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Abstract Karamata’s integral representation for slowly varying functions is
extended to a broader class of the so-called  -locally constant functions,
i.e. functions f .x/> 0 having the property that, for a given non-decreasing
function  .x/ and any fixed v, f .x C v .x//=f .x/ ! 1 as x ! 1. We consider
applications of such functions to extending known theorems on large deviations of
sums of random variables with regularly varying distribution tails.
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1 Introduction

Let L.x/ be a slowly varying function (s.v.f.), i.e. a positive measurable function
such that, for any fixed v 2 .0;1/ holds L.vx/ � L.x/ as x ! 1:

lim
x!1

L.vx/

L.x/
D 1: (1)

A.A. Borovkov (�)
Sobolev Institute of Mathematics, Russian Federation and Novosibirsk State University,
Ac. Koptyug, pr. 4, 630090 Novosibirsk, Russia
e-mail: borovkov@math.nsc.ru

K.A. Borovkov
Department of Mathematics and Statistics, The University of Melbourne, Parkville 3010,
Melbourne, Australia
e-mail: borovkov@unimelb.edu.au

A.N. Shiryaev et al. (eds.), Prokhorov and Contemporary Probability Theory,
Springer Proceedings in Mathematics & Statistics 33,
DOI 10.1007/978-3-642-33549-5 7, © Springer-Verlag Berlin Heidelberg 2013

127



128 A.A. Borovkov and K.A. Borovkov

Among the most important and often used results on s.v.f.’s are the Uniform Conver-
gence Theorem (see property (U) below) and the Integral Representation Theorem
(property (I)), the latter result essentially relying on the former. These theorems,
together with their proofs, can be found e.g. in monographs [1] (Theorems 1.2.1
and 1.3.1) and [2] (see �1.1).

(U) For any fixed 0 < v1 < v2 < 1, convergence (1) is uniform in v 2 Œv1; v2�.
(I) A function L.x/ is an s.v.f. iff the following representation holds true:

L.x/ D c.x/ exp

� Z x

1

".t/

t
dt

�
; x � 1; (2)

where c.t/ > 0 and ".t/ are measurable functions, c.t/ ! c 2 .0;1/ and
".t/ ! 0 as t ! 1.

The concept of a s.v.f. is closely related to that of a regularly varying function
(r.v.f.)R.x/, which is specified by the relation

R.x/ D x˛L.x/; ˛ 2 R;

where L is an s.v.f. and ˛ is called the index of the r.v.f.‘R. The class of all r.v.f.’s
we will denote by R.

R.v.f.’s are characterised by the relation

lim
x!1

R.vx/

R.x/
D v˛; v 2 .0;1/: (3)

For them, convergence (3) is also uniform in v on compact intervals, while represen-
tation (2) holds for r.v.f.’s with ".t/ ! ˛ as t ! 1.

In Probability Theory there exists a large class of limit theorems on large
deviations of sums of random variable whose distributions F have the property that
their right tails FC.x/ WD F

�
Œx;1/

�
are r.v.f.’s. The following assertion (see e.g.

Theorem 4.4.1 in [2]) is a typical representative of such results. Let �; �1; �2; : : :
be independent identically distributed random variables, E� D 0, E�2 < 1,
Sn WD Pn

kD1 �k and Sn WD maxk�n Sk .

Theorem A. If FC.t/ D P.� � t/ is an r.v.f. of index ˛ < �2 then, as x ! 1,
x.n ln n/�1=2 ! 1; one has

P.Sn � x/ � nFC.x/; P.Sn � x/ � nFC.x/: (4)

Similar assertions hold true under the assumption that the distributions of the
scaled sums Sn tend to a stable law (see Chaps. 2 and 3 in [2]).

There arises the natural question of how essential the conditionFC 2 R is for (4)
to hold. It turns out that this condition can be significantly relaxed.
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The aim of the present paper is to describe and study classes of functions that
are wider than R and have the property that the condition that FC belongs to such a
class, together with some other natural conditions, would ensure the validity of limit
laws of the form (4).

In Sect. 2 of the present note we give the definitions of the above-mentioned
broad classes of functions which we call asymptotically  -locally constant func-
tions. The section also contains assertions in which conditions sufficient for
relations (4) are given in terms of these functions. Section 3 presents the main
results on characterisation of asymptotically -locally constant functions. Section 4
contains the proofs of these results.

