the Q-core of any structure B is unique up to isomorphism;
and, that it sits inside any substructure of B that satisfies the same sentence of
{∃, ∀,∧}-FO, making it computable in a greedy fashion. Thus, the nice behaviour
of Q-cores is almost restored, but “induced substructure” in the properties of
core or U -X-core must be replaced by the weaker “substructure”.

Generalising the results about Q-cores of structures with an isolated element
to disconnected structures is already difficult. Just as the {∃, ∀,∧}-FO-theory of
structures with an isolated element is essentially determined by their {∃,∧}-FO-
theory, so the {∃, ∀,∧}-FO-theory of disconnected structures is essentially de-
termined by its ∀1∃� fragment (see [17]).

We hope that a better understanding of Q-cores will permit progress in the
classification of the complexity of the QCSP, in particular to dispense from
the frequent assumption in the papers by Chen et. al that all constants are
present [6]. Indeed this assumption implies that only cores are considered, which
can be assumed without loss of generality in the classification of the CSP but
not provably so in the classification of the QCSP.

Acknowledgements. The authors thank David Savourey and Shwetha Raghu-
raman for helping correct mistakes in earlier versions of this paper, and the
anonymous referees for their helpful comments.
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Abstract. Filtering algorithms for table constraints are constraint-based, which
means that the propagation queue only contains information on the constraints
that must be reconsidered. This paper proposes four efficient value-based algo-
rithms for table constraints, meaning that the propagation queue also contains in-
formation on the removed values. One of these algorithms (AC5TC-Tr) is proved
to have an optimal time complexity of O(r · t + r · d) per table constraint. Ex-
perimental results show that, on structured instances, all our algorithms are two
or three times faster than the state of the art STR2+ and MDDc algorithms.

1 Introduction

Domain-consistency algorithms are usually classified as constraint-based (i.e., the prop-
agation queue only contains information on the constraints that must be reconsidered)
or value-based (i.e., removed values are also stored in the propagation queue). For ta-
ble constraints, which have been the focus of much research in recent years, all exist-
ing algorithms (except in [14]) are constraint-based. This paper proposes four original
value-based algorithms for table constraints, which are all instances of the AC5 generic
algorithm. The proposed propagators maintain, for every value of the variables, the in-
dex of its first current support in the table. They also use, for each variable of a tuple,
the index of the next tuple sharing the same value for this variable. The algorithms
differ in their use of information on the validity of the tuples. Three of the proposed
algorithms have a time complexity of O(r2 · t + r · d) per table constraint and one of
them (AC5TC-Tr) has the optimal time complexity of O(r · t + r · d), where r is the
arity of the table, d the size of the largest domain and t the number of tuples in the table.
One of the proposed algorithms, AC5TC-Recomp, is the (unpublished) propagator of
the Comet system.

Experimental results show that, on structured instances, our algorithms improve upon
the state-of-the-art STR2+ [11] and MDDc [3]: The speedup is between 1.95 and 3.66
over STR2+ and between 1.83 and 4.57 over MDDc. Our (theoretically) optimal algo-
rithm is not always the fastest in practice. Interestingly, on purely random tables, our
algorithms do not compete with STR2+ and MDDc. Since most real problems are struc-
tured, we expect our algorithms to be an interesting contribution to the field. The rest
of this paper is organized as follows. Section 2 presents background information and
related work. Section 3 describes the first two table-constraint propagators. Section 4
presents our optimal propagator, while Section 5 proposes an efficient variant of our
first algorithms. Section 6 describes the experimental results.

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 496–511, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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2 Background

A CSP (X ,D(X),C) is composed of a set of n variables X = {x1, . . . ,xn}, a set of
domains D(X) = {D(x1), . . . ,D(xn)} where D(x) is the set of possible values for
variable x, and a set of constraints C = {c1, . . . , ce}, with Vars(ci) ⊆ X (1 ≤ i ≤ e).
We let d = max1≤i≤n(#D(xi)), and D(X)xi=a be the set of tuples v in D(X) with
vi = a. Given Y = {x1, . . . ,xk} ⊆ X , the set of tuples in D(x1) × . . . × D(xk) is
denoted by D(X)[Y ] or simply D(Y ). A support in a constraint c for a variable value
pair (x, a) is a tuple v ∈ D(Vars(c)) such that c(v) and v[x] = a. The following
(Inconsistent and Consistent) sets are useful for specifying domain consistency and
propagation methods. Let c be a constraint of a CSP (X ,D(X),C) with y ∈ Vars(c),
and B(X) be some domain.

Inc(c,B(X))= {(x, a)| x ∈ Vars(c) ∧ a ∈ D(x) ∧ ∀v ∈ B(Vars(c))x=a : ¬c(v)}
Cons(c, y, b)= {(x, a)|x ∈ Vars(c) ∧ a ∈ D(x) ∧ ∃v : v[x]=a ∧ v[y]=b ∧ c(v)}

Inc(c)= Inc(c,D(X))

A constraint c in a CSP (X ,D(X),C) is domain-consistent iff Inc(c) = ∅. A CSP
(X ,D(X),C) is domain-consistent iff all its constraints are domain-consistent.

Table Constraints. Given a set of tuples T of arity r, a table constraint c over T holds
if (x1, . . . ,xr) ∈ T . The size t of a table constraint c is its number of tuples, which is
denoted by c.length. We assume an implicit ordering of the tuples: σc,i denotes the ith

element of the table in c and σc,i[x] is the value of σc,i for variable x. We introduce a
top value& (resp. bottom value⊥) greater (resp. smaller) than any other value. We also
introduce a universal tuple σc,�, with σc,�[x] = ∗ forall x ∈ X and abuse notations in
postulating that ∀a ∈ D(x), ∗ = a. This implies that, for any table T , σc,� ∈ T . Given
a table constraint, we say that a tuple σ is allowed if it belongs to the table. A tuple σ
is valid if all its values belong to the domain of the corresponding variables. To achieve
domain consistency, one must at least check the validity of each tuple and, in the worst
case, remove all the values from the domains. Hence a domain-consistency algorithm
has a complexity Ω(r · t + r · d) per table constraint in the worst case. An AC5-like
algorithm with a complexity O(r · t+r ·d) per table constraint is thus optimal. As usual
for such algorithms, if a domain-consistency algorithm has a time complexity of O(f),
then the time complexity of the aggregate executions of this algorithm along any path
in the search tree is also O(f).

Related Work. A lot of research effort has been spent on table constraints. The existing
propagators can be categorized in 3 classes: index-based, compression-based, and based
on a dynamic table. The index-based approaches use an indexing of the table to speed
up its traversal. Examples of such propagators are GAC3-allowed and other constraint-
based variants (GAC3rm-allowed, GAC2001-allowed) [10,1,12,6]. For each variable
value pair (x, a), the index data structure has an array of the indexes of the tuples with
value a for x. The space complexity of the data structure is O(r·t). The time complexity
of GAC3-allowed is O(r3 · d · t+ r · d2) per table constraint. GAC2001-allowed has a
time complexity of O(r3 ·d · t+ r2 · t) per table constraint. Indexing can also be used in
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value-based propagators. In [14], the authors propose a value-based propagator for table
constraints implementing GAC6. It uses a structure which indexes, for each variable
value pair (x, a) and each tuple, the next tuple in the table with value a for x. The space
complexity of the data structure is O(r ·d · t). This space usage can be reduced by using
a data structure called hologram [13]. Another index type, proposed in [7], indexes,
for each tuple and variable, the next tuple having a different value for the variable.
Compression-based propagators compress the table in a form that allows a fast traversal.
One of such compressed forms uses a trie for each variable [7]. Another example of
compression-based techniques [3,2] uses a Multi Valued Decision Diagram (MDD) to
represent the table more efficiently. During propagation, the tries or MDD are traversed
using the current domains to perform the pruning. These algorithms are constraint-
based and have a time complexity of O(r2 · d · t) per table constraint. Compression and
faster traversal can also be achieved by using compressed tuples, which represent a set
of tuples [8,16]. Propagators based on dynamic tables maintain the table by suppressing
invalid tuples from it. The STR algorithm [17] and its refined version, STR2 [11], are
constraint-based and scan only the previously valid tuples to extract the valid values.
The time complexity of STR2 is O(r2 · d2 + r2 · d · t) per table constraint. The or-
tool propagator [15] also maintains a dynamic table. It uses a bitset on the tuples of the
table to maintain their validity. One bitset per variable value (x, a) is also used for easy
access of the tuples with value a for variable x. This propagator has a O(r · d · t) time
complexity per table constraint.

The AC5 Algorithm. AC5 [18,4] is a generic value-based domain-consistency algo-
rithm. In a value-based approach, information on the removed values is also stored
in the queue for the propagation. Specification 1 describes the main methods of AC5
which uses a queue Q of triplets (c,x, a) stating that the domain consistency of con-
straint c should be reconsidered because value a has been removed from D(x). When
a value is removed from a domain, the method enqueue puts the necessary informa-
tion on the queue. In the postcondition, Qo represents the value of Q at call time. The
method post(c,2) is called once when posting the constraint. It computes the incon-
sistent values of the constraint c and initializes specific data structures required for the
propagation of the constraint. As long as (c,x, a) is in the queue, it is algorithmically
desirable to consider that value a is still in D(x) from the perspective of constraint c.
This is captured by the following definition.

Definition 1. The local view of a domain D(x) wrt a queue Q for a constraint c is
defined as D(x,Q, c) = D(x) ∪ {a|(c,x, a) ∈ Q}.

For table constraints, a tuple σ is Q-valid if all its values belong to D(X ,Q, c). The
central method of AC5 is the valRemove method, where the set2 is the set of values
becoming inconsistent because b is removed from D(y). In this specification, b is a
value that is no longer in D(y) and valRemove computes the values (x, a) no longer
supported in the constraint c because of the removal of b from D(y). Note that values
in the queue are still considered in the potential supports as their removal has not yet
been reflected in this constraint. The minimal pruning21 only deals with variables and
values previously supported by (y, b). However, we give valRemove the possibility
of achieving more pruning (22), which is useful for table constraints.
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1 enqueue(in x: Variable;in a: Value; inout Q: Queue)
2 // Pre: x ∈ X, a /∈ D(x)
3 // Post: Q = Q0 ∪ {(c, x, a)|c ∈ C, x ∈ Vars(c)}
4 post(in c: Constraint;out #: Set of Values)
5 // Pre: c ∈ C
6 // Post: # = Inc(c) + initialization of specific data structures
7 valRemove(in c: Constraint; in y: Variable; in b: Value;
8 out #: Set of Values)
9 // Pre: c ∈ C, b /∈ D(y, Q, c)

10 // Post: #1 ⊆ # ⊆ #2 with #1 = Inc(c, D(X, Q, c)) ∩ Cons(c, y, b)
11 // and #2 = Inc(c)

Specification 1. The enqueue, post, and valRemove Methods for AC5

3 Efficient Value-Based Algorithms for Table Constraints

Our value-based approaches use a data structure FS memorizing first supports. Intu-
itively FS[x, a] is the index of the first Q-valid support of the variable value pair (x, a).
To speed up the table traversal, our algorithms use a second data structure called next
that links all the elements of the table sharing the same value for a given variable. The
next data structure is semantically equivalent to the index of [12]. More formally, for a
given table constraint c, FS and next satisfy the following invariant (called FS-invariant)
before dequeuing an element from Q.

∀x ∈ Vars(c) ∀a ∈ D(x,Q, c) : FS[x, a] = i⇔
σc,i[x] = a ∧ i �= & ∧ σc,i ∈ D(Vars(c),Q, c) ∧
∀j < i : σc,j [x] = a⇒ σj �∈ D(Vars(c),Q, c)

∀x ∈ Vars(c) ∀1 ≤ i ≤ c.length : next[x, i] = Min{j|i < j ∧ σc,j [x] = σc,i[x]}

The next data structure, illustrated in Figure 1, is static as it does not depend on
the domain of the variables. However, FS must be trailed during the search. Meth-
ods postTC and valRemoveTC are given in Algorithms 1 and 2. They use the
seekNextSupportTC method (Algorithm 3) which searches the next Q-valid tu-
ple. Abstract method isQValidTC(c,i) tests whether σc,i is Q-valid (i.e., σc,i ∈
D(X ,Q, c)) and can be implemented in many ways. One simple way is to record the Q-
validity of tuples in some data structure, initialized in method initSpecStructTC
and updated in method setQInvalidTC. Method postTC initializes the FS and
next data structures and returns the set of inconsistent values. Method valRemoveTC
has only to consider the tuples in the next chain starting at FS[y, b]. When one of these
tuples σc,i is the first support of an element a = σc,i[x], a new support FS[x, a] must
be found. If such a support does not exist, then (x, a) belongs to the set 21. Method
valRemoveTC thus computes the set21 and maintains the FS-invariant.

Not considering initSpecStructTC, method postTC has a time complexity
of O(rt + rd). After the postTC method, the domain size of x is O(t). We now es-
tablish the complexity of all executions of valRemoveTC for a given table constraint,
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1 postTC(in c: Constraint;out #: Set of Values){
2 // Pre: c ∈ C, c is a table constraint
3 // Post: # = Inc(c) + initialization of the next, FS and specific data structures
4 # = ∅;
5 initSpecStructTC(c);
6 forall(x in Vars(c), a in D(x)) c.FS[x, a]=�;
7 forall(x in Vars(c), i in 1..c.length) c.next[x, i] = �;
8 forall(i in c.length..1)
9 if (σc,i in D(Vars(c))){

10 forall(x in Vars (c)){
11 c.next[x, i] = FS[x,σc,i [x]];
12 c.FS[x,σc,i [x]] = i;
13 }
14 }
15 else setQInvalidTC(c, i);
16 forall(x in Vars(c),a in D(x))
17 if(c.FS[x, a]==�) # += (x,a);
18 }

Algorithm 1. Method postTC for Table Constraints

assuming this table constraint is one of the constraints of the CSP on which domain con-
sistency is achieved. Consider first all executions of valRemoveTC without line 13.
For a given variable y, these executions follow the different next chains of the variable
y. The chains for all values of y have a total number of t elements. The complexity of
lines 9–16 (without line 13) is O(r). Since the table has r variables, the complexity of
all valRemoveTC executions during the fixed point (without line 13) is thus O(r2 · t),
assuming a O(1) complexity of setQInvalidTC. Consider now all executions of
line 13 in valRemoveTC for a variable x. Since line 13 always increases the value of
FS[x, a] in the next chain of (x, a), we have a global complexity of O(V · t) for the
variable x, where V is the time complexity of isQValidTC. All executions of line 13
in valRemoveTC thus take time O(V · r · t). The time complexity of all executions
of valRemoveTC is then O(r2 · t+ V · r · t). Even with a O(1) the time complexity
of isQValidTC, the algorithm is not optimal but it turns out to be more efficient than
state-of-the-art algorithms on different classes of problems. The AC5 algorithm with
the postTC and valRemoveTC implementation for table constraint is called AC5TC
(AC5 for Table Constraints).

Proposition 1. Assuming that initSpecStructTC and setQInvalidTC have a
time complexity of O(r · t+ r · d) and O(1) respectively and allow a correct implemen-
tation of isQValidTC to have a complexity of O(r), then AC5TC is correct and has
a time complexity of O(r2 · t+ r · d) per table constraint.

We now present two implementations of AC5TC. They differ in the implementations
of methods isQValidTC, setQInvalidTC and initSpecStructTC. AC5TC-
Bool, the first implementation of AC5TC, is shown in Algorithm 4. It uses a data
structure isQValid[i] to record the Q-validity of the element σc,i. It satisfies invariant
isQValid[i] ⇔ σc,i ∈ D(X ,Q, c) before dequeuing an element from Q (1 ≤ i ≤
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1 valRemoveTC(in c: Constraint;in y: Variable; in b: Value;
2 out #: Set of Values) {
3 // Pre: c ∈ C, c is a table constraint and b /∈ D(y, Q, c)
4 // Post: #1 ⊆ # ⊆ #2 with #1 = Inc(c, D(X, Q, c)) ∩ Cons(c, y, b)
5 // and #2 = Inc(c, x)
6 # = ∅;
7 i = c.FS[y, b];
8 while(i!=�){
9 setQInvalidTC(c, i);

10 forall(x in Vars (c): x!=y){
11 a = σc,i [x];
12 if (c.FS[x, a]==i){
13 c.FS[x, a] = seekNextSupportTC(c, x, i);
14 if(c.FS[x, a]==� && a in D(x)) # += (x, a);
15 }
16 }
17 i = c.next[y, i];
18 }
19 }

Algorithm 2. Method valRemoveTC for Table Constraints.

T

x y z

1 a b a

2 b c b

3 a a a

4 a b b

5 b b a

next

x y z

1 3 4 3

2 5 � 4

3 4 � 5

4 � 5 �
5 � � �

Fig. 1. Example of a next data structure of a table T (arrow pointers for variable z only)

c.length). The data structure must be trailed as it depends on the domains. The meth-
ods for Q-validity are given in Algorithm 4. As the methods isQValidTC-Bool
is correct, AC5TC-Bool is correct. The time complexity of isQValidTC-Bool and
setQInvalidTC-Bool is O(1) and initSpecStructTC-Bool is O(t). The
time complexity of AC5TC-Bool is then O(r2 · t+ r · d) per table constraint.

AC5TC-Bool must trail the isQValid boolean array. We now propose an implemen-
tation that only trails one integer, building upon an idea in STR and STR2 [17,11].
The implementation simply keeps invalid elements at the end of the table, with a sin-
gle variable size representing the boundary between valid (before position size) and
invalid elements (after position size). When an element becomes invalid, it is swapped
with the element at position size and size is decremented by one. The size variable
must be trailed but the table does not need to: The valid elements are automatically
restored, albeit at a different position in the table. This is sometimes called seman-
tic backtracking [19]. Instead of swapping tuples, our implementation uses two arrays
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1 function seekNextSupportTC(in c: Constraint; in x: Variable;
2 in i: Index) : Index {
3 // Pre: c ∈ C, c is a table constraint, x ∈ Vars(c), 1 ≤ i ≤ c.length
4 // Post: return the first index greater than i which is Q−valid
5 i = c.next[x, i];
6 while(i!=�){
7 if(isQValidTC(c, i)) return i;
8 i = c.next[x, i];
9 }

10 return �;
11 }

Algorithm 3. Function seekNextSupportTC for Table Constraints.

1 initSpecStructTC-Bool(in c: Constraint) {
2 forall(i in 1..c.length) c.isQValid[i] = true;
3 }
4 function isQValidTC-Bool(in c: Constraint;in i: Index) {
5 // Pre: c ∈ C, c is a table constraint and 1 ≤ i ≤ c.length
6 // Post: returns σc,i ∈ D(X, Q, c)
7 return c.isQValid[i];
8 }
9 setQInvalidTC-Bool(in c: Constraint;in i: Index) {

10 // Pre: c ∈ C, c is a table constraint and 1 ≤ i ≤ c.length
11 c.isQValid[i] = false;
12 }

Algorithm 4. Implementation of the specific methods of AC5TC-Bool

Map and Dyn that give the virtual position of the tuples and the positions of the virtual
tuples in the table. These arrays do not have to be trailed. For a given table constraint c,
the data structures satisfy the following invariants before dequeuing an element from Q
(1 ≤ i ≤ c.length): Map[i] ≤ size⇔ σi ∈ D(X ,Q, c) ∧ Dyn[Map[i]] = i

The implementations are given in Algorithm 5 and the algorithm is
called AC5TC-CutOff. The time complexity of isQValidTC-CutOff and
setQInvalidTC-CutOff is O(1) and initSpecStructTC-CutOff takes
time O(t). The time complexity of AC5TC-CutOff is thus O(r2 · t+ r · d).

4 An Optimal Algorithm

In method valRemoveTC, executions of the seekNextSupportTC (line 13 of Al-
gorithm 2) take O(r · t) assuming isQValidTC takes constant time. However, the
method revisits Q-invalid tuples because the next data structure is static. To remedy this
situation, the idea is to make the next data structure dynamic and to always ensure that
the element following a Q-valid element in a next chain is also Q-valid. This avoids un-
necessary Q-validity checks and can be easily implemented using a doubly-linked list.
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1 initSpecStructTC-CutOff(in c: Constraint){
2 forall(i in 1..c.length){
3 c.Map[i] = i;
4 c.Dyn[i] = i;
5 }
6 c.size = c.length;
7 }
8 function isQValidTC-CutOff(in c: Constraint; in i: Index;out b: Bool){
9 // Pre: c ∈ C, c is a table constraint and 1 ≤ i ≤ c.length

10 // Post: return (σc,i ∈ D(X , Q, c))
11 return (c.Map[i] <= c.size);
12 }
13 setQInvalidTC-CutOff(in c: Constraint; in i: Index){
14 // Pre: c ∈ C, c is a table constraint and 1 ≤ i ≤ c.length
15 c.Dyn[c.Map[i]] = c.Dyn[c.size];
16 c.Dyn[c.size[c]] = i;
17 c.Map[c.Dyn[c.Map[i]]] = c.Map[i];
18 c.Map[i] = c.size;
19 c.size--;
20 }

Algorithm 5. Implementation of the specific methods of AC5TC-CutOff

More formally, for a given table constraint c, the data structure satisfies the following
invariant before dequeuing an element from Q

∀x ∈ Vars(c) ∀1 ≤ i ≤ c.length : σc,i ∈ D(X ,Q, c)⇒
nextTr[x, i] = Min{j|i < j ∧ σc,j[x] = σc,i[x] ∧ σc,j ∈ D(X ,Q, c)} ∧
predTr[x, nextTr[x, i]] = i

The nextTr and predTr data structures should be trailed as they depend on the current
domains. The algorithm also uses the FS data structure with its original invariant. No
other data structures are necessary.

Methods postTC-Tr and valRemoveTC-Tr are given in Algorithms 6 and 7.
Method postTC-Tr now initializes predTr as well. Method valRemoveTC-Tr
(c, y, b) does not need to search for a support as the next element in the nextTr chain is
necessarily Q-valid. However, if the first support for (x, a) is before FS[y, b] (it cannot
be after because of the FS invariant), nextTr and predTr must be updated to ensure that
the new invalid tuples are no longer in the next chains. It will thus never be visited
twice. Method valRemoveTC-Tr computes the set 21 and maintains the invariants
on FS and on nextT r / predT r.

Method postTC-Tr has a time complexity of O(r · t + r · d). We establish the
complexity of all executions of valRemoveTC-Tr for a given table constraint during
the fixed point algorithm, assuming the presence of other constraints on which domain
consistency is also enforced. We first show that all executions of lines 7 and 21 lead to
different values of i in {1, . . . , t} (except when i == &). By the FS invariant, we never



504 J.-B. Mairy, P.V. Hentenryck, and Y. Deville

1 postTC-Tr(in c: Constraint; out #: Set of Values){
2 // Pre: c ∈ C, c is a table constraint
3 // Post: # = Inc(c) + initialization of the next, pred and FS data structures
4 # = ∅;
5 forall(x in Vars(c), a in D(x)) c.FS[x, a]=�;
6 forall(x in Vars(c), i in 1..c.length)
7 c.nextTr[x, i] = �; c.predTr[x, i] = ⊥;
8 forall(i in c.length..1: σc,i in D(Vars(c)))
9 forall(x in Vars(c)){

10 c.nextTr[x, i] = c.FS[x,σc,i [x]];
11 if (c.FS[x,σc,i [x]]!=�) c.predTr[x,FS[x,σc,i [x]] = i;
12 c.FS[x,σc,i [x]] = i;
13 }
14 forall(x in Vars(c),a in D(x))
15 if(c.FS[x, a]==�) # += (x,a);
16 }

Algorithm 6. An optimal postTC-Tr method for Table Constraints

have i == & at line 7. For a given value i �= &, by the FS invariant, FS[x, a] == i
or FS[x, a] < i holds at line 11. If FS[x, a] == i, FS[x, a] is incremented and the
tuple i will never be reconsidered by removing a from D(x). If FS[x, a] < i, the tuple
i is removed from the nextT r chain and will never be reconsidered. This holds for all
variables x �= y. Hence the tuple i will never be reconsidered in future executions of
valRemoveTC-Tr. Hence, lines 9-20 are executed O(t) times. Since the complexity
of lines 9-20 is O(r), the aggregate complexity of all executions of valRemoveTC-Tr
is O(r · t). The AC5 algorithm with the postTC-Tr and valRemoveTC-Tr imple-
mentation for table constraint is called AC5TC-Tr (AC5 for Table Constraints with
Trailing).

Proposition 2. AC5TC-Tr is correct and has an optimal time complexity of O(r·t+r·d)
per table constraint.

5 A Variation Based on Recomputation

We now propose a variation of the AC5TC algorithm, called AC5TC-Recomp, that does
not require any data structure to maintain the Q-validity of tuples. AC5TC-Recomp is
the (unpublished) table constraint algorithm of the Comet system. It replaces the Q-
validity test by a function isValidTC that tests the validity of the tuples. The straight-
forward implementation of the isValid function is given in Algorithm 8. Method
initSpecStructTC and setQInvalidTC are just empty. Since AC5TC-Recomp
tests validity instead of Q-validity, method valRemoveTC must be slightly modified;
the test a ∈ D(x) should be moved from line 14 to line 10 which becomes1

forall(x in Vars(c): x!=y && σc,i[x] in D(x)){

1 This modification also maintains the correctness of our generic AC5TC algorithm but requires
a more sophisticated FS-invariant. With this change, our earlier algorithms would have the
same theoretical complexity but are less efficient in practice.
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1 valRemoveTC-Tr(in c: Constraint; in y: Variable; in b: Value;
2 out #: Set of Values) {
3 // Pre: c ∈ C, c is a table constraint and b /∈ D(y, Q, c)
4 // Post: #1 ⊆ # ⊆ #2 with #1 = Inc(c, D(X, Q, c)) ∩ Cons(c, y, b)
5 // and #2 = Inc(c)
6 # = ∅;
7 i = c.FS[y, b];
8 while(i!=�){
9 forall(x in Vars(c): x!=y){

10 a = σc,i [x];
11 if(c.FS[x, a] == i){
12 c.FS[x, a] = c.nextTr[x, i];
13 if(c.FS[x, a]==� && a in D(x)) # += (x, a);
14 } else { //c.FS[x, a] < i
15 if (c.predTr[x, i]!=⊥)
16 c.nextTr[x,c.predTr[x, i],c] = c.nextTr[x, i,c];
17 if (c.nextTr[x, i]!=�)
18 c.predTr[x,c.nextTr[x, i],c] = c.predTr[x, i,c];
19 }
20 }
21 i = c.next[y, i];
22 }
23 }

Algorithm 7. An Optimal valRemoveTC-Tr method for Table Constraints

This modified version of valRemoveTC exploits the flexibility of its specification
by computing a set2 between21 and22. AC5TC-Recomp has a runtime complexity
of is O(r2 · t + r · d) and per table constraint and improves state-of-the-art algorithms
on some classes of problems.

6 Experimental Results

All proposed algorithms have been implemented on top of Comet, including AC5TC-
Recomp. For comparison, classical constraint-based algorithms have also been imple-
mented on top of Comet. The GAC3-Allowed algorithm has been chosen because it
is the standard GAC3 algorithm for the table constraints [10]. The two state-of-the-art
methods were also reimplemented: The STR2+ algorithm from [11] and the MDDc

algorithm from [3]. They are respectively called STR and MDD in the experimental
results. All experiments were conducted on an Intel Xeon 2.53GHz using Comet 2.1.1.
The algorithms are compared within a MAC search. This section presents results on
fully random instances, on the geometric problem, on Langford problem, and on the
Traveling Salesman Problem.

For each instance set, the experimental results report the mean execution times in
seconds (totTime), the mean “posting” times in seconds (postT), the number of propa-
gator calls (nProp), the percentage to the best with respect to execution time (%best),
the mean of percentage to the best algorithm in terms of execution time (μ%best), the
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1 function isValid(in c: Constraints;in i: Index) : Bool {
2 // Pre: c ∈ C, c is a table constraint and 1 ≤ i ≤ c.length
3 // Post: return (σc,i ∈ D(X))
4 forall(x in Vars(c))
5 if(!σc,i [x] in D(x)) return false;
6 return true;
7 }

Algorithm 8. The isValid Function of AC5TC-Recomp

number of validity checks (valChk), Q-validity checks (QvalChk), and the number of
pointers followed (pFollow). The difference between the %best and μ%best is the fol-
lowing: for %best, the execution times are averaged before computing the quantity.
There is thus one best algorithm. For μ%best, the percentages are computed instance
by instance and aggregated with a geometrical mean at the end. This measure takes into
account that different instances may have different best algorithms. The μ%best mea-
sure uses a geometrical mean as suggested in [5]. The last reported quantity, pFollow,
has different meanings for different algorithms. For GAC3-Allowed, it corresponds to
the number of times the tuples are accessed. For the AC5TC algorithms, it is defined
as the number of times the next or nextTr structures are used to traverse the table. For
MDD, it corresponds to the number of edges followed in the MDD structure. Although
referring to different quantities, pFollow is useful for comparing the behavior of the
propagators as it reflects the usage of their specific structures.

Random Instances. These instances contain random table constraints of random scope
generated by the RD-model [21]. Parameters are chosen to generate instances close to
the phase transition, using Theorems 1 and 2 from [21]. The instances have 10 variables,
a uniform domain size of 10, and 15 table constraints of arity 5. The expected number
of tuples in each table is thus 20000. 10 instances were generated with those settings.
The search strategy is the dom heuristic with lexicographic value ordering.

Table 1. Results of the propagators on fully random instance set (times in seconds)

propagator totTime postT nProp %best μ%best valChk QvalChk pFollow

GAC3-Allowed 3 000 1.5 614 k 2 725 2 660 523 M 0 523 M

AC5TC-Bool 4 636 1.0 2.8 M 4 211 4 070 19 k 257 M 481 M

AC5TC-CutOff 3 991 0.8 2.8 M 3 626 3 538 19 k 257 M 481 M

AC5TC-Tr 994 5.2 2.8 M 903 930 19 k 0 16 M

AC5TC-Recomp 3 874 0.8 2.4 M 3 519 3 357 98 M 0 305 M

STR2 483 0.7 614 k 439 455 22 M 0 0

MDD 110 12.4 614 k 100 100 0 0 12 M

Table 1 summarizes the results, which remain similar for other parameter settings.
The standard STR2 and MDD algorithms outperform our value-based propagators.
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Observe the large number of validity checks of AC5TC-Recomp and Q-validity checks
of AC5TC-Bool and AC5TC-CutOff, as well as the number of times they follow a
pointer. AC5TC-Tr, the best value-based propagator, follows far less pointers than our
other propagators because it does not follow pointers to a previously inspected tuple.
Due to the lack of structure of the constraint set, the first three AC5TC propagators
check multiple times the same tuples. Also, those random instances have large tables,
which makes the cost of the trailable nextTr structure in AC5TC-Tr too high.

The Geometric Problem. Instances of the geometric problem are random instances
generated following a specific structure proposed by Rick Wallace [20]. Each variable
is randomly placed in the unit square. A fixed distance (less than

√
2) is randomly

chosen. For each pair of variables (x, y), if the distance between their associated points
is less than or equal to this fixed distance, the arc (x, y) is added to the constraint graph.
Constraint relations are then created like in fully random CSP instances. We use the
instance set from [9] which counts 100 instances. The search strategy uses the heuristic
dom/deg with lexicographic value ordering. A timeout of 5 minutes has been used. The
quantity %solv gives the percentage of solved instances.

Table 2. Results of the propagators on the geom instances (times in seconds)

propagator totTime postT nProp %best μ%best %solv valChk QvalChk pFollow

GAC3-Allowed 10.1 0.3 288 k 128 138 86 28 k 0 28 k

AC5TC-Bool 12.5 0.3 867 k 158 159 84 300 25 k 50 k

AC5TC-CutOff 10.8 0.2 867 k 137 131 86 300 25 k 50 k

AC5TC-Tr 9.6 0.8 867 k 122 200 87 300 0 13 k

AC5TC-Recomp 7.9 0.2 831 k 100 100 87 6 k 0 29 k

STR2 24.9 0.3 288 k 315 316 82 26 k 0 0

MDD 14.7 1.6 288 k 186 337 86 0 0 65 k

Table 2 presents the experimental results. The quantities are computed on instances
for which none of the techniques timeout. All our propagators outperform the state-
of-the-art STR and MDD. AC5TC-Tr and AC5TC-Recomp are also better than the
classical AC3-Allowed. AC5TC-Recomp is the fastest on these instances. which are
relatively easy and contain only binary tables. Checking the validity (not costly for
binary tables) allows AC5TC-Recomp to follow less pointers than AC5TC-Bool and
AC5TC-CutOff by performing longer jumps in the table. The cost of the data structures
in AC5TC-Tr is too expensive and outweights its benefits. The large difference between
%best and μ%best for AC5TC-Tr is due to the easiest instances, where the propagator
is even more disadvantaged due to the cost of its data structures. AC5TC-Recomp also
performs less validity checks than STR2 and the number of pointers followed by our
propagators are less than those of MDD.

Langford Number Problem. Langford number problem L(k,n) amounts to arranging k
sets of numbers 1 to n into a sequence of numbers, so that each occurrence of a number
m is m numbers apart from its previous occurrence. Those problems are modeled with
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binary (positive) table constraints only. The search strategy used is dom/deg with lexi-
cographic value ordering. Problems where all the propagators take more than 5 minutes
are removed from the sets. For k = 2, 12 instances are used: n ∈ {5..12, 15, 16, 19, 20},
for k = 3, 8 instances: n ∈ {3..10} and for k = 4, 9 instances: n ∈ {3..11}. The results
for k of 2, 3 and 4 can respectively be found in Table 3.

Table 3. Experimental Results on Langford instances (times in seconds)

propagator totTime postT nProp %best μ%best valChk QvalChk pFollow

k = 2

GAC3-Allowed 16.3 0.6 1 M 173 172 166 k 0 166 k

AC5TC-Bool 18.6 0.8 2 M 197 182 576 178 k 316 k

AC5TC-CutOff 16.8 0.5 2 M 178 147 576 178 k 316 k

AC5TC-Tr 9.4 2.5 2 M 100 260 576 0 42 k

AC5TC-Recomp 10.1 0.4 2 M 107 106 27 k 0 154 k

STR2 26.7 1.3 1 M 283 342 46 k 0 0

MDD 26.6 3.7 1 M 282 517 0 0 307 k

k = 3

GAC3-Allowed 2.5 0.3 75 k 162 148 12 k 0 12 k

AC5TC-Bool 3.5 0.3 242 k 227 184 380 10 k 21 k

AC5TC-CutOff 2.5 0.2 242 k 163 147 380 10 k 21 k

AC5TC-Tr 2.2 0.9 242 k 140 198 380 0 4 k

AC5TC-Recomp 1.5 0.2 239 k 100 107 2 k 0 12 k

STR2 3.7 0.6 75 k 240 243 5 k 0 0

MDD 3.9 1.5 75 k 249 360 0 0 22 k

k = 4

GAC3-Allowed 23.4 1.3 419 k 137 155 19 k 0 19 k

AC5TC-Bool 42.5 1.6 1.6 M 250 215 677 20 k 36 k

AC5TC-CutOff 29.8 1.0 1.6 M 175 157 677 20 k 36 k

AC5TC-Tr 21.8 5.0 1.6 M 128 254 677 0 5 k

AC5TC-Recomp 17.0 0.8 1.58 M 100 100 3 k 0 18 k

STR2 33.2 3.3 419 k 195 277 10 k 0 0

MDD 31.2 7.3 419 k 183 392 0 0 35 k

Except for AC5TC-Bool on the k = 4 set of instances, all our propagators improve
the state-of-the-art STR and MDD. AC5TC-Tr and AC5TC-Recomp are also better than
the classical AC3-Allowed. AC5TC-Tr is the fastest propagator for k = 2 and AC5TC-
Recomp is the fastest on the other instance sets. Observe that the number of followed
pointers is globally higher for the first instance set (k = 2), due to inclusion of instances
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with larger n. The number of calls to the propagators during the search is also higher
for the k = 2 set. This suggests that AC5TC-Tr requires harder instances (found in the
k = 2 set) for amortizing the cost of its data structures. For the last two sets, AC5TC-Tr
is the second fastest propagator in terms of mean solving time. AC5TC-Tr is closer to
AC5TC-Recomp on the k = 4 instance set. The k = 4 instance set includes an instance
for which n = 11 (for k = 3: n ≤ 10). Here again, the large difference between %best
and μ%best for AC5TC-Tr can be attributed to the easiest instances.

Traveling Salesman Problems. We conclude with results of the propagators on the Trav-
eling Salesman Problem (TSP) constraint satisfaction instances. We used the set of in-
stances tsp-20 and tsp-25 [9]. Those structured instances are composed of very different
table constraints. Their arity varies between 2 and 3 and they may count up to 20 000
tuples but also as few as 20. The variables also have quite different domains: Some have
small domains, while others feature domains containing up to 1000 values. There are
61 variables and 230 table constraints in tsp-20 instances. The tsp-25 instances count
76 variables and 350 constraints. The negative table constraints found in those instances
have been transformed into positive ones. The search strategy used here is dom/deg with
lexicographic value ordering.

Tables 4 and 5 present the results. We first observe that STR2 and MDD perform
worse than our propagators. AC5TC-Recomp is the winning strategy on tsp-20 in-
stances while AC5TC-Tr is faster on the tsp-25 ones. The latter instances are more

Table 4. Results of the propagators for instance set TSP-20 (times in seconds)

propagator totTime postT nProp %best μ%best valChk QvalChk pFollow

GAC3-Allowed 797 1.7 6.7 M 733 587 11 M 0 11 M

AC5TC-Bool 186 0.8 21.2 M 171 187 2 k 1 M 2 M

AC5TC-CutOff 153 0.5 21.2 M 141 144 2 k 1 M 2 M

AC5TC-Tr 120 3.3 21.2 M 111 164 2 k 0 466 k

AC5TC-Recomp 109 0.3 20.9 M 100 104 391 k 0 1 M

STR2 398 1.4 6.7 M 366 353 803 k 0 0

MDD 456 19.0 6.7 M 419 769 0 0 7 M

Table 5. Results of the propagators for instance set TSP-25 (times in seconds)

propagator totTime postT nProp %best μ%best valChk QvalChk pFollow

GAC3-Allowed 6 607 2.4 73 M 606 509 23 M 0 23 M

AC5TC-Bool 2 625 1.3 198 M 241 233 2 k 11 M 19 M

AC5TC-CutOff 1 937 0.7 198 M 178 175 2 k 11 M 19 M

AC5TC-Tr 1 089 5.2 198 M 100 100 2 k 0 3 M

AC5TC-Recomp 1 315 0.5 196 M 121 120 3 M 0 10 M

STR2 3 740 2.9 73 M 343 333 5 M 0 0

MDD 4 974 25.2 73 M 457 425 0 0 28 M
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difficult. We can also see that checking the validity instead of the Q-validity allows
AC5TC-Recomp to follow less pointers and perform fewer validity checks than the Q-
validity checks of AC5TC-Bool and AC5TC-CutOff. Moreover, on these instances, the
small arity makes the validity check (O(r)) cheap compared to Q-validity. Again, on
those instances, the light-weight trailable structures of AC5TC-CutOff make it faster
than AC5TC-Bool.

When we merge binary tables in tsp-20 instances into higher arity tables, we ob-
served that AC5TC-Tr, our optimal algorithm, solves more instances than STR2, and
with a smaller total execution time on the instances solved by both solvers. MDD
does not compete on these instances. On simple instances, STR2 is more efficient than
AC5TC-Recomp which is also more efficient than AC5TC-Tr. However, on hard in-
stances, the optimality of AC5TC-Tr pays off and it becomes the best algorithm.

Summary. We conclude that, for the fully random instances, the lack of structure in the
tables prevents our propagators from competing with state-of-the-art algorithms. How-
ever, for structured instances, our propagators are faster. Globally, AC5TC-Bool and
AC5TC-CutOff are slower than AC5TC-Recomp since they are testing Q-validity, not
validity, and hence they perform smaller jumps in the table. Moreover, maintaining their
data structures is costly. Only the optimal AC5TC-Tr outperforms AC5TC-Recomp on
difficult instances while using Q-validity. However, on easier instances, the cost of its
trailable nextTr data-structure makes it slower than AC5TC-Recomp.

7 Conclusion

This paper proposed four different value-based, domain-consistency algorithms for ta-
ble constraints, all using the AC5 generic framework. The new propagators record, for
every value of the variables, the index of its first current support in the table. They
also use, for each variable of a tuple, the index of the next tuple sharing the same
value for this variable. They differ in their use of information on the validity of the tu-
ples. AC5TC-Tr and AC5TC-Recomp are the two best value-based algorithms: AC5TC-
Recomp does not maintain any validity information and recomputes it on demand and
AC5TC-Tr embeds the Q-validity information into the indexing structure, avoiding un-
necessary visits of invalid tuples and leading to an optimal algorithm with a time com-
plexity of O(r·t+r·d) per table constraint. Our other algorithms have a time complexity
of O(r2 ·t+r ·d) per table constraint. Experimental results show that on, purely random
tables, our algorithms do not compete with the state-of-the-art STR2+ and MDDc algo-
rithms. On structured instances, our propagators outperform STR2+ and MDDc, with
a speed up varying between 1.83 and 4.57. As future work, it would be interesting to
extend AC5TC to handle negative tables through its disallowed tuples and to integrate
the compressed representation of tuples introduced in [16].
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Abstract. Combining differing solution approaches by means of
solver portfolios has proven as a highly effective technique for boost-
ing solver performance. We consider the problem of generating parallel
SAT solver portfolios. Our approach is based on a recently introduced
sequential SAT solver portfolio that excelled at the last SAT competi-
tion. We show how the approach can be generalized for the parallel case,
and how obstacles like parallel SAT solvers and symmetries induced by
identical processors can be overcome. We compare different ways of com-
puting parallel solver portfolios with the best performing parallel SAT
approaches to date. Extensive experimental results show that the devel-
oped methodology very significantly improves our current parallel SAT
solving capabilities.

1 Introduction and Related Work

In the past decade, solver portfolios have boosted our capability to solve hard
combinatorial problems. Portfolios of existing solution algorithms have excelled
in competitions in satisfiability (SAT), constraint programming (CP), and quan-
tified Boolean formulae (QBF) [8, 12, 14].

In the past years, a new trend has emerged, namely the development of par-
allel solver portfolios. The gold-winning ManySAT solver [6] is, when we ignore
features like clause-sharing, a static parallel portfolio of the MiniSAT solver [5]
with different parameterizations. At the SAT Competition 2011, an extremely
simple static parallel portfolio, ppfolio [10], dominated the wall-clock categories
on random and crafted SAT instances and came very close to winning the ap-
plications category as well.

The obvious next step is to consider dynamic parallel portfolios, i.e., port-
folios that are composed based on the features of the given problem instance.
Traditionally, sequential portfolios simply select one of the constituent solvers
which appears best suited for the given problem instance. At least since the
invention of CP-Hydra [8] and SatPlan [13], sequential portfolios also schedule
solvers. That is, they may select more than just one constituent solver and assign
each one a portion of the time available for solving the given instance. Yun and
Epstein [15] introduced a heuristic method to build dynamic parallel portfolios.
The method relies heavily on the observation that running a deterministic solver
on more than one processor is a waste of time and is thus limited to the use of
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sequential SAT solvers only. A similar restriction applies to the work by Petrik
and Zilberstein [9]. They introduced a method to compute static parallel sched-
ules that are optimal with respect to the training instances, based on formulating
the problem as a non-linear optimization problem and considering only sequen-
tial constituent solvers.

The best-performing sequential dynamic portfolio at the SAT Competition
2011 was 3S [7] where it won gold medals in the CPU-time category on ran-
dom and crafted instances. 3S combines a fixed-time static solver schedule with
the dynamic selection of one long-running SAT solver. To compute the static
schedule offline and to select the long-running solver online, 3S combines low-
bias nearest neighbor regression with integer programming optimization. In this
paper, we augment this methodology to devise dynamic parallel SAT portfolios
which include parallel SAT solvers.

2 SAT Solver Selector (3S)

Before considering the challenges of parallel portfolios, let us first review sequen-
tial 3S in more detail. 3S works in two phases, an offline learning phase, and an
online execution phase.

– At Runtime: In the execution phase, as all dynamic solver portfolios, 3S first
computes features of the given problem instance. In particular, 3S uses the
same 48 core features as SATzilla [14]. Then, 3S selects k ∈ IN instances that
are most ”similar” to the given instance in a training set of SAT instances
for which 3S knows all runtimes of all solvers. Similarity in 3S is determined
by the Euclidean distance of the (normalized) feature vectors of the given
instance and the training instances. 3S selects the solver that can solve most
of these k instances within the given time limit (ties are broken by shorter
runtime). Finally, 3S first runs a fixed schedule of solvers for 10% of the time
limit and then runs the selected solver for the remaining 90% of the available
time.

– Offline: In the learning phase, which takes place during the development of
the portfolio solver, 3S considers three tasks:

1. Computation of features and simulation of solvers on all instances to
determine their runtime on all training instances.

2. To compute a desirable size k of the neighborhood, 3S employs a cross
validation by random subsampling. That is, 3S repeatedly splits the
training set into a base and a validation set and determines which size of
k results in the best average validation set performance when using only
the base set training instances to determine the long running solver.

3. Lastly, 3S computes the fixed schedule of solvers that are run for 10%
of the competition runtime. The objective when producing this schedule
is to maximize the number of instances that can be solved within this
reduced time limit. Among schedules that can solve the same number
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of instances, 3S selects one that minimizes the runtime of the schedule
and then scales this shorter schedule back to the 10% time limit by
increasing the runtime of each solver in the schedule proportionally.

2.1 Schedule Computation

This last step deserves our special attention as it is at the core of what we will
need to do to generalize the 3S methodology for the case of parallel solver exe-
cution. The problem again is to select a schedule of solvers – that is, a sequence
of solvers with associated runtimes – that maximizes the number of instances
solved within the reduced time limit. This problem is obviously an optimization
problem, and it actually resembles a bit the set covering problem.

3S considers the following integer program (IP) to compute a solver schedule.
Let VS,t denote the set of instances i that can be solved by solver S within time
limit t.

Solver Scheduling IP

min (C + 1)
∑
i

yi +
∑
S,t

txS,t

s.t. yi +
∑

(S,t) | i∈VS,t

xS,t ≥ 1 ∀i

∑
S,t

txS,t ≤ C

yi, xS,t ∈ {0, 1} ∀i, S, t

For all pairs of solvers S and time limits t, there is one variable xS,t. Note that
there are a number of solvers times the number of training instances of such
variables as for each solver S 3S only considers time limits t where the solver
just solves an instance in the training set. xS,t will be equal one if and only if,
in our schedule, we will run solver S for t seconds.

The second set of variables are the yi, one for each training instance i. Variable
yi will be one if and only if the solver schedule cannot solve instance i.

The first set of constraints ensure that each instance is covered – either be-
cause one of the selected solver/time pairs means that the respective solver can
solve the instance in the allocated time, or because the instance is counted as
not covered by yi. The final knapsack constraint simply ensures that the total
schedule time does not exceed the reduced time limit C.

The objective is first to minimize the number of uncovered instances. The
second criterion is to minimize the time of the schedule. Both is achieved simul-
taneously by minimizing the term (C+1)

∑
i yi+

∑
S,t txS,t. The latter summand

obviously minimizes the total time scheduled. The first summand minimizes the
number of uncovered instances. Note that the factor C + 1 ensures that the ob-
jective will always be less for schedules that solve at least one more instance,
even when the scheduled time would increase from 0 seconds to the maximum
of C seconds.
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For further details on 3S the reader is referred to [7] which also contains a
in-depth comparison to CP-Hydra [8].

2.2 Reducing the Number of Integer Variables

3S has 26 constituent SAT solvers, 11 of which are considered with two param-
eterizations each. Consequently, the scheduler considers 37 solvers. Moreover,
unlike prior SAT portfolios, the 3S portfolio is identical for all categories in the
SAT competition (application, crafted, and random). Consequently, it is based
on a vast set of training instances, almost 5,500. Therefore, the IP above has
more than 200,000 variables and more than 5,000 constraints. Although solved
offline, to solve this IP more quickly, 3S uses a heuristic in [7]. 3S first solves the
continuous relaxation of the solver scheduling IP. That is, it considers the linear
program (LP) where constraints yi, xS,t ∈ {0, 1} are replaced by 0 ≤ yi, xS,t ≤ 1.

When solving this relaxed LP the simplex algorithm [4] will only consider
variables where, at some point during the optimization, it is beneficial to intro-
duce these variables. In practice, during the optimization the vast majority of
the 200,000 variables will never be set to a value greater than zero. Without
going into the theory of linear programming, the important aspect is that the
simplex algorithm has a precise necessary condition to determine whether a vari-
able can improve the objective or not. Namely, in each step of the optimization,
the simplex algorithm prices each constraint with a so-called ”dual value.”

For each variable, it then computes a ”reduced cost.” The latter is defined
as the actual cost factor in the objective of the variable, minus the sum of the
variable’s coefficients in each constraint times the dual price of that constraint.
Formally, when cj is the cost coefficient, Aij is the matrix coefficient for variable
zj on constraint i, and when πi is the dual price for constraint i, then the reduced
costs c̄j for variable zj are defined as:

c̄j = cj −
∑
i

Aijπi.

Now, the simplex algorithm will only consider setting variable zj to a value
different from 0 when c̄j < 0. We then say, that the variable (or the respective
column in the matrix) has negative reduced costs.

So 3S solves the relaxation LP by introducing one (potentially new) variable
in each iteration. Then, to solve the actual integer problem, 3S removes all
variables from the solver scheduling IP which have never been introduced during
the optimization. This reduction in the number of integer variables speeds up
the solution to the integer program. However, Kadioglu et al. [7] showed that
the solutions found in this manner are near-optimal in practice and, on average,
work just as well on the test set as the optimal schedule would.

3 Parallel Solver Portfolios

The objective of this work is to generalize the 3S technology for the develop-
ment of parallel SAT solver portfolios. At the core of 3S lie two optimization
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problems. The first is the selection of the long running solver primarily based on
the maximum number of instances solved. The second is the solver scheduling
problem.

Consider the first problem when there are p > 1 processors available. The
objective is to select p solvers that, as a set, will solve the most number of
instances. Note that this problem can no longer be solved by simply choosing
the one solver that solves most instances in time. Moreover, we will now need to
decide how to integrate the newly chosen solvers with the ones from the static
schedule. The second problem is the solver scheduling problem discussed before,
with the additional problem that solvers need to be assigned to processors so
that the total makespan is within the allowed time limit.

A major obstacle in solving these problems efficiently is the symmetry induced
by the identical processors to which we can assign each solver. Symmetries can
hinder optimization very dramatically as equivalent (partial) schedules (which
can be transformed into one another by permuting processor indices) will be
considered again and again by a systematic solver. For example, when there are
8 processors, for each schedule there exist over 40,000 (8 factorial) equivalent
versions. An optimization that used to take about half a second may now easily
take 6 hours.

Another consideration is the fact that a parallel solver portfolio may obviously
include parallel solvers as well. Assuming there are 8 processors and a parallel
solver employs 4 of them, there are 70 different ways to allocate processors for
this solver. The portfolio that we will develop later will have 37 sequential and
2 4-core parallel solvers. The solver scheduling IP that needs to be solved for
this case has over 1.5 million variables. Eventually, we will apply our technology
to a set of 72 of the latest SAT solvers from 2011, among them four parallel
solvers which we will consider to run with 1, 2, 3, and 4 processors. Note that,
in the parallel case, we will need to solve these IPs at runtime. Consequently,
where 3S could afford to price out all variables at each step, we will need a
more sophisticated method to speed up the optimization time – which directly
competes with the remaining time to solve the actual SAT problem that was
given.

3.1 Parallel Solver Scheduling

Recall again that we need to solve two different optimization problems. The first
is to compute a static schedule for the first 10% of the allowed runtime. This prob-
lem is solved once, offline. The second optimization problem schedules solvers for
the remaining 90% of the allowed time. This is done instance-specifically, taking
into account the specific features of the SAT instance that is given.

We will address both optimization problems by considering the following IP.
Let tS ≥ 0 denote the minimum time that solver S must run in the schedule,
let M = {S; |; tS > 0} denote the set of solvers that have a minimal runtime, let
p be the number of processors, and let nS ≤ p denote the number of processors
that solver S requires.
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Parallel Solver Scheduling IP - CPU time

min (pC + 1)
∑
i

yi +
∑
S,t,P

tnSxS,t,P

s.t. yi +
∑

(S,t) | i∈VS,t,P⊆{1,...,p},|P |=nS

xS,t,P ≥ 1 ∀i

∑
S,t,P⊆{1,...,p}∪{q},|P |=nS

txS,t,P ≤ C ∀q ∈ {1, . . . , p}

∑
S,t,P⊆{1,...,p},|P |=nS,t≥tS

xS,t,P ≥ 1 ∀S ∈M

∑
S,t,P⊆{1,...,p},|P |=nS

xS,t,P ≤ N

yi, xS,t,P ∈ {0, 1} ∀i, S, t, P ⊆ {1, . . . , p}, |P | = nS

Variables yi are exactly what they were before. There are now variables xS,t,P

for all solvers S, time limits t, and subsets of processors P ⊆ {1, . . . , p} with
|P | = nS . xS,t,P is 1 if an only if solver S is run for time t on the processors in
P in the schedule.

The first constraint is again to solve all instances with the schedule or count
them as not covered. There is now a time limit constraint for each processor.
The third set of constraints ensures that all solvers that have a minimal solver
time are included in the schedule, with an appropriate time limit. The last
constraint finally places a limit on the number of solvers that can be included in
the schedule.

The objective is again to minimize the number of uncovered instances. The
secondary criterion is to minimize the total CPU time of the schedule.

Remark 1. Note that the IP above needs to be solved both offline to determine
the static solver schedule (for this problem M = ∅ and the solver limit is infinite)
and during the execution phase (when M and the solver limit are determined by
the static schedule computed offline). Therefore, we absolutely need to be able
to solve this problem quickly, despite its huge size and its inherent symmetry
caused by the multiple processors.

Note also that the parallel solver scheduling IP does not directly result in
an executable solver schedule. Namely, the IP does not specify the actual start
times of solvers. In the sequential case this does not matter as solvers can be
sequenced in any way without affecting the total schedule time or the number of
instances solved. In the parallel case, however, we need to ensure that the paral-
lel processes are in fact run in parallel. We omit this aspect from the IP above to
avoid further complicating the optimization. Instead, after solving the parallel
solver IP, we heuristically schedule the solvers in a best effort approach, whereby
we may preempt solvers and eventually even lower the runtime of the solvers to
obtain a legal schedule. In our experiments presented later it turned out that in
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practice the latter was never necessary. Hence, the quality of the schedule was
never diminished by the necessity to schedule processes that belong to the same
parallel solver at the same time.

3.2 Solving the Parallel Solver Scheduling IP

We cannot afford to solve the parallel solver scheduling IP exactly during the
execution phase. Each second spent on solving this problem is one second less for
solving the actual SAT instance. Hence, we revert to solving the problem heuris-
tically by employing column generation, whereby the generation of IP variables
is limited to the root node.

While 3S prices all columns in the IP during each iteration, fortunately we
actually do not need to do this here. Consider the reduced costs of a variable.
Denote with μi ≤ 0 the dual prices for the instance-cover constraints, πq ≤ 0 the
dual prices for the processor time limits, νS ≥ 0 the dual prices for the minimum
time solver constraints, and σ ≤ 0 the dual price for the limit on the number of
solvers. Finally, let ν̄S = νS when S ∈M and 0 otherwise. Then:

c̄S,t,P = nSt−
∑

i∈VS,t

μi −
∑
q∈P

tπq − ν̄S − σ.

The are two important things to note here: First, the fact that we only consider
variables introduced during the column generation process means that we reduce
the processor symmetry in the final IP. While it is not impossible, it is unlikely
that the variables that would form a symmetric solution to a schedule that can
already be formed from the variables already introduced would have negative
reduced costs.

Second, to find a new variable that has the most negative reduced costs,
we do not need to iterate through all P ⊆ {1, . . . , p} for all solver/time pairs
(S, t). Instead, we order the processors by their decreasing dual prices. The next
variable introduced will use the first nS processors in this order as all other
selections of processors would result in higher reduced costs.

3.3 Minimizing Makespan and Post Processing the Schedule

We now have everything in place to develop our parallel SAT solver portfolio. In
the offline training phase we compute a static solver schedule based on all training
instances for 10% of the available time. We use this schedule to determine a set
M of solvers that must be run for at least the static scheduler time at runtime.
During the execution phase, given a new SAT instance we compute its features,
determine the k closest training instances, and compute a parallel schedule that
will solve as many of these k instances in the shortest amount of CPU time
possible.

In our experiments we consider a second variant of the parallel solver schedul-
ing IP where the secondary criterion is not to minimize CPU time but the
makespan of the schedule. The corresponding IP is given below, where variable
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m measure the minimum idle time for all processors. The reduced cost compu-
tation changes accordingly.

Parallel Solver Scheduling IP - Makespan

min (C + 1)
∑
i

yi −m

s.t. yi +
∑

(S,t) | i∈VS,t,P⊆{1,...,p},|P |=nS

xS,t,P ≥ 1 ∀i

m+
∑

S,t,P⊆{1,...,p}∪{q},|P |=nS

txS,t,P ≤ C ∀q ∈ {1, . . . , p}

∑
S,t,P⊆{1,...,p},|P |=nS ,t≥tS

xS,t,P ≥ 1 ∀S ∈M

∑
S,t,P⊆{1,...,p},|P |=nS

xS,t,P ≤ N

yi, xS,t,P ∈ {0, 1} ∀i, S, t, P ⊆ {1, . . . , p}, |P | = nS

Whether we minimize CPU time or makespan, as remarked earlier, we post-
process the result by assigning actual start times to solvers heuristically. We also
scale the resulting solver times to use as much of the available time as possible.
For low values of k, we often compute schedules that solve all k instances in a
short amount of time without utilizing all available processors. In this case, we
assign new solvers to the unused processors in the order of their ability to solve
the highest number of the k neighboring instances.

4 Experimental Results

Using the methodology above, we built two parallel portfolios. The first based
on the 37 constituent solvers of 3S [7]. We refer to this portfolio as p3S-37. The
second portfolio that we built includes two additional solvers, ’Cryptominisat
(2.9.0)’ [11] and ’Plingeling (276)’ [2], both executed on four cores. We refer
to this portfolio as p3S-39. It is important to emphasize that all solvers that
are part of our portfolio were available before the SAT Competition 2011. We
would have liked to compare our portfolio builder with other parallel portfo-
lios. However, existing works on parallel portfolios do not accommodate par-
allel solvers. Consequenlty, in our experiments we will compare p3S-37 and
p3S-39 with the state of the art in parallel SAT solving. The winners in the
parallel tracks at the 2011 SAT Competition were the parallel solver portfo-
lio ’ppfolio’ [10] and ’Plingeling (587f)’ [3], both executed on eight cores. Note
that these competing solvers are new solvers that were introduced for the SAT
Competition 2011.

As our benchmark set of SAT instances, to the 5, 464 instances from all SAT
Competitions and Races between 2002 and 2010 [1], we added the 1, 200 (300
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Table 1. Average performance comparison parallel portfolio when optimizing CPU
time and varying neighborhood size k based on 10-fold cross validation

CPU Time 10 25 50 100 200

Average (σ) 320 (45) 322 (43.7) 329 (42.2) 338 (43.9) 344 (49.9)
Par 10 (σ) 776 (241) 680 (212) 694 (150) 697 (156) 711 (221)

# Solved (σ) 634 (2.62) 636 (2.22) 636 (1.35) 637 (1.84) 636 (2.37)
% Solved (σ) 99.0 (0.47) 99.2 (0.39) 99.2 (0.27) 99.2 (0.28) 99.2 (0.41)

Table 2. Average performance comparison parallel portfolio when optimizing
Makespan and varying neighborhood size k based on 10-fold cross validation

Makespan 10 25 50 100 200

Average (σ) 376.1 (40.8) 369.2 (42.9) 374 (40.7) 371 (40.8) 366 (36.9)
Par 10 (σ) 917 (200) 777 (192) 782 (221) 750 (153) 661 (164)

# Solved (σ) 633 (2.16) 635 (2.28) 634.9 (2.92) 635 (1.89) 637 (2.01)
% Solved (σ) 98.8 (0.39) 99.1 (0.39) 99.1 (0.46) 99.2 (0.32) 99.3 (0.34)

application, 300 crafted, 600 random) instances from last years SAT Compe-
tition 2011. Based on this large set of SAT instances, we created a number of
benchmarks. Based on all SAT instances that can be solved by at least one of the
solvers considered in p3S-39 within 5,000 seconds, we created an equal 10 par-
tition. We use this partition to conduct a ten-fold cross validation, whereby in
each fold we use nine partitions as our training set (for building the respective
p3S-37 and p3S-39 portfolios), and evaluate the performance on the partition
that was left out before. For this benchmark we report average performance over
all ten splits. On top of this cross-validation benchmark, we also consider the
split induced by the SAT Competition 2011. Here we use all instances prior to
the competition as training set, and the SAT Competition instances as test set.
Lastly, we also created a competition split based on application instances only.

As performance measures we consider the number of instances solved, average
runtime, and PAR10 score. The PAR10 is a penalized average runtime where
instances that time out are penalized with 10 times the timeout. Experiments
were run on dual Intel Xeon 5540 (2.53 GHz) quad-core Nehalem processors with
24 GB of DDR-3 memory.

Impact of the IP Formulation and Neighborhood Size. In Tables 1 and 2 we show
the average cross-validation performance of p3S-39 when using different neigh-
borhood sizes k and the two different IP formulations (tie breaking by minimum
CPU time or minimizing schedule makespan). As we can see, the size of the
neighborhood k affects the most important performance measure, the number
of instances solved, only very little. There is a slight trend towards larger k’s
working a little bit better. Moreover, there is also not a great difference between
the two IP formulations, but on average we find that the version that breaks ties
by minimizing the makespan solves about 1 instance more per split. Based on
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Table 3. Performance of 10-fold cross validation on all data. Results are averages over
the 10 folds.

Cross p3S-37 p3S-39
Validation 4 core 8 core 4 core 8 core

Average (sigma) 420 (22.1) 355 (31.3) 435 (48.5) 366 (36.9)
Par 10 (sigma) 991 (306) 679 (176) 1116 (256) 661 (164)
Solved (sigma) 630 (4.12) 633 (2.38) 631 (2.75) 637 (2.01)

% Solved (sigma) 98.3 (0.63) 98.8 (0.35) 98.5 (0.49) 99.3 (0.34)

these results, p3S in the future refers to the portfolio learned on the respective
training benchmark using k = 200 and the IP formulation that minimizes the
makespan.

4.1 Impact of Parallel Solvers and the Number of Processors

Next we investigate the impact of employing parallel solvers in the portfolio. In
Tables 3 and 4 we compare the performance of p3S-37 (without parallel solvers)
and p3S-39 (which employs two 4-core parallel solvers) on the cross-validation
and on the competition split. We observe a small difference in the number of
solved instances in the cross-validation, and a significant gap in the competition
split.

Two issues are noteworthy about that competition split. First, since this was
the latest competition and these instances were also used for the parallel track,
the instances in the test set of this split are significantly harder than the instances
from earlier years. The relatively low percentage of instances solved even by the
best solvers at the SAT Competition 2011 is an indication for this. Second,
some instance families in this test set are completely missing in the training
partition. That is, for a good number of instances in the test set there may
be no training instance that is very similar. These features of any competition-
induced split (which is the realistic split scenario!) explain why the average
cross-validation performance is often significantly better than the competition
performance. Moreover, they explain why p3S-39 has a significant advantage
over p3S-37: When a lot of the instances are out of reach of the sequential
solvers within the competition timeout then the portfolio must necessarily include
parallel solvers to perform well.

As a side remark: the presence of parallel solvers is what makes the compu-
tation of parallel portfolios challenging in the first place. Not only do parallel
solvers complicate the optimization problems that we considered earlier. In the
extreme case, if all solvers were sequential, we could otherwise have as many
processors as solvers, and then a trivial portfolio would achieve the performance
of the virtual best solver. That is to say: The more processors we have, the eas-
ier solver selection becomes. We were curious to see what would happen when
we made the selection harder than it actually is under the competition setting
and reduced the number of available processors to 4. For both p3S-37 and p3S-
39, the cross-validation performance decreases only moderately while, under the
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Table 4. Performance of the solvers on all 2011 SAT Competition data.

Competition 3S //3S VBS
4 cores 8 cores 4 cores 8 cores

Average 1907 1791 1787 1640 1317
Par 10 12,782 12,666 11,124 10,977 10,580
Solved 843 865 853 892 953

% Solved 70.3 72.1 71.1 74.3 79.4

competition split, performance decays significantly. At the same time, the ad-
vantages of p3S-39 over p3S-37 shrink a lot. As one would expect, the advantage
of employing parallel solvers decays with a shrinking number of processors.

4.2 Parallel Solver Selection and Scheduling vs. State-of-the-Art

The dominating parallel portfolio to date is ’ppfolio’ [10]. In the parallel track at
the SAT Competition 2011, it won gold in the crafted and random categories and
came in just shy to winning the application category as well where it was beat
by just one instance. In the application category, the winning solver was ’Plin-
geling (587f)’ run on 8 cores. We compare against both competing approaches
in Figures 1 and 2.

Instances from All SAT Categories. The top plot in Figure 1 shows the
scaling behavior in the form of a “cactus plot” for 8-core runs of ppfolio, p3S-
37, and p3S-39, for the competition split containing all 1,200 instances used in
the 2011 SAT Competition. This plot shows that p3S-39 (whose curve stays the
lowest as we move to the right) can solve significantly more instances than the
other two approaches for any given time limit larger than around 800 sec. We
also see that p3S-37, based solely on sequential constituent solvers, performs
similar to ppfolio for time limits up to 3,000 sec, and begins to outperform it for
larger time limits.

This comparative performance profile is by no means accidental. It is well
known in SAT that an instance that is exceedingly difficult to solve for one
solver poses almost no problem at all for another. This is the deeper reason
why the 10% static schedules are well motivated, because there exists a realistic
chance that one of the solvers scheduled for a short period of time will solve the
instance.

At a higher level, we are observing the same here. Sequential SAT solvers
have, for a good number of instances, the chance to solve an instance within
some time. Consequently, a portfolio of sequential solvers only can, up to a
point, compete with a solver portfolio that incorporates parallel solvers as well.
However, a realistic set of hard instances, as the one considered at the SAT
Competition, also contains instances that are very hard to solve, even by the
best solver for that instance. Some of the instances will not be solvable by any
sequential algorithm within the available time. This is why it is so important to
be able to include parallel solvers in a parallel portfolio.
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Fig. 1. Comparison on all 1200 instances used in the 2011 SAT Competition, across
all categories. Left: cactus plot depicting the scaling behavior of solvers. Right: per-
instance comparison between ppfolio and p3S-39.

The bottom plot in Figure 1 shows the per-instance performance of p3S-39
vs. ppfolio, with runtimes in log-scale on both axes. More points being below the
diagonal red line signifies that p3S-39 is faster than ppfolio on a large majority
of the instances. ppfolio also times out on many instances that p3S-39 can solve,
as evidenced the large number of points on the right margin of the plot.

Overall, p3S-39 was able to solve 892 instances, 47 more than ppfolio. p3S-37
was somewhere in-between, solving 20 more than ppfolio. In fact, even with only
4 cores, p3S-37 and p3S-39 solved 846 and 850 instances, respectively, more than
the 845 ppfolio solved on 8 cores.

Industrial Instances. Traditionally, portfolios did not excel in the category
for industrial SAT instances. In part, this is because there are much fewer repre-
sentative training instances available than in the random or crafted categories.
That is to say, at the competition there is a much better chance to encounter an
application instance that is very much different from anything that was consid-
ered during training. Moreover, progress on solvers that work well on industrial
instances is commonly much more pronounced. Since competition portfolios are
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Fig. 2. Comparison on the 300 application category instances used in the 2011 SAT
Competition. Left: cactus plot depicting the scaling behavior of solvers. Right: per-
instance comparison between Plingeling and p3S-39.

based on older solvers, even their intelligent selection may not be enough to
make up for the progress on the solvers themselves.

Figure 2 shows similar comparisons, but on the competition split restricted
to the application category, and with Plingeling as one of the competing solvers.
The cactus plot on top still shows a significantly better scaling behavior of p3S-
39 than both Plingeling and ppfolio. The scatter plot shows that Plingeling, not
surprisingly, is able to solve several easy instances within just a few seconds (as
evidenced by the points on the bottom part of the left edge of the plot), but
begins to take more time than p3S-39 on challenging instances and also times
out on many more instances (shown as points on the right edge of the plot).

Overall, with 8 cores, p3S-39 solved 248 application category instances, 23
more than ppfolio and 22 more than Plingeling. Moreover, p3S-37, based only
on sequential constituent solvers, was only two instances shy of matching Plin-
geling’s performance. This performance improvement is quiete significant. In the
application category, the best performing algorithms usually lie just a couple of
instances solved apart. In 2011, the top ten solvers solved between 200 and 215
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Fig. 3. Performance of p3S built using latest solvers, on all the 300 application category
instances used in the 2011 SAT Competition. Left: cactus plot depicting the scaling be-
havior of solvers. Right: per-instance comparison between p3S-39 and p3S-newsolvers.

instances. An improvement of over 20 instances over the best-performing solver
from nine months ago is much more than we had expected.

2012 Competition Portfolio. Finally, to demonstrate the efficacy of the
method presented here, we trained a parallel portfolio based on 40 of the latest
available parallel and sequential SAT solvers. Two of them were run on 1, 2,
3, and 4 processors. For all solvers, we consider a secondary setting where the
given instance is first simplified by the Satelite program. In total, we have thus
92 solvers, 6 of them run in parallel on 2, 3, or 4 processors.

In Figure 3 we compare the performance of this portfolio against Plingeling,
the winning parallel solver in the 2011 SAT Competition nine months ago, and
p3S-39, our portfolio of solvers from 2010 and before. We observe that our
method of devising parallel portfolios continues to result in strong performance
and generalizes well to this extended set of solvers and corresponding training
data. The parallel portfolio based on the latest SAT solvers currently competes
in the 2012 SAT Challenge.
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5 Conclusion

We presented the first method for devising drynamic parallel solver portfo-
lios that accommodate parallel solvers. Our approach is based on the recently
introduced SAT Solver Selector and Scheduler (3S). We combine core methods
from machine learning, such as nearest neighbor regression, with methods from
optimization, in particular integer programming and column generation, to pro-
duce parallel solver schedules at runtime. We compared different formulations of
the underlying optimization problems and found that minimizing makespan as
a tie breaking rule works slightly better than minimizing CPU time.

We compared the resulting portfolio, p3S-39, with the current state-of-the-art
parallel solvers on instances from all SAT categories and from the application
category only. We found that p3S-39 marks a very significant improvement in
our ability to solve SAT instances.

Acknowledgements. This research has been partially supported by EU FET
grant ICON (project number 284715).
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Abstract. Reasoning over bit-vectors arises in a variety of applications
in verification and cryptography. This paper presents a bit-vector domain
for constraint programming and its associated filtering algorithms. The
domain supports all the traditional bit operations and correctly models
modulo-arithmetic and overflows. The domain implementation uses bit
operations of the underlying architecture, avoiding the drawback of a
bit-blasting approach that associates a variable with each bit. The fil-
tering algorithms implement either domain consistency on the bit-vector
domain or bit consistency, a new consistency notion introduced in this
paper. Filtering algorithms for logical and structural constraints typi-
cally run in constant time, while arithmetic constraints such as addition
run in time linear in the size of the bit-vectors. The paper also discusses
how to channel bit-vector variables with an integer variable.

1 Introduction

A number of applications in cryptography and verification require reasoning over
bit-vectors. For instance, cryptographic hash functions form an active research
area where researchers aim at creating secure hash algorithms that produce
a short fixed-length digest from an arbitrary message. A good hash function
f makes it difficult to find collisions, i.e., two messages m and m′ such that
f(m) = f(m′). It should be equally difficult to find a preimage given a digest
d, i.e., a message m′ satisfying f(m′) = d. Cryptanalysts faced with the task of
comparing potential hash functions need tools to assess their resistance against
collision or preimage attacks. A constraint solver capable of using a hash function
f and a partial message m (where some bits are unknown) to recover the lost
information would be invaluable to assess the value of potential hash functions.
Bit-vectors also enjoy a significant popularity in the verification community (e.g.,
[5,2,11,4,3,12]).

Existing solvers encode bit-vectors into their native languages (e.g., SAT,
LP, CP, or MIP), all of which bring some strengths and some weaknesses (see
Section 7). It is often the case that a representation which is appropriate for
reasoning about bit-vectors is less adequate when the vectors are interpreted as
numbers, and vice versa. The goal of this paper is to study whether constraint
programming can unify these strengths and avoid (some of) the weaknesses.

To address this challenge, the paper investigates a bit-vector domain for con-
straint programming that is particularly suitable for verification and cryptog-
raphy applications. The domain supports all the traditional bit operations and
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correctly models modulo-arithmetic and overflows. Its implementation uses bit
operations of the underlying architecture, avoiding the drawback of a bit-blasting
approach that associates a variable with each bit. The filtering algorithms im-
plement either domain consistency on the bit-vector domain or bit consistency, a
new consistency notion introduced in this paper. Filtering algorithms for logical
and structural constraints typically run in constant time (as long as the size of
the bit-vector is not greater than the size of the machine registers), while arith-
metic constraints such as addition run in time linear in the size of the bit-vectors.
The paper also discusses how to channel bit-vector and variables, combining the
inference strengths of both representations.

The paper gives an overview of the domain and its filtering algorithms. A
short companion paper [18] presents an application in cryptography. For space
reasons, the presentation of the bit-vector domain itself cannot be comprehensive
and the paper only aims at presenting the main conceptual ideas and filtering
algorithms. In particular, the paper only focuses on unsigned number, although
similar algorithms also exist for signed numbers.

The paper is organized as follows: Section 2 introduces the bit-vector domain.
Section 3 presents three classes of constraints and two consistency notions. Sec-
tion 4 discusses the implementation of representative constraints, Section 5 dis-
cusses the channeling mechanism, and Section 6 briefly discusses how to extend
the results to signed numbers. Section 7 covers the related work and Section 8
finally concludes the paper.

2 Bit-Vector Variables

Definition 1 (Bit-Vectors). A bit-vector b[k] denotes a sequence of k ≥ 1

binary digits (bits). bi (i ∈ 0..k − 1) denotes the ith bit in the sequence. Bit
b0 is called the least significant bit and bk−1 the most significant bit. The most
significant bit comes first in the sequence and the least significant bit comes last.

For instance, 001 is a bit-vector of size 3 with its least significant bit equal to
1. In this paper, we assume that bit-vectors are of length k unless specified
otherwise and we use b to denote b[k] for simplicity. Bit-vectors are typically
denoted by the letters b, l, and u, possibly superscripted.1 Bit-vectors are often
used to represent (a finite subset of) natural numbers.

Definition 2 (Natural Number Interpretation). The natural number rep-
resented by a bit-vector b is given by the formula

I(b) =
k−1∑
i=0

bi · 2i

Bit-vectors of size k can represent natural numbers in the range [0, 2k − 1].

1 Superscripts are used, since subscripts are used to access the individual bits.
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Function I defines a total order on bit-vectors, which also coincides with the
lexicographic ordering on the sequence.

Definition 3 (Ordering on Bit-Vectors). Let b1 and b2 be bit-vectors. Then

b1 ≤ b2 iff I(b1) ≤ I(b2).

Definition 4 (Bit-Vector Domain). A bit-vector domain is a pair 〈l, u〉 of
bit-vectors such that li ≤ ui (0 ≤ i < k). The bit-vector domain represents the
set of bit-vectors

{b | l ≤ b ≤ u ∧ ∀i ∈ F (〈l, u〉) : bi = li}

where F (〈l, u〉) represents the fixed bits of the domain, i.e.,

F (〈l, u〉) = {i ∈ 0..k − 1 | li = ui}.

The free bits V (〈l, u〉) of domain 〈l, u〉 complements the fixed bits, i.e.,

V (〈l, u〉) = {i ∈ 0..k − 1 | li < ui}.

Example 1. The bit-vector domain D = 〈010, 111〉 denotes {010, 011, 110, 111},
F (D) = {1}, and V (D) = {0, 2}. When the bit-vector domain is viewed as rep-
resenting a set of natural numbers, the domain can be interpreted as {2, 3, 6, 7}.

Definition 5 (Bit Domain in a Bit-Vector Domain). Let D be a bit-vector
domain. The domain of bit i in D, denoted by Di, is the set {bi | b ∈ D}.

Definition 6 (Bit-Vector Variable). A bit-vector variable x is associated
with a domain D = 〈l, u〉, in which it takes its value. We use lx and ux to
denote the bit-vectors l and u defining the domain of x and F x and V x to de-
note F (〈lx, ux〉) and V (〈lx, ux〉).

Bit-vector variables can be viewed as a sequence of binary 0-1 variables. Making
them first-class objects however has significant benefits, not only from a mod-
eling, but also from a computational standpoint as will become clear later in
the paper. The primary purpose of bit-vector variables is to reason about which
bits in the vector are fixed. Although they can be used for representing sets of
natural numbers, bit-vector variables are not always able to represent arbitrary
sets and intervals accurately.

Example 2. Consider the interval 3..6. It cannot be represented exactly by a
bit-vector domain. Indeed, the domain D = 〈011, 110〉 is not valid since l0 > u0.
The bit-vectors associated with integers in 3..6 are {011, 100, 101, 110} and there
is no bit which has the same value in all these bit-vectors. The most precise
approximation of 3..6 by a bit-vector domain is D = 〈000, 111〉 which captures
no information.

Bit-vector variables are denoted by letters x, y, z, w, possibly superscripted, in
the following.
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3 The Constraint System

Constraints over bit-vector variables contain logical, arithmetic, and structural
constraints. This section gives an overview of some of the constraints useful in
practical applications. It is not intended to be comprehensive for space reasons.

3.1 The Constraints

Logical Constraints Logical constraints include equality x = y, bitwise negation
x = ¬y, bitwise conjunction x ∧ y = z, bitwise disjunction x ∨ y = z , bitwise
exclusive or x⊕y = z, conditional IF(x, y, z)= w, and reified equality also known
as equivalence (x = y) = z. The semantics of these constraints is the natural bit-
wise semantics. For instance, x = y holds iff ∀i ∈ 0..k− 1 : xi = yi and x∧ y = z
holds iff ∀i ∈ 0..k − 1 : xi ∧ yi = zi. The constraint IF(x[k], y[k], z[k])= w[k] is a
quaternary constraint with the following semantics

∀i ∈ 0..k − 1 : wi = yi ∧ xi = 1 ∨ wi = zi ∧ xi = 0.

Finally, the reified equality (x = y) = z is equivalent to

∀i ∈ 0..k − 1 : zi = 1 ∧ xi = yi ∨ zi = 0 ∧ xi �= yi

and could be recast as ¬(x ⊕ y) = z.

Arithmetic Constraints. Since bit-vector variables can be used to represent natu-
ral numbers, it is natural to include a collection of arithmetic constraints, which
includes membership, inequalities, addition x+y = (z, c), and unsigned multipli-
cation x · y = z. Constraint x ∈ [L,U ], where L and U are integers and L ≤ U ,
holds if L ≤ I(x) ≤ U . Constraint x ≤ y holds if I(x) ≤ I(y). Constraint
x + y = (z, c) holds if (I(x) + I(y)) mod 2k = I(z) and c denotes the carry
bit-vector variable, while x ·y = z if (I(x) · I(y)) mod 2k = I(z). It is important
to point out that the addition constraint models actual computer architectures
where the addition can overflow. The carry vector c has k + 1 bits and the last
carry-out bit ck is 1 when the addition overflows.

Structural Constraints. Structural constraints are useful to extract sub-sequences
from bit-vectors, concatenate, shift, rotate, or even perform some extension op-
erations. Some of the constraints in our implementation are listed below.

SHL(x, n)= y: The constraint holds if y shifts x by n positions to the left. The
n bits introduced to the right are 0.

LSHR(x, n)= y: The constraint holds if y is the logical right shift of x by n
positions to the right. The n bits introduced to the left are all 0.

ROTL(x, n)= y: The constraint holds if y is the rotation of x by n positions to
the left, i.e., ∀i ∈ 0..k − 1 : xi = y(i+n) mod k.

ROTR(x, n)= y: The constraint holds if y is the rotation of x by n positions to
the right, i.e., ∀i ∈ 0..k − 1 : yi = x(i+n) mod k.
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EXTU(x[k], n)= y[n]: Assuming that n > k, the constraint holds if ∀i ∈ 0..k− 1 :
yi = xi ∧ ∀i ∈ k..n : yi = 0.

EXTRACT(x[k], f, n)= y[n]: Assuming that n ≤ k and 0 ≤ f ≤ k − 1, the con-
straint holds when ∀i ∈ 0..n − 1 : yi = xf+i, i.e., when y denotes the
sub-sequence of n bits extracted from position f in x.

CONCAT(x[k], y[l])= z[k+l]: The constraint holds if z is the concatenation of the
two bit sequences x and y, i.e., ∀i ∈ 0..l−1 : zi = yi∧∀i ∈ 0..k−1 : zl+i = xi.

3.2 Consistency Notions

The constraint implementation considers two consistency notions: Domain con-
sistency and bit consistency. Domain consistency is the standard definition lifted
to bit-vector variables.

Definition 7 (Domain Consistency). A bit-vector constraint C(x1, . . . , xk)
is domain-consistent with respect to D1 × . . .×Dk and variable xj iff

∀bj ∈ Dj ∃b1 ∈ D1, . . . , bj−1 ∈ Dj−1, bj+1 ∈ Dj+1, . . . , bk ∈ Dk : C(b1, . . . , bk).

It is domain-consistent with respect to D1 × . . .×Dk iff it is domain-consistent
with respect to these domains for all variables.

Bit consistency is a weaker consistency notion that only guarantees that each
free bit for a variable is not fixed to the same value in all solutions.

Definition 8 (Bit Consistency). A bit-vector constraint C(x1, . . . , xk) is bit-
consistent with respect to D1 × . . .×Dk, variable xj, and bit i iff

∀v ∈ Dj
i ∃b1 ∈ D1, . . . , bk ∈ Dk : bji = v ∧ C(b1, . . . , bk).

It is bit-consistent with respect to D1× . . .×Dk iff it is bit-consistent with respect
to these domains for all variables and all bits.

Example 3. Constraint x ≥ y is bit-consistent wrtD(x) = 〈000, 111〉 andD(y) =
〈011, 111〉. Indeed, the potential solutions for x are {011, 100, 101, 110, 111} and
all three bits appear in a solution with values 0 and 1. Constraint x ≥ y is not bit-
consistent wrt D(x) = 〈000, 111〉 and D(y) = 〈100, 111〉, since bit 2 is fixed to 1
in all solutions. It is bit-consistent wrt D(x) = 〈100, 111〉 and D(y) = 〈100, 111〉.

4 Constraint Implementation

4.1 Overview

The key insight of the implementation is that many constraints2 can be imple-
mented through bit operations of the underlying computer architecture, making
the implementation constant time when the length of the bit-vector variables

2 Arithmetic constraints are different and need to be handled differently.
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1 function propagate (C(x, y)) : Bool
2 lowx = fx

low(x, y) ;
3 upx = fx

up(x.y) ;
4 lowy = fy

low(x, y) ;
5 upy = fy

up(x, y) ;
6 〈lx, ux〉 = 〈lowx, upx〉 ;
7 〈ly, uy〉 = 〈lowy , upy〉 ;
8 return va l i d (〈lx, ux〉) ∧ va l i d (〈ly, uy〉 ) ;

Fig. 1. The Overall Implementation Structure of Logical Constraints

does not exceed the word size. Indeed, under these circumstances, an expression
over bit-vectors l, u, and v such as ¬(l ⊕ u) ∧ (l ∨ v) can be evaluated in four
instructions of the underlying architecture. This is particularly appealing on re-
cent Intel architectures which feature extended register sets, i.e., the so-called
SSE registers with 128 bits. These SSE registers are larger than our bit-vectors
for our targeted applications.

Consider now a constraintC(x, y).3 The domain of x is 〈lx, ux〉 and the domain
of y is 〈ly, uy〉. The goal of the constraint propagation is to determine new
domains 〈lowx, upx〉 and 〈lowy , upy〉 for x and y in terms of expressions over
lx, ux, ly, and uy. As mentioned above, these expressions are then evaluated
in constant time. In addition to specifying lowx, upx, lowy, upy, the constraint
should also indicate if it fails or succeeds. In the implementation, this check is
performed by verifying that the domains 〈lowx, upx〉 and 〈lowy, upy〉 are valid.
Recall that a bit-vector domain 〈l, u〉 must satisfy ∀ i ∈ 0..k − 1 : li ≤ ui. Such
a validity test can be performed in constant time using the following expression

valid(〈l, u〉) = ¬(l ⊕ u) ∨ u.

Indeed, this expression checks that, whenever li �= ui, we have ui = 1. As a
result, the implementation of a constraint C(x, y) typically looks like the schema
depicted in Figure 1. Hence the implementation in the paper only specifies lowx,
upx, lowy, and upy. These constraints are propagated each time a bit is fixed in
one of the arguments.

4.2 Logical Constraints

This section presents the implementation of logical constraints. Because they
operate bitwise, logical constraints are domain-consistent iff the propagation al-
gorithm for a single bit is domain-consistent. Indeed, a logical constraint C(x, y)
can be seen as an abbreviation of

∀ i ∈ 0..k − 1 : Cb(xi, yi)

3 This overview focuses on binary constraints but generalizes to n-ary constraints.
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where k is the word width, xi and yi represent bit variables associated with bit
i in bit-vectors x and y, and Cb is the propagation algorithm for a single bit.
Since all these constraints are independent, C(x, y) is domain-consistent iff the
propagation algorithm for a single bit is bound-consistent.

Theorem 1. The propagation of a logical constraint over bit-vectors is domain-
consistent iff the propagation algorithm for a single bit is domain-consistent.

In the following, we derive the propagation algorithm for logical constraint from
Boolean propagation rules as those defined in [13].

Equality: The propagator for the x = y constraint is defined as follows:

lowx = lowy = lx ∨ ly

upx = upy = ux ∧ uy

The propagators of logical constraints are derived systematically from inference
rules and we illustrate the process on this simple case. The two inference rules
for the new domain of x are

xi = 1 if yi = 1
xi = 0 if yi = 0

The inference rule for xi = 1 defines the expression for lowx
i which is obtained

by the disjunction of lxi and a rewriting of the right-hand side. In the right-hand
side, an expression yi = 1 is rewritten as lyi and an expression yi = 0 is rewritten
into ¬uy

i . In this case, we obtain

lowx
i = lxi ∨ lyi .

The inference rule for xi = 0 defines the expression for upxi which is obtained
by a conjunction of ux

i and the negation of the rewriting of the right-hand side.
The conjunction and the negation are necessary, since bit i is fixed to zero when
ux
i = 0. We then obtain

upxi = ux
i ∧ ¬(¬u

y
i ) = ux

i ∧ uy
i .

The final result is obtained by lifting the expression from bits to bit-vectors.

Bitwise Conjunction: The propagation for x ∧ y = z is defined as follows:

lowz = lz ∨ (lx ∧ ly)
upz = uz ∧ ux ∧ uy

lowx = lx ∨ lz

upx = ux ∧ ¬(¬uz ∧ ly)
lowy = ly ∨ lz

upy = uy ∧ ¬(¬uz ∧ lx)

The new domain of z is computed by the two inference rules

zi = 1 if xi = 1 ∧ yi = 1
zi = 0 if xi = 0 ∨ yi = 0

The new domain of x is computed by the two inference rules

xi = 1 if zi = 1
xi = 0 if zi = 0 ∧ yi = 1
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Bitwise Negation: The propagation for x = ¬y is defined as follows:

lowy = ly ∨ ¬ux

upy = uy ∧ ¬lx
lowx = lx ∨ ¬uy

upx = ux ∧ ¬ly

Bitwise Disjunction: The propagation for x ∨ y = z is defined as follows:

lowz = lz ∨ lx ∨ ly

upz = uz ∧ (ux ∨ uy)
lowx = lx ∨ (¬uy ∧ lz)

upx = ux ∧ uz

lowy = ly ∨ (¬ux ∧ lz)
upy = uy ∧ uz

The new domain of z is computed by the two inference rules

zi = 1 if xi = 1 ∨ yi = 1
zi = 0 if xi = 0 ∧ yi = 0

The new domain of x is computed by the two inference rules

xi = 1 if zi = 1 ∧ yi = 0
xi = 0 if zi = 0

Bitwise Exclusive Or: The propagation for x⊕ y = z is defined as follows:

lowz = lz ∨ (¬ux ∧ ly) ∨ (lx ∧ ¬uy)
upz = uz ∧ (ux ∨ uy) ∧ ¬(lx ∧ ly)
lowx = lx ∨ (¬uz ∧ ly) ∨ (lz ∧ ¬uy)

upx = ux ∧ (uz ∨ uy) ∧ ¬(ly ∧ lz)
lowy = ly ∨ (¬uz ∧ lx) ∨ (lz ∧ ¬ux)
upy = uy ∧ (uz ∨ ux) ∧ ¬(lx ∧ lz))

The new domain of z is computed by the two inference rules

zi = 1 if (xi = 0 ∧ yi = 1) ∨ (xi = 1 ∧ yi = 0)
zi = 0 if (xi = 0 ∧ yi = 0) ∨ (xi = 1 ∧ yi = 1)

The new domain of x is computed by the two inference rules

xi = 1 if (zi = 1 ∧ yi = 0) ∨ (zi = 0 ∧ yi = 1)
xi = 0 if (zi = 1 ∧ yi = 1) ∨ (zi = 0 ∧ yi = 0)

Conditional: The propagation of IF(x, y, z)= w relies, in essence, on a con-
ditional pair of mutually exclusive assignments. In the following, a ⇒ b is a
bitwise implication which can be rewritten with DeMorgan’s law into ¬a ∨ b.
The implementation is as follows:

loww = lw ∨ (lx ∧ ly) ∨ (¬ux ∧ lz) ∨ (ly ∧ lz)
upw = uw ∧ ¬((lx ∧ ¬uy) ∨ (¬ux ∧ ¬uz) ∨ (¬uy ∧ ¬uz))
lowy = ly ∨ (lw ∧ (lx ∨ ¬uz))
upy = uy ∧ ¬(¬uw ∧ (lx ∨ lz))
lowz = lz ∨ (lw ∧ (lx ∨ ¬uy))
upy = uz ∧ ¬(¬uw ∧ (lx ∨ ly))
lowx = lx ∨ (lw ∧ ¬uz) ∨ (¬uw ∧ lz)
upx = ux ∧ ¬((lw ∧ ¬uy) ∨ (¬uw ∧ ly))
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The new domain of w is computed by the two inference rules

wi = 1 if (xi = 1 ∧ yi = 1) ∨ (xi = 0 ∧ zi = 1) ∨ (yi = 1 ∧ zi = 1)
wi = 0 if (xi = 1 ∧ yi = 0) ∨ (xi = 0 ∧ zi = 0) ∨ (yi = 0 ∧ zi = 0)

The new domain of y is computed by the two inference rules

yi = 1 if (wi = 1) ∧ (xi = 1 ∨ zi = 0)
yi = 0 if (wi = 0) ∧ (xi = 1 ∨ zi = 1)

The new domain of x is computed by the two inference rules

xi = 1 if wi �= zi
xi = 0 if wi �= yi

4.3 Structural Constraints

We briefly review structural constraints which enforce domain consistency.

Shifts and Rotations: The propagation of SHL(x, n)= y is defined as follows:

lowy = ((lx 3 n) ∨ ly) ∧ 1[k−n].0[n]
upy = (ux 3 n) ∧ uy

lowx = lx ∨ (ly 4 n)
upx = ((uy 4 n) ∧ ux) ∨ 1[n].0[k−n])

For lowy , the implementation first shifts the bits of lx by n position (with a
logical left shift implemented in hardware and denoted by 3), then applies a
disjunction with ly as in the equality constraint, and finally force the n low-
order bits down to 0 since a left shift introduces 0 bits. The last part is achieved
through a conjunction with a mask whose k−n high-order bits are 1 (in order to
preserve the part just constructed) and the n low-order bits are 0. Similarly, upx

starts with a logical right shift by n position of uy and takes the conjunction with
the old value of ux. Since a logical left shift introduces 0 to the left, the result is
disjuncted with a mask whose n high-order bits are 1. The implementation runs
in O(1) if the required masks are available (there are only O(k) of them).

Extension: EXTU(x[k], n)= y[n] expects x[k] to be a k−bit long sequence and
extends it to a n−bit long sequence y[n] with padding to the left. The imple-
mentation runs in O(1) time with a suitable mask.

Extraction: EXTRACT(x[k], f, n)= y[n] is yet another variant of equality which is
even more direct and also runs in O(1). Indeed, both sequences (lx, ux) must be
shifted right by f to discard the low-order bits and a mask must be applied to
relax the k − n high-order bits. Once this is done, it is a normal equality.

4.4 Arithmetic Constraints

Finally, we focus on arithmetic constraints that are particularly interesting.
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1 function propagate (x ∈ [L, U ] ) : Bool
2 i = k − 1
3 while i ≥ 0 do
4 i f I(ux) < L ∨ I(lx) > U
5 return fa l se ;
6 i f i ∈ V x then
7 i f I(ux)− 2i < L then lxi = 1
8 else i f I(lx) + 2i > U then ux

i = 0
9 else break ;

10 i = i− 1
11 return true ;

Fig. 2. Propagating the Membership Constraint

Membership Constraint. Figure 2 depicts the implementation of the membership
constraint. Given a bit-vector variable x and a free bit i in x, the algorithm uses
two propagation rules (line 7 and line 8). If I(ux) − 2i < L, then bit i must be
fixed to 1 since otherwise x cannot reach the lower bound. Similarly, if I(lx)+2i >
U , then bit i must be fixed to 0 since otherwise x would exceed the upper bound.
The algorithm applies these two rules, starting with the most significant free bits.
If, at some point, none of these two rules apply, subsequent, less significant, free
bits do not have to be considered and the algorithm terminates early (line 9).
Note also that the algorithm tests for feasibility at every iteration of the loop
(lines 4–5), since the constraint may become infeasible even if I(lx) ≤ L ≤ U ≤
I(ux) holds initially. The algorithm runs in O(k) in the worst case since I(lx)
and I(ux) are constant time lookup and 2i can be maintained in O(1) via shifts.

Example 4 (Membership Constraint (1)). Let x be a bit-vector variable with
domain Dx = 〈000010, 111110〉. In the following, we associate I(lx) and I(ux)
with the domain for clarity. So Dx is denoted by 〈000010 : 2, 111110 : 62〉.
Observe that the last two bits are fixed and all others are free. Consider the
constraint x ∈ [42, 45]. The algorithm proceeds left to right. Since 62−32 < 42 in
line 7, bit 5 must be fixed to 1 and the domain becomes 〈100010 : 34, 111110 : 62〉.
The algorithm now considers bit 4. Since 34 + 16 > 45, bit 4 is fixed to zero
by lines (9–10) and the domain becomes 〈100010 : 34, 101110 : 46〉. Bit 3 is
now examined. Since 46 − 8 < 42, bit 3 must be fixed to one and the domain
is updated to 〈101010 : 42, 101110 : 46〉. The algorithm now looks at bit 2.
Since 42 + 4 > 45, bit 2 must be fixed to zero, producing the final domain
〈101010 : 42, 101010 : 42〉.

Example 5 (Membership Constraint (2)). With the same variable x as in Exam-
ple 4, consider the constraint x ∈ [43, 45]. The first couple of steps are similar,
producing a domain 〈101010 : 42, 101110 : 46〉. Bit 2 is now considered. Since
46− 4 < 43, the new domain becomes 〈101110 : 46, 101110 : 46〉 and a failure is
detected in line 4.

Theorem 2. The propagation of x ∈ [L,U ] achieves bit consistency.
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1 function propagate (x ≤ y ) : Bool
2 do
3 〈olx, oux〉 = 〈I(lx), I(ux)〉
4 〈oly, ouy〉 = 〈I(ly), I(uy)〉
5 i f ! propagate (x ∈ [I(lx), I(uy)])
6 return fa l se ;
7 i f ! propagate (y ∈ [I(lx), I(uy)])
8 return fa l se ;
9 while 〈olx, oux〉 �= 〈lx, ux〉 ∨ 〈oly , ouy〉 �= 〈ly , uy〉 ;

10 return true ;

Fig. 3. The Propagation Algorithm for x ≤ y

Proof. We first show that the algorithm can terminate early. If the algorithm
terminates in line 11, we know that I(ux)−2i ≥ L and I(lx)+2i ≤ U . It follows
that I(ux) − 2j ≥ L and I(lx) + 2j ≤ U for all 0 ≤ j < i. We next show that,
if more than one rule applies, the constraint is infeasible and will fail. Assume
that I(ux)− 2i < L holds for bit i. The algorithm fixes bit i to 1 and the lower
bound of the domain becomes I(lx) + 2i. If the second rule applies, this would
mean that I(lx) + 2i > U and this is detected at the next iteration of the loop
in line 4. As a result, the two propagation rules do not apply to any of the free
bits at the end of the propagation.

Consider now the most significant free bit i in the resulting domain. Observe
first that the bit-vector representations of L and U must have bit i equal to 0 and
1 respectively since otherwise bit i would be fixed. Since the propagation rules
do not apply, we have that I(ux) − 2i ≥ L and I(lx) + 2i ≤ U . Moreover, the
value I(ux) − 2i belongs to Dx by definition of the bit-vector domain, satisfies
L ≤ I(ux)−2i ≤ U, and has bit i set to 0. Similarly, the value I(lx)+2i belongs
to Dx by definition of the bit-vector domain, satisfies L ≤ I(lx) + 2i ≤ U, and
has bit i set to 1. Hence, bit i is bit-consistent.

Finally, consider another free bit j < i and the bit-vectors associated with
I(ux)− 2i and I(lx)+ 2i. We know that these bit-vectors are in the domain and
satisfy the constraint. Moreover, I(ux)−2i has bit j assigned to 1 and I(lx)+2i

has bit j assigned to 0. Hence, bit j is bit-consistent. ��

Inequalities Figure 3 depicts the propagation algorithm for the inequality con-
straint x ≤ y. The algorithm uses the membership constraint and implements a
fixpoint computation.

Theorem 3. The propagation of x ≤ y achieves bit consistency.

Proof. At the end of the fixpoint, x ∈ [I(lx), I(uy)] and y ∈ [I(lx), I(uy)] are
bit-consistent. Consider variable x. For every free bit of x, we can select the
bit-vector for I(uy) in Dy and the bit-vectors in Dx selected in the proof of
Theorem 2. Hence, x is bit-consistent with respect to the updated domains. The
reasoning for y is similar. ��
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Fig. 4. Illustrating the Sum Constraint

Theorem 4. The propagation of x ≤ y runs in time O(k).

Proof. By definition of the constraint, lx and uy cannot be updated. Hence, only
one iteration is needed to reach the fixpoint.

Addition. The implementation of addition also aims at exploiting bit operations
on the underlying architecture. This is however more challenging than for logical
constraints, since the bits are not independent: The carry-out of bit i is the carry-
in of bit i + 1. We could implement the constraint by associating a propagator
with each bit i but such an algorithm would not exploit bitwise operations of
the underlying machine. Instead, our implementation decouples the carries and
uses constraints to connect them. Our implementation contains two constraints:

1. A logical full-adder constraint;
2. The constraint connecting the carry-in and the carry-out.

The constraints are decoupled by using a brand new bit-vector variable co for the
carry-out’s. Let us present the intuition bottom-up, starting from the bits (See
also Figure 4 for an illustration). Constraint fulladder (xi, yi, ci, si, coi) holds if

si = ci ⊕ xi ⊕ yi

coi = (xi ∧ yi) ∨ (ci ∧ (xi ⊕ yi))

which can be found in any introductory class on computer architecture. The link
between the carry-out of bit i and the carry-in of bit i+ 1 is achieved with

ci+1 = coi (1)

Now observe that the full-adder constraint only involves i of the underlying
bit-vector variables. Hence, the implementation can process all the bits simulta-
neously using the bitwise operations of the underlying architecture, like all the
logical constraints proposed earlier. Moreover, equation 1 can be recast as a shift
constraint, leading to the constraint system over bit-vector variables

fulladder (x, y, c, s, co)

c = co3 1

c0 = 0
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1 function propagate (x+ y = (z, c)) : Bool
2 co ∈ 〈0 . . . 0, 1 . . . 1〉 : new bit−vec tor v a r i ab l e with k b i t s
3 return propagate ( { fulladder(x, y, c, s, co) , c = co% 1 , c0 = 0 } ) ;

Fig. 5. The Propagation Algorithm for the Addition Constraint

The resulting propagation algorithm is depicted in Figure 5. To propagate
the sum constraint, the algorithm propagates the system of constraints until a
fixpoint is reached. The propagation may fix the carry-out coi which means that
the half-adder for bit i+1 must be reconsidered. Similarly, the propagation may
fix the carry-in ci+1 which means that the half-adder for bit i must reconsider.
Of course, the propagation for all bits takes place simultaneously.

Theorem 5. The propagation of x+ y = (z, c) enforces bit-consistency.

Proof. Consider a finite-domain constraint system containing the full-adder con-
straint for each bit and the equations 1 for linking the carries. The constraint
graph is Berge-acyclic. Hence, if the half-adder constraint enforces domain-
consistency, the constraint system is domain-consistent when the fixpoint is
reached. The constraint system in Figure 5 enforces the same propagation and
hence is bit-consistent.

Since there are 5 bit-vectors with k bits in the implementation, the number
of iterations in the fixpoint algorithm is O(k), since each bit can be fixed at
most once. Moreover, the propagation of every constraint takes constant time,
since they consist of a constant number of bitwise operations. Hence, the overall
propagation runs in time O(k).

Theorem 6. The propagation of x+ y = (z, c) runs in time O(k).

5 Channelling

Example 2 indicated that bit-vector domains cannot always precisely capture a
set of integers. A common remedy is to use a dual representation consisting of a
bit-vector variable and an interval variable connected by a channelling constraint.

The channelling constraint is defined in Figure 6 where (x,X) is a pair of
channelled variables: x is a bit-vector variable and X is its interval counterpart.
The implementation first updates X given Dx, then x given the updated DX

and then process a final update of X given the resulting domain of x. No further
step is needed, since DX is updated exactly to [lx, ux] at that stage.

Theorem 7. The propagation of the channeling constraint runs in time O(k).

It is also interesting to observe that an update to the lower bound of X may
produce a narrowing in the lower and upper bounds of x. Thus, this constraint
is propagated every time a bit is fixed in x or a bound is updated in variable X .
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1 function propagate ( channel (x,X ) ) : Bool
2 i f ! propagate (X ∈ [I(lx), I(ux)])
3 return fa l se ;
4 i f ! propagate (x ∈ DX )
5 return fa l se ;
6 return propagate (X ∈ [I(lx), I(ux)] ) ;

Fig. 6. The Propagation Algorithm for the Channelling Constraint
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Fig. 7. Illustrating the Channelling Constraint

Example 6. Consider a variable x with domain 〈00010 : 2, 11110 : 30〉 and its
channelled counterpartX with domain [2, 30]. The situation is depicted in Figure
7[left] which specifies the domain of x. First, observe that, if the domain of X
is updated to [4, 23], the domain of x does not shrink, highlighting the need
for the dual representation (indeed, each bit has supports both for 0 and 1).
Figure 7[right] depicts the relationship between the domains of x and X . If the
lower bound of X is updated to 15, the propagation of x ∈ [15, 23] produces a
domain 〈10010 : 18, 10110 : 22〉 and the domain of X is updated to [18,22]. It is
interesting to observe that a tightening of the inner domain narrows the outer
domain which, in turn, shrinks the inner domain.

6 Extension to Signed Numbers

This paper focused on an unsigned interpretation of bit-vectors. Similar tech-
niques can be used for signed numbers, in which case the interpretation becomes

S(b) = −bk−1 · 2k +
k−2∑
i=0

bi · 2i.

The bit-vector variables do not change but various constraints would interpret
them as signed or unsigned variables, like various computer instructions would
interpret memory words as signed or unsigned numbers. For instance, our con-
straint system in fact includes an signed operation EXTS in addition to its un-
signed counterpart EXTU. A dual representation and a channeling representation
can also be defined for the signed case. Moreover, the two interpretations can be
used simultaneously for different bit-vector variables in the same way as com-
puter programs can use both signed and unsigned integers.
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7 Related Work

The satisfiability community features a number of SMT solvers [9,8,10,14,16,21]
for bit-vectors (including Boolector or Beaver). They rely on SAT liter-
als to encode bit-vector constraints into a CNF formula. This technique is of-
ten referred to as bit-blasting as each bit of each bit-vector is encoded as a
boolean variable and the bit-vector constraints are encoded as propositional
clauses.

Mixed integer programming [7,23], constraint programming [20,22,4], or their
hybridizations [1] have also been considered to side-step the scaling issues arising
from bit-blasting. The approaches are also tempting given their potential to
model and efficiently reason with arithmetic constraints. Difficulties with MIP
and CP encodings typically stem from modulo arithmetic. Modular arithmetic
was considered in [15].

In a 2006 note [6], Bordeaux et al. described a channeling constraint between
a vector of 0-1 variables and an arithmetic constraint. The inference rules are
similar to those used in the membership constraint and they prove a result similar
to Theorem 3. This paper however proposes an algorithm that runs in time O(k)
in the worst case and stops at the first free bit (from the most significant bit
downwards) for which the inference rules do not apply. Bardin [4] outlines a bit-
list domain BL and provides O(k) algorithms for propagators. Their paper also
combines BL with interval lists domains. However, their implementation does
not exploit bit operations of the underlying architecture which allows for many
operations to run in time O(1) rather than O(k). Finally, while their propagator
for the sum runs in O(k), it does not achieve bit-consistency (See [4], page 9).
Papers that make use of bit-vectors to implement traditional finite domains, e.g.,
[19,17], are not related to the ideas developed here.

8 Conclusion

The paper introduced a new bit-vector domain for constraint programming mo-
tivated by applications in cryptography and verification. The domain supports
all the traditional bit operations and correctly models modulo-arithmetic and
overflows. Its implementation uses bit operations of the underlying architec-
ture, avoiding the drawback of a bit-blasting approach that associates a variable
with each bit. The filtering algorithms implement either domain consistency
or bit consistency, a new consistency notion introduced in this paper. Filter-
ing algorithms for logical and structural constraints run in constant time (when
the size of the bit-vector is not greater than the size of the largest machine
registers), while arithmetic constraints such as addition run in time linear in
the size of the bit-vectors. The paper also discusses how to channel bit-vector
variables with an integer variable. Future work on the domain will also study
how to integrate lazy clause generation in the domain, by explaining each con-
straint. This will ensure that the domain combines the advantages of existing
approaches.
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Jean-Noël Monette, Pierre Flener, and Justin Pearson

Uppsala University, Department of Information Technology, Uppsala, Sweden
{jean-noel.monette,pierre.flener,justin.pearson}@it.uu.se

Abstract. We present an extension to indexicals to describe propaga-
tors for global constraints. The resulting language is compiled into actual
propagators for different solvers, and is solver-independent. In addition,
we show how this high-level description eases the proof of propagator
properties, such as correctness and monotonicity. Experimental results
show that propagators compiled from their indexical descriptions are
sometimes not significantly slower than built-in propagators of Gecode.
Therefore, our language can be used for the rapid prototyping of new
global constraints.

1 Introduction

One of the main assets of constraint programming (CP) is the existence of nu-
merous filtering algorithms, called propagators, that are tailored specially for
global constraints and allow one to solve efficiently hard combinatorial prob-
lems. Successful CP solvers enable the definition of new constraints and their
associated propagators. However, it may be a tedious task to implement a propa-
gator that is correct, efficient, compliant with the specific interface of the solver,
and hand-coded in the solver’s implementation language, such as C++.

In this paper, we propose a solver-independent language to describe a large
class of propagators. Our contribution towards such a language is twofold.

First, we ease the implementation and sharing of propagators for constraints.
The propagators are described concisely and without reference to the implemen-
tation details of any solver. Implementations of propagators are generated from
their description. This allows one to prototype rapidly a propagator for a new
constraint, for which one has no built-in propagator or no (good enough) de-
composition; the generated propagator may even serve as a baseline for further
refinement. This also allows one to integrate an existing constraint into another
solver, as each solver can be equipped with its own back-end for the propagator
description language. We believe that such a language can play the same role for
sharing propagators between solvers as solver-independent modelling languages
play for sharing models between solvers.

Second, we ease the proof of propagator properties, such as correctness and
monotonicity. The higher level of abstraction of our propagator description lan-
guage allows us to design tools to analyse and transform a propagator. This
provides a method to apply systematically theoretical results on propagators.
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Our approach is based on the seminal work on indexicals [27]. In a nutshell,
an indexical defines a restriction on the domain of a decision variable, given
the current domains of other decision variables. Indexicals have been used to
implement user-defined constraints in various finite-domain systems, such as
SICStus Prolog [6]. While indexicals can originally only deal with constraints
of fixed arity, we extend them to deal with constraints of non-fixed arity (often
referred to as global constraints) by handling arrays of decision variables and
operations on such arrays (iteration and n-ary operators). Also, in contrast to
classical implementations of indexicals, indexicals are not interpreted here, but
compiled into instructions in the source language of the targeted solver.

The paper is structured as follows. After defining the relevant background
(Section 2) and presenting motivating examples of propagator descriptions in our
language (Section 3), we list our design decisions behind the language (Section 4).
Next we describe our language (Section 5), show how to analyse propagators
written in it (Section 6), discuss our current implementation (Section 7), and
experimentally evaluate it (Section 8). We end the paper with a review of related
work and a look at future research directions (Section 9).

2 Background

Let X be a set of integer decision variables that take values in some universe U ,
where U can be Z but is in practice a subset thereof. In a finite-domain (FD)
solver, a store is a mapping S : X → P(U), where P(U) is the power set of U . For
a variable x ∈ X , the set S(x) is called the domain of x and is the set of possible
values of x. A store S is an assignment if every variable has a singleton domain;
we say that such variables are ground. A store S is failed if some variable has an
empty domain. A store S is stronger than a store T (denoted by S 5 T ) if the
domain under S of each variable is a subset of its domain under T .

A constraint C(Y ) on a sequence Y over X is a restriction on the possible
values that these variables can take at the same time. The constraint C(Y ) is a
subset of Un, where n is the length of Y . An assignment A satisfies a constraint
C(Y ) if the sequence [v | {v} = A(y) ∧ y ∈ Y ] is a member of C(Y ). Given a
store S, a value v ∈ S(y) for some y ∈ Y is consistent with a constraint C if
there exists an assignment A 5 S with A(y) = {v} that satisfies C. A constraint
C is satisfiable in a store S if there exists an assignment A 5 S that satisfies C.
A constraint C is entailed in a store S if all assignments A 5 S satisfy C.

A checker for a constraint C is a function that tells if an assignment satisfies
C or not. A propagator for a constraint C is a function from stores to stores
whose role is to remove domain values that are not consistent (or inconsistent)
with C. We are here interested in writing propagators. In actual solvers, the
propagators are not returning a store but modifying the current store. There are
a number of desirable properties of a propagator:

– Correct : A correct propagator never removes values that are consistent with
respect to its constraint. This property is mandatory for all propagators.
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– Checking: A checking propagator decides if an assignment satisfies its con-
straint. This divides into singleton correctness (accept all satisfying assign-
ments) and singleton completeness (reject all non-satisfying assignments).

– Contracting: A propagator P is contracting if P (S) 5 S for all stores S.
– Monotonic: A propagator P is monotonic if S 5 T implies P (S) 5 P (T ) for

all stores S and T .
– Domain consistent (DC ): A DC propagator removes all inconsistent values.

Weaker consistencies exist, such as bounds consistency and value consistency.
– Idempotent : A propagator P is idempotent if P (S) = P (P (S)) for all stores

S. This allows an improved scheduling by the solver [22].

In addition, and for efficiency reasons, one aims at propagators with a low
time complexity. This is the reason why domain consistency is often replaced
by weaker consistencies. Another concern is to avoid executing a propagator
that cannot remove any value from the current store. Several mechanisms may
be implemented by propagators to avoid such executions: report idempotency,
report entailment, subscribe only to relevant modification events of the domains.

Indexicals were introduced in [27] to describe propagators for the cc(FD)
solver. An indexical (expression) is of the form x in σ, meaning that the do-
main of the decision variable x must be restricted to the intersection of its
current domain with the set σ; the set σ may depend on other variables, and
if so is computed based on their domains in the current store. An indexical is
executed whenever the domain of one of the variables appearing in σ is mod-
ified. A propagator is typically described by several indexicals, namely one for
each decision variable of the constraint. Indexicals have been included in several
other systems, featuring extensions such as checking indexicals [6], conditional
expressions [23], [6], and guards [28].

3 Examples of Propagator Descriptions

In this paper, we extend the syntax of indexicals to deal with arrays of decision
variables and operations on such arrays (iteration and n-ary operators). We
first present a few examples of propagator descriptions that showcase the main
features of our language. This will lead us to explain the decisions we made in
the design of the language, and a more precise definition of the language.

Figure 1 presents the Sum(X,N) constraint, which holds if the sum of the
values in the array X is equal to N . It is possible to describe several propagators
for a constraint, and to write an optional checker. In particular, we have here
two propagators: v1 uses the entire domains of the variables (e.g., dom(N)), while
v2 only uses their bounds (e.g., min(N)). A propagator description is comprised
of a set of indexicals. The domains of variables can be accessed using the four
functions dom, min, max, and val. Arithmetic operators can be applied on integers
as well as on sets. The sum operator is n-ary, as it operates on a sequence of values
of arbitrary length. The rng operator denotes the range of indices of an array,
and �..u the range of integers from � to u included. Line 9 reads as: “The domain
of N must be intersected with the range whose lower bound is the sum of the
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1 def SUM(vint[] X,vint N){

2 propagator(v1){

3 N in sum(i in rng(X))(dom(X[i]));

4 forall(i in rng(X)){

5 X[i] in dom(N) - sum(j in {k in rng(X):k!=i})(dom(X[j]));

6 }

7 }

8 propagator(v2){

9 N in sum(i in rng(X))(min(X[i])) .. sum(i in rng(X))(max(X[i]));

10 forall(i in rng(X)){

11 X[i] in min(N) - sum(j in {k in rng(X):k!=i})(max(X[j])) ..

12 max(N) - sum(j in {k in rng(X):k!=i})(min(X[j]));

13 }

14 }

15 checker{ val(N) = sum(i in rng(X))(val(X[i])) }

16 }

Fig. 1. Code for the Sum constraint, with two propagators

smallest values in the domains of all the variables in X, and whose upper bound
is the sum of the largest values in the domains of all the variables in X.” This
example also shows how to write loops (forall in lines 4–6 and 10–13).

Figure 2 presents the Exactly(X,N, v) constraint, which holds if exactly N
variables of the array X are equal to the given value v. This example illustrates
the use of conditions (when), boolean-to-integer conversion (b2i(false) = 0 and
b2i(true) = 1), and reference to other constraints (EQ and NEQ, constraining
a variable to be respectively equal to, and different from, a given value). The
functions entailed and satisfiable check the status of a constraint given the
current domains of the variables, while post invokes a propagator of the given
constraint. Lines 3–4 restrict the domain of N to be between two bounds. The
lower bound is computed as the number of variables in X that must be assigned
to v, and the upper bound as the number of variables that may be assigned to
v. The body of the loop removes v from the domain of a variable (lines 6–9),
or fixes a variable to v (lines 10–13), when some conditions involving the other
variables are respected. The domain modifications are performed by invoking
the propagation of other constraints.

4 Language Design Decisions

The language, as showcased in the previous section and defined more precisely
in the next section, has been designed according to the following decisions.

The language is based on indexicals. Indexicals have already been used suc-
cessfully in several solvers, and a fair amount of work has been done to deal with
their use and properties, e.g. in [5] and [9]. Also, indexicals are very simple to
understand and are often very close to the first reasoning one might come up
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1 def EXACTLY(vint[] X, vint N, int v){

2 propagator{

3 N in sum(i in rng(X))(b2i(entailed(EQ(X[i], v)))) ..

4 sum(i in rng(X))(b2i(satisfiable(EQ(X[i], v))));

5 forall(i in rng(X)){

6 once(val(N) <=

7 sum(j in {j in rng(X):i!=j})(b2i(entailed(EQ(X[j], v))))){

8 post(NEQ(X[i], v));

9 }

10 once(val(N) >

11 sum(j in {j in rng(X):i!=j})(b2i(satisfiable(EQ(X[j], v))))){

12 post(EQ(X[i], v));

13 }

14 }

15 }

16 checker{ val(N) = sum(i in rng(X))(b2i(val(X[i]) = v)) }

17 }

Fig. 2. Code for the Exactly constraint

with when thinking about a propagator. One of the restrictions that we currently
preserve is that indexicals are stateless, hence we cannot describe advanced prop-
agators, such as a DC propagator for the AllDifferent constraint [19]. This
is quite a strong limitation, but a choice must be made between the simplicity
of the language and the intricacy of the propagators. However, a large number
of constraints have efficient enough stateless propagators.

The language is strongly typed, in order to simplify the understanding and
compilation of propagators. This requires the addition of the b2i operator.

We introduce arrays and n-ary operators to deal effectively with global con-
straints. For example, the expression sum(i in rng(X))(val(X[i])) is para-
metrised by the looping index (i here), its domain (rng(X) here), and the index-
dependent expression (val(X[i]) here) that must be aggregated (summed here).

We also introduce meta-constraints, constraint invocation, and local variables
in order to help write concise propagators. See Section 5 for details.

For simplicity of use, we want only a few different operators and language
constructs. This also allows us to have a relatively simple compilation procedure.
However it is not impossible that some new constructs will be added in the future,
but with care.

For generality (in the FD approach), we refrain from adding solver-specific
hooks. In particular, our language only has four accessors (see Section 5) to
the domain of a variable. The other communication channels with a solver are
domain narrowing functions, which are provided by any FD solver, and a fail
mechanism (which can be mimicked by emptying a domain).

Our language is also missing some constructs that are found in the imple-
mentation of constraints, such as entailment detection, watched literals [13], and
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fine-grained events [15]. Part of our future work will be dedicated to studying
how these can be included without overcomplicating the language.

5 Definition of the Language

In Section 5.1, we define the syntax and semantics of our language. It is strongly
typed and has five basic types: integers (int), booleans (bool), sets of integers
(set), integer decision variables (vint), and constraints (cstr). This last type
is discussed in Section 5.2. We support arrays of any basic type (but currently
not arrays of arrays). Identifiers of (arrays of) decision variables start with an
uppercase letter. Identifiers of constants denoting integers, booleans, sets, and
arrays thereof start with a lowercase letter.

5.1 Syntax and Semantics

Figure 3 presents the grammar of our language. We now review the different
production rules. The main rule (CSTR) defines a constraint. A constraint is
defined by its name and list of arguments. A constraint definition also contains
the description of one or more propagators and an optional checker.

A propagator has an optional identifier and contains a list of instructions.
An instruction (INSTR) can be an indexical, x in σ, whose meaning is that the
domain of the decision variable x must be restricted to the intersection of its
current domain with the set σ. Other instructions are fail and post. The effect
of fail is to transform the current store into a failed store. The instruction
post(C,P) invokes the propagator P of constraint C; if P is not specified, then
the first (or only) propagator of C is invoked. There are two control structures.
The forall control structure creates an iteration over a set, and once creates
a conditional block; the reason for not naming the latter if is to stress that
propagators should be monotonic, and that once the condition becomes true, it
should remain true. See Section 6 for a discussion on monotonicity.

Most of the rules on sets, integers, and booleans do not need any explanations
or were already explained in Section 3. Some constants are defined: univ denotes
the universe U , inf its infimum, sup its supremum, and emptyset the empty
set. Arithmetic operations on integers are lifted as point-wise operations to sets.

There are four accessors to the domain of a decision variable: dom(x), min(x),
max(x), and val(x) denote respectively the domain of decision variable x, its
minimum value, its maximum value, and its unique value. As val(x) is only
determined when the decision variable x is ground, the compiler must add guards
to ensure a correct treatment when x is not ground.

While the instruction post invokes the propagator of another constraint, the
functions entailed, satisfiable, and check query the status of another con-
straint. Let S be the current store: entailed(c) and satisfiable(c) decide
whether the constraint c is entailed (respectively, satisfiable) in S; if S is an
assignment, then the function check(c) can be called and decides whether S
satisfies the constraint c (an example will be given in the next sub-section).
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CSTR ::= def CNAME(ARGS){ PROPAG+ CHECKER?)}
PROPAG ::= propagator(PNAME?){ INSTR* }
CHECKER ::= checker{ BOOL }
INSTR ::= VAR in SET ; | post(CINVOKE,PNAME?); | fail; |

once(BOOL){ INSTR* } | forall(ID in SET){ INSTR* }
SET ::= univ | emptyset | ID | INT..INT | rng(ID) | dom(VAR) |

NSETOP(ID in SET)(SET) | -SET | SET BSETOP SET |

{INT+} | {ID in SET:BOOL}
INT ::= inf | sup | NUM | ID | card(SET)| min(SET) | max(SET) |

min(VAR) | max(VAR) | val(VAR) | - INT | INT BINTOP INT |

b2i(BOOL) | NINTOP(ID in SET)(INT)

BOOL ::= true | false | ID | INT INTCOMP INT | INT memberOf SET |

SET SETCOMP SET | not BOOL | BOOL BBOOLOP BOOL |

NBOOLOP(ID in SET)(BOOL) |

entailed(CINVOKE) | satisfiable(CINVOKE) | check(CINVOKE)

BINTOP ::= + | − | ∗ | / | mod

NINTOP ::= sum | min | max

BSETOP ::= union | inter | minus | + | − | ∗ | / | mod

NSETOP ::= union | inter | sum

INTCOMP ::= = | ! = | <= | < | >= | >
SETCOMP ::= = | subseteq

BBOOLOP ::= and | or | =
NBOOLOP ::= and | or

CINVOKE ::= CNAME | CNAME(ARGS)

Fig. 3. BNF-like grammar of our language. Constructions in grey were already in
previous definitions of indexicals [27], [6]. The rules corresponding to ARGS (list of
arguments), CNAME, PNAME, ID, VAR (respectively identifier of a constraint, propagator,
constant, and variable), and NUM (integer literal) are not shown.

5.2 Meta-constraints

A new feature of our language is what we call a meta-constraint, which is a
constraint that takes other constraint(s) as argument(s). Meta-constraints allow
one to write more concise propagators by encapsulating common functionalities.

For example, the Among(X,N, s) constraint, which holds if there are N ele-
ments in array X that take a value in set s, would be described almost identi-
cally to the Exactly(X,N, v) constraint in Figure 2. The common code can be
factored out in the meta-constraint COUNT(vint[] X, vint N, cstr C, cstr

NC), whose full description is not shown here, but whose meaning is defined by its
checker: val(N) = sum(i in rng(X))(b2i(check(C(X[i])))), that is exactly
N variables of the array X satisfy constraint C. The argument NC is the negation
of constraint C (see [3] for how to negate even global constraints), and is used
in the propagator of Count (in the way NEQ is used on line 8 of Figure 2).
We can then describe Exactly and Among as shown in Figure 4. The Count

meta-constraint is closely related to the cardinality operator [25] but we allow
the user to describe more meta-constraints.
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def EXACTLY(vint[] X, vint N, int v){

propagator{

cstr EQv(vint V):= EQ(V,v);

cstr N_EQv(vint V):= NEQ(V,v);

post(COUNT(X,N,EQv,N_EQv));

}

}

def AMONG(vint N, vint[] X, set s){

propagator{

cstr INs(vint V):= INSET(V,s);

cstr NINs(vint V):= NOTINSET(V,s);

post(COUNT(X,N,INs,NINs));

}

}

Fig. 4. Exactly and Among, described using the Count meta-constraint

6 Syntactic Analysis and Tools

One of our objectives is to ease the proof of propagator properties. Before turning
to the actual compilation, we show how our language helps with this, and with
other propagator-writing related functionalities.

6.1 Analysis

Among the properties of a propagator presented in Section 2, most are difficult
to prove for a given propagator (except contraction, which indexicals satisfy
by definition). However, as has been shown in [5], it is possible to prove the
monotonicity of indexicals. This result can be lifted to our more general language.
We show further how to prove the correctness of some propagators with respect
to their constraints.

Monotonicity. The procedure to check the monotonicity of indexicals is com-
bined with the addition of guards for val accesses. The syntax tree representing
the indexicals is traversed by a set of mutually recursive functions. To ensure
monotonicity of the whole propagator, each function verifies an expected be-
haviour of the subtree it is applied on. The recursive functions are labelled
monotonic, anti-monotonic, and fixed for boolean expressions; increasing, de-
creasing, and fixed for integer expressions; growing, shrinking, and fixed for set
expressions; and monotonic for instructions. For instance, the increasing func-
tion verifies that its integer expression argument is non-strictly increasing when
going from a store to a stronger store. These functions return two values: whether
the expression is actually respecting its expected behaviour, and the set of vari-
ables that need to be ground to ensure a safe use of the val accessor. This set of
variables is used to add guards in the generated propagator. Those guards are
added not only to instructions, but also inside the body of b2i expressions.

For lack of space, we cannot exhibit all the rules that make up the recursive
functions (there are about 200 rules). Instead we show a few examples. As an
example of a rule, consider the call of the function increasing on an expression
of the form min(i in σ)(e). For this expression to be increasing, σ must be
shrinking and e must be increasing. In addition, the set of variables to guard
is the union of the variables that must be ground for those two subexpressions.
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The table below shows some examples of the results of the procedure. In this
table, ground(x) represents an operator (not part of our indexical language)
that decides if variable x is ground. The second column shows where guards
are added to indexicals. The third column reports if the indexical is proven
monotonic or not.

Original expression Guarded expression Mono
X in {val(Y)} once(ground(Y)) X in {val(Y)} true
B in b2i(val(X)=v) ..

ab2i(v memberOf dom(X))

B in b2i(ground(X) and val(X)=v) ..

abcdefghxijkl b2i(v memberOf dom(X))

true

once(min(B)=1) X in {v} once(min(B)=1) X in {v} false
once(min(B)>=1)X in {v} once(min(B)>=1) X in {v} true
once(val(B)=1) X in {v} once(ground(B) and val(B)=1)X in {v} true

The first line just adds a guard to the indexical. The second line shows that a
guard can be added inside a b2i expression so that it returns 0 while X is not
ground. The three last lines show how small variations change the monotonic-
ity of an expression. The condition min(B)=1 is (syntactically) not monotonic,
because in general this condition might be true in some store and become false
in a stronger store; however if we know that B represents a boolean (with do-
main 0..1), then we can replace the equality by an inequality as done in the
fourth example. The last line shows another way to get monotonicity, namely by
replacing the min accessor by val; this requires the addition of a guard.

The soundness of the monotonicity checking procedure can be shown by in-
duction on the recursive rules, as suggested in [5]. However, as this procedure
is syntactical, it is incomplete. An example of propagator for Eq(X,Y ) that is
monotonic but not recognised as such is given on the left of Figure 5. The proce-
dure does not recognise the monotonicity because it requires the sets over which
the forall loops iterate to be growing (because the indexical expressions that
are applied on a store must also be applied on a stronger store), while dom(x)
can only shrink. However, this is not the simplest way to describe propagation for
this constraint: a 2-line propagator can be found on the upper right of Figure 5.

Correctness. To prove algorithmically that a propagator is correct with respect
to its constraint, we use the known fact that a propagator is correct if it is
singleton-correct and monotonic. We devise an incomplete but sound procedure
to prove that a propagator P is singleton-correct with respect to its checker C,
and hence with respect to its constraint (assuming the checker is correct). We
need to prove that if an assignment satisfies C, then it is not ruled out by P .
To this end, from the indexical description of P , we derive a formula C(P ) that
defines which assignments are accepted by the propagator. Singleton correctness
then holds if the formula C ∧ ¬C(P ) is unsatisfiable (i.e., if C ⇒ C(P )). To
derive C(P ), we transform the indexicals into an equivalent checking formula
using the following rewrite rules:
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1 def EQ(vint X1, vint X2){

2 propagator{

3 forall(i in dom(X1)){

4 once(not i memberOf dom(X2)){

5 X1 in univ minus {i};

6 }

7 }

8 forall(i in dom(X2)){

9 once(not i memberOf dom(X1)){

10 X2 in univ minus {i};

11 }

12 }

13 }

14 }

1 def EQ(vint X, vint Y){

2 propagator{

3 X in dom(Y);

4 Y in dom(X);

5 }

6 checker{ val(X) = val(Y) }

7 }

1 def EQ(vint X, int cY){

2 propagator{

3 X in {cY};

4 once(not cY

5 memberOf dom(X))

6 fail;

7 }

8 checker{ val(X) = cY }

9 }

Fig. 5. Variations of the Eq constraint

dom(x) → {val(x)} x in σ → val(x) memberOf σ
min(x) → val(x) once(b){y} → (not b) or y
max(x) → val(x) forall(i in σ){y} → and(i in σ)(y)
fail → false

Our current procedure to prove the unsatisfiability of C ∧ ¬C(P ) tries to
simplify the formula to false using rewrite rules. We implemented around 240
rewrite rules, ranging from boolean simplification (e.g., false or b→ b) to inte-
ger and set simplification (e.g., min(i in �..u)(i)→ �) and partial evaluation
(e.g., 2 + x+ 3→ x+ 5). As this procedure is incomplete and able to prove sin-
gleton correctness only for a small portion of the propagators (see Section 7.2),
we plan to improve it by calling an external prover.

As an example, applying the propagator-to-checker transformation on the
propagator on the upper right of Figure 5 results in the formula val(X) memberOf

{val(Y)} and val(Y) memberOf {val(X)}. This formula can be shown equiv-
alent to the checker of the constraint (using the following rules: x memberOf {y}
→ x = y, b and b→ b, and b and not b→ false). In summary, this propaga-
tor can be automatically proven monotonic, singleton correct, singleton complete
(see below), and therefore correct and checking.

Checking. The approach to proving correctness can also be used to prove that a
propagator is checking. Indeed, singleton completeness is shown by proving the
implication C(P )⇒ C (the converse of singleton correctness), and a propagator
that is singleton-correct and singleton-complete is checking (i.e., C(P )⇔ C).
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6.2 Transformation

In addition to the analysis, we can algorithmically transform a propagator. We
have devised two first transformations that seem of interest: changing the level
of reasoning, and grounding some decision variables.

Changing the level of reasoning. As shown in the Sum example (Figure 1), a
propagator can be described to use different levels of reasoning according to the
amount of data it uses:

– Under domain reasoning, the whole domains of decision variables may be
used to perform propagation.

– Under bounds reasoning, only the bounds of the domains are used (i.e., the
dom accessor does not appear).

– Under value reasoning, no propagation is performed until some variables are
ground (i.e., only the val accessor is used).

A few remarks are necessary here. First, the level of reasoning can be distinct
for the different variables of a constraint. Second, those levels of reasoning are
not directly linked to the usual notions of consistency (domain, bounds, or value
consistency). Indeed, using the dom accessor does not provide any guarantee
of domain consistency. Conversely some propagators that do not use dom may
achieve domain consistency. Third, the level of reasoning is also distinct from
the level of narrowing of variables, which is how propagation affects the domain
of variables, i.e., if it only updates the bounds, or if it can create holes.

It is possible to change the level of reasoning from a strong level to a weaker
one, i.e., from domain reasoning to bounds reasoning, and from bounds reasoning
to value reasoning. All one has to do is to replace the appearances of dom(x)
by min(x)..max(x), and of min(x) and max(x) by val(x). This allows one to
describe one propagator, and have for free up to three different implementations
that one may try and compare.

Variable grounding. Another propagator transformation is the grounding of some
variables, that is the replacement of a variable argument by a constant (or of an
array of variables by an array of constants). Again, this allows one to describe
only one propagator for the general case and then specialise it to specific cases.
For instance, one might want to derive a propagator for the EQ(vint,int) con-
straint from the one of EQ(vint,vint). The transformation is close in spirit to
the computation of the equivalent checking formula of a propagator presented
in Section 6.1. The transformation is however only applied to one variable (the
one being grounded). The most interesting rewrite rule is that if variable x is
replaced by a constant c, then x in σ is replaced by once(not c memberOf σ)
fail. Most of the time this check is redundant with the other instructions of the
propagator (as in the example on the lower right of Figure 5, where lines 4–6
check a condition enforced by line 3). However, we have not found yet a general
and cheap way to tell when this instruction is indeed redundant. Currently, it is
the responsibility of the user to remove it if he wants to.
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7 Compilation

We now discuss our compiler design decisions and our current compiler.

7.1 Compiler Design Decisions

Instead of interpretation, we made the decision to compile our language into the
language in which propagators are written for a particular solver. This has the
double advantage of having an infrastructure that is relatively independent of
the solvers (only the code generation part is solver-dependent), and of having
compiled code that is more efficient than interpreted code. The generated code
is also self-contained (it can be distributed without the compiler).

The compiled propagators are currently stateless (as are indexical propaga-
tors) and use coarse-grained wake-up events. This choice is meant to simplify the
compilation. However, upon a proper analysis, it should be possible to produce
propagators that incorporate some state or use more fine-grained events.

The compilation produces one propagator for each propagator description.
The compilation does not alter the order of the indexicals inside a propagator.
Furthermore, to get idempotency, the full propagator is repeated until it reaches
its internal fixpoint. Another valid choice would have been to create a propagator
for each indexical, and let the solver perform the scheduling. We have not evalu-
ated all the potential trade-offs of this choice. An intermediate approach would
be to analyse the internal structure of the propagator description to generate
a good scheduling policy of the indexicals inside the propagator. This requires
substantially more work and is left as future work.

The invocations of propagators (post) or checkers (check) are replaced by the
corresponding code. This is similar to function inlining in classical programming
languages. For the functions entailed and satisfiable, the description of the
corresponding checker is first transformed in order to deal with stores that are
not assignments. This is done by about 130 rewrite rules forming a recursive
procedure similar to the one for monotonicity checking. As a difference, the val
accessors are replaced by min, max, or dom when possible, or are properly guarded
otherwise. For example, calling the shrinking function on the singleton {val(x)}
returns dom(x), but calling the growing function adds a guard instead. Entail-
ment requires a monotonic boolean formula, and satisfiability an antimonotonic
formula. For example, the generated satisfiability checker of EQ(X,Y) is not

dom(X) inter dom(Y) = emptyset. In turn, the generated entailment checker
of EQ(X,Y) is ground(X) and ground(Y) and val(X)=val(Y).

The choice of inlining constraint invocations greatly simplifies the compilation
process. However, this means that all referenced constraints must be described
by indexicals. We plan to explore how we can remove this limitation in order to
be able to invoke propagators built into the targeted solver.

7.2 Implementation and Target Solvers

We have written a prototype compiler in Java. It uses Antlr [18] for the pars-
ing and StringTemplate [17] for the code generation. Currently, we compile into
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propagators for Comet [10], Gecode [12], and Scampi [21]. A big part of the
compilation process amounts to rewriting the n-ary operators as loops. Some
optimisations are performed, such as a dynamic programming pre-computation
of arrays (replacing nested loops by successive loops) [24, Section 9] and the fac-
torisation of repeated expressions. The compiler detects the events that should
wake up the propagator; this is performed by walking the syntax tree and gath-
ering the variable accessors. The compiler also adds entailment detection to the
propagator of constraint c, by testing if entailed(c) is true.

Currently, we have written about 700 lines of indexicals for describing 76
propagators of 48 constraints, of which 14 are meta-constraints, 17 are global
constraints, and 17 are binary or ternary constraints. Out of the 76 propaga-
tors, 69 are proven monotonic, of which 16 are proven singleton-correct and 29
are proven singleton complete, making 16 propagators provably correct. These
numbers could be improved with a better unsatisfiability proof procedure.

To get an idea of the conciseness of the language, note that our compiler
produces from the 17-line description of Exactly in Figure 2 a propagator for
Comet that is about 150 lines of code, and one for Gecode of about 170 lines.
We estimate the code for the built-in propagator of this constraint to be around
150 lines of code in Gecode.

The current prototype, as well as the propagator descriptions, are available
on demand from the first author.

8 Experimental Evaluation

To assess that propagators described by indexicals behave reasonably well, we
compare a few generated propagators with built-in propagators of Gecode and
simple constraint decompositions. We do not expect the generated propagators
to be as efficient as the hand-crafted ones, but the goal is to show that they
are a viable alternative when one has little time to develop a propagator for a
constraint.

Our experimental setting is as follows. We use Gecode 3.7.3. For each con-
straint, we search for all its solutions. We repeat the search using several branch-
ing heuristics to try and exercise as many parts of the propagators as possible.

The studied constraints are Sum, Maximum, Exactly, and Element. Their
indexical descriptions are representative of the other constraints we implemented.
In addition, they share the property that one of the variables is functionally
dependent on the other ones. This allows us to compare the different propagators
of a constraint with a dummy problem where the constraint is absent but the
functionally dependent variable is instead fixed to an arbitrary value. As the
considered constraint is only defining the functional dependency, the number of
solutions is the same and the size of the search tree is the same, but the time
spent by propagation is null. We can then compute the runtime of a propagator
by subtracting the total runtimes.

For Sum and Maximum, we use bounds-reasoning versions of the indexicals
and built-in propagators; for Exactly and Element, we use domain-reasoning
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Table 1. Relative runtimes (in percent)

Maximum abSumcd Exactly Element

Built-in 100 100 100 100
Indexicals 125 269 252 118
Decomposition 195 296 313 204
Automaton 675 n/a n/a 487

versions. The indexical descriptions of Sum and Exactly are shown in Figures 1
(v2) and 2 respectively. For space reasons, Maximum and Element are not
shown. The decompositions of Sum(X,N) and Maximum(X,N) introduce an
array A of n = ‖X‖ auxiliary variables. The decomposition of Sum is expressed
as A[1] = X [1]∧∀i∈2..n (A[i− 1] + X [i] = A[i])∧A[n] = N , and the one of Maxi-

mum is A[1] = X [1]∧∀i∈2..n (max(A[i − 1], X [i]) = A[i])∧A[n] = N . The decom-
position of Exactly(X,N, v) introduces an array B of boolean variables and is
defined as ∀i∈1..n (B[i] ≡ X [i] = v)∧N =

∑
i∈1..n B[i]; the sum of boolean vari-

ables is implemented by a built-in propagator. The Element(X,Y, Z) constraint
(holding if X [Y ] = Z) is decomposed into Y ∈ 1..n∧∀i∈1..n (Y = i⇒ X [i] = Z).
Additionally, we use the automaton formulations of Maximum and Element,
given in the Global Constraint Catalogue [4]. The automata of Maximum and
Element and the decomposition of Element do not perform all the possible
pruning (while the other decompositions do so, at least under the used heuris-
tics). This incurs an overhead of about 15% more nodes visited for the automata,
and 7% for the decomposition of Element.

Table 1 presents the relative runtimes of the different implementations of the
constraints for arrays of 9 variables over domains of 9 values. The used search
heuristics are some combinations of the variable ordering (order of the arguments
of the constraints, and within an array the smallest or the largest domain first)
and of the value ordering (assign the minimum, split in two, assign the median).
For each constraint and each propagator, the runtimes are summed over the dif-
ferent search heuristics. Then the sum of the times to explore the search tree is
subtracted. Finally, for each constraint, the sum of the times of each propagator
is divided by the sum of the times of the Gecode built-in propagator. Compared
to the built-in propagators, the generated propagators induce only a small over-
head for Maximum and Element, but do not behave so well for Sum and
Exactly. However, in all cases, the indexicals have a better runtime than the
decomposition, though sometimes only slightly. In particular, for the Exactly

constraint, the decomposition has a better runtime for some smaller instances
(not shown). We explain the behaviour of the indexicals on this constraint by
the fact that it is awakened each time the domain of a variable changes, even
though some variables might not affect the constraint status anymore. The built-
in propagator and the decomposition are more clever and ignore the variables
that cannot take the given value anymore. The indexicals have a much better
runtime than the automata.
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The propagators compiled from indexicals have an average runtime per call
that (necessarily) increases linearly with the number of variables. The runtimes
of the built-in propagators increase also but with a much gentler slope.

These experiments show that indexical descriptions of global constraints are
useful, but that there is still room for improvement in the compilation.

9 Conclusion

We have presented a solver-independent language to describe propagators. The
aim is to ease the writing and sharing of propagators and to make proving their
formal properties much easier. The resulting language, based on indexicals, is
high-level enough to abstract away implementation details and to allow some
analyses and transformations. It is compiled into source code for target solvers.

