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1 Introduction

It was my scientific adviser Professor Yu.V. Prokhorov who proposed optimal
control of some inventory systems as a topic of my Phd thesis. At the time it
was a new research direction. The subject of my habilitation thesis was stochastic
inventory models. So I decided to return to these problems in the paper devoted to
jubilee of academician of Russian Academy of Sciences Yu.V. Prokhorov.

Optimal control of inventory systems is a particular case of decision making
under uncertainty (see, e.g., [5]). It is well known that construction of a mathemat-
ical model is useful to investigate a real life process or system and make a correct
decision.

There always exist a lot of models describing the process under consideration
more or less precisely. Therefore it is necessary to choose an appropriate model.
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Usually the model depends on some parameters not known exactly. So they are
estimated on the base of previous observations. The same is true of underlying
processes distributions. Hence, the model must be stable with respect to small
parameters fluctuations and processes perturbations (see, e.g., [6]).

To illustrate the problems arising and the methods useful for their solution, a
multi-supplier inventory model is considered.

2 Main Results

The aim of investigation is to establish optimal and asymptotically optimal control.
It is reasonable to begin by some definitions.

2.1 Definitions

To describe any applied probability model one needs to know the following
elements: the planning horizon T , input process Z D fZ.t/; t 2 Œ0; T �g, output
process Y D fY.t/; t 2 Œ0; T �g and control U D fU.t/; t 2 Œ0; T �g. The system
state is given by X D �.Z; Y; U / where functional � represents the system
configuration and operation mode. Obviously, one has also X D fX.t/; t 2 Œ0; T �g.
Moreover, processes Z; Y; U and X can be multi-dimensional and their dimensions
may differ. For evaluation of the system performance quality it is necessary to
introduce an objective function L .Z; Y; U; X; T /. For brevity it will be denoted
by LT .U /. So, a typical applied probability model is described by a six-tuple
.Z; Y; U; �; L ; T /.

Such description is useful for models classification. It also demonstrates the
similarity of models arising in different applied probability domains such as
inventory and dams theory, insurance and finance, queueing and reliability theory,
as well as population growth and many others (see, e.g., [7]). One only gives another
interpretation to processes Z; Y; X in order to switch from one research domain to
another. Thus, input to inventory system is replenishment delivery (or production)
and output is demand, whereas for a queueing system it is arrival and departure of
customers respectively (for details see, e.g., [6]).

Definition 1. A control U �
T D fU �.t/; t 2 Œ0; T �g is called optimal if

LT .U �
T / D inf

UT 2UT

LT .UT / .or LT .U �
T / D sup

UT 2UT

LT .UT //; (1)

where UT is a class of all feasible controls. Furthermore, U � D fU �
T ; T � 0g is

called an optimal policy.
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The choice of inf or sup in (1) is determined by the problem we want to solve.
Namely, if we are interested in minimization of losses (or ruin probability) we use
the first expression, whereas for profit (or system life-time) maximization we use
the second one in (1).

Since extremum in (1) may be not attained we introduce the following

Definition 2. A control U "
T is "-optimal if

LT .U "
T / < inf

UT 2UT

LT .UT / C " .or LT .U "
T / > sup

UT 2UT

LT .UT / � "/:

Definition 3. A policy QU D f QUT ; T � 0g is stationary if for any T; S � 0

QUT .t/ D QUS.t/; t � min.T; S/:

Definition 4. A policy bU D .bU T ; T � 0/ is asymptotically optimal if

lim
T !1 T �1LT .bU T / D lim

T !1 T �1LT .U �
T /:

The changes necessary for discrete-time models are obvious.

2.2 Model Description

Below we consider a discrete-time multi-supplier one-product inventory system. It
is supposed that a store created to satisfy the customers demand can be replenished
periodically. Namely, at the end of each period (e.g., year, month, week, day etc.)
an order for replenishment of inventory stored can be sent to one of m suppliers or
to any subset of them. The i -th supplier delivers an order with .i � 1/-period delay,
i D 1; m. Let ai be the maximal order possible at the i -th supplier, and the ordering
price is ci per unit, i D 1; m. For simplicity, the constant delivery cost associated
with each order is ignored. However we take into account holding cost h per unit
stored per period and penalty p for deficit of unit per period.

Let the planning horizon be equal to n periods. The demand is described by
a sequence of independent identically distributed nonnegative random variables
f�kgn

kD1. Here �k is amount demanded during the k-th period. Assume F.x/ to be
the distribution function of �k having a density '.s/ > 0 for s 2 Œ�; �� � Œ0; 1/: It
is also supposed that there exists E�k D �, k D 1; n.

Unsatisfied demand is backlogged. That means, the inventory level xk at the end
of the k-th period can be negative. In this case jxkj is the deficit amount.

Expected discounted n-period costs are chosen as objective function. We denote
by fn.x; y1; : : : ; ym�2/ the minimal value of objective function if inventory on hand
(or initial inventory level) is x and yi is already ordered (during previous periods)
quantity to be delivered i periods later, i D 1; m � 2.
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2.2.1 Notation and Preliminary Results

It is supposed that the order amounts at the end of each period depend on the
inventory level x and yet undelivered quantities y1; : : : ; ym�2. Using the Bellman
optimality principle (see, e.g., [2]) it is possible to obtain, for n � 1, the following
functional equation

fn.x; y1; : : : ; ym�2/ D min
0�zi �ai ;iD1;m

Œ

m
X

iD1

ci zi C L.x C z1/ C (2)

C˛Efn�1.x C y1 C z1 C z2 � �1; y2 C z3; : : : ; ym�2 C zm�1; zm/�:

Here ˛ is the discount factor, E stands for mathematical expectation and zi is the
order size at the first step of n-step process from the i -th supplier, i D 1; m.
Furthermore, the one-period mean holding and penalty costs are represented by

L.v/ D EŒh.v � �1/C C p.�1 � v/C�; with aC D max.a; 0/;

if inventory level available to satisfy demand is equal to v.
The calculations for arbitrary m being too cumbersome, we treat below in detail

the case m D 2. Then we need to know only the initial level x and Eq. (2) takes the
form

fn.x/ D min
0�zi �ai ;iD1;2

Œc1z1 C c2z2 C L.x C z1/ C ˛Efn�1.x C z1 C z2 � �1/� (3)

with f0.x/ � 0: Let us introduce the following notation v D x C z1, u D v C z2 and

