Asymptotic Expansions for Distributions
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Abstract We consider the asymptotic behavior of the convolution P**(y/nA) of
a k-dimensional probability distribution P(A) as n — oo for A from the o-
algebra 9t of Borel subsets of Euclidian space R* or from its subclasses (often
appearing in mathematical statistics). We will deal with two questions: construction
of asymptotic expansions and estimating the remainder terms by using necessary
and sufficient conditions. The most widely and deeply investigated cases are those
where P*"(,/n A) are approximated by the k-dimensional normal laws @*" (A /n)
or by the accompanying ones ¢"("~£0) In this and other papers, estimating the
remainder terms, we extensively use the method developed in the candidate thesis
of Yu. V.Prokhorov (Limit theorems for sums of independent random variables.
Candidate Thesis, Moscow, 1952) (adviser A.N. Kolmogorov) and there obtained
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1 Introduction

We first present three theorems from the thesis of Yu. V. Prokhorov [10]. Let

gl’éz""’én?"'
be a sequence of independent identically distributed random variables with distribu-
tion function F(x) = P{£ < x}.
Theorem P4. Let F(x) satisfy one of the following two conditions:

1. F(x) is a discrete distribution function;
2. There exists an integer ng such that F*"°(x) has an absolutely continuous
component.

Then there exists a sequence {G,(x)} of infinitely divisible distribution functions
such that
[F*(x) = G,(x)| = 0 as n— oo,

where || - || stands for the total variation.

Theorem PS. In order that
|F*(xB, + A,) — G(x)| = 0, n— oo,
for some appropriately chosen constants B, > 0 and A, and a stable distribution

function G(x), the following conditions are necessary and sufficient:

1. F**(xB, + A,) > G(x), n—>o0, xE€ R!:
2. There exists ng such that

/ DPno(x)dx > 0,
—00

where pp,(x) = %F{;’;”.

Theorem P6. Suppose that &, takes only the values m = 0,%£1,... and that the
stable distribution function G(x) has a density g(x). Then

2

m

PiE + -+ & :m}_Bing(ml—?nAn) Lo

if and only if the following two conditions are satisfied:

1. F*"(xB, + Ay) » G(x), n—o0, xé€R
2. The maximal step of the distribution of &, equals 1.

In the case where G(x) = @(x) is the standard Gaussian distribution function,
the following statement is proved.
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Theorem 1. Let & have 0 mean and unit variance. In order that
IF*" (xs/n) = @) = O ™?), n — oo,

for some § € (0, 1], the following two conditions are necessary and sufficient:

L. sup, |F*"(x/n) — ®(x)| = 0n™%?), n — oc;
2. There exists ngy such that the distribution function F*"°(x) has an absolutely
continuous component.

The theorem is proved in [2]. In the same paper, a sequence of random variables
&,...,&, ... with values m = 0,£1, £2,... is also considered. In this case, the
following statement is proved.

Theorem 2. In order that

2

m

1
P{Sl + o4 %‘n — m} — E g_m2/2n — O(n—5/2)

for some § € (0, 1], the following two conditions are necessary and sufficient:

1. sup, |F*'(x/n) — ®(x)| = O(n™*/?), n — oo;
2. The maximal step of the distribution of &, is 1.

In the case where P(A) is a probability distribution defined in the k-dimensional
space R¥, and @(A) is the standard k-dimensional normal distribution, the follow-
ing theorem is proved in [3].

Theorem 3. In order that

sup [P (Av/n) — B(A)| = O~?),
AEMK

the following two conditions are necessary and sufficient:

L. Supjy=; SUp,cpi | P* (V1AL (1) — P(Ac(D)| = O™?) as n — oo,
where A, (t) = {u: (t,u) < x, ||t|| is the length of a vector t € R*, and (u, t)
denotes the inner product in RK;

2. There exists ng such that the distribution function F*"° has a absolutely
continuous component.

The statements of Theorems 1-3 remain valid if one replaces @(A4) by “long”
Chebyshev—Cramer asymptotic expansions with appropriate changes in condi-
tion (1) and with no changes in the Prokhorov conditions (in the theorems,
conditions (2)); see [3].
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2 Appell Polynomials