The idea of letting the user write his own propagators is not new. The sys-
tem cc(FD) [27] is one of the first to have proposed this, through the use of
indexicals. Since then, most CP solvers claim to be open, in the sense that any
user can add new propagators (especially for global constraints) to the kernel
of built-in propagators. In such systems, the user writes code in the host pro-
gramming language of the solver and integrates it with the solver through an
interface defining mainly how to interact with the variables and the core of the
solver. Some solvers take a quite different approach and propose a language to
define propagation, examples include constraint handling rules [11] and action
rules [28]. Our language is a level of abstraction above those approaches, as it
can be translated into code for any solver. From this point of view, it is close
in spirit to what a solver-independent modelling language is to solvers: a layer
above solvers to describe easily problem models, which are then compiled into
the solver input language. In our case, propagators are described, not models.

Propagators have also been described using atomic constraints and propaga-
tion rules [8]. However, that description language has been devised to reason
about propagators, and it is not practical for actually implementing propaga-
tors in FD solvers, except for approaches based on SAT solvers that use such
low-level constraints (e.g., lazy-clause generation [16]).

The pluggable constraints of [20] also decouple the implementation of con-
straints from the solver architecture, using a solver-independent interface for
the communication between the two components. Our approach aims at a higher
level of abstraction, possibly losing some fine control.

This paper opens several interesting research directions, in addition to those
already listed in Sections 4 and 7.1 for overcoming initial design decisions: the
language needs to allow better control of the propagation algorithm while staying
simple and general. Simplicity is important, as we believe that having automated
propagator analysis tools eases the writing of propagators.

Future compilation targets are other FD solvers (e.g., Choco [7] and Ja-
CoP [14]), lazy-clause generators in SAT [16], cutting plane generators in MIP [1],
and penalty functions or invariants in constraint-based local search [26], [2].
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Abstract. Many real world problems involve multiple criteria that
should be considered separately and optimized simultaneously. A
Multi-Objective Constraint Optimization Problem (MO-COP) is the ex-
tension of a mono-objective Constraint Optimization Problem (COP).
In a MO-COP, it is required to provide the most preferred solution for
a user among many optimal solutions. In this paper, we develop a novel
Interactive Algorithm for MO-COP (MO-IA). The characteristics of this
algorithm are as follows: (i) it can guarantee to find a Pareto solution,
(ii) it narrows a region, in which Pareto front may exist, gradually, (iii)
it is based on a pseudo-tree, which is a widely used graph structure in
COP algorithms, and (iv) the complexity of this algorithm is determined
by the induced width of problem instances. In the evaluations, we use an
existing model for representing a utility function, and show empirically
the effectiveness of our algorithm. Furthermore, we propose an extension
of MO-IA, which can provide the more detailed information for Pareto
front.

1 Introduction

Many real world optimization problems involve multiple criteria that should be
considered separately and optimized simultaneously. A Multi-Objective Con-
straint Optimization Problem (MO-COP) [7, 8, 9, 16] is the extension of a
mono-objective Constraint Optimization Problem (COP) [4, 18]. A COP is a
problem to find an assignment of values to variables so that the sum of the re-
sulting rewards is maximized. A MO-COP is a COP involves multiple criteria.
In a MO-COP, generally, since trade-offs exist among objectives, there does not
exist an ideal assignment, which maximizes all objectives simultaneously. There-
fore, we characterize the optimal solution of a MO-COP using the concept of
Pareto optimality. Solving a MO-COP is to find the Pareto front. The Pareto
Front is a set of reward vectors obtained by Pareto solutions. An assignment is
a Pareto solution, if there does not exist another assignment that improves all
of the criteria. A COP and a MO-COP can be represented using a constraint
graph, in which a node represents a variable and an edge represents a constraint.

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 561–576, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



562 T. Okimoto et al.

Various complete algorithms have been developed for solving a MO-COP,
e.g., Russian Doll Search algorithm (MO-RDS) [17], Multi-objective AND/OR
Branch-and-Bound search algorithm (MO-AOBB) [8], and MultiObjective
Bucket Elimination (MO-BE) [16]. In a MO-COP, even if a constraint graph
has the simplest tree structure, the size of the Pareto front, i.e., the number of
Pareto solutions, is often exponential in the number of reward vectors. In such
MO-COP problems, finding all Pareto solutions is not real. On the other hand,
several incomplete algorithms have been developed for solving a MO-COP, e.g.,
Multi-Objective Mini-Bucket Elimination (MO-MBE) [16], Multi-objective Best-
First AND/OR search algorithm (MO-AOBF) [9], and Multiobjective A∗ search
algorithm (MOA∗) [15]. MO-MBE computes a set of lower bounds of MO-COPs.
MO-AOBF and MOA∗ compute a relaxed Pareto front using ε-dominance [14].

Various algorithms have been developed for solving a Multi-Objective Opti-
mization Problem (MOOP) [1, 2, 3, 5, 11]. In a MOOP, a variable takes its
value from a continuous domain, while a variable takes its value from a discrete
domain in a MO-COP. In this paper, we focus on a MO-COP.

An Aggregate Objective Function (AOF) [12, 13] is the simplest and the
most widely used classical method to find the Pareto solutions of a MOOP. This
method scalarizes the set of objective functions into a weighted mono-objective
function, and find an optimal solution. It is well known that an optimal solution
obtained by AOF is a Pareto solution of the original MOOP problem [13]. If
Pareto front is convex, AOF guarantees to find all Pareto solutions. Otherwise,
it cannot find Pareto solutions in non-convex region. In our research, we use
AOF to find the Pareto solutions of a MO-COP.

In this paper, we develop a novel Interactive Algorithm for MO-COPs (MO-
IA). Our algorithm finds a set of Pareto solutions and narrows a region, in which
Pareto front may exist, gradually. Our algorithm utilizes a graph structure called
a pseudo-tree, which is widely used in COP algorithms. The complexity of our al-
gorithm is determined by the induced width of problem instances. Induced width
is a parameter that determines the complexity of many COP algorithms.We eval-
uate our algorithm using a Constraint Elasticity of Substitution (CES) utility
function [10], which is widely used in many economic textbooks representing util-
ity functions, and show empirically the effectiveness of our algorithm. Further-
more, we propose an extension of MO-IA, which finds several Pareto solutions so
that we can provide a narrower region, in which Pareto front may exist, i.e., we
can provide the more detailed information for Pareto front. As far as the authors
aware, there exists virtually no work on interactive algorithms for a MO-COP,
although various MO-COP algorithms have been developed [8, 9, 15, 16, 17].

Our proposed algorithm is similar to Physical Programming (PP) [11] and
Directed Search Domain algorithm (DSD) [5]. However, these are interactive
algorithms for MOOPs, while our algorithm is for MO-COPs. If we apply PP
and DSD to MO-COPs, there is no guarantee to find a Pareto solution. On
the other hand, our algorithm can always find a Pareto solution. Furthermore,
compared to evolutionary algorithms [1, 3] for solving a MOOP, the advantage
of our algorithm is that our algorithm guarantees to find a Pareto solution.
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Xi Xj r (Xi,Xj)
a a 1
a b 2
b a 3
b b 0x2

x1

x3 x4

Fig. 1. A mono-objective COP with four
variables. The optimal solution of this
problem is {(x1, a), (x2, b), (x3, a), (x4, a)}
and the optimal value is eight.

Xi Xj (r  , r  )
a a (1,0)
a b (2,3)
b a (3,2)
b b (0,1)x2

x1

x3 x4

1 2

Fig. 2. A bi-objective COPwith four vari-
ables. The Pareto solutions of this prob-
lem are {{(x1, b), (x2, a), (x3, b), (x4, b)},
{(x1, a), (x2, b), (x3, a), (x4, a)}}, and the
Pareto front is {(7, 8), (8, 7)}.

About application domains of MO-COP, we believe design/configuration tasks
would be promising. For a simple toy example, we can consider Build to Order
Custom Computers, where one can configure their own PC by choosing various
options, e.g., CPU clock, memory size, hard drive size, operating system, and
monitor size, considering multiple criteria, e.g., cost, performance, and required
space.

The remainder of this paper is organized as follows. Section 2 provides some
preliminaries on COPs, MO-COPs, AOF, and an existing model for represent-
ing a utility function. Section 3 introduces our interactive algorithm for MO-
COPs, and Section 4 evaluates our algorithm using an existing model described
in Section 2. Furthermore, we provides the extension of our algorithm. Section 5
concludes this paper and gives future works.

2 Preliminaries

In this section, we briefly describe the formalizations of Constraint Optimiza-
tion Problems (COPs) and Multi-objective Constraint Optimization Problems
(MO-COPs), which is the extension of a mono-objective COP. Also, we show an
Aggregate Objective Function (AOF), which is the most widely used classical
method to find a Pareto solution. Furthermore, we introduce a Constraint Elas-
ticity of Substitution (CES) utility function and an indifference curve that are
widely used in many economic textbooks representing utility functionsD

2.1 Mono-Objective Constraint Optimization Problem

A Constraint Optimization Problem (COP) [4, 18] is a problem to find an assign-
ment of values to variables so that the sum of the resulting rewards is maximized.
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A COP is defined by a set of variables X , a set of binary constraint relations
C, and a set of binary reward functions F . A variable xi takes its value from a
finite, discrete domain Di. A binary constraint relation (i, j) means there exists
a constraint relation between xi and xj . For xi and xj , which have a constraint
relation, the reward for an assignment {(xi, di), (xj , dj)} is defined by a binary
reward function ri,j : Di ×Dj → R. For a value assignment to all variables A,
let us denote

R(A) =
∑

(i,j)∈C,{(xi,di),(xj,dj)}⊆A

ri,j(di, dj). (1)

Then, an optimal assignment A∗ is given as argmaxA R(A), i.e., A∗ is an assign-
ment that maximizes the sum of the value of all reward functions, and an optimal
value is given by R(A∗). A COP can be represented using a constraint graph, in
which nodes correspond to variables and edges correspond to constraints.

A pseudo-tree is a special graph structure, which is widely used in COP algo-
rithms. In a pseudo-tree, there exists a unique root node, and each non-root node
has a parent node. The pseudo-tree contains all nodes and edges of the original
constraint graph, and the edges are categorized into tree edges and back edges.
There are no edges between different subtrees. For each node xi, we denote the
parent node, ancestors, and children of xi as follows:

– pi: the parent node, which is connected to xi through a tree edge.
– PPi: a set of the ancestors which are connected to xi through back edges.
– Ci: a set of children which are connected to xi through tree and back edges.

Example 1 (COP). Figure 1 shows a mono-objective COP with four variables
x1, x2, x3 and x4. r(xi, xj) is a binary reward function where i < j. Each variable
takes its value assignment from a discrete domain {a, b}. The optimal solution
of this problem is {(x1, a), (x2, b), (x3, a), (x4, a)}, and the optimal value is eight.

2.2 Multi-Objective Constraint Optimization Problem

A Multi-Objective Constraint Optimization Problem (MO-COP) [7, 8, 9, 16] is
the extension of a mono-objective COP. A MO-COP is defined by variables X =
{x1, . . . , xn}, multi-objective constraints C = {C1, . . . , Cm}, i.e., a set of sets
of binary constraint relations, and multi-objective functions O = {O1, . . . , Om},
i.e., a set of sets of objective functions (binary reward functions). A variable xi

takes its value from a finite, discrete domain Di. A binary constraint relation
(i, j) means there exists a constraint relation between xi and xj . For an objective
l (1 ≤ l ≤ m), variables xi and xj , which have a constraint relation, the reward
for an assignment {(xi, di), (xj , dj)} is defined by a binary reward function rli,j :
Di ×Dj → R. For an objective l and a value assignment to all variables A, let
us denote

Rl(A) =
∑

(i,j)∈Cl,{(xi,di),(xj ,dj)}⊆A

rli,j(di, dj). (2)
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Then, the sum of the values of all reward functions for m objectives is defined by
a reward vector, denoted R(A) = (R1(A), . . . , Rm(A)). To find an assignment
that maximizes all objective functions simultaneously is ideal. However, in gen-
eral, since trade-offs exist among objectives, there does not exist such an ideal
assignment. Therefore, we characterize the optimal solution of a MO-COP using
the concept of Pareto optimality.

Definition 1 (Dominance). For a MO-COP and two reward vectors R(A) and
R(A′), we call that R(A) dominates R(A′), denoted by R(A′) ≺ R(A), iff R(A′)
is partially less than R(A), i.e., (i) it holds Rl(A′) ≤ Rl(A) for all objectives l,
and (ii) there exists at least one objective l, such that Rl(A′) < Rl(A).

Definition 2 (Pareto solution). For a MO-COP and an assignment A, we
call that A is the Pareto solution, iff there does not exist another assignment A′,
such that R(A) ≺ R(A′).

Definition 3 (Pareto Front). For a MO-COP, we call a set of reward vectors
obtained by Pareto solutions as the Pareto front.

Solving a MO-COP is to find the Pareto front. A MO-COP can be also rep-
resented using a constraint graph as a COP. In this paper, we assume that all
reward values are non-negative.

Example 2 (MO-COP). Figure 2 shows a bi-objective COP, which is an ex-
tension of a mono-objective COP in Fig. 1. Each variable takes its value from a
discrete domain {a, b}. The Pareto solutions of this problem are {{(x1, b), (x2, a),
(x3, b), (x4, b)}, {(x1, a), (x2, b), (x3, a), (x4, a)}}, and the Pareto front is {(7, 8),
(8, 7)}, which is a set of reward vectors obtained by these Pareto solutions.

2.3 Aggregate Objective Function

An Aggregate Objective Function (AOF) [12, 13] is the simplest and the most
widely used classical method to find the Pareto solutions of a MOOP. This
method scalarizes the set of objective functions into a weighted mono-objective
function and find an optimal solution. For objective functions o1, . . . , om of a
MOOP, we define a weight denoted by α = (α1, . . . , αm), where

∑
1≤i≤m αi =

1, αi > 0. Next, we make a weighted mono-objective function α1o
1+ . . .+αmom,

and find the optimal solution. Then, the following theorem holds:

Theorem 1 (AOF). For a MOOP, an optimal solution A∗ obtained by AOF
is a Pareto solution of the original problem.

It is well known that AOF can guarantee to find all Pareto solutions, if Pareto
front is convex. Otherwise, it cannot find all Pareto solutions. In this paper, we
use this method to find the Pareto solutions of a MO-COP. Theorem 1 holds
also for MO-COPs. We omit the proof due to space limitations.
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Fig. 3. Indifference curves
of Cobb-Douglas function
for a bi-objective COP

Fig. 4. Indifference curves
of Leontief function for a
bi-objective COP

Fig. 5. Indifference curves
I1 and I2 intersect at
point A

2.4 Constraint Elasticity of Substitution Utility Function

A Constraint Elasticity of Substitution (CES) utility function [10] is a function
which is widely used in many economic textbooks representing utility functionsD
A CES utility function has the form

u(x1, . . . , xm) = (α1x
p
1 + . . .+ αmxp

m)1/p, (3)

where
∑

1≤i≤m αi = 1, αi > 0, p < 1. Linear, Cobb-Douglas and Leontief
functions are special cases of the CES utility function. For example, as p → 1,
the CES utility function becomes a linear function

u(x1, . . . , xm) = α1x1 + . . .+ αmxm. (4)

As p→ 0, the CES utility function becomes Cobb-Douglas function

u(x1, . . . , xm) = xα1

1 × . . .× xαm
m . (5)

As p→ −∞, the CES utility function becomes Leontief function

u(x1, . . . , xm) = min(x1, . . . , xm). (6)

2.5 Indifference Curves

The indifference curve [10, 19] shows the various combinations of goods that
make a person equally satisfied. 1 For example, two different pairs, e.g., a pair
of 10 compact discs and 150 candy bars, and a pair of 12 compact discs and 130
candy bars, are on the same indifference curve means that a person has a same
utility, whichever pair he/she chooses.

Example 3 (Indifference curves). Figure 3 and 4 show indifference curves of
Cobb-Douglas and Leontief functions for a bi-objective COP, respectively. On
the graphs, o1 represents quantity of goods, e.g., compact discs, while o2 rep-
resents quantity of goods, e.g., candy bars. A person is equally satisfied at any
point along a given curve, i.e., each point brings the same utility.

1 For m ≥ 3 goods (objectives), we can consider an indifference surface.
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The following are the typical properties of indifference curves:

– Indifference curves are convex to the origin.
– Indifference curves cannot intersect each other.
– Higher indifference curves represents higher utility.

The first property is derived from the principle called diminishing marginal rate
of substitution [19]. As a person substitutes good o1 for good o2, the marginal
rate of substitution diminishes as o1 for o2 along an indifference curve. The slope
of the curve is referred as the marginal rate of substitution. The marginal rate
of substitution is the rate at which a person must sacrifice units of one good to
obtain one more unit of another good.

We show the second property by contradiction. Assume that the indifference
curves I1 and I2 intersect at point A (see Fig. 5). That would mean that a person
is indifferent between A and all points on I1. In particular, he/she would be
indifferent between A and B, between A and C, and accordingly between B and
C. However, since B involves higher values of both objective functions than C,
B is clearly preferred to C. Thus, indifference curves cannot intersect each other.
Furthermore, for the third property, since the combination of goods which lies
on a higher indifference curve will be preferred by a person to the combination
which lies on a lower indifference curve, the higher indifference curve represents
a higher utility/satisfaction.

3 Interactive Algorithm for MO-COP

In this section, we develop a novel Interactive Algorithm for MO-COP (MO-IA).
This algorithm finds a set of Pareto solutions and narrows a region, in which
Pareto front may exist, gradually. First, we find optimal solutions of weighted
mono-objective functions using AOF. Then, we provide a user with an optimal
value and a region, in which Pareto front may exist. A user determines whether
he/she is satisfied by the Pareto solution. If he/she is satisfied, our algorithm
terminates. Otherwise, he/she chooses a preference point in the region, in which
Pareto front may exist. Next, we find a point (a reward vector obtained by a
Pareto solution) in the region that is closest to the user’s preference point by
using a distance defined in our algorithm, and update the region, in which Pareto
front may exist. Then, as a new information, we provide the user with a set of
Pareto solutions and a new narrower region, in which Pareto front may exist.
We continue this process until the user will be satisfied by at least one of the
provided Pareto solutions.

3.1 Interactive Algorithm

Our algorithm has three phases:

Phase 1: For each objective function, find an optimal solution.
Phase 2: For a weighted mono-objective function, find the optimal solution.
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Phase 3: Find a point in a region that is closest to a user’s preference point.

Let us describe Phase 1. We use AOF to find an optimal solution for each objec-
tive function, respectively. Specifically, for m objective functions of a MO-COP,
we give the following m weights (1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1) and
make the m weighted objective functions o1, . . . , om. Then, we find an optimal
solution for each weighted mono-objective function oi (1 ≤ i ≤ m), respectively,
i.e., it is equivalent to solve m COP problems independently. In this paper, we
denote the obtained m optimal values as R1

max, . . . , R
m
max.

In Phase 2, we use AOF and make a weighted mono-objective function where
each weight has a same value. Then, we find the optimal solution. Specifically,
for m objective functions of a MO-COP, we make the following weighted mono-
objective function, denoted π, giving the weights α1 = 1

m , . . . , αm = 1
m , and find

the optimal solution.

π :
1

m
o1 + . . .+

1

m
om (7)

Let A∗ be an optimal solution of a weighted mono-objective function π. By
Theorem 1, A∗ is a Pareto solution of the original problem. In this paper, we call
this Pareto solution as a candidate solution. For optimal values R1

max, . . . , R
m
max

obtained by Phase 1 and a candidate solution A∗ obtained by Phase 2, let A
be an another Pareto solution, and let R(A) be a reward vector obtained by A
which is different from R(A∗). Then, the following theorem holds.

Theorem 2. For reward vectors R(A∗) and R(A), it holds:
(1)
∑m

l=1 R
l(A) ≤

∑m
l=1 R

l(A∗).
(2) ∃l : Rl(A∗) < Rl(A) ≤ Rl

max.

Proof. Since A∗ is an optimal solution of a weighted mono-objective function π,
it holds

1

m
R1(A) + . . .+

1

m
Rm(A) ≤ 1

m
R1(A∗) + . . .+

1

m
Rm(A∗). (8)

Also, there exists no reward vector that dominates a reward vector on π.
Next, we show that it holds ∃l : Rl(A∗) < Rl(A) ≤ Rl

max. Since Rl
max is a

reward vector obtained by an optimal solution of the objective function ol, it
holds Rl(A) ≤ Rl

max. Furthermore, we show that it holds ∃l : Rl(A∗) < Rl(A) by
contradiction. Assume that ∀l : Rl(A∗) ≥ Rl(A) holds. Since A∗ is a candidate
solution, i.e., Pareto solution, and R(A) is a reward vector which is different from
R(A∗), there exists at least one objective l, such that Rl(A∗) > Rl(A). Then,
it holds R(A) ≺ R(A∗) by Definition 1, i.e., R(A∗) dominates R(A). However,
since A is a Pareto solution, i.e., there exist no reward vector that dominates
R(A), this is a contradiction. Thus, it holds ∃l : Rl(A∗) < Rl(A).

Example 4. Figure 6 shows a region, in which the Pareto front of a bi-objective
COP may exist. The x-axis represents the rewards for objective 1 and the y-axis
represents those for objective 2. R1

max and R2
max are reward vectors obtained in
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Fig. 6. A region, in which the Pareto
front of a bi-objective COP may exist

Fig. 7. A new region which is narrower
compared to the region in Fig. 6

Phase 1. The line π represents a weighted mono-objective function, and R(A∗)
is a reward vector obtained by a candidate solution A∗ in Phase 2. Let R(A) be
a reward vector obtained by a Pareto solution, which is different from R(A∗).
By Theorem 2, R(A) exists in the region under a function π. Furthermore, it
holds R1(A∗) < R1(A) or R2(A∗) < R2(A). Also, since R1(A) ≤ R1

max and
R2(A) ≤ R2

max must be hold, R(A) exists in the region S1 or S2.

A user determines whether he/she is satisfied by a candidate solution obtained
in Phase 2. If he/she is satisfied, our algorithm terminates. Otherwise, he/she
chooses a point in a region, in which Pareto front may exist. We call the point
as a user’s preference point and denote it by Ru(= (R1

u, . . . , R
m
u )).

Let us describe Phase 3. We find a point in a region that is closest to a
user’s preference point. Specifically, for a reward vector R(A) obtained by an
assignment A and a user’s preference point Ru, we define the distance between
R(A) and Ru as follows:

dis(R(A), Ru) = f(R1(A), R1
u) + . . .+ f(Rm(A), Rm

u ),

∀l : f(Rl(A), Rl
u) =

{
Rl

u −Rl(A) (Rl
u ≥ Rl(A))

−εl(Rl(A) −Rl
u) (Rl

u < Rl(A))
, (9)

where εl is small enough. In Phase 3, we find an assignmentA so that the distance
between a reward vector R(A) and a user’s preference point is minimal. Strictly
speaking, the distance function is non-linear. However, the term −εl(Rl(A)−Rl

u)
is used only for a tie-breaker. We can easily encode this metric in standard MO-
COP algorithms.

We show the procedure of MO-IA (Phase 3) in Algorithm 1. In our algorithm,
we assume that a pseudo-tree based on total ordering x1, . . . , xn is given, where
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Algorithm 1. MO-IA (Phase 3)

MO-IA(X,D,O)
1 Given : Ru // user’s preference point on π
2 JOIN1 = null,. . . ,JOINn = null
3 for each i = n, . . . , 1
4 if i is a leaf then
5 JOINi = Rpi

i ⊕ (
⊕

h∈PPi
Rh

i ) // join all reward tables
6 Compute argmin

a
dis(R(a),Ru) for each a in combination of assignments of

pi and PPi

7 JOINi = JOINi⊥xi // use projection to eliminate xi

8 else
9 JOINi = Rpi

i ⊕ (
⊕

h∈PPi
Rh

i )⊕ (
⊕

j∈Ci
JOINj)

10 Compute argmin
a

dis(R(a),Ru) for each a in combination of assignments of

pi and PPi

11 JOINi = JOINi⊥xi // use projection to eliminate xi

12 end if
13 end for

x1 is a root node. The ⊕ operator is the operator to join two reward tables
and the

⊕
operator is the operator to join all reward tables. The ⊥x operator

is the projection to eliminate x. JOINi represents a reward table maintained
by a node xi. Also, R

pi

i and Rh
i represent the reward tables between a node xi

and its parent node pi, and its ancestor h ∈ PPi, respectively. Our algorithm
processes bottom-up, which starts from the leaves and propagates upwards only
through tree edges (line 3). If xi is a leaf node, xi joins all reward tables it has
with its ancestor using

⊕
operator, and the reward table it has with its parent

using ⊕ operator (line 5). Then, for each combination of assignments of pi and
PPi, we compute an assignment so that the distance from a user’s preference
point is minimal (line 6). We use the ⊥ operator to eliminate xi from the reward
table JOINi (line 7). If xi is not a leaf node, we access the reward tables of its
children, and join the following reward tables Rpi

i , Rh
i , and all JOINj∈Ci (line

9). Then, we conduct the same process we did for a leaf node (line 10 and 11).
In this algorithm, each node chooses an assignment so that the distance from
a user’s preference point is minimal. Thus, for an assignment to all variables
A, the distance between the reward vector R(A) obtained by A and a user’s
preference point is minimal. This is because we deal with maximization MO-
COPs. We omit the proof due to space limitations. For an assignment obtained
by our algorithm, the following theorem holds.

Theorem 3. An assignment obtained by MO-IA is a Pareto solution.

Proof. Let A∗ be an assignment obtained by our algorithm and R(A∗) be a
reward vector obtained by A∗. We show that there exists no assignment A, such
that R(A∗) ≺ R(A). Assume that ∃A : R(A∗) ≺ R(A) holds. By Definition 1, it
holds (i) ∀l : Rl(A∗) ≤ Rl(A) and (ii) ∃l : Rl(A∗) < Rl(A). Let Ru be a user’s
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preference point. By (i), when Rl
u ≥ Rl(A), the following holds for all objectives:

f(Rl(A), Rl
u) = Rl

u −Rl(A) ≤ Rl
u −Rl(A∗) = f(Rl(A∗), Rl

u). (10)

Otherwise, i.e., when Rl
u < Rl(A), it holds

f(Rl(A), Rl
u) = −εl(Rl(A)−Rl

u) ≤ −εl(Rl(A∗)−Rl
u) = f(Rl(A∗), Rl

u). (11)

By (ii), when Rl
u ≥ Rl(A), the following holds at least one objective:

f(Rl(A), Rl
u) < f(Rl(A∗), Rl

u). (12)

Otherwise, i.e., when Rl
u < Rl(A), it holds

f(Rl(A), Rl
u) < f(Rl(A∗), Rl

u). (13)

Thus, it holds dis(R(A), Ru) < dis(R(A∗), Ru). However, dis(R(A∗), Ru) is min-
imal. This is a contradiction. Thus, A∗ is a Pareto solution.

In Phase 3, we can obtain a Pareto solution that gives the closest point to a
user’s preference point. It means that there exists no Pareto front within the
distance from a user’s preference point to a point obtained by Phase 3. Thus,
the new region, in which the Pareto front may exist, is the remaining region
obtained from the original region removing the region within this distance.

Example 5. Figure 7 shows a new region, in which the Pareto front may exist.
R(A) represents a reward vector obtained by our algorithm (Phase 3). Since
there exists no Pareto solution within the distance dis(R(A), Ru), a new region
is the region obtained by removing the region enclosed by π and S′2 from the
original region. The new region is narrower compared to that in Fig. 6.

Let a Pareto solution obtained by Phase 3 be a new candidate solution. A user
determines whether he/she is satisfied by at least one of the two candidate
solutions, i.e., the first candidate solution obtained by Phase 2 or a new candi-
date solution. If he/she is satisfied, our algorithm terminates. Otherwise, he/she
chooses a new preference point in the new narrower region, in which Pareto front
may exist. We conduct the Phase 3 repeatedly, i.e., we compute a set of candidate
solutions and the narrowed regions, in which Pareto front may exist, until the
user is satisfied by at least one of the candidate solutions. Since our algorithm
repeatedly narrows the region where the Pareto front can exist, we can expect
that it converges after a finite number of iterations. However, there exists a
pathological case where the algorithm repeats infinitely. This happens when the
user’s preference is Leontief, which is very different from our distance function.
To guarantee the terminating of this algorithm, we need to set a threshold value,
where the user terminates the iteration when a possible maximal improvement
becomes less than the threshold.
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Complexity
Our algorithm MO-IA is time O(e×m× |D|w∗+1) and space O(n×m× |D|w∗

),
where n is the number of variables, m is the number of objectives, |D|(= |D1| =
, . . . ,= |Dn|) is the domain size, w∗ is the induced width, e is the number of
constraints. The complexity of MO-IA is determined by the induced width of a
problem instance. Induced width is a parameter that determines the complexity
of many COP algorithms. Specially, if a problem instance has the tree structure,
i.e., the induced width is one, the complexity of MO-IA is constant.

4 Evaluations

In this section, we evaluate our algorithm using CES utility functions. Specifi-
cally, we define the following four users that have different utility functions, and
examine the number of the required iterations for each user until our algorithm
terminates.

User 1: Linear utility function.
User 2: CES utility function where the parameter p is 0.5.
User 3: Cobb-Douglas utility function.
User 4: Leontief utility function.

Let us explain how we examine the number of the required iterations. First,
we compute a candidate solution and a region, in which Pareto front may exist.
Then, we determine a user’s preference point, which is the intersection of a utility
function and a weighted mono-objective function. If he/she is satisfied by the
candidate solution, our algorithm terminates. Then, the number of the required
iterations is one. Otherwise, we find a Pareto solution that gives the closest point
to a user’s preference point, and let this solution be a new candidate solution.
Next, using indifference curves of the user, we determine a new user’s preference
point in the region, in which Pareto front may exist, i.e., Pareto front without
the computed candidate solutions. If he/she is satisfied by at least one of the
candidate solutions, our algorithm terminates, and the number of the required
iterations is increased by one. We continue this process until he/she will be
satisfied, and examine how many iterations are required for each user.

Let us describe termination conditions of our algorithm. For a MO-COP, a
user’s preference point Ru(= (R1

u, . . . , R
m
u )), and a reward vector R(A) obtained

by one of the candidate solutions, a user is satisfied, if the following holds:

∃A : u(R1
u, . . . , R

m
u ) ≤ u(R1(A), . . . , Rm(A)), (14)

i.e., termination conditions for user 1, 2, 3 and 4 are as follows:

Termination conditions for user 1

∃A :
m∑
l=1

αlR
l
u ≤

m∑
l=1

αlR
l(A) (15)
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Table 1. Number of required iterations
in bi-objective COPs

Nodes User 1 User 2 User 3 User 4

10 2.5 1.6 2.1 25.3

20 2.5 2.0 1.9 17.4

30 2.6 2.2 1.8 12.8

40 2.8 2.3 1.6 13.4

50 2.8 2.5 1.7 12.9

60 2.9 2.3 1.5 11.1

70 2.9 2.3 1.5 11.9

80 2.9 2.5 1.4 11.5

90 2.8 2.5 1.2 12.5

100 2.8 2.6 1.3 10.4

Table 2. Number of required iterations
in tri-objective COPs

Nodes User 1 User 2 User 3 User 4

10 2.4 2.3 2.3 44.4

20 2.2 2.1 2.4 33.0

30 2.2 2.2 2.3 46.8

40 2.2 2.7 2.2 36.7

50 2.4 2.3 2.0 43.6

60 2.2 2.6 2.1 38.8

70 2.3 2.6 2.0 40.7

80 2.4 2.5 2.0 30.5

90 2.3 2.3 2.0 41.8

100 2.3 2.4 2.0 42.9

Termination conditions for user 2

∃A :
m∑
l=1

αl

√
Rl

u ≤
m∑
l=1

αl

√
Rl(A) (16)

Termination conditions for user 3

∃A :

m∏
l=1

(Rl
u)

αl ≤
m∏
l=1

(Rl(A))αl (17)

Termination conditions for user 4

∃A ∀l : Rl
u ≤ Rl(A) (18)

In our evaluations, the domain size of each variable is two, and we chose the
reward value uniformly at random from the range [0,. . . ,10] for all objectives. We
generate bi/tri-objective COP problem instances randomly, and determine the
parameter α of CES utility functions random for each problem instance. For each
objective, we generate the same constraint graph. The number of constraints is
given by |X | ∗ |O|, where |X | and |O| are the number of variables and objectives.
The results represent an average of 50 problem instances. For the parameter of
the distance in Phase 3, we set that εl is 0.001 for all l.

The experimental results for bi-objective COPs are summarized in Table 1.
For 10 nodes, the number of required iterations for user 1, 2 and 3 are 2.5, 1.6
and 2.1, respectively. These results are almost unchanged, when the number of
nodes increases. For 100 nodes, the number of required iterations for user 1, 2
and 3 are 2.8, 2.6 and 1.3, respectively. We can see that our algorithm satisfies
the preferences of user 1, 2 and 3 with few iterations. We consider that this
is because the “closest” solution defined by our algorithm are almost same as
the “closest” solution that user 1, 2 and 3 think. For user 4, the number of
required iterations are significantly increased compared to those for other users.
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In Table 1, the number of required iterations are 25.3 for 10 nodes and 10.4 for
100 nodes. We consider that this is because there exists a divergence between the
“closest” solution defined by our algorithm and that user 4 thinks. Furthermore,
for user 4, the number of the required iterations decreases, when the number of
nodes increases. The number of the required iterations 10.4 for 100 nodes are
less than half of that for 10 nodes. We consider that this is because the solution
space of bi-objective COPs becomes dense, when the number of nodes increases.

We confirmed the similar results for tri-objective COPs. The experimental
results are summarized in Table 2. For 10 nodes, the number of required iter-
ations for user 1, 2 and 3 are 2.4, 2.3 and 2.3, respectively. These results are
almost unchanged, when the number of nodes increases. For user 4, the num-
ber of required iterations are significantly increased compared to those for other
users. The number of required iterations for user 4 increases compared to those
for bi-objective COPs. We consider that this is because the Pareto solutions
are sparse in tri-objective COPs compared to that in bi-objective COPs. Fur-
thermore, we do not see any direct relationship between the number of nodes
and the required iterations in Table 2. We consider that this is because Pareto
solutions in three dimensional tri-objective COPs are still sparse for 100 nodes,
while Pareto solutions in two dimensional bi-objective COPs becomes dense.

In summary, these experimental results reveal that our algorithm is effective
for user 1, 2 and 3, i.e., CES utility functions where the parameter p is between
0 and 1. However, for user 4, the number of the required iterations are signif-
icantly increased compared to those for other users. Our future works include
performing more detailed analysis, e.g., examining the relationships between the
size of Pareto front and the number of nodes/objectives. Furthermore, we hope
to examine the performance of our algorithm based on the utilities of real people
by experiments with human subjects.

Let us propose a method to reduce the number of the required iterations for
a user who has Leontief utility function. In the evaluations, our algorithm re-
quired a large number of iterations for user 4. We propose the following method
to improve the results for user 4. First, we estimate a coefficient α of an utility
function from a user’s preference point. Next, if our algorithm does not termi-
nate in a constant number of the required iterations, we assume that a user has
Leontief utility function using the estimated α. Then, we compute Pareto front
repeatedly without asking a user until the required iterations converge. We ex-
amined the number of the required iterations for user 4 using this method. We
used the same problem instances in section 4, i.e., 50 bi-objective COP problem
instances and 50 tri-objective COP problem instances. We set a constant number
of the required iterations to three. Our algorithm terminated, when the number
of the required iterations was four.

Extended MO-IA

We propose an extension of our algorithm, which finds several Pareto solutions
so that we can provide a narrower region, in which Pareto front may exist, i.e.,
more detailed information for Pareto front. When we consider an interaction
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in the real world, it is natural to provide several candidate solutions. Also, a
narrower region is desirable. We extend the Phase 3 of our algorithm as follows.

Phase 3’ : Determine additional virtual (preference) points which are different
from a user’s preference point, and find a Pareto solution that is closest to
each point, respectively.

In our original algorithm, we find a candidate solution and provide a region,
in which Pareto front may exist, gradually. On the other hand, the extended
algorithm finds several candidate solutions and provides a narrower region. The
narrower region is obtained from the original region removing a region within
each distance between a preference point and the corresponding candidate solu-
tion. For the virtual preference points, for example, we choose the intersections
(P1 and P2) of function π and the border of the removed region in Fig. 7.

5 Conclusions

We developed a novel interactive algorithm for a MO-COP. This algorithm finds
a set of Pareto solutions and narrows a region, in which Pareto front exist, gradu-
ally. Furthermore, we showed that the complexity of our algorithm is determined
by the induced width of problem instances. In the evaluations, we defined four
users using a CES utility function, and examined the number of required itera-
tions for each user. We showed empirically that our algorithm is effective for the
users, who have linear and Cobb-Douglas utility functions. Finally, we proposed
a method that can reduce the number of the required iterations for a user, who
has Leontief utility function. Also, we proposed an extension of MO-IA, which
finds several Pareto solutions so that we can provide a narrower region, in which
Pareto front may exist. As future works, we intend to apply our algorithm on
challenging real world problems. Furthermore, we will develop an interactive
algorithm for a multi-objective DCOP, which is formalized in [6].

References

[1] Bringmann, K., Friedrich, T., Neumann, F., Wagner, M.: Approximation-guided
evolutionary multi-objective optimization. In: Proceedings of the 22nd Interna-
tional Joint Conference on Artificial Intelligence, pp. 1198–1203 (2011)

[2] Das, I., Dennis, J.E.: Normal-boundary intersection: a new method for generating
the Pareto surface in nonlinear multicriteria optimization problems. SIAM Journal
on Optimization 8(3), 631–657 (1998)

[3] Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evolutionary Computation 6(2), 182–
197 (2002)

[4] Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers (2003)
[5] Erfani, T., Utyuzhnikov, S.V.: Directed search domain: a method for even gen-

eration of the Pareto frontier in multiobjective optimization. Engineering Opti-
mization 43(5), 467–484 (2010)



576 T. Okimoto et al.

[6] Fave, F.M.D., Stranders, R., Rogers, A., Jennings, N.R.: Bounded decentralised
coordination over multiple objectives. In: Proceedings of the 10th International
Conference on Autonomous Agents and Multiagent Systems, pp. 371–378 (2011)

[7] Junker, U.: Preference-based inconsistency proving: When the failure of the best
is sufficient. In: Proceedings of the 17th European Conference on Artificial Intel-
ligence, pp. 118–122 (2006)

[8] Marinescu, R.: Exploiting Problem Decomposition in Multi-objective Constraint
Optimization. In: Gent, I.P. (ed.) CP 2009. LNCS, vol. 5732, pp. 592–607.
Springer, Heidelberg (2009)

[9] Marinescu, R.: Best-first vs. depth-first and/or search for multi-objective con-
straint optimization. In: Proceedings of the 22nd IEEE International Conference
on Tools with Artificial Intelligence, pp. 439–446 (2010)

[10] Mas-Colell, A., Whinston, M.D., Green, J.R.: Microeconomic Theory. Oxford Uni-
versity Press (1995)

[11] Messac, A., Mattson, C.: Generating well-distributed sets of Pareto points for en-
gineering design using physical programming. Optimization and Engineering 3(4),
431–450 (2002)

[12] Messac, A., Puemi-sukam, C., Melachrinoudis, E.: Aggregate objective functions
and Pareto frontiers: Required relationships and practical implications. Optimiza-
tion and Engineering 1(2), 171–188 (2000)

[13] Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer Academic Publish-
ers, Boston (1999)

[14] Papadimitriou, C.H., Yannakakis, M.: On the approximability of trade-offs and
optimal access of web sources. In: Proceedings of the 41st Annual Symposium on
Foundations of Computer Science, pp. 86–92 (2000)

[15] Perny, P., Spanjaard, O.: Near admissible algorithms for multiobjective search.
In: Proceedings of the 18th European Conference on Artificial Intelligence, pp.
490–494 (2008)

[16] Rollon, E., Larrosa, J.: Bucket elimination for multiobjective optimization prob-
lems. Journal of Heuristics 12(4-5), 307–328 (2006)

[17] Rollon, E., Larrosa, J.: Multi-objective Russian doll search. In: Proceedings of the
22nd AAAI Conference on Artificial Intelligence, pp. 249–254 (2007)

[18] Schiex, T., Fargier, H., Verfaillie, G.: Valued constraint satisfaction problems:
Hard and easy problems. In: Proceedings of the 14th International Joint Confer-
ence on Artificial Intelligence, pp. 631–639 (1995)

[19] Stiglitz, J.E.: Economics. W.W.Norton & Company (1993)



FOCUS: A Constraint for Concentrating High Costs

Thierry Petit

TASC (Mines Nantes, LINA, CNRS, INRIA),
4, Rue Alfred Kastler, FR-44307 Nantes Cedex 3, France

Thierry.Petit@mines-nantes.fr

Abstract. Many Constraint Programming models use integer cost variables ag-
gregated in an objective criterion. In this context, some constraints involving ex-
clusively cost variables are often imposed. Such constraints are complementary
to the objective function. They characterize the solutions which are acceptable in
practice. This paper deals with the case where the set of costs is a sequence, in
which high values should be concentrated in a few number of areas. Representing
such a property through a search heuristic may be complex and overall not precise
enough. To solve this issue, we introduce a new constraint, FOCUS(X, yc , len ,
k), where X is a sequence of n integer variables, yc an integer variable, and
len and k are two integers. To satisfy FOCUS, the minimum number of distinct
sub-sequences of consecutive variables in X , of length at most len and that in-
volve exclusively values strictly greater than k, should be less than or equal to yc .
We present two examples of problems involving FOCUS. We propose a complete
filtering algorithm in O(n) time complexity.

1 Introduction

Encoding optimization problems using Constraint Programming (CP) often requires to
define cost variables, which are aggregated in an objective criterion. To be comparable,
those variables have generally a totally ordered domain. They can be represented by
integer variables. In this context, some constraints on cost variables are complementary
to the objective function. They characterize the solutions which are acceptable in prac-
tice. For instance, to obtain balanced solutions several approaches have been proposed:
Balancing constraints based on statistics [6,11], as well as classical or dedicated cardi-
nality constraints when the set of costs is a sequence [9,8]. Some applications of these
techniques are presented in [12,7]. Representing such constraints, as well as solving
efficiently the related problems, form an important issue because real-life problems are
rarely “pure”. In this context, CP is a well-suited technique. CP is generally robust to
the addition of constraints, providing that they come up with filtering algorithms which
impact significantly the search process.

Conversely to balancing constraints, in some problems involving a sequence of cost
variables, the user wishes to minimize the number of sub-sequences of consecutive
variables where high cost values occur.

Example 1. We consider a problem where some activities have to be scheduled. Each
activity consumes an amount of resource. The total amount of consumption at a given
time is limited by the capacity of the machine that produces the resource. If the time
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window where activities have to be scheduled is fixed, in some cases not all the activities
can be scheduled, because there is not enough quantity of resource to perform all the
activities on time. Assume that, in this case, we rent a second machine to solve the
problem. In practice, it is often less costly to rent such a machine within a package, that
is, during consecutive periods of time. If you rent the machine during three consecutive
days, the price will be lower than the price of three rentals of one day in three different
weeks. Moreover, such packages are generally limited, e.g., the maximum duration of
one rental is one week. If you exceed one week then you need to sign two separate
contracts. Thus, to satisfy the end-user, a solution should both limit and concentrate the
exceeds of resource consumption, given a maximum rental duration. �

In Example 1, a solution minimizing the exceeds with many short and disjoint rental
periods will be more expensive for the end-user than a non-minimum solution where
rentals are focused on a small number of periods. Such a constraint cannot be easily
simulated with a search strategy, a fortiori when the duration of packages is limited.
Furthermore, to solve instances, search heuristics are generally guided by the under-
lying problem (in Example 1, the cumulative problem). Our contribution is a generic,
simple and effective way to solve this issue. It comes in two parts.

1. A new constraint, FOCUS(X, yc , len , k), where X is a sequence of integer vari-
ables, yc an integer variable, and len and k two integer values. yc limits the number
of distinct sub-sequences in X , each of length at most len , involving exclusively
values strictly greater than k. More precisely, the minimum possible number of
such sub-sequences should be less than or equal to yc , while any variable in X
taking a value v > k belongs to exactly one sub-sequence.

2. A O(n) Generalized Arc-Consistency (GAC) filtering algorithm for FOCUS.

Section 2 defines the FOCUS constraint. Section 3 presents two examples of use. In
section 4, we present the O(n) complete filtering algorithm for FOCUS. Section 5 intro-
duces some variations of FOCUS, namely the case where len is a variable and the case
where the constraint on the variable yc is more restrictive. We discuss the related work
and propose an automaton-based reformulation of FOCUS. Our experiments, in Sec-
tion 7, show the importance of providing FOCUS with a complete filtering algorithm.

2 The FOCUS Constraint

Given a sequence of integer variables X = 〈x0, x1, . . . , xn−1〉 of length |X | = n, an in-
stantiation of X is a valid assignment, i.e., a sequence of values I[X ]=〈v0, v1, . . . vn−1〉
such that ∀j ∈ {0, 1, . . . , n− 1}, vj belongs to D(xj), the domain of xj .

Definition 1 (FOCUS). Given X = 〈x0, x1, . . . , xn−1〉, let yc be an integer variable
such that 0 ≤ yc ≤ |X |, len be an integer such that 1 ≤ len ≤ |X |, and k ≥ 0 be
an integer. Given an instantiation I[X ] = 〈v0, v1, . . . vn−1〉, and a value vc assigned
to yc , FOCUS(I[X ], vc, len , k) is satisfied if and only if there exists a set S of disjoint
sequences of consecutive variables in X such that three conditions are all satisfied:
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1. Number of sequences: |S| ≤ vc
2. One to one mapping of all values strictly greater than k:
∀j ∈ {0, 1, . . . , n− 1}, vj > k ⇔ ∃si ∈ S such that xj ∈ si

3. Length of a sequence in S: ∀si ∈ S, 1 ≤ |si| ≤ len .

If len = |X |, yc limits the number of disjoint maximum length sequences where all
the variables are assigned with a value strictly greater than k. Otherwise, len limits the
length of the sequences counted by yc . Example 2 illustrates the two cases.

Example 2. Let I[X ] = 〈1, 3, 1, 0, 1, 0〉. FOCUS(I[X ], 〈2〉, 6, 0) is satisfied since we
can have 2 disjoint sequences of length ≤ 6 of consecutive variables with a value > 0,
i.e., 〈x0, x1, x2〉, and 〈x4〉. FOCUS(I[X ], 〈2〉, 2, 0) is violated since it is not possible to
include all the strictly positive variables in X with only 2 sequences of length≤ 2. �

3 Examples of Use

Constraints and Music. An important field in musical problems is automatic com-
position and harmonization. In many cases, the end-user wishes to obtain the maxi-
mum length sequences of measures where her rules are minimally violated. We con-
sider the example of the sorting chords problem [5,13]. The goal is to sort n distinct
chords. A chord is a set of at most p notes played simultaneously. p can vary from
one chord to another. The sort should reduce as much as possible the number of notes
changing between two consecutive chords. The musician may be particularly inter-
ested by large sub-sequences of consecutive chords where there is at most nchange
different notes between two consecutive chords, and thus she aims at concentrating
high changes in a few number of areas. We represent the sequence by n variables
Chords = 〈ch0, ch1, . . . , chn−1〉, such as each variable can be instantiated with any of
the chords. The constraint ALLDIFF(Chords) [10] imposes that all chi’s are pairwise
distinct. nchange is at least 1. Therefore, we define the cost between two consecu-
tive chords in the sequence as the number of changed notes less one. It is possible
to compute that cost for each pair of chords (the number of costs is n × (n − 1)/2),
and link this value with the chords through a ternary table constraint. We call such
a constraint COSTCi(chi, chi+1, costi), where costi ∈ X is the integer variable rep-
resenting the cost of the pair (chi, chi+1). Its domain is the set of distinct cost val-
ues considered when COSTCi(chi, chi+1, costi) is generated. FOCUS is imposed on
X = 〈cost0, cost1, . . . , costn−2〉, in order to concentrate high costs (for instance costs
> 2, that is nchange = 3) in a few number of areas. If their length is not constrained
len = |X |, otherwise the end-user can fix a smaller value. The constraint model is:
ALLDIFF(Chords) ∧ ∀i ∈ {0, 1, . . . , n− 2} COSTCi(chi, chi+1, costi)
∧ FOCUS(X, yc , len, 2) ∧ sum =

∑
i∈{0,1,...,n−2} costi

Two objectives can be defined: minimize(sum) and minimize(yc).

Over-Loaded Cumulative Scheduling. In Example 1 of the Introduction, the core of
the problem can be represented using the SOFTCUMULATIVE constraint [2]. The time
window starts at time 0 and ends at a given strictly positive integer, the horizon (e.g.,
160 points in times which are, for instance, the total amount of hours of 4 weeks of
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work). Activities ak ∈ A are represented by three variables: starting time, duration,
resource consumption. Using SOFTCUMULATIVE, some intervals of time Ii ∈ I (e.g.,
one day of 8 hours), one to one mapped with cost variables costi ∈ X , are given by
the user. A cost measures how much the capacity capa is exceeded within the interval
Ii. The maximum value in the domain of each variable costi expresses the maximum
allowed excess. In [2], several definitions of costs are proposed. We can for instance
define costi as the exceed of the maximum over-loaded hour in the interval Ii.

The constraint related to the additional machine is FOCUS(X, yc , len, 0), where X =
〈cost0, cost1, . . . , cost|I|−1〉. len is the maximum duration of one rental, e.g., 5 days,
that is, len = 40 (if the time unit is one hour). The constraint model is:
SOFTCUMULATIVE(A,X, I, horizon) ∧ FOCUS(X, yc , len, 0)
∧ sum =

∑
i∈{0,1,...,n−2} costi

Two objectives can be defined: minimize(sum) and minimize(yc).

4 Linear Filtering Algorithm

4.1 Characterization of Sequences

Notation 1 (Status of a variable). Let X = 〈x0, x1, . . . , xn−1〉 be a sequence of inte-
ger variables and k an integer. According to k, a variable xi ∈ X is: Penalizing (Pk) if
and only if the minimum value in its domain min(xi) is such that min(xi) > k. Neutral
(Nk) if and only if the maximum value in its domain max(xi) is such that max (xi) ≤ k.
Undetermined (Uk) if min(xi) ≤ k and max(xi) > k.

Definition 2 (Maximum σ-sequence). Let X = 〈x0, x1, . . . , xn−1〉 be a sequence of
integer variables, k an integer, and σ ⊆ {Pk,Nk,Uk}. A σ-sequence 〈xi, xi+1, . . . , xj〉
of X is a sequence of consecutive variables in X such that all variables have a status
in σ and for all status s ∈ σ there exists at least one variable in the sequence having
the status s. It is maximum if and only if the two following conditions are satisfied:

1. If i > 0 then the status of xi−1 is not in σ.
2. If j < n− 1 then the status of xj+1 is not in σ.

Fig. 1. X = 〈x0, x1 . . . , x5〉 is a maximum-length {N0,P0,U0}-sequence, which contains one
maximum-length {N0,P0}-sequence 〈x0, x1, . . . , x4〉, two maximum-length {P0}-sequences
〈x0, x1, x2〉 and 〈x4〉, one maximum length {P0,U0}-sequence 〈x4, x5〉, one maximum-length
{N0}-sequence 〈x3〉 and one maximum-length {U0}-sequence 〈x5〉

Figure 1 illustrates Definition 2. The picture shows the domains in a sequence of n = 6
variables, with k = 0. Grey squares are values strictly greater than k, while the white
ones correspond to values less than or equal to k.



FOCUS: A Constraint for Concentrating High Costs 581

Definition 3 (Focus cardinality of a σ-sequence). Given a sequence of variables X
and len and k two integer values, the focus cardinality card(X, len , k) is the minimum
value vc such that FOCUS(X, vc, len, k) has a solution.

We can evaluate the focus cardinality according to the different classes of sequences.

Property 1. Given a {Pk}-sequence Y , card(Y, len , k) = 7 |Y |len 8.

Proof. - |Y |len . is the minimum number of distinct sequences of consecutive variables of

length len within Y , and the remainder r of |Y |len is such that 0 ≤ r < len . ��

Notation 2. Given a {Nk,Pk}-sequenceX , Pk(X) denotes the set of disjoint maximum
{Pk}-sequences extracted from X .

Fig. 2. A {N0,P0}-sequence X = 〈x0, x1, . . . , x5〉. card(X, 1, 0) =
∑

Y ∈P0(X)&
|Y |
1
' = 3 +

1 = 4. card(X, 2, 0) =
∑

Y ∈P0(X)&
|Y |
2
' = 2+1 = 3. card(X, 4, 0) =

∑
Y ∈P0(X)&

|Y |
4
' = 2

Property 2. Given a {Nk,Pk}-sequence X , card(X, len, k) =∑
Y ∈Pk(X) card(Y, len , k).

Proof. By definition of a {Nk,Pk}-sequence, variables outside these sequences take a
value less than or equal to k. From Property 1, the property holds. ��

Figure 2 illustrates Property 2. When X is a {Nk,Pk}-sequence, for instance an instan-
tiation I[X ], and yc is fixed to a value vc, we can encode a checker for FOCUS, based
on the computation of the focus cardinality of X .1

The correctness of Algorithm 1 is proved by Properties 1 and 2. Its time complexity
is obviously O(n). The computation for of a {Nk,Pk,Uk }-sequence requires to prove
some properties. In Figure 1, we have len = 1. Depending whether x5 is assigned to 0
or to 1, the value of yc satisfying FOCUS(X, yc , len, 0) is either 4 or 5.

4.2 Feasibilty and Filtering Algorithm

Definition 4. Given xi ∈ X , i ∈ {0, 1, . . . , n− 1}, and v ∈ D(xi),

– p(xi, v) is the focus cardinality card(〈x0, x1, . . . xi〉, len , k) of the prefix sequence
〈x0, x1, . . . xi〉 when xi = v.

1 For a end-user, we can provide a set of sub-sequences corresponding to the focus cardinality:
the algorithm is similar to Algorithm 1 (we store the sequences instead of counting them).
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Algorithm 1: ISSATISFIED({Nk ,Pk}-sequence X = 〈x0, x1, . . . , xn−1〉, vc, len , k): boolean

1 Integer nb := 0;
2 Integer size := 0;
3 Boolean prevpk := false;
4 for Integer i := 0; i < n; i := i+ 1 do
5 if min(xi) > k then
6 size := size + 1;
7 prevpk := true;
8 else
9 if prevpk then nb := nb + & size

len
';

10 size := 0;
11 prevpk := false;

12 if prevpk then nb := nb + & size
len

';
13 return nb ≤ vc; // focus cardinality of X

– s(xi, v) is the focus cardinality card(〈xi, xi+1, . . . xn−1〉, len , k) of the suffix se-
quence 〈xi, xi+1, . . . xn−1〉 when xi = v.

The remaining of this section is organized as follows. First, we show how we can check
the feasibility of FOCUS and enforce a complete filtering of domains of variables in X
and D(yc), provided we have the data of Definition 4. Then, we explain how such a
data and the filtering algorithm can be obtained in O(n).

Given xi ∈ X , the two quantities of Definition 4 can have, each, at most two distinct
values: one for the values in D(xi) strictly greater than k, one for the values in D(xi)
less than or equal to k. This property holds by the definition of the constraint FOCUS it-
self (Definition 1): From the point of view of FOCUS, value k+1 or value k+1000 for
xi are equivalent. We use a new notation, which groups values of Definition 4.

Notation 3. Given xi ∈ X ,

– p(xi, v>) is the value of p(xi, v) for all v ∈ D(xi) such that v > k, equal to n+ 1
if there is no value v > k in D(xi).

– p(xi, v≤) is the value of p(xi, v) for all v ∈ D(xi) such that v ≤ k, equal to n+ 1
if there is no value v ≤ k in D(xi).

Similarly, we use the notations s(xi, v>) and s(xi, v≤) for suffix sequences.

Given such quantities for the last variable (or the first if we consider suffixes), we obtain
a feasibility check for FOCUS. Their computation is explained in next section.

Algorithm 2: ISSATISFIED(X = 〈x0, x1, . . . , xn−1〉, yc , len , k): boolean

1 return min(p(xn−1, v>), p(xn−1, v≤)) ≤ max(yc) ;

We use the following notation: minCard(X) = min(p(xn−1, v>), p(xn−1, v≤)).
With that data, we can update min(yc) to min(minCard(X),min(yc)). Then from
Definition 1, all the values in D(yc) have a valid support on FOCUS (by definition any
value of yc greater than minCard(X) satisfies the constraint). By applying O(n) times
Algorithm 2, in order to study each variable xi in X successively restricted to the range
of values ≤ k as well as the range of values > k, we perform a complete filtering.
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Lemma 1. . Given a Uk variable xi, let X>
i = {x>

0 , x>
1 , . . . , x>

n−1} be the set of
variables derived from X such that ∀j ∈ {0, 1, . . . , i− 1, i+ 1, . . . , n− 1}, D(x>

j ) =

D(xj) and D(x>
i ) = D(xi)∩ [k+1,max(xi)]. If minCard(X>

i )> max(yc) then the
range [k + 1,max(xi)] can be removed from D(xi).

Lemma 2. Given a Uk variable xi, let X>
i = {x>

0 , x>
1 , . . . , x>

n−1} be the set of vari-

ables derived from X such that ∀j ∈ {0, 1, . . . , i−1, i+1, . . . , n−1},D(x≤j ) = D(xj)

and D(x≤i ) = D(xi) ∩ [min(xi), k]. If minCard(X≤i ) > max(yc) then the range
[min(xi), k] can be removed from D(xi).

Proof (Lemmas 1 and 2). Direct consequence of Definitions 1 and 3. ��

Given O(Φ) the time complexity of an algorithm computing minCard(X), we can
perform the complete filtering of variables in X ∪ {yc} in O(n × Φ), where n = |X |.
We now show how to decrease the whole time complexity to O(n), both for computing
minCard(X) and shrink the domains of all the variables in X . Given xi ∈ X , the first
idea is to compute p(xi, v>) from p(xi−1, v>) and p(xi−1, v≤). To do so, we have to
estimate the minimum length of a {Pk}-sequence containing xi, within an instantiation
of 〈x0, x1, . . . , xi〉 of focus cardinality p(xi, v>). We call this quantity plen(xi). Next
lemmas provide the values of p(xi, v>), p(xi−1, v≤) and plen(xi), from xi−1.

Lemma 3 (case of x0).

– If xi is a {Pk}-variable, p(x0, v≤) = n+ 1, p(x0, v>) = 1 and plen(x0) = 1.
– If xi is a {Nk}-variable, p(x0, v≤) = 0, p(x0, v>) = n+ 1 and plen(x0) = 0.
– If xi is a {Uk}-variable, p(x0, v≤) = 0, p(x0, v>) = 1 and plen(x0) = 1.

Proof. If x0 takes a value v > k then by Definition 4 p(x0, v>) = 1 and plen(x0) = 1.
Otherwise, there is no {Pk}-sequence containing x0 and plen(x0) = 0: We use the
convention p(x0, v>) = n+ 1 (an absurd value: the max. number of sequences in X is
n). If x0 belongs to a {Pk}-sequence then p(x0, v≤) = n+ 1. ��

Lemma 4 (computation of p(xi, v≤), 0 < i < n). If xi is a {Pk}-variable then
p(xi, v≤) = n+ 1. Otherwise, p(xi, v≤) = min(p(xi−1, v>), p(xi−1, v≤)).

Proof. If xi belongs to a {Pk}-sequence then xi does not take a value v ≤ k, thus
p(x0, v≤) = n + 1. If there exists some values less than or equal to k in D(xi),
assigning one such value to xi leads to a number of {Pk}-sequences within the pre-
fix sequence 〈x0, x1, . . . , xi〉 which does not increase compared with the sequence
〈x0, x1, . . . , xi−1〉. Thus, p(xi, v≤) = min(p(xi−1, v>), p(xi−1, v≤)). ��

Lemma 5 (computation of p(xi, v>) and plen(xi), 0 < i < n). We have:

– If xi is a {Nk}-variable then p(xi, v>) = n+ 1 and plen(xi) = 0.
– Otherwise,
• If plen(xi−1) = len ∨ plen(xi−1) = 0 then

p(xi, v>) = min(p(xi−1, v>) + 1, p(xi−1, v≤) + 1) and plen(xi) = 1.
• Otherwise p(xi, v>) = min(p(xi−1, v>), p(xi−1, v≤) + 1) and:
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Algorithm 3: MINCARDS(X = 〈x0, x1, . . . , xn−1〉, len, k): Integer matrix

1 cards := new Integer[|X|][3] ;
2 if min(x0) ≤ k ∧max(x0) > k then
3 cards [0][0] := 0;
4 cards [0][1] := 1;
5 cards [0][2] := 1;
6 else
7 if min(x0) > k then
8 cards [0][0] := n+ 1;
9 cards [0][1] := 1;

10 cards [0][2] := 1;
11 else
12 cards [0][0] := 0;
13 cards [0][1] := n+ 1;
14 cards [0][2] := 0;

15 for Integer i := 1; i < n; i := i+ 1 do
16 if max(xi) > k then
17 if min(xi) > k then cards [i][0] := n+ 1;
18 else cards [i][0] := min(cards [i− 1][0], cards [i− 1][1]);
19 if cards [i− 1][2] = 0 ∨ cards [i− 1][2] = len then
20 cards [i][1] := min(cards [i− 1][0] + 1, cards [i− 1][1] + 1);
21 cards [i][2] := 1;
22 else
23 cards [i][1] := min(cards [i− 1][0] + 1, cards [i− 1][1]);
24 if cards [i− 1][1]<cards [i− 1][0]+1 then cards [i][2] := cards [i−1][2]+1;
25 else cards [i][2] := 1;

26 else
27 cards [i][0] := min(cards [i− 1][0], cards [i− 1][1]);
28 cards [i][1] := n+ 1;
29 cards [i][2] := 0;

30 return cards ;

∗ If p(xi−1, v>) ≤ p(xi−1, v≤) then plen(xi) = plen(xi−1) + 1.
∗ Else plen(xi) = 1.

Proof. If xi is a {Nk}-variable then it cannot take a value > k. By convention
p(xi, v>) = n + 1 and plen(xi) = 0. Otherwise, recall that from Definition 3,
the focus cardinality is the minimum possible number of {Pk}-sequences. If 0 <
plen(xi−1) < len the last {Pk}-sequence can be extended by variable xi within an
assignment having the same focus cardinality than the one of 〈x0, x1, . . . , xi−1〉, thus
min(p(xi−1, v>), p(xi−1, v≤) + 1) and plen(xi) is updated so as to remain the mini-
mum length of a {Pk}-sequence containing xi in an instantiation of 〈x0, x1, . . . , xi〉 of
focus cardinality p(xi, v>). Otherwise, the focus cardinality will be increased by one if
xi takes a value v > k. We have p(xi, v>) = min(p(xi−1, v>) + 1, p(xi−1, v≤) + 1).
Since we have to count a new {Pk}-sequence starting at xi, plen(xi) = 1. ��
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Given X = 〈x0, x1, . . . , xn−1〉, Algorithm 3 uses the Lemmas to computes in O(n)
the quantities. It returns a matrix cards of size n× 3, such that at each index i:

cards[i][0] = p(xi, v≤); cards[i][1] = p(xi, v>); cards[i][2] = plen(xi)

We can then compute for each xi s(xi, v>), s(xi−1, v≤) and slen(xi) (the equiva-
lent of plen(xi) for suffixes), by using Lemmas 3, 4 and 5 with X sorted in the re-

verse order: 〈xn−1, xn−2, . . . , x0〉. To estimate for each variable minCard(X≤i ) and
minCard(X>

i ), we have to aggregate the quantities on prefixes and suffixes.

Property 3. minCard(X≤i ) = p(xi, v≤) + s(xi, v≤) and minCard(X>
i ) is equal to:

– p(xi, v>) + s(xi, v>)− 1 if and only if plen(xi) + slen(xi) −1 ≤ len .
– p(xi, v>) + s(xi, v>) otherwise.

Proof. Any pair of instantiations of focus cardinality respectively equal to p(xi, v≤)
and s(xi, v≤) correspond to disjoint {Pk}-sequences (which do not contain xi). Thus
the quantities are independent and can be summed. With respect to minCard(X>

i ), the
last current {Pk}-sequence taken into account in p(xi, v>) and s(xi, v>) contains xi.
Thus, their union (of length plen(xi) + slen(xi) −1) forms a unique {Pk}-sequence,
from which the maximum-length sub-sequence containing xi should not be counted
twice when it is not strictly larger than len . ��

Changing one value in an instantiation modifies its focus cardinality of at most one.

Property 4. Let I[X ] = 〈v0, v1, . . . , vn−1〉 be an instantiation of focus cardinality
vc and xi ∈ X , and I ′[X ] = 〈v′0, v′1, . . . , v′n−1〉 be the instantiation such that ∀j ∈
{0, 1, . . . , n − 1}, j �= i, vj = v′j and: (1) If vi > k then v′i ≤ k. (2) If vi ≤ k then
v′i > k. The focus cardinality v′c of I ′[X ] is such that |vc − v′c| ≤ 1.

Proof. Assume first that vi > k. xi belongs to a {Pk}-sequence p. Let s be the length
of this {Pk}-sequence within I[X ]. We can split p into p1 = 〈xk, xk+1, . . . , xi−1〉,
p2 = 〈xi〉, p3 = 〈xi+1, xi+1, . . . , xl〉 (p1 and/or p3 can be empty). Let q1, q3 and r1, r3
be positive or null integers such that r1 < len, r3 < len and s = q1× len+r1+1+q3×
len + r3. By construction, the maximum contribution of the variables in p to the focus
cardinality of I ′[X ] (that is, with xi ≤ k), is equal to q1+1+ q3+1=q1+ q3+2. With
respect to I[X ], the contribution is then equal to q1 + q3 + 7 r1+r3+1

len 8. The minimum
value of 7 r1+r3+1

len 8 is 1. In this case the property holds. The minimum contribution of
the variables in p to the focus cardinality of I ′[X ] is equal to q1 + q3. In this case, with
respect to I[X ] the maximum value of 7 r1+r3+1

len 8 is 7 1
len 8 = 1, the property holds.

The last intermediary case is when the contribution of the variables in p to the focus
cardinality of I ′[X ] is equal to q1 + q3 + 1. The minimum value of 7 r1+r3+1

len 8 is 1 and
its maximum is 2, the property holds. The reasoning for vi ≤ k is symmetrical. ��

From Property 4, we know that domains of variables in X can be pruned only once yc
is fixed since the variation coming from a single variable in X is at most one.

Algorithm 4 shrinks D(yc) and all the variables in X in O(n). It first calls Algo-
rithm 3 to obtain minCard(X) from min(p(xn−1, v>) and p(xn−1, v≤)) and even-
tually shrinks D(yc). Then, it computes the data for suffixes, and uses Property 3 to
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reduce domains of variables in X according to max(yc). Since removed values of vari-
ables in X cannot lead to a focus cardinality strictly less than max(yc), it enforces
GAC. Algorithm 4 does not directly modify domains: X and yc are locally copied, and
the filtered copies are returned. The reason is that we will use this algorithm in an ex-
tension of FOCUS in Section 5. To improve the readability, we assume that the solver
raises an exception FAILEXCEPTION if a domain of one copy becomes empty.

Algorithm 4: FILTER(X = 〈x0, x1, . . . , xn−1〉, yc , len, k): Set of variables

1 cards := MINCARDS(X, len, k) ;
2 Integer lb := min(cards [n− 1][0], cards [n− 1][1]);
3 if min(yc) < lb then D(yc) := D(yc) \ [min(yc), lb[;
4 if min(yc) = max(yc) then
5 sdrac := MINCARDS(〈xn−1, xn−2, . . . , x0〉, len, k) ;
6 for Integer i := 0; i < n; i := i+ 1 do
7 if cards [i][0] + sdrac[n− 1− i][0] > max(yc) then
8 D(xi) :=D(xi)\ [min(xi), k];
9 Integer regret := 0;

10 if cards [i][2] + sdrac[n− 1− i][2] − 1 ≤ len then regret := 1;
11 if cards [i][1] + sdrac[n− 1− i][1] − regret > max(yc) then
12 D(xi) :=D(xi)\ ]k,max(xi)];

13 return X ∪ {yc};

Example 3. Consider FOCUS(X = 〈x0, x1, . . . , x4〉, yc , len , 0) and D(yc) = {1, 2}.
(1) Assume len = 2 and D(x0)=D(x2)=D(x3)={1, 2}, D(x1) = {0} and D(x4)
={0, 1, 2}. Line 3 of Algorithm 4 removes [1, 2[ from D(yc). Since the length of
the {Pk}-sequence 〈x2, x3〉 is equal to len , cards [4][1]=3 and cards [4][2]=1. sdrac
[5−1−4][1]=1 and sdrac[5−1−4][2]=1. regret=1 and thus 3+1−regret=3>max(yc),
]0, 2] is removed from D(x4) (line 12). (2) Assume now len=3 and D(x0)=D(x2)
=D(x4)={1, 2}, D(x1)={0} and D(x3)={0, 1, 2}. Line 3 of Algorithm 4 removes
[1, 2[ from D(yc). Since value 0 for x3 leads to a focus cardinality of 3 (cards [3][0] =2
and sdrac[5−1−3][0]=1), strictlty greater than max(yc), 〈x2, x3, x4〉 must be a {Pk}-
sequence (of length 3 ≤ len). Algorithm 4 removes value 0 from D(x3) (line 8). �

5 Constraints Derived from FOCUS

5.1 Using a Variable for len

Assume that, in Example 1 of the Introduction, several companies offer leases with dif-
ferent maximum duration. We aim at computing the best possible configuration for each
different offer, based on each maximum duration. To deal with this case, we can extend
FOCUS so as to define len as a variable, with a discrete domain since the maximum
durations of rentals are proper to each company. Another use of this extension is the
case where the end-user wishes to compare for the same company several maximum
package duration, enumerate several solutions, etc.
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Algorithm 5: FILTERVARLEN(X = 〈x0, x1, . . . , xn−1〉, yc , len, k): Set of variables

1 IntegerVariable[][] vars := new IntegerVariable[|D(len)|][];
2 Integer j := 0;
3 foreach vl ∈ D(len) do
4 try vars[j] := FILTER(X, yc , vl, k); // the last variable is yc
5 catch FAILEXCEPTION: D(len) := D(len) \ {vl}; // in this case vars[j] = null
6 j := j + 1;

7 Integer minc := max(yc) + 1;
8 j := 0;
9 foreach vl ∈ D(len) do

10 if vars[j]�= null then minc := min(minc,min(vars[j][n]));
11 j := j + 1;

12 D(yc) := D(yc) \ [min(yc),minc[;
13 for Integer i := 0; i < n; i := i+ 1 do
14 Integer mini := max(xi) + 1;
15 Integer maxi := min(xi)− 1;
16 j := 0;
17 foreach vl ∈ D(len) do
18 if vars[j]�= null then
19 mini := min(mini,min(vars[j][i]));
20 maxi := max(maxi,max(vars[j][i]));

21 j := j + 1;

22 D(xi) := D(xi) \ ([min(xi),mini[ ∪ ]maxi,max(xi)]) ;

23 return X ∪ {yc} ∪ {len};

The filtering algorithm of this extension of FOCUS uses following principle: For
each value vl in D(len), we call FILTER(X, yc, vl, k) (Algorithm 4). If an exception
FAILEXCEPTION is raised, vl is removed from D(len). Otherwise, we store the result
of the filtering. At the end of the process, value v ∈ D(xi), xi ∈ X , is removed from its
domain if and only if it was removed by all the calls to FILTER(X, yc, vl, k) that did not
raised an exception. Algorithm 5 implements this principle. Since it calls Algorithm 4
for each value in D(len), it enforces GAC. Its time complexity is O(n × |D(len)|).

5.2 Harder Constraint on yc

In Definition 1, the number of sequences in S could be constrained by an equality:
|S| = vc. When the maximum value for the variable yc is taken, the number of counted
disjoint sequences of length at most len is maximized. This maximum is equal to the
number of {Pk, Uk}-sequences (we consider sequences of length one). The filtering is
obvious. If, in addition, we modify the condition 3 of Definition 1 to make it stronger,
for instance 3 ≤ |si| ≤ len , it remains possible to compute recursively the maximum
possible number of disjoint sequences by traversing X , similarly to the Lemmas used
for the focus cardinality. Conversely, the aggregation of prefix and suffix data to obtain
an algorithm in O(n) is different. We did not investigate this point because we are not
convinced of the practical significance of this variation of FOCUS.
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6 Discussion: Related Work and Decomposition

Although it seems to be similar to a specialization of GROUP,2 the FOCUS constraint
cannot be represented using GROUP because of len: Using FOCUS, the variable in
the sequence which directly precedes (or succeeds) a counted group of values strictly
greater than the parameter k can also take itself a value strictly greater than k, which
violates the notion of group.

To remain comparable with a filtering algorithm having a time complexity linear in
the number of variables, the automaton-based reformulation of FOCUS should directly
manipulate an automaton with counters, which are used to estimate the focus cardinal-
ity. We selected the paradigm presented in [1]. Under some conditions, this framework
leads to a reformulation where a complete filtering is achieved, despite the counters.3

This paradigm is based on automata derived from constraint checkers. We propose an
automatonA representing FOCUS deduced from Algorithm 1, depicted by Figure 3.

Fig. 3. Automaton with two counters c and fc, representing FOCUS. The two states are terminal.
xi denotes a variable in X and we consider the variable yc and the value len of FOCUS.

As it is shown by figure 3, the automaton has two terminal states and maintains two
counters c and fc, which represent respectively the size of the current traversed {Pk}-
sequence and the focus cardinality. Therefore, when i = n − 1, fc is compared to the
value of yc . The principle is the same than in Algorithm 1: Each time a {Pk}-sequence
ends, its contribution is added to the counter representing the focus cardinality. The
automaton has two states and two counters. The constraint networkN (hypergraph) en-
coding the automaton [1] is not Berge-Acyclic [4]. Propagating directly the constraints
in N does not necessarily entail a complete filtering. However, within the automaton
A, the choice of the next transition only depends on the value of xi ∈ X . Therefore,
in N , no signature constraints share a variable. From [1, p. 348-349], by enforcing
pairwise consistency on the O(n) pairs of transition constraints sharing more than one

2 http://www.emn.fr/z-info/sdemasse/gccat/Cgroup.html
3 Conversely to the COSTREGULAR constraint [3], for instance.

http://www.emn.fr/z-info/sdemasse/gccat/Cgroup.html
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variable, we obtain a complete filtering. Three variables are shared: one representing
the possible next states, and the variables for the two counters. In the worst case, pair-
wise consistency considers all the tuples for the shared variables. Counter variables (fc
and c) have initially a domain of order O(n) while the third domain is in O(1), which
leads to a time complexity in O(n3) for filtering FOCUS. When len and max(len) are
small, this decomposition could be used. Thus, it is a contribution. The behavior with
generic search strategies could be different for the decomposition and for the linear al-
gorithm. However, using the decomposition requires to enforce pairwise consistency,
which is not simpler and less generic than a dedicated filtering algorithm, because of
events propagation. The decomposition is dependent on the priority rules of the solver.

7 Experiments

Since our filtering algorithm is complete, in O(n), and without heavy data structures,
performing benchmarks of the constraint isolated from a problem is not relevant. This
section analyzes the impact of FOCUS on the solutions of the sorting chords problem
described in Section 3. We selected this example rather than, for instance, the cumu-
lative problem of Section 3, because all the other constraints (ALLDIFF as well as the
ternary table constraints) can be provided with a complete filtering algorithm. With
respect to the variable sum, we define it as the objective to minimize. Thus, instead
of an equality we enforce the constraint sum ≤

∑
cost i, which is also tractable. We

use the solver Choco (http://www.emn.fr/z-info/choco-solver/) with
the default variable and value search strategies (DomOverWDeg and MinValue), on a
Mac OSX 2.2 GHz Intel Core i7 with 8GB of RAM memory. We are interested in two
aspects:

1. Our constraint is used for refining an objective criterion and, from Property 4, we
know that domains of variables in X can be pruned only once yc is fixed. An
important question is the following: Is our filtering algorithm significantly useful
during the search, compared with a simple checker?

2. Are the instances harder and/or the value of the objective variable sum widely
increased when we restrict the set of solutions by imposing FOCUS?

7.1 Pruning Efficacy

In a first experiment, we run sets of 100 random instances of the sorting chords problem,
in order to compare the complete filtering of FOCUS with a simple checker. For each set,
the maximum value of yc is either 1 or 2, in order to consider instances where FOCUS as
a important influence. We compare the pruning efficacy of FOCUS with a light version
of FOCUS, where the propagation is reduced to the checker.

Table 1 summarizes the results on 8 and 9 chords (respectively 17 and 19 variables
in the problem). The instances are all satisfiable and optima were always proved. With
larger instances (≥ 10 chords), optimum cannot be proved in a reasonable number
of backtracks using the checker. In the table, yc = max(yc), and len and k are the
parameters of FOCUS. nmax is the maximum possible number of changing notes be-
tween any two chords. Average values are given as integers. Table 1 clearly shows that,

http://www.emn.fr/z-info/choco-solver/
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Table 1. Comparison of Algorithm 4 with a checker, on the sorting chords problem. Each row
represents 100 randomly generated instances. yc is max(yc). nmax indicates the maximum pos-
sible common notes between two chords. Optimum solutions were found for all the considered
instances. “#backtracks” means the number of backtracks, “#fails” the number of fails, “#opti-
mum with sum > 0” is the number of solutions with a non null objective value.

Instances FOCUS(X, yc , len, k) CHECKER(X, yc , len, k)
nb. yc -len #optimum average average max. average average average max. average
of -k with #backtracks #fails #backtracks time (ms) #backtracks #fails #backtracks time (ms)

chords -nmax sum > 0 (of 100) (of 100) (of 100) (of 100) (of 100) (of 100) (of 100) (of 100)
8 1-4-0-3 66 61 46 462 11 1518 951 15300 17
8 1-4-1-3 66 45 33 342 1 91 59 1724 2
8 2-4-0-3 66 47 34 247 1 58 42 455 1
8 2-4-1-3 66 45 33 301 1 44 32 349 1
8 1-6-0-4 84 198 141 2205 12 15952 10040 86778 213
8 1-6-1-4 84 114 79 767 3 1819 1117 45171 24
8 2-6-0-4 84 127 88 620 3 2069 1361 64509 28
8 2-6-1-4 84 118 81 724 3 250 168 7027 4
8 1-8-0-5 98 261 184 1533 6 39307 25787 167575 566
8 1-8-1-5 98 148 103 662 3 11821 7642 94738 168
8 2-8-0-5 98 164 113 803 4 21739 14400 173063 317
8 1-8-0-5 98 183 127 882 4 10779 6939 92560 153
8 1-8-0-6 99 290 203 1187 18 46564 30488 130058 690
8 1-8-1-6 99 238 166 1167 11 29256 19150 134882 438
8 2-8-0-6 99 221 152 1458 6 29455 19607 123857 445
8 2-8-1-6 99 209 144 1118 9 21332 14095 117768 329
9 1-9-0-4 88 415 299 4003 18 214341 133051 1095734 3244
9 1-9-1-4 88 268 185 2184 6 12731 7988 751414 203
9 2-9-0-4 88 270 188 2714 6 22107 14065 374121 337
9 2-9-1-4 88 266 182 3499 6 1364 941 92773 23
9 1-9-0-5 97 574 407 2437 26 360324 230167 1355934 6584
9 1-9-1-5 97 404 273 1677 11 62956 40277 881441 1150
9 2-9-0-5 97 451 309 3327 12 228072 147007 1124630 4263
9 2-9-1-5 97 386 260 1698 10 58421 37589 989900 1079

even with a GAC filtering algorithm for ALLDIFF and for the ternary table constraints
COSTC(chi, chi+1, costi), we can only solve small instances without propagating FO-
CUS, some of them requiring more than one million backtracks. Conversely, the number
of backtracks for proving optimality is small and stable when Algorithm 4 is used for
propagating FOCUS. Using the filtering algorithm of FOCUS is mandatory.

7.2 Impact on the Objective Value

In a second experiment, we run sets of 100 random instances of the sorting chords
problem, in order to compare problems involving FOCUS with the same problems where
FOCUS is removed from the model. The goal of this experiment is to determine, with
respect to the sorting chords problem, whether the optimum objective value increases
widely or not when FOCUS is imposed, as well as the time and backtracks required
to obtain such an optimum value. Table 2 summarizes the results with a number of
chords varying from 6 to 20 (13 to 51 variables in the problem). The instances are all
satisfiable and optima were always found and proved. In each set, we count the number
of instances with distinct objective values. For sake of space, we present the results for
k = 0 and len = 4. Similar results were found for closed values of k and len . Despite
the instances with FOCUS are more constrained with respect to the variables involved
in the objective, Table 2 does not reveals any significant difference, both with respect
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Table 2. Comparison of instances of the sorting chords problem with and without FOCUS. The
column “#optimum equal with and without FOCUS” indicates the number of instances for which,
with and without FOCUS, the optimum objective value is equal. “max. value of sum” indicates
the maximum objective value among the 100 instances.

Instances with FOCUS without FOCUS
nb. yc #optimum #optimum max. average max. average max. average max. average
of -len with equal with / value #backtracks #backtracks time value #backtracks #backtracks time

chords -k sum > 0 without of (of 100) (of 100) (ms) of (of 100) (of 100) (ms)
-nmax FOCUS sum (of 100) sum (of 100)

6 2-4-0-4 88 99 7 23 76 3 7 22 76 1
8 2-4-0-4 84 95 8 131 618 4 7 115 449 3
10 2-4-0-4 78 98 6 457 4579 11 6 360 3376 9
12 2-4-0-4 69 98 5 952 12277 28 5 1010 10812 27
16 2-4-0-4 43 100 4 4778 132019 153 4 6069 95531 189
20 2-4-0-4 7 100 3 15650 1316296 747 3 15970 1095399 679
6 2-4-0-6 97 96 13 37 113 1 13 37 121 1
8 2-4-0-6 99 93 11 218 1305 5 11 198 860 4
10 2-4-0-6 97 77 10 1247 5775 32 9 1159 10921 26
12 2-4-0-6 96 75 12 5092 34098 155 11 4844 54155 145
16 2-4-0-6 88 84 9 45935 724815 2002 9 73251 2517570 3407
20 2-4-0-6 79 91 8 264881 4157997 14236 6 174956 2918335 8284

Table 3. Comparison of the results for providing a first solution on large instances of the sorting
chords problem, with and without FOCUS. The “average gap in sum” is the average of the differ-
ence, for each of the 100 instances, between the objective value without FOCUS and the objective
value with FOCUS. This latter one (with FOCUS) is smaller or equal for all the instances.

Instances with FOCUS without FOCUS
nb. yc average min(sum) average max. average min(sum) average max. average
of -len gap / max(sum) #backtracks #backtracks time / max(sum) #backtracks #backtracks time

chords -k in (of 100) (of 100) (of 100) (ms) (of 100) (of 100) (of 100) (ms)
-nmax sum (of 100) (of 100)

50 4-6-2-4 14 45/73 0 16 84 55/94 0 0 80
100 8-6-2-4 27 100/145 1 57 1168 119/175 0 0 1413
50 5-6-1-4 30 19/69 212 12698 101 55/94 0 0 85
100 10-6-1-4 63 40/113 93 3829 1002 119/175 0 0 1407

to the number of backtracks (and solving time) and the optimum objective value. We
finally have differences in objective values at most equal to 2.

To complete our evaluation, we search for the first solution of larger problems, in
order to compare the scale of size that can be reached with and without using FOCUS.
The value heuristic assigns first the smaller value, which is semantically suited to the
goal of the problem although we do not search for optimum solutions.

Results are compared in Table 3. They show that, with FOCUS, the number of back-
tracks grows for some instances when the parameters of FOCUS are shrunk (one of the
instance with 50 chords required 12698 backtracks). However, the objective value of
the first solution is systematically significantly better when FOCUS is set in the model.
One explanation of these results is the following: Focusing the costs on a small number
of areas within the sequence semantically tends to limit the value of their total sum.

8 Conclusion

We presented FOCUS, a new constraint for concentrating high costs within a sequence
of variables. In the context of scheduling, many use cases for the constraint make sense.
We proposed a O(n) complete filtering algorithm, where n is the number of variables.



592 T. Petit

We proposed an automaton-based decomposition and we discussed extensions of our
constraint. Our experiments investigated the importance of propagating FOCUS and the
impact of FOCUS on the solutions of problems. Our results demonstrated that the com-
plete filtering algorithm of FOCUS is mandatory for solving instances.

Acknowledgments. We thank Jean-Guillaume Fages for the helpful comments he pro-
vided on the paper.
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9. Petit, T., Régin, J.-C., Bessière, C.: Meta constraints on violations for over constrained prob-
lems. In: Proc. IEEE-ICTAI, pp. 358–365 (2000)
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Abstract. Abstract interpretation based value analysis is a classical ap-
proach for verifying programs with floating-point computations.
However, state-of-the-art tools compute an over-approximation of the
variable values that can be very coarse. In this paper, we show that
constraint solvers can significantly refine the approximations computed
with abstract interpretation tools. We introduce a hybrid approach that
combines abstract interpretation and constraint programming techniques
in a single static and automatic analysis. rAiCp, the system we devel-
oped is substantially more precise than Fluctuat, a state-of-the-art
static analyser. Moreover, it could eliminate 13 false alarms generated
by Fluctuat on a standard set of benchmarks.

Keywords: Program verification, Floating-point computation,
Constraint solvers over floating-point numbers, Constraint solvers over
real number intervals, Abstract interpretation-based approximation.

1 Introduction

Programs with floating-point computations control complex and critical physical
systems in various domains such as transportation, nuclear energy, or medicine.
Floating-point computations are an additional source of errors and famous com-
puter bugs are due to errors in floating-point computations, e.g., the Patriot
missile failure. Floating-point computations are usually derived from mathemat-
ical models on real numbers [14]. However, real and floating-point computation
models are different: for the same sequence of operations, floating-point numbers
do not behave identically to real numbers. For instance, with binary floating-
point numbers, some decimal real numbers are not representable (e.g., 0.1 has
no exact representation), arithmetic operators are not associative and may be
subject to phenomena such as absorption (e.g., a+ b is rounded to a when a is
far greater than b) or cancellation (subtraction of nearly equal operands after
rounding that only keeps the rounding error).
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Value analysis is often used to check the absence of run-time errors, such as
invalid integer or floating-point operations, as well as simple user assertions [8].
Value analysis can also help with estimating the accuracy of floating-point com-
putations with respect to the same sequence of operations in an idealized se-
mantics of real numbers. Existing automatic tools are mainly based on abstract
interpretation techniques. For instance, Fluctuat [9], a state-of-the-art static
analyzer, computes an over-approximation of the domains of the variables for a
C program considered with a semantics on real numbers. It also computes an
over-approximation of the error due to floating-point operations at each pro-
gram point. However, these over-approximations may be very coarse even for
usual programming constructs and expressions. As a consequence, numerous
false alarms1—also called false positives—may be generated.

In this paper, we introduce a hybrid approach for the value analysis of floating-
point programs that combines abstract interpretation (AI) and constraint pro-
gramming techniques (CP). We show that constraint solvers over floating-point
and real numbers can significantly refine the over-approximations computed by
abstract interpretation. rAiCp, the system we developed, uses both Fluctuat

and the following constraint solvers:

– RealPaver [17], a safe and correct solver for constraints over real numbers,
– FPCS [21,20], a safe and correct solver for constraints over floating-point

numbers.

Experiments show that rAiCp is substantially more precise than Fluctuat,
especially on C programs that are difficult to handle with abstract interpre-
tation techniques. This is mainly due to the refutation capabilities of filtering
algorithms over the real numbers and the floating-point numbers used in rAiCp.
rAiCp could also eliminate 13 false alarms generated by Fluctuat on a set
of 57 standard benchmarks proposed by D’Silva et al [12] to evaluate CDFL,
a program analysis tool that embeds an abstract domain in the conflict driven
clause learning algorithm of a SAT solver. Moreover, rAiCp is on average at
least 5 times faster than CDFL on this set of benchmarks.

Section 2 illustrates our approach on a small example. Basics on the tech-
niques and tools we use are introduced in Section 3. Next section is devoted to
related work. Section 5 details our approach whereas experiments are analysed
in Section 6.

2 Motivation

In this section, we illustrate our approach on a small example. The program in
Fig. 1 is mentioned in [13] as a difficult program for abstract interpretation based
analyses. On floating-point numbers, as well as on real numbers, this function

1 A false alarm corresponds to the case when the abstract semantics intersects the
forbidden zone, i.e., erroneous program states, while the concrete semantics does
not intersect this forbidden zone. So, a potential error is signaled which can never
occur in reality (see http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html).

http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
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1 /∗ Pre−condition : x ∈ [0, 10] ∗/
2 double conditional(double x) {

3 double y = x*x - x;

4 if (y >= 0)

5 y = x/10;

6 else

7 y = x*x + 2;

8 return y; }

Fig. 1. Example 1

returns a value in the interval [0, 3]. Indeed, from the conditional statement of
line 4, we can derive the following information:

– if branch: x = 0 or x ≥ 1, and thus y ∈ [0, 1] at the end of this branch;
– else branch: x ∈]0, 1[, and thus y ∈]2, 3[ at the end of this branch.

However, classical abstract domains (e.g., intervals, polyhedra), as well as the
abstract domain of zonotopes used in Fluctuat, fail to obtain a good approxi-
mation of this value. The best interval obtained with these abstractions is [0, 102],
both over the real numbers and the floating-point numbers. The difficulty for
these analyses is to intersect the abstract domains computed for y at lines 3
and 4. Actually, they are unable to derive from these statements any constraint
on x. As a consequence, in the else branch, they still estimate that x ranges
over [0, 10].

We propose here to compute an approximation of the domains in both exe-
cution paths. On this example, CSP filtering techniques are strong enough to
reduce the domains of the variables. Consider for instance the constraint system
over the real numbers {y0 = x0 ∗ x0 − x0, y0 < 0, y1 = x0 ∗ x0 + 2, x0 ∈ [0, 10]}
which corresponds to the execution path2 through the else branch of the func-
tion conditional. From the constraints y0 = x0 ∗x0−x0 and y0 < 0, the interval
solver over the real numbers we use can reduce the initial domain of x0 to [0, 1].
This reduced domain is then used to compute the one of y1 via the constraint
y1 = x0 ∗ x0 + 2, which yields y1 ∈ [2, 3.001]. Likewise, our constraint solver
over the floating-point numbers will reduce x0 to [4.94 × 10−324, 1.026] and y1
to [2, 3.027].

To sum up, we explore the control flow graph (CFG) of a program and stop
each time two branches join. There, we build one constraint system per branch
that reaches the join point. Then, we use filtering techniques on these systems to
reduce the domains of the variables computed by Fluctuat at this join point.
Exploration goes on with the reduced domains. CFG exploration is performed
on-the-fly. Branches are cut as soon as an inconsistency of the constraint system
is detected by a local filtering algorithm. Table 1 collects the results obtained
by the different techniques on the example of the function conditional. On this

2 Statements are converted into DSA (Dynamic Single Assignment) form where each
variable is assigned exactly once on each program path [2].



596 O. Ponsini, C. Michel, and M. Rueher

Table 1. Return domain of the conditional function

Domain Time

Exact real and floating-point domains [0, 3] –

Fluctuat (real and floating-point domains) [0, 102] 0.1 s

FPCS (floating-point domain) [0, 3.027] 0.2 s

RealPaver (real domain) [0, 3.001] 0.3 s

example, contrary to Fluctuat, our approach computes very good approxima-
tions. Analysis times are very similar. In [13], the authors proposed an extension
to the zonotopes—named constrained zonotopes—which attempts to overcome
the issue of program conditional statements. This extension is defined for the
real numbers and is not yet implemented in Fluctuat. The approximation
computed with constrained zonotopes is better than the one of Fluctuat (the
upper bound is reduced to 9.72) but remains less precise than the one computed
with RealPaver.

3 Background

Before going into the details, we recall basics on abstract interpretation and
Fluctuat, as well as on the constraint solvers RealPaver and FPCS used in
our implementation.

Abstract interpretation3 consists in considering an abstract semantics, that
is a super-set of the concrete program semantics. The abstract semantics covers
all possible cases, thus, if the abstract semantics is safe (i.e. does not intersect
the forbidden zone) then so is the concrete semantics.

Fluctuat is a static analyzer for C programs specialized in estimating the
precision of floating-point computations4 [9]. Fluctuat compares the behavior
of the analyzed program over real numbers and over floating-point numbers. In
other words, it allows to specify ranges of values for the program input variables
and computes for each program variable v:

– bounds for the domain of variable v considered as a real number;

– bounds for the domain of variable v considered as a floating-point number;
– bounds for the maximum error between real and floating-point values;
– the contribution of each statement to the error associated with variable v ;

– the contribution of the input variables to the error associated with
variable v.

3 See http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html for a nice informal in-
troduction.

4
Fluctuat is developed by CEA-List (http://www-list.cea.fr/validation
en.html ) and was successfully used for industrial applications of several tens of
thousands of lines of code in transportation, nuclear energy, or avionics areas.

http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
http://www-list.cea.fr/validation_en.html
http://www-list.cea.fr/validation_en.html
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Fluctuat proceeds by abstract interpretation. It uses the weakly relational
abstract domain of zonotopes [15]. Zonotopes are sets of affine forms that pre-
serve linear correlations between variables. They offer a good trade-off between
performance and precision for floating-point and real number computations. In-
deed, the analysis is fast and scales well, processes accurately linear expressions,
and keeps track of the statements involved in the loss of accuracy of floating-
point computations. To increase the analysis precision, Fluctuat allows to
use arbitrary precision numbers or to subdivide up to two input variable inter-
vals. However, over-approximations computed by Fluctuat may be very large
because the abstract domains do not handle well conditional statements and
non-linear expressions.

RealPaver is an interval solver for numerical constraint systems over the real
numbers5 [17]. Constraints can be non-linear and can contain the usual arith-
metic operations and transcendental elementary functions.

RealPaver computes reliable approximations of continuous solution sets us-
ing correctly rounded interval methods and constraint satisfaction techniques.
More precisely, the computed domains are closed intervals bounded by floating-
point numbers. RealPaver implements several partial consistencies: box, hull,
and 3B consistencies. An approximation of a solution is described by a box,
i.e., the Cartesian product of the domains of the variables. RealPaver either
proves the unsatisfiability of the constraint system or computes small boxes that
contains all the solutions of the system.

The RealPaver modeling language does not provide strict inequality and
not-equal operators, which can be found in conditional expressions in programs.
As a consequence, in the constraint systems generated for RealPaver, strict
inequalities are replaced by non strict ones and constraints with a not-equal
operator are ignored. This may lead to over-approximations, but this is safe
since no solution is lost.

FPCS is a constraint solver designed to solve a set of constraints over floating-
point numbers without losing any solution [21,20]. It uses 2B-consistency [19]
along with projection functions adapted to floating-point arithmetic [22,4].

The main difficulty lies in computing inverse projection functions that keep
all the solutions. Indeed, direct projections only requires a slight adaptation of
classical results on interval arithmetic, but inverse projections do not follow the
same rules because of the properties of floating-point arithmetic. More precisely,
each constraint is decomposed into an equivalent binary or ternary constraint by
introducing new variables if necessary. A ternary constraint x = y 9f z, where
9f is an arithmetic operator over the floating-point numbers, is decomposed
into three projection functions:

– the direct projection, Πx(x = y 9f z);
– the first inverse projection, Πy(x = y 9f z);
– the second inverse projection, Πz(x = y 9f z).

5
RealPaver web site: http://pagesperso.lina.univ-nantes.fr/info/perso/
permanents/granvil/realpaver/

http://pagesperso.lina.univ-nantes.fr/info/perso/permanents/granvil/realpaver/
http://pagesperso.lina.univ-nantes.fr/info/perso/permanents/granvil/realpaver/
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A binary constraint of the form x9f y, where 9f is a relational operator (among
==, !=, <, <=, >, and >=), is decomposed into two projection functions: Πx(x9f y)
and Πy(x 9f y). The computation of the approximation of these projection
functions is mainly inspired from interval arithmetic and benefits from floating-
point numbers being a totally ordered finite set.

FPCS also implements stronger consistencies—e.g., kB-consistencies [19]—
to deal with the classical issues of multiple occurrences and to reduce more
substantially the bounds of the domains of the variables.

The floating-point domains handled by FPCS also include infinities. More-
over, FPCS handles all the basic arithmetic operations, as well as most of the
usual mathematical functions. Type conversions are also correctly processed.

4 Related Work

Different methods address static validation of programs with floating-point com-
putations: abstract interpretation based analyses, proofs of programs with proof
assistants or with decision procedures in automatic solvers.

Analyses based on abstract interpretation capture rounding errors due to
floating-point computation in their abstract domains. They are usually fast, auto-
matic, and scalable. However, they may lack of precision and they are not tailored
for automatically generating a counter-example, that is to say, input variable val-
ues that violate some assertion in a program. Astrée [8] is probably one of the
most famous tool in this family of methods. The tool estimates the value of the
program variables at every program point and can show the absence of run-time
errors, that is the absence of behavior not defined by the programming language,
e.g., division by zero, arithmetic overflow. As said before, Fluctuat estimates in
addition the accuracy of the floating-point computations, that is, a bound on the
difference between the values taken by variables when the program is given a real
semantics and when it is given a floating-point semantics [9].

Proof assistants like Coq [3] or HOL [18] allow their users to formalize floating-
point arithmetic. Proofs of program properties are done manually in the proof
assistants which guarantee proof correctness. Even though some parts of the
proofs may be automatized, these tools usually require a lot of user interac-
tion. Moreover, when a proof strategy fails to prove a property, the user often
does not know whether the property is false or another strategy could prove
it. Like abstract interpretation, proof assistants usually do not provide auto-
matic generation of counter-examples for false properties. The Gappa tool [11]
combines interval arithmetic and term rewriting from a base of theorems. The
theorems rewrite arithmetic expressions so as to compensate for the shortcom-
ings of interval arithmetic, e.g., loss of dependency between variables. Whenever
the computed intervals are not precise enough, theorems can be manually intro-
duced or the input domains can be subdivided. The cost of this semi-automatic
method is then considerable. In [1], the authors propose axiomatizing floating-
point arithmetic within first-order logic to automate the proofs conducted in
proof assistants such as Coq by calling external SMT (Satisfiability Modulo
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Theories) solvers and Gappa. Their experiments show that human interaction
with the proof assistant is still required.

The classical bit-vector approach of SAT solvers is ineffective on programs
with floating-point computations because of the size of the domains of floating-
point variables and the cost of bit-vector operations. An abstraction technique
was devised for CBMC in [5]. It is based on under and over-approximation of
floating-point numbers with respect to a given precision expressed as a number
of bits of the mantissa. However, this technique remains slow. D’Silva et al [12]
developed recently CDFL, a program analysis tool that embeds an abstract
domain in a conflict driven clause learning algorithm of a SAT solver. CDFL is
based on a sound and complete analysis for determining the range of floating-
point variables in control software. In [12] the authors state that CDFL is more
than 200 times faster than CBMC. In Section 6 we compare the performances
of CDFL and rAiCp on a set of benchmarks proposed by D’Silva et al.

Links between abstract interpretation and constraint logic programming have
been studied at a theoretical level (e.g., [6]) and recent work investigate the
use of abstract interpretation and abstract domains in the context of constraint
programming. In [10], the authors introduce a new global constraint to model
iterative arithmetic relations between integer variables. The associated filtering
algorithm is based on abstract interpretation over polyhedra. In [23], the authors
propose to use the octagonal abstract domain, which proved efficient in abstract
interpretation, to represent the variable domains in a continuous constraint sat-
isfaction problem. Then, they generalize local consistency and domain splitting
to this octagonal representation. In this paper, we show how abstract interpre-
tation and constraint programming techniques can complement each other for
the static analysis of floating-point programs.

5 rAiCp, a Hybrid Approach

The approach we propose here is based on successive explorations and merging
steps. More precisely, we call Fluctuat to compute a first approximation of the
variable values at the first program node of the CFG where two branches join.
Then, we build one constraint system per branch and use filtering techniques to
reduce the domains of the variables computed by Fluctuat. Reduced domains
obtained for each branch are merged and exploration goes on with the result of
the merge.

5.1 Control Flow Graph Exploration

The CFG of a program is explored using a forward analysis going from the be-
ginning to the end of the program. Statements are converted into DSA (Dynamic
Single Assignment) form where each variable is assigned exactly once on each
program path [2]. Lengths of the paths are bounded since loops are unfolded
a bounded number of times, after which they are abstracted by the domains
computed by abstract interpretation. At any point of an execution path, the
possible states of a program are represented by a constraint system over the



600 O. Ponsini, C. Michel, and M. Rueher

program variables. Domains of the variables are intervals over the real numbers
in the constraint store of RealPaver; domains are intervals over the floating-
point numbers that correspond to the int, float and double machine types of
the C language6 in the constraint store of FPCS. Each program statement adds
new constraints and variables to these constraint stores. This technique for repre-
senting programs by constraint systems was introduced for bounded verification
of programs in CPBPV [7]. The implementation of the approach proposed in
this paper relies on libraries developed for CPBPV.

CFG exploration is performed on-the-fly and unreachable branches are inter-
rupted as soon as an inconsistency is detected in the constraint store. We collect
constraints between two join points in the CFG. If, for all executable paths be-
tween these points, the constraint systems are inconsistent for some interval I
of an output variable x, then we can remove the interval I from the domain of
x. Note that we differentiate between program input variables, whose domains
cannot be reduced, and program output variables, whose domains depend on the
program computations and input variable domains, and thus can be reduced.

Merging program states at each join point not only allows a tight cooperation
between Fluctuat and the constraint solvers but also limits the number of
executable paths to explore.

5.2 Filtering Techniques

We use constraint filtering techniques for two different purposes in rAiCp:

– elimination of unreachable branches during CFG exploration;
– reduction of the domain of the variables at CFG join points.

On floating-point numbers constraint systems, we perform 3B(w)-consistency
filtering with FPCS; on real numbers constraint systems, we perform a BC5-
consistency filtering in paving mode with RealPaver

7.

6 Experiments

In this section, we compare in detail Fluctuat and rAiCp on programs that
are representative of Fluctuat limitations. We also compare rAiCp to a state-
of-the-art tool, CDFL on the benchmarks provided by the authors of the latter
system.

All results were obtained on an Intel Core 2 Duo at 2.8 GHz with 4 GB
of memory running Linux using Fluctuat version 3.8.73, RealPaver ver-
sion 0.4 and the downloadable version of CDFL. All the programs are available
at http://users.polytech.unice.fr/~rueher/Benchs/RAICP.

6 Note that the behavior of programs containing floating-point computations may
vary with the programming language or the compiler, but also, with the operating
system or the hardware architecture. We consider here C programs, compiled with
GCC without any optimization option and intended to be run on an x86 architecture
managed by a 32-bit Linux operating system.

7 BC5-consistency is a combination of interval Newton method, hull-consistency and
box-consistency.

http://users.polytech.unice.fr/~rueher/Benchs/RAICP
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Table 2. Domains of the roots of the quadratic function

conf. #1: a ∈ [−1, 1]
conf. #2: a, b, c ∈ [1, 1× 106]

b ∈ [0.5, 1] c ∈ [0, 2]
x0 x1 Time x0 x1 Time

R
Fluctuat [−∞,∞] [−∞,∞] 0.14 s [−2× 106, 0] [−1× 106, 0] 0.14 s
rAiCp [−∞, 0] [−8.006,∞] 1.55 s [−1× 106, 0] [−5.186 × 105, 0] 0.58 s

F
Fluctuat [−∞,∞] [−∞,∞] 0.13 s [−2× 106, 0] [−1× 106, 0] 0.13 s
rAiCp [−∞, 0] [−8.125,∞] 0.39 s [−1× 106, 0] [−3 906.26, 0] 0.39 s

6.1 Improvements over Fluctuat

We show here how our approach improves the approximations computed by
Fluctuat on programs with conditionals, non-linearities, and loops.

Conditionals: The first benchmark concerns conditional statements, for which
abstract domains need to be intersected with the condition of the conditional
statement. The function gsl poly solve quadratic comes from the GNU sci-
entific library and contains many of these conditional statements. It computes
the real roots of a quadratic equation ax2+bx+c and puts the results in variables
x0 and x1.

Table 2 shows analysis times and approximations of the domains of variables
x0 and x1 for two configurations of the input variables. The first two rows present
the results of Fluctuat and rAiCp (with RealPaver) over the real numbers.
The next two rows present the results of Fluctuat and rAiCp (with FPCS)
over the floating-point numbers.

In the first configuration, Fluctuat’s over-approximation is so large that
it does not give any information on the domain of the roots, whereas rAiCp

drastically reduce these domains both over R and F. However, intersection of
abstract domains has not always such a significant impact on the bounds of all
domains as illustrated by the domain over F of x0 in the second configuration.

To increase analysis precision, Fluctuat allows to divide the domains of at
most two input variables into a given number of sub-domains. Analyses are then
run over each combination of sub-domains and the results are merged. Finding
appropriate subdivisions of the domains is a critical issue: subdividing may not
improve the analysis precision, but it always increases the analysis time. Table 3
reports the results with 50 subdivisions when only one domain is divided, and 30
when two domains are divided. OverR, in the first configuration, the subdivisions
yield no improvement and, in the second configuration, the results are identical
to those over F.

Subdividing domains can be quite time consuming with little gains in preci-
sion:

– In the first configuration, subdivisions of the domain of a lead to a significant
reduction of the domain of x0. No subdivision combination could reduce the
domain of x1.
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Table 3. Domains over F for the quadratic function with input domains subdivided

conf. #1 conf. #2
x0 Time x1 Time

Fluctuat
[−∞, -0] > 1 s [−1× 106, 0] > 1 s

a subdivided

Fluctuat
[−∞,∞] > 1 s [−5× 105, 0] > 1 s

b subdivided

Fluctuat
[−∞,∞] > 1 s [−1× 106, 0] > 1 s

c subdivided

Fluctuat a
[−∞, -0] > 10 s [−1.834 × 105, 0] > 10 s

& b subdivided

Fluctuat a
[−∞, -0] > 10 s [−1× 106, 0] > 10 s

& c subdivided

Fluctuat b
[−∞,∞] > 10 s [−5× 105, 0] > 10 s

& c subdivided

Table 4. Domains of the return value of sinus and rump functions

sinus

x ∈ [−1, 1]

rump

x ∈ [7× 104, 8× 104]
y ∈ [3× 104, 4× 104]

Domain Time Domain Time

R
Fluctuat [−1.009, 1.009] 0.12 s [−1.168 × 1037, 1.992 × 1037] 0.13 s
rAiCp [−0.842, 0.843] 0.34 s [−1.144 × 1036, 1.606 × 1037] 1.26 s

F
Fluctuat [−1.009, 1.009] 0.12 s [−1.168 × 1037, 1.992 × 1037] 0.13 s
rAiCp [−0.853, 0.852] 0.22 s [−1.168 × 1037, 1.992 × 1037] 0.22 s

– In the second configuration, the best reduction of the domain of x1 is ob-
tained by subdividing the domains of both a and b. The gain remains however
quite small and no subdivision combination could reduce the domain of x0.

rAiCp turns out to be more efficient: it often improves the precision of the
approximation and requires less time than the subdividing process of Fluctuat.
Moreover, rAiCp could also take advantage of the subdivision technique.

Non-linearity: The abstract domain used by Fluctuat is based on affine
forms that do not allow an exact representation of non-linear operations: the
image of a zonotope by a non-linear function is not a zonotope in general. Non-
linear operations are thus over-approximated. FPCS handles the non-linear ex-
pressions better. This is illustrated on the 7th-order Taylor series of function
sinus (see Table 4, column sinus).

FPCS and RealPaver also use approximations to handle non-linear terms,
and thus, are not always more precise than Fluctuat.The second row of Table 4
shows that rAiCp could not reduce the domain computed by Fluctuat for the
rump polynomial program [24], a very particular polynomial designed to outline
a catastrophic cancellation phenomenon.
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Table 5. Domain of the return value of the sqrt and bigLoop functions

sqrt#1: x ∈ [4.5, 5.5] sqrt#2: x ∈ [5, 10] bigLoop
Domain Time Domain Time Domain Time

R
Fluctuat [2.116, 2.354] 0.13 s [2.098, 3.435] 0.2 s [−∞,∞] 0.15 s
rAiCp [2.121, 2.346] 0.35 s [2.232, 3.165] 0.57 s [0, 10] 0.8 s

F
Fluctuat [2.116, 2.354] 0.13 s [−∞,∞] 0.2 s [−∞,∞] 0.15 s
rAiCp [2.121, 2.347] 0.81 s [2.232, 3.168] 1.59 s [0, 10] 0.7 s

Loops: Fluctuat unfolds loops a bounded number of times8 before applying
the widening operator of abstract interpretation. The widening operator allows
to find a fixed point for a loop without unfolding it completely. In rAiCp,
we also unfold loops a user-defined number of times, after which the loop is
abstracted by the invariant computed by abstract interpretation. Note that we
can also use Fluctuat to estimate an upper bound on the number of necessary
unfoldings [16].

sqrt is a program based on the so-called Babylonian method that computes
an approximate value, with an error of 1× 10−2, of the square root of a number
greater than 4. For the analysis of this program with two different input domains
(see Table 5), ten unfoldings are sufficient to exit the loop. Both Fluctuat

and rAiCp obtain accurate results over R. Over F, in the second configuration
rAiCp shrinks the domain to [2.232, 3.168] whereas Fluctuat couldn’t achieve
any reduction.

Program bigLoop contains non-linear expressions followed by a loop that it-
erates one million times. On such programs, it is not possible to completely
unfold loops. Fluctuat fails to analyze accurately the loop in this program
because of over-approximations of the non-linear expressions. rAiCp refines sig-
nificantly the over-approximations computed by Fluctuat, even without any
initial unfoldings. This example shows that a tight cooperation between CP and
AI techniques can be very efficient.

Contributions of AI and CP: Fluctuat often yields a first approximation
that is tight enough to allow efficient filtering with partial consistencies. Even
though the same domain reductions can sometimes be achieved without starting
from the approximation computed by Fluctuat (i.e., starting from [−∞,∞]),
our experiments show that our approach usually benefits from the approximation
computed by Fluctuat.

3B-consistency filtering works well with FPCS. 2B-consistency is not strong
enough to reduce the domains computed by Fluctuat whereas a stronger kB-
consistency is too time-consuming. We experimented also with various consis-
tencies implemented in RealPaver: BC5, a combination of hull and box con-
sistencies with interval Newton method, HC4, 3B-consistency. 3B-consistency
was in general too time-consuming. BC5-consistency provided the best trade-off
between time cost and domain reduction.

8 Default value is ten times.
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Table 6. Execution times (s) of CDFL, Fluctuat and rAiCp

CDFL Fluctuat rAiCp CDFL Fluctuat rAiCp

newton.1.1 0.5 0.12 0.62 eps line1 0.12 0.11 0.28
newton.1.2 1.64 0.13 0.68 muller 0.13 0.11 0.2
newton.1.3 4.6 0.21 1.89 sac.10 2.49 1.25 1.6
newton.2.1 0.95 0.11 1.47 sac.20 2.46 1.38 1.75
newton.2.2 3.44 0.14 0.82 sac.30 2.49 1.39 1.68
newton.2.3 9.32 0.21 1.79 sac.40 2.47 1.38 1.68
newton.3.1 1.95 0.12* 1.3 sac.50 2.46 1.38 1.71
newton.3.2 5.61 0.13 1.13 sac.60 2.48 1.4 1.76
newton.3.3 15.9 0.22 2.35 sac.70 2.46 1.37 1.7
newton.4.1 1.07 0.12 1.74 sac.80 2.48 1.37 1.7
newton.4.2 8.4 0.13 1.82 sac.90 2.47 1.37 1.67
newton.4.3 23.63 0.22 2.49 sine.1 0.68 0.12 0.31
newton.5.1 1.76 0.12 1.83 sine.2 0.96 0.11 0.28
newton.5.2 14.61 0.13* 2.68 sine.3 0.5 0.11 0.28
newton.5.3 38.19 0.23* 4.01 sine.4 7.89 0.12* 0.3
newton.6.1 1.28 0.12 2.15 sine.5 0.68 0.12* 0.23
newton.6.2 2.33 0.13 8.85 sine.6 0.3 0.12* 0.26
newton.6.3 3.59 0.15 4.76 sine.7 0.13 0.12* 0.22
newton.7.1 1.8 0.12 2.23 sine.8 0.08 0.12 0.23
newton.7.2 1.57 0.14 1.59 square.1 0.16 0.12 0.26
newton.7.3 19.45 0.15 1.68 square.2 0.32 0.12 0.25
newton.8.1 0.41 0.11 0.86 square.3 0.7 0.11 0.25
newton.8.2 1.67 0.12 0.88 square.4 1.05 0.12* 0.22
newton.8.3 7.49 0.12 1.05 square.5 0.68 0.12* 0.22
GC4 0.04 0.14 0.23 square.6 0.55 0.11* 0.23
Poly 0.16 0.11 0.23 square.7 0.36 0.12* 0.23
Rump 0.02 0.11 0.21 square.8 0.06 0.12 0.21
Sterbenz 0 0.12 0.2 Total 208.99 18.37 40.55

6.2 Comparison with CDFL

CDFL [12] is a program analysis tool designed for proving the absence of run-
time errors in critical programs. In [12], the authors show that CDFL is much
more efficient than CBMC and much more precise than Astrée [8] for deter-
mining the range of floating-point variables on various programs.

We compare here rAiCp and CDFL on the set of benchmarks9 proposed
in [12]. The set consists of 57 benchmarks made from 12 programs by varying
the input variable domains, the loop bounds, and the constants in the properties
to check. We discarded two benchmarks as they are related to integer compu-
tations which are not the focus of this work. All the programs are based on
academic numerical algorithms, except Sac which is generated from a Simulink
controller model. The program properties are simple assertions on program vari-
able domains.

9 These benchmarks are available at http://www.cprover.org/cdfpl

http://www.cprover.org/cdfpl
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Table 6 provides the runing time of rAiCp, Fluctuat and CDFL. rAiCp

was only run with FPCS since the properties and the programs are both defined
over the floating-point numbers.

All three analyses may report false alarms: i.e., they may answer a property
is false while it is not. Actually, rAiCp and CDFL correctly reported all the
33 true properties. Fluctuat gave 11 false alarms that are noted with * in
Fluctuat columns of Table 6. The domain refinements performed by rAiCp

successfully eliminated the false alarms produced by Fluctuat.
On average, rAiCp is 5 times faster than CDFL for the same precision. On

some benchmarks, we observe a speed-up factor of 25. On average, rAiCp is 2.2
times slower than Fluctuat used alone but this is largely compensated by the
gain in precision.

7 Conclusion

In this paper, we introduced a new approach for computing tight intervals of
floating-point variables of C programs. rAiCp, the prototype we developed, re-
lies on the static analyser Fluctuat and on FPCS and RealPaver, two con-
straint solvers which are respectively correct over floating-point and real num-
bers. So, rAiCp can exploit the refutation capabilities of partial consistencies
to refine the domains computed by Fluctuat.

We showed that rAiCp is fast and efficient on programs that are representa-
tive of the difficulties of Fluctuat (conditional constructs and non-linearities).
Experiments on a significant set of benchmarks showed also that rAiCp is as
precise and faster than CDFL, a state-of-the-art tool for bound analysis and
assertion checking on programs with floating-point computations.

This integration of AI and CP works well because often the first approximation
of variable bounds computed by AI is small enough to allow efficient filtering with
partial consistencies. In the case of Fluctuat, sets of affine forms abstract non-
linear expressions and constraints. These sets constitute better approximations
of linear constraint systems than the boxes used in interval-based constraint
solvers. Nonetheless, they are less adapted for non-linear constraint systems
where filtering techniques used in numeric CSP solving offer a more flexible
and extensible framework.

Further work concerns a tighter integration of abstract interpretation and con-
straint solvers, for instance, at the abstract domain level instead of the interval
domain level.

Acknowledgments. The authors gratefully acknowledge Sylvie Putot, Éric
Goubault and Franck Védrine for their advice and help on using Fluctuat.
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Abstract. Simple Temporal Networks (STN) allow conjunctions of min-
imum and maximum distance constraints between pairs of temporal po-
sitions to be represented. This paper introduces an extension of STN
called Time-dependent STN (TSTN), which covers temporal constraints
for which the minimum and maximum distances required between two
temporal positions x and y are not necessarily constant but may depend
on the assignments of x and y. Such constraints are useful to model prob-
lems in which the transition time required between two activities may
depend on the time at which the transition is triggered. Properties of the
new framework are analyzed, and standard STN solving techniques are
extended to TSTN. The contributions are applied to the management of
temporal constraints for so-called “agile” satellites.

1 Motivations

Managing temporal aspects is crucial when solving planning and scheduling
problems. Indeed, the latter generally involve constraints on the earliest start
times and latest end times of activities, precedence constraints between activ-
ities, no-overlapping constraints over sets of activities, or constraints over the
minimum and maximum temporal distance between activities. In many cases,
these constraints can be expressed as simple temporal constraints, written as
x−y ∈ [α, β] with x, y two variables corresponding to temporal positions and α,
β two constants. Such simple temporal constraints can be represented using the
STN framework (Simple Temporal Networks [1]). This framework is appealing
in practice due to the polynomial complexity of important operations such as
determining the consistency of an STN or computing the earliest/latest times
associated with each temporal variable of an STN, which is useful to maintain
a schedule offering temporal flexibility. Another feature of STN is that they are
often used as a basic element when solving more complex temporal problems
such as DTN (Disjunctive Temporal Networks [2]).

In this paper, we propose an extension of the STN framework and of STN
algorithms. This extension is illustrated on an application from the space domain.
The latter corresponds to the management of Earth observation satellites such
as those of the Pleiades system. Such satellites are moving around the Earth
on a circular, low-altitude orbit (several hundreds of kilometers). They are said
to be agile, which means that they have the capacity to move around the three
axes (roll, pitch, and yaw). This agility allows them to point to the right, left, in
front of, or behind of the Earth point at the vertical of the satellite at each time

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 608–623, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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(Nadir). The mission of these satellites is to perform acquisitions of polygons at
the Earth surface. These polygons are split into strips which must be scanned
using an observation instrument fixed on the satellite. Scanning a given strip
requires at any time a particular configuration of the satellite called an attitude,
defined by a pointing direction and by a speed on each of the three axes.

In the agile satellite context, contrary to the simplified version of the 2003
ROADEF Challenge [3], the minimum transition time taken by a maneuver be-
tween the end of an acquisition i and the start of an acquisition j is not constant
and depends on the precise time at which the first acquisition ends [4]. Transition
times may vary of about ten seconds on the examples provided in Fig. 1, duration
during which the satellite covers between 50 and 100 kilometers on the ground.
Fig. 1 also shows how diverse minimum transition times evolution schemes can
be. They are obtained by solving a continuous command optimization problem
which takes into account the movement of the satellite on its orbit, the movement
of points on the ground due to the rotation of Earth, and kinematic constraints
restricting the possible attitude moves of the satellite.

This context motivates the need for a new modeling framework for problems
in which the minimum transition time between two activities can depend on the
precise time at which the transition is triggered. This aspect is close to work on
time-dependent scheduling [5,6], where transition times take particular forms,
piecewise constant or piecewise linear (these forms cannot be directly reused
here). It also appears in applications such as congestion-aware logistics, in which
traveling times depend on the hour of the day, due to traffic. The framework
proposed, called Time-dependent STN, is first introduced (Sect. 2). Techniques
are then defined for computing the earliest and latest times associated with
each temporal variable (Sect. 3 and 4). These techniques are used for scheduling
activities of an agile satellite, in the context of a local search algorithm (Sect. 5).

2 Towards Time-Dependent STN

2.1 Simple Temporal Networks (STN)

We first recall some definitions associated with STN. In the following, the domain
of values of a variable x is denoted d(x).

Definition 1. An STN is a pair (V, C) with V a finite set of continuous vari-
ables whose domain is a closed interval [l, u] ⊂ R, and C a finite set of binary
constraints of the form x − y ∈ [α, β] with x, y ∈ V , α ∈ R ∪ {−∞}, and
β ∈ R ∪ {+∞}. Such constraints are called simple temporal constraints. A so-
lution to an STN (V, C) is an assignment of all variables in V satisfying all
constraints in C. An STN is consistent iff it has at least one solution.

Unary constraints x ∈ [α, β], including those defining the domains of possible
values of variables, can be formulated as simple temporal constraints x − x0 ∈
[α, β], with x0 a variable of domain [0, 0] playing the role of a temporal reference.
Moreover, as x − y ∈ [α, β] is equivalent to (x − y ≤ β) ∧ (y − x ≤ −α), it is
possible to use only constraints of the form y − x ≤ c with c some constant.
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Fig. 1. Minimum durations, in seconds, for a satellite maneuver from a strip i ending
at point of latitude-longitude 41◦17′48′′N-2◦5′12′′E to a strip j starting at point of
latitude-longitude 42◦31′12′′N-2◦6′15′′E, for different scanning angles with regard to
the trace of the satellite on the ground: (a) scan of i at 40◦ and scan of j at 20◦; (b)
scan of i at 40◦ and scan of j at -80◦; (c) scan of i at 90◦ and scan of j at 82◦

An important element associated with an STN is its distance graph. This graph
contains one node per variable of the STN and, for each constraint y − x ≤ c
of the STN, one arc from x to y weighted by c. Based on this distance graph,
the following results can be established [1] (some of these results are similar to
earlier work on PERT and critical path analysis):

1. an STN is consistent iff its distance graph has no cycle of negative length;
2. if d0i (resp. di0) denotes the length of the shortest path in the distance graph

from the reference node labeled by x0 to a node labeled by temporal variable
xi (resp. from xi to x0), then interval [−di0, d0i] gives the set of consistent
assignments of xi; the shortest paths can be computed for every i using
Bellman-Ford’s algorithm or arc-consistency filtering [7,8,9,10];

3. if dij (resp. dji) denotes the length of the shortest path from xi to xj (resp.
xj to xi) in the distance graph, then interval [−dji, dij ] corresponds to the set
of all possible temporal distances between xi and xj ; shortest paths can be
computed for every i, j using Floyd-Warshall’s algorithm or path-consistency
filtering [1,11,12,13], which produces the minimal network of the STN [14].

Example. Let us consider a simplified satellite scheduling problem. This problem
involves 3 acquisitions acq1, acq2, acq3 to be realized in order acq3 → acq1 →
acq2. For every i ∈ [1..3], Tmini and Tmaxi denote the earliest start time and
latest end time of acqi, and Dai denotes the duration of acqi. The minimum
durations of the transitions between the end of acq3 and the start of acq1, and
between the end of acq1 and the start of acq2, are denoted Dt3,1 and Dt1,2 respec-
tively. These durations are considered as constant in this first simplified version.
We also consider two temporal windows w1 = [Ts1, T e1], w2 = [Ts2, T e2] during
which data download to ground stations is possible. The satellite must download
acq2 followed by acq3 in window w1, before downloading acq1 in window w2. The
duration taken by the download of acqi is denoted Ddi.

This problem can be modeled as an STN containing, for every acquisition
acqi (i ∈ [1..3]), (a) two variables sai and eai denoting respectively the start
time and end time of the acquisition, with domains of values d(sai) = d(eai) =
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Fig. 2. Distance graph (reference temporal position x0 is not represented)

[Tmini, Tmaxi]; (b) two variables sdi and edi, denoting respectively the start
time and end time of the download of the acquisition, with domains of values
[Ts1, T e1] for i = 2, 3 and [Ts2, T e2] for i = 1.

Simple temporal constraints in Eq. 1 to 4 are imposed over these variables.
Eq. 1 defines the duration of acquisitions and data downloads. Eq. 2 imposes min-
imum transition times between acquisitions. Eq. 3 enforces no-overlap between
downloads. Eq. 4 expresses that an acquisition can start being downloaded only
after its realization. Fig. 2 gives the distance graph of the obtained STN.

∀i ∈ [1..3], (eai − sai = Dai) ∧ (edi − sdi = Ddi) (1)
(sa1 − ea3 ≥ Dt3,1) ∧ (sa2 − ea1 ≥ Dt1,2) (2)
(sd3 − ed2 ≥ 0) ∧ (sd1 − ed3 ≥ 0) (3)
∀i ∈ [1..3], sdi − eai ≥ 0 (4)

2.2 T-Simple Temporal Constraints and TSTN

We now introduce a new class of temporal constraints which can be used to model
transitions whose minimum duration depends on the precise time at which the
transition is triggered. These constraints are called t-simple temporal constraints
for “time-dependent”-simple temporal constraints.

Definition 2. A t-simple temporal constraint is a triple (x, y, dmin) composed
of two temporal variables x and y, and of one function dmin : d(x)× d(y)→ R

called minimum distance function (function not necessarily continuous). A t-
simple temporal constraint (x, y, dmin) is also written as y − x ≥ dmin(x, y).
The constraint is satisfied by (a, b) ∈ d(x) × d(y) iff b− a ≥ dmin(a, b).

Informally, dmin(x, y) specifies a minimum temporal distance between the events
associated with temporal variables x and y respectively.

To illustrate why having a minimum distance function dmin depending on
both x and y is useful, consider the example of agile satellites. Let x be a variable
representing the end time of an acquisition acq. Let Att(x) denote the attitude
obtained when finishing acq at time x. Let y be a variable representing the start
time of an acquisition acq′, to be performed just after acq. Let Att ′(y) denote the
attitude required for starting acq′ at time y. Let minAttTransTime be the func-
tion (available in our agile satellite library) such that minAttTransTime(att , att ′)
gives the minimum transition time required by a satellite maneuver to move
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from attitude att to attitude att ′. Then, t-simple temporal constraint y − x ≥
dmin(x, y) with dmin(x, y) = minAttTransTime(Att(x),Att ′(y)) expresses that
the duration between the end of acq and the start of acq′ must be greater than
the minimum duration required to move from attitude Att(x) to attitude Att ′(y).

In some cases, function dmin(x, y) does not depend on y. This concerns time-
dependent scheduling [5,6], for which the processing time of a task only depends
on the start time of this task (t-simple temporal constraint y−x ≥ dmin(x) with
dmin(x) the processing time of the task when this task starts at time x). T-simple
temporal constraints also cover simple temporal constraints y − x ≥ c, by using
a constant minimum distance function dmin = c. They also cover constraints of
maximum temporal distance between two temporal variables y−x ≤ dmax (x, y),
since the latter can be rewritten as x − y ≥ dmin(y, x) with dmin(y, x) =
−dmax (x, y).

Note that a t-simple temporal constraint only refers to the minimum duration
of a transition. Such an approach can be used for handling agile satellites under
the (realistic) assumption that any maneuver which can be made in duration
δ is also feasible in duration δ′ ≥ δ. This assumption of feasibility of a “lazy
maneuver” is not necessarily satisfied by every physical system.

On this basis of t-simple temporal constraints, a new framework called TSTN
for Time-dependent STN can be introduced.

Definition 3. A TSTN is a pair (V, C) with V a finite set of continuous vari-
ables of domain [l, u] ⊂ R, and C a finite set of t-simple temporal constraints
(x, y, dmin) with x, y ∈ V . A solution to a TSTN is an assignment of variables
in V that satisfies all constraints in C. A TSTN is said to be consistent iff it
admits at least one solution.

Example Let us reconsider the example involving 3 acquisitions acq1, acq2, acq3

and remove the unrealistic assumption of constant minimum transition durations
between acquisitions. In the TSTN model obtained, the only difference with the
initial STN model is that simple temporal constraints of Eq. 2 are replaced by the
t-simple temporal constraints given in Eq. 5 and 6, in which given an acquisition
acqi, Satt i(t) and Eatt i(t) respectively denote the attitudes required at the start
and at the end of acqi if this start/end occurs at time t. The definition of the
distance graph associated with a TSTN is similar to the definition of the distance
graph associated with an STN (see Fig. 3).

sa1 − ea3 ≥ minAttTransTime(Eatt3(ea3),Satt1(sa1)) (5)
sa2 − ea1 ≥ minAttTransTime(Eatt1(ea1),Satt2(sa2)) (6)

3 Arc-Consistency of t-Simple Temporal Constraints

A first important element for establishing arc-consistency is the delay function.

Definition 4. The delay function associated with a t-simple temporal constraint
ct : (x, y, dmin) is function delayct : d(x) × d(y)→ R defined by delayct(a, b) =
a + dmin(a, b)− b.



Time-Dependent STN 613

−Da3

Da3
sa3 ea3

sd2 ed2

Dd2

−Dd2

sa2 ea2

Da2

−Da2

sd3 ed3

Dd3

−Dd3

sd1 ed1

Dd1

−Dd1

0 0

sa1 ea1

Da1

−Da1
0 0

0

-minAttTransTime(Eatt1(ea1), Satt2(sa2))-minAttTransTime(Eatt3(ea3), Satt1(sa1))
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Informally, delayct(a, b) is the delay obtained in b if a transition in minimum
time from x to y is triggered at time a. This delay corresponds to the difference
between the minimum arrival time associated with the transition (a+dmin(a, b))
and the required arrival time (b). A strictly negative delay corresponds to a
transition ending before deadline b. A strictly positive delay corresponds to a
violation of constraint ct. A null delay corresponds to an arrival right on time.

Definition 5. A t-simple temporal constraint ct : (x, y, dmin) is said to be
delay-monotonic iff its delay function delayct(., .) satisfies the conditions below:

∀a, a′ ∈ d(x), ∀b ∈ d(y), (a ≤ a′)→ (delayct(a, b) ≤ delayct(a
′, b))

∀a ∈ d(x), ∀b, b′ ∈ d(y), (b ≤ b′)→ (delayct(a, b) ≥ delayct(a, b′))

Definition 5 means that for being delay-monotonic, a t-simple temporal con-
straint (x, y, dmin) must verify that on one hand, the later the transition is
triggered in x, the greater the delay in y, and on the other hand the earlier the
transition must end in y, the greater the delay. When monotonicities over the
two arguments are strict, we speak of a strictly delay-monotonic t-simple tem-
poral constraint. The notion of delay-monotonicity can be related to the notion
of monotonic constraints, defined for instance in [15]. One difference is that in
TSTN, domains considered are continuous.

We now introduce the functions of earliest arrival time and latest departure
time associated with a t-simple temporal constraint. In the following, given a
function F : R→ R and a closed interval I ⊂ R, we denote by (1) firstNeg(F, I)
the smallest a ∈ I such that F (a) ≤ 0 (value +∞ if such a value does not exist);
(2) lastNeg(F, I) the greatest a ∈ I such that F (a) ≤ 0 (value −∞ if such a
value does not exist).1

Definition 6. The functions of earliest arrival time and latest departure time
associated with a t-simple temporal constraint ct : (x, y, dmin) are functions
denoted earr ct and ldepct and defined over d(x) and d(y) respectively, by:

∀a ∈ d(x), earr ct(a) = firstNeg(delayct(a, .),d(y))
∀b ∈ d(y), ldepct(b) = lastNeg(delay ct(., b),d(x))

1 Quantities firstNeg(F, I) and lastNeg(F, I) are mathematically not necessarily well-
defined if function F has discontinuities; we implicitly use the fact that all operations
are done on computers with finite precision.
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Informally, earr ct(a) gives the smallest arrival time in y without delay if the
transition from x is triggered at time a. ldepct(b) gives the latest triggering time
of the transition in x for an arrival in b without delay.

Prop. 1 shows that these two functions help establishing bound arc-consistency.

Proposition 1. Bound arc-consistency for a t-simple temporal constraint ct :
(x, y, dmin) can be enforced using the following domain modification rules:

d(y)← d(y) ∩ [earr ct(min(d(x))), +∞[ (7)
d(x)← d(x)∩ ] −∞, ldepct(max(d(y)))] (8)

Proof. Assume that earr ct(min(d(x))) 
= +∞ and ldepct(max(d(y))) 
= −∞. By defi-
nition of earr ct and ldepct, we then have delay(min(d(x)), earr ct(min(d(x)))) ≤ 0 and
delay(ldepct(max(d(y))),max(d(y))) ≤ 0. Hence min and max bounds of x and y all
have a support after application of Rules 7-8 if domains obtained are not empty.

Rule 7 updates the earliest time associated with y. Rule 8 updates the latest
time associated with x. These domain modification rules are such that cur-
rent domains d(x) and d(y) remain closed intervals. Prop. 2 below establishes
the equivalence between bound arc-consistency and arc-consistency for delay-
monotonic constraints.

Proposition 2. Let ct : (x, y, dmin) be a t-simple temporal constraint with
monotonic delay. Establishing bound arc-consistency for ct using Rules 7 and 8
is equivalent to establishing arc-consistency over the whole domains of x and y.

Proof. Let x−, x+, y−, y+ denote the min/max bounds of x and y before application
of the rules. Let b ∈ [y−, y+]. If b < earr ct(x

−), then b has no support over x for
ct because ∀a ∈ [x−, x+], delayct(a, b) ≥ delayct(x

−, b) > 0 (by delay-monotonicity
and by definition of earr ct(x

−)). Conversely, if b ≥ earr ct(x
−), then delayct(x

−, b) ≤
delayct(x

−, earr ct(x
−)) ≤ 0, hence b is supported by x−. Therefore, y-values pruned by

Rule 7 are those that have no support over x. Similarly, it can be shown that x-values
pruned by Rule 8 are those that have no support over y.

When delay-monotonicity is violated, Rules 7-8 can be applied but they do not
necessarily establish arc-consistency. Prop. 3 generalizes a STN result to TSTN
and shows why maintaining bound arc-consistency is useful.

Proposition 3. If all constraints of a TSTN are made bound arc-consistent
using Rules 7-8, then the schedule which assigns to each variable its earliest
(resp. latest) possible time is a solution of the TSTN.

Proof. Let ct : (x, y, dmin) be a constraint of the TSTN. As shown in the proof of
Prop. 1, the min bounds of x and y after application of Rules 7-8 form a consistent
pair of values for ct, as well as their max bounds.

Concerning the way earr and ldep can be computed in practice, for simple tem-
poral constraints y − x ≥ c, an analytic formulation of earr and ldep can be
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given. However, in the general case, firstNeg(F, I) and lastNeg(F, I) must be
computed, which corresponds to an optimization problem in itself. An iterative
method for approximating firstNeg(F, I = [a1, a2]) is given in Algorithm 1. This
method generalizes the false position method, used to find a zero of an arbitrary
function. Applied to the case of t-simple temporal constraints, the method works
as follows. If leftmost point P1 = (a1, F (a1)) has a negative delay (F (a1) ≤ 0),
then a1 is directly returned. Otherwise, if rightmost point P2 = (a2, F (a2)) has
a strictly positive delay (F (a2) > 0), then +∞ is returned. Otherwise, points P1

and P2 have opposite delay-signs (F (a1) > 0 and F (a2) ≤ 0), and the method
computes delay F (a3) in a3, the x-value of the intersection between segment
(P1, P2) and the x-axis. If the delay in P3 = (a3, F (a3)) is positive (resp. nega-
tive), then the mechanism is applied again by taking P1 = P3 (resp. P2 = P3).
If the t-simple temporal constraint considered has a strictly monotonic delay,
the convergence to firstNeg(F, I) is ensured; otherwise, the method may return
a value a > firstNeg(F, I), but in this case a still satisfies F (a) ≤ 0 (with a
given precision). It can be observed in practice that the convergence speed is
particularly good for the delay function associated with agile satellites.

Algorithm 1. Possible way of computing firstNeg(F, I), with I=[a1, a2],
maxIter a maximum number of iterations, and prec a desired precision
1 firstNeg(F, [a1, a2], maxIter, prec)
2 begin
3 f1 ← F (a1); if f1 ≤ 0 then return a1

4 f2 ← F (a2); if f2 > 0 then return +∞
5 for i = 1 to maxIter do
6 a3 = (f1 ∗ a2 − f2 ∗ a1)/(f1 − f2)
7 f3 = F (a3)
8 if |f3| < prec then return a3

9 else if f3 > 0 then (a1, f1)← (a3, f3)
10 else (a2, f2)← (a3, f3)

11 return a2

4 Solving TSTN

The problem considered hereafter is to determine the consistency of a TSTN
and to compute the earliest and latest possible times associated with each tem-
poral variable. We also consider a context in which temporal constraints can
be successively added and removed from the problem. This dynamic aspect is
useful for instance when using local search for solving scheduling problems. In
this kind of search, local moves are used for modifying a current schedule. They
may correspond to additions and removals of activities, which are translated into
additions and removals of temporal constraints. The different techniques used,
which generalize existing STN resolution techniques, are successively presented.
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4.1 Constraint Propagation

We first use constraint propagation for computing min and max bounds of
temporal variables. This standard method is inspired by approaches defined
in [8,9,10]. The latter correspond to maintaining a list of variables for which
constraints holding over these variables must be revised with, for each variable
z of the list, the nature of the revision(s) to be performed: (a) if z had its min
bound updated, then the min bound of every variable t linked to z by a con-
straint t− z ≥ c must be revised; (b) if z had its max bound updated, then the
max bound of every variable t linked to z by a constraint z − t ≥ c must be
revised.

Compared to standard STN approaches, we choose for TSTN a constraint
propagation scheme in which a list containing constraints to be revised is main-
tained, instead of a list containing variables. This list is partitioned into two
sub-lists, the first one containing constraints to be revised which may modify a
min bound (constraints y − x ≥ dmin(x, y) awoken following a modification of
min x, which may modify min y), and the second one containing constraints to
be revised which may modify a max bound (constraints y−x ≥ dmin(x, y) awo-
ken following a modification of max y, which may modify maxx). Compared to
the version maintaining lists of variables, maintaining lists of constraints allows
some aspects to be more finely handled (more details below).

Last, a t-simple temporal constraint is revised using Rules 7 and 8 of Prop. 1.

4.2 Negative Cycle Detection

With bounded domains of values, the establishment of arc-consistency for STN is
able to detect inconsistency. However, the number of constraint revisions required
for deriving inconsistency may be prohibitive compared to STN approaches de-
fined in [7,8], which use the fact that STN inconsistency is equivalent to the
existence of a cycle of negative length in the distance graph.

The basic idea of these existing STN approaches consists in detecting such
negative cycles on the fly by maintaining so-called propagation chains. The latter
can be seen as explanations for the current min and max bounds of the different
variables. A constraint y− x ≥ c is said to be active with regard to min bounds
(resp. max bounds) if and only if the last revision of this constraint is responsible
for the last modification of the min of y (resp. the max of x). It is shown in [7]
that if there exists a cycle in the directed graph where an arc is associated with
each active constraint with regard to min bounds, then the STN is inconsistent.
The intuition is that if a propagation cycle x1 → x2 → . . . → xn → x1 is
detected for min bounds, then this means that the min value of x1 modified the
min value of x2... which modified the min value of xn which modified the min
value of x1. By traversing this propagation cycle a sufficient number of times,
the domain of x1 can be entirely pruned. The same result holds for the directed
graph containing one arc per active constraint with regard to max bounds.

These results cannot however be directly reused for t-simple temporal con-
straints, since for TSTN in general, the existence of a propagation cycle does
not necessarily imply inconsistency, as shown in the example below.
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Example. Let dmin be the minimum distance function defined by dmin(a, b) =
1 − a/2. Let (V, C) = ({x, y}, {ct1 : x − y ≥ −0.5, ct2 : y − x ≥ dmin(x, y)})
be a TSTN containing two temporal variables of domains d(x) = d(y) = [0.5, 2]
and two constraints. The delay functions associated with ct1 and ct2 are strictly
monotonic (for ct2, it equals delayct2(a, b) = a + dmin(a, b)− b = 1 + a/2− b).

Propagating ct2 using Rule 7 updates the min of y and gives d(y) = [1+1/4, 2].
Propagating ct1 using the same rule then updates the min of x and gives d(x) =
[1 − 1/4, 2]. The result obtained is a cycle of propagation since the min value
of x modified the min of y which itself modified the min of x. In the context of
STN, the existence of such a cycle means inconsistency. In the context of TSTN,
such a conclusion does not always hold because for instance assignment x = 1,
y = 1.5 is consistent.

The reason is that in TSTN, domain reductions obtained by traversing cycles
again and again may become smaller and smaller. This is what happens here,
where we get d(x) = [1 − 1/2n, 2] after n traversals of the propagation cycle
between x and y. The finite computer precision implies that cycle traversals
stop at some step, but potentially only after many iterations.

The example also shows that the strict monotonicity of the delay function
does not suffice for deriving inconsistency in case of cycle detection. A sufficient
condition satisfied for standard STN is given in Prop. 4. This condition ensures
that a cycle does not become “less negative” when traversed again and again.

Definition 7. A t-simple temporal constraint ct : (x, y, dmin) is said to be shift-
monotonic iff it satisfies:

∀a, a′ ∈ d(x), ∀b ∈ d(y), (a ≤ a′)→ (delayct(a
′, b) ≥ delayct(a, b) + (a′ − a))

∀a ∈ d(x), ∀b, b′ ∈ d(y), (b ≤ b′)→ (delayct(a, b) ≥ delayct(a, b′) + (b′ − b))

Informally, shift-monotonicity means that on one hand, when the start time of
a transition is shifted forward, the arrival time is shifted forward by at least the
same amount, and on the other hand when the arrival time of the transition is
shifted backward, the delay is increase by at least the same amount.

