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1 Introduction

It was my scientific adviser Professor Yu.V. Prokhorov who proposed optimal
control of some inventory systems as a topic of my Phd thesis. At the time it
was a new research direction. The subject of my habilitation thesis was stochastic
inventory models. So I decided to return to these problems in the paper devoted to
jubilee of academician of Russian Academy of Sciences Yu.V. Prokhorov.

Optimal control of inventory systems is a particular case of decision making
under uncertainty (see, e.g., [5]). It is well known that construction of a mathemat-
ical model is useful to investigate a real life process or system and make a correct
decision.

There always exist a lot of models describing the process under consideration
more or less precisely. Therefore it is necessary to choose an appropriate model.
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Usually the model depends on some parameters not known exactly. So they are
estimated on the base of previous observations. The same is true of underlying
processes distributions. Hence, the model must be stable with respect to small
parameters fluctuations and processes perturbations (see, e.g., [6]).

To illustrate the problems arising and the methods useful for their solution, a
multi-supplier inventory model is considered.

2 Main Results

The aim of investigation is to establish optimal and asymptotically optimal control.
It is reasonable to begin by some definitions.

2.1 Definitions

To describe any applied probability model one needs to know the following
elements: the planning horizon 7', input process Z = {Z(t),t € [0, T]}, output
process Y = {Y(¢),t € [0,T]} and control U = {U(¢),t € [0, T]}. The system
state is given by X = W¥(Z,Y,U) where functional ¥ represents the system
configuration and operation mode. Obviously, one has also X = {X(¢),¢ € [0, T]}.
Moreover, processes Z, Y, U and X can be multi-dimensional and their dimensions
may differ. For evaluation of the system performance quality it is necessary to
introduce an objective function Z(Z,Y, U, X, T). For brevity it will be denoted
by Zr(U). So, a typical applied probability model is described by a six-tuple
(Z,Yy,U,9,2,T).

Such description is useful for models classification. It also demonstrates the
similarity of models arising in different applied probability domains such as
inventory and dams theory, insurance and finance, queueing and reliability theory,
as well as population growth and many others (see, e.g., [7]). One only gives another
interpretation to processes Z, Y, X in order to switch from one research domain to
another. Thus, input to inventory system is replenishment delivery (or production)
and output is demand, whereas for a queueing system it is arrival and departure of
customers respectively (for details see, e.g., [6]).

Definition 1. A control Uj = {U*(¢).t € [0, T']} is called optimal if

Zr(Ur) = inf ZrUr) (or Zp(Uy)= sup Zr(Ur)), (1
Urer Urey

where % is a class of all feasible controls. Furthermore, U* = {U*,T > 0} is
called an optimal policy.
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The choice of inf or sup in (1) is determined by the problem we want to solve.
Namely, if we are interested in minimization of losses (or ruin probability) we use
the first expression, whereas for profit (or system life-time) maximization we use
the second one in (1).

Since extremum in (1) may be not attained we introduce the following

Definition 2. A control Uy is e-optimal if

XT(U;)< inf Zr(Ur)+¢ (or ZT(U;)> sup Zr(Ur) —e).
Urer Urer

Definition 3. A policy U = {Ur, T > 0} is stationary if for any T, S > 0
Ur(t) = Us(t), t <min(T,S).
Definition 4. A policy U= (ﬁ r, T > 0) is asymptotically optimal if
dim T\ % Ur) = dim T=' 20 (U7).

The changes necessary for discrete-time models are obvious.

2.2 Model Description

Below we consider a discrete-time multi-supplier one-product inventory system. It
is supposed that a store created to satisfy the customers demand can be replenished
periodically. Namely, at the end of each period (e.g., year, month, week, day etc.)
an order for replenishment of inventory stored can be sent to one of m suppliers or
to any subset of them. The i-th supplier delivers an order with (i — 1)-period delay,
i = 1, m. Let a; be the maximal order possible at the i -th supplier, and the ordering
price is ¢; per unit, i = 1, m. For simplicity, the constant delivery cost associated
with each order is ignored. However we take into account holding cost & per unit
stored per period and penalty p for deficit of unit per period.

Let the planning horizon be equal to n periods. The demand is described by
a sequence of independent identically distributed nonnegative random variables
{&k i =, Here & is amount demanded during the k-th period. Assume F(x) to be
the distribution function of &, having a density ¢(s) > 0 for s € [k,k] C [0,00). It
is also supposed that there exists E§; = u, k = 1,n.

Unsatisfied demand is backlogged. That means, the inventory level x; at the end
of the k-th period can be negative. In this case | x| is the deficit amount.

Expected discounted n-period costs are chosen as objective function. We denote
by fu(x,y1,..., Ym—2) the minimal value of objective function if inventory on hand
(or initial inventory level) is x and y; is already ordered (during previous periods)
quantity to be delivered i periods later, i = 1,m — 2.
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2.2.1 Notation and Preliminary Results

It is supposed that the order amounts at the end of each period depend on the
inventory level x and yet undelivered quantities yy, ..., yu—2. Using the Bellman
optimality principle (see, e.g., [2]) it is possible to obtain, for n > 1, the following
functional equation

fn(stL---,J’m—Z): min _ [ZCiZi+L(X+Z1)+ (2)
0<z;<a;,i=1m i=1

+oeEficix+yi+atn— L2+ B Y2 + Tt Zm)]-

Here « is the discount factor, E stands for mathematical expectation and z; is the
order size at the first step of n-step process from the i-th supplier, i = 1,m.
Furthermore, the one-period mean holding and penalty costs are represented by

L(v) = Eh(v—&)" + p(6, —v)T], with a® = max(a,0),

if inventory level available to satisfy demand is equal to v.