Gn.v; u/ D .c1 � c2/v C c2u C L.v/ C ˛Efn�1.u � �1/:

Then Eq. (3) can be rewritten as follows

fn.x/ D �c1x C min
.v;u/2Dx

Gn.v; u/ (4)

where Dx D fx � v � x C a1; v � u � v C a2g:
The minimum in (4) can be attained either inside of Dx or at its boundary.
To formulate the main results we need the following functions

@Gn

@v
.v; u/ D c1 � c2 C L0.v/ WD K.v/;

@Gn

@u
.v; u/ D c2 C ˛

Z 1

0

f 0
n�1.u � s/'.s/ ds WD Sn.u/:
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Moreover, Tn.v/ D Sn.v/ C K.v/ and Bn.v/ D Sn.v C a2/ C K.v/ represent
dGn.v; v/

dv
and

dGn.v; v C a2/

dv
respectively, whereas

Ra.u/ D c2 �˛c1 C˛

Z u�Nv

0

K.u�s/'.s/ ds C˛

Z 1

uCa�Nv
K.uCa�s/'.s/ ds: (5)

Let Nv, un, vn, wn and ua be the roots of the following equations

K.Nv/ D 0; Sn.un/ D 0; Tn.vn/ D 0; Bn.wn/ D 0; Ra.ua/ D 0; (6)

provided the solutions exist for a given set of cost parameters. In particular, Nv 2
Œ�; �� is given by

F.Nv/ D p � c1 C c2

p C h

if .c1; c2/ 2 � D f.c1; c2/ W .c1 � p/C � c2 � c1 Chg. Otherwise, we set Nv D �1,
if K.v/ > 0 for all v, that is, .c1; c2/ 2 � � D f.c1; c2/ W c2 < .c1 � p/Cg, and
Nv D C1, if K.v/ < 0 for all v, that is, .c1; c2/ 2 � C D f.c1; c2/ W c2 > c1 C hg. A
similar assumption holds for Sn.u/, Tn.v/, Bn.w/ and un, vn, wn, n � 1, as well as
Ra.u/ and ua. Below we are going to use also the following notation. For k � 0 set

�k D f.c1; c2/ W p

k�1
X

iD0

˛i < c1 � p

k
X

iD0

˛i g; �k D f.c1; c2/ W p

k
X

iD1

˛i < c2 � p

kC1
X

iD1

˛i g;

where as always the sum over empty set is equal to 0,

�l
k D �k \ �l ; Ak D [l�k�l ; Ak D [l�k�l ; � ˛ D f.c1; c2/ W .c1 � p/C � c2 � ˛c1g;

� �
n D f.c1; c2/ 2 � W Sn.Nv/ < 0g; � C

n D f.c1; c2/ 2 � W Sn.Nv/ > 0g;

whereas � 0
n D f.c1; c2/ 2 � W Sn.Nv/ D 0g: As usual dealing with dynamic

programming all the proofs are carried out by induction.
Thus, it will be proved that functions f 0

n.x/ are non-decreasing as well as K.v/,
Sn.v/, Tn.v/ and Bn.v/. Moreover, to establish that sequences fung, fvng, n � 1, are
non-decreasing it is enough to check that f 0

n.x/�f 0
n�1.x/ � 0 for x � max.un; vn/,

since SnC1.u/ D Sn.u/ C ˛Hn.u/ and TnC1.v/ D Tn.v/ C ˛Hn.v/ where Hn.u/ D
.f 0

n � f 0
n�1/ � F.u/, here and further on � denotes the convolution.

The crucial role for classification of possible variants of optimal behaviour plays
the following
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Lemma 1. If .c1; c2/ 2 � �
n , then Nv < vn < un; if .c1; c2/ 2 � C

n , then Nv > vn > un,
whereas Nv D vn D un if .c1; c2/ 2 � 0

n , and un; vn; Nv are defined by (6). Moreover, if
.c1; c2/ 2 � �; then vn < un and vn > un, if .c1; c2/ 2 � C, for all n.

Proof. The statement is obvious, since functions K.v/, Sn.v/ and Tn.v/ are non-
decreasing in v, Tn.v/ D Sn.v/ C K.v/ and K.v/ < 0 for v < Nv, while K.v/ > 0 for
v > Nv. ut

2.3 Optimal Control

We begin by treating the case without constraints on order sizes. Although Corol-
lary 1 was already formulated in [4] (under assumption ˛ D 1) a more thorough
investigation undertaken here lets clarify the situation and provides useful tools for
the case with order constraints.

2.3.1 Unrestricted Order Sizes

At first we suppose that the order size at both suppliers may assume any value, that
is, ai D 1, i D 1; 2.

Theorem 1. If c2 > ˛c1, the optimal behaviour at the first step of n-step process
has the form un.x/ D vn.x/ D max.x; vn/. The sequence fvng of critical levels
given by (6) is non-decreasing and there exists limn!1 vn D bv satisfying the
following relation

F.bv/ D p � c1.1 � ˛/

p C h
: (7)

Moreover, for .c1; c2/ 2 �k , k D 0; 1; : : : ; one has vn D �1, n � k and vkC1 is a
solution of the equation

kC1
X

iD1

˛i�1F i�.vkC1/ D p
Pk

iD0 ˛i � c1

p C h
: (8)

Proof. For n D 1 it is optimal to take u D v, since S1.u/ D c2 > 0 for all u, that means
u1 D �1. On the other hand, T1.v/ D c1 � p C .p C h/F.v/, therefore v1 D �1
in A1, whereas in �0 there exists v1 2 Œ0; Nv� such that F.v1/ D .p � c1/=.p C h/.
Thus, the optimal decision has the form u1.x/ D v1.x/ D max.x; v1/:

For further investigation we need only to know

f 0
1 .x/ D �c1 C

�

0; x < v1;

T1.x/; x � v1;
D

� �c1; x < v1;

L0.x/; x � v1:
(9)
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It is obvious that f 0
1 .x/ is non-decreasing, the same being true of

S2.u/ D c2 � ˛c1 C ˛

Z u�v1

0

T1.u � s/'.s/ ds (10)

and

T2.v/ D Q.v/ C ˛

Z v�v1

0

T1.v � s/'.s/ ds (11)

with Q.v/ D c1.1 � ˛/ C L0.v/. Note that in the case v1 D �1 the meaning of
R u�v1