Proposition 4. If a propagation cycle involving only shift-monotonic constraints
is detected in a TSTN, then the TSTN is inconsistent.

Proposition 5. In particular, (1) for TSTN containing only shift-monotonic
constraints, the existence of a propagation cycle implies inconsistency; (2) for
TSTN whose distance graph does not contain cycles involving non shift-monotonic
constraints, the existence of a propagation cycle implies inconsistency.

Proof. For Prop. 4, assume that propagation cycle x1 → x2 → . . . → xn → x1 is
detected for min bounds, following the revision of a constraint linking xn and x1. Let
δ > 0 be the increase in the min bound of x1 following this last constraint revision. It
can be shown that shift-monotonicity implies that (a ≤ a′)→ (earr ct(a

′) ≥ earr ct(a)+

(a′−a)). Therefore, if the cycle is traversed again, the min bounds of x2, . . . , xn will be
increased again by at least δ. After a sufficient number of cycle traversals, the domain
of one variable of the cycle becomes empty. Prop. 5 is a direct consequence of Prop. 4.
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In the agile satellite application which motivates this work, the minimum dis-
tance functions used are not necessarily shift-monotonic, as can be seen in Fig. 1,
but point 2 of Prop. 5 applies for case studies considered. Inferring inconsistency
due to propagation cycle detection is correct in this case. Checking the satisfac-
tion of the condition given in point 2 of Prop. 5 is easy (linear in the number of
variables and constraints).

If none of the sufficient conditions given in Prop. 5 is satisfied, several options
can be considered. The first one consists in not considering non shift-monotonic
constraints in propagation chains; this approach is correct but may lose time in
propagation cycles. The second option consists in considering a TSTN as incon-
sistent as soon as a propagation cycle is detected, even if it contains non shift-
monotonic constraints; this may be incorrect in the sense that it may wrongly
conclude to inconsistency. A possible trade-off is to keep the first option but to
stop propagating constraints when some time-limit or some precision is reached.

In terms of complexity, Prop. 6 below generalizes polynomial complexity re-
sults available on STN to TSTN, and therefore to time-dependent scheduling.

Proposition 6. Given a TSTN (V, C), if the existence of a propagation cy-
cle implies inconsistency, then the algorithm using Rules 7-8 for propagation
plus a FIFO ordering on the propagation queue plus propagation cycle detec-
tion establishes bound arc-consistency in O(|V ||C|) constraint revisions (bound
independent of the size of the variable domains).

Proof. Similar to the result stating that the number of arc revisions in the Bellman-
Ford’s FIFO label-correcting algorithm is O(|V ||C|).

In terms of implementation, we perform on the fly detection of propagation
cycles based on an efficient data structure introduced in [16]. The latter is used
for maintaining a topological order of nodes in the graphs of propagation of min
and max bounds. When no topological order exists, the graph contains a cycle.

Prop. 8 and 9 show that the two monotonicity properties considered in this pa-
per (delay- and shift-monotonicity) are satisfied by simple temporal constraints
and by several constraints used in time-dependent scheduling (see [5]).

Proposition 7. Shift-monotonicity implies strict delay-monotonicity.

Proposition 8. Simple temporal constraints y−x ≥ c are shift-monotonic (and
therefore also strictly delay-monotonic).

Proposition 9. Let x, y be two temporal variables corresponding to the start
time and end time of a task respectively. Monotonicity results of Table 1 hold.

Proof. Prop. 7 is straightforward. Prop. 8 holds because if dmin is constant, then
delayct(a, b) − delayct(a

′, b) = a − a′ and delayct(a, b) − delayct(a, b′) = b′ − b. For
Prop. 9, some intermediate results can be used: (a) if dmin(x, y) = dmin(x), shift-
monotonicity holds iff dmin(x) is a non-decreasing function; (b) if dmin(x) decreases
at some step, then delay-monotonicity holds provided that the decrease slope is ≥ −1.
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Table 1. Monotonicity of some distance functions used in time-dependent scheduling,
with x a variable whose domain is not reduced to a singleton, and A,B, D constants
such that A ≥ 0, B > 0, and D > min(d(x))

Distance dmin(x, y) = dmin(x) form shift-monotonic delay-monotonic
A + Bx yes yes (strict)

A−Bx no yes iff B≤1 (strict iff B<1)

max(A, A + B(x−D)) yes yes (strict)

A if x < D, A + B otherwise yes yes (strict)

A−B min(x, D) no yes iff B≤1 (strict iff B<1)

4.3 Constraint Depropagation for Dynamic TSTN

Constraint propagation techniques are directly able to handle constraint addi-
tion or constraint strengthening. As for constraint removal or constraint weaken-
ing, constraint depropagation strategies defined in [10] for STN can be directly
reused. These strategies allow min and max bounds of temporal variables to
be recomputed at minimum cost. They avoid reinitializing all variable domains
and repropagating all constraints from scratch when a constraint is removed or
weakened. The basic idea is to use propagation chains in order to determine
which variable domains must be reinitialized and which constraints need to be
revised. More precisely, when a constraint y − x ≥ dmin(x, y) is removed or
weakened, if this constraint is active with regard to the min bound of y (resp.
the max bound of x), then the min bound of y (resp. the max bound of x) is
reinitialized to the value it had before any propagation. This reinitialization may
trigger other reinitializations. TSTN constraints of the form y − z ≥ dmin(z, y)
(resp. z− x ≥ dmin(x, z)) are then added to the list of constraints to be revised
from the point of view of min bounds (resp. max bounds).

The only difference when compared to standard STN techniques is the use of
lists of constraints to be revised instead of lists of variables. This allows constraint
depropagation to be slightly less costly: on the example of reinitialization of the
min bound of y, the standard STN version would add to a list of variables to be
propagated every variable z linked to y by some constraint y − z ≥ dmin(z, y),
and doing so would repropagate in the end all constraints of the form u − z ≥
dmin(z, u), even those with u = y.

4.4 Constraint Revision Ordering

A last technique is used for minimizing the number of constraint revisions. This
can be particularly useful for TSTN, for which revising one constraint can be
significantly more costly than for STN. The proposed approach extends a tech-
nique developed for STN−[9], a sub-class of STN in which every constraint must
be rewritable as y− x ≥ c with c ≥ 0. The idea consists in building the strongly
connected components of the distance graph, in ordering them in topological
order, and in using this order to determine which constraint to propagate first.
We first recall definitions concerning strongly connected components.
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Definition 8. Let G = (V, A) be a directed graph with V the set of nodes and
A the set of arcs. A Strongly Connected Component (SCC) of G is a maximum
sub-graph G′ of G such that there exists in G′ a path from every node to every
other node.

The DAG (Directed Acyclic Graph) of SCCs of G is the directed graph whose
nodes are the SCCs of G and which contains an arc from SCC c1 to SCC c2 iff
there exists in G an arc from one of the nodes of c1 to one of the nodes of c2.

A topological order of SCCs is an order � where each SCC c is put strictly
after each of its parents c′ in the DAG of SCCs (c′ ≺ c). Given a node x in
graph G, scc(x) denotes the unique SCC of G that contains x.

Propagating temporal constraints following a topological order of SCCs of the
distance graph boils down to using the fact that solving shortest path problems
is easier for acyclic graphs than for arbitrary graphs. To apply this result, con-
straints to be propagated are ordered according to a topological order of SCCs.
More precisely, concerning the propagation of min bounds, we propagate first
constraints y−x ≥ dmin(x, y) such that scc(y) is maximum in the order of SCCs
and, in case of equality, we propagate first constraints such that scc(x) = scc(y),
to postpone as much as possible the propagation of “internal” constraints in an
SCC. To break remaining ties, a FIFO ordering strategy is used. Concerning the
propagation of max bounds, constraints are ordered by increasing scc(x) and,
in case of equality, we propagate first constraints such that scc(y) = scc(x), and
break remaining ties using a FIFO ordering strategy. In the example of Fig. 3,
SCCs are represented as dotted boxes. A bad propagation order for min bounds
would consist in propagating first the constraint between sa2 and ea1, and then
the constraint between sa1 and ea3. A good order, consistent with the order of
SCCs, would consist in using the opposite strategy.

Compared to the way SCCs are used in [9] for STN−, the method we propose
is adapted not only to general STN, but also to TSTN. In terms of implemen-
tation, in order to avoid recomputing the DAG of SCCs from scratch after each
constraint addition or removal, we use recent algorithms proposed for maintain-
ing SCCs in a dynamic graph [17,18].

5 Experiments

All techniques presented in Section 4 (constraint propagation, propagation cycle
detection, constraint depropagation, SCC ordering) are integrated and simulta-
neously used in a scheduling tool based on local search. The local search aspect
entails that doing/undoing a local move is fast, similarly to constraint-based
local search tools Comet [19] and LocalSolver [20]. Our STN/TSTN solver is im-
plemented in Java. Results are obtained on an Intel i5-520 1.2GHz, 4GBRAM.

Experiments not detailed here were first performed on STN obtained from
scheduling problems of the SMT-LIB. The objective was to evaluate the prop-
agation heuristics based on a topological ordering of the SCCs. This heuristics
appears to be a robust strategy, which significantly decreases the number of
constraint revisions on some problems. More precisely, for consistent STN, the
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SCC heuristics is always at least as good as a pure FIFO heuristics, but for
inconsistent STN, it is not always the fastest strategy for proving inconsistency.

We detail below experiments realized on TSTN in the context of agile satel-
lites. The problem considered here is a simple no overlapping constraint over an
ordered sequence of n acquisitions acq1 → . . . → acqn, with n varying between
5 and 13. These acquisitions correspond to ground strips located between the
north of Spain and the north of France. The no-overlapping constraint between
acquisitions can be written as a set of t-simple temporal constraints of the form
si+1 − ei ≥ minAttTransTime(Eatt i(ei), Satti+1(si+1)) with, for an acquisition
j, sj/ej the start/end time of this acquisition, and Sattj(t)/Eattj(t) the atti-
tudes required to start/end j at time t. In addition, simple temporal constraints
are used to define the constant duration of each acquisition.

Two methods are compared: (1) a TSTN approach in which exact transition
times between acquisitions are used, and (2) an STN approach in which upper
bounds on transition times are pre-computed, by sampling on the different possi-
ble start times of the transitions. The schedule obtained in both cases is flexible in
the sense that the domains of values after propagation over STN/TSTN are gen-
erally not reduced to singletons. The criterion considered for comparing the two
approaches is the mean temporal flexibility mtf = 1

|V |
∑

x∈V (max(x) −min(x)),
measured as the mean, over all temporal variables x ∈ V , of the difference be-
tween the earliest and latest possible times associated with x. Such a flexibility is
important in practice to offer as much freedom as possible concerning the choice
of an angle of acquisition of ground strips, which influences image quality.

Three scenarios are considered. In the first one, acquisitions correspond to
strips of length about 80km, to be observed with a scanning direction of 0 de-
grees (angle between the trace of the satellite on the ground and the direction in
which the strip must be scanned). Fig. 4(a) shows that in this case, the tempo-
ral flexibility obtained with TSTN only slightly improves the flexibility obtained
with STN. The reason is that if all acquisitions are realized with a scanning
direction of 0 degrees, the minimum transition times between acquisitions con-
sidered are almost independent of the precise triggering time of transitions: they
are only time-dependent when the rotation on the pitch axis is the most con-
straining from a temporal point of view, compared to the rotation on the roll
axis.

In the second scenario, the scanning direction becomes 30 degrees. Fig. 4(b)
shows that the temporal flexibility obtained with TSTN is better than with
STN (improvement of about 20 seconds in flexibility), and that the flexibility
gap between STN and TSTN increases with the number of acquisitions planned.

In the third and last scenario, the length of the strips considered becomes
approximately 40km, and the scanning direction is chosen at random for each
strip. In this case, Fig. 4(c) shows that the STN approach only allows sequences
of length 5 and 6 to be scheduled. It concludes to an inconsistency of the problem
for n ≥ 7. On the other hand, the TSTN approach schedules all 13 acquisitions
considered. One reason explaining these results is that the more distinct the
scanning directions are, the more the minimum transition times between acqui-
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Fig. 4. Comparison of temporal flexibilities, in seconds, obtained with precomputed
upper bound on transition times (flexSTN) and with exact transition times (flexTSTN)

sitions depend on the triggering time of the transitions. The possibility to have
distinct scanning directions is important in practice. It indeed allows acquisi-
tions defined as polygons to be split into strips whose orientation can be freely
chosen, which can reduce the number of strips to be scanned.

To give an idea of computation times, for 13 acquisitions added one by one
to the current schedule, a precision of one second on dates, and a maximum
number of iterations equal to 104 for computing firstNeg and lastNeg , the TSTN
approach takes about 2ms per acquisition addition. With STN, the computation
time is less than 0.1ms per addition. For precisions of 10−1, 10−2, and 10−3

second on dates, computation times with TSTN respectively become 3ms, 12ms,
and 66ms per addition. A typical technique can consist in first searching for
schedules with a fast coarse-grained approach, before using a finer precision.

As a conclusion, this paper introduced TSTN, their properties, resolution
techniques, and their application to agile satellites. It would be interesting to
extend other features of STN to TSTN, e.g. concerning decomposability issues [1],
and to test TSTN on other applications, e.g. from the logistics domain.
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Abstract. Bounded Max-Sum is a message-passing algorithm for solving Dis-
tributed Constraint Optimization Problems able to compute solutions with a guar-
anteed approximation ratio. Although its approximate solutions were empirically
proved to be within a small percentage of the optimal solution on low and mod-
erately dense problems, in this paper we show that its theoretical approximation
ratio is overestimated, thus overshadowing its good performance. We propose a
new algorithm, called Improved Bounded Max-Sum, whose approximate solu-
tions are at least as good as the ones found by Bounded Max-Sum and with a
tighter approximation ratio. Our empirical evaluation shows that the new approx-
imation ratio is significantly tighter.

1 Introduction

Decentralised coordination techniques are a very important topic of research. A com-
mon approach is to cast the problem as a multi-agent distributed constraint optimization
problem (DCOP), where the possible actions that agents can take are associated with
variables and the utility for taking joint actions are encoded with (soft) constraints [8].
The set of constraints define a global utility function F (x) to be optimized via de-
centralised coordination of the agents. In general, complete algorithms [6,5,7] (i.e. al-
gorithms that find the true optimum) exhibit an exponentially increasing coordination
overhead, which makes them useless in many practical situations.

Approximate algorithms constitute a very interesting alternative. They require little
computation and communication at the cost of sacrificing optimality. There are several
examples showing that they can provide solutions which are very close to optimal-
ity [3,4]. However, this observation can only be verified on small toy instances, because
it requires the computation of the true optimal to compare with, and it is not available
in real-size real-world situations.

A significant breakthrough along this line of work was the Bounded Max-Sum algo-
rithm (BMS) [8]. This algorithm comes with a guarantee approximation ratio ρ̃, mean-
ing that its approximate solution x̃ has a utility F (x̃) which is no more than a factor
ρ̃ ≥ 1 away from the optimum (i.e, F (x̃) ≤ F (x∗) ≤ ρ̃F (x̃)). Clearly, large values of
ρ̃ reflect lack of confidence in the solution x̃. There are two possible reasons for a large
ρ̃: i) the algorithm failed in finding a solution close to the optimal, ii) the approximation
ratio is not tight. Clearly, if we want ρ̃ to be our measure of confidence about the quality
of x̃, we want a tight ρ̃ (i.e, F (x∗) ≈ ρ̃F (x̃)). Thus, the quality of the approximation
ratio is a matter of the utmost importance.

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 624–632, 2012.
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In this paper we propose an improvement of BMS with approximation ratio ρ. We
theoretically show that it is always better than the previous one (i.e., ρ ≤ ρ̃). Moreover,
our experiments show that, in practice, ρ is much tighter than ρ̃.

2 Preliminaries

In this Section we review the main elements to contextualize our work. Definitions and
notation are borrowed almost directly from [8]. We urge the reader to visit that reference
for more details and examples.

2.1 DCOP

A Distributed Constraint Optimization Problem (DCOP) is a quadruple P =
(A,X,D,F), where A = {A1, . . . ,Ar} is a set of agents, and X = {x1, . . . , xn}
and D = {d1, . . . ,dn} are variables and domains. F = {f1, . . . , fe} is a set of cost
functions. The objective function is,

F (x) =

e∑
j=1

fj(x
j)

where xj ⊆ X is the scope of fj . A solution is a complete assignment x. An optimal
solution is a complete assignment x∗ such that ∀x, F (x∗) ≥ F (x). The usual task of
interest is to find x∗ through the coordination of the agents.

In the applications under consideration, the agents search for the optimum via decen-
tralised coordination. We assume that each agent can control only its local variable(s)
and has knowledge of, and can directly communicate with, a few neighboring agents.
Two agents are neighbors if there is a relationship connecting variables and functions
that the agents control.

The structure of a DCOP problem P = (A,X,D,F) can be transformed into a
factor graph. A factor graph is a bipartite graph having a variable node for each variable
xi ∈ X, a factor node for each local function fj ∈ F, and an edge connecting variable
node xi to factor node fj if and only if xi is an argument of fj .

2.2 Max-Sum Algorithm

The Max-Sum algorithm [2,1] is a message-passing algorithm for solving DCOP prob-
lems. It operates over a factor graph by sending functions (a.k.a., messages) along its
edges. Edge (i, j) has associated two messages qi→j , from variable node xi to func-
tion node fj , and rj→i, from function node fj to variable node xi. These messages are
defined as follows:

– From variable to function:

qi→j(xi) = αij +
∑

k∈Mi\j
rk→i(xi)

where Mi is a vector of function indexes, indicating which function nodes are
connected to variable node xi, and αij is a normalizing constant to prevent the
messages from increasing endlessly in cyclic graphs.



626 E. Rollon and J. Larrosa

– From function to variable:

rj→i(xi) = max
xj\xi

{fj(xj) +
∑

k∈Nj\i
qk→i(xi)}

where Nj is a vector of variable indexes, indicating which variable nodes are con-
nected to function node fj and xj \ xi = {xk | k ∈ Nj \ i}

Max-Sum is a distributed synchronous algorithm, since the agent controlling node i has
to wait to receive messages from all its neighbors but j, to be able to compute (and send)
its message to j. When the factor graph is cycle free, the algorithm is guaranteed to
converge to the global optimal solution. Once the convergence is reached, each variable
node can compute function,

zi(xi) = max
xi

∑
k∈Mi

rk→i(xi)

The optimal solution is maxxi{zi(xi)} and the optimal assignment x∗i =
argmaxxi{zi(xi)}. When the factor graph is cyclic, the algorithm may not converge to
the optimum and only provides an approximation.

3 Bounded Max-Sum Algorithm

The Bounded Max-Sum algorithm (BMS) [8], is an approximation algorithm built on
the Max-Sum algorithm. From a possibly cyclic problem P , the idea is to remove cy-
cles in its factor graph by ignoring dependencies between functions and variables which
have the least impact on the solution quality, producing a new acyclic problem P̃ . Then,
Max-Sum is used to optimally solve P̃ while simultaneously computing the approxi-
mation ratio ρ̃. A more detailed description follows. For the sake of simplicity, we will
restrict ourselves to the case of binary functions fj(xi, xk). The extension to general
functions is direct. The algorithm works in three phases, each one implementable in a
decentralised manner (see [8] for further details):

– Relaxation Phase: First, the algorithm weights each edge (i, j) of the original
factor graph as,

wij = max
xk

{max
xi

fj(xi, xk)−min
xi

fj(xi, xk)}

Then, it finds a maximum spanning tree T . Let W be the sum of weights of the
removed edges (i.e, W =

∑
(i,j)/∈T wij ). Next, the original problem P is trans-

formed into an acyclic one P̃ having the spanning tree T as factor graph. This is
done as follows: for each edge (i, j) in the original graph that does not belong to
the tree, the cost function fj(xi, xk) is transformed into another function f̃j(xk)
defined as,
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f̃j(xk) = min
xi

fj(xi, xk)

Note that the objective function of P̃ is

F̃ (x) =
∑

(i,j),(k,j)∈T
fj(xi, xk) +

∑
(i,j)/∈T

f̃j(xk)

– Solving Phase: BMS solves P̃ with Max-Sum. Let x̃ be the solution of this prob-
lem. Since the factor graph of P̃ is acyclic, x̃ is its optimal assignment.

– Bounding Phase: In [8], it is proved that,

F (x̃) ≤ F (x∗) ≤ F̃ (x̃) +W

We can rewrite the previous upper bound expression as,

F (x∗) ≤ F̃ (x̃) + W

F (x̃)
F (x̃)

Therefore, the algorithm computes ρ̃ = F̃ (x̃)+W
F (x̃) , which is a guarantee approxima-

tion ratio.

4 Improved BMS

4.1 Theoretical Elements

Consider an edge (i, j) in the original factor graph that does not belong to the spanning
tree. We define f̂j(xk) as,

f̂j(xk) = max
xi

fj(xi, xk)

Let P̂ denote the problem containing the unmodified functions fj(xi, xk) (for
(i, j), (k, j) ∈ T ) and the f̂j(xk) functions (for (i, j) /∈ T ). Note that P̂ and P̃ have the
same acyclic factor graph. Note as well that the objective function of P̂ is

F̂ (x) =
∑

(i,j),(k,j)∈T
fj(xi, xk) +

∑
(i,j)/∈T

f̂j(xk)

We can solve P̂ with Max-Sum. Let x̂ be the optimal solution of this problem. It is
obvious that F (x̂) is a lower bound of F (x∗). Furthermore, as we prove next, F̂ (x̂) is

an upper bound of F (x∗). Therefore, ρ̂ = F̂ (x̂)
F (x̂) is a guarantee approximation ratio.

Theorem 1. F (x∗) ≤ F̂ (x̂).

Proof. By definition, F (x∗) =
∑

(i,j),(k,j)∈T fj(x
∗
i ,x

∗
k)+

∑
(i,j)/∈T fj(x

∗
i ,x

∗
k). Since

for all fj we have that fj(xi, xk) ≤ maxxi fj(xi, xk), then

F (x∗) ≤
∑

(i,j),(k,j)∈T
fj(x

∗
i ,x

∗
k) +

∑
(i,j)/∈T

max
xi

fj(xi,x
∗
k) = F̂ (x∗)

From the optimality of x̂, we know that F̂ (x∗) ≤ F̂ (x̂), which proves the theorem.
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Next, we show that F̂ (x̂) is a tighter upper bound than F̃ (x̃) +W .

Theorem 2. F̂ (x̂) ≤ F̃ (x̃) +W .

Proof. The proof is direct once it has been noted that for all fj(xi, xk),

f̂j(xk) ≤ f̃j(xk) + wij

which we prove next. By definition, the previous equation corresponds to,

max
xi

fj(xi, xk) ≤ min
xi

fj(xi, xk) + max
xk

{max
xi

fj(xi, xk)−min
xi

fj(xi, xk)}

which can be rewritten as,

max
xi

fj(xi, xk)−min
xi

fj(xi, xk) ≤ max
xk

{max
xi

fj(xi, xk)−min
xi

fj(xi, xk)}

which clearly holds.

We cannot establish any dominance relation between ρ̃ and ρ̂ because there is no dom-
inance between F (x̃) and F (x̂). However, one way to circumvent this situation is to

take ρ = F̂ (x̂)
max{F (x̃),F (x̂)} . The new ratio ρ dominates ρ̃.

Theorem 3. ρ ≤ ρ̃.

Proof. Direct from Theorem 2 and the fact that max{F (x̃), F (x̂)} ≥ F (x̃).

4.2 IBMS

Improved BMS (IMBS) works, as BMS, in three phases:

– Relaxation Phase: IBMS computes the spanning tree T and the relaxed problem
P̃ exactly as BMS does. Additionally, IBMS computes the relaxed problem P̂ .

– Solving Phase: IBMS solves P̃ and P̂ with Max-Sum. Let x̃ and x̂ be the so-
lutions of these problems. The agents will act according to the best solution
(max{F (x̃), F (x̂)}).

– Bounding Phase: IBMS computes the approximation ratio ρ = F̂ (x̂)
max{F (x̃),F (x̂)} .

The computation, storage and communication effort of IBMS is essentially twice that
of BMS, because it requires solving two relaxed problems with Max-Sum. Given the
low cost of BMS, doubling it seems acceptable. However, when it is not the case, one
can always run a weaker version of IBMS ignoring P̃ . This weaker version will be ex-
actly as costly as BMS. Its disadvantage is that x̂ is not guaranteed to be better than
x̃. In fact, our experiments show that there is no clear winner among them. Interest-
ingly, the approximation ratio of the weaker version ρ̂ is systematically better than the
approximation ratio of BMS ρ̃.

Example 1. Consider the problem P given in Figure 1 with two variables {x1, x2}
and two functions {f1, f2}. The spanning tree of its factor graph is given with solid
lines (i.e., edge (x2, f1) has been removed, shown as a dashed line). Thus, W = 10.
Functions f̃1 and f̂1 in P̃ and P̂ , respectively, are given in the figure. Max-Sum finds
assignments x̃ = x̂ = (x1 = a, x2 = a), with utility F̃ (x̃) = F̂ (x̂) = 20. Their
evaluation on the original problem P is F (x̃) = F (x̂) = 20. The approximation ratios
are ρ̃ = 1.5, ρ̂ = 1, and ρ = 1.
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Fig. 1. Example of a factor graph containing cycles and a spanning tree formed by removing the
edge between variable node x2 and function node f1

5 Empirical Evaluation

The purpose of the experiments is to evaluate the improvement of our upper bound
F̂ (x̂) and approximation ratios ρ and ρ̂ over the BMS upper bound F̃ (x̃) + W and
approximation ratio ρ̃, respectively. We consider the same set of problems from the
ADOPT repository1 used in [8]. These problems represent graph coloring problems
with two different link densities (i.e., the average connection per agent) and different
number of nodes. Each agent controls one node (i.e., variable), with domain |di| =
3, and each edge of the graph represents a pairwise constraint between two agents.
Each edge is associated with a random payoff matrix, specifying the payoff that both
agents will obtain for every possible combination of their variables’ assignments. Each
entry of the payoff matrix is a real number sampled from two different distributions:
a gamma distribution with α = 9 and β = 2, and a uniform distribution with range
(0, 1). For each configuration, we report average values over 25 repetitions. For the sake
of comparison, we compute the optimal utility by a complete centralized algorithm,
although this value can only be computed up to 12 agents by a complete decentralized
algorithm, as shown in [8].

Figure 2 (first and second rows) shows the upper and lower bound obtained by IBMS
(i.e., F̂ (x̂) and max{F (x̂), F (x̃)}, respectively) and BMS (i.e., F̃ (x̃) and F (x̃), re-
spectively), along with the optimal utility (i.e., F (x∗)), for the different link densities
and payoff distributions. The behavior of both algorithms is very similar across all link
densities and payoff distributions. IBMS always computes an upper bound tighter than
the one computed by BMS. The improvement is slightly better for the uniform distri-
bution. The lower bounds computed by both algorithms are very close, although IBMS
lower bound is slightly better.

Figure 2 (bottom row) shows a detail on the lower bounds F (x̂) and F (x̃) obtained
on each instance of a given parameter configuration. Since the behavior across all num-
ber of agents, link densities and payoff distributions is very similar, we only report
results on instances with 25 agents and gamma distribution. Both lower bounds are
very close, and none of them is consistently better than the other.

Figure 3 shows the percentage of improvement of the approximation ratio of IBMS ρ
and the weaker version of IBMS ρ̂ over the approximation ratio of MBS ρ̃ (left y-axe).
The figure also reports the percentage of deterioration of the approximation ratio of the
7-size-bounded-distance criteria introduced in [9] according to the minimum maximum
reward bound (S7r) and the minimum fraction bound (S7f ) presented in [10] over the

1 http://teamcore.usc.edu/dcop
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Fig. 2. First and second row, bounds obtained by algorithms IBMS and BMS varying the number
of agents; third row, lower bound detail for instances with 25 agents and gamma distribution

approximation ratio of MBS ρ̃ (right y-axe). Since the relation between the optimal
solution of the problem F (x∗) and an approximation ratio ρ of a given solution x is
1 ≤ F (x∗)

F (x) ≤ ρ, we compute the improvement of an approximation ratio ρ over ρ̃ as,

(ρ̃− 1)− (ρ− 1)

ρ̃− 1
∗ 100

The improvement of ρ is always higher than 37%, and up to almost 50%. Its mean
improvement for the gamma and uniform distributions is higher than 40% and 45%,
respectively. The improvement of ρ̂ is always higher than 32%, and up to almost 46%.
Its mean improvement for the gamma and uniform distributions is higher than 35% and
37%, respectively. Therefore, both IBMS and its weaker version always significantly
outperforms BMS. Recall that the weaker version of IBMS has the same communi-
cation demands as BMS. Both approximation ratios S7r and S7f are worse than the
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Fig. 3. Percentage of improvement of the approximation ratio of IBMS ρ and weaker version of
IBMS ρ̂ (left y-axe), and percentage of decrease of the 7-size-bounded-distance criteria using
the the minimum maximum reward bound (S7r) and the minimum fraction bound (S7f ) (right
y-axe) over the approximation ratio of BMS ρ̃

approximation ratio of BMS ρ̃ (the percentage is always negative). Their quality de-
creases as the number of agents increases for both distributions.

6 Conclusions

In this paper we introduced a new algorithm, called Improved Bounded Max-Sum
(IBMS), based on the Bounded Max-Sum algorithm. We theoretically proved that its
approximation ratio is always better than the previous one, at the only cost of doubling
the communication requirements. We also introduced a weaker version of IBMS having
the same communication demands as Bounded Max-Sum. Our experiments show that
the approximation ratio of both algorithms is significantly tighter.
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Abstract. We propose a hybrid MIP/CP approach for solving multi-
activity shift scheduling problems, based on regular languages that par-
tially describe the set of feasible shifts. We use an aggregated MIP re-
laxation to capture the optimization part of the problem and to get rid
of symmetry. Whenever the MIP solver generates a integer solution, we
use a CP solver to check whether it can be turned into a feasible solution
of the original problem. A MIP-based heuristic is also developed. Com-
putational results are reported, showing that the proposed method is a
promising alternative compared to the state-of-the-art.

1 Introduction

A shift scheduling problem assigns a feasible working shift to a set of employees,
in order to satisfy the demands for a given set of activities at each period in a
given time horizon. The set of feasible shifts that can be assigned to employees
is often defined by a complex set of work regulation agreements and other rules.
Assigning a shift to an employee means specify an activity for each period, which
may be a working activity or a rest activity (e.g., lunch). The objective is usually
to minimize the cost of the schedule, which is usually a linear combination of
working costs plus some penalties for undercovering/overcovering the demands
of the activities in each time period. If the set of working activities W is made
by a single activity, we talk of single-activity shift scheduling, while if there are
several working activities we talk of multi-activity shift scheduling. In this paper
we consider the latter case, with the additional constraint that all employees are
identical.

In particular, suppose we are given a planning horizon divided into a set of
periods T , a set of activities A, a subset W ⊂ A of working activities, and a set
of employees E. For each period t ∈ T and for each working activity a ∈W , we
are given a demand dat, an assignment cost cat, an undercovering cost c−at and
an overcovering cost c+at. Introducing the set of integer variables yat, which count
the number of employees assigned to activity a at period t, and integer variables
s−at, s

+
at that count the appropriate under/over covering, we can formulate the

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 633–646, 2012.
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problem as:

min
∑
a

∑
t

catyat +
∑
a

∑
t

c+ats
+
at +

∑
a

∑
t

c−ats
−
at (1)

yat − s+at + s−at = dat ∀a ∈W, ∀t ∈ T (2)∑
e

xeat = yat ∀a ∈W, ∀t ∈ T (3)

〈x define a feasible shift ∀e ∈ E〉 (4)

yat, s
+
at, s

−
at ∈ Z+ (5)

xeat ∈ {0, 1} (6)

Depending on how we formulate the constraints (4), we may end up with very
different models. A convenient way to define the set of feasible shifts that can be
assigned to a given employee is to use a regular or a context-free language, i.e., the
set of feasible shifts can be viewed as the words accepted by a finite automaton
or more generally by a push-down automaton. It has been shown in [14,3] that
it is possible to derive a polyhedron that describes a given regular/context-free
language. Such representations are compact (in an appropriate extended space,
i.e., introducing additional variables) and thus lead directly to a MIP formulation
of the problem. In particular, the extended formulation for a regular language is
essentially a network flow formulation based on the expanded graph associated
with the accepting automaton (see [13,3] for details). The extended formulation
for the context-free language, on the other hand, is based on an and-or graph
built by the standard CYK parser [10] for the corresponding grammar [14,16].

Note that it is not necessary to describe completely the set of feasible shifts
by a regular/context-free language. The formal language may capture only some
of the constraints defining a feasible shift, with the remaining ones described as
linear inequalities. This may simplify the corresponding automaton considerably.
For example, regular languages are notoriously bad at handling counting argu-
ments, and an automaton describing the set of feasible shifts completely in the
presence of even a few cardinality constraints may require thousands of states.
Such large automaton are not trivial to generate. This also has a direct influence
on the size of the model and the efficiency of reasoning about it. The same holds
for context free languages. It is true that they can be enriched considerably by
adding constraints that limit the applicability of productions rules, without even
increasing the size of the model. However, certain cardinality constraints may
overly complicate the language. Finally, depending on the application, the model
derived using a context free language may be much bigger than an equivalent
one derived using a regular language.

However, describing the set of feasible shifts with formal languages alone
has some important implications. First of all, it has been proven for both the
regular and context-free languages that the derived polyhedron is integral [14],
and thus, if the are no other constraints, it is possible to optimize a linear
function over the set of feasible shifts by solving just a linear program. Even
more importantly, these results have been extended also to polyhedra describing
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sets of feasible shifts [4]. It is then possible to consider an aggregated (implicit)
model and reconstruct an optimal solution of the original one with a polynomial
post-processing phase. This gives the current state-of-the-art for solving multi-
activity shift scheduling problems. Finally, if the formal language completely
describes the set of feasible shifts, then it is possible to apply some very effective
large neighborhood search heuristics to find quickly high quality solutions [17].

2 A Hybrid MIP/CP Approach

The explicit MIP model based on formal languages mentioned in the previous
section has two drawbacks. First of all, its size is directly proportional to the
number of employees in the instance; given that thousands of variables may
be needed to completely describe the set of feasible shifts for a single employee,
the linear programming relaxation can quickly become the bottleneck for branch-
and-cut algorithm solving the instance. Second, with interchangeable employees,
the enumeration itself explodes because of symmetry issues. In other words, the
explicit model scales very badly as the number of employees increases.

A recently developed technique in the MIP community to deal with symmetric
instances is called orbital shrinking [6], which is closely related to the implicit
model mentioned earlier. The basic idea behind orbital shrinking is, given an
orbit partitioning of the variables of a problem, to aggregate the variables within
any orbit and consider the derived shrinked model on these aggregated variables,
which is at the same time smaller and symmetry free. In the case of scheduling,
where the symmetries are due to the interchangeable employees, this procedure
automatically produces the implicit model used in [4]. Note that orbital shrinking
is an exact reformulation only for convex optimization problems. On the one
hand, this means that the LP relaxation of the shrinked model yields the same
dual bound as the LP relaxation of the explicit model. On the other hand, given
an arbitrary MIP, such reformulation is in general only a relaxation, although it
can be tighter and/or faster to compute than the LP relaxation (more on this
in Section 3).

Interestingly, for some special cases, the orbital shrinking reformulation is ex-
act also for the MIP problem. This happens, for example, whenever it can be
proven that an optimal solution of the aggregated model can always be turned
into a solution of the original model of the same cost (and thus optimal). Exam-
ples of this behaviour are the assignment polytope and the regular/context-free
language polytopes.

Consider for example the regular polytope in its extended form: the optimal
solution is always a flow of integral value, say k, and basic network flow theory
guarantees that it can be decomposed into k paths of unitary flow (and since
each path in the expanded graph corresponds to a word in the language, this is
a feasible solution for the original explicit problem). Similar reasoning applies to
the grammar polytope (although it is not a flow model), as successfully shown
in [4].

Unfortunately, it is not always reasonable to describe the set of feasible shifts
completely with a formal language. While it is true that formal languages can be
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extended without changing the complexity of the corresponding MIP encoding
(this is particularly true for context-free languages [16]), still some cardinality
constraints may be very awkward to express, as shown in the following example:

Example 1. Let’s consider a time horizon of 18 hours, divided into 18 periods. A
feasible shift is a word of length 18 build from the alphabet Σ = {a, b, r} (where
a denotes the only working activity, r is a rest period, while b is a break pe-
riod) that follows the pattern rest-work-break-work-break-work-break-work-rest.
Suppose that the breaks are constrained to be one period long, and the num-
ber of working periods must be between 6 and 8. Then, a very simple grammar
encoding the set of feasible shifts, ignoring the cardinality constraint, is:

S → RFR F → PBP P →WBW

R→ Rr|r W → Wa|a B → b

In this particular case, since the number of breaks in the shift is fixed (3), it
is very easy to extend the grammar to deal with the cardinality constraint by
restricting the production rule F → PBP to be applied only with substring of
length between 9 and 11. This can be handled very well by the CYK parser, and
thus the cardinality constraint can be added essentially at no cost.

However, let’s consider a slightly more complicated case. The pattern of a
feasible shift is the same, but now the length of breaks is not fixed to one. In
particular, the number of break periods is constrained to be between 4 and 6.
The best we can do keeping approximately the same grammar as before is the
following (we use the notation of [4] to indicate restrictions on production rules):

S → RFR F[10,14] → PBP P[3,10] →WBW

R→ Rr|r W →Wa|a B → Bb|b

It is easy to see that the restrictions cannot be tightened any further, otherwise
we may lose feasible shifts. However, the grammar also accepts the substring
rrabababbbbbbbaarr, which violates both cardinality constraints. ��

Of course the issues of the previous example are not theoretical. As the set of
feasible shifts is finite, there always exists a regular/context-free language that
describes that set. However, the corresponding automaton may be unreasonably
large in practice.

In order to turn the orbital shrinking approach into a complete method for the
multi-activity shift scheduling problem when the formal language does not com-
pletely describe the set of feasible shifts, we propose a hybrid MIP/CP approach
based on decomposition. In particular, whenever the MIP solver generates an
integer feasible solution of the aggregated model, we must check whether it can
be turned into a feasible solution of the explicit model. Because orbital shrinking
always aggregates variables with the same costs (otherwise they would not be on
the same orbit), this is indeed a pure feasibility problem. As such, we propose
to formulate the check as a CSP problem, to be solved with a CP solver. In
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this way, we not only avoid solving the LP relaxations (that would provide no
meaningful bounds), but we can explicitly state symmetry breaking constraints.
Note that this is essentially a master/slave decomposition similar to a general-
ized Benders method, where the master problem is a MIP model, while the slave
is a CP model.

2.1 MIP Model

The MIP model that we use is a simple modification of the general model hinted
at in Section 1. The main difference is that we partition the set of feasible
shifts Ω into k subsets Ωk, each of which is described by a potentially different
deterministic finite automaton (DFA) and cardinality constraints. This partition
can simplify a lot the structure of the DFAs, and in general makes the implicit
model more accurate, since the cardinality constraints are aggregated only within
employees of the same “kind”. This of course increases the size of the relaxation,
but since the aggregated model is quite compact, this is usually well worth it.
For each shift type Ωk, the MIP model decides how many employees are assigned
a shift in Ωk, and then computes an aggregated integer flow of the same value.
In details:

min
∑
k

∑
a

∑
t

caty
k
at +

∑
a

∑
t

c+ats
+
at +

∑
a

∑
t

c−ats
−
at (7)∑

k

ykat − s+at + s−at = dat ∀a ∈ W, ∀t ∈ T (8)

regular(yk, wk,DFAk) ∀k ∈ K (9)

〈cardinality constraints for yk〉 ∀k ∈ K (10)∑
k

wk ≤ E (11)

wk, ykat, s
+
at, s

−
at ∈ Z+ (12)

Note that we use the notation of constraint (9) to refer to the extended MIP
formulation of the regular constraint involving flow variables. The constraint
ensures that variables yk can be decomposed into wk words accepted by the
automaton DFAk. Constraints (10) refers to the cardinality constraints expressed
as linear constraints that complete the description of sets Ωk. Finally, if an upper
bound E is given on the number of employees that can scheduled, it can be
imposed in constraint (11).

2.2 CP Checker

The decision to partition the set of feasible shifts into k subsets Ωk has an
important consequence on the structure of the CP checker: the model actually
decomposes into k separate CP models, one for each type of shift. Given an index
k, suppose the master (MIP) model assigns wk employees, with their aggregated
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shifts described by yat. Then the corresponding CP model, which is similar to
the one proposed in [5], reads:

gcc(xe, σe, A) ∀e ∈ 1, . . . , wk (13)

τe =
∑
a∈W

σe
a ∀e ∈ 1, . . . , wk (14)

〈cardinality constraints for σe, τe〉 ∀e ∈ 1, . . . , wk (15)

regular(xe,DFAk) ∀e ∈ 1, . . . , wk (16)

gcc(xt, yt, A) ∀t ∈ T (17)

xe : xe+1 ∀e ∈ 1, . . . , wk − 1 (18)

Variables xe
t denote the activity assigned to employee e at time t. Variables

σe
a count the number of periods assigned to each activity for employee e, while

τe gives the sum over all working activities. Both are needed to specify the
cardinality constraints (15). Constraints (17) link the variables in the CP model
to the master solution yat. Finally, we impose a lexicographic order among the
shifts of the employees with constraints (18).

The CP model above is usually extremely fast in proving whether the ag-
gregated solution can be turned into a solution of the original. However, as the
number of activities and employees increases, it can occasionally become very
time consuming. The main reason for this behavior is the weak interaction be-
tween the cardinality constraints (17) and the symmetry breaking constraints
(18). The issue can be easily explained with an example:

Example 2. Let’s consider a vector of 5 binary variables x1, . . . , x5, each with
initial domain {0, 1}, and aggregate variables y0 = 2 and y1 = 3, linked with
the x by a cardinality constraint. In addition, there are symmetry breaking
constraints of the form x1 ≤ x2 ≤ · · · ≤ x5. From the cardinality constraint
point of view, any permutation of the solution (0, 0, 1, 1, 1) is feasible, so no
reductions are possible. The same happens from the symmetry breaking point of
view, because symmetry breaking alone cannot exclude the assignments where
all x variables take the same value (0 or 1). However, it is clear that the only
solution feasible for both constraints together is indeed (0, 0, 1, 1, 1). ��

To overcome this issue, we implemented an ad-hoc propagator that implements
a custom symmetry breaking strategy based on the cardinality constraints. This
propagator handles the case in which there is a matrix of variables, with cardinal-
ity constraints in each column and symmetry on the rows (i.e., any permutation
of the rows is feasible). As such, although it is very related to our CP model, it
is not specific to our particular instances. The propagator works by partitioning
the rows of the matrix into sets of identical rows (given the current domains).
Then, for each set, it considers the first column with unassigned variables. For
each possible value v in the domains of this subset of variables, it computes a
lower bound lv and an upper bound uv on the number of variables that must
be assigned to v, by taking into account the cardinality constraints on the col-
umn and the domains of the variables. Finally, it assigns, for each value v, lv
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variables to v. The complexity of such propagation is linear in the size of the
matrix/domains. Note that this symmetry breaking strategy does not enforce
constraints (18) on the rows of the matrix, and is not guaranteed to remove all
possible row symmetries from the model, as shown in the following example.

Example 3. Suppose we have a cell with 5 rows and let x1, . . . , x5 be the first 5
unassigned variables (one for each row). Suppose that we have 2 possible values,
a and b, and that we can compute the following lower/upper bounds on the
number of occurrences of these 2 values in the 5 vars:

la = 1 ua = 3 lb = 2 ub = 5

Before propagation, the domains of the 5 variables are all equal to {a, b}. Af-
ter symmetry breaking we can reduce the domains to {a}, {b}, {b}, {a, b}, {a, b}.
However, since it is possible to have both abbab and abbba, the propagator does
not enforce a lexicographic order on the rows, and does not eliminates all sym-
metry. ��

Another issue with the CP model above is that the minimum/maximum length
of a working shift (i.e., the number of periods, breaks included, between the first
and last working period) is constrained only implicitly by the regular constraints.
Again, we implemented a custom propagator that deals with that. The combined
effect of these propagators is impressive: we often observed reductions of 2−3
orders of magnitude in both the number of nodes and the running times on hard
instances. On occasion, we observed even higher savings. For example, on one
instance with 9 full-time employees and 3 activities, we reduced the running
times from 6 minutes to 10−5 seconds, with a number of nodes dropping from
765,026 to 1.

Finally, the same model could be solved repeatedly if the aggregated solutions
are too similar, i.e., if the values of the variables yk coincide for some k. So,
we implemented a “caching” mechanism that stores the last CP models and
their status, in order to avoid solving the same model twice. According to our
computational experience, the custom propagators and the cache were sufficient
to keep the time spent within the CP solver negligible.

2.3 MIP Repair/Improve Heuristic

Finding a good quality feasible solution early in the process is often crucial to ef-
fectively solve an optimization problem. However, dual decomposition strategies
(such as generalized Benders decomposition and the hybrid approach presented
here) are usually quite weak at finding (good) feasible solutions. In order to
solve this issue, we devised an ad-hoc heuristic procedure for the shift schedul-
ing problem.

The procedure is a simple generalization of the large neighborhood search
developed in [17]. Suppose the set Ω can be completely described by a regular
language. Then every feasible shift is a path in the expanded graph associated to
the DFA and a solution to the problem is just a set of paths in this graph. Given
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a solution S = {s1, . . . , sn}, let NS be the set of solutions that can obtained
by replacing a shift sk with a different shift r. Given a choice sk for the shift
to remove, searching an improving replacement shift r can be formulated as
a shortest path problem on the expanded graph, and NS can be used as a
neighborhood in the large neighborhood search heuristic (see [17] for details).

If Ω is not described completely by a regular language (the main assumption in
the present work), then the search for an improving shift r cannot be formulated
anymore as a shortest path. However, it can still be formulated as a MIP, to be
solved by a black box MIP solver. This is the basic step of our heuristic, to be
used in a scheme akin to the one in [17]. Note that basically the same MIP can
be used to:

– find a feasible shift r to replace another feasible shift sk.
– find a feasible shift r to replace an infeasible shift sk.
– find a feasible shift r to add to current solution S (if doing so reduces the

cost).

As such, the same heuristic can be used to (i) construct an initial feasible solu-
tion, (ii) improve a feasible solution, and (iii) repair an infeasible solution.

3 Computational Results

We tested our method on the multi-activity instances used in [3,4,17]. This
testbed is derived from a real-world store, and contains instances with 1 to
10 working activities (each class has 10 instances). A basic description of the
problem is as follows:

– The planning horizon of 1 day is divided into 96 slots of 15 minutes.
– A part-time employee must work a minimum of 3 hours and less than 6

hours, and is entitled to one break of 15 minutes.
– A full-time employee can work between 6 and 8 hours, and is entitled to two

breaks of 15 minutes plus a lunch break of 1 hour (in any order).
– When an employee starts working on one activity, it must do it for at least

1 hour. In addition, a break/lunch is needed before changing activity.
– A break cannot be scheduling at the beginning/end of the shift.
– At specific times of the day (e.g., when the store is closed), no employee is

allowed to work.
– Overcovering/undercovering is allowed, with an associated cost.
– The cost of a shift is the sum of the costs of all working activities performed

in the shift.

We implemented our method in C++, using IBM ILOG Cplex 12.2 [11] as black
box MIP solver, and Gecode 3.7.1 [7] as CP solver. All tests have been per-
formed on a PC with an Intel Core i5 CPU running at 2.66GHz, with 8GB of
RAM (only one core was used by each process). Every method was given a time
limit of 1 hour per instance. Concerning the set of feasible shifts Ω, we simply
partitioned it into full-time and part-time shifts. We could have partitioned the
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full-time shifts further (depending on the relative order of breaks and lunch),
but it seemed overkill because all full-time shifts share the same cardinality
constraints (this was confirmed by some preliminary tests). In general, disag-
gregating shifts depending on the cardinality constraints seems to work well in
practice.

From the implementation point of view, our hybrid method is made of the
following phases:

– First, the aggregated model is solved with Cplex, using the default settings.
The outcome of this (usually fast) first phase is a dual bound (potentially
stronger than the LP bound) and the set of aggregated solutions collected
by the MIP solver during the solution process (not necessarily feasible for
the original model).

– We apply our MIP repair/improve heuristic to each aggregated solution
which is within 20% of the aggregated model optimal solution. The out-
come of this phase is always a feasible solution for the original model, thus
a primal bound. Note that if the gap between the two is already below the
1% threshold, we are done.

– We solve the aggregated model again, this time implementing the hybrid
MIP/CP approach. This means that we disable dual reductions (otherwise
the decomposition would not be correct) and use Cplex callbacks framework
to implement the decomposition.

Here is a more detailed description of the last phase. Whenever the MIP solver
finds an integer solution, either with its own heuristics or because the LP relax-
ation happens to be integer, we build the corresponding CP models and solve
them with Gecode DFS algorithm. As far as the branching strategy of the CP
solver is concerned, after some trial-and-error we found that ranking the vari-
ables by increasing time period was the most successful policy. If the check is
successful, then we update the incumbent, otherwise the solution is rejected. In
both cases, we apply the MIP repair/improve heuristic on it to try to find a new
incumbent. If the solution was the optimal solution of an LP relaxation, then we
force a branching on a integer variable and keep going. As for branching inside
the MIP solver, we let Cplex apply its own powerful strategy whenever the relax-
ation has some fractional variables. If this is not the case, we branch first on the
w variables and then, if all w variables are already fixed, on the y, again ranking
them by increasing time period. The rationale behind this strategy is that if the
w variables are not fixed to some value, then we cannot even formulate the CP
checking model, so the sooner we fix them the better. Note that as soon as the
w variables are fixed, we can build a CP model akin to (13)-(18) where the y
variables are not necessarily fixed but just take the domains of the current node.
In this case, we let the CP solver run with a strict fail limit (1000 in our code)
and, if it detects infeasibility, then we prune the node.

Table 1 reports a comparison between the proposed method and others in
the literature, for a number of activities from 1 to 10. As far as the number
of employees is concerned, we put an upper bound of 12 for instances with up
to 2 activities, of 24 for instances with 3 to 8 activities and of 30 for instances
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Table 1. Average computing times between the different methods to solve to near-
optimality (gap ≤ 1%) the instances with up to 10 activities

# solved (10) time(s)
# act. cpx-reg hybrid grammar cpx-reg hybrid grammar

1 10 10 10 41.3 9.1 283.7
2 9 10 9 707.9 194.5 379.9
3 4 5 9 2957.3 1996.4 205.4
4 3 6 10 2970.2 1827.9 300.5
5 0 8 10 3600.0 1438.4 146.2
6 1 4 10 3530.6 2340.6 213.8
7 1 6 10 3438.7 2399.0 230.9
8 0 5 10 3600.0 2201.5 257.1
9 0 4 10 3600.0 2444.0 289.1

10 0 2 10 3600.0 3275.6 516.7

with 9 or 10 activities. cpx-reg refers to the explicit model based on the regular
constraint in [3], while grammar refers to the implicit model based on the gram-
mar constraint in [4]. Note that for grammar we are reporting the results from
[4], which were obtained on a different machine and, more importantly, with an
older version of Cplex, so the numbers are meant to give just a reference. All
methods were run to solve the instances to near-optimality, stopping when the
final integrality gap dropped below 1%.

According to Table 1, hybrid outperforms significantly the explicit model
cpx-reg, which, as already noted, scales very poorly because of symmetry is-
sues and slow LPs. When compared to grammar, hybrid is very competitive
only for up to 2 activities, while after that threshold grammar clearly takes the
lead. This is somewhat expected: the set of feasible shifts in these instances can
indeed be described without too much effort with an extended grammar, and it
is no surprise that the pure implicit MIP model outperforms our decomposition
approach. However, hybrid is likely to be the best approach if the extended
grammar is not a viable option.

Table 2 reports a closer comparison between cpx-reg and hybrid, reporting
the average final gap, average number of variables in the model and average node
throughput for each category. According to the table, hybrid consistently yields
very small gaps (always below 3% on average), while for cpx-reg is always above
60% with more than 4 activities. As far as the number of variables of the models
is concerned, hybrid needs approximately 1/10 of the number of variables of
cpx-reg, which promptly turns into a much faster node throughput: hybrid is
more than two order of magnitude faster in exploring nodes than cpx-reg. Note
that, according to [4], grammar models range from 70,000 variables for instances
with 1 activity to 96,000 for instances with 10 activities, so the hybrid model
based on regular languages is significantly smaller.
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Table 2. Comparison of average final gap between cpx-reg and hybrid

gap(%) #vars node/sec
# act. cpx-reg hybrid cpx-reg hybrid cpx-reg hybrid

1 0.72 0.24 9,956 1,908 21.99 10.36
2 0.78 0.61 13,608 2,925 3.52 20.60
3 3.74 3.00 34,903 4,152 0.59 8.42
4 25.18 1.39 43,005 5,291 0.20 3.92
5 62.55 1.01 52,979 6,828 0.05 3.32
6 75.89 1.59 62,442 8,364 0.03 1.86
7 90.00 0.90 73,693 9,936 0.01 1.64
8 100.00 1.92 78,809 10,603 0.01 1.22
9 100.00 1.52 104,561 11,509 0.01 1.05
10 100.00 2.76 120,049 13,302 0.01 0.86

Finally, Table 3 shows the gap just before the beginning of the last phase (but
after the aggregated model has been solved and its solutions have been used to
feed the MIP repair/improve heuristic). On almost all categories the average final
gap is below 10%, with an average running time of 1 minute. This heuristic alone
significantly outperforms cpx-reg for a number of activities greater than 3. It
is also clear from the table that solving the orbital shrinking relaxations with a
black box MIP solver is usually very fast. Interestingly, solving these MIPs turn
out to be often faster than solving the LP relaxations of the original models,
while providing better or equal dual bounds. For example, on one instance with
1 activity, the LP relaxation of the original model that 0.26 seconds to solve,
yielding a dual bound of 142.48, while the shrinked MIP takes 0.12 seconds and
yields a dual bound of 182.54 (in this case, equal to the value of the optimal
solution). On another instance with 10 activities, the LP relaxation takes 269.55,
while the shrinked MIP takes only 52.77 seconds, both yielding the same dual
bound in this case.

Table 3. MIP repair/improve heuristics standalone results

# act. time(s) gap(%)

1 6.2 1.5
2 46.5 6.5
3 24.7 20.3
4 30.3 7.1
5 34.5 5.9
6 33.5 10.5
7 63.2 7.1
8 69.3 7.7
9 89.8 6.7

10 65.9 8.0
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4 Related Work

We divide the related work into two parts: previous work on using regular and
context-free languages to specify constraints, especially those constraints occur-
ing in shift scheduling problems, and previous work on hybridizations of CP and
MIP solving.

Pesant introduced the global regular constraint in which constraints are speci-
fied by regular constraints [13]. He gave a complete propagation algorithm based
on dynamic programming. Coincidently Beldiceanu, Carlsson and Petit proposed
specifying global constraints by means of finite automata augmented with coun-
ters [1]. Regular languages are precisely those accepted by (deterministic) finite
automata. Propagators for such an automaton are constructed automatically
from the specification of the automaton by means of a decomposition into sim-
pler constraints. Quimper and Walsh proposed a closely related decomposition
of the regular constraint based on transition constraints and variables intro-
duced to represent the states of the unfolded automaton which recognizes the
language [15]. They showed that such decomposition was effective and efficient
in practice. Demassay et al. [5] used a column generation technique to solve a
shift scheduling problem in which the columns are generated with a CP solver
using the cost regular constraint, a variation of the regular constraint, whilst the
optimization process is driven by the simplex method. Côté et al. [2] encoded
the regular constraint into a MIP and efficiently solved some instances of the
shift scheduling problem using the same automaton as Demassay et al.

Quimper and Walsh proposed the context-free grammar constraint in which
constraints are specified by a context free grammar [15]. They gave two different
propagators, one based on the CYK and the other on the Earley parser. At the
same time and independently, Sellmann proposed the same global constraint and
gave a similar propagator based on the CYK parser [18]. In [16,3], context-free
grammar constraints have been used to model complex shift-scheduling prob-
lems. More recently, Côté, Gendron, Quimper and Rousseau have proposed
mixed-integer programming (MIP) encodings of the regular and context-free
grammar constraints [3]. The MIP encoding of the regular constraint introduces
linear inequalities to model the flow constructed by unfolding the automaton
into a layered transition graph. When this is the only constraint in a problem,
this can be solved with a specialized path finding algorithm. However, when
there are other constraints in the problem, it needs to be solved with a more
general 0/1 MIP solver. The MIP encoding has one significant difference with
the CYK propagator. If there is more than one parsing for a sequence, it picks
one arbitrarily whilst the CYK propagator keeps all. This simplifies the MIP en-
coding without changing the set of solutions since only one parsing is needed to
show membership in a context-free grammar. Experiments on a shift scheduling
problem show that such MIP encodings are highly effective.

The last couple of decades have seen many hybrid approaches to solving op-
timization and decision problems that exploit both MIP and CP technqiues
[12,20]. There are several different approaches to such hybridization including:
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Double modeling: We use both CP and MIP models and exchange informa-
tion while solving. This may include bounds, infeasibility, nogoods, etc.

Search-inference duality [8]: We view CP and MIP methods as special cases
of a search/inference duality. Search methods can be complete methods like
branching or incomplete methods like local search. Inference methods can be
CP based methods like domain reduction or MIP based methods like cutting
plane inference.

Decomposition [9]: We decompose problems into a CP part and a MIP part
using, for example, a Benders style scheme. The master problem searches
over some of these variables. Given an instantiation for these variable, we
get a subproblem which we can, for instance, solve using CP. The MIP/CP
hybridization proposed here has this form.

Relaxation [19]: We combine CP based search methods like branching with
relaxation techniques from MIP which solve a simpler approximated form of
the problem like Langrangian relaxation.

5 Conclusions

We have proposed a hybrid MIP/CP approach for solving multi-activity shift
scheduling problems, based on regular languages that partially describe the set
of feasible shifts. This choice is justified by the fact that it may be much easier
from the modeling point of view to define the appropriate formal language, and
the corresponding MIP models may be much smaller. Computational results
show that the method is a promising alternative compared to the state-of-the-
art, being the fastest method when there are not too many activities. When the
number of activities increases, the method cannot compete, in its present state,
with an implicit formulation where the formal language completely describes the
set of feasible shifts. However, it outperforms significantly explicit MIP based
formulations, thus becoming the method of choice when it is not practical to
describe the set of feasible shifts with a formal language alone. Future work may
address the interesting question of how to derive Benders style cutting planes
from the CP model (when infeasible), in order to speed up the enumeration of
the MIP.
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Abstract. Recent solvers for quantified boolean formulas (QBFs) use a
clause learning method based on a procedure proposed by Giunchiglia et
al. (JAIR 2006), which avoids creating tautological clauses. The underly-
ing proof system is Q-resolution. This paper shows an exponential worst
case for the clause-learning procedure. This finding confirms empirical
observations that some formulas take mysteriously long times to solve,
compared to other apparently similar formulas.

Q-resolution is known to be refutation complete for QBF, but not
all logically implied clauses can be derived with it. A stronger proof
system called QU-resolution is introduced, and shown to be complete in
this stronger sense. A new procedure called QPUP for clause learning
without tautologies is also described.

A generalization of pure literals is introduced, called effectively depth-
monotonic literals. In general, the variable-elimination resolution opera-
tion, as used by Quantor, sQueezeBF, and Bloqqer is unsound if the
existential variable being eliminated is not at innermost scope. It is
shown that variable-elimination resolution is sound for effectively depth-
monotonic literals even when they are not at innermost scope.

1 Introduction

Solvers for quantified boolean formulas (QBFs) are rapidly increasing in strength,
partly due to increased understanding of how to incorporate conflict-driven
clause learning (CDCL), which found great practical success in propositional
satisfiability. Several current solvers are patterned after the Q-resolution method
described by Giunchiglia et al. [13]. A thorough survey of the field through 2005
may be found in this paper.

It is starting to be recognized that simply delivering a 0 or 1 answer is not
good enough, for a solver. There has to be some formal proof system to back up
claimed answers. More than just verifying a claimed answer, users want addi-
tional information relevant to their applications. To accommodate these needs,
solvers need to be implemented in an organized way. This paper addresses a few
issues found in current solvers and suggests improvements.1

1 See http://www.cse.ucsc.edu/~avg/QPUP/qpup-cp12-long.pdf for a longer ver-
sion of this paper.
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First, in Section 3 we motivate the study by showing that current clause-
learning methods based on [13] might take exponential time to learn one clause.
We describe a family of QBF formulas such that the first clause to be learned
takes exponential time, although it has a linear-length Q-resolution derivation.
Exponential time to learn one clause does not occur with a properly implemented
propositional CDCL procedure.

In Section 4 we describe a clause-learning system that runs in polynomial
time per clause learned. This avoids the exponential-time worst cases mentioned
above. Although it may be impractical in its current form, it might provide the
basis for a practical adaptation into the QDPLL framework.

In Section 5 we introduce QU-resolution, a resolution system for QBF that
is capable of deriving any logically implied clause (Definition 2.5), a charac-
teristic that is absent from all presently known QBF solvers that utilize the
QDPLL framework of [13]. We show that QU-resolution can produce exponen-
tially shorter refutations than Q-resolution on some QBF families. In related
work, Egly recently showed that certain sequent systems can produce exponen-
tially shorter refutations than Q-resolution on some QBF families [7]. These
sequent systems, in which introduction of new variables is central, can produce
exponentially shorter refutations than QU-resolution on the same formulas.

Like Q-resolution, QU-resolution preserves tree models. Tree models repre-
sent winning strategies for true formulas. These strategies, also called Skolem
functions, contain the extra information needed by many practical applications
to achieve the goal that is encoded in the QBF.

Effectively depth-monotonic literals (Section 6) allow QBF variable-elimina-
tion resolution in more cases. The paper concludes with Section 7.

2 Preliminaries

In general, quantified boolean formulas (QBFs) generalize propositional for-
mulas by adding operations consisting of universal and existential quantification
of boolean variables. A closed QBF is one in which every variable is quantified.
See [15,5,17] for thorough introductions. This paper uses standard notation as
much as possible, but some terms have no standard version. We consider reso-
lution and universal reduction separately, although some papers combine them.
Also, we use tree models, which are not found in all QBF papers, to define
super-sound and safe operations, and to distinguish between them. Also, we
define ordered assignments.

We say that a QBF is in prenex conjunctive normal form if all the quantifiers
are outermost operators (the prenex, or quantifier prefix), and the quantifier-free

portion (also called the matrix) is in CNF; i.e., Ψ =
−→
Q.F consists of prenex

−→
Q

and matrix F . For this paper QBFs are in prenex conjunctive normal form. If p
precedes q in the quantifier prefix, we say p is outer to q and q is inner to
p. Clauses in F are called input clauses.

A closed QBF evaluates to either invalid (false) or valid (true), as defined by
induction on its principal operator. We use 0 and 1 for truth values of literals
and use true and false for semantic values of formulas.
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1. (∃xΦ(x)) is true if and only if (Φ(0) is true or Φ(1) is true).
2. (∀xΦ(x)) is false if and only if (Φ(0) is false or Φ(1) is false).
3. Other operators have the same semantics as in propositional logic.

This definition emphasizes the connection of QBF to two-person games, in which
player E (Existential) tries to set existential variables to make the QBF evaluate
to true, and player A (Universal) tries to set universal variables to make the
QBF evaluate to false. Players set their variable when it is outermost, or for
non-prenex, when it is the root of a subformula (see [16] for more details). Only
one player has a winning strategy.

For this paper a clause is a disjunctively connected set of literals. If the term
cube is used, it refers to a conjunctively connected set of literals. Literals are
variables or negated variables, with overbar denoting negation. We also use ⊥ as
a literal representing false when it makes more uniform notation. Clauses may be
written as literals enclosed in square brackets (e.g., [p, q, r ]), and [] denotes the
empty clause. Where the context permits, letters e and others near the beginning
of the alphabet denote existential literals, while letters u and others near the
end of the alphabet denote universal literals. Letters like p, q, r denote literals
of unspecified quantifier type. The variable underlying a literal p is denoted by
|p| where necessary. Free variables or free literals e and u may be indicated by
Ψ(e, u).

The quantifier prefix is partitioned into maximal contiguous subsequences of
variables of the same quantifier type, called quantifier blocks. Each quantifier
block has a unique qdepth , with the outermost block having qdepth = 1. The
scope of a quantified variable is the qdepth of its quantifier block. We say scopes
are outer or inner to another scope to avoid any confusion about the direction,
since there are varying conventions in the literature for numbering scopes.

Definition 2.1. An assignment is a partial function from variables to truth
values, usually represented as the set of literals mapped to 1. A total assign-
ment is an assignment to all variables. Assignments are denoted by ρ, σ, τ .
Application of an assignment σ to a logical expression is called a restriction
and is denoted by q7σ, C7σ, F7σ, etc. Quantifiers for assigned variables are
deleted in Ψ7σ.

An ordered assignment is a special term that denotes a total assignment
that is represented by a sequence of literals that are assigned 1 and are in the
same order as their variables appear in the quantifier prefix.

A winning strategy can be presented as an unordered directed tree. If it is a
winning strategy for the E player, it is also called a tree model , which we now
describe. We shorten unordered directed tree to tree throughout this paper. The
qualifier “unordered” means that the children of a node do not have a specified
order; they are a set. Recall that a branch in a tree is a path from the root node
to some leaf node. A tree can be represented as the set of its branches. We also
define a branch prefix to be a path from the root node that might terminate
before reaching a leaf.
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Definition 2.2. Let a QBF Φ =
−→
Q · F be given. In this definition, σ denotes a

(possibly empty) branch prefix of some ordered assignment for Φ. A tree model
M for Φ is a nonempty set of ordered assignments for Φ that defines a tree, such
that

1. Each ordered assignment makes F true, i.e., satisfies F in the usual propo-
sitional sense.

2. If e is an existential literal in Φ and some branch of M has the prefix (σ, e),
then no branch has the prefix (σ, e ); that is, treating σ as a tree node in M ,
it has only one child and the edge to that child is labeled e.

3. If u is an universal literal in Φ and some branch of M has the prefix (σ, u),
then some branch of M has the prefix (σ, u ); that is, treating σ as a tree
node in M , it has two children and the edges to those children are labeled u
and u .

If τ is a partial assignment to all variables outer to existential variable e, then
requirement (2) ensures that the “Skolem function” e(τ) is well defined as the
unique literal following τ in a branch of M . If the formula evaluates to false, the
set of tree models is empty.

Definition 2.3. A tree countermodel R for Φ is essentially the dual of a tree
model. That is, a tree node has two children with the edges labeled e and e
when e is existential and has one child when the edge is labeled with universal
literal u, and each branch falsifies some clause of F .

If τ is a partial assignment to all variables outer to universal variable u, then
(the dual of) requirement (3) ensures that the “Herbrand function” u(τ) is well
defined as the unique literal following τ in a branch of R. If the formula evaluates
to true, the set of tree countermodels is empty.

Definition 2.4. For our purposes, an operation on a closed QBF is said to be
safe if it does not change the truth value of the formula. An operation on a
closed QBF is said to be super sound if it preserves the set of tree models (i.e.,
does not add or delete tree models). Clearly, preserving the set of tree models is
a sufficient condition for safety.

Definition 2.5. Let Ψ =
−→
Q.F be a closed prenex QBF. Another quantifier-free

formula G (usually a clause or a set of clauses) is said to be logically implied

by Ψ if
−→
Q. (F ∧ G) has the same set of tree models as Ψ ; that is, the operation

of adding G to F is super sound. In other words, G evaluates to true in every
tree-model of Ψ .

The proof system known as Q-resolution consists of two operations, resolution
and universal reduction, defined next. Q-resolution is of central importance for
QBFs because it is a refutationally complete proof system [14]. Unlike resolution
for propositional logic, Q-resolution is not inferentially complete. That is, a new
(non-tautological) clause C might be logically implied by a closed QBF Ψ , yet
no subset of C is derivable by Q-resolution (see Example 5.5).
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Definition 2.6. Resolution is defined as usual. Let clauses C1 = [q, α] and
C2 = [ q , β], where q is called the clashing literal. Let α be a literal sequence
without conflicting literals and without q and q . Let the same be true of β.
Either or both of α and β may be empty. Then resq(C1, C2) = [α ∪ β] is the
resolvent. For Q-resolution, the clashing literal q is required to be existential,
and the resolvent is not permitted to be tautologous.

Universal reduction is special to QBF. Let clauses C1 = [u, α], where u is
called the reduction literal and is universal. Let α be a literal sequence without
conflicting literals and without u and u . Further, let u be tailing for α, which
means that the quantifier depth of u is greater than (u is inner to) that of any
existential literal in α. Then unrdu(C1) = [α].

Lemma 2.7. Resolution and universal reduction are super-sound operations.
Also, resolution preserves the set of tree countermodels.

Proof: Straightforward application of the definitions.

We are not aware of a prior definition of tree countermodel, which explicitly
encodes a winning strategy for the universal player when the QBF is false. How-
ever, there has been work on extracting a winning strategy for the universal
player from a Q-resolution refutation [2,10].

It is worth observing that universal reduction might add tree countermodels,
as shown by the following example. This is another reason to treat it as a separate
operation from resolution.

Example 2.8. Consider Φ = ∃ d ∀u ∃ e
{
[d, u] , [u , e] ,

[
d , e

]}
. The only tree

countermodel is {
( d , u , e ), ( d , u , e), (d, u, e ), (d, u, e)

}
,

where parentheses enclose branches (ordered assignments).
If universal reduction is applied on the clause [d, u] giving [d], there is a second

tree countermodel in which u is positive on all four branches.

3 QDPLL Exponential Case

QDPLL is the name commonly used for a family of QBF solving procedures
with clause learning similar to those described by Giunchiglia et al. [11,12],
[13]. Letz describes similar ideas that are used in SemProp, but with a different
learning procedure [21]. For QDPLL, it is assumed that the input clauses are
non-tautological and that any tailing universal literals have been reduced away
(Definition 2.6).

When a conflict occurs, QDPLL derives a learned clause using Q-resolution
on clauses in the conflict graph. We begin by showing a case in which QDPLL
spends time that is exponential in the size of the conflict graph to derive its
first learned clause. This is remarkable because the learned clause has a linear
Q-resolution derivation.
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At a high level, the clause learning procedure is similar to that found in CDCL
SAT solvers. We assume the reader is generally familiar with the SAT version.

1. Begin with the working clause W0 being the clause that became falsified.
2. At each derivation step i, choose a literal q in the current working clause

Wi−1 and Q-resolve with the antecedent of q in the conflict graph to produce
the next working clauseWi. The antecedent clause is the clause that became
unit to imply q.

3. Stop when Wi is an asserting clause that satisfies some additional conditions
specific to QBF. Learn Wi. A clause is asserting when it has a unique
literal at the highest decision level among the decision levels represented in
the clause.

The procedure is called Rec-C-Resolve in [13]. The algorithm in which it is used
is called Q-DLL-LN.

The central point of the above procedure is the choice of literal q in Wi−1,
which will be used as the clashing literal. The policy in the cited paper is this:
Choose the existential literal that was implied most recently unless that that
choice would produce a tautologous resolvent (in which case Q-resolution is
not defined). Otherwise choose an existential literal in Wi−1 whose quantifier
block has innermost scope. This policy is implemented in early versions of QuBE.
Essentially the same policy is used in depQBF [18,19]. A slight variant is used in
CirQit [9,8].

Example 3.1. We now describe a family named qdpllexp whose run time in-
creases exponentially with instance length for the three solvers just mentioned.2

The essence of qdpllexp 06 is shown in Figure 1. The generation pattern simply
varies the number of middle sections and should be self-evident.

The computation begins by assuming outermost existential b1 is true, implying
e99 and f99 at innermost scope. Now u10 is tailing, allowing e9 and f9 to be
implied. This pattern continues until

[
d1 , c1

]
is falsified. In each four-literal

clause the two negative existential literals “block” the universal literal. After
they are falsified by unit-clause propagation, the universal literal can be reduced,
yielding a new implied existential literal.

After
[
d1 , c1

]
is falsified, it becomes W0 for the learning procedure outlined

above. This is resolved with
[
d1, f3 , e3 , u2

]
(either choice gives similar results)

to give W1 =
[
c1 , f3 , e3 , u2

]
. Now the most recently implied literal is c1, but

resolving W1 with the antecedent of c1 would be tautologous, so an innermost
existential, say f3, is used instead. Thus W2 contains u4 , preventing resolution
on e3 . Also, e3 still prevents reduction of u2 . This pattern continues down the
conflict graph. Eventually, e99 and f99 are introduced in W5 by resolution on the
antecedent of f9. After e99 and f99 are resolved out for the first time (allowing
u10 to be reduced), they are re-introduced by resolution on the antecedent of
e9. Then they get resolved out for the second time. By the conclusion of the
procedure e99 and f99 are resolved out 32 times.

2 See www.cse.ucsc.edu/~avg/ProofChecker/QdpllexpSimple.tar for some in-
stances.

www.cse.ucsc.edu/~avg/ProofChecker/QdpllexpSimple.tar
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Prefix: ∃ b1, c1, d1 ∀u2 ∃ e3, f3 ∀u4 ∃ e5, f5 ∀ u6 ∃ e7, f7 ∀u8 ∃ e9, f9 ∀ u10 ∃ e99, f99 . . .
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Fig. 1. Excerpt of exponential family of QBF formulas; see Example 3.1. The implied
literal is shown inside each circle, which represents a vertex in the conflict graph.
Antecedent clauses are shown above or below each circle. Arrows point to reason literals.
E. g., f9 is implied because f99 and e99 are falsified, then u10 is reduced away.

Table 1. Running times in seconds on qdpllexp family. See Example 3.1

family index 18 19 20 21 22 23

QuBE 1.3 10 22 47 105 segv segv
depQBF 0.1 8 16 32 69 140 298
CirQit3.15 1 1 3 5 11 21

“segv” denotes
“segmentation
violation”.

Further study shows that all paths in the graph are traversed, and it is well
known that this family of graphs has exponentially many paths.

Table 1 provides empirical confirmation that the running time doubles for each
increase of one level in the family. A one-level increase produces 10 additional
variables and four more four-literal clauses. The clauses seen in Figure 1 are
essentially cloned with fresh variables, except that b1 appears instead of b1 .

Cases of unexpectedly bad performance on application instances might be due
to getting trapped in a similar structure during some derivations. Next, Section 4
proposes a modified clause learning procedure that avoids both exponential worst
cases and tautologous resolvents. Example 4.2 shows that

[
b1
]
can be learned

with a linear-length derivation. Hence, there is an opportunity for significant
improvement in the efficiency of QBF clause learning.

Performance problems of this kind can be avoided by accepting clauses with
contradictory universal literals, a scheme dubbed long-distance resolution by
Zhang and Malik [28]. Although they argued that the practice was sound in
the context of their particular solver, there is no proof theory for it, in the
sense of Cook and Reckhow [6]. According to Narizzano et al. [22], the version
of QuBE used as the basis for QuBE-cert uses (some version of) long-distance
resolution.3

3 See www.cse.ucsc.edu/~avg/ProofChecker/CheqTaut.tar.gz for small instances
on which QuBE-cert produces tautologous clauses in certificates.

www.cse.ucsc.edu/~avg/ProofChecker/CheqTaut.tar.gz
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Algorithm 1. Compute qpup[f]. Upon conflict, call computeQpup(⊥).
/* Precondition: f is implied (hence is existential or ⊥). */
/* Postcondition: qpup [f ] is computed. */

1 computeQpup (f)
2 workCl = copy(antecedent[f ])
3 for (each implied q such that q ∈ antecedent[f ], in order of implication) do
4 if ( q == f) then
5 continue

6 if (qpup [q] == NULL) then
7 computeQpup (q)

8 workCl = res ( q , workCl, qpup [q])
9 for each tailing universal ui ∈ workCl do

10 workCl = unrd (ui, workCl)

11 qpup [f ] = workCl
12 return

4 QBF Pseudo-Unit Propagation

Pseudo-unit propagation (PUP) was introduced for propositional clause learning
[26] and found empirically to produce longer proofs than the 2005 version of
zchaffSE, which uses the more common first UIP technique.

This section introduces QBF pseudo-unit propagation (QPUP). QPUP
can be used to derive a learned clause from a conflict graph. To focus on the
main ideas, this section assumes that the pure literal rule is not in use. The
combination of the pure literal rule with clause learning for QBF solving raises
issues that are discussed in [13].

For QDPLL, it is assumed that the input clauses are non-tautological and
that any tailing universal literals have been reduced away (Definition 2.6).

Definition 4.1. Let a QDPLL search be given, comprising a sequence of as-
sumptions and unit-clause propagations. Each assumption is made upon a vari-
able in the outermost quantifier block that contains a currently unassigned vari-
able.

An implied literal is an existential literal that is assigned as a result of unit-
clause propagation, including universal reductions. We call ⊥ the implied literal
when the search ends with a conflict. Each implied literal has an associated
antecedent clause, which implied it. At the time e is implied, let qpup[e] be
initialized to NULL.

In conjunction with the QDPLL search, suppose f is an implied literal with
antecedent clause C. That is, all literals in C other than f are either assigned
false, or they are universal literals that are tailing with respect to f (all universal
literals are tailing with respect to ⊥). Then the single-parameter partial function
qpup(f) is defined inductively for this search, as shown in Algorithm 1.
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1. If C has no negations of implied literals, then qpup(f) = C. Note that C
contains no unassigned universal literals tailing to f in this case.

2. If C contains ei for i = 1, . . ., k and k ≥ 1, where ei are earlier implied
literals in the same order as they were implied, then qpup(f) is the result of
successively resolving C with qpup(ei) for i = 1, . . ., k. Applicable universal
reductions are performed after each resolution step.

Note that f may be ⊥. Then qpup(⊥) contains only negated assumptions and
non-tailing universal literals that have been assigned false by the search proce-
dure. This is a conflict clause in the usual sense: this set of literals is inconsistent
with the given formula.

The qpup clauses may be computed lazily when a conflict occurs, or eagerly, as
soon as a literal is implied. If computed eagerly, no recursive calls occur at lines 6
and 7 in computeQpup.

Example 4.2. The idea of QPUP is illustrated by an example, referring to the
clauses in Figure 1. For simplicity, we assume qpup is computed eagerly. As in
Example 3.1, b1 is assumed. Next, b1 implies f99, but we define qpup(f99) =[
f99, b1

]
because b1 is only an assumption. Similarly, b1 implies e99 and we

define qpup(e99) =
[
e99, b1

]
. Now f9 is implied by unit-clause propagations on

f99 and e99, to start.
Unit-clause propagation can also be thought of as unit-clause resolution. If

we had really derived f99 and e99 as unit clauses, we could resolve them with[
f9, f99 , e99 , u10

]
to shorten that clause. Instead, we resolve qpup(f99) and

qpup(e99) with this clause, then apply universal reduction, to get qpup(f9) =[
f9, b1

]
. Notice that the introduced literal b1 cannot block the universal reduc-

tion because b1 was an assumption, so it must have outer scope to any unassigned
universal literals.

Continuing in this way, qpup(p) and qpup( p ) are derived successively for p =
f9, e9, . . ., d1, c1. Finally,

[
b1
]
is learned with a linear number of steps.

Lemma 4.3. With qpup(f) as in Definition 4.1, let q be the most recent as-
sumption before f was implied. Then every existential literal in qpup(f) other
than f has scope outer to or equal to the scope of q.

Proof: The existential literals of qpup(f) other than f are negations of assump-
tions, and assumptions are made in outer to inner order.

If cube processing is intermixed with unit-clause propagation, qpup(f) can con-
tain universal literals whose scopes are inner to q (the most recent assumption)
and outer to f . These literals were assigned false by the search procedure. How-
ever, if f = ⊥, there are no such literals in qpup(f). When f �= ⊥, these univer-
sal literals cannot cause tautologous resolvents, because unit-clause propagation
would satisfy any clause that might produce a tautologous resolvent. The results
of QPUP are soundly derived clauses, each containing an implied literal plus
negations of some earlier-assigned literals.
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For a formula with n variables, there are at most n qpup clauses at any
point in the search, and each qpup clause is derived with at most n steps. Only
qpup clauses are used to derive qpup(⊥), so the procedure to learn one clause is
polynomial in n. The problem with Example 3.1 is that most derived clauses are
not qpup clauses.

In summary, QPUP shows that conflict clauses can be learned by QDPLL
with polynomially long derivations, although current implementations of QDPLL
sometimes carry out exponentially long derivations. We hope this motivates the
search for a better system of clause learning in QBF.

5 QU-Resolution

This section introduces QU-Resolution . This is a natural extension of Q-
resolution. Although Q-Resolution is refutationally complete, it cannot derive
all logically implied clauses (see Definition 2.5). Since clause learning involves
deriving logically implied clauses, and we saw in Section 3 that such derivations
might be exponentially long, in terms of the overall number of clauses needed to
derive the learned clause, it makes sense to look at variants of Q-resolution.

This section shows that QU-resolution is inferentially complete, in the
sense that if some (non-tautological) clause C is a super-sound addition to a
closed QBF Φ, then some subset of C is derivable by QU-resolution. We also
show that it provides a theoretical underpinning for previously reported failed-
literal preprocessing in QBF [20,27].

For propositional conflict-driven clause learning, it is known that the learned
clause has a quadratically long derivation, in terms of the overall number of
clauses needed to derive it, even when clause minimization and “volunteers”
are included [23,24]. (See cited papers; minimization and volunteers are not
important to this paper.)

Definition 5.1. A QU-derivation is the same as a Q-resolution derivation
(see Section 2), except that it includes resolutions in which the clashing literal
is universal. Tautologous resolvents are still prohibited. A QU-refutation is a
QU-derivation of the empty clause.

A regular QU-derivation is one such that no variable appears twice as a
clashing literal or reduction literal on any directed path through the derivation
DAG. An ordered QU-derivation is one such that variables appear in the same
order on every directed path through the derivation DAG. (Not all variables
need appear on a path; ordered derivations are necessarily regular). A prefix-
ordered QU-derivation is an ordered QU-derivation such that variables appear
in outer to inner order of the quantifier prefix on paths directed away from the
root of the derivation DAG.

Definition 5.2. If D is a clause, and clause D′ ⊆ D as a set of literals, then
we say D′ subsumes D. The notation D(−) means “some clause that subsumes
D”. That is, a statement “D(−) . . .” should be read as “For some clause D′ that
subsumes D, D′ . . .”. In general, the statement will not hold for all subsets of
D. Recall that the empty clause and D itself are subsets of D.
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Lemma 5.3. If clause D is derived from Ψ =
−→
Q.F by QU-Resolution, then D

is logically implied by Ψ .

The proof of the next theorem employs the framework first published by An-
derson and Bledsoe [1]. The original proof that Q-resolution is refutationally
complete uses the same idea [14], but that paper does not mention that the refu-
tation may be required to have the additional properties of being prefix-ordered
and regular.

Theorem 5.4 If (non-tautological) clause D is logically implied by Ψ =
−→
Q.F ,

then D(−) can be derived from Ψ by prefix-ordered QU-Resolution. If D is the
empty clause then the QU-resolution can also be a Q-resolution.

Proof: Although many prefix orders may be equivalent, fix one for the proof.The
proof is by induction on n, the number of variables in the quantifier prefix. The
base case is n = 0. The conclusion is immediate, as D must be the empty clause
and F must contain the empty clause to by hypotheses of the theorem. For
n > 0, assume the claim holds for m < n variables. There are several cases.

If literal p ∈ D and |p| is outermost, consider Ψ1 = Ψ7 p and D1 = D − {p}.
By the inductive hypothesis, D

(−)
1 has a QU-derivation from Ψ1; call it π1. Let

π do the same proof operations as π1, except starting with clauses in F instead
of F7 p . All operations remain correct because p is outermost. Each clause in
π has at most an extra literal p, compared to the corresponding clause in π1.
Therefore π derives D(−).

If literals p and p are not in D and |p| is outermost, consider Ψ0 = Ψ7p and
Ψ1 = Ψ7 p . If M0 is any tree model of Ψ0, then prepending p = 1 to every ordered
assignment in M0 gives a subset of some model of Ψ ; call it M . By hypothesis
of the theorem, D is true on every branch of M , so D is true on every branch
of M0. By the inductive hypothesis, D(−) has a QU-derivation from Ψ0; call
it π0. (If Ψ0 has no tree model, let π0 be a Q-refutation of Ψ0.) Let π do the
same proof operations as π0, except starting with clauses in F instead of F7p.
All operations remain correct because p is outermost. Each clause in π has at
most an extra literal p , compared to the corresponding clause in π0. Therefore
π derives D0 = (D∪{ p })(−) from Ψ . (If Ψ0 has no tree model, D0 = ({ p })(−).)
Similarly, D(−) has a QU-derivation from Ψ1; call it π1; and D1 = (D ∪ {p})(−)

can be derived from Ψ . If D0 lacks p , it serves as D(−) derived from Ψ . If D1

lacks p, it serves as D(−) derived from Ψ . Otherwise, resolving D0 and D1 on p
derives D(−).

If D is the empty clause and universal variable u is outermost, the refutation
can be achieved with prefix-ordered Q-resolution. Let Ψ0 and Ψ1 be as defined in
the previous paragraph with u in the place of p. By hypothesis of the theorem
and the semantics of QBF (see Definition 2), either Ψ0 is false or Ψ1 is false.
By the inductive hypothesis, either π0 or π1 derives the empty clause with Q-
resolution. Then either the empty clause or [u] or [u ] can be derived from Ψ
with Q-resolution. Universal reduction, if needed, completes the refutation.
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The proof shows that the part of the derivation inner to the variables that
occur in the target clause D can always use universal reduction in preference to
resolution with a universal clashing literal (if preserving tree countermodels is
not required).

Since QU-resolution is able to eliminate universal literals in some cases with-
out using universal reduction and Example 2.8 showed that universal reduction
can change the set of tree countermodels, QU-resolution has a greater capability
than Q-resolution to preserve tree countermodels, which might be important for
certain applications that want to extract strategies for the A player.

Example 5.5. The following QBF family is given by Kleine Büning and Lettman
[15] in the proof of their Theorem 7.4.8. The k-th QBF is:

∃ d0 d1 e1 ∀x1 ∃ d2 e2 ∀x2 · · · ∃ dk ek ∀xk ∃ f1 · · · ∃ fk.[
d0
][

d0, d1 , e1
][

dk, xk , f1 , . . . , fk
][

ek, xk, f1 , . . . , fk
]

[
dj , xj , dj+1 , ej+1

]
for 1 ≤ j < k[

ej, xj , dj+1 , ej+1

]
for 1 ≤ j < k

[xj , fj] for 1 ≤ j ≤ k
[xj , fj] for 1 ≤ j ≤ k

That proof states that every Q-refutation of the k-th formula has at least 2k

steps.
With QU-resolution, begin by resolving the binary clauses on universal literals

to produce unit clauses [fj ] for 1 ≤ j ≤ k. Then derive unit clauses [dk] and [ek]
(using universal reduction on xk and xk ). The remainder is straightforward with
Q-resolution. The overall number of steps is linear.

Lonsing and Biere introduced abstractions of QBF for preprocessing purposes
[20]. The idea is developed further in SAT 2012 [27]. Essentially the “abstraction”
with respect to a variable p treats all universal variables outer to p as though they
were existential. For inferential purposes, this amounts to using QU-resolution
on these variables.

6 Depth-Monotonic Literals

This section addresses the question of when QBF variable-elimination reso-
lution (QVER) is safe. QVER is the “resolve” operation in Quantor, described
by Biere [3]. Variable-elimination resolution is the basic DP operation for CNF.
For Q-resolution, add operation (4):

1. Find all resolvents with existential clashing literal q and add them to F .
2. Discard tautologous resolvents.
3. Delete all clauses with q or q .
4. Perform all universal reductions that are possible.

When is QVER safe? Quantor uses QVER for variables at innermost scope, but
Biere did not prove that it is safe [3]. However, a proof may be found in [5, prop.
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2.5.2]. In the cases that q is not in the innermost scope, the problem is step 3
above, deletion of clauses. Removal of constraints might change the value of a
formula from false to true. We take a detour and return to this question.

A complementary question was considered by Bubeck and Kleine Büning.
They considered universal expansion (the “expand” operation in Quantor, which
eliminates a universal variable). They showed in their Theorem 1 [4] and The-
orem 5.6.1 [5] that the operation can be simplified by not expanding existential
variables that meet a certain criterion called a one-sided dependency.

Nondecisive clauses have been defined for propositional formulas. We extend
this idea to QBF.

Definition 6.1. Let Φ =
−→
Q.F be a closed QBF with matrix F , and let C be

a clause in F that contains the literal q. C is depth-nondecisive on q with
respect to F if for all clauses D ∈ F that contain q it is the case that at least
one of the following conditions holds:

1. resq(C, D) contains no literal with scope inner to q, even if the resolvent is
tautologous; or

2. resq(C, D) is tautologous due to the presence of literals r ∈ C and r ∈ D,
where r is not inner to the scope of q; or

3. resq(C, D) is subsumed by some clause C1, where C1 contains no literal with
scope inner to q and either C1 ∈ F or C1 is a resolvent created under case
(1) above.

The idea is that for any resolvent R = resq(C,D), either R has no literals inner
to q or R has some literals inner to q but even if those literals were deleted from
R giving R′, then R′ could still be safely discarded because it is tautologous or
subsumable.

Example 6.2. In case (3) the subsumption by another resolvent using C does
not imply that F already contains a subsumable clause. For example, let C =
[c, e], D1 = [c, d, e ], and D2 = [d, e , f ]. Assume each variable has a different
scope and literals are listed from outer to inner scope, which is also alphabetical
order. No clauses are subsumed, and rese(C, D2) contains f , yet C is depth-
nondecisive on e.

Definition 6.3. Let Φ =
−→
Q.F be a closed QBF with matrix F , which partitions

into G1 + G2 + G3 (“+” denotes disjoint union in this section), and let q be
an existential literal in Φ. Assume that:

1. G1 consists of clauses with q or q and no deeper variables. Deeper means
strictly greater qdepth.

2. G2 consists of clauses with q or q and some deeper variables.
3. G3 consists of clauses without q or q .

If every clause C in G2 that contains q is depth-nondecisive on q with respect
to F , then we say that q is effectively depth-monotonic in Φ. We say that
the variable |q| is effectively depth-monotonic in Φ if it holds for q or q .
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Clearly, if |q| is pure in G2, then |q| is effectively depth-monotonic in Φ. In
this case we say that |q| is depth-monotonic in Φ.

Theorem 6.4 With q, Φ, F , G1, G2 and G3 defined as in Definition 6.3, let |q|
be the clashing existential variable being contemplated for QVER on Φ, and let
|q| be effectively depth-monotonic in Φ. Then QVER on |q| is safe.

Furthermore, let Φ1 =
−→
Q1. (G3∪G4) be the result of QVER on |q| and Φ. That

is,
−→
Q1 is

−→
Q with |q| deleted, and G4 consists of all non-tautologous resolvents with

|q| as the clashing variable using clauses in G1+G2. Then every tree model M1 for
Φ1 can be extended to a tree model M for Φ with a one-to-one correspondence
between the branches of M1 and the branches of M .

Proof: (Sketch4) By super-soundness of Q-resolution, it suffices to consider only
the case that Φ1 is true. For notation, let A = {α}, B = {β}, Γ = {γ}, Δ = {δ}
denote the clause sets in

−→
Q1 corresponding to G1 and G2 as follows:

G1 = {[q, α] | α ∈ A}+ {[ q , β] | β ∈ B}
G2 = {[q, γ] | γ ∈ Γ}+ {[ q , δ] | δ ∈ Δ}

Some α or β might be empty, but all γ and δ are nonempty. W.l.o.g., assume
that q is effectively depth-monotonic in Φ.

Let M1 be any tree model for Φ1. Let (σ, τ) be any branch in M1 where σ
assigns values to all variables outer to |q| and τ assigns values to all variables
inner to |q|. Construct the corresponding branch in M as follows:

Condition on σ Corresponding Branch in M
∃β ∈ B such that β7σ �= 1, or (σ, q , τ) ∈M
∃ δ ∈ Δ such that δ7σ �= 1
∀β ∈ B β7σ= 1, and ∀ δ ∈ Δ δ7σ= 1 (σ, q, τ) ∈M

(Note that δ7σ has some unassigned literals if it does not simplify to 1.)
By construction, M satisfies the requirement for tree models that, if (ρ, q) is

a branch prefix of M , then there is no branch prefix of the form (ρ, q ), and vice
versa. M satisfies G3, since M1 satisfies G3. M satisfies all clauses in G1+G2 that
contain q by construction.

It remains to show that M satisfies all clauses in G1 + G2 that contain q.
Assume (σ, q , τ) is the branch in M corresponding to (σ, τ) in M1, otherwise
satisfaction is immediate.

First, consider an arbitrary clause C = [q, α] ∈ G1. There is some β ∈ B or
δ ∈ Δ that caused the assignment q = 0 in the construction of M .

(Subcase β) If β7σ �= 1 and [α, β] ∈ G4, then α7σ= 1. If β7σ �= 1 and [α, β] �∈ G4,
it must be due to being tautologous. Then there is some literal r that is not inner
to q such that r ∈ α and r ∈ β. It follows that α7σ= 1.

(Subcase δ) Suppose some δ causes the assignment q = 0. If δ7σ �= 1 and
[α, δ] ∈ G4, then it must be subsumed by some D1 ∈ (G3 ∪ G4) because [α, δ]
must have some literal inner to q. To qualify, D1 must have no literals inner

4 See http://www.cse.ucsc.edu/~avg/QPUP/qpup-cp12-long.pdf for full proofs.

http://www.cse.ucsc.edu/~avg/QPUP/qpup-cp12-long.pdf
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to q (case (3) in Definition 6.1). Some literal p ∈ D1 is assigned 1 by σ. By
the subcase hypothesis p �∈ δ, so again α7σ= 1. If δ7σ �= 1 and [α, δ] �∈ G4, the
argument in subcase β applies with δ in the place of β.

Second, consider an arbitrary clause C2 = [q, γ] ∈ G2. There is some β ∈ B or
δ ∈ Δ that caused the assignment q = 0 in the construction of M . By arguments
similar to the first case, γ7σ= 1.

Corollary 6.5. With q, Φ, F , G1, G2 and G3 defined as of Theorem 6.3, if |q| is
depth-monotonic in Φ and the universal player has a winning strategy, then for
each universal variable ui that has inner scope to q, the winning strategy for ui

can be expressed as a function that is independent of q.

Proof: (Sketch) Place |q| innermost in its quantifier block. W.l.o.g., let the pure
literal be q for G2. All occurrences of ui are in G2 or G3. Now consider the modified
formula Φ1 that differs from Φ only in that |q| is outermost within the innermost
quantifier block. It remains to show that Φ1 is false.

Apply the quadrangle dependency theory of [25], Theorem 4.7. In Φ1, |q| does
not have a quadrangle dependency with any ui that is inner to |q| in Φ, because
paths from ui or ui to q require connections outer to ui. Therefore, starting
from Φ1, |q| can repeatedly be transposed with the next outer variable in the
quantifier prefix without changing the value of the formula, until |q| reaches the
position it has in Φ, which is false by hypothesis. Since |q| is inner to all ui in
Φ1, if Φ1 is false, then the universal player has a winning strategy such that the
winning value for each ui is independent of |q|.

Example 6.6. This example illustrates several topics from this section. Φ is
shown in chart form.

Φ ∃q ∃r ∀u ∃x ∃y
C1 q x
C2 u x
C3 q r
C4 q r y
C5 u y

The winning strategy for u depends on q but not r; i.e., u(q, r) = q.
QVER(r) is sound. QVER(q) is not sound. Notice that q has no clauses in

common with u, and neither does r. The difference lies in the paths from u or
u to the various existential literals. Thus the two paths C2 − C1 and C5 − C4

establish a quadrangle dependency of q upon u. However, the only path from u
or u to r involves a connection through q, but q is not inner to r, so this path
does not qualify for establishing a quadrangle dependency.

By quadrangle dependency theory, r and u can be transposed without chang-
ing the truth value of Φ. After the transposition, r is innermost, so QVER(r)
is sound and might be selected by Quantor. Since the formula that results af-
ter QVER(r) is the same, whether the transposition is carried out or not, an
implementation need not actually perform the transposition.
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7 Conclusion

This paper presents theoretical analysis of several issues closely related to mod-
ern QBF solvers. Avenues for improvement in the state of the art are suggested.
No QBF solvers with publicly available code were found to be very amenable to
research experimentation, in contrast to MiniSat in the SAT domain. Therefore
we leave it to various implementers to decide how to incorporate this paper’s
results into their own solvers.

Acknowledgment. We thank Florian Lonsing, Mikolas Janota, Uwe Bubeck,
and the reviewers for their careful reading of an earlier draft.
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1 LIRMM, UMR5506 Université Montpellier II - CNRS, Montpellier, France
{coletta,vismara}@lirmm.fr

2 MISTEA, UMR729 Montpellier SupAgro - INRA, Montpellier, France

Abstract. Lexicographic constraints are commonly used to break vari-
able symmetries. In the general case, the number of constraint to be
posted is potentially exponential in the number of variables. For injec-
tive problems (AllDiff), Puget’s method[12] breaks all variable symme-
tries with a linear number of constraints.

In this paper we assess the number of constraints for “almost” injec-
tive problems. We propose to characterize them by a parameter μ based
on Global Cardinality Constraint as a generalization of the AllDiff con-
straint. We show that for almost injective problems, variable symmetries
can be broken with no more than

(
n
μ

)
constraints which is XP in the

framework of parameterized complexity. When only ν variables can take
duplicated values, the number of constraints is FPT in μ and ν.

Keywords: Variable Symmetry, Global Cardinality Constraint, Param-
eterized complexity.

1 Introduction

The importance of symmetry is now widely recognized in Constraint Satisfaction
Problems. Many methods have been devised to break symmetry especially for
variables. Most of them require to post a number of constraints which is equal
to the number of symmetries. This is the case of lexicographic constraints [6] or
dynamic constraints in SBDS [9].

Unfortunately, the number of variable symmetries can be exponential in the
general case. Even so, Puget [12] has shown that, for injective problems, sym-
metry can be broken with a linear number of constraints.

Between these two extreme, the aim of this paper is to use a parameterized
complexity approach in order to evaluate the number of constraints required to
break variable symmetries.

Parameterized complexity [7] offers a measure of complexity for NP-complete
problems which is based on an isolate parameter k independent from the size n.
The complexity of a problem is XP if it is in the form O(nk) or FPT if it is in
O(f(k)nc) where c is a constant and f any function, even exponential.

Many problems in Artificial Intelligence, especially CSP, have been analyzed
with parameterized complexity [10]. For instance, breaking value symmetries has
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a fixed-parameter complexity in O(2knd), where k is the potentially exponential
number of value symmetries [2].

By analogy, we can claim that variable symmetry can be broken with a number
of lexicographic constraints which is FTP in the number of symmetries. In this
paper we try to propose new parameters to measure the number of required
constraints.

2 Breaking Variable Symmetry

A variable symmetry is a permutation σ on the set of variables {xi}i∈1..n that
maps solutions onto solutions. More formally, any assignment (xi = vi)i∈1..n is
a solution if and only if (xσ(i) = vi)i∈1..n is also a solution.

The general method for breaking variable symmetry is to add lexicographical
constraints [6]. Given an order xi1 , . . . xin on variables, we post, for any symmetry
σ, the lexicographical ordering constraint:

xi1 , . . . , xin ≤lex xσ(i1), . . . , xσ(in) (1)

Unfortunately, the number of variable symmetries can be exponential. It is equal
to the size of the corresponding permutation group G. This group is generally
given as a set S of generators. For instance, Nauty [11] or Saucy are well known
programs to compute the permutation group of a graph (automorphisms). Even
if their theoretical worst-case time complexity is exponential, they are very effi-
cient in practice.

In the special case of “piecewise symmetry” – where the set of variables (resp.
values) is partitioned into subsets of interchangeable variables (resp. values)
– both variable and value symmetry can be broken with a linear number of
constrains [8].

For injective problems, Puget[12] has shown that equation (1) can be simpli-
fied into xik ≤ xσ(ik), where ik is the smallest index such that σ(ik) �= ik. Hence
there are less than n2 such constraints for all variable symmetries.

Given a variable index ik, any symmetry σ for which we post the constraint
xik ≤ xσ(ik) is a stabilizer of i1, .., ik−1. So σ belongs to the stabilizer subgroup

G[ik] = {σ ∈ G | ∀z < k, σ(iz) = iz}. More precisely, we need to compute the
image (orbit) of ik by any symmetry that leaves i1, .., ik−1 invariant. This set is
defined by Δ[ik] = {σ(ik)|σ ∈ G[ik]}

This approach is interesting because it is possible to compute all sets Δ[ik]

without enumerating G, thanks to Schreier-Sims’ algorithm.

2.1 Schreier-Sims’ Algorithm

In 1970, Sims introduced the notion of base for a permutation group. A sequence
B = (β1, β2, ..., βm), where m ≤ n, is a base for G if the only permutation which
fixes each of the points in B is the identity.

The word “base” is used because an element σ of the group G is uniquely
determined by the image σ(B) = (σ(β1), σ(β2), ..., σ(βm)).
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A base B induces a stabilizer chain G = G[β1] ≥ G[β2] ≥ . . . ≥ G[βm] ≥ {id.}
since G[βk+1] (the permutations that fix β1, .., βk) is a subgroup of G[βk].

If every G[βk+1] is a proper (not included) subgroup of G[βk], the base B is
called nonredundant and 2|B| ≤ |G| thus |B| ≤ log2(|G|).
Given any set S of generators of the group G, the Schreier-Sims’s algorithm
computes incrementally a nonredundant base B. This approach is analogous
to Gaussian elimination in Algebra. The algorithm adds new generators to S
such that S ∩ G[βk] is a generator of G[βk]. The resulting base is called a strong
generating set.

For each βk in B, the algorithm computes the orbit Δ[βk] and chooses, for
each value γ in Δ[βk], one representative permutation uγ

βk
∈ G[βk] such that

uγ
βk
(βk) = γ. Thanks to this set of representatives, one can easily enumerate G.
Let U [k] = {uγ

βk
|γ ∈ Δ[βk]} be the set of representatives for βk.

Then G = {υβ1 ◦ υβ2 ◦ . . . ◦ υβm | ∀k ∈ 1..m, υβk
∈ U [k]}.

There exists several variants of Schreier-Sims’ algorithm and a vast literature
on this topic[5,14]. The simplest deterministic version has a time complexity in
O(n2 log3 |G|+ |S|n2 log |G|) and O(n2 log |G|+ |S|n) in space.

If we choose B = (1, 2, ..., n), the Jerrum’s variant has a time complexity in
O(n5) and O(n2) in space.

2.2 A Polynomial Number of Constraints

With Schreier-Sims’ algorithm one can enumerate in polynomial time all orbits
Δ[βk] from a given1 generating set of G.

Since any symmetry σ must belong to a subgroup G[βk], each constraint (1) is
equivalent to an inequality xβk

< xσ(βk) with σ(βk) ∈ Δ[βk]. Hence all variable
symmetries can be broken with the following constraints:

∀βi ∈ B, ∀γ ∈ Δ[βi], γ �= βi, we post xβi < xγ (2)

The total number of inequalities is
∑

βi∈B(|Δ
[βi]| − 1). So it is in O(n log2|G|)

or in O(n2).

In [12], Puget has shown that equation (2) can be reduced to one inequality
for each γ in Δ[βi]. The principle is to associate each γ to the larger βi (different
from γ) such that γ ∈ Δ[βi].

Formally, let Rγ = {βi ∈ B \ {γ} | γ ∈ Δ[βi]}. If Rγ �= ∅ let us define
r(γ) = max(Rγ) otherwise r(γ) = γ.

One can prove2 that equation (2) is equivalent to the following linear number
of constraints:

∀γ ∈ 1..n such that r(γ) �= γ, we post xr(γ) < xγ (3)

1 Or computed by Nauty with potentially exponential time.
2 The proof given in [12] can be sketched as follows: by transitivity, xβi < xγ is derived
from xβi=r(...r(r(γ))) < . . . < xr(r(γ)) < xr(γ) < xγ .
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3 Gcc: A Relaxation of Alldiff for Almost Injective
Problems

A constraint network that involves an Alldiff constraint is injective and we
showed in Section 2 that the number of constraints required to break all vari-
able symmetries is polynomial. The Alldiff imposes that each value be taken at
most 1 time, which is quite restrictive in terms of modelisation. In many prac-
tical applications, we may want to impose that a value should appear at least l
and/or at most u times. With this purpose, the Global Cardinality Constraint
Gcc has been introduced in [13] to deal globally with a conjunction of AtLeast
(stating that a value has to appear at least a given number of times) and AtMost

(stating that a value has to appear at most a given number of times). The Gcc is
widely used to model industrial problems and is available in almost all existing
constraints solvers.

Definition 1 (Global Cardinality Constraint). A Gcc constraint, de-
noted Gcc(X, lb, up) involves a set of variables X and two functions lb, ub :⋃

x∈X D(x) → N . The Gcc constraint is satisfied if for each value v ∈⋃
x∈X D(x) the number of variables in X assigned to v is between lb(v) and

ub(v).

This constraint does not guarantee the problem to be injective, but in the re-
mainder of this section we show that a problem with Gcc constraint may be
almost injective. To measure the distance of a given problem N to a perfectly
injective problem, we introduce the parameter μ(N), maximum number of vari-
ables that can be equal simultaneously. If μ(N) = 0, then the problem N is
perfectly injective. If μ(N) is small we call the problem N is almost injective.

Example 1. Consider a problemN =<X,D,C> with n variablesX = {xi}i∈1..n,
uniform domains D(x1) = . . . = D(xn) = {v1, . . . , vd} and a unique constraint
C = Gcc(X, lb, ub), with lb(vi) = 0 and ub(vi) = 1 for all value, except for the
special value vd that can be taken at most 3 times (ub(vd) = 3). This problem
is almost injective and we have μ(N) ≤ 3.

We provide below a first upper bound of μ(N) for a constraint network N which
contains a Gcc constraint on all variables involved in the symmetries, by consid-
ering in a static way the different upper bounds of the values.

Property 1. Let N =< X,D,C > be a constraint network, with Gcc(X, lb, ub) ∈
C. μ ≤

∑
v∈D s.t. ub(v)>1 ub(v).

This bound takes into account neither the overlap between variables domains
nor the lower bound of values. To deal with both the lower bounds and the
variables domains and then achieve a better upper bound of μ, we have to look
at the implementation of the Gcc.

The Gcc constraint propagation algorithm proposed in [13] consists in finding
a flow in a bipartite graph, such that one of Figure 1. The set of the set of
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Fig. 1. The network used for GCC propagation

nodes is the union of the variables involved in the Gcc and their values and the
two special nodes s and t. The flow between the source s and a variable x is
exactly 1, stating that each variable has to be assigned to a single value. The
flow between a variable x and a value v in its domain is either 0 or 1, depending
if x is assigned to v or not. The flow between a value v and s is constrained by
the lower and upper bounds of the value in the Gcc.

Property 2. Given a constraint network N =< X,D,C > with Gcc(X, lb, ub) ∈
C, μ(N) is bounded by the number of variables minus the minimal number of
values which can be assigned to exactly one variable while respecting the Gcc.

Computing this minimal number of values is more complex than establishing
the upper bound of Prop. 1. We propose to compute it using the CSP encoding
described below. As described above the underlying algorithm of the Gcc relies on
a flow problem. But, the flow problem itself has been encapsulated in a constraint
in [4], allowing to solve problems involving flow and additional constraints, for
instance large workforce scheduling problems [1]. In this flow constraint, the flow
allowed to an edge (i, j) is expressed as a CSP variable xflow(i,j).

To compute the minimal number of values which can be assigned to exactly
one variable while respecting the Gcc, we propose to reuse the encoding of the
Gcc enriched with extra variables nb occ(vi) to count the number of occurrences
of a value. nbocc(vi) is the variable expressing the flow between vi and t. Minimize∑

vi∈D(nb occ(vi) = 1) is equivalent to compute the minimal number of values
which can be assigned to exactly one variable while respecting the Gcc.

Lemma 1. The problem of determining if
∑

vi∈D(nb occ(vi) = 1) ≤ N is NP-
hard.

Proof sketch: Consider a Gcc(X, lb, up) with lb(v) = 0, ub(v) = |X |, finding∑
vi∈D(nb occ(vi) ≥ 1) ≤ N exactly fits the definition of the

atmostNvalues(X,N) constraint, which was shown NP-hard in [3] by a reduc-
tion to 3 − SAT . For

∑
vi∈D(nb occ(vi) = 1) ≤ N the proof is identical except

the point 3-SAT is replaced by exactly-1 3SAT (also called 1-in-3 SAT).
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4 Generalization to “almost injective” Problems

Lets consider an almost injective problem where no more than μ variables can
be equal simultaneously.

For each variable symmetry σ ∈ G[βk], constraint (1) is no longer equivalent
to xβk

< xσ(βk) because xβk
can be equal to xσ(βk). In such a case, checking

the lexicographical constraint involves to find the next βz > βk such that xβz �=
xσ(βz) and so σ(βz) �= βz.

Given any symmetry σ ∈ G[βk], consider the increasing sequence i1σ, i
2
σ, . . . i

t
σ

of the elements3 of B for which σ(i) �= i. Since σ ∈ G[βk] we have i1σ = βk.
For injective problems we have seen that lexicographic constraint (1) can be

replaced by the constraint xi1σ
< xσ(i1σ)

. For almost injective problem with no
more than μ simultaneous pairs of equal variables, constraint (1) simplifies to:

xi1σ
, xi2σ

, . . . , xiρσ ≤lex xσ(i1σ)
, xσ(i2σ)

, . . . , xσ(iρσ) (4)

where ρ = min(μ+ 1, t).

Because there are no more than
(
n
2μ

)
constraints (4) for all symmetries in G and(

n
k

)
< nk, we have the following lemma:

Lemma 2. Given a CSP where no more than μ variables can be equal simul-
taneously, all variable symmetries can be broken with a number of constraints
which is XP in μ.

To compute constraints (4), we have to enumerate the whole group G. This can
be done in O(n|G|) thanks to sets U [k] computed by Schreier-Sims’ algorithm.

By definition, constraint (4) is equivalent to the following constraints:

xi1σ
≤ xσ(i1σ)

(5a)

xi1σ
= xσ(i1σ)

→ xi2σ
≤ xσ(i2σ)

(5b)

· · ·
xi1σ

= xσ(i1σ)
∧ . . . ∧ xiρ−1

σ
= xσ(iρ−1

σ ) → xiρσ ≤ xσ(iρσ) (5c)

There are
∑

βi∈B(|Δ
[βi]| − 1) constraints of type (5a), no more than

(
n
4

)
con-

straints (5b) and finally no more than
(

n
μ+2

)
constraints (5c). It is a crude upper

bound in the worst case. In practice some constraints can be discarded. For
instance, if we post a constraint (5a) like xa ≤ xb, it is unnecessary to post
any constraint that ends with “→ xa ≤ xb”. Moreover, constraints (5a) are
equivalent to a linear number of constraints of the form xr(j) ≤ xj .

The total number of constraints required to break symmetry also depends on the
ordering of the variables in baseB. For instance, suppose that δ is the first index in
B such that xδ takes a duplicate value. For each σ ∈ G[βk] such that i1σ = βk < δ,
the lexicographic constraint is equivalent to xi1σ

< xσ(i1σ)
. All these inequalities can

be reduced to a linear number of constraints of the form xr(j) ≤ xj . The special
case when δ > |B| (with |B| < n) is completely equivalent to injective problems.

3 If |B| < n we can add missing values at the end of the base. It does not affect the
strong generating set computed with Schreier-Sims’ algorithm.
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Therefore, we can try to rearrange base B in order to set, at the end of the
list, the indexes of the variables that take duplicate values.

A dynamic rearrangement could be expensive because permuting a single pair
of contiguous indexes has a complexity in O(n4)[5].

Let us assume that there are only ν variables that can take a duplicate value.
We can choose B in order that the indexes of these variables are placed at the
end of the list. Then all the symmetries in G\G[βn−ν ] can be broken with a linear
number of constraints as in injective problems. Lexicographic constraints (4) are
only required for symmetries that belong to G[βn−ν ]. All the scopes of these
constraints are included in a set of ν variables. Hence there are at most

(
ν
μ

)
and

the total number of constraints is in O(
(
ν
μ

)
+ n). This proves the following:

Lemma 3. Given a CSP where no more than μ simultaneous variables can be
equal, and only a subset of ν variables can take duplicates values, all variable
symmetries can be broken with a number of constraint which is FPT in ν and μ.

The Case of Heterogeneous Domains
In Section 4, we provide a theoretical bound of number of constraints to be
posted. As shown in example 2, this bound does not take into account initial
domains of variables, when they are not all equal.

Example 2. Let xi1σ
and xσ(i1σ)

be two variables involved in a symmetry. If
D(xi1σ

) ∩D(xσ(i1σ )) = ∅, the constraint 5b is useless and can be discarded (not
posted) as well as all constraints containing xi1σ

= xσ(i1σ)
in their left part.

The conjunction of the Gcc constraint and the initial domains of variables may
also forbid combinations of equalities between pairs of variables:

Example 3. Let D(x1) ∩D(x2) = {v} = D(x3) ∩D(x4) and ub(v) = 3. The Gcc
forbids to have simultaneously x1 = x2 and x3 = x4. Then, all constraints 5c,
within x1 = x2 ∧ x3 = x4 in their left part may be discarded.

More generally, during the generation of symmetry breaking constraints of the
constraint network N =< X,D,C >, we propose the following technique: Be-
fore posting the constraint xi1σ

= xσ(i1σ)
∧ . . . ∧ xiρ−1

σ
= xσ(iρ−1

σ ) → xiρσ ≤ xσ(iρσ)

we propose to solve the subproblem N =< X,D,C′ > with C′ = {xi1σ
=

xσ(i1σ)
, . . . , xiρ−1

σ
= xσ(iρ−1

σ )} ∪ {Gcc}, the sub-problem of N restricted to both
the Gcc constraint and the equality constraints of the left part of this constraint.
If N ′ is not soluble, the constraint is discarded.

Lemma 4. The satisfiability problem of the class of constraint networks involv-
ing only a Gcc and some equality constraints is polynomial.

The idea of the proof relies on a slight modification of the Gcc encoding as flow
problem. For each pair of variable (xi, xj) involved in an equality constraint, we
replace them by a merged node xi,j The flow between the source s and this new
node variable xi,j is exactly 2 to enforce both xi and xj to be assigned. The flow
between xi,j and any value v in D(xi)∩D(xj) is either 0 or 2 to count 2 uses of
v when xij (in fact both xi and xj) is assigned to v.



Breaking Variable Symmetry in Almost Injective problems 671

In addition of theoretical results in terms parametrized complexity, this tech-
nique provides a practical way to restrict the number of constraints to be posted
for breaking symmetries in almost injective problems.

5 Conclusion

We have introduced a characterization of “almost injective” problems which is
based on the number μ of variables that can be equal simultaneously. We showed
that variable symmetry can be broken with no more than

(
n
μ

)
constraints which

is XP in the framework of parameterized complexity.
When only ν variables can take duplicated values, the number of constraints

is FPT in μ and ν.
In case of heterogeneous domains, we presented a polynomial method (based

on Gcc) for eliminating unnecessary constraints.
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Abstract. Recently a new technique for improving algorithms for ex-
tracting Minimal Unsatisfiable Subsets (MUSes) from unsatisfiable CNF
formulas called “model rotation” was introduced [Marques-Silva et. al.
SAT2011]. The technique aims to reduce the number of times a MUS
finding algorithm needs to call a SAT solver. Although no guarantees
for this reduction are provided the technique has been shown to be very
effective in many cases. In fact, such model rotation algorithms are now
arguably the state-of-the-art in MUS finding.

This work analyses the model rotation technique in detail and provides
theoretical insights that help to understand its performance. These new
insights on the operation of model rotation lead to several modifications
and extensions that are empirically evaluated. Moreover, it is demon-
strated how such MUS extracting algorithms can be effectively paral-
lelized using existing techniques for parallel incremental SAT
solving.

1 Introduction

Despite the theoretical hardness of the satisfiability problem (SAT) current state-
of-the-art decision procedures for SAT, so called SAT solvers, have proven to
be efficient problem solvers for many real life applications. For instances of SAT
that are unsatisfiable the notion of a Minimal Unsatisfiable Subset (MUS) can be
defined as follows. A MUS of an unsatisfiable formula is a subset of its constraints
that is minimal in the sense that removing any constraint will make it satisfiable.

In recent years there has been a lot of research into algorithms for MUS find-
ing [12]. Such algorithms have several useful applications in for example product
configuration [18], electronic design automation [15] and algorithms for maxi-
mum satisfiability [11]. Deciding whether a formula is minimally unsatisfiable
is a DP -complete problem [16]. SAT was the first problem ever proven NP -
complete [5]. As the complexity class DP is not believed to be included in the
class NP an algorithm for MUS finding using an NP oracle, such as a SAT solver,
will include repeated calls to that oracle.

MUS finding algorithms have been categorized as either constructive, destruc-
tive or dichotomic [8]. Destructive algorithms start by approximating the MUS
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contains all m clauses of the input formula, and then iteratively remove clauses
from this approximation, requiring O(m) calls to a SAT solver. Constructive
algorithms such as [10] start by under-approximating the MUS as an empty set
and adding clauses from the input formula until this approximation becomes un-
satisfiable. In a straightforward constructive algorithm a clause is proven critical
if its addition to the MUS approximation causes this approximation to become
unsatisfiable, after which the algorithm restarts using only clauses already proven
critical as its MUS approximation. Such an algorithm requires O(m×k) calls to
a SAT solver where k is the number of clauses in the largest MUS [8]. Dichotomic
algorithms [9] have not received much attention in recent publications. Those
algorithms use a binary search to construct the MUS and require O(k log m)
solver calls.

Recent work [13] blurs the distinction between constructive and destructive
algorithm by presenting a constructive style algorithm that requires O(m) SAT
solver calls. Arguably the most significant recent contribution to the field of MUS
finding is model rotation, which was also introduced in [13]. Model rotation is
presented as a heuristic technique for reducing the required number of SAT solver
calls, and it seems to be very effective in practice. Several other MUS algorithms
make use of the resolution proof that can be generated by an extended SAT
solver, but [13] provides evidence that such algorithms can be outperformed by
algorithms that do not require a proof logging SAT solver.

This paper contributes new insights on what it is that makes model rotation
such a powerful technique. Using this insight several improvements are suggested
and empirically evaluated. Moreover, it is demonstrated howmodel rotation algo-
rithms can be parallelized using existing techniques for parallelizing incremental
SAT.

2 Basic Definitions

A literal l is a Boolean variable l = x or its negation l = ¬x. For any literal l it
holds that ¬¬l = l. A clause c = {l1, l2, · · · , l|c|} is a non-empty set of literals,
representing the disjunction l1 ∨ l2 ∨ · · · ∨ l|c|. A formula F is a set of clauses.
An assignment a is a set of literals such that if l ∈ a then ¬l /∈ a. If l ∈ a then
it is said that literal l is assigned the value true, if ¬l ∈ a then l it is said that l
assigned value false. Assignment a satisfies clause c if there exists a literal l ∈ a
such that l ∈ c. An assignment satisfies a formula if it satisfies all clauses in
the formula. An assignment a is a complete assignment for a formula F if for
all c ∈ F and all l ∈ c either l ∈ a or ¬l ∈ a. A formula that has no satisfying
assignments is called unsatisfiable. A formula F is minimal unsatisfiable if it is
unsatisfiable and any subformula F ′ ⊂ F is satisfiable.

Definition 1 (assoc). An associated assignment (assoc) [10] for a clause c ∈ F
is a complete assignment a for the formula F that satisfies the formula F \ {c}
and does not satisfy c. Let A(c,F) be the set of all assocs for c ∈ F .
Note that an unsatisfiable formula F is minimal unsatisfiable iff for all clauses
c ∈ F it holds that c has an assoc, i.e. A(c,F) �= ∅. Such clauses are referred to in
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Algorithm 1. MUS finder with recursive model rotation [2,13]

Given an unsatisfiable formula F :

1. M = ∅
2. while F �= M
3. pick a clause c ∈ F \M
4. if F \ {c} is satisfiable then

5. M = M ∪ {c}
6. modelRotate(c, a) where a is a compl. satisfying assign. for F \ {c}
7. else

8. F = F \ {c}
9. return F

function modelRotate(clause c, assignment a) // such that a ∈ A(c,F)

I for all l ∈ c do

II a′ = rotate(a,¬l)
III if exactly one clause c′ ∈ F is not satisfied by a′ and c′ /∈M then

IV M = M ∪ {c′}
V modelRotate(c′, a′)

other work as critical clauses (e.g. [10]) or transition clauses (e.g [13]). Because
of the special interest in the assocs, this work will however always explicitly refer
to “a clause for which an assoc exists”. Note that the problem of finding a MUS
in the unsatisfiable formula F is equivalent to proving an assoc exists for every
clause in an unsatisfiable formula F ′ ⊆ F .

Clearly, for any unsatisfiable formula F and clause c ∈ F a single assoc a ∈
A(c,F) or proof that A(c,F) = ∅ can be obtained by testing the satisfiability
of the formula F \ {c} using a SAT solver. Given an assoc for a clause c the
technique proposed in [13] and improved to its recursive version in [2] attempts
to obtain an assoc for another clause c′ by model rotation, which is replacing a
single literal in the assoc by its negation.

Definition 2 (rotate(a, l)). Let rotate(a, l) be a function that negates literal
l in assignment a, i.e.: rotate(a, l) = (a \ {l}) ∪ {¬l}

Algorithm 1 gives the pseudocode for a MUS finder using model rotation. The
only difference from the classical ’destructive’ MUS finding algorithm is the
addition of the call to the function modelRotate on Line 6. A SAT solver is used
to determine the satisfiability of the formula F \ {c} on Line 4. If the formula is
satisfiable then the solver has found a satisfying assignment and this assignment
is an assoc a ∈ A(c,F). Any clause for which an assoc is found is added to M ,
the MUS under construction, and the algorithm continues until an assoc is found
for every clause remaining in F . On Line 8 the algorithm removes clause c from
F . In typical implementations of MUS finding algorithms instead of removing c
from F the formula is replaced by an unsatisfiable subset F ′ ⊆ F \ {c} that can
be cheaply calculated by the SAT solver.
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3 Understanding Model Rotation

In this section the model rotation technique will be studied by thinking of it as
an algorithm that traverses a graph.

Definition 3 (flip graph). For a CNF formula F let the flip graph G = (V,E)
be a graph in which there is a vertex for every clause, i.e. V = F . Each edge
(ci, cj) ∈ E is labelled with the set of literals L(ci, cj) such that:

L(ci, cj) = {l | l ∈ ci and ¬l ∈ cj}

The set of edges E of the flip graph is defined by (ci, cj) ∈ E iff L(ci, cj) �= ∅

Even though (ci, cj) ∈ E iff (cj , ci) ∈ E in this work the flip graph is considered
to be a directed graph. This is because of the interest in the sets labelling the
edges, which contain the same literals in opposite polarity for the same edge in
different directions, and because a subset of edges will be defined that imposes
a truly directed graph.

In some existing literature (e.g. [17]) the flip graph is defined as an undi-
rected graph and referred to as the resolution graph. That name was apparently
chosen because resolution can only be performed on clauses that are neighbors
in the graph, but it is slightly confusing because the name resolution graph is
more commonly used (e.g. in [7]) to denote the directed acyclic graph (DAG)
describing a resolution proof.

c1
x

c2
¬x ∨ y

c3
¬x ∨ z

c4
¬y ∨ ¬z

{¬x}

{x}

{¬x} {x} {¬z}

{z}

{y} {¬y}

Fig. 1. The flip graph for the formula Ffig1 = {{x}, {¬x, y}, {¬x, z}, {¬y,¬z}}

Model rotation can be thought of as an algorithm that traverses a path in
the flip graph. The intuition behind the following negatively stated lemma is
that model rotation can only successfully traverse edges labelled with exactly
one literal by rotation of that same literal.

Lemma 1. Let F be an unsatisfiable formula, ci and cj two clauses ci, cj ∈ F ,
and l a literal l ∈ ci. If L(ci, cj) �= {l} then for any assoc ai ∈ A(ci,F) the
assignment aj = rotate(ai,¬l) satisfies cj (and thus aj /∈ A(cj ,F)).

Proof. Note that because ai is an assoc ai ∈ A(ci,F) it satisfies cj . Note also
that the only literal that is in ai and not in aj is the literal ¬l. If L(ci, cj) = ∅
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then ¬l /∈ cj and thus aj satisfies cj . If L(ci, cj) �= ∅ and L(ci, cj) �= {l} then
there exists a literal l′ �= l such that l′ ∈ L(ci, cj). Because ai does not satisfy
ci and l′ ∈ ci it must hold that ¬l′ ∈ ai. But then also ¬l′ ∈ aj and because
¬l′ ∈ cj it holds that cj is satisfied by aj .

Clearly by Lemma 1 for any two ci, cj ∈ F negating a single literal in an as-
soc ai ∈ A(ci,F) can never result in an assoc aj ∈ A(cj ,F) if |L(ci, cj)| �= 1. This
leads to the definition of a subset of the edges E of the flip graph of F called the
possible rotation edges1 EP ⊆ E. Moreover, a set of guaranteed rotation edges
EG ⊆ EP is defined.

Definition 4 (rotation edges). Given a formula F , let:

EP = {(ci, cj) | ci, cj ∈ F and |L(ci, cj)| = 1}
EG = {(ci, cj) | ci, cj ∈ F and |L(ci, cj)| = 1 and for all ck ∈ F

it holds that L(ci, cj) �= L(ci, ck) if ck �= cj}

In Fig. 1 the flip graph for an example formula Ffig1 is given. Because there
are no two clauses ci, cj ∈ Ffig1 such that |L(ci, cj)| > 1 it holds that the set of
possible rotation edges EP is equal to the set of all edges E in the flip graph.
However, only the solid edges in the figure belong to the set of guaranteed
rotation edges EG. The dotted edges are not in the set EG because the two
outgoing edges from vertex c1 have the same label L(c1, c2) = L(c1, c3) = {x}.

Theorem 1. Let F be an unsatisfiable formula and EG the set of guaranteed
rotation edges it induces. If (ci, cj) ∈ EG then for any assoc ai ∈ A(ci,F)
an assignment aj = rotate(ai,¬l) such that L(ci, cj) = {l} is an assoc aj ∈
A(cj ,F).

Proof. By the definition of EG for all clauses ck ∈ F such that ck �= cj it holds
that L(ci, ck) �= {l}. It follows from Lemma 1 that all such clauses ck are satisfied
by aj. As F is unsatisfiable and aj satisfies F \ {cj} it must hold that aj does
not satisfy cj . Thus aj is an assoc aj ∈ A(cj ,F)

From Th. 1 it follows that an assoc exists for every clause for which there is a path
over edges in EG from a clause for which an assoc exists. Thus for formula Ffig1

presented in Fig. 1 obtaining any assoc a ∈ A(ci,Ffig1) such that i ∈ {2, 3, 4} is
sufficient to determine that the formula is minimal unsatisfiable. Obtaining an
assoc for clause c1 may however be less effective. Note that:

A(c1,Ffig1) = { {¬x,¬y,¬z}, {¬x,¬y, z}, {¬x, y,¬z} }

Although by replacing ¬x by x the second and third assoc in this set can be
rotated into a valid assoc for c2 and c3 respectively, no negation of a single literal
will make the first assoc into a valid assoc for any other clause in the formula
Ffig1.

1 Note that the set EP also corresponds to all pairs of clauses (ci, cj) on which reso-
lution ci ⊗ cj can be performed without creating a tautology.



Understanding, Improving and Parallelizing MUS Finding 677

Corollary 1. Let ci and cj be two clauses ci, cj ∈ F for an unsatisfiable formula
F . Let EG be the set of guaranteed rotation edges induced by F . If in graph
G = (F , EG) there exists a path from ci to cj, and also a path from cj to ci, then
A(ci,F) �= ∅ iff A(cj ,F) �= ∅.

Recall that a single assoc a ∈ A(c,F), or proof that no such assoc exists, can be
obtained by testing the satisfiability of the formula F \ {c} using a SAT solver.

Corollary 2. Given the unsatisfiable formula F an assoc for every clause in
a minimal unsatisfiable subformula F ′ ⊆ F can be obtained using at most as
many solver calls as there are strongly connected components (SCCs)2 in the
graph G = (F , EG).

Let a root SCC of a graph be an SCC that has no incoming edges from different
SCCs. In other words, a root SCC of the graphG = (V,E) is a strongly connected
component containing vertices V ′ ⊆ V such that for all v′ ∈ V ′ and (v, v′) ∈ E
it holds that v ∈ V ′. Observe that every directed graph has at least one root
SCC. Because the existence of an assoc a ∈ A(c,F) for a single clause c implies
an assoc for every clause reachable from c the following holds:

Corollary 3. Given the minimal unsatisfiable formula F an assoc for every
clause in F can be obtained using at most as many solver calls as there are root
SCCs in the graph G = (F , EG).

Given in Alg. 2 is the pseudo-code for a MUS finding algorithm that respects
the upper bounds on the number of solver calls established by Corollaries 2 and
3. Note that the set of clauses added to M on Line 7 of Alg. 2 is a superset of
the clauses in the SCC Fi. In an implementation of this algorithm once again
an improvement for the unsatisfiable case can be made if the solver is capable
of calculating an unsatisfiable subset F ′ ⊆ Fi \ {c}. Given such an unsatisfiable
subset F ′ any SCC Fj such that for some c ∈ Fj it holds that c /∈ F ′ can
be removed from S, and its clauses removed from F . Moreover, Alg. 2 can be
extended with model rotation to also discover assocs for clauses reachable over
edges only in EP .

3.1 Benchmark Statistics

The benchmark set used in [13] is a set of 500 trimmed benchmarks. Trimming
means reducing an unsatisfiable formula to a unsatisfiable subset that is not
necessarily minimal. Reducing the size of the formula without proving it minimal
reduces the amount of work left for the expensive MUS finding algorithm, and
is thus typically beneficial for the overall performance. A second benchmark set
for MUS finders was found in the MUS finding track of the SAT competition

2 A directed graph is strongly connected if there exists a path between every two
of its vertices. The SCCs of a directed graph are its maximal strongly connected
subgraphs.
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Algorithm 2. MUS finder respecting upper bounds of Cor. 2 and Cor. 3

Given an unsatisfiable formula F and the set EG it induces:

1. Let S = {F1,F2, · · · ,F|S|} the division of F into the SCCs of G = (F , EG)
2. M = ∅
3. while F �= M
4. pick Fi ∈ S corresponding to a root SCC such that M ∩ Fi = ∅
5. pick a clause c ∈ Fi

6. if F \ {c} is satisfiable then

7. M = M ∪ {c′ | c′ = c or c′ is reachable from c in G = (F , EG)}
8. else

9. F = F \ Fi

10. S = S \ {Fi}
11. return F

20113. It consists of 300 benchmarks, 150 of which are the original formulas for
which the trimmed version appear in the benchmark set of [13].

Table 1 gives statistics on these benchmarks. Note that the statistics con-
cern properties of the benchmarks themselves, rather than the result of some
empirical evaluation of an algorithm running on those benchmarks. Looking at
the statistics in the columns labelled ’original’ in the table gives some insight in
why model rotation performs so well for these benchmarks. The table provides
statistics on the average number of outgoing guaranteed rotation edges from any
clause (’avg. out-degree EG’). As for the near minimal formulas described here
this number is greater than 1 any single execution of the model rotation function
is probable to result in finding more than one assoc. For the larger formulas from
the SAT competition the average out-degree of guaranteed edges is still substan-
tial at 0.89, and it should be noted that during the execution of the MUS finding
algorithm this out-degree will increase (towards 1.59 on average) as the formula
shrinks to a MUS.

In the set of trimmed benchmarks from [13] 148 benchmarks have only exactly
one root SCC. This means that algorithm Alg. 2 requires only one call to a SAT
solver to establish an assoc for all clauses in that benchmark. The last two rows
in the table state the average upper bounds as established in Corollaries 2 and 3
as a percentage of the number of clauses in the input formula. The statistics thus
demonstrate that for the benchmark set from [13] Alg. 2 requires at most 43.6%
of the number of solver calls used in the worst case by a classical destructive
algorithm without model rotation. The column in the table labelled ’MUSes’
provide statistics for the ’original’ benchmarks after reduction using a MUS
finding algorithm. The ’MUSes’ benchmark sets are slightly smaller because
they do not include a MUS for formulas for which one could not be established
in reasonable time. To prove that the MUSes found in the formulas from [13] are
indeed MUSes Alg. 2 requires at most 27% of the number of solver calls required
in the worst case without model rotation.

3 http://www.satcompetition.org/2011

http://www.satcompetition.org/2011
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Table 1. Statistics on G = (F , EG) for formulas from various benchmark sets

From [13] SAT11 competition
original MUSes original MUSes

# benchmarks 500 491 298 262
# with single root SCC 148 148 0 51
avg. # clauses 6874.4 6204.2 404574 8162.7
avg. # SCCs 3000.4 2484.1 327815 3355.6

of size 1 2051.1 1635.2 276341 2254.2
avg. # root SCCs 2124.7 1680.5 258350 1891.1

of size 1 1613.4 1240.5 227129 1420.8
avg. clause length 2.32 2.35 2.53 2.42
avg. out-degree EP 12.30 11.24 86.84 14.16
avg. out-degree EG 1.60 1.63 0.89 1.59

avg. Cor. 2 bound 3000.4
6874.4

= 43.6% 2484.1
6204.2

= 40% 327815
404574

= 81% 3355.6
8162.7

= 41%

avg. Cor. 3 bound n/a 1680.5
6204.2

= 27% n/a 1891.1
8162.7

= 23%

What Alg. 2 can be proven to do serves to illustrate what the model rotation
algorithm Alg. 1 can do. This is because Lines 4 and 5 of Alg. 2 can be thought of
as a good strategy for picking a clause on Line 3 in Alg. 1. If the resulting formula
F \{c} is satisfiable then model rotation will find an assoc for at least all clauses
reachable over guaranteed rotation edges EG in c, so the set of clauses added to
M by Alg. 1 is a superset of the set of clauses added to M by Alg. 2. Hence,
Cor. 3 can be thought of as establishing an upper bound on the number of solver
calls in the most efficient execution sequence possible for Alg. 1. For non-minimal
input formulas following a solver call with unsatisfiable result Alg. 2 removes a
complete SCC rather than a single clause on Line 9. This means that in theory
executing Alg. 1 may result in more solver calls with result unsatisfiable than
Alg. 2. However, as stated before in practice Alg. 1 is implemented such that
more than one clause at the time is removed by obtaining an unsatisfiable core
from the solver. As a result even if the input formula is far from minimal the
number of solver calls with result unsatisfiable is typically small compared to
the number of calls with result satisfiable.

4 Improving Model Rotation

Studying model rotation as an algorithm traversing the flip graph revealed a
possible algorithmic improvement which is best explained by example. In Fig. 2
the graph G = (Fph3, EG) for the formula Fph3 representing an encoding of the
pigeon hole principle for three pigeons and two holes is given. For each of three
pigeons x, y and z there are two variables. The assignment of x1 to the value
true means that pigeon x is in hole 1, the assignment y2 to true means pigeon
y is in hole 2 etcetera. The clauses c2, c4 and c6 for which the vertices are drawn
with double circles in Fig. 2 are representing for pigeons x, y and z respectively
the constraint that the pigeon is either in hole 1 or in hole 2. The other vertices
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c1
¬x1 ∨ ¬z1

c6
z1 ∨ z2

c9
¬y2 ∨ ¬z2

c7
¬x2 ∨ ¬z2

c3
¬x2 ∨ ¬y2

c5
¬y1 ∨ ¬z1

c2
x1 ∨ x2

c8
¬x1 ∨ ¬y1

c4
y1 ∨ y2

{¬z1} {¬z2}

{¬x1} {¬y1}

{¬x1} {¬y2}

{¬z2} {¬z1}

{¬x2} {¬y1}

{¬x2} {¬y2}

Fig. 2. The graph G = (Fph3, EG) for formula Fph3

represent clauses that state for each combination of two pigeons and a hole that
the two pigeons are not both in that hole. Obviously this formula is unsatisfiable
as there is no placement of three pigeons into two holes such that each pigeon
is in a hole and no two pigeons are in the same hole. Observe that it is also
minimal unsatisfiable.

As none of the vertices in G = (Fph3, EG) is reachable from itself there are no
SCCs of size larger than one. Nevertheless the pigeon hole does not represent a
worst-case for model rotation. Let us assume that Fph3 is given as an input to
Alg. 1 and the first time line 3 is reached the algorithm chooses clause ¬x1∨¬z1.
The formula Fph3 \ {¬x1,¬z1} has a single satisfying assignment representing
the case where pigeon x and z both sit in hole 1, and pigeon y sits in hole 2.
The resulting execution of the modelRotate function is depicted in Table 2 by
the recursive function call sequence above the double horizontal line.

The last call in the sequence of recursive function calls is the one performed
for clause c7. As (c7, c2) ∈ EG rotation of the assoc for c7 is guaranteed to give
an assoc for clause c2, but as c2 ∈ M the condition on Line III of the pseudo-
code of function modelRotate is not satisfied. Note that the assoc for c2 that
can be obtained by rotation from the assoc for c7 is different from the assoc that
was obtained in the first execution step by the rotation of the assoc for c1. The
steps under the double horizontal line in Table 2 depict how rotation of the
new assoc for c2 would allow finding an assoc for the two remaining clauses c8
and c9.

Obviously, if the pseudo-code of the modelRotate function is modified by sim-
ply removing the subexpression “and c′ /∈ M” from Line III then the function
no longer terminates. One possible solution would be to store with each clause
a list containing each assoc found for that clause, and perform model rotation
for assocs that have not been rotated before. This would guarantee termination,
but as one clause may have exponentially many assocs the length of the execu-
tion sequence may be non-linear in the size of the formula, and the amount of
storage space required for the assocs would be substantial. A better approach is
illustrated in the pseudo-code given in Alg. 3. Intuitively, the improved model
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Table 2. Possible execution of function modelRotate for Fph3

|M | l Function call

1 modelRotate(c1, {x1,¬x2,¬y1, y2, z1,¬z2})
2 x1 modelRotate(c2, {¬x1,¬x2,¬y1, y2, z1,¬z2})
3 x2 modelRotate(c3, {¬x1, x2,¬y1, y2, z1,¬z2})
4 y2 modelRotate(c4, {¬x1, x2,¬y1,¬y2, z1,¬z2})
5 y1 modelRotate(c5, {¬x1, x2, y1,¬y2, z1,¬z2})
6 z1 modelRotate(c6, {¬x1, x2, y1,¬y2,¬z1,¬z2})
7 z2 modelRotate(c7, {¬x1, x2, y1,¬y2,¬z1, z2})
7 x2 modelRotate(c2, {¬x1,¬x2, y1,¬y2,¬z1, z2})
8 x1 modelRotate(c8, {x1,¬x2, y1,¬y2,¬z1, z2})
8 y1 modelRotate(c4, {x1,¬x2,¬y1,¬y2,¬z1, z2})
9 y2 modelRotate(c9, {x1,¬x2,¬y1, y2,¬z1, z2})

Algorithm 3. Improved recursive model rotation

function improvedModelRotate(clause c, assignment a, literal lr)

1. if lr �= undefined then seen[c, lr] = true;
2. for all l ∈ c such that l �= ¬lr do

3. a′ = rotate(a,¬l)
4. if exactly one clause c′ ∈ F is not satisfied by a′ and seen[c′, l] = false then

5. M = M ∪ {c′} // Has no effect if c′ is already in M
6. improvedModelRotate(c′, a′, l)

rotation function allows a path that passes through the same clause multiple
times as long as that clause is reached over edges with different labels. To use
this improved model rotation function the MUS finding algorithm should ini-
tialize seen[c, l] = false for all clauses c ∈ F and literals l ∈ c. Moreover, the
call to modelRotate(c, a) on Line 6 of the MUS finding algorithm Alg. 1 should
be replaced by improvedModelRotate(c, a,undefined). Note that for formula
Fph3 the execution sequence of the improved model rotation function is exactly
the sequence of all steps in Table 2.

During the review process of this work an article by the developers of model
rotation appeared [1] in which they also observed that the termination condition
of the model rotation function can be weakened. They proposed a parameter-
ized function called extended model rotation which stores a limited number of
assocs with every visited clause, but they were unable to achieve good perfor-
mance using this function.