The calculations for arbitrary m being too cumbersome, we treat below in detail
the case m = 2. Then we need to know only the initial level x and Eq. (2) takes the
form

fi(x) = min  [ciz1 + o+ Lx+z1) +aEfici(x + 21+ 22— 6] B)

0<zi<a;,i=12
with fo(x) = 0. Let us introduce the following notation v = x 4+ z;, u = v+ 7, and
G,(v,u) = (c;1 — v+ cou+ L(v) + aEf— 1 (u—&).
Then Eq. (3) can be rewritten as follows

fo(x) = —c1x + ( n}in G,(v,u) )
V,u)E

X

where Dy = {x <v<x+4a;,v<u<v+a}.
The minimum in (4) can be attained either inside of D, or at its boundary.
To formulate the main results we need the following functions

3G, ,
BV (V, u) =C—C + L (V) = K(V),

aaG" v,u) =cr + a/ Sl w—=s)p(s)ds := S,(u).
u 0
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Moreover, T,(v) = S,(v) + K(v) and B,(v) = S,(v + a2) + K(v) represent
dG,(v,v) and dG,(v,v+ ay)

dv dv

respectively, whereas

oo

R'(u) = cp—oac; +o /u—v K(u—s)p(s) ds+oz/ Ku+a—s)p(s)ds. (5)
0 u+a—v

Let v, u,, v,, w, and u® be the roots of the following equations
K@) =0, S,(u,)=0, T,(va) =0, B,(wy)=0, R'u")=0, (6)

provided the solutions exist for a given set of cost parameters. In particular, v €
[k, k] is given by

F() = p—cr+tce
p+h
if (c;,c2) € I' = {(c1,¢2) : (c; — p)t < ¢ < ¢; + h}. Otherwise, we set v = —oo0,

if K(v) > 0 for all v, that is, (c;,c;) € '™ = {(c1,¢2) : ¢ < (1 — p)*}, and
v = +o0,if K(v) < 0forall v, thatis, (c;,c;) € 't = {(c1.c2) :ca > ¢1 +h}. A
similar assumption holds for S, (v), T,,(v), B,(w) and u,, v,, w,, n > 1, as well as
R%(u) and u“. Below we are going to use also the following notation. For k > 0 set

k—1 k k k+1
M =Here)ip)y o <a=pyla). A={ra):p) d <asp) dl
i=0 i=0

i=1 i=1

where as always the sum over empty set is equal to 0,

Ai =M nAL A = Ui A, A = Upsp Al T = {(c1,020) (e = p)T < e2 < aer),

I ={(cr,ca) € I:Sy(¥) <0}, I,F ={(c1,c2) € Iz Su(® > 0},

whereas I'? = {(ci,c2) € I':S,(») = 0}. As usual dealing with dynamic
programming all the proofs are carried out by induction.

Thus, it will be proved that functions f,/(x) are non-decreasing as well as K(v),
S, (v), T, (v) and B, (v). Moreover, to establish that sequences {u,}, {v,}, n > 1, are
non-decreasing it is enough to check that f,(x) — f,/_, (x) < 0forx < max(u,v,),
since Sy4+1(u) = S, (u) + aH, (1) and T,,+1(v) = T,,(v) + aH,(v) where H,(u) =
(f,) — f,/_)) * F(u), here and further on * denotes the convolution.

The crucial role for classification of possible variants of optimal behaviour plays
the following
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Lemma 1. [f(ci,c2) € I, then v < v, < uy; if (c1,¢2) € I,7, then v > v, > uy,
whereas v = v, = u, if (c1,¢3) € Fno, and u,, vy,, v are defined by (6). Moreover, if
(c1,¢2) € '™, thenv, < u, and v, > u,, if (c1,c2) € I'Y, for all n.

Proof. The statement is obvious, since functions K(v), S,(v) and T,(v) are non-
decreasing inv, T,,(v) = S,(v) + K(v) and K(v) < 0 for v < v, while K(v) > 0 for
V> . O

2.3 Optimal Control

We begin by treating the case without constraints on order sizes. Although Corol-
lary 1 was already formulated in [4] (under assumption ¢ = 1) a more thorough
investigation undertaken here lets clarify the situation and provides useful tools for
the case with order constraints.

2.3.1 Unrestricted Order Sizes

At first we suppose that the order size at both suppliers may assume any value, that
is,a; = 00,1 =1,2.

Theorem 1. If ¢, > «acy, the optimal behaviour at the first step of n-step process
has the form u,(x) = v,(x) = max(x,v,). The sequence {v,} of critical levels
given by (6) is non-decreasing and there exists lim,—.oo v, = V satisfying the
following relation

p—ca(l—a)
Fo)="——=. 7
= ™
Moreover, for (c1,c2) € A, k =0,1,..., 0one hasv, = —oo, n < k and vi 41 is a
solution of the equation
k+1 koo
i—1 pi* Pizo® —C

F =T==" 8
§ o (Ve+1) b+ ®)

i=1

Proof. Forn = 1itis optimal to take u = v, since S1(«) = ¢, > 0 for all u, that means
u; = —o0. On the other hand, T;(v) = ¢ — p + (p + h) F(v), therefore v = —o0
in Ay, whereas in Ay there exists v; € [0, V] such that F(v{) = (p —c¢1)/(p + h).
Thus, the optimal decision has the form u; (x) = v;(x) = max(x, v;).