0
in (10) and

R v�v1

0
in (11) is

R 1
0

. The same agreement will be used further on.
Thus, S2.u/ > 0 for all u under assumption c2 > ˛c1, that is, u2 D �1. Since

T2.v/ � Q.v/, it follows immediately that v2 �bv andbv is given by (7), hencebv < Nv.
Moreover,bv D �1 for c1 > p.1 � ˛/�1. It is also clear that v2 > v1 in �0 because
T2.v1/ D �˛c1. Recalling that in A1

T2.v/ D c1 C L0.v/ C ˛

Z 1

0

L0.v � s/'.s/ ds

we get

F.v2/ C ˛F 2�.v2/ D p.1 C ˛/ � c1

p C h
in �1;

whereas v2 D �1 in A2. Hence, u2.x/ D v2.x/ D max.x; v2/.
Assuming now the statement of the theorem to be valid for k � m, one has

f 0
k .x/ D �c1 C

(

0; x < vk;

Tk.x/; x � vk;
(12)

and

f 0
m.x/ � f 0

m�1.x/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0; x < vm�1;

�Tm�1.x/; vm�1 � x < vm;

Tm.x/ � Tm�1.x/; x � vm:

(13)

Thus, SmC1.u/ > 0 for all u, that entails umC1 D �1. Moreover, TmC1.v/ � Q.v/

and Hm.vm/ � 0. Hence, vm < vmC1 � bv in [m�1
kD0 �k and vmC1 satisfies (8) with

k D m in �m, whereas vmC1 D �1 in AmC1. That means, the theorem statement
is valid for m C 1.

The sequence fvng is non-decreasing and bounded. Consequently there exists
limn!1 vn D Mv �bv. It remains to prove that Mv Dbv. In fact, for n > k C 1

Tn.v/ D Q.v/ C ˛

Z v�vn�1

0

Tn�1.v � s/'.s/ ds in �k; k � 0;
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so

jQ.vn/j D ˛

Z vn�vn�1

0

Tn�1.vn � s/'.s/ ds

� Tn�1.bv/˛

Z vn�vn�1

0

'.s/ ds � : : : � Tk.bv/˛n�k

Z vn�vn�1

0

'.s/ ds

where Tk.bv/ � c1 C h
Pk

iD0 ˛i � c1 C h.1 � ˛/�1.
Hence, Q.vn/ ! 0 D Q.bv/, as n ! 1. On the other hand, Q.vn/ ! Q.Mv/,

therefore Mv Dbv. It is clear that this result is true for any 0 < ˛ � 1. ut
Remark 1. The main result of Theorem 1 can be reformulated in the following way:

z.1/
n .x/ D z.2/

n .x/ D 0 for n � k

and
z.1/
n .x/ D .vn � x/C; z.2/

n .x/ D 0 for n > k;

if .c1; c2/ 2 �k , k D 0; 1; : : :.
That means, for c2 > ˛c1 it is optimal to use only the first supplier. The inventory

level is raised up to a prescribed critical value vn if the initial level x at the first step
of n-step process is less than vn. Nothing is ordered for x � vn. Furthermore, if
c1 > p

Pk�1
iD0 ˛i then for n � k nothing is ordered for all initial inventory levels x

at the first step of n-step process. If c1 > p.1 � ˛/�1, it is optimal never to order for
any initial level.

Theorem 2. If c2 < .c1 � p/C, the optimal behaviour at the first step of n-step
process has the form vn.x/ D x, un.x/ D max.x; un/. The sequence fung defined
by (6) is non-decreasing and there exists limn!1 un D u0, where u0 is given by

F 2�.u0/ D ˛p � c2.1 � ˛/

˛.p C h/
: (14)

Moreover, for .c1; c2/ 2 �k�1, k D 1; 2; : : : ; one has un D �1, n � k, and

kC1
X

iD2

˛i�2F i�.ukC1/ D p
Pk

iD1 ˛i � c2

˛.p C h/
: (15)

Proof. Recall that Nv D �1 in � � and � � � A1. It follows immediately from here
that u1.x/ D v1.x/ D x and f 0

1 .x/ D L0.x/. Now turn to n D 2. Since

S2.u/ D c2 � ˛p C ˛.p C h/F 2�.u/;

it is obvious that S2.u/ > 0 for all u (that is, u2 D �1) in A1 and there exists
u2 � 0 satisfying (15) with k D 1 in �0. According to Lemma 1 one has v2 < u2,
therefore it is optimal to have v2.x/ D x and u2.x/ D max.x; u2/. Thus,
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f 0
2 .x/ D �c1 C

�

K.x/; x < u2;

T2.x/; x � u2;
D �c2 C L0.x/ C

�

0; x < u2;

S2.x/; x � u2;

and

S3.u/ D R0.u/ C ˛

Z u�u2

0

S2.u � s/'.s/ ds

where R0.u/ given by (5) with a D 0 has the form

c2.1 � ˛/ C ˛

Z 1

0

L0.u � s/'.s/ ds D c2.1 � ˛/ � ˛p C ˛.p C h/F 2�.u/: (16)

It is clear that there exists u0 satisfying R0.u0/ D 0. For c2 � ˛p.1 � ˛/�1 it is
given by (14), otherwise u0 D �1. Since S3.u/ � R0.u/ and S3.u2/ D �˛c2 in
�0, one has u2 < u3 � u0. Moreover, in �1 there exists u3 satisfying (15) with
k D 2, whereas u3 D �1 in A2.

Assuming the statement of the theorem to be valid for k � m one has

f 0
k .x/ D �c1 C K.x/ C

�

0; x < uk;

Sk.x/; x � uk;
(17)

and

f 0
m.x/ � f 0

m�1.x/ D
8

<

:

0; x < um�1;

�Sm�1.x/; um�1 � x < um;

Sm.x/ � Sm�1.x/; x � um:

That means SmC1.u/ � R0.u/ for all u and Hm.um/ < 0. Thus, um < umC1 � u0 in
[m�2

kD0 �k and umC1 � u0 satisfies (15) with k D m in �m�1, whereas umC1 D �1
in Am. It follows immediately that vmC1.x/ D x and umC1.x/ D max.x; umC1/.
Clearly, the theorem statement is valid for m C 1.