5 Parallelizing Model Rotation

Alg. 4 is an implementation of a MUS finding algorithm that can be used with an
external incremental solver such as Tarmo [20]. The idea behind the Tarmo solver
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Algorithm 4. Parallelized MUS finding algorithm

1. generating thread
1.1 i = 0
1.2 M = ∅
1.3 forever do

1.4 if F �= M then Fi = F \ {ci} for some ci ∈ F \M else return F
1.5 submit formula Fi to solver
1.6 i = i+ 1

2. result handling thread
2.1 forever do

2.2 if solver reports result for some formula Fj then

2.3 if formula Fj is satisfiable then

2.4 M = M ∪ {cj}; modelRotate(cj , a) where a ∈ A(cj , Fj)
2.5 else if Fj ⊂ F then

2.6 F = Fj

is that given a sequence of related formulas encoded incrementally parallelization
can be performed by solving multiple formulas from that sequence at the same
time in parallel. This can be efficient for applications of incremental SAT solvers
like Bounded Model Checking (BMC) [4] where the hardness of formulas in the
sequence is varying. Inside Tarmo information gathered by each individual solver
thread in the form of conflict clauses [14] is shared with the other solver threads.
The clause sharing database design of Tarmo makes sure that this is performed
correctly even when those solver threads are working on different formulas at
the same time.

Algorithm 4 uses two threads that operate simultaneously in parallel. Thread
1 generates formulas and submits them to the external incremental SAT solver,
Thread 2 handles the results reported by the SAT solver as they come in. The re-
sults may be reported out of order by the external solver, allowing parallelization
by using the solver Tarmo.

A single line of pseudocode for a thread constitutes an atomic operation,
which means that a thread can not observe state changes caused by the other
thread during the execution of a single line. In fact, it is natural to think of the
execution of the algorithm as a sequential interleaving of the execution steps of
both threads. This means that both threads take turns and in each turn they
execute one or more lines of their pseudocode. The execution order is assumed
to be fair which means that no single thread executes forever without allowing
the other thread to execute. The execution of the algorithm ends if and only if
’return F ’ is reached on Line 1.4. Typical modern SAT solvers are complete,
meaning that for any input formula they will eventually report an answer. Given
those preconditions Alg. 4 is guaranteed to terminate.

If at most one formula at the time is submitted at the time to the external
solver, i.e. after each formula submission Thread 1 does not execute until Thread
2 has handled the result for the submitted formula, then Alg. 4 behaves exactly
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like Alg. 1. The only expression in the pseudo-code of Alg. 4 that has no analogue
in the pseudo-code for Alg. 1 is the constraint Fj ⊂ F on Line 2.5. The extra
constraint is required in this parallel algorithm because the input formula may
contain more than one distinct MUS. As a consequence it is possible that two
formulas F1 ⊂ F and F2 ⊂ F are both unsatisfiable, while F1 ∩ F2 is not. The
extra constraint ensures that the working formula F shrinks monotonically while
remaining unsatisfiable. Of course also in an implementation of Alg. 4 the size of
a non-minimal formula can be reduced faster if an unsatisfiable core is obtained
from the solver.

Note that if two formulas are solved in parallel then the result of the formula
that is solved first may imply that the effort made solving the second formula
is wasted. This can happen either if both formulas are satisfiable in case the
clauses that can be added to M due to the second result is a subset of those
added before due to the first result. Or, if both formulas are unsatisfiable and
as a result of solving the first formula the condition Fj ⊂ F is not met once
the second formula is solved. The parallelization will thus have to perform well
enough to make up for these “wasted” solver calls.

6 Experimental Results

In this section the performance of implementations of the algorithms Alg. 1 and
Alg. 2 are evaluated. Both make use of the unsatisfiable core returned by the
SAT solver to reduce the size of a non-minimal formula by more than one clause
or SCC at the time. The implementation of Alg. 2 uses Tarjan’s algorithm [19]
to compute the SCCs.

Table 3. Instances solved and average solver calls over benchmarks solved by all

Model rotation none standard improved
# SAT UNSAT # SAT UNSAT # SAT UNSAT

Alg. 1 - - - 136 2696.8 193.4 136 2346.1 188.3
Alg. 2 106 4389.2 162.5 123 3610.8 163.6 131 2341.9 172.4
Alg. 1 Tarmo 4 - - - - - - 134 2660.9(88%) 436.0(42%)
Alg. 2 Tarmo 4 - - - - - - 135 2448.4(95%) 377.2(43%)
Alg. 1 Tarmo 8 - - - - - - 136 2963.0(79%) 796.5(23%)
Alg. 2 Tarmo 8 - - - - - - 139 2605.7(90%) 700.6(23%)

The non-parallelized versions of the MUS finding algorithms use the SAT
solver MiniSAT4 version 2.2.0 [6]. The implementation of the MUS finding algo-
rithm and the SAT solver are compiled at once into a single executable process.
Parallelization of both algorithms was implemented using the scheme of Alg. 4 in
combination with Tarmo as an external solver. Each of the parallel solver threads

4 http://www.minisat.se

http://www.minisat.se
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in Tarmo uses the same version of MiniSAT as the non-parallelized MUS find-
ing algorithms. The MUS finder and the Tarmo solver are not linked together,
but rather Tarmo is executed as a separate process and communication is per-
formed through UNIX pipes. This interface to Tarmo had been implemented
before to illustrate that also incremental SAT solvers can be used as stand-alone
“black-box” solvers. The downside is a rather substantial loss of performance5.

All experiments were run in a computing cluster in which each computing
node has two six core Intel Xeon X5650 processors. Each separate result has
been obtained on a single such machine that was not performing any other
computation tasks at the same time. The chosen timeout for all experiments was
900 seconds, and the memory was limited to 2500MB per core. The benchmarks
used were a subset of the 800 benchmarks described in Sec. 3.1. This subset
contained the 178 benchmarks for which the classical destructive algorithm takes
more than two minutes (73 from [13], 104 from the competition).

In Table 3 the columns marked ’#’ denote the number of benchmarks solved.
Note that the performance of algorithm Alg. 2 is worse than that of the simpler
Alg. 1, at least for non-parallel versions. Fig. 4 shows the effect of the improve-
ment for model rotation function described in Sec. 4. Although this improvement
reduces the number of calls to the solver the impact on the execution time for
Alg. 1 is rather minimal. The improvement seems to however be important for the

5 Using Tarmo with a single core Alg. 2 with improved model rotation solves 123
benchmarks instead of 131.
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performance of Alg. 2, possibly as it explores path over edges inEG before paths in
EP . It seems that picking the first arbitrary clause as Alg. 1 does on average leads
to more effective executions than picking the first clause in an arbitrary root SCC.
It is possible that this is caused by the existence of root SCCs of size 1, leading
Alg. 2 to select a clause with no outgoing edges in EG regularly.

Fig. 3 is a cactus plot, as used for example in the SAT competitions for
comparing solver performance. This cactus plot shows a comparison between
the implementations of both algorithms using different numbers of solver threads
against the model rotation MUS finder MUSer2 [2,3]. The average number of
solver calls used by each version is provided in Table 3, were calls with satisfiable
and unsatisfiable result are listed separately in their respective columns. To allow
fair comparison these averages are computed only over the results for the 103
benchmarks solved by all versions listed in the table. The percentages given
for the parallel versions correspond to the percentage of solver calls that were
actually effective to the progress of the algorithm.

Although Alg. 2 is slower than Alg. 1 in the single threaded case the SCC
calculation is important for the effectiveness of their parallelizations. This is
because the parallel version of Alg. 2 chooses clauses from different root SCCs
to construct the formulas to be submitted in parallel. This has a much higher
probability of leading to independently effective results than the strategy of
Alg. 1 which constructs formulas testing the existing of an assoc for multiple
arbitrary clauses in parallel. Fig. 5 illustrates this by showing that using 8 solver
threads instead of 4 has more impact on the performance of the parallelization
of Alg. 2 than on the performance of the parallel version of Alg. 1.

7 Conclusion

This paper studies a recently introduced technique [13,2] for improving MUS
finding algorithms called model rotation. Model rotation was presented as a
heuristic technique, but in this work it is proven that, when the input formula
posses certain common properties, model rotation is in fact guaranteed to reduce
the number of solver calls required by a destructive MUS finding algorithm. The
presented statistics for a set of benchmarks designed for testing MUS finding
algorithms illustrates why model rotation performs so well in practice.

The theoretical insights were followed by the presentation of an improvement
for the model rotation technique. The third contribution of the paper is the
presentation of a parallelization for MUS finding algorithms using model rotation
that builds upon existing work for parallel incremental SAT solving.

Finally, the presented improvements and parallelization were empirically eval-
uated and shown to be effective.
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Abstract. Our goal is to investigate the definition and application of
strong consistency properties on the dual graphs of binary Constraint
Satisfaction Problems (CSPs). As a first step in that direction, we study
the structure of the dual graph of binary CSPs, and show how it can
be arranged in a triangle-shaped grid. We then study, in this context,
Relational Neighborhood Inverse Consistency (RNIC), which is a con-
sistency property that we had introduced for non-binary CSPs [17]. We
discuss how the structure of the dual graph of binary CSPs affects the
consistency level enforced by RNIC. Then, we compare, both theoreti-
cally and empirically, RNIC to Neighborhood Inverse Consistency (NIC)
and strong Conservative Dual Consistency (sCDC), which are higher-
level consistency properties useful for solving difficult problem instances.
We show that all three properties are pairwise incomparable.

1 Introduction

Enforcing consistency properties on Constraint Satisfaction Problems (CSPs)
allows us to effectively prune the exponential search space of these problems,
and constitutes one of the most significant contributions of Constraint Program-
ming (CP). While lower level consistencies, such as Arc Consistency (AC) [15],
are often sufficient for solving easy problems, solving difficult problems often
requires enforcing higher consistency levels. To facilitate solving difficult CSPs,
we propose, as a research goal, to investigate the effectiveness of enforcing higher
levels of consistency on the dual graphs of binary CSPs.

To this end, we first study the structure of the dual graph of binary CSPs
and show that it exhibits an interesting triangle-shaped grid that, in general,
may affect the ‘level’ of the consistency property enforced and the operation
of the algorithms for enforcing it. Then, we focus our attention on Relational
Neighborhood Inverse Consistency (RNIC) [17], a consistency property that we
had proposed and evaluated as an extension of Neighborhood Inverse Consis-
tency (NIC) introduced by Freuder and Elfe [8]. We show how the structure of
the dual graph of a binary CSP affects the consistency level enforced by RNIC,
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characterizing the conditions where RNIC cannot be stronger than another rela-
tional consistency property that we had defined in [11] when both properties are
enforced on binary CSPs. In order to characterize the effectiveness of RNIC on
binary CSPs despite the identified limitation imposed by the structure, we turn
our attention back to ‘strong’ consistency properties defined for binary CSPs,
and compare RNIC, both theoretically and empirically, to NIC and strong Con-
servative Dual Consistency (sCDC) [14], showing that all three properties are
incomparable.

This paper is structured as follows. Section 2 reviews background information
about CSPs. Section 3 discusses the structure of the dual graph of a binary CSP,
mainly, that it is a triangle-shaped grid. Section 4 discusses RNIC on binary
CSPs. Section 5 reviews the state of the art in relational consistency. Section 6
discusses experimentally the filtering power of NIC, sCDC, and RNIC on binary
CSPs. Finally, Section 7 concludes this paper.

2 Background

A Constraint Satisfaction Problem (CSP) is defined by P = (V ,D, C) where V
is a set of variables, D is a set of domains, and C is a set of constraints. Each
variable Vi ∈ V has a finite domain Di ∈ D, and is constrained by a subset of the
constraints in C. Each constraint Ci ∈ C is specified by a relation Ri defined on
a subset of the variables, called the scope of the relation and denoted scope(Ri).
Given a relation Ri, a tuple τi ∈ Ri is a vector of allowed values for the variables
in the scope of Ri. Solving a CSP corresponds to finding an assignment of a value
to each variable such that all the constraints are satisfied. The dual encoding of
a CSP, P , is a binary CSP whose variables are the relations of P , their domains
are the tuples of those relations, and the constraints enforce equalities over the
shared variables.

2.1 Graphical Representations

A binary CSP is graphically represented by its constraint graph where the ver-
tices are the variables of the CSP and the edges represent the relations [6].
Neigh(Vi) denotes the set of variables adjacent to a variable Vi in the constraint
graph. The dual graph of a CSP is a graph whose vertices represent the relations
of the CSP, and whose edges connect two vertices corresponding to relations
whose scopes overlap. Neigh(Ri) denotes the set of relations adjacent to a re-
lation Ri in the dual graph. Janssen et al. [10] and Dechter [6] observed that,
in the dual graph, an edge between two vertices is redundant if there exists an
alternate path between the two vertices such that the shared variables appear in
every vertex in the path. Redundant edges can be removed without modifying
the set of solutions. Janssen et al. introduced an efficient algorithm for comput-
ing the minimal dual graph [10]. Many minimal graphs may exist, but all are
guaranteed to have the same number of edges. Figure 1 shows the constraint,
dual graph, and a minimal dual graph of a small CSP.
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Fig. 1. A constraint graph, dual graph, and minimal dual graph

2.2 Consistency Properties and Algorithms

CSPs are in generalNP-complete and solved by search. To reduce the severity of
the combinatorial explosion, they are usually ‘filtered’ by enforcing a given local
consistency property [2]. One common property is Arc Consistency (AC). A CSP
is arc consistent iff for every binary constraint, any value in the domain of one
variable can be extended to the domain of the other variable while satisfying
the constraint, and vice versa. The more difficult the CSP, the larger is its
search space, and the more advantageous it is to enforce consistency properties
of higher levels. In fact, Freuder provided a sufficient condition for guaranteeing a
backtrack-free search that links the level of consistency to a structural parameter
of the CSP [7]. However, enforcing higher-level consistencies may add constraints
and modify the structure of the problem. For this reason, we focus, in this paper,
on higher-level consistency properties for binary CSPs that do not modify the
graphical representations of a problem.

Freuder and Elfe introduced Neighborhood Inverse Consistency (NIC), which
ensures that each value in the domain of a variable can be extended to a so-
lution of the subproblem induced by the variable and all the variables in its
neighborhood in the constraint graph [8]. NIC is defined on binary CSPs and
the algorithm for enforcing it operates on the constraint graph. RNIC ensures
that any tuple in any relation can be extended in a consistent assignment to all
the relations in its neighborhood in the dual graph. Enforcing NIC (RNIC) does
not modify the constraint graph (dual graph). Further, it exploits the structure
of the problem to focus the pruning on where a variable (relation) most tightly
interacts with the problem. Thus, the topology of the constraint graph (dual
graph) of a problem can determine the level of consistency enforced.

As extensions to RNIC, we also proposed wRNIC, triRNIC, and wtriRNIC,
which modifies the structure of the dual graph but not the CSP solution set [17].
wRNIC is defined on a minimal dual graph; triRNIC is defined on a triangu-
lated dual graph;1 and wtriRNIC is defined on a triangulation of a minimal
dual graph. We gave a selection strategy, selRNIC, for automatically determin-
ing which RNIC variation to use based on the density of the dual graph.2 We

1 Graph triangulation adds an edge (a chord) between two non-adjacent vertices in
every cycle of length four or more [9]. While minimizing the number of edges added
by the triangulation process is NP-hard, MinFill is an efficient heuristic commonly
used for this purpose [12,6].

2 The density of a graph G = (V, E) is considered to be 2|E|
|V |(|V |−1)

.
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showed that selRNIC statistically dominates all other RNIC properties. We have
also studied m-wise consistency, which we denoted R(∗,m)C, and proposed the
first algorithm for enforcing it [11]. R(∗,m)C ensures that every tuple in every re-
lation can be extended in a consistent assignment to every combination of m− 1
relations in the problem. In this paper, we use the knowledge about the struc-
ture of the dual graph of binary CSPs to formally characterize the relationship
between RNIC and R(∗,m)C.

Strong consistency properties for binary CSPs that do not affect the topology
of the constraint graph have been carefully reviewed, studied, and compared to
each others [5,14]. Such properties include maxRPC [3], SAC [4], CDC [13], and,
the strongest of them all, sCDC [14]. Further, Lecoutre et al. show that, on binary
CSPs, strong Conservative Dual Consistency (sCDC) is equal SAC+CDC [14].3

While NIC was shown to be incomparable to SAC [5], its relationship to sCDC
has not yet been addressed [13]. In this paper, we complete the comparison of
NIC, RNIC, and sCDC, and show that they are, both theoretically and empiri-
cally, pairwise incomparable. Thus, our results contribute to the characterization
of strong consistency properties for binary CSPs.

When enforcing a relational consistency property, we always terminate the
process by filtering the variables’ domains by projecting on them the filtered re-
lations. For RNIC, we call the resulting consistency property RNIC+DF (domain
filtering). To compare a consistency property pi defined on the relations of a CSP
to another one defined on the variables, we always consider pi+DF. To compare
two consistency properties p and p′, we use the following terminology [4]:

– p is stronger than p′ if, in any CSP where p holds, p′ also holds.
– p is strictly stronger than p′ if p is stronger than p′ and there exists at least

one CSP in which p′ holds but p does not.
– p and p′ are equivalent when p is stronger than p′ and vice versa.
– Finally, p and p′ are incomparable when there exists at least one CSP in

which p holds but p′ does not, and vice versa.

In practice, when a consistency property is stronger (respectively, weaker) than
another, enforcing the former never yields less (respectively, more) pruning than
enforcing the latter on the same problem.

3 Structure of the Dual Graph of Binary CSPs

The structure of the dual graph determines the neighborhoods of its vertices
(i.e., CSP relations) and may affect the level of relational consistency that can
be enforced on the CSP. We first discuss the case of a binary CSP with a complete
constraint graph, showing that the structure of its dual graph can be arranged

3 Singleton Arc Consistency (SAC) ensures that a binary CSP remains AC after in-
stantiating any single variable to any value in the variable’s domain [4]. Conservative
Dual Consistencies (CDC) ensures that for every instantiation of two variables in
the scope of some constraint, {(Vi, a), (Vj , b)}, that b remain in the domain of Vj in
the arc-consistent CSP where a is assigned to Vi and vice versa [13].
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in a triangle-shaped grid. We show that redundant edges can be removed in a
way to maintain the grid structure. We then discuss the case of a binary CSP
with a non-complete constraint graph, and show that its dual graph can also
be arranged in a triangle-shaped grid but with fewer vertices and a less regular
shape than that of a CSP with complete constraint graph. We discuss the effects
of the dual-graph structure on RNIC in Section 4.

3.1 Binary CSP with a Complete Constraint Graph

Theorem 1. The n(n−1)
2 vertices of the dual graph of a binary CSP of n vari-

ables whose constraint graph is complete such as the one shown in Figure 2
(i.e., forms a clique of n vertices, Kn), can be arranged in an (n− 1)× (n− 1)
triangle-shaped grid where:

V1 

V2 

V3 

Vn-1 

Vn 

Fig. 2. A complete con-
straint graph of n vertices
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V2 

V3 V3 

V4 

V3 V4 

V4 

V5 V2 V3 V4 V1 

V1 

Fig. 3. Dual graph corresponding to the CSP in Fig-
ure 2

1. The n−1 vertices on the diagonal of the triangle correspond to the constraints
over the variable V1. They are denoted C1,i where i ∈ [2, n] and completely
connected. The connecting edges are labeled with V1.

2. The n − 1 vertices corresponding to the constraints over variable Vi≥2 are
located along the path in the grid shown in Figure 4 and specified as follows:
– Considering the coordinate system defined by the horizontal and vertical

unit vectors uh, uv and centered on C1,i,
– i− 2 vertices are lined up along the horizontal axis uh, and
– n− i vertices are lined up along the vertical axis vh.
– Those n− 1 vertices are completely connected, and the connecting edges

are labeled with Vi. (For the sake of clarity, Figure 3 does not show all
the edges of the dual graph: only all the edges labeled V1 are shown on
the diagonal of the grid.)
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Fig. 4. The path for the constraints over variables Vi≥2 of the grid of Figure 3

Proof: See Appendix A. �

Corollary 1. After the removal of redundant edges, the dual graph of a binary
CSP of n variables whose constraint graph is complete can be arranged in a
(n − 1) × (n − 1) triangle-shaped grid, where every CSP variable annotates the
edges of a chain of length n− 2.

Proof: See Appendix B. �

Because redundancy removal is not unique, not all minimal dual graphs nec-
essarily yield a triangle-shaped grid as we show using a counter-example. One
possible minimal dual graph for the complete constraint graph of five vertices
of Figure 5 is shown in Figure 6. In this example, there is a cycle of size six in

C10 
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Fig. 5. A complete graph with
five variables

V1 
V1 

V2 

V2 

V3 V3 

V4 

V4 V5 

V4 

V2 

V5 

V5 

V4 

V3 

Fig. 6. A minimal dual graph of Figure 5, which does
not form a grid

the dual graph, indicated by the bold lines in Figure 6. Thus, the dual graph
is not a grid. Further, the variable V2 does not annotate a chain, but a star, as
indicated by the dotted lines in the dual graph.
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3.2 Binary CSP with a Non-complete Constraint Graph

In a binary CSP with a non-complete constraint graph, the dual graph can be
thought of as the complete binary constraint graph with some missing vertices.
Because, in the dual graph of any complete constraint graph, all the vertices cor-
responding to the constraints that apply to a given CSP variable are completely
connected, it is always possible, even in the case of a CSP with a non-complete
constraint graph, to form, in its corresponding dual graph, a chain connecting
vertices related to the same variable. However, the length of such a chain may
be less than n−2. Thus, the triangle-shaped grid can be preserved. For example,
consider the binary CSP with n = 5 variables given in Figure 7. A minimal dual

C1,4 

C2,5 

C3,5 

C1,2 C1,5 

C2,3 

C3,4 

Fig. 7. A constraint graph with
five variables

V1 

V1 

V2 

V2 

V3 

V3 
V4 

V5  V5 

Fig. 8. The minimal dual graph of Figure 7

graph for that binary CSP is given in Figure 8, which was constructed from the
dual graph for the complete CSP by removing the vertices corresponding to the
constraints that are not in the CSP. Again, because the minimal dual graph is
not unique, there exists minimal dual graphs that do not favor the chains, and
thus, are not triangle-shaped grids.

4 RNIC on Binary CSPs

Knowing the structure of the dual graph of a binary CSP, we first prove limita-
tions of the filtering power of RNIC and wRNIC (RNIC enforced on a minimal
dual graph). Then we theoretically compare sCDC, RNIC, and NIC, showing
that they are pairwise incomparable.

4.1 Effects of the Dual-Graph’s Structure on RNIC

Theorem 2. RNIC, R(∗,2)C, and R(∗,m)C are equivalent on any dual graph
that is tree structured or is a cycle of length ≥ maximum(4,m+ 1).

Proof: By straightforward generalization of Theorem 5 in [17]. �

Any redundancy-free dual graph of an arbitrary binary CSP can contain only
one or more of the following configurations:



Revisiting Neighborhood Inverse Consistency on Binary CSPs 695

1. A cycle of length four, on a grid-shaped dual graph
2. A cycle of length larger than four as shown in Figure 6.
3. A triangle along the diagonal.

In the first two cases above, enforcing RNIC on the minimal dual graph (wRNIC)
is equivalent to R(∗,2)C by Theorem 2. On the third case, wRNIC is equivalent
to R(∗,3)C.
Theorem 3. On a binary CSP, wRNIC is never strictly stronger than R(∗,3)C.

Proof: See Appendix C. �

Using an algorithm for enforcing RNIC to enforce R(∗,3)C is wasteful of re-
sources. Indeed, the former executes more consistency-checking operations than
needed to enforce R(∗,3)C given that the neighborhoods considered by the for-
mer are supersets of those considered by the latter.

4.2 Comparing sCDC, RNIC and NIC

Theorem 4. On binary CSPs, sCDC and RNIC+DF are incomparable.

Proof: In Figure 9, the CSP is RNIC+DF but not sCDC. sCDC empties all
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Fig. 9. RNIC+DF but not sCDC
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Fig. 10. sCDC but not RNIC+DF

variables domains. In Figure 10, borrowed from Debruyne and Bessière [5],
the CSP is sCDC but not RNIC+DF. RNIC removes {(2, 3), (3, 2)} from R2,
{(1, 2), (1, 3)} from R1, and {(1, 2), (1, 3)} from R5. Therefore, RNIC+DF re-
moves the value 1 from A. �
Theorem 5. On binary CSPs, sCDC and NIC are incomparable.

Proof: In Figure 9, the CSP is NIC but not sCDC. In Figure 11, borrowed from
Debruyne and Bessière [5], the CSP is sCDC but not NIC. NIC removes the
value 1 from A. �
Theorem 6. On binary CSPs, NIC and RNIC+DF are incomparable.

Proof: In Figure 12, the CSP is NIC but not RNIC+DF. RNIC removes the
tuples in {(0, 2), (2, 2)} fromR0, {(0, 0), (1, 2)} fromR1, {(0, 2)} fromR2, {(0, 2)}
from R3, and {(0, 1), (2, 1)} from R4. Therefore, RNIC+DF removes the value 0
from A. In Figure 13, the CSP is RNIC+DF but not NIC. NIC removes the
value 0 from D. �
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Fig. 11. sCDC but not NIC
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Fig. 12. NIC but not RNIC+DF
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Fig. 13. RNIC+DF but not NIC

5 Related Work

Most of the related work is discussed in Section 2.2. To the best of our knowledge,
no prior work has investigated the structure of the dual graph of binary CSPs.

Bacchus et al. studied the application of NIC to the dual encoding of a CSP,
which they denoted nic(dual) [1]. While this property is identical to RNIC, the
paper did not go beyond stating that nic(dual) is strictly stronger than ac(dual).

Despite its pruning power and light space overhead, NIC received relatively
little attention in the literature, likely because of the prohibitive cost of the algo-
rithm for enforcing it. Freuder and Elfe tested their algorithm in a preprocessing
step to backtrack search for solving binary instances whose constraint density
did not exceed 4.25% [8]. Debruyne and Bessière showed that NIC is ineffective
on sparse graphs and too costly on dense graphs [5].

6 Experimental Results

We study the impact of enforcing consistency on binary CSPs in a pre-processing
step, prior to search. We then find the first solutions of the CSPs with backtrack
search using a dynamic domain/weighted-degree variable (dom/wdeg) ordering
and MAC [16] for full lookahead. We consider the four consistency properties:
AC, sCDC, NIC and selRNIC. We measure the number of visited during search
and the total CPU time (i.e., pre-processing and search). In practice, out of
the five RNIC consistency algorithms, the performance of only selRNIC matters
because it enforces the algorithm chosen by a selection policy [17].

We ran our experiments on benchmarks from the CSP Solver Competition.4

We limited the processing time per instance to 90 minutes. We tested 571

4 All constraints are normalized http://www.cril.univ-artois.fr/CPAI09/.

http://www.cril.univ-artois.fr/CPAI09/
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Table 1. CPU time: Search (MAC+dom/wdeg) with pre-processing by AC3.1, sCDC1,
NIC, and selRNIC
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#
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C
3
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sC
D
C
1

N
IC

se
lR

N
IC

CPU Time (msec)

NIC Quickest

bqwh-15-106 100/100 3,505 3,860 1,470 3,608

bqwh-18-141 100/100 68,629 82,772 38,877 77,981

graphColoring-sgb-queen 12/50 680,140 (+3) - (+9) 57,545 634,029

graphColoring-sgb-games 3/4 41,317 33,307 (+1) 860 41,747

rand-2-23 10/10 1,467,246 1,460,089 987,312 1,171,444

rand-2-24 3/10 567,620 677,253 (+7) 3,456,437 677,883

sCDC1 Quickest

driver 2/7 (+5) 70,990 (+5) 17,070 358,790 (+4) 185,220

ehi-85 87/100 (+13) 27,304 (+13) 573 513,459 (+13) 75,847

ehi-90 89/100 (+11) 34,687 (+11) 605 713,045 (+11) 90,891

frb35-17 10/10 41,249 38,927 179,763 73,119

selRNIC Quickest

composed-25-1-25 10/10 226 335 1,457 114

composed-25-1-2 10/10 233 283 1,450 88

composed-25-1-40 9/10 (+1) 288 (+1) 357 120,544 (+1) 137

composed-25-1-80 10/10 223 417 (+1) - 190

composed-75-1-25 10/10 2,701 1,444 363,785 305

composed-75-1-2 10/10 2,349 1,733 48,249 292

composed-75-1-40 7/10 (+3) 1,924 (+3) 1,647 631,040 (+3) 286

composed-75-1-80 10/10 1,484 1,473 (+1) - 397

instances of binary CSPs, with density in [1%,100%] with an average of 18%.
We report the following measures:

– #Instances: We report two numbers for each benchmark. The first number
is the number of instances completed by all four algorithms. The second
number is the total number of instances in the benchmark.

– CPU Time (msec): The average CPU time in milliseconds for pre-processing
and search, computed over only the instances completed by all algorithms.
The number of additional instances solved above the number completed by
all is given in parenthesis.

– BT-Free: The number of instances that were solved backtrack-free.
– #NV : the average number of nodes visited for search, computed over only

the instances that were completed by all algorithms.

In the results tables, we highlight in boldface the best values. When one of
the algorithms does not complete any instances within the time threshold, no
averages can be computed. To obtain averages over these instances, we compute
the averages over only the algorithms that ‘completed,’ and mark in gray the box
corresponding to the ignored algorithm. Table 1 shows the CPU times for the
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Table 2. Number of nodes visited (#NV): Search (MAC+dom/wdeg) with pre-
processing by AC3.1, sCDC1, NIC, and selRNIC
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IC

se
lR

N
IC

A
C
3
.1

sC
D
C
1

N
IC

se
lR

N
IC

BT-Free #NV

NIC Quickest

bqwh-15-106 100/100 0 3 8 5 1,807 1,881 739 1,310

bqwh-18-141 100/100 0 0 1 0 25,283 25,998 12,490 22,518

graphColoring-sgb-queen 12/50 1 - 16 1 91,853 - 15,798 91,853

graphColoring-sgb-games 3/4 1 1 4 1 14,368 14,368 40 14,368

rand-2-23 10/10 0 0 10 0 471,111 471,111 12 471,111

rand-2-24 3/10 0 0 10 0 222,085 222,085 24 222,085

sCDC1 Quickest

driver 2/7 1 2 1 1 3,893 409 3,763 3,763

ehi-85 87/100 0 100 87 100 1,425 0 0 0

ehi-90 89/100 0 100 89 100 1,298 0 0 0

frb35-17 10/10 0 0 0 0 24,491 24,491 24,491 24,346

selRNIC Quickest

composed-25-1-25 10/10 0 10 10 10 153 0 0 0

composed-25-1-2 10/10 0 10 10 10 162 0 0 0

composed-25-1-40 9/10 0 10 9 10 172 0 0 0

composed-25-1-80 10/10 0 10 - 10 112 0 - 0

composed-75-1-25 10/10 0 10 10 10 345 0 0 0

composed-75-1-2 10/10 0 10 10 10 346 0 0 0

composed-75-1-40 7/10 0 10 7 10 335 0 0 0

composed-75-1-80 10/10 0 10 - 10 199 0 - 0

tested benchmarks, and Table 2 shows the number of instances solved backtrack-
free and the number of nodes visited. We split the results into three sections
based on average CPU time: those where NIC performs well, those where sCDC1
performs well, and those where selRNIC performs well.

While NIC may be too costly to use in general [5], there are difficult problems
that benefit from higher level consistency. On instances where NIC performs the
quickest in terms of CPU time, its search has orders of magnitude lower nodes
visited than the other algorithms. Interestingly, NIC performs well on the rand-
2-23/24 benchmarks, where the density is 100% (there is a constraint between
every pair of variables). This result is interesting, because NIC is solving the
instance during pre-processing. Therefore, it is solving every instance backtrack-
free. Note, that on rand-2-24, despite taking a large amount of CPU time, NIC
solves 7 additional instances that no other tested algorithm solved. The average
density for the other benchmarks where NIC performs well is 14%.

On instances where sCDC1 performs the quickest in terms of CPU time, it is
able to filter the instances very quickly. The frb35-17 benchmark has an average
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density of 44%. This large density explains why NIC is performing poorly on
these instances. An interesting benchmark is ehi-85/90 whose instances are all
unsatisfiable. Interestingly, sCDC1 detects unsatisfiability at pre-processing by a
domain wipe-out of the very first variable that it checks. Thus, its speed. selRNIC
and (to a lesser extent) NIC, detect unsatisfiability at pre-processing, but cost
more effort than sCDC1. Note that AC3.1 is too weak to uncover inconsistency
at pre-precessing.

Interestingly, selRNIC automatically selected RNIC, and not wRNIC, on all
tested benchmarks, except rand-2-23/24 where it selected wRNIC, thus not hin-
dering itself as predicted by Theorem 3. selRNIC performs well on the composed
benchmarks, where all of the algorithms, except AC3.1, were able to detect un-
satisfiability at pre-processing. For the composed-25 benchmarks, the average
density of the CSP is 50% (the average dual graph density is 12%), and for the
composed-75 benchmarks, the average density of the CSP is 20% (the average
dual graph density is 5%). The large densities of the composed-75 benchmark
explain the poor performance of NIC.

7 Conclusions and Future Work

An important contribution of this paper is the understanding of the structure
of the dual graph on binary CSPs, which should impact the development of
future consistency algorithms that operate on the dual graph of binary CSPs.
We also theoretically showed that NIC, sCDC, and RNIC are incomparable.
Despite previous work showing that NIC may be too costly to use in general [5],
our experimental results show that there are instances that benefit from higher
level consistency.

The algorithm we use to remove redundant edges from a dual graph generates
triangle-shaped grids for binary CSPs [10]. However, there may also be non-grid
shaped minimal dual graphs. We propose to investigate why this algorithm favors
the triangle-shaped grids. We also propose to develop a portfolio-based algorithm
that measure the structure of a constraint graph and of its dual graph to select
the appropriate consistency property to enforce.

Acknowledgments. Experiments were conducted on the equipment of the Hol-
land Computing Center at the University of Nebraska-Lincoln. Robert Wood-
ward was partially supported by a National Science Foundation (NSF) Graduate
Research Fellowship grant number 1041000. This research is supported by NSF
Grant No. RI-111795.

A Proof of Theorem 1

(By induction of number of variables.)

Base Step: Stated for n = 3.
For n = 3, the constraint graph is shown in Figure 14 and the corresponding

dual graph in Figure 15. The dual graph is obviously a triangle.
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C2,3 

C1,2 

C1,3 

Fig. 14. A complete constraint graph
with 3 variables

V1 V2 

V3 

Fig. 15. The dual graph of a complete con-
straint graph with 3 variables

– The two vertices corresponding to the constraints over the variable V1 form
the diagonal.

– The two vertices corresponding to the constraints over V2 start at C1,2 and
have 0 vertices along the horizontal axis, and one vertex along the vertical
axis. Also, the two vertices corresponding to the constraints over V3 start
at C1,3 have 0 vertices along the horizontal axis, and one vertex along the
vertical axis.

Inductive Step: Assume that the theorem holds for a CSP with k variables (in-
ductive hypothesis). Show the theorem holds for a CSP with k + 1 variables
(inductive step).

Consider the complete constraint graph of a CSP with k variables, which is
the clique Kk. By the inductive hypothesis, the dual graph can be arranged in
the triangle-shaped grid. Now, add the variable Vk+1 to the CSP. In order to
connect Vk+1 to all k variables, k constraints are added to the constraint graph of
the CSP, as shown in Figure 16. Namely, these k constraints are Ci,k+1, ∀i ≤ k.
Place the dual variables as follows, going from right to left in Figure 17:

V1 

V2 

V3 

Vk-1 

Vk 

Vk+1 

Fig. 16. A complete graph
with k + 1 variables

uh 

uv  

Vk V1 Vk-1 V3 V2 

Vk+1 Vk+1 Vk+1 Vk+1 

Vk  

V1 Vk-1 

Vk  Vk  

V2 V3 

V5  V5  V5 

V1 

V1 

V1 V2 

V2 

V2 

V3 V3 

V4 

V3 V4 

V4 

V5 V2 V3 V4 V1 

V1 

Fig. 17. The dual graph of Figure 16
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– Ci,k+1, i ∈ [2, k − 1] is placed above Ci,k,
– Ck,k+1 is placed above C1,k, and
– C1,k+1 is placed to the left of Ck,k+1.

This arrangement yields a dual graph that is a triangle-shaped grid because:

– The vertices corresponding to the constraints over the variable V1 are located
on the diagonal of the triangle because Ck+1,1 is to the left of Ck+1,k,

– The coordinate system centered on C1,i∈[2,k] increases by one vertical unit
for vertex Ck+1,i and labeled with variable Vi.

– The coordinate system centered on C1,k+1 has (k + 1) − 2 = k − 1 vertices
on the horizontal axis and 0 vertices in the vertical axis. The k vertices on
the top row of the triangle form a clique whose edges are labeled with Vk+1

(shown partially, for readability).

Consequently, this new dual graph of a complete constraint graph of k+ 1 vari-
ables has the topology of a triangle-shaped grid. �

B Proof of Corollary 1

Let us consider the n − 1 vertices corresponding to the constraints that apply
on variable Vi and the coordinate system defined by the horizontal and vertical
unit vectors uh, uv and centered on C1,i. All edges between the i− 2 horizontal
vertices and the n− i vertical vertices that link two non-consecutive vertices are
redundant and can be removed, leaving a path linking the n − 1 vertices along
the horizontal and vertical axis. As for V1, a similar operation can be applied to
the vertices along the diagonal of the triangle. �

C Proof of Theorem 3

(By contradiction) Assume that wRNIC is strictly stronger than R(∗,3)C, that
is, enforcing the former can result in more filtering more than enforcing the
latter. To filter more, wRNIC has to consider simultaneously four constraints.
Therefore, there must be a configuration of the minimal dual graph where a
given constraint, C1, has three adjacent constraints C2, C3, and C4, and where
C1 is not an articulation point (otherwise, wRNIC would have the same filtering
power as R(∗,3)C). The only redundancy-free configuration is the one shown in
Figure 18. We show that this configuration is not possible.

1. Given the topology of the graph shown in Figure 18, the three edges incident
to C1 cannot have the same labeling, for example variable V1, because C1

becomes a unary constraint. There cannot be three different labeling, for
example variables V1, V2, and V3, otherwise C1 becomes a ternary constraint.
Thus, they must be labeled with two variables, V1 and V2, as shown in
Figures 19 and 20.
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Fig. 18. A redundancy-free
configuration of four binary
constraints

V1 V1 

V2 

V3 

Fig. 19. One possible label-
ing of the edges incident to
C1

V1 V2 

V1 

V3 

Fig. 20. The other possible
labeling of the edges inci-
dent to C1

2. In Figure 19, the edge between C2 and C3 cannot be labeled V1 (otherwise, C2

becomes a unary constraint); cannot be labeled V2 (otherwise, the scopes ofC2

and C1 become equal, and we assume that the CSP is normalized); therefore,
it must be labeled V3. The edge between C3 and C4 cannot be labeled V1 or V4

(otherwise,C3 becomes a ternary constraint); cannot be labeled V2 (otherwise,
the scopes of C1 and C3 become equal); cannot be labeled V3 (otherwise, the
scopes ofC2 andC4 become equal). Therefore, no possible labeling for the edge
between C3 and C4 exists, and this configuration is impossible.

3. In Figure 20, the edge between C2 and C3 cannot be labeled V1 (otherwise, C2

would be a unary constraint); cannot be labeled V2 (otherwise, the scopes of
C1 and C2 become equal); cannot be labeled V3 (otherwise, the scopes of C2

and C3 become equal). Therefore, no possible labeling for the edge between
C2 and C3 exist, and this configuration is impossible.

Consequently, no redundancy-free dual graph of a binary CSP can have a con-
figuration of its vertices for enforcing R(∗,4)C. �
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Abstract. Establishing local consistency is one of the most frequently
used algorithmic techniques in constraint satisfaction in general and in
spatial and temporal reasoning in particular. A collection of constraints
is globally consistent if it is completely explicit, that is, every partial
solution may be extended to a full solution by greedily assigning values
to variables one at a time. We will say that a structure B has local-
to-global consistency if establishing local-consistency yields a globally
consistent instance of CSP(B).

This paper studies local-to-global consistency for ORD-Horn
languages, that is, structures definable over the ordered rationals (Q;<)
within the formalism of ORD-Horn clauses. This formalism has attracted
a lot of attention and is of crucial importance to spatial and temporal
reasoning. We provide a syntactic characterization (in terms of first-
order definability) of all ORD-Horn languages enjoying local-to-global
consistency.

1 Introduction

A constraint satisfaction problem is a computational problem whose instance
consists of a domain, a set of variables and a set of constraints imposed on
the variables. The goal is to answer whether there is an assignment to vari-
ables satisfying all the constraints. As it is common, we consider here constraint
satisfaction problems, CSP(B), parametrized by relational structures B over
finite signatures. (All constraints in an instance of CSP(B) come from B.) Such
structures B are typically referred to as languages.

It is very well known that a number of natural problems can be formulated
in this way. In this paper we focus on CSPs arising from a subdiscipline of Ar-
tificial Intelligence called spatial and temporal reasoning. In this case, a domain
is a set of intervals, time-points, spatial regions, or the like; and constraints re-
flect temporal or spatial dependencies on the elements of the domain [1,2,3]. A
prominent example of a temporal constraint calculi, which plays a central role
in qualitative reasoning in general, is Allen’s interval algebra [4].
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A primary algorithmic technique for solving CSPs in temporal and spatial rea-
soning is the process of establishing k-consistency [5], which converts an instance
Φ of CSP(B) into Φ′ that has the same set of solutions as Φ and is k-consistent.
According to the definitions in [6,7] the instance Φ′ is k-consistent if every partial
solution to (k− 1) variables may be extended to any other variable. An instance
of CSP(B) involving n variables is strongly k-consistent if it is consistent for
every i ≤ k, and globally consistent if it is strongly n-consistent. In this paper,
we say that B has local-to-global consistency if there exists k such that every
strongly k-consistent instance Φ′ of CSP(B) is also globally consistent. It is
equivalent to saying that CSP(B) has bounded strict width [8].

As indicated in the abstract, a globally consistent set of constraints represents
explicitly all its solutions. Since local-to-global consistency of B implies the
existence of a polynomial algorithm that converts an instance Φ of CSP(B) into
a globally consistent Φ′ equivalent to Φ, local-to-global consistency is certainly a
very desirable property. Therefore it makes sense to examine its applicability to
important families of languages such as ORD-Horn (OH) languages, which were
introduced in order to define the most well-known subclass of Allen’s interval
algebra called ORD-Horn [9]. An OH language is a relational structure such that
each of its relations is definable in (Q;<) by a conjunction of OH clauses each
of which is in one of the following forms:

– ((x1 �= y1 ∨ · · · ∨ xk �= yk) ∨ (x0 ◦ y0)),
– (x1 �= y1 ∨ · · · ∨ xk �= yk), or
– xk ◦ yk,

where ◦ ∈ {<,≤,=}.
In this paper, we give a complete syntactic characterization of ORD-Horn

languages with local-to-global consistency, summarized in Theorem 1. It is well-
known thatCSP(B) for every OH languageB can be solved by establishing local
consistency, however, as we will see, not every OH language has local-to-global
consistency. We say that an OH language is basic OH if each of its relations is
definable by a conjunction of basic OH clauses, that is, OH clauses in one of the
following forms:

– ((x1 �= x2 ∨ · · · ∨ x1 �= xk) ∨ (y1 �= y2 ∨ · · · ∨ y1 �= yl) ∨ x1 < y1),
– (x1 �= y1 ∨ · · · ∨ xk �= yk), or
– (x ◦ y),

where ◦ ∈ {<,≤,=}.

Theorem 1. Let B be an ORD-Horn language. Then, B has local-to-global con-
sistency if and only if it is basic ORD-Horn.

1.1 The Outline of the Proof of Theorem 1

Positive Results. To show that basic OH languages have local-to-global consis-
tency we follow the proof strategy in [10] and use the algebraic characterization
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of this property for ω-categorical structures [11], which is a generalization of
that for finite structures [8,12]. It says that a structure B of the domain B has
local-to-global consistency if and only if there exists k ≥ 3 such that for each
finite subset A of B there is a homomorphism from Bk to B satisfying property
f(x, . . . , x, y, x, . . . , x) = f(x, . . . , x) for all x, y ∈ A, or equivalently, B is pre-
served by an oligopotent quasi near-unanimity function (in short, an oligopotent
QNUF) (see Sect. 2). A construction of an oligopotent QNUF preserving a fixed
basic OH language is provided in Sect. 3.

Negative Results. In Sect. 4 we provide a characterization of all OH languages
that are not basic. These structures are called complex. In Sect. 5 we show that
complex OH structures are not preserved by oligopotent QNUFs. First we select
certain 3/4-ary relations called domino, split, and windmill relations. To show
that these simple relations are not preserved by oligopotent QNUFs we use the
characterization of local-to-global consistency by a generalization of the classical
result by Baker and Pixley to ω-categorical structures [13]. To obtain the same
for all complex OH structures we prove that every such structure primitively
positively defines a domino, a split, or a windmill relation; and use the well-
known fact that a relation primitively positively defined in a structure B is
preserved by all the functions preserving B.

1.2 Related Work

Point algebra [14] and extensions thereof by disjunctions of disequalities whose
local-to-global consistency was studied by Koubarakis [15] are special cases of
basic OH languages. Furthermore, the oligopotent QNUF constructed in Sect. 3
reproves local-to-global consistency for languages studied in Theorems 23–27
in [10]. Similar in spirit research may be found also in [16] and [17], where authors
identify subclasses of Allen’s Interval Algebra for which strong path-consistency
implies global consistency.

Although the complexity of CSPs for structures with a first-order definition in
(Q, <), called also temporal languages, was classified in [19], the corresponding
classification of QCSPs [18] proved to be much harder to obtain (for partial
results see [20,21,22]). One of the difficulties is that OH structures, whose CSPs
are solvable in polynomial time, give rise to QCSPs of varying complexity [20].
By the result in [10], the fact that an oligopotent QNUF constructed in Sect. 3 is
surjective, implies that QCSPs for basic OH languages are tractable. Since they
strictly contain the family of negative equality languages, which form the only
polynomial class in [20], this paper significantly contributes to understanding
the complexity of temporal QCSPs.

2 Preliminaries

The logical and algebraic terminology and notions that we use are fairly stan-
dard. Here, we provide a brief review of the concepts most central to this article.
By [n], we denote the set {1, . . . , n}.
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Structures. We study relational structures. A signature is a set of relation sym-
bols, where each symbol has an associated arity k ≥ 1. In this paper, we assume
that each signature is finite. A structure B over signature σ consists of a uni-
verse B and an interpretation RB ⊆ Bk for each symbol R ∈ σ; here, k denotes
the arity of R. Two or more structures are said to be similar if they are over
the same signature. When A,B are similar structures, a mapping h : A → B
is considered to be a homomorphism from A to B if for each symbol R and
each tuple (a1, . . . , ak) ∈ RA, it holds that (h(a1), . . . , h(ak)) ∈ RB. A bijec-
tive homomorphism is a homomorphism that is both surjective and injective.
An isomorphism is a bijective homomorphism, whose inverse is also a homomor-
phism. An automorphism of B is an isomorphism between B and itself. The set
of automorphisms of a structure B is denoted by Aut(B).

In this paper we say that a relational structure B is first-order definable in A
if B has the same domain asA, and for every relationR of B there is a first-order
formula φ in the signature of A such that φ holds exactly on those tuples that
are contained in R. Likewise, we say that B is primitively positively definable
(pp-definable) in A if there is φ that is a primitive positive formula (first-order
formula built exclusively from conjunction, existential quantifiers, equality and
relation symbols).

A first-order theory is ω-categorical if all of its countable models are isomor-
phic, and a countable structure is ω-categorical if its theory is ω-categorical.
A relation R over a domain B is ω-categorical if the structure (B;R) is ω-
categorical. The theorem of Engeler, Ryll- Nardzewski, and Svenonius provides
characterizations of ω-categoricity for structures [23]. In particular it implies that
every n-ary relation that is first-order definable in an ω-categorical structure B
is ω-categorical and is the union of a finite set of orbits of Aut(B), that is, sets
of the form {(α(x1), . . . , α(xn)) ∈ Bn | α ∈ Aut(B)} for some x1, . . . , xn ∈ B.

Algebra. Let B be a structure. A finitary operation h : Bk → B is a poly-
morphism of B if h is a homomorphism from Bk to B; it is a polymorphism of
a relation T ⊆ Bk if it is a polymorphism of the structure (B;T ). When h is
a polymorphism of a structure (or relation) we also say that the structure (or
relation) is preserved by h. We will make use of the following well-known and
straightforwardly verified fact.

Proposition 1. Let B be a structure. Let φ be a primitive positive formula hav-
ing k free variables. Each polymorphism of B is a polymorphism of the relation
T ⊆ Bk defined by φ over B.

This proposition says that preservation of a relation by all polymorphisms of a
structure B is necessary for the relation to be pp-definable; it is certainly worth
mentioning that for ω-categorical structures, this preservation condition is also
sufficient [24].

A function f on a domain B is called a quasi near-unanimity function (short,
a QNUF ), if it satisfies f(x, . . . , x, y) = f(x, . . . , y, x) = . . . f(y, . . . , x, x) for
all x, y ∈ B. We say that a polymorphism g of a structure B is oligopotent if
f(x) := g(x, . . . , x) preserves all relations that are first-order definable in B.
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ORD-Horn Languages. Recall from the introduction the definitions of OH
and basic OH languages. We say that a relation R over a domain B is OH or
basic OH if (B;R) is OH or basic OH, respectively. We will write that two OH
clauses (or in general formulas) are equivalent if they are equivalent in (Q;<).

It is well known that (Q;<) is ω-categorical and hence, by the remark above,
every OH structure is ω-categorical and is the union of a finite number of orbits
of Aut((Q;<)). In the following an orbit of Aut((Q;<)) is simply called an orbit.
For example, a relation {(x, y, z) | (x ≤ y ≤ z) ∧ x �= z} is the union of orbits:
{(x, y, z) | x < y < z}, {(x, y, z) | x = y < z}, and {(x, y, z) | x < y = z}.

In the following we say that an orbit O satisfies a formula φ if φ holds on all
tuples from O. Likewise, we say that an orbit O violates a formula φ if φ does
not hold on tuples from O.

The following lemmas may be proved using the algebraic characterization
of ORD-Horn structures from [25]. The proof of the first one as well as other
omitted proofs will be included in the full version of the paper. The second one
is proved here using more straightforward methods.

Lemma 1. The set of all OH languages is closed under pp-definitions, that is,
every structure pp-defined in some OH language is also an OH language.

Lemma 2. Let R be an n-ary OH relation and π some permutation of [n]. Then
R contains an orbit

O = {(v1, . . . , vn) | vπ(1) < . . . < vπ(n)}

if and only if for all a < b in [n] the relation R contains an orbit Oa,b satisfying
(vπ(a) < vπ(b)).

Proof. The left-to-right implication is obvious. To show the reverse implication
assume on the contrary that O is not contained in R and all of Oa,b are. Then
a definition ΦR of R contains a clause C that violates O. Since all the tuples in
O are injective it is easy to see that C involves two variables. Every such clause
is of the form (vπ(a) ◦ vπ(b)), where 1 ≤ a < b ≤ n and ◦ ∈ {≥, >,=}. But the
fact that the clause (vπ(a) ◦ vπ(b)) is in ΦR contradicts the assumption that Oa,b

is contained in R. Hence we have proved the lemma. �

Local-to-Global Consistency. For a structure B, the constraint satisfaction
problem on B, denoted by CSP(B), is the computational problem of deciding,
given a primitive positive formula over a signature of B if it is satisfiable in B.

The process of establishing (strong) k-consistency, see the definitions in the in-
troduction, permits the detection of some unsatisfiable instances of CSP(B). If
B is ω-categorical, then it can be performed in polynomial time [11]. We say that
a structure B has local-to-global consistency with respect to k if every strongly k-
consistent instance of CSP(B) is globally consistent. A structure B has local-
to-global consistency if it has local-to-global consistency wrt. some k. In the ter-
minology of [11], a structure B has local-to-global consistency wrt. k if and only
if CSP(B) has strict with k. The following theorem that characterizes local-to-
global consistency is a corollary of Theorem 13 in [11] and Theorem 19 in [13].
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Theorem 2. Let B be an ω-categorical structure. Then for every k ≥ 2, the
following are equivalent.

1. The structure B has an oligopotent (k + 1)-ary quasi near-unanimity poly-
morphism.

2. For every n, every n-ary relation pp-definable in Γ is k-decomposable, that
is, it contains all tuples t such that for every subset I of {1, . . . , n} with
|I| ≤ k there is a tuple s ∈ R such that t[i] = s[i] for all i ∈ I.

3. The structure B has local-to-global consistency with respect to k.

3 QNUF Construction

In this section, we demonstrate that an oligopotent QNUF with certain desirable
properties can be constructed for basic ORD-Horn structures. We make use of
the following notions from [10, Sect. 4] (adapted to the current context). Let
t ∈ Qk be a tuple, where k ≥ 3, and let π : [k]→ [k] be a permutation such that
tπ(1) ≤ · · · ≤ tπ(k). If it holds that tπ(2) = · · · = tπ(k−1), we say that this value is

the main value of t. Not every tuple t ∈ Qk has a main value, but when a tuple
has a main value, it is unique. We define the equivalence relation ≡m on Qk as
follows: t ≡m t′ if and only if t = t′ or t, t′ have the same main value. We say
that a function h : Qk → Q is main-injective if for all t, u ∈ Qk, it holds that
h(t) = h(u) if and only if t ≡m u.

Theorem 3. Let B be a basic ORD-Horn structure. Then there exists a main-
injective, surjective, oligopotent QNUF that is a polymorphism of B, and conse-
quently, B has local-to-global consistency.

We devote the rest of this section to the proof of this theorem. Observe first that
by Proposition 1, we can assume that B contains only relations definable by
single basic OH clauses. Let F be the set that for every relation R in B contains
exactly one basic OH clause defining R.

We will make use of the following notation: for some relation R ⊆ Q2, tuples
t, u ∈ Qk, and nonnegative integer n, we write [tRu, n] if tRu holds in at least n
coordinates, that is, if there exists a subset S ⊆ [k] of size greater than or equal
to n such that for all i ∈ S, it holds that tiRui. In place of tuples t, u ∈ Qk, we
may use this notation with a value b ∈ Q, which will be understood to represent
the k-tuple (b, . . . , b) ∈ Qk.

We choose r to be a sufficiently large positive integer so that (1) for each
formula (x1 �= x2 ∨ · · · ∨ x1 �= xq) ∨ (x1 < y1) ∨ (y1 �= y2 ∨ · · · ∨ y1 �= yq′)
contained in F , it holds that r ≥ q + q′, and (2) 4r + 3 exceeds 2s+ 1 where s
is the maximum number of variables occurring in a disjunction of disequalities
(x1 �= y1 ∨ · · · ∨ xp �= yp) in F . We set k to be equal to 4r+3. We will construct
a k-ary QNUF operation.

We now define a binary relation 	 on the set Qk. For t, u ∈ Qk, we define
t	 u if and only if one of the following holds:
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– [t ≤ u, k]
– one (or both) of t, u has a main value and [t < u, 2r + 3].

We will first observe that there are no cycles in (Qk;	)/ ≡m where the notation
(Qk;	)/ ≡m indicates the structure whose universe consists of ≡m-equivalence
classes, and where T 	 T ′ (for two such equivalence classes T, T ′) if and only if
there exist t ∈ T , t′ ∈ T ′ such that t 	 t′. An equivalence class of (x1, . . . , xk)
wrt. ≡m will be denoted by (x1, . . . , xk)/ ≡m.

The following lemma is similar in spirit to Lemma 20 in [10].

Lemma 3. There are no ≡m-equivalence classes T1, . . . , Tc such that T1 	T2 	
· · ·	 Tc 	 T1 and that the Ti are pairwise distinct.

Now, we show that there is a bijective homomorphism h from (Qk;	)/ ≡m to
(Q;≤), and then argue that the resulting natural function f : Qk → Q satisfying
f(x1, . . . , xk) = h((x1, . . . , xk)/ ≡m) for all x1, . . . , xk ∈ Qk is a polymorphism
of B with all of the desired properties. Let it be implicitly understood that the
relation 	 and the relation ≤ have the same relation symbol in both structures.

To show that there is a bijective homomorphism h from (Qk;	)/ ≡m to (Q;≤)
we show that there is a homomorphic back-and-forth system defined as follows.

Let A and B be τ -structures. A homomorphic back-and-forth system from A
to B is a non-empty set I of pairs (ā, b̄) of tuples, with ā from A and b̄ from
B, such that all entries in ā and b̄ are pairwise different and all of the following
hold.

1. If (ā, b̄) ∈ I then ā and b̄ have the same length and every atomic sentence
(that is, in our case, a first-order formula built from the relational symbol
and constants only) that holds in (A, ā) also holds in (B, b̄).

2. (Going Forth.) For every pair (ā, b̄) ∈ I and every element c of A which is
not in ā there is an element d of B such that the pair (āc, b̄d) ∈ I.

3. (Going Back.) For every pair (ā, b̄) ∈ I and every element d of B which is
not in b̄ there is an element c of A such that the pair (āc, b̄d) ∈ I.

Homomorphic back-and-forth system is a variant of a back-and-forth system, as
defined in [23], Sect. 3.2. The first difference is that in Item 1 of the standard
definition we require an atomic sentence to hold in (A, ā) if and only if it holds in
(B, b̄). Here we need less. Indeed, since we want a bijective homomorphism rather
than an isomorphism, its inversion does not have to be a homomorphism. The
second difference is that we require entries of ā and b̄ to be pairwise different. This
is necessary by the first modification and the fact that our goal is to construct
an injective homomorphism.

There is a back-and-forth system from A to B if and only if there is a bijective
homomorphism from A to B (this follows from a straightforward modification
of Lemma 3.2.2. and Theorem 3.2.3 (b) in [23]).

Let I be the set of all pairs (ā, b̄), where ā and b̄ are tuples of equal length
with pairwise different entries over A and B, respectively, such that every atomic
formula that holds in (A, ā) also holds in (B, b̄). We show that I is a homomorphic
back-and-forth system from (Qk;	)/ ≡m to (Q;≤). For going forth, let (ā, b̄) ∈ I
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and let c be an element of (Qk;	)/ ≡m. We have to find an element d of (Q;≤)
such that the pair (āc, b̄d) ∈ I. Let A1 be the set of indices i of ā such that
ai 	 c, and let A2 be the set of indices i of ā such that c 	 ai in (Qk;	)/ ≡m.
By Lemma 3, the sets A1 and A2 are disjoint. It is then clear that we can find a
d ∈ Q such that for all i ∈ A1 we have bi ≤ d, and for all i ∈ A2 we have d ≤ bi.

For going back, let (ā, b̄) ∈ I and let d be an element of Q. We have to find an
element c of (Qk;	)/ ≡m such that the pair (āc, b̄d) ∈ I. We claim that there
is an element c of (Qk;	)/ ≡m not comparable to any entry in ā; clearly, we
then have (āc, b̄d) ∈ I. To prove the claim, recall that k = 4r + 3. Partition
the k coordinates into two parts P,Q with |P | = 2r + 1, |Q| = 2r + 2. Define
t ∈ Qk where, at all entries i ∈ P , ti < vi in case that ai = {(v1, . . . , vk)} is an
equivalence class of size 1, and ti < v when v is the main value of ai. Similarly,
we require that at all entries i ∈ Q, ti > vi in case that ai = {(v1, . . . , vk)} is
an equivalence class of size 1, and ti > v when v is the main value of ai. It is
straightforward to verify that the equivalence class of t is incomparable to any
entry in ā.

So we have shown that the existence of a bijective homomorphism h from
(Qk;	)/ ≡m to (Q;≤). Let f : Qk → Q be the natural function induced by h.

Clearly, by the definition of 	, it holds that f preserves the relation ≤. Also,
by the choice of k, it holds that f preserves all disjunctions of disequalities in F ,
by the argumentation in [10, proof of Theorem 17]. We argue that f preserves
all formulas (x1 �= x2∨· · ·∨x1 �= xq)∨ (x1 < y1)∨ (y1 �= y2∨· · ·∨y1 �= yq′) in F ,
as follows. Let t1, . . . , tq, u1, . . . , uq′ ∈ Qk be tuples such that (t1 �= t2∨· · ·∨ t1 �=
tq) ∨ (t1 < u1) ∨ (u1 �= u2 ∨ · · · ∨ u1 �= uq′) holds in k coordinates. Suppose
that f(t1) = · · · = f(tq) and that f(u1) = · · · = f(uq′). We need to prove that
f(t1) < f(u1). We consider two cases:

– If neither t1 nor u1 has a main value, then all of the ti are equal and, likewise,
all of the ui are equal. It then follows that [t1 < u1, k]. Since f preserves
both �= and ≤, it also preserves < and it follows that f(t1) < f(u1).

– If one of the tuples t1, u1 has a main value, then the set of coordinates S ⊆ [k]
where (t1 �= t2∨· · ·∨ t1 �= tq)∨ (u1 �= u2∨· · ·∨u1 �= uq′) is less than or equal
to 2(q + q′), which in turn is less than or equal to 2r. It thus follows that
[t1 < u1, 2r+3], implying that t1 	 u1 and that f(t1) ≤ f(u1). As t1 �≡m u1,
we conclude that f(t1) < f(u1).

The function f is certainly surjective and main-projective. The latter implies
that it is a QNUF. That f is oligopotent follows from the fact that it preserves
the relation <. This concludes the proof of Theorem 3.

4 Complex OH Languages

This section is devoted to provide a smooth definition of OH languages that
are not basic. They will be called complex OH languages. Such definition should
in particular cover all OH structures with a single relation definable by an OH
clause which is not basic such as (x �= y ∨ x = z) or (x �= y ∨ y ≤ z). Indeed, it
is easy to verify that by Definition 4 all such languages are complex.
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First, we provide some additional tools.

A-subpartitions. An A-subpartition of a set S is: either (i) a subpartition (a
partition of a subset) of S into sets of size at least 2, or (ii) {∅}. The set of
A-subpartitions of [n] will be denoted by Pn.

For instance, if n = 4, then the set P4 contains {S} for every S ⊆ [4] such
that |S| �= 1 as well as {{1, 2}, {3, 4}}, {{1, 3}, {2, 4}}, {{1, 4}, {2, 3}}.

For a given n, we define an order (Pn;:) in the following way. We have
P1 : P2 for P1, P2 ∈ Pn if for each S1 ∈ P1 there is S2 ∈ P2 such that S1 ⊆ S2.
If P1 : P2 and P1 �= P2, then we write P1 ≺ P2. It is easy to see that for every
n ∈ N , the order (Pn;:) is a partial order and {∅} is its least element.

Normalized OH Clauses. For the purposes of this paper, we provide another
way of defining OH relations.

Definition 1. We say that an OH clause is normalized if it is of the form∨
S∈P

∨
a,b∈S;a �=b

va �= vb ∨ (vi ◦ vj) (1)

for some P ∈ Pn, i, j ∈ [n], and ◦ ∈ {≤, <,=}.

In particular, a normalized OH clause may be of the form (
∨

S∈P
∨

a,b∈S;a �=b va �=
vb) or (vi ◦vj). For the sake of simplicity we shorten (1) and write (Φ[P ]∨vi ◦vj)
or (Φ[P ]). A normalized OH formula is a conjunction of normalized OH clauses.

As an example of a clause that is not normalized, consider (v1 �= v2 ∨ v2 �=
v3 ∨ v3 �= v4). Observe that it is equivalent to (

∨
S∈{[4]}

∨
a,b∈S;a �=b va �= vb), or

Φ[{[4]}] for short.

Lemma 4. Every OH relation is definable by a normalized OH formula.

If not stated otherwise we will assume that ΦR is a normalized OH formula
over variables v1, . . . , vn such that R is equal to {(v1, . . . , vn) | ΦR(v1, . . . , vn)}.
Thus, ΦR defines R so that a variable vi in ΦR corresponds exactly to the i-th
coordinate of R.

Entailment. We adopt the standard definition of entailment to our needs. Let
Φ and Ψ be first-order formulas over the signature {<,≤, �=,=} and variables
v1, . . . , vn. We say that Φ entails Ψ if

∀v1 . . . ∀vn(Φ→ Ψ),

is true in (Q;<,≤, �=,=). We also say that an OH relation R entails Ψ if ΦR

entails Ψ . The set of all normalized OH clauses entailed by R is denoted by CR.

Lemma 5. If
∧n

i=1 Di entails C and
∧m

i=1 Ei entails D1, then
∧m

i=1 Ei∧
∧n

i=2 Di

entails C.
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Proper Entailment. We will first define a partial order (CR;
R), and then
use it to refine the notion of entailment.

Definition 2. Let R be an n-ary OH relation R, and <R
1 a binary relation on

the set CR such that for all C1, C2 ∈ CR we have C1 <R
1 C2 if and only if:

1. C1 is basic OH, and C2 is not basic OH;
2. or both are not basic OH and one of the following holds:

(a) C1 is (Φ[P1] ∨ vi ◦1 vj), C2 is (Φ[P2] ∨ vk ◦2 vl) and P1 ≺ P2;
(b) C1 is (Φ[P1]∨vi◦1vj), C2 is (Φ[P1]∨vk◦2vl) and |V ar(C1)| < |V ar(C2)|;

or
(c) C1 is (Φ[P1] ∨ vi ◦1 vj), C2 is (Φ[P1] ∨ vi ◦2 vj) and (vi ◦1 vj) entails

(vi ◦2 vj);

where P1, P2 ∈ Pn, i, j, k, l ∈ [n] and ◦1, ◦2 ∈ {<,=,≤}.

We define 
R to be the reflexive and transitive closure of <R
1 and write C1 �R C2

if C1 
R C2 and C1 �= C2. We omit R and write 
 or � if R is obvious from
the context.

Lemma 6. Let R be an n-ary OH relation. Then (CR;
R) is a partial order.

We are now ready to define proper entailment.

Definition 3. Let R be an OH relation that entails a normalized OH clause C.
We say that C is not properly entailed by R if there exist n ∈ N and normalized
OH clauses C1, . . . , Cn such that all of the following holds:

– R entails C1 ∧ · · · ∧ Cn;
– C1, . . . , Cn � C; and
– C1 ∧ · · · ∧ Cn entails C.

Otherwise, we say that C is properly entailed by R.

As an example, consider an OH relation R defined by C ∧C1 ∧C2, where C :=
(v1 �= v2 ∨ v2 = v3), C1 := (v1 ≤ v3) and C2 := (v3 ≤ v2). Certainly, each of
these clauses is entailed by R. Furthermore, observe that C1, C2 � C by applying
either Item 1 or Item 2a in Definition 2 and that C1 ∧ C2 entails C. It implies
that C is not properly entailed by R; on the other hand, it is straightforward to
check that C1 and C2 are properly entailed by R and that C1 ∧ C2 defines R.

In general every OH relation R can be defined as the conjunction Φp
R of all

normalized OH clauses properly entailed by R. The following lemma can be
proved using Lemmas 5 and 6.

Lemma 7. The conjunction Φp
R, defines R.

Basic and Complex OH Languages. An OH clause is complex if it is not
basic.
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Definition 4. We say that an OH relation R is complex if it properly entails
a complex, normalized OH clause. An OH language is complex if it contains a
complex relation.

We will now prove that an OH relation cannot be both basic and complex.

Lemma 8. An OH relation R is complex if and only if it is not basic.

Proof. If R is not complex, then Φp
R contains basic OH clauses only, and hence

R is basic. Assume now that R is both complex and basic. If it is complex then
it properly entails a complex, normalized OH clause C. If R is basic, then it has
a definition ΦR consisting of basic, normalized OH clauses only. By Item 1 of
Definition 2, for every clause D in ΦR, we have D � C. Hence by Definition 3,
the clause C cannot be properly entailed by R. This contradicts the assumption,
and thus we have proved the lemma. �

5 OH Languages without Local-to-Global Consistency

In this section we show that complex OH relations, and therefore languages, are
not preserved by oligopotent QNUFs, and hence by Theorem 2, do not enjoy
local-to-global consistency. First we show this statement for certain classes of
ternary and four-ary OH relations called domino, split and windmill relations.
The next step is to show that an arbitrary complex OH relation pp-defines some
relation from one of these three classes.

5.1 Domino, Split, and Windmill Relations

To prove that a domino, a split or a windmill relation R is not preserved by an
oligopotent QNUF of arity k+1, we use the equivalence of Item 1 and Item 2 in
Theorem 2, and show that R pp-defines a relation, which is not k-decomposable.

Definition 5. Let R be a ternary OH relation. We say that R is a domino
relation if R entails (v1 �= v2 ∨ v2 = v3) and contains

1. {(v1, v2, v3) | v1 = v2 = v3 ∨ v1 < v2 < v3}, or
2. {(v1, v2, v3) | v1 = v2 = v3 ∨ v1 > v2 > v3}.

An obvious example of a domino relation is {(v1, v2, v3) | v1 �= v2 ∨ v2 = v3}.

Lemma 9. Let R be a domino relation. Then it is not preserved by any oligopo-
tent QNUF.

Proof.We restrict ourselves to domino relations satisfying Item 1 in Definition 5.
The other case is analogous. Let k ≥ 2. To show that R is not preserved by any
(k + 1)-ary oligopotent QNUF, we prove that a relation defined by a formula φ
of the form:

∃y1 . . .∃yk R(z1, z2, y1)∧R(x1, y1, y2)∧· · · ∧R(xk−1, yk−1, yk)∧R(xk , yk, xk+1),
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whose quantifier-free part will be denoted by ψ, is not k-decomposable. Observe
that it is enough to indicate an assignment a from V := {z1, z2, x1, . . . , xk+1} to
Q that violates φ, but each of its restriction to the subset V \ {v}, where v ∈ V ,
satisfies ∃v φ.

Consider a(z1) = a(z2) = a(x1) = · · · = a(xk) < a(xk+1), which clearly
violates φ. To complete the proof we will show that for every v ∈ V , the
restriction a′ of a to variables in V \ {v} can be extended to b on variables
{z1, z2, x1, . . . , xk+1, y1, . . . , yk} satisfying ψ.

1. If v ∈ {z1, z2}, then we choose b such that b(z1) < b(z2) < b(y1) < · · · <
b(yk) < b(xk+1). Since b is an extension of a′ we have that b(z1) < b(z2) <
b(y1), b(xi) < b(yi) < b(yi+1) for each i ∈ [k − 1], and b(xk) < b(yk) <
b(xk+1). Hence b satisfies ψ.

2. In the case where v = xi for some i ∈ [k] we claim that b satisfying b(xi) <
b(z1), b(z1) = b(y1) = · · · = b(yi) and b(yi) < b(yi+1) < · · · < b(yk) <
b(xk+1) does the job. Indeed, observe that b(z1) = b(z2) = b(y1), b(xj) =
b(yj) = b(yj+1) for j ∈ [i− 1], b(xj) < b(yj) < b(yj+1) for j ∈ {i, . . . , k − 1},
and b(xk) < b(yk) < b(xk+1).

3. Finally, if v = xk+1, then we choose b so that the values of all the variables
in ψ are equal. It certainly satisfies ψ. �

We now present split and windmill relations.

Definition 6. Let R be a four-ary OH relation. We say that R is a split relation
if R entails (v1 �= v2 ∨ v3 = v4) and contains

1. {(v1, v2, v3, v4) | v1 = v2 < v3 = v4 ∨ v1 < v2 < v3 < v4}, or
2. {(v1, v2, v3, v4) | v1 = v2 > v3 = v4 ∨ v1 > v2 > v3 > v4}

As an example of a split relation consider {(v1, v2, v3, v4) | (v1 �= v2 ∨ v3 =
v4) ∧ v1 < v3 ∧ v1 < v4 ∧ v2 < v3 ∧ v2 < v4}.

Definition 7. Let R be a four-ary OH relation. We say that R is a windmill
relation if R entails (v1 �= v2 ∨ v3 < v4) and contains

1. {(v1, v2, v3, v4) | v1 = v2 < v3 < v4 ∨ v1 < v2 < v4 < v3}, or
2. {(v1, v2, v3, v4) | v1 = v2 > v4 > v3 ∨ v1 > v2 > v3 > v4}.

For example, {(v1, v2, v3, v4) | v1 �= v2 ∨ v3 < v4} is a windmill relation.

Lemma 10. Let R be a split relation. Then it is not preserved by any oligopotent
QNUF.

Lemma 11. Let R be a windmill relation. Then it is not preserved by any
oligopotent QNUF.
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5.2 Complex OH Languages

In this section we show that every complex OH relation pp-defines a domino, a
split, or a windmill relation. An n-ary OH relation R is complex if it properly
entails a complex OH clause C of the form: (Φ[P ] ∨ vi = vj), (Φ[P ] ∨ vi ≤ vj),
or (Φ[P ]∨ vi < vj). We will say that R is =-complex, ≤-complex, or <-complex,
respectively. We treat each case separately, however, we use the same strategy
every time. We select some g, h ∈ S for some S ∈ P and then consider a formula:

Θ := ∃w1 . . .∃wk (R(v1, . . . , vn) ∧
∧

S∈P ′

∧
a,b∈S

va = vb), (2)

where {w1, . . . , wk} = {v1, . . . , vn} \ {vg, vh, vi, vj}, and P ′ ∈ Pn is either {∅}
if P = {{g, h}} or (P \ {S}) ∪ {S \ {h}} otherwise. In every case, using Lem-
mas 12, 13, and 2, we show that the formula Θ defines a domino, a split, or a
windmill relation RΘ. Observe that by Lemma 1, this relation is an OH relation;
and therefore we can apply Lemma 2 to it.

Lemma 12. Let R be an n-ary OH relation and P �= {∅} be in Pn. Let Θ and
P ′ be as defined above. Then all of the following holds:

– R entails (Φ[P ]∨ vk ◦1 vl) for some k, l ∈ [n] and ◦1 ∈ {=,≤, <} if and only
if Θ entails (vg �= vh ∨ vk ◦1 vl);

– R entails (Φ[P ′]∨vk ◦1 vl) for some k, l ∈ [n] and ◦1 ∈ {=,≤, <} if and only
if Θ entails (vk ◦1 vl);

– R entails (Φ[P ]) if and only if Θ entails (vg �= vh).

Lemma 13. Let R be an n-ary OH relation that properly entails a complex OH
clause (Φ[P ] ∨ vi ◦ vj). Then the relation RΘ defined by Θ as in (2) has orbits:

– O1 satisfying (vg = vh ∧ vi ◦ vj), and
– O2 satisfying (vg �= vh ∧ vi ◦1 vj), where vi ◦1 vj is equivalent to ¬(vi ◦ vj).

Assume first that R properly entails (Φ[P ] ∨ vi = vj).

Lemma 14. Let R be an n-ary OH relation that is =-complex. Then it pp-
defines a domino relation or a split relation.

Proof. Since R properly entails C, there is no S in P containing both i and j.
First, we consider the case where there is S ∈ P that contains either i or j.

Without loss of generality, we assume the former. We choose g to be equal to
i, and h to be another element in S. In this case Θ is over variables vh, vi, vj .
We will show that RΘ = {(vh, vi, vj) | Θ(vh, vi, vj)} is, up to a permutation
of coordinates, a domino relation. By Lemma 12, the formula Θ entails (vh �=
vi ∨ vi = vj), and by Lemma 13, the relation RΘ contains O1 = {(vh, vi, vj) |
vh = vi = vj} and an orbit O2 satisfying (vh �= vi ∧ vi �= vj). We assume
without loss of generality that O2 satisfies (vh < vi ∧ vi �= vj) and show that in
this case RΘ or RΘ(vi, vh, vj), which is RΘ with a permutation of the first two
arguments, is a domino relation. By Definition 5, it suffices to prove that RΘ
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contains an orbit {(vh, vi, vj) | vh < vi < vj} or {(vh, vi, vj) | vj < vh < vi}.
Assume the contrary. Then, by Lemma 2, an orbit satisfying (i) vh < vi, (ii)
vi < vj , or (iii) vh < vj and an orbit satisfying (iv) vj < vh, (v) vh < vi, or (vi)
vj < vi is not in RΘ. Since O2 is in RΘ cases (i) and (v) cannot hold. Hence,
we have that Θ entails vh = vj (by (iii) and (iv)); vi = vj (by (ii) and (vi));
vh ≥ vj ≥ vi (by (iii) and (vi)); or vi ≥ vj ≥ vh (by (ii) and (iv)). We claim
that each of these cases contradicts the assumption that C is properly entailed
by R. Indeed, if Θ entails vh = vj or vi = vj , then, by Lemma 12, R entails
(Φ[P ′] ∨ vh = vj) or (Φ[P ′] ∨ vi = vj), respectively. Futhermore, if Θ entails
(vh ≥ vj ≥ vi) or (vi ≥ vj ≥ vh), then R entails D1 := (Φ[P ′] ∨ vh ≥ vj) and
D2 := (Φ[P ′] ∨ vj ≥ vi); or E1 := (Φ[P ′] ∨ vi ≥ vj) and E2 := (Φ[P ′] ∨ vj ≥ vh).
Since D1 ∧D2 as well as E1 ∧E2 entail C and D1, D2, E1, E2 � C, we are done.

We will now consider the situation where every S ∈ P contains neither i
nor j. In this case Θ defines a four-ary relation. We will show that RΘ =
{(vg, vh, vi, vj) | Θ(vg , vh, vi, vj)} is, up to a permutation of coordinates, a split
relation. By Lemma 12, the formula Θ entails (vg �= vh∨vi = vj). By Lemma 13,
RΘ contains an orbit O1 satisfying (vg = vh ∧ vi = vj) and an orbit O2 satis-
fying (vg �= vh ∧ vi �= vj). In the next step, we show that we can choose O1 so
that it satisfies (vg = vh �= vi = vj). Assume the contrary. Then Θ entails both
(vg �= vh ∨ vh = vi) and (vg �= vh ∨ vh = vj). By Lemma 12, we have that R
entails D1 := (Φ[P ] ∨ vh = vi) as well as D2 := (Φ[P ] ∨ vh = vj). Note that
vj and vi do not occur in D1 and D2, resp. Thus, D1, D2 � C. Since D1 ∧ D2

entails C, we have the contradiction with the assumption that C is properly
entailed by R. Thus, O1 satisfies either {(vg, vh, vi, vj) | vg = vh < vi = vj}
or {(vg, vh, vi, vj) | vg = vh > vi = vj}. In the following, we assume the first
possibility. The other case is symmetric. Since RΘ contains an orbit satisfying
(vg �= vh ∧ vi �= vj), it contains (vg < vh ∧ vi < vj), (vg < vh ∧ vi > vj),
(vg > vh ∧ vi < vj), or (vg > vh ∧ vi > vj). By Lemma 2, since O1 ⊆ RΘ, it con-
tains {(vg, vh, vi, vj) | vg < vh < vi < vj}, {(vg, vh, vi, vj) | vg < vh < vj < vi},
{(vg, vh, vi, vj) | vh < vg < vi < vj}, or {(vg, vh, vi, vj) | vh < vg < vj < vi}.
Thus RΘ(vg, vh, vi, vj), RΘ(vg, vh, vj , vi) RΘ(vh, vg, vi, vj), or RΘ(vh, vg, vj , vi)
is a split relation. �
The second case, that is, if R properly entails (Φ[P ] ∨ vi ≤ vj) can be proved in
the similar manner. We first show that R pp-defines {(x, y) | x ≤ y}; and then
that (Θ ∧ vi ≥ vj) pp-defines a domino, or a split relation.

Lemma 15. Let R be a ≤-complex OH relation, then R pp-defines a domino or
a split relation.

The third case requires an auxiliary lemma.

Lemma 16. Let R be an OH relation that is <-complex but neither =-complex
nor ≤-complex. Then there is an OH clause of the form (Φ[P1]∨vk < vl) properly
entailed by R and m ∈

⋃
S∈P1

S such that R does not entail (Φ[P1] ∨ vk ≤ vm)
or (Φ[P1] ∨ vm ≤ vl).
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Lemma 17. Let R be an OH relation that is <-complex, then it pp-defines a
split, a domino, or a windmill relation.

Proof. By Lemmas 14 and 15, we can assume thatR is neither =-complex nor ≤-
complex. Hence, by Lemma 16, we can assume that there is a clauseC of the form
(Φ[P ]∨vi < vj) and h ∈

⋃
S∈P S such thatR does not entail (Φ[P ]∨vi ≤ vh) orR

does not entail (Φ[P ] ∨ vh ≤ vj). In the following, we assume the former; observe
that by Lemma 12, it implies that Θ does not entail (vg �= vh ∨ vi ≤ vh). Let S be
an element of P that contains h and g �= h be another element of S. In this case
Θ, see (2), defines a four-ary relation RΘ := {(vg, vh, vi, vj) | Θ(vg , vh, vi, vj)}.
We will show that RΘ is, up to a permutation of coordinates, a windmill relation.
By Lemma 12, the formula Θ entails (vg �= vh ∨ vi < vj). By Lemma 13, we
have that RΘ contains O1 satisfying (vg = vh ∧ vi < vj). Since Θ does not entail
(vg = vh ∧ vi ≤ vh), we can choose O1 equal to {(vg, vh, vi, vj) | vg = vh < vi <
vj}. To complete the proof, we will show that RΘ contains {(vg, vh, vi, vj) | vg <
vh < vj < vi} or {(vg, vh, vi, vj) | vh < vg < vj < vi}. It implies that RΘ, or
RΘ(vh, vg, vi, vj) is a windmill relation.

Since R entails C, it entails a normalized OH clause D1 equivalent to (Φ[P ] ∨
vi �= vj). Let D2 be (Φ[P ′] ∨ vi ≤ vj). Recall that C is properly entailed by R.
Since D1 ∧D2 entails C and D1, D2 � C, we have that R does not entail D2. By
Lemma 12, the formulaΘ does not entail vi ≤ vj , and hence RΘ contains an orbit
satisfying (vg < vh∧vj < vi) or (vh < vg ∧vj < vi). SinceO1 ⊆ RΘ, by Lemma 2,
RΘ contains {(vg, vh, vi, vj) | vg < vh < vj < vi} or {(vg, vh, vi, vj) | vh < vg <
vj < vi}. �

We summarize this section with the following theorem.

Theorem 4. Let B be a complex OH language. Then it does not have local-to-
global consistency.

Proof. If B is complex, then it contains a relation R that is complex. If R is
complex, then by Lemmas 14, 15 and 17, we have that R pp-defines R3/4 which

is a domino, a split, or a windmill relation. Furthermore, by Lemmas 9, 10,
and 11, the relation R3/4 is not preserved by any oligopotent QNUF. Thus, the

fact that B does not have an oligopotent QNUF follows from Proposition 1. The
proof is completed by applying Theorem 2. �
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Abstract. Parallelization offers the opportunity to accelerate search on
constraint satisfaction problems. To parallelize a sequential solver under
a popular message passing protocol, the new paradigm described here
combines portfolio-based methods and search space splitting. To split
effectively and to balance processor workload, this paradigm adaptively
exploits knowledge acquired during search and allocates additional re-
sources to the most difficult parts of a problem. Extensive experiments
in a parallel environment show that this paradigm significantly improves
the performance of an underlying sequential solver, outperforms more
naive approaches to parallelization, and solves many difficult problems
left open after recent solver competitions.

1 Introduction

Spread (Search by Probing and REcursive Adaptive Domain-splitting) is an
adaptive paradigm that harnesses parallel computation to enhance an underly-
ing sequential constraint solver (henceforward, a solver). Because Spread does
not alter its solver, only minimal programming for message passing is required for
use with modern solvers. Our thesis is that, on difficult problems, parallelization
that combines efficient task assignment with effective exploitation of informa-
tion can significantly improve performance. The principal results reported here
are that Spread significantly improves the performance of its solver, outper-
forms a variety of reasonable alternatives, and solves many difficult constraint
satisfaction problems left open after recent solver competitions.

Spread makes only two assumptions about its solver. First, the solver directs
search with a variable-ordering heuristic toward contention, variables whose con-
straints are more likely to cause wipeout [1]. (Here, we used learned variable
weights [2], but variable impact would be an alternative [3].) Second, the solver
uses a restart strategy to extricate search from early unproductive assignments
[4]. Most modern solvers satisfy both conditions.

Spread uses a manager-worker framework, where a manager assigns tasks
and coordinates messages among all the other processors (the workers). Spread
has two phases: a time-limited portfolio phase followed by a splitting phase. In
the portfolio phase, Spread’s multiple workers search in parallel from random
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seeds; if any worker reports a solution or proves that there is none, the problem is
solved. Otherwise, once the portfolio phase exhausts its time allocation, Spread
begins its splitting phase, where the manager partitions the original problem into
subproblems based on weights learned thus far. The manager distributes the sub-
problems to the workers with search limits based on the search effort during the
portfolio phase. If any worker reports a solution, or if all the subproblems are
proved to have no solution, the problem is solved. Any subproblem returned un-
solved to the manager undergoes further partitioning. Those new subproblems
are enqueued and eventually re-distributed with larger search limits as work-
ers become available. This recursive partitioning mechanism naturally directs
computational power to difficult subproblems.

Spread facilitates parallelization. It accepts any constraint supported by its
solver. To partition problems, Spread manipulates domains rather than con-
straints, so that users need not learn propagators provided by the solver or imple-
ment new ones. Because its domain splitting method is general, Spread could be
extended to continuous variable domains. Spread’s portfolio phase solves easy
problems quickly and stably. For more difficult problems, the portfolio phase
also learns weights that determine how the manager in the subsequent splitting
phase generates subproblems. Moreover, workers can exploit those same weights
during their search on subproblems. In practice, the variables used to generate
subproblems can be statically chosen before the splitting phase (Spread-S),
or determined dynamically from weights learned during search on the corre-
sponding subproblem (Spread-D). (For clarity, we refer to the paradigm here
as Spread, and the individual implementations as Spread-S and Spread-D.)
After relevant background and related work in the next section, we describe
Spread, offer some reasonable alternatives, evaluate Spread-S and Spread-D
against them, and discuss their advantages and limitations.

2 Background and Related Work

A constraint satisfaction problem (CSP) P = 〈X , D, C〉 is defined by a set of
variables X = {X1, ..., Xn}, each with an associated domain D = {d1, ..., dn},
and a set of constraints C = {c1, ..., cm}. A solution to P assigns a value to each
variable in X from its respective domain so that it satisfies C. If P has a solution,
it is satisfiable; otherwise it is unsatisfiable. The solver here is assumed complete;
it executes systematic backtracking, traditionally envisioned as a search tree.
There, after each value assignment, inference removes from the domains of the
as-yet-unbound variables all values that it shows inconsistent with C. If a domain
becomes empty (a wipeout), weight learning increases the weight of the constraint
that removed the last value. Once search stops, the weight of a variable is taken
as the sum of the weights on the constraints that restrict it [2].

Parallelization seeks to exploit the massive computing resources increasingly
available on multicore computers, and in clusters, grids, and clouds. Research on
parallelization for CSP solvers includes a broad spectrum of parallel program-
ming models (e.g., OpenMP [5,6,7], Message Passing Interface (MPI ) [8,9]) and
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a variety of platforms (e.g., single node [5,7], cluster [9,10], and grid [11]), on
a scale from a few processors to thousands. In particular, MPI is intended for
high-performance parallel computing on platforms without shared memory. Its
convenience and portability have made it the de facto standard for a variety of
technological platforms. This work uses MPI on a cluster and executes exten-
sive experiments on up to 256 processors, a number widely available in modern
computing environments.

Search space splitting can explore different search subspaces on different pro-
cessors. For SAT instances, with their boolean domains, search space splitting
usually relies on a guiding path (e.g., Fig. 1(a)). A boolean flag δi indicates
whether a node is closed (both values attempted, δi = 0, black circle) or open
(one value attempted, δi = 1, white circle) [8]. Although identification of a help-
ful guiding path is non-trivial (as in [5]), variables with particular properties
have proved effective for splitting [7]. Iterative partitioning with clause learning,
where search spaces of SAT subproblems may overlap, can also be an effective
strategy [11].

Given non-boolean domains and various kinds of constraints, search space
splitting for CSPs becomes more complex. A SAT solver can conveniently parti-
tion its search space by adding new clauses (e.g., parity constraints [12]), without
any modification to its search strategy or propagation methods. A CSP solver
that tries to add new constraints to split a search space, however, might confront
constraints it could not directly process. Even splitting only with already exist-
ing constraints (as in [13]) might have to contend with different formulations and
different models for the same problem under different solvers. Partitioning by do-
main manipulation avoids such difficulties. One approach, network extraction
(NE), performs a sequence of domain splits on a subset of X under a given
variable ordering for a single processor [14], as in Fig. 1(b). A split on the ith
variable produces subproblems P 1

i and P 2
i that differ only in the ith variable’s

Fig. 1. (a) A guiding path with open nodes at X1, X3, and X4. (b) Extraction of
subproblem P2 from P1 (under variable order X, Y , Z) produces subproblems R1, R2,
R3. (c) Iterative bisection partitioning on X and Y creates a virtual binary search tree
of subproblems, shown with their bit-string representations.
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domain: P 1
i has some values for the ith variable, and P 2

i has the rest. NE was
developed to avoid duplicate search on visited search spaces after restart [14].

Another prevalent parallelization approach for CSP solvers uses an algo-
rithm portfolio [15]. A portfolio-based method schedules a set of algorithms (its
portfolio) on one or more processors, hoping to outperform any of its constituent
algorithms [12,16]. Although this approach can benefit from information shared
among processors, as when parallel SAT solvers share clauses [17], most portfolio-
based methods for CSPs do not share information [12].

Additional parallelization methods include various workload-balancing mech-
anisms, such as work stealing [5,6,10] and work sharing [9]. The SAT-solver
parallelization methods most relevant to Spread are described in [7] and [11].
The first passes information from a portfolio phase to a subsequent splitting
phase for effective partitioning; the second iteratively partitions a SAT problem
with learned clauses. Spread combines and extends them to parallelize adaptive
search for CSPs. (An earlier version of Spread appeared as a modification to an
explore-and-follow parallelization paradigm [18].) The CSP work most relevant
to Spread is [13]. Spread, however, better utilizes its computing resources ini-
tially, splits the search space by domain manipulation, avoids nogood learning,
and proves convenient for systematic experimental evaluation.

3 The SPREAD Paradigm

Spread uses its manager to partition and distribute tasks, and leaves search
entirely to its workers. Each worker executes the solver exactly as it would on a
single processor, but may receive different parameter values from the manager.
Spread starts with a weak portfolio, where different workers execute the same
solver from different random seeds on the full problem. The subsequent split-
ting phase formulates subproblems, and recursively partitions those that prove
difficult to direct additional computing resources to them.

Given problem P with search limit � and restart schedule policy, the Spread-
S manager executes the portfolio phase with Algorithm 1 on workers under the
control of Algorithm 2. The manager then uses Recursive Splitting with Iterative
Bisection Partitioning (RS-IBP) during the splitting phase with Algorithm 3.
As is traditional in MPI, the manager executes on processor 0, and the other k
processors are workers. We extend Spread-S to Spread-D at the end of this
section.

Portfolio Phase. To begin, the manager sends the initialization signal 0 to
each of the k workers (Algorithm 1, lines 2-4). On receipt of that message,
workers (Algorithm 2) execute a weak algorithm portfolio, attempting to solve
P within � with different random seeds. Any proof of either P ’s satisfiability or
unsatisfiability within � leads to an immediate report as well as the termination
of the MPI environment, including execution on all workers (Algorithm 2, lines
5-6). Otherwise, worker i has exhausted �, and reports to the manager its learned
weights wl and backtrack count bl (Algorithm 2, line 8). The manager receives
wp and bp from worker p (Algorithm 1, line 6), possibly in non-numerical order.
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Finally, the manager forwards to the splitting phase weights, the average of the
variable weights wi received from all the workers, and base, the average of the
backtrack counts bi received from them, where they will be used to guide search
on the subproblems (Algorithm 1, lines 8-9).

Algorithm 1 Portfolio (Manager)
Input: P , policy
Output: weights, backtrack counts

1: signal ← 0
2: for i = 1 to k
3: wi ← 0, bi ← 0
4: MPI.Send(signal, i)
5: while i > 0
6: MPI.Recv(〈wp, bp〉, p)
7: i ← i − 1
8: Compute weights from all wi

and base from all bi

9: return 〈weights, base〉

Algorithm 2 Worker
Input: P , �, policy
Output: result of search on P

1: while TRUE
2: MPI.Recv(signal, 0)
3: if signal = -1 break
4: if signal = 0 // portfolio phase
5: if solve(P , �, policy, rand seed)
6: Output result and abort MPI
7: else
8: MPI.Send(〈wl, bl〉, 0)
9: else // splitting phase

10: MPI.Recv(〈P S ,�r,weights〉,0)
11: Initialize variable weights of P S

12: if solve(P S, �r, policy, rand seed)
13: if P S is satisfiable
14: Output sol and abort MPI
15: else do MPI.Send(〈0, P S〉, 0)
16: else do MPI.Send(〈1, P S〉, 0)

Algorithm 3 RS-IBP (Manager)
Input: P , weights w, base, policy
Output: solution of P

1: v ← get splitting number(k)
2: threshold ← compute threshold(v)
3: splits ← choose(v, P, w)
4: for P S in IBP(P , splits)
5: Q.push(P S)
6: for i = 1 to 2v do L.push(base)
7: #enqueued ← Q.size()
8: #feedback ← 0, signal ← 1
9: for i = 1 to k do distribute(i)

10: while #feedback < #enqueued
11: MPI.Recv(〈feedback, P S〉, p)
12: #feedback ← #enqueued + 1
13: if feedback = 0
14: if !Q.empty()
15: distribute(p)
16: else
17: if Q.size() < threshold
18: splits ← choose(ξ, P S , w)
19: for P S

i in IBP(P S, splits)
20: Q.push(P S

i )
21: L.push(get limit(P S

i , base))
22: #enqueued ← #enqueued+1
23: else
24: Q.push(P S)
25: L.push(get limit(P S, base))
26: #enqueued ← #enqueued + 1
27: for i = 1 to k
28: if i is idle && !Q.empty()
29: distribute(i)
30: Send signal -1 to all processors

A portfolio-based method that shares information must address the
trade-off between diversification and intensification [19]. Diversification uses dra-
matically different search strategies, and expects its searchers to proceed inde-
pendently. In contrast, intensification explores with relatively small variations
around a single strategy, and expects to share the information it gathers among
all its searchers. Because Spread is intended to solve difficult CSPs, it does
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intensification in its portfolio phase, as recommended in [19]. Indeed, the pri-
mary purpose of Spread’s portfolio phase is to glean information to support
search space splitting, not to solve P .

Iterative Bisection Partitioning. A bisection partition (BP ) on variable Xi

with domain di replaces Xi with two variables, X ′
i and X ′′

i , whose respective do-
mains d′

i and d′′
i partition di. To generate subproblems with search spaces that

may have similar sizes, without bias toward particular domain values, we adopt
an (almost) even bisection partition where d′

i = {v1, ..., vχ}, d′′
i = {vχ+1, ..., v|d|},

and χ = �|d|/2�. Iterative bisection partitioning (IBP ) repeats BP on v ordered
splitting variables to generate 2v subproblems. Fig. 1 (c) illustrates IBP on vari-
ables X and Y of P1 to generate subproblems R1, R2, R3, and R4. Intuitively,
overall search performance on P1 could be improved by processing such subprob-
lems on different processors in parallel.

In Spread, the manager chooses as splitting variables those with the highest
weights. This conserves the promising variable ordering already found effective
in the portfolio phase by a solver that exploits those weights (e.g., variable-
ordering heuristic dom/wdeg [2]). Moreover, since IBP splits domains of CSP
instances much the way a guiding path splits {0,1} for SAT problems, an IBP-
generated subproblem can analogously be represented by a guiding path, where
Li indicates whether the ith splitting variable Xi is associated with d′

i (Li =
0) or with d′′

i (Li = 1). (See Fig. 1(c).) This simple bit-string representation
reduces the communication effort required to pass subproblems to workers.

Splitting Phase. In its splitting phase, Spread recursively splits the search
space with IBP (Algorithm 3). Initially, the manager partitions P into several
subproblems, each represented as a bit string for the partition that gave rise to
it, and allocates base backtracks to each one. Subproblems and their backtrack
limits are maintained in queues Q and L, respectively. For k workers, the man-
ager determines how many initial splitting variables to use (here, v = �log2 2k�),
computes the queue length threshold (here, 2v), and then chooses splits, the v
variables with the highest weights in weights learned for P during the portfolio
phase (lines 1-3). Next the manager partitions P on splits in descending order
of weight, and tracks the resultant subproblems and their respective backtrack
limits (lines 4-6). Before it distributes subproblems to workers with backtrack
limits and variable weights (line 9), the manager notifies the ith worker with
signal 1 that it is about to do so. The manager then dequeues and sends the
first k subproblems on Q with their corresponding weights and backtrack limits
from L, and awaits feedback.

As in the portfolio phase, a worker immediately reports any detected solu-
tion to the manager, and terminates the MPI environment (Algorithm 2, line
14). If a worker proves its subproblem P S unsatisfiable, however, it notifies the
manager with message 0 (Algorithm 2, line 15). The manager replies with a new
subproblem from Q (if any is waiting, Algorithm 3, lines 14-15). Otherwise, the
worker has exhausted its resources �r and returns its subproblem to the man-
ager with message 1 (Algorithm 2, line 16). If the subproblem queue has fewer
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than threshold subproblems, the manager recursively partitions the returned
subproblem on new splitting variables, and enqueues the resultant subproblems
with their resource limits (Algorithm 3, lines 18-22). If there is insufficient space
on the queue to repartition the subproblem, the manager re-enqueues it as it
was, but with a larger resource limit (Algorithm 3, lines 24-26). Whether or
not it repartitions returned subproblems, the manager continues to distribute
subproblems from Q to any idle worker (Algorithm 3, lines 27-29). RS-IBP ter-
minates when some worker finds a solution, or when all subproblems are proved
unsatisfiable.

When eventually distributed, an unresolved subproblem (even without repar-
titioning) will break ties with a random seed, and may therefore have a different
search experience. To bound the size of Q, for each split, Spread-S here chooses
ξ as max{�log2(threshold − Q.size())�, 1} (Algorithm 3, line 18). This bounds
the length of Q at 2v+2v−1−1, which happens only when an unresolved subprob-
lem confronts a queue of length 2v−1 − 1. Nonetheless, IBP’s concise bit-string
representation makes it space-efficient, and in practice allows large queues.

Spread-D. Spread-S always uses the same splitting variables in the same order,
determined by the weights first learned during its portfolio phase. Intuitively, for
a returned subproblem, it could be more accurate to determine splitting variables
dynamically, with weights learned during search on that subproblem. Spread-
D is an extension of Spread-S that dynamically chooses its splitting variables.
When a Spread-D worker fails to solve a subproblem within the allocated re-
source, it returns to the manager both the subproblem and the weights learned
on it (i.e., received initially from the manager and modified during this search).
This requires modification of only Algorithm 2, line 16 and Algorithm 3, line
11. The manager then chooses, in line 18, additional splitting variables with the
highest weights acquired during search on the returned subproblem. Because
Spread-D never changes splits, which originally designated the subproblem re-
turned in line 2, it guarantees mutually exclusive subproblems.

In the portfolio phase, Spread-S and Spread-D terminate only when some
worker finds a solution or proves the problem unsatisfiable. Otherwise they enter
the splitting phase where, without a search limit, they terminate only when a
solution is found or all subproblems are proved unsatisfiable. Spread is com-
plete, because IBP generates subproblems with mutually exclusive, collectively
exhaustive search spaces, and a subproblem is always partitioned or receives
larger search limits. Section 5 demonstrates that Spread is also effective.

4 Experimental Design

The experiments reported here evaluate parallelization methods on their ability
to solve both problems difficult for the underlying solver and problems difficult
for all the solvers in the two most recent international CSP solver competitions
[20,21]. From the repository of more than 7000 problems in those competitions,
we selected 51 representative classes that cover a broad variety of CSPs with
relatively uniform population distribution, shown in Fig. 2. To avoid any bias
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toward large classes, we stratified selection from each class to reflect any pre-
specified subclasses and naming conventions, and chose a subset from each class
in proportion to its original subclass sizes. This produced 1765 problems in
classes of sizes from 7 to 65.

The experimental platform was a Cray XE6m system with 160 dual-socket
compute nodes. Each node contains two 8-core AMD Magny-Cours processors
running at 2.3 GHz. (Here a Spread processor corresponds to a Cray core.)
Without a readily-available parallel CSP solver as a benchmark, this paper com-
pares the performance of Spread-S and Spread-D to a variety of parallelization
methods inspired by relevant work. We chose to parallelize the solver Mistral-
1.331 (with C++ source code from [20]) because it is compatible with MPI on the
Cray, and allows us to curate sets of difficult problems from recent CSP solver
competitions and to evaluate the performance improvement under Spread-S
and Spread-D. Mistral can be compiled to run sequentially on the Cray XE6m
either under the GCC compiler (Mistral-GCC) or the CC compiler (Mistral-
CC), but Mistral-GCC runs about two to three times faster than Mistral-CC.
This gives the Mistral-GCC benchmark a considerable advantage over all our
parallel solvers, which require the CC compiler for MPI.

We solved each of the 1765 problems with Mistral-GCC, and eliminated the
1398 problems solved by Mistral-GCC in less than one minute. The 119 that
could be solved by sequential Mistral-GCC within 1 to 30 minutes on the Cray
became the hard set; the remaining 248 became the harder set. Finally, the
challenge set consists of the 133 problems never solved by any solver within 30
minutes in either competition, and not already included in the harder set.

We tested Mistral-GCC and Mistral-CC alone, as well as Spread-S and
Spread-D with Mistral-CC, and the following parallelization approaches:

– Naive Random (NR) races 63 copies of Mistral-CC with random seeds.
– Parallel Portfolio (P P ) races 63 combinations of heuristics and restart poli-

cies. The heuristics were impact, dom/wldeg, dom/wdeg, and impact/wdeg.
The restart policies were Luby-k (k (backtracks per unit) ∈ {128, 256, 512,
1024, 2048, 4096}), geometric (restart limit x(n) = 100pn at step n, where
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sets, identified under stratified selection from 51 CSP competition classes



728 X. Yun and S.L. Epstein

0 500 1500

0
50

0
15

00

S
P

R
E

A
D

−
S

0 500 1500

0
50

0
15

00

M
is

tr
al

−
G

C
C

0 500 1500

0
50

0
15

00

M
is

tr
al

−
C

C

0 500 1500

0
50

0
15

00

N
R

0 500 1500

0
50

0
15

00

P
P

0 500 1500

0
50

0
15

00

N
V

0 500 1500

0
50

0
15

00

R
P

0 500 1500

0
50

0
15

00

N
W

S
P

R
E

A
D

Fig. 3. On the 119-problem hard set, solution time in seconds for Spread-D (x-axis)
plotted against that for other methods (y-axis). Each circle represents a problem; black
areas indicate a heavy concentration of problems. Circles at the top and far right
represent unsolved problems.

p = 1.3, 1.5 or 2.0), arithmetic (x(n) = 16000n, 8000n, 1000n2, and 500n2),
and dynamic. Dynamic adaptively determines whether to execute geometric
restart with exponent 1.3, 1.5, or 2.0 based on the problem formulation, and
restarts on the minimum of 1000 and the number of variables. Given these
4×16 possibilities but only 63 workers, PP did not execute impact/wdeg
with dynamic restart and exponent 2.0.

– Naive Variable (NV ) partially fixes the variable orders, as suggested in [16].
NV races 63 copies of Mistral, each of which randomly selects and orders the
first 3 variables it assigns (but not their values) and reuses those variables
on every restart.

– Random Partitioning (RP ) splits on 7 randomly-chosen splitting variables,
and enqueues those 128 subproblems for distribution to 63 workers, which
run them to completion. Some workers process more than one subproblem.

– No-Weight Spread (NWSpread) is an ablated version of Spread intended
to gauge the impact of learned weights. NWSpread does not use the weights
from the portfolio phase for the workers, either to split or to search.

5 Experimental Results

Unless otherwise stated, all results reported here use the median of the values
from three runs (as in recent parallel SAT solver competitions [22]), under a
30-minute per problem time limit, with the portfolio phase in both versions of
Spread limited to 100 seconds. The initial backtrack limit was base, the average
generated in the portfolio phase (Algorithm 1, line 8). When a subproblem was
partitioned on ξ additional splitting variables, this limit was multiplied by (1.5)ξ.

On the Hard Problem Set. Fig. 3 compares Spread-D’s runtime to that of
the other approaches in Section 4. Although a few instances (along the right mar-
gin) went unsolved under Spread-D, Fig. 3 shows that both versions of Spread
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clearly outperform most of the other benchmark methods. Indeed, on the prob-
lems solved both by Spread-D and each competitor, Spread-D achieved aver-
age speedups of 19.08 (σ = 79.41) over Mistral-GCC, 27.91 (σ = 148.32) over
Mistral-CC, 2.65 (σ = 2.77) over NR, 1.98 (σ = 1.92) over PP, 4.03 (σ = 3.89)
over NV, 3.34 (σ = 6.48) over RP, and 1.59 (σ = 1.61) over NW. Both Spread-S
and Spread-D solved 43.70% of the hard set within 100 – 200 seconds. This is
the time when both Spread versions have just begun to use critical splitting
variables, while PP tries a complementary algorithm portfolio instead. The plot
for PP on the lower left is a clear demonstration that search space splitting is
essential. Moreover, search space splitting without the knowledge from the port-
folio phase (NWSpread, on the lower right) was dramatically inferior; it could
not solve 75.63% of these problems in 30 minutes, even though NR solved 17.65%
of them within 100 seconds. Given their performance, NWSpread, sequential
Mistral-CC, and Mistral-GCC were excluded from further comparisons.

On the Harder Problem Set. Fig. 4 compares both versions of Spread to
the remaining parallelization methods. Given 30 minutes per problem, Spread-
S solved 56 problems (44 satisfiable), 16 more (40.00% improvement) than the
best benchmark method PP (which solved 40), and 31 more (124.00%) than
the worst, NV (which solved 25). In addition, Spread-D solved 59 (46 satisfi-
able), 3 more than Spread-S. As one would expect, both versions of Spread
behaved early on much like the portfolio-based methods NR and PP. Spread-S
solved 10 (all satisfiable) within the first 100 seconds, its portfolio phase, while
Spread-D solved 12 (all satisfiable). Both versions of Spread also solved more
problems that required more time. In the last 800 seconds, Spread-S solved 18
(11 satisfiable) and Spread-D solved 12 (6 satisfiable).

On the Challenge Set. Spread-S and Spread-D significantly outperformed
the other parallelization methods. Table 1 compares runtimes for Spread-S,
Spread-D, and RP on the 35 problems solved by at least one of them more
than once. (The other approaches from Fig. 4, NR, NV, and PP, solved 1, 1,
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Table 1. Challenge problem solution times for Spread-S (S-S) and Spread-D (S-D),
with best in boldface. 10 denotes a 10-second (rather than 100-second) portfolio phase.
– denotes failure to solve in 30 minutes.

Problem SAT RP S-S-10 S-S-100 S-D-10 S-D-100
costasArray-20 yes 721.84 – – 876.13 1120.20
crossword-m1-words-21-10 yes – – 846.01 746.36 795.21
crossword-m1c-ogd-vg10-13 ext no – 744.89 583.22 748.62 750.28
crossword-m1c-ogd-vg10-14 ext no – 1302.41 402.33 1264.02 1280.17
crossword-m1c-ogd-vg12-12 ext no – 461.62 586.02 450.51 450.22
crossword-m1c-uk-vg11-12 ext no – – 1081.71 – –
frb53-24-2-mgd ext yes – 749.33 329.85 749.25 330.59
frb53-24-5 ext yes 748.17 63.04 255.86 62.74 256.10
frb56-25-2-mgd ext yes – 661.94 822.12 661.32 822.18
graphcoloring-myciel6-6 no – – – – 1185.96
graphcoloring-myciel7-6 no – – – – 1178.54
langford-2-14 no 485.81 187.39 401.30 150.96 –
langford-3-16 no 567.92 659.73 446.50 537.89 129.86
rand-3-24-24-76-632-17 ext yes 358.80 240.02 326.82 240.18 239.56
rand-3-24-24-76-632-fcd-47 ext yes 823.91 693.89 207.30 691.45 697.14
rand-3-24-24-76-632-fcd-50 ext yes 692.31 59.71 168.40 59.63 58.01
rand-3-28-28-93-632-16 ext yes – 1551.52 – 1551.47 1541.81
rand-3-28-28-93-632-23 ext yes – 551.02 758.57 550.41 592.62
rand-3-28-28-93-632-25 ext yes – 448.20 464.58 448.14 449.93
rand-3-28-28-93-632-3 ext yes – 1306.23 648.04 1305.86 1304.37
rand-3-28-28-93-632-30 ext yes – 893.93 1061.22 894.57 897.32
rand-3-28-28-93-632-35 ext no – 1186.84 1321.97 1192.83 1189.95
rand-3-28-28-93-632-37 ext yes – – 238.10 – –
rand-3-28-28-93-632-8 ext no – 1126.08 – 1126.21 1118.44
rand-3-28-28-93-632-fcd-16 ext yes – 1531.64 530.76 1529.82 1519.74
rand-3-28-28-93-632-fcd-20 ext yes 24.79 299.64 314.52 299.73 295.269
rand-3-28-28-93-632-fcd-21 ext yes – 1322.25 – 1322.01 1221.21
rand-3-28-28-93-632-fcd-24 ext yes – 1122.49 – 1116.40 1116.19
rand-3-28-28-93-632-fcd-27 ext yes – – 1349.44 – –
rand-3-28-28-93-632-fcd-31 ext yes – 700.22 211.54 690.09 684.804
rand-3-28-28-93-632-fcd-35 ext yes – 494.40 616.61 492.14 489.88
rand-3-28-28-93-632-fcd-40 ext yes – 137.29 219.16 137.32 197.24
rand-3-28-28-93-632-fcd-42 ext yes – 144.94 124.55 152.84 138.62
rand-3-28-28-93-632-fcd-46 ext yes 1410.23 168.30 159.21 171.66 166.41
super-js-taillard-20-20 no – – – 1142.61 –
Problems solved least twice – 9 27 27 30 30
Problems solved at least once – 20 31 30 33 32

and 2 problems, respectively, all among these 35.) Spread-S and Spread-D are
shown with both 10-second and 100-second portfolio phases; neither ever solved
a problem during the portfolio phase. Although Spread did best with rand
problems, it also solved problems in such categories as Langford, crossword,
super-jobshop, and graph-coloring.
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Spread’s search is influenced by the variables it splits on and by their order,
but the portfolio-phase search limit also has a strong effect. (Recall that the
splitting-phase search limits are proportional to the backtracks consumed in
the portfolio phase.) Because we report a median of three runs, to record a
problem on any but the last line in Table 1, a program must have solved it at
least twice. Both versions of Spread actually solved more problems; the last row
indicates how many different problems they solved at least once in the three runs.
Solved problems not listed in Table 1 include the satisfiable queenAttacking-8
and tdsp-C5-3-91, and the unsatisfiable pseudo-par-32-3-c, super-js-taillard-20-
12, and super-js-taillard-20-22. Were the splitting-phase search limit infinite,
Spread would partition only once and would probably benefit from a longer
portfolio phase, but could readily be modified to search for all solutions.

Scalability. Fig. 5 shows that, given more processors, Spread consistently
solved more problems from the hard set. More than 64 processors, however,
introduced only marginal improvement on these problems. (Data omitted.) Be-
cause we did not tune Spread specifically for Mistral, we would expect similar
improvement with other CSP solvers. Recall that, among our curated problems,
the hard set contains the easiest ones, where further improvement by Spread is
relatively difficult. In contrast, Fig. 6 shows how Spread scales on two typical
problems from the harder problem set, given one hour. With more processors,
Spread was significantly more likely to succeed within the time limit, and its
runtime variance decreased, which produced more stable performance.

Other Statistics. When a worker completes its subproblem but no subprob-
lems remain in the queue, that worker becomes idle. To investigate how well
Spread uses its computing resources, let the idle ratio of the ith worker be
the fraction of overall runtime that it was idle. Spread-S’s average idle ratio
on problems solved during the splitting phase rose as high as 0.8251 on hard,
0.8793 on harder, and 0.5015 on challenge problems. Large idle ratios were likely
caused by a high backtrack limit on an extremely unbalanced search tree, which
forced most other workers to wait for a new assignment. The idle ratio could be
improved by a backtrack limit tailored to a particular problem class. Overall,
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however, Spread’s idle ratio was under 0.1 on 56.92% of the hard, 69.92% of
the harder, and 75.00% of the challenge problems. Spread-D’s idle ratio was
similar: 58.50%, 76.81%, and 75.00% under 0.1, respectively. Finally, Table 2
provides data on subproblems generated during the splitting phase.

6 Discussion

There are many plausible ways to parallelize a solver. One might perturb initial
assignments, to vary the top of the search tree, using the same variables with
different values. That was tested here as NV, and shown adequate only for the
easiest of our test problems. Given the success of restarts and the ability of
solvers to learn about contention, one might race the solver against copies of
itself with different seeds. That was tested here as NR, and shown only slightly
more effective. Given the success of some splitting and portfolio approaches, one
might execute random partitioning, or race different solvers against one another.
That was tested here as RP and PP, respectively, and shown adequate for some
problems, but significantly less so for more difficult ones.

Spread could define its phases’ search limits in number of backtracks, con-
sistency checks, or search tree size. In the portfolio phase, time is the limiting
factor because it forces all the workers to finish at once. In the splitting phase,
however, there is a backtrack limit, to reduce the likelihood that all the workers
will communicate with the manager at once.

To split a search space, Spread uses IBP, which, for generality, assumes no
knowledge about problem domains. It could, however, be profitable to exploit
domain characteristics. For example, one might partition the large domain of a
critical variable into more subproblems, or partition extremely small domains
(e.g., binary, as in SAT) with parity constraints [12].

Our work now proceeds along three lines. First, IBP may be misled by in-
formation collected during the portfolio phase. A typical example comes from
the queens-knights (QK) problems. Although the contention in QK lies with the
knights, weight-based variable-ordering heuristics prefer the queens variables at
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Table 2. During the splitting phase, mean split subproblems (#), average maximum
subproblem queue length (Max), and average maximum split variable number (µ)

Hard Harder Challenge
Implementation # Max µ # Max µ # Max µ

Spread-S 156 129 7.6 518 136 13.6 244 132 9.6
Spread-D 146 129 7.5 374 137 11.3 211 130 8.6

the beginning of search, when weight-based heuristics (e.g., dom/wdeg) are close
to those not based on weights (e.g., dom/deg). We are exploring adaptive meth-
ods that dynamically choose duration for the portfolio phase. Second, Spread-D
did not always outperform Spread-S. In Spread-D, weights emphasize the local
perspective of the subproblem, and preserve the portfolio phase’s global perspec-
tive on the full problem only at the top of the search tree. We suspect that the
initial partitioning is effective because it is based on parallel probing, and that
repartitioning is less effective because it lacks the benefit of restart within the
subproblem. We are therefore exploring restart strategies for Spread. Finally,
nogood learning (as clause learning) has proved crucial in SAT, but has thus
far received relatively little attention in parallel CSP solvers, including Spread.
Future work includes combinations of adaptive splitting variable selection with
nogood learning to avoid the loss of useful information.

Meanwhile, Spread offers a complete and effective method to parallelize a
CSP solver. As a parallelization paradigm, Spread makes no assumption about
domains or constraint types, and so accepts any class of CSPs that its solver can
handle. Its bit-string representation permits programmers to ignore the imple-
mentation details of the solver, significantly simplifying parallelization, and dra-
matically reduces communication effort. Its portfolio phase solves easy problems
quickly, and informs the splitting phase for effective partitioning. By recursively
partitioning difficult subproblems with RS-IBP, it gradually allocates more com-
puting cycles to the difficult parts of a problem, and thereby adaptively balances
processor workload. Finally, Spread provides a natural way to embed restart
policies into an MPI environment without recoding its underlying solver.
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Abstract. We present a novel approach to the Traveling Purchaser Problem
(TPP), based on constraint programming and Lagrangean relaxation. The TPP
is a generalization of the Traveling Salesman Problem involved in many real-
world applications. Given a set of markets providing products at different prices
and a list of products to be purchased, the problem is to determine the route min-
imizing the sum of the traveling and purchasing costs. We propose in this paper
an efficient approach when the number of markets visited in an optimal solution
is low. We believe that the real-world applications of this problem often assume
a bounded number of visits when they involve a physical routing. It is an actual
requirement from our industrial partner which is developing a web application
to help their customers’ shopping planning. The approach is tested on academic
benchmarks. It proves to be competitive with a state of the art branch-and-cut al-
gorithm and can provide in some cases new optimal solutions for instances with
up to 250 markets and 200 products.

1 Introduction and Industrial Context

The Traveling Purchaser Problem (TPP) introduced by Ramesh [18], is a generalization
of the Traveling Salesman Problem (TSP) and occurs in many real-world applications
related to routing, wharehousing and scheduling [23]. Given a hometown for the trav-
eler, a set of markets providing products at different prices and a list of products to be
purchased, the problem is to determine the route minimizing the sum of the traveling
and purchasing costs. The TPP was brought to our attention by a startup (“Le Bon Côté
des Choses”)1 developing a web application to help their customers’ shopping plan-
ning. A customer enters his location, a list of products, a maximum number of markets
to visit in the application and is told the most profitable shopping plan. The original
question faced by the startup was therefore a TPP with a side constraint bounding the
number of markets in the route.

Such an application requires very short response times and a heuristic was previously
designed to cope with this requirement. It constructs a feasible solution by greedily
adding markets, then attempts to improve it using a two-opt technique. The startup
is now in the process of gathering data and extending their approach with additional
features. Two main extensions (not revealed here for confidentiality reasons) currently

1 http://www.leboncotedeschoses.fr/
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figure on top of their priorities. We note here that a classical extension of the TPP found
in the literature [15] is to consider a limited supply of products in each market. However,
this feature is not considered by the startup for the moment since the stock levels are
not available online (unlike the catalogues of products). To handle the two extensions
mentioned, the initial heuristic must now be deeply restructured. The need for flexibility
in extending and maintaining the solver lead us to consider in parallel the development
of a constraint programming approach.

The purpose of this paper is to propose a new exact algorithm, based on Constraint
Programming (CP), for the TPP with a bounded number of visits in the tour. Our ap-
proach takes advantage of three key sub-problems of the TPP, and the propagation algo-
rithms are based on dynamic programming and Lagrangean relaxation. Due to the lack
of mature industrial benchmark at this stage, we tackle an academic benchmark and
compare to a state of the art exact algorithm [15]. Although the approach was initially
designed for a small number of visits, it proves to be surprisingly competitive when
applied in the unbounded case.

The rest of the paper is organized as follows. Section 2 precisely defines the Travel-
ing Purchaser Problem and briefly presents the literature, focusing on exact approaches.
Section 3 describes the constraint programming model. The details of the main con-
straints are given in the following sections (4, 5 and 6). The branching strategy is de-
tailed in section 7. Finally computational experiments are reported in section 8.

2 Problem Definition and State of the Art

Notations are similar to the ones of [15]. Let K = {p1, . . . , pm} be the set of products,
M = {v1, . . . , vn} the set of markets and Mk ⊆ M the set of markets where the
product pk is available. The problem is to determine the route starting from a depot
v0 (purchaser’s hometown), and minimizing the sum of the traveling and purchasing
costs to acquire the products of K . The price of product pk in market vi (vi ∈ Mk)
is zki and the traveling cost between two nodes vi and vj of V = {v0} ∪ M is cij
(we assume that the costs satisfy the triangular inequality). Moreover, each pk has to
be bought in a specific amount and this demand is denoted dk. In this paper, we deal
with the unrestricted TPP i.e the problem where the supply in each shop is unlimited.
The unrestricted TPP was extended in [15] by bounding the amount of pk available in
each market. In an optimal solution of the unrestricted TPP, all the demand of a product
pk is bought in a single shop. Therefore, we simplify our notations by introducing bki,
the cost for buying all the demand of pk in market vi: bki = dkzki. Finally, we add
a parameter, B, to bound the number of markets visited. This last constraint was also
considered in [11] and is often a reasonable assumption made in routing problems as
discussed in [5].

The TPP [18] is NP-hard in the strong sense since it generalizes two classical strongly
NP-hard problems: the Uncapacited Facility Location Problem (UFLP) and the Trav-
eling Salesman Problem (TSP) [8]. Any TSP can indeed be seen as a TPP where each
product (one per market) is available in only one market (so that all markets have to
be visited). The UFLP can also be seen as a TPP by mapping products to clients and
markets to facilities.
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The Traveling Purchaser problem has been largely studied during the last two deca-
des. Numerous heuristics were developed, starting with [10,17] and more recently by
[21]. The first exact algorithm based on a lexicographic search was proposed by [18] and
was able to solve optimally problems up to 12 markets and 10 products. A branch and
bound algorithm was designed later on by [23]. They used a bound based on the simple
plant location problem and managed to solve efficiently problems with 20 markets and
50 products. Laporte et al. [15] developed an efficient branch-and-cut algorithm for the
undirected TPP. Riera-Ledesma and Salazar-Gonzalez proposed to extend the previous
branch-and-cut algorithm to solve the asymmetric case [20]. To our knowledge, this is
the best known exact algorithm for the TPP, designed to handle both cases of unlimited
and limited supply. It seems reasonable since branch-and-cut is the state of art method
for tackling TSP and the best known exact algorithms for facility locations problems
are based on linear programming. In Laporte et al. [15], valid inequalities are identified
based on the cycle (generalization of the TSP where only a subset of vertices must be
visited) and the set-covering polytopes. The branch-and-cut algorithm generates four
types of constraints (four separation procedures) but also variables (pricing procedure)
to keep the size of the model reasonable. Finally it uses a primal heuristic at each node
(including a 2-opt mechanism for the TSP) to improve the upper bound. It is able to
solve optimally instances up to 250 markets and 200 products.

3 CP Model

Our constraint programming approach is built on three core sub-problems at the heart of
the TPP: the Traveling Salesman Problem (TSP), the P-Median problem and the Hitting
Set problem. It strongly relies on the fact that the number of visited markets is bounded
(by B) so that the following observations make sense:

– whether all products can be bought in less than B markets is a minimum Hitting
Set problem (one set per product pk containing the markets where pk is available);

– finding the cheapest way to buy all products in less than B markets is a P-Median
problem where each facility is a market, each client is a product and the cost of
connecting a client to a facility is the cost of buying the corresponding product in
the given market;

– once the markets visited are known, we are left with a TSP problem on the corre-
sponding set of markets.

We will derive propagation mechanisms taking advantage of these three core sub-
problems and achieve a strong level of consistency. One key idea of our model is to
exclude the routing problem (TSP) from the search space by performing exponential
time propagation in B i.e by encapsulating the TSP inside a constraint.

Variables. We use the variables Ct ≥ 0 and Cs ≥ 0 to respectively denote the total
traveling and shopping cost. Variables Csk ≥ 0 represent the cost of buying each prod-
uct pk. Boolean variables yi ∈ {0, 1} indicates whether market vi is visited in the tour
of the purchaser. The finite domain variables sk ∈ {i|vi ∈ Mk} give the market where
product k is bought. Finally Nvisit ∈ {1, . . . , B} represents the number of markets
visited in the tour.
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Model. The model is written as follows:

Minimize Ct+ Cs

(1) Cs =
∑m

k=1 Csk
(2) Csk = ELEMENT([bk1, . . . , bki, . . . , bkn], sk) (∀ pk ∈ K)
(3) OCCURRENCE(i, [s1, . . . , sm]) ≥ 1⇔ yi = 1 (∀ vi ∈M)
(4) Nvisit =

∑
vi∈M yi

(5) NVALUE([s1, . . . , sm], Nvisit)
(6) TSP([y1, . . . , yn], Ct,Nvisit, {cij|vi, vj ∈M})
(7) PMEDIAN([y1, . . . , yn], [s1, . . . , sm], Cs,Nvisit,

{bki|pk ∈ K, vi ∈M})
sk ∈ {i|vi ∈Mk} (∀ pk ∈ K)
Csk ≥ 0 (∀ pk ∈ K)
yi ∈ {0, 1} (∀ vi ∈M)
Ct ≥ 0, Cs ≥ 0

The domains of the variables sk, yi and Nvisit are finite enumerated domains (each
value is maintained in the domain representation) whereas Cs, Csk, Ct are represented
only by their lower and upper bounds. In the following we denote by D(x) the domain
of variable x and by x (resp. x) the lower (resp. upper) bound of x so that x takes a
value from D(x) = [x, . . . , x].

Constraints. Constraints (2) relate the shopping cost of a product to the market where
it is bought. It states that Csk = bksk . The ELEMENT constraint allows to index a
table of values by an integer variable. The lower bound of Csk is thus maintained
as the minimum price of product pk among all currently possible markets: Csk =
minvi|i∈D(sk) bki.

Constraints (3) are channeling constraints linking yi and sk variables. Note that at
least one product must be bought in a visited market. Our solver does not support this
constraint directly but it can be easily decomposed or implemented directly.

Constraint (4) links the number of visits (Nvisit) to the yi variables.
Constraint (5) is a redundant constraint enforcing the number of visits to be equal to

the number of different values of the sk variables (Nvisit = |{sk|1 ≤ k ≤ m}|). Our
solver only provides ATMOSTNVALUE whose focus is on the lower bound of Nvisit: the
minimum number of markets that must be visited to get all products i.e is the aforemen-
tioned Hitting Set problem. Typically, this constraint efficiently detects an unfeasible
problem where B is too restrictive compared to the domains of the sk (for example
in case of rare products). This constraint is NP-hard and is propagated with a greedy
algorithm [3].

Constraint (6) is a dedicated global constraint enforcing Ct to be equal to the optimal
tour visiting all the markets i such as yi = 1. SM denotes the set of sure markets i.e
SM = {vi | yi = 1}. The scope of (6) encompasses Nvisit because it can be used
to derive a stronger lower bound on Ct. Indeed, Nvisit might be greater than |SM | in
which case the problem of propagating the constraint is known as the k-TSP: find the
optimal tour visiting k (in our case Nvisit) cities out of the set of original cities (in our
case the set of markets associated to yi variables not yet fixed to 0).
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Constraint (7) is redundant with constraints (1) and (2) together. It propagates a lower
bound of Cs by solving the corresponding P-Median problem by Lagrangian relaxation.

The three core constraints (5), (6) and (7) are presented in details in the next three
sections but we outline now a few elements of this model.

Firstly, note that the exact route followed by the purchaser is not explicitly repre-
sented in the model but is present as a support of Ct in the TSP global constraint. This
has two main drawbacks for a user: the solution is not readily available in the vari-
ables and side constraints on the tour are difficult to add. Typically, side constraints to
enforce a partial order for visiting the markets or a maximum distance (a resource con-
straint), must be defined as new parameters of the TSP constraint. The model can also
be extended to explicitly represent the route similarly to [5].

Secondly, observe that once the markets are known, it is only a matter of buying each
product at the cheapest price among all the markets in the tour so that the sk variables
can be excluded from the search space. Dominance and search strategy are described in
section 7.

Finally, the NVALUE and PMEDIAN constraints are redundant. They help strength-
ening the connection with the TSP sub-problem by increasing Nvisit which in turn
helps the TSP constraint to derive a sharper Ct. Similarly, NVALUE and TSP contribute
to the decrease of Nvisit which helps the PMEDIAN to derive a sharper Cs. The use of
P-Median is similar to [23] whose bound is based the Simple Plant Location Problem.
Our approach is different since the two bounds obtained for Cs and Ct can be added
to give the global lower bound. The PMEDIAN provides a very strong filtering but at a
high cost. Since it is redundant it can be easily removed from the model when very fast
response times are needed for low B.

4 The TSP Global Constraint

We start the description of the TSP global constraint by recalling its scope:

TSP([y1, . . . , yn], Ct,Nvisit, {cij|vi, vj ∈M})
It is a dedicated global constraint enforcing Ct to be equal to the optimal tour visiting all
the selected markets (a market i such that yi = 1). We recall that SM = {vi |yi = 1} is
the set of currently sure markets and denote PM = {vi |yiunknown} the set of potential
markets that can still be included in the tour. We recall that |SM | is assumed to be
bounded by a small constant B. Efficient approaches for solving small TSPs are based
on dynamic programming or constraint programming [5]. Solving the optimal TSP by
dynamic programming can be done in O(B2 × 2B) [13]. The recursive formulation of
the TSP is easily written with f∗(S, x), the value of the optimal path starting from the
hometown of the traveler, visiting all cities/markets in S and finishing in city x (x ∈ S):

f∗(S, x) = min
y∈S

(f∗(S − {x}, y) + d(y, x))

We denote by optSM the value of the optimal tour of the sure markets i.e optSM =
f∗(SM, v0). Dynamic programming can be used to compute efficiently the optimal tour
for instances with around 15 cities. It still fits in memory for 21-22 cities but requires
several seconds.
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Lower bound of Ct. The lower bound of Ct can be updated to optSM since the costs
satisfy the triangular inequality (adding markets in the set SM can not introduce short-
cuts and thus only increase the traveling cost). This lower bound can be refined by
taking into account Nvisit. A minimum of k = Nvisit− |SM | number of additional
markets must be part of the final tour. We describe a simple lower bound of this quan-
tity. Let ci(a, b, c) be the increase of cost for inserting market a between b and c so that
ci(a, b, c) = dba + dac − dbc and ci(a, S) the best insertion cost of a in the set of mar-
kets S : ci(a, S) = minb,c∈S×S|b�=c,a �=b,a �=c ci(a, b, c). Let < σ1, . . . , σ|PM| > be the
sequence of markets in PM sorted by increasing ci(a, SM ∪PM) i.e the best insertion
cost in the set SM ∪ PM . We use the following rule for updating Ct :

Ct = optSM +

k∑
i=1

ci(σi, SM ∪ PM)

The bound is summing the value of the optimal tour on the sure markets and the k
best insertion costs. Alternatively the propagation of this constraint is exactly a k-TSP
problem with a number of mandatory cities. Good approximation algorithms exist for
this problem based on a primal-dual scheme initially described in [9]. A more recent
paper [1] presents such a scheme with the presence of mandatory cities. A classical
linear formulation with an exponential number of constraints (the sub-tour constraints)
of the k-TSP is given. Its dual has an exponential number of variables but a feasible
solution can be obtained greedily without considering all the variables explicitly and
provides a lower bound. We experimented with this approach, but the bounds obtained
are very weak and only improve the previous bound when k is very large (small |SM |
and large Nvisit). Note finally that the k-MST (minimum spanning tree where only k
nodes have to be spanned) is also NP-hard [7].

Upper bound of Nvisit. A simple upper bound of Nvisit can be derived from the previ-
ous reasonings. Let kmax be the smallest integer such that optSM+

∑kmax
i=1 ci(σi, SM∪

PM) > Ct, we have:
Nvisit = |SM |+ kmax− 1

Filtering of unreachable markets. All markets vi∈PM such that optSM+ci(vi, SM) >
Ct can be eliminated from the tour by setting yi to 0.

Scaling up with B. To ensure that the constraint can still be applied when |SM | is
not bounded, the classical Held and Karp bound [14] based on Lagrangian relaxation
can be used instead of dynamic programming. This bound is often extremely close to
the optimal value especially for small TSPs and can turn out to be faster than dynamic
programming.

Implementation. The propagator of the constraint is finally implemented as follows. At
any update of a domain (mainly Ct) a contradiction might be raised if it leads to an
inconsistency (typically by overloading Ct) immediately interrupting the propagation:
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– Compute a minimum spanning tree of SM and update Ct accordingly.
– If |SM | < 15, use dynamic programming to solve optimally the corresponding TSP

and get optSM . Otherwise, set optSM to the value of the Held and Karp bound.
Update Ct accordingly.

– Compute ci(x, SM ∪ PM) for all x ∈ PM . Update Ct to optSM +∑k
i=1 ci(σi, SM ∪ PM) as explained above along with Nvisit.

– If PM = ∅ we need to solve the TSP optimally to instantiate Ct. This has already
been done if |SM | < 15. Otherwise, an exact TSP solver is called. We use for this
purpose a CP model designed on top of the Held and Karp bound such as the one
of [5] and also inspired by [2].

5 The PMEDIAN Global Constraint

The idea of using Lagrangean relaxation for P-Median problem in order to perform
variables fixings (as a pre-processing) and reduce the size of a linear programming
model was proposed in [4]. We intend to go a step further and design a PMEDIAN

global constraint to achieve propagation during search. We recall its scope :

PMEDIAN([y1, . . . , yn], [s1, . . . , sm], Cs,Nvisit, {bki|pk ∈ K, vi ∈M})

The lower bound of Cs obtained from the propagation of the ELEMENT constraints
does not take advantage of the limitation enforced by Nvisit. Computing a sharp lower
bound on Cs by using the information from Nvisit is an NP-hard problem, it is exactly
a P-Median problem where p can be set to Nvisit (visiting more markets is always
cheaper so using the upper bound of Nvisit ensures a lower bound). The classical for-
mulation is the following:

Minimize Cs =
∑n

i=1

∑m
k=1 bkixki

(1)
∑n

i=1 xki = 1 (∀ pk ∈ K)
(2)

∑n
i=1 yi = Nvisit

(3) xki − yi ≤ 0 (∀ vi ∈M,pk ∈ K)
(4) xki ∈ {0, 1} (∀ vi ∈M,pk ∈ K)
(5) yi ∈ {0, 1} (∀ vi ∈M)

A traditional technique to compute a lower bound Cs is to use Lagrangian relaxation
[16]. Lagrangian relaxation [25] is a technique that moves the “complicating con-
straints” into the objective function with a multiplier, λ ∈ R, to penalize their violation.
For a given value of λ, the resulting problem is the Lagrangian sub-problem and, in the
context of minimization, provides a lower bound on the objective of the original prob-
lem. The Lagrangian dual is to find the set of multipliers that provide the best possible
lower bound.

A lower bound Cs can be computed by relaxation of the assignment constraints (1)
[16]. Relaxations based on constraints (3) (see [6]) or both constraints (1) and (2) (see
[12]) are also possible. The latter seems to be a “standard” relaxation for P-Median.
We chose to relax (1) since keeping constraints (2) does not make the sub-problem



742 H. Cambazard and B. Penz

much harder (it only adds a log factor) and seems in practice to greatly improve the
convergence. Thus our Lagrangian sub-problem is (λ is unrestricted in sign since we
are relaxing an equality constraint) :

Minimize wλ(x, y) =
∑n

i=1

∑m
k=1 bkixki +

∑m
k=1(λk(1−

∑n
i=1 xki))

=
∑n

i=1

∑m
k=1(bki − λk)xki +

∑m
k=1 λk

subject to (2)− (5)
λk ∈ R (∀ pk ∈ K)

The objective function basically amounts to minimizing
∑n

i=1

∑m
k=1(bki−λk)xki and

the Lagrangian dual is: maxλ(minx,y wλ(x, y)). The Lagrangian sub-problem can be
solved directly by inspection:

– For each market vi, we evaluate the change of the objective function when setting
yi to 1 by computing

α(i) =

m∑
k=1

min(bki − λk, 0)

– The optimal solution is made of the Nvisit markets with smallest α(i). More for-
mally, let <δ1, . . . , δm> be the sequence of markets sorted by increasing value of
alpha so that α(δ1) ≤ α(δ2) ≤ . . . ≤ α(δm). We have

w∗λ(x, y) =
m∑

k=1

λk +

Nvisit∑
i=1

α(δi)

Solving the sub-problem therefore takes O(nm+nlog(n)) if we solve the second steps
by sorting. Note that relaxing constraint (2) would not change the quality of the bound
of the relaxation since both have the integrality property (so the global bound is the one
of the linear relaxation of formulation (2)). It would make the sub-problem easier but
we find that it significantly increases the number of iterations in practice and does not
pay off.

Solving the Lagrangian Dual. We followed the classical approach and used the subgra-
dient method. The algorithm iteratively solves wλ for different values of λ, initialised
to 0 at the first iteration. The values of λ are updated by following the direction of a
supergradient of w at the current value λ for a given step length μ.
A supergradient is given by the violation of the assignment constraints so that:

λt+1
k = λt

k + μt(1 −
n∑

i=1

xki)

The step lengths have to be chosen to guarantee convergence. In particular μt must
converge toward 0 and not too quickly. We used μt = μ0 × εt with ε < 1 (ε = 0.99)
and μ0 = 105. We refer the reader to [25] for more details.
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Filtering. If a value is proven inconsistent in at least one Lagrangian sub-problem then
it is inconsistent in the original problem [22]. We therefore try to identify infeasible
values at each iteration of the algorithm. Let us consider a value i in the domain of sk
such that i �∈ [δ1, . . . , δNvisit]. To establish the feasibility of i we replace δNvisit (the
least profitable market) by i and recompute the bound by enforcing the assignment xki

to 1. This is done immediately using the benefits computed previously and value i is
pruned if:

w∗λ(x, y)− α(δNvisit) + α(δi) + max(bki − λk, 0) > Cs

We can notice that bki − λk is already counted in α(δi) if it is negative thus the term
max(bki−λk, 0). This Lagrangian filtering is performed in O(nm). Note that infeasible
markets (yi that must be set to 0) are detected as a result of the previous filtering if all
products are removed from their domain. Such markets i would indeed satisfy:

w∗λ(x, y)− α(δNvisit) + α(δi) > Cs

A market i can be proved mandatory by considering the next most beneficial market
δNvisit+1. For all i ∈ [δ1, . . . , δNvisit], we can set yi to 1 if:

w∗λ(x, y) + α(δNvisit+1)− α(δi) > Cs

Finally, a simple lower bound of Nvisit can be derived from the previous reasonings.
Let kmax be the largest integer such that

∑m
k=1 λk +

∑i=kmax
i=1 α(δi) > Cs, we have:

Nvisit = kmax+ 1

Implementation. We report here a number of observations that we believe are important
when implementing the global constraint.

Optimal values of the dual variables λ are stored after resolution at a given node and
restored upon backtracking. When going down in the tree the optimal λ found at the
father node are used to initialize the new λ. When going up, the optimal λ previously
found at this node are re-used to start the algorithm.

It is also important to stop the algorithm as soon as the lower bound becomes greater
than Cs. This can save many calls to the sub-problem.

All previous reasonings have to be adjusted to take into account the current domains
of the y and s variables. This quickly reduces the size of the sub-problem as one moves
down in the search tree.

Two pre-conditions are used to avoid starting the costly computations of the relax-
ation. They provide necessary conditions for any improvement of Cs by the use of
Lagrangean relaxation compared to the bound given by the ELEMENT constraints. The
first one is very cheap to compute and very simple:

Nvisit < |{vi|yi �= 0}|

The second one is based on the greedy resolution of the following Hitting Set problem.
A set is associated to each market vi and contains the products pk that can be bought in
vi at their current overall best possible price given by Csk. If a hitting set of cardinality
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less than Nvisit exists then it is a support of the current lower bound of Cs. In this
case, we know the bound will not increase by solving the relaxation. The set provides
a solution where each product can be bought at its minimum cost. In any of these two
cases we do not call the relaxation since it would not lead to any improvement of Cs
(note that filtering on y and sk can be lost nonetheless, but this is marginal compared to
increasing Cs).

6 The ATMOSTNVALUE Global Constraint: Hitting Set

This constraint is NP-hard and is propagated with a greedy algorithm described in [3].
Bessiere and al. [3] also shows that the best bound for this constraint is the linear relax-
ation of the Linear Programming formulation of the problem. The formulation is based
on variables yi to know whether value i (market vi) is included in the set:

Minimize
∑n

i=1 yi

(1)
∑

i∈Mk
yi ≥ 1 (∀ pk ∈ K)

(2) yi ∈ {0, 1} (∀ vi ∈M)

Similarly to the P-Median problem, we can use Lagrangian relaxation to obtain the
bound of this linear program by relaxing the covering constraints (1):

Minimize wλ(x, y) =
∑n

i=1 yi +
∑m

k=1(λk(1 −
∑

i∈Mk
yi))

=
∑n

i=1 yi(1−
∑

k|i∈Mk
λk) +

∑m
k=1 λk

yi ∈ {0, 1} (∀ vi ∈M)
λk ≥ 0 (∀ pk ∈ K)

The objective function basically amounts at minimizing
∑n

i=1 yi(1−
∑

k|i∈Mk
λk). The

Lagrangian sub-problem can again be solved directly by inspection similarly to section
5. This approach could be used to strengthen the propagation of our ATMOSTNVALUE

constraint without the need of a simplex algorithm. We intend to do so in the future and
only use it in this current paper to get an initial lower bound of Nvisit.

7 Dominance and Branching

We end the description of the CP model with an observation about dominance and the
search strategy.