2 The Definitions of Asymptotically Locally Constant
Functions. Applications to Limit Theorems on Large
Deviations

Following �1.2 in [2], we will call a positive function g.x/ an asymptotically locally
constant function (l.c.f.) if, for any fixed v 2 .�1;1/,

lim
x!1

g.x C v/

g.x/
D 1 (5)

(the function g.x/, as all the other functions appearing in the present note, will be
assumed measurable; assumptions of this kind will be omitted for brevity’s sake).

If one puts x D ln y, v D ln u, then g.xCv/ D g.lnyu/, so that the composition
L D g ı ln will be an s.v.f. by virtue of (5) and (1). From here and the equality
g.x/ D L.ex/ it follows that an l.c.f. g will have the following properties:

(U1) For any fixed �1< v1 < v2 <1, convergence (5) is uniform in v 2 Œv1; v2�.
(I1) A function g.x/ is an l.c.f. iff it admits a representation of the form

g.x/ D c.x/ exp

� Z ex

1

".t/

t
dt

�
; x � 1; (6)

where c.t/ and ".t/ have the same properties as in (I).

Probability distributions F on R such that FC.t/ WD F
�
Œt;1/

�
is an l.c.f. are

sometimes referred to as long-tailed distributions, or class L distributions. Such
distributions often appear in papers on limit theorems for sums of random variables
with “heavy tails”. Examples of l.c.f.’s are provided by r.v.f.’s and functions of the
form expfx˛L.x/g, where L is an s.v.f., ˛ 2 .0; 1/.
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It is not hard to see that, by virtue of property (U1), definition (5) of an l.c.f. is
equivalent to the following one: for any fixed v 2 .�1;1/ and function v.x/ ! v
as x ! 1, one has

lim
x!1

g.x C v.x//

g.x/
D 1: (7)

Now we will consider a broader concept, which includes both s.v.f.’s and l.c.f.’s
as special cases.

Let  .t/ > 1 be a fixed non-decreasing function.

Definition 1. (See also Definition 1.2.7 in [2].) A function g.x/ > 0 is said to be an
asymptotically  -locally constant function ( -l.c.f.) if, for any fixed v 2 .�1;1/

such that x C v .x/ � cx for some c > 0 and all large enough x, one has

lim
x!1

g.x C v .x//

g.x/
D 1: (8)

If  .x/ � 1 then the class of  -l.c.f.’s coincides with the class of l.c.f.’s, while if
 .x/ � x then the class of  -l.c.f.’s coincides with the class of s.v.f.’s. In the case
when .x/ ! 1 and  .x/ D o.x/ as x ! 1, the class of  -l.c.f.’s occupies, in a
sense, an intermediate (in terms of the zone where its functions are locally constant)
place between the classes of s.v.f.’s and l.c.f.’s.

Clearly, all functions from R are  -l.c.f.’s for any function  .x/ D o.x/.
Note that the concept of  -l.c.f.’s is closely related to that of h-insensitive

functions extensively used in [5] (see Definition 2.18 therein). Our Theorem 1 below
shows that, under broad conditions, a  -l.c.f. will he h-insensitive with  D h:

We will also need the following

Definition 2. (See also Definition 1.2.20 in [2].) We will call a function g an upper-
power function if it is an l.c.f. and, for any p 2 .0; 1/; there exists a constant c.p/,
infp2.p1;1/ c.p/ > 0 for any p1 2 .0; 1/, such that

g.t/ � c.p/g.pt/; t > 0:

It is clear that all r.v.f.’s are upper-power functions.

The concept of  -l.c.f.’s and that of an upper-power function enable one to
substantially extend the assertion of Theorem A. It is not hard to derive from
Theorem 4.8.1 in [2] the following result.

Let h.v/ > 0 be a non-decreasing function such that h.v/ � p
v ln v as v ! 1.

Such a function always has a generalised inverse h.�1/.t/ WD inffv W h.v/ � tg.