The sequence fung is non-decreasing and bounded, consequently there exists
Mu D limn!1 un. It remains to prove that Mu D u0. In fact, for n > k C 2,

Sn.u/ D R0.u/ C ˛

Z u�un�1

0

Sn�1.u � s/'.s/ ds in �k; k D 0; 1; : : : ;

and

jR0.un/j D ˛

Z un�un�1

0

Sn�1.un � s/'.s/ ds

� Sn�1.u
0/˛

Z un�un�1

0

'.s/ ds � : : : � Sk.u0/˛n�k

Z un�un�1

0

'.s/ ds;

where Sk.u0/ � c2 C h
PkC1

iD1 ˛i � c2 C h.1 � ˛/�1:

It is clear that R0.un/ ! 0 D R0.u0/, as n ! 1, hence, Mu D u0 for 0 < ˛ � 1.
ut
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Remark 2. In other words, Theorem 2 states that for c2 < c1 � p one has to use
only the second supplier, the order sizes being

z.1/
n .x/ D 0; z.2/

n .x/ D 0; n � k C 1;

and
z.1/
n .x/ D 0; z.2/

n .x/ D .un � x/C; n > k C 1;

if .c1; c2/ 2 �k , k D 0; 1; : : : :

Now let us turn to the last and most complicated case.

Theorem 3. If .c1; c2/ 2 � ˛ , the optimal behaviour at the first step of n-step
process has the form vn.x/ D max.x; min.vn; Nv//, un.x/ D max.vn.x/; un/. The
sequence fung is non-decreasing and there exists limn!1 un D u1 where u1 is
given by (5) and (6) with a D 1.

Proof. It is obvious that � ˛ � [1
iD0.�

i
i [�i

iC1/ and Nv � � in � ˛ . As in Theorem 1,
for n D 1 one has u1.x/ D v1.x/ D max.x; v1/ where v1 is given by (8) with k D 0

in �0 and v1 D �1 in A1. Thus f 0
1 .x/ has the form (9). Note also that

� 0
1 D f.c1; c2/ W 0 � c1 � p; c2 D 0g:

Moreover, S2.u/ is given by (10) and u2 � v1. It is also clear that
f.c1; c2/ W c2 D ˛c1g � � C

2 . On the other hand, � 0
1 � � �

2 , since S2.Nv/ D �˛c1

in � 0
1 . Furthermore, in �0

0 the function c2 D g2.c1/ is defined implicitly by

S2.Nv/ D c2 � ˛c1 C ˛

Z Nv�v1

0

T1.Nv � s/'.s/ ds D 0;

whence it follows g2.0/ D 0 and

g0
2.c1/ D ˛

'.Nv/
R 1

Nv�v1
'.s/ ds C R Nv�v1

0
'.Nv � s/'.s/ ds

'.Nv/ C ˛
R Nv�v1

0
'.Nv � s/'.s/ ds

:

Thus, it is clear that 1 � g0
2.c1/ � 0 and g0

2.0/ D ˛, since Nv D v1 for c1 D c2 D 0.
For c1 D p two expressions for S2.Nv/ coincide because

S2.Nv/ ! c2 � ˛p C ˛.p C h/F 2�.Nv/; as c1 " p;

and in �0
1 one has S2.u/ D c2 � ˛p C ˛.p C h/F 2�.u/. It is easy to get that u2 is

determined by (15) with k D 1 in �0
1 and u2 D �1 in �1. We have also

g0
2.c1/ D ˛'2�.Nv/

'.Nv/ C ˛'2�.Nv/
in �0

1
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and f.c1; c2/ 2 �0
1 W c2 D c1 �pg � � �

2 [� 0
2 , more precisely, g2.p.1C˛// D ˛p.

Hence, � �
2 � �0

0 [ �0
1, moreover, we are going to establish that � �

2 � � �
3 ,

whereas � C
3 � � C

2 . In fact, due to Lemma 1 one has Nv < v2 < u2 in � �
2 . It follows

immediately that v2.x/ D max.x; Nv/ and u2.x/ D max.v2.x/; u2/. That means,

f 0
2 .x/ D �c1 C

8

<

:

0; x < Nv;

K.x/; Nv � x < u2;

T2.x/; x � u2;

(18)

and

S3.u/ D R1.u/ C ˛

Z u�u2

0

S2.u � s/'.s/ ds

with R1.u/ given by (5) with a D 1. In other words, we have

R1.u/ D c2 � ˛c1 C ˛

Z u�Nv

0

K.u � s/'.s/ ds:

Since S3.Nv/ D c2 � ˛c1 < 0 in � �
2 , it is clear that � �

2 � � �
3 . From (9) and (18)

one gets

f 0
2 .x/ � f 0

1 .x/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0; x < v1;

�T1.x/; v1 � x < Nv;

�c2; Nv � x < u2;

T2.x/ � T1.x/; x � u2:

Thus, f 0
2 .x/ � f 0

1 .x/ � 0 for x � u2, that is, H2.u2/ < 0 and u2 < u3. As soon as
S3.u/ � R1.u/, it is obvious that u3 � u1. Hence, f 0

3 .x/ has the form (18) with
indices 3 instead of 2.

Assuming now that .c1; c2/ 2 � C
2 one has v1 � u2 < v2 < Nv due to (10) and

Lemma 1. It entails u2.x/ D v2.x/ D max.x; v2/ and f 0
2 .x/ is given by (12) with

k D 2. Recall also that v2 is given by (8) with k D 1 in �1 and v2 D �1 in A2.
Clearly,

S3.u/ D c2 � ˛c1 C ˛

Z u�v2

0

T2.u � s/'.s/ ds;

that means S3.v2/ D c2 � ˛c1 � 0 in �0 [ �1, consequently, v2 � u3. There are
two possibilities: either u3 � Nv or u3 > Nv. The first case corresponds to � 0

3 [ � C
3 ,

whereas the second one to � �
3 . In the first case u3.x/ D v3.x/ D max.x; v3/, while

in the second one v3.x/ D max.x; Nv/ and u3.x/ D max.v3.x/; u3/. Moreover, in �1
2