For further investigation we need only to know

0 X <V —C1 X <
/ k] ’ k) )
fl( ) ! Zl(x),x>v1, L/(x),x>v1.

©))
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It is obvious that f{(x) is non-decreasing, the same being true of

So(u) =c —ac; + /u—w Ti(u—s)p(s)ds (10)
0

and

L) = 00) + « /0 0= (s ds (1

with Q(v) = ¢;(1 —«) + L’(v). Note that in the case vi = —oo the meaning of
Jo " in(10)and f;"" in (11)is [;°. The same agreement will be used further on.

Thus, S>(u) > 0 for all # under assumption ¢, > «cy, that is, u; = —oo. Since
T>(v) > Q(v), it follows immediately that vy < Vand v is given by (7), hence v < V.
Moreover, v = —oo for ¢; > p(1 —a)~!. Ttis also clear that v, > v in Ay because
T»(vi) = —ac;. Recalling that in A4,

L(v)=c +L'V) +a /00 L'(v—2s)p(s)ds
0

we get
1 _
Foy) +aF¥ () = AT =4
p+h
whereas v, = —oo in A;. Hence, uy(x) = vo(x) = max(x, v;).

Assuming now the statement of the theorem to be valid for k < m, one has

, 0, X < Vg,
fi(x) = —c1 + (12)
Tk(X), X = Vg,
and
0, X < Vp—1,
fni(x) - fn;—l(x) =93\ m—l(-x)v Vin—1 =X < Vi, (13)
Tm(-x) - Tm—l(-x)v X = V.
Thus, S),+1(«) > 0 for all u, that entails u,,+; = —oo. Moreover, T,,+1(v) > Q(v)
and H,,(v,) < 0. Hence, v,, < V41 < Vin U?;éAk and v, satisfies (8) with
k = min A,,, whereas v,,11 = —o0 in A,,+1. That means, the theorem statement

is valid form + 1.
The sequence {v,} is non-decreasing and bounded. Consequently there exists
lim,, - 00 v, = v < V. It remains to prove that v = V. In fact, forn > k + 1

V=Vu—1
T,0) = 00) +a / T —$)p(s)ds in A k=0,
0
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SO o
|an=a/ Tyr (v — $)9(s) ds
0

Vn—Vn—1

Vn—Vn—1
< T,,_l(’\?)a/ p(s)ds < ...< Tk(’\?)a"_k/ o(s)ds
0 0

where T,(3) < ¢; +h Yol <1+ h(1—a)™h.
Hence, Q(v;,) — 0 = Q(V), as n — oo. On the other hand, O(v,) — O(V),
therefore v = V. It is clear that this result is true forany 0 < o < 1. O

Remark 1. The main result of Theorem 1 can be reformulated in the following way:
D) =722(x) =0 for n<k

and
ZLI)(X) =, —x)7, zf,z)(x) =0 for n>k,

if (c1,¢2) € A,k =0,1,....

That means, for ¢, > «c; it is optimal to use only the first supplier. The inventory
level is raised up to a prescribed critical value v, if the initial level x at the first step
of n-step process is less than v,. Nothing is ordered for x > v,. Furthermore, if
c1>p Zi;é ' then for n < k nothing is ordered for all initial inventory levels x
at the first step of n-step process. If ¢; > p(1 —a)™!, it is optimal never to order for
any initial level.

Theorem 2. If ¢c; < (c; — p)¥, the optimal behaviour at the first step of n-step
process has the form v,(x) = x, u,(x) = max(x, u,). The sequence {u,} defined
by (6) is non-decreasing and there exists limy, oo U, = u®, where u is given by

—c(l —w)
P = P el =) 14
() = (14)
Moreover, for (c1,¢3) € Ak =1,2,..., one hasu, = —oco, n <k, and
k+1 k i
i—2 ik P —C
o TF T (up ) = —————— (15)
; a(p +h)

Proof. Recall thatv = —ocoin '~ and I'~ C A;. It follows immediately from here
that u;(x) = vi(x) = x and f/(x) = L’(x). Now turn to n = 2. Since

Sa(u) = c2 —ap + alp + h) F*(u),
it is obvious that S»(x) > 0 for all u (that is, u = —o0) in A' and there exists

uy > 0 satisfying (15) with k = 1 in AO. According to Lemma 1 one has v, < us,
therefore it is optimal to have v,(x) = x and uy(x) = max(x, up). Thus,
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K(X), X < Uz,
Tr(x), x > uy,

0, X < up,

- _ L
2+ L)+ SH(x), x > uy,

£ = —1 + {

and

S3(u) = R°(u) + o /u—uz So(u— $)p(s)ds
0

where R°(u) given by (5) with @ = 0 has the form

o(l—a)+a /00 L'(u—s)p(s)ds = c2(1 —a) —ap + a(p + h)F>*(u).
0

149

(16)

It is clear that there exists u° satisfying R*(u’) = 0. For ¢; < ap(l —a)~!itis
given by (14), otherwise u’ = —oo. Since S3(u) > R°(u) and S3(uy) = —ac; in
A° one has u, < u3 < u’. Moreover, in A' there exists u3 satisfying (15) with

k = 2, whereas u; = —oo in A2.
Assuming the statement of the theorem to be valid for k < m one has

0, X < U
’ _ K )
fet) ¢+ K@)+ Sk (x), x > u,

and
0, X < Up-—1,
@) = frn_1(x) = =Sp—1(x), U1 < X < Uy,
Sm(-x) - Sm—l(-x)v X = Upy.