Theorem B. Assume that E� D 0, E�2 < 1 and that the following conditions are
satisfied:

1. FC.t/ � V.t/ D t˛L.t/, where ˛ < �2 and L is an s.v.f.
2. The function FC.t/ is upper-power and a  -l.c.f. for  .t/ D p

h.�1/.t/.
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Then relations (4) hold true provided that x ! 1, x � h.n/ and

nV 2.x/ D o
�
FC.x/

�
: (9)

In particular, if x D h.n/ � cnˇ as n ! 1, ˇ > 1=2, then one can put
 .t/ WD t1=2ˇ ( .t/ WD p

t if x � cn).
Condition (9) is always met provided that FC.t/ � cV.t/t�" for some " > 0,

" < �˛ � 2; and c D const. Indeed, in this case, for x � p
n, x ! 1,

nV 2.x/ � c�1x2C"V .x/FC.x/ D o
�
FC.x/

�
:

Now consider the case where E�2 D 1. Let, as before, V.t/ D t˛L.t/ is
an r.v.f. and set �.v/ WD V .�1/.1=v//. Observe that �.v/ is also an r.v.f. (see e.g.
Theorem 1.1.4 in [2]). Further, let h.v/ > 0 be a non-decreasing function such that
h.v/ � �.v/ as v ! 1. Employing Theorem 4.8.6 in [2] (using this opportunity,
note that there are a couple of typos in the formulation of that theorem: the text “with
 .t/ D �.t/ D V .�1/.1=t/” should be omitted, while the condition “x � �.n/”
must be replaced with “x � �.n/ D V .�1/.1=n/”) it is not difficult to establish the
following result.

Theorem C. Let E� D 0 and the following conditions be met:

1. FC.t/ � V.t/ D t˛L.t/, where �˛ 2 .1; 2/ and L is an s.v.f.
2. P.� < �t/ � cV.t/ for all t > 0.
3. The function FC is upper-power and a  -l.c.f. for  .t/ D �

�
h.�1/.t/

�
.

Then relations (4) hold true provided that x ! 1, x � h.n/ and relation (9) is
satisfied.

If, for instance, V.t/ � c1t
˛ as t ! 1, x � c2n

ˇ as n ! 1, ci D const,
i D 1; 2, and ˇ > �1=˛, then one can put  .t/ WD t�1=.˛ˇ/.

Condition (9) of Theorem C is always satisfied provided that x � nı�.1=˛/,
FC.t/ � cV.t/t�" for some ı > 0 and " < ˛2ı=.1 � ˛ı/. Indeed, in this case
n � x�˛=.1�˛ı/ and

nV 2.x/ � c�1FC.x/x"�˛=.1�˛ı/V .x/ D o
�
FC.x/

�
:

Note also that the conditions of Theorems B and C do not stipulate that n ! 1.
The proofs of Theorems B and C basically consist in verifying, for the indicated

choice of functions  , the conditions of Theorems 4.8.1 and 4.8.6 in [2], respec-
tively. We will omit them.

It is not hard to see (e.g. from the representation theorem on p. 74 in [1]) that
Theorems B and C include, as special cases, situations when the right tail of F
satisfies the condition of extended regular variation, i.e. when, for any b > 1 and
some 0 < ˛1 � ˛2 < 1,

b�˛2 � lim inf
x!1

FC.bx/
FC.x/

� lim sup
x!1

FC.bx/
FC.x/

� b�˛1 : (10)
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Under the assumption that the random variable � D � 0 � E� 0 was obtained by
centering a non-negative random variable � 0 � 0, the former of the asymptotic
relations (4) was established in the above-mentioned case in [3]. One could mention
here some further efforts aimed at extending the conditions of Theorem A that
ensure the validity of (4), see e.g. [4, 6].

In conclusion of this section, we will make a remark showing that the presence
of the condition that FC.t/ is a  -l.c.f. in Theorems B and C is quite natural.
Moreover, it also indicates that any further extension of this condition in the class
of “sufficiently regular” functions is hardly possible. If we turn, say, to the proof of
Theorem 4.8.1 in [2], we will see that when x � cn, the main term in the asymptotic
representation for P.Sn � x/ is given by

n

Z N
p
n

�Np
n

P.Sn�1 2 dt/FC.x � t/; (11)

where N ! 1 slowly enough as n ! 1. It is clear that, by virtue of the Central
Limit Theorem, the integral in this expression is asymptotically equivalent to FC.t/
(implying that the former relation in (4) will hold true), provided that FC.t/ is a
 -l.c.f. for  .t/ D p

t .
Since ESn�1 D 0, one might try to obtain such a result in the case when FC.t/

belongs to a broader class of “asymptotically  -locally linear functions”, i.e. such
functions that, for any fixed v and t ! 1,

FC.t C v .t// D FC.t/.1 � cv C o.1//; c D const > 0:

However, such a representation is impossible as 1 � cv < 0 when v > 1=c.

3 The Chracterization of  -l.c.f.’s

The aim of the present section is to prove that, for any  -l.c.f. g, convergence
(8) is uniform in v on any compact set and, moreover, that g admits an integral
representation similar to (2) and (6). To do that, we will need some restrictions on
the function  .