S3.u/ D c2 � ˛p.1 C ˛/ C ˛.p C h/ŒF 2�.u/ C ˛F 3�.u/�;

while

T3.v/ D c1 � p.1 C ˛ C ˛2/ C .p C h/ŒF.v/ C ˛F 2�.v/ C ˛2F 3�.v/�:
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Thus u3 and v3 are given in �1
2 by (15) and (8) respectively with k D 2, whereas

u3 D �1 in A2 and v3 D �1 in A3. Furthermore, in �1
2

g0
3.c2/ D ˛

'2�.Nv/ C ˛'3�.Nv/

'.Nv/ C ˛'2�.Nv/ C ˛2'3�.Nv/
;

as well as g3.p.1 C ˛ C ˛2// D ˛p.1 C ˛/ and � �
3 � [1

lD0.�l
l [ �l

lC1/.
Supposing now that the statement of the theorem is true for all k � m we

establish its validity for k D m C 1. Induction assumption means that

� �
k D � �

k�1 [ � 0
k�1 [ .� C

k�1 \ � �
k / � [k�2

lD0.�l
l [ �l

lC1/; k D 2; m;

so � �
2 � : : : � � �

m and � C
m � : : : � � C

2 , moreover, � D � �
m [ � 0

m [ � C
m :

Let .c1; c2/ 2 � �
m , then

f 0
m.x/ D �c1 C

8

<

:

0; x < Nv;

K.x/; Nv � x < um;

Tm.x/; x � um;

(19)

while f 0
m�1.x/ has the form (19) with m � 1 instead of m, if .c1; c2/ 2 � �

m�1. If
.c1; c2/ 2 � 0

m�1 [ � C
m�1, then f 0

m�1.x/ is given by (12) with k D m � 1. So, one has
either

f 0
m.x/ � f 0

m�1.x/ D
8

<

:

0; x < um�1;

�Sm�1.x/; um�1 � x < um;

Sm.x/ � Sm�1.x/; x � um;

or

f 0
m.x/ � f 0

m�1.x/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

0; x < vm�1;

�Tm�1.x/; vm�1 � x < Nv;

�Sm�1.x/; Nv � x < um;

Sm.x/ � Sm�1.x/; x � um:

It is clear that H.um/ < 0, that means SmC1.um/ < 0 and umC1 > um > Nv, hence
.c1; c2/ 2 � �

mC1.
Now if .c1; c2/ 2 � C

m [ � 0
m, then f 0

k .x/ has the form (12) for k � m, with
vk D �1 for k � l and vlC1 given by (8) with k D l in �l . This entails

SmC1.u/ D c2 � ˛c1 C ˛

Z u�vm

0

Tm.u � s/'.s/ ds

and SmC1.vm/ D c2 �˛c1 � 0, whence it is obvious that vm � umC1. As a result one
has two possibilities: either umC1 � Nv, that is, .c1; c2/ 2 � C

mC1 [� 0
mC1, or Nv < umC1,

namely, .c1; c2/ 2 � �
mC1. In the first case there exists vmC1 2 .umC1; Nv/ and f 0

mC1.x/

is given by (12). Furthermore, vmC1 satisfies (8) with k D m in �m. In the second
case f 0

mC1.x/ has the form (19) with indices m C 1 instead of m. Thus,
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Sn.u/ D R1.x/ C ˛

Z u�un�1

0

Sn�1.u � s/'.s/ ds � R1.u/

and un � u1 for n > 2. It is simple to prove, as in Theorem 2, that u1 D
limn!1 un . ut
Corollary 1. If .c1 � p/C � c2 � ˇkc1 with ˇk D Pk�1

iD1 ˛i =
Pk�1

iD0 ˛i , then
.c1; c2/ 2 � �

k , k � 2.

Remark 3. As follows from Theorem 3, for the parameters set � ˛ one uses two
suppliers or only the first one. The order sizes are regulated by critical levels un

and Nv or vn respectively, according to values of cost parameters. More precisely, if
˛c1 > c2 � .c1 � p/C, then there exists n0.c1; c2/ such that for n > n0 it is optimal
to use both suppliers, whereas for n � n0 only the first supplier may be used.

2.4 Order Constraints

Turning to the results with order constraints we begin by the study of the first
restriction impact.

Theorem 4. Let a1 < 1, a2 D 1, then the optimal decision at the first step of
n-step process has the form

z.1/
n .x/ D minŒa1; .min.vn; Nv/ � x/C�; z.2/

n .x/ D .un � x � z.1/
n /C: (20)

The sequences fung and fvng defined by (6) are non-decreasing. There exists
limn!1 un equal to ua1 in � and u0 in � �.

Proof. As previously, we proceed by induction. At first let us take n D 1. Since
S1.u/ D c2 > 0, that is, u1 D �1, it is optimal to put u D v. On the other hand,
T1.v/ D c1 � p C .p C h/F.v/, therefore v1 D �1 in A1 and in �0 there exists
v1 2 Œ0; Nv� satisfying (8) with k D 0. In the former case u1.x/ D v1.x/ D x for all x

and in the latter case u1.x/ D v1.x/ D x C a1 for x < v1 � a1, u1.x/ D v1.x/ D v1

for x 2 Œv1 � a1; v1/ and u1.x/ D v1.x/ D x for x � v1.
Thus, f 0

1 .x/ D L0.x/ D �p C .p C h/F.x/ in A1, whereas in �0

f 0
1 .x/ D �c1 C

8

<

:

T1.x C a1/; x < v1 � a1;

0; v1 � a1 � x < v1;

T1.x/; x � v1:

(21)

It is obvious that f 0
1 .x/ is non-decreasing, hence the same is true of S2.u/ and

T2.v/ taking values in Œc2 � ˛p; c2 C ˛h� and Œc1 � p.1 C ˛/; c1 C h.1 C ˛/�

respectively. Hence, u2 D �1 in A1, v2 D �1 in A2, so for n D 2 the optimal
decision is u2.x/ D v2.x/ D x if .c1; c2/ 2 D2 D A2 \ A1.
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Proceeding in the same way we establish that in Dk D Ak \ Ak�1, k > 2, one
has un D vn D �1, n � k, so un.x/ D vn.x/ D x is optimal for all n � k and

f 0
n.x/ D �p

n�1
X

iD0

˛i C .p C h/

n
X

iD1

˛i�1F i�.x/:

Moreover, in �k�1
k there exist ukC1 � � and vkC1 � � given by (15) and (8)

respectively.
Next consider the set � . For each k > 1 it is divided into subsets � �

k and
� C

k by a curve c2 D gk.c1/ defined implicitly by equality Sk.Nv/ D 0. The point

.p
Pk�1

iD0 ˛i ; p
Pk�1

iD1 ˛i / on the boundary of � , corresponding to Nv D �, belongs
to gk.c1/, since Sk.�/ D Tk.�/ D 0 for such .c1; c2/ from �k�2

k�1. According to the
rule of implicit function differentiation and the form of Sk.�/ in �k�2

k�1, we get

g0
k.c1/ D

Pk�1
iD2 ˛i�1'i�.Nv/

Pk�1
iD1 ˛i�1'i�.Nv/

;

whence it is obvious that g0
k.c1/ 2 Œ0; 1�. The last result is valid for other values of

c1 although expression of g0
k.c1/ is more complicated.