Dominance. A simple form of dominance can be added to enforce buying the products
in the cheapest market of the tour. Let’s consider a product pk, when a market t is added
to the tour (when yt is set to one), all values j ∈ sk such that j �= t and bkj ≥ bkt can
be removed from the domain of sk by dominance. The reasoning is implemented in a
dedicated constraint and stated for each product pk.
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Search. Our branching strategy proceeds in two steps, it branches first on Nvisit and
then operates on the yi variables. Once all yi are instantiated, the dominance ensures
that all sk variables are also grounded and a solution is reached. Let h∗ refers to the
lower bound of Nvisit obtained by solving the minimum Hitting Set problem by La-
grangean relaxation described in section 6. Four branches start from the root node, con-
straining Nvisit to be within the following intervals (from the left branch to the right
branch) : [h∗, h∗+1], [h∗+2, 15], [16, 25], [26,m]. The rational behind this branching is
to ensure that good upper bounds involving small number of markets are obtained early
in the search (this can be seen as a form of iterative deepening) and before facing large
TSP problems. The hope is that we will be able to rule them out without having to solve
them explicitly once good upper bounds are known. The values 15 and 25 are chosen
simply because they correspond to the limit of efficient solving of the TSP by dynamic
programming and our CP complete solver respectively. The branching continues on the
yi variables using Impact Based Search [19].

8 Experimental Results

Benchmark. Our approach is tested on the benchmark generated by [15]. We are us-
ing their “class 3” instances where the n markets are generated randomly in the plan
(x and y coordinates are taken with a uniform distribution in [0, 1000] × [0, 1000]),
each product is available in a number of markets randomly chosen in [1, n] and prod-
uct prices are generated in [1, 500] with a uniform discrete distribution. 5 instances are
generated for each n ∈ {50, 100, 150, 200, 250} and m ∈ {50, 100, 150, 200} lead-
ing to 100 instances in total (20 instances for each value of n) and each instance is
identified by n.m.z where z ∈ [1, 5]. We chose this benchmark because the number of
markets visited in the optimal solutions are relatively small (up to 28 markets among
the known optima) and because it was the hardest benchmark (with unlimited supply)
for the branch-and-cut2.

Set-up. The experiments ran as a single thread on a Dual Quad Core Xeon CPU,
2.66GHz with 12MB of L2 cache per processor and 16GB of RAM overall, running
Linux 2.6.25 x64. A time limit of 2 hours was used for each run.

Algorithms. We evaluate two algorithms: CP refers to the algorithm without the redun-
dant PMEDIAN constraint whereas CP+PM is the version including it. In both case, we
start by computing the lower bound of Nvisit as explained in section 6. We also apply a
heuristic at the root node before starting the search to get an upper bound (we recall that
[15] uses a similar heuristic at each node). It builds a feasible solution and improves it
by inserting, removing or swapping markets in the pool of visited markets until a local
optimum is reached. Its performances are indicated in Table 1 with the average gap to
the best known value (in percentage), the number of optimal values identified (column
#Opt) and its CPU times.

2 The benchmark and the detailed results of [15] can be found online:
http://webpages.ull.es/users/jriera/TPP.htm
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Table 1. Performances of the heuristic applied at the root node for the 100 instances

Time (s)
Average gap to opt (%) #Opt Avg Median Min Max

10,8 14 2,15 1,3 0 13,03

Table 2. Results of the three approaches on each class of problem (20 instances per class)

n Branch-and-Cut CP+PM CP
Time (s) Time (s) Time (s)

Avg Median #F Avg (s) Median (s) #F Avg Back Avg (s) Median (s) #F Avg Back
50 23,9 17,5 0 7,1 3,9 0 574,4 11,9 2,7 0 1162,4
100 299,8 295,0 0 187,3 16,3 2 34327,6 214,2 7,0 3 57579,9
150 1734,5 1515,5 0 997,7 231,9 0 41563,6 778,7 110,3 4 108435,5
200 4983,2 3275,0 2 518,5 89,1 6 83670,8 1329,3 43,3 7 201362,0
250 9720,2 10211,0 9 728,2 266,9 2 53741,6 1057,5 357,0 4 145697,2

Table 3. Cpu times of the two algorithms (CP and CP+PM) on the 100 instances of the benchmark
and for B ∈ {5, 10}

CP+PM (B = 5) CP (B = 5) CP+PM (B = 10) CP (B = 10)
NbInfeasible 80 80 9 9
Avg Time (s) 0,68 1,22 17,31 122,37
Median Time (s) 0,50 0,48 3,96 1,99
StDev on Time (s) 0,83 4,48 29,23 674,00
Min Time (s) 0,06 0,06 0,14 0,07
Max Time (s) 5,55 43,88 156,83 5496,67

Results. The aim of these experiments is threefold:

Firstly, we show the interest of the PMEDIAN global constraint in Table 2. It reports
CPU times (average and median computed only on instances that did not reach the time
limit) for each value of n (20 instances in each sub-class), the number of problems
where an algorithm fails to prove optimality (reported in column #F) and the average
number of backtracks (column Avg Back). CP+PM is clearly more efficient. It fails to
prove optimality on 10 instances whereas CP fails on 18 instances.

Secondly, we compare the results with the algorithm of [15]. The branch and cut
was run with a timelimit of 5 hours (18000 seconds) on a very old machine (Pentium
500 Mhz with CPLEX 6.0) and the code is not available anymore. Therefore, we do
not perform a direct comparison with the CPU times reported for [15] in Tables 2 and
4. They are indicative and only serve to draw general trends. Table 4 gives detailed
results for each instance (N and Obj are respectively the number of visits and the value
of the objective function in the best solution found). In any case, the branch and cut
is more robust since it can handle efficiently large TSP problems. CP+PM fails on 10
instances whose optimal number of visits is between 19 and 28 (instance 200.100.5).
Surprisingly, it can find solutions including up to 25 markets (150.200.3) and prove their
optimality. It also shows a very good complementarity to the branch-and-cut (see for
example 250.50.5 where it needs less than 1s when the branch and cut nearly reaches
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Table 4. Details of the results on the class 3 instances of [15]

Instance Branch-and-cut CP+PM Instance Branch-and-cut CP+PM
name N Obj Time(s) N Obj Time(s) back name N Obj Time(s) N Obj Time(s) Back
50.50.1 8 1856 3 8 1856 0.54 16 50.50.2 8 1070 0 8 1070 0.48 33
50.50.3 9 1553 9 9 1553 0.41 192 50.50.4 6 1394 10 5 1394 0.08 8
50.50.5 2 1536 10 2 1536 0.09 5 50.100.1 12 2397 15 12 2397 4.31 289
50.100.2 11 2138 23 11 2138 4.39 562 50.100.3 10 1852 10 10 1852 0.43 8
50.100.4 15 3093 39 15 3093 4.73 917 50.100.5 12 2603 21 12 2603 1.77 159
50.150.1 15 2784 32 15 2784 16.7 1465 50.150.2 11 2137 12 11 2137 0.64 74
50.150.3 14 2308 49 14 2308 7.3 570 50.150.4 14 2524 15 14 2524 3.73 327
50.150.5 16 3150 53 16 3150 26.56 2411 50.200.1 19 3354 18 20 3354 28.28 1260
50.200.2 15 2397 17 15 2397 8.17 604 50.200.3 11 2319 62 11 2319 1.87 103
50.200.4 16 2858 27 16 2858 4.01 252 50.200.5 17 3575 53 17 3575 28.27 2232
100.50.1 9 1468 139 9 1468 1.17 316 100.50.2 7 971 66 7 971 1.67 306
100.50.3 10 1623 159 10 1623 0.92 206 100.50.4 10 1718 80 10 1718 1.68 349
100.50.5 11 2494 168 10 2494 1.31 695 100.100.1 16 2121 130 15 2121 8.74 1258
100.100.2 13 1906 405 13 1906 17.0 2926 100.100.3 13 1822 199 13 1822 15.28 1037
100.100.4 9 1649 55 9 1649 0.73 170 100.100.5 15 2925 758 14 2925 75.39 16289
100.150.1 14 2195 534 14 2195 132.73 11660 100.150.2 16 2806 423 16 2806 141.41 7148
100.150.3 18 2257 440 18 2257 98.84 7974 100.150.4 19 2625 234 18 2625 118.09 9820
100.150.5 18 3150 484 18 3150 390.29 21056 100.200.1 10 1883 166 10 1883 15.64 680
100.200.2 24 3077 369 24 3087 > 7200s 182021 100.200.3 23 2791 356 23 2791 2284.13 76395
100.200.4 19 3409 455 19 3409 > 7200s 342591 100.200.5 18 2732 376 17 2732 66.64 3655
150.50.1 12 1658 498 12 1658 7.58 335 150.50.2 7 1383 512 7 1383 0.27 25
150.50.3 7 821 516 7 821 1.22 308 150.50.4 10 1676 1612 10 1676 13.75 5045
150.50.5 12 1823 1647 12 1823 8.34 1408 150.100.1 17 1717 1243 17 1717 512.73 38148
150.100.2 11 1798 1419 11 1798 27.45 3259 150.100.3 16 1959 2304 15 1959 258.08 32622
150.100.4 14 1609 3408 14 1609 34.42 4179 150.100.5 14 1585 1216 14 1585 275.86 33068
150.150.1 19 1669 367 19 1669 117.76 4264 150.150.2 24 2526 1801 22 2526 2218.69 99598
150.150.3 19 2456 3092 19 2456 5037.65 245597 150.150.4 16 1761 1268 15 1761 205.76 11488
150.150.5 18 2355 3155 16 2355 1152.24 87066 150.200.1 19 1760 365 19 1760 331.94 8090
150.200.2 24 2312 1732 22 2312 1037.48 28630 150.200.3 25 2594 1317 25 2594 5677.0 122773
150.200.4 15 1889 3431 15 1889 154.14 17961 150.200.5 22 2472 3787 22 2472 2881.27 87408
200.50.1 13 1102 1644 12 1102 22.3 5631 200.50.2 6 607 337 6 607 0.45 23
200.50.3 6 530 550 6 530 0.5 71 200.50.4 9 908 849 9 908 0.63 158
200.50.5 11 1067 2248 11 1067 2.78 495 200.100.1 12 949 490 12 949 4.03 237
200.100.2 18 2271 8188 16 2271 381.32 39562 200.100.3 13 1611 2515 13 1611 37.36 4420
200.100.4 17 1799 4697 17 1799 176.97 18758 200.100.5 28 3161 8599 23 3178 > 7200s 310494
200.150.1 16 1730 1574 15 1730 140.87 16012 200.150.2 27 2745 15951 15 2790 > 7200s 212333
200.150.3 20 1861 2613 20 1861 682.82 17643 200.150.4 23 2460 18024 15 2441 > 7200s 238821
200.150.5 18 2079 11505 18 2079 446.03 48271 200.200.1 18 1736 3937 18 1736 578.88 21584
200.200.2 22 2352 10647 22 2359 > 7200s 156492 200.200.3 23 2505 7873 22 2505 > 7200s 179516
200.200.4 20 3314 18053 21 2344 4783.84 173311 200.200.5 23 2427 5481 23 2462 > 7200s 229584
250.50.1 6 533 556 6 533 0.98 145 250.50.2 10 1103 5451 10 1103 15.67 1316
250.50.3 12 1295 14030 12 1295 12.75 1349 250.50.4 13 1553 15487 12 1553 16.43 3377
250.50.5 5 1142 17399 5 1142 0.66 45 250.100.1 11 2447 18057 15 1301 257.56 30983
250.100.2 12 932 2771 12 932 17.22 382 250.100.3 17 1361 16376 17 1361 111.45 10874
250.100.4 16 1759 18029 16 1673 284.68 43921 250.100.5 14 1708 18059 15 1641 256.96 17568
250.150.1 15 1168 1453 15 1168 367.23 15596 250.150.2 22 2205 7999 22 2205 2036.28 169070
250.150.3 15 1582 10211 15 1582 276.17 11033 250.150.4 18 2636 18078 17 1836 1203.97 129473
250.150.5 15 2121 18074 18 1531 417.35 38506 250.200.1 20 1677 15189 20 1677 1455.16 61277
250.200.2 25 2787 18019 25 2856 > 7200s 149248 250.200.3 25 3555 18065 20 1924 5665.07 140904
250.200.4 17 2432 18045 15 2139 > 7200s 230347 250.200.5 18 2771 18071 17 1797 712.4 19417

the five hours). Overall it improves 10 solutions (in bold in the table) and manage to
close 8 instances among the 11 that were still open.

Thirdly, Table 3 shows the results obtained when bounding B to 5 and 10. 80 in-
stances are proved infeasible for B = 5 and 9 for B = 10. All instances are solved to
optimality and CP+PM clearly outperforms CP. It shows that the approach can be very
effective for low B. The CPU times reported include the proof of optimality which is
irrelevant in the industrial case. We plan to analyze the quality of the solution found
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within 1s of time limit and the time to obtain the best solution without time limit to get
more insights on the possibility of using this algorithm in the industrial case.

9 Conclusions and Future Works

We proposed a new exact algorithm based on Constraint Programming for the Trav-
eling Purchaser Problem. The TSP and PMEDIAN global constraints are introduced to
efficiently handle two core structures of the TPP and rely on Lagrangean relaxation.
The proposed algorithm is designed for problems involving a bounded number of vis-
ited markets (around 5 in the industrial application) but is robust enough to be applied
on academic benchmark in the unbounded case. It proves to be very complementary to
the state of the art exact algorithm and manages to close 8 instances out the 11 open on
this particular benchmark.

We intend to investigate further how propagation could be strengthened. Firstly, by
using Lagrangean relaxation to propagate and filter the ATMOSTNVALUE constraint.
Secondly by adding the ATLEASTNVALUE constraint which would propagate an upper
bound of Nvisit based on a maximum matching. We plan to investigate further how to
efficiently implement global constraints with Lagrangean relaxation. In particular the
work of [2] for the TSP and [4] for the P-Median are very good starting points. Finally
the use of a state of the art TSP solver might allow the approach to scale further and
overcome its current limitation.
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Abstract. This paper introduces a constraint model and solving tech-
niques for code generation in a compiler back-end. It contributes a new
model for global register allocation that combines several advanced as-
pects: multiple register banks (subsuming spilling to memory), coalesc-
ing, and packing. The model is extended to include instruction scheduling
and bundling. The paper introduces a decomposition scheme exploit-
ing the underlying program structure and exhibiting robust behavior for
functions with thousands of instructions. Evaluation shows that code
quality is on par with LLVM, a state-of-the-art compiler infrastructure.

The paper makes important contributions to the applicability of con-
straint programming as well as compiler construction: essential concepts
are unified in a high-level model that can be solved by readily available
modern solvers. This is a significant step towards basing code generation
entirely on a high-level model and by this facilitates the construction of
correct, simple, flexible, robust, and high-quality code generators.

1 Introduction

Compilers consist of a front-end and a back-end. The front-end analyzes the
input program, performs architecture-independent optimizations, and generates
an intermediate representation (IR) of the input program. The back-end takes the
IR and generates assembly code for a particular processor. This paper introduces
a constraint model and solving techniques for substantial parts of a compiler
back-end and contributes an important step towards compiler back-ends that
exclusively use a constraint model for code generation.

Today’s back-ends typically generate code in stages: instruction selection
(choose appropriate instructions for the program being compiled) is followed
by register allocation (assign variables to registers or memory) and instruction
scheduling (order instructions to improve their throughput). Each stage com-
monly executes a heuristic algorithm as taking optimal decisions is considered
either too complex or computationally infeasible. Both staging and heuristics
compromise the quality of the generated code and by design preclude optimal
code generation. Capturing common architectural features and adapting to new
architectures and frequent processor revisions is difficult and error-prone with
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heuristic algorithms. The use of a constraint model as opposed to staged and
heuristic algorithms facilitates the construction of correct, simple, flexible, and
robust code generators with the potential to generate optimal code.

Approach. The paper uses LLVM [1] for the compiler front-end and assumes
that instruction selection has already been done yielding a representation of
the input program in SSA (static single assignment). The paper extends SSA
by introducing LSSA (linear SSA), which represents programs as basic blocks
(blocks of instructions without control flow, blocks for short) and relations of
temporaries (program variables) among blocks.

A function in LSSA (the compilation unit in this paper) is used to generate a
model for global register allocation (assign temporaries to registers for an entire
function). The model combines several advanced aspects:

Multiple register banks also capture the spilling of temporaries to memory
as just another register bank due to lack of available processor registers.

Temporary coalescing attempts to assign related temporaries to the same
register in order to save move instructions.

Register packing can assign several small unrelated temporaries to the same
register. For example, two 16-bit temporaries can be assigned to the upper
and lower half of a 32-bit register.

Both multiple register banks and coalescing are modeled by optional copy in-
structions between temporaries identified as related in the LSSA representation.
The model is extended to include instruction scheduling and instruction bundling
(for executing several instructions in parallel). The single model accurately cap-
tures the interdependencies between register allocation and instruction schedul-
ing. Hence, it faithfully reflects the trade-off between conflicting decisions during
code generation.

The model is solved by decomposition, exploiting the underlying program
structure as explicated in LSSA. First, the relation of temporaries among blocks
is established followed by solving constraints for each block. The code generator
exhibits robust behavior for functions with thousands of instructions, where we
choose the bzip2 program as part of the standard SPECint 2006 benchmark
suite. Evaluation shows that code quality is on par with LLVM.

Key contributions. The paper makes the following contributions: – LSSA as a
new program form explicating program structure used for modeling; – a con-
straint model unifying register allocation and instruction scheduling; – in par-
ticular, the register allocation model unifies multiple register banks, spilling,
coalescing, and packing; and – a code generator based on a problem decompo-
sition showing promising code quality and robustness.

Related approaches. Optimal register allocation and instruction scheduling have
been approached with different optimization techniques, both in isolation and
as an integrated problem.
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Register allocation has been approached as an integer linear programming
(ILP) problem [2,3] and as a partitioned Boolean quadratic problem [4]. To
the best of our knowledge, there has been no attempt to solve global register
allocation with constraint programming (CP).

Instruction scheduling has typically been modeled as a resource-constrained
scheduling problem. Local instruction scheduling has been approached with both
CP [5,6] and ILP [7,8]. Proposed solutions for the global case include the use of
CP [9], ILP [10], and special-purpose optimization algorithms [11,12].

Different ILP and CP approaches have addressed the integration of both prob-
lems in a single model [13,14,15,16]. To the best of our knowledge, none of these
approaches deals with all essential aspects of global register allocation such as
coalescing and spilling.

The integration of instruction selection with these problems has also been
considered, using both CP [17] and ILP [18,19]. These approaches are limited to
single blocks, and it is unclear how to extend them to handle entire functions
robustly.

Plan of the Paper. Section 2 reviews SSA-based program representation whereas
Sect. 3 introduces LSSA used for the constraint model in the paper. A constraint
model for register allocation is introduced in Sect. 4 which is refined in Sect. 5
to integrate instruction scheduling. Section 6 discusses model limitations. Sec-
tion 7 introduces a decomposition scheme which is evaluated in Sect. 8. Section 9
concludes the paper and presents future work.

2 SSA-Based Program Representation

int factorial(int n) {

int f = 1;

while (n > 0) {

f = f * n; n--;

}

return f;

}

This section describes SSA (static single assign-
ment) as a state-of-the-art representation for pro-
grams where processor instructions have already been
selected. The factorial function, whose C source code
is shown to the right, is used as a running example
throughout the paper.

A function is represented by its control-flow graph (CFG). The CFG’s vertices
correspond to blocks and its arcs define the control flow (jumps and branches)
between blocks. A block consists of instructions and temporaries. Temporaries
are storage locations corresponding to program variables after instruction selec-
tion. Other types of operands such as immediate values are not of interest in
this context. An instruction is a triple represented as D ← op U , where D and
U are the sets of defined and used temporaries and op is the processor operation
that implements the instruction. For example, an instruction that uses a tem-
porary t to define a temporary t′ by executing the operation neg is represented
as t′ ← neg t. The remainder of the paper uses operations from MIPS32 [20], a
simple instruction set chosen for ease of illustration.

A program point is located between two consecutive statements. A temporary
is live at a program point if it holds a value that might be used by an instruction
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in the future. The live range of a temporary is the set of program points where
it is live. Two temporaries interfere if their live ranges overlap. A temporary is
live-in (respectively live-out) in a block if it is live at its entry (exit) point.

Architectural constraints and ABIs (application binary interfaces) predeter-
mine the registers to which certain temporaries are assigned. A temporary t that
is pre-assigned to a register r is represented by t�r.

SSA is a program form where temporaries are only defined once [21] (as is com-
mon, SSA in this paper means conventional SSA [22]). For programs where tem-
poraries are redefined, SSA inserts φ-functions among the natural instructions
derived from program statements and expressions. φ-functions disambiguate def-
initions of temporaries that depend on program control flow. For instance, in the
factorial function, the return value might be defined by int f = 1 or within the
while-loop. In SSA, a φ-function is inserted defining a new return value that
is equal to either 1 or to the the value of f computed in the loop. φ-functions
define a congruence among temporaries, where two temporaries are φ-congruent
if they are accessed by the same φ-function. Since φ-functions are not provided
by processor instruction sets, their resolution is a prerequisite for generating
executable code.

b1 t1�$ra, t2�$a0 ←
t3 ← li
t4 ← slti t2
← bne t4

b2

t5 ← φ t2, t8
t6 ← φ t3, t7
t7 ← mul t6, t5
t8 ← subiu t5
← bgtz t8

b3
t9 ← φ t3, t7
← jr t1
← t9�$v0

t2
φ
= t5

t3
φ
= t6

t3
φ
= t9

t9
φ
= t7

t5
φ
= t8

t6
φ
= t7

Fig. 1. MIPS32 instruction-selected function in SSA

SSA simplifies the computation of liveness and interference. Since this sim-
plification eases register allocation [23], SSA form is used as input to the code
generator. Fig. 1 shows the control-flow graph of the running example trans-
formed to SSA form with MIPS32 operations. Arc labels show the φ-congruence
connecting temporaries related by φ-functions. Temporaries t1, t2 and t9 are
pre-assigned to the return address ($ra), first argument ($a0) and first return
value ($v0) registers.

3 Program Representation for Register Allocation

This section introduces the program representation on which the model is based.

3.1 Register Allocation

Register allocation is the problem of assigning temporaries to either processor
registers (hereafter called registers) or memory. Since access to registers is orders
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of magnitude faster than access to memory, it is desirable to assign all tempo-
raries to registers. As the number of registers is limited, not all temporaries can
be assigned a register. A first way to improve register utilization is to store tem-
poraries only while they are live. This allows register allocation to assign several
temporaries to the very same register provided the temporaries do not interfere
with each other.

In general, even optimal register utilization does not guarantee the availability
of processor registers for all temporaries. In this case, some temporaries must be
stored in memory (that is, spilled). Since access to memory is costly, the decision
of which temporaries are assigned to memory and at which program point they
are assigned has high impact on the efficiency of the generated code.

The input program to register allocation may contain temporaries related by
copy instructions (that is, instructions that copy the content of one temporary
into another). Assigning these temporaries to the same register (that is, coalesc-
ing them) allows the removal of the corresponding copy instructions, improving
the efficiency and size of the code.

Each temporary has a certain bit width (hereafter just called width) which is
determined by the source data type that it represents. Many processors allow
temporaries of different widths to be assigned to different parts of the same
physical register. For example, Intel’s x86 has 16-bit registers (AX) that combine
pairs of 8-bit registers (AH, AL). For these processors, the ability to pack non-
interfering temporaries into different parts of the same physical register is a key
technique to improve register utilization [24].

Register allocation can be local or global. Local register allocation deals with
one block at a time, spilling all temporaries that are live at block boundaries.
Global register allocation yields better code by considering entire functions and
can keep temporaries in the same register across blocks.

3.2 Linear Static Single Assignment Form

The live range of a temporary depends on where it is defined and used by instruc-
tions. In a model that captures simultaneous register allocation and instruction
scheduling, the live ranges and their interferences are mutually dependent. Al-
though SSA makes live range and interference computation easier than in a
general program form, it is unclear how to model interference of temporaries
with variable live ranges that can span block boundaries and follow branches.

To overcome this limitation and enable simple and direct modeling of live
ranges, this paper introduces linear SSA (LSSA). LSSA is stricter than SSA in
that each temporary is only defined and used within a single block. This property
leads to simple, linear live ranges which do not span block boundaries and can
be directly modeled as in Sect. 4. Furthermore, this simplification enables a
problem decomposition that can be exploited for robust code generation, as
Sect. 7 explains.

This paper is the first to take advantage of the explicit congruence structure
that LSSA defines even though this structure appears in some SSA construction
approaches [25,26].



Constraint-Based Register Allocation and Instruction Scheduling 755

To restrict live ranges to single blocks, SSA φ-functions are generalized to
delimiter instructions (hereafter just called delimiters). These instructions are
placed at the block boundaries and are not part of the generated code. Each block
contains two delimiters: an in-delimiter which defines the live-in temporaries and
an out-delimiter which uses the live-out temporaries.

In LSSA, the live range of a temporary cannot span the boundaries of the block
where it is defined. Liveness across blocks in the original program is captured by
a new definition of temporary congruence, relating temporaries that represent
the same original temporary in different blocks. This congruence generalizes the
φ-congruence defined for SSA.

Fig. 2 shows the control-flow graph of the running example transformed to
LSSA. Arc labels show the generalized congruence. The temporary t1 which is
live across all branches in Fig. 1 corresponds to the congruent temporaries t1, t5
and t10 in Fig. 2, each of them having a linear live range. The figure shows that
the only link between blocks in LSSA is given by temporary congruences.

b1 t1�$ra, t2�$a0 ←
t3 ← li
t4 ← slti t2
← bne t4
← t1, t2, t3

b2

t5, t6, t7 ←
t8 ← mul t7, t6
t9 ← subiu t6
← bgtz t9
← t5, t8, t9

b3
t10, t11 ←

← jr t10
← t11�$v0

t1 ≡ t5
t2 ≡ t6
t3 ≡ t7

t1 ≡ t10
t3 ≡ t11

t10 ≡ t5
t11 ≡ t8

t6 ≡ t9
t7 ≡ t8

Fig. 2. MIPS32 instruction-selected function in LSSA

LSSA can be easily constructed from SSA by applying the following steps to
each block:

1. introduce delimiters;
2. for each live-in temporary, introduce a new definition by the in-delimiter; for

each live-out temporary, introduce a new use by the out-delimiter (applying
the liveness definition by Sreedhar et al. [22]);

3. remove all φ-functions;
4. connect the new definitions and uses with their corresponding live-in and

live-out temporaries by defining congruences.

3.3 Copies

Spilling requires copying the contents of temporaries to new temporaries that can
then be assigned to different processor registers or to memory. This is captured
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in the model by extending the program representation with the copy instruction
type, similarly to Appel and George’s approach [3]. A copy replicates the content
of a temporary ts to a new temporary td. To allow ts and td to be assigned to
different types of locations such as registers or memory, the copy is implemented
by the execution of one of a set of alternative operations {o1, o2, . . . , on} and
represented as td ← {o1, o2, . . . , on} ts.

The way in which a program is extended with copies depends on the processor.
In load/store processors such as MIPS32, arithmetic/logic operations define and
use temporaries in registers. In this setting, register allocation needs to be able
to copy a temporary defined in a register to another register or to memory. If
a temporary has been copied to memory (that is, spilled), it must be copied
back to a register before its use by an arithmetic/logic operation. In MIPS32,
the program is extended with copies of the form td ← {move, sw} ts after the
definition of ts in a register and td ← {move, lw} ts before the use of td in a
register, where the operations move, sw and lw implement register-to-register,
register-to-memory and memory-to-register copies. Fig. 3 shows how the function
in Fig. 2 is extended with such copies.

b1
t1�$ra, t2�$a0 ←

t3 ← li
t4 ← slti t2
t5 ← {move, sw} t2
t6 ← {move, sw} t3
← bne t4
← t1, t5, t6

b2

t7, t8, t9 ←
t10 ← {move, lw} t8
t11 ← {move, lw} t9
t12 ← mul t11, t10
t13 ← subiu t10
t14 ← {move, sw} t12
t15 ← {move, sw} t13

← bgtz t13
← t7, t14, t15

b3
t16, t17 ←

t18 ← {move, lw} t17
← jr t16
← t18�$v0

t1 ≡ t7
t5 ≡ t8
t6 ≡ t9

t1 ≡ t16
t6 ≡ t17

t16 ≡ t7
t17 ≡ t14

t8 ≡ t15
t9 ≡ t14

Fig. 3. Function in LSSA extended with copies

4 Register Allocation and Packing

This section describes the constraint model for register allocation and packing.
The constraint model is parameterized with respect to a program in LSSA and
a processor. The entire model, extended with instruction scheduling, is shown in
Fig. 4. The main text contains references to the formulas (1-11) from the figure.
Sections 4.1 and 4.2 discuss local and global register allocation. Section 4.3 refines
the model to handle register packing.
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4.1 Local Register Allocation

The variables in the constraint model are described in Fig. 4. A valid assignment
of the register (rt) and operation (oi) variables constitutes a solution to the
register allocation problem. When solving this problem in isolation, the issue
cycle (ci) and live range (lst, let) variables (1) are pre-assigned and can be seen
as program parameters. They act as variables when the model is extended with
instruction scheduling as described in Sect. 5.

Natural instructions and delimiters define the meaning of a program and
must be active (2). Unlike natural instructions and delimiters, a copy i might
be implemented by different operations or be inactive. To support the latter
case, the domain of its variable oi is extended with a virtual operation null (3).
Delimiters are implemented by virtual in and out operations. A solution to the
register allocation problem implies deciding whether a copy i is active (ai) and
which operation implements it (oi).

A processor typically contains one or more register banks which can be directly
accessed by instructions. Traditional register allocation treats memory and dif-
ferent register banks as separate entities, which leads to specialized methods for
different aspects of register allocation such as spilling and dealing with multiple
register banks. We consider a unified register array that fully integrates these
aspects. A unified register array is a sequence of register spaces. A space is a se-
quence of related registers. Spaces capture different processor register banks as
well as memory registers (representing memory locations on the runtime stack).
A memory space contains a practically infinite sequence of memory registers
(m1, m2, . . .). Fig. 5a shows the unified register array for MIPS32.

To the best of our knowledge, this paper presents the first application of a
unified register array to integrate different aspects of register allocation in the
context of native code generation.

Local register allocations can be projected onto a rectangular area. The hor-
izontal dimension represents the registers in the unified register array, whereas
the vertical dimension represents time in clock-cycles (see Fig. 5a). In this pro-
jection, each temporary t is represented as a rectangle with width(t) = 1. The
top and bottom coordinates of the rectangle reflect the issue cycle of its definer
and the last issue cycle of its users. The horizontal coordinate represents the
register to which the temporary is assigned (see Fig. 5b).

In this representation, two temporaries interfere when their rectangles over-
lap vertically. The non-overlapping rectangles constraint disjoint2 [27] enforces
interfering temporaries to be assigned to different registers (4). Fig. 6a shows
a register allocation for a given instruction schedule of block b1 from Fig. 2. In
this schedule, all temporaries interfere with each other and must be assigned to
different processor registers.

Due to architectural constraints, operations can only access their operands
in certain spaces. The operation that implements an instruction determines the
space to which its temporaries are allocated (5).

A copy i from a temporary src(i) to a temporary dst(i) is active when these
temporaries are not coalesced (6). Fig. 6b shows a register allocation for the
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Program parameters
B, I, T sets of blocks, instructions and temporaries
ins(b) set of instructions of block b
tmp(b) set of temporaries defined and used within block b
tmp(i) set of temporaries defined and used by instruction i
definer(t) instruction that defines temporary t
users(t) set of instructions that use temporary t
t ≡ t′ whether temporaries t and t′ are congruent
dep(b) dependency graph of the instructions of block b
ops(i) set of alternative operations implementing i (singleton for non-copies)
width(t) number of register atoms that temporary t occupies
t�r whether temporary t is pre-assigned to register r
src(i) source temporary of copy instruction i
dst(i) destination temporary of copy instruction i
freq(b) estimation of the execution frequency of block b

Processor parameters
space(i, op, t) register space in which instruction i implemented by op accesses t

forbidden(t) forbidden first assigned register atoms for temporary t
lat(op) latency of operation op

R set of processor resources
cap(r) capacity of processor resource r
use(op, r) units of processor resource r used by operation op

dur(op, r) duration of usage of processor resource r by operation op

Variables
rt ∈ N0 register to which temporary t is assigned
oi ∈ N0 operation that implements instruction i
ci ∈ N0 issue cycle of instruction i relative to the beginning of its block
ai ∈ {0, 1} whether instruction i is active
lst ∈ N0 start of live range of temporary t
let ∈ N0 end of live range of temporary t

Register allocation constraints

lst = cdefiner(t) ∀t ∈ T ; let = maxu∈users(t) cu ∀t ∈ T (1)

ai ∀i : (i is a natural instruction) ∨ (i is a delimiter) (2)

oi ∈ ops(i) ∪ {null} ∀i : i is a copy (3)

disjoint2({〈rt, rt + width(t), lst, let〉 : t ∈ tmp(b)}) ∀b ∈ B (4)

oi=op =⇒ rt∈space(i, op, t) ∀t∈tmp(i), ∀op∈ops(i), ∀i∈I (5)

rsrc(i) �= rdst(i) ⇐⇒ ai ∀i : i is a copy (6)

rt = r ∀t ∈ T : t�r (7)

rt = rt′ ∀t, t′ ∈ T : t ≡ t′ (8)

rt /∈ forbidden(t) ∀t ∈ T (9)

Instruction scheduling constraints

ai ∧ aj =⇒ cj ≥ ci + lat(oi) ∀ (i, j) ∈ edges(dep(b)), ∀b ∈ B (10)

cumulative({〈ci,dur(oi, r),ai×use(oi, r)〉 : i∈ ins(b)} , cap(r)) ∀b∈B, ∀r∈R (11)

Fig. 4. Model parameters, variables, and constraints
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last issue of users(t)

(b) temporary

Fig. 5. Geometric interpretation of local register allocation

block b1 in Fig. 3, where dotted arrows connect copy-related temporaries. t2
and t5 are coalesced, rendering their copy inactive. The copy from t3 to t6 is
implemented by sw and represents a spill to m1. This frees $v0 from cycle 2
onwards and allows t4 to reuse it, reducing the set of used processor registers
from {$v0, $v1, $a0, $ra} in Fig. 6a to {$v0, $a0, $ra} in Fig. 6b.

Some temporaries are pre-assigned to registers (7).

$v0 $v1 $a0 $a1

. . .

. . . $ra m1 m2 . . .

. . .

cy
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0
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5

in
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nop
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$v0 $v1 $a0 $a1

. . .

. . . $ra m1 m2 . . .

. . .cy
cl
e

0

1
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3

4

5

6

in

li

sw

slti,null

bne

nop

out

t1

t2t3

t4

t5
t6

null

sw

(b) spilling t3 enables reuse of $v0

Fig. 6. Two register allocations for block b1

4.2 Global Register Allocation

In LSSA, the global relation between temporaries is solely captured by temporary
congruences, which leads to a direct extension of the local problem. Temporaries
whose live ranges span block boundaries are decomposed in LSSA into congruent
temporaries with linear live ranges. Congruent temporaries resulting from this
decomposition represent the same original temporary and are assigned to the
same register (8).

4.3 Register Packing

The register allocation model described in this section is extended with register
packing following the approach of Pereira and Palsberg [28]. Registers are decom-
posed into register atoms. An atom is the minimum part of a physical register
that can be referenced by an operation (for example, AH in x86). A space is a
sequence of atoms, each of which corresponds to a column in the unified register
array. width(t) becomes a program parameter giving the number of atoms that
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the temporary t occupies. The variable rt represents the first of the atoms to
which t is assigned. Enforcing non-interference among temporaries assigned to
the same register (4) thus becomes isomorphic to rectangle packing.

AX BX CX
AH AL BH BL CH CL

...cy
cl
e 0

1

t1
t2

t3

t4

Most processors restrict the combinations of atoms
out of which wider registers can be formed. For example,
double-width temporaries such as t2 and t4 in the figure
to the right cannot be assigned to {AL, BH} or to {BL, CH}
in the 16-bit x86 register array. Such forbidden atoms
are removed from the register variable domains (9).

5 Instruction Scheduling and Bundling

This section describes how to extend the register allocation model with instruc-
tion scheduling and bundling.

Local instruction scheduling. To model instruction scheduling, the issue cycle ci
of each instruction i and the (derived) live range (lst, let) of each temporary t
become variables (1).

in

li stli

bne

out

1
(t

1
,t

2
)

1
1 (t2)

1 (t3)
1

1 (t4)

2

Flow of data and control cause dependencies among
instructions. The dependencies in a block b form a de-
pendency graph dep(b) with instructions as vertices. For
example, the figure to the right shows dep(b1) from Fig. 2.
Solid, dashed and dotted arcs respectively represent data,
control and artificial dependencies. The latter are added to
make delimiters first and last in any topological ordering.
These dependencies dictate precedence constraints among
instructions. The minimum issue distance in a precedence
(i, j) is equal to the latency of the parent lat(oi). Precedence constraints are only
effective when both instructions are active (10).

Operations share limited processor resources such as functional units and data
buses. This is naturally captured as a task-resource model with a cumulative
constraint [29] for each processor resource and block. These constraints include
a task for each active instruction in the block (11).

Instruction bundling. Very Long Instruction Word and Explicitly Parallel In-
struction Computing processors can issue several instructions every clock cycle.
To exploit this capability, instructions must be combined into valid bundles satis-
fying precedence (10) and processor resource (11) constraints [30]. The presented
scheduling model already subsumes bundling, by interpreting sets of instructions
issued in the same cycle as bundles and giving the appropriate processor resource
configuration.

6 Model Limitations

This section discusses some model limitations to be addressed in the future.
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. . .
tj ← ti

. . .
← . . . , ti, tj , . . .

Limited coalescing. The constraint model employs a simple
definition of interference with a direct geometrical interpreta-
tion: two temporaries interfere when the rectangles represent-
ing their live ranges overlap. Copy-related temporaries that
do not interfere can often be coalesced, rendering their copy instructions inac-
tive and saving execution cycles. That is the case, for example, for t2 and t5
in Fig. 6b. Relaxed definitions of interference have been proposed which expose
more coalescing opportunities [31]. In the example to the right, ti and tj can be
coalesced into a single temporary since both hold the same value. However, in
the constraint model this makes their rectangles overlap, which is not allowed.
This limitation, shared by the related register allocation approaches mentioned
in the introduction, is significantly mitigated in the constraint model by the
possibility of rearranging live ranges through instruction scheduling.

. . .
t2 ← {move, sw} t1

. . .
t3 ← {move, lw} t2
. . .← op t3

. . .
t4 ← {move, lw} t2
. . .← op t4

. . .

Spilling reused temporaries. Once a temporary is spilled, it
must be loaded into a register before every use. If the tempo-
rary is used multiply, it might be desirable to load it to a regis-
ter once and keep it there for the remaining uses. The example
to the right illustrates this limitation: if t1 is spilled to mem-
ory by a sw operation, t2 must be loaded into a register twice
by lw operations, once for each operation op. Fortunately, in
SSA most of the temporaries are only used once [32], and this percentage is even
larger in LSSA since SSA temporaries are further decomposed.

7 Decomposition-Based Code Generation

This section introduces a decomposition scheme and a code generator that ex-
ploit the properties of LSSA.

The main property of LSSA is that temporaries are live in single blocks only.
All temporaries accessed by delimiters (global temporaries) are pre-assigned or
congruent to temporaries in other blocks. For example, the global temporaries in
Fig. 3 are {t1, t2, t5, t6, t7, t8, t9, t14, t15, t16, t17, t18}. The only link between differ-
ent blocks in the model is given by the congruence constraints (8), which relate
the register variables rt of global temporaries. Thus, once these variables are as-
signed, the rest of the register allocation and instruction scheduling problem can
be solved independently for each block. For example, assuming that {t2, t5} and
{t3, t6} have been coalesced, the problem variables that remain to be assigned
for block b1 in Fig. 3 are the register {rt3 , rt4} and issue cycle variables.

Based on this observation, we devise a decomposition scheme that significantly
reduces the search space. It proceeds by first solving the global problem (assign-
ing the rt variables of global temporaries) and then solving a local problem for
each block (assigning the remaining variables).

The objective is to minimize execution cycles according to an estimate of
block execution frequency:

minimize
∑
b∈B

freq(b)× max
i∈ins(b)

ci (12)
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Fig. 7 depicts the architecture of the code generator. SSA functions are trans-
formed to LSSA and extended with copies as described in Sect. 3. Then, a
satisfaction problem with all constraints is solved, assigning global temporaries
to registers. This assignment constitutes a global solution. As variable selection
heuristic, the global solver branches first on the largest temporary congruence
class ({t6, t9, t14, t17} in Fig. 3). As value selection heuristic, it performs a cost-
benefit analysis to determine the most effective register for each temporary. The
benefit component estimates the saved spilling overhead, while the cost compo-
nent is based on an estimate of the increased space occupation. This analysis
is parameterized with an aggressiveness factor to direct the heuristic towards
either the benefit or the cost component. In the example, all temporaries are as-
signed to processor registers regardless of this parameter, since spilling is costly
and the processor register space occupation is low.

modeler global solver local solver

SSA
function

LSSA
function

local problems

local solutions

assembly
code

Fig. 7. Architecture of the code generator

Once a global solution is found, an optimization problem with all but the
congruence constraints (8) is solved for each block, seeking a locally optimal as-
signment of the remaining variables. This assignment constitutes a local solution.
The search starts by branching on the copy activation variables ai, trying first to
inactivate the copy. Then, the solver branches on the ci variables in topological
dependency order, selecting the earliest cycle first. Finally, local temporaries are
assigned to registers by assigning their rt variables. The global and local solu-
tions are then combined and the total cost is computed. This process is repeated,
increasing the aggressiveness of the global solver in each iteration until it proves
optimality or reaches a time limit.

8 Evaluation

Two essential characteristics of the code generator are examined by the ex-
periments: the quality of the generated code and its solving time. The global
and local solvers are implemented with the constraint programming system
Gecode 3.7.3 [33]. As input, we have used functions from the C program bzip2 as
a representative of the standard SPECint 2006 benchmark suite, optimized the
intermediate code of each function and selected MIPS32 instructions using the
LLVM 3.0 compiler infrastructure. The instruction-selected functions are passed
as input to the code generator for this experiment. The global and local solvers
are run with a time limit of 10 and 3 seconds respectively. All experiments are
run using sequential search on a Linux machine with a quad-core Intel Core
i5-750 processor and 4 GB of main memory.
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(b) solving time vs. instructions

Fig. 8. Evaluation of the decomposition-based code generator

Code quality. Lack of post-code-generation support (including generation of as-
sembly directives) prevents running the generated code. Therefore, to measure
its quality, we estimate the number of execution cycles by computing the value of
the objective function (12). This measure is computed for the code generated by
both our system and LLVM’s register allocator (based on priority-based color-
ing [34]) and instruction scheduler (based on list-scheduling [35]). These LLVM
components are run with the following flags: -O3 -enable-mips-delay-filler

-disable-post-ra -disable-tail-duplicate -disable-branch-fold. This
comparison is meaningful since a) the input to the LLVM components is the
same as to our system, and b) the optimization flags given to LLVM are aligned
with the objective function (12). For example, -O3 emphasizes speed at the pos-
sible expense of code size. Furthermore, the same optimization level is enforced
after code generation by disabling tail duplication and branch folding in LLVM.

From a total of 106 functions in bzip2, the code generator pre-processes and
solves 86 functions. The remaining ones cannot yet be pre-processed by the
modeler module (see Fig. 7) because of lack of support for the MIPS32 floating-
point extension and incompleteness of the interface to LLVM’s instruction selec-
tor. Fig. 8a shows the estimated execution cycles of each solved function. The
figure shows that the code generator is competitive with LLVM, a state-of-the-
art compiler infrastructure, in terms of code quality. The cases in which LLVM
generates better code are due to a) few of the 86 functions being solved opti-
mally because of global and local time-outs, and b) the limitations discussed
in Sect. 6, which in particular prevent coalescing certain copies in blocks that
belong to deeply nested loops.

Solving time. The global and local solvers dominate the execution time of the
code generator. Fig. 8b shows, for each function in the first experiment, the
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average time to solve the constraint problems and the number of instructions.
The average is calculated on 10 iterations, where the maximum coefficient of
variation per function is 10%. The figure reveals a sub-quadratic relation between
solving time and size of the compiled functions, confirming the robustness of the
code generator for functions with thousands of instructions. This robust behavior
is due partially to the effect of solver time-outs on all non-trivial functions.

9 Conclusion and Future Work

This paper introduces a constraint model capturing global register allocation
and local instruction scheduling as two main tasks of code generation. In par-
ticular, the model of register allocation combines all essential aspects in this
problem: generalized spilling, coalescing and register packing. The paper intro-
duces LSSA to enable a direct model of global register allocation and a problem
decomposition. A code generator is presented that exploits this decomposition to
achieve robust behavior. Experiments show that it generates code that is com-
petitive with a state-of-the-art compiler infrastructure for functions of thousands
of instructions.

Future work. This paper presents an important step towards basing code gener-
ation entirely on a high-level model as opposed to limited heuristic algorithms.
There is considerable future work in this direction. A first step is to address
the limitations from Sect. 6. Also, although the code generator shows robust
behavior, there is still a significant efficiency gap with respect to state-of-the-
art compiler infrastructure such as LLVM. We have identified several oppor-
tunities to improve the efficiency of the code generator by applying standard
modeling techniques: breaking symmetries in the dependency graph [6] and in
the register array, strengthening the geometric reasoning on the register array
by coalescing-aware custom propagators and inferring implied constraints to im-
prove propagation are some examples. Another possible improvement is to refine
the decomposition described in Sect. 7 into a Benders-like scheme [36], where
the local solver feeds back problem knowledge to the global solver.

We plan to study how to extend the model from this paper with instruction
selection and other code generation problems to further improve code quality.
Finally, we intend to evaluate the generality and flexibility of the model by tar-
geting more challenging architectures such as digital signal processors and Intel’s
x86. We conjecture that the additional difficulties imposed by these architectures
will only but highlight the advantages of a constraint-based approach.
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Abstract. The Resource-constrained Project Scheduling Problem
(Rcpsp), in which a schedule must obey resource constraints and prece-
dence constraints between pairs of activities, is one of the most studied
scheduling problems. An important variation of this problem (RcpspDc)
is to find a schedule which maximises the net present value (discounted
cash flow). Large industrial applications can require thousands of activ-
ities to be scheduled over a long time span. The largest case we have
(from a mining company) includes about 11,000 activities spanning over
20 years. We apply a Lagrangian relaxation method for large RcpspDc

to obtain both upper and lower bounds. To overcome the scalability prob-
lem of this approach we first decompose the problem by relaxing as fewer
as possible precedence constraints, while obtaining activity clusters small
enough to be solved efficiently. We propose a hierarchical scheme to ac-
celerate the convergence of the subgradient algorithm of the Lagrangian
relaxation. We also parallelise the implementation to make better use
of modern computing infrastructure. Together these three improvements
allow us to provide the best known solutions for very large examples
from underground mining problems.

1 Introduction

The Resource-constrained Project Scheduling Problem (Rcpsp) is one of the
most studied scheduling problems. It consists of scarce resources, activities and
precedence constraints between pairs of activities where a precedence constraint
expresses that an activity can be run after the execution of its preceding ac-
tivity is finished. Each activity requires some units of resources during their
execution. The aim is to build a schedule that satisfies the resource and prece-
dence constraints. Here, we assume renewable resources (i.e., their supply is
constant during the planning period) and non-preemptive activities (i.e., once
started their execution cannot be interrupted). Usually the objective in solving

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 767–781, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



768 H. Gu, P.J. Stuckey, M.G. Wallace

Rcpsp problems is to minimise the makespan, i.e., to complete the entire project
in the minimum total time. But another important objective is to maximise the
net present value (npv), because it better captures the financial aspects of the
project. In this formulation each activity has an associated cash flow which may
be a payment (negative cash flow) or a receipt (positive cash flow). These cash
flows are discounted with respect to a discount rate, which makes it, in general,
beneficial for the npv to execute activities with a positive (negative) cash flow as
early (late) as possible. The problem is to maximise the npv for a given Rcpsp

problem. We denote the problem RcpspDc, i.e., Rcpsp with discounted cash
flows. It is classified as m, 1|cpm, δn, cj |npv [13] or PS|prec|

∑
CF

j βCj [3].
Optimisation of the net present value for project scheduling problems was

first introduced in [21]. Different complete and incomplete methods for Rcp-

spDc with or without generalised precedence constraints have been proposed,
the reader is referred to [12] for a more extensive literature overview of solution
approaches for RcpspDc and other variants or extensions of Rcpsp.

Most complete methods for RcpspDc use a branch-and-bound algorithm to
maximise the npv. The approaches in [14,24,19] are based on the branch-and-
bound algorithm in [6,7] forRcpsp. These algorithms use a scheduling generation
scheme which resolves resource conflicts by adding new precedence constraints
between activities in conflict. The method in [24] improves upon the one in [14]
whereas the work [19] considersRcpspDcwith generalised precedence constraints.
Recently we developed lazy clause generation approaches toRcpspDc [22] which
provide the state of the art complete methods for RcpspDc.

But complete methods can only solve problems up to a hundred activities. To
cope with large industrial applications with thousands of activities, various rules
based heuristics [2,20] are used in practice. However these approaches are not
robust especially for problems with tight constraints. Decomposition methods
are widely used for large-scale combinatorial optimisation problems. Lagrangian
relaxation was successfully applied on Rcpsp for up to 1000 jobs [18]. It has also
been applied to RcpspDc with good results [17] and is more robust than rule
based heuristics. However our experience shows that this method scales badly
for example underground mining problems with over a few thousand activities.
The main obstacle is that the Lagrangian relaxation problem, which is a max-
flow problem, cannot be solved efficiently for large problems. Furthermore the
Lagrangian dual problem requires many more iterations to converge. We address
these two problems in this paper to improve the Lagrangian relaxation method
to generate tight upper and lower bounds for RcpspDc problems with up to
10,000 activities.

The contributions of this paper are: (i) We propose a general approach to
relax as few as possible of the precedence constraints but still obtain activity
clusters small enough to be solved efficiently. (ii)We define a hierarchical scheme
to accelerate the convergence of the Lagrangian multipliers for the precedence
constraints when using subgradient algorithm. (iii) We parallelise the algorithm
to make more effective use of modern multi-core desktop computers. (iv) We
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produce highly competitive results on very large underground mining problems
within a reasonable computing time.

2 Lagrangian Relaxation of Resource Constraints

Let T be the deadline of the project, α the discount rate, Rk be the capacity of
resource k ∈ R, rjk be the resource requirement of activity j ∈ J on resource k,
pj be the processing time of activity j, cj is the discounted cash flow for activity
j to start at time 0, and precedence constraint (i, j) ∈ L if activity j cannot start
before activity i completes. The RcpspDc problem can be stated as follows:

NPV = maximise
∑

j e
−αsjcj (1)

subject to si + pi ≤ sj (i, j) ∈ L (2)

cumulative(s, p, [rjk|j ∈ J ], Rk) k ∈ R, (3)

0 ≤ sj ≤ T − pj j ∈ J. (4)

where sj , j ∈ J is the start time of activity j. This model uses the global con-
straint cumulative, and hence requires a CP technology to solve directly.

The time-indexed formulation for the RcpspDc problem, breaks the start
time variables into binary form, and encodes the resource constraints explicitly
for each time point, giving a binary program. Let wjt be the discounted cash
flow of activity j when starting at time t, i.e. wjt = e−αtcj . The time-indexed
formulation is [8]:

NPV = maximise
∑

j

∑
t wjtxjt (5)

subject to
∑

t xjt = 1 j ∈ J (6)∑T
s=t xis +

∑t+pj−1
s=0 xjs ≤ 1 ∀(i, j) ∈ L, t = 0, · · · , T (7)∑

j rjk(
∑t

s=t−pj+1 xjs) ≤ Rk k ∈ R, t = 0, · · · , T (8)

all variables binary (9)

where the binary variable xjt = 1 if activity j starts at t (sj = t), and xjt = 0
otherwise. The assignment constraints (6) ensure that each activity has exactly
one start time. The precedence constraints (7) imply that activity j cannot start
before t+pj if activity i starts at or after time t for each (i, j) ∈ L. The resource
constraints (8) enforce that the resource consumption of all activities processed
simultaneously must be within the resource capacity.

The Lagrangian relaxation method identifies “hard” constraints in the opti-
misation problem, and removes these “hard” constraints by putting them in the
objective function as penalties for the violation of these relaxed constraints [10].
The Lagrangian Relaxation Problem (LRP) obtained by relaxing the resource
constraints (8) with Lagrangian multipliers λkt, k ∈ R, t = 0, · · · , T is

ZLR(λ) = maximise LRP (x) (10)

subject to (6), (7), (9) (11)
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where

LRP (x) =
∑
j

∑
t

wjtxjt +
∑
k∈R

∑
t

λkt(Rk −
∑
j

rjk(
t∑

s=t−pj+1

xjs)) (12)

By rearranging the terms in (12) we have

LRP (x) =
∑
j

∑
t

zjtxjt +
∑
k∈R

∑
t

λktRk (13)

where

zjt = wjt −
t+pj−1∑

s=t

∑
k∈R

λksrjk (14)

The Lagrangian multiplier λks can be interpreted as the unit price for using
resource k at time period s. The discounted cash flow of activity j starting at
time t is then further reduced in (14) by the amount paid for all the resources
used from the start to the completion of this activity. It is well-know [10] that
ZLR(λ) is a valid upper bound of RcpspDc for λ ≥ 0.

The polytope described by (6), (7), and (9) is integral [4]. However, it is
inefficient to solve LRP using a general LP solver. Instead, it can be transformed
into a minimum cut problem [18] and solved efficiently by a general max-flow
algorithm. We briefly explain the network flow model of [18], denoted by G =
(V,A) in order to be self-contained. The node set V = {a, b}∪

⋃
i∈J Vi is defined

as

– a is the source node and b is the sink node.
– Vi = {vit|t = e(i), · · · , l(i)+1} where e(i) and l(i) are the earliest and latest

start time of activity i respectively.

The directed edge set A = Aa ∪Ab ∪ AA
i ∪ AP

i,j is defined as

– Aa = {(a, vj,e(j))|∀j ∈ J} are the auxiliary edges connecting the source and
the first node of each activity. All edges in Aa have infinite capacity.

– Ab = {(vj,l(j)+1, b)|∀j ∈ J} are the auxiliary edges connecting the last node

of each activity and the sink. All edges in Ab have infinite capacity.
– AA

i = {(vit, vi,t+1)|t = e(i), · · · , l(i)} are the assignment edges that forms a
chain for each activity. (vit, vi,t+1) has capacity zit.

– AP
i,j = {(vit, vj,t+pi)|e(i) + 1 ≤ t ≤ l(i), e(j) + 1 ≤ t + pi ≤ l(j)} are the

precedence edges for (i, j) ∈ L. All the precedence edges have infinite capac-
ity.

Since the network flow model has O(|J |T ) nodes and O((|J | + |L|)T ) edges, a
state of the art max-flow solver [5] can solve it in O(|J ||L|T 2 log(T )). We use
the push-relabel implementation in c++ BOOST BGL [23] which is based on
the source code of the authors of [5]. This implements the highest-label version
of the push-relabel method with global relabeling and gap relabeling heuristics.
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With just 1400 activities and T = 4000 the network has about 5 million nodes
and it takes on average 4 minutes to solve the maximum flow problem. For some
larger cases we could not even set up the network model on a desktop computer
with 16GB memory.

3 Lagrangian Relaxation of Precedence Constraints

To overcome the scalability problem of the max-flow algorithm we further relax
some precedence constraints so that activities can form clusters that are indepen-
dent from each other. We partition the set of activities J into J = J1∪J2∪· · ·∪JU

where U is the given number of clusters. The multi-cut of this partition is defined
as the set of precedence constraints E = {(i, j) ∈ L|i ∈ Jp, j ∈ Jq, p �= q}. Denote
the set of precedence relations that hold on cluster Ji by Li = {(k, j) ∈ L|k ∈
Ji, j ∈ Ji}. Obviously we have L = E ∪ L1 ∪ · · · ∪ LU . As an example given if
Figure 1, the set of nine activities is partitioned into J1 = {1, 3, 5}, J2 = {2, 4, 6}
and J3 = {7, 8, 9}. The multi-cut of this partition is E = {e1, e2, e3, e4}.

Fig. 1. Example of multi-cut for 9 activities and 3 clusters

To reduce the number of Lagrangian multipliers introduced for the relaxed
precedence relations, we use the weak form of the precedence constraints [18]∑

t

t(xjt − xit) ≥ pi, ∀(i, j) ∈ E (15)

We give the details here how (15) can be derived by (6) and (7) even when xjt

is allowed to be fractional. By rewriting (6) as

s=t+pj−1∑
0

xjs +
∑

s=t+pj

xjs = 1

and replacing the common terms in (7) we get∑T
s=t xis + 1−

∑
s=t+pj

xjs ≤ 1

⇒ xit +
∑T

s=t+1 xis − (
∑T

s=t+1 xjs −
∑t+pi−1

s=t+1 xjs) ≤ 0

⇒
∑T

s=t+1(xjs − xis) ≥
∑t+pi−1

s=t+1 xjs + xit (16)
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By summing up (16) over all t we have

∑
t

t(xjt − xit) ≥
∑
t

t+pi−1∑
s=t+1

xjs +
∑
t

xit

=

pi−1∑
k=1

∑
s=k

xjk + 1

=

pi−1∑
k=1

∑
s=0

xjk + 1 = pi

which exploits that xjt = 0, t = 0, · · · , pi − 1.
By relaxing the precedence constraints (15) with Lagrangian multipliers μ we

can obtain a Decomposable Lagrangian Relaxing Problem (DLRP)

ZLR(λ, μ) = maximise LRP (x) +
∑

v=(i,j)∈E μv(
∑

t t(xjt − xit)− pi) (17)

subject to (6), (9) (18)∑T
s=t xis +

∑t+pj−1
s=0 xjs ≤ 1 ∀(i, j) ∈ L\E, t = 0, · · · , T (19)

Let the set of precedence constraints in the multi-cut that have activity i as
predecessor be Pi = {(i, j) ∈ E}, the set of precedence constraints in the multi-
cut that have activity i as successor be Si = {(j, i) ∈ E}. For the example
in Figure 1, we have empty Pi and Si except that P2 = {e1}, S3 = {e1},
P5 = {e2, e4}, S6 = {e2}, P6 = {e3}, S7 = {e3}, and S8 = {e4}.

By rearranging the items in the objective function of DLRP in (17), we get

LRP (x) +
∑
j

∑
t

(
∑
e∈Sj

tμe −
∑
e∈Pj

tμe)xjt −
∑

e=(i,j)∈E
μepi (20)

By ignoring the constant terms the DLRP can be decomposed into U indepen-
dent subproblems on each of the clusters Jk, k = 1, · · · , U

maximise
∑

j∈Jk

∑
t(zjt +

∑
e∈Sj

tμe −
∑

e∈Pj
tμe)xjt (21)

subject to
∑

t xjt = 1 j ∈ Jk (22)∑T
s=t xis +

∑t+pj−1
s=0 xjs ≤ 1 ∀(i, j) ∈ Lk, t = 0, · · · , T (23)

all variables binary (24)

Since each subproblem has smaller size, the max-flow solver can solve DLRP
much faster than LRP. Also these subproblems can be solved in parallel utilising
the multi-core computers that are now very popular. If main memory of the
computer is a bottleneck we can construct the network flow model of each cluster
on the fly. In this way we have solved the DLRP with over a hundred million
variables within 500M memory.

The upper bound will become worse, i.e., ZLR(λ) ≤ ZLR(λ, μ) since the weak
form of the precedence constraints is used. Our goal therefore is to relax as
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few as possible the precedence constraints but still obtain activity clusters small
enough to solve efficiently as a maximum flow problem. This can be formulated
as the Min-Cut Clustering problem (MCC) as in [15]

minimise
∑U

g=1

∑
e∈L zeg (25)

subject to
∑U

g=1 xig = 1 i ∈ J (26)

xig − xjg ≤ zeg ∀e = (i, j) ∈ L, g = 1, · · · , U (27)

l ≤
∑

i∈J xig ≤ u g = 1, · · · , U (28)

all variables binary (29)

where U is the upper bound of the number of clusters, xig is 1 if activity i
is included in the cluster g, and otherwise 0. The set partitioning constraints
(26) make sure that each activity is contained in only one cluster; constraints
(27) and the minimisation of (25) imply that the binary variable zeg is 1 if the
predecessor activity of e is included in the cluster g but the successor activity is
in a different cluster, and otherwise 0; constraints (28) ensure that the cluster
size is within the specified range [l, u].

MCC is also NP-hard, and only small problems can be solved to optimality.
For our purpose the cluster size constraints (28) are just soft constraints. We
can use heuristics to generate good partitions very quickly. Our experimentation
with METIS [16] shows that the project with 11,000 activities can be partitioned
into 100 balanced parts within 0.1 second and only 384 precedence constraints
need to be relaxed.

4 Hierarchical Subgradient Algorithm (HSA)

The upper bound obtained by solving DLRP can be tightened by optimising the
Lagrangian Dual Problem(LDP) as

min
λ≥0,μ≥0

ZLR(λ, μ) (30)

We use the standard subgradient algorithm (SSA) [10] which updates the La-
grangian multipliers at the ith iteration (λi, μi) according to

(λi+1, μi+1) =

[
(λi, μi)− δi

ZLR(λ
i, μi)− LB∗

||giλ||2 + ||giμ||2
(giλ, g

i
μ)

]+
(31)

where [·]+ denotes the non-negative part of a vector, δi is a scalar step size, LB∗

is the best known lower bound, and (giλ, g
i
μ) is a subgradient calculated as

giλ(k, t) = Rk −
∑
j

rjk(

t∑
s=t−pj+1

xi
js) (32)

and
giμ(j, k) =

∑
t

t(xi
kt − xi

jt)− pj ∀(j, k) ∈ E (33)
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where xi is the optimal solution of DLRP at the ith iteration.
In practice δi is reduced by a factor ρ if ZLR is not improved by at least Δi

after p iterations. The algorithm can terminate when δi is small enough to avoid
excessive iterations.

The subgradient algorithm tends to converge slowly for problems of high di-
mensions due to the zig-zag phenomenon [25]. For large RcpspDc problems we
observed that the convergence of the precedence multipliers μ was extremely
slow using the updating rule (31). The reasons could be

– The contribution of the precedence multipliers in the objective function value
ZLR is trivial. It can be even smaller than Δi which is used to test if the
upper bound is improved. Too small Δi can only lead to excessive iterations
before δi can be reduced.

– In (31) the resource component of the subgradient ||giλ||2 is much larger than
the precedence component ||giμ||2, which may lead to steps too small for the
convergence of μ.

Good μ can lead to near-feasible solution with respect to the precedence con-
straints, which is important for the Lagrangian relaxation based heuristics to
produce good lower bound. We will demonstrate this in Section 6.

To accelerate the convergence of precedence multipliers we introduce a hier-
archical subgradient algorithm (HSA) which has two levels. At the first level we
update the multipliers according to (31) for a certain number of iterations i1
and then move to the second level by just updating the precedence multipliers
as

μi+1 =

[
μi − δiδiμ

ZLR(λ
i, μi)

||giμ||2
giμ

]+
(34)

Only δiμ is reduced at the second level if ZLR is not improved after p iterations.
After a certain number of iterations i2 the algorithm will switch back to the first
level. This process is repeated until some stopping criterion are met.

5 Lagrangian Relaxation Based Heuristic

The Lagrangian relaxation DLRP produces upper bounds for the original NPV
problem. But in practice we are interested in finding feasible solutions of high
value. We can use the Lagrangian relaxation solution to create a heuristic which
created strong solutions. Combining Lagrangian relaxation with list scheduling
has been previously successfully applied to different variants of Rcpsp [18] [17]
problems.

The basic idea is motivated by the intuition that violation of relaxed constraints
tend to be reduced in the course of the subgradient optimization. Therefore, a
near-feasible solution of the Lagrangian relaxation contains valuable information
on how conflicts on constraints can be resolved. In [18] the activities are sorted in
the increasing order of the so called α−point. Assume the Lagrangian relaxation
solution assigned start time lj , j ∈ J to each activity. The α−point is calculated
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as lj + α ∗ pj which is the earliest time that at least α of the activity has com-
pleted if the activity starts at lj . α is normally evenly chosen between 0 and 1. A
parallel list scheduling scheme [11] is then employed to produce feasible solutions.
For RcpspDc left and right shifting techniques are used to further improve the
solution quality [17] of the parallel list scheduling using just the start time in the
Lagrangian relaxation solution.

We use the parallel list scheduling scheme to generate feasible solution at each
iteration of the subgradient algorithm. The list scheduling scheme starts at time
t = 0, and determines the subset of candidate activities j ∈ A for scheduling as
those whose predecessors have all completed si + pi ≤ t, (i, j) ∈ L, and whose
start time lj ≤ t. The candidate activities j ∈ A are then scheduled, so sj is set,
in increasing order of lj , where the resource requirements are satisfied. Candidate
activities j ∈ A with positive cash flow (cj > 0) are moved as early as possible
(so it may be the case that sj < lj). After an activity i is scheduled, its successor
j where (i, j) ∈ L activities may become eligble for scheduling and are added
to the candidates A. The process continues until no activity is schedulable at or
before time t. We then set t := t+ 1 and repeat.

A schedule created in this way will almost always have a makespan ms larger
than the deadline T . To overcome this we simply modify the Lagrangian relax-
ation solution lj, j ∈ J used to drive the heuristic. We set lj := li − T + ms for
all j ∈ J . This means there is many more candidate activities at the start of the
search, and also allows activities with negative cash flows to be scheduled earler.

6 Experiments

We implemented the algorithms in C++. BOOST version 1.49.0 [1] is used for
the max-flow solver and multi-threading. METIS version 5.0 [16] is used to solve
the MCC problem. All tests were run on a Dell PowerEdge R415 computer with
two 2.8GHz AMD 6-Core Opteron 4184 cpu which has 3M L2 and 6M L3 Cache,
and 64 GB memory. We use the same set of parameters for all the tests. For the
subgradient algorithm we use δ0 = 1 in (31), δ0μ = 0.01 in (34), the threshold for

significant objective value improvement is Δi = 0.0001ZLR(λ
i, μi), the number

of iterations for reducing δi is p = 3 and the factor ρ = 0.5, the maximal number
of iterations for each level of HSA is i1 = i2 = 10, and the maximal number of
iterations for the list scheduling heuristic is i3 = 20.

6.1 Test Cases

Table 1 shows six of the eight test cases we obtained from a mining consulting
company. The other two have no resource constraints and can be solved to opti-
mality within 2 minutes. The first column in the table is the name of each case.
The next two columns are the number of activities |J | and the average number
of successors of each activity in the precedence constraints L. The fourth col-
umn is the number of resources |R|. The fifth column is the number of Natural
Clusters (NC) which is the number of clusters without relaxing any precedence
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Table 1. Test cases for large RcpspDc

case name |J | |L|/|J | |R| T NC (U ,|E|)
caNZ def 1410 1.18 7 3040 14 (10,38) (50,126) (100,233)
caW 2817 1.26 2 3472 1 (10,120) (50,314) (100,578)
caGL 3838 1.16 5 2280 17 (10,59) (50,174) (100,269)

caZ 5032 1.36 5 8171 1 (50,274) (100,427)
caCH 8284 1.24 4 7251 1 (100,623) (200,866)
caZF 11769 1.16 5 6484 1 (100,384) (200,595)

Table 2. Test results for relaxing resource constraints only

case name makespan ub lb gap ite time |V | |A|
canNZ def 3040 1.199E9 1.140E9 0.0496 81 10370 2874917 5854335
caW 3471 6.014E8 4.681E8 0.2217 72 12336 6178671 13449822
caGL 2269 1.055E9 1.021E9 0.0318 86 60885 6371416 13224808

constraints. The remaining columns give the pairs of the number of obtained
clusters (U) after relaxing the number of precedence constraints (E) by solving
MCC. These test cases ranges from about 1400 activities to about 11,000 activ-
ities. The average number of successors per activity is small for all of these test
cases. However only the smaller canNZ def and caGL have natural clusters. Even
for these two cases the natural clusters are not balanced in size. For example
38 precedence constraints have to be relaxed for canNZ def to have 10 balanced
clusters which is smaller than the number of natural clusters. It can be seen that
more precedence constraints have to be relaxed when the number of clusters
required increases. We omit here the running times of METIS because all MCC
instances for our six test cases in Table 1 can be solved within 0.1 seconds.

6.2 Relaxing Resource Constraints Only

Without relaxing precedence constraints we can only solve the three smaller test
cases and the results are shown in Table 2. The makespan of the feasible solution
with the best npv, the upper bound(ub) and lowerbound(lb) are reported in
columns 2 to 4. The fifth column is the optimality gap calculated as (ub− lb)/ub.
The next two columns are the total number of iterations for the subgradient
algorithm, and the total cpu time. The last two columns are the number of nodes
|V | and number of edges |A| in the network model for solving the Lagrangian
relaxation problem. All times are in seconds. Entries in bold are the best over
entries in Tables 2–5. It can be seen that caNZ def and caGL have very good
optimality gaps which are under 5%, while caW has quite a large gap. Although
caW and caGL have similar sizes of network flow model, caGL is much slower to
solve. The reason could be that caGL has larger edge capacities which can also
affect the performance of max-flow algorithm.
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Table 3. Test results of SSA for comparison with HSA

case name U makespan ub lb gap ite time

canNZ def 10 3035 1.202E9 1.047E9 0.128 96 2261
caW 10 — 6.036E8 — — 62 2103
caGL 10 2237 1.058E9 1.010E9 0.046 89 7887

caZ 100 7969 3.003E8 1.259E8 0.581 100 19357
caCH 200 7251 3.031E9 2.326E9 0.232 100 18885
caZF 200 6337 3.979E8 2.091E8 0.474 100 11371

Table 4. Test results of HSA for comparison with SSA

case name U makespan ub lb gap ite time

canNZ def 10 3033 1.200E9 1.136E9 0.054 100 6330
caW 10 3456 6.017E8 4.803E8 0.202 100 6657
caGL 10 2254 1.056E9 1.019E9 0.035 100 9523

caZ 100 7931 2.919E8 1.735E8 0.406 100 23076
caCH 200 7251 3.060E9 2.449E9 0.200 100 44353
caZF 200 6368 3.952E8 2.394E8 0.394 100 17318

6.3 Relaxing Both Resource and Precedence Constraints

We first study how convergence can be affected after relaxing precedence con-
straints by comparing the standard subgradient algorithm (SSA) and the heirar-
chical subgradient algorithm (HSA). The maximal number of iterations is set to
be 100 for all tests. We use 10 cores to speed up the tests.

The results for SSA and HSA are reported in Table 3 and Table 4 respectively.
For the three smaller test cases it can be seen clearly that the upper bounds are
trivially worsened by relaxing precedence constraints. However the lower bounds
become significantly worse if SSA is used. The test case caW could not even find
a feasible solution. In sharp contrast HSA finds a better lower bound for caW
than without precedence constraint relaxation. This shows that HSA makes the
Lagrangian multipliers associated with precedence constraints converge much
faster. For the three larger cases HSA produces much better lower bounds than
SSA especially for caZ. However SSA got a better upper bound for caCH. The
reason is that HSA only uses half the number of iterations on updating the
Lagrangian multipliers associated with the resource constraints. All the following
tests will use HSA because of the overwhelming advantages on lower bounds over
SSA.

We study how the quality of bounds are affected by the number of clusters.
The results are reported in Tables 4 and 5. For the three smaller test cases, both
upper bounds and lower bounds consistently become worse with the number
of clusters increased. The lower bounds are more adversely affected than the
upper bounds. For the three larger test cases the worsening of upper bounds is
more than 1% after the number of clusters is doubled. However the lower bounds
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Table 5. Test results for effects of the number of clusters

case name U makespan ub lb gap ite time

canNZ def 10 3033 1.200E9 1.136E9 0.054 100 6330
canNZ def 50 3030 1.202E9 1.125E9 0.064 100 1349
canNZ def 100 3025 1.203E9 1.100E9 0.086 100 967

caW 10 3456 6.017E8 4.803E8 0.202 100 6657
caW 50 3457 6.025E8 4.615E8 0.234 100 4390
caW 100 3460 6.036E8 4.380E8 0.274 100 3699

caGL 10 2254 1.056E9 1.019E9 0.035 100 9523
caGL 50 2228 1.060E9 1.017E9 0.040 100 3574
caGL 100 2218 1.060E9 1.010E9 0.047 100 2337

caZ 50 7909 2.856E8 1.714E8 0.400 100 31180
caZ 100 7931 2.919E8 1.735E8 0.406 100 23076

caCH 100 7251 3.023E9 2.365E9 0.218 100 64758
caCH 200 7251 3.060E9 2.449E9 0.200 100 44353

caZF 100 6427 3.860E8 2.398E8 0.379 100 27663
caZF 200 6368 3.952E8 2.394E8 0.394 100 17318

become significantly better on caZ and caCH. The reason could be that list
scheduling is not robust. But it can also be that the HSA does not converge well
on the Lagrangian multipliers related to the precedence constraints. By setting
i1 = i2 = 50 and keeping the maximal number of iterations the same we get
lower bound 1.86E8 for caZ with U = 50. This suggests more work need to be
done to adaptively tune parameters of HSA.

We next study the impact on solution time from using the techniques in
the paper. We calculate the speedup factor fd due to solving DLRP instead of
LRP as

fd = ATL/ATD

where ATD is the average solution time of DLRP while ATL is the average
solution time of LRP. We also calculate the speedup factor fp due to solving
DLRP using multi-cores as

fp = ATD/ATM

where ATM is the average solution time of DLRP with multi-cores. We imple-
mented a thread pool using the BOOST thread library. If the number of clusters
is larger the number of cores available the longest solution time first rule [9] is
used to schedule the threads. Solution time is estimated based on the previous
iterations. If the estimation of the solution time produces the same list of threads
as using the real solution time, this rule has performance guarantee 4/3 .

The results for smaller cases are reported in Table 6 using 10 threads. It can
be seen that the benefit from increasing the number of clusters is small. The
reason is that the complexity of the max-flow algorithm depends not just on the
size of the cluster but also on the number of precedence constraints on it. The
capacities of the edges can also be an important factor. It is interesting to see
that fd is even less than 1. We show the solution time of caW for each iteration
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Table 6. Test results for speedups due to decomposition and parallelization as an effect
of the number of clusters

case name U = 10 U = 50 U = 100
fd fp fd ∗ fp fd fp fd ∗ fp fd fp fd ∗ fp

canNZ def 0.94 2.16 2.02 1.68 5.63 9.49 2.46 5.38 13.24
caW 0.92 2.81 2.57 0.63 6.18 3.90 0.76 6.11 4.63
caGL 1.50 4.97 7.43 3.32 5.97 19.81 5.11 5.93 30.29

with U = 50 in Figure 6.3(a). The solution times at the first few solutions are
quite small. After the capacities of edges are updated according to the HSA, the
solution times increase quickly. We also show the solution time of caW for each
cluster with U = 50 in Figure 6.3(b). It can be seen that some clusters have
much larger solution time than others.

(a) Time for each iteration (b) Time for each cluster

Fig. 2. Solutions times for caW with U = 50

We cannot calculate fd for the larger cases. fp is similar to those of the smaller
cases.

The mining consulting company also provides us with the results from two
other research teams J and D. J sets a time limit of 5 hours but does not disclose
details of their method. D sets a time limit of 1 hour and is based on Ant Colony
Optimisation. We report our results with a time limit of 5h in Table 7 along
with J and D’s results. Although D’s method is the fastest, it has difficulty in
finding good solutions when the deadline is tight. It has the largest makespans
for all the cases except for caZ. We don’t know how it performs if running time
is extended to 5 hours. For the three smaller cases we cannot produce solutions
with the same makespan as J’s. However our npv are significantly larger with
small increase of the makespan. For the three larger cases our method produces
solutions with tightest makespan and best npv. For caCH our npv is almost 40%
higher than J’s.
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Table 7. Comparison with J and D’s methods in 5 hours limit

LR J D
case name Makespan ub npv |U | makespan npv Makespan npv

canNZ def 3040 1.199E9 1.140E9 1 3014 1.040E9 3559 9.810E8
caW 3456 6.017E8 4.803E8 10 3417 4.670E8 3472 4.740E8
caGL 2254 1.056E9 1.019E9 10 2196 9.920E8 2283 1.010E9
caZ 7931 2.997E8 1.735E8 100 8171 1.670E8 8078 1.670E8
caCH 7251 3.215E9 2.449E9 200 7251 1.750E9 8097 1.700E9
caZF 6368 3.952E8 2.394E8 200 6384 2.290E8 6904 2.290E8

7 Conclusion

We have applied a Lagrangian relaxation method for large RcpspDc problems
by relaxing both resource and precedence constraints. By minimising the num-
ber of relaxed precedence constraints we can still achieve relatively tight upper
and lower bounds. Together with a parallel implementation and a hierarchi-
cal subgradient algorithm this approach produced highly competitive results on
very large underground mining problems within reasonable computing time. Fur-
ther work is needed to combine with the CP technologies to improve solution
qualities.
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Abstract. The machine reassignment problem is defined by a set of machines
and a set of processes. Each machine is associated with a set of resources, e.g.
CPU, RAM etc., and each process is associated with a set of required resource
values and a currently assigned machine. The task is to reassign the processes to
machines while respecting a set of hard constraints in order to improve the us-
age of the machines, as defined by a complex cost function. We present a natural
Constraint Programming (CP) formulation of the problem that uses a set of well-
known global constraints. However, this formulation also requires new global
constraints. Additionally, the instances are so large that systematic search is not
practical especially when the time is limited. We therefore developed a CP for-
mulation of the problem that is especially suited for a large neighborhood search
approach (LNS). We also experimented with a mixed-integer programming (MIP)
model for LNS. We first compare our formulations on a set of ROADEF’12 prob-
lem instances where the number of processes and machines are restricted to 1000
and 100 respectively. Both MIP and CP-based LNS approaches find solutions that
are significantly better than the initial ones and compare well to other submitted
entries. We further investigate their performances on larger instances where the
number of processes and machines can be up to 50000 and 5000 respectively. The
results suggest that our CP-based LNS can scale to large instances and is superior
in memory use and the quality of solutions that can be found in limited time.

1 Introduction

The management of data centres provides a rich domain for constraint programming,
and combinatorial optimisation in general. The EU Stand-by Initiative recently pub-
lished a Code of Conduct for Energy Efficiency in Data Centres.1 This report stated
that in 2007 Western European data centres consumed 56 Tera-Watt Hours (TWh) of
power, which is expected to almost double to 104 TWh per year by 2020. A typical
optimisation challenge is workload consolidation whereby one tries to keep servers
well utilised such that the power costs are minimised. A naı̈ve model for the problem
of loading servers to a desired utilisation level for each resource can be regarded as a
multi-dimensional bin packing problem [6]. In such a model the servers are represented
by bins and the set of resources define the set of dimensions. Many related optimisation

1 http://re.jrc.ec.europa.eu/energyefficiency/html/
standby initiative data centers.htm
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problems arise in this domain, such as the adaptive control of virtualised resources [3],
and cluster resource management [5,9]. A MIP approach to dynamically configuring
the consolidation of multiple services or applications in a virtualised server cluster has
been proposed [4]. That work both focuses on power efficiency, and considers the costs
of turning on/off the servers. Power and migration cost-aware application placement
has also been considered [8,7].

Given the growing level of interest from the optimisation community in data centre
optimisation and virtualisation, the 2012 ROADEF Challenge is focused on the topic
of machine reassignment, a common task in virtualisation and service configuration
on data centres.2 We present a mixed integer programming and a constraint program-
ming solution for the problem. We also present a large neighbourhood search scheme
for both. Our results show that as the problem size grows, the CP approach is signif-
icantly more scalable than the MIP approach. This demonstrates the applicability of
CP, and in particular LNS, as a promising optimisation approach for this application
domain.

2 Problem Description and Notations

In this section, we describe the 2012 machine reassignment problem of ROADEF/EURO
Challenge, which was in collaboration with Google. For more details the reader is re-
ferred to the specification of the problem, which is available online3. We also introduce
some notations that will be used throughout the paper. Let M be the set of machines
and P be the set of processes. A solution of the machine reassignment problem is an
assignment of each process to a machine subject to a set of constraints. The objective is
to find a solution that minimizes the cost of the assignment.

2.1 Constraints

Capacity Constraints. Let R be the set of all resources (e.g., CPU, RAM, etc.). Let cmr

be the capacity of machine m for resource r and let rpr be the requirement of process p
for resource r. The usage by a machine m of resource r, denoted by umr, is equal to the
sum of the amount of resource required by processes which are assigned to machine m.
The usage by a machine of a resource should not exceed the capacity of the resource.

Conflict Constraints. A service is a set of processes. Let S be the set of services that
partition P . The processes of a service should be assigned to different machines.

Spread Constraints. A location is a set of machines. Let L be the set of all locations
that partition the machines. We abuse the notation by using L(m) to denote the loca-
tion of machine m. The processes of a service s should be assigned to the machines
such that their corresponding locations are spread over at least spreadmins number of
locations.

2 http://challenge.roadef.org/2012/en/index.php
3 http://challenge.roadef.org/2012/files/
problem definition v1.pdf

http://challenge.roadef.org/2012/en/index.php
http://challenge.roadef.org/2012/files/problem_definition_v1.pdf
http://challenge.roadef.org/2012/files/problem_definition_v1.pdf
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Neighborhood Constraints. A neighborhood is a set of machines that partition the
machines. Let N be the set of all neighborhoods. We abuse the notation by using N(m)
to denote the neighborhood of machine m. If service s depends on service s′ then it is
denoted by 〈s, s′〉. Let D be the set of such dependencies. If 〈s, s′〉 ∈ D then the set of
the neighborhoods of the machines assigned to the processes of s must be a subset of
the set of the neighborhoods of the machines assigned to the processes of service s′.

Transient Usage Constraints. Let op be the original machine assigned to a process p.
When a process is moved from op to another machine, some resources, e.g., hard disk,
are required in both source and target machines during the move. These resources are
called transient resources. Let T ⊆ R be the set of transient resources. The transient
usage of a machine m for a resource r ∈ T is equal to sum of the amount of resource
required by processes whose original or current machine is m. The transient usage of a
machine for a given resource should not exceed the capacity of the resource.

2.2 Costs

Load Cost. It is usually not a good idea to use the full capacity of a resource. The
safety capacity limit provides a soft limit, any use above that limit incurs a cost. Let
scmr be the safety capacity of machine m for resource r. The load cost for a resource r
is equal to

∑
m∈M max(0, umr − scmr).

Balance Cost. In order to balance the availability of resources, a balance b can be
defined by a triple of resources r1b and r2b , and a multiplier tb. Let B be the set of all
such triples. For a given triple b, the balance cost is

∑
m∈M max(0, tb × A(m, r1b ) −

A(m, r2b )) with A(m, r) = cmr − umr.

Process Move Cost. Let pmcp be the cost of moving a process p from its original
machine to any other machine. The process move cost is the sum of all pmcp such that
p is moved from its original machine.

Service Move Cost. To balance the movement of processes among services, a service
move cost is defined as the maximum number of moved processes for only services.

Machine Move Cost. Let mmc(m1,m2) be the cost of moving a process from a ma-
chine m1 to a machine m2. Obviously, if m1 is equal to m2 then this cost is 0. The
machine move cost is the sum of these costs for all processes.

Objective Function. The objective is to minimize the weighted sum of all load-costs,
balance-costs, service-move cost, process-move and machine-move cost of each pro-
cess. Let wr be the weight of the load-cost for r ∈ R, vb be the weight of the balance
cost for b ∈ B, wpmc be the weight for process move cost, wsmc be the weight for
service move cost, and wmmc be the weight for machine move cost.

3 Finite Domain Model

In this section, we present a natural finite domain constraint programming formulation
of the machine reassignment problem.
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3.1 Variables

For each process p, we use three integer variables: (1) a variable xp which indicates
the machine to which process p is assigned, (2) a variable lp indicating the location
of the machine to which process p is assigned, and (3) a variable np indicating the
neighborhood of the machine to which process p is assigned.

3.2 Constraints

We use the constraint format of the Global Constraint Catalog [1]. Of course, the names
and arguments of constraints for specific constraint solvers may differ.

Projection. Let LT and NT be two integer arrays for mapping a machine to its location
and its neighborhood. We need element constraints to project from the decision variable
xp to the location and the neighborhood respectively:

∀p∈P : element(xp,LT, lp), (1)

∀p∈P : element(xp,NT, np). (2)

Capacity. The hard capacity constraints can be expressed with a bin packing capa
global constraint for each resource:

∀r∈R : bin packing capa([(m, cmr)|m ∈M ], [(xp, rpr)|p ∈ P ]). (3)

Conflict. All processes in the same service must be allocated to different machines, i.e.
they must be alldifferent:

∀s∈S : alldifferent([xp|x ∈ s]). (4)

Spread. A service s must run in at least spreadmins locations:

∀s∈S : atleast nvalue(spreadmins, [lp|p ∈ s]). (5)

Dependency. If a service s depends on another s′, then that service must run in all
neighborhoods where s is running:

∀〈s, s′〉 ∈ D : uses([np′ |p′ ∈ s′], [np|p ∈ s]). (6)

Transient. For the transient resource, we have to add some optional tasks, which only
occur if the process is not assigned to its original value op. Different constraint systems
will require different techniques to implement this. In the best case, optional tasks are
available, or resource height can be a variable. In the worst case, dummy tasks with
escape values should be considered:

∀r∈T : bin packing capa([(m, cmr)|m ∈M ],

[(xp, rpr)|p ∈ P ] ∪ [(op, rpr)|xp �= op]).
(7)
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3.3 Objective

The five different costs described in Section 2 depend on the assignment of a machine
to a process. A standard way of modelling the objective function would be an addi-
tive, weighted sum of these costs. However, it seems unlikely that such a sum of the
different cost factors would allow any significant constraint propagation. Furthermore,
systematic search does not seem to be a feasible approach especially when the size of
the instance is very large and the solution-time is very limited. Therefore it did not lead
to a working system.

4 A Mixed Integer Linear Programming Model

In this section we present a mixed integer linear programming formulation of the ma-
chine reassignment problem. We use the notation a := b to abbreviate expression b with
name a. We may, but do not have to, create a new variable for a.

4.1 Variables

xpm A binary variable that indicates if process p is running on machine m. Thus, xpop

indicates that the process is not moving, while (1−xpop) indicates that the process
is moving from its original assignment op.

ysl A binary variable that indicates if service s is running in location l.
zsn A binary variable that states that service s is running in neighborhood n.
lcmr A continuous (non-negative) variable for resource r on machine m that shows

how much the usage exceeds the safety capacity.
bcbm A continuous (non-negative) variable for balance b on machine m that links re-

sources r1b and r2b with multiplier tb.
smc A continuous (non-negative) variable for cost of moving processes of the services.

The following may be used as abbreviations or variables depending on the system that
is used: (1) umr denotes resource usage of machine m for resource r, (2) amr denotes
free capacity of machine m for resource r, (3) lcr denotes load cost of resource r, (4)
bcb denotes balance cost of balance b, (5) pmc denotes process move cost, (6) smcs
contribution of service s to service move cost, (7) mmcp contribution of process p to
machine move cost, and (8) mmc denotes machine move cost.

4.2 Constraints

Assignment. Every process must be allocated to exactly one machine.

∀p∈P :
∑
m∈M

xpm = 1 (8)

Capacity. For each resource, the resource use for all processes on one machine must
be below the resource limit of that machine. We denote with umr the resource use on
machine m for resource r by all process which run on this machine.

∀r∈R∀m∈M : umr :=
∑
p∈P

rprxpm ≤ cmr (9)
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Conflict. Processes belonging to the same service can not be run on the same machine.

∀s∈S∀m∈M :
∑
p∈s

xpm ≤ 1 (10)

Spread. A service must run in at least spreadmin locations. We introduce ysl to denote
if one of the processes in service s is running on one of the machines in location l.

∀l∈L∀s∈S :
∑
m∈l

∑
p∈s

xpm ≤ |l||s|ysl (11)

∀l∈L∀s∈S :
∑
m∈l

∑
p∈s

xpm ≥ ysl (12)

∀s∈S :
∑
l∈L

ysl ≥ spreadmins (13)

Dependency (I). If a service depends on another service, then that service must run in
the same neighborhood.

∀〈s,s′〉∈D∀n∈N∀p∈s∀m∈n : xpm ≤
∑
p′∈s′

∑
m′∈n

xp′m′ (14)

Dependency (II). Dependency (I) seems to require too many constraints, we can intro-
duce binary variables zsn which indicate that service s is run in neighborhood n. We
then have the constraints to link the xpm and the zsn variables:

∀n∈N∀s∈S :
∑
m∈n

∑
p∈s

xpm ≤ |n||s|zsn (15)

∀n∈N∀s∈S :
∑
m∈n

∑
p∈s

xpm ≥ zsn (16)

For every service dependency and every neighborhood, we have an implication:

∀〈s,s′〉∈D∀n∈N : zsn ≤ zs′n (17)

Dependency (III). We can reduce the number of constraints also by reorganizing the
first version. On the left hand side, we can add all xpm variables for the same process,
as their sum is always less than or equal to 1. On the right rand side, we can reuse the
sum for multiple left hand sides, so don’t have to create these sums over and over again.
This seems to make approach (III) feasible for first set of instances of ROADEF.

∀〈s,s′〉∈D∀n∈N∀p∈s :
∑
m∈n

xpm ≤
∑
p′∈s′

∑
m′∈n

xp′m′ (18)

In our implementation, the third alternative for the dependency constraint is used.
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Transient. For transient resources, the resource use must include the original and the
new machine, not just the new machine. It is important to avoid double counting if the
process does not move.

∀r∈T∀m∈M :
∑

p∈P,op=m

rpr +
∑

p∈P,op �=m

rprxpm ≤ cmr (19)

Note that the transient resource type only affects this capacity constraint, not how the
load cost is calculated.

4.3 Objective

Load Cost. We need continuous, non-negative variables lcmr to express this cost. Re-
call that umr denotes the resource use of resource r on machine m, and integer scmr is
the safety capacity limit for resource r on machine m.

∀r∈R∀m∈M : lcmr ≥ umr − scmr (20)

∀r∈R : lcr :=
∑
m∈M

lcmr (21)

Balance Cost. We define the free capacity for resource r on machine m as

∀m∈M∀r∈R : amr := cmr − umr (22)

We express the contribution of balance cost b on machine m as

∀b∈B∀m∈M : bcbm ≥ tb × amr1b
− amr2b

(23)

The total contribution of balance cost b is summed over all machines as follows:

∀b∈B : bcb :=
∑
m∈M

bcbm (24)

Process Move Cost. This considers if a process is moved from its original assignment.
Each process p can be weighted individually with constants pmcp.

pmc :=
∑
p∈P

(1− xpop)pmcp (25)

Service Move Cost. We require a continuous, non-negative variable smc to express this
cost:

∀s∈S : smcs :=
∑
p∈s

(1− xpop) (26)

∀s∈S : smc ≥ smcs (27)

smcs denotes how many processes in service s are assigned to new machines, smc
is bounded by those limits. This requires smc to be used inside the cost function for
minimization with a non-negative coefficient.
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Cost and Correctness Checker

Initial Assignment op Current Assignment qp

Select Process/Machine Subset

Process/Machine Subset P ′,M ′

Solve MIP for Subset

Improved Solution

Fig. 1. Principles of the LNS-based approach

Machine Move Cost. This considers the cost matrix mmc() for moving processes be-
tween machines. This gives different weights for from-to machine pairs, but does not
distinguish processes.

∀p∈P : mmcp :=
∑
m∈M

xpmmmc(op,m) (28)

mmc :=
∑
p∈P

mmcp (29)

Overall Cost. The overall cost is a weighted sum of all the different cost elements
defined above. The weight factors are defined as part of the input data of the problem
instance. The objective is to minimize the following:

Cost =
∑
r∈R

wrlcr +
∑
b∈B

vbbcb + wpmcpmc+ wsmcsmc+ wmmcmmc (30)

4.4 Solution Method

We use a large neighborhood search starting from the MIP formulation of the problem.
The overall solution method is shown in Figure 1. We maintain a current assignment,
which is initialized by the initial solution given as input. At every iteration step, we
select a subset of the processes to be reassigned, and setup the MIP model, freezing all
other processes. We solve the resulting, small MIP with a timeout, and keep the best
solution found as our new current assignment. At each step, we check the correctness
and cost of our current solution by a separate checker to avoid isssues with accuracy
and tolerances in the MIP solver.

A key observation was that selecting all processes from only some machines for re-
assignment works better than selecting only a few processes from many machines. Our
subproblem selection therefore is based on selecting a subset of the machines, and al-
lowing all processes on those machines to be reassigned. A set of machines are selected
by solving a small combinatorial optimization problem. We compare the current usage,
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denoted by cumr, of the selected machines (when the Boolean variable um = 1) with
an ideal solution where we can distribute the utilization over all machines such that the
area above the safety capacity is minimal. The objective is to maximize the following:∑

m∈M
(
∑
r∈R

max(0, cumr − scmr))um −
∑
r∈R

max(0,
∑
m∈M

(cumr − scmr)um)

This is optimistic, as we normally will not be able to achieve this totally balanced
spread, but this will guide the subset selection to find promising machine subsets. For
some sub-problems this works perfectly. At every step the promised improvement is
nearly fully realized by the subsequent MIP run, until the promise (and cost) converge
to 0. For problems with significant transient resource elements, the approach works less
well, but is still much better than a random selection. We also use a tabu list and a
progressive parameter weighting to improve results over all problem instances.

5 CP Model for LNS

We now present a CP model of the problem that facilitates incrementality in the large
neighbourhood search method. This helps in creating subproblems efficiently as ex-
plained later.

5.1 Variables

Let xp be an integer variable that indicates which machine is assigned to process p. The
domain of xp is [0, |M | − 1]. Let umr be an integer variable that denotes the usage of
resource r on machine m. The domain of umr is [0, cmr]. Let tmr be an integer variable
that denotes the transient usage of machine m for transient-resource r. The domain of
tmr is [0, cmr]. The following may be used as abbreviations or variables depending on
the system that is used: (1) ums denotes a set of machines assigned to the processes
of service s, (2) yusl denotes the number of machines belonging to location l that are
assigned to the processes of the service s, (3) nuls denotes the number of locations
used by the processes of the service s, (4) zusn denotes the number of machines of
neighborhoodn that are used by service s, (5) zmsn denotes the number of services that
enforce that n should be a neighborhood of s, (6) nmps denotes how many processes
in service s are assigned to new machines, and (7) mmp denotes the maximum number
of processes of services that are moved to new machines.

5.2 Constraints

Load Constraints. The usage of resource r ∈ R on machine m is the sum of the
resources required by those processes p that are assigned to machine m:

∀m ∈M, r ∈ R : umr =
∑

∀p∈P∧xp=m

rpr. (31)
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Transient Constraints. The transient-usage of transient-resource r ∈ T on machine
m is the sum of umr and the resources required by those processes p whose original
machine is m but whose current machine is not m.

∀m ∈M, r ∈ T : tmr = umr +
∑

op=m∧xp �=op

rpr. (32)

Conflict Constraints. The set of machines used by the processes of service s is:

ums := {xp : p ∈ s}.

Processes belonging to the same service s cannot be run on the same machine:

∀s ∈ S, |s| = |ums|. (33)

Spread Constraints. The number of machines at a location l used by a service s is:

∀s ∈ S, l ∈ L, yusl := |{xp|p ∈ s ∧ L(xp) = l}|.

The number of locations used by the processes of a service s is:

nuls := |{l|l ∈ L ∧ yusl > 0}|.

The number of locations used by service s should be greater than or equal to the mini-
mum spread of service s:

nuls ≥ spreadmins. (34)

Neighborhood Constraints. The number of machines used by a service s in a neighbor-
hood n is:

zusn := |{xp|p ∈ s ∧N(xp) = n}|.
The number of services that want n to be a (mandatory) neighborhood of service s is:

zmsn := |{s′|〈s′, s〉 ∈ D ∧ zus′n > 0}|.

The number of mandatory neighborhoods of service s that are not used by service s is:

nmns := |{n ∈ N ∧ zmsn > 0 ∧ zusn = 0}|

Each mandatory neighborhood of service s should be used by service s:

nmns = 0. (35)

5.3 Objective

We define the cost of a machine as the sum of the weighted load costs of all resources
and the sum of all the weighted balance costs of all the balances:

costm :=
∑
r∈R

max(0, umr − scmr) · wr +
∑
b∈B

max(0, tb · amr1b
− amr2b

) · vb. (36)
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We define the cost of a process as the sum of the weighted process move cost and
weighted machine move cost:

costp := min(1, |xp − op|) · pmcp · wpmc +mmc(op, xp) · wmmc. (37)

We define the cost of a service as the weighted sum of the number of moved processes
of the service:

costs :=
∑

p∈s∧xp �=op

wsms. (38)

The overall cost, to be minimized, is:

Cost =
∑
m∈M

costm +
∑
p∈P

costp +max
s∈S

(costs). (39)

5.4 Solution Method

We use large neighborhood search for the CP model described above. Using the LNS
of MIP for the CP model is a non-starter. Therefore we use a different LNS. In the
following we describe how a subproblem is selected and created, and how it is solved.

Subproblem Selection. We first select a number of machines, denoted by km, whose
processes we want to reassign and then for each selected machine we select a number
of processes, bounded by kp, which we want to reassign. Both km and kp are non-zero
positive integers. Initially km is set to 1, it is incremented as search progresses, and it
is re-initialized to 1 when it exceeds 10. We also compute an ordering on the machines
based on Equation (36) after regular intervals. We progressively select one machine
from this pre-computed ordering and select the remaining km − 1 machines randomly.

Depending on the value of km a fixed value of kp is used. If all the processes of a ma-
chine are selected then many of them may select the same machine again. Therefore, we
restrict that the number of processes selected for a given machine is less than or equal
to the half of the average number of processes on a machine. We further restrict that the
maximum value of kp is 10. The total number of processes selected for reassignment
is bounded by km × kp ≤ 40. Hence, the number of processes selected from a given
machine is determined by min(40/km,min(|P |/(2 · |M |), 10)).

Subproblem Creation. For solving large sized problems using LNS one may need
to select, create and solve many subproblems. When the time for solving the problem
is limited, one challenge is to create a subproblem efficiently. One approach is to cre-
ate the full problem in memory and reinitialize/recompute the domains of the required
variables at each iteration. Depending on the model and the solution technique it may
not always be possible to allocate the required memory for this approach, especially
considering that the number of processes could be up to 50,000 and the number of ma-
chines could be up to 5,000. Another approach could be to allocate the memory and
create a subproblem and reinitialize/recompute the domains of the required variables at
each iteration, which may not be efficient in terms of time. Creating a subproblem in the
context of machine-reassignment problem can be seen as unassigning a set of machines
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Algorithm 1. removeProcessFromMachine(p)
1: m← xp; s← Sp; n← Nm; l← Lm

2: ums ← ums − {m};
3: yusl ← yusl − 1
4: if yusl = 0 then
5: nuls ← nuls − 1
6: zusn ← zusn − 1
7: if zusn = 0 then
8: if zmsn > 0 then
9: nmns ← nmns + 1
10: for all 〈s, s′〉 ∈ D do
11: zms′n ← zms′n − 1
12: if zus′n = 0 ∧ zms′n = 0 then
13: nmns′ ← nmns′ − 1
14: Cost← Cost−

∑
r∈R max(0, umr − scmr)× wr

15: Cost← Cost−
∑

b∈B max(0, tb × (c
mr1

b
− u

mr1
b
)− (c

mr2
b
− u

mr2
b
))× vb

16: for all r ∈ R do
17: umr ← umr − rpr
18: if r ∈ T and m �= op then
19: tmr ← tmr − rpr
20: Cost← Cost +

∑
r∈R max(0, umr − scmr)× wr

21: Cost← Cost +
∑

b∈B max(0, tb × (c
mr1

b
− u

mr1
b
)− (c

mr2
b
− u

mr2
b
))× vb

22: if xp �= op then
23: Cost← Cost− pmcp × wpmc

24: nmps ← nmps − 1
25: if mmp = nmps + 1 then
26: mmp← maxs∈S nmps

27: if nmps + 1 �= mmp then
28: Cost← Cost− wsmc

29: Cost← Cost−mmc(op, xp)× wmmc

from a set of processes and updating the domains accordingly. We remark that removing
values from the domains due to constraint-propagation after an assignment is generally
done efficiently in constraint-solvers. However restoring values to the domains after un-
doing an assignment may not always be straightforward, when no assumption is made
on the ordering of assignments. The presented CP-based LNS approach facilitates that
domains can be updated efficiently for creating a subproblem.

The two main operations for CP-based LNS for solving machine-reassignment prob-
lem are: removing a process from a machine (unassigning a machine from a process),
and adding a process to a machine (assigning a machine to a process). When a process
p is removed from machine xp, the domains are updated as shown in Algorithm 1. xp is
removed from the set of machines used by service s (Line 2). The number of machines
of location l used by s is decremented (Line 3) and if that becomes 0 (Line 4) the num-
ber of locations used by s is also decremented (Line 5). If the number of machines of
neighborhood n used by s becomes 0 (Line 6), and if the number of services that want
n to be included is greater than 0, then the number of mandatory neighborhoods of s
is incremented. If n is no longer used by s then the the number of services that want
n to be included is decremented for each service s′, on which s depends on. For each
s′ if n is not used anymore then the number of mandatory neighborhoods of s′ is also
decremented. Lines 14–29 update the cost. First the load and balance costs for all re-
sources and balances are subtracted from the cost (Lines 14–15). Then, the usage and
transient usage are updated (Lines 16–19). The load and balance costs are recomputed
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Algorithm 2. addProcessToMachine(p,m)

1: s← Sp; n← Nm; l← Lm

2: xp ← m

3: Cost← Cost + mmc(op, xp)× wmmc

4: if xp �= op then
5: Cost← Cost + pmcp × wpmc

6: nmps ← nmps + 1
7: if mmp < nmps then
8: mmp← nmps

9: Cost← Cost + wsmc

10: Cost← Cost−
∑

r∈R max(0, umr − scmr)× wr

11: Cost← Cost−
∑

b∈B max(0, tb × (c
mr1

b
− u

mr1
b
)− (c

mr2
b
− u

mr2
b
))× vb

12: for all r ∈ R do
13: umr ← umr + rpr
14: if r ∈ T and xp �= op then
15: tmr ← tmr + rpr
16: Cost← Cost +

∑
r∈R max(0, umr − scmr)× wr

17: Cost← Cost +
∑

b∈B max(0, tb × (c
mr1

b
− u

mr1
b
)− (c

mr2
b
− u

mr2
b
))× vb

18: if zusn = 0 then
19: if zmsn > 0 then
20: nmns ← nmns − 1
21: for all 〈s, s′〉 ∈ D do
22: if zus′n = 0 ∧ zms′n = 0 then
23: nmns′ ← nmns′ + 1
24: zms′n ← zms′n + 1
25: zusn ← zusn + 1
26: if yusl = 0 then
27: nuls ← nuls + 1
28: yusl ← yusl + 1
29: ums ← ums ∪ {m};

and added to the cost (Lines 20–21). The process and service move costs are subtracted
(Lines 22-28) followed by the subtraction of machine-move cost (Line 29).

Re-optimizing a Subproblem. We use systematic search for solving a given sub-
problem. However, the search is stopped when the number of failures exceed a given
threshold. Three important components of a CP-based systematic search are: variable
ordering heuristics, value ordering heuristics, and filtering rules. The variable ordering
heuristic we use is based on an aggregation of the following information that we main-
tain for each process p: (a) maximum increment in the objective cost when assigning a
best machine to process p, (b) total weighted requirement of a process which is the sum
of the weighted requirements of all resources, and (c) the number of machines available
for p. The value ordering ordering heuristic that is used to select a machine for a given
process is based on the minimum cost while ties are broken randomly.

At each node of the search tree constraint propagation is performed to reduce the
search space. Whenever a machine m is assigned to a process p, the domains are fil-
tered as shown in Algorithm 2, and the affected constraints are checked. Additionally,
during subproblem solving, usage and cost based filtering is also applied for removing
machines from the domains of the processes. We omit the details of these pruning rules
due to lack of space. Let Q be a set of unassigned processes. The minimum load-cost
that will be incurred as a result of assigning machines to processes in Q is denoted
by lcbound. The minimum balance-cost that will be incurred as a result of assigning
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Table 1. Properties of Instances in Datasets A and B

Set No. |P | |R| |T | |M| |S| |L| |N | |D| |B| wr vb wpmc wsmc wmmc mmcmax

a1 1 100 2 0 4 79 4 1 0 1 10 10 1 10 100 2
a1 2 1000 4 1 100 980 4 2 40 0 10 - 1 10 100 2
a1 3 1000 3 1 100 216 25 5 342 0 10 - 1 10 100 2
a1 4 1000 3 1 50 142 50 50 297 1 10 10 1 10 100 2
a1 5 1000 4 1 12 981 4 2 32 1 10 10 1 10 100 2
a2 1 1000 3 0 100 1000 1 1 0 0 10 - 1 10 100 0
a2 2 1000 12 4 100 170 25 5 0 0 10 - 1 10 100 2
a2 3 1000 12 4 100 129 25 5 577 0 10 - 1 10 100 2
a2 4 1000 12 0 50 180 25 5 397 1 10 10 1 10 100 2
a2 5 1000 12 0 50 153 25 5 506 0 10 - 1 10 100 2

b 1 5000 12 4 100 2512 10 5 4412 0 10 - 1 10 100 2
b 2 5000 12 0 100 2462 10 5 3617 1 10 10 1 10 100 2
b 3 20000 6 2 100 15025 25 5 16560 0 10 - 1 10 100 2
b 4 20000 6 0 500 1732 50 5 40485 1 10 10 1 10 100 2
b 5 40000 6 2 100 35092 10 5 14515 0 10 - 1 10 100 2
b 6 40000 6 0 200 14680 50 5 42081 1 10 10 1 10 100 0
b 7 40000 6 0 4000 15050 50 5 43873 1 10 10 1 10 100 2
b 8 50000 3 1 100 45030 10 5 15145 0 10 - 1 10 100 2
b 9 50000 3 0 1000 4609 100 5 4337 1 10 10 1 10 100 2
b 10 50000 3 0 5000 4896 100 5 47260 1 10 10 1 10 100 2

machines to the processes in Q is denoted by bcbound. We use the following to compute
lcbound and bcbound, during search:

lcbound =
∑
r∈R

⎛
⎝∑

p∈Q

rpr −
∑

m∈M

max(0, scmr − umr)

⎞
⎠× wr.

bcbound =
∑
b∈B

⎛
⎝−tb ×

∑
p∈Q

r
pr1

b
+

∑
p∈Q

r
pr2

b

⎞
⎠× vb.

The value of lcbound is obtained by adding the total demand for each resource and com-
paring it to the total safety capacity for that resource on all machines, and multiplying
with the appropriate cost-factor. Similarly, the value of bcbound is obtained by consid-
ering the weighted difference of total resources and multiplying with the appropriate
cost factor. The lower-bound of the objective function is obtained by adding lcbound

and bcbound to the current cost of the partial solution.

6 Experimental Results

In this section we present some results to demonstrate the effectiveness of our ap-
proaches, and in particular the scalability of the CP approach. We experimented with
the instances of Datasets A and B of EURO/ROADEF’12 Challenge. Table 1 shows
the properties of these instances. In set A (B) the maximum number of processes is
1,000 (50,000) and the maximum number of machines is 100 (5,000). For MIP we used
CPLEX and the algorithms were implemented in Java. For CP we did not use any ex-
isting local search solver, e.g., COMET [2], in order to get more freedom in controlling
different aspects of LNS approach. All the algorithms were implemented in C.
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Table 2. Cost Results for set A obtained within 300 seconds

Problem Initial LB Best ROADEF MIP-LNS CP-LNS
a1-1 49,528,750 44,306,501.00 44,306,501 44,306,501 44,306,501
a1-2 1,061,649,570 777,531,000.00 777,532,896 792,813,766 778,654,204
a1-3 583,662,270 583,005,717.00 583,005,717 583,006,527 583,005,829
a1-4 632,499,600 242,397,000.00 252,728,589 258,135,474 251,189,168
a1-5 782,189,690 727,578,309.00 727,578,309 727,578,310 727,578,311
a2-1 391,189,190 103.87 198 273 196
a2-2 1,876,768,120 526,244,000.00 816,523,983 836,063,347 803,092,387
a2-3 2,272,487,840 1,025,730,000.00 1,306,868,761 1,393,648,719 1,302,235,463
a2-4 3,223,516,130 1,680,230,000.00 1,681,353,943 1,725,846,815 1,683,530,845
a2-5 787,355,300 307,041,000.00 336,170,182 359,546,818 331,901,091

Table 3. Cost Results for set B obtained within 300 seconds for CP approach

Name Initial LB CP-LNS Iterations
b-1 7,644,173,180 3,290,754,940 3,337,329,571 813,519
b-2 5,181,493,830 1,015,153,860 1,022,043,596 477,375
b-3 6,336,834,660 156,631,070 157,273,705 1,271,094
b-4 9,209,576,380 4,677,767,120 4,677,817,475 226,561
b-5 12,426,813,010 922,858,550 923,335,604 968,840
b-6 12,749,861,240 9,525,841,820 9,525,867,169 618,878
b-7 37,946,901,700 14,833,996,360 14,838,521,000 36,886
b-8 14,068,207,250 1,214,153,440, 1,214,524,845 1,044,842
b-9 23,234,641,520 15,885,369,400 15,885,734,072 115,054

b-10 42,220,868,760 18,048,006,980 18,049,556,324 31,688

Table 2 shows results for dataset A. For each instance, we give the initial cost, the
best lower bound found (LB), the best solution found by any solver submitted to the
ROADEF competition (Best ROADEF) and the best result obtained within 300s for
one overall set of parameter settings for our MIP and CP approaches. The full sized
MIP problem could not be solved for all the instances of set A. The approach that
outperforms another approach in terms of cost is made bold for each instance of set A.
Overall, CP-based LNS outperforms MIP-based LNS.

Table 3 presents results for dataset B. For each instance, we give the initial cost,
the lower bound (LB) and the result obtained within 300s for the CP approach, and
the number of iterations (Iterations). The results for MIP-based LNS are not presented.
The reason is that in each iteration 10 machines are selected, which requires roughly
10 seconds to find an improving solution. This is feasible with 100 machines, but with
5000 not enough combinations are explored in 300 seconds. The results suggest that our
CP-based LNS can scale to very large problem instances and is superior both in memory
use and the quality of solutions that can be found in limited time. This is mainly because
of three factors. First, selecting a subproblem by selecting a set of processes from only a
few selected machines works better than selecting a few processes from many machines.
Second, creating a subproblem efficiently by removing a set of processes from their
corresponding machines and updating the domains incrementally increases the number
of iterations resulted in a greater level of exploration of the search space. Finally, solving
a subproblem by incrementally maintaining the domains, using cheap constraint checks
and using a heuristic that selects a machine that incurs the lowest cost for a given process
resulted in efficient exploration of the search-space of the subproblem.
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7 Conclusions and Future Work

We presented MIP and CP-based LNS approaches for solving the machine reassign-
ment problem. Results shows that our CP-based LNS approach is scalable, thus suited
for solving large instances, and has better anytime-behaviour which is important when
solutions must be reported subject to a time limit. The incrementality aspect of our
approach allows to create and solve subproblems efficiently, which is a key-factor in
finding good quality solutions in a limited time. In the future, we plan to exploit multi-
cores that might be available while solving the problem.

Acknowledgments. This work is supported by Science Foundation Ireland Grant No.
10/IN.1/I3032.
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Abstract. Petri nets are a simple formalism for modeling concurrent
computation. Recently, they have emerged as a promising tool for mod-
eling and analyzing biochemical interaction networks, bridging the gap
between purely qualitative and quantitative models. Biological networks
can indeed be large and complex, which makes their study difficult and
computationally challenging. In this paper, we focus on two structural
properties of Petri nets, siphons and traps, that bring us information
about the persistence of some molecular species. We present two meth-
ods for enumerating all minimal siphons and traps of a Petri net by
iterating the resolution of Boolean satisfiability problems executed with
either a SAT solver or a CLP(B) program. We compare the performances
of these methods with respect to a state-of-the-art algorithm from the
Petri net community. On a benchmark with 80 Petri nets from the Petri-
web database and 403 Petri nets from curated biological models of the
Biomodels database, we show that miniSAT and CLP(B) solvers are
overall both faster by two orders of magnitude with respect to the ded-
icated algorithm. Furthermore, we analyse why these programs perform
so well on even very large biological models and show the existence of
hard instances in Petri nets with unbounded degrees.

1 Introduction

Petri nets were introduced in the 60’s as a simple formalism for describing and
studying information processing systems that are characterized as being concur-
rent, asynchronous, non-deterministic and possibly distributed [21].

The use of Petri nets for representing biochemical reaction models, by map-
ping molecular species to places and reactions to transitions, was introduced
quite late in [22], together with some Petri net concepts and tools for the anal-
ysis of metabolic networks [28]. In [24], a Constraint Logic Program over finite
domains (CLP(FD)) is proposed for computing place invariants, which in turn
provides structural conservation laws that can be used to reduce the dimension of
the Ordinary Differential Equations (ODE) associated to a biochemical reaction
model.

In this paper, we consider the Petri net concepts of siphons and traps. A
siphon is a set of places that, once it is unmarked, remains so. A trap is a set
of places that, once it is marked, can never loose all its tokens. Thus, siphons

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 798–814, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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and traps have opposing effects on the token distribution in a Petri net. These
structural properties provide sufficient conditions for reachability (whether the
system can reach a given state) and liveness (freedom of deadlocks) properties.
It is proved that in order to be live, it is necessary that each siphon remains
marked. Otherwise (i.e. once it is empty), transitions having their input places
in a siphon can not be live. One way to keep each siphon marked is to have
a marked trap inside it. In fact, this condition is necessary and sufficient for a
free-choice net to be live [21]. Mixed integer linear programs have been proposed
in [19,4] and a state-of-the-art algorithm from the Petri net community has been
described later in [6] to compute minimal sets of siphons and traps in Petri nets.

In this article, we present a simple Boolean model capturing these notions
and two methods for enumerating the set of all minimal siphons and traps of a
Petri net. The first method iterates the resolution of the Boolean model executed
with a SAT solver while the second proceeds by backtracking with a CLP(B)
program.

On a benchmark composed of the 80 Petri nets of Petriweb 1 [10] and the
403 curated biological models of the biomodels.net 2 repository [16], we show
that miniSAT and CLP(B) solvers are both faster by two orders of magnitude
than the dedicated algorithms and can in fact solve all instances. Furthermore,
we analyse why these programs perform so well on even very large biological
models and show the existence of hard instances in Petri nets with unbounded
degrees.

2 Preliminaries

2.1 Petri Nets

A Petri net graph PN is a weighted bipartite directed graph PN = (P, T,W ),
where P is a finite set of vertices called places, T is a finite set of vertices (disjoint
from P ) called transitions and W : ((P × T ) ∪ (T × P )) → N represents a set
of directed arcs weighted by non-negative integers (the weight zero represents
the absence of arc). Places are graphically represented by circles and transitions
by boxes. Unlabeled edges are implicitly labeled with weight 1. A marking for a
Petri net graph is a mapping m : P → N which assigns a number of tokens to
each place. A place p is marked by a marking m iff m(p) > 0. A subset S ⊆ P is
marked by m iff at least one place in S is marked by m. A Petri net is a 4-tuple
(P, T,W,m0) where (P, T,W ) is a Petri net graph and m0 is an initial marking.

The set of predecessors (resp. successors) of a transition t ∈ T is the set of
places •t = {p ∈ P | W (p, t) > 0} (resp. t• = {p ∈ P | W (t, p) > 0}). Similarly,
the set of predecessors (resp. successors) of a place p ∈ P is the set of transitions
•p = {t ∈ T |W (t, p) > 0} (resp. p• = {t ∈ T |W (p, t) > 0}).

For every two markings m,m′ : P → N and every transition t ∈ T , there

is a transition step m
t→ m′, if for all p ∈ P , m(p) ≥ W (p, t) and m′(p) =

1 http://www.petriweb.org/
2 http://www.biomodels.net/

http://www.petriweb.org/
http://www.biomodels.net/
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A B

E

AE

t1

t−1

t2

Fig. 1. Petri net associated to the biochemical reaction model of Example 1, displayed
here with an arbitrary marking that enables the transition t1

m(p)−W (p, t) +W (t, p). This notation extends to sequence of transitions σ =

(t0 . . . tn) by writing m
σ→ m′ if m

t0→ m1
t1→ . . .

tn−1→ mn
tn→ m′ for some markings

m1, . . . ,mn.
The classical Petri net view of a reaction model is to associate biochemical

species to places and biochemical reactions to transitions.

Example 1. The system known as Michaelis-Menten enzymatic reactions can be
represented by the Petri net depicted in Figure 1. It consists of three enzy-
matic reactions that take place in two discrete steps: the first involves reversible
formation of a complex (AE) between the enzyme (E) and substrate (A) and
the second step involves breakdown of the (AE) to form product (B) and to
regenerate the enzyme.

A+ E � AE → B + E

2.2 Siphons and Traps

Let PN = (P, T,W ) be a Petri net graph.

Definition 1. A trap is a non-empty set of places P ′ ⊆ P whose successors are
also predecessors, P ′• ⊆ •P ′.

A siphon is a non-empty set of places P ′ ⊆ P whose predecessors are also
successors: •P ′ ⊆ P ′•.

A siphon (resp. a trap) is proper if its predecessor set is strictly included in
its successor set,•P ′ � P ′• (resp. P ′• � •P ′).

A siphon (resp. a trap) is minimal if it does not contain any other siphon
(resp. trap).

It is worth remarking that a siphon in PN is a trap in the dual Petri net graph,
obtained by reversing the direction of all arcs in PN . Note also that since pre-
decessors and successors of an union are the union of predecessors (resp. succes-
sors), the union of two siphons (resp. traps) is a siphon (resp. a trap).
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A B C D

r1

r2

r3

r4

r5

Fig. 2. Petri net graph of Example 2

Example 2. In the Petri net graph depicted in Figure 2, {A,B} is a minimal
proper siphon, since •{A,B} = {r1, r2} ⊂ {•A,B} = {r1, r2, r3}. {C,D} is a
minimal proper trap, scine {C,D}• = {r4, r5} ⊂ •{C,D} = {r3, r4, r5}.

The following propositions show that traps and siphons provide a structural
characterization of some particular dynamical properties on markings.

Proposition 1. [21] For every subset P ′ ⊆ P of places, P ′ is a trap if and only
if for any marking m ∈ NP with mp ≥ 1 for some place p ∈ P ′, and any marking

m′ ∈ NP such that m
σ→ m′ for some sequence σ of transitions, there exists a

place p′ ∈ P ′ such that m′p′ ≥ 1.

Proposition 2. [21] For every subset P ′ ⊆ P of places, P ′ is a siphon if and
only if for any marking m ∈ NP with mp = 0 for all p ∈ P ′, and any marking

m′ ∈ NP such that m
σ→ m′ for some sequence σ of transitions, we have m′p′ = 0

for all p′ ∈ P ′.

Although siphons and traps are stable under union, it is worth noting that
minimal siphons do not form a generating set of all siphons. A siphon is called
a basis siphon if it can not be represented as a union of other siphons [19].
Obviously, a minimal siphon is also a basis siphon, however, not all basis siphons
are minimal. For instance, in Example 2, there are two basis siphons, {A,B} and
{A,B,C,D}, but only the former is minimal, the latter cannot be obtained by
union of minimal siphons.

2.3 Application to Deadlock Detection

One reason to consider minimal siphons is that they provide a sufficient condition
for the non-existence of deadlocks.

It has been shown indeed that in a deadlocked Petri net (i.e. where no transi-
tion can fire), all unmarked places form a siphon [3]. The siphon-based approach
for deadlock detection checks if the net contains a proper siphon that can become
unmarked by some firing sequence. A proper siphon does not become unmarked
if it contains an initially marked trap. If such a siphon is identified, the initial
marking is modified by the firing sequence and the check continues for the re-
maining siphons until a deadlock is identified, or until no further progress can
be done. Considering only the set of minimal siphons is sufficient because if any
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A1 A2 A3 An

...

B1 B2 B3 Bn

Fig. 3. Petri net representation of the model of Example 3

siphon becomes unmarked during the analysis, then at least one of the minimal
siphons must be unmarked.

The relevance of siphons and traps for other liveness properties is summarized
in [11].

2.4 Complexity

Deciding whether a Petri net contains a siphon or a trap and exhibiting one if
it exists is polynomial [5]. However, the decision problem of the existence of a
minimal siphon containing a given place is NP-hard [26].

Furthermore, there can be an exponential number of minimal siphons and
traps in a Petri net, as shown by the following:

Example 3. In the Petri net depicted in Figure 3, defined by the transitions:
A1 +B1 → A2 +B2, A2 +B2 → A3 +B3, . . . , An +Bn → A1 +B1, there are 2n

minimal siphons and 2n minimal traps, each one including either Ai or Bi but
not both of them, for all i’s.

2.5 Application to Systems Biology

One example of the relevance of traps and siphons in biology was given in [28]
for the analysis of the potato plant that produces starch and accumulates it in
the potato tubers during growth, while starch is consumed after the tubers are
deposited after the harvest. The starch and several of its precursors then form
traps in the reaction net during growth, while starch and possible intermediates
of degradation form siphons after the harvest.

The underlying Petri net is shown in Figure 4, where G1 stands for glucose-1-
phosphate, Gu is UDP-glucose, S is the starch, I stands for intermediary species
and P1 and P2 represent external metabolites [25]. In this model, either the
branch producing starch (t3 and t4) or the branch consuming it (t5 and t6) is
operative. Two Petri nets are derived from this model: one Petri net where t5
and t6 are removed (in this Petri net, t3 and t4 are said to be operative) and one
Petri net where t3 and t4 are removed.
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G1P1 P2

Gu

S

I

t1 t2

t3

t4t5

t6

Fig. 4. Petri net graph modeling the growth metabolism of the potato plant [28]

It can be easily observed that the set {Gu, S} is a trap when t3 and t4 are
operative: once a token arrives in S, no transition can be fired and the token
remains there independently of the evolution of the system. Dually, {S, I} is a
siphon when t5 and t6 are operative: once the last token is consumed from S and
I, no transition can generate a new token in these places, so they remain empty.

In most cells containing starch, starch and specific predecessors form traps,
whereas starch and specific successors form siphons. This provides a very simple
explanation for the fact that either the branch producing starch or the branch
degrading it is operative. This is realized by complete inhibition of the appro-
priate enzymes by the gene regulatory network.

Another interesting example, also from [28], deals with the analysis of the role
of the triosephosphate isomerase (TPI) in Trypanosoma brucei metabolism by
detecting solely siphons and traps. At the beginning, Helfert et al. [12] supposed
that glycolysis could proceed without TPI. But unexpected results where all
system fluxes (Pyruvate, Glycerol) decrease were found so that the authors built
a kinetic model for explaining that phenomenon. Then a purely structural ex-
planation for the necessary presence of TPI in glycolysis and glycerol production
was provided in [28] by simply considering the presence of siphons and traps in
the model.

3 Boolean Model

In the literature, many algorithms have been proposed to compute minimal
siphons and traps of Petri nets. Since a siphon in a Petri net N is a trap of the
dual net N ′, it is enough to focus on siphons, the traps are obtained by duality.
Some algorithms are based on linear programming [19,4], Horn clause satisfaction
[13,17] or algebraic approaches [15]. More recent state-of-the-art methods are
presented in [5,6].

Here we present two Boolean methods for enumerating minimal siphons. First,
siphons can be straightforwardly characterized with a boolean model represent-
ing the belonging or not of each place to the siphon. For a Petri net with n
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places and m transitions, a siphon S is a set of places whose predecessors are
also successors. S can be represented with a vector V of {0, 1}n such that for
all i ∈ {1, 2, .., n}, Vi = 1 if and only if pi ∈ S. The siphon constraint can then
be formulated as

∀i, Vi = 1⇒ •pi ⊆ (
⋃

Vj=1

{pj})•

which is equivalent to

∀i, Vi = 1⇒ (∀t ∈ T, t ∈ •pi ⇒ t ∈ (
⋃

Vj=1

{pj})•)

which is equivalent to

∀i, Vi = 1⇒ (∀t ∈ T, t ∈ •pi ⇒ ∃pj ∈ •t, Vj = 1)

which can be rewritten in clausal form as:

∀i, Vi = 1⇒
∧

t∈•pi

(
∨

pj∈•t

Vj = 1)

To exclude the case of the empty set, the following constraint is added:∨
i

Vi = 1

.These clauses are Horn-dual clauses (i.e. clauses with at most one negative lit-
eral). They are trivially satisfied by taking all variables true.

Second, the enumeration of all minimal siphons (w.r.t. set inclusion) can be
ensured by a search strategy and the addition of new Boolean constraints during
search. One strategy is to find siphons in set inclusion order, and to add a new
constraint ∨

pi∈S
Vi = 0

each time a siphon S is found to disallow any superset of this siphon to be found
in the continuation of the search. It is worth remarking that this clause is not
the dual of a Horn clause. The whole clauses are thus now non-Horn.

In a previous approach based on Constraint Logic Programming [20], the enu-
meration by set inclusion order was ensured by labeling a cardinality variable
in increasing order. Labeling directly on the Boolean variables, with increasing
value selection (first 0, then 1), reveals however much more efficient and in fact
easier to enforce. The following proposition shows that this strategy correctly
finds siphons in set inclusion order.

Proposition 3. Given a binary tree such that, in each node instantiating a
variable X, the left sub-edge posts the constraint X = 0 and the right sub-edge
posts the constraint X = 1, then for all distinct leaves A and B, leaf A is on the
left of leaf B only if the set represented by B is not included in the set represented
by A (that is to say, there exists a variable X such that XB > XA, where XA

and XB denote the values instantiated to X in the paths leading to A and B
respectively).
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Proof. A and B have a least common ancestor node instantiating a variable X .
If leaf A is on the left of leaf B, the sub-edge leading to A is the left one, with
the constraint X = 0 and the sub-edge leading to B is the right one, with the
constraint X = 1, therefore XB > XA. ��

In a post-processing phase, the computed set of minimal siphons can be filtered
for only keeping the minimal siphons that contain a given set of places, and hence
solve the above mentioned NP-hard decision problem. It is worth remarking that
posting the inclusion of the selected places first would not ensure that the siphons
found are indeed minimal w.r.t. set inclusion.

4 Boolean Algorithms

This section describes two implementations of the above model and search strat-
egy, one using an iterated SAT procedure and the other based on Constraint
Logic Programming with Boolean constraints.

4.1 Iterated SAT Algorithm

The Boolean model can be directly interpreted using a SAT solver to check the
existence of a siphon or trap. We use sat4j 3, an efficient library of SAT solvers
in Java for Boolean satisfaction and optimization. It includes an implementation
of the MiniSAT algorithm in Java.

The example of the enzymatic reaction of example 1 is encoded as follows:
each line is a space-separated list of variables representing a clause; a positive
value means that corresponding variable is under positive form (so 2 means V2),
and a negative value means the negation of that variable (so −3 means ¬V3). In
this example, variables 1, 2, 3 and 4 correspond respectively to E, A, AE and
B. In the first iteration, the problem amounts to solve the following encoding of
Horn-dual clauses:

−2 3
−3 1 2
−1 3
−1 3
−4 3

The problem is satisfied with the values: −1, 2, 3, −4 which means that {A,AE}
is a minimal siphon.

To ensure minimality, the (non Horn-dual) clause −2 −3 is added and the pro-
gram iterates an other time. The problem is satisfied with 1, −2, 3, −4, meaning
that {E,AE} is also a minimal siphon. A new clause is added stating that either
E or AE does not belong to the siphon and no more variable assignment can
satisfy the problem.

3 http://www.sat4j.org/

http://www.sat4j.org/
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Fig. 5. Search tree developed with the backtrack replay strategy for enumerating the
64 minimal siphons of model 239 of biomodels.net (described in Section 5.1)

Therefore, this model contains 2 minimal siphons: {A,AE} and {E,AE}. The
enzyme E is a catalyst protein for the transformation of the substrate E in a
product B. Such a catalyst increases the rate of the reaction but is conserved in
the reaction.

4.2 Backtrack Replay CLP(B) Algorithm

The search for siphons can also be implemented with a Constraint Logic Program
with Boolean constraints (CLP(B)). We use GNU-Prolog 4 [8] for its efficient
low-level implementation of Boolean constraint propagators.

The enumeration strategy is a variation of branch-and-bound, where the search
is restarted to find a non-superset siphon each time a new siphon is found. We
tried two variants of the branch-and-bound: with restart from scratch and by
backtracking.

In the branch-and-bound with restart method, it is essential to choose a vari-
able selection strategy which ensures diversity. Indeed, an enumeration method
with a fixed variable order accumulates failures by always trying to enumerate
the same sets first and these failures are only lately pruned by the non-superset
constraints. As a consequence, the developed search tree gets more and more
dense after each iteration since the previous forbidden sets are repeatedly tried
again. This phenomenon does not exist in SAT solvers thanks to no-good record-
ing. In CLP, this problem can be compensated for however, by using a random
selection strategy for variables. This provides a good diversity and performs
much better than any uniform heuristics.

However, branch-and-bound by backtracking gives better performance when
care is taken for posting the non-superset constraint only once, since reposting
it at each backtrack step proved to be inefficient. Our backtrack replay strategy
is implemented as follows:

1. each time a siphon is found, the path leading to this solution is memorized,
2. then the search is fully backtracked in order to add to the model the new

non-superset constraint,

4 http://www.gprolog.org/

http://www.gprolog.org/
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3. and then the memorized path is rolled back to continue the search at the
point it was stopped.

Figure 5, generated with CLPGUI 5 [9] depicts the search tree that is developed
for enumerating the 64 minimal siphons of a biological model of 51 species and
72 reactions. Each sub-tree immediately connected to the root corresponds to
the replay of the path with a minimality constraint added. It is remarkable that
with the backtrack replay strategy, very few backtracking steps are necessary to
search for all solutions.

5 Evaluation

5.1 Benchmark

Petriweb. Our first benchmark of Petri nets is Petriweb [10], a benchmark of
80 Petri nets from the Petri net community. The most difficult instances of this
benchmark come from case studies in process refinement, namely problems 1454,
1479 and 1516.

Biomodels.net. We also consider the Petri nets associated to biochemical re-
action models of the biomodels.net repository of 403 models [16] and some other
complex biochemical models. The most difficult models are the following ones:

– Kohn’s map of the mammalian cell cycle control [14,2], a model of 509 species
and 775 reactions;

– Model BIOMD0000000175 of biomodels.net, a model of 118 species and 194
reactions involved in ErbB signaling;

– Model BIOMD0000000205 of biomodels.net, a model of 194 species and 313
reactions involved in the regulation of EGFR endocytosis and EGFR-ERK
signaling by endophilin-mediated RhoA-EGFR crosstalk;

– Model BIOMD0000000239, a core model of 51 species and 72 reactions rep-
resenting the glucose-stimulated insulin secretion of pancreatic beta cells.

5.2 Results and Comparison

In this section, we compare the two Boolean methods described in the previous
section with the state-of-the-art dedicated algorithm of [6]. This algorithm uses a
recursive problem partitioning procedure to reduce the original search problem to
multiple simpler search subproblems. Each subproblem has specific additional
place constraints with respect to the original problem. This algorithm can be
applied to enumerate minimal siphons, place-minimal siphons, or even siphons
that are minimal with respect to a given subset of places.

Table 1 presents the CPU times for enumerating all minimal siphons of the
Petri nets in Petriweb and biomodels.net. All times are in milliseconds and have
been obtained on a PC with an intel Core processor 2.20 GHz and 8 GB of

5 http://contraintes.inria.fr/∼fages/CLPGUI

http://contraintes.inria.fr/~fages/CLPGUI
http://www.petriweb.org/
http://www.biomodels.net/
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Table 1. Performance on the whole benchmark

Database # # siphons siphons size total time
model min–max (avg.) min–max (avg.) dedicated SAT GNU

algorithm Prolog

Biomodels.net 403 0–64 (4.21) 1–413 (3.10) 19734 611 195

Petriweb 80 0–11 (2.85) 0–7 (2.03) 2325 156 6

Table 2. Performance on the hardest instances

model # # # dedicated sat GNU
siphons places transitions algorithm Prolog

Kohn’s map of cell cycle 81 509 775 28 1 221

BIOMD000000175 3042 118 194 ∞ 137000 ∞
BIOMD000000205 32 194 313 21 1 34

BIOMD000000239 64 51 72 2980 1 22

memory. For each benchmark, we provide the total number of models, the min-
imal, maximal and average numbers of siphons and the total computation time
for enumerating all of them.

Surprisingly, but happily, on all these practical instances, except one instance
detailed below, the SAT and CLP(B) programs solve the minimal siphon enumer-
ation problem, in less than one millisecond in average, with a better performance
for the CLP(B) program over the SAT solver, and by two orders of magnitude
over the dedicated algorithm.

However, one particular model, number 175 in biomodels.net, was excluded
from this table because its computational time is very high. Table 2 presents
the performance figures obtained on this model and on the three other hardest
instances for which we also provide the number of places and transitions. On
these hard instances, the SAT solver is faster than the CLP(B) program by one
to two orders of magnitude, and is the only algorithm to solve the problem for
model 175, in 137 seconds.

That model 175 represents a quantitative model that relates EGF and HRG
stimulation of the ErbB receptors to ERK and AKt activation in MCF-7 breast
cancer cells [1]. This is the first model to take into account all four ErbB recep-
tors, simultaneous stimulation with two ligands, and both the ERK and AKt
pathways. Previous models of ErbB (e.g. the model developed in [23]) were lim-
ited to a single ErbB because of combinatorial complexity. It is well known that
the ErbB signaling network is highly connected and indeed the underlying Petri
net contains the highest number of arcs of the biomodels.net repository.

5.3 Hard Instances

MiniSAT and CLP(B) outperform the specialized algorithm by at least one order
of magnitude and the computation time is extremely short on our practical
examples. Even if the model is quite large, e.g. for Kohn’s map of the cell cycle
control with 509 species and 775 reactions, the computation time for enumerating
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ȳ3

ȳn
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Fig. 6. Petri net graphs considered for the reduction of 3-SAT to the existence of a
minimal siphon containing place q0

its 81 minimal siphons is astonishingly short: one millesecond only. However, this
enumeration of all minimal siphons solves the decision problem of the existence
of a minimal siphon containing a given set of places which has been proved
NP-hard by reduction of 3-SAT in [27], and the question is: why the existing
benchmarks from systems biology and petriweb are so easy?

We can provide some hints of explanation by considering the well-known phase
transition phenomenon in 3-SAT. The probability that a random 3-SAT problem
is satisfiable has been shown to undergo a sharp phase transition as the ratio α
of the number of clauses over the number of variables crosses the critical value
of about 4.26 [18,7], going from satisfiability to unsatisfiability with probability
one when the number of variables grows to the infinity.

The reduction of three-satisfiability (3-SAT) to the problem of existence of a
minimal siphon containing a given place has been shown in [27] with the Petri
net structure illustrated in Figure 6. It is worth noticing that in this encoding,
the Petri net has a maximum place indegree (for q0) which is linear in the number
of clauses, and a maximum place outdegree (for t0) which is linear in the number
of variables.

Not surprisingly, this family of Petri nets provides a hard benchmark for
enumerating minimal siphons 6. Table 3 contains experimental results on these

6 All benchmarks of this section are available at
http://contraintes.inria.fr/∼nabli/indexhardinstances.html .

http://contraintes.inria.fr/~nabli/indexhardinstances.html
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Table 3. Computational results for the enumeration of minimal siphons in Petri nets
encoding 3-SAT

model # Petri net view 3-SAT view time
siphons # places # transitions density # variables # clauses α (ms)

pn0.2.xml >129567 801 441 0.56 200 40 0.2 60000

pn0.6.xml >32392 801 521 0.65 200 120 0.6 60000

pn1.xml >1075 801 601 0.751 200 200 1 60000

pn2.xml >74462 801 801 1 200 400 2 60000

pn3.xml >63816 801 1001 1.24 200 600 3 60000

pn4.xml >59827 801 1201 1.49 200 800 4 60000

pn4.2.xml >41415 801 1241 1.54 200 840 4.2 60000

pn4.4.xml 200 801 1281 1.59 200 880 4.4 1596

pn4.6.xml 200 801 1321 1.64 200 920 4.6 1411

pn5.xml 200 801 1401 1.74 200 1000 5 370

pn6.xml 200 801 1601 1.99 200 1200 6 175

pn7.xml 200 801 1801 2.24 200 1400 7 157

pn8.xml 200 801 2001 2.49 200 1600 8 157

pn9.xml 200 801 2201 2.74 200 1800 9 133

pn10.xml 200 801 2401 2.99 200 2000 10 137

Fig. 7. CPU time for computing all minimal siphons in Petri nets encoding 3-SAT
problems of density ranging from 0 to 10 with a time-out of 2 seconds

Petri nets associated to random 3-SAT problems. The table gives the number of
minimal siphons and the time to compute them with a timeout of 60 seconds.
The table also provides information concerning both the 3-SAT problem and
its corresponding Petri net. For each 3-SAT problem, we provide the number of
Boolean variables, the number of clauses and the ratio α. For the corresponding
Petri net, we provide the number of places, the number of transitions and the
density (ratio of the number of transitions over the number of places). The
computation time of all minimal siphons as a function of α, the density of the
initial 3-SAT problem, is represented in Figure 7.

The reason for the timeout obtained for all 3-SAT problems of density below
the threshold value 4.26 is that for small values of α, the clause is satisfiable with
an exponential number of valuations which gives rise to an exponential number
of minimal siphons to compute. On the other hand, for values of alpha above
the threshold, the clause are unsatisfiable and there is indeed no minimal siphon
containing q0 (only the 200 minimal siphons without q0 are computed).
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Table 4. Computational results for the enumeration of minimal siphons in random
Petri nets with varying density and linear versus bounded degrees

nb places nb transitions density nb siphons time

random-degree-pn1 801 80 0.099875156 >77918 60000

random-degree-pn2 801 320 0.399500624 >69246 60000

random-degree-pn3 801 560 0.699126092 >45782 60000

random-degree-pn4 801 801 1 >28285 60000

random-degree-pn5 801 1041 1.299625468 0 7473

random-degree-pn6 801 1281 1.599250936 0 11233

random-degree-pn7 801 1521 1.898876404 0 15040

random-degree-pn8 801 1762 2.199750312 0 9548

random-degree-pn9 801 2242 2.799001248 0 13807

bounded-degree-pn1 801 80 0.099875 377 120

bounded-degree-pn2 801 320 0.399501 250 55

bounded-degree-pn3 801 560 0.699126 146 32

bounded-degree-pn4 801 801 1 66 14

bounded-degree-pn5 801 1041 1.299625 29 11

bounded-degree-pn6 801 1281 1.599251 13 3

bounded-degree-pn7 801 1521 1.898876 4 5

bounded-degree-pn8 801 1762 2.199750312 1 1

bounded-degree-pn9 801 2242 2.799001248 0 2

Table 5. In and out degrees for places and transitions in the Petri nets of the biomod-
els.net benchmark with model 175 apart

minimum maximum average model 175

number of arcs 1 913 92 1125

Avg-indegree-places 0 8 1.89 5

Avg-indegree-transitions 0 3 1.06 3

Max-indegree-places 1 54 5.94 31

Max-indegree-transitions 1 14 2.72 11

Avg-outdegree-places 0 8 1.93 5

Avg-outdegree-transitions 0 3 0.99 3

Max-outdegree-places 0 36 5.53 32

Max-outdegree-transitions 1 14 2.87 11

Now, Table 4 shows that similar bad performance figures are obtained with
randomly generated Petri nets with a number of in and out degrees that is
linear in the number of places and transitions, while on random Petri nets with
a bounded degree (less than 5), the enumeration of minimal siphons is easy. This
is the situation encountered in our practical application. As shown in Table 5, the
Petri nets associated to the biochemical reaction models of biomodels.net have
small in and out degrees for places and transitions even in very large models.
Model 175 mentioned in Section 5.2 appears as an exception combining a large
size with a high connectivity on places, with some species that are both the
reactants of 32 reactions and the products of 31 reactions.
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6 Conclusion

Siphons and traps in Petri nets define meaningful pools of places that display a
specific behavior during the dynamical evolution of a Petri net, or of a system
of biochemical reactions whatever kinetic parameters are.

We have described a Boolean model for the problem of enumerating all mini-
mal siphons in a Petri net and have compared two Boolean methods to a state-of-
the-art algorithm from the Petri net community [6]. The miniSAT solver and the
CLP(B) program both solve our large benchmark of real-size problems and out-
perform the dedicated algorithm by two orders of magnitude. On the benchmark
of 403 biological models in biomodels.net, the Boolean method for enumerating
all minimal siphons using miniSAT is very efficient. It also scales very well in
the size of the net. The CLP(B) program also solves all but one instances of the
benchmark, with a better performance than miniSAT in average, but does not
scale-up as well to large size models like Kohn’s map with 509 species and 775
reactions.