We assume that is a non-decreasing function such that .x/D o.x/ as x! 1.
For such functions, we introduce the following condition:

(A) For any fixed v > 0, there exists a value a.v/ 2 .0;1/ such that

 .x � v .x//

 .x/
� a.v/ for all sufficiently large x: (12)

Letting y WD x C v .x/ > x and using the monotonicity of  , one has
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 .y � v .y// �  .x/:

Therefore, relation (12) implies that, for all large enough x,

 .x C v .x//

 .x/
�  .y/

 .x/
�  .y/

 .y � v .y//
� 1

a.v/
2 .0;1/:

Thus, any function  satisfying condition (A) will also satisfy the following
relation: for any fixed v > 0,

 .x C v .x//

 .x/
� 1

a.v/
for all sufficiently large x: (13)

Observe that the converse is not true: it is not hard to construct an example of a
(piece-wise linear, globally Lipschitz) non-decreasing function  which satisfies
condition of the form (13), but for which condition (A) will hold for no finite
function a.v/.

It is clear that if  is a  -l.c.f.,  .x/ D o.x/, then  satisfies condition (A).
Introduce class K consisting of non-decreasing functions .x/ � 1, x � 0; that

satisfy condition (A) for a function a.v/ such that

Z 1

0

a.u/ du D 1: (14)

Class K1 we define as the class of continuous r.v.f.’s  .x/ D x˛L.x/ with index
˛ < 1 and such that x= .x/ " 1 as x ! 1 and the following “asymptotic
smoothness” condition is met: for any fixed v;

 .x C�/ D  .x/C ˛� .x/

x
.1C o.1// as x ! 1; � D v .x/: (15)

Clearly, K1 � K . Condition (15) is always met for any �� c1 D const,
�D o.x/, provided that the functionL.x/ is differentiable andL0.x/D o .L.x/=x/

as x ! 1.
In the assertions to follow, it will be assumed that  belongs to the class K

or K1. We will not dwell on how far the conditions  2 K or  2 K1 can be
extended. The function  specifies the “asymptotic local constancy zone width” of
the function g under consideration, and what matters for us is just the growth rate
of  .x/ as x ! 1. All its other properties (smoothness, presence of oscillations
etc.) are for us to choose, and so we can assume the function  to be as smooth
as we need. In this sense, the assumption that  belongs to the class K or K1 is
not restrictive. For example, it is quite natural to assume in Theorems B and C from
Sect. 2 that  2 K1.

The following assertion establishes the uniformity of convergence in (8).
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Theorem 1. If g is a  -l.c.f. with  2 K , then convergence in (8) is uniform: for
any fixed real numbers v1 < v2,

.U / lim
x!1 sup

v1�v�v2

ˇ̌
ˇ̌g

�
x C v .x/

�
g.x/

� 1

ˇ̌
ˇ̌ D 0: (16)

Observe that, for monotoneg, the condition 2 K in Theorem 1 is superfluous.
Indeed, assume for definiteness that g is a non-decreasing  -l.c.f. Then, for any v
and v.x/ ! v, there is a v0 > v such that, for all sufficiently large x, one has
v.x/ < v0, and therefore

lim sup
x!1

g.x C v.x/ .x//

g.x/
� lim sup

x!1
g.x C v0 .x//

g.x/
D 1: (17)

A converse inequality for lim inf is established in a similar way. As a consequence,

lim
x!1

g.x C v.x/ .x//

g.x/
D 1; (18)

which is easily seen to be equivalent to (16) (cf. (7)).
Note also that it is not hard to see that monotonicity property required to

derive (17) and (18), could be somewhat relaxed.
Now set

�.x/ WD
Z x

1

dt

 .t/
: (19)

Theorem 2. Let  2 K . Then g is a  -l.c.f. iff it admits a representation of the
form

.I / g.x/ D c.x/ exp

� Z e�.x/

1

".t/

t
dt

�
; x � 1; (20)

where c.t/ and ".t/ have the same properties as in (I).

Since, for any " > 0 and all large enough x,

Z e�.x/

1

".t/

t
dt < " ln e�.x/ D "�.x/

and a similar lower bound holds true, Theorem 2 implies the following result.

Corollary 1. If  2 K and g is a  -l.c.f., then

g.x/ D eo.�.x//; x ! 1:

For  2 K1 we put

�.x/ WD x

 .x/
:
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Clearly, �.x/ � .1 � ˛/�.x/ as x ! 1.