Suppose .c1; c2/ 2 � C
k � � C

k�1 and

f 0
k .x/ D �c1 C

8

ˆ

ˆ

<

ˆ

ˆ

:

K.x C a1/; x < uk � a1;

Tk.x C a1/; uk � a1 � x < vk � a1;

0; vk � a1 � x < vk;

Tk.x/; x � vk:

It is not difficult to verify that ukC1 > uk and vkC1 > vk and � C
kC1 � � C

k .
Now let .c1; c2/ 2 � �

k , then

f 0
k .x/ D �c1 C

8

ˆ

ˆ

<

ˆ

ˆ

:

K.x C a1/; x < Nv � a1;

0; Nv � a1 � x < Nv;

K.x/; Nv � x < uk;

Tn.x/; x � uk:

It is easy to check that � �
n � � �

nC1 for any n � k and

SnC1.u/ D Ra1.u/ C ˛

Z u�un

0

Sn.u � s/'.s/ ds � Ra1.u/;

entailing un � ua1 for all n.
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Since R1.u/ � Ra1.u/ � R0.u/, for any u and a1 > 0, one has u1 < ua1 < u0.
It is not difficult to establish that limn!1 un D ua1 where ua1 is defined by (6).

Turning to � � � A1 we get, for n > k,

f 0
n.x/ D �c2 C L0.x/ C

�

0; x < un;

Sn.x/; x � un;

if .c1; c2/ 2 � � \ �k. Verifying that f 0
n.x/ � f 0

n�1.x/ < 0 for x < un, one obtains
unC1 > un. Furthermore, for all u and n > k,

SnC1.u/ D R0.u/ C ˛

Z u�un

0

Sn.u � s/'.s/ ds � R0.u/:

So, un � u0 for all n. Obviously, there exists limn!1 un and it is easy to show that
it is equal to u0.

Finally, if un and vn are finite then for � C it is optimal to take vn.x/ D x C a1,
un.x/ D un for x < un � a1; un.x/ D vn.x/ D x C a1 for x 2 Œun � a1; vn � a1/;
un.x/ D vn.x/ D vn for x 2 Œvn � a1; vn/I and un.x/ D vn.x/ D x for x � vn. ut

To study the impact of the other constraint we formulate at first the almost
obvious

Corollary 2. If c2 > ˛c1 the optimal behaviour for a1 D 1, a2 < 1 has the same
form as that for a1 D a2 D 1 in Theorem 1.

Proof. Proceeding in the same way as in Theorem 1 we easily get the result. ut
Theorem 5. Let a1 � 1, a2 < 1 and .c1; c2/ 2 � �. Then the optimal decision at
the first step of n-step process is given by

z.1/
n .x/ D min.a1; .wn � x/C/; z.2/

n .x/ D min.a2; .un � x � z.1/
n .x//C/;

where wn and un are defined by (6). There exist limn!1 un �bv and limn!1 wn �bv
withbv defined by (7).

Proof. Begin by treating the case a1 D 1, a2 < 1. It follows easily from
assumptions that u1 D v1 D w1 D �1 and f 0

1 .x/ D L0.x/: Moreover,

S2.u/ D c2�˛pC.pCh/F 2�.u/; T2.c/ D c1�p�˛pC.pCh/ŒF.v/C˛F 2�.v/�

and
B2.v/ D c1 � p � ˛p C .p C h/ŒF.v/ C ˛F 2�.v C a2/�:

Since T2.v/ < B2.v/ and S2.v C a2/ < B2.v/ < T2.v C a2/ it follows from here
that w2 < v2 < w2 C a2 < u2. It is clear that w2 > �1 in �0

1



156 E. Bulinskaya

f2.x/ D �c1x C

8

ˆ

ˆ

<

ˆ

ˆ

:

G2.w2; w2 C a2/; x < w2;

G2.x; x C a2/; w2 � x < u2 � a2;

G2.x; u2/; u2 � a2 � x < u2;

G2.x; x/; x � u2:

It follows immediately that

f 0
2 .x/ � f 0

1 .x/ D

8

ˆ

ˆ

<

ˆ

ˆ

:

�T1.x/; x < w2;

�c2 C S2.x C a2/; w2 � x < u2 � a2;

�c2; u2 � a2 � x < u2;

�c2 C S2.x/; x � u2:

So, f 0
2 .x/ � f 0

1 .x/ < 0 for x � u2. This entails the following inequalities w2 < w3,
v2 < v3, u2 < u3.

Then if .c1; c2/ 2 �0
1, it is not difficult to verify by induction that there exist

finite un and wn, n � 2. Furthermore, one has wn < vn < wn C a2 < un. Hence,
it is optimal to take vn.x/ D wn, un.x/ D wn C a2 for x < wn; vn.x/ D x,
un.x/ D x C a2 for x 2 Œwn; un � a2/; vn.x/ D x, un.x/ D un for x 2 Œun � a2; un/

and un.x/ D vn.x/ D x for x � un. Consequently, one gets

f 0
n.x/ D �c1 C

8

ˆ

ˆ

<

ˆ

ˆ

:

0; x < wn;

Bn.x/; wn � x < un � a2;

K.x/; un � a2 � x < un;

Tn.x/; x � un;

D �c2 C L0.x/ C

8

ˆ

ˆ

<

ˆ

ˆ

:

�K.x/;

Sn.x C a2/;

0;

Sn.x/;
(22)

and Bn.v/ � c1.1 � ˛/ C L0.x/. That means, wn � bv for all n and a2. Using (22)
one also obtains limn!1 un �bv.