The surprising efficiency of the miniSAT and CLP(B) methods for solving the
practical instances of this NP-hard problem has been analyzed in connection to
the well-known phase transition phenomenon in 3-SAT, and to the fact that the
degree of Petri nets associated to even very large models of several hundreds
of biochemical species and reactions remains limited to small values in practice.
This explains why these Boolean methods perform so well in the practical context
of systems biology applications.

These results militate for the analysis of biochemical networks with Petri net
concepts and Constraint Programming tools.

Acknowledgment. This work is supported by the French OSEO project Bioin-
telligence.
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Abstract. Flow reasoning has been successfully used in CP for more
than a decade. It was originally introduced by Régin in the well-known
Alldifferent and Global Cardinality Constraint (GCC) available in most
of the CP solvers. The BinPacking constraint was introduced by Shaw
and mainly uses an independent knapsack reasoning in each bin to filter
the possible bins for each item. This paper considers the use of a cardinal-
ity/flow reasoning for improving the filtering of a bin-packing constraint.
The idea is to use a GCC as a redundant constraint to the BinPacking
that will count the number of items placed in each bin. The cardinality
variables of the GCC are then dynamically updated during the propaga-
tion. The cardinality reasoning of the redundant GCC makes deductions
that the bin-packing constraint cannot see since the placement of all
items into every bin is considered at once rather than for each bin in-
dividually. This is particularly well suited when a minimum loading in
each bin is specified in advance. We apply this idea on a Tank Allocation
Problem (TAP). We detail our CP model and give experimental results
on a real-life instance demonstrating the added value of the cardinality
reasoning for the bin-packing constraint.

Keywords: Tank Allocation, Constraint Programming, Load Planning.

1 Bin-Packing Constraint

The BinPacking constraint was introduced in [1]:

BinPacking([X1, . . . , Xn], [w1, . . . , wn], [L1, . . . , Lm]).

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 815–822, 2012.
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This constraint enforces the relation Lj =
∑

i(Xi = j) · wi, ∀j. It makes
the link between n weighted items (item i has a weight wi) and the m dif-
ferent capacitated bins in which they are to be put. Only the weights of the
items are integers, the other arguments of the constraints are finite domain
(f.d.) variables. Note that in this formulation, Lj is a variable which is bounded
by the maximal capacity of the bin j. Without loss of generality we assume
the item variables and their weights are sorted such that wi ≤ wi+1. Example:
BinPacking([1, 4, 1, 2, 2], [2, 3, 3, 3, 4], [5, 7, 0, 3]).

Classical formulation The traditional way to model a BinPacking constraint is
to introduce a binary variable Bi,j for each pair (item, bin) which is 1 (true) if
item i is placed into bin j, 0 (false) otherwise. Then for each bin j, we add the
constraint Lj =

∑
i Bi,j ·wi. As noted in [1] one important redundant constraint

to add is
∑

j Lj =
∑

i wi allowing a better communication between the other
constraints.

Existing Filtering Algorithms. A specific filtering algorithm for the BinPacking
constraint in addition to its classical formulation has been first proposed in [1].
This algorithm essentially filters the domains of the Xi’s using a knapsack-like
reasoning to detect if forcing an item into a particular bin j would make it
impossible to reach a load Lj for that bin. This procedure is very efficient but
can return false positive saying that an item is OK for a particular bin while
it is not. Shaw [1] also introduced a failure detection algorithm computing a
lower bound on the number of bins necessary to complete the partial solution.
This last consistency check has been extended by [2]. Finally, Cambazard and
O’Sullivan [3] propose to filter the domains using an LP arc-flow formulation.

The existing filtering algorithms use the upper bounds of the loading variables
max(Lj) (i.e. capacity of the bins). They do not focus much on the lower bounds
of these variables min(Lj). In classical bin-packing problems, the capacity of the
bins max(Lj) are constrained while the lower bounds min(Lj) are usually set to
0 in the model. The additional cardinality/flow based filtering we introduce is
well suited when those lower bounds are also constrained initially min(Lj) > 0.

2 Cardinality Reasoning for Bin-Packing

Existing filtering algorithms for the BinPacking constraint do not make use of
the cardinality information inside each bin (i.e.. the number of items packed
inside each bin). However this information can be very valuable in some situa-
tions. Consider the extreme case where every item has an equal weight (assume
a weight of 1) such that the BinPacking constraint reduces to a GCC. It is
clear that the filtering algorithms for the BinPacking are very weak compared
to the global arc consistent filtering for the GCC in such a situation. Of course
this situation rarely happens in practice but in many applications the weights of
the items to place are not so different and it is preferable not to lose completely
the reasoning offered by a cardinality constraint (the flow reasoning). Our idea
is to introduce one redundant GCC in the modelling of the BinPacking:

GCC([X1, . . . , Xn], [C1, . . . , Cm])
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with Cj a variable that represents the number of items placed into bin j. Initially
Dom(Cj) = {0, . . . , n}. The cardinality variables are pruned dynamically during
the search as the bounds of the Lj’s and the domains of the Xi’s change. Let
bound(Xi, j) be equal to true if the variable Xi is instantiated to value j (i.e.
item i is placed into bin j), false otherwise. Let lj be the load of the packed items
into bin j: lj =

∑
i:bound(Xi,j)

wi and cj be the number of packed items into bin

j: cj =
∑

i:bound(Xi,j)
1. Note that it is possible that min(Lj) ≥ lj because of the

filtering from [1]. Furthermore let possj be the set of possible items into bin j:
possj = {i | |Dom(Xi)| > 1 ∧ j ∈ Dom(Xi)}. Given a subset of items S , let
sum(S) =

∑
i∈S wi. The rules to update the lower and upper bounds of Cj are

obtained by combining cardinalities and capacity information:

min(Cj)← max(min(Cj), cj + |Aj |) (1)

max(Cj)← min(max(Cj), cj + |Bj |) (2)

where Aj ⊆ possj is the minimum cardinality set of items such that lj +
sum(Aj) ≥ min(Lj) and Bj ⊆ possj is the maximum cardinality set of items
such that lj + sum(Bj) ≤ max(Lj). Since items w1, . . . , wn are sorted increas-
ingly, both rules (1) and (2) can be implemented in O(n) by scanning the items
from right to left for rule (1) and from left to right for rule (2).

Example 1. Five items with weights 3,3,4,5,7 can be placed into bin 1 having
a possible load L1 ∈ [20..22]. Two other items are already packed into that
bin with weights 3 and 7 (c1 = 2 and l1 = 10). Clearly we have that |A1| = 2
obtained with weights 5,7 and |B1| = 3 obtained with weights 3,3,4. The domain
of the cardinality variable C1 is thus set to [4..5].

3 Tank Allocation for Liquid Bulk Vessels

The tank allocation problem involves the assignment of different cargoes (vol-
umes of chemical products to be shipped by the vessel) to the available tanks of
the vessel. The loading plans of bulk vessels are generally generated manually
by the vessel planners although it is difficult to generate high quality solutions.
The constraints to satisfy are mainly segregation constraints:

1. prevent chemicals from being loaded into certain types of tanks because
– the chemical may need to have its temperature managed and the tank

needs to be equipped with a heating system,
– the tank must be resistant to the chemical,
– a tank may still be contaminated by previous cargoes incompatible with

the chemical.
2. prevent some pairs of cargoes to be placed next to each other: not only the

chemical interactions between the different cargoes need to be considered
but also the temperature at which they need to be transported. Too different
temperature requirements for adjacent tanks cause the second one to solidify
due to cooling off by the first cargo or the first may become chemically
unstable due to heating up of the second cargo.
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Fig. 1. Layout of the vessel

In order to minimize the costs and inconvenience of tank cleaning, an ideal
loading plan should maximize the total volume of unused tanks (i.e. free space).

Instance. The characteristics of the real instance1 that we received from a major
chemical tanker company:

– 20 cargoes with volumes ranging from 381 to 1527 tons.

– The vessel has 34 tanks with capacities from 316 to 1017 tons.

– There are 5 pairs of cargoes that cannot be placed into adjacent tanks.

– Each tank has between 1 to 3 cargoes that cannot be assigned to it.

4 A CP Model

The whole tank allocation problem is a mixed integer programming problem
since the decision of which cargo is assigned to each tank is discrete but the
exact volume to assign to each tank is a continuous decision. This paper only
deals with the discrete problem by assigning each cargo to a set of tanks having
a total capacity large enough to accommodate the whole cargo volume. The
subsequent decision of the distribution of the cargo volume among those tanks
must take the stability constraints into account and is beyond the scope of this
paper. We just assume here that all cargo must be completely loaded. The Scala
model of the problem implemented in OscaR [4] is given in Listing 1.1. In this
model, two sets of variables are introduced:

– cargot: represents the type of cargo assigned to cargo tank t (type 0 repre-
sents the empty cargo). The domain of cargot only contains cargo identifiers
that can be placed into that specific cargo tank (remember that not every
tank can accommodate every cargo).

– loadc: represents the total tank capacity available for shipping cargo c. The
minimum value of loadc is set to the total volume of cargo c: volumec. For
load0 the minimum is set to 0 since there is no need to have empty cargo
tanks.

1 Available upon request
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Listing 1.1. Scala/OscaR CP Model

class Cargo(val volume: Int)
class Tank(val id: Int , val capa: Int , val neighbors: Set[Int ], val possibleCargos: Set[Int ])
val cargos: Array[Cargo] // all the cargo data
val tanks: Array[Tanks] // all the tanks data
val compatibles: Set[( Int , Int) ] // compatibles neighbor cargos

val cp = CPSolver()
// the cargo type for each tank (dummy if empty tank)
val cargo = Array.tabulate(tanks.length)(t => CPVarInt(cp, tanks(t).possibleCargos))
// the total capacity allocated to cargo (at least the volume to place)
val load = Array.tabulate(cargos.size)(c => CPVarInt(cp, cargos(c).volume to totCapa))
// objective = the total empty space = volume allocated to dummy
val freeSpace = load(0)
// tanks allocated to cargo c in current partial solution
def tanksAllocated(c: Int) =

(0 until tanks. size ) . filter (t => (cargo(t).isBound && cargo(t).getValue == c))
// volume allocated to cargo c in current partial solution
def volumeAllocated(c: Int) = tanksAllocated(c).map(tanks( ).capa).sum
// the objective, the constraints and the search
cp.maximize(freeSpace) subjectTo {

// links cargo and load vars with binpacking constraint
cp.add(binpacking(cargo, tanks.map( .capa), load), Strong)
// new cardinality redundant constraints
cp.add(binpackingCardinality(cargo, tanks.map( .capa), load))
// dominance rules constraints
for ( i <− 1 until cargos.size) {
cp.add(new DominanceRules(cargos(i),tanks,cargo))

}
// two neighbor tanks, must contain compatible cargo types
for (t <− tanks; t2 <− t.neighbors; if (t2 > t.id)) {
cp.add(table(cargo(t.id−1),cargo(t2−1),compatibles))

}
} exploration {

while(!allBounds(cargo)) {
val volumeLeft = Array.tabulate(cargos.size) (c => cargos(c).volume −

volumeAllocated(c))
// unbounds cargo with their index
val unboundTanks = cargo.zipWithIndex.filter{case (x,c) => !x.isBound}
// unbound cargo (and its index) with the largest capa, tie break on domain size
val (tankVar,tank) = unboundTanks.maxBy{case (x,c) => (tanks(c).capa,−x.getSize)}
// cargo with largest volume still to place that can be used in the selected tank
val cargoToPlace = (0 until

cargos. size ) . filter (tankVar.hasValue( )).maxBy(volumeLeft( ))
cp.branch(cp.post(tankVar == cargoToPlace)) // left branch

(cp.post(tankVar != cargoToPlace)) // right branch
}

}
}

Example 2. Consider the Figure 2. The vessel is divided into four different tanks
with capacities 500, 400, 640, 330. There are two cargoes to load (A and B). The
quantity of cargo A to load is 1000 and of cargo B is 790. One bin is introduced
for each of them with lower bounds min(loadA) = 1000 and min(loadB) = 790.
The objective is to assign the tanks (items) to them such that this minimum
load is met meaning that all the cargo volumes can be loaded into the tanks.
An assignment of the tanks to the cargoes satisfying this requirement is given
on the picture: 1040 ≥ 1000 and 830 ≥ 790.
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Fig. 2. Tank assignment

Assigning cargo to tanks (or tanks to cargoes in our model), is handled with the
BinPacking constraint to express the volume requirements of each cargo. This
global constraint enforces the following relation:

loadc =

nbTanks∑
t=1

capat · (cargot = c) , ∀c

linking the two sets of variables cargot, loadc and the tank capacities capat. The
segregation constraints require the layout of the cargo vessels: which cargo tanks
are considered adjacent and which are not. Let A ⊂ [1..nbTanks]× [1..nbTanks]
be the set of pairs of adjacent tanks and let C ⊂ [1..nbCargoes]× [1..nbCargoes]
be the set of pairs of cargoes which are compatible. We must have that

(cargoti , cargotj ) ∈ C, ∀(ti, tj) ∈ A.

These constraints are enforced with classical table constraints. The objective
function of the problem is the maximization total capacity in the unused tanks:
maximize(load0).

Dominance rules. Let Tc be the set of tanks allocated to a cargo c in a solution.
If there exists a subset of those tanks having enough capacity to accommodate
the cargo volume, then the solution is not optimal since it can be improved by
allocating the subset of tanks to the cargo. More formally, a solution is not dom-
inated if for every cargo c ∈ {1, . . . , nbCargoes}, ∀ t′ ∈ Tc :

∑
t∈(Tc−t′) capat <

volumec. Avoiding to generate dominated solutions can easily be achieved by
implementing a dedicated propagator. As soon as the propagator realizes there
is enough capacity to accommodate a cargo, this cargo value is removed from
the domain of every unbound tank variable.



Cardinality Reasoning for Bin-Packing Constraint 821

Heuristic. Let us define as leftc = volumec−
∑

t:bound(cargot)∧cargot=c capat the
difference between the volume of a cargo c and the current total tank volume
allocated to it. If it is positive it means that the cargo does not have enough
tank volume to transport it on the vessel. If it is negative it means there is a
surplus of volume for that cargo.

The variable heuristic selects the unbound variable cargot corresponding to
the tank with the largest capacity breaking ties by preferring the variable with
smallest domain size.

The value heuristic tries on the left branch to assign to cargot, the cargo
c ∈ Dom(cargot) having the largest leftc value. On the right branch, this value
is removed. The idea is to use first the tanks with large capacities for the large
cargo volumes, finishing down a branch with a finer granularity of tank capacities
allowing more flexibility to find good feasible solutions.

Strengthening the model with lower bounds (preliminary ideas). For every cargo
c, a set of tanks is allocated to it in the final solution. Let us define as surplusc =∑

t:cargot=c capat − volumec the difference between the final total tank volume
allocated to a cargo c and the volume of this cargo. An interesting question is
the possibility to compute a lower bound on surplusc in the final solution. A
lower bound for surplusc can be found for every cargo c by solving the following
sub-problem:

surplus
c
= min (

∑
t

Xt · capat)− volumec (3)

s.t. :
∑
t

Xt · capat ≥ volumec (4)

Xt ∈ {0, 1} (5)

The summations in the above model are done only on the tanks that can ac-
commodate the cargo c i.e. {t : c ∈ Dom(cargot)}. This is indeed a relaxation
since a same tank can be selected for different cargo and the segregation con-
straints are not considered. These sub-problems can be solved with dynamic
programming in pseudo-polynomial time. The resulting values can be used to
strengthen the model by adding the constraints: ∀c : loadc−volumec ≥ surplus

c
and also to compute an upper bound on the empty tanks volume: load0 ≤∑

t capat −
∑

c(volumec + surplus
c
).

5 Experimental Results

With the new redundant bin-packing cardinality constraint 2, the first feasible
solution is easily found with just 28 backtracks (this solution uses all the tanks).
Without these redundant constraints, we were not able to find any feasible so-
lution in one hour of computation.

2 The flow based propagator for the GCC should be used. A forward checking propa-
gation for the GCC does not help on this problem.
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The best solution using the Depth First Search (DFS) branch and bound
(empty space = 1811) was found after 5 minutes and 1,594,159 backtracks but
it was not possible to prove its optimality.

Using a Large Neighbourhood Search (LNS) on top of our model fixing 50%
of the tanks randomly from the current best solution and restarting every 1000
backtracks, we were able to find a solution with an empty space of 2296 within
3 seconds and after a dozen of restarts.

We also experimented with two MIP solvers to solve this problem:

– lp solve was not able to find any feasible solution.
– CPLEX could find and prove the optimum after 3 seconds confirming that

the solution found with CP+LNS is optimal.

We plan to extend the TAP problem and also to consider (i) the maximization
of the total volume to place in the case it exceeds the capacity of the vessel (ii)
the integrated routing problem of a single vessel servicing multiple ports, and
(iii) the stability constraints of the vessel which are non linear. We believe that
those last two constraints will make it more difficult to build a MIP model. This
is the reason why we developed a CP approach.

6 Conclusion

We introduced a new additional filtering algorithm for BinPacking constraint
based on cardinality reasoning to count the number of items placed in each bin.
This new filtering is particularly useful when a lower bound on the capacity is
specified in the bins as in the TAP problem since it can immediately deduce
a minimum number of items to place inside each bin. This new filtering was
experimented and showed to be crucial to solve a real-life instance of a tank
allocation problem with CP.
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Abstract. The development of maritime oil wells depends on the avail-
ability of specialized fleet capable of performing the required activities. In
addition, the exploitation of each well can only start when it is connected
through pipes to a producing unit. The Offshore Resources Scheduling
Problem (ORSP) combines such restrictions with the aim to prioritize
development projects of higher return in oil production. In this work,
an extended description of the ORSP is tackled with Constraint Pro-
gramming (CP). Such extension refers to the customization of pipes and
to the scheduling of fleet maintenance periods. The use of CP is due to
the noted ability of the technique to model and solve large and complex
scheduling problems. For the type of scenarios faced by Petrobras, the
reported approach was able to quickly deliver good-quality solutions.

Keywords: Scheduling, Time-interval Variables, Well Developments.

1 Introduction

As Daniel Yergin observed, “the competition for oil and the struggle for energy
security seem to never end” [24]. More than 80% of the world primary energy con-
sumption is currently supplied by fossil fuels. Among them, oil is considered the
scarcest source because it has the smallest reserves-to-production ratio [6]. Once
an opportunity is detected, the exploitation of a new oil reservoir usually requires
large investments, and sometimes incurs a number of technological challenges.
Such is the case currently faced by Petrobras with the Tupi field, which is located
in the pre-salt layer along the Brazilian coast. Announced in 2007 as the largest
oil discovery of the last 30 years in the Western hemisphere, it was estimated to
contain from 5 to 8 billion recoverable barrels of oil equivalent [7]. On account
of enabling its exploitation, Petrobras had the largest public share offering ever
seen [5]. The company now possesses a 5-year investment budget of 225 billion
US dollars [20], which is mainly focused on exploiting the pre-salt layer. In this
context, the optimized use of resources is critical to leverage the success of such
ventures and to help attending the increasing demand of the society for energy.

One of the challenges to exploit new oil fields consists of mitigating the short-
age of machinery. Resources such as a specialized fleet are highly demanded
but also scarce and very expensive. That is the case of oil platforms – usually

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 823–839, 2012.
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referred as oil rigs – to drill and complete wells, and pipelay vessels to carry
pipes to connect developed wells to producing units. The use of such resources
has been approached in a variety of ways along the life cycle of oil reservoirs.
For instance, the scheduling of exploratory activities for preliminary assessment
was addressed by Glinz and Berumen [8]; the integrated planning and schedul-
ing of well developments in oil fields was approached by Iyer et al. [12]; and
the scheduling of well maintenance activities was focused by Aloise et al. [2].
The development of wells consists of a midpoint between the latter two cases.
It is possible to address it by means of the Offshore Resources Scheduling Prob-
lem (ORSP), which is aimed at prioritizing developments with higher combined
return of oil production.

Hasle et al. [9] introduced this problem, which was shown to be NP-hard
by Nascimento [18]. Since then, many approaches have been refining its extent
and solving methodology [17, 19, 21–23]. The decisions consist of selecting well
development projects, and then assigning and sequencing resources to perform
each of their activities. The optimization criterion is to maximize the incurred
short-term production of oil. In addition, its constraints avoid the assignment of
an unfit resource to any activity, provide time for routine maintenance of those
resources, and limit their presence at any site to a maximum allowed for security
reasons. Hence, solving the ORSP can aid the operational decision-making in a
process that is directly related to the return on investment of oil companies.

There is a long record of approaches to the ORSP at Petrobras. Most of it is
related to a system named ORCA, which stands for Optimization of Resources
of Critical use in Activities for exploitation. Its development started with the
work of Accioly et al. [1], which focused mostly on well maintenance activities.
Their motivation was the fact that fewer resources are usually available for such
type of activity, thus creating a demand-pull for the use of optimization. Pereira
et al. [19] and Moura et al. [17] broadened the focus of the system to well devel-
opments. More recently, new efforts have been reported by Serra et al. [21–23]
to tackle larger instances and to cope with new bottlenecks that have been rec-
ognized. Resources regarded as critical to well developments were split between
rigs and vessels, and the inventory of pipes on vessels was included in [21]. The
model introduced in [21] was refined and extended in [23], when the selection of
development projects became a problem decision. The first attempt to provide
an upper bound to the production of each instance was made in [21] and then
tightened in [22]. Each of those efforts has contributed to improve the quality of
the achieved solutions and to reduce their gap with respect to operational needs.

This work reports an extended description of the ORSP as well as a model
to tackle it using Constraint Programming (CP). The current refinement refers
to the remaining details that were included after the development of ORCA was
resumed. They are related to the availability of specific pipes for connecting each
well, and to the scheduling of resource maintenance activities. We aim to present
a detailed description of the developed CP model and to evaluate its performance
on a benchmark of instances based on a past scenario of the company.
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The paper is organized as follows. Section 2 contains a definition of the ORSP.
The rationale for using CP is presented in section 3, while section 4 describes the
developed model and its evaluation. The benefits attributed to CP are discussed
in section 5. Final remarks are presented afterwards.

2 The Offshore Resources Scheduling Problem

The ORSP consists of scheduling oil rigs and pipelay vessels to develop oil wells
while targeting to maximize the incurred short-term production of oil. Rigs and
vessels are required to attend to a large geographical area, in which displacements
may take a considerable time. They are scheduled to perform development activ-
ities at wells, auxiliary loading activities at harbors and their own maintenance.
Well development and loading activities must be assigned to a resource compat-
ible with their needs, thus comprising requirements such as if the rig is able to
operate at the depth of a given well or if the vessel is able to unload at once a
given weight of pipes. Some of the development activities require pipes which, in
turn, must have been previously loaded at harbors; and the amount of loading
activities varies according to how many pipes are loaded at each time.

The problem decisions are if, when and how to perform each of those activ-
ities. Time is represented in days, starting from a date set as 0. The following
convention is used to describe the problem. Resources will be denoted by index i
assuming values in the set I, where IR ⊆ I denotes the set of rigs and IV = I \IR
the set of vessels. Activities will be denoted by index j assuming values in the set
J, where JW denotes the set of well development activities, JH the set of loading
activities, JM the set of resource maintenance activities, JW ∪JH ∪JM = J and
these subsets are pairwise disjoint. Let JM’ ⊆ JM be the set of resource mainte-
nances allowing concurrency of other activities. The compatibility of assignments
is represented by matrix C, where cij = 1 if, and only if, resource i is compatible
with activity j. Locations will be denoted by index k assuming values in the
set K, where KW ⊆ K denotes the set of wells and KH = K \ KW the set of
harbors. Pipes will be denoted by index p assuming values in the set P.

2.1 Optimization Criterion

The short-term production is measured as how much each developed well would
produce until a time horizon H. The conclusion of each activity j induces a daily
production rate prj, which is nonzero only if it finishes a well development.

2.2 Resource Constraints

– Each resource performs at most one development or load at a time.
– Only one resource can be placed at a well at any time.
– Each harbor k supports up to sk resources at the same time.
– If a resource i performs consecutive activities on distinct locations k1 and

k2, there must be a minimum displacement time dtik1k2
between them.

– Each resource i has a contractual period of use, ranging from the release
date rri ≥ 0 to the deadline rdi.



826 T. Serra, G. Nishioka, and F.J.M. Marcellino

2.3 Activity Constraints

– Activities are non-preemptive, i.e., they are performed without interruption.
– Each development or maintenance j can only be scheduled between release

date arj ≥ 0 and deadline adj ≥ arj . It is mandatory if adj < H or j ∈ JM .
– Each activity j is associated with a location locj.
– Either all activities of a well are performed or none is.
– Each development or maintenance j requires pj days to be performed.
– The length of a loading activity on resource i ranges from mili to mali days.
– If a well development activity j2 must be preceded by another activity j1,

then pcj1j2 = 1, and pdj1j2
denotes the minimum delay between both.

– Each well development activity j belongs to a cluster of activities with index
clj, and all activities of a cluster must be assigned to a single resource.

– Each resource maintenance activity j is associated with a resource rmj.
– For each maintenance activity j ∈ JM ′ , which only makes a resource partially

unavailable, let J’j ⊆ JW be the set of activities that cannot concur with it.

2.4 Inventory Constraints

– Only vessels may perform loading activities at harbors.
– Each vessel has an empty inventory at time 0.
– Each vessel i has an inventory varying between 0 and ici along time.
– Each loading activity takes one or more pipes at a harbor.
– The number of loading activities is variable. However, an upper limit can be

set with as much activities at each harbor as the number of pipes it has.
– A pipe p is only loaded at harbor hpp from the release date rpp onwards.
– The load of a pipe p implies an inventory increase of wpp.
– The increase of the onboard inventory due to a loading activity is limited by

the time it lasts, with such a rate that it can achieve ici after mali days.
– The unload of a pipe p is made by a development activity of connection cap,

which can only be assigned to a resource that has previously loaded pipe p.

3 Why CP

The selection of CP in the current project stems from a balance between per-
formance and maintainability. Many stakeholders were leaning towards the use
of a commercial solver in order to benefit from a modeling environment favoring
fast prototyping. It was also seen as beneficial that such solvers use state-of-art
algorithms that have been broadly tested elsewhere. Since many solvers support
CP or Mathematical Programming (MP), there was a strong preference for ei-
ther of those techniques. There was also a great concern with the timely deliver
of good solutions. A successful use of CP was reported by early approaches both
inside [1] and outside [9] the company. Metaheuristics were considered as well by
Nascimento [18] and for a while at Petrobras due to Pereira et al. [19] and Moura
et al. [17]. However, the favorable results of a metaheuristic against CP in these
latter works are somewhat related to the fact that the tested instances were
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not much constrained. In particular, such prevalence was not as strong when
large clusters of activities had to be assigned to a single resource. Due to the
introduction of loading activities, higher levels of constrainedness were expected.
In addition, the observed development of propagation mechanisms for resource
constraints [3, 4, 13] favored using CP to model inventory on vessels. There was
also some skepticism regarding the possibility of using MP due to the increase
in the size of the expected instances. In such cases, CP solvers have a competi-
tive edge because their models are more concise and feasible solutions are found
earlier in the search. Hence, we pondered that CP was a reasonable choice.

Nevertheless, both CP and MP were employed in the developments that fol-
lowed. To highlight the observed progress, we will use the results achieved with
the largest available instance. In accordance to Hooker [10], equal hardware con-
ditions were observed in all cases. The first solution was obtained by a CP model
described in [21], where an ad-hoc algorithm assessed a worst-case optimality gap
of 38%. Such gap was then reduced to almost 18% with a continuous-time Mixed-
Integer Linear Programming (MILP) model without loading activities in [22].
Such experiment was helpful to assess the scalability issues of a straightforward
MP approach to a scheduling problem: compared to CP, time and memory re-
quirements increased at a much faster step. In the following, an improved CP
model with project selection in [23] was able to find a solution 11% better. Thus,
the worst-case optimality gap of the largest instance tested in previous works is
below 6%. Such results increased our confidence on CP, which was selected to
tackle the ORSP in the full extent currently required at Petrobras.

4 How CP

The ORSP was modeled with abstractions based on conditional time-interval
variables. Such concept was introduced by Laborie and Rogerie [14] and further
extended by Laborie et al. [15]. It specializes the abstract modeling targeted
with the Optimization Programming Language (OPL) [16] to handle resource-
constrained scheduling problems. For that sake, abstractions from the specialized
CP subfield of Constraint-Based Scheduling (CBS) [3, 4] such as activities and
resources are defined by means of intervals and other auxiliary elements.

Each interval variable depicts an event through a collection of interdependent
properties such as its presence, start time, length, and end time. Such intervals
can be used to model complex relations according to a hierarchical structure
imposed by one-to-many constraints as well as sequence variables, cumulative
and state functions, and the constraints that can be imposed on them. Further
details about those elements are presented along the model description.

4.1 Modeling the ORSP

The model described in this section is an extension of the model M2, which was
introduced in [23]. It is depicted below with separate sections for the definition
of variables and domains, constraints, objective function and search phases.
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Variables and Domains. Interval variables are used to represent each of the
problem activities in vector a, and each combination of a resource and an activity
requiring assignment in matrix M. To each activity j ∈ J , there is a correspond-
ing interval variable aj in vector a. In the case of well development and resource
maintenance activities, the following domain restrictions apply:

start(aj) ≥ arj , ∀j ∈ JW ∪ JM (1)

end(aj) ≤ adj , ∀j ∈ JW ∪ JM (2)

length(aj) = pj , ∀j ∈ JW ∪ JM (3)

presence(aj) = 1, ∀j ∈ JW , adj < H (4)

presence(aj) = 1, ∀j ∈ JM (5)

Each cell mij of matrix M corresponds to the combination of resource i ∈ I
and activity j ∈ JW ∪ JH . Thus, the presence of an interval mij implies the
assignment of resource i to activity j. Since most of the resource-activity pairs
are incompatible, the actual implementation of M is aimed to leverage such
sparsity: separate tuple-indexed vectors are employed for activities on wells and
activities on harbors; and each of them contains only intervals corresponding to
compatible combinations, i.e., mij is there if, and only if, cij = 1. However, since
such details are more of an implementation issue than a modeling design choice,
the matrix notation was kept for simplicity. The following domain restrictions
are imposed to intervals of M related to well developments:

start(mij) ≥MAX(rri, arj), ∀i ∈ I, j ∈ JW , cij = 1 (6)

end(mij) ≤MIN(rdi, adj), ∀i ∈ I, j ∈ JW , cij = 1 (7)

presence(mij) = 0, ∀i ∈ I, j ∈ JW , cij �= 1 (8)

For loading activities, the corresponding cells have the following restrictions:

start(mij) ≥ rri, ∀i ∈ I, j ∈ JH , cij = 1 (9)

end(mij) ≤ rdi, ∀i ∈ I, j ∈ JH , cij = 1 (10)

length(mij) ≥ mili, ∀i ∈ I, j ∈ JH , cij = 1 (11)

length(mij) ≤ mali, ∀i ∈ I, j ∈ JH , cij = 1 (12)

Since we have considered the existence of a loading activity for each pipe, we can
refer explicitly to such correspondence with a bijection f : P → JH mapping each
pipe p ∈ P to a loading activity j ∈ JH . Without loss of generality, we can use
it to postpone the early start of each loading activity according to the release
date of its corresponding pipe, and thus reduce the search space:

start(aj) ≥ rpp, ∀j ∈ JH , p ∈ P, f(p) = j (13)

Such premise also incurs that locj = hpp, ∀j ∈ JH , p ∈ P, f(p) = j, i.e., it
associates each loading activity with the harbor of its corresponding pipe.

The use of each resource and the concurrency of resources on each location
are represented by the vectors of cumulative functions u and x, respectively.
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Cumulative functions. Cumulative functions are piecewise time-domain func-
tions whose discrete changes in value are associated with the start and end of
interval variables. They represent a generalization of cumulative resources [15];
for which many types and levels of consistency have been proposed and refined,
and a number of filtering algorithms has been studied [3]. The composition of a
cumulative function consists of a linear combination of steps, pulses and other
cumulative functions. A step can be associated with the start and end of an
interval with functions stepAtStart and stepAtEnd, respectively; and a pulse,
which corresponds to equal but opposite steps at the start and at the end of an
interval, is declared with function pulse. In either case, the first argument is an
interval variable, which can be followed by one argument, a, if the variation is
fixed or two arguments, a and b, if the variation must lay in the range [a, b].

To each resource i ∈ I there is an associated cumulative function ui composed
of unitary pulses associated with intervals ofM , and to each location k ∈ K there
is a cumulative function xk composed of unitary pulses on intervals of a:

ui =
∑

j∈JW∪JH :cij=1

pulse(mij, 1), ∀i ∈ I (14)

xk =
∑

j∈JW∪JH :locj=k

pulse(aj, 1), ∀k ∈ K (15)

The balance of inventory on the resources is modeled with the vector of cumu-
lative functions b. There is one cumulative function bi corresponding to each
vessel i ∈ IV . It is composed of the sum of cumulative functions related to each
resource-harbor pair in the matrix BH. In turn, each cumulative function bhik

from BH is composed of positive steps at the end of each loading activity per-
formed by resource i at harbor k and negative steps for each activity on resource
i that is associated with the release of a pipe from harbor k. The increase of
inventory due to each load is variable, non-negative and limited to ici. The de-
crease of inventory is fixed and given by the weight of the unloaded pipes. Thus,
we have the following definitions of the elements of BH and b:

bhik =
∑

j∈JH :cij=1∧locj=k

stepAtEnd(mij , 0, ici)

−
∑

j∈JW ,p∈P :cij=1∧cap=j∧hpp=k

stepAtEnd(mij , wpp),

∀i ∈ IV , k ∈ KH (16)

bi =
∑

k∈KH

bhik, ∀i ∈ IV (17)

Finally, the location of the resources along time is represented with the vector of
state functions l. A state function represents a qualitative property that varies in
time. It can be accompanied by an auxiliary function that defines the minimum
transition time between its states. In the current case, let di : K × K → N



830 T. Serra, G. Nishioka, and F.J.M. Marcellino

be a function of resource i ∈ I such that di(k1, k2) = dtik1k2 , ∀k1 ∈ K, k2 ∈
K, k1 �= k2. Thus, di corresponds to the displacement function of resource i. It
can be used in combination with li to guarantee the minimum displacement time
between activities on different locations that were assigned to resource i:

li : N→ K ∪ {0}, ∀i ∈ I (18)

[li(t1) = k1 ∧ li(t2) = k2]→ t1 + di(k1, k2) ≤ t2,

∀i ∈ I, k1 ∈ K, k2 ∈ K, k1 �= k2,

t1 ∈ N, t2 ∈ N, t1 < t2 (19)

The value 0 represents the state at which the resource is not being used anywhere.

Constraints. Vector a and matrix M are bound by constraint alternative,
which is employed to state that at most one interval of the j-th column of M
occurs and that it corresponds to interval aj :

alternative(aj,Mj), ∀j ∈ JW ∪ JH (20)

The clustering constraints are represented by logical implications, which force
the presence of all development intervals of a cluster in a single line of M :

presence(mi1j1)→ ¬ presence(mi2j2), ∀i1 ∈ I, i2 ∈ I, i1 �= i2,

j1 ∈ JW , j2 ∈ JW , j1 �= j2,

ci1j1 = 1, ci2j2 = 1, clj1 = clj2 (21)

In order to prevent resources from being assigned to more than one activity at
a time, an upper limit of 1 is set to the functions of u. Besides, the functions of
l are set as equal to the location of the activities performed on each resource:

ui ≤ 1, ∀i ∈ I (22)

[presence(mij) = 1]→ [li(t) = locj], ∀i ∈ I, j ∈ JW ∪ JH ,

cij = 1, t ∈ [start(mij), end(mij)) (23)

With constraints on vector u, we can also prevent any resource from performing
an activity during a period of full unavailability. That is made by constraining
the value of the functions of u to 0 when such type of maintenance occurs:

alwaysIn(ui, aj , 0, 0), ∀i ∈ I, j ∈ JM \ JM ′ , rmj = i (24)

The constraint alwaysIn(f, v, a, b) states that the value of a cumulative function
f during the occurrence of an interval v must lay in the range [a, b].

In the case of resource maintenance activities demanding only a partial un-
availability, an auxiliary vector of cumulative functions u’ is used to represent the
use of the associated resources by a conflicting activity. Each of such functions
is constrained to be 0 during the associated interval of partial unavailability:

u′jm =
∑

j∈J′
jm

:cij=1

pulse(mij, 1), ∀i ∈ I, jm ∈ JM ′ , rmjm = i (25)

alwaysIn(u′jm , ajm , 0, 0), ∀jm ∈ JM ′ (26)
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The precedence between pairs of activities is directly stated with constraints
involving the associated intervals of a. The first constraint below guarantees the
chronological order between each of such pairs, and the second one that the
presence of the latter interval depends on whether the former is also present:

end(aj1) + pdj1j2 ≤ start(aj2 ), ∀j1 ∈ JW , j2 ∈ JW , pcj1j2 = 1 (27)

presence(aj2)→ presence(aj1), ∀j1 ∈ JW , j2 ∈ JW , pcj1j2 = 1 (28)

The constraints to force the entire development of a well or its absence are
defined between one of the first activities of each well and each of the remaining
activities. Let JF ⊆ JW be the set of the first development activities, i.e., those
which are not preceded by other activities of the same well. Since it is possible
that a well k has more than one activity in JF , let JF1 ⊆ JF be a set containing
exactly one of such activities of each well. Each pair of activities from a well
such that one belongs to JF1 and the other to JNF1 = JW \ JF1 are then both
present or absent with the following constraint:

presence(aj1) = presence(aj2), ∀j1 ∈ JF1, j2 ∈ JNF1, locj1 = locj2 (29)

In order to limit the concurrency on wells and harbors, the cumulative func-
tions of vector x are upper limited according to the type of each location:

xk ≤ 1, ∀k ∈ KW (30)

xk ≤ sk, ∀k ∈ KH (31)

Similarly, the upper and lower limits of inventory on each pipelay vessel are
imposed with constraints upon b and BH , respectively:

bi ≤ ici, ∀i ∈ IV (32)

bhik ≥ 0, ∀i ∈ IV , k ∈ KH (33)

In the case of loading activities, the inventory increase due to each interval
is limited by its length. Thus, the following constraint limits the increase of
inventory associated with each interval from definition (16):

heightAtEnd(bhik,mij) ≤ ici ∗
length(mij)

mali
,

∀i ∈ IV , j ∈ JH , k ∈ KW ,

cij = 1, locj = k (34)

The function heighAtEnd(f, v) represents the variation of cumulative function
f caused only by stepAtEnd functions involving interval v.

The inventory is also constrained to be empty before a new load at a harbor:

alwaysIn(bhik,mij , 0, 0), ∀i ∈ IV , j ∈ JH , k ∈ KH , cij = 1, locj = k (35)

With constraint (35), the shipment of each pipe p is always assigned to the last
loading activity performed by a resource at the harbor of the pipe before the



832 T. Serra, G. Nishioka, and F.J.M. Marcellino

development activity of connection cap. In order to facilitate the satisfaction
of (35), the implementation of (16) contains a variable negative step at the
start of each load. Such step is aimed to perform small corrections in decisions
regarding the weight loaded on previous activities, thus avoiding an excessive use
of retraction during the search. Since that was only necessary for performance
improvement on current solvers, we do not regard it as part of the model. For an
explanation about the relation between search and the propagation of resource
constraints, the interested reader is referred to the work of Laborie [13].

In order to reduce the search space associated with the number of loading
activities, the bijection f can be used to define a symmetry breaking constraint.
Without loss of generality, we can state that a well connection jw is present if
the associated loading activity jh is also present:

presence(ajh)→ presence(ajw), ∀jh ∈ JH , jw ∈ JW , p ∈ P,

f(p) = jh, cap = jw (36)

In order to avoid the assignment of a pipe to a loading activity scheduled before
its release date, it was necessary to define an additional vector z. Each cumulative
function zi represents the maximum date of release of a pipe that is carried by
resource i along time. One may observe that such cumulative function is actually
representing a qualitative property, and that qualitative properties are usually
modeled by means of state functions. The rationale for such design choice is
that the syntax of cumulative functions is more appropriate in this case, since
it enables to constrain that a property only changes at specific moments. Given
that the variety of pipes that can be loaded is only altered when loading activities
are performed, the change of the maximum date of release of pipes carried by a
resource can only occur at the start of loading activities.

Each function zi is composed in (37) of steps at the start of each loading
activity performed by resource i. Its value is constrained by (38) to be always
equal to the date of release of the pipe p associated by bijection f with the
loading activity j that is performed, i.e., zi = rpp for f(p) = j when performing
mij . Thus, the value of each function is always between 0 and mard, which is
defined as the maximum date of release among all pipes. It is worth observing
that the step due to each load is set to vary from −mard to +rpp in order to
account for the state of the resource right before the start of each load:

zi =
∑

j∈JH ,p∈P :cij=1∧f(p)=j

stepAtStart(mij ,−mard,+rpp),

∀i ∈ IV (37)

alwaysIn(zi,mij , rpp, rpp), ∀i ∈ IV , j ∈ JH , p ∈ P,

cij = 1, f(p) = j (38)

Hence, it is possible to constrain each development activity of connection cap of
a pipe p to be scheduled only when pipe p could have been previously loaded:

alwaysIn(zi,mij , rpp,mard), ∀i ∈ IV , j ∈ JW , p ∈ P,

cij = 1, cap = j (39)
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It is worth of notice that constraint (39) forces that the load of a pipe p can
only be made by an activity j associated by f with a pipe p′ such that rpp′ ≥ rpp.
It may appear that such constraint is more restrictive than necessary. However,
theorem 1 guarantees that any solution can be represented with the model, and
thus that (39) also serves as a symmetry breaking constraint for that reason.

Lemma 1. Given an ORSP solution S that does not comply with constraint
(39), there is always a solution S′ equivalent to S with less violations to (39).

Proof. The following operation can be applied to a solution S to obtain an equiv-
alent solution S′ such that the number of pipes of latest release date assigned to
loading activities forbidden by (39) is reduced in at least one unit. Suppose that
S is a solution that violates such constraint, and that p1 is the pipe with the
latest release date which is assigned to a loading activity j2 such that f(j2) = p2
and rpp2 < rpp1 . Since there is one loading activity associated with each pipe
from the same harbor hpp1 with release date rpp1 onwards and one of such pipes,
p1, is not assigned to neither of them, at least one of such activities, j1, is ei-
ther absent or assigned to load pipes with earlier release dates. Thus, there is
an equivalent solution S′, which differs from S by switching the assignment and
schedule of activities j1 and j2, and therefore it has less pipes with the same
release date as p1 assigned to a loading activity forbidden by (39) than S has.

Theorem 1. Constraint (39) does affect the correctness of the ORSP model.

Proof. After a finite number of applications of the operation above, an equivalent
solution satisfying (39) can be achieved from any ORSP solution.

Objective Function. The objective function represents the expected short-
term production that would be accumulated from day 0 to day H with the
schedule. It is depicted as the summation of the production rate triggered by
the finish of each activity in the schedule multiplied by the time left until H :

maximize
∑
j∈JW

MAX(H − end(aj), 0) ∗ prj (40)

Search Phases. The use of search phases is aimed to order the sets of variables
of a problem in order to reduce the search effort. As a matter of fact, much of the
work of ordering variables and values for assignment still remains to the solver in
such a case. However, an outline of search phases according to the modeler point
of view can help leveraging domain-specific knowledge to solve the problem.

In the ORSP model, we observed that it was better to assign first the intervals
of a related to resource maintenance activities, starting with those demanding
full unavailability. The rationale for such strategy is that such intervals are those
with mandatory presence. Therefore, it is very likely that a delay in their as-
signments would cause more conflicts during the search. Besides, we relied on
the premise that full unavailability periods are less sensitive to the assignment
of activities to each resource, since they do not allow any concurrence.
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4.2 Testing the ORSP Model

The experimental evaluation conducted to test the model was based on data
from a past scenario of the company. It comprises the activities to develop 171
wells using 73 resources. Such data was used to generate a number of instances
by splitting the set of wells, and thus also splitting the corresponding sets of
activities and pipes. For confidentiality and to facilitate comparisons, the value
of the best solution found for each instance was used to define 100 in an arbi-
trary scale. In what follows, we will describe the instances and the experiments
performed with them, present the results of the tests and discuss those results.

Experiment. The model was tested using a set of instances first described
in [21]. Instance O contains the entire set of activities of the past scenario used,
which is partitioned approximately into halves for instances H1 and H2 as well
as into quarters for instances Q1 to Q4. The same set of resources is considered
in all cases. It is worth observing that those instances contain data regarding the
details that were only introduced in the current work. Nevertheless, such data
were ignored on the experiments of previous approaches. Table 1 summarizes
how many activities, wells, pipes, rigs and vessels each instance has.

Table 1. Main characteristics of the tested instances

Instance Q1 Q2 Q3 Q4 H1 H2 O

Activities 116 118 116 115 231 234 465

Wells 46 37 45 43 82 89 171

Pipes 17 17 13 19 32 34 66

Rigs 64

Vessels 9

The model was implemented using the OPL language and run using IBM
Cplex Studio 12.2 with the CP Optimizer solver [11]. For each instance, it was run
four times with different random seeds. The only modification to the standard
solving parameters in such runs was that the cumulative function inference level
was set as extended. The upper bound of each instance was set by running the
MILP model MF described in [22] on the Cplex solver with an empty schedule as
starting solution. To achieve a tighter estimation, an additional constraint was
defined to limit the start of each connection activity j, which is represented in
MF by variable Sj , according to the date of release of the pipes it must unload:

Sj ≥ rpp, ∀j ∈ JW , p ∈ P, cap = j (41)

The time limit of each run of either model was set as one hour in accordance to
the end user expectation. The computer used had 4 Dual-Core AMD Opteron
8220 processors, 16 Gb of RAM and a Linux operating system.
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Results. The results of the runs are summarized in table 2. For each instance,
it comprises the average (μ) and the standard deviation (σ) of the time to find
the first solution, the production of such solution and the production of the last
solution found according to a scale where the best solution found is 100. The
upper bound corresponds to the optimal solution of the relaxed model MF for
instances Q1 to Q4 and H1, and to the upper limit reached at the solver halt for
instances H2 and O. Since greater performance variations were observed only
for instance O, the progress of each run to solve that instance is presented in
figure 1. Such progress is depicted in terms of the best solution found along time.

Table 2. Summary of test results for each instance

First solution found Last solution Upper bound

Time (s) Value Value
Value

Worst-case

Instance μ σ μ σ μ σ opt. gap

Q1 0.44 0.02 99.1 0.3 100.0 0.0 100.1 0.1%

Q2 0.42 0.01 99.0 0.5 100.0 0.0 100.4 0.4%

Q3 0.60 0.02 99.4 0.2 100.0 0.0 100.1 0.1%

Q4 0.45 0.01 98.7 0.7 100.0 0.0 100.2 0.2%

H1 1.53 0.07 94.9 1.0 99.8 0.2 100.2 0.2%

H2 1.58 0.29 91.7 1.3 99.8 0.1 100.8 0.8%

O 4.57 0.24 83.2 1.5 98.9 1.5 107.2 7.2%

Fig. 1. Best solution found along time for independent runs on instance O
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Discussion. The results indicate that our approach was able to deliver good
solutions within the time limit set by the end user. A worst-case optimality gap
of less than 1% was achieved for all but the largest instance. For the scheduling
of the whole set of activities, the gap was 7.2%. It is worth observing that about
two thirds of the gap between the first solution and the upper limit vanished
after one hour of search. In addition, figure 1 shows that there is a similar trend
of improvement for most of the runs. Altogether, such observations evidence the
system reliability to handle scenarios like those expected by the company.

Some scalability factors were observed as well. With a fixed time limit, the
major impact noticed in solution quality is due to the number of activities that
each instance has. The size of the instances also influenced the time and the
quality of the first solution found. Among instances of similar size, the tightest
gaps were achieved for the instances with a relatively small number of pipes,
such as Q3 and H1. Therefore, the numbers of activities and pipes can be used
for a preliminary assessment of instance hardness.

5 Benefits from CP

The greatest advantage sensed with the use of CP in this project was the easiness
of prototyping. We were able to develop most of the project with only two pro-
fessionals in full time dedication, who could deliver new and fully tested versions
on a monthly basis. It was crucial that new models were available for evaluation
as soon as possible for at least two reasons. First, many of the refinements asked
each time by the clients of the project were attempts to describe their process.
Second, it was often hard to gather an expressive amount of end users together
to discuss the next steps of the development. In this context, the use of concise
and easily maintainable models made it possible to work with a continuous de-
ployment of new versions of the system. Hence, in spite of the number of rounds
required to achieve a consensus of the problem definition, the short development
cycle was essential to the conclusion and success of the project.

The end users showed a great interest in the results and in the technology
beneath the system. That was caused by the positive prospect presented at the
beginning of the project, which would facilitate a lot their daily work. Many
of the questions that they raised referred to their expectation of what a good
solution would be, and thus provided guidance to our work. In some of those
occasions, they also wanted to understand how the solving process works. Since
all of them were engineers and some had an IT background, the outline of the CP
framework was easily assimilated. Nevertheless, there was a certain reluctance
in accepting the use of a declarative paradigm if, when compared to alternatives
like MP, CP was much more focused on feasibility than on optimality. Such
opposition could be summarized by the idea that one should only give up the
procedural control of a process if the incurred result was guaranteed to be the
best possible one. However, the ability presented by the system to deal with large
and overconstrained scheduling scenarios due to CP propagation mechanisms
came to be considered important as well. In addition, some experiments like those
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reported in [23] helped to illustrate that it would not be worth to always assume
certain assumptions regarding how the problem used to be solved manually.
Those assumptions would require imposing unnecessary constraints, which were
shown to harm considerably the long-term results on larger instances. With time,
we were able to evaluate the solutions of the models through their rationale, and
they were able to suggest modifications to the model at a more technical level.

6 Conclusion

This work approached the scheduling of an specialized fleet of oil rigs and pipelay
vessels to develop offshore oil wells with the introduction of real-world constraints
that have never been considered before. Two direct benefits have been observed
by automating decisions related to the use of such resources. First, it reduces
the burden over the professionals involved with the control of expensive and
highly required machinery. If circumstances change, the time to perform a quick
reschedule has passed from days to minutes. Second, a better return in terms
of oil production can be pursued by generating and comparing many schedules.
Experimental results indicate that a solution with worst-case optimality gap of
7.2% was achieved for a past scenario of the company. In addition, the antici-
pation of the development of a single well for an oil company usually would be
enough to cover the expenses of an entire project like the present one. Hence,
this article represents a detailed account on how to approach a type of problem
that may interest many capital-intensive industries.

The difficulty to solve some optimization problems is often due to the lack
of tools capable of leveraging the specificities of each application domain. We
noticed that there is much to be gained by considering the use of Constraint
Programming (CP) in such cases, for which reason the use of the technique is
being considered in other projects within the company. As a consequence, this
work has also focused on the rationale for using the technique as well as on the
factors that led to the conclusion that other alternatives were not so appropriate.
In a nutshell, CP allows tackling hard problems of large scale without giving up
of a systematic approach, thus keeping the chance of finding an optimal solution.
That is especially true for scheduling problems, which are quite common in many
companies and are usually difficult to handle in such a way.
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Abstract. Proteins are chains of simple molecules called amino acids.
The three-dimensional shape of a protein and its amino acid composition
define its biological function. Over millions of years, living organisms have
evolved and produced a large catalog of proteins. By exploring the space
of possible amino-acid sequences, protein engineering aims at similarly
designing tailored proteins with specific desirable properties. In Com-
putational Protein Design (CPD), the challenge of identifying a protein
that performs a given task is defined as the combinatorial optimization
problem of a complex energy function over amino acid sequences.

In this paper, we introduce the CPD problem and some of the main
approaches that have been used to solve it. We then show how this
problem directly reduces to Cost Function Network (CFN) and 0/1LP
optimization problems. We construct different real CPD instances to
evaluate CFN and 0/1LP algorithms as implemented in the toulbar2

and cplex solvers. We observe that CFN algorithms bring important
speedups compared to the CPD platform osprey but also to cplex.

1 Introduction

A protein is a sequence of basic building blocks called amino acids. Proteins are
involved in nearly all structural, catalytic, sensory, and regulatory functions of
living systems [11]. Performance of these functions generally requires the assem-
bly of proteins into well-defined three-dimensional structures specified by their
amino acid sequence. Over millions of years, natural evolutionary processes have
shaped and created proteins with novel structures and functions by means of
sequence variations, including mutations, recombinations and duplications. Pro-
tein engineering techniques coupled with high-throughput automated procedures
offer today the possibility to mimic the evolutionary process on a greatly accel-
erated time-scale, and thus increase the odds to identify the proteins of interest
for technological uses [29]. This holds great interest for medicine, biotechnology,
synthetic biology and nanotechnologies [27,32,15].

� These authors contributed equally to this work.
�� Corresponding authors.

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 840–849, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Protein Design as Cost Function Network Optimization 841

With a choice among 20 naturally occuring amino acids at every position, the
size of the combinatorial sequence space is however clearly out of reach of current
experimental methods, even for small proteins. Computational protein design
(CPD) methods therefore try to intelligently guide this process by producing
a collection of proteins, intended to be rich in functional proteins and whose
size is small enough to be experimentally evaluated. The challenge of choosing a
sequence of amino acids to perform a given task is formulated as an optimization
problem, solvable computationally. It is often described as the inverse problem
of protein folding [28]: the three-dimensional structure is known and we have to
find amino acid sequences that folds into it. It can also be considered as a highly
combinatorial variant of side-chain positioning [35] because of possible amino
acid changes.

Different computational methods have been proposed over the years to solve
this problem and several success stories have demonstrated the outstanding po-
tential of CPD methods to engineer proteins with improved or novel properties.
CPD has been successfully applied to increase protein thermostability and sol-
ubility; to alter specificity towards some other molecules; and to design various
binding sites and construct de novo enzymes (see for example [18]).

Despite these significant advances, CPD methods still have to mature in order
to better guide and accelerate the construction of tailored proteins. In particular,
more efficient computational optimization techniques are needed to explore the
vast protein sequence-conformation combinatorial space.

In this paper, we model CPD problems as either binary Cost Function Net-
work (CFN) or 0/1LP problems. We compare the performance of the CFN solver
toulbar2 and the 0/1LP solver cplex against that of well-established CPD
approaches on various protein design problems. On the various problems con-
sidered, the direct application of toulbar2, a Depth First Branch and Bound
algorithm maintaining soft local consistencies, resulted in an improvement of
several orders of magnitude compared to dedicated CPD methods and also out-
performed cplex. These preliminary results can probably be further improved
both by tuning our solver to the specific nature of the problem considered and
by incorporating dedicated CPD preprocessing methods.

2 The Computational Protein Design Approach

In CPD, we are given an existing protein corresponding to a native sequence of
amino acids folded into a 3D structure, which has previously been determined
experimentally. The task consists in modifying a given property of the protein
(such as stability or functional efficiency) through the mutation of a specific
subset of amino acid residues in the sequence, i.e. by affecting their identity
and their 3D orientation (rotamers). The resulting designed protein retains the
overall folding of the original protein since we consider the protein backbone
as fixed and only alter the amino acid side chains (Fig. 1). The stability and
functional efficiency of a protein is correlated to its energy [1]. Therefore, we aim
at finding the conformation possessing the minimum total energy, called GMEC
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Fig. 1. A local view of combinatorial sequence exploration considering a common back-
bone. Changes can be caused by amino acid identity substitutions (for example D/L
or R/Q) or by amino acid side-chain reorientations (rotamers) for a given amino acid.
A typical rotamer library for one amino acid is shown on the right (ARG=Arginine).

(Global Minimum Energy Conformation). The energy of a conformation can be
directly computed from the amino acid sequence and rotamers by introducing
substitutions within the native structure.

Rotamers. The distribution of accessible conformations available to each amino
acid side chain is approximated using a set of discrete conformations defined by
the value of their inner dihedral angles. These conformations, or rotamers, are
derived from the most frequent conformations in the experimental repository of
known protein structures PDB (Protein Data Bank, www.wwpdb.org).

Energy function. Typical energy function approximations [3] use the assump-
tion that the amino acid identity substitutions and rotamers do not modify the
folding of the protein. They include non-bonded terms such as van der Waals
and electrostatics, often in conjunction with empirical contributions describing
hydrogen bond. The surrounding solvent effect is generally treated implicitly
as a continuum. In addition, statistical terms may be added in order to ap-
proximate the effect of mutations on the unfolded state or the contribution of
conformational entropy.

These energy functions can be reformulated in such a way that the terms are
locally decomposable. Then, the energy of a given protein defined by a choice
of one specific amino acid with an associated conformation (rotamer) for each
residue, can be written as:

E = Ec +
∑
i

E(ir) +
∑
i

∑
j>i

E(ir, js) (1)

where E is the potential energy of the protein, Ec is a constant energy contri-
bution capturing interactions between fixed parts of the model, E(ir) is the self

www.wwpdb.org
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energy of rotamer r at position i capturing internal interactions or with fixed
regions, and E(ir, js) is the pairwise interaction energy between rotamer r at
position i and rotamer s at position j [9]. All terms are measured in kcal/mol
and can be pre-computed and cached.

3 Existing Approaches for the CPD

The protein design problem as defined above, with a rigid backbone, a discrete set
of rotamers, and pairwise energy functions has been proved to be NP-hard [31].
Hence, a variety of meta-heuristics have been applied to it, including Monte Carlo
simulated annealing [21], genetic algorithms [33], and other algorithms [10]. The
main weakness of these approaches is that they may remain stuck in local minima
and miss the GMEC without notice.

However, there are several reasons motivating the exact solving of the prob-
lem. First, because they know when an optimum is reached, exact methods may
stop before metaheuristics. Voigt et al. [36] reported that the accuracy of meta-
heuristics also degrades as problem size increases. More importantly, the use of
exact search algorithms becomes crucial in the usual experimental design cycle
that goes through CPD modeling, solving, protein synthesis and experimental
evaluation: when unexpected experimental results are obtained, the only possible
culprit lies in the CPD model and not in the algorithm.

Current exact methods for CPD mainly rely on the dead-end-elimination
(DEE) theorem [9,8] and the A∗ algorithm [24,13]. From a constraint satis-
faction perspective, the DEE theorem can be seen as an extension of neighbor-
hood substitutability [7,20,2]. DEE is used as a pre-processing technique and
removes rotamers that are locally dominated by other rotamers, until a fixpoint
is reached. The rotamer r at position i is removed if there exists another rotamer
u at the same position such that [9]:

E(ir)− E(iu) +
∑
j �=i

min
s

E(ir, js)−
∑
j �=i

max
s

E(iu, js) > 0

That is, r is removed if for any conformation with this r, we get a conformation
with lower energy if we substitute u for r.

Extensions to higher orders have been considered [14,30,25,12]. These DEE
criteria preserve the optimum but may remove suboptimal solutions.

This DEE preprocessing is usually followed by an A∗ search method. After
DEE pruning, the A∗ algorithm allows to expand a sequence-conformation tree,
so that sequence-conformations are extracted and sorted on the basis of their
energy values. At depth d of the tree, the lower bound used by A∗ [13] is exactly
the PFC-DAC lower bound [37,23] used in WCSP and later obsoleted by soft
arc consistencies [34,22,5]:

d∑
i=1

E(ir)+

d∑
j=i+1

E(ir, js)︸ ︷︷ ︸
Assigned

+

n∑
j=d+1

[
min
s

(E(js) +

d∑
i=1

E(ir, js)︸ ︷︷ ︸
Forward checking

+

n∑
k=j+1

min
u

E(js, ku)︸ ︷︷ ︸
DAC counts

)
]
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If the DEE algorithm does not significantly reduce the search space, the A∗

search tree is too memory demanding and the problem cannot be solved. There-
fore, to circumvent these limitations and increase the ability of CPD to tackle
problems with larger sequence-conformation space, novel alternative methods are
needed. Here, we show that state-of-the-art methods for solving Cost Function
Networks offer an attractive alternative to this combined DEE/A∗ approach, to
solve highly complex case studies of protein design.

4 Cost Function Network Model

A Cost Function Network (CFN) is a pair (X,W ) where X = {1, . . . , n} is
a set of n variables and W a set of cost functions. Each variable i ∈ X has
a finite domain Di of values than can be assigned to it. A value a ∈ Di is
denoted ia. For a set of variables S ⊆ X , DS denotes the Cartesian product
of the domain of the variables in S. For a given tuple of values t, t[S] denotes
the projection of t over S. A cost function wS ∈ W , with scope S ⊆ X , is a
function wS : DS �→ [0, k] where k is a maximum integer cost used for forbidden
assignments. The Weighted Constraint Satisfaction Problem (WCSP) is to find a
complete assignment t minimizing the combined cost function

∑
wS∈W wS(t[S]).

This optimization problem has an associated NP-complete decision problem.
Modeling the CPD problem as a CFN is straightforward. The set of variables

X has one variable i per residue i. The domain of each variable is the set of
(amino acid,conformation) pairs in the rotamer library used. The energy func-
tion can be represented by 0-ary, unary and binary cost functions respectively
capturing the constant energy term Ec, the unary energy terms E(ir) and the
binary energy terms E(ir, js). There is just one discrepancy between the original
formulation and the CFN model: energies are represented as arbitrary floating
point numbers while CFN use positive integer costs. This can simply be fixed
by first subtracting the minimum energy to all energies and then by multiplying
energies by a large integer constant M .

5 Integer Linear Programming Model

The resulting CFN can also be represented as a 0/1 linear programming problem
using the encoding proposed in [20]. For every value ir, there is a boolean variable
di,r which is equal to 1 iff i = r. Additional constraints enforce that exactly one
value is selected for each variable. For every pair of values of different variables
(ir, js) involved in a binary energy term, there is a boolean variable pi,r,j,s which
is equal to 1 iff the pair (ir, js) is used. Constraints enforce that a pair is used
iff the corresponding values are used. Then, finding a GMEC reduces to the
following ILP:

min
∑

i,r E(ir).di,r +
∑

i,r,j,s E(ir, js).pi,r,j,s

s.t.
∑

r di,r = 1 (∀i)∑
s pi,r,j,s = di,r (∀i, r, j)
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This model is also the ILP model IP1 proposed in [19] for side-chain position-
ing. The continuous relaxation of this 0/1 linear programming model is known
do be the dual of the LP problem encoded by Optimal Soft Arc Consistency [6,5].
When the upper bound k is infinite, OSAC is known to be stronger than any
other soft “arc level” arc consistency and especially stronger than the default Ex-
istential Directional Arc Consistency (EDAC) [22] used in toulbar2. However,
as soon as the upper bound k decreases to a finite value, soft local consistencies
may prune values and EDAC becomes incomparable with OSAC.

6 Experimental Results

We used a set of 12 protein design cases to evaluate the performance of toulbar2,
cplex and compare them with the DEE/A* approach implemented in osprey

(open source dedicated Java CPD software). This set comprises 9 protein struc-
tures derived from the PDB which were chosen for the high resolution of their
3D-structures and their distribution of sizes and types. Diverse sizes of sequence-
conformation combinatorial spaces were considered, varying by the number of
mutable residues, the number of alternative amino acid types at each position
and the number of conformations for each amino acid (Table 1). The Penultimate
rotamer library was used [26].

Preparation of CPD instances. Missing heavy atoms in crystal structures and
hydrogen atoms were added with the tleap module of the AMBER9 software
package [4]. Each molecular system was then minimized in implicit solvent (Gen-
eralized Born model [17]) using the Sander program and the all-atom ff99 force
field of AMBER9. All Ec, E(ir), and E(ir, js) energies of rotamers (see Equa-
tion 1) were pre-computed using osprey. The energy function consisted of the
Amber electrostatic, van der Waals, and dihedral terms. These calculations were
performed on an Altix ICE 8200 supercomputer with 2,816 Intel Nehalem EX
2.8 GHz cores. We used 32 cores and 128GB of RAM. The sequential CPU
time needed to compute the set of all energy cost functions is given in Table 1.
Although these computation times can be very large, they are also highly paral-
lelizable. For n residues to optimize with d possible (amino acid,conformation)

pairs, there are n unary and n.(n−1)
2 binary cost functions which can be computed

independently.

DEE/A* optimization. To solve the different protein design cases, we used
osprey version 1.0 (cs.duke.edu/donaldlab/osprey.php) which first filters ro-
tamers ir such that E(ir) > 30kcal/mol and pairs (ir, js) such that E(ir, js) >
100kcal/mol (pruningE and stericE parameters). This step is followed by ex-
tensive DEE pre-processing (algOption = 3, includes simple Goldstein, Magic
bullet pairs, 1 and 2-split positions, Bounds and pairs pruning) and A∗ search.
Only the GMEC conformation is generated by A∗ (initEw=0). Computations
were performed on a single core of an AMD Operon 6176 at 2.3 GHz, 4 GB of
RAM, and a 100-hour time-out. There were no memory-out errors.

cs.duke.edu/donaldlab/osprey.php
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CFN and ILP optimization. The same problems (before DEE preprocessing and
using M = 108) have been tackled by cplex version 12.2 (parameters EPAGAP,
EPGAP and EPINT set to zero to avoid premature stop) and toulbar2 ver-
sion 0.9.5 (mulcyber.toulouse.inra.fr/projects/toulbar2/) using binary
branching with an initial limited discrepancy search phase [16] with a maximum
discrepancy of 2 (options -d: -l=2, and other default options including EDAC
and no initial upper bound) and domains sorted with increasing unary costs
E(ir). These computations were performed on a single core of an Intel Xeon
E5430 core at 2.66 GHz with 64GB of RAM with a 100-hour time-out.

With the exception of one instance (1CM1), cplex significantly outperforms
osprey. On the other hand, toulbar2 is always faster than both cplex and
osprey by at least one order of magnitude and often many more, even accounting
for the performance discrepancy arising from the difference in the hardware we
used. We have also verified that the minimum energy reported by all 3 solvers
is identical.

Table 1. For each instance: protein (PDB id.), amino acid sequence length, number
of mutable residues, maximum number of (amino acid, conformation) pairs, sequential
time for computing E(·) energy functions, and CPU-time for solving using osprey,
cplex, and toulbar2. A ’-’ indicates that the 100-hour limit has been reached.

System name Size n d E(·) osprey cplex toulbar2

Thioredoxin (2TRX) 108 11 44 304 min. 27.1 sec. 2.6 sec. 0.1 sec.
Protein G (1PGB) 56 11 45 76 min. 49.3 sec. 14.7 sec. 0.1 sec.
Protein L (1HZ5) 64 12 45 114 min. 1,450 sec. 17.7 sec. 0.1 sec.
Ubiquitin (1UBI) 76 13 45 270 min. - 405.0 sec. 0.6 sec.
Protein G (1PGB) 56 11 148 1,096 min. - 2,245 min. 13.9 sec.
Protein L (1HZ5) 64 12 148 831 min. - 1,750 min. 14.6 sec.
Ubiquitin (1UBI) 76 13 148 1,967 min. - - 378 min.
Plastocyanin (2PCY) 99 18 44 484 min. - 89.5 sec. 0.5 sec.
Haloalkane Dehaloge-
nase (2DHC)

310 14 148 45,310 min. - - 77.4 sec.

Calmodulin (1CM1) 161 17 148 11,326 min. 121.9 sec. 1,707 sec. 2.0 sec.
Peptidyl-prolyl cis-trans
Isomerase (1PIN)

153 28 148 40,491 min. - - -

Cold-Shock (1C9O) 132 55 148 84,089 min. - - -

6.1 Explaining the Differences

The ILP solver CPLEX is a totally closed-source black box. More generally,
solvers are complex systems involving various mechanisms. The effect of their in-
teractions during solving is hard to predict. Therefore, explaining the differences
in efficiency observed between the different approaches is not really obvious.

If we consider osprey first, it uses an obsolete lower bound instead of the more
recent incremental and stronger lower bounds offered by soft local consistencies
such as EDAC [22]. This, together with the associated informed value ordering

mulcyber.toulouse.inra.fr/projects/toulbar2/
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provided by these local consistencies, may explain why toulbar2 outperforms
osprey. Similarly, the LP relaxation lower bound used in ILP is known (by
duality) to be the same as the Optimal Soft AC lower bound (when no upper
bounding occurs, i.e. when k = +∞). Since OSAC dominates all other local
consistencies at the arc level, this provides an explanation for the efficiency
of cplex compared to osprey. Finally, the problem is deeply non linear. It
can be concisely formulated as a CFN but the ILP formulation is much more
verbose. This probably contributes, together with the upper bounding (provided
by node consistency) and value ordering heuristics of toulbar2, to the efficiency
of toulbar2 compared to cplex.

7 Conclusion

The simplest formal optimization problem underlying CPD looks for a Global
Minimum Energy Conformation (GMEC) over a rigid backbone and altered side-
chains (identity and conformation). It can easily be reduced to a binary Cost
Function Network, with a very dense graph and relatively large domains or to
0/1LP with a large number of variables.

On a variety of real instances, we have shown that state-of-the-art CFN algo-
rithms but also 0/1LP algorithms give important speedups compared to usual
CPD algorithms combining Dead End Elimination with A∗ as implemented in
the osprey package. CFN algorithms are the most efficient by far and have the
advantage of requiring reasonable space.

Although existing CFN algorithms still need to be extended and adapted to
tackle such problems, the rigid backbone method reported herein may contribute
to the development of more sophisticated flexible methods.
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Abstract. Methods to predict the structure of a protein often rely on
the knowledge of macro sub-structures and their exact or approximated
relative positions in space. The parts connecting these sub-structures are
called loops and, in general, they are characterized by a high degree of
freedom. The modeling of loops is a critical problem in predicting pro-
tein conformations that are biologically realistic. This paper introduces a
class of constraints that models a general multi-body system; we present
a proof of NP-completeness and provide filtering techniques, inspired by
inverse kinematics, that can drastically reduce the search space of poten-
tial conformations. The paper shows the application of the constraint in
solving the protein loop modeling problem, based on fragments assembly.

1 Introduction

Proteins are macro-molecules of fundamental importance in the way they regu-
late vital functions in all biological processes. In general, there is a direct cor-
respondence between a protein function and its 3D structure—as the structure
guides the interactions among molecules. Thus, proteins structure analysis is
essential for biomedical investigations, e.g., drug design and protein engineering.

The natural approach of investigating protein conformations through simula-
tions of physical movements of atoms and molecules is, unfortunately, beyond
the current computational capabilities [23,3,26]. This has originated a variety of
alternative approaches, many based on comparative modeling—i.e., small struc-
tures from related protein family members are used as templates to model the
global structure of the protein of interest [24,19,34,28,25]. In these methods,
named fragments assembly, a protein structure is assembled by using small pro-
tein subunits as templates that present similarities (homologous affinity) w.r.t.
the target sequence. The literature has also demonstrated the strength of Con-
straint Programming (CP) techniques in investigating the problem of protein
structure prediction—where constraints are used to model the structural vari-
ability of a protein [1,2,8,9].

In this paper, we model the problem of assembling rigid fragments as a global
constraint. We abstract the problem as a general multi-body system, where
each composing body is constrained by means of geometric properties and it
is related to other bodies through joint relationships. This model leads to the

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 850–866, 2012.
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Joined-Multibody (JM) constraint, whose satisfaction we prove to be NP-complete.
Realistic protein models require the assembly of hundreds of different body ver-
sions, making the problem intractable. We study an efficient approximated prop-
agator, called JM filtering (JMf), that allows us to efficiently compute classes of
solutions, partitioned by structural similarity and controlled tolerance for error.

We implement and test the constraint and its propagator in the FIASCO
framework [10]. We demonstrate our approach in addressing the loop modeling
problem, which is a special case of the JM constraint. The goal is to connect
two bodies that have fixed positions in space and that are connected by a se-
quence of highly variable bodies. The loop is characterized by a high degree of
freedom and resembles the inverse-kinematic problem found in robotics, with
some spatial constraints. We demonstrate the strength of the filtering algorithm
in significantly reducing the search space and in aiding the selection of represen-
tative solutions. We compare our results, based on popular benchmark suites, to
other programs specialized on loop modeling, with very encouraging results.

2 Related Work and Background

Loop modeling can be described as a special case of the protein structure pre-
diction problem, where CP has been extensively employed. CP has been used
to provide approximated solutions for ab-initio lattice-based modeling of pro-
tein structures, using local search and large neighboring search [33,15]; exact
resolution of the problem on lattice spaces using CP, along with with clever
symmetry breaking techniques, has also been investigated [1]. These approaches
solve a constraint optimization problem based on a simple energy function
(HP). A more precise energy function has been used in [8,11], where infor-
mation on secondary structures (helices, sheets) are taken into consideration.

Fig. 1. Helices with a
loop

Due to the approximation errors introduced by lat-
tice discretization, these approaches do not scale to
medium-size proteins. Off-lattice models, based on the
idea of fragment assembly, and implemented using
Constraint Logic Programming over Finite Domains,
have been presented in [9,10] and applied not only to
structure prediction but also to other structural anal-
ysis problems—e.g., the tool developed in [9] has been
used to to generate sets of feasible conformations for
studies of protein flexibility [13]. The use of CP to an-
alyze NMR data and the related problem of protein
docking has been studied in [2].

Even when protein structure prediction is realized
using homologous templates, the final conformation
may present aperiodic structures (loops) connecting the known protein segments
on the outer region of the protein, where the presence of the solvent lessens the
restrictions on the possible movements of the structure. These protein regions are
in general not conserved during evolution, and therefore templates provide very
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limited statistical structural information. The length of a protein loop is typically
in the range of 2 to 20 amino acids; nevertheless, the flexibility of loops produces
very large, physically consistent, conformation search spaces. Figure 1 depicts
a possible scenario where two macro-structures (two helices) are connected by
a loop—the loop anchors are colored in orange. The loop constraint is satisfied
by the loops connecting the two anchor points. Modeling a protein loop often
imposes constraints in the way of connecting two protein segments. Restrictions
on the mutual positions and orientations (dihedral angles) of the loop anchors
are often present. Such restrictions are defined as the loop closure constraints.

A procedure for protein loop modeling (e.g., [22]) typically consists of 3 phases:
sampling, filtering, and ranking. In sampling, a set of possible loop conformations
is proposed. Ab initio methods (e.g., [31,17,21,35,14,16,36]) and methods based
on templates extracted from structural databases (e.g., [7]) have been explored.
These conformations are checked w.r.t. the loop constraints and the geometries
from the rest of the structure, and the loops that are detected as physically
infeasible, e.g., causing steric clashes, are discarded by a filtering procedure.
Finally, a ranking step—e.g., based on statistical potential energy (e.g., DOPE
[32], DFIRE [37], or [18])—is used to select the best loop candidate(s).

Loop sampling plays an important role: it should produce structurally di-
verse loop conformations, in order to maximize the probability of finding one
close to the native conformation. Sampling is commonly implemented as a two-
step approach. First, a possible loop candidate is generated, without taking into
account geometric or steric feasibility restrictions—this step usually employs
dihedral angles sampled from structural databases [16]. Afterwards, the initial
structure is altered into a structure that satisfies the loop closure constraints.
Popular methods include the Cyclic Coordinate Descent (CCD) [6], the Self-
Organizing (SOS) algorithm [30], and Wriggling [5]. Multi-method approaches
have also been proposed—e.g., [29] proposes a loop sampling method which com-
bines fragment assembly and analytical loop closure, based on a set of torsion
angles satisfying the imposed constraints.

3 The Joined-Multibody Constraint

A rigid block B is composed of an ordered list of at least three (distinct) 3D
points, denoted by points(B). The anchors and end-effectors of a rigid block B,
denoted by start(B) and end(B), are the two lists containing the first three and
the last three points of points(B). With B(i) we denote the i-th point of the rigid
block B. For two ordered lists of points p and q, we write p � q if they can be
perfectly overlapped by a rigid translation/rotation (i.e., a roto-translation).

Definition 1 (Multi-body). A multi-body is a sequence S1, . . . , Sn of non-
empty sets of rigid blocks. A sequence of rigid blocks B1, . . . , Bn, is called a rigid
body if, for all i = 1, . . . , n − 1, end(Bi) � start(Bi+1). A compatible multi-
body is a multi-body where for all pairs of rigid blocks B,B′ ∈

⋃n
i=1 Si and for

all p, q ∈ {start(B), start(B′), end(B), end(B′)} it holds that p � q.
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Fig. 2. A schematic representation of a rigid body

A rigid body can be seen as one instance of a multi-body that guarantees
the partial overlapping of each two consecutive blocks. The overlapped points
end(Bi) and start(Bi+1) constitute the i-th joint of the rigid body. The number
of rigid bodies “encoded” by a single multi-body is bounded by Πn

i=1|Si|.
Figure 2 provides a schematic representation of a rigid body. The joints con-

necting two adjacent rigid blocks are marked by orange rectangles and grey
circles. The points in points(B) of each rigid block are represented by circles.
Each rigid block extends from the first point of a joint to the last point of the
successive joint.

A rigid body is defined by the overlap of joints, and relies on a chain of
relative roto-translations of its blocks. Each points(Bi) is therefore positioned
according to the (homogeneous) coordinate system associated to a rigid block
Bi−1. Note that once the reference system for B1 is defined, the whole rigid body
is completely positioned.1 The relative positions of two consecutive rigid blocks
Bi−1 and Bi of a rigid body (2 ≤ i ≤ n) can be defined by a transformation
matrix Ti ∈ R4×4. Each matrix depends on the standard Denavit-Hartenberg
parameters [20] obtained from the start and end of the blocks (c.f., [27] for
details). We denote the product T1 · T2 · . . . · Ti · (x, y, z, 1)T by ∇i(x, y, z).

Let us focus on the matrix T1. The block B1 can be rigidly moved in a de-
sired position and orientation on the basis of additional spatial constraints (e.g.,
the sets A1,A2,A3, E1, E2, E3 in the Def. 2). T1 is a matrix that allows a roto-
translation of B1 in a position fulfilling the additional constraints.

For i = 1, . . . , n, the coordinate system conversion (x′, y′, z′), for a point
(x, y, z) ∈ points(Bi) into the coordinate system of B1, is obtained by:

(x′, y′, z′, 1)T = T1 · T2 · . . . · Ti · (x, y, z, 1)T = ∇i(x, y, z) (1)

Homogeneous transformations are such that the last value of a tuple is always 1.
Note that a modification of the matrix T1 is a sufficient step to place the whole
rigid body into a different start position.

Definition 2 (JM-constraint). The joined-multibody (JM) constraint is de-
scribed by a tuple: J = 〈S,V ,A,E, δ〉, where:
• S = S1, . . . , Sn is a multi-body. Let B = {B1, . . . , Bk} be the set of all rigid
blocks in S, i.e., B =

⋃n
i=1 Si.

• V = V1, . . . , Vn is a list of finite-domain variables. For i = 1, . . . , n, the
variable Vi is associated to a domain dom(Vi) = {j : Bj ∈ Si}.
• A = A1,A2,A3, and E = E1, . . . , E3n are lists of sets of 3D points such that:

1 With the exception of the case where the all points of a joint are collinear.
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◦ A1 ×A2 ×A3 is the set of admissible points for start(B), with B ∈ S1;

◦ E3i−2 × E3i−1 × E3i is the set of admissible points for end(B), with B ∈ Si,
i = 1, . . . , n;

• δ is a constant, used to express a minimal distance constraint between dif-
ferent points. Let us assume that for all B ∈ B and for all a, b ∈ points(B), if
a �= b then ‖a− b‖ ≥ δ (where ‖ · ‖ is the Euclidean norm).

A solution for the JM constraint J is an assignment σ : V −→ {1, . . . , |B|} s.t.
there exist matrixes T1, . . . , Tn (used in ∇) with the following properties:

Domain: For all i = 1, . . . , n, σ(Vi) ∈ dom(Vi).

Joint: For all i = 1, . . . , n− 1, let (a1, a2, a3) = end(Bσ(Vi)) and (b1, b2, b3) =
start(Bσ(Vi+1)), then it holds that (for j = 1, 2, 3):

∇i(a
j
x, a

j
y, a

j
z) = ∇i+1(b

j
x, b

j
y, b

j
z)

Spatial Domain: Let (a1, a2, a3) = start(Bσ(V1)), then T1 · aj ∈ Aj × {1}.
For all i = 1, . . . , n, let (e1, e2, e3) = end(Bσ(Vi)) then

∇i(e
j
x, e

j
y, e

j
z) ∈ E3(i−1)+j × {1}

where 1 ≤ j ≤ 3 and T2, . . . , Ti (in ∇i) are the matrices that overlap Bσ(Vi−1)

and Bσ(Vi) (the product ×{1} is due since we use homogeneous coordinates).

Minimal Distance: For all j, � = 1, . . . , n, j < �, and for all points a ∈
points(Bσ(Vj)) and b ∈ points(Bσ(V�)), it holds that:

‖∇j(ax, ay, az)−∇�(bx, by, bz)‖ ≥ δ

A JM constraint is said to be compatible if S1, . . . , Sn is a compatible multi-body.

If there are no joints with the three points aligned, T2, . . . , Tn depend determin-
istically from T1 and σ. Compatible JM constraints are interesting for our target
application. Nevertheless, the additional restriction does not simplify constraint
solving, as we discuss below.

Complexity Analysis. The problem of determining consistency of JM con-
straints (i.e., the existence of a solution) is NP-complete. To prove this fact,
we start from the NP-completeness of the consistency problem of the constraint
Self-Avoiding-Walk (SAW-constraint) in a discrete lattice, proved in [12]. In par-
ticular, we will use the 3D cubic lattice for this problem. Let X = X1, . . . , Xn be
a list of variables. Each variable has a finite domain dom(Xi) ⊆ Z3. σ : X −→ Z3

is a solution of the SAW constraint if:

• For all i = 1, . . . , n: σ(Xi) ∈ dom(Xi),

• For all i = 1, . . . , n− 1: ‖σ(Xi)− σ(Xi+1)‖ = 1,

• For all i, j = 1, . . . , n, i < j, it holds that ‖σ(Xi)− σ(Xj)‖ ≥ 1.

As emerges from the proof in [12], the problem of determine the consistency of a
SAW constraint is NP complete even if the domains of dom(X1) and dom(X2) are
singleton sets. Without loss of generality, we can concentrate on SAW problems
where dom(X1) = {(0, 0, 0)} and dom(X2) = {(0, 1, 0)}—the other cases can be
reduced to this one using a roto-translation.

Theorem 1. The consistency problem for the JM constraint is NP-complete.
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Fig. 3. Rigid blocks for SAW (from left to right, block 1, . . . , 7)

Proof (sketch). The proof of membership in NP is trivial; given a tentative solu-
tion, it is easy to test it in polynomial time—the most complex task is building
the rotation matrixes.

To prove completeness, let us reduce SAW, with the further hypothesis on
dom(X1) and dom(X2) to JM. Let us consider an instance A = 〈X , dom(X)〉
of SAW with n (n > 3) variables. We define a equi-satisfiable instance B =
〈S,V ,A,E, δ〉 of JM as follows. Let us choose V = V1, . . . , Vn−3. We select
the sets Si of rigid blocks of the multi-body to be all identical, and consisting
of all the (non overlapping) fragments of three contiguous unitary segments of
length 1, starting from (0, 0, 0) and with bends of 0 or 90 degrees. A filtering using
symmetries is made and the blocks are indicated in Fig. 3. For all i = 1, . . . , n−3
we assign the following sets of 3D points to the end-effectors:

E3i−2 = dom(Xi+1) ∩ Z3, E3i−1 = dom(Xi+2) ∩ Z3, E3i = dom(Xi+3) ∩ Z3

Moreover, let A1 = {(0, 0, 0)},A2 = {(0, 1, 0)},A3 = {(0, 2, 0), (1, 1, 0)}. Observe
that all these sets are subsets of Z3 and therefore points of the same lattice of
the SAW problem. Assigning δ = 1, the reduction is complete. It is immediate
to check that SAWs in the 3D lattice and the solutions of the JM constraint
defined via reduction are essentially the same 3D polygonal chain. ��

We have a proof for the NP-completeness of the compatible JM constraint
(in particular, it does not make use of joints made by collinear points), by
reduction from the Hamiltonian path problem in special planar graphs. The
proof is omitted due to lack of space. The interested reader can find it at
http://www.cs.nmsu.edu/fiasco.

4 Filtering Algorithm for the Joined-Multibody
Constraint

Since checking the satisfiability (and hyper-arc consistency) of the JM constraint
is NP-complete, we studied an approximated polynomial time filtering algorithm.
When dealing with multi-bodies, the computation of the end-effectors’ spatial
domains provides limited filtering information, since it identifies a large volume.

We designed an algorithm (JMf, Algorithm 1) that is inspired by bound-
consistency on the 3D positions of end-effectors. The algorithm uses an equiva-
lence (clustering) relation over these bounds, in order to retain precise informa-
tion about classes of domain variable assignments that produce similar spatial

http://www.cs.nmsu.edu/fiasco
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results. This allows a compact handling of the combinatorics of the multi-body,
while a controlled error threshold allows us to select the precision of the filter-
ing. The equivalence relation captures those rigid bodies that are geometrically
similar and thus compacts small differences among them; relevant gains in com-
putation time can be derived when some errors are tolerated.

Algorithm 1. The JMf algorithm.

Require: S,V ,A,E,G, δ,∼
1: n← |V |

2: R1 ←

⎧⎨⎩B ∈ S1 ∃T1

⎛⎝T1 · start(B) ∈ A1 ×A2 ×A3 ∧
T1 · end(B) ∈ E1 × E2 × E3 ∧
∀p ∈ points(B).∀q ∈ G. ‖(T1 · p)− q‖ ≥ δ)

⎞⎠⎫⎬⎭
3: P1 ← {T1 · end(B) | B ∈ R1, T1 as in the line above }
4: dom(V1)← {label(B) | B ∈ R1}
5: for all i = 2, . . . , n do
6: Pi = ∅; Ri = ∅;
7: for all E ∈ Pi−1 do

8: Ri ← Ri ∪

⎧⎨⎩B ∈ Si

T = M(E, start(B)) ∧ T �= fail ∧
T · end(B) ∈ E3i−2 × E3i−1 × E3i ∧
∀p ∈ points(B).∀q ∈ G. ‖(T · p)− q‖ ≥ δ

⎫⎬⎭
9: Pi ← {M(E, start(B)) · end(B) | B ∈ Ri}
10: end for
11: compute Pi/∼ and filter Ri accordingly
12: dom(Vi) ← {label(B) | B ∈ Ri}
13: end for

The JMf algorithm receives as input a JM-constraint 〈S,V ,A,E, δ〉, along
with a set G of points that are not available for the placement of bodies (e.g.,
points of other parts of the protein we are studying, points of the loop non-
deterministically assigned by previous calls of the algorithm itself) and an equiv-
alence relation ∼ on the space of triples of 3D points. The algorithm makes use
of a function M (line 8); this function takes as input two lists a and b of 3D
points, and computes the homogeneous transformation to overlap b on a. A call
to this function will fail if a �� b. For simplicity, the fourth component (always
1) of the homogeneous transformation is not explicitly reported in the algorithm.

For i = 1, . . . , n, the algorithm computes the sets Ri and Pi, that will re-
spectively contain the blocks from Si that can still lead to a solution, and the
corresponding allowed 3D positions of their end-effectors. These two sets are
strongly related: a data structure linking each block B ∈ Si with the list of
its corresponding possible end-effectors (and vice versa) is used at the imple-
mentation level. For each block B ∈ B, we denote with label(B) a unique label
identifying it; dom(Vi) is therefore the set of the blocks’ labels that can be used
for the variable Vi. The setsRi and Pi are used to determine the domain dom(Vi)
of the variable Vi (lines 4 and 12). In computing/updatingRi and Pi, only blocks
that have end-effectors contained in the bounds E3i−2, E3i−1, E3i are kept. Frag-
ments that would cause points to collapse—i.e., due to a distance smaller than
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Fig. 4. Fragments are assembled by overlapping the plane βR, described by the right-
most C′, O,N atoms of the first fragment (left), with the plane βL, described by the
leftmost C′, O,N atoms of the second fragment (right), on the common nitrogen atom

δ from previously placed points—are filtered out (lines 2 and 8). Moreover, the
spatial positions of the points of the first block are validated against A (line 2).

The algorithm performs |V | − 1 iterations (lines 5–13). First Ri and Pi are
computed on the basis of the sets of end-effectors of the previous level Pi−1

and the starting point of a selected block B, filtering out those that are not
overlapping and those that lead to wrong portions of space (lines 8–9). Then,
the ∼-based clustering filtering is applied (line 11). During this step, the set of
triples of 3D points Pi is clustered using ∼. A representative of each equivalence
class is chosen (within Pi). The corresponding block in Ri is marked. All non
marked blocks are filtered out from Ri. Let us also note that the filtering based
on clustering is not performed for the initial step P1, as typically this is already
captured by the restrictions imposed by A.

In our tests, the initial domains A1,A2,A3 are singleton sets (we start from a
rigid block with known end-effectors). Moreover, w.l.o.g., all initial fragments
matching with those three points are rotated in the same reference in our
database, allowing to use a unique T1 for all blocks (lines 2 and 3). We ex-
perimentally verified that avoiding clustering in the first stage allows to sensibly
reduce approximation errors. The filtering algorithm is similar to a directional
arc-consistency, where the global constraint is viewed as a conjunction of bi-
nary constraints between adjacent blocks. Its peculiarity, however, is the use of
representative clustered triples to compactly store the domains.

5 Loop Modeling by the Joined-Multibody Constraint

In this section, we use the joined-multibody constraint to model the protein loop
problem. We have implemented the proposed encoding and the constraint solving
procedure, based on filtering Algorithm 1, within FIASCO (Fragment-based
Interactive Assembly for protein Structure prediction with COnstraints) [4].

FIASCO is a C++ tool that provides a flexible environment that allows us to
easily manipulate constraints targeted at protein modeling. These constraints do
not only concern geometric and energetic aspects but, in general, they allow one
to model particular portions of the target protein using arbitrarily long homolog
structures. A protein is modeled through the sequence of its amino acids. The
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backbone of each amino acid is represented by all its atoms: N,Cα,C′, O. A
single point CG is used for representing the side chain, namely the set of atoms
characteristic of each amino acid (Fig. 4). fragment assembly is used to restrict
the allowed spatial positions of consecutive backbone atoms. The final protein
conformation is built by combining fragments, treated as basic assembly units.
A fragment with h ≥ 1 amino acids is the concatenation of 4h + 3 atoms,
represented by the regular expression C′ O (N Cα C′ O)h N . The assembling of
two fragments is performed by overlapping the planes βR and βL, determined by
the atoms C′, O,N ending the first fragment and starting the second fragment
(Fig. 4). The overlapping is made in the N atom in order to best preserve the
torsion angle φ characteristic of the first amino acid of the second fragment. Each
backbone atom is represented by a Point variable, whose initial domain can be
described by a 3D interval [L,U ], that identifies the lower and the upper bounds
of a 3D box enclosing the set of possible positions for the atom.2 A second set of
variables (Fragment) is used to maintain the sets of possible fragments that can
be used to model different segments of the protein. The respective domains are
the sets of elements that link the specific protein region modeled by a Fragment

variable to the related Point variables for the atoms in such region. Constraints
are introduced to link the domains of Fragment variables with those of related
Point variables.

Loop Modeling. Let us now build on the core constraints of FIASCO and on
the JM constraint to address the loop modeling problem. The starting point
is a given protein with two known (large) blocks. The model will account for
them in the definitions of sets E (they also allow us to build the set G—see
Algorithm 1). The start of the first block and the end of the last block, namely a
sequence C′ON (initial anchor) of coordinates a = (a1, a2, a3), and a sequence
C′ON (final anchor) of coordinates e = (e1, e2, e3) are known, as well as the
sequence x1, . . . , xn of amino acids connecting these two points. Each amino
acid can have different 3D forms, depending on the angles Ψ , Φ and the position
of CG; a statistically pre-computed set of these forms is loaded from a repository
(e.g. www.pdb.org) and a weight depending on its frequency is assigned to each
fragment. Each fragment is identified by an integer label. Loop modeling can be
realized using the joined-multibody constraint J = 〈S,V ,A,E, δ〉 where:
• For i = 1, . . . , n the set Si contains all the fragments associated with the
amino acid xi.

• For i = 1, . . . , n, dom(Vi) is the set of the labels of the fragments in Si.

• The constant δ (now δ = 1.5Å) asserts a minimum distance between atoms.

• For the spatial domains, for j = 1, . . . , 3, we set Aj = {aj} and E3(n−1)+j

is the 3D interval [ej − (dj , dj , dj), e
j + (dj , dj , dj)], where the values dj are

derived from the covalent radii bond distances εN , εO, εC of the specific types
of atoms (specifically, d1 = εN , d2 = d1+ εO, d3 = d2+ εC). We use this slack
for the last 3 points of the loop in order to cushion the error produced during
the clustering step, still obtaining solutions that are geometrically eligible.

2 In the current implementation of FIASCO initial domains can be just boxes.

www.pdb.org
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For E1, . . . , E3(n−1) we allow a “sufficiently large” box of spatial points. Pre-

cisely, each Ei is the box obtained by enlarging by 4nÅ in all the directions,
the box identified by the two points [a, e] (or [e,a]) — 4Å is a rough upper
bound to the distance between two consecutive C′ in a protein.3

Let us observe that the fragments considered lead to a compatible multi-body
(Def. 1)—thanks to the use of a full-atom description of fragments. A different
level of description of the fragments (e.g., the Cα–Cα modeling used in [9] for
the fragment-assembly approach to the complete protein folding) would not lead
us to a compatible multi-body. Moreover, known larger rigid blocks can be easily
inserted in the modeling in an explicit way in some Si. More loops can be also
modeled simultaneously in this way.

Clustering. The JMf algorithm is parametric w.r.t. the clustering relation and
the function selecting the representative; they both express the degree of approx-
imation of the rigid bodies to be built. The proposed clustering relation for loop
modeling takes into account two factors: (a) The positions of the end-effectors
in the 3D space and (b) The orientation of the planes formed by the fragment’s
anchor βL and end-effector βR (Fig. 4). This combination of clusterings allows to
capture local geometrical similarities, since both spatial and rotational features
are taken into account.

The spatial clustering (a) used is the following. Given a set of fragments, the
three end points C′ON (end effectors) of each cluster are considered, and the cen-
troid of the triangle C′ON is computed. We use three parameters: kmin, kmax ∈
N, kmin ≤ kmax, and r ∈ R, r ≥ 0. We start by selecting a set of kmin fragments,
pairwise distant at least 2r. These fragments are selected as representatives of
an equivalence class for other fragments that fall within a sphere of radius r
centered in the centroid of the representative. This clustering ensures a rather
even initial distribution of clusters, however some fragments may not fall within
the kmin clusters. We allow to create up to kmax − kmin new clusters, each of
them covering a sphere of radius r. Remaining fragments are then assigned to
the closest cluster. Other techniques can be employed, the one used allows a fast
implementation and acceptable results.

The orientation clustering (b) partitions the fragments according to their rela-
tive orientation of planes βR, βL (and it can be pre-computed, being independent
on the roto-translation the fragment will be subject to). Let us observe that here
we consider all four points of a fragment. All fragments are characterized by the
normal to the plane βR, assuming that each fragment is already joined to the
previous one. The clustering algorithm guarantees that each cluster contains
fragments that pair-wise have normals with a deviation of at most a threshold
β degrees. This algorithm produces a variable number of partitions depending
on β.

3 Ei should be intersected with the complement of G (the region of space occupied by
the two known rigid blocks). This kind of domain operation is not yet supported by
FIASCO and therefore the control of this part is handled by Algorithm 1.
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The final cluster is the intersection of the two partitioning algorithms. This
defines an equivalence relation ∼ depending on kmin, kmax, r, and β. The rep-
resentative selection function selects the fragment for each partition according
to some preferences (e.g., most frequent fragment, closest to the center, etc.).

Note that for r = 0, β = 0, and kmax unbounded, no clustering is performed
and this would cause the combinatorial explosion of every possible end-effector
on the whole problem. The spatial error introduced depends on r and β. With
β = 0, the error introduced at each step can be bound by 2r for each dimension.
At each iteration the errors are linearly increased, since a new fragment is placed
with an initial error gathered from previous iterations, thus resulting in a 2nr
bound for the last end-effector. Clearly this bound is very coarse, and on average
the experimental results show better performances. Similar considerations can
be argued for rotational errors, however the intersection of the two clusterings,
provide, in general, a much tighter bound.

Implementation Details. A pre-processing step clusters “a-priori” the variables’
domains (by means of a first call of the JMf algorithmwith G = ∅). The rotational
clustering is made while the fragment databases is computed. This speeds-up the
clustering algorithm during the search, since at that time the spatial clusters can
only be intersected with the ones already computed.

As soon as the domain for the variables related to the initial anchor of a
JM constraint is instantiated, the corresponding constraint is woken up. The
algorithm JMf is invoked with the parameters described above. If there are no
empty domains after this stage, the search proceeds by selecting the leftmost
variable and assigning it a fragment (block) in a leftmost order. All domains are
pre-sorted from the most likely to the least likely for each variable (the previous
stage of filtering preserves the ordering).

6 Experimental Results

We report on the experimental results obtained from a prototype implementation
of the JM constraint, along with its Joined-Multibody filtering algorithm, in the
FIASCO system. The system, protein lists, and some examples are available
at http://www.cs.nmsu.edu/fiasco. Experiments are conducted on a Linux
Intel Core i7 860, 2.5 GHz, memory 8 GB, machine. The proposed method
has been applied to a data set of 10 loop targets for each of the lengths 4,
8, and 12 residues. The targets are chosen from a set of non-redundant X-ray
crystallography structures [6].

We first analyze the performances of JMf filtering by examining the fraction
of the search space explored during solution search. Next, we compare the qual-
ities of the loop conformations generated, by measuring the root mean square
deviation (RMSD) of the proposed loop with respect to the native conformation.
RMSD captures the overall similarity in space of corresponding atoms.

http://www.cs.nmsu.edu/fiasco
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Fig. 5. Ratio of the solutions (left) and RMSD comparison (right)

6.1 Filtered Search Space and Performances

For each of the 10 selected proteins with a loop of length n = 4 we compare two
CSPs. The first one enables the JM constraint and the second one disables it
(simple combinatorial fragment assembly). For both problems we have exhaus-
tively generated (without timeout) all the solutions by means of a constraint-
based search using a classical propagate-labeling schema

The number of fragments in each variable domain is 60—this is an adequate
sampling to describe a reasonable amino-acid flexibility. This increases the like-
lihood to generate a loop structure that is similar to the native one. A loop of
length n generates an exponential search space of size roughly 60n (∼ 1.3 ·107 in
this example). The selected variable is the leftmost one. Fragments are selected
in descending frequency order. We have used different values for r and β, while
kmin and kmax are set to 20 and 100, respectively. In Fig. 5 (left) we show,
for different combinations of clustering parameters, the ratio (Rsol) between the
number of solutions to the CSPs with JM constraint and without it. The size of
the prop-labeling tree and running times decrease with a similar trend.

The adopted parameters for the β angles are reported in the x-axes, while the
r values for the clustering distances are plotted in different colors (10Å is the
lightest color). The white dots represent the average values of all the trials and
the vertical bars illustrate the standard error of the mean: σ√

N
, where σ is the

standard deviation and N is the number of samples. It can be observed that the
number of the solutions generated by the JM constraint decreases as the β and
r values increase, as one can expect.

When the clustering is too inaccurate, for some loop targets no solutions are
found by the JM constraint (e.g., with β = 60 and r = 10.0 for 6 loops out of
10). In Section 6.2 we show that the reduced number of solutions does not affect
the approximate completeness of the search.
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Fig. 6. Ratio of the search space explored using JMf for 8-loops (left) and 12-loops

Let us analyze the case with longer loops (10 proteins of lengths 8 and 10 of
lengths 12) where the set of all possible solutions without using JMf cannot be
computed in reasonable time. In order to estimate the filtering capability, we
build an approximation based on the following algorithm. For i = 1, . . . , n:

• Let us assume we have non-deterministically assigned the variable Vi.

• The variables Vi+1, . . . , Vn have the domains dom(Vj) = dj , for j = i+1, . . . , n.

• We apply the JM filtering algorithm obtaining the new values d′i+1, . . . , d
′
n

• An approximation to the portion of the search space removed at this stage is
computed as:

∏n
j=i+1 dj −

∏n
j=i+1 d

′
j (2).

To compute the search space ξ removed by the propagation of the JM constraint
we sum the values (2) for every node of the search tree visited within the timeout.

Let ! = 1 +
∑n

i=1

∏i
j=1 dom(Vj) be the size of the search tree in absence of

constraint propagation. In Figure 6 we report the behavior of �−ξ
� for targets

loops of length 8 and 12, depending on r and β. Let us observe that ! is a rough
upper bound of the nodes that really need to be visited (several fragments can
immediately lead to a failure due to spatial constraints) and that allotting more
time for the computations allows further pruning, thus increasing ξ.

We have set two timeouts: one involving solely the exploration of the prop-
labeling tree, fixed to 600 seconds, and another over the total computation
(search tree exploration and JM propagation), fixed to 2 hours. In every trial
carried out we abort the search due to timeout in exploring the prop-labeling
tree. The space filtered by the JM constraint rises according to the increasing
values of r and β. In the settings proposed, fixing the values of r and β to 10.0
and 60 respectively, the propagation of the JM constraint produces a filtering
over the search space that allows the rest of the search to be carried out merely
on about the 10 % of the original prop-labeling tree. However, as stated above,
this is just an under-estimation of the pruning capability.
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6.2 Loop Conformations Quality

This section provides some insight about the quality of the solutions that are
retrieved when using the JM constraint. In particular, we show that the quality
in terms of RMSD is not significantly degraded by the large filtering performed
by the propagator. As in the previous subsection, we use as reference for the
comparisons the results from the search with no JM constraint (named NC).
The experiments were carried on with kmin = 20 and kmax = 100, while r and β
are set respectively to 1.0 and 15 for loops of length 4, and 2.5 and 60 for loops of
length 8 and 12. In our analysis, such parameters guarantee a good compromise
between filtering power and accuracy of the results.

In Figure 5 (right), the bottom and top point of each vertical line show the
RMSD of the best and worst prediction, respectively, within the group of targets
analyzed. The results are biased by the fragment database in use: we excluded
from it the fragments that belong to the deposited protein targets. Therefore it
is not possible to reconstruct the original target loop and none of the searched
are expected to reach a RMSD equal to 0. The bottom and top horizontal lines
on each box shows the RMSD of the 25th and 75th percentile prediction, re-
spectively, while the line through the middle shows the median. We observe
no substantial difference in the distributions related to short loop predictions
(length 4), and an improvement for targets of greater size due to time-out. Such
results experimentally show the strength of our method: JM filtering algorithm
removes successfully redundant conformations; moreover, it quickly direct the
search space exploration through predictions that are biologically meaningful.

In Figure 7, we analyze the impact of the kmax on computational times (left)
and precision (right) of the filtering of the JM constraint. The tests are performed
over the protein loops of length 4 adopting as cluster parameters, r = 1.0,
β = 30, kmin = 20. We ignore minimum and maximum values from each data
set to smooth out fluctuations and highlight average trends. Each dot in the plot
represents the outcome of a trial and the grey area denote the standard error
of the mean associated to a particular value of kmax. The RMSD values tend to
decrease as the number of clusters increase, and it stabilizes when kmax ≥ 500
clusters with a good average value of 0.4Å. As one might expect, instead, the
filtering time increases as kmax increases.

6.3 Comparison with Other State-of-the-art Loop Samplers

We also compare our method to three other state-of-the-art loop samplers: the
Cyclic Coordinate Descent (CCD) algorithm [6], the self-organizing algorithm
(SOS) [30], and the FALCm method [29]. Note that our solution does not in-
clude specific heuristics and additional information that are used in the other
programs. Moreover, our database is not tuned for loop prediction: it is built from
any fragment that may appear on a protein (e.g. including helices, β-strands).

Table 1 shows the average RMSD for the benchmarks of length 4, 8 and 12 as
computed by the four programs. We report the results as given in Table 2 of [6]
for the CCD, Table 1 of [30] for SOS, and Table II of [29] for FALCm method,
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Fig. 7. Comparison of the best RMSD values (left) and JMf computation times (right)
at varying of the kmax clustering parameter

Table 1. Comparison of loop sampling methods

Loop Average RMSD
Length CCD SOS FALCm JMf

4 0.56 0.20 0.22 0.30
8 1.59 1.19 0.72 1.31
12 3.05 2.25 1.81 1.97

and the RMSD’s obtained adopting the best settings for JMf. We do not compare
the computational time as they are not provided in the above references. It can
be noted that our results are in line with those produced by the other systems,
even if a general fragment database has been used in our system.

7 Conclusions

In this paper, we presented a novel constraint (joined-multibody) to model rigid
bodies connected by joints, with constrained degrees of freedom in the 3D space.
We presented a proof of NP-completeness of the joined-multibody constraint, a
filtering algorithm that exploits the geometrical features of the rigid bodies and
showed its application in sampling protein loop conformations. Feasibility of the
method is shown by performing loop reconstruction tests on a set of loop targets,
with lengths ranging from 4 to 12 amino acids. The search space of the protein
loop conformations generated is reduced with a controlled loss of quality.

The propagator has been presented as a filtering algorithm based on a di-
rectional growth of the rigid body. As future work, we plan to develop a “bi-
directional” search that starts from both end anchors. A preliminary study shows
that the error propagation, due to the clustering relation, can be bounded with
greater accuracy. On the theoretical side, we are interested in proving the NP-
hardness in the case of JM constraint based on compatible multi-bodies.

Following the loop conformation direction, we also plan to tune the fragment
database and to integrate our filtering algorithm method with other refinements
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strategies to eliminate infeasible physical loop conformations, (e.g. DFIRE po-
tential [37]), to increase the quality of the loop predictions.

As future work, we also plan to apply our filtering method to other related
applications: protein-protein interaction, protein flexibility and docking studies.
Those systems can be modeled by a set of joined-multibodyconstraints and it
appears promising the possibility to explore a large set of conformations by
representatives enumeration only.
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Abstract. Parallel robots enjoy enhanced mechanical characteristics that have to
be contrasted with a more complicated design. In particular, they often have par-
allel singularities at some poses, and the robot may become uncontrollable, and
could even be damaged, in such configurations. The computation of singularity
free sets of reachable poses, called generalized aspects, is therefore a key issue
in their design. A new methodology based on numerical constraint programming
is proposed to compute a certified enclosure of such generalized aspects which
fully automatically applies to arbitrary robot kinematic model.

Keywords: Numerical constraints, parallel robots, singularities, aspects.

1 Introduction

Mechanical manipulators, commonly called robots, are widely used in the industry to
automatize various tasks. Robots are a mechanical assembly of rigid links connected
by mobile joints. Some joints are actuated and they allow commanding the robot oper-
ating link, called its end-effector (or platform). One key characteristic of a robot is its
reachable workspace, informally defined as the set of poses its end-effector can reach.
Indeed, its size defines the scope of operational trajectories the robot will be able to per-
form. Robots comply with either a serial or a parallel (or possibly a hybrid) assembly,
whether their links are connected in series or in parallel. Parallel robots [14,16] present
several advantages with respect to serial ones: They are naturally stiffer, leading to more
accurate motions with larger loads, and allow high speed motions. These advantages
are contrasted by a more complicated design as the computation and analysis of their
workspace present several difficulties. First, one pose of the robot’s end-effector may
be reached by several different sets of actuated joint commands (which correspond to
different working modes), and conversely one set of input commands may lead to sev-
eral poses of its end-effector (which correspond to different assembly modes). Second,
parallel robots generally have parallel singularities, i.e., specific configurations where
they become uncontrollable and can even be damaged.

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 867–882, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The kinematics of a parallel robot is modeled by a system of equations that relates
the pose of its end-effector (which includes its position and possibly its orientation)
to its commands. Hence computing the pose knowing the commands, or conversely,
requires solving a system of equations, called respectively the direct and inverse kine-
matic problems. Usually, the number of pose coordinates (also known as degrees of
freedom (DOF)), the number of commands and the number of equations are the same.
Therefore, the relation between the pose and the command is generically a local bijec-
tion. However, in some non-generic configurations, the pose and the command are not
anymore related by a local bijection. This may affect the robot behavior, e.g., destroying
it if some command is enforced with no corresponding pose. These non-generic cases
are called robot singularities and they can be of two kinds [1]: Serial or parallel. One
central issue in designing parallel robots is to compute connected sets of singularity
free poses, so that the robot can safely operate inside those sets. Such a set is called a
generalized aspect in [6] when it is maximal with respect to inclusion.

A key issue when computing the aspects is the certification of the results: Avoiding
singularities is mandatory, and the connectivity between robot configurations must be
certified. This ensures that the robot can actually move safely from one configuration
to another. Very few frameworks provide such certifications, among which algebraic
computations and interval analysis. The cylindrical algebraic decomposition was used
in [5], with the usual restrictions of algebraic methods and with a connectivity analysis
limited to robots with two DOF. Interval analysis was used in [17] for robots having
a single solution to their inverse kinematic problem. Though limited, this method can
still tackle important classes of robots like the Stewart platform. A quad-tree with cer-
tification of non-singularity was built in [4] for some planar robots with two DOF. This
method extends to higher dimensional robots, but it requires the a priori separation of
working modes by adhoc inequalities, and is not certified with respect to connectivity.

In this paper we propose a branch and prune algorithm incorporating the certification
of the solutions and of their connectivity. This allows a fully automated computation of
the generalized aspect from the model of arbitrary parallel robots, including robots with
multiple solutions to their direct and inverse kinematic problems, without requiring any
a priori study to separate their working modes. The algorithm is applicable to robots
of any dimension, although the complexity of the computations currently restricts its
application to robots with three degrees of freedom.

A motivating example is presented in Section 2 followed by some preliminaries
about numerical constraint programming and robotics in Section 3. The proposed al-
gorithm for certified aspect computation is presented in Section 4. Finally, experiments
on planar robots with two and three degrees of freedom are presented in Section 5.

Notations. Boldface letters denote vectors. Thus f(x) = 0 denotes a system of equa-
tions f on a vector of variables x: f1(x1, . . . , xn) = 0, . . . , fk(x1, . . . , xn) = 0. The
Jacobian matrix of f(x) with respect to variables x′ ⊆ x is denoted Fx′(x), and
detFx′(x) denotes its determinant. Interval variables are denoted using bracketed sym-
bols, e.g. [x] = [x, x] := {x ∈ R | x ≤ x ≤ x}. Hence, [x] is an interval vector (or
box) and [A] = ([aij ]) is an interval matrix. IR denotes the set of intervals and IRn the
set of n-dimensional boxes. For an interval [x], we denote wid[x] := x − x its width,
int[x] := {x ∈ R | x < x < x} its interior, and mid[x] := (x + x)/2 its midpoint.
These notations are extended to interval vectors.
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Fig. 1. The PRRP in a nonsingular pose (left) and in singular poses (right)

2 Motivating Example

Description. Consider the simple PRRP1 planar robot depicted in Figure 1 which in-
volves two prismatic joints (gray rectangles) sliding along two perpendicular axes.
These prismatic joints are connected through three rigid bars (black lines) linked by two
revolute joints (circles) which allow free rotations between the rigid bars. The positions
of the prismatic joints are respectively denoted by x and q, the end-effector position
x being on the horizontal axis and the command q corresponding to the height on the
vertical axis. The left-hand side diagram of Figure 1 shows one nonsingular configu-
ration of the robot (note that there is another symmetric pose x associated to the same
command q where x is negative). From this configuration, when q changes vertically x
changes horizontally, and both are related by a local bijection, hence this configuration
is non-singular. The right-hand side diagram shows two singular configurations. In the
green, plain line, pose (where the robot’s main rigid bar is horizontal), increasing or
decreasing the command q entails a decrease of x, hence a locally non-bijective corre-
spondence between these values. In the red, dashed line, pose (where the robot’s main
rigid bar is vertical), increasing or decreasing the command q would entail a vertical
motion of the end-effector which is impossible due to the robot architecture, hence a
potential damage to the robot structure. The green configuration is a serial singularity,
which restricts the robot mobility without damaging it; the red configuration is a parallel
singularity, which is generally dangerous for the robot structure.

Kinematic Model. The kinematic model of this robot is easily derived: The coordinates
of the revolute joints are respectively (a, q) and (x, b), where a and b are architecture
parameters corresponding to the lengths of the two horizontal and vertical small rigid
bars. Then the main oblique rigid bar enforces the distance between these two points to
be equal to its length l, a third architecture parameter. Hence, the kinematic model is

(x− a)2 + (q − b)2 = l2. (1)

1 In robotics, manipulators are typically named according to the sequence of joints they are made
of, e.g., P for prismatic and R for revolute, actuated ones being underlined.
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Fig. 2. Left: The PRRP kinematic model solutions set. Right: The computed paving.

The solution set of this model, the circle of center (a, b) and radius l, is depicted on the
left hand side diagram in Figure 2. The direct kinematic problem consists in computing
x knowing q, leading in the case of this robot to two solutions a ±

√
l2 − (q − b)2 if

q ∈ [b − l, b+ l], no solution otherwise. Similarly, the inverse kinematic problem con-
sists in computing q knowing x, leading to two solutions b±

√
l2 − (x− a)2 provided

that x ∈ [a − l, a + l], no solution otherwise. This simple robot is typical of parallel
robots, which can have several solutions to their direct and inverse kinematic problems.
It is also typical regarding its singularities: It has two serial singularities where the so-
lution set has a vertical tangent (green, leftmost and rightmost, points on the left hand
side diagram in Figure 2), and two parallel singularities where the solution set has a
horizontal tangent (red, topmost and bottommost, points on the left hand side diagram
in Figure 2). These four singularities split the solution set into four singularity free re-
gions, called generalized aspects. Accordingly, we can determine the singularity free
reachable workspace of the robot by projecting each aspect onto the x component (see
the thick lines above and under the paving on the right-hand side in Figure 2).

Certified Enclosure of Generalized Aspects. This paper aims at using numerical con-
straint programming in order to compute some certified enclosures of the different as-
pects. The standard branch and prune algorithm is adapted in such a way that solving the
robot kinematic model together with non-singularity constraints leads to the enclosure
depicted on the right-hand side of Figure 2. The solution boxes verify:

1. In each box, for each pose x there exists a unique command q such that (x, q)
satisfies the robot kinematic model;

2. Each box does not contain any singularity;
3. Each two neighbor boxes share a common solution.

The first two properties ensure that each box is crossed by a single aspect, and that this
aspect covers the whole box projection on the x subspace. The third certificate allows
connecting neighbor boxes proving that they belong to the same aspect. Therefore, the
connected components A1, A2, A3, A4 of the computed boxes shown in Figure 2 allow
separating the four aspects, and provide, by projection, certified inner approximations
of the singularity-free reachable workspace of the robot.
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3 Preliminaries

3.1 Numerical Constraint Programming

Numerical constraint solving inherits principles and methods from discrete constraint
solving [18] and interval analysis [19]. Indeed, as their variable domains are continu-
ous subsets of R, it is impossible to enumerate the possible assignments and numeric
constraint solvers thus resorts to interval computations. As a result, we use an interval
extension [f ] : IRn → IR of each function f : Rn → R involved in a constraint, such
that ∀[a] ∈ IRn, ∀a ∈ [a], f(a) ∈ [f ]([a]).

Numerical Constraint Satisfaction Problems. A numerical constraint satisfaction
problem (NCSP) is defined as a triple 〈v, [v], c〉 that consists of

– a vector of variables v = (v1, . . . , vn),
– an initial domain, in the form of a box, represented as [v] ∈ IRn, and
– a constraint c(v) := (f(v) = 0 ∧ g(v) ≥ 0), f : Rn → Re and g : Rn → Ri,

i.e., a conjunction of equations and inequalities.

A solution of an NCSP is an assignment of its variables v ∈ [v] that satisfies its con-
straints. The solution set Σ of an NCSP is the region within its initial domain that
satisfies its constraints, i.e., Σ([v]) := {v ∈ [v] | c(v)}.

The Branch and Prune Algorithm. The branch and prune algorithm [22] is the stan-
dard complete solving method for NCSPs. It takes a problem as an input and outputs
two sets of boxes, called respectively the undecided (U) and solution (S) boxes. It inter-
leaves a refutation phase, called prune, that eliminates inconsistent assignments within
a box, and an exploration phase, called branch, that divides a box into several sub-boxes
to be searched recursively, until a prescribed precision ε is reached. Algorithm 1 shows
a generic description of this scheme. It involves four subroutines: Extract (extraction
of the next box to be processed), Prunec (reduction of the domains based on refutation
of assignments that cannot satisfy a subset of constraint c), Provec (certification that a
box contains a solution of the constraint c), and Branch (division of the processed box
into sub-boxes to be further processed). Each of them has to be instantiated depending
on the problem to be solved. The procedure Prunec obviously depends on the type of
constraint in the problem (e.g. inequalities only), as well as on other characteristics of
the problem. The procedures Extract and Branch allow defining the search strategy
(e.g. breadth-first, depth-first, etc.) which may be tuned differently with regards to the
problem. The procedure Provec actually defines the aim of the branch and prune: Be-
ing a solution can take different meaning depending on the considered problem and
the question asked.2 For instance, if the question is to find the real solutions of a well-
constrained system of equations, then it will generally implement a solution existence
(and often uniqueness) theorem, e.g., Miranda, Brouwer or interval Newton [21], that
guarantees that the considered box contains a (unique) real solution; on the other hand,

2 For discrete CSPs, Provec usually checks the given assignment satisfies the constraint.
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Algorithm 1. Branch and prune

Input: NCSP 〈v, ([v]), c〉, precision ε > 0
Output: pair of sets of boxes (U ,S)

1: L ← {[v]}, S ← ∅ and U ← ∅
2: while L �= ∅ do
3: [v]← Extract(L)
4: [v]← Prunec([v])
5: if [v] �= ∅ then
6: if Provec([v]) then
7: S ← S ∪ {[v]}
8: else if wid[v] > ε then
9: L ← L ∪ Branch([v])

10: else
11: U ← U ∪ {[v]}
12: end if
13: end if
14: end while
15: return (U ,S)

if the question is to compute the solution set of a conjunction of inequality constraints,
then it will usually implement a solution universality test that guarantees that every real
assignment in the considered box is a solution of the NCSP.

3.2 Parallel Robots, Singularities and Generalized Aspects

As illustrated in Section 2, the kinematic model of a parallel robot can be expressed as
a system of equations relating its end-effector pose x and its commands q:

f(x,q) = 0. (2)

The subspace restricted to the pose parameters x (resp. command parameters q) is
known as the workspace (resp. joint-space). The projection Σx (resp. Σq) of the so-
lution set of equation 2 is called the robot reachable workspace (resp. reachable joint-
space). The solution set Σ itself is called the kinematic manifold and lies in what is
known as the (pose-command) product space. In this paper, we restrict to the most
typical architectures which satisfy dimx = dimq = dim f = n, i.e., neither over-
nor under-actuated manipulators. Then, by the implicit function theorem, this system
of equations defines a local bijection between x and q provided the Jacobian matri-
ces Fx(x,q) and Fq(x,q) are non-singular. The configurations (x,q) that do not sat-
isfy these regularity conditions are called singularities, respectively serial or parallel
whether Fq(x,q) or Fx(x,q) is singular. These singularity conditions correspond to
the horizontal and vertical tangents of the kinematic manifold described in Section 2.

A key issue in robotics is to be able to control a robot avoiding singularities (in
particular reaching a parallel singularity can dramatically damage a robot). This leads
to the definition of generalized aspects [6] as maximal connected sets of nonsingular
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configurations (x,q) that can all be reached without crossing any singularity. More
formally, the set of reachable nonsingular configurations of the robot is

{(x,q) ∈ Rn × Rn | f(x,q) = 0, detFx(x,q) �= 0, detFq(x,q) �= 0}. (3)

This corresponds e.g. to the left hand side diagram in Figure 2 where the four singu-
larities (green and red points) are removed. As illustrated by this diagram, the set (3) is
generally made of different maximal connected components. The generalized aspects
of the robots are defined to be these maximal connected singularity free components.

For a given generalized aspect A, its projection Ax is a maximal singularity-free
region in the robot reachable workspace. Knowing these regions allows roboticians
to safely plan robot motions: Any two poses in Ax are connected by at least one
singularity-free path. In addition, the study of aspects provides important information
about robot characteristics, e.g., if (x,q) and (x,q′) exist in an aspect A and q �= q′,
i.e., two different commands yield the same pose, then the robot is said to be cusp-
idal [20]. Cuspidal robots can change working mode without crossing singularities,
yielding an extra flexibility in their usage. Finally, the computation of aspects allows
roboticians to make informed choices when designing a robot for a given task.

4 Description of the Method

The proposed method for the generalized aspect computation relies on solving the fol-
lowing NCSP whose solutions are the nonsingular configurations of the robot:〈

(x,q) , ([x], [q]) , f(x,q) = 0 ∧ detFx(x,q) �= 0 ∧ detFq(x,q) �= 0
〉
. (4)

Let Σ([x], [q]) be the solution set of this NCSP. Our method computes a set of boxes
partly covering this solution set, grouped into connected subsets that represent approx-
imations of the aspects of the considered robot. The computed boxes have to satisfy
the specific properties stated in Subsection 4.1. The corresponding branch and prune
instantiation is described in Subsection 4.2. The connections between the output boxes
have to be certified as described in Subsection 4.3.

4.1 From the NCSP Model to the Generalized Aspects Computation

We aim at computing a (finite) set of boxes S ⊆ IRn × IRn together with (undirected)
linksN ⊆ S2, satisfying the following three properties:

(P1) ∀([x], [q]) ∈ S, ∀x ∈ [x], ∃ a unique q ∈ [q], f(x,q) = 0;
(P2) ∀([x], [q]) ∈ S, ∀x ∈ [x], ∀q ∈ [q], detFx(x,q) �= 0 ∧ detFq(x,q) �= 0;
(P3) ∀

(
([x], [q]), ([x′], [q′])

)
∈ N , ∃(x,q) ∈ ([x], [q]) ∩ ([x′], [q′]), f(x,q) = 0.

Property (P1) allows defining in each ([x], [q]) ∈ S a function κ([x],[q]) : [x] → [q]
that associates the unique command q = κ([x],[q])(x) with a given position x ∈ [x]
(i.e., the solution of the inverse kinematic problem locally defined inside ([x], [q])).
Property (P2) allows applying the Implicit Function Theorem to prove that κ([x],[q]) is
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differentiable (and hence continuous) inside [x]. Therefore, for a given box ([x], [q]) ∈
S, the solution set restricted to this box

Σ([x], [q]) =
{(

x, κ([x],[q])(x)
)
: x ∈ [x]

}
(5)

is proved to be connected and singularity free, and is thus a subset of one generalized
aspect. These properties are satisfied by the motivating example output shown on the
right-hand side in Figure 2. Remark that given a box ([x], [q]) ∈ S and a position
x ∈ [x], the corresponding command κ([x],[q])(x) is easily computed using Newton
iterations applied to the system f(x, ·) = 0 with initial iterate q̃ ∈ [q] (e.g. q̃ = mid[q]).

Property (P3) basically entails that Σ([x], [q]) and Σ([x′], [q′]) are connected, and
are thus subsets of the same aspect. Finally, assuming Sk ⊆ S to be a connected com-
ponent of the undirected graph (S,N ), the solution set⋃

([x],[q])∈Sk

Σ([x], [q]) (6)

is proved to belong to one generalized aspect. The next two subsections explain how to
instantiate the branch and prune algorithm in order to achieve these three properties.

4.2 Instantiaton of the Branch and Prune Algorithm

Pruning. In our context, implementing the Prunec function as a standard AC3-like
fixed-point propagation of contracting operators that enforce local consistencies, like
the Hull [2,15] or the Box consistencies [2,10], is sufficient. Indeed, this allows an
inexpensive refutation of non-solution boxes. Moreover, stronger consistency can be
achieved at no additional cost thanks to the solution test described below: the interval-
Newton-based operator applied for certifying that a box covers an aspect can also refute
non-solution boxes and allows pruning with respect to the whole constraint.

Search Strategy. The standard search strategy for NCSPs applies appropriately in our
context. Because boxes are output as soon as they are certified or they have reached
a prescribed precision, using a DFS approach to the Extract function is adequate and
avoids the risk of filling up the memory, unlike a BFS or LFS3 approach. The Branch
function typically selects a variable in a round-robin manner (i.e., all domains are se-
lected cyclically) and splits the corresponding interval at its midpoint (i.e., a domain is
split into two halves).

Solution Test. The Provec procedure of Algorithm 1 has to return true only when
Property (P1) and Property (P2) are verified. The former is related to proving the exis-
tence of solution which is performed using a parametric Newton operator as described
in the following paragraph. The latter requires checking the regularity of some interval
matrices as described in the next paragraph.

3 Largest-first search.
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Existence proof. The standard way to prove that a box ([x], [q]) satisfies Property
(P1) is to use a parametric interval Newton existence test [8,9,11]. Using the Hansen-
Sengupta [21] version of the interval Newton, the following sequence is computed

[q0] := [q], . . . , [qk+1] := [H ]([qk]) ∩ [qk] (7)

where [H ] is the Hansen-Sengupta operator applied to the system f([x], ·) = 0. As
soon as ∅ �= [qk+1] ⊆ int[qk] is verified, the box ([x], [qk+1]) is proved to satisfy
Property (P1), and hence so does ([x], [q]) since the former is included in the latter.
However, because Algorithm 1 has to bisect the domain [q] for insuring convergence
by separating the different commands associated to the same pose,4 this test fails in
practice in most situations. This issue was overcome in [11], in the restricted context
of constraints of the form x = f(q), by computing [qk+1] := [H ]([qk]) in (7), i.e.,
removing the intersection with [qk], in order to allow inflating and shifting [qk−1] if
necessary.5 As a result, the Hansen-Sengupta acts as a rigorous local search routine
allowing the sequence to converge towards the aimed solution set. An inflation factor
τ also has to be applied before the Hansen-Sengupta operator so as to ease the strict
inclusion test after each iteration. Hence, the computation of [qk+1] is as follows:

[q̃k] := mid[qk] + τ([qk ]−mid[qk]) and [qk+1] := [H ]([q̃k]). (8)

Then the condition ∅ �= [qk+1] ⊆ int[q̃k] also implies Property (P1) and is likely to
succeed as soon as ([x], [q]) is small enough and close enough to some nonsingular
solution, which eventually happens thanks to the bisection process. A typical value for
the inflation factor is τ = 1.01; It would have to be more accurately tuned for badly
conditioned problems, but it is not the case of usual robots.

Regularity test. In order to satisfy the regularity constraints, the interval evaluation of
each Jacobian Fx and Fq over the box ([x], [q]) has to be regular. Testing the regularity
of interval matrices is NP-hard, so sufficient conditions are usually used instead. Here,
we use the strong regularity of a square interval matrix [A], which consists in checking
that C[A] is strongly diagonally dominant, where C is usually chosen as an approximate
inverse of the midpoint of [A] (see [21]).

4.3 Connected Component Computation

In order to distinguish boxes in S belonging to one specific aspect from the rest of the
paving, we use transitively the relation between linked boxes defined by Property (P3),
i.e., we have to compute connected components with respect to the links in N . This is
done in three steps:

Step 1. Compute neighborhood relations between boxes, i.e., determine when two
boxes share at least one common point;

Step 2. Certify aspect connectivity in neighbor boxes, i.e., check Property (P3);
Step 3. Compute connected components with respect to the certified links.
4 In [8], only problems where parameters have one solution were tackled, hence allowing suc-

cessfully using the parametric existence test (7).
5 This was already used in [9] in a completely different context related to sensitivity analysis,

and in a recently submitted work of the authors dedicated to the projection of a manifold.
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Step 1. Computing Neighborhood Relations. Two boxes ([x], [q]) and ([x′], [q′])
are neighbors if and only if they share at least one common point, i.e., ([x], [q]) ∩
([x′], [q′]) �= ∅. The neighborhood relations between boxes N are obtained during the
branch and prune computation: After the current box has been pruned (line 4 of Alg. 1),
its neighbors are updated accordingly (it may have lost some neighbors); also, the boxes
produced when splitting the current box (line 9 of Alg. 1) inherit from (some of) the
neighbors of the current box, and are neighbors to one another. One delicate point in
managing neighborhood comes from the fact that pose or command parameters are of-
ten angles whose domains are restricted to a single period, e.g., [−π, π]; the periodicity
of these parameters has to be taken into account: Boxes are neighbors when they share
a common point modulo 2π on their periodic dimensions.

Step 2. Certifying Connectivity between Neighbors. Once the branch and prune al-
gorithm has produced the paving S and its neighboring informationN , a post-process
is applied to filter fromN the links that do not guarantee the two neighbor boxes cover
the same aspect: it may happen that two neighbor boxes share no common point sat-
isfying the kinematic relation f = 0, e.g., if they each cover a portion of two disjoint,
but close, aspects. Asserting neighborhood Property (P3) requires again a certification
procedure: For any neighbor boxes

(
([x], [q]), ([x′], [q′])

)
∈ N , we verify

∃q ∈ ([q]∩[q′]), f(mid([x]∩[x′]),q) = 0. (9)

Indeed, for connectivity to be certified, it is sufficient to prove that the intersection of
neighbor boxes share at least one point from the same aspect. Because neighbor boxes
([x], [q]) and ([x′], [q′]) are in S, they satisfy Property (P1) and Property (P2), i.e.,
∀x∈([x]∩ [x′]), ∃ a unique q∈ [q], f(x,q) = 0 and ∃ a unique q′∈ [q′], f(x,q′) = 0.
We need to check these unique values q and q′ are actually the same for one value x
inside [x] ∩ [x′], e.g., x = mid([x]∩[x′]). Using the certification procedure described
in Section 4.2 allows proving Equation (9). Each link is certified this way. If the certifi-
cation fails for a given link, it is removed fromN .

Step 3. Computing Connected Components. Given the setN of certified connections
between certified boxes in S, a standard connected component computation algorithm
(e.g., [13]) is applied in order to obtain a partition of S into Sk, each Sk covering a
single aspect of the considered robot.

5 Experiments

We present experiments on four planar robots with respectively 2 and 3 degrees of
freedom, yielding respectively a 2-/3-manifold in a 4/6 dimensional product space.

Robot Models. Robot RPRPR (resp. RRRRR) has two arms, each connecting an an-
chor point (A, B) to its end-effector (P ), each composed of a revolute joint, a prismatic
(resp. revolute) joint and again a revolute joint in sequence. The end-effector P lies at
the shared extremal revolute joint and is described as a 2D point (x1, x2) ∈ [−20, 20]2.
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Fig. 3. RPRPR (top-left), RRRRR (top-right), 3-RPR (bottom-left) and 3-RRR (bottom-right)

The prismatic (resp. initial revolute) joint in each arm is actuated, allowing to vary the
arms lengths (resp. angles). The arm lengths (resp. angles) are considered to be the
command (q1, q2) ∈ [2, 6]× [4, 9] (resp. [−π, π]2) of the robot. Using the architecture
parameters defined in [3] (resp. [6]), their kinematic equations are:

x2
1 + x2

2 − q21 = 0,
(x1 − 9)2 + x2

2 − q22 = 0,

and, respectively

(x1 − 8 cos q1)
2 + (x2 − 8 sin q1)

2 − 25 = 0,
(x1 − 9− 5 cos q2)

2 + (x2 − 5 sin q2)
2 − 64 = 0.

Robot 3-RPR (resp. 3-RRR, with the restriction that it has only a fixed orientation, i.e.,
x3 = 0, its free orientation variant being too complex for the current implementation
of the method) has three arms, each connecting an anchor point (A1, A2, A3) to its
end-effector (P ), each composed of a revolute joint, a prismatic (resp. revolute) joint
and again a revolute joint in sequence. The end-effector is a triangular platform whose
vertices are attached to the extremal revolute joints of the arms. The position parame-
ters (x1, x2, x3) represent the coordinates (x1, x2) ∈ [−50, 50]2 of one vertex of the
platform, and the angle x3 ∈ [−π, π] between its basis and the horizontal axis. The
prismatic (resp. initial revolute) joint in each arm is actuated, allowing to vary the arm
lengths (resp. angles). The arm lengths (resp. angles) are considered to be the command
(q1, q2, q3) ∈ [10, 32]3 (resp [−π, π]3) of the robot. Using the architecture parameters
defined in [7] (resp. [3]), their kinematic equations are:

x2
1 + x2

2 − q21 = 0,
(x1 + 17 cosx3 − 15.9)2 + (x2 + 17 sinx3)

2 − q22 = 0,
(x1 + 20.8 cos(x3 + 0.8822))2 + (x2 + 20.8 sin(x3 + 0.8822)− 10)2 − q23 = 0,
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and, respectively

(x1 − 10− 10 cos q1)
2 + (x2 − 10− 10 sin q1)

2 − 100 = 0,
(x1 + 10 cosx3 − 10− 10 cos q2)

2+
(x2 + 10 sinx3 − 10− 10 sin q2)

2 − 100 = 0,

(x1 + 10
√
2 cos(x3 + π/4)− 10 cos q3)

2+

(x2 + 10
√
2 sin(x3 + π/4)− 10− 10 sin q3)

2 − 100 = 0.

Implementation. We have implemented the proposed method described in Section 4
using the Realpaver library [12] in C++, specializing the classes for the different rou-
tines in the branch and prune algorithm. Given an NCSP that models a robot and a
prescribed precision ε, the implementation outputs certified boxes grouped by certified
connected components as explained in Section 4. Hence we can count not only the num-
ber of output boxes but also the number of output certified connected components. The
experiments were run using a 3.4GHz Intel Xeon processor with 16GB of RAM.

Results of the Method. Table 1 provides some figures on our computations. Its columns
represent the different robots we consider. Line “# aspects” provides the theoretically
established number of aspects of each robot provided in [3,6,7]; This value is unknown
for the 3-RRR robot. Line “precision” gives the prescribed precision ε used in the com-
putation. Lines “# boxes” and “# CC” give respectively the number of boxes and the
number of connected components returned by our method. Line “time” gives the overall
computational time in seconds of the method, including the post-processes.

Table 1. Experimental results

PRRP RPRPR RRRRR 3-RPR 3-RRR
# aspects 4 2 10 2 unknown
precision 0.1 0.1 0.1 0.3 0.008
# boxes 38 2 176 69 612 13 564 854 11 870 068
# CC 4 4 1 767 44 220 56 269
# CCfiltered 4 2 10 2 25
time (in sec.) 0.003 0.36 38 12 700 10 700

Note that despite the quite coarse precisions we have used, the number of output
boxes can be very large, due to the dimension of the search space we are paving. The
number of connected components is much smaller, but still it is not of the same order
as the theoretically known number of aspects, implying numerous disjoint connected
components does in fact belong to the same aspect. This is explained by the numer-
ical instability of the kinematic equations of the robots in the vicinity of the aspect
boundaries, which are singularities of the robot. Indeed, in these regions, the numerical
certification process cannot operate homogeneously, resulting in disconnected subsets
of certified boxes, separated either by non-certified boxes or by non-certified links.
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(d) 3-RRR

Fig. 4. Number of boxes in each connected component. Each bar corresponding to a connected
component shows the number of contained boxes (ordered largest first).

x1

x2

x3

Fig. 5. Computed 3D workspace of of 3-RPR (after filtering). First figure shows the undecided
boxes that cover the surface of the workspace. Second and third figures show the certified con-
nected components corresponding to the two aspects.

Under this assumption, each aspect should consist of, on the one hand, one large
connected component comprising wide boxes covering the regular inner part of the
aspect, and smaller and smaller boxes close to its boundary; And, on the other hand,
numerous small connected components comprising tiny boxes gathered on its boundary.
As a result, the number of boxes in the “boundary” components should be many times
smaller than that of the regular component in an aspect. It should thus be possible to
filter out these spurious tiny “boundary” components, based on the number of boxes
they contain, as they have no practical use in robotics.

In order to distinguish the relevant components from the spurious ones, we use such
a filtering post-process on the output of our method: Output connected components are
ordered by decreasing number of constituting boxes; The largest ratio, in number of
constituting boxes, between two consecutive components in this order is computed,
and used as a separation between relevant and spurious components. Applying this
heuristic post-process, the number of obtained connected components, reported at Line
“# CCfiltered” in Table 1, reaches the theoretically known number of aspects in the case
of the robots we considered. Figure 4 illustrates the number of boxes of the connected
components retained after filtering (the dashed lines represent the computed heuristic
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(a) RPRPR (b) RRRRR

(c) 3-RRR

Fig. 6. Projections into the 2D workspace of the computed aspects (after filtering). Green boxes
are certified; red and black boxes are undecided (i.e., do not satisfy Properties (P1) and (P2),
respectively).
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thresholds). This seems to indicate that our assumption is correct for the considered
robots, i.e., that the major part of each aspect is indeed covered with a single large,
regular, connected component.

The retained connected components projected onto the x subspace are depicted in
Figures 5 and 6.6 They graphically correspond to the aspects of the robots for which
they are theoretically known (e.g., see [3,4,6,7]). Note that the red boxes, that enclose
the singularity curves, seem to cross the aspects due to the projection, while they of
course do not cross in the product space.

Because the computation requires an exponentially growing time and space with
respect to the prescribed precision ε, we need to tweak it for an efficient and reliable as-
pect determination. For the first three robots, the precision ε = 0.1 gave precise enough
results to determine the correct number of aspects after filtering out the spurious compo-
nents. For 3-RPR, we needed the coarser precision ε = 0.3 to compute without causing
over-consumption of the memory. In the computation of 3-RRR, the threshold between
the regular and the spurious components was not as clear as for the other robots, even
though we improved the precision up to ε = 0.008. Enumerating the obtained compo-
nents from the largest ones, we assume that this robot (with fixed-orientation) has 25
aspects, the following components being likely to be a part of another component, i.e.,
spurious. This remains to be formally demonstrated.

6 Conclusion

The computation of aspects, i.e., singularity free connected sets of configurations, is a
critical task in the design and analysis of parallel robots. The proposed algorithm uses
numerical constraint programming to fully certify this computation. It is worth noting
that this is the first algorithm that automatically handles such a large class of kinematic
models with fully certifying the configuration existence, non-singularity and connec-
tivity: The only restriction of the algorithm is its computational complexity, which is
obviously exponential with respect to the number of degrees of freedom of the robot.
The presented experiments have reported the sharp approximations of aspects for some
realistic models: The correct number of aspects was computed for well-known planar
robots with two and three degrees of freedom. The more challenging 3-RRR, whose
number of aspects is still an open question, remains out of reach because of the com-
plexity of the computation, though we have obtained some promising results fixing the
orientation of its moving-platform. Tuning the propagation and search strategies of the
algorithms should allow fully analyzing it in the future. Finally, although experiments
have shown that the proposed method computes approximations of all aspects of well-
known robots, it cannot be used for actually rigorously counting the aspects, a challenge
we will address in the future on the basis of this method.
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6 These figures are also available at http://www.dsksh.com/aspects/

http://www.dsksh.com/aspects/
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Abstract. The number of finite semigroups increases rapidly with the
number of elements. Since existing counting formulae do not give
the complete number of semigroups of given order up to equivalence,
the remainder can only be found by careful search. We describe the use
of mathematical results combined with distributed Constraint Satisfac-
tion to show that the number of non-equivalent semigroups of order 10
is 12,418,001,077,381,302,684. This solves a previously open problem in
Mathematics, and has directly led to improvements in Constraint Satis-
faction technology.

Keywords: Constraint Satisfaction, Mathematics, semigroup, Minion,
symmetry breaking, distributed search.

1 Introduction

An important area of investigation is the determination of the number of solu-
tions of a given finite algebraic problem. It is often the case that we are interested
in the number of classes of solutions under some type of equivalence relation,
since this gives the number of structural types rather than distinct objects. In
certain cases, these numbers can be found by deriving counting formulae. It may
also be possible, on an ad hoc basis, to derive enumerative constructions of larger
objects from smaller ones. In both these cases, no systematic computer search
is required – the numbers are calculated from mathematical proofs using the
structures of the underlying problem.

There is no guarantee, of course, that the use of formally-proven formulae will
work for all problems. It may be that no suitable formulae is available. In this
event, the only method left is to carefully search for solutions, ensuring that none
is missed and none is counted more than once. Examples include the search for all
distinct transitive graphs on n vertices [23,24], all binary self-dual codes of length
32 [2], all ordered trees with k leaves [32], and all non-equivalent semigroups up
to order 9 and monoids up to order 10 [6,7,9,17,26,28,30]. Large-scale studies
often involve a combination of enumeration by formula and computer search.
The tautomer enumeration problem [18] from Cheminfomatics is an illustrative
example. Commercial and academic software packages used to solve this type
of problem typically use a suite of transformation rules that allow enumeration
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without search, combined with generate-and-test searches for structures not pre-
dicted by the rulesets [25].

Whenever computer search is used to solve for types of solutions rather than
absolute number of solutions, some method must be employed that ensures that
exactly one canonical representative from each equivalence class is returned.
This involves breaking the symmetries that allow objects from the same class
to be interchanged, and the design and implementation of such methods is an
important field of study in its own right [29, chapter 10].

A detailed exposition of search, symmetry-breaking, enumeration, and solu-
tion generation is given in [21]. The Constraint Satisfaction methods used in our
search are described in [29], details of the specific Constraint Satisfaction solver
used – Minion – are in [13], and the computational algebra package – GAP –
used to identify and break symmetries is described at [11]. Basics of semigroup
theory can be found in [15].