7)

That means S, 41 (u) > RO(u) for all u and H,, (1) < 0. Thus, 6y, < i1 < u’ in
Ufz_gAk and w1 < u® satisfies (15) with k = m in A™~!, whereas u,, 41 = —o0
in A™. It follows immediately that v,,41(x) = x and up+1(x) = max(x, up+1)-

Clearly, the theorem statement is valid for m + 1.

The sequence {u,} is non-decreasing and bounded, consequently there exists

it = lim, o0 1. It remains to prove that it = u°. In fact, forn > k + 2,

U—up—1
S, (1) = Ro(u)+a/0 Sp—1(u—s)p(s)ds in A, k=0,1,...

and oyt
Ry = a / Spot(ty — )9 (s) ds
0

Up —Up—1

Up —Up—1
< Sy 1 () / e(s)ds < ... < S;®)a"* / @(s) ds,
0 0

where S; (u°) < c; + h Zk+1 o <cy+h(l—a)7l.

i=1

It is clear that R(u,) — 0 = R%(u"), as n — oo, hence, it = u” for 0 < o < 1.

|
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Remark 2. In other words, Theorem 2 states that for ¢c; < ¢; — p one has to use
only the second supplier, the order sizes being

Px)y=0, P2x) =0, n<k+I,
and
Px)=0, 2@ = —x)", n>k+1,
if (c,c0) € AF,k=0,1,....
Now let us turn to the last and most complicated case.

Theorem 3. If (c1,c2) € I'“, the optimal behaviour at the first step of n-step
process has the form v,(x) = max(x, min(v,,v)), u,(x) = maxv,(x),u,). The
sequence {uy,} is non-decreasing and there exists lim, oo tty, = u® where u® is
given by (5) and (6) with a = oo.

Proof. Itis obviousthat I'* C Ui=0(A§ UA§+1) andv > kin I'*. As in Theorem 1,
forn = 1 one has u;(x) = v;(x) = max(x, v;) where v, is given by (8) withk =0
in Ag and vi = —o0 in A;. Thus fl’(x) has the form (9). Note also that
Flo ={(c1,c2):0<c; < p,c; =0}
Moreover, S>(u) is given by (10) and up, > wv;. It is also clear that

{(c1,¢2) 1 2 = ey} C F2+. On the other hand, Flo C I, since S»(v) = —ac
in I'°. Furthermore, in A the function ¢; = g>(cy) is defined implicitly by

v—v1
S(V) = ¢ —acy + a/ Ti(v—s)p(s)ds =0,
0

whence it follows g,(0) = 0 and

0@ [ o(s)ds + [y o —$)e(s) ds

V=]

g(c1) =«
2 o) +a [ o — $)p(s) ds

Thus, it is clear that 1 > g/ (c;) > 0 and g5(0) = «, since v = v; forc; = ¢, = 0.
For ¢; = p two expressions for S, (V) coincide because

S,(V) > co—ap +a(p+h)F¥*®), as ¢ 1 p.

and in A} one has S>(u) = ¢2 —ap + a(p + h)F**(u). It is easy to get that u, is
determined by (15) with k = 1 in A(l) and u» = —oo in A'. We have also

’ _ 0!902*(9) . 0
g () = ot ™ Al
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and {(c1,¢2) € AY: ¢y = ¢; — p} C I, UT, more precisely, g(p(1 +a)) = ap.
Hence, I, C Ag U A(l), moreover, we are going to establish that I;” C 17,

whereas I’ 3+ CcTr. 2+. In fact, due to Lemma 1 one has v < vy < up in I, It follows

immediately that vo(x) = max(x, v) and u(x) = max(v2(x), up). That means,

0, X <,
f(x) =—c1 4+ 3 K(x), ¥ < x < u, (18)

Tr(x), x > us,

and

S30) = R®(u) + a /0 T o= )p(s) ds

with R%°(u) given by (5) with @ = oo. In other words, we have

R® () = ¢ — acy +oz/ K(u—s)p(s)ds.
0

Since S3(V) = ¢, —acy < 0in I, itis clear that I';” C Iy . From (9) and (18)
one gets

0, x <vi,
—T1(x) vi<x<y
/ / 1 s 1= s
X)— X) = _
A= fiw=1"" N,

To(x) = Ti(x), x = u.

Thus, f)(x) — f/(x) < 0forx < u,, thatis, H>(u) < 0 and u» < u3. As soon as
S3(u) > R*°(u), it is obvious that u3 < u®. Hence, f3’(x) has the form (18) with
indices 3 instead of 2.

Assuming now that (c1,¢3) € 1"2+ one has vi < up < v, < v due to (10) and
Lemma 1. It entails u>(x) = v»(x) = max(x,v,) and f;(x) is given by (12) with
k = 2. Recall also that v, is given by (8) withk = 1in A} and v, = —0c0 in A45.