Recall that a sequence of polynomials g,(x), n = 1,2,..., is called an Appell
polynomial set if

d
—g(x) =ng,1(x), n=1,2,..., x e R,
dx

see [6], p. 242.
Often, by Appell polynomials are meant the polynomials

j—1
A (@) = (1YY g, 1)

=0

defined by
(1 +§) - eZ(l +Zl(%)]A,-(z)) )
=

for |z| < T (see [5, 8]).
The coefficients g ; satisfy the recursion formula

g = (G +Dgj—11+qj—11-1

3
it P )

forj=12,..,1=1,2,...,j —2(see [8]). For/ <0,q;; =0, and

1 1
qj():ms qdjji—1 = =

It is known [8] that

= 2 ﬁ[%(;il)}

. 1:
v 2 ety = i=1
vttty =141

forj=1,2,..,1=0,1,...,j — L.
Estimating the remainder terms of asymptotic expansions, we will use the
following lemma.

Lemma 1. We have
j—1
1 .
dansy J=12. (4)
=0

The lemma can be proved by induction using (3).
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Let us now estimate the remainder term
Ry(z t)z(l—}-i)t—ez l+i<l)jA'(z) )
S ) T ]=1 T J

Here z may be a complex number, e.g., the difference of characteristic functions of
random vectors, 7 > 0,and |z| < 7;5s = 1,2,....

Lemma 2. We have

1/1\" 1 )
=) —=I2*e iflz] <,
2\t) -7
1 /1) 1
[Rs(z. Dl < 135 (;) :|ZS+2€Z| iflz| =1andt > 1,
A A G
ol ifl <|z] < /7.
(7)) s THsVE

Proof. From (2) and (3) it follows that

[els) I\J . I\ s+l o o) N7 r+s )
R(z.7) = Z (;) Aj()e" = (;) e Z(—;) qu+s+1,/z.
j=s+1 r=1 1=0

Now it remains to apply inequality (4), and the lemma follows after a simple
calculation.

3 Expansion of Convolutions of Measures by Appell
Polynomials

Consider the convolutions of generalized finite-variation measures j1(B), B € 9*:

(ro+ 5) 1= [ (s 3) B =90+ 5)"aw,

n
where 1 is the Dirac measure, 0 = (0,0,...,0) € R n=1,2,...;
I *0
(MO"';) = HMo; Mo * L= L.

It is obvious that

n
< (Jm 1)
n

U\ *n
n
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Theorem 4. [f ||| < n, we have the asymptotic expansion

(Vvo + %)*n =el' {Mo + f:l (%)jAj(M)}
=

wheren = 1,2,..., and
j—1
Aj(p) = (=) 0FD 53" gy
1=0

is the Appell polynomial with the powers of |1 are understood in the convolution
sense.

Proof. Obviously,

[ * Y (n) . W —1).. (n—v+1)
(“0+;) :Z(;) (v)’u _;) nv v!

v=0
where
v—1
nn=1)...(n—v+1)=> (=1)/n"CY,
Jj=0

and Cv(j ) is the Stirling number of the first kind.
From the last two equalities it follows that

*u"l

(Ho-i- ) —M0+Z ,UZ( N/ Cn"™

v+1

_ c- c- l v ()
’MO+Z( ) Z V! €7
v=j+

Since C.fo) =1 and

j—1
C=>"qw-1)...(v—j-1).

=0
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we obtain

M) § : *v ~(0)
o + — = o + i C —+
( n

v+1
nd IV o 1 .
+(-5) X o Zq,kv(v—l) w—j—k) =
j=1 v= ]+1 k=0
1 o 1 w0
=2 +Z(") Zq/" Z w—j—k—1* =
v=0 k=0 v=j+k+1
_eﬂ"*'Z(__) Zq kﬂ*(’+k+l)*(211l“):
j=1

= e x {uo+i(—i) prU (iq,ku )}

j=I1 k+1

The theorem is proved.