Table 1. Semigroup T of order 10

* 0 1 2 3 4 5 6 7 8 9

0 0 0 0 0 4 4 0 0 4 4
1 0 1 0 0 4 4 0 0 4 4
2 2 2 2 2 5 5 2 2 5 5
3 2 2 2 3 5 5 2 2 5 5
4 0 0 0 0 4 4 4 4 0 0
5 2 2 2 2 5 5 5 5 2 2
6 0 0 2 2 4 5 6 7 8 9
7 0 0 2 2 4 5 7 6 9 8
8 2 2 0 0 5 4 8 9 7 6
9 2 2 0 0 5 4 9 8 6 7

A semigroup T = (S, ∗) consists of a set of elements S and a binary operation
∗ : S×S → S that is associative, satisfying (x∗ y)∗ z = x∗ (y ∗ z) for each x, y, z
in S. We call two semigroups (S, ∗) and (S′, ◦) isomorphic – respectively anti-
isomorphic – if there exists a bijection σ : S → S′ such that σ(x∗y) = σ(x)◦σ(y)
– respectively σ(x ∗ y) = σ(y) ◦ σ(x) – for all x, y ∈ S; in this case σ is an
isomorphism respectively anti-isomorphism. An element x of T is an idempotent
if x ∗ x = x. The semigroup T is nilpotent if there exists an r ∈ N such that
|{s1 ∗ s2 ∗ · · · ∗ sr | s1, s2, . . . , sr ∈ S}| = 1, in other words if all products of r
elements take the same value. If r is the least value for which this is true, then
T is nilpotent of degree r. Table 1 is an illustrative example: T = ({0, . . . , 9}, ∗).
By inspection, T is 7-idempotent, i.e. has exactly seven idempotents. T is not
nilpotent of degree 3 since, for example, 4 ∗ 5 ∗ 6 = 4 �= 5 = 2 ∗ 3 ∗ 4. Given a
permutation π of the elements of {0, . . . , 9}, it is easy to check that a semigroup
isomorphic to T is obtained by permuting the rows, the columns, and finally the
values according to π, and that additionally transposing yields the table of an
anti-isomorphic semigroup.
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The problem addressed in this paper is finding all ways of filling in a blank
table such that multiplication is associative up to symmetric equivalence, i.e. up
to isomorphism or anti-isomorphism.

In this paper we report that the hitherto unknown number of semigroups of
order 10, up to equivalence, is 12,418,001,077,381,302,684. The size of the search
space for this problem is 10100 with 2 × 10! symmetries to be broken, making
generate-and-test an intractable solution method. A recent advance in the theory
of finite semigroups has led to a formula [8] that gives the number of ‘almost
all’ semigroups of given order. Despite this, 718,981,858,383,872 non-equivalent
solutions had to be found by a combination of ad hoc constructive enumeration
proofs and Constraint Satisfaction search, which took 130 CPU years distributed
across two local clusters and the Amazon cloud [1].

Our investigations have directly led to improvements in the Minion Constraint
Satisfaction Problem solver. Watched constraints were introduced, and a more
efficient lexicographic ordering constraint was implemented. These gave orders
of magnitude improvements to our search, and have been included in subsequent
releases of Minion.

We stress the interdisciplinary nature of our work: the result cannot – to
our knowledge – be obtained by mathematical proof alone, nor can current AI
search technologies hope to return the exact number of solutions with realistic
resources.

In Section 2 we give detailed descriptions of our models and methods, and
of the family of Constraint Satisfaction Problems (CSPs) that were solved to
provide the main result. Section 3 contains the results divided into the sub-
cases used to overcome computational bottlenecks. In Section 4 we discuss the
improvements in CSP solving that we were able to identify and implement,
together with a brief analysis of how our solver can often backtrack very early
in search, and how distribution of the CSPs across multiple compute nodes is
likely to generalise. We give some concluding remarks in Section 5.

2 Methods

We first describe a single CSP for our combinatorial problem (Sec. 2.1), that
incorporates a priori knowledge regarding the number of semigroups of a certain
type. The next stage is the replacement of this CSP by families of CSPs (Sec. 2.2),
some of which are both computationally and mathematically difficult, and are
solved by distributed search (Sec. 2.3). More computationally tractable families
are solved using a single processor, and families having exploitable structure are
solved mainly by constructive enumeration (Secs. 2.4, 2.5, and 2.6).

2.1 The Single Constraint Satisfaction Model

We model semigroups of order 10 as a CSP: a set of variables V each with
a discrete and finite domain D of potential values, and a set of constraints C
that either forbid or require certain instantiations of variables by domain values.
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A full instantiation of the variables in V by values from D is a solution whenever
no constraint is violated. We make extensive use of the element constraint on
variables N , Mi and P having natural number domains

N = 〈M0, . . . ,Mn−1〉[P ]

which requires that N is the P th element of the list 〈M0, . . . ,Mn−1〉 in any
solution. Propagators for this constraint are implemented in many CSP solvers,
including Minion.

CSP 1. Let V1 = {Ta,b | 0 ≤ a, b ≤ 9} be variables representing the entries
in a 10 × 10 multiplication table T , and V2 = {Aa,b,c | 0 ≤ a, b, c ≤ 9} be
variables representing each of the products of three elements. Our basic CSP has
V = V1 ∪ V2 as variables, each with domain D = {0, . . . , 9}. For each triple
(a, b, c) of values from D, we post the pair of constraints

〈Ta,0, . . . , Ta,9〉[Tb,c] = Aa,b,c = 〈T0,c, . . . , T9,c〉[Ta,b] (1)

which enforce associativity.

Finding all solutions of CSP 1 would give the number of distinct semigroups
of order 10, i.e. all non-identical associative 10 × 10 multiplication tables. Our
task, however, is to search for the number of classes of solutions up to symmetric
equivalence, i.e. up to isomorphism or anti-isomorphism. The symmetry group
is the set of permutations of {0, . . . , 9} combined with possible transpositions of
the tables, which we denote as S10×C2 using standard group theoretic notation.
Let g = (π, φ) ∈ S10 ×C2 be a symmetry and T be a multiplication table. T g is
then the table obtained by

1. permuting the rows and columns of T according to π;
2. permuting the values in T according to π;
3. either

(a) doing nothing if φ is the identity element φ1 of C2;
(b) transposing the table if φ is the non-identity φ2 element of C2.

Two multiplication tables T1 and T2 are isomorphic if T1 = T
(π,φ1)
2 for some

π ∈ S10; T1 and T2 are anti-isomorphic if T1 = T
(π,φ2)
2 for some π ∈ S10.

Since S10 ×C2 is a group, the set of all multiplication tables can be partitioned
into subsets of symmetric equivalents: those tables that are isomorphic or anti-
isomorphic to each other form an equivalence class.

Our problem is to find the number of equivalence classes, either by formal enu-
meration proofs or by solving a variant of CSP 1 that returns exactly one canon-
ical representative from each class. Our general search methodology is to post
“lex-leader” symmetry-breaking constraints before search. This is a well-known
technique for dealing with symmetries in CSPs [4], made harder to implement
in our case because our symmetries involve both variables and values, and made
harder to deploy since we need to post 2× 10! = 7, 257, 600 symmetry-breaking
constraints.
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To explain our realisation of “lex-leader” we first introduce of another way
to describe a solution of CSP 1. A literal of a CSP L = (V,D,C) is an ele-
ment in the Cartesian product V ×D. Literals are denoted in the form (x = k)
with x ∈ V and k ∈ D. An instantiation f corresponds to the set of literals
If = {(x = f(x)) | f is defined on x}, which uniquely defines f (but not ev-
ery set of literals defines an instantiation). In particular, literals are mapped
to literals under the isomorphic and anti-isomorphic transformations described
above.

Given a fixed ordering (χ1, χ2, . . . , χ|V1||D|) of all literals in V1×D, an instan-
tiation can then be represented as a bit vector of length |V1||D| = 100× 10. The
bit in the i-th position is 1 if χi is contained in the instantiation and otherwise
the bit is 0. The bit vector for the instantiation If corresponding to the ordering
of the literals (χ1, χ2, . . . , χ|V1||D|) is denoted by (χ1, χ2, . . . , χ|V1||D|)If .

There is one solution in each set of symmetric equivalents for which the corre-
sponding bit vector is lexicographic maximal, which we take to be the property
identifying the canonical solution. We denote the standard lexicographic order
on vectors by ≥lex.

CSP 2. Let (V,D,C) be as defined in CSP 1. We extend C by adding for all
symmetries g ∈ S10 × C2 the constraint

(χ1, χ2, . . . , χ|V1||D|) ≥lex (χ
g
1, χ

g
2, . . . , χ

g
|V1||D|). (2)

The solutions of CSP 2 are canonical representatives of associative multiplication
tables, as required.

It is not hard to show that all finite semigroups have at least one idempotent.
Our symmetry-breaking constraints ensure that all solution tables will have the
value 0 at T0,0. Since we ensure that 0 ∗ 0 ∗ 0 = 0, exactly those solutions that
are nilpotent of degree at most 3 will have a ∗ b ∗ c = 0 for all values of a, b and
c. A formula has recently been derived that gives the number of such solutions
without search [8], so we add constraints that rule out these solutions from our
CSP. We already have variables that represent each product of three elements,
namely V2.

CSP 3. Let (V,D,C) be as defined in CSP 2. Form a vector containing the
variables 〈V2〉 = 〈Aa,b,c | 0 ≤ a, b, c ≤ 9〉, and another vector 〈Z〉 consisting of
103 zeros. We post the additional constraint

〈V2〉 �= 〈Z〉 (3)

that guarantees that at least one triple product is non-zero in every solution.

Adding the number of solutions of CSP 3 to the formula value for semigroups of
nilpotency degree at most 3 will give our full result. It should be noted that no
enumeration formula for the solutions of CSP 3 exists: some form of organised
search is required to solve the complete problem.
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2.2 Case Splits

CSP 3 has too many symmetries to be solved as a single entity. In practice,
we apply a well-established technique that has been used in the enumeration
of semigroups of orders 6 and 8 [28,30] to subdivide the problem (CSP 4). For
each subproblem we prescribe the entries on the diagonal of the multiplication
table. There exist 1010 distinct diagonals, but only a small number appear in a
canonical solution, so that far fewer subproblems are created. A detailed descrip-
tion of the efficient derivation of a set of diagonals containing all canonical ones
is given in [5]. This approach heavily influences the symmetry-breaking, as any
lex-leader constraint (2) is automatically fulfilled if it corresponds to a symme-
try that does not fix the prescribed diagonal. We therefore significantly reduce
the overall search space, and also the number of symmetry-breaking constraints
needed for most subproblems.

CSP 4. Let (V,D,C) be as defined in CSP 3, and let E = {Ea | 0 ≤ a ≤ 9} be
a canonical diagonal. We post the constraints

Ta,a = Ea for 0 ≤ a ≤ 9 (4)

which prescribe the entries on the diagonal of any solution.

To further reduce the number of instances, we combine certain easy subproblems
and prescribe only the number of idempotents, as done in [17]. For more difficult
subproblems we do further easily-derived case splits which will be mentioned in
Section 3. The choice of method used for a particular subproblem was based on
our experience from searching for the semigroups of order 9.

2.3 Distributed CSP Search

Our method of solving constraint problems in a distributed way does not require
support for distributed architectures in the constraint solver. Instead, we parti-
tion and distribute the problem specification itself, with the different partitions
of the search space solved independently. The advantage of this approach over
techniques that require communication between the compute nodes is that its
implementation and deployment are much simpler.

We partition by splitting on the values in the domain of a variable during
search [20]. This is done as follows: first the solution process is stopped, then
we compute restart nogoods as described in [22] and encode them as constraints
that can be added to the original problem. When added, the new constraints
enable the solver to restart search from where it was interrupted. In addition, we
add constraints that split the remaining search space. We partition the domain
for the variable currently under consideration into n pieces of roughly equal size.
We then create n new models and to each in turn add the constraints ruling out
the previously done search and n− 1 partitions of that domain. As an example,
consider the case n = 2. If the variable under consideration is x and its domain
is {1, 2, 3, 4}, we generate 2 new models. One of them has the constraint x ≤ 2
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added and the other one x ≥ 3. Thus, solving the first model will try the values
1 and 2 for x, whereas the second model will try 3 and 4.

It is impossible to predict reliably the size of the search space for each of the
splits, and the time needed to search it. This directly affects the effectiveness
of the splitting – if the search space is distributed unevenly across the splits,
some of the compute nodes will be idle while the others do most of the work.
We address this problem by repeatedly splitting the search space during search.
In this way we create new units of work whenever a worker becomes idle by
simply asking one of the busy workers to stop and generate split models. The
search is then resumed from where it was stopped and the remaining search
space is explored in parallel by the two workers. Note that there is a runtime
overhead involved with stopping and resuming search because the constraints
which enable resumption must be propagated and the solver needs to explore a
small number of search nodes to get to the point where it was stopped before.
There is also a memory overhead because the additional constraints need to be
stored.

In practice, we run Minion for a specified amount of time, then stop, split
and resume instead of splitting at the beginning and when workers become idle.
Initially the utilisation of the workers is suboptimal because not enough work
units have been generated. However, after some time the number of work units
exceeds the number of workers and the utilisation reaches 100%, and the initial
phase of under-utilised resources is negligible compared to the total computation
time.

We used the distributed computing system Condor [31] to handle distribution
of the work units to the worker nodes. Every time new models are generated,
they are submitted to the system which queues them and allocates a worker as
soon as one becomes available.

2.4 Construction of Certain 2-Idempotent Semigroups

If T = ({1, . . . , 9}, ∗) is a 1-idempotent semigroup, 1 being the idempotent, we
define four multiplications on {0, . . . , 9}:

i ∗I j =

{
i ∗ j if i, j ∈ T

0 otherwise i ∗II j =

⎧⎪⎨⎪⎩
i ∗ j if i, j ∈ T

i if j = 0

j if i = 0

i ∗III j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i ∗ j if i, j ∈ T

i ∗ 1 if i ∈ T, j = 0

1 ∗ j if j ∈ T, i = 0

0 if i = j = 0

i ∗IV j =

⎧⎪⎨⎪⎩
i ∗ j if i, j ∈ T

0 if i = 0

1 if i �= 0, j = 0

Denote TI = ({0, . . . , 9}, ∗I), . . . , TIV = ({0, . . . , 9}, ∗IV). Then it can be readily
verified that TI, TII, and TIII are 2-idempotent semigroups, and so is TIV if the
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element 1 is a left-zero in T , i.e. 1∗ i = 1 for all i ∈ T . These four semigroups are
pairwise non-equivalent (except that TII = TIII if T is a group). Moreover, for
two non-equivalent semigroups on {1, . . . , 9} the first three constructions lead
to non-equivalent semigroups; and two non-isomorphic semigroups on {1, . . . , 9}
lead to non-equivalent semigroups under the fourth construction.

We use the above constructions to reduce the search effort for certain 2-
idempotent diagonals, with 0 and 1 being the idempotents. It can then be shown
that T0,1, T1,0 ∈ {0, 1}, and that the only solutions not arising from one of the
constructions have T0,1 = T1,0 = 1. Hence we fix these variables of the CSP and
in addition add constraints to rule out solutions that are of the form TII or TIII

for some semigroup T on {1, . . . , 9}.

2.5 Construction from Nilpotent Semigroups of Order 9

For a 1-idempotent semigroup T = ({0, . . . , 8}, ∗) with 0 being the idempotent
we define a multiplication ◦ on {0, . . . , 9} as follows:

i ◦ j =

⎧⎪⎨⎪⎩
i ∗ j if i, j ∈ T

0 if i = j = 9

9 otherwise

If 0 is a zero element in T then ◦ is associative and we define the semigroup
T◦ = ({0, . . . , 9}, ◦). Two semigroups constructed in this manner are equivalent
if and only if the two semigroups on {0, . . . , 8} are equivalent.

To rule out all semigroups that are equivalent to a constructed one from
the CSP search for a given 1-idempotent diagonal, we cannot assume that 9
is the distinguished element. Every element whose diagonal entry equals the
idempotent element 0, and does not appear on the diagonal itself, is a potential
candidate. For each such element k we forbid that the entries in the k-th row
and k-th column except the diagonal entry are all equal to k. That is we post
the constraint

〈K〉 �= 〈T0,k, . . . , Tk−1,k, Tk+1,k, . . . , T9,k, Tk,0, . . . , Tk,k−1, Tk,k+1, . . . , Tk,9〉, (5)

where 〈K〉 is the vector of length 18 containing k in each position. It remains
to justify that we do not miss any solution by posting these constraints. If T is
a multiplication table for which equality holds in (5) for some k, then either T
is equivalent to a semigroup as constructed above or there exists Ti,j = k with
i, j �= k. This gives

k ∗ (i ∗ j) = k ∗ k = 0 and (k ∗ i) ∗ j = k ∗ j = k

showing that such a table T is not associative.

2.6 Construction from Nilpotent Semigroups of Degree at Most 3

Let T = ({1, . . . , k}, ∗) be a nilpotent semigroup of degree at most 3 for some
2 ≤ k ≤ 9 with 1 being its idempotent. The structure of T yields a natural
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partition of {1, . . . , k} into 3 sets: the zero element 1 by itself, the non-zero
products, and the remaining elements (for details see [5, Section 2.1]). We denote
the latter set by A− and the set of non-zero products by B+. The superscripts
indicate a sign function, or multiplicative parity, that we introduce on {0, . . . , k}
with sign(0) = − and sign(1) = +. We define a multiplication ∗± on {0, . . . , k}
as follows:

i∗±j =

⎧⎪⎨⎪⎩
i ∗ j if i, j ∈ T and sign(i) = sign(j)

1 if i = 0, j ∈ A− or i ∈ A−, j = 0 or i = j = 0

0 if sign(i) �= sign(j)

Then T± = ({0, . . . , k}, ∗±) is a semigroup as all products of three elements
equal either 0 or 1 depending only on the parity of the elements in the product.
In a second step we define a multiplication on the set {0, . . . , 9} based on ∗±.

i ◦± j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
i ∗± j if i, j ∈ T±

1 ∗± j if i ∈ T±, j ≥ k + 1

i ∗± 1 if i ≥ k + 1, j ∈ T±

1 if i, j ≥ k + 1

Two semigroups of order 10 constructed in this way are equivalent if and only
if they arise from equivalent semigroups. None of the semigroups are nilpotent
as they do not contain a zero and none are equivalent to those constructed in
Section 2.5.

In a similar manner to the construction in Section 2.5, given a 1-idempotent
diagonal, we have to add constraints for every potential candidate for the dis-
tinguished element from the above definition of ∗±. The constraints are similar
to (5) but are required for all vectors 〈K〉 whose entries are the idempotent and
the candidate k as in the construction for some semigroup T . Note that this does
not result in one constraint for every nilpotent semigroup of degree at most 3,
but in one constraint for each of a few specific partitions into sets A− and B+

allowed by the diagonal.
In addition we have to search for semigroups not equivalent to one from the

construction, in which the idempotent and a candidate for the distinguished
element behave as in a construction. This reduces the domains for many table
entries to a singleton, and requires one additional constraint that the vector
of table entries that would be fixed by the construction does not equal the
corresponding vector.

3 Results

For 4 to 7 and for 9 idempotents we added constraints that fixed the idempo-
tents to CSP 3, and were able to solve as single instances on a single computer
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Table 2. Semigroups up to equivalence for the cases 3–10 idempotents. Minion† denotes
specialised search using 289 sub-cases based on possible diagonals for 3 idempotents,
and 4 sub-cases for 8 idempotents. The full methodology is described in [7]. Minion‡

denotes specialised search for bands as described in [5]. The computations took around
920 hours on a machine with 2.66GHz Intel X-5430 processor and 16GB RAM, giving
roughly 67,000 solutions per second.

Idempotents Semigroups Method

3 219,587,421,825 Minion†

4 1,155,033,843 Minion
5 396,258,335 Minion
6 478,396,381 Minion
7 412,921,339 Minion

8 214,294,637 Minion†

9 60,036,717 Minion

10 7,033,090 Minion‡

Total: 222,311,396,167

(Table 2). The 3- and 8-idempotent cases were solved by case-split into CSP 4
using the appropriate canonical diagonals. A k-idempotent semigroup of order
k is known as a band, and there is extensive theory for these objects that can be
used to refine search. This has been done in [5] for all bands up to order 10.

The 2-idempotent case is strictly harder: there are 2 × 9! symmetries, and
from our experience with semigroups of orders 1–9 we predicted about 4× 1014

solutions. We therefore derived the constructions given in Section 2.4, which give
the majority of such solutions without search. We still had to search for roughly
1.2× 1014 solutions (Table 3).

Table 3. Semigroups up to equivalence having exactly 2 idempotents. The distributed
Minion computation (involving machines with varying architectures) took 73 CPU
years, returning an average 50,400 solutions per second. The CPU time taken to search
for solutions not given by the constructions described in Section 2.4 was comparatively
negligible. Methods TI etc. denote the constructive multiplication defined in Section
2.4. ‘The rest’ denotes solutions for those instances that are not ruled out by the
constraints that forbid the constructions.

Case Semigroups Method

Based on Section 2.4
– up to equivalence 158,929,640,752,110 TI , TII and TIII

– up to isomorphism 105,945,136,997,613 TIV

– the rest 226,006,150,622 Minion
Not based on Section 2.4 116,179,193,109,431 Distributed Minion

Total: 381,279,977,009,776
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The 1-idempotent case can be split naturally into two cases: solutions that
are nilpotent of some degree (Table 4), and solutions that are not nilpotent
(Table 5). There is exactly one canonical semigroup of nilpotency degree 2 (the
zero semigroup) and one of degree 10 (the monogenic, nilpotent semigroup),
and there is an enumeration formula for those of degree 3. The cases for de-
grees 5 through 9 are small enough to be solved by a single computer. The
degree 4 case is again sub-divided into 316 canonical diagonals. For 68 pairs
of instances, two distinct diagonals lead to CSPs that have the same search
variables (the off-diagonal entries), symmetry group and constraints. In these
cases we only solve the first CSP, and double the number of solutions to obtain
the true value (Table 4). The final case, 1-idempotent but non-nilpotent semi-
groups, was approached via the constructions from smaller semigroups described
in Sections 2.5 and 2.6, with limited CSP search for the remaining solutions
(Table 5).

Table 4. Semigroups up to equivalence having exactly 1 idempotent and being nilpo-
tent of some degree. The distributed Minion computation (involving machines with
varying architectures) took 60 CPU years, returning an average 74,000 solutions per
second. The CPU times for the 5–9 degree cases were negligible by comparison.

Nilpotency degree Semigroups Method

2 1 Zero semigroup
3 12,417,282,095,522,918,811 Formula
4

– unique 49,304,583,445,962 Distributed Minion
– replicable 91,103,513,956,511 Distributed Minion
– replicas 91,103,513,956,511 No search

5 10,027,051,364 Minion
6 3,395,624 Minion
7 17,553 Minion
8 328 Minion
9 15 Minion
10 1 Monogenic semigroup

Total: 12,417,495,617,164,742,681

3.1 Improved Solver Performance

As an integral part of the methodology development stage of this investigation,
we performed careful profiling of Minion and compared performance against an-
other CSP solver, Gecode [12]. Initial evidence was that Gecode was an order
of magnitude faster than Minion on semigroup instances having a large num-
ber (over 20,000) of symmetry-breaking constraints, and that the solvers were
competitive for other instances. Analysis showed that the speedup was primarily
due to the fact that Gecode removes constraints from search once they become
entailed, whereas Minion would leave constraints in place throughout search.
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We revised Minion to do the same, resulting in two solvers that were broadly
comparable in terms of performance.

Through profiling, we found that the revised Minion was spending over 95% of
its time in the lexicographic ordering constraint for highly symmetric instances.
We identified propagation calls that had a cost but almost always no effect,
and as a result were able to design and implement the QuickLex algorithm [16],
which looks at only two variables out of the whole constraint at once, leading to
massive performance gains for lexicographic ordering constraints. On average,
the cost of the QuickLex propagator is 15% of the cost of the hitherto optimal
method of Frisch et al. [10].

The use of “watched literals” has led to remarkable improvements in SAT
solvers, and an implementation for Constraint Satisfaction was proposed in [14].
The careful use of this technique allows efficient maintenance of generalised arc
consistency on the element constraints that we use to enforce associativity (Sec-
tion 2.1).

Our empirical experience for orders smaller than 10 is that the combined
use of QuickLex and watched element constraints makes Minion over an order
of magnitude faster than Gecode for this class of problems. Minion versions
from 0.9 onwards have incorporated these enhancements. We report that solving
semigroups appears to be a good stress test for constraint solvers, involving a
small number of types of constraints, but large search spaces, large numbers of
solutions and large numbers of symmetries.

Table 5. Non-nilpotent semigroups up to equivalence having exactly 1 idempotent.
The single CPU Minion calculations took about 110 hours, returning an average 44,700
solutions per second. ‘The rest’ denotes solutions for those instances that are not ruled
out by the constraints that forbid the constructions.

Case Semigroups Method

Diagonal does not admit nilpotent of degree 3
solutions

3,673,835,659 Minion

Diagonal admits nilpotent of degree 3 solu-
tions, and has a sub-diagonal that admits
nilpotent of degree 3 solutions

– construction from order 9 52,972,873,141,621 Construction 2.5
– the rest 12,596,375,843 Minion
– construction from orders up to 9 52,968,071,362,553 Construction 2.6
– the rest 712,828,694 Minion

Diagonal admits nilpotent of degree 3 solu-
tions, and does not have a sub-diagonal that
admits nilpotent of degree 3 solutions

609,690 Minion

Total: 105,957,928,154,060
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4 Discussion

4.1 CSP Search Analysis

* 0 1 2 3 4 5 6 7 8 9
0 1 7 0
1 7 0
2 2
3 2
4 3
5 4
6 3
7 � 1 6
8 6
9 8

Minion is very successful at solving
semigroup instances. We found that in-
stances with no solutions were solved al-
most immediately, and problems with a
large number of solutions had just over
twice as many search nodes as solutions,
approaching the minimum possible.

The displayed example shows how
Minion performs early backtracks from
a partially filled table when no solution
exists. In our example, the diagonal en-
tries have been set before search, and
we have assigned T0,1 = 7. By simple
inference from the element constraints,
three variables are instantly instantiated
(shown with values in italics in the figure). The element constraints in Minion
can also remove individual values from the domains of variables. In particular,
one of these constraints removes domain values for variable T7,0(denoted as �).
This constraint gives:

〈T7,0, . . . , T7,9〉[T0,1] = A7,0,1 = 〈T0,1, . . . , T9,1〉[T7,0] (6)

⇒ 7 ∗ 7 = 6 = A7,0,1 = 〈7, 0, T2,1, . . . , T9,1〉[T7,0] (7)

⇒ T7,0 �= 0 and ⇒ T7,0 �= 1, (8)

contradicting the associativity requirement 7∗0 = (0∗1)∗0 = 0∗(1∗0) = 0∗7 = 0.
The value 7 was arbitrary; Minion will backtrack without further assignment for
any value between 3 and 9, and search terminates after only 5 search nodes.

Whilst there are common classes of CSP symmetry that can be broken by
posting a polynomially-sized subset of the symmetries – typically pure variable
or pure value symmetries [3] – this does not seem to be one of those instances.
This is because our symmetries permute both variables and values, and since the
underlying group consists of all permutations, we have to post a constraint for
each member of the subgroup of S10×C2 determined by the case splits described
in Section 2.2. Moreover, partial symmetry-breaking would lead to more than
one solution per equivalence class, and we would then have to implement a
potentially expensive maximal image post-process in order to obtain the correct
result.

Minion has the further advantage that when symmetry-breaking or case-split
constraints are added, the reasoning they generate is automatically combined
with the reasoning of the associativity constraints, making it quick and easy to
try out new ideas.
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4.2 Distributed Search

Using our knowledge of the numbers of smaller semigroups of various types, our
a priori estimate of the number of solutions of CSP 3 was somewhere between
5 × 1014 and 1 × 1015. Our development experience with semigroups of order
9 is that, on average, about 70,000 semigroups are found every second using a
single compute node. Assuming a search rate of 50,000 solutions per second for
order 10 – since the number and length of the constraints increase with increased
order – this equates to between 317 and 634 years of wall clock time on a single
machine. We therefore developed a distributed strategy.

Our approach works very well for the extremely large problem we are tackling
here. The computations took several CPU decades, making negligible the cost of
the under-utilisation of nodes in the first few hours of computation. Similarly, we
found that the overheads incurred through splitting, restarting and propagating
additional constraints were acceptable, because without the distribution across
many computers, we would not have been able to solve the problem at all.

There are several advantages to implementing distributed solving in this way.
First, by creating regular “snapshots” of the search done, the resilience against
failures increases. Every time we stop, split and resume, our modified models
are saved. As they contain constraints that rule out the search already done, we
can only lose the work done after that point if a worker fails. This means that
the maximum amount of work lost in case of a total failure of all workers is the
allotted time Tmax times the number of workers |w|. This is especially important
for large-scale computations, and our experience shows this to be extremely
useful in practice. The modified models can be stored. We exploited this by
moving the solving process to a different set of workers, without losing any work.
Since our methods require no communication between the individual workers
solving the problem, they only need to be able to receive the problem sub-
instances, and send either the solution or split models back. We used compute
nodes in two local clusters and the Amazon cloud, and, since some parts of the
search space required more memory than the machines initially chosen could
provide, we were able to seamlessly move those parts of the computation onto
more powerful machines.

Our leveraging of existing software to handle the logistics of distribution led to
reductions in both development time and systematic errors. For large problems
such as these, our experience is that the number of queued jobs will usually
exceed the number of workers, ensuring good resource utilisation.

4.3 Validation

For most of the case-splits, we have run the solver exactly once. It is not in-
conceivable, therefore, that a miscalculation has occurred. For orders up to 8,
the number of solutions is small enough that we can solve CSP 2 with diago-
nal case splits, using neither enumeration formulae nor constructions. For order
9 we can solve CSP 3, as a family of CSPs using no constructions. We have
performed these calculations multiple times on various architectures, using dif-
ferent choices for search heuristics and different implementations of constraint
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propagators. The expected totals are returned every time. For orders 7, 8 and 9
we have re-calculated using exactly the same case-splits described in this paper.
Again, the computed totals match those in the literature for order 7 [17], 8 [30]
and 9 [7]. These checks increase our confidence that (a) there are no systematic
errors in our splitting of the problem into smaller instances, and (b) our code
for identifying symmetries and solving CSPs is correct.

5 Conclusions

Counting semigroups up to equivalence is not easy, being in some sense near
the worst point of the combinatoric tradeoff between counting by reasoning and
counting by search. At one end of the scale, the number of all distinct 10 × 10
multiplication tables is trivial to derive: 100 entries each having one of 10 values
gives 10100 solutions. This triviality is due to the complete lack of structure. As
an example from the other end, finite groups are relatively easy to search for due
to their higher level of structure, and there are far fewer of them. Semigroups
occupy an intermediate zone, having a small amount of exploitable structure
and a large number of solutions.

For many algebraic structures we break symmetries in order to deal with the
combinatorial explosion in the number of trivially distinct objects. However for
semigroups, the breaking of symmetries – which grow factorially with increasing
order – still leaves a super-exponential growth in the number of non-equivalent
solutions. The formula for finite semigroups that are nilpotent of degree three
gives the vast majority of solutions, but, again, the remainder to be found by
search grows super-exponentially as order increases.

It is relatively unusual for Constraint Satisfaction modelling and technology
to produce new results in Mathematics. The only examples that we are aware
of are new instances of graceful graphs [27] and the monoids of order 10 [7].
Finding the number of semigroups of order 10 has involved advances in both
Constraint Satisfaction and abstract algebra. The mathematical constructions
described in this paper rule out more than half the search needed and without
the enumeration formula for nilpotent of degree 3 solutions the problem is ef-
fectively intractable using any known approach. Moreover, both the Constraint
Satisfaction technology and the Mathematics are vital – semigroups 10 cannot
be solved by researchers from either discipline alone.
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sidade de Lisboa, financed by FCT and FEDER. TWK is supported by UK
EPSRC grant EP/H004092/1. LK is supported by a SICSA studentship and an
EPSRC fellowship.



898 A. Distler et al.

References

1. Amazon Elastic Compute Cloud, Amazon EC2 (2008),
http://aws.amazon.com/ec2/

2. Bilous, R.T., Van Rees, G.H.J.: An enumeration of binary self-dual codes of length
32. Des. Codes Cryptography 26(1-3), 61–86 (2002),
http://dx.doi.org/10.1023/A:1016544907275

3. Cohen, D., Jeavons, P., Jefferson, C., Petrie, K.E., Smith, B.M.: Symmetry Defini-
tions for Constraint Satisfaction Problems. In: van Beek, P. (ed.) CP 2005. LNCS,
vol. 3709, pp. 17–31. Springer, Heidelberg (2005)

4. Crawford, J.M., Ginsberg, M.L., Luks, E.M., Roy, A.: Symmetry-breaking predi-
cates for search problems. In: Aiello, L.C., Doyle, J., Shapiro, S. (eds.) KR 1996:
Principles of Knowledge Representation and Reasoning, pp. 148–159. Morgan
Kaufmann, San Francisco (1996)

5. Distler, A.: Classification and Enumeration of Finite Semigroups. Shaker Verlag,
Aachen (2010), also PhD thesis, University of St Andrews (2010),
http://hdl.handle.net/10023/945

6. Distler, A., Kelsey, T.: The Monoids of Order Eight and Nine. In: Autex-
ier, S., Campbell, J., Rubio, J., Sorge, V., Suzuki, M., Wiedijk, F. (eds.)
AISC/Calculemus/MKM 2008. LNCS (LNAI), vol. 5144, pp. 61–76. Springer, Hei-
delberg (2008)

7. Distler, A., Kelsey, T.: The monoids of orders eight, nine & ten. Ann. Math. Artif.
Intell. 56(1), 3–21 (2009)

8. Distler, A., Mitchell, J.D.: The number of nilpotent semigroups of degree 3. Elec-
tron. J. Combin. 19(2), Research Paper 51 (2012)

9. Forsythe, G.E.: SWAC computes 126 distinct semigroups of order 4. Proc. Amer.
Math. Soc. 6, 443–447 (1955)

10. Frisch, A.M., Hnich, B., Kiziltan, Z., Miguel, I., Walsh, T.: Propagation algorithms
for lexicographic ordering constraints. Artificial Intelligence 170, 834 (2006)

11. The GAP Group, GAP – Groups, Algorithms, and Programming, Version 4.4.12
(2008), http://www.gap-system.org

12. Gecode: Generic constraint development environment, http://www.gecode.org/

13. Gent, I.P., Jefferson, C., Miguel, I.: Minion: A fast scalable constraint solver. In:
Brewka, G., Coradeschi, S., Perini, A., Traverso, P. (eds.) The European Conference
on Artificial Intelligence 2006 (ECAI 2006), pp. 98–102. IOS Press (2006)

14. Gent, I.P., Jefferson, C., Miguel, I.: Watched Literals for Constraint Propagation in
Minion. In: Benhamou, F. (ed.) CP 2006. LNCS, vol. 4204, pp. 182–197. Springer,
Heidelberg (2006)

15. Howie, J.M.: Fundamentals of semigroup theory, London Mathematical Society
Monographs. New Series, vol. 12. The Clarendon Press, Oxford University Press,
New York (1995), Oxford Science Publications

16. Jefferson, C.: Quicklex - a case study in implementing constraints with dynamic
triggers. In: Proceedings of the ERCIM Workshop on Constraint Solving and Con-
straint Logic Programming, CSCLP 2011 (2011)

17. Jürgensen, H., Wick, P.: Die Halbgruppen der Ordnungen ≤ 7. Semigroup Fo-
rum 14(1), 69–79 (1977)

18. Katritzky, A., Hall, C., El-Gendy, B., Draghici, B.: Tautomerism in drug discovery.
Journal of Computer-Aided Molecular Design 24, 475–484 (2010), http://
dx.doi.org/10.1007/s10822-010-9359-z , doi:10.1007/s10822-010-9359-z

http://aws.amazon.com/ec2/
http://dx.doi.org/10.1023/A:1016544907275
http://hdl.handle.net/10023/945
http://www.gap-system.org
http://www.gecode.org/
http://dx.doi.org/10.1007/s10822-010-9359-z
http://dx.doi.org/10.1007/s10822-010-9359-z


The Semigroups of Order 10 899

19. Klee Jr., V.L.: The November meeting in Los Angeles. Bull. Amer. Math.
Soc. 62(1), 13–23 (1956),
http://dx.doi.org/10.1090/S0002-9904-1956-09973-2

20. Kotthoff, L., Moore, N.C.: Distributed solving through model splitting. In: 3rd
Workshop on Techniques for Implementing Constraint Programming Systems
(TRICS), pp. 26–34 (2010)

21. Kreher, D., Stinson, D.: Combinatorial Algorithms: Generation, Enumeration, and
Search. CRC Press (1998)

22. Lecoutre, C., Sais, L., Tabary, S., Vidal, V.: Nogood recording from restarts. In:
Proceedings of the 20th International Joint Conference on Artifical Intelligence,
pp. 131–136 (2007)

23. McKay, B.D.: Transitive graphs with fewer than twenty vertices. Math.
Comp. 33(147), 1101–1121 (1979), contains microfiche supplement

24. McKay, B.D., Royle, G.F.: The transitive graphs with at most 26 vertices. Ars
Combin. 30, 161–176 (1990)

25. Milletti, F., Storchi, L., Sforna, G., Cross, S., Cruciani, G.: Tautomer enu-
meration and stability prediction for virtual screening on large chemical
databases. Journal of Chemical Information and Modeling 49(1), 68–75 (2009),
http://pubs.acs.org/doi/abs/10.1021/ci800340j

26. Motzkin, T.S., Selfridge, J.L.: Semigroups of order five. Presented in [19] (1955)
27. Petrie, K.E., Smith, B.M.: Symmetry Breaking in Graceful Graphs. In: Rossi, F.

(ed.) CP 2003. LNCS, vol. 2833, pp. 930–934. Springer, Heidelberg (2003)
28. Plemmons, R.J.: There are 15973 semigroups of order 6. Math. Algorithms 2, 2–17

(1967)
29. Rossi, F., van Beek, P., Walsh, T.: Handbook of Constraint Programming (Foun-

dations of Artificial Intelligence). Elsevier Science Inc., New York (2006)
30. Satoh, S., Yama, K., Tokizawa, M.: Semigroups of order 8. Semigroup Forum 49(1),

7–29 (1994)
31. Thain, D., Tannenbaum, T., Livny, M.: Distributed computing in practice: The

Condor experience. Concurrency – Practice and Experience 17(2-4), 323–356 (2005)
32. Yamanaka, K., Otachi, Y., Nakano, S.-I.: Efficient Enumeration of Ordered

Trees with k Leaves (Extended Abstract). In: Das, S., Uehara, R. (eds.)
WALCOM 2009. LNCS, vol. 5431, pp. 141–150. Springer, Heidelberg (2009),
http://dx.doi.org/10.1007/978-3-642-00202-1_13

http://dx.doi.org/10.1090/S0002-9904-1956-09973-2
http://pubs.acs.org/doi/abs/10.1021/ci800340j
http://dx.doi.org/10.1007/978-3-642-00202-1_13


Exploring Chemistry Using SMT

Rolf Fagerberg1, Christoph Flamm2, Daniel Merkle1, and Philipp Peters1

1 Department of Mathematics and Computer Science,
University of Southern Denmark

{daniel,phpeters,rolf}@imada.sdu.dk
2 Institute for Theoretical Chemistry, University of Vienna, Austria

xtof@tbi.univie.ac.at

Abstract. How to synthesize molecules is a fundamental and well stud-
ied problem in chemistry. However, computer aided methods are still
under-utilized in chemical synthesis planning. Given a specific chemistry
(a set of chemical reactions), and a specified overall chemical mechanism,
a number of exploratory questions are of interest to a chemist. Examples
include: what products are obtainable, how to find a minimal number of
reactions to synthesize a certain chemical compound, and how to map
a specific chemistry to a mechanism. We present a Constraint Program-
ming based approach to these problems and employ the expressive power
of Satisfiability Modulo Theory (SMT) solvers. We show results for an
analysis of the Pentose Phosphate Pathway and the Biosynthesis of 3-
Hydroxypropanoate. The main novelty of the paper lies in the usage of
SMT for expressing search problems in chemistry, and in the generality
of its resulting computer aided method for synthesis planning.

1 Introduction

The rigorous study of the properties of naturally occurring molecules requires
their chemical synthesis from simpler precursor compounds. Therefore total syn-
thesis of natural products is one of the fundamental challenges of organic chem-
istry. Chemical synthesis involves multistep synthetic sequences of elementary
reactions. An elementary reaction transforms a set of chemical compounds (re-
actants) in a single step into a new set of chemical compounds (products) which
are structurally different from the reactants. The step by step sequence of ele-
mentary reactions accompanying overall chemical change is denoted as reaction
mechanism.

Finding a suitable sequence of elementary reactions leading from simple build-
ing blocks to a target molecule is in organic chemistry commonly referred to as
the synthesis planning problem. Synthesis planning is a combinatorial complex
problem and several heuristic approaches have been suggested [20] to attack
this problem. Among synthetic chemists the retrosynthetic analysis [5] is one of
the most popular approaches. This strategy systematically simplifies the target
molecule by repeated bond disconnections in retrosynthetic direction, leading
to progressively smaller precursors until recognized starting material emerges.
Heuristic criteria are used to rank competing routes. Several computer programs
are available implementing this approach (for a recent review see [4]).

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 900–915, 2012.
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With the advent of Synthetic Biology and Systems Chemistry the need for
rational design of molecular systems with pre-defined structural and dynami-
cal properties has been shifted into the focus of research. Over the last century
mathematical prototype models for a great variety of chemical and biological
systems with interesting nonlinear dynamic behaviour such as oscillation have
been collected and mathematically analysed. The translation of the mathemat-
ical formalism back into real world chemical or biological entities, i.e., finding
an instantiation of such abstract mechanisms in real chemical molecules (re-
quired for the rational design of de-novo molecular systems), is still an unsolved
problem. The problem can be rephrased for chemical reaction systems in the
following way: finding a set of compatible molecules that react according to a
reaction mechanism which was translated from an abstract mathematical proto-
type model. Of course the solution of this inverse problem is usually not unique,
and crucially depends on information that can be provided in a declarative man-
ner via constraints. An example of this is the chosen chemistry, i.e. molecules
and reactions that can be employed for solving the underlying problem.

Note that the declarative approach allows for many different levels of model-
ing, with varying degrees of realism. In this paper, we propose a post-processing
step applied to the (possibly intentionally underspecified) declarative solution,
to extract real-world chemical solutions.

This paper introduces to our knowledge for the first time a Satisfiability Mod-
ulo Theories (SMT) based approach to the problem of chemical synthesis. In ad-
dition to the standard product-oriented methods usually employed, our approach
covers a significantly wider collection of chemical questions. Satisfiability solvers
are used predominantly on computer science related problems, but they have
also been used to tackle chemically or biologically relevant topics. In [13] “Syn-
thesizing Biological Theories” were introduced in order to construct high-level
theories and models of biological systems. In [1] constraint logic programming
was used for chemical process synthesis in order to design so-called Heat Ex-
changer Networks (which is very different from compound synthesis as it will be
discussed in this paper).

This paper is organized as follows. In Section 2, we describe how we model
chemistry. In Section 3, we describe the chemical search space, and the con-
straints on it which the user may impose. In Section 4, we focus on the SMT-
formulation, and in Section 5, we explain our post-processing. Finally, we in
Section 6 present tests of our approach on several instances from real-world
chemistry.

2 Modeling Chemistry

2.1 The Reaction Mechanism

When modeling a chemical synthesis, it is necessary to define the underlying
mechanism, i.e., the molecules involved and the chemical reactions specifying
how they are transformed. For our purposes, a sufficient modeling of an ele-
mentary reaction is a change of at most 2 reactant molecules into at most 2
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product molecules. Almost all real-world elementary chemical reactions can be
viewed this way, if necessary by splitting up reactions with a larger number of
participating molecules. Such elementary reactions fall into four sub-categories
with different numbers of participating molecules: isomerization (1-to-1), merg-
ing (2-to-1), splitting (1-to-2), and transfer (2-to-2).

A reaction mechanism is a combination of elementary reactions. It defines
how many and which molecules react in each of these single reactions. Chemists
usually denote the elementary reactions of the reaction mechanism as follows:

m(A+B → C +D),

where A,B,C,D denote the molecules and m denote the multiplicity of the
reaction in the mechanism, i.e. how many times the reaction happens.

In more formal terms, a reaction mechanism is a directed multi-hypergraph
G(V,E). Each vertex v ∈ V represents a molecule. The directed hyperedges E
represents the elementary reactions in the mechanism: each hyperedge e ∈ E is
a pair (e−, e+) of multisets e−, e+ ⊆ V of molecules, denoting the reactants and
products of the chemical reaction [2], and coefficient me represents the multi-
plicity of the hyperedge. Thus, the reaction m(A + B → C + D) is represented
by the hyperedge ({A,B}, {C,D}) with multiplicity m.

The balance bal(v) of molecule v ∈ V in a reaction mechanism is defined as
an integer number indicating its net production or consumption over the entire
synthesis:

bal(v) =
∑
e∈E

me(1e+(v) − 1e−(v)), (1)

where 1α is the multiplicity function on the multiset α. If bal(v) < 0, v is a
reactant of the overall synthesis. If bal(v) > 0, v ∈ V is an end product. If
bal(v) = 0, either molecule v does not take part in the synthesis, or is produced
and consumed in equal amount during the synthesis.

A related concept is the overall reaction of a reaction mechanism. It is de-
fined by summing up the two sides of all reactions (including multiplicities) in
the mechanism, cancelling out equal amounts of identical molecules appearing
on both sides. Thus, the left hand side of the overall reaction is given by the
molecules with negative balance, and the right hand side by the molecules with
positive balance.

2.2 The Molecules

In the large field of organic chemistry, the properties of carbon based molecules
are studied. Most properties of such molecules are determined by functional
groups attached to a backbone of carbon atoms. Functional groups are reactive
subparts of molecules and define the characteristic physical and chemical prop-
erties of families of organic compounds [15]. In Fig. 2 and Fig. 6 some examples
are given. Fig. 1 illustrates how a chemical reaction changes the occurrences of
functional groups by transferring atoms from the first to the second molecule,
and opening the ring of the second molecule. The removed groups are marked
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Fig. 1. The chemical reaction of D-xylulose 5-phosphate and D-ribose 5-phosphate
to D-glyceraldehyde 3-phosphate and sedoheptulose 7-phosphate. The dashed-marked
functional groups on the left side are removed during the reaction, the dotted groups
on the right side are created. Non-participating groups are left black. The vectors of
functional groups correlate with Fig. 2. For clarity, the phosphate group is substituted
by “P”.

dashed, the appearing groups are drawn dotted. Note that the number of un-
touched functional groups (black) in the products does not change. Line segment
ends and junctions without annotations signify carbon atoms. In the example
each of the reactants has one phosphate group, hence each product has a phos-
phate group.

In this paper, we model each molecule by a vector of functional groups. Posi-
tion i in molecule A’s vector provides the number of occurrences of the functional
group xi in A. The same vector is used for all molecules, i.e., there is one global
set of functional groups. This set of functional groups is determined by the user,
based on the chemistry, i.e., on what functional groups are deemed relevant to
model for the molecules and reactions considered. Once this choice has been
made, the functional groups are in our modeling simply positions in a vector.
The length of that vector is the number of functional groups modeled, and the
mapping between positions in vector and functional groups is arbitrary, but
fixed.

This vector representation neglects the spatial structure of a molecule, i.e.,
only the number of occurrences of a functional group is noted, not its position(s)
in the molecule. A chemical reaction is deemed feasible if its participating func-
tional groups are present, irrespectively of whether these appear in the positions
necessary for the reaction to take place. This implies that there may not be a
real-world chemically valid equivalent to our vector-based reaction mechanism.
Note that precise modeling of the chemical implications of the spatial structure
of molecules is a hard problem in any formalism, with SMT being no exception.
However, in Section 5 we provide a post-processing method which will allow us
to filter our set of vector-based reaction mechanism, and retain only chemically
viable solutions.

2.3 The Elementary Reactions

An elementary reaction can be defined formally in many ways in artificial chem-
istry [7], e.g. in a topological way or as a graph rewrite rule [3]. We here model
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Fig. 2. The utilized functional groups in the order corresponding to their position in
the molecule’s vectors for modeling the reaction in Fig. 1 and the mechanism in Sec. 6.1

an elementary reaction by its change of the number of occurrences of the func-
tional groups of the reactants, i.e., its change of their vector representations. We
call such a specified change of vectors a rule. In addition, a rule specifies pre-
conditions which must hold for the reactants vector representations. Trivially,
a specific functional group has to appear in a reactant when a chemical reac-
tion reduces the number of this functional group. However, in chemistry, it may
also be necessary that a specific other functional group appears in a reactant
for the reaction to take place, and we allow this to be specified, too. This is
for each reactant in a reaction expressed by a vector, whose entries state the
minimum number of each functional group which is required to be present for
the reaction to take place. A concrete example of a rule appears at the start of
Section 4.3.

3 Exploring Chemistry

Our overall goal is a system allowing chemists to explore questions of the fol-
lowing general format: can a subset of a given base set of reactions fit together
to form a reaction mechanism fulfilling some given constraints? In Section 2.3,
we defined rules (as preconditions and change vectors on a predefined set of
functional groups), which is how the user will specify the base set of reactions.

In this section, we describe how reaction mechanisms are modeled in our
system, how the system attempts to map rules to this, and the multiple ways
the user can specify constraints on the reaction mechanism.

We note that our basic modeling of a reaction mechanism is very general. Our
philosophy is to not limit beforehand what types of problems the chemist can
tackle, while at the same time supplying a large collection of possibilities for ex-
pressing constraints on the reaction mechanism. These possibilities the user can
utilize to adjust and narrow the search space in each concrete chemical setting,
based on preferences, available knowledge, goal of the investigation, and new in-
formation learned during the exploration. Two concrete investigative approaches
are described in Section 3.3.

3.1 Search Space

Rule Mapping. As defined above, a reaction mechanism is a multi-hypergraph
with a vertex set V of molecules and an edge set E of reactions. In the search
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phase, each molecule in V is considered a vector of integer variables (namely, a
counter for each functional group in the modeling), and the task of the system is
to find values for these variables compatible with a subset of the rules supplied
by the user. This means that for each edge, there must be a rule assigned to it for
which the values of the variables in the nodes of the edges fulfil the constraints
(change in vectors, preconditions of reactants) of that rule. We call such an
assignment of rules to edges a rule mapping.

Thus, finding a solution to the specified chemical search problem means find-
ing a rule mapping, and a set of values for the variables in the nodes, com-
patible with each other, as well as with any further constraints on the reaction
mechanism specified via the methods described in Section 3.2. The task of the
SMT-solver in our system is to find such a solution.

In the remainder of the paper, we will when needed distinguish between a
reaction mechanism with nodes considered as variables (as described above) and
a reaction mechanism constrained by requiring nodes to be specific molecules
(either in the vector representation or real molecules) by using the terms abstract
reaction mechanism and concrete reaction mechanism, respectively.

In our most general setup, we consider a mechanism of n 2-to-2 reactions
(hence with 4n vector-valued variables representing the molecules), and m rules.
No constraints to the structure of the mechanism are made, and each rule can
be mapped onto every reaction (including e.g. a rule with one reactant and
one product being mapped to a 2-to-2 reaction, in which case the two unused
variables in the reaction mechanism are implicitly defined as null vectors).

Note that a rule mapping can be done in different ways: Consider a specific
2-to-2 rule, which is mapped to a reaction A + B → C + D. The rules will be
defined by two precondition (p1 and p2) and two change vectors (δ1 and δ2) for
the two reactants. When mapping the rule to the reaction, four possibilities exist
depending on whether p1 and δ1 is taken as the A → C, A → D, B → C, or
B → D change (with p2 and δ2 in all cases giving the change for the remaining
part of the reaction).

Equivalence Relation. In our most general setup, the system is free to identify
different node variables when looking for a solution. Then part of the output will
be an equivalence relation id : V ×V which is used in order to define the identity
of two variables in a reaction mechanism. An equivalence relation id on molecules
implies:

∀v, w ∈ V : (v, w) ∈ id⇒ ∀xp ∈ functional groups : v(xp) = w(xp), (2)

where v(·) denotes the number of occurrences of xp in v. I.e., defining two vari-
ables to refer to the same molecule implies that occurrences of subgroups are
identical.

Multiplicities. Multiplicities of single reactions in the mechanism denote how
often a reaction takes place. The overall consumption and production of molecules
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m1 (A + B → C + D) m1 (A + B → C + D)
⇒

m2 (E + F → G + H) m2 (C + D → H)

Fig. 3. A general reaction mechanism (left side) without constrained equivalence
classes. A predefined equivalence relation {(C,E), (D,F )} leads to the reaction mech-
anism on the right side; G is supposed to be an empty molecule.

is defined by the sum of all produced occurrences minus the sum of all consumed
occurrences, including the multiplicities of reactions. To provide the largest gen-
erality, in our model the multiplicities do not have to be specified. They are also
part of the solution to be found.

3.2 Constraining the Search Space

To answer different chemical questions and to incorporate previous chemical
knowledge, our system allows for the specification by the user of a number of
additional constraints, which we now present.

Mechanism Specification. By having a predefined equivalence relation id, a
generic reaction mechanism can be constrained by specifying predefined equiva-
lence classes of identical molecules. Figure 3 gives an example: On the left side
a short generic reaction mechanism of two reactions is shown. Using the prede-
fined equivalence relation {(C,E), (D,F )} leads to the reaction mechanism on
the right side. Molecules which do not take part (in the example molecule G) in
a reaction are left out.

The pre-definition of equivalence classes implies that rules must now map ex-
actly onto the reactions in terms of number of participating compounds. E.g.,
in contrast to the case where the equivalence relation is not predefined, a rule
mapping of a 2-to-1 rule to a 2-to-2 reaction is not allowed. From a chemical per-
spective, such predefined identities imply an already known reaction mechanism
and is an instance of the Inverse Reaction Mechanism Problem (see below).

The number n of reactions is always specified in our setup. If the user wants to
e.g. search for a minimal n for which solutions exist, several runs with differing
value of n can be done.

Balance and Overall Reaction. Another constraint for the reaction mech-
anism can be set via the balance of molecules. As mentioned in Section 2, for
each molecule a specified balance bal(v), v ∈ V for the whole mechanism holds.
Especially in the product-oriented approach it makes sense to specify a desired
amount of the product by a positive balance, and an amount of reactants by a
negative balance. If it is assumed that there are no side products in a synthesis
produced, bal(v) = 0 can be set for all other molecules. (However, any so-called
food and waste molecules, which provide energy, like Adenosine triphosphate
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(ATP), or can be consumed and produced in infinite amounts, like H2O, should
have their balance unconstrained.)

Multiplicities. In the most generic approach, the reaction mechanism and the
multiplicities me of reactions are not specified in advance. But if it makes chem-
ical sense to restrict the multiplicities, this of course can be specified. This could
be done e.g. to prevent the solver to add chemically implausible high frequen-
cies of single reactions to the solution. Note that balances and multiplicities are
linked by Eq. (1). Only solutions fulfilling this will be produced.

Molecule Size. Also the number of functional groups, or the number of a
specific functional group in a molecule can be restricted. This can be employed
in order to find a solution using a minimum necessary (or at least a small)
number of functional groups for a desired reaction mechanism. Like a constraint
on the multiplicities, a restriction on the molecule size may be used to prevent
solutions with (chemically) unrealistic numbers.

3.3 Product-Oriented Exploration vs. IRMP

This generic approach introduced above is used in order to pose and answer
different chemical questions. We distinguish two major lines of questions:

In a product-oriented exploration of chemistry, the properties of a desired
product are known (in terms of functional groups or even as specific molecules).
This knowledge serves as constraints to the molecule’s vectors defining the num-
ber of occurrences of functional groups. This corresponds to a classical question
of how to synthesize a specific compound based on a given set of chemical re-
actions. Based on existing chemical knowledge, a suggestion for the abstract
reaction mechanism (including the equivalence relation for its molecules) for the
synthesis may actually be known, or, more likely, it may be unknown.

A new approach for synthesis planning, and even more importantly, for un-
derstanding chemical reaction patterns, is what we define in this paper as the
Inverse Reaction Mechanism Problem (IRMP): In the IRMP it is assumed that
an underlying reaction mechanism of a synthesis is known. Then, it is investi-
gated if for the same abstract mechanism a different set of elementary chemical
reactions (rules) can be mapped to it (potentially generating different molecules).
In our model this corresponds to finding rule mappings and multiplicities, (but
not equivalence classes of identical molecules, as this is assumed to be known),
based on set of elementary chemical reactions different from the ones originally
participating in the reaction mechanism.

4 The SMT-Implementation

We have implemented the approach delineated above using SMT. In this sec-
tion, we present central parts of this implementation. The language used is
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SMT-LIB [18] and the SMT-Solver is Microsoft’s Z3 [6]. Our implementation
creates an SMT program, based on input specification files that define precon-
ditions/changes for the rules, the predefined balances, and the equivalence con-
straints. The auto-generated program is then handed over to the SMT solver.

4.1 Declarations

A subset of the most important data types and functions will be defined here. For
concreteness, we as example use the second reaction from Fig. 4, representing
the chemical reaction from Fig. 1. The capital letters A,C,D,E constitute the
type MOL representing molecules, the lowercase letters a,b,c,d,e,f constitute
the type SUB of functional groups, and the mechanism’s reactions REACT are
numbered from 1 to n.

(declare-datatypes () ((MOL A C D E)))

(declare-datatypes () ((SUB a b c d e f)))

(declare-datatypes () ((REACT react1 react2 ... reactn)))

The function NrOfGroups provides a non-negative number of occurrences of each
functional group for each molecule. Due to simplicity of summing up balances
later, stoichiometric coefficients STOI for the molecules in each reaction are
defined. In the notation of chemistry this means that STOI for a reactant is
the negatively signed value of the multiplicity of the reaction, whereas it is
the same but positively signed value for each product. The equivalence relation
is implemented as a Boolean matrix ID and provides the identity of molecules.
PRODUCT and REACTANT functions provide Boolean values and define if a molecule
should be a product or reactant in the whole reaction mechanism.

(declare-fun NrOfGroups (MOL SUB) Int)

(declare-fun STOI (REACT MOL) Int)

(declare-fun ID (MOL MOL) Bool)

(declare-fun REACTANT (MOL) Bool)

(declare-fun PRODUCT (MOL) Bool)

4.2 Equivalence Relation

Additional to the properties of the equivalence relation (reflexivity, symmetry,
transitivity) for the equivalence relation id, an implication has been imple-
mented. Two molecules being in the same class implies the same number of
occurrences for all functional groups (cmp. Eqn. 2).

(assert (forall ((mol MOL)(mol2 MOL))

(=> (=(ID mol mol2) true)

(forall ((sub SUB))

(= (NrOrGroups mol sub) (NrOrGroups mol2 sub)) ))))
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4.3 Mapping

In the following, an example of a rule mapping for a 2-to-2 reaction A + C →
D+E will be presented. Picking the second reaction from Fig. 4, we will restrict
the rule mapping to the case where molecule A is changed into molecule D
(implying molecule C will change to E). Assume that the rule mapping is defined
by the change vector (-1,-1,1,-1,0,0) and the precondition vector (1,1,0,1,0,0) for
A, and change vector (1,2,0,0,-1,0) and precondition vector (0,0,0,0,1,0) for C.
This leads to the following implementation:

(assert (and

; stoichiometry constraints:

; (the stoi. coeff. of A needs to be the negative of D, etc.)

(< (STOI react1 A) 0)

(= (STOI react1 A) (STOI react1 C))

(= (STOI react1 A) (- (STOI react1 D)))

(= (STOI react1 D) (STOI react1 E))

(or (and

;preconditions

(>= (NrOrGroups A a) 1) (>= (NrOrGroups A b) 1)

(>= (NrOrGroups A d) 1) (>= (NrOrGroups C e) 1)

;changes made to A, which results in D

(= (NrOrGroups D a) (- (NrOrGroups A a) 1))

(= (NrOrGroups D b) (- (NrOrGroups A b) 1))

(= (NrOrGroups D c) (+ (NrOrGroups A c) 1))

(= (NrOrGroups D d) (- (NrOrGroups A d) 1))

(= (NrOrGroups D e) (NrOrGroups A e))

(= (NrOrGroups D f) (NrOrGroups A f))

;changes made to C, which results in E

(= (NrOrGroups E a) (+ (NrOrGroups C a) 1))

(= (NrOrGroups E b) (+ (NrOrGroups C b) 2))

(= (NrOrGroups E c) (NrOrGroups C c))

(= (NrOrGroups E d) (NrOrGroups C d))

(= (NrOrGroups E e) (- (NrOrGroups C e) 1))

(= (NrOrGroups E f) (NrOrGroups C f))

))))

4.4 Balance

For all molecules, a balance for the whole mechanism can be defined. In the
following example the balance of a product molecule (i.e. PRODUCT(mol) is true)
shall be greater than zero or equal to a specific positive amount.

∀mol ∈ MOL : PRODUCT(mol)⇒
n∑

r=1

STOI(r,mol) > 0
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The SMT code implementing this constraint is:

; balance for product should be > 0, symmetric for reactant

(assert(forall(mol MOL)

(=> (= (PRODUCT mol) true)

(> (+(STOI react1 mol)(STOI react2 mol)

. . .

(STOI reactn mol)) 0))))

The negative amount for the reactant can be constrained similarly, as well as
the balance of value 0 for all other non-product or non-reactant molecules.

5 Post-processing

The solution output by the SMT-solver contains a rule mapping and a set of
vector values, and is thus expressed in the vector representation of molecules.
As noted earlier, this representation neglects the spatial structure of molecules,
implying that false positives can occur in the sense that some found solutions
may not have corresponding real-world chemical reactions.

In this section, we describe an automated post-processing method which al-
lows us to filter our set of SMT-solutions, and retain only chemically viable
solutions consisting of existing real-world chemical reactions.

The method is based on the existence of large chemical databases of reactions,
such as KEGG [17]. The KEGG database is a biochemical database containing
biochemical pathways and most of the known metabolic pathways. After con-
verting an entry for a reaction in the KEGG database to a form searchable by the
Graph Grammar Library [8,9], we in an automated way search for the appear-
ances of the functional groups. From this, we generate the vector representations
of its participating molecules, and deduce the rule version of that reaction. The
IDs of the participating real-world molecules are stored with the rule. We then
apply a straightforward search algorithm for finding a conversion of the SMT-
generated reaction mechanism from vector representation to a form where nodes
contain the IDs of real-world molecules and where all edges represent a real-
world reaction from the database. This is done by first for each hyperedge e of
the SMT-generated reaction mechanism finding the set Ke of KEGG reactions
whose vector representation is compatible with that of e. Then for some fixed
order e1, e2, . . . of the edges doing a backtracking DFS-type search for an assign-
ment of KEGG reactions to edges for which the implied molecule IDs agree for
all nodes. In details, the search starts by assigning the first reaction in Ke1 to
e1, recording the implied molecule IDs for the nodes of e1, and then advancing
to the next edge. If for an edge ei no reaction in Kei can be found which is
compatible with the molecule IDs implied by the currently assigned reactions
for e1 to ei−1, the search backtracks, and tries the next edge of Kei−1 .

The results of this post-processing may for each SMT-solution provide poten-
tially many reaction mechanisms with real-world chemical reactions and real
molecules, or it may find that none can be given based on the database in ques-
tion. The post-processing may then be repeated with any further solutions from
the SMT-solver.
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6 Results

In this section, we will present results of our SMT-based exploring approach on
chemistry, namely the well studied and well understood Pentose Phosphate Path-
way (PPP) [12] and the industrial important biosynthesis of 3-Hydroxypropanoate
(3HP). As SMT-Solver, Microsoft’s Z3 SMT-Solver was used on an Intel Core2
Duo CPU T7500 @ 2.20GHz with a memory size of 2 GB.

6.1 The Pentose Phosphate Pathway

The PPP can be found in most organisms, including mammals, plants and bacte-
ria such as E. coli. It generates the co-enzyme NADPH, which takes part in many
anabolic reactions as reducing agent, and a sugar with six carbon atoms (here:
fructose 6-phosphate) [16]. Its products are used for the synthesis of nucleotides
and amino acids. The PPP is also an alternative to the glycolysis which converts
glucose into pyruvate and releases highly energetic molecules ATP (adenosine
triphosphate). Our model of the PPP takes as input 6 sugar molecules with 5
carbon atoms (pentoses, here ribulose 5-phosphate) and releases 5 molecules of
fructose 6-phosphate which has 6 carbon atoms.

Product-Oriented Exploration. Starting with a set of reactions, the goal is
to identify an abstract reaction mechanism to create a certain amount of fructose
6-phosphate.

Our instance consists of 7 2-to-2 reactions, where not all molecules have to
appear in the latter abstract reaction mechanism. The multiplicities of reactions
and the equivalence relation id are not restricted, and will be part of the solution.
The properties and amounts of the reactant and the product are known. These
two variables are predefined in the instance, and in addition their balances, too.
The latter is done by the constraints: bal(reactant) = −6 and bal(product) = 5.
Additionally, we specify a water and a phosphate molecule, whose balances are
not restricted. All other molecules appearing in the mechanism should have
balance zero.

For solving this instance, a set of molecules and a set of rules over these
molecules are assumed to be given. These sets can be derived for example from
a database request (as from KEGG). In our case we chose molecules and rules
from the natural appearing PPP and added three additional sugar-molecule
rules (giving 10 rules and 11 molecules in total). For this instance, we chose to
let functional groups correspond to complete molecules. This implies that all
rules remove exactly one “functional group” and add exactly one “functional
group”, namely the complete molecules.

A valid mapping of these rules to the reaction set instantiates a possible
abstract reaction mechanism to synthesize fructose 6-phosphate in 7 reactions.

The auto-generated SMT-Program for this example was solved by Z3 in 128
minutes. Fig. 4 shows a solution of this instance in which the Pentose Phos-
phate Pathway occurs as it can be found in nature. If the equivalence classes of
molecules are specified in advance, the solution is found in less than 10 seconds.
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2× A → C
2× A+ C → D + E
2× D + E → G+H
2× A+G → D +H
1× D → F
1× D + F → I
1× B + I → H + J∑

: 6 · A + B → 5 · H + J

A = C5H11O8P B = H2O C = C5H11O8P
D = C3H7O6P E = C7H15O10P F = C3H7O6P
G = C4H9O7P H = C6H13O9P I = C6H14O12P2

J = H3PO4

Fig. 4. The abstract PPP reaction mechanism as it occurs in nature, found by our
SMT approach. The letters in the mechanism represents the molecules given to the
right. Depicted in bold are ribulose 5-phosphate and fructose 6-phosphate.

Inverse Reaction Mechanism Problem. The solution from the product-
oriented approach provides an abstract reaction mechanism, i.e., the equivalence
classes of identities of the molecules and the multiplicities are now fixed. By
giving this, the IRMP is instantiated and a concrete reaction mechanism can be
sought after. This means that molecules from the abstract mechanism are now
seen as vectors of functional groups and one abstract mechanism can serve as
template for several concrete mechanisms. The result will be highly dependent
on the given set of rules; in this example we focus on finding the PPP. For
testing reasons, the chemistry is chosen in a simple way, it consists of 8 rules
from “sugar chemistry”, based on 6 functional groups. These are shown in Fig. 2
where they are ordered as in the molecule’s vectors. Note that the groups are
not overlapping, they only share carbon atoms. As an example we illustrated a
rule at the start of Section 4.3, where a transketolase (cf. Fig. 1 and second line
of Fig. 4) was modeled, including change and precondition vectors. This 2-to-2
reaction transfers a fragment (a keto group) from one molecule to another.

The SMT-solver provided a solution in less than 2 seconds. The solution could
by the way be seen to be minimal in the total number of occurring functional
groups (using a smaller overall number of functional groups lead to unsatisfi-
ability for the given set of rules), so artificially large molecules seemed to be
avoided. Fig, 5 shows the concrete reaction mechanism with the vectors defining
the number of functional groups in the molecules. Note that the second to last
reaction was modeled here just as a 1-to-1 reaction, because water (B) is always
available, also phosphate (J) serves as waste molecule and can be produced in an
infinite amount. Based on the SMT solution, the post-processing step generates
a known real-world synthesis from the PPP.

6.2 Biosynthesis of 3-Hydroxypropanoate

3-Hydroxypropanoate (3HP) is a high-value organic molecule and is used in nu-
merous reactions. Usually it is organically synthesized, but biosynthetic path-
ways to this product are in high demand [19]. To produce 3HP from pyruvate
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2× (1 2 0 1 0 1) → (0 2 0 1 1 1)
2× (1 2 0 1 0 1) +(0 2 0 1 1 1) → (0 1 1 0 0 1) + (1 4 0 1 0 1)
2× (0 1 1 0 0 1) + (1 4 0 1 0 1) → (0 2 1 0 0 1) + (0 3 0 1 1 1)
2× (1 2 0 1 0 1) + (0 2 1 0 0 1) → (0 1 1 0 0 1) + (0 3 0 1 1 1)
1× (0 1 1 0 0 1) → (1 0 0 1 0 1)
1× (0 1 1 0 0 1) + (1 0 0 1 0 1) → (0 3 0 0 1 2)
1× B + (0 3 0 0 1 2) → (0 3 0 1 1 1) + J

Fig. 5. concrete PPP reaction mechanism with vectors of occurrences of functional
groups (cmp. Fig 2) of molecules as found by the SMT-Solver. Post-processing with
molecules occurring in this solution of PPP leads to the PPP as it occurs in nature.

Fig. 6. The utilized functional groups in the order corresponding to their position in
the molecule’s vectors for the modeling of the biosynthesis of 3HP

(an end product of the glycolysis), biosynthetic pathways have been assembled
[11,14] and additionally one pathway has already been implemented in an indus-
trial setup [21].

The biosynthesis of 3HP was investigated here as an instance of the IRMP,
i.e. an abstract reaction mechanism and the chemistry (a set of rules) are given,
and the solution of this instance identifies possible pathways from pyruvate to
the desired product 3HP. The vectors of the reactant and the product were
predefined. A reaction mechanism of length n, consisting of only 1-to-1 reactions
was used, as shown in Fig. 7. The multiplicities of reactions were set to 1. The
equivalence classes of molecules were specified, and by doing so, a cascading
mechanism A → B → C → . . . was created. In total, 19 chemical 1-to-1 rules
with 10 functional groups were used in order to define the chemistry. These
rules were defined by chemical expertise (details omitted in this paper) as well
as derived by a recent database-supported approach [10].

The concrete reaction mechanisms provided by the SMT-Solver were post-
processed using the KEGG database. Due to space limitation, Fig. 7 shows only
3 of the 27 found pathways from the post-processing. The functional groups
marked dashed disappear in the subsequent reaction, the bold-marked functional
groups are pre-conditional for the reaction to take place. All pathways generated
by [10] could be found.

Additionally, by post-processing a concrete mechanism of length 2, a solu-
tion for the IRMP could be found that does not produce 3HP. I.e., a path-
way was found that employs exactly the same reaction pattern as the synthesis
of 3HP but is based on a different set of molecules. The alternative two-step-
pathway syntheses 2-phospho-D-glycerate from 3-phosphohydroxypyruvate, us-

ing KEGG-notation can be stated as C03232
R01513−−−−−→ C00197

R01518−−−−−→ C00631.
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Fig. 7. Three example pathways for the biosynthesis of 3HP from pyruvate; the vec-
tors underneath are using the functional groups and their order from Fig. 6; reacting
functional groups are drawn dashed; functional groups which are necessary but remain
unchanged are depicted bold

7 Conclusions

We introduced the combination of two rather different fields of research, namely
Satisfiability Modulo Theories (SMT) and theoretical and real-world chemistry.
Defining chemical questions like the synthesis of a specific compound or the
search for pathway patterns formally as instances for SMT solvers allows to
answer a large set of chemically highly relevant but so far unasked questions.
To underline this we introduced and solved the Inverse Reaction Mechanism
Problem (IRMP), which can be used to identify reaction mechanism patterns
via SMT. Solutions to the IRMP might have significant impact on chemical
compound fabrication and can help to understand patterns in chemical reaction
mechanisms. We have shown the applicability of the new approaches on two real-
world chemical setups, namely the analysis of the Pentose Phosphate Pathway
and the biosynthesis of 3-Hydroxypropanoate.
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Abstract. The Set Covering Machine (SCM) is a machine learning algo-
rithm that constructs a conjunction of Boolean functions. This algorithm
is motivated by the minimization of a theoretical bound. However, find-
ing the optimal conjunction according to this bound is a combinatorial
problem. The SCM approximates the solution using a greedy approach.
Even though SCM seems very efficient in practice, it is unknown how it
compares to the optimal solution. To answer this question, we present
a novel pseudo-Boolean optimization model that encodes the minimiza-
tion problem. It is the first time a Constraint Programming approach
addresses the combinatorial problem related to this machine learning al-
gorithm. Using that model and recent pseudo-Boolean solvers, we empir-
ically show that the greedy approach is surprisingly close to the optimal.

1 Introduction

Machine learning [2] studies algorithms that “learn” to perform a task by observ-
ing examples. In the classification framework, a learning algorithm is executed
on a training set which contains examples. Each example is characterized by a
description and a label. A learning algorithm’s goal is to generalize the infor-
mation contained in the training set to build a classifier, i.e. a function that
takes as input an example description, and outputs a label prediction. A good
learning algorithm produces classifiers of low risk, meaning a low probability of
misclassifying a new example that was not used in the learning process.

Among all machine learning theories, Sample Compression [4] studies classi-
fiers that can be expressed by a subset of the training set. This theory allows to
compute bounds on a classifier’s risk based on two main quantities: the size of the
compression set (the number of training examples needed to describe the classi-
fier) and the empirical risk (the proportion of misclassified training examples).
This suggests that a classifier should realize a tradeoff between its complexity,
quantified here by the compression set size, and its accuracy on the training set.

Based on this approach, the Set Covering Machine (SCM) is a learning al-
gorithm motivated by a sample compression risk bound [8]. However, instead of
finding the optimal value of the bound, the SCM algorithm is a greedy approach
that aims to quickly find a good solution near the optimal bound’s value.

In this paper, we address the following question: “How far to the optimal is the
solution returned by the SCM algorithm?”. To answer this question, one needs

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 916–924, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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to design a learning algorithm that directly minimizes the sample compression
bound that inspired the SCM. This task is not a trivial one : unlike many popular
machine learning algorithms that rely on the minimization of a convex function
(as the famous Support Vector Machine [3]), this optimization problem is based
on a combinatorial function. Although Hussain et al. [5] suggested a (convex)
linear program version of the SCM, it remains a heuristic inspired by the bound.
The present paper describes how to use Constraint Programming techniques
to directly minimize the sample compression bound. More precisely, we design
a pseudo-Boolean program that encodes the proper optimization problem, and
finally show that the SCM is surprisingly accurate.

2 Problem Description

The Binary Classification Problem in Machine Learning. An example is
a pair (x, y), where x is a description and y is a label. In this paper, we consider
binary classification, where the description is a vector of n real-valued attributes
(i.e. x ∈ Rn) and the label is a Boolean value (i.e. y ∈ {0, 1}). We say that a
0-labeled example is a negative example and a 1-labeled is a positive example.

A dataset contains several examples coming from the observation of the same
phenomenon. We denote S the training set of m examples used to “learn” this
phenomenon. As the examples are considered to be independently and identically
distributed (iid) following a probability distribution D on Rn × {0, 1}, we have:

S
def
= {(x1, y1), (x2, y2), . . . , (xm, ym)} ∼ Dm .

A classifier receives as input the description of an example and predicts a label.
Thus, a classifier is a function h : Rn → {0, 1} . The risk R(h) of a classifier is the
probability of misclassifying an example generated by the distribution D, and
the empirical risk RS(h) of a classifier is the ratio of errors on its training set.

R(h)
def
= E

(x,y)∼D
I(h(x) �= y) and RS(h)

def
=

1

m

∑
(x,y)∈S

I(h(x) �= y) ,

where I is the indicator function: I(a) = 1 if a is true and I(a) = 0 otherwise.
A learning algorithm receives as input a training set and outputs a classifier.

The challenge of a these algorithms is to generalize the information of the training
set to produce a classifier of low risk. Since the data generating distribution D is
unknown, a common practice to estimate the risk is to calculate the error ratio
on a testing set containing examples that were not used in the training process.

Overview of the Sample Compression Theory. The sample compression
theory, first expressed by Floyd et al. [4], focuses on classifiers that can be
expressed by a subset of the training set.

Consider a classifier obtained by executing a learning algorithm on the training
set S containing m examples. The compression set Si refers to examples of the
training set that are needed to characterize the classifier.
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Si
def
= {(xi1 , yi1), (xi2 , yi2), . . . , (xin , yin)} ⊆ S with 1≤ i1< i2< . . .< in≤ m.

We sometimes use a message string μ that contains additional information1. The
term compressed classifier refers to the classifier obtained solely with the com-
pression set Si and message string μ. Sample compression provides theoretical
guarantees on a compressed classifier by upper-bounding its risk. Typically, those
bounds suggest that a learning algorithm should favour classifiers of low empiri-
cal risk (accuracy) and that are expressed by a few training examples (sparsity).
One can advocate for sparse classifiers because they are easy to understand by
a human being.

The Set Covering Machine. Suggested by Marchand and Shawe-Taylor [8],
the Set Covering Machine (SCM) is a learning algorithm directly motivated by
the sample compression theory. It builds a conjunction or a disjunction of binary
functions that rely on training set data. We focus here on the most studied case
where each binary function is a ball gi,j characterized by two training examples,
a center (xi, yi) ∈ S and a border (xj , yj) ∈ S.

gi,j(x)
def
=

{
yi if ‖xi − x‖ < ‖xi − xj‖
¬yi otherwise,

(1)

where ‖ · ‖ is the Euclidean norm. For simplicity, we omit the case ‖xi − x‖ =
‖xi − xj‖ and consider that a ball correctly classifies its center (gi,j(xi) = yi)
and its border (gi,j(xj) = yj).

We denote HS the set of all possible balls on a particular dataset S, and B the
set of balls selected by the SCM algorithm among HS . Thus, the classification
function related to a conjunction of balls is expressed by:

hB(x)
def
=
∧
g∈B

g(x) . (2)

As the disjunction case is very similar to the conjunction case, we simplify the
following discussion by dealing only with the latter2. Figure 1 illustrates an
example of a classifier obtained by a conjunction of two balls.

The goal of the SCM algorithm is to choose balls among HS to form the
conjunction hB. By specializing the sample-compressed classifier’s risk bound
to the conjunction of balls, Marchand and Sokolova [9] proposed to minimize
the risk bound given by Theorem 1 below. Note that the compression set Si

contains the examples needed to construct the balls of hB. Also, the message
string μ identifies which examples of Si are centers, and points out the border
example associated with each center. In Theorem 1, the variables np and nb

encode the length of the message string μ.

1 See [8] for further details about the message concept in sample compression theory.
2 The disjunction case equations can be recovered by applying De Morgan’s law.
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Fig. 1. On a 2-dimensional dataset of 16 examples, from left to right: a positive ball,
a negative ball, and the conjunction of both balls. Examples in the light blue region
and the red region will be respectively classified positive and negative.

Theorem 1. (Marchand and Sokolova [9]) For any data-generating distribu-
tion D for which we observe a dataset S of m examples, and for each δ ∈ (0, 1]:

Pr
S∼Dm

(
∀B ⊆ HS : R(hB) ≤ ε

(
B
))
≥ 1− δ ,

where:

ε(B) def
= 1−exp

(
−1

m−(|Si|+k)
ln

[(
m

|Si|+k

)
·
(
|Si|+k

k

)
·
(
np

nb

)
· 1

ζ(nb)ζ(|Si|)ζ(k)δ

])
, (3)

and where k is the number of errors that hB does on training set S, np is the
number of positive examples in compression set Si, nb is the number of different

examples used as a border, and ζ(a)
def
= 6

π2 (a+ 1)−2.

This theorem suggests to minimize the expression of ε(B) in order to find a
good balls conjunction. For fixed values of m and δ, this expression tends to
decrease with decreasing values of |Si| and k, whereas nb ≤ np ≤ |Si|. Moreover,
even if the expression of ε(B) contains many terms, we notice that the quantity[(

np

nb

)
· 1
ζ(nb)ζ(|Si|)ζ(k)δ

]
is very small. If we neglect this term, it is easy to see that

minimizing ε(B) boils down to find the minimum of Equation (4), which is the
sum of the compression set size and the number of empirical errors.

F(B) def
= |Si|+ k. (4)

This consideration leads us to the SCM algorithm. We say that a ball belonging
to a conjunction covers an example whenever it classifies it negatively. Note
that a balls conjunction hB negatively classifies an example x if and only if at
least one ball of B covers x. This implies that if one wants to add a new ball to
an existing balls conjunction, he can only change the classification outcome on
uncovered examples. A good strategy for choosing a ball to add to a conjunction
is then to cover as few positive examples as possible to avoid misclassifying them.
This observation underlies the heuristic of the SCM algorithm.

Given a training set S, the SCM algorithm (see Algorithm 1) is a greedy
procedure for selecting a small subset B of all possible balls3 so that a high

3 More precisely, the heuristic function (Line 6 of Algorithm 1) makes it possible to
consider only balls whose borders are defined by positive examples (see [8]).
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Algorithm 1. Scm (dataset S, penalties {p1, . . . , pn}, selection function f)

1: Consider all possible balls: HS ← {gi,j | (xi, ·) ∈ S, (xj , 1) ∈ S, xi �= xj} .
2: Initialize: B∗ ← ∅ .
3: for p ∈ {p1, p2, . . . , pn} do
4: Initialize: N ← {x | (x, 0) ∈ S}, P ← {x | (x, 1) ∈ S} and B ← ∅ .
5: while N �= ∅ do
6: Choose the best ball according to the following heuristic:

g ← argmax
g∈HS

{ ∣∣ {x ∈ N | g(x) = 0}
∣∣ − p ·

∣∣ {x ∈ P | g(x) = 0}
∣∣ } .

7: Add this ball to current conjunction: B ← B ∪ {g} .
8: Clean covered examples: N ←{x∈N | g(x) = 1} , P ←{x∈P | g(x) = 1} .
9: Retain the best conjunction : if f(B) < f(B∗) then B∗ ← B .
10: end while
11: end for
12: return B∗

number of negative examples of S are covered by at least one ball belonging
to B. At each step of the algorithm, the tradeoff between the number of covered
negative examples and the number of covered positive examples is due to a
heuristic (Line 6 of Algorithm 1) that depends on a penalty parameter p ∈ [0,∞).
We initialize the algorithm with a selection of penalty values, allowing it to
create a variety of balls conjunctions. The algorithm returns the best conjunction
according to a model selection function of our choice.

Several model selection functions can be used along with the SCM algorithm.
The function ε given by Equation (3) leads to excellent empirical results. In other
words, by running the algorithm with a variety of penalty parameters, selecting
from all generated balls conjunctions the one with the lowest bound value allows
to obtain a low risk classifier. This method as been shown by Marchand and
Shawe-Taylor [8] to be as good as cross-validation4. It is exceptional for a risk
bound to have such property.

As we explain, the bound relies mainly on the sum |Si|+ k, and our extensive
experiments with the SCM confirms that the simple model selection function F
given by Equation (4) gives equally good results. We are then interested to know
if the SCM algorithm provides a good approximation of this function.

To answer this question, next section presents a pseudo-Boolean optimization
model that directly finds the set B that minimizes the function F .

3 A Pseudo-Boolean Optimization Model

A pseudo-Boolean problem consists of linear inequality constraints with integer
coefficients over binary variables. One can also have a linear objective function.

To solve our machine learning problem with a pseudo-Boolean solver, the
principal challenge is to translate the original problem into this particular form.

4 Cross-validation is a widely used method for estimating reliability of a model, but
substantially increases computational needs (see section 1.3 of [2]).
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The main strategy to achieve this relies on the following observation:

Observation. As the classification function hB is a conjunction (see Equa-
tion (2)), we observe that hB misclassifies a positive example iff a negative ball
covers it. Similarly, hB misclassifies a negative example iff no ball covers it.

Equivalence Rules. Let’s first state two general rules that will be useful to
express the problem with pseudo-Boolean constraints. For any positive integer
n ∈ N∗ and Boolean values α1, . . . , αn, β ∈ {0, 1}, the conjunction and disjunc-
tion of the Boolean values αi can be encoded with these linear inequalities:

α1 ∧ . . . ∧ αn = β ⇔ n− 1 ≥ α1 + . . .+ αn − n · β ≥ 0 , (5)

α1 ∨ . . . ∨ αn = β ⇔ 0 ≥ α1 + . . .+ αn − n · β ≥ 1− n . (6)

Program Variables. Let P
def
= {i | (xi, 1) ∈ S} and N

def
= {i | (xi, 0) ∈ S} be

two disjoint sets, containing indices of positive and negative examples respec-
tively. We define m sets Bi, each containing the indices of the borders that can
be associated to center xi, and m sets Cj , each containing the indices of the
centers that can be associated to border xj . As Marchand and Shawe-Taylor [8],
we only consider balls with positive borders. Thus, for i, j ∈ {1, . . . ,m}, we have:

Bi
def
= {j | j ∈ P, j �= i} and Cj

def
= {i | i ∈ P ∪N, j ∈ Bi} .

In other words, Bk is the set of example indices that can be the border of a ball
centered on xk. Similarly, Ck is the set of example indices that can be the center
of a ball whose border is xk. Necessarily, we have j ∈ Bk ⇐⇒ k ∈ Cj .

Given the above definitions of Bi and Cj , the solver have to determine the
value of Boolean variables si, ri and bi,j described below:

For every i ∈ {1, . . . ,m}:
– si is equal to 1 iff the example xi belongs to the compression set.
– ri is equal to 1 iff the hB misclassifies the example xi.
– For every j ∈ Bi, bi,j is equal to 1 iff the example xi is the center of a ball

and xj if the border of that same ball.

Objective Function. The function to optimize (see Equation (4)) becomes:

min

m∑
i=1

(ri + si) . (7)

Program Constraints. If an example xi is the center of a ball, we want exactly
one example xj to be its border. Also, if xi is not the center of any ball, we don’t
want any example xj to be its border. Those two conditions are encoded by:∑

j∈Bi

bi,j ≤ 1 for i ∈ {1, . . . ,m} . (8)

An example belongs to the compression set iff it is a center or a border. We then
have sk =

[∨
i∈Ck

bi,k
]
∨
[∨

j∈Bk
bk,j
]
. Equivalence rule (6) gives:

1−|Bk∪Ck| ≤ −|Bk∪Ck|·sk+
∑
i∈Ck

bi,k+
∑
j∈Bk

bk,j ≤ 0 for k ∈ {1, . . . ,m} . (9)
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We denote by Di,j the distance between examples xi and xj . Therefore, D is a
square matrix of size m×m. For each example index k ∈ {1, . . . ,m}, let Ek be
the set of all balls that cover (i.e. negatively classify) the example xk:

Ek
def
= {bi,j | i ∈ P, j ∈ Bi, Di,j < Di,k} ∪ {bi,j | i ∈ N, j ∈ Bi, Di,j > Di,k} .

First, suppose that xk is a positive example (thus, k ∈ P ). Then, recall that the
conjunction misclassifies the example xk iff a ball covers it (see “observation”
above). Therefore, rk =

∨
bi,j∈Ek

bi,j . Using Equivalence Rule (6), we obtain:

1− |Ek| ≤ −|Ek|·rk +
∑

bi,j∈Ek

bi,j ≤ 0 for k ∈ P . (10)

Now, suppose that xk is a negative example (thus, k ∈ N). Then, recall that
the conjunction misclassifies xk iff no ball covers it (see “observation” above). We
have rk =

∧
bi,j∈Ek

¬ bi,j . By using Equivalence Rule (5) and α = ¬β ⇔ α = 1− β

(where α, β ∈ {0, 1}), we obtain the following constraints:

0 ≤ −|Ek|·rk +
∑

bi,j∈Ek

(1− bi,j) ≤ |Ek| − 1

⇔ 1 ≤ |Ek|·rk +
∑

bi,j∈Ek

bi,j ≤ |Ek| for k ∈ N . (11)

4 Empirical Results on Natural Data

The optimization problem of minimizing Equation (7) under Constraints (8,
9, 10, 11) gives a new learning algorithm that we call PB-SCM. To evaluate
this new algorithm, we solve several learning problems using three well-known
pseudo-Boolean solvers, PWBO [6], SCIP [1] and BSOLO [7], and compare the
obtained results to the SCM (the greedy approach described by Algorithm 1).

We use the same seven datasets than [8] and [9], which are common benchmark
datasets in the machine learning community. For each dataset, we repeat the
following experimental procedure four times with training set sizes m = |S| of
25, 50, 75 and 100 examples. First, we randomly split the dataset examples in
a training set S of m examples and a testing set T containing all remaining
examples5. Then, we execute the four learning algorithms (SCM algorithm and
PB-SCM with three different solvers) on the same training set S, and compute
the risk on the testing set T .

To obtain SCM results, the algorithm is executed with a set of 41 penalty
values {10a/20 | a = 0, 1, . . . , 40} and the model selection function F given by
Equation (4). The PB-SCM problem is solved with the three different solvers.
For each solver, we fix the time limit to 3600 seconds and keep the solver’s default
values for other parameters. When a solver fails to converge in 3600 seconds, we
consider the best solution so far. Using the solution of the SCM to provide an
initial upper bound to the pseudo-Boolean solvers provided no speed-up.

5 Training sets are smalls because of the extensive computational power needed by
pseudo-Boolean solvers.
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Table 1. Empirical results comparing the objective value F obtained by SCM and
PB-SCM algorithms, the test risk of obtained classifiers and required running time
(“t/o” means that the pseudo-Boolean solver reaches the time limit)

Dataset SCM PB-SCM (pwbo) PB-SCM (scip) PB-SCM (bsolo)
name size F risk time F risk time F risk time F risk time

breastw

25 2 0.046 0.04 2 0.081 0.03 2 0.064 0.71 2 0.046 0.05
50 2 0.047 0.07 2 0.046 0.06 2 0.049 3.7 2 0.047 0.64
75 2 0.044 0.12 2 0.041 0.16 2 0.044 7.4 2 0.044 3.7
100 2 0.046 0.16 2 0.046 0.43 2 0.05 38 2 0.046 20

bupa

25 8 0.403 0.31 7 0.45 0.31 7 0.45 4.1 7 0.419 0.64
50 14 0.431 1.32 12 0.495 589 12 0.495 47 12 0.464 989
75 21 0.404 4.1 21 0.463 t/o 19 0.467 1763 24 0.419 t/o

100 27 0.355 11 32 0.494 t/o 30 0.396 t/o 34 0.367 t/o

credit

25 4 0.202 0.11 4 0.202 0.08 4 0.202 2 4 0.202 0.22
50 6 0.239 0.25 5 0.257 9.3 5 0.209 21 5 0.257 30.1
75 9 0.216 0.61 8 0.266 1920 8 0.263 138 8 0.268 1862
100 12 0.233 1.3 11 0.237 t/o 10 0.242 798 18 0.302 t/o

glass

25 5 0.333 0.11 5 0.261 0.03 5 0.297 12 5 0.261 0.2
50 9 0.265 0.49 8 0.265 10.3 8 0.265 35 8 0.265 28
75 16 0.307 1.5 15 0.273 t/o 15 0.227 736 15 0.227 t/o

100 18 0.222 2.9 17 0.222 t/o 17 0.206 t/o 22 0.19 t/o

haberman

25 5 0.305 0.17 5 0.305 0.03 5 0.305 3.6 5 0.312 0.18
50 10 0.246 0.94 10 0.332 34 10 0.332 30 10 0.246 65
75 15 0.237 2.5 14 0.324 t/o 14 0.324 436 16 0.279 t/o

100 21 0.278 4.5 20 0.289 t/o 20 0.33 t/o 23 0.289 t/o

pima

25 8 0.408 0.33 8 0.381 0.36 8 0.385 4 8 0.381 0.94
50 15 0.312 0.9 13 0.306 2204 13 0.311 37 13 0.306 1985
75 20 0.375 3.8 20 0.342 t/o 19 0.339 2641 24 0.336 t/o

100 25 0.326 7.4 26 0.316 t/o 23 0.338 t/o 30 0.379 t/o

USvotes

25 3 0.112 0.07 3 0.11 0.011 3 0.107 0.21 3 0.12 0.08
50 5 0.14 0.17 4 0.114 0.141 4 0.127 2.4 4 0.127 1.1
75 5 0.119 0.28 3 0.131 0.183 3 0.131 54 3 0.131 33
100 6 0.084 0.35 4 0.146 1.21 4 0.107 100 4 0.137 80

Table 1 shows the obtained results. Of course, except for t/o situations,
the minimal value of the heuristic F is always obtained by solving the PB-
SCM problem. However, it is surprising that the SCM often reaches the same
minimum value. Moreover, the SCM sometimes (quickly) finds a best value of F
when the pseudo-Boolean programs time out, and there is no clear amelioration
of the testing risk when PB-SCM finds a slightly better solution than SCM. We
conclude that the greedy strategy of SCM is particularly effective.

5 Conclusion

We have presented a pseudo-Boolean model that encodes the core idea behind
the combinatorial problem related to the Set Covering Machine. Extensive ex-
periments have been done using three different pseudo-Boolean solvers. For the
first time, empirical results show the effectiveness of the greedy approach of
Marchand and Shawe-Taylor [8] at building SCM of both small compression set
and empirical risk. This is a very surprising result given the simplicity and the
low complexity of the greedy algorithm.
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Abstract. Graphical Games are a succinct representation of multi agent interac-
tions in which each participant interacts with a limited number of other agents.
The model resembles Distributed Constraint Optimization Problems (DCOPs)
including agents, variables, and values (strategies). However, unlike distributed
constraints, local interactions of Graphical Games take the form of small strate-
gic games and the agents are expected to seek a Nash Equilibrium rather than a
cooperative minimal cost joint assignment.

The present paper models graphical games as a Distributed Constraint Satis-
faction Problem with unique k-ary constraints in which each agent is only aware
of its part in the constraint. A proof that a satisfying solution to the resulting
problem is an ε-Nash equilibrium is provided and an Asynchronous Backtrack-
ing algorithm is proposed for solving this distributed problem. The algorithm’s
completeness is proved and its performance is evaluated.

1 Introduction

In a typical Multi Agent setting, agents interact with one another to achieve some goal.
This goal may be a globally defined objective such as the minimization of total cost,
or a collection of personal goals such as maximizing the utility of each agent. In the
latter case, Game Theory predicts that the outcome should be a stable solution – an
equilibrium – from which every agent will not care to deviate. This notion of stability
is a fundamental concept in game theory literature and has been at the focus of work in
the field of Multi Agent Systems.

Graphical Games are a succinct representation of normal form games played over a
graph [8]. It is defined by a graph of agents that explicitly defines relations: if an edge
eij exists than agents ai and aj interact with one another and therefore affect each other
gains. The model exploits the locality of interactions among agents and enables one to
specify payoffs in terms of neighbors rather than in terms of the entire population of
agents. Two distributed algorithms inspired by Bayesian Networks were initially pro-
posed to find an approximate equilibrium of graphical games, NashTree and NashProp

� The research was supported by the Lynn and William Frankel Center for Computer Sciences at
Ben-Gurion University and by the Paul Ivanier Center for Robotics Research and Production
Management.

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 925–940, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



926 A. Grubshtein and A. Meisels

[8,13]. Both rely on an a discretization scheme for the approximation and it is proved
in [13] that NashProp can be used to find an ε-Nash equilibrium on general graph inter-
actions.

The Graphical Games model is closely related to Distributed Constraint Optimiza-
tion Problems (DCOPs) [11]. DCOPs are defined by agents with private variables, a
finite domain of values for each variable, and constraints mapping each joint assign-
ment to a non negative cost. The values that a DCOP agent assigns to its variables are
similar to the choice of strategy made by a Graphical Game agent and the local inter-
actions of the game resembles a constraint. However, despite these similarities the two
models are inherently different. Agents connected by a DCOP constraint share a single
cost value to their joint assignments and have full knowledge of the constraint’s costs
structure. In Graphical Games the agents have a personal valuation to each outcome.
Furthermore, the standard solution of a DCOP is a joint assignment that minimizes the
sum of costs and not necessarily a stable point.

The present paper proposes a model for graphical games as a distributed constraints
problem and a new asynchronous algorithm for finding stable points. The model uses
constraints which are partially known to each participant to represent private valuation
of outcomes [3,7]. First, Asymmetric DCOPs (ADCOPs) [7], an extension of standard
DCOPs, provide a natural representation to game-like interactions. It specifies differ-
ent costs to each agent in a constraint, capturing personal preferences and utilities of
different agents. Next, the Partially Known Constraint (PKC) model [3], focusing on
asymmetric constraint satisfaction is used to align a satisfying solution with an equilib-
rium.

By casting the ADCOP representation of a Graphical Game to an asymmetric satis-
faction problem one can apply constraint reasoning techniques to find an equilibrium
of a multi agent problem. Following NashTree and NashProp [8,13] the present paper
presents a new Asynchronous Nash back Tracking (ANT) algorithm for finding ε-Nash
equilibria. This algorithm is inspired by the well known Asynchronous Back Track-
ing algorithm (ABT) [18,2] and its asymmetric single phase variant [3] (ABT-1-ph).
A proof that a satisfying solution to the revised problem is an ε-Nash equilibrium is
provided.

Similar to other ABT variants, agents in the ANT algorithm exchange messages
specifying their current assignment, Nogood messages and requests for additional com-
munication links (termination messages are not required). However, the ANT algorithm
searches through a high arity, asymmetric, distributed constraint satisfaction problem.
ANT is proven to find a globally satisfying solution to the graphical game problem –
effectively an ε-Nash equilibrium.

One former attempt to apply constraint reasoning techniques to game theoretic equi-
librium search gave up on the inherently distributed nature of graphical games. A cen-
tralized constraint solver is described in [17] where the authors generate very large
domains and complex constraints to represent game like structures. The approach of
[17] assumes that agents are willing to reveal private information to a third party which
carries out the computation. Although this approach is commonly taken when consid-
ering the equilibrium search problem (e.g. [15,4,16,6]) it is not suitable to a distributed
multi agents interaction.
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There were former studies of limited versions of graphical games. Two methods for
finding stable points of graphical games examine the relation between local minima
and pure strategy equilibria [1,10] (which is not guaranteed to exist). However, both
works examine games played on symmetric DCOPs which are a subset of a special
class of games known as potential games and do not extend to general form games.
Another structured interaction is also specified in [5] which attempt to find the “best”
pure strategy equilibrium but is extremely limited to tree based interactions. In contrast
to these works the ANT algorithm (always) finds an ε-Nash equilibrium on general form
graphs and general form games.

The remainder of the paper is organized as follows. Section 2 provides a detailed
description of ADCOPs, graphical normal form games and equilibrium solutions. Next
comes a description of the asymmetric satisfaction problem generated for finding an
ε-Nash equilibrium in Section 3. Section 4 presents the Asynchronous Nash back Track-
ing algorithm (ANT) and its formal properties proof. Section 5 is devoted to experimen-
tal evaluation of ANT but also provides a full description of NashProp’s backtracking
(second) phase. This is, to the best of our knowledge, the first full account of the dis-
tributed backtracking phase of NashProp. Finally, Section 6 concludes the present work
and discusses future directions.

2 Preliminaries

2.1 Asymmetric Distributed Constraints

Asymmetric Distributed Constraint Optimiaztion Problems (ADCOPs) [7] define a con-
straint model in which a cost is specified to each agent in a constraint instead of a single
cost to all constrained agents. Unlike DCOPs, an assignment change which decreases
the cost incurred on one agent in an ADCOP is not guaranteed to decrease the cost
incurred on other agents in the constraint. Roughly speaking one can say that the costs
of asymmetric constraints are “on the agents” (the vertices in the constraint network)
rather than on the “constraints” (edges of the constraint network).

Formally, an ADCOP is a tuple 〈A,X ,D,R〉. Where A is a finite set of agents
a1, a2, ..., an and X is a finite set of variables x1, x2, ..., xm. Each variable is held by
exactly one agent but an agent may hold more than one variable. D is a set of domains
d1, d2, ..., dm, specifying the possible assignment each variable may take. Finally,R is
a set of asymmetric relations (constraints).

A value assignment or simply an assignment is a pair 〈xi, v〉 including a variable xi,
and its value v ∈ di. Following common practice we assume each agent holds exactly
one variable and use the two terms interchangeably. A partial assignment (PA) is a set
of value assignments, in which each variable appears at most once.

A constraint C ∈ R of an Asymmetric DCOP is defined over a subset of the variables
X (C), and maps the joint values assigned to the variables to a vector of non-negative
costs (where the jth entry corresponds to the jth variable in X (C)):

C : Di1 ×Di2 × · · ·Dik → Rk
+
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We say that a constraint is binary if it refers to a partial assignment with exactly two
variables, i.e., k = 2. A binary ADCOP is an ADCOP in which all constraints are
binary.

A complete assignment is a partial assignment that includes all the variables in X
and unless stated otherwise, an optimal solution is a complete assignment of aggregated
minimal cost. In maximization problems, each constraint has utilities instead of costs
and a solution is a complete assignment of maximal aggregated utility.

For consistency, we also define the satisfaction variant of this problem (denoted AD-
CSP). An ADCSP constraint takes the following form:

C : Di1 ×Di2 × · · ·Dik → {0, 1}
k

In this case, constraint C is said to be satisfied by a PA p if p includes value assignments
to all variables of C and if C(p) is a tuple of all 1’s, i.e. all involved agents agree on
its satisfiability. The solution of an ADCSP is a complete assignment which satisfies all
constraints C ∈ R.

2.2 Normal Form Games

A normal form game is a model for multiple interacting parties or agents. These parties
plan their interaction and may act only once (simultaneously). The joint action of all
participants results in an outcome state which is, in general, evaluated differently by the
agents.

More formally, a normal form game includes a finite set of n players (agents) A , a
non empty set S of actions or strategies and a preference ordering over outcomesM.
Specifically, for each agent ai, ui(x) ∈ M maps any joint strategy x = ×ai∈Asi to
a utility (or cost) value. If ui(o1) > ui(o2) then agent ai prefers outcome o1 to o2. In
the remainder of this paper we follow common practice and denote with x−i the joint
action of all agents except for ai.

The most commonly used solution concept for strategic interactions is that of a Nash
Equilibrium [12] defined as a joint assignment x∗ to all agents such that:

∀ai ∈ A : ui(x
∗
−i, x

∗
i ) ≥ ui(x

∗
−i, xi)

If agents can take non deterministic actions, or state a probability distribution over
deterministic strategies as their action than Nash’s classic theorem states that a mixed
strategy Nash Equilibrium always exists (cf. [12,14]).

2.3 Graphical Games

Graphical Games were first described by Kearns et. al in [8]. A graphical game is de-
fined by a pair (G,M) where G is an n players interaction graph andM is the set of
local game matrices mapping joint assignments to agents utilities. The space required
for representing local game matrices is significantly smaller than the standard repre-
sentation: instead of n |s|n values required for the representation of each table uiM,
a Graphical Game requires only n |s|d+1 values (where d is the maximal degree of an
agent). That is, in such games, only neighboring agents affect each other’s utility.
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We denote ai’s set of neighbors by N(i) and adhering to our previous notation use
xN(i) to represent the joint action of ai’s neighbors. It is easy to verify that a Graph-
ical Game defined by a Graph G and local games descriptionM is very similar to an
ADCOP (ADCOPs constraints can provide a slightly more compact representation).

A discretization scheme for computing an approximate equilibrium is presented in
[8]. The approximate equilibrium – ε - Nash equilibrium – is a mixed strategy profile
p∗ such that

∀Ai ∈ A : ui(p
∗
−i, p

∗
i ) + ε ≥ ui(p

∗
−i, pi)

The scheme presented in [8] constrain each agent’s value assignment to a discretized
mixed strategy which is a multiple of some value τ which depends on the agents’ degree
and the desired approximation bound ε. Two search algorithms for finding ε - Nash
equilibrium in graphical games were proposed in [8,13].

3 Nash ADCSP

A simple transformation is defined from a general ADCOP to a Nash Asymmetric Dis-
tributed Constraint Satisfaction Problem (Nash-ADCSP). The resulting problem can
be solved by a distributed constraint satisfaction algorithm capable of handling asym-
metric, non-binary constraints. This section is concluded with a proof that a satisfying
solution to the Nash-ADCSP is an ε-Nash equilibrium.

Given an ADCOP representation of a general multi agent problem, a Nash-ADCSP
with the same set of agents and variables is constructed. Using the discretization scheme
described in [8] the domains of each agent are revised to represent distributions over
values. That is, each agent’s domain is a discretized mixed strategy that is a multiple of
some τ which is defined according to the desired accuracy level ε (cf. [8]).

The new problem includes n = |A| constraints, each associated with exactly one
agent. The arity of constraint Ci associated with agent ai equals ai’s degree + 1. The
set of satisfying assignments (satisfying all agents in the constraint) include all joint
assignments of ai and its neighbors N(i) such that ai’s action yields a maximal gain to
itself. That is, if 〈v, xN(i)〉∈ di ×

∏
k∈N(i) dk is a joint assignment:

Ci(v, xN(i)) =

{
〈1, 1, ..., 1〉 if ui(v, xN(i)) ≥ ui(v

′, xN(i)) ∀v′ ∈ di

〈1, ..., 0, ..., 1〉 otherwise (the zero is associated with ai)

As an example, consider the three agent binary interaction presented in the left hand
side of Figure 1. In this example there are two separate interactions: between a1 and
a2 and between a2 and a3. Following game theory conventions, the agents’ asymmetric
constraints stemming from these interactions are described by two cost bi-matrices.
That is, each entry in the table correspond to a joint action by the row and column
player, where the row player’s evaluation of the joint action is given by the left hand
cost value and the column player’s cost is given by the right hand cost value.

This problem is then cast to a Nash-ADCSP problem (right hand side of Figure 1)
with three new asymmetric constraints C1, C2 and C3. Constraints C1 and C3 are the
binary constraints associated with agents a1 and a3 and can only be satisfied when
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a1

a2

a3

a2

i j

a
1 a 7,2 1,0

b 3,1 5,5

a2

i j

a
3 l 6,7 8,1

m 2,0 1,4

a1

a2

a3

C2

C1 C3

C1:
i j

a 0 1
b 1 0

C3:
i j

l 0 0

m 1 1

C2 (x2 = i):
l m

a 0 1

b 0 1

C2 (x2 = j):
l m

a 1 0

b 1 0

Fig. 1. (left) A simple ADCOP with three agents and two asymmetric constraints. Each agent has
two values in its domain d1 = {a, b} , d2 = {i, j} and d3 = {l, m}. An entry in the constraint
represents the cost of each joint action (i.e. the cost of 〈x1 = a, x2 = i〉 is 7 for a1 and 2 for
a2. (right) The resulting ADCSP with 3 asymmetric satisfaction constraints (C1, C2 and C3) of
which C3 is a trinary constraint. A value of 1 in constraint Ci means that the action corresponding
to the entry is ai’s best response.

a1 and a3 best respond to a2’s action. Constraint C2 is a trinary constraint which is
satisfied whenever a2 best responds the joint action of a1 and a3. For example, a2’s
best response (minimal cost) to the joint action 〈x1 = a, x3 = m〉 is the assignment
〈x2 = i〉 which takes the value of 1 (consistent) in C2.

In this example the assignment 〈x1 = b, x2 = i, x3 = m〉 is a pure strategy Nash
equilibrium (costs are 3, 0 and 2 respectively).It is easy to verify that this joint assign-
ment also satisfies all constraints of the the new Nash-ADCSP problem.

Nash-ADCSP constraints have two noteworthy properties:

1. Constraint Ci’s satisfiability state is determined by agent ai only. Any other agent
in the constraint always evaluates its state as “satisfied” and this in turn implies that
any agent aj ∈ N(i) is ignorant of Ci.

2. Given the joint assignment of all its neighbors, an agent ai can always satisfy its
constraint.

The relation between the satisfaction problem and an equilibrium is supplied by the
following proposition:
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Proposition 1. Let p be a complete assignment to a Nash ADCSP with discretized do-
mains corresponding to an approximation value ε. Then p is a consistent assignment iff
it is an ε-Nash equilibrium of the original problem.

Proof. Necessary: If p is consistent with all constraints then it is easy to see that by
definition each agent best responds to the joint action of all its neighbors. Hence p is
an equilibrium on the τ grid of the discretization scheme and an ε-equilibrium of the
original problem.

Sufficient: Let p be an ε-Nash equilibrium of the original problem where each of
the values taken by the agents exists on the discrete grid (i.e. p ∈

∏
Ai∈ADi). Each

agent in an ε equilibrium must “best-respond” its neighbors joint actions up to some
ε. Therefore, each constraint Ci associated with Ai is mapped to a tuple of all ones
(otherwise the agent can swap its assignment to an alternate one in which its gain is
higher with respect to the joint assignment of its neighbors and p is not an equilibrium)
and all constraints are satisfied. ��

The above proposition also implies that a solution to the constructed Nash ADCSP must
always exist (i.e. the problem is always satisfiable).

4 Asynchronous Nash Backtracking

Asynchronous Nash BackTracking (ANT) is a new variant of ABT [18,2,3,11] search-
ing through the space of the Nash-ADCSP problem. ANT extends the original ABT
and its PKC variant, ABT-1ph, to support asymmetric non-binary satisfaction. It relies
on the agents’ total order to cover the space of all joint assignments when attempting
to satisfy a constraint. That is, if an agent ai’s assignment is not a best response to the
joint assignment of N(i), the lowest priority agent (with respect to the total ordering)
in Ci will change its assignment. If this assignment change remains inconsistent, then a
Nogood is generated and sent to the lowest priority agent from its list of higher priority
neighbors.

ANT’s pseudo code is presented below. It adopts the same notation as that described
in [2,3] and handles Nogoods similarly. For details and in depth discussion, the reader
is addressed to the description provided in [2,3].

Each ANT agent maintains a local copy of the value assignments of which it is aware
(its agentView), a store of Nogoods (ngStore) kept as justification for the removal of val-
ues from the current domain and a boolean variable isLastAgentInConstraint taking the
value TRUE if ai is the lowest priority agent in Ci. The list of lower priority neighbors
is denoted by Γ+.

Similar to other ABT variants, three message types are used ok?, ngd and adl. ok?
messages notify other agents of a new value assignment, ngd messages are used to
request the removal of values and provide an explanation for this request and adl mes-
sages are used to request an additional link of information be generated between two
agents.

An ANT agent begins by assigning itself a value and notifying its neighbors of
this value assignment. The agents then react to messages received from others until
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Asynchronous Nash backTracking - pseudocode
procedure ANT

myV alue← chooseV alue();
send(ok?, neighbors, myV alue);
end← false;
while ¬end do

msg ← getMsg();
switch (msg.type)

case ok? : ProcessInfo(msg);
case ngd : ResolveConflict(msg);
case adl : SetLink(msg);

procedure PROCESSINFO(msg)
updateAgentView(msg.sender ← msg.assignment);
if ¬isConsistent(agentV iew, myV alue) then

if ¬ isLastAgentInConstraint then
ng ← NoGood(agentV iew, cons neighbors);
add(ng.addLhs, self ← myV alue);
send(ngd, ng.rhs, ng);

else
checkAgentView();

procedure RESOLVECONFLICT(msg)
ng ← msg.NoGood;
if coherent(ng, Γ+ ∪ self ) then

addLinks(ng);
ngStore.add(ng);
myV alue← NULL;
checkAgentView();

else if coherent(ng, self ) then
send(ok?, msg.sender, myV alue);

procedure SETLINK(msg)
neighbors.add(msg.sender);
send(ok?, msg.sender, myV alue);

quiescence is reached. When agent ai receives an ok? message it invokes the Process-
Info procedure which first updates its agentView, ngStore and current domain. If the
agentView and ai’s assignment are inconsistent with Ci, the agent attempts to find an
alternative assignment if it is the lowest priority agent in Ci or generate a new Nogood
to the lowest priority agent otherwise. It should be noted that ANT agents consider a
constraint Ci to be inconsistent only if all agents in Ci reported their values and these
variables result in an unsatisfying solution (as described in 2.1).

If ai receives a ngd message, it first verifies that this is a coherent message with
respect to ai and its lower priority neighbors. If it is, and additional links are needed
these are requested. Next, the Nogood is stored and the current assignment is removed
until a consistent revised assignment is found (checkAgentView). If the message is not
coherent but ai’s current assignment is the same as that assumed in the ngd message,
an ok? message is sent to the originator of the message.
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When an adl message is received the agents simply add the originator to the list of
neighbors and notify it of their current assignment.

Asynchronous Nash backTracking - pseudocode, continued
procedure UPDATEAGENTVIEW(assignment)

add(assignment, agentV iew);
for all ng ∈ ngStore do

if ¬ coherent(ng.lhs, agentV iew) then
ngStore.remove(ng);

currentDomain.makeConsistentWith(ngStore);

procedure CHECKAGENTVIEW

if ¬isConsistent(agentV iew, myV alue) then
if (myV alue← chooseValue())==NULL then

backTrack();
else

send(ok?, neighbors , myV alue);

procedure BACKTRACK

resolvedNG← ngStore.solve();
send(ngd, resolvedNG.rhs, resolvedNG);
agentV iew.unassign(resolvedNG.rhs);
updateAgentView(resolvedNG.rhs ← NULL);
checkAgentView();

procedure CHOOSEVALUE

for all val ∈ currentDomain do
remove(currentDomain, val);
if isConsistent(agentV iew, val) then

return val;
else

ng ← agentV iew ∩ constrainedNeighbors’
if ¬ isLastAgentInConstraint then

add(ng.lhs, self ← val);
add(ng.rhs, last agent in constraint);
send(ok?, ng.rhs, val);
send(ngd, ng.rhs, ng);
return val;

else if
thenadd(ng.rhs, self ← val);

ngStore.add(ng);

return NULL;

ANT’s basic auxiliary functions, updateAgentView, checkAgentView and backtrack
are in parts simpler than that of ABT-1ph due to the Nash-ADCSP structure which de-
fines a single constraint to each agent. However, its value choosing mechanism should
be addressed with care to ensure completeness of the algorithm. The chooseValue pro-
cedure iterates over all values in an agent ai’s current domain. A candidate value is first
removed from the current domain and its consistency is checked against the agentView.
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If it is not consistent, a new nogood is generated with the values of all agents in Ci. If
ai is the lowest priority agent in Ci this Nogood is stored and a new candidate value is
examined. However, if ai is not the lowest priority agent in Ci the Nogood is updated
to include ai as well, and then sent to the lowest priority agent aj in Ci after an ok?
message with the new value is sent to aj . This ensures that when aj processes the
Nogood, ai’s value is coherent. Finally, it should be noted that the latter case returns
a seemingly inconsistent value to ai. This step is required to ensure all possible joint
values are examined, and stems from the fact that constraints are asymmetric. That
is, in an asymmetric constraint agents with priority lower than ai may change their
assignment in such a way that will change the consistency state of Ci.

The following proposition provides for ANT’s formal proporties:

Proposition 2. The ANT algorithm always finds an ε equilibrium. That is, it is sound,
complete and terminates.

Proof. ANT reports a solution whenever quiescence is reached. In this case, all con-
straints are satisfied (otherwise, at least one nogood will exist and quiescence will not
be achieved). Therefore the reported solution is a globally satisfying solution and by
proposition 1 it is also an ε Nash Equilibrium.

ANT follows a similar search to that described in ABT-1ph [3]. Its main difference
is that it ensures non binary constraints are indeed satisfied by a PA through its nogood
handling mechanism and its chooseValue function.

An agent Ai receiving a nogood from an agent Aj of higher priority must be the
lowest priority agent in Cj . This nogood also includes all value assignments of the rest
of the agents involved in Cj . Ai can therefore select a consistent value (consistent with
its personal constraint Ci) from its current domain and propose this value assignment
to all agents of Cj . Specifically, this new value assignment will be received by Aj via
an ok? message and its impact on the consistency state of Cj with respect to the new
PA will be examined. If the new PA is still inconsistent, a new nogood from Aj to Ai

will be generated and Ai will seek an alternative value. When Ai’s domain is exhausted
it generates a new nogood by a similar mechanism to that of ABT-1ph and sends it
backward to a higher priority agent.

When Ai receives a nogood from a lower priority agent Ak then it must be due to an
inconsistent PA to some constraint Cx (possibly Ci) to which Ak and all other lower pri-
ority agents have failed to find a satisfying joint assignment which includes Ai’s current
value assignment. Ai will therefore attempt to pick an alternate value from its current
domain which will not necessarily satisfy its personal constraint Ci(see chooseValue).
Despite being in a possible conflict state, the asymmetric constraint may eventually
change its state due to a change of assignments by lower priority agents and this step
ensures that no value combination is overlooked.

The result of this process is that no agent will change its value to satisfy a constraint
unless all value combination of lower priorities agents of the same constraints have been
exhausted and no PA which may be extended to a full solution is overlooked.

Finally, due to the exhaustive search of consistent PA to constraints and the nogood
mechanism (see [3,2]) which guarantees that discarded parts of the search space accu-
mulate ANT must, at one point, terminate. ��
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5 Experimental Evaluation

5.1 The NashProp Algorithm

An immediate way of evaluating the performance of the ANT algorithm is to compare
it to the only other distributed algorithm for infering an ε-Nash equilibrium in graphical
games – the NashProp algorithm [13]. This turns out to be a non trivial task, because
the NashProp algorithm has been presented only partially in [13].

The algorithm is described in two phases: a table passing phase and an assignment
passing one. The first phase is a form of an Arc Consistency procedure, in which every
agent ai exchanges a binary valued matrix T with each of its neighbors aj . An entry in
these tables corresponds to the joint action 〈xi = i, xj = j〉 (or vice versa) and takes the
value of 1 if and only if ai can find a joint action of its neighbors xN(i) =〈xj1, ..., xjk〉
such that:

1. The entry corresponding to 〈xi, xjl〉 takes the value of 1 ∀l 1 ≤ l ≤ k.
2. The assignment xi = i is a best response to xN(i).

This phase is proven to converge and by a simple aggregation of tables one can hope
to prune parts of the agent’s domain. It should be noted that this phase is essentially a
form of pre processing and will also be used by the ANT algorithm in our evaluation.

Details of the second phase of the NashProp algorithm were omitted from [13].
In fact, NashProp’s evaluation is based on experiments in which no backtracking was
needed (Kearns et. al specify that backtracking was required only on 3% of the problems
in their evaluation). The brief description specifies a simple synchronized procedure in
which the initializing agent picks an assignment for itself and all its neighbors and then
passes it on to one of the already assigned agents (if possible). The recipient then at-
tempts to extend it to an equilibrium assignment. Once a complete assignment is found
an additional pass is made, verifying that this joint assignment is indeed an equilib-
rium. The authors state that “The difficulty, of course, is that the inductive step of the
assignment-passing phase may fail... (in which case) we have reached a failure point
and must backtrack”. Unfortunately, details on this backtracking are not specified and
required a reconstruction which is sound, complete and terminates.

The following pseudo code provides an outline of NashProp’s assignment passing
phase. The algorithm proceeds in synchronous steps in which only one agent acts. The
first agent initializes the search by generating a cpa token – Current Partial Assignment
– to be passed between the agents. It then adds a joint assignment of itself and all
its neighbors (we use N(i)−cpa to denote all neighbors not on the cpa) to the cpa and
passes it to the next agent in the resulting order. An agent receiving a cpa first checks the
consistency of its assignment. That is, the agent verifies that its assigned value is a best
response to its neighbors assignment. If not all neighbors have values assigned to them
then the agent attempts to assign new values which will be consistent with its current
assignment. Otherwise, if its assigned value does not correspond to a best response
action, the agent reassigns a value to itself and any of its lower priority neighbors. If no
consistent assignment can be made, a backtrack message is generated and passed to the
previous agent on the cpa. If a joint consistent assignment is found then either the agent
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passes the cpa to the next agent in the ordering or a backcheck message is generated
and passed to the previous agent.

Upon receiving a backtrack message, the agent reassigns its own value and any value
of its lower priority neighbors. If the joint assignment is consistent the cpa is moved
forward and the search resumes. If it is not, a backtrack message is passed to the pre-
vious agent. Finally, once a full assignment is reached agents pass the cpa with this
assignment backward to higher priority agents. If an agent encounters an inconsistent
assignment for itself, it generates a backtrack message and passes it to the last agent in
the ordering. When the initializing agent receives a consistent backcheck message then
the search is terminated and a solution is reported.

5.2 Evaluation

The performance of both NashProp, ANT and ANT with AC (labeled ANT+AC) is mea-
sured in terms of Non Concurrent Constraint Checks (NCCCs) and network load, mea-
sured in terms of the total number of messages passed between agents. The algorithms
implementation uses the AgentZero framework [9], which provides an asynchronous
execution environment for multiple agents solving distributed constraint problems. The
source code of all experiment is available at: http://www.cs.bgu.ac.il/
˜alongrub/files/code/ANT.

To refrain from exceedingly large domains required for finding accurate ε equilib-
rium, the problems used for evaluating both algorithms were comprised of random inter-
actions in which a pure strategy Nash equilibrium was guaranteed to exist. This allowed
for controlled domain size with no changes to the code.

The evaluation included two setups in which each agent was connected to 3 others.
The cost values of every agent in every constraint were uniformly taken from the range
0 to 9, and were then updated to assure that at least one pure strategy Nash equilibrium
existed. Each data point was averaged over 10 instances and a time out mechanism
limited the execution of a single run to 5 minutes.

The first setup included 7 agents and varied the domain sizes of all agents in the
range 2 .. 10. The number of NCCCs as a function of domain sizes is presented in
Figure 2. Both variants of ANT provide a dramatic speedup over NashProp – roughly
three order of magnitudes less NCCCs. The results also demonstrate that in this setting,
ANT+AC is less effective than ANT. The number of Non Concurrent Steps (NC-Steps),
approximating performance when communication time is significantly higher than an
agent’s computation time, was slightly lower for ANT+AC than ANT1. This implies
that the AC phase failed to significantly prune the agents’ domains and can explain the
NCCC overhead of ANT+AC.

The second setup, measuring performance as the number of agents increases, shows
a similar improvement over NashProp. In this setup, the domain size remained constant
at 3, and the number of agents was varied in the range 5 .. 15. Figure 3 presents the
number of NCCCs in this setup. ANT+AC is faster than ANT by roughly one order
order of magnitude and four orders of magnitude faster than NashProp as the number
of agents increase.

1 Not presented herein due to lack of space.

http://www.cs.bgu.ac.il/~alongrub/files/code/ANT
http://www.cs.bgu.ac.il/~alongrub/files/code/ANT


Finding a Nash Equilibrium by Asynchronous Backtracking 937

NashProp, assignment passing phase
procedure NASHPROPII

end ← false;
if is initializing agent then

cpa ← new CPA();
cpa.assignValid(self ∪N(i)−cpa);
send(CPA, cpa.next(), cpa);

while ¬end do
msg ← getMsg();
switch (msg.type)

case CPA : ProcessCPA(msg.cpa);
case BT : BackTrack(msg.cpa);
case BC : BackCheck(msg.cpa);
case STP : end ← true;

procedure PROCESSCPA(cpa)
if ¬isConsistent(cpa) then

cpa.assignValid(self ∪N(i)−cpa); // removes all lower priority assignments!
else

cpa.assignValid(N(i)−cpa);

if ¬isConsistent(cpa) then
currentDomain← full domain;
send(BT, cpa.prev(), cpa);

else if isLast then
send(BC, cpa.prev(), cpa);

else
send(CPA, cpa.next(), cpa);

procedure BACKTRACK(cpa)
cpa.assignValid(self ∪N(i)−cpa); // removes all lower priority assignments!
if ¬isConsistent(cpa) then

send(BT, cpa.prev(), cpa);
else

send(CPA, cpa.next(), cpa);

procedure BACKCHECK(cpa)
if ¬isConsistent(cpa) then

send(BT, lastAgent, cpa);
else if is initializing agent then

send(STP, all agents, null);
else

send(BC, cpa.prev(), cpa);

The algorithms’ network load in the second experiment is presented in Figure 4. In-
terestingly, the number of messages generated by NashProp is proportional to the num-
ber of NCCCs. That is, for every message sent, there were roughly 14 constraint checks
(all constraint checks are non concurrent due to NashProp’s synchronous nature). This
ratio remains constant throughout the entire experiment, indicating that NashProp’s per-
formance is highly affected by the agents’ local environment – the number of adjacent
agents and/or the size of their domains.
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Fig. 4. Number of messages as a function of the number of agents

In sharp contrast to NashProp’s constant ratio of NCCCs and network load, the num-
ber of messages generated by ANT and ANT+AC does not seem to be aligned with
the number of NCCCs. One possible explanation for this discrepancy stems from the
combination of a high arity problem and asynchronous execution. If, for some reason,
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the communication links are not steady and some agents are more active than others, it
is possible that a subset of the agents in a constraint exchange messages with each other
until the last agent involved in the constraint reacts to the current state. The messages
the agents exchange are correct with respect to their agent view and Nogood store, but
progress towards the global satisfaction goal can only be made after the final agent in
the constraint reacts. As a result, the ANT algorithm can generate redundant messages
which increase its communication cost. Nonetheless, ANT+AC almost always requires
less messages than NashProp.

6 Conclusions

The present paper explores the similarities between distributed constraint reasoning
and graphical games – a well established means for representing multi agent problems.
A general form graphical problem is first represented as an Asymmetric Distributed
Constraint Optimization Problem (ADCOP) which is capable of capturing the agents’
preferences over outcomes. Then, the ADCOP is transformed to a Nash-ADCP with
unique, asymmetric, high arity constraints. A satisfying solution to this Nash-ADCP is
proven to be an ε-equilibrium of the graphical game.

The constraint based formulation of the graphical problem enables one to apply con-
straint reasoning techniques to solve the underlying problem. Asynchronous Nash back
Tracking (ANT), a variant of ABT and ABT-1ph [18,2,3] is presented and a proof that
it is always capable of finding ε-Nash equilibria is provided.

The performance of ANT and a combination of ANT and the AC mechanism de-
scribed in [13] is compared to NashProp, the only other distributed algorithm for find-
ing ε-Nash equilibrium on general form graphs [13]. The paper also presents the first (to
the best of our knowledge) detailed outline of NashProp’s second phase. The results of
our evaluation indicate a three to four orders of magnitude speedup in terms of run-time
as measured by NCCCs and a number of messages which is generally not greater than
that of NashProp in favor of the ANT variants.

The connection between distributed constraint reasoning and graphical games in-
duces multiple directions for future work. The special constraint structure of a Nash-
ADCSP hinders the performance of some algorithms such as those applying forward
checking. However, this structure can hopefully be utilized to find even more effi-
cient distributed algorithms to graphical games. The structure of non random graphical
games should also be investigated. Kearns et. al report that the AC phase of Nash-
Prop greatly reduced the agents’ domains. This phenomenon was not observed on the
random instances examined in the present study, and it is our belief that this stems
from the fact that in [13], the evaluation only considered a binary action space. Fi-
nally, the relation between non cooperative agents, privacy loss and the agents ability
to rationally manipulate an algorithm is another topic we intend to research in the near
future.

Acknowledgment. The authors would like to thank Benny Lutati for his support
throughout the experimental evaluation.
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Abstract. Systems biology is with no doubt one of the most compelling
fields for a computer scientist. Modelling such systems is per se a major
challenge, but the ultimate goal is to reason over those systems. We fo-
cus on modelling and reasoning over biological networks using Maximum
Satisfiability (MaxSAT). Biological networks are represented by an influ-
ence graph whose vertices represent the genes of the network and edges
represent interactions between genes. Given an influence graph and an
experimental profile, the first step is to check for mutual consistency. In
case of inconsistency, a repair is suggested. In addition, what is common
to all solutions/optimal repairs is also provided. This information, named
prediction, is of particular interest from a user’s point of view. Answer
Set Programming (ASP) has been successfully applied to biological net-
works in the recent past. In this work, we give empirical evidence that
MaxSAT is by far more adequate for solving this problem. Moreover, we
show how concepts well studied in the fields of MaxSAT and CP, such
as backbones and unsatisfiable subformulas, can be naturally related to
this practical problem.

1 Introduction

The field of systems biology has seen a tremendous boost due to the advances
in molecular biology, which are responsible for the availability of large sets of
comprehensive data. The existence of large-scale data sets is a key motivation
for developing reliable algorithmic solutions to solve different problems in the
field. Understanding those problems comprises reasoning about them.

We address the problem of reasoning over biological networks, in particular
gene regulatory networks (GRNs), using influence graphs and the Sign Consis-
tency Model (SCM) to represent GRNs. Reasoning is performed using Boolean
Satisfiability (SAT) and Maximum Satisfiability (MaxSAT). These formalisms
seem to be particularly well suited to this problem given the Boolean domains of
the variables of the problem. SAT is used when reasoning can be formulated as
a decision problem, whereas MaxSAT is used when reasoning can be formulated
as an optimization problem.

This paper has three main contributions. First, we propose a SAT encoding
for modelling biological networks and checking their consistency. This encoding
has the advantage of making trivial the task of computing a prediction in case
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of satisfiability, simply by using available tools for identifying backbones. Second,
a MaxSAT encoding is used to repair inconsistent biological networks. Third, we
propose an iterative solution, which invokes a MaxSAT solver, to compute pre-
dictions under inconsistency. Experimental results show that our contributions
outperform existing solutions and as a result solve (many) practical instances
which could not be solved by the existing alternatives. All the software imple-
mented in this work is available online1.

The paper is organized as follows. The next section introduces preliminar-
ies, namely influence graphs, SCM, SAT, MaxSAT and related work. Section
3 describes how SAT and MaxSAT can be applied to reasoning over biological
networks, including consistency checking, repairing and predicting. Section 4 is
devoted to the experimental evaluation of the solutions proposed. Finally, the
paper concludes and suggests future research directions.

2 Preliminaries

A gene regulatory network (GRN) is a kind of biological network in which we
are concerned with the interactions between genes. To be precise, genes do not
interact with each others directly, but rather through regulatory proteins (and
other molecules). Each gene is influenced by the concentration levels of the pro-
teins in its cellular context. Nonetheless, proteins are usually abstracted away
and we speak of interactions between genes.

GRN models can be classified as either static or dynamic and qualitative or
quantitative. Dynamic models describe the change of gene expression levels over
time, whilst static models measure the variation of the gene expression levels
between two steady states.

For many biological processes there is no detailed quantitative information
available, e.g. accurate experimental data on chemical reactions kinetics is rarely
available. This led to the creation of simpler models, the qualitative models.
Qualitative models only consider, for example, the sign of the difference between
the gene expression levels of two conditions. Despite being a simplification, these
models are useful when there is a lack of information about the biological pro-
cesses and still allow modelling the behaviour of a biological system correctly.
Qualitative formalisms have also been successfully applied to other areas besides
molecular biology (e.g. see [4]).

Our approach relies on a static qualitative model for GRNs and on the use
of SAT and MaxSAT to reason over it. To describe the model, we borrow the
notation introduced in [16,12].

For a survey of different models for GRNs refer to the relevant literature (e.g.
see [9]).

2.1 Influence Graphs and Sign Consistency Model

Influence graphs are a common representation for a wide range of qualitative
dynamical systems, notably biological systems [32]. These kind of graphs offer

1 http://sat.inesc-id.pt/~jguerra/rbnms/

http://sat.inesc-id.pt/~jguerra/rbnms/
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a logical representation of the interactions between the elements of a dynamic
system.

An influence graph is a directed graph G = (V , E , σ), where V is a set of
vertices representing the genes of a GRN, E is a set of edges representing
the interactions between the genes of the GRN and σ : E → {+,−} is a
(partial) labelling of the edges. An edge from a vertex u to a vertex v, with
u, v ∈ V , is denoted as u → v. Biologically, an interaction with label + (−)
represents the activation (inhibition) of gene transcription or protein activation
(inactivation).

To impose constraints between GRNs and experimental profiles we use the
Sign Consistency Model (SCM) [29], which is based on influence graphs. This
static qualitative model is particularly well suited for dealing with incomplete
and noisy data [16,12]. In the SCM, experimental profiles only contain qual-
itative information about the observed variation of the gene expression
levels.

Given an influence graph G = (V , E , σ), an experimental profile μ : V →
{+,−} is a (partial) labelling of the vertices of the graph. Additionally, each
vertex of the graph is classified as either input or non-input. The labelling μ(v)
of a non-input vertex v ∈ V is consistent iff there is at least one edge that
explains its sign, i.e. one edge u → v ∈ E such that μ(v) = μ(u) · σ(u → v),
where · corresponds to the multiplication of signs in the multiplication of signed
numbers. For example, if μ(v) = + then either μ(u) = + and σ(u → v) = + or
μ(u) = − and σ(u → v) = −. Biologically, label + (−) means that there was
an increase (decrease) in the gene expression levels. Note that the definition of
consistency does not apply to input vertices.

An influence graph (model) G = (V , E , σ) and an experimental profile (data)
μ are mutually consistent iff there are total labellings σ′ : E → {+,−} and
μ′ : V → {+,−}, which are total extensions of σ and μ, respectively, such
that μ′(v) is consistent for every non-input vertex v ∈ V . When considering an
influence graph without an experimental profile, i.e. when μ is undefined for
every vertex of the graph, we talk about self-consistency of the graph [18].

Example 1. Figure 1 illustrates an influence graph (left) and an experimental
profile for that influence graph (right). The graph has three vertices, a, b and
c and five edges, a → b, a → c, b → a, b → c and c → b. All vertices are
non-input vertices. Lighter (green) edges ending with → have label +, whereas
darker (red) edges ending with < have label −. Likewise, in the experimental
profile, lighter (green) vertices have label +, darker (red) vertices have label −
and white vertices have no label.

In section 3 we will reason over this example.

2.2 Maximum Satisfiability

The Boolean Satisfiability (SAT) problem is the problem of deciding whether
there is an assignment to the variables of a Boolean formula that satisfies it.
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Fig. 1. An influence graph (left) along with an experimental profile (right)

Without lack of generality, one may assume that the formula is in conjunctive
normal form (CNF). A CNF formula is a conjunction (∧) of clauses, where a
clause is a disjunction (∨) of literals and a literal is a Boolean variable (x) or
its negation (¬x). A CNF formula is satisfied iff all of its clauses are satisfied.
A clause is satisfied if at least one of its literals is satisfied. A literal x (¬x) is
satisfied iff the corresponding Boolean variable is assigned the value true (false).

The Maximum Satisfiability (MaxSAT) problem is closely related to SAT.
The goal in MaxSAT is to find an assignment that maximizes (minimizes) the
number of satisfied (unsatisfied) clauses.

There are a few interesting variants of the MaxSAT problem. One of them,
relevant to the application being of interest, is the Partial MaxSAT problem.
In Partial MaxSAT, some clauses are classified as hard, whereas the remaining
ones are classified as soft. The goal is to find an assignment that satisfies all
hard clauses and maximizes the number of satisfied soft clauses. Hard clauses are
usually represented within square brackets, whereas soft clauses are represented
within parentheses.

Example 2. Consider the following Partial MaxSAT formula F = [x1 ∨ x2 ∨
x3] ∧ [¬x1 ∨ x3] ∧ (¬x2) ∨ (¬x3). The two optimal solutions are {x1,¬x2, x3}
and {¬x1, x2,¬x3}. In any of these solutions, only one of the two soft clauses is
satisfied.

2.3 Related Work

The same problem of modelling and reasoning over biological networks has been
tackled in the past using Answer Set Programming (ASP) [16,12,15]. First, the
authors analyse whether a biological network is consistent. If the network is con-
sistent that means that there is a solution corresponding to total extensions of σ
and μ. Moreover, a prediction corresponding to the intersection of all solutions
is computed. If the network is inconsistent then minimal explanations for incon-
sistency are provided. As an alternative, an optimal repair is given. In addition,
the user is also given a prediction, which now summarizes what is common to
all optimal repairs. In ASP, the computation of predictions is achieved through
cautious reasoning [14].

Reasoning over biological networks with ASP can find similarities with con-
cepts well known in SAT and CP.



Reasoning over Biological Networks Using Maximum Satisfiability 945

Minimal explanations for inconsistency are often called minimal unsatisfiable
cores (MUCs) in CP [20] and minimal unsatisfiable subformulas (MUSes) in SAT
[24]. Repairing with MaxSAT may be related with the identification of MUSes
in SAT. A MaxSAT solution does not satisfy exactly one clause from each MUS
of the corresponding SAT formula. The number of unsatisfied clauses may be
less than the number of MUSes when some of the MUSes have a non-empty
intersection.

The identification of assignments common to all solutions corresponds to the
definition of backbone [28,23]. Backbones find applications not only in decision
problems, but also in optimization problems [30]. In the context of MaxSAT,
backbones have inspired the development of new search strategies [33,27] and
the same occurred in other domains (e.g. see [17,21]). Recent work in SAT has
focused on implementing efficient algorithms for identifying backbones in prac-
tical settings [26,34]. The solution developed in this paper follows one of the
solutions proposed for post-silicon fault localization [34].

More sophisticated models exist for GRNs and other biological networks using
CP solutions. An example is the framework developed by Corblin et al. [8,7,6].
The authors use a more complex formalism for modelling GRNs that allows
multivalued variables and uses transition rules, amongst other particularities.
For a survey of CP solutions to solve related biological problems refer to the
relevant literature (e.g. see [31,3,1]).

3 Reasoning with Satisfiability

Our goal is to provide SAT and MaxSAT solutions for reasoning over biological
networks. We begin by describing how to encode a GRN into SAT using the
model introduced in the previous section. This encoding allows to validate an
influence graph against an experimental profile. In case the graph and profile
are mutually inconsistent, the identification of repairs to restore consistency is of
interest. Building on the SAT encoding, we then introduce a MaxSAT encoding
that allows to repair the graph and/or profile in order to restore consistency.
In addition, we also provide information about what is common to all total
labellings, in the case of consistency, or to all optimal repairs, in the case of
inconsistency. This information is called prediction.

3.1 Checking Consistency

An influence graph G = (V , E , σ) and respective experimental profile μ can be
encoded into SAT as follows. For the sake of clarity, the constraints will not be
presented in CNF. Translating such constrains to CNF should be a standard
task though.

Let us first introduce three types of Boolean variables. For each vertex v ∈ V ,
there is a Boolean variable inpv such that inpv is assigned the value true if v is
an input vertex and false otherwise. For each vertex v ∈ V , there is a Boolean
variable lvtxv (label vertex) such that lvtxv is assigned the value true/false if
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the corresponding label μ(v) is +/−. Likewise, for each edge u → v ∈ E , there
is Boolean variable ledguv (label edge) such that ledguv is assigned the value
true/false if the corresponding label σ(u→ v) is +/−.

An additional type of (auxiliary) variables is needed to represent the value of
μ · σ, which denotes the influence between vertices. For each edge u → v ∈ E ,
create a Boolean variable influv such that influv is assigned the value true/false
if μ(u) · σ(u→ v) is +/−.

Let us now introduce the constraints, starting with the ones corresponding
to unit clauses. For each vertex v ∈ V , introduce a unit clause (inpv) if v is an
input vertex. Otherwise, introduce a unit clause (¬inpv). Given labellings μ/σ,
introduce one unit clause for each vertex/edge that has a label. (Remember that
μ and σ may be partial labellings and therefore not all vertices/edges may have
a corresponding label.) For each vertex v ∈ V with μ(v) = +/− introduce a
unit clause (lvtxv)/(¬lvtxv). For each edge u → v ∈ E with σ(u → v) = +/−
introduce a unit clause (ledguv)/(¬ledguv).

Example 3. Consider again the example in Figure 1. Encoding the influence
graph into SAT produces the following unit clauses: (¬inpa), (¬inpb), (¬inpc),
(ledgab), (¬ledgac), (ledgba), (ledgbc), (¬ledgcb). Moreover, encoding the exper-
imental profile into SAT produces the following unit clauses: (lvtxa), (¬lvtxb).

In order to define the value of variables infl a few additional constraints are
needed. The value of these variables is given by μ · σ. For each edge u→ v, the
following constraints are added:

influv −→ (lvtxu ∧ ledguv) ∨ (¬lvtxu ∧ ¬ledguv)
¬influv −→ (lvtxu ∧ ¬ledguv) ∨ (¬lvtxu ∧ ledguv)

(1)

Finally, consistency must be ensured. An influence graph and an experimental
profile are mutually consistent if total extensions for μ and σ can be found
such that all non-input vertices are consistent. The consistency of a vertex v is
ensured by making use of variables influv where u may be any vertex to which
v is adjacent. For each vertex v, the following constraints are added:

inpv ∨ (lvtxv −→
∨
u

influv)

inpv ∨ (¬lvtxv −→
∨
u

¬influv)
(2)

Example 4. Equations 1 and 2 applied to vertex c of Figure 1 produce the fol-
lowing constraints:

inflac −→ (lvtxa ∧ ledgac) ∨ (¬lvtxa ∧ ¬ledgac),
¬inflac −→ (lvtxa ∧ ¬ledgac) ∨ (¬lvtxa ∧ ledgac),
inflbc −→ (lvtxb ∧ ledgbc) ∨ (¬lvtxb ∧ ¬ledgbc),
¬inflbc −→ (lvtxb ∧ ¬ledgbc) ∨ (¬lvtxb ∧ ledgbc),
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inpc ∨ (lvtxc −→ (inflac ∨ inflbc)),
inpc ∨ (¬lvtxc −→ (¬inflac ∨ ¬inflbc)).