Theorem 3. Let  2 K1. Then the assertion of Theorem 2 holds true with �.x/
replaced by �.x/.

Corollary 2. If  2 K1 and g is a  -l.c.f., then

g.x/ D eo.�.x//; x ! 1:

Since the function �.x/ has a “more explicit” representation in terms of  
than the function �.x/, the assertions of Theorem 3 and Corollary 2 display the
asymptotic properties  -l.c.f.’s in a more graphical way than those of Theorem 2
and Corollary 1. A deficiency of Theorem 3 is the fact that the condition  2 K1 is
more restrictive than the condition that  2 K . It is particularly essential that, in
the former condition, the equality ˛ D 1 is excluded for the index ˛ of the r.v.f.  .

4 Proofs

Proof of Theorem 1. Our proof will use an argument modifying H. Delange’s proof
of property (U) (see e.g. p. 6 in [1] or �1.1 in [2]).

Let l.x/ WD ln g.x/: It is clear that (8) is equivalent to the convergence

l.x C v .x// � l.x/ ! 0; x ! 1; (21)

for any fixed v 2 R. To prove the theorem, it suffices to show that

Hv1;v2 .x/ WD sup
v1�v�v2

ˇ̌
l.x C v .x// � l.x/ˇ̌ ! 0; x ! 1:

It is not hard to see that the above relation will follow from the convergence

H0;1.x/ ! 0; x ! 1: (22)

Indeed, let v1 < 0 (for v1 � 0 the argument will be even simpler) and

x0 WD x C v1 .x/; xk WD x0 C k .x0/; k D 1; 2; : : :

By virtue of condition (A), one has  .x0/ � a.�v1/ .x/ with a.�v1/ > 0.
Therefore, letting n WD b.v2 � v1/=a.�v1/c C 1; where bxc denotes the integer
part of x, we obtain

Hv1;v2 .x/ �
nX

kD0
H0;1.xk/;

which establishes the required implication.
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Assume without loss of generality that  .0/ D 1: To prove (22), fix an arbitrary
small " 2 �

0; a.1/=.1C a.1//
�

and set

Ix WD Œx; x C 2 .x/�; I�
x WD fy 2 Ix W jl.y/� l.x/j � "=2g;

I�
0;x WD fu 2 I0 W jl.x C u .x// � l.x/j � "=2g:

One can easily see that all these sets are measurable and

I�
x D x C  .x/I�

0;x ;

so that for the Lebesgue measure 	.	/ on R we have

	.I�
x / D  .x/	.I�

0;x/: (23)

It follows from (21) that, for any u 2 I0, the value of the indicator 1I�

0;x
.u/ tends to

zero as x ! 1. Therefore, by the dominated convergence theorem,

Z
I0

1I�

0;x
.u/ du ! 0; x ! 0:

From here and (23) we see that there exists an x."/ such that

	.I�
x / � "

2
 .x/; x � x."/:

Now observe that, for any s 2 Œ0; 1�, the set Ix\IxCs .x/ D ŒxCs .x/; xC2 .x/�
has the length .2 � s/ .x/ �  .x/: Hence for x � x."/ the set

Jx;s WD �
Ix \ IxCs .x/

� n �
I�
x [ I�

xCs .x/
�

will have the length

	.Jx;s/ �  .x/ � "
2

�
 .x/C  .x C s .x//

�
�  .x/ � "

2

�
1C 1

a.1/

	
 .x/ � 1

2
 .x/ � 1

2
;

where we used relation (13) to establish the second inequality. Therefore Jx;s ¤ ¿
and one can choose a point y 2 Jx;s . Then y 62 I�

x and y 62 I�
xCs .x/, so that

jl.x C s .x// � l.x/j � jl.x C s .x// � l.y/j C jl.y/� l.x/j < ":

Since this relation holds for any s 2 Œ0; 1�, the required convergence (22) and hence
the assertion of Theorem 1 are proved. ut
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Proof of Theorem 2. First let g be a  -l.c.f. with  2 K . Since  .t/ D o.t/,
one has �.x/ " 1 as x " 1 (see (19)). Moreover, the function �.x/ is continuous
and so always has an inverse �.�1/.t/ " 1 as t ! 1, so that we can consider the
composition function

g� .t/ WD .g ı �.�1//.t/:
If we show that g� is an l.c.f. then representation (20) will immediately follow from
the relation g.x/ D g�.�.x// and property .I1).