Theorem 5. Let 1 and ju; be generalized finite-variation measures in R*. Then,
for every Borel set B € 9, we have

(o (0 + )" ) s Lo+ 30 () 00} )

j=1

1/1\s
3() ) i el < 1.
1
20— 1)( ) a) if lull = 1,
[l ] A(B) .
( ) M=o Fr=lul< NG
wheren = 1,2, ..., and

A(B) = sup ‘pff" % W 6+ x (B —X)‘.
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Proof. When ||| < n, the remainder term is

o0 . j—1
1\J . .
re(B)= Y () (=DTe s i U Y g (B) =
j=s+1 =0
1\ s+l 00 [N *T r+s
=e % pui" M*(SH)( - ;) * Z ( - ;) qu+s+1,zﬂ*l =
r=0 =0
:( — l)Hl/ et ui" % w62 (B —x)
n Rk
[ele) r+s
N\ *T
(Z ( - ;) qu+s+l,lﬂ*1) (dX)
r=0 =0
From this it follows that
Lyt e (el s
@< (7)) am L (L) Lot ©
r=0 =0
Here,
- i ull <1
—_ 1 I’L s
2n—||pl
[e’e) r r+s
|l I n :
) (T > grrsrra(lul)’ < S if ]l = 1.
r=0 =0
]! .
— if 1 < ||u] < /n.
2l = T — [l ]?

From this and from (5) the theorem follows.

Suppose that the probability distribution has an inverse generalized mea-

sure G*, i.e.,
G+xG*=G"**xG = E,,

where E, is the degenerate k-dimensional measure concentrated at 0 € R*.

Such a property is possessed by accompanying probability distributions e ~%0, i.e.,
G * = ¢ (F—Eo)

Theorem 6. Let F be a k-dimensional probability distribution, let a probability
distribution G have an inverse G™*, andlet o = ||(F — G) * G™*|| < 1. Then

o0 .
. . (e ok 1\J _
F*1 = G 5 (F=6)%G *%EO+ZI(;) A;(1(F=G)xG™){.  (6)
j=
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where
j—1

Aj((F=G)xG™™) = (=1)/ (n(F=G)xG™*)*U Vx> " g1 (n(F—G)xG )"
=0

To estimate the remainder term

1N/ —
ra(B) =Y (;) G*" % "= 4 4, (n(F — G) * G™)(B),

j=s+1
Wwe use
A(B) = sup ‘G*n * en(F—G)*G** « (n(F _ G) % G_*)*(s+2)(B —X)‘
and
1\s+1 i rts ,
L= (;) Zgr qu+s+l,l(”7l@”) .
r=0 =0
It is obvious that
Irs+1(B)| < LA(B), )
where
1 (1 s+1 " |
2(1—0) n) ifno <1,
Ls 1(1)S : ifng =1 8
A\ 1Htno =1,
12\n/ n—-1 Q (8)
1 Qs+l : 1
PO E—— if - <o < —=.
2 (1 — I’le) 5 e N

From (7) and (8) there follows an estimate of the remainder term in the
asymptotic expansion (6).

4 Expansion of a Convolution by Accompanying Probability
Measures

Every k-dimensional probability measure P satisfies the identity

P =e""F 5 (Eg— (P — Eo)* x E(Ey — P)*"), 9)

where oo
E(Eg— P)* =Y P{& = m}(Eg— P)™" (10)

m=0

m+1

with P{& = m} = m,

m=20,1,2,...
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From (9) and (10) it follows that
(P —e"=Eoy s e P=E) — (—1)!(P — Eg)* % E(Ey— P)* (11)
forl =1,2,...,wherez; = & + & +---+ & -is the sum of i.i.d. random variables

517527"'7%‘[-

It is obvious that, for all P,

2\ !/
[(P = P ~Eo) 5 =P —E0)™ | < (1 Ze ) . I=12....