A SAT call to the complete CNF encoding of the influence graph reveals that
the graph by itself is self-consistent. If we add the encoding of the experimental
profile, i.e. (lvtxa)∧ (¬lvtxb), another SAT call reveals that the influence graph
and the experimental profile are mutually inconsistent. Observe that vertex a
has only one incoming edge b → a with label +. Given that vertex b has label
−, vertex a cannot have label +.

3.2 Repairing

When an influence graph is inconsistent, whether by itself or mutually with an
experimental profile, one may consider repairing the graph and/or the profile
in order to restore consistency. The motivation is that some of the observations
may be unreliable. To this end, we allow three types of repair operations (and
combinations thereof): e, flip edges labels; i, make non-input vertices become
input vertices; and v, flip vertices labels. The goal is to identify cardinality-
minimal repairs.

Restoring consistency is an optimization problem that can be encoded into
Partial MaxSAT as follows. The SAT encoding described in the previous sec-
tion is still valid when allowing repairs. However, the unit clauses referring to
non-input vertices, vertices labels and edges labels can be unsatisfied if needed,
depending on the type of repair. Hence, these clauses can be made soft in the
Partial MaxSAT encoding. All other clauses, i.e. clauses encoding constraints
(1) and (2), are hard clauses. For repairs of type e, unit clauses referring to
edges labels are soft clauses. For repairs of type i, unit clauses referring to input
vertices are soft clauses. For repairs of type v, unit clauses referring to vertices
labels are soft clauses. All other unit clauses are hard clauses. The MaxSAT
solution will satisfy all hard clauses and the largest number of soft clauses. Note
that all soft clauses are unit clauses. The size of the repair corresponds to the
number of unsatisfied clauses. The actual repairs can be trivially obtained from
the unsatisfied clauses.

This encoding can be easily adapted to consider other repairs. The user could
manually indicate which repairs would be reasonable to perform. For example,
in some cases it can make sense to restrict repairs to a subset of vertices and
respective edges.

Example 5. As discussed in Example 4, the influence graph and experimental
profile illustrated in Figure 1 are mutually inconsistent. To identify repairs of
type e, the following clauses are declared as soft clauses: (ledgab), (¬ledgac),
(ledgba), (ledgbc), (¬ledgcb). The solution can be any one of the four cardinality-
minimal repairs, all of them with size two: {¬ledgab, ¬ledgba}, {¬ledgba, ledgac},
{¬ledgba, ¬ledgbc} and {¬ledgba, ledgcb}. Had been allowed only repairs of type
v, the clauses to be made soft would be: (lvtxa), (¬lvtxb). In this case, two
different optimal repairs with size one could be obtained: {¬lvtxa} and {lvtxb}.



948 J. Guerra and I. Lynce

3.3 Predicting

Analysing all possible solutions to a given problem instance can become a puz-
zling task when the number of solutions is too large. In this context, it is certainly
useful to know what is common to all solutions. Note that this concept applies
both to decision problems and optimization problems as long as (optimal) solu-
tions to a given problem instance can be found.

The intersection of all solutions to a given problem instance is called predic-
tion. This concept can be applied either to consistent problem instances when
checking consistency or to inconsistent problem instances when repairing. In SAT
and MaxSAT, the assignments which are common to all (optimal) solutions cor-
respond to the backbones of a given formula. However, when predicting, only
a subset of the variables is relevant. Still, approaches used for identifying back-
bones in SAT and MaxSAT can be adapted to compute predictions.

Predicting under consistency can be applied to the SAT encoding described in
Section 3.1 using a tool designed to identify backbone variables in SAT formulas.
A prediction can be obtained after filtering irrelevant variables from the set of
variables returned by the tool.

For the case of prediction under inconsistency, one has to consider the MaxSAT
encoding described in Section 3.2. The set of repairs common to all optimal so-
lutions can be obtained from the unit soft clauses that were not satisfied in all
optimal solutions. (Observe that each unsatisfied unit soft clause corresponds
to a repair.) Next we describe how a MaxSAT solver can be instrumented to
efficiently compute predictions.

A näıve approach consists in enumerating all solutions and computing their
intersection [26]. This approach requires n calls to a MaxSAT solver, being n the
number of optimal solutions. (In practice, this number can be reduced taking
into account that only a subset of the variables is relevant.) After each call, a
blocking clause corresponding to the negation of the computed solution is added
to the formula, in order to prevent the same solution from being found again in a
future call. Moreover, after each iteration the actual intersection of the solutions
computed so far is updated.

One key optimization to the näıve approach can make a significant difference.
Instead of adding one blocking clause for each solution found, there is only
one blocking clause, which corresponds to the prediction computed so far. This
implies that not all solutions have to be computed. Only a solution that reduces
the size of the current prediction can be computed at each iteration.

Algorithm 1 has been implemented to compute predictions under inconsis-
tency using the optimization described above. Similarly to the näıve approach,
this algorithm consists in retrieving different optimal solutions and reducing the
prediction at each iteration. (Again, we can take advantage of the fact that only
a subset of the variables is relevant.) But in practice less iterations are expected
to be required.

Given a partial MaxSAT formula F , the algorithm is initialized with an
optimum value, obtained from calling MaxSAT(F) and the initial prediction ,
obtained with function Get-Repairs. Each call to the MaxSAT solver returns
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Algorithm 1. Predicting under Inconsistency

Input : Partial MaxSAT Formula F
Output : Predicted Repairs of F , prediction

1 (out , opt , sol) ← MaxSAT(F) // compute initial solution
2 optimum ← opt
3 prediction ← Get-Repairs(sol)

4 while |prediction | �= 0 do
5 (out , opt , sol) ← MaxSAT(F ∪ [¬prediction ]) // block current prediction
6 if out == UNSAT or opt > optimum then
7 break

8 prediction ← prediction ∩ Get-Repairs(sol) // update prediction

9 return prediction

a 3-tuple (out , opt , sol), where out corresponds to the outcome (either SAT or
UNSAT); opt corresponds to the optimal value, i.e. the number of unsatisfied
clauses; and sol corresponds to the variable assignments which result in the
optimum value.

The initial prediction corresponds to the set of repairs obtained from the first
MaxSAT solution. At each iteration, the MaxSAT solver is called with the initial
formula and the blocking clause corresponding to the current prediction, which is
added as a hard clause. If the new solution is still optimal, then the corresponding
repairs are intersected with the current prediction; otherwise the final prediction
has been found. Note that either the current prediction is reduced at each step
or the algorithm terminates. In this later case, the final prediction is returned.

Although the worst-case scenario of Algorithm 1 is as bad as the näıve
approach, it performs generally well for this domain, as we will see later in
Section 4.2.

Example 6. In Example 5 were listed four optimal repairs of type e for the influ-
ence graph and the experimental profile in Figure 1. The prediction corresponds
to the intersection of all the solutions, i.e. the set {¬ledgba}. A possible run of
Algorithm 1 could be to first find repair {¬ledgab, ¬ledgba}, thus next calling
the MaxSAT solver with the original formula and the clause [ledgab ∨ ledgba].
Suppose that afterwards repair {¬ledgba, ledgac} is found. So the next step is
to call the MaxSAT solver with the original formula and the clause [ledgba].
This call returns UNSAT and so the algorithm terminates. Only two calls to the
MaxSAT solver were needed, instead of the four calls of a näıve algorithm.

4 Experimental Evaluation

The experimental evaluation is driven by the goal of comparing the performance
of ASP solvers with the performance of SAT and MaxSAT solvers. With this
goal in mind, our evaluation is based on the same instances that were used to
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evaluate the performance of ASP solvers in the past. These instances, as well as
the experiments performed, are detailed in the literature [16,12]. In one of the
experiments [16], ASP is used to solve randomly generated instances. The target
in this case is to check the consistency of each one of the problem instances.
In the other experiment [12], real instances are used and the target is to repair
unsatisfiable problem instances. In addition, prediction is applied only to the
instances for which a repair can be provided.

The computations were performed using the ASP solver clasp 2.0.6 together
with grounder gringo 3.0.4 [13], an improved version of the MiniSat 2.2.0
SAT solver [10] available from github, the backbone identification tool for SAT
minibones [26] and the MaxSAT solver MSUnCore 2.5 [25]. The experiments
were run on several Intel Xeon 5160 machines (dual-cores with 3.00 GHz of clock
speed, 4 MB of cache, 1333 MHz of FSB speed and 4 GB of RAM each), running
64-bit versions of Linux 2.6.33.3-85.fc13. All tools were configured to not take
advantage of any sort of parallelism.

All times are shown in seconds and correspond to the average execution times
taken by each tool for solving a set of problem instances. For each aborted
instance, the timeout value of 600 seconds is added to the total sum. The time
needed to translate each instance from raw data to ASP, SAT or MaxSAT format
is not taken into account, as it is negligible and similar for any of these three
formats.

4.1 Checking Consistency and Predicting under Consistency

The first experiment evaluates consistency checking and prediction under consis-
tency for the randomly generated instances. These instances have between 500
and 4000 vertices. The degree of a vertex is on average 2.5, following what is
assumed as standard in biological networks [22]. In total, there are 400 instances,
50 for each one of the eight different graph sizes (starting with 500 vertices and
up to 4000, with an increment of 500 vertices).

Table 1 shows the average run times for each graph size. We distinguish be-
tween consistent and inconsistent instances, denoted as sat and unsat, respec-
tively. The first columns relate to consistency checking. In these columns, ASP
refers to running gringo together with clasp using the VSIDS heuristic (the most
efficient heuristic according to [16]) and SAT refers to MiniSat.

The remaining columns relate to prediction under consistency. Prediction is
only applied to satisfiable instances. As before, ASP refers to running gringo
together with clasp using the VSIDS heuristic but now using the cautious rea-
soning mode (--cautious), which makes clasp compute the intersection between
all answer sets. SAT now refers to running minibones, which is used to compute
the backbones of SAT formulas.

The results are clear. Checking consistency is trivial for both ASP and SAT
solvers. As expected, larger instances require more time but still the time re-
quired is not significant. The results obtained with the ASP solver are in con-
formity with the results available in the literature [16]. Prediction for satisfiable
instances is also trivial. We believe that such information is very important from
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Table 1. Times for consistency checking and prediction under consistency

Consistency Prediction
ASP SAT ASP SAT

500
sat 0.11 0.01 0.15 0.05

unsat 0.10 0.00

1000
sat 0.26 0.02 0.42 0.18

unsat 0.23 0.01

1500
sat 0.42 0.03 0.79 0.39

unsat 0.37 0.01

2000
sat 0.58 0.03 1.26 0.69

unsat 0.51 0.01

2500
sat 0.75 0.04 1.88 1.08

unsat 0.66 0.01

3000
sat 0.91 0.06 2.79 1.57

unsat 0.79 0.02

3500
sat 1.08 0.07 3.97 2.14

unsat 0.95 0.02

4000
sat 1.24 0.05 5.37 2.82

unsat 1.10 0.02

a user’s point of view. Whereas analysing dozens or hundreds of solutions is in-
feasible in practice, knowing which assignments must belong to any solution is
certainly of interest.

Checking consistency and predicting under consistency is expected to scale
well for larger instances using either approach. Nevertheless, at the light of the
results obtained for real instances (see next section), extending this evaluation
method to larger instances did not seem to be the best way to follow.

4.2 Repairing and Predicting under Inconsistency

This second experiment was conducted using as test set the transcriptional regu-
latory network of Escherichia coli K-12 [11] along with two experimental profiles:
the Exponential-Stationary Growth Shift study [5] and the Heatshock experi-
ment [2].

The goal of this experiment is to evaluate the feasibility of (optimally) repair-
ing inconsistent problem instances, as well as of predicting under inconsistency, i.e.
computingwhich assignments are common to all optimal repairs.Weused the tran-
scriptional regulatory network ofEscherichia coli K-12, which contains 5140 inter-
actions between 1915 genes. Each one of the two profiles, Exponential-Stationary
Growth Shift and Heatshock, has slightly over 850 gene expression level variations,
which correspond to vertex labellings. For a better assessment of the scalability of
the approaches used, several data samples were generated by randomly selecting
5%, 10%, 20% and 50% of the whole data for each experimental profile. For each
percentage were generated 50 inconsistent instances. The whole test set is made of
400 instances. (In previous work [12] were used percentages 3%, 6%, 9%, 12% and
15% instead, but the better performance of the most recent versions of gringo and
clasp required the generation of more difficult instances.)
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Table 2. Times for repair and prediction under inconsistency

Exponential-Stationary Growth Shift

e i v ei ev iv eiv

Repair (ASP)

5% 0.67 0.35 0.27 0.67 0.59 0.41 0.69
10% 0.64 0.35 0.27 0.82 0.75 0.38 1.35
20% 0.94 0.36 0.28 18.28 7.05 0.67 77.98 (3)
50% 2.89 0.35 0.29 587.48 (48) 572.02 (46) 481.16 (35) 600.00 (50)

Prediction (ASP)

5% 0.65 0.33 0.26 0.68 0.58 0.39 0.67
10% 0.61 0.32 0.26 0.75 0.67 0.36 0.96
20% 0.90 0.32 0.26 1.80 3.28 0.51 13.86
50% 1.92 0.32 0.27 41.71 320.30 302.43 (4) –

Repair (MaxSAT)

5% 0.22 0.22 0.21 0.17 0.17 0.17 0.17
10% 0.24 0.24 0.23 0.20 0.20 0.20 0.20
20% 0.37 0.35 0.34 0.29 0.29 0.29 0.29
50% 0.74 0.73 0.72 0.60 0.59 0.59 0.59

Prediction (MaxSAT)

5% 0.41 0.41 0.39 0.44 0.45 0.45 0.45
10% 0.60 0.58 0.54 0.78 0.76 0.76 0.79
20% 1.41 1.18 0.99 2.11 1.95 1.99 1.97
50% 4.55 3.06 2.26 9.32 7.71 7.83 7.58

Heatshock

e i v ei ev iv eiv

Repair (ASP)

5% 0.69 0.35 0.27 0.66 0.60 0.33 0.67
10% 0.69 0.35 0.27 0.99 0.83 0.34 1.50
20% 1.27 0.34 0.27 112.94 (8) 10.61 0.39 42.02
50% 279.43 (21) 0.35 0.28 572.03 (47) 504.76 (37) 202.10 (12) 600.00 (50)

Prediction (ASP)

5% 0.67 0.33 0.26 0.66 0.59 0.30 0.66
10% 0.68 0.33 0.27 0.88 0.70 0.30 1.39
20% 0.91 0.31 0.27 17.86 1.07 0.33 9.88
50% 43.76 0.31 0.26 28.01 276.07 (3) 126.58 (1) –

Repair (MaxSAT)

5% 0.21 0.21 0.20 0.17 0.16 0.16 0.16
10% 0.25 0.24 0.24 0.21 0.19 0.19 0.19
20% 0.39 0.38 0.30 0.31 0.25 0.25 0.25
50% 1.02 0.88 0.61 0.86 0.50 0.51 0.50

Prediction (MaxSAT)

5% 0.43 0.42 0.39 0.48 0.40 0.41 0.40
10% 0.76 0.63 0.56 1.06 0.71 0.71 0.68
20% 1.98 1.46 1.01 3.44 1.68 1.58 1.61
50% 15.14 4.96 2.43 31.71 7.88 6.79 6.58
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Table 3. Times for repair and prediction under inconsistency (100% instances)

Exponential-Stationary
Heatshock

Growth Shift

Repair Prediction Repair Prediction
ASP MaxSAT ASP MaxSAT ASP MaxSAT ASP MaxSAT

e 4.97 1.46 3.56 13.49 600.00 2.88 – 99.97
i 0.33 1.41 0.30 5.97 0.30 2.77 0.27 16.15
v 0.31 1.43 0.29 4.38 0.28 1.22 0.28 7.73

e i 600.00 1.17 – 28.70 600.00 2.19 – 222.43
e v 600.00 1.14 – 22.01 600.00 0.94 – 26.50
i v 600.00 1.16 – 18.55 600.00 0.94 – 21.45

e i v 600.00 1.14 – 17.25 600.00 0.96 – 16.40

Table 2 shows the average run times for the ASP and MaxSAT approaches.
Timeouts, shown within parentheses, represent that the imposed time limit of
600 seconds was exceeded before finding a solution. Observe that there were
no timeouts for the MaxSAT runs. In the experiment, we allowed the following
repair operations and combinations thereof (previously introduced in Section
3.2): e, flip edges signs; i, make non-input vertices become input vertices; and
v, flip vertices signs. This results in 7 types of repairs, thus 400 · 7 = 2800
instances. Observe that the possibility of making a vertex become an input (i
repair operation) makes that vertex trivially consistent.

The repairing phase determines which instances will be used in the prediction
phase. It would make no sense to apply prediction to instances for which not
even one optimal repair was provided within the time limit. Hence, prediction is
applied only to the instances for which repairing was successful.

The results presented in Table 2 were obtained using gringo together with
clasp using flag --opt-heuristic=1 for better performance. To compute the pre-
dictions, clasp applies cautious reasoning to all optimal solutions (--cautious,
--opt-all=<opt-value>, with <opt-value> being the optimal repair value). To
repair an instance using MaxSAT we used MSUnCore. For prediction, we used
Algorithm 1, described in Section 3.3. Note that the operation corresponding to
the first line of the algorithm was already computed during the repair phase and
therefore the computation is not repeated.

The results are again clear. ASP aborts 357 out of 2800 instances in the repair
phase, plus 8 instances in the prediction phase, whereas MaxSAT solves all the
instances in a few seconds. MaxSAT is far more adequate than ASP to repair
inconsistent instances. Many instances could not be repaired within the time
limit of 600 seconds with ASP. As a result, prediction could not be applied to
these instances. This is true for the two experimental profiles. In contrast, the
MaxSAT solver is able not only to repair all instances, but also to do it in a few
seconds. Similar results are obtained for prediction. The number of calls to the
MaxSAT solver range from 1 to 52 (on average from 1.08 to 28.30). There seems
to be no clear relation between the number of times the MaxSAT solver is called
and the prediction size.
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Despite the clear trend in favour of the MaxSAT approach, the next step would
be to evaluate more difficult problem instances. The most difficult instances
would be the ones where the complete experimental profiles are used. This results
in 7 instances for each profile, one for each combination of repair operations.
Detailed results are given in Table 3. From these 14 instances, the ASP solver
was able to repair 3 instances while the MaxSAT solver was able to repair all
the instances, taking on average less than 3 seconds. Prediction was successfully
applied to all the instances but one for which the ASP solver was able to provide
a repair. MaxSAT was able to predict all the instances.

Even though the MaxSAT solver is able to provide a prediction taking on
average 20 seconds, two outliers exist. Both outliers refer to the Heathstock
profile, one to the e repair operation and the other to the ei combination.
The first requires 99.97 seconds and the second requires 222.43 seconds. Com-
pared to the remaining instances, these are the ones requiring more calls to
the MaxSAT solver (35 and 94, respectively). However, these instances are not
the ones with a larger prediction. Actually, the hardest instance has prediction
size 0, which means that there are at least two disjoint optimal repairs. If two
disjoint optimal repairs had been identified at the first two iterations, then no
more iterations would have been needed. This fact suggests instrumenting the
MaxSAT solver to find diverse solutions [19], which will be investigated in the
future.

Evaluating the accuracy of prediction is out of the scope of this evaluation.
Accuracy results have already been provided for the ASP approach [12]. The
accuracy of prediction is quite high, being always above 90%. Given that both
approaches are equivalent, it makes no sense to repeat such evaluation.

5 Conclusions and Future Work

We have studied how SAT and MaxSAT can be applied to reasoning over biolog-
ical networks. The use of SAT and MaxSAT is certainly adequate, given that the
domains of the variables of the actual problem are Boolean. SAT and MaxSAT
encodings have been shown to be more competitive than other approaches used
in the past, namely Answer Set Programming (ASP).

As future work we will consider other optimization criteria for repairs. For
example, subset-minimal repairs, as already suggested by Gebser et al. [12].
Finding subset-minimal repairs comprises proving that removing any repair from
the proposed solution no longer allows to achieve consistency. Additional types
of repairs could be considered as well, such as adding edges to the influence
graph [12]. As already mentioned, the proposed MaxSAT encoding can easily
accommodate other types of repairs.

Another direction for the future is the evaluation of different algorithmic ap-
proaches to compute predictions under inconsistency. Ideas coming from existing
algorithms for backbone identification in SAT [26] can be discussed as a starting
point.
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Abstract. Wholesale electricity markets are becoming ubiquitous, offer-
ing consumers access to competitively-priced energy. The cost of energy
is often correlated with its environmental impact; for example, environ-
mentally sustainable forms of energy might benefit from subsidies, while
the use of high-carbon sources might be discouraged through taxes or
levies. Reacting to real-time electricity price fluctuations can lead to
high cost savings, in particular for large energy consumers such as data
centres or manufacturing plants. In this paper we focus on the challenge
of day-ahead energy price prediction, using the Irish Single Electricity
Market Operator (SEMO) as a case-study. We present techniques that
significantly out-perform SEMO’s own prediction. We evaluate the en-
ergy savings that are possible in a production scheduling context, but
show that better prediction does not necessarily yield energy-cost sav-
ings. We explore this issue further and characterize, and evaluate, im-
portant properties that an energy price predictor must have in order to
give rise to significant scheduling-cost savings in practice.

1 Introduction

Short-term forecasting of electricity prices is relevant for a range of applications,
from operations scheduling to designing bidding strategies. For example, an in-
creasing amount of work has recently focused on the impact of energy-aware
schedules for operating data centres and production lines [7,8,18,22,27], where
tasks are scheduled based on technical requirements and energy-saving objec-
tives. Furthermore, [22] shows that simple scheduling strategies that can react
to the spot-electricity price can save existing systems millions of dollars every
year in electricity costs. Since energy costs constitute the largest proportion of
a data centre’s or production line’s running costs [14], designing energy-price-
saving schedules becomes critical. A number of recent papers [5,17,19,26] fo-
cus on reducing both power usage and power cost by taking real-time energy
price into consideration. The scheduling problems addressed differ, e.g., [5] fo-
cuses on scheduling in data centres, where tasks can be executed at various
time slots.

Prior work has shown that electricity spot prices are one of the most chal-
lenging types of time series in terms of simulation and forecasting [4,16,21,29].

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 957–972, 2012.
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A large number of techniques have been employed to predict energy prices;
see [4,29] for a review. Time series models, Neural Networks (NN) and Support
Vector Machines (SVM) were proven to have some degree of success depending
on the actual design and volatility of the markets. For example, [6] has studied
NN models for forecasting prices in the Pennsylvania, New Jersey, Maryland as
well as the Spanish market. NN and SVM were employed in [3,12,23] for fore-
casting prices in the New England, Ontario and the Australian markets. SVM
models were generally shown to perform similarly to the NN models, while often
being more scalable and more accurate than competitors. An interesting aspect
of price forecasting is that the user may not neccesarily require a good numeric
estimate of the actual price, but rather need a good estimation of the price class,
e.g., is the price higher or lower than a pre-defined user-threshold. This prob-
lem was recently addressed in [29] which trained SVM-based price classification
models for the Ontario and Alberta markets.

In this paper, we analyze the Irish electricity market, from market design
and publicly available data, to several machine learning modelling strategies
and their impact on day-ahead energy price forecasting, as judged by classical
error measures (e.g., Mean Squared Error). Furthermore, we investigate the ef-
fect of using the proposed forecasting models for designing energy-price-saving
schedules. To the best of our knowledge, this is the first analysis of the im-
pact of various properties of day-ahead electricity price forecasts on price-aware
scheduling.

Under EU initiatives Ireland has an obligation to supply at least 20% of its
primary energy consumption from renewable sources by 2020 [10]. The Irish
government has set the following targets in 2007 for its energy usage: no oil
in electricity generation by 2020, 15% of electricity from renewable resources
by 2010, and 33-40% by 2020. Wind is the most abundant renewable energy
source available in Ireland [10,13]. However, introducing such renewable energy
sources introduces volatility into the market, making energy price prediction and
cost-efficient planning considerably more challenging.

We build on prior literature for short-term (numeric) price forecasting and
price classification, and investigate SVM models for these tasks. We propose two
SVM models that reduce the numeric price forecasting error of the market op-
erator by 24-28% (Mean Squared Error). Furthermore, we investigate the usage
of these models for price classification and for designing price-aware operation
schedules. We evaluate the savings that are possible in a production schedul-
ing context, but show that better numeric prediction does not necessarily yield
energy-cost savings. We explore this issue further and characterize, and evalu-
ate, important properties that an energy price predictor must have in order to
give rise to significant scheduling-cost savings in practice. Therefore, this paper
brings together the disciplines of machine learning and combinatorial optimisa-
tion to study the most appropriate types of energy price prediction models to
use in a scheduling context. In addition, this paper considers this problem in a
real-life setting: the Irish energy market.
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2 The Irish Electricity Market

The Irish electricity market is an auction-based market, with spot prices being
computed every half-hour of a trading day. The methodology for calculating the
price in the Irish all-island market is as follows: every half-hour of the trad-
ing day, the Single Electricity Market Operator (SEMO)1 calculates the System
Marginal Price (SMP). The SMP has two components: the Shadow Price rep-
resenting the marginal cost per 1MW of power necessary to meet demand in a
particular half-hour trading period, within an unconstrained schedule, i.e., no
power transmission congestions; and the Uplift component, added to the Shadow
Price in order to ensure the generators recover their total costs, i.e., start-up and
no-load costs [16].

One day ahead of the trade-day the generators have to submit technical and
commercial offer data [24]: incremental price-quantity bids summarizing how
much supply for what price does a generator offer to provide every half-hour,
and the technical specifications of the generator such as start-up costs, maximum
capacity, minimum on/off times. Only price-making generator units, that are
not under test, are represented individually within the Market Scheduling and
Pricing (MSP) software. Non-price making units are scheduled either based on
submitted nominations or forecast data in the case of wind units. Once the
load met by generation from non-price making units has been removed, then
price making generator units are scheduled in merit order according to their
bids to meet the remaining load. The SMP is bounded by a Market Price Cap
(e 1000/MWh) and a Market Price Floor (e -100/MWh), which are set by the
Regulatory Authorities.

Two runs of the Market Scheduling and Pricing Software are particularly
relevant each trading day. The Ex-Ante (EA) run is carried out one day prior
to the trade date which is being scheduled and as such uses entirely forecast
wind and load data. A schedule of half-hourly forecasted SMP, shadow price,
load and wind generation is produced by the market operator (SEMO) for the
coming trade-day. The Ex-Post Initial (EP2) run is carried out four days after
the trade date which is being scheduled, and as such is able to utilize full sets of
actual wind and load data with no forecast values. The system marginal prices
produced in the EP2 run are used for weekly invoicing and the SMP determined
in the EP2 run for a given half hour trading period is the price applicable to
both generators and suppliers active in such a trading period.

3 Price Forecasting Models

We present an approach to building price forecasting models for the Irish elec-
tricity market: the factors influencing the price, data collection and appropriate
forecasting models. We show that we significantly improve the forecast of the
market operator, thus providing a more reliable price prediction for the next
trade-day.

1 http://www.sem-o.com

http://www.sem-o.com
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3.1 Data Collection and Analysis

We begin our study of the Irish electricity market by analyzing the price and
load (i.e., demand) profile from January 2009 to June 2011. Figure 1 shows the
actual half-hourly price (top frame) and demand (bottom frame). We notice that
the load profile is fairly similar over time, showing clear periodicity, with higher
load in the cold months. The price is much more volatile, with high variations
during both cold and warm months. We also notice that the price volatility
and magnitude increased considerably from 2009 to 2011. Table 1 shows some
statistics about the price in this period. We notice the increasing median and
average price, as well as the increased price volatility (captured by the standard
deviation) over time. We believe this could be explained by increasing fuel prices
and the ramp-up of wind-generated power, as well as other factors, such as a
higher percentage of unscheduled generator outages in 2011.

Table 1. Statistics of the Irish SMP for 2009 to mid-2011

Year Min Median Mean Stdev Max

2009 4.12 38.47 43.53 24.48 580.53

2010 -88.12 46.40 53.85 35.49 766.35

2011 0 54.45 63.18 35.79 649.48

Although there seems to be some correlation between demand and price, the
price spikes seem to be highly influenced by a combination of additional factors.
For example, the half-hourly demand is typically covered by the available wind-
generated power, with the remaining load being covered using the generator bids
sorted by price merit, with generators using more expensive fuel having higher
price bids. If the forecasted load, wind-power and expected supply quantities are
unreliable, due to the poor quality of the forecast or unexpected outages, this will
affect the market operator scheduling of generators, leading to price volatility.
Figure 2 offers a closer look at the price versus load pattern in 2011, for the first
week of the year and the week with the maximum price up to mid-2011.

SEMO provides a web interface for public access to the historical SMP, Shadow
Price and load details back to January 2008. In November 2009, SEMO started
providing day-ahead half-hourly forecasts for load, SMP, Shadow Price and avail-
able wind-supply. Considering the changing price profile starting from 2009 to
mid-2011 and the later availability of the forecasts (beginning 2010), we decided
to use data starting January-2010 to June-2011 for training and evaluating price
forecasting models. More concretely, we use year 2010 for training, three months
of 2011 (January, March and May) for validation (i.e., calibrating model param-
eters), and another three months of 2011 (February, April and June) for testing.
The choice of training, validation and test is made in order to respect the time
dependency in which we train on historical data of the past and forecast prices
into the future, as well as testing on months from different seasons to avoid the
bias of forecasting prices for summer or winter months exclusively (since prices
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Fig. 1. Half-hourly price (top-black) and demand (bottom-gray) from January-2009
to June-2011. The X axis represents the delivery time (every half-hour of a trading
day). The Y axis for the top-black plot represents the SMP in e /MWh and for the
bottom-gray plot, the Load in MWh.



962 G. Ifrim, B. O’Sullivan, and H. Simonis

 0

 200

 400

 600

 800

 1000
SEMO-EP2-week-01-to-07-January-2011-SMP

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 50  100  150  200  250  300

Delivery Time

SEMO-EP2-week-01-to-07-January-2011-LOAD

(a) First week of 2011.

 0

 200

 400

 600

 800

 1000
SEMO-EP2-highest-price-week-08-to-14-April-2011-SMP

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 50  100  150  200  250  300

Delivery Time

SEMO-EP2-highest-price-week-08-to-14-January-2011-LOAD

(b) Highest price week of 2011.

Fig. 2. Half-hourly price (top-black) and demand (bottom-gray) for two weeks in 2011

in the winter tend to be more volatile than prices in the summer). We also paid
attention to the detail that in the Irish electricity market, the actual values for
SMP, load, etc., are made available only four days after the tradeday, which
means that for prediction we can only use historical data with a gap of four
days back into the past from the current day. All evaluations of our models and
comparisons to the SEMO price forecasts are done on the three test months that
are not otherwise used in any way during training or validation.

We began our analysis with simple models, using only the historical SMP
for predicting the SMP of the next tradeday. We then gradually introduced
information about the Shadow Price, load and wind-generation and studied the
effect of each of these new variables on the prediction quality. Additionally, we
investigated the impact of weather forecasts and calendar information (weekend,
bank or school holidays) on the quality of the models. In order to estimate the
expected supply, we have extracted information on the daily generator bids and
planned generator outages available from SEMO and Eirgrid [24,11]. Information
about demand and supply is important since price peaks are typically an effect
of the mismatch between high load and low supply. Our data integrity checks
revealed missing days/hours in the original SEMO data. We have filled in the
missing half-hours by taking the data of the closest half-hour. The data collected
was available in different granularity (e.g., wind-supply obtained from Eirgrid
was sampled every 15 mins) and units (Eirgrid wind-supply was in MW vs SEMO
in MWh); we aggregated it to half-hourly granularity and converted the data to
same units (MWh). Since we rely on SEMO forecasts for building our models,
we estimated the SEMO forecast quality for each of the variables involved: load,
wind, shadow price, and SMP. Our evaluation on the training set showed that in
terms of forecast quality, the load forecast is most reliable, followed by shadow
price, SMP and wind. In our models we use local forecast-quality-estimates as
additional features. All the data collected is available online in csv files.2

2 http://4c.ucc.ie/~gifrim/Irish-electricity-market

http://4c.ucc.ie/~gifrim/Irish-electricity-market
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3.2 Machine Learning Models

We have investigated a range of regression models (e.g., linear regression, linear
SVM, various kernel-SVM), as well as analysed a variety of features and feature
combinations, and present here the two best approaches.

Model 1: Predicting the SMP Using Historical and Forecasted SMP,
Shadow Price, Load and Supply. This approach follows the classical line of
price prediction in international electricity markets where the main idea is to use
historical data, e.g., past prices, load, and supply, for training a price model for
the next trade-day. Since machine-learning models were shown to outperform
other techniques such as time series models [3,23,29], we focus on non-linear
regression techniques for building price forecasting models (e.g., Support Vector
Machines).

From the time series data, we extract regression vectors as follows. For each
half-hour of a tradeday, we take the actual SMP as a prediction target and use
historical data for the same half-hour in the past as features. For example, if the
SMP on 1st of January 2010, 7 AM, is e 31.04/MWh, we take this as a learning
target and the SMP at 7AM of D past days as features (in this case the most
recent historical data is from 27 December 2009, due to the 4 days gap). The
number of historical days D is a parameter of the model and is calibrated using
the validation dataset.

Since we also have access to day-ahead forecasts of SMP, shadow price, load,
wind and other-supply, we study those as additional features. We have addition-
ally investigated weather and calendar information as features, but these have
not increased the quality of the model. This may happen since calendar and
weather data is already factored into the load and wind-supply forecast, thus it
does not add new information to the model. We compute estimates of the weekly
and daily available supply from the information on outages and generator bids
publicly available from [24,11]. From Eirgrid, we use information on planned out-
ages to estimate the weekly maximum available supply based on the maximum
capacity of the available generating plants. From the day-ahead generator bids,
we extract features on daily available supply. For example, we set thresholds
on the maximum bid price (e.g., e 40) in order to obtain estimates of expected
cheap supply. The maximum price thresholds of bids are set at e 40, e 50 and
e 60, based on the bids and empirical SMP distribution on the validation set
(Figure 3). Once the data required for preparing features is processed, we scale
all features and use an SVM with an rbf kernel for learning. We use the LIBSVM
package [9] widely accepted as state-of-the-art for SVM implementations.

Model 2: Predicting the SMP Using the Local Average-SMP and a
Learned Difference-from-Average-Model. This approach moves away from
the more traditional Model 1, presented above, and builds on the following ob-
servation: the actual historical SMP is a good indicator for the average electricity
price at a given half-hour, but does not capture the particular behaviour of a
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Fig. 3. Empirical SMP distribution in our datasets. The X axis represents the SMP
truncated at e 500. The Y axis represents the frequency bins for the SMP values.
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given day in terms of the magnitude of the SMP peaks and valleys. It may be
that due to the particular features of the next tradeday (e.g., strong wind, lower
load, enough cheap supply), the SMP stays more or less flat, without exceptional
peaks or valleys, thus using the local average SMP itself as an estimate is not
sufficient for good prediction quality. Nevertheless, we can estimate the charac-
teristics of the next tradeday using the publicly available forecasts. Hereby, we
propose computing the final SMP as a sum of a locally computed average-SMP
(e.g., over the last D = 7 days) and a learned SMP-difference from the aver-
age, estimated from the training set, capturing whether the SMP is going up or
down with respect to the average. For example, for forecasting the SMP on 1st of
January 2010, 7AM (equal to e 31.04), we use the local average-SMP (equal to
e 29.57) over the most recent seven days, respecting the four day gap explained
above, as a first component. The second component is the learned-difference be-
tween the actual SMP and the average-SMP. As learning features we use the
difference between the forecasted tradeday characteristics (load, wind-supply,
shadow price) from their local averages. Intuitively, lower than average load and
higher than average wind, should trigger a decrease in price, thus a negative
difference of SMP from the average. A regression model can estimate the SMP-
difference from the differences of its features. We finally compute the SMP as
the sum of the local average and the predicted difference for the SMP.

Since this model relies heavily on the quality of the forecasts, for each fore-
casted variable used in the model, e.g., load, wind, smp, shadow price, we
have an additional feature capturing the local quality of that forecast (i.e.,
we measure over the past week the MSE between true and forecasted value
for load, wind, etc.). There is a large body of research literature on using
uncertain data for learning [1,2,28]. At the moment we use this simple ap-
proach for dealing with forecast uncertainty, and we plan to investigate more
advanced approaches in our future work. Our experiments show that even this
simple approach of integrating variable uncertainty leads to considerable model
improvement.

Evaluation. We use the Mean Squared Error (MSE) as a primary means for
evaluating the quality of price forecasts. This is a classical measure of both
bias and variance of the models [20]. It typically penalizes gross over or under-
estimates of the actual values. Additionally we show the Mean Absolute Error
(MAE) and the Skill-Score. The Skill-Score indicates the fractional improvement
in the MSE over a reference model [20]. We use SEMO (the market operator’s
forecast) as a reference model, and show the Skill-Score for our forecasts. The
parameters of our models are optimized for minimizing the MSE, and can be
calibrated for any quality measure the user finds fit.

Table 2 shows the evaluation of our price forecasts (FM1 and FM2), using the
market operator’s forecast (SEMO) as a strong3 baseline. The two forecasting
models we proposed show between 24-28% improvement over the MSE of the
SEMO price forecast.

3 For building price forecasts, SEMO uses more data than what is publicly available.
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Table 2. Half-hourly price forecasts: error rates for SEMO and our forecasts FM1 and
FM2 with respect to the true price

Method MAE MSE Skill-Score

SEMO 12.64 1086.25 NA

FM1 11.14 821.01 0.24

FM2 11.21 781.72 0.28

Paired t-tests on the MSE and MAE (at 0.95 confidence level) show our price
forecasts are statistically significantly better than those of SEMO. Table 3 gives
details of the confidence interval of the MSE for all three forecasts.

Table 3. T-tests details for the three price forecasts. Each row is a baseline. Each
column (SEMO, FM1, FM2) is compared against it. The upper (U) and lower (L)
limits of the 95% confidence intervals are shown.

Baseline Price SEMO FM1 FM2

Actual L 761.8 513.5 486.9
U 1410.7 1128.4 1076.4

SEMO L - 172.4 209.7
U - 358.0 399.3

FM1 L - - 11.5
U - - 66.9

So far we have focused on developing and analyzing electricity price forecasts
with respect to classical error measures (e.g., MSE, MAE). Next, we focus on
the effect of these forecasts on price-aware scheduling.

4 Price-Aware Scheduling Model

To test the quality of the price forecasts on a realistic scheduling problem, we
adapted a variant of the feedmill scheduling problem from [25]. The schedule is
generated from orders on the current day for delivery in the next morning. Tasks
i are scheduled on four disjunctive press lines with their allocated machine mi,
duration di, power requirement pi and due date ei, satisfying an overall power
limit lt at each time point t. We express the problem as a mixed integer pro-
gramming (MIP) minimization problem following [15], where the main decision
variables are 0/1 integers xit indicating whether task i starts at time t, and
non-negative, continuous variables prt denoting the power use at time t. For this
evaluation we choose the MIP formulation over a more conventional constraint
programming model, as it allows us to find the optimal solutions for the core
problem. The objective function is based on the predicted price vt, while the
evaluation of the quality uses the actual price at. This corresponds to a scenario
whereby a forecast price is available 24 hours in advance, but the price paid will
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be the actual market price. As executing the schedule requires significant prepa-
ration work, we cannot continuously reschedule based on the current, actual
price. Therefore, the energy cost of a schedule is computed as:

cost =
∑
t

pr∗t at (1)

where pr∗t is the profile value at time t of the optimal solution to the following
MIP problem:

min
∑
t

prtvt (2)

subject to:

∀i :
∑

t xit = 1 (3)

∀t :
∑

i

∑
t−di+1≤t′≤t pixit′ = prt ≤ lt (4)

∀m∀t :
∑

i|mi=m

∑
t−di+1≤t′≤t xit′ ≤ 1 (5)

∀i∀t|t+di>ei : xit = 0 (6)

We generated problem instances randomly, filling each production line to ca-
pacity for 24 hours, choosing random durations uniformly between 25 and 100
minutes, the last task generated will be truncated to fit into 24 hours, and power
requirements uniformly chosen between 0 and 200 kW. The time resolution was
set to 5 minutes, so that optimal solutions could be found within a 10 minute
timelimit. For each prediction day, from the same test period used for evaluating
the price forecasts, we generated 10 samples, in total 880 runs. For each instance
we computed the actual cost based on an optimal solution for the actual price,
for the SEMO forecast and for our two forecasts (FM1, FM2). The schedule
based on the actual price provides a lower bound, but since the actual price is
not known in advance, it is not realizable.

We also experimented with another scenario, where each production line will
be busy for only 12 hours. This allows us to avoid the peak price periods com-
pletely, which presents a much less challenging problem. The schedule overhead
decreases accordingly, and the results are similar to the ones presented here.

Table 4 shows summary results over all sample runs. It provides statistics of
the scheduling cost for the different price forecasts. We ran paired t-tests to assess
which price forecasts lead to significantly cheaper scheduling. We found that the
costs using all the three forecasts are very close to the optimal cost (within

Table 4. Summary Results of Price-Aware Schedule Costs

Price Min Median Mean Max

Actual 4,383,718 5,934,654 6,093,365 9,805,821

SEMO 4,507,136 6,054,220 6,272,768 10,218,804

FM1 4,499,811 6,058,093 6,266,800 10,070,541

FM2 4,570,552 6,094,818 6,283,261 10,059,264
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Table 5. Confidence intervals (95%) for price-aware scheduling costs comparing opti-
mal solutions priced using actual price, and each of the three forecasts (SEMO, FM1,
FM2). Baseline for comparison is the method identified on each row.

Price SEMO FM1 FM2

Actual L −200, 564.9 −193, 646.7 −211, 094.4
U −158, 241.3 −153, 222.5 −168, 697.4

SEMO L - −1, 506.1 −17, 262.6
U - 13, 443.1 −3, 722.9

FM1 L - - −23, 968.3
U - - −8, 954.2

5-10%), and that neither FM1 or FM2 forecasts were significantly better than
SEMO. In fact, the price forecast with best MSE (FM2, as shown in Table 2)
was significantly worse than the other two with respect to the energy cost of
the optimal schedule. Table 5 shows the confidence intervals for the average
difference between the optimal schedule cost and the costs obtained using the
forecasts. This was a somewhat surprising result: the best numeric forecasting
model (as judged with respect to classical learning measures, e.g., MSE), was
the worst model with respect to scheduling cost. We analyse in the following
section what is the correct approach to significantly reduce the energy-costs in
a scheduling context.

5 Properties of Energy-Price Forecasts for Scheduling

We analyze here the key properties of price forecasts that positively affect cost-
aware scheduling. What seems to matter most for scheduling is that the forecast-
ing model captures the price-trend rather than the exact real value (as measured
by MSE). Therefore, forecasting models that capture well the peaks and valleys
of the energy price have better behaviour when used for scheduling. To study
this hypothesis, we analysed the three previous forecasts in a classification frame-
work, where prices belong to one of two classes: peak or low price. The class is
decided using a threshold inferred from the empirical distribution of the price
on the validation set. We set the threshold at the 66th percentile (about e 60,
see Figure 3). Thus, if a price is above the threshold, it is in the peak class,
otherwise it is in the low class.

Analyzed in this context, all three forecasts have similar classification accu-
racy, about 78%. This could explain the lack of difference with respect to effect
on the energy cost of the schedule. To further study this hypothesis, we per-
formed the following experiment. Starting from the SEMO price forecast (with
78% classification accuracy), we artificially obtained better peak-price classifiers
by correcting the classification error. There are two types of classification error:
false positives (missing lows) and false negatives (missing peaks), and we be-
lieve that for scheduling it is more important to reduce the false negatives, than
the false positives. To test this, we have first corrected 50% of the false posi-
tives (if the classifier predicts peak, but the truth is low, we replace the SEMO
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Table 6. Confidence intervals for scheduling-costs of price forecasts with increasingly
better peak-price classification accuracy. FP-82% stands for forecast obtained by cor-
recting the false positive error, to obtain a forecast with 82% classification accuracy.
Statistically significant improvements are highlighted in bold.

Price SEMO-78% FP-82% FP-86%

SEMO-78% L - 19,610.6 29,274.0
SEMO-78% U - 28,795.2 39,735.0

FP-82% L - - 7,388.3
FP-82% U - - 13,214.8

Table 7. Confidence intervals for scheduling-costs of price forecasts with increasingly
better peak-price classification accuracy. FN-82% stands for forecast obtained by cor-
recting the false negative error, to obtain a forecast with 82% classification accuracy.
Statistically significant improvements are highlighted in bold.

Price SEMO-78% FN-82% FN-86%

SEMO-78% L - 30,223.1 46,582.4
SEMO-78% U - 66,446.1 86,151.5

FN-82% L - - 9,604.2
FN-82% U - - 26,460.4

price with the true price), and then 100% of the false positives, to obtain two
classifiers with 82% and 86% classification accuracy and their associated price
forecasts. Similarly, starting from SEMO’s forecast, we have corrected the same
number of errors as before, but this time from the false negatives, to obtain
two more classifiers with 82% and 86% accuracy. Finally, we have used SEMO
versus the four improved forecasts for cost-aware scheduling. The results show
that improved classification accuracy leads to reduced scheduling cost, and that
the type of classification error matters, with false negatives having more impact
on scheduling. Paired t-tests on the scheduling costs obtained with the differ-
ent forecasts showed that the improvement is statistically significant with very
high confidence (higher than 0.99). The schedule-cost improvement over SEMO
for the first two artificially improved forecasts is between 0.4-0.5%, and for the
second two between 0.8-1.0%. Given that SEMO was already within 5% of the
optimum schedule cost, this is a significant improvement. Tables 6 and 7 give
detailed results.

In conclusion, we show that developing good regression techniques where qual-
ity is evaluated using traditional learning measures is not effective for cost-aware
scheduling. We have also tested peak-price classification models trained similarly
to [29], but the thresholded regression models had slightly better classification
accuracy. We believe one needs to rather focus on various types of cost-sensitive
peak-price classifiers and their impact on scheduling cost, where ideally learn-
ing should inform scheduling decisions and scheduling should inform learning
decisions (i.e., the classifications costs have to be motivated by the scheduling
application).
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6 Conclusion

We have shown that using classical price-prediction features and machine learn-
ing techniques, one can obtain better price forecasts with respect to classical
error measures (e.g., MSE, MAE). When plugging the improved price forecasts
into cost-aware scheduling, we nevertheless do not observe the same benefit on
the schedule-cost. This suggests that scheduling requires specific features from
the price forecasts. This paper focuses on pruning the large space of learning
strategies to identify the most promising models for designing energy-efficient
schedules. We have shown that good peak-price classification behaviour is an im-
portant model property and that the type of classification error directly affects
cost-aware scheduling. This opens new research directions towards designing
cost-sensitive price classification forecasts for scheduling.

Our scheduling experiments also give some insights into the usefulness of al-
ternative tariff models. Besides a time-variable tariff based on the actual market
price, tariffs based on long- or short-term price prediction have been proposed
under the term time-of-use tariffs. In this case the customer knows in advance
the price to be paid, and the provider carries the risk of a wrong prediction. In
our scheduling problem, the value of the optimal solution based on the forecast
will then give the final cost of the schedule. This optimal value can be above or
below the cost based on the actual prices, but shows much higher variability as
compared to the cost using the actual market price. From our preliminary ex-
periments, it therefore seems preferable to use tarrifs based on the actual price.
We plan to investigate this further in our future work.

Acknowledgements. This work was funded by Science Foundation Ireland
under Grant 10/IN.1/I3032.

References

1. Aggarwal, C., Yu, P.: A survey of uncertain data algorithms and applications. IEEE
Transactions on Knowledge and Data Engineering 21(5), 609–623 (2009)

2. Aggarwal, C.C.: On multidimensional sharpening of uncertain data. In: Proceed-
ings of the SIAM International Conference on Data Mining (SDM), pp. 373–384
(2010)

3. Aggarwal, S.K., Saini, L.M., Kumar, A.: Day-ahead price forecasting in ontario
electricity market using variable-segmented support vector machine-based model.
Electric Power Components and Systems 37(5), 495–516 (2009)

4. Aggarwal, S.K., Saini, L.M., Kumar, A.: Electricity price forecasting in deregulated
markets: A review and evaluation. International Journal of Electrical Power and
Energy Systems 31(1), 13–22 (2009)

5. Aikema, D., Kiddle, C., Simmonds, R.: Energy-cost-aware scheduling of hpc work-
loads. In: IEEE International Symposium on a World of Wireless, Mobile and
Multimedia Networks, WoWMoM 2011, pp. 1–7 (June 2011)

6. Amjady, N., Keynia, F.: Day-ahead price forecasting of electricity markets by
mutual information technique and cascaded neuro-evolutionary algorithm. IEEE
Transactions on Power Systems 24(1), 306–318 (2009)



Properties of Energy-Price Forecasts for Scheduling 971

7. Bod́ık, P., Griffith, R., Sutton, C., Fox, A., Jordan, M., Patterson, D.: Statistical
machine learning makes automatic control practical for internet datacenters. In:
Proceedings of the 2009 Conference on Hot Topics in Cloud Computing, HotCloud
2009. USENIX Association, Berkeley (2009)

8. Buchbinder, N., Jain, N., Menache, I.: Online Job-Migration for Reducing the
Electricity Bill in the Cloud. In: Domingo-Pascual, J., Manzoni, P., Palazzo, S.,
Pont, A., Scoglio, C. (eds.) NETWORKING 2011, Part I. LNCS, vol. 6640, pp.
172–185. Springer, Heidelberg (2011)

9. Chang, C.-C., Lin, C.-J.: Libsvm: A library for support vector machines. ACM
Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011)

10. Connolly, D., Lund, H., Mathiesen, B., Leahy, M.: Modelling the existing irish
energy-system to identify future energy costs and the maximum wind penetration
feasible. Energy 35(5), 2164–2173 (2010)

11. EirGrid (2012), http://www.eirgrid.com/
12. Fan, S., Mao, C., Chen, L.: Next-day electricity-price forecasting using a hybrid

network. Generation, Transmission Distribution, IET 1(1), 176–182 (2007)
13. Finn, P., Fitzpatrick, C., Connolly, D., Leahy, M., Relihan, L.: Facilitation of renew-

able electricity using price based appliance control in ireland’s electricity market.
Energy 36(5), 2952–2960 (2011)

14. Guenter, B., Jain, N., Williams, C.: Managing cost, performance, and reliability
tradeoffs for energy-aware server provisioning. In: Proceedings of the IEEE Inter-
national Conference on Computer Communications (INFOCOM), pp. 1332–1340
(April 2011)

15. Hooker, J.: Integrated Methods for Optimization. Springer, New York (2007)
16. Jablonska, M., Mayrhofer, A., Gleeson, J.P.: Stochastic simulation of the uplift pro-

cess for the Irish electricity market. Mathematics-in-Industry Case Studies Jour-
nal 2, 86–110 (2010)

17. Kim, T., Poor, H.: Scheduling power consumption with price uncertainty. IEEE
Transactions on Smart Grid 2(3), 519–527 (2011)

18. Le, K., Bianchini, R., Martonosi, M., Nguyen, T.: Cost-and energy-aware load
distribution across data centers. In: Proceedings of HotPower. Citeseer (2009)

19. Mani, S., Rao, S.: Operating cost aware scheduling model for distributed servers
based on global power pricing policies. In: Proceedings of the Fourth Annual ACM
Bangalore Conference, COMPUTE 2011, pp. 12:1–12:8. ACM, New York (2011)

20. Pelland, S., Galanis, G., Kallos, G.: Solar and photovoltaic forecasting through
post-processing of the global environmental multiscale numerical weather predic-
tion model. Progress in Photovoltaics: Research and Applications (2011)

21. Ptak, P., Jablonska, M., Habimana, D., Kauranne, T.: Reliability of arma and garch
models of electricity spot market prices. In: Proceedings of European Symposium
on Time Series Prediction (September 2008)

22. Qureshi, A., Weber, R., Balakrishnan, H., Guttag, J., Maggs, B.: Cutting the
electric bill for internet-scale systems. In: Proceedings of the ACM SIGCOMM
2009 Conference on Data Communication, SIGCOMM 2009, pp. 123–134. ACM,
New York (2009)

23. Saini, L., Aggarwal, S., Kumar, A.: Parameter optimisation using genetic algorithm
for support vector machine-based price-forecasting model in national electricity
market. Generation, Transmission Distribution, IET 4(1), 36–49 (2010)

24. SEMO (2012), http://www.sem-o.com/
25. Simonis, H.: Models for global constraint applications. Constraints 12(1), 63–92

(2007)

http://www.eirgrid.com/
http://www.sem-o.com/


972 G. Ifrim, B. O’Sullivan, and H. Simonis

26. Simonis, H., Hadzic, T.: A family of resource constraints for energy cost aware
scheduling. In: Third International Workshop on Constraint Reasoning and Opti-
mization for Computational Sustainability, St. Andrews, Scotland, UK (September
2010)

27. Srikantaiah, S., Kansal, A., Zhao, F.: Energy aware consolidation for cloud com-
puting. In: Proceedings of the 2008 Conference on Power Aware Computing and
Systems, HotPower 2008, p. 10. USENIX Association, Berkeley (2008)

28. Yang, J.-L., Li, H.-X.: A probabilistic support vector machine for uncertain data.
In: IEEE International Conference on Computational Intelligence for Measurement
Systems and Applications, CIMSA 2009, pp. 163–168 (May 2009)

29. Zareipour, H., Janjani, A., Leung, H., Motamedi, A., Schellenberg, A.: Classi-
fication of Future Electricity Market Prices. IEEE Transactions on Power Sys-
tems 26(1), 165–173 (2011)



Aggregating Conditionally Lexicographic Preferences
on Multi-issue Domains
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Abstract. One approach to voting on several interrelated issues consists in using
a language for compact preference representation, from which the voters’ pref-
erences are elicited and aggregated. A language usually comes with a domain
restriction. We consider a well-known restriction, namely, conditionally lexico-
graphic preferences, where both the relative importance between issues and the
preference between values of an issue may depend on the values taken by more
important issues. The naturally associated language consists in describing condi-
tional importance and conditional preference by trees together with conditional
preference tables. In this paper, we study the aggregation of conditionally lex-
icographic preferences, for several voting rules and several restrictions of the
framework. We characterize computational complexity for some popular cases,
and show that in many of them, computing the winner reduces in a very natural
way to a MAXSAT problem.

1 Introduction

There are many situations where a group of agents have to make a common decision
about a set of possibly interrelated issues, variables, or attributes. For example, this is
the situation in the following three domains:

• Multiple referenda: there is a set of binary issues (such as building a sport centre,
building a cultural centre etc.); on each of them, the group has to make a yes/no decision.
• Committee elections: there is a set of positions to be filled (such as a president, a

vice-president, a secretary).
•Group product configuration: the group has to agree on a complex object consisting

of several components.

Voting on several interrelated issues has been proven to be a challenging problem from
both a social choice viewpoint and a computational viewpoint. If the agents vote sepa-
rately on each issue, then paradoxes generally arise [6,13]; this rules out this ‘decom-
positional’ way of proceeding, except in the restricted case when voters have separable
preferences. A second way consists in using a sequential voting protocol: variables are
considered one after another, in a predefined order, and the voters know the assign-
ment to the earlier variables before expressing their preferences on later ones (see, e.g.,
[14,15,2]). This method, however, works (reasonably) well only if we can guarantee that

M. Milano (Ed.): CP 2012, LNCS 7514, pp. 973–987, 2012.
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there exists a common order over issues such that every agent can express her prefer-
ences unambiguously on the values of each issue at the time he is asked to report them.
A third class of methods consists in using a language for compact preference represen-
tation, in which the voters’ preferences are stored and from which they are aggregated.
If the language is expressive enough to allow for expressing any possible preference
relation, then the paradoxes are avoided, but at a very high cost, both in elicitation and
computation. Therefore, when organizing preference aggregation in multiple interre-
lated issue, there will always be a choice to be made between (a) being prone to severe
paradoxes, (b) imposing a domain restriction or (c) requiring a heavy communication
and computation burden.

In this paper, we explore a way along the third class of methods. When eliciting,
learning, and reasoning with preferences on combinatorial domains, a domain restric-
tion often considered consists in assuming that preferences are lexicographic. Schmitt
et al. [17] address the learning of lexicographic preferences, after recalling that the psy-
chology literature shows evidence that lexicographic preferences are often an accurate
model for human decisions [10]. Learning such preferences is considered further in
[8,18], and then in [3] who learn more generally conditionally lexicographic prefer-
ences, where the importance order on issues as well as the local preferences over values
of issues can be conditional on the values of more important issues. The aggregation of
lexicographic preferences over combinatorial domains has received very little attention
(the only exception we know of is [1]). Yet it appears to be – at least in some contexts –
a reasonable way of coping with multiple elections. It does imply a domain restriction,
and arguably an important one; but, as explained above, domain restrictions seem to be
the only way of escaping both strong paradoxes and a huge communication cost, and
conditionally lexicographic preference models are not so restrictive, especially com-
pared to the most common domain restriction, namely separability.

The generic problem of aggregating conditionally lexicographic preferences can be
stated as follows. The set of alternatives is a combinatorial domain X composed of a
finite set of binary issues.1 We have a set of voters, each providing a conditionally lex-
icographic preference over X under the compact and natural form of a lexicographic
preference tree (LP-tree for short) [3], which we will define soon; therefore, a (com-
pactly represented) profile P consists of a collection of LP-trees. Since each LP-tree
L is the compact representation of one linear order =L over X , there is a one-to-one
correspondence between P and the (extensively represented) profile P ∗ consisting of a
collection of linear orders overX . Finally, for a given voting rule r, we ask whether there
is a simple way to compute the winner, namely r(P ∗), where ‘simple’ means that the
winner should be computed directly (and efficiently) from P and in any case we must
avoid to produceP ∗ in extenso, which would require exponential space. For many cases
where winner determination is computationally hard, we show that these problems can
be efficiently converted to MAXSAT problems and thus be solved by sat solvers.

The rest of the paper is organized as follows. Conditionally lexicographic preferences
and their compact representation by LP-trees are defined and discussed in Section 2. In
Section 3 we state the problem considered in this paper, namely the aggregation of

1 The assumption that variables are binary is made for the sake of simplicity due to the space
constraint. Most of our results would easily extend to the non-binary case.
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conditionally lexicographic preferences by voting rules. As we will see, some voting
rules are better than others in this respect. In the paper we focus on three families of
rules. First, in Section 4, k-approval rules: we show that for many values of k, we
can give a quite satisfactory answer to our question above, even for our most general
models. Note that by ‘satisfactory’ we do not necessarily mean “computable in poly-
nomial time”: for instance, when deciding whether a given alternative is a winner is
NP-complete but can be easily translated into a compact maximum (weighted) satis-
fiability problem, for which efficient algorithms exist, we still consider the answer as
(more or less) positive. In Section 5 we then focus on the Borda rule, and show that
the answer to our question is satisfactory for some of the simplest LP-tree models, but
less so for some general models. We also provide a natural family of scoring rules for
which the answer is positive in all cases. Then in Section 6 we consider the existence
of a Condorcet winner, and show that for Condorcet-consistent rules, and in particular
Copeland and maximin, the answer tends to be negative. Finally, Section 7 is devoted
to the specific case of LP-trees with fixed local preferences.

2 Conditionally Lexicographic Preferences and LP-Trees

Let I = {X1, . . . , Xp} (p ≥ 2) be a set of issues, where each issue Xi takes a value in
a binary local domain Di = {0i, 1i}. The set of alternatives is X = D1 × · · · × Dp,
that is, an alternative is uniquely identified by its values on all issues. Alternatives are
denoted by d, e etc. For any Y ⊆ I we denote DY =

∏
Xi∈Y Di. Let L(X ) denote the

set of all linear orders over X .
Lexicographic comparisons order pairs of outcomes (d, e) by looking at the at-

tributes in sequence, according to their importance, until we reach an attribute X such
that the value of X in d is different from the value of X in e; d and e are then ordered
according to the local preference relation over the values of X . For such lexicographic
preference relations we need both an importance relation, between attributes, and local
preference relations over the domains of the attributes. Both the importance between
attributes and the local preferences may be conditioned by the values of more impor-
tant attributes. Such lexicographic preference relations can be compactly represented
by Lexicographic Preference trees (LP-trees) [3], described in the next section.

2.1 Lexicographic Preference Trees

An LP-tree L is composed of two parts: (1) a tree T where each node t is labeled
by an issue, denoted by Iss(t), such that each issue appears once and only once on
each branch; each non-leaf node either has two outgoing edges, labeled by 0 and 1
respectively, or one outgoing edge, labeled by {0, 1}. (2) A conditional preference table
CPT(t) for each node t, which is defined as follows. Let Anc(t) denote the set of issues
labeling the ancestors of t. Let Inst(t) (respectively,NonInst(t)) denote the set of issues
in Anc(t) that have two (respectively, one) outgoing edge(s). There is a set Par(t) ⊆
NonInst(t) such that CPT(t) is composed of the agent’s local preferences over DIss(t)

for all valuations of Par(t). That is, suppose Iss(t) = Xi, then for every valuation u of
Par(t), there is an entry in the CPT which is either u : 0i = 1i or u : 1i = 0i. For
any alternative d ∈ X , we let the importance order of d in L, denoted by IO(L,d),
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to be the order over I that gives d in T . We use  to denote an importance order to
distinguish it from agents’ preferences = (over X ). If in T , each vertex has no more
than one child, then all alternatives have the same importance order , and we say that
 is the importance order of L.

An LP-tree L represents a linear order =L over X as follows. Let d and e be two
different alternatives. We start at the root node troot and trace down the tree according
to the values of d, until we find the first node t∗ such that d and e differ on Iss(t∗). That
is, w.l.o.g. letting Iss(troot) = X1, if d1 �= e1, then we let t∗ = troot; otherwise, we
follow the edge d1 to examine the next node, etc. Once t∗ is found, we let U = Par(t∗)
and let dU denote the sub-vector of d whose components correspond to the nodes in U .
In CPT(t∗), if dU : dt∗ = et∗ , then d =L e. We use L and =L interchangeably.

Example 1. Suppose there are three issues. An LP-tree L is illustrated in Figure 1.
Let t be the node at the end of the bottom branch. We have Iss(t) = X2, Anc(t) =
{X1, X3}, Inst(t) = {X1}, NonInst(t) = {X3}, and Par(t) = {X3}. The linear order
represented by the LP-tree is [001 = 000 = 011 = 010 = 111 = 101 = 100 = 110],
where 000 is the abbreviation for 010203, etc. IO(L, 000) = [X1  X2  X3] and
IO(L, 111) = [X1  X3  X2].

X1

X2 X3

X3 X2

01

11

{02,12}

{03,13}

01 � 11
02 � 12 13 � 03

13 � 03

03 : 02 � 12
13 : 12 � 02

t

Fig. 1. An LP-tree L

2.2 Classes of Lexicographic Preference Trees

The definition for LP-trees above is for the most general case. [3] also defined some
interesting sub-classes of LP-trees by imposing a restriction on the local preference
relations and/or on the conditional importance relation.

The local preference relations can be conditional (general case, as defined above),
but can also be unconditional (the preference relation on the value of any issue is in-
dependent from the value of all other issues). The most restrictive case is fixed, which
means that not only are the preferences unconditional, but that they are common to all
voters. Formally, UP is the class of LP-trees with unconditional local preferences: for
every issue Xi there exists a preference relation =i (1i =i 0i or 0i =i 1i) and for every
node t with Xi = Iss(t), Par(t) = ∅, and CPT(t) = {=i}. And FP is the class of
LP-trees with fixed local preferences (FP): without loss of generality, for every node t
(with Iss(t) = Xi), CPT(t) = {1i = 0i}.

Likewise, the importance relation over issues can be conditional (general case), or
unconditional, of fixed when it is common to all voters: (UI) is the set of all linear
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LP-trees, i.e., every node has no more than one child. And (FI) is the set of all linear
LP-trees with the (unconditional) importance order over issues [X1  . . .  Xp].

We can now combine a restriction on local preferences and a restriction on the im-
portance relation. We thus obtain nine classes of LP-trees, namely, FI-FP, UI-FP, CI-FP,
FI-UP, UI-UP, CI-UP, FI-CP, UI-CP, and CI-CP. For instance, UI-CP is defined as the
class of all LP-trees with unconditional importance relation and conditional preferences.
Note that the FI-FP class is trivial, as it contains a unique LP-tree.

Recall that a LP-tree is composed of a tree and a collection of conditional preference
tables. The latter is reminiscent of CP-nets [4]. In fact, it can be viewed as some kind
of generalized CP-net whose dependency relations between variables (induced from
the importance relation) may be conditional on the values of their parent variables.
However, in the case of an unconditional importance relation (UI), then the collection
of CP-tables is a CP-net, and the LP-tree is a TCP-net [5]. In the general case however,
a conditionally lexicographic preferences cannot be represented by a TCP-net.

3 Aggregating LP-Trees by Voting Rules

We now consider n voters. A (voting) profile P over a set of alternatives X is a collec-
tion of n linear orders on X . A voting rule r maps every profile P to a nonempty subset
of X : r(P ) is the set of co-winners for r and P .

A scoring function S is a mapping L(X )n×X → R. Often, a voting rule r is defined
so that r(P ) is the set of alternatives maximizing some scoring function Sr. In partic-
ular, positional scoring rules are defined via a scoring vector v = (v(1), . . . , v(m)),
where m is the number of alternatives (here, m = 2p): for any vote V ∈ L(X ) and any
c ∈ X , let Sv(V, c) = v(rankV (c)), where rankV (c) is the rank of c in V ; then for any
profile P = (V1, . . . , Vn), let Sv(P, c) =

∑n
j=1 Sv(Vj , c). The winner is the alternative

maximizing Sv(P, ·). In particular, the k-approval rule Appk (with k ≤ m), is defined
by the scoring vector v(1) = · · · = v(k) = 1 and v(k + 1) = · · · = v(m) = 0, the
scoring function being denoted by Sk

App; and the Borda rule is defined by the scoring
vector (m− 1,m− 2, . . . , 0), the scoring function being denoted by SBorda.

An alternative α is the Condorcet winner for a profile P if for any β �= α, a (strict)
majority of votes in P prefers α to β. A voting rule is Condorcet-consistent if it elects
the Condorcet winner whenever one exists. Two prominent Condorcet-consistent rules
are Copeland and maximin. The Copeland winners are the alternatives α that maximize
the Copeland score C(α), defined as the number of alternatives β such that a majority of
votes in P prefers α to β. The maximin winners are the alternatives α that maximize the
maximin score SMM(α), defined as SMM(P, α) = max{NP (β, α) : β ∈ X , β �= α},
where NP (β, α) denotes the number of votes in P that rank α ahead of β.

3.1 Voting Restricted to Conditionally Lexicographic Preferences

The key problem addressed in this paper is the following. We know that applying voting
rules to profiles consisting of arbitrary preferences on multi-issue domains is computa-
tionally difficult. Does it become significantly easier when we restrict to conditionally
lexicographic preferences? The question, of course, may depend on the voting rule used.
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A conditionally lexicographic profile is a collection of n conditionally lexicographic
preferences over X . As conditionally lexicographic preferences are compactly repre-
sented by LP-trees, we define a LP-profile P as a collection of n LP-trees. Given a class
C of LP-trees, let us call C-profile a finite collection of LP-trees in C.

Given a LP-profile P and a voting rule r, a naive way of finding the co-winners would
consists in determining the n linear orders induced by the LP-trees and then apply r to
these linear orders. However, this would be very inefficient, both in space and time. We
would like to know how feasible it is to compute the winners directly from the LP-trees.
More specifically, we ask the following questions: (a) given a voting rule, how difficult
is it to compute the co-winners (or, else, one of the co-winners) for the different classes
of LP-trees? (b) for score-based rules, how difficult is it to compute the score of the
co-winners? (c) is it possible to have, for some voting rules and classes of LP-trees, a
compact representation of the set of co-winners?

Formally, we consider the following decision and function problems.

Definition 1. Given a class C of LP-trees and a voting rule r that is the maximizer
of scoring function S, in the S-SCORE and EVALUATION problems, we are given a C-
profile P and an alternative d. In the S-SCORE problems, we are asked to compute
whether S(P,d) > T for some given T ∈ N. In the EVALUATION problem, we are
asked to compute whether there exists an alternative d with S(P,d) > T for some
given T ∈ N. In the WINNER problem, we are asked to compute r(P ).

When we say that WINNER for some voting rule w.r.t. some class C is in P, the set of
winners can be compactly represented, and can be computed in polynomial time.

Note that if EVALUATION is NP-hard and the score of an alternative can be computed
in polynomial time, then WINNER cannot be in P unless P = NP: if WINNER were in P,
then EVALUATION could be solved in polynomial time by computing a winner and its
score.

For the voting rules studied in this paper, if not mentioned specifically, EVALUATION

is w.r.t. the score functions we present when defining these rules. In this paper, we only
show hardness proofs, membership in NP or #P is straightforward.

3.2 Two Specific Cases: Fixed Importance and Fixed Preference

It is worth focusing on the specific case of the class of profiles composed of LP-trees
which have a fixed, linear structure: there is an order of importance among issues, which
is common to all voters: X1 is more important than X2, which is itself more important
than X3, and so on. . . . Voters of course may have differing local preferences for the
value for each issue, and their preferences on each issue may depend on the values of
more important issues. A simple, easy to compute, and cheap in terms of communica-
tion, rule works as follows [14]: choose a value for X1 according to the majority rule
(possibly with a tie-breaking mechanism if we have an even number of voters); then,
choose a value for X2 using again the majority rule; and so on. The winner is called
the sequential majority winner. When there is an odd number of voters, the sequential
majority winner is the Condorcet winner (cf. Proposition 3 in [14], generalized in [7]
to CI-profiles in which all voters have the same importance tree.). This, together with
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the fact that the sequential majority winner can be computed in polynomial time, shows
that the winner of any Condorcet-consistent rule applied to FI profiles can be computed
in polynomial time.

The case of fixed preferences is very specific for a simple reason: in this case, the
top-ranked alternative is the same for all voters! This makes the winner determination
trivial for all reasonable voting rules. However, nontrivial problems arise if we have
constraints that limit the set of feasible alternatives. We devote Section 7 to aggregating
FP trees.

4 k-Approval

We start by the following lemma. Most proofs are omitted due to the space constraint.

Lemma 1. Given a positive integer k′ such that 1 ≤ k′ ≤ 2p written in binary, and
an LP-tree L, the k′-th preferred alternative of =L can be computed in time O(p) by
Algorithm 1.

Algorithm 1. FindAlternative(L, k′)
1 Let k∗ = (k∗

p−1...k
∗
0)2 = 2p − k′ and L∗ = L;

2 for i = p− 1 down to i = 0 do
3 Let Xj be the root issue of L∗ with local preferences xj + xj ;
4 if k∗

i = 1 then
5 Let L∗ ← L∗(xj) (the subtree of L∗ tracing the path Xj = xj) and let aj = xj ;
6 end
7 else Let L∗ ← L∗(xj) and let aj = xj ;
8 end
9 return a.

Similarly, the position of a given alternative d can be computed in time O(p). It follows
that the k-approval score of any alternative in a CI-CP profile can be computed in time
O(np). However, this does not mean that the winner can be computed easily, because
the number of alternatives is exponential in p. For some specific values of k, though,
computing the k-approval winner is in P.

Proposition 1. Let k be a constant independent of p. When the profile is composed of
n LP-trees, computing the k-approval co-winners for P can be done in time O(knp).

Proof: We compute the top k alternatives of each LP-tree in P ; we store them in a
table together with their k-approval score. As we have at most kn such alternatives,
constructing the table takes O(knp). �
A similar result also holds for computing the (2p − k)-approval co-winners for any
constant k.2

Theorem 1 (CI-CP). For CI-CP profiles, WINNER for 2p−1-approval can be computed
in time O(np).

2 However, there is little practical interest in using 2p − k approval for a fixed (small) value of
k, since in practice, we will have kn% 2p, and almost every alternative will be a co-winner.
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Proof: We note that an alternative d is among the first half of alternatives in Lj iff the
root issue of Lj is assigned to the preferred value. We build a table with the following
2p entries {11, 01, . . . , 1p, 0p}: for every Lj we add 1 to the score of 1i (resp. 0i) if Xi

is the root issue of Lj and the preferred value is 1i (resp. 0i). When this is done, for
each Xi, we instantiate Xi to 1i (resp. 0i) if the score of 1i is larger than the score of 0i
(resp. vice versa); if the scores are identical, we do not instantiate Xi. We end up with
a partial instantiation, whose set of models (satisfying valuations) is exactly the set of
co-winners. �
Applying 2p−1-approval here is both intuitive and cheap in communication (each voter
only communicates her most important issue and its preferred value), and the output
is computed very easily. On the other hand, it uses a very small part of the LP-trees.
We may want to do better and take, say, the most important two issues into account,
which comes down to using 2k−2-approval or (2k−1 + 2k−2)-approval. However, this
comes with a complexity cost. Let M be a constant independent of p and n and define
N(M,p) to be the set of all multiples of 2p−M that are≤ 2p, except 2p−1. For instance,
if M = 3 then N(3, p) = {2p−3, 2p−2, 2p−2+2p−3, 2p−1+2p−3, 2p−1+2p−2, 2p−1+
2p−2 + 2p−3}.

Theorem 2 (UI-UP). For any k ∈ N(M,p), for UI-UP profiles, EVALUATION for k-
approval is NP-hard.

Proof sketch: When k = 2p−i for some i ≥ 2, the hardness of EVALUATION is proved
by a reduction from the NP-complete problem MIN2SAT [12], where we are given a
set Φ of clauses, each of which is the disjunction of two literals, and an integer T ′. We
are asked whether there exists a valuation that satisfy smaller than T ′ clauses in Φ. We
next show the case k = 2p−2 as an example. We note that d is among the first quarter
of alternatives in Lj iff the root issue of Lj is assigned to the preferred value, and the
second most important issue in IO(Lj ,d) is assigned to the preferred value as well.
Now, we give a polynomial reduction from MIN2SAT to our problem: given a set Φ
of 2-clauses, the negation ¬Ci of each clause Ci ∈ Φ is mapped into a UI-UP LP-tree
whose top quarter of alternatives satisfies ¬Ci (for instance, ¬X3∧X4 is mapped into a
LP-tree whose two most important issues are X3 and X4, and their preferred values are
03 and 14). The set of co-winners is exactly the set of valuations satisfying a maximal
number of clauses ¬Ci, or equivalently, satisfying a minimal number of clauses in Φ.

The hardness for any other k in N(M,p) is proved by a reduction from special cases
of the MAXSAT problem, which are omitted due to the space constraint. �
The hardness proofs carry over to more general models, namely {UI,CI}×{UP,CP}.
We next present an algorithm that converts winner determination for k-approval to a
compact GENERALISED MAXSAT problem (“generalised” here means that the input
is a set of formulas, and not necessarily clauses). The idea is, for each LP-tree Lj ,
we construct a formula ϕj such that an alternative (valuation) is ranked within top k
positions iff it satisfies ϕj . ϕj is further composed of the disjunction of multiple sub-
formulas, each of which encodes a path from the root to a leaf in the tree structure, and
the valuations that are ranked among top k positions.

Formally, for each path u, we define a formula Cu that is the conjunction of literals,
where there is an literal Xi (resp., ¬Xi) if and only if along the path u, there is an edge
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marked 1i (resp., 0i). For any path with importance orderO (w.l.o.g.O = X1  X2 
· · ·  Xp) and k = (kp−1 . . . k0)2 in binary, we define a formula DO,k. Due to the
space constraint, we only present the construction for the CI-UP case, but it can be eas-
ily extended to the CI-CP case. For each i ≤ p−1, let li = Xi if 1i = 0i, and li = ¬Xi

if 0i = 1i. Let DO,k be the disjunction of the following formulas: for every i∗ ≤ p− 1
such that ki∗ = 1, there is a formula (

∧
i>i∗:ki=0 li) ∧ li∗ . To summarize, for each LP-

tree Lj in the profile we have a formula ϕj , and we can use a (generalised) MAXSAT

solver to find a valuation that maximizes the number of satisfied formulas {ϕj}. Note
that there are efficient such solvers; see, e.g., [16] and the Minimally Unsatisfiable Sub-
set Track of the 2011 Sat Competition, at http://www.satcompetition.org/2011/#tracks.

Example 2. Let L denote the LP-tree in Example 1, except that the preferences for t is
unconditionally 02 = 12. Let k = 5 = (101)2. For the upper path we have the following
clause (¬X1)∧(¬X1∨(¬X2∧X3)). For the lower path we have the following formula
(X1) ∧ (¬X1 ∨ (X3 ∧ ¬X2)).

Theorem 3. For any k ≤ 2p − 1 represented in binary and any profile P of LP-trees,
there is a polynomial-size set of formulas Φ such that the set of k-approval co-winners
for P is exactly the set of the models of MAXSAT(Φ).

Therefore, though WINNER for k-approval is hard to compute for some cases, it can be
done efficiently in practice by using a generalized MAXSAT solver.

Note that all polynomiality results for k-approval carry on to the Bucklin voting rule
(that we do not recall): it suffices to apply k-approval dichotomously until we get the
value of k for which the score of the winner is more than n

2 .
Now, we focus on the specific case of fixed importance orders (FI).

Theorem 4 (FI-CP). Let k ∈ N(M,p). For FI-CP profiles, WINNER for k-approval
can be computed in time O(2M · n).
Proof sketch: For simplicity, we only present the algorithm for the case k = 2p−2. The
other cases are similar. Let X1 > X2 > . . . be the importance order, common to all
voters. There are four types of votes: those for which the 2p−2 top alternatives are those
satisfying γ1 = X1 ∧ X2 (type 1), those satisfying γ2 = X1 ∧ ¬X2 (type 2), etc. Let
αi be the number of votes in P of type i (i = 1, 2, 3, 4). The 2p−2-approval co-winners
are the alternatives that satisfy γi such that αi = max{αi, i = 1, . . . , 4}. �

5 Borda

We start with a lemma that provides a convenient localized way to compute the Borda
score for a given alternative in an LP-tree L. For any d = (d1, . . . , dp) ∈ X and
any i ≤ p, we define the following notation, which is an indicator whether the i-th
component of d is preferred to its negation in L, given the rest of values in d, denoted
by d−i.

Δi(L,d) =
{
1 if in L, di = di given d−i

0 Otherwise
Δi(L,d) can be computed in polynomial-time by querying the CPT of Xi along
IO(L,d). We let rank(Xi,L,d) denote the rank of issue Xi in IO(L,d).
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Lemma 2. For any LP-treeL and any alternatived, we have the following calculation:

SBorda(L,d) =
p∑

i=1

2p−rank(Xi,L,d) ·Δi(L,d)

Example 3. Let L denote the LP-tree defined in Example 1. We have SBorda(L, 011) =
22 · 1 + 21 · 0 + 20 · 1 = 5 and SBorda(L, 101) = 22 · 0 + 20 · 0 + 21 · 1 = 2.

Hence, the Borda score of d for profile P = (L1, . . . ,Ln) is SBorda(P,d) =∑n
j=1

∑p
i=1 2

p−rank(Xi,Lj ,d) ·Δi(Lj ,d).

Theorem 5 (CI-UP). For CI-UP profiles, EVALUATION is NP-hard for Borda.

Proof sketch: We prove the NP-hardness by a reduction from 3SAT. Given a 3SAT

instance, we construct an EVALUATION instance, where there are q + 2 issues I =
{c, d}∪{X1, . . . , Xq}. The clauses are encoded in the following LP-trees: for each j ≤
t, we define an LP-tree Lj with the following structure. Suppose Cj contains variables
Xi1 , Xi2 , Xi3 (i1 < i2 < i3), and di1 , di2 , di3 are the valuations of the three variables
that satisfy Cj . In the importance order of Lj , the first three issues are Xi1 , Xi2 , Xi3 .
The fourth issue is c and the fifth issue is d if and only if Xi1 = di1 , Xi2 = di2 , or
Xi2 = di2 ; otherwise the fourth issue is d and the fifth issue is c. The rest of issues
are ranked in the alphabetical order (issues in C are ranked higher than issues in S).
Then, we set the threshold appropriately (details omitted due to the space constraint)
such that the Borda score of an alternative is higher than the threshold if and only if its
d-component is 1, and the its values for X1, . . . , Xp satisfy all clauses. �
Finally, we show that WINNER for Borda can be converted to a weighted generalized
MAXSAT problem. We note that Δi(Lj ,d) can be represented compactly by a formula
ϕi
j such that a valuation d satisfies ϕi

j iff Δi(Lj ,d) = 1. The idea is similar to the
logical formula for k-approval, where each path u corresponds to a clause Cu, and there
is another clause depicting whether Δi(Lj ,d) = 1 in u. For example, let L denote the
LP-tree in Example 1, then Δ2(L,d) can be presented by the disjunction of the clauses
for the two paths: ¬X1∧¬X2 for the upper path, and X1∧((¬X3∧¬X2)∨(X3∧X2))
for the lower path.

Theorem 6. For any profile P of LP-trees, there is a set of clauses Φ with weights such
that the set of Borda co-winners for P is exactly the set of the models of WEIGHTED

MAXSAT(Φ).

Now, we focus on the specific case of unconditional importance orders (UI). When,
for each Lj the importance order is unconditional, rank(Xi,Lj ,d) does not depend on
d: let us denote it rank(Xi,Lj). It can be computed in polynomial time by a simple
exploration of the tree Lj .

If the preferences are unconditional, then the Borda winner is the alternative d that
maximises

∑p
i=1

∑n
j=1 2

p−rank(Xi,Lj)Δi(Lj ,d). We can choose in polynomial time
the winning value for each issue independently: it is the di that maximizes

n∑
j=1

2p−rank(Xi,Lj)Δi(Lj , di) where Δi(Lj , di) =
{
1 if in Lj , di = di
0 otherwise.
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Note that this method still works if the voters have differing importance order – pro-
vided they still have unconditional importance.

Theorem 7 (UI-UP). For UI-UP profiles, WINNER for Borda can be computed in poly-
nomial time.

However, if we allow conditional preferences, computing the Borda winner becomes
intractable:

Theorem 8 (FI-CP). For FI-CP profiles, EVALUATION is NP-hard for Borda.

Proof: It is not hard to see that EVALUATION is in NP. We prove the hardness by
a reduction from 3SAT. In a 3SAT instance, we are given a formula F over binary
variables X1, . . . , Xq . F is the conjunction of t disjunctive clauses. Let F = C1 ∧
. . . ∧ Ct over binary variables. We are asked whether there exists a valuation of the
variables under which F is true. Given any 3SAT instance, we construct the following
EVALUATION instance.

Issues: There are q + 1 issues. For convenience, we use I = {c} ∪ {X1, . . . , Xq} to
denote these issues. W.l.o.g. let O = [X1  X2  · · ·  Xq  c] denote the fixed
importance relation for the LP-trees.

Profile: The profile P is composed of two parts P1 and P2, where P1 encodes the
3SAT instance. For any clause Cj = l1j ∨ l2j ∨ l3j , we define the two LP-trees Lj and
L′j . Suppose Xi1 , Xi2 , Xi3 are the variables that correspond to l1j , l

2
j , l

3
j respectively. In

both LP-trees, Par(Xq+1) = {Xi1 , Xi2 , Xi3}, and none of the other nodes (issues) has
parents. The CPTs are defined as follows.

• Lj : For every i ≤ q, 0i = 1i. For every assignment (di1 , di2 , di3) of {Xi1 , Xi2 ,
Xi3}, the CPT entries for c are di1di2di3 : 1q+1 = 0q+1 if and only if Cj is satisfied by
(di1 , di2 , di3).
• L′j : For every i ≤ q, 1i = 0i. The CPT for c is the same as in Lj .

Let P1 = {L1,L′1, . . . ,Lt,L′t}. P2 is composed of t copies of the following two UP
LP-trees, which are L, where for every i ≤ q, 0i = 1i. 1c = 0c, and L′, where for every
issue, 1 = 0. P2 is used to make sure that we only need to focus on alternatives whose
c-component is 1.

Let P = P1 ∪ P2. For any valuation d−c = (d1, . . . , dq), SBorda(P, (d−c, 1c)) =
2t · (2q − 1) + 2 ·K(F,d−c), where K(F,d−c) is the number of clauses in F that are
satisfied by d−c; and SBorda(P, (d−c, 0c)) ≤ 2t · (2q − 1).

It follows that there exists an alternative whose Borda score is more than T =
t · 2q+1 − 1 if and only if the 3SAT instance is a “yes” instance. This completes the
proof. �

6 Condorcet-Consistent Rules

We start by studying the several classes of conditionally lexicographic preferences ac-
cording to the existence of a Condorcet winner. We recall the following result from [7]:
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Lemma 3. [7] For FI-CP profiles, there always exists a Condorcet winner, and it can
be computed in polynomial time.

Proposition 2. The existence of a Condorcet winner for our classes of conditionally
lexicographic preferences is depicted on the table below, where yes (resp. no) means
that the existence of a Condorcet winner is guaranteed (resp. is not guaranteed) for an
odd number of voters.

FP UP CP
FI yes yes yes
UI yes no no
CI yes no no

Proof: We know from [7] that for FI-CP profiles, there always exists a Condorcet win-
ner, and it can be computed in polynomial time. For CI-FP profiles, since all voters have
the same top alternative, the existence of a Condorcet winner is trivial. Finally, here is
a UI-UP profile with two variables and three voters, that has no Condorcet winner:
– Voter 1: [X  Y ], x = x̄, y = ȳ, and the linear order is [xy = xȳ = x̄y = x̄ȳ].
– Voter 2: [Y  X ], x̄ = x, y = ȳ, and the linear order is [x̄y = xy = x̄ȳ = xȳ].
– Voter 3: [Y  X ], x̄ = x, ȳ = y, and the linear order is [x̄ȳ = xȳ = x̄y = xy]. �

Theorem 9 (UI-UP). For UI-UP profiles, deciding whether a given alternative is the
Condorcet winner is coNP-hard.

Proof sketch: We prove the hardness by a reduction from the decision version of
MAX HORN-SAT, which is known to be NP-complete [11]. In the decision version
of MAX HORN-SAT, we are given a horn formula F = C1 ∧ · · · ∧ Ct over variables
{X1, . . . , Xq}, where each clause is a horn clause (containing no more than one posi-
tive literal), and a natural number K . We are asked whether there exists a valuation that
satisfy more than K clauses. W.l.o.g. K ≥ t/2, because there always exists a valuation
that satisfies at least half of the clauses. For each horn clause, we define an LP-tree as
follows. A clause having the form Cj = ¬X1 ∨ · · · ∨ ¬Xl ∨ Xl+1 corresponds to an
LP-tree whose importance order is [X1  · · ·  Xl+1  c  Others], and whose local
preferences are 0 = 1 for X1 . . .Xl and c, and 1 = 0 for other issues. A clause having
the form Cj = ¬X1 ∨ · · · ∨ ¬Xl corresponds to an LP-tree whose whose importance
order is [X1  · · ·  Xl  c  Others], and whose local preferences are 0 = 1 for
issues X1 · · ·Xl, and 1 = 0 for other issues.

We also have 2k− t LP-trees with importance order [c  Others], and the local pref-
erences are 0c = 1c, and for other issues, 1 = 0. We can show that 1 is the Condorcet
winner iff the MAX HORN-SAT does not have a solution. �

Corollary 1. For UI-UP profiles, EVALUATION for maximin is coNP-hard.

7 Fixed Preferences

When the agents’ local preferences are fixed (w.l.o.g. 1 = 0), issues can be seen as
objects, and every agent has a preference for having an object rather than not, everything
else being equal. Obviously, the best outcome for every agent is 1, and applying any
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reasonable voting rule (that is, any voting rule that satisfies unanimity) will select this
alternative, making winner determination trivial. However, winner determination ceases
to be trivial if we have constraints that limit the set of feasible alternatives. For instance,
we may have a maximum number of objects that we can take.

Let us start with the only tractability result in this section, with the Borda rule. Re-
call that, when, for each Lj the importance order is unconditional, rank(Xi,Lj) does
not depend on d. If, the preferences are fixed, Δi(Lj ,d) = di, and SBorda(P,d) =∑p

i=1 di
∑n

j=1 2
p−rank(Xi,Lj). We have the following theorem, which states that for the

UI-FP case, computing the Borda winner is equivalent to computing the winner for a
profile composed of importance orders, by applying some positional scoring rule. For
any order  over I, let ext() denote the UI-FP LP-tree whose importance order is .

Theorem 10 (UI-FP). Let fp denote the positional scoring rule over I with the scor-
ing vector (2p−1, 2p−2, . . . , 0). For any profile PI over I, we have ext(fp(PI)) =
Borda(ext(PI)).

However, when the importance order is conditional, the Borda rule becomes intractable.
We prove that using the following problem:

Definition 2. Let voting rule r be the maximizer of scoring function S. In the K -
EVALUATION problem, we are given a profile P that is composed of lexicographic
preferences whose local preferences for all issues are 1 = 0, a natural number K ,
and an integer T . We are asked to compute whether there exists an alternative d that
takes 1 on no more than K issues and S(P,d) > T .

Theorem 11 (CI-FP). For CI-FP profiles, K -EVALUATION is NP-hard for Borda.

Proof sketch: We prove the NP-hardness by a reduction from restricted X3C where
no element in C is covered by more than 3 sets in S, which is NP-complete (problem
[SP2] in [9]). Given an X3C instance S = {S1, · · · , St} over C = {c1, . . . , cq}, we
construct an EVALUATION instance where there are q + 1 + 1 issues {c} ∪ A ∪ E , and
the alternative that maximizes the Borda score must take 1 for all issues in A and q/3
issues in E . Then, the Borda score of the alternative is above the quota if and only if the
issues chosen in E consist in a cover of A. �

Theorem 12 (UI-FP). Let k ∈ N(M,p). For UI-FP profiles, K-EVALUATION for k-
approval is NP-hard.

Proof sketch: For simplicity, we only show the proof for the case k = 2p−2. The other
cases are similar. The hardness is proved by a reduction from X3C, where we are given
two sets A = {a1, . . . , aq} and E = {E1, . . . , Et}, where for each E ∈ S, E ⊆ A and
|E| = 3. We are asked whether there exist q/3 elements in S such that each element
in A appears in one and exactly one of these elements. There are t + 1 issues and
q LP-trees. In each LP-tree Lj , suppose aj ∈ Ei, then we let the importance order be
Xq+1  Xi  Others. We let K = q/3+1 and let T = q−1. It shows that the solutions
to the K -EVALUATION instance correspond to the solutions to the X3C instance. �

Theorem 13 (UI-FP). For UI-FP profiles, Copeland-SCORE is #P-hard.
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Table 1. Summary of computational complexity results

FP UP CP

FI Trivial
P

(Thm. 4)
UI NPC

(Thm. 12)
NPC

(Thm. 2)CI

FP UP CP
FI Trivial P

(Thm. 7)
NPC

(Thm. 8)
UI P

CI
NPC

(Thm. 11)
NPC

(Thm. 5)
(a) k-approval, k ∈ N(M,p). (b) Borda.

FP UP CP

FI Trivial
Polynomial
(Lemma 3)

UI #P-complete
(Thm. 13)CI

FP UP CP

FI
Trivial

P
(Lemma 3)

UI coNPC
(Thm. 9, Coro. 1)CI

(c) Copeland score. (d) Maximin and Condorcet winner.

The proof is by polynomial-time counting reduction from #INDEPENDENT SET. Max-
imin, when the preferences are fixed (to be 1 = 0 for all issues), the maximin score
of 1 is 0 and the maximin score of any other alternative is 2p − 1. This trivialize the
computational problem of winner determination even when with the restriction on the
number of issues that take 1 (if K �= p then all available alternatives are tied). Following
Lemma 3, for FI profiles, the winner can be computed in polynomial-time.

8 Summary and Future Work

Our main results are summarized in Table 1. In addition, we can also show that for k-
approval (except k = 2p−1), Copeland and maximin, there is no observation similar to
Theorem 10, and the maximin score of a given alternative is APX-hard to approximate.

Our conclusions are partly positive, partly negative. On the one hand, there are vot-
ing rules for which the domain restriction to conditionally lexicographic preferences
brings significant benefits: this is the case, at least, for k-approval for some values of
k. The Borda rule can be applied easily provided that neither the importance relation
and the local preference are unconditional, which is a very strong restriction. The hard-
ness of checking whether an alternative is a Condorcet winner suggest that Condorcet-
consistent rules appears to be hard to apply as well. However, as we have shown that
some of these problems can be reduced to a compact MAXSAT problem. From a prac-
tical point of view, it is important to test the performance of MAXSAT solvers on these
problems. We believe that continuing studying preference representation and aggre-
gation on combinatorial domains, taking advantages of developments in efficient CSP
techniques, is a promising future work direction.
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Abstract. The optimal search path (OSP) problem is a single-sided
detection search problem where the location and the detectability of a
moving object are uncertain. A solution to this NP-hard problem is a
path on a graph that maximizes the probability of finding an object that
moves according to a known motion model. We developed constraint pro-
gramming models to solve this probabilistic path planning problem for
a single indivisible searcher. These models include a simple but power-
ful branching heuristic as well as strong filtering constraints. We present
our experimentation and compare our results with existing results in the
literature. The OSP problem is particularly interesting in that it gener-
alizes to various probabilistic search problems such as intruder detection,
malicious code identification, search and rescue, and surveillance.

1 Introduction

The optimal search path (OSP) problem we address in this paper is a single-sided
detection search problem where the location and the detectability of a moving
search object are uncertain. The single-sided search assumption means that the
object’s movements are independent of the searcher’s actions. In other words,
the object does not act, neither to meet nor to escape the searcher. A solution to
this NP-hard problem [1] is a path on a graph that maximizes the probability
of finding an object that moves according to a known motion model. In the
OSP problem, a moving agent must plan its optimal path in order to detect a
mobile search object subject to constraints. This is a path planning problem for a
detection search with uncertainty on the whereabouts of the search object, on the
detection capabilities of the searcher, and on the movement of the search object.
This type of problem arises in many applications related to detection searches
namely, search and rescue [2], military surveillance, malicious code detection [3],
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covert messages (violating the security policies of the system) on the Internet [4],
and locating a mobile user in a cellular network for optimal paging [5]. In this
paper, we introduce constraint programming (CP) models that we developed in
order to solve the OSP problem. We assume a single indivisible searcher where
search effort corresponds to the time available for searching and a probability of
detection is associated with each time step. Furthermore, the movement of the
searcher is constrained to an accessibility graph.

Most work on the single searcher OSP problem in discrete time and space
involved branch and bound (BB) algorithms. In [6], Stewart proposed a depth-
first BB algorithm using a bound that does not guarantee optimality. Eagle
[7] considered a Markovian object’s motion model and proposed a dynamic pro-
gramming approach. Eagle and Yee [8] presented an optimal bound for Stewart’s
BB algorithm. With an object following a Markovian motion model and an ex-
ponential probability of detection (pod) function, their approach produced an
optimal bound by relaxing the search effort indivisibility constraint on a set of
vertices while maintaining the path constraints. The bound is computed in poly-
nomial time. A review of the BB algorithm procedures and of the OSP problem
bounding techniques before 1998 can be found in [9]. Among the recent develop-
ments linked to the OSP problem, Lau et al. [10] proposed the DMEAN bound
which was derived from the MEAN bound found by Martins [11].

The advantage of using CP in the OSP problem context lies in the CP model’s
expressivity. The model stays close to the formulation of the problem while en-
abling the use of problem specific constraints, heuristics and bounds. Further-
more, previous results on similar problems (e.g., [12]) show that CP allows to
find high quality solutions quickly, an interesting property we explore in this
paper.

According to [13], uncertainty in constraint problems may arise in two situa-
tions:

– the problem changes over time (dynamically changing problems), and
– some problem’s data or information are missing or are unclear (uncertain

problems).

The OSP problem formulation as a constraint program is not uncertain in this
sense since it has a complete description. Nonetheless, the location of the search
object, its detectability, and its motion are represented by probability distribu-
tions. Our CP is not a dynamic formulation since the searcher’s detection model,
the object’s motion model and the prior probability distribution on its location
are known a priori. More specifically, the OSP problem is a path planning prob-
lem with a Markov Decision Process formulation that uses negative information
for updating the probabilities in the absence of detection. In the case where the
total number of plausible search object’s paths is sufficiently low, a situation
that rarely occurs in realistic search problems, the problem could potentially
be formulated using multiple scenarios and thus be considered a stochastic CP
(e.g., [14]) where a scenario would correspond to a possible path of the search
object. However, this is not an interesting approach since the Markov OSP prob-
lem specialization from search theory enables us to solve the problem without
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enumerating all the object’s plausible paths [15]. Surveys on dealing with uncer-
tainty in constraint problems may be found in [13,16].

Section 2 presents the OSP formalism. Sections 3 and 4 respectively describe
the proposed constraint program and the experimentation. The results are dis-
cussed in Section 5 and compared to existing results in the literature. We con-
clude in Section 6.

2 The OSP Problem in Its General Discrete Form

When solving the OSP problem, the goal is to find a path (a search plan),
constrained by time, that maximizes the probability of detecting a moving object
of unknown location. A continuous search environment may be discretized by
a graph1 GA = (V (GA) , E (GA)) where V (GA) is a set of discrete regions. A
vertex r is accessible from vertex s if and only if the edge (s, r) belongs to the
accessibility graph GA. The search operation is defined over a given finite set
T = {1, . . . , T} of time steps. Let yt ∈ V (GA) be the searcher’s location at time
t ∈ T . When yt = r, we say that vertex r is searched at time t with an associated
probability of detection. A search plan P (i.e., the sequence of vertices searched)
is determined by the searcher’s path on GA starting at location y0 ∈ V (GA):

P = [y0, y1, . . . , yT ] . (1)

The unknown object’s location is characterized by a probability of containment
(poc) distribution over V (GA) that evolves in time, due to the search object’s
motion and to updates following unsuccessful searches. The poc1 distribution
over V (GA) is the a priori knowledge on the object’s location. A local probability
of success (pos) is associated with the searcher being located in vertex r at time
t. It is the probability of detecting the object in vertex r at time t defined as:

post(r) = poct(r)× pod(r), (2)

where pod(r) is the probability, conditional to the object’s presence in r at time
t, of detecting the object in vertex r at time t. This detection model is known a
priori. For all t ∈ T , r ∈ V (GA), the detection model is

pod(r) ∈ (0, 1] , if yt = r; (3)
pod(r) = 0, otherwise. (4)

The OSP formalism assumes that a positive detection of the object stops the
search. The probabilities of containment change in time following an assumed
Markovian object motion model M and according to the negative information
collected on the object’s presence. Thus, for all time t ∈ {2, . . . , T}, we have that

poct(r) =
∑

s∈V(GA)

M(s, r) [poct−1(s)− post−1(s)] , (5)

1 We restrict ourselves to the case of undirected reflexive graphs (i.e., every vertex has
a loop) since they are more natural in search problems. Furthermore, loops enable
the searcher and the object to stay at their current location instead of moving on.
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where M(s, r) is the probability of the object moving from vertex s to vertex
r within one time step. The optimality criterion for a search plan P is the
maximization of the global and cumulative success probability of the operation
(COS) over all vertices and time steps defined as:

COS(P ) =
∑
t∈T

∑
r∈V(GA)

post(r). (6)

2.1 An Optimal Search Plan Example

Figure 1 shows an example of an environment with doors and stairs accessibility.
Considering the accessibility graph, and assuming T = 5, y0 = 3, poc1(4) =
1.0, pod(yt) = 0.9 (∀t ∈ T ) and a uniform Markovian motion model between
accessible vertices, an optimal search plan P ∗ would then be

P ∗ = [y0, y1, . . . , y5] = [3, 6, 7, 7, 7, 7] . (7)

Using Table 1, we explain why search plan P ∗ is optimal. Starting from vertex 3,

0 1 2 3 4

5 6 7 8

9 10 11 12

Fig. 1. A fictive building OSP problem environment (left) and its accessibility graph
(right)

the searcher first moves to vertex 6 since the probability of containment is high in
vertex 4. Then, the only accessible vertex where the probability of containment
is nonzero is vertex 7. Therefore, the searcher moves from vertex 6 to vertex 7.
Finally, the search plan stabilizes in vertex 7 since it has the highest probability
of containment at each subsequent time step. The objective (COS) value of the
optimal search plan P ∗ is equal to 0.889. For a search plan P , the objective value
is computed as follows:

– compute the local probability of success in vertex y1 at time step 1 (post(y1))
using Equation (2);

– for all vertices r, compute the probability of containment at time step 2
(poc2(r)) using Equation (5);

– apply the same process for time steps 2 to T ;
– sum all the local success probabilities obtained in time steps 1 to T to com-

pute the objective (COS) value of the search plan P .
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The objective value at time step t, i.e., COSt, is

COSt =
∑
t′≤t

∑
r∈V(GA)

post′(r). (8)

For all search plans P , COST is the objective value, i.e., COST (P ) = COS(P ).

Table 1. The probability of containment for each vertex at each time step and the
cumulative overall probability of success for each time step for the search plan P ∗ of
the example of Figure 1. The probabilities are rounded to the third decimal.

Probability of containment in vertex r at time t (poct(r))
�

��t
r 0 1 2 3 4 5 6 7 8 9 10 11 12 COSt(P

∗)

1 - - - - 1 - - - - - - - - 0
2 - - - - .500 - - .050 - - - - - .450
3 - - - - .263 - .012 .026 .012 - - - - .686
4 .001 .001 .001 .001 .138 .001 .008 .015 .013 .001 .001 .001 .001 .817
5 .001 .001 .001 .001 .073 .001 .008 .008 .01 .002 .002 .002 .002 .889

3 A Constraint Programming Model for the OSP

We present in this section the CP model and the heuristic we developed to guide
the resolution process. We define the following constants:

– T , the set of all time steps;
– GA = (V (GA) , E (GA)), the accessibility graph representing the search en-

vironment;
– y0 ∈ V (GA), the initial searcher’s position;
– poc1(r), the initial probability of containment in vertex r (∀r ∈ V (GA));
– pod(r), the conditional probability of detecting the object when yt = r (∀t ∈
T , ∀r ∈ V (GA));

– M(s, r), the probability of an object’s move from vertex s to vertex r in one
time step (∀s, r ∈ V (GA)).

Furthermore, we define pocMarkov
t (r), the updated probability of containment in

vertex r at time t in the absence of searches as:

pocMarkov
t (r) def=

{
poc1(r), if t = 1;∑

s∈V(GA) M(s, r)pocMarkov
t−1 (s), otherwise. (9)

The Markovian probability of containment pocMarkov is an upper bound on the
probability of containment in vertex r at time t, i.e., poct(r) ≤ pocMarkov

t (r). This
is due to the fact that an unsuccessful search in vertex r at time t decreases the
probability of the object being there at time t (from Equation (5)). Moreover, we
observe that the probability of success post(r) in vertex r at time t is bounded
by the probability of detection in r (pod(r)), i.e., post(r) ≤ pod(r). Both of these
observations will be used to bound the domains of the probability variables in
the CP model.
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3.1 The Variables

The model’s decision variables used to define the search plan P are:

– Y0 = y0, the initial searcher’s position;
– Yt ∈ V (GA), the searcher’s position at time t (∀t ∈ T ).

The non-decision variables used to compute the COS criterion value are:

– POC1(r) = poc1(r), the probability of containment in vertex r at time 1
(∀r ∈ V (GA));

– POCt(r) ∈ [0, pocMarkov
t (r)], the probability of containment in vertex r at

time t (∀t ∈ T , r ∈ V (GA)) where pocMarkov
t (r) is defined by Equation (9);

– POSt(r) ∈ [0, pod(r)], the probability of success in vertex r at time t (∀t ∈
T , r ∈ V (GA));

– COS ∈ [0, 1], the COS criterion value, i.e., the sum of all local probabilities
of success up to time T .

The domain of Yt is finite (∀t ∈ T ). The domains of the probability variables are
infinite since these variables are real. Interval-valued domains are used to define
these domains, i.e., non-enumerated domains whose values are implicitly given
by a lower bound and an upper bound.

3.2 The Constraints

Constraint (10) defines the searcher’s path, i.e., the search plan P . It constrains
the searcher to move from one vertex to another according to the accessibility
graph edges E (GA).

(Yt−1, Yt) ∈ E (GA) , ∀t ∈ T . (10)

The constraints (11) to (13) compute the probabilities required to evaluate the
COS criterion. The first two constraints, (11) and (12) compute the probability
of success. Constraint (13) is the probability of containment update equation.

Yt = r =⇒ POSt(r) = POCt(r)pod(r), ∀t ∈ T , ∀r ∈ V (GA) . (11)
Yt = r =⇒ POSt(r) = 0.0, ∀t ∈ T , ∀r ∈ V (GA) . (12)

POCt(r) =
∑

s∈V(GA)

M(s, r) [POCt−1(s)− POSt−1(s)] , ∀t ∈ {2, . . . , T} ,

∀r ∈ V (GA) . (13)

3.3 The Objective Function

We have experimented with two different encodings of the objective function.
The first one encodes the objective function as a sum, the second one encodes it
as a max. Both encodings are equivalent and lead to the same objective value.
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The sum objective function. The sum encoding of Equation (14) consists of
encoding the objective function as it appears in (6). It is the natural way to
represent this function.

maxCOS, (14)

COS =
∑
t∈T

∑
r∈V(GA)

POSt(r). (15)

The max objective function. The sum constraint does a very poor job of filtering
the variables: the upper bound on a sum of variables is given by the sum of the
upper bounds of the variable domains. However, since we know that in the
summation

∑
r POSt(r) only one variable is non-null, a tighter upper bound

on this sum is given by the maximum domain upper bound. A tighter upper
bound on the objective variable generally leads to a faster branch and bound.
We therefore have implemented the objective function defined by Equation (6)
using the following constraints:

maxCOS, (16)

COS =
∑
t∈T

max
r∈V(GA)

POSt(r). (17)

3.4 The Proposed Value Selection Heuristic

In this section we describe the value selection heuristic we developed. The idea
of our heuristic is based on a stochastic generalization of a graph based pur-
suit evasion problem called the cop and robber game [17]; the description of its
theoretical bases is beyond the scope of this paper. We were also inspired by
a domain ordering idea that was successfully used for the multiple rectangular
search areas problem [12].

Our novel heuristic simplifies the probability system in the OSP problem by
ignoring the negative information received by the searcher when s/he fails to
detect the object. That is, at each time step t ∈ T , the heuristic chooses the
most promising accessible vertex based on the total probability of detecting the
object in the remaining time. Therefore, we call our heuristic the total detection
(TD) heuristic.

Let GA = 〈V (GA) , E (GA)〉 be the accessibility graph where the searcher and
the object evolve. Let t ∈ T be a time step, and y, o ∈ V (GA) the positions of
the searcher and the object. Let wt(y, o) be the conditional probability that the
searcher detects the object in the time period [t, t + 1, . . . , T ] given that, at time
t, the searcher is in y and the object in o. The function wt(y, o) is recursively
defined as follows:

wt(y, o) def=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
pod(o), if o = y and t = T,

0, if o = y and t = T,

pod(o) + (1− pod(o))pt(y, o), if o = y and t < T,

pt(y, o), if o = y and t < T,

(18)
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where

pt(y, o) =
∑

o′∈N (o)

M(o, o′) max
y′∈N (y)

wt+1(y′, o′), (19)

is the probability of detecting the object in the period [t + 1, . . . , T ]. Equations
(18) and (19) have the following interpretation:

– If t = T , the searcher has a probability pod(o) of detecting the object when
the searcher and the object are co-located, i.e., o = y; otherwise, the searcher
and the object are not co-located and the probability is null.

– If t < T and o = y, then the searcher can detect the object at time t with
probability pod(o) or fail to detect it at time t with probability 1−pod(o). If
the searcher fails to detect the object at time t, s/he may detect it during the
period [t + 1, . . . , T ]. The probability of detecting the object in the period
[t + 1, . . . , T ] is given by pt(y, o) (Equation (19)) and may be interpreted as
follows:

• in the case where there is only one edge leaving vertex o to vertex o′,
the searcher chooses the accessible vertex y′ that maximizes the condi-
tional probability of detecting the object in the time period [t + 1, . . . , T ],
given his/her new position y′ and the new object’s position o′, i.e.,
maxy′∈N (y) wt+1(y′, o′);
• In the general case where vertex o has many neighbors, pt(y, o) is the av-

erage of all the maximal wt+1(y′, o′) weigthed by the probability M(o, o′)
of moving from o to o′.

This is reasonable since we do not control the object’s movements but we can
move the searcher to the vertex that has the highest probability of success.

– Finally, if the search time is not over (i.e., t < T ) and the object and the
searcher are not co-located (i.e., o = y), the probability of detecting the
object at time t is null and the probability of success depends entirely on the
probability pt(y, o) of detecting the object within the period [t + 1, . . . , T ].

A searching strategy S : T × V (GA) assigns to each time step and plausible
searcher’s position a set of vertices that are considered to be optimal according
to some heuristic. In the TD heuristic case, the strategy sets the new searcher’s
position to be the accessible vertex that maximizes the probability of detecting
the object in the remaining time:

St(Yt)
def= argmax

y′∈dom(Yt)

∑
o∈V(GA)

wt(y′, o)poct(o), ∀t ∈ T . (20)

In order to apply this value selection heuristic, the following static ordering of
the decision variables is used: Y0, . . . , YT . That is, the solver branches first on
Y0, then on Y1 and so on. Each time the solver branches on a new path variable
Yt, the strategy St(Yt) is computed in polynomial time.
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4 Experimentation

Our experiments were conducted in two phases. In Phase 1, we compared the
two versions of the CP models presented in Section 3 (i.e., CpMax and CpSum).
In Phase 2, we examined the performance of the TD heuristic presented in
Section 3.4 when used as a value selector along with the best CP model retained
from Phase 1. The TD heuristic is compared with the CpMax model using an
increasing domain2 value selection heuristic. For all experiments, the following
static ordering is used for branching: Y0, . . . , YT .

Fig. 2. The 11× 11 grid G+ (left), the 11× 11 grid G∗ (center), the graph GL (right)

The graphs used in our benchmark along with the searcher’s initial position
y0 and the initial probability of containment distribution poc1 are shown on
Figure 2. G+ is a reflexive 11×11 grid where all adjacent vertices except diagonals
are linked by an edge. G∗ is a reflexive 11× 11 grid where all adjacent vertices
(diagonals included) are linked by an edge. GL is a reflexive graph generated
using the Université Laval tunnels map. It is almost a tree. We tried these
graphs with three different probabilities of detection: pod(r) ∈ {0.3, 0.6, 0.9}
(∀r ∈ V (GA)). The assumed Markovian object’s motion model is

M(s, r) =

{
1−ρ

deg(s)−1 , if (s, r) ∈ E (GA) ,

ρ, if s = r,
(21)

where deg(s) is the degree of s and ρ ∈ {0.3, 0.6, 0.9} is the probability that the
object stays in its current location. The total times allowed for the searches are
T ∈ {9, 11, 13, 15, 17, 19}. Usual OSP problem experiments use grids similar to
G+ (e.g., [8], [10]). Therefore, our G+ problem instances are comparable with
those used in the literature.

All tests consisted of a single run on an instance
(
GA, T, pod(r)r∈V(GA), ρ

)
, as

described above. We allowed a total number of 5,000,000 backtracks and a time
limit of 20 minutes. All implementations are done using Choco Solver 2.1.3 [18],
a solver developed in the Java programming language, and the Java Universal
Network/Graph (JUNG) 2.0.1 framework [19].3 The probabilities of the OSP

2 When branching on Yt, the solver selects the integer with the smallest value.
3 The source code of our experiments is available upon request.
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CP model were multiplied by an integer for implementation purposes. Because
of numerical errors, our results are accurate to the fourth decimal. All tests were
run on an Intel(R) Core(TM) i7-2600 CPU with 4 GB of RAM.

5 Results and Discussion

In this section, we compare the time required to obtain various incumbent solu-
tions (i.e., the best feasible solutions found so far). The time to the last incum-
bent is the CPU time spent by the solver to obtain the incumbent with the best
objective value within a 20 minutes or 5,000,000 backtracks limit.

5.1 Phase 1: Comparing the CP Models

Table 2 compares the results obtained with the CpMax model with the ones
obtained with the CpSum model on a 11 × 11 G+ grid with T = 17, various
probability of detection values (pod) and various motion models (ρ). In all cases,
the COS value of the last incumbent solution obtained with the CpMax model is
higher or equal to the one obtained with the CpSum model. Furthermore, when
there is a tie on the COS value, the time required with the CpMax model is
lower than the one required with the CpSum model. The tendency of the CpMax
model to outperform the CpSum model is present on G∗ and on GL instances
with T = 17 (not shown). On most instances, the CpMax model requires fewer
backtracks than the CpSum model to achieve a higher quality last incumbent
solution. We conclude that the use of the constraint “max” leads to a stronger
filtering on the variable COS, and thus, computes a tighter bound on the ob-
jective function. For this reason, further comparisons involve only the CpMax
model.

Table 2. The COS value of the last incumbent solution on a 11 × 11 G+ grid with
T = 17. Bold font is used to highlight the best objective value (higher is better). Ties
are broken using the time to last incumbent value.

CpMax CpSum
pod(r) ρ Time to last COS value of the Time to last COS value of the

incumbent (s) last incumbent incumbent (s) last incumbent
0.3 0.3 1197.15 0.0837 1045.66 0.0831

0.6 1198.56 0.1276 990.61 0.1267
0.9 1026.02 0.3379 1165.88 0.3379

0.6 0.3 959.18 0.1532 999.45 0.1532
0.6 1168.98 0.2202 1015.64 0.2172
0.9 1166.29 0.5122 942.36 0.5014

0.9 0.3 1161.59 0.2162 1184.86 0.2162
0.6 692.16 0.3151 727.57 0.3151
0.9 1169.91 0.6283 879.59 0.6252



998 M. Morin et al.

5.2 Phase 2: Evaluating the TD Value Selection Heuristic

Figures 3 shows the COS value as a function of time (ms) obtained on the G+,
G∗ and GL environments with pod(yt) = 0.6 (∀t ∈ T ) and a motion model such
that the probability ρ that the object stays in its current location equals 0.6. On
all instances shown, the benefits of using the TD heuristic as a value selection
heuristic are clear as the solver finds incumbent solutions of higher quality in
less time when compared to the CpMax model using an increasing domain value
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Fig. 3. The COS value as a function of time (ms) (log scale) obtained with the TD-
ValSel+CpMax and the CpMax configurations on a 11 × 11 G+, on a 11 × 11 G∗

instance and on a GL instance with T = 15 (left column) and T = 17 (right column).
The pod(yt) = 0.6 (∀t ∈ T ), and the ρ = 0.6.
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selection heuristic. In all cases shown, the COS value of the first incumbent so-
lution found with the TDValSel+CpMax configuration, a solution encountered
after less than 1 second of solving time, is within 5% of the COS value of the last
incumbent solution. On the G+ instance with T = 17, TDValSel+CpMax en-
countered 21 solutions before settling to an incumbent with COS = 0.2978 while
the CpMax configuration encountered 98 solutions before settling to an incum-
bent with COS = 0.2202. On the G∗ instance with T = 17, TDValSel+CpMax
encountered 46 solutions before settling to an incumbent with COS = 0.3478
while the CPMax configuration encountered 70 solutions before settling to an
incumbent with COS = 0.2959. Finally, on the GL instance with T = 17, TD-
ValSel+CpMax encountered 29 solutions before settling to an incumbent with
COS = 0.7930 while the CPMax configuration encountered 23 solutions before
settling to an incumbent with COS = 0.6676. By looking at the total number of
solutions encountered by the two configurations on the three instances, it seems
that varying the graph structure leads to very different problem instances. This
is partly due to the motion model of the object and to the probability of staying
in place ρ: Given an object’s position r, the remaining probability mass 1− ρ is
distributed among the neighbors of r leading to smaller probability of contain-
ment poc values in the neighborhood of r on G∗ and G+ than on most vertices
of GL. For this reason, G∗ and G+ are significantly harder instances to solve
than GL. Furthermore, the G+ and the G∗ accessibility graphs involve more
symmetric instances than GL.

Table 3 compares the results obtained with the TDValSel+CpMax configu-
ration to the ones obtained with the CpMax model using an increasing domain
value selection heuristic on a 11 × 11 G+ grid with T = 17, various probabil-
ity of detection values (pod), and various motion models (ρ). Again, the TD-
ValSel heuristic is dominant with a time to last incumbent up to 300 times
faster for a higher quality solution in terms of COS value. The tendency of
the TDValSel+CpMax configuration to outperform the CpMax model using an

Table 3. The COS value of the last incumbent solution on a 11 × 11 G+ grid with
T = 17. Bold font is used to highlight the best objective value (higher is better). Ties
are broken using the time to last incumbent value.

TDValSel+CpMax CpMax
pod(r) ρ Time to last COS value of the Time to last COS value of the

incumbent (s) last incumbent incumbent (s) last incumbent
0.3 0.3 5.31 0.1055 1197.15 0.0837

0.6 19.42 0.1645 1198.56 0.1276
0.9 3.70 0.4418 1026.02 0.3379

0.6 0.3 159.42 0.1893 959.18 0.1532
0.6 31.02 0.2978 1168.98 0.2202
0.9 225.66 0.6559 1166.29 0.5122

0.9 0.3 54.94 0.2595 1161.59 0.2162
0.6 37.73 0.4119 692.16 0.3151
0.9 467.34 0.8194 1169.91 0.6283
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Fig. 4. The COS value (left) and the time to last incumbent (ms) (right) as a function
of the total number of time steps (T ) with the TDValSel+CpMax and the CpMax
configurations on a G+, a G∗ and a GL instance where pod(yt) = 0.6 (∀t ∈ T ), and
ρ = 0.6

increasing value selection heuristic is present on G∗ and on GL instances with
T = 17 as well. For this reason, the tables for the G∗ and the GL instances are
omitted.

Figure 4 compares the COS values obtained on several G+ 11× 11 grid with
pod(yt) = 0.6 (∀t ∈ T ), and ρ = 0.6 instances of increasing complexity in T . For
all values of T and instance types, the COS value of the last incumbent found
with the TDValSel+CpMax configuration is higher or equal to the one found
with the CpMax model alone. On the G+ instance, we notice that the solution
is found in less than 5 seconds up to T = 17. By comparing the first row of
figure 4 showing the G+ instance to the other rows, we notice that time to last
incumbent curve of the TDValSel+CpMax is more erratic on the G∗ and the GL
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Table 4. The time to last incumbent on a 11 × 11 G+ grid with pod(r) = 0.6 and
ρ = 0.6 compared to the time spent by a BB procedure to prove optimality when using
various bounds [10]

Time to incumbent (s) Time to optimality (s)*
T TDValSel+CpMax DMEAN MEAN PROP FABC
15 2.80 3.14 12.27 8.16 62.64
17 31.02 23.76 71.57 37.20 352.96

*The time values are taken from [10].
They are used to give a general idea of how our results behave.

instances. We believe that this may be due to the precision we used to compute
the probability variables (a limitation of our solver).

In order to get an idea of the relative performance of our model and value
selection heuristic, we compared our results with results published in the litera-
ture using a BB algorithm [10]. After communications with the authors of [10]
we were able to validate that our solutions for the G+ instances are optimal
up to the fourth decimal. However, the instances are too large for our solver
to prove optimality in a reasonable time. Table 4 presents the time to last
incumbent on a 11 × 11 G+ grid with pod(r) = 0.6 and ρ = 0.6, and the
time spent by a BB procedure to prove the optimality of its last incumbent
solution when using various bounds from the literature. The hardware and soft-
ware configurations used to produce these results differ from ours. Consequently,
the goal of this comparison is simply to show the general tendency on the in-
stances for which the optimal value is published rather than proving that our
approach outperforms the BB procedure. Recalling that we are not using any
problem specific bound on the objective function (except a simple objective func-
tion simplification carried out in the CpMax model), our results, comparable to
the ones in the literature, highlight the performance of the TD value selection
heuristic.

One of the main advantage of using constraint programming is expressivity.
The constraint programming model stays close to the natural problem formula-
tion while enabling strong filtering (e.g., the CpMax model) and heuristics (e.g.,
the TD value selection heuristic). We believe that using a CP model is closer
to the natural problem formulation than an IP model for example. In addition,
the model can be easily adapted and extended. For instance, the model and the
heuristic can be generalized to allow searches from a distance, i.e., the searcher
sees a subset of visible vertices including his position.

6 Conclusion

We have presented a CP model to solve the OSP problem. This model includes a
very efficient value selection heuristic that branches on vertices leading to a high
objective value (i.e., probability of success). We refined the objective function
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to obtain a tighter bound on the objective value without discarding solutions.
Experiments show that our model is competitive with the state-of-the-art in
search theory and that constraint programming is a good technique to solve the
OSP. Future work includes the development of tight bounds in order to allow
the solver to prove the optimality of its incumbent solution. We believe that
such a bound could be based on the information already computed for the value
selection heuristic presented in this paper.

Acknowledgments. We would like to thank Haye Lau for his help in validat-
ing the results of Section 5.2, and the anonymous reviewers for their helpful
comments and suggestions.
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Abstract. Feature Terms are a generalization of first-order terms which
have been recently received increased attention for their usefulness in
structured machine learning applications. One of the main obstacles
for their wide usage is that their basic operation, subsumption, has a
very high computational cost. Constraint Programming is a very suit-
able technique to implement that operation, in some cases providing
orders of magnitude speed-ups with respect to the standard subsump-
tion approach. In addition, exploiting a basic variable symmetry –that
often appears in Feature Terms databases– causes substantial additional
savings. We provide experimental results of the benefits of this approach.

1 Introduction

Structured machine learning (SML) [8] focuses on developing machine learning
techniques for rich representations such as feature terms [2, 7, 16], Horn clauses
[12], or description logics [6]. SML has received an increased amount of interest
in the recent years for several reasons, like allowing to handle complex data in
a natural way, or sophisticated forms of inference. In particular SML techniques
are of special interest in biomedical applications, where SML techniques can
reason directly over the molecular structure of complex chemical and biochemical
compounds. One of the major difficulties in SML is that the basic operations
required for to design machine learning algorithms for structured representations,
have a high computational complexity. Consequently, techniques for efficiently
implementing such operations are key for the application of SML techniques in
real-life applications with large complex data.

This paper focuses on feature terms, a generalization of first-order terms
that has been introduced in theoretical computer science in order to formalize
object-oriented capabilities of declarative languages, and that has been recently
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received increased attention for their usefulness in SML applications [3, 5, 14,
15, 16]. The most basic operation among feature terms is subsumption, which
determines whether a given feature is more general than another, and is the most
essential component for defining machine learning algorithms. Inductive machine
learning methods work by generating hypotheses (often in the form of rules)
that are generalizations of the training instances being provided. The “generality
relation” (subsumption) states whether a hypothesis covers a training instance or
not, and thus it is one of the most fundamental operations in inductive machine
learning. It is well known that subsumption between feature terms has a high
computational cost if we allow set-valued features in feature terms [7] (necessary
to represent most structured machine learning datasets).

Constraint Programming (CP) is a very suitable technique to implement
subsumption. We present the CP modelization of the above operation for set-va-
lued feature terms. In some cases, our CP implementation of feature term sub-
sumption provides speed-ups of orders of magnitude with respect to the standard
subsumption approach. In addition, when this CP implementation is enhanced
with symmetry breaking constraints that exploit basic variable symmetries in
feature terms, we obtain substantial extra gains in performance. Our CP imple-
mentation uses JaCoP (an open-source constraint library for Java) [10].

We are aware of a previous use of CP to compute θ-subsumption in ML [13].
However, feature term subsumption is significantly different from θ-subsumption,
which is defined as the existence of a variable substitution between logical clauses
without considering essential elements of feature terms such as sets or loops [15].

2 Background

Feature Terms. Feature terms [2, 7] are a generalization of first-order terms,
introduced in theoretical computer science to formalize object-oriented declara-
tive languages. Feature terms correspond to a different subset of first-order logics
than description logics, although with the same expressive power [1].

Feature terms are defined by its signature: Σ = 〈S,F ,≤,V〉. S is a set of sort
symbols, including the most general sort (“any”), ≤ is an order relation inducing
a single inheritance hierarchy in S, where s ≤ s′ means s is more general than or
equal to s′, for any s, s′ ∈ S (“any” is more general than any s which, in turn, is
more general than “none”). F is a set of feature symbols, and V is a set of variable
names. We write a feature term ψ as: ψ ::= X : s [f1

.
= Ψ1, ..., fn

.
= Ψn]; where

ψ points to the root variable X (that we will note as root(ψ)) of sort s; X ∈ V ,
s ∈ S, fi ∈ F , and Ψi might be either another variable Y ∈ V , or a set of
variables {X1, ..., Xm}. When Ψi is a set {X1, ..., Xm}, each element in the set
must be different. An example of feature term appears in Figure 1. It is a train
(variable X1) composed of two cars (variables X2 and X3). This term has 8
variables, and one set-valued feature (indicated by a dotted line): cars of X1.

To make a uniform description, constants (such as integers) are treated as
variables of a particular sort. For each variable X in a term with a constant value
k of sort s, we consider that X is a regular variable of a special sort sk. For each
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Fig. 1. A simple train represented as a feature term

different constant k, we create a new sort sk of s. For example, if a variable X
had an integer value 5, we would create a new sort s5 (sub sort of integer), and
consider that X is a regular variable of sort s5. Thanks to this representation
change, we can forget about constants and just consider all variables in the same
way. The set of variables of a term ψ is vars(ψ), the set of features of a variable
X is features(X), and sort(X) is its sort.

Feature terms can be represented as directed labelled graphs. Given a variable
X , its parents are the nodes connected with X by incoming links, and its children
are the nodes connected with X by outgoing links.

Operations on Feature Terms. The basic operation between feature terms
is subsumption: whether a term is more general than (or equal to) another one.

Definition 1. (Subsumption) A feature term ψ1 subsumes another one ψ2 (ψ1 5
ψ2)

1 when there is a total mapping m: vars(ψ1)→ vars(ψ2) such that:

– root(ψ2) = m(root(ψ1))
– For each X ∈ vars(ψ1)

• sort(X) ≤ sort(m(X)),
• for each f ∈ features(X), where X.f = Ψ1 and m(X).f = Ψ2:
∗ ∀Y ∈ Ψ1, ∃Z ∈ Ψ2|m(Y ) = Z,
∗ ∀Y, Z ∈ Ψ1, Y �= Z ⇒ m(Y ) �= m(Z)

i.e. each variable in Ψ1 is mapped in Ψ2, and different variables in Ψ1

have different mappings.

Subsumption induces a partial order among feature terms, i.e. the pair 〈L,5〉 is
a poset for a given set of terms L containing the infimum ⊥ and the supremum
& with respect to the subsumption order. It is important to note that while
subsumption in feature terms is related to θ-subsumption (the mapping m
above represents the variable substitution in θ-subsumption), there are two key
differences: sorted variables, and semantics of sets (notice that two variables
in a set cannot have the same mapping, whereas in θ-subsumption there is no
restriction in the variable substitutions found for subsumption).

Since feature terms can be represented as labelled graphs, it is natural to
relate the problem of feature terms subsumption to subgraph isomorphism.

1 In description logics notation, subsumption is written in the reverse order since it is
seen as “set inclusion” of their interpretations. In machine learning, A , B means
thatA is more general thanB, while in description logics it has the opposite meaning.
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x2 : sx1 : s
f

f

f f
y1 : s y2 : s y3 : sψ1 ψ2

Fig. 2. A bigger feature term subsumes a smaller feature term: ψ2 , ψ1

However, subsumption cannot be modeled as subgraph isomorphism because,
larger feature terms can subsume smaller feature terms while the corresponding
graphs are not isomorphic. See for example the two terms shown in Figure 2,
where a term ψ2 with three variables subsumes a term ψ1 with two variables
(mapping: m(y1) = x1, m(y2) = x2, m(y3) = x1).

Constraint Satisfaction. A Constraint Satisfaction Problem (CSP) involves a
finite set of variables, each taking a value in a finite discrete domain. Subsets of
variables are related by constraints that specify permitted value tuples. Formally,

Definition 2. A CSP is a tuple (X ,D, C), where X= {x1, . . . , xn} is a set of
n variables; D= {D(x1), . . . , D(xn)} is a collection of finite discrete domains,
D(xi) is the set of xi’s possible values; C is a set of constraints. Each constraint
c ∈ C is defined on the ordered set of variables var(c) (its scope). Value tuples
permitted by c are in rel(c) ⊆

∏
xj∈var(c) D(xj).

A solution is an assignement of values to variables such that all constraints are
satisfied. CSP solving is NP-complete.

3 Variable Symmetry in Feature Terms

A variable symmetry in feature term ψ is a bijective mapping σ : vars(ψ) →
vars(ψ) such that applying σ on term ψ does not modify ψ in any significant
way. Often, a basic form of variable symmetry, called interchangeable variables,
appears in feature terms.2 Formally,

Definition 3. Two variables X and Y of vars(ψ) are interchangeable in ψ if
exchanging X and Y in ψ, the resulting term does not suffer any syntactic change
with respect to the original ψ.

Clearly, if X and Y are interchangeable, none of them can be the root of ψ. In
addition they have to share the same sort, sort(X) = sort(Y ). It is easy to see
that two variables are interchangeable if and only if they have the same parents
and the same children, as proved next.

Proposition 1. Two variables X and Y of vars(ψ) are interchangeable in ψ
if and only if they are of the same sort, with the same parents and the same
children in ψ through the same features.

2 In CSP terms, this type of symmetry is similar to that between pairs of CSP variables
in a graph coloring clique, all variables sharing the same domain.
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X2 : Br

X3 : Br
ψ88CH H

Br

Br

link

link

X4 : H

X5 : H

link

link

X1 : C

Fig. 3. The chemical structure of methane and its representation as feature term.
Variables X2, X3, X4 and X5 are in the same set. X2 is interchangeable with X3, and
X4 is interchangeable with X5.

Proof. Obviously, if X and Y are of the same sort, with the same parents and
children through the same features, exchanging X and Y does not cause any
syntactical change in ψ, so they are interchangeable.

If X and Y are not of the same sort, exchanging them causes syntactical
changes in ψ. Assuming they share the same sort, if they do not have the same
parents or the same children, exchanging X and Y causes syntactical changes
in ψ. The same happens when although having the same parents and children,
they are connected to them by diferent features. �
Figure 3 shows an example of interchangeable variables in a feature term
containing the chemical structure of methane. It happens that Br atoms are all
equivalent, to they can be permuted freely without any change in the problem.
The same happens with H atoms. Observe that a Br atom is not interchangeable
with a H atom, because they are of different sort. As result, variables X2 and
X3 are interchangeable, and also X4 with X5.

3

4 Subsumption as Constraint Satisfaction

Testing subsumption between feature terms ψ1 and ψ2 can be seen as a CSP:

– CSP Variables: for each feature term variable X ∈ vars(ψ1) there is a CSP
variable x that contains its mapping m(X) in ψ2. To avoid confusion between
the two types of variables, feature term variables are written uppercase while
CSP variables are written lowercase, the same letter denotes corresponding
variables (x is the CSP variable that represents feature term variable X).4

– CSP Domains: the domain of each CSP variable is the set vars(ψ2), except
for the CSP variable of root(ψ1), whose domain is the singleton {root(ψ2)}.

– CSP Constraints: three types of constraints are posted
• Constraints on sorts: for each X ∈ vars(ψ1), sort(X) ≤ sort(x).

3 Exchanging a Br atom with a H atom would generate another, more elaborated,
symmetry than the one we consider. Here we restrict ourselves to the most basic
symmetry notion. Nevertheless, exploitation of this kind of symmetry results in very
good savings.

4 For X we use “feature term variable” or ”variable”. For x we use ”CSP variable”.
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• Constraints on features: for each variable X ∈ vars(ψ1) and feature
f ∈ features(X), for each variable Y ∈ X.f there exists another variable
Z ∈ x.f such that y = Z.
• Constraints on difference: IfX.f = {Y1, ..., Yk}, where all Yi’s are different
by definition, the constraint all-different(y1, ...yk) must be satisfied.

Since ψ1 and ψ2 have a finite number of variables, it is direct to see that there is
a finite number of CSP variables (exactly |vars(ψ1)|) and all their domains are
finite (assuming that the CSP variable x1 correspond to root(ψ1), the domain of
x1 will be {root(ψ2)}, and the common domain of the other CSP variables is the
set vars(ψ2)). If n is the maximum number of variables and m is the maximum
number of features, the maximum number of constraints is:

– n unary constraints on sorts (one per CSP variable),
– O(n2m) binary constraints on features (number of possible pairs of variables

times the maximum number of features),
– O(nm) n-ary constraints on difference (number of variables, each having one

all-different constraint, times the maximum number of features).

Constraints on sorts can be easily tested using the ≤ relation amongst sorts;
constraints on features and of difference are directly implemented since they
just involve the basic tests of equality and difference. Moreover, notice that it
is trivial to verify that if the previous constraints are satisfied, the definition of
subsumption is satisfied and vice versa. Therefore, the previous CSP problem is
equivalent to subsumption in feature terms.

In practice, n varies from a few variables in simple machine learning problems
to up to hundreds or thousands for complex biomedical datasets. Most machine
learning datasets do not have more than a few different feature labels, and thus
m usually stays low. Moreover, in practice, the actual number of constraints is
far below its maximum number as computed above.

Consequently, a CP implementation of feature terms subsumption is feasible.
We have done it and the results are detailed in Section 5.

4.1 Interchangeable Variables

It is well-known that symmetry explotation can dramatically speed-up CP imple-
mentations because it causes substantial search reductions [9]. In this section we
explore the simplest variable symmetry in feature terms, variable interchangea-
bility (Definition 3), inside the CP model of feature set subsumption.

Imagine that we want to test ψ1 5 ψ2 and there are two interchangeable
variables X and Y in ψ1. Interchangeability implies that they have the same
parents through the same labels, so they are in the same set. Consequently,
m(X) �= m(Y ). Since X and Y are interchangeable, any mapping m satisfying
the subsumption conditions for X will also be valid for Y . Therefore, assuming
that m(X) < m(Y ), there is another mapping m′ (symmetric to m) that is equal
to m except that permutes the images of X and Y , m′(X) = m(Y ) and m′(Y ) =
m(X). Obviously, m′(X) > m′(Y ). Since m and m′ are symmetric mappings,
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Fig. 4. Time required to compute subsumption in real-world instances. Horizontal
axis: time required to compute subsumption by a standard approach; vertical axis:
time required to compute subsumption by a CP approach; dots represent subsumption
instances. Above the grey line, instances for which the standard approach is faster
than the CP implementation, below the grey line the opposite occurs. Square dots
correspond to CP implementation without any symmetry breaking, while triangular
dots correspond to CP implementation with symmetry breaking constraints.

we choose one of them by adding the symmetry breaking constraint m(X) <
m(Y ). In consequence, for any pair X,Y of interchangeable variables in ψ1 we
add a symmetry breaking constraint m(X) < m(Y ). Often we found subsets
X1, ..., Xk of mutually interchangeable variables in ψ1, which are also under
the constraint alldifferent(m(X1), ...,m(Xk)). Thus, this would add a quadratic
number of symmetry breaking constraints:

m(Xi) < m(Xj) i : 1..k − 1 j : i+ 1..k

However, as Puget pointed out in [17], many of these constraints are redundant
and it is enough to add a linear number of symmetry breaking constraints:

m(Xi) < m(Xi+1) i : 1..k − 1

to break all symmetries among interchangeable variables.

5 Experimental Results

In order to evaluate our model, we compared the time required to compute
subsumption by a standard implementation of subsumption in feature terms [4]
with (i) our CP implementation, and with (ii) that CP implementation enhanced
with symmetry breaking constraints. We generated 1500 pairs of feature terms
using the examples in two relational machine learning data sets as the source
of terms: trains and predictive toxicology. The trains data set was originally
introduced by Michalsky as a structured machine learning challenge [11]. Each
instance represents a train (different instances have different number of cars,
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cargos and other properties). Since the size of each instance is different, this
dataset cannot be represented using a standard propositional representation, and
a relational machine learning representation is required. In the toxicology dataset
[5], each instance represents the chemical structure (atoms and their links) of
a chemical compound. This is a very complex data set with some instances
representing chemical compounds with a large number of atoms. The terms used
in our experiments contain between 5 and 138 variables each, and some of them
have up to 76 variables belonging to some set.

Figure 4 shows the results of our experiments, where each dot represents
one of the 1500 pairs of terms used for our evaluation. The horizontal axis (in a
logarithmic scale), shows the time in seconds required by the traditional method,
and the vertical axis (also in a logarithmic scale), shows the time required
using CP. Square dots correspond to the CP implementation without symmetry
breaking, while triangle dots are for CP with symmetry breaking constraints.
Dots that lay below the grey line correspond to problems where CP is faster.

We observe that the CP implementation without symmetry breaking is in
general faster than the traditional approach because most square dots are below
the grey line (in 56 cases out of 1500, the CP implementation is slower than the
traditional method). When adding symmetry breaking constraints we observe
a dramatic efficiency improvement: almost all triangles are below the grey line
(only 34 triangles are above that line) and all instances are solved in less than 0.1
seconds. In some instances there are increments of up to 8 orders of magnitude
(observe the triangle in the horizontal axis located at 100000). Adding the time
required to perform all the 1500 tests, the traditional method required 669581
seconds, the CP implementation without symmetry breaking required 345.5
seconds, and CP with symmetry breaking lasted 8.3 seconds (4 and 5 orders
of magnitude improvement with respect to the traditional method).

Although benefits may vary in other datasets (different from trains [11] and
toxicology [5]), these results clearly show the benefits of the CP approach with
respect to the traditional method, and the extra benefits we obtain by adding
symmetry breaking constraints to the CP implementation. The type of symmetries
exploited in our approach is quite simple, but they are very frequent in biomedical
data, where feature terms typically represent molecules.

6 Conclusions

A key obstacle when applying relational machine learning and ILP techniques
to complex domains is that the basic operations like subsumption have a
high computational cost. We presented modeling contributions, including basic
variable symmetry exploitation, that allowed us to implement subsumption using
CP. As result, this operation is done more efficiently than using traditional
methods.

As future work, we would like to improve our CP models to further increase
performance. The study of more elaborated symmetries seems to be a promising
avenue for research. We would also like to assess the gain in performance of
inductive learning algorithms using our CP-based solutions.
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Politècnica de Catalunya (1997)

[5] Armengol, E., Plaza, E.: Lazy learning for predictive toxicology based on a chem-
ical ontology. In: Artificial Intelligence Methods and Tools for Systems Biology,
vol. 5, pp. 1–18 (2005)

[6] Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F.
(eds.): The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press (2003)

[7] Carpenter, B.: The Logic of Typed Feature Structures. Cambridge Tracts in The-
oretical Computer Science, vol. 32. Cambridge University Press (1992)

[8] Dietterich, T., Domingos, P., Getoor, L., Muggleton, S., Tadepalli, P.: Structured
machine learning: the next ten years. Machine Learning, 3–23 (2008)

[9] Gent, I., Petrie, K.E., Puget, J.F.: Symmetry in constraint programming. In:
Rossi, F., van Beek, P., Walsh, T. (eds.) Handbook of Constraint Programming
(2006)

[10] Kuchcinski, K.: Constraint-driven scheduling and resource assignment. ACM
Transactions on Design Automaton of Electronic Systems 8, 355–383 (2003)

[11] Larson, J., Michalski, R.S.: Inductive inference of vl decision rules. SIGART
Bull. (63), 38–44 (1977)

[12] Lavrač, N., Džeroski, S.: Inductive Logic Programming. Techniques and Applica-
tions. Ellis Horwood (1994)

[13] Maloberti, J., Sebag, M.: θ-Subsumption in a Constraint Satisfaction Perspective.
In: Rouveirol, C., Sebag, M. (eds.) ILP 2001. LNCS (LNAI), vol. 2157, pp. 164–
178. Springer, Heidelberg (2001)
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André, Isabelle 840
Anjos, Miguel F. 2
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Ifrim, Georgiana 957
Ishii, Daisuke 867
Iwasaki, Atsushi 561

Janota, Mikoláš 158
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Manyà, Felip 455
Marcellino, Fernando J.M. 823
Marques-Silva, Joao 158
Martin, Barnaby 480
Martinez, Thierry 798
Matsliah, Arie 316
Matsui, Toshihiro 561
Mehta, Deepak 782
Meisels, Amnon 925
Mengin, Jérôme 973
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