Clearly,

u—vy
S3(u) = ¢, —acy + a/ To(u—s)p(s)ds,
0

that means S3(v2) = ¢ —ac; < 0in Ay U Ay, consequently, v, < u3z. There are
two possibilities: either us < v or u3 > v. The first case corresponds to I 30 UTr. 3+,
whereas the second one to I’ . In the first case u3(x) = v3(x) = max(x, v3), while
in the second one v3(x) = max(x, v) and u3(x) = max(vs(x), uz). Moreover, in Ai

S3(u) = ¢ —ap(l +a) +a(p + h)[F?* W) + «F** )],
while

T30) =c1 — p(l +a + o) + (p + W[F©) + aF?* () + > F*)].
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Thus u3 and v3 are given in A; by (15) and (8) respectively with k = 2, whereas
u3 = —oo in A% and v; = —o0 in A5. Furthermore, in A%

9> () + 9™ ()
9(¥) + ap™ (V) + 2@ ()’

g5(c2) =

aswellas g3(p(1 + @ + &%) = ap(l + a) and I, C Uj_o(A; U A}, ).
Supposing now that the statement of the theorem is true for all k < m we
establish its validity for k = m + 1. Induction assumption means that

Iy =TI, urd,ut, nry)cuzzaiual,), k=2m,

sol,"C...C I, andI,} C...C I, ", moreover, " = I, UL UT,F.
Let (¢1,c2) € T, , then

0, X <,
) = —c1 + 4 K(x), V<X < ty, (19)
Tn(X), X > thy,

while f,_,(x) has the form (19) with m — 1 instead of m, if (¢i,¢c2) € I,_,. If
(c1,e2) € IY_, U | then f_,(x) is given by (12) with k = m — 1. So, one has
either

0, X < Upy-—1,
fn;(x) - fry/,—l(x) = —Sm_l(X), Up—1 =X < Uy,
S (xX) = Sp—1(x), X > up,
or
0, X < Vm—1,
’ gt _ ~Tn—1(x), Vn—1 <X <V,
fm(x) fm—l('x) - _Sm—l(X), ‘—} S X < Uy,

Sm(x) - Sm—l(x)7 X Z Up-

It is clear that H(u,,) < 0, that means Sy, +1(u,) < 0 and w41 > u, > v, hence
(cr.e) € L.

Now if (c1,¢2) € I,f U T, then f/(x) has the form (12) for k < m, with
vy = —oo for k <[ and v;4; given by (8) with k = [ in A;. This entails

Sm+1(w) =2 —ac + o / 5 T(u—s)p(s)ds
0

and S;;+1(vin) = c;—acy < 0, whence it is obvious that v, < u,,+1. As a result one
has two possibilities: either 1,11 < v, thatis, (¢}, c2) € Fm++1 U FW?H, or v < Up+1,
namely, (c1,¢2) € I, . In the first case there exists v, 1 € (up+1.7) and f,  (x)
is given by (12). Furthermore, v, 4 satisfies (8) with k = m in A,,. In the second
case f, . ,(x) has the form (19) with indices m + 1 instead of m. Thus,
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S, () = R®(x) + / S = s)o(s) ds > R®(u)
0

and u, < u® for n > 2. It is simple to prove, as in Theorem 2, that u>* =
limy, 00 Uy - O

Corollary 1. If (¢ — p)T < ¢ < Brey with B = Y i Zlai/ Y ¥ 2 o, then
(Cl,c’z) S Fk_’ k> 2.

Remark 3. As follows from Theorem 3, for the parameters set I"* one uses two
suppliers or only the first one. The order sizes are regulated by critical levels u,
and v or v, respectively, according to values of cost parameters. More precisely, if
acy > ¢ > (c; — p)*, then there exists ng(cy, ¢;) such that for n > ny it is optimal
to use both suppliers, whereas for n < n( only the first supplier may be used.

2.4 Order Constraints

Turning to the results with order constraints we begin by the study of the first
restriction impact.

Theorem 4. Let a; < 0o, ay = o0, then the optimal decision at the first step of
n-step process has the form

Zﬁ,l)(x) = mina;, (min(v,, ) — x) "], zi,z) x) = (u, — x — zf,l))+. (20)

The sequences {u,} and {v,} defined by (6) are non-decreasing. There exists
lim,, o0 U, equal to u*'in I' and wWinl'™.

Proof. As previously, we proceed by induction. At first let us take n = 1. Since
S1(u) = ¢, > 0, that is, u; = —o0, it is optimal to put u = v. On the other hand,
Ti(v) = ¢1—p+ (p+ h)F(v), therefore vi = —o0 in A; and in A there exists
v € [0, V] satistying (8) with k = 0. In the former case u;(x) = v;(x) = x forall x
and in the latter case u;(x) = vi(x) = x +a; forx < v; —ay, u;(x) =vi(x) = v
for x € [vy —ay,vy) and u;(x) = vi(x) = x for x > vy.

Thus, f/(x) = L'(x) = —p + (p + h)F(x) in A;, whereas in Ag

Ti(x +ay), x <vi—a,
f ) =—c1+ 40, vi—ap <x <y, 1)
T](X), X = V1.

It is obvious that f/(x) is non-decreasing, hence the same is true of S, () and
T,»(v) taking values in [c; — ap,ca + ah] and [c; — p(1 + @), c;1 + h(1 + @)]
respectively. Hence, u, = —o0 in A, v, = —ocoin Ay, so for n = 2 the optimal
decision is ux(x) = vo(x) = x if (¢1,¢2) € Dy = A, N AL
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Proceeding in the same way we establish that in Dy = A N A1k > 2 one
has u, = v, = —oco,n <k, so u,(x) = v,(x) = x is optimal for all n < k and

flx) = —pZa +(p+h>Za’ VFP ().

i=l1

Moreover, in Ai_l there exist ux+1 > k and vg4; > k given by (15) and (8)
respectively.