By virtue of the uniformity property .U / which holds for g by Theorem 1, for
any bounded function r.x/ one has

g�
�
�.x/

� � g.x/ � g
�
x C r.x/ .x/

� D g�
�
�.x C r.x/ .x//

�
: (24)

Next we will show that, for a given v (let v > 0 for definiteness), there is a
bounded (as x ! 1) value r.x; v/ such that

�.x C r.x; v/ .x// D �.x/C v: (25)

Indeed, we have

�.x C r .x// � �.x/ D
Z xCr .x/

x

dt

 .t/
D

Z r

0

 .x/ d z

 .x C z .x//
DW I.r; x/;

where, by Fatou’s lemma and relation (13),

lim inf
x!1 I.r; x/ �

Z r

0

lim inf
x!1

 .x/

 .x C z .x//
d z � I.r/ WD

Z r

0

a.z/d z " 1

as r " 1 (see (14)). Since, moreover, for any x the function I.r; x/ is continuous
in r , there exists r.v; x/ � rv < 1 such that I

�
r.v; x/; x

� D v, where rv is the
solution of the equation I.r/ D v.

Now choosing r.x/ in (24) to be the function r.x; v/ from (25) we obtain that

g�
�
�.x/

� � g�
�
�.x/C v

�

as x ! 1, which means that g� is an l.c.f. and hence (20) holds true.
Conversely, let representation (20) be true. Then, for a fixed v � 0, any " > 0

and x ! 1, one has

ˇ̌
ˇ̌̌ln g

�
x C v .x/

�
g.x/

ˇ̌
ˇ̌̌ �

Z e�.xCv .x//

e�.x/

ˇ̌
".t/

ˇ̌
t

dt C o.1/ � �
�.x C v .x//� �.x/�"C o.1/

� "

Z v

0

 .x/ds

 .x C s .x//
C o.1/ � "v C o.1/: (26)

This clearly means that the left-hand side of this relation is o.1/ as x ! 1.



138 A.A. Borovkov and K.A. Borovkov

If v D �u < 0 then, bounding in a similar fashion the integral

Z e�.x/

e�.x�u .x//

ˇ̌
".t/

ˇ̌
dt

t
� "

Z u

0

 .x/ds

 .x � s .x//
;

we will obtain from condition (A) that

lim sup
x!1

ˇ̌̌
ˇln g.x C v. .x///

g.x/

ˇ̌̌
ˇ � "

Z u

0

lim sup
x!1

 .x/ds

 .x � s .x//
� "

Z u

0

ds

a.s/
;

so that the left-hand side of (26) is still o.1/ as x ! 1. Therefore g.xC v .x// �
g.x/ and hence g is a  -l.c.f. Theorem 2 is proved. ut

It is evident that the assertion of Theorem 2 can also be stated as follows: for
 2 K , a function g is a  -l.c.f. iff g� .x/ is an l.c.f. (which, in turn, holds iff
g�.ln x/ is an s.v.f.).

Proof of Theorem 3. One can employ an argument similar to the one used to prove
Theorem 2.

Since the function �.x/ is continuous and increasing, it has an inverse �.�1/.t/.
It is not hard to see that if  has property (15), then the function �.x/ D x= .x/

also possesses a similar property: for a fixed v and� D v .x/, x ! 1, one has

�.x C�/ D �.x/C .1 � ˛/��.x/

x
.1C o.1//: (27)

Therefore, as x ! 1,

�.x C v .x// D �.x/C .1 � ˛/v.1C o.1//:

As the function � is monotone and continuous, this relation means that, for any v,
there is a function v.x/ ! v as x ! 1 such that

�.x C v.x/ .x// D �.x/C .1 � ˛/v: (28)

Let g be a  -l.c.f. Then, for the function g� WD g ı �.�1/ we obtain by virtue
of (28) that

g� .�.x// � g.x/ � g.x C v.x/ .x// D g� .�.x C v.x/ .x///D g�.�.x/C .1 � ˛/v/:

Since �.x/ ! 1 as x ! 1, the relation above means that g� is an l.c.f. The direct
assertion of the integral representation theorem follows from here and (6).

The converse assertion is proved in the same way as in Theorem 2. Theorem 3 is
proved. ut
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Similarly to our earlier argument, it follows from Theorem 3 that if  2 K1 then
g is a  -l.c.f. iff g� is an l.c.f. (and g� .lnx/ is an s.v.f.).
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