If .c1; c2/ 2 �0
l , there exists wlC1 > �1, whereas wm D �1 for m � l . Thus,

f 0
n.x/ D �c1 C

8

<

:

Bn.x/; x < un � a2;

K.x/; un � a2 � x < un;

Tn.x/; x � un;

for 1 < n � l and f 0
n.x/ has the form (22) for n > l .

The subsets �k
l corresponding to k � 1 are treated in the same way giving also

z.1/
n .x/ D .wn � x/C, z.2/

n D min.a2; .un � x � z.1/
n .x//C/.

Changes necessary under assumption a1 < 1 are almost obvious, so the details
are omitted. ut
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2.5 Sensitivity Analysis

We begin studying the impact of model parameters on the optimal decision by the
motivating

Example. Assume � D 0, � D d and '.s/ D d �1, s 2 Œ�; ��, that is, distribution of
�i is uniform. Obviously, F.u/ D u=d , u 2 Œ0; d �, and v D d.p C c2 � c1/=.p Ch/,
while F 2�.u/ D u2=2d 2, u 2 Œ0; d �, F 2�.u/ D 1 � .u � 2d/2=2d 2, u 2 Œd; 2d �.
Suppose also a1 < 1 and ˛ D 1.

According to (21) the form of g2.c1/, given by the relation S2.v/ D 0, depends
on a1 for .c1; c2/ 2 �0

0. Moreover, c2 � p C .p C h/F 2�.u/ D S
.0/
2 .u/ � S

.a1/
2 .u/

and S
.a1/
2 .u/ � S

.1/
2 .u/ D c2 C R u�v1

0 L0.u � s/'.s/ ds, whence it follows that the
domain � �

2 decreases as a1 increases.
On the other hand, the curve g2.c1/ is the same for all a1 if .c1; c2/ 2 �0

1. It is

determined by equation S
.0/
2 .v/ D 0, which can be rewritten in the form

2.p C h/.p � c2/ D .p C c2 � c1/2; for h � p:

Thus, g
.0/
2 .c1/ does not depend on d . It starts from the point c1 D 2p, c2 D p

and crosses the line c1 D p at c2 D �.2p C h/ C p

5p2 C 4ph C h2 and then the
line c2 D c1 at c2 D pŒ1 � p=2.p C h/�. For h D p these values of c2 are equal to
p.

p
10 � 3/ and 3p=4 respectively.

Next, if c1 D 0 one has c2 D .pCh/Œ
p

1 C 2p.p C h/�1�1� equal to p.2
p

3�3/

for h D p. However, the set � �
2 \ fc2 > c1g is empty when a1 D 1.

As usual for dynamic programming, the optimal control depends on the planning
horizon. Moreover, for n fixed there exist stability domains of cost parameters
.� �

n ; � C
n ; � � \ �k; � C \ �l; k; l � 0/ where the optimal behaviour has the same

type, that is determined by the same set of critical levels un; vn; wn, n � 2, and Nv.
Fortunately, using the "-optimal and asymptotically optimal stationary controls

one can reduce the number of stability domains and exclude dependence on n.
We prove below only the simplest results demonstrating the reasoning necessary

for the general case.

Theorem 6. Let 0 < ˛ < 1, a1 D 1, a2 � 1 and c2 > ˛c1. Then for any " > 0 there
exists n0 D n0."; k/ such that it is "-optimal to use un.x/ D vn.x/ D max.x;bv/

at the first step of n-step process with n > n0 if .c1; c2/ 2 �k , k D 0; 1; : : :. The
critical levelbv is given by (7).

Proof. Put for brevity gn.x/ D Gn.x; x/. According to Theorem 1 and Corollary 2
we can write for n > k C 1

fn.x/ D �c1x C
�

gn.vn/; x < vn;

gn.x/; x � vn;
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and

fn.x/ � fn�1.x/ D
8

<

:

gn.vn/ � gn�1.vn�1/; x < vn�1;

gn.vn/ � gn�1.x/; vn�1 � x < vn;

gn.x/ � gn�1.x/; x � vn;

if .c1; c2/ 2 �k , k D 0; 1; : : : :

Taking into account that gn.vn/ D minx gn.x/ one easily gets

max
x�z

jfn.x/ � fn�1.x/j � max
vn�1�x�max.z;bv/

jgn.x/ � gn�1.x/j:

Recalling that gn.x/ D c1x C L.x/ C ˛
R 1

0 fn�1.x � s/'.s/ ds it is possible to
write for z >bv the following chain of inequalities

max
x�z

jfn.x/ � fn�1.x/j � ˛ max
x�z

jfn�1.x/ � fn�2.x/j � : : : � ˛n�kık.z/:

Here ık.z/ D maxvkC1�x�z j R 1
0

.fkC1.x � s/ � fk.x � s/'.s/ dsj < 1 in �k ,
k D 0; 1; : : :, in particular, ı0.z/ D c1� C max.L.z/; L.v1//.

Clearly, we have established that fn.x/ tends uniformly to a limit f .x/ on any
half-line fx � zg. This enables us to state that continuous function f .x/ satisfies
the following functional equation

f .x/ D �c1x C min
v�x

Œc1v C L.v/ C ˛

Z 1

0

f .v � s/'.s/ ds�:

Furthermore, if the planning horizon is infinite the optimal behaviour at each step is
determined by a critical levelbv.

Since un.x/ D vn.x/ D x for all n, if x � bv, it follows immediately that for any
" > 0 one can find n0."; c1/ such that ordering .bv � x/C at the first step of n-step
process with n > n0 we obtain an "-optimal control. It is obvious that n0."; c1/ can
be chosen the same for the parameter set �k , that is, n0 D n0."; k/. ut

As follows from Definitions 3 and 4, a control is stationary if it prescribes the
same behaviour at each step and it is asymptotically optimal if

lim
n!1 n�1

bf n.x/ D lim
n!1 n�1fn.x/

where bf n.x/ represents the expected n-step costs under this control.

Theorem 7. If ˛ D 1, a1 D 1, a2 � 1 and c2 > c1, it is asymptotically optimal
to take z.1/

n .x/ D .t � x/C, z.2/
n .x/ D 0 for all n with t given by L0.t/ D 0.