Next consider the set I'. For each k > 1 it is divided into subsets ;7 and
I + by a curve ¢ = gi(cy) defined implicitly by equality Sx(v) = 0. The point
(p Zl oo, p Zf:ll ') on the boundary of I', corresponding to ¥ = k, belongs
to gx(c1), since Sk (k) = Ty (k) = 0 for such (cy, ¢;) from A’;j. According to the
rule of implicit function differentiation and the form of Sk (-) in A]]:%, we get

o Z":‘a"—l f*(v)

whence it is obvious that g; (¢;) € [0, 1]. The last result is valid for other values of
¢ although expression of g/ (c1) is more complicated.
Suppose (c1,¢3) € Fk+ C Fktl and

K(x+4+ap), x <up—a,

Ti(x +ar), ux —ay < x <vg—ai,
0, Vi —da; < x < Vg,

Ty (x), X > v

fk/(x) =—c +

It is not difficult to verify that ux4; > uy and vg4; > v and Fkt_l C Fk+.
Now let (c1,¢3) € I, then

K(x+ay), x<v—a,

0 vV—ap <x <y
/x = —¢ 9 —_= bl
HOO== ) k), v=x <

Tl‘l(x)7 xzuk‘

Itis easy to check that I',” C I, | forany n > k and

Sur(0) = R (u) + o /0 Y Suu=$)p(s) ds = R (),

entailing u,, < u*' for all n.
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Since R*(u) > R (u) > RO(u), for any u# and a; > 0, one has u® < u®' < ub.
It is not difficult to establish that lim, - o, u, = u*' where u*' is defined by (6).
Turning to I'~ C A; we get, forn > k,

0, X < Uy,

fl(x) =—c2+ L'(x) + % S,(x). x > .

if (c1,¢2) € '™ N AK. Verifying that f/(x) — f/_,(x) < 0 for x < u,, one obtains
Up+1 > u,. Furthermore, for all u and n > k,

1) = R+ [ T Suw—)p(s) ds > RGw).
0

So, u, < u® for all n. Obviously, there exists lim, . u, and it is easy to show that
it is equal to u°.

Finally, if u, and v, are finite then for "t it is optimal to take v, (x) = x + aj,
uy(x) = uy, for x < u, —ay; uy,(x) = vy(x) = x +a; forx € [u, —ay,v, —ay);
uy(x) = vy(x) = v, forx € [v, —ay,vy); and u,(x) = vy(x) = xforx >v,. 0O

To study the impact of the other constraint we formulate at first the almost
obvious

Corollary 2. Ifc, > acy the optimal behaviour for a, = 0o, a, < 0o has the same
form as that for ay = ay = oo in Theorem 1.

Proof. Proceeding in the same way as in Theorem 1 we easily get the result. O
Theorem 5. Leta; < oo, ay < oo and (cy, cp) € I'". Then the optimal decision at
the first step of n-step process is given by
2V (x) = min(a;, (w, —x)"), 2P (x) = min(aa, (u, — x — 2" (x)1),

where w, and u, are defined by (6). There exist lim, oo u, >V andlim, oo w, <V
withv defined by (7).
Proof. Begin by treating the case a; = 00, a, < oo. It follows easily from
assumptions that u; = v; = w; = —oo and f{(x) = L’(x). Moreover,
Sa(u) = cr—ap+(p+h) F> W), Ta(c) = ci—p—ap+(p+h)[F ) +aF>* ()]
and

By(v)=ci—p—ap+ (p+h)[F©V) +aF*©v+a)].

Since T>(v) < By(v) and S»(v + a2) < By(v) < T>(v + a) it follows from here
that wo, < vo < wy + a» < up. It is clear that w, > —o0 in A(l)
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Gr(Wo, w2 + az), x < wo,

fz(_x) = —c1x + GZ(-xs-x + a2), Wy <X < Uy —dj,

Ga(x, u), Uy —ax < x < uy,
Ga(x,x), X > up.

It follows immediately that
—Ti(x), X < wy,
—cy + SH(x +az), wo <X <upy —as,

Hx) = fix) = _

—C2, Up —dy = x < uy,
—cz + Sh(x), X > up.

So, fJ(x) — f{(x) < 0forx < u,. This entails the following inequalities w, < ws,
V) < V3, Uy < U3.

Then if (c1,c2) € AY, it is not difficult to verify by induction that there exist
finite u,, and w,, n > 2. Furthermore, one has w, < v, < w, + a» < u,. Hence,
it is optimal to take v,(x) = wy,, u,(x) = w, + a for x < wy; v,(x) = x,
Uy (x) = x +ap for x € [wy, uy, —az); vy (x) = x, uy(x) = u, for x € [u, —as, uy,)
and u, (x) = v,(x) = x for x > u,. Consequently, one gets

Os X <Wns _K('x)’

B,(x),w, <x <u, —as, S,(x + a),
L) =—at K(EC)) Uy — Gy < X < uz = e+ lE+ 0 ( ”

Tu(x), X = uy, Su(x),

(22)

and B,(v) > ¢;(1 —a) + L'(x). That means, w, <V for all n and a,. Using (22)
one also obtains lim, o 1, > V.

If (c1,¢2) € A?, there exists w; 4+ > —oo, whereas w,,, = —oo for m < [. Thus,

B, (x), x < u, —as,
f;l/(.X) =—C + K(.X), Uy —ay < X < Uy,
Tn(x)9 X 2 unv

for1 <n <[ and f,(x) has the form (22) forn > [.
The subsets A;‘ corresponding to k > 1 are treated in the same way giving also
1 2 . 1
2 () = (= 1), 27 = min(az, (u, —x = 2" (x))").
Changes necessary under assumption a@; < oo are almost obvious, so the details
are omitted. O



Optimal and Asymptotically Optimal Control for Some Inventory Models 157
2.5 Sensitivity Analysis

We begin studying the impact of model parameters on the optimal decision by the
motivating

Example. Assume k = 0,k = d and ¢(s) = d ™', s € [k, k], that is, distribution of
&; is uniform. Obviously, F(u) = u/d,u € [0,d],andv =d(p+cr2—c1)/(p+h),
while F?*(u) = u?/2d* u € [0,d], F*(u) = 1 — (u — 2d)?/2d?* u € [d,2d].
Suppose alsoa; < ccanda = 1.

According to (21) the form of g,(c;), given by the relation S,(v) = 0, depends
on a; for (¢, cz) € A). Moreover, ¢; — p + (p + h) F?*(u) = Sz(o)(u) < Séa‘)(u)
and SV (u) < S () = ¢ + [ L' (u — 5)¢(s) ds, whence it follows that the
domain I',” decreases as a; increases.

On the other hand, the curve g;(c) is the same for all a; if (¢, c;) € A(l). It is

determined by equation SZ(O) (v) = 0, which can be rewritten in the form
2p+M)(p—c) =(p+c2—c1)’, for h=p.

Thus, géo) (c1) does not depend on d. It starts from the pointc; = 2p, ¢, = p
and crosses the line ¢; = p atc; = —(2p + h) + /5p? + 4ph + h? and then the
linec, = c¢jatcy; = p[l — p/2(p + h)]. For h = p these values of ¢, are equal to
(/10 — 3) and 3p/4 respectively.

Next, if c; =0 one has ¢; = (p+h)[/1 + 2p(p + h)~T—1] equal to p(2+/3—3)
for h = p. However, the set I,” N {c> > ¢;} is empty when a; = oo.

As usual for dynamic programming, the optimal control depends on the planning
horizon. Moreover, for n fixed there exist stability domains of cost parameters
(7, L7, I~ N AY, YN ALk, > 0) where the optimal behaviour has the same
type, that is determined by the same set of critical levels u,, v,, w,, n > 2, and v.

Fortunately, using the g-optimal and asymptotically optimal stationary controls
one can reduce the number of stability domains and exclude dependence on n.

We prove below only the simplest results demonstrating the reasoning necessary
for the general case.

Theorem 6. Let 0 <o <1, a; =00, a < oo and cy > acy. Then for any & > 0 there
exists ng = no(s, k) such that it is s-optimal to use u,(x) = v,(x) = max(x,v)
at the first step of n-step process with n > ng if (c1,¢2) € Ax, k = 0,1,.... The
critical level V is given by (7).

Proof. Put for brevity g,(x) = G,(x, x). According to Theorem 1 and Corollary 2
we can write forn > k + 1

gl‘l(vn)a X < vl‘la

Salx) = —erx + gn(X), x > vy,
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and
&) — 81 (Va1), X < vy,
Jn(X) = fam1(x) = § 80 (Vi) = gu—1(X), Va1 S X <V,
gn(x)_gn—l(-x)v X 2 Vp,
if(Cl,Cz) €A, k=0,1,....
Taking into account that g, (v,) = min, g,(x) one easily gets

max [ fo(¥) = fimr ()| = max _|gu(x) — g1 (¥)].

Vp—1 <x<max(z.v)

Recalling that g,(x) = ¢;x + L(x) + « fooo fo—1(x — s)p(s) ds it is possible to
write for z > V the following chain of inequalities

max [ fu(x) = fu—1(X)] < o max | fim1(X) = fuma ()| < ... < @58k (2).

Here i (z) = max,, | <v<;| fooo(fk+1(x —35) — fix —s)p(s)ds| < oo in Ay,
k =0,1,...,1in particular, 8¢(z) = ¢ + max(L(z), L(v1)).

Clearly, we have established that f, (x) tends uniformly to a limit f(x) on any
half-line {x < z}. This enables us to state that continuous function f(x) satisfies
the following functional equation

Fx) = —evx + minlery + L0 + /0 " 10— $)p(s) ds).

Furthermore, if the planning horizon is infinite the optimal behaviour at each step is
determined by a critical level v.

Since u, (x) = v,(x) = x for all n, if x >V, it follows immediately that for any
e > 0 one can find ng(e, ¢;) such that ordering (v — x)™ at the first step of n-step
process with n > n(y we obtain an e-optimal control. It is obvious that ny(e, ¢) can
be chosen the same for the parameter set Ay, that is, ny = no(e, k). O

As follows from Definitions 3 and 4, a control is stationary if it prescribes the
same behaviour at each step and it is asymptotically optimal if

lim n_I?n(x) = lim n7' £, (x)
n—o00 n—o0

where ?,, (x) represents the expected n-step costs under this control.
Theorem 7. Ifa = 1, a; = 00, ay < oo and ¢, > cy, it is asymptotically optimal
to take 7\ (x) = (T — x)*, 22 (x) = 0 for all n with T given by L'(f) = 0.