Proof. Denote by f l
n .x/ the expected n-step costs if t is applied during the first l

steps, whereas the critical levels vk , k � n� l , optimal under the assumptions made,
are used during the other steps.
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It is clear that f n
n .x/ D bf n.x/ and f 0

n .x/ D fn.x/, hence

bf n.x/ � fn.x/ D
n

X

lD1

.f l
n .x/ � f l�1

n .x//: (23)

Suppose for simplicity that c1 < p, that is, v1 is finite.
Since vn � vnC1, n � 1, and vn ! Nt , as n ! 1, one can find, for any " > 0,

such bn D n."/ that Nt � " < vn � Nt , if n � bn. Furthermore, we have

max
x

jf l
n .x/ � f l�1

n .x/j � max
x

jf 1
n�lC1 � f 0

n�lC1.x/j

and

f 1
k .x/ � f 0

k .x/ D
8

<

:

c1.Nt � vk/ C L.Nt/ � L.vk/ C V.vk/; x < vk;

c1.Nt � x/ C L.Nt / � L.x/ C V.x/; vk � x < Nt ;
0; x � Nt ;

where V.x/ D R 1
0 .fk�1.Nt � s/ � fk�1.x � s//'.s/ ds.

Obviously, k � 1 D n � l � bn for l � n �bn, therefore

max
x

jf 1
k .x/ � f 0

k .x/j � d" with d D 2.c1 C max.p; h//

and
n�bn
X

lD1

jf l
n .x/ � f l�1

n .x/j � .n �bn/d": (24)

On the other hand,

n
X

lDn�bnC1

jf l
n .x/ � f l�1

n .x/j � bnb.x/ (25)

where b.x/ D max
k�bn jf 1

k .x/ � f 0
k .x/j � L.v1/ C d Nt < 1, for all x.

It follows immediately from (23) to (25) that

n�1.bf n.x/ � fn.x// ! 0; as n ! 1:

To complete the proof we have to verify that there exists, for all x,

lim
n!1 n�1

bf n.x/ D c1� C L.Nt/; � D E�k; k � 1: (26)

This is obvious for x � Nt , since in this case
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bf n.x/ D c1.Nt � x/ C c1

n�1
X

kD1

E�k C nL.Nt /:

Now let x > Nt . Then we do not order during the first mx steps where

mx D inffk W
k

X

iD1

�i > x � Ntg:

In other words, we wait until the inventory falls below the level Nt proceeding after
that as in the previous case. Hence,

bf n.x/ D L.x/ C E
mx�1
X

iD1

L.x �
i

X

kD1

�k/ C c1E

2

4	x C
n�1
X

iDmxC1

�i

3

5 C E.n � mx/L.Nt /

here 	x D Pmx

iD1 �i � .x � Nt/ is the overshot of the level x � Nt by the random walk
with jumps �i , i � 1.

Thus, it is possible to rewrite bf n.x/ as follows

bf n.x/ D n.c1� C L.Nt // C W.x/:

Using Wald’s identity and renewal processes properties (see, e.g. [1]), as well as, the
fact that L.Nt / is the minimum of L.x/ it is possible to establish that jW.x/j < 1
for a fixed x. So (26) follows immediately.

The same result is valid for c1 � p. The calculations being long and tedious are
omitted. ut
Remark 4. For the parameter sets treated in Theorems 2 and 3 the asymptotically
optimal policy is also of threshold type being based either on u0 or Nv and u1.

Since Nt D g.p; h/, with g.a1; a2/ D F inv.a1=.a1 C a2//, it is useful to check its
sensitivity with respect to small fluctuations of parameters p and h and perturbations
of distribution F .

We apply the local technique, more precisely, differential importance measure
(DIM) introduced in [3] is used. Let a0 D .a0

1; a0
2/ be the base-case values of

parameters, reflecting the decision maker (researcher) knowledge of assumptions
made. The (DIM) for parameter as , s D 1; 2, is defined as follows

Ds.a
0; da/ D g0

as
.a0/ das

0

@

2
X

j D1

g0
aj

.a0/ daj

1

A

�1

.D dgs.a
0/=dg.a0/

if dg.a0/ ¤ 0. Whence, for uniform parameters changes: das D u, s D 1; 2, we get
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D1s.a
0/ D g0

as
.a0/

� 2
X

j D1

g0
aj

.a0/: (27)

Theorem 8. Under assumptions of Theorem 7, (DIM)s for parameters p and h do
not depend on distribution F .

Proof. The result follows immediately from (27) and definition of function g. Since

g0
a1

.a0/ D '�1.Nt0/a0
2=.a0

1 C a0
2/2; g0

a2
.a0/ D �'�1.Nt0/a0

1=.a0
1 C a0

2/2;

it is clear that

D11.a
0/ D a0

2

a0
2 � a0

1

; D12.a
0/ D � a0

1

a0
2 � a0

1

D 1 � D11.a
0/:

Thus, they are well defined for a0
1 ¤ a0

2 and do not depend on F . Moreover,
D11.a

0/ > 1, D12.a
0/ < 0 for a0

2 > a0
1 and D11.a

0/ < 0, D12.a
0/ > 1 for

a0
2 < a0

1. ut
Note that a similar result is valid forbv if 0 < ˛ < 1.
Now we can establish that the asymptotically optimal policy is stable with respect

to small perturbations of distribution F .
Denote by Ntk value of Nt corresponding to distribution Fk.t/. Moreover, set


.Fk; F / D sup
t

jFk.t/ � F.t/j;

that is, 
 is the Kolmogorov (or uniform) metric.

Lemma 2. Let distribution function F.t/ be continuous and strictly increasing.
Then Ntk ! Nt , provided 
.Fk; F / ! 0, as k ! 1.

Proof. According to assumptions Fk.Ntk/ D F.Nt / and jFk.Ntk/ � F.Ntk/j � 
.F; Fk/.
Hence jF.Nt/ � F.Ntk/j � 
.F; Fk/. That means, Ntk ! Nt , as k ! 1. ut

This result is also important for construction of asymptotically optimal policies
under assumption of none a priori information about distribution F .

3 Conclusion

We have treated in detail the case of two suppliers and obtained the explicit form
of optimal, "-optimal and asymptotically optimal policies for various sets of cost
parameters. Stability of model to small fluctuations of parameters and perturbations
of underlying process is also established. The case of m suppliers, m > 2, can be
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investigated using induction procedure and numerical methods. Due to lack of space
the results will be published in a forthcoming paper.
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