Proof. Denote by f!(x) the expected n-step costs if 7 is applied during the first /
steps, whereas the critical levels vi, k < n—1, optimal under the assumptions made,
are used during the other steps.
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Itis clear that £, (x) = ?n(x) and £%(x) = f,(x), hence
Fulr) = £ = S (A1) = £ (). 23)
1=1

Suppose for simplicity that ¢; < p, thatis, v; is finite.
Since v, < vy4+1,n > 1,and v, — [, as n — oo, one can find, for any & > 0,
such7 = n(e) thatf — e < v, <, if n > 1. Furthermore, we have

max | £/ (x) = £, 7Nl < max [ Ly — £, ()]
and
@ —vi)+L@)— L)+ V), x <,

o) = £200) = S er(f —x) + L) — L(x) + V(x), Ve < x <1,
0, x>1,

where V(x) = [ (fi—1(f —5) — fim1(x — 5))e(s) ds.
Obviously,k — 1 =n —1 >n forl < n —n, therefore

mfx|fk1(x) — fko(x)| <de with d = 2(c; + max(p,h))

and R
DA @ = £ 0] < (n—R)de, (24)
=1
On the other hand,
> = T < Ab(x) (25)
I=n=n+1

where b(x) = max, ~| f,!(x) — f2(x)| < L(v)) 4 di < oo, forall x.
It follows immediately from (23) to (25) that

n7 (Fa(x) = fu(x) >0, as 1 — oo.
To complete the proof we have to verify that there exists, for all x,

lim n~'f,(x) = cijp + L(D), p=E§, k> 1. (26)

n—o0

This is obvious for x < 7, since in this case
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n—1

Fa(x)=cif —x) +c Z E& + nL(7).

k=1

Now let x > 7. Then we do not order during the first m, steps where

k
my = inflk : Y & > x —1}.

i=1

In other words, we wait until the inventory falls below the level 7 proceeding after
that as in the previous case. Hence,

my—1 i

n—1
Ti@) =L +EY Lax=Y &) +aE|t+ Y & | +E@—m)L(D)

i=1 k=1 i=my+1

here {, = Y/, & — (x — 1) is the overshot of the level x — 7 by the random walk
with jumps &;,i > 1.
Thus, it is possible to rewrite f,(x) as follows

Fu(x) = n(eip+ L@) + W(x).

Using Wald’s identity and renewal processes properties (see, e.g. [1]), as well as, the
fact that L(7) is the minimum of L(x) it is possible to establish that |W(x)| < oo
for a fixed x. So (26) follows immediately.

The same result is valid for ¢; > p. The calculations being long and tedious are
omitted. O

Remark 4. For the parameter sets treated in Theorems 2 and 3 the asymptotically
optimal policy is also of threshold type being based either on u° or v and u°.

Since = g(p. h), with g(a,,a2) = F"(a;/(a, + ay)), it is useful to check its
sensitivity with respect to small fluctuations of parameters p and / and perturbations
of distribution F'.

We apply the local technique, more precisely, differential importance measure
(DIM) introduced in [3] is used. Let a® = (af,a9) be the base-case values of
parameters, reflecting the decision maker (researcher) knowledge of assumptions
made. The (DIM) for parameter a,, s = 1, 2, is defined as follows

-1

2
Dy(a°, da) = g, (@°) day Zg;j (@) da; (= dg,(a®)/dg(a®)

J=1

if dg(a®) # 0. Whence, for uniform parameters changes: da, = u, s = 1,2, we get
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2
D1,(a’) = g, (a°) / Y& @) (27)

j=1
Theorem 8. Under assumptions of Theorem 7, (DIM)s for parameters p and h do
not depend on distribution F.

Proof. The result follows immediately from (27) and definition of function g. Since
0, (@%) = 97! ([)a3/ (@) + a3)*,  g,,(a%) = =7 ([)a)/ (@] + a3)?,

it is clear that

0 a°

2 D15’ = ——1— =1 - DI1,(d").

0__0° 0_ 0
a, —aj a, —aj

D1;(a°) =

Thus, they are well defined for a(l) #* ag and do not depend on F. Moreover,

D1,(a%) > 1, D1,(a®) < 0 for ag > a(l) and D1,(a®) < 0, D15(a®) > 1 for

al <a’ O
2 1

Note that a similar result is valid for v if 0 < o < 1.

Now we can establish that the asymptotically optimal policy is stable with respect
to small perturbations of distribution F'.

Denote by 7 value of 7 corresponding to distribution Fj (). Moreover, set

y(Fi, F) = sup |F (1) — F(1)],

that is, y is the Kolmogorov (or uniform) metric.

Lemma 2. Let distribution function F(t) be continuous and strictly increasing.
Then ty — t, provided y(Fy, F) — 0, as k — oo.

Proof. According to assumptions Fy (fx) = F(7) and | Fx(fx) — F(&x)| < y(F, F).
Hence |F(t) — F(1;)| < y(F, F}). That means, iy — I, as k — oo. a

This result is also important for construction of asymptotically optimal policies
under assumption of none a priori information about distribution F'.

3 Conclusion

We have treated in detail the case of two suppliers and obtained the explicit form
of optimal, e-optimal and asymptotically optimal policies for various sets of cost
parameters. Stability of model to small fluctuations of parameters and perturbations
of underlying process is also established. The case of m suppliers, m > 2, can be
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investigated using induction procedure and numerical methods. Due to lack of space
the results will be published in a forthcoming paper.
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