If (P — Eg)*?|| < 15, then
0= [|(P—e"Fyxe PR <1,

and for the convolution P*", we can apply Theorem 6:

o0 .
. P ; 1\/
P =" EO)*e"*{Eo—f—Z:l(;) Aj(”M)}» (12)
j=
where
j—1
Aj(np) = (=17 () I+ 3" g1 (np)*!
1=0
and

w= (P —elEvy s e~ (F=E0)

Let us estimate the remainder term
2 1N/
rop1(B) = &"PTE) s o (Eo + ) (;) Aj (”M)) (B).
j=s+1
From (11) it follows that
w = (=D!(P — Eg)*? x E(Eq— P)*
and

re+1(B) =(=n)" Y2 (P — Eq)**+2) & E(Eg — P)*ot2 5 (P70

r+s

o0
xexp{—n(P— E0)*?E(Eg— P)*'} % Y (=)* % Y qryssra(npm)*.
r=0 =0
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Theorem 7. Suppose that ||(P — Eo)*?*|| < 14:2' Then, for all Borel sets B € 9,

lrs+1(B)| < A(B) - L,

where
A(B) = *2) *(5+2) *(e5+2)
(B) =sup |(n(P — Eo)*?) * E(Ey— P) s
X
s exp {n(P — Eo) x (Eg — (P — Eo) * E(Eq— P)*'}(B —x)|,
o = |[ull, and U e
2(1—0) (Z) ffno <1,
1/1ys 1 ,
L=13G) = ime=t
1 Qs+1
— if1 < < .
ST ng? ifl <no<.n

The theorem follows from inequalities (7) and (8).

5 Asymptotic Bergstrom Expansion

For any k-dimensional probability distributions P and Q,

N
P =3 CrOT ) x (P = Q) 41t
v=0

(the Bergstrom identity). Here, for s + 1 < n,

n
rn(s-l—l) — Z C;:;_IP*(n—m) " (P _ Q)*(s+l) " Q*(m—s—l)'

m=s+1

Let ® be a negative hypergeometric random variable taking the natural values
m=s+ 1,5 +2,...,n with probabilities

s

CS_
P{@:m}:c'f;—ﬁ.

Then we can rewrite the remainder term as

rn(s-l—l) — CnY-l—l(P _ Q)*(S-I—l) * E(P*(n—@) * Q*(@—S—l))’
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where

E(P*(n—@) * Q*(@—S—l)) — Z P{@ — m}P*("_m) * Q*(m_s_l)-

m=s+1

Lemma 3. Suppose that P and Q have finite jth-order absolute moments and that
| wxracr - o =0
Rk
forr=1,2,...,jandt e RK. Then
[ axtaw-oymm —o
Rk
forl =0,1,...,(j + )m —1andt € R*.
Remark. 1If the first moments of P and Q coincide, then
| axtaw-oymm —o
Rk

for/ =0,1,...,3m—1.

The lemma is proved by using characteristic functions and the Faa de Bruno
formula that can be found, e.g., in [8].

Since
v—1 .
n' IN _:
v _ ()
e = (12 (=) e),
ji=1
where C\fj ) is the Stirling number of the first kind, CV(O) =1, and
j—1
C=v =1 =) g —j =1 =] =1,
1=0
we have, for1 < s <n,

AD(B) = 0 + 3" CLQ™ ™ x (P — )™ (B) =

v=1

s—1 . s
= 0B+ (1) Y 1 SO0 k(P — 0 (B).
j=0 '

v=j+1
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Now, the Bergstrom identity becomes

s—1 . K i
prpy=0r @+ Y. (1) Y Elewortme - onme
j=0 '

v=j+1

4 C};}(P _ Q)*(S+l) % E(P*(n—@) * Q*(@_S_l))(B). (13)

Let us now consider the cases where Q(B) is the normal k-dimensional
distribution @(B) = P{& € B}, & ~ N(0,%), where X is a nondegenerate
matrix of second moments.

Suppose that the expectation vectors and second-moment matrices of P(B) and
&(B) coincide.

Theorem 8. Suppose that the probability distribution P(B) = P{y € B} has
finite absolute moments of order 2 + & with 0 < § < 1. Then there exists a constant
C, depending only on k, s, and 8, such that

2448

T y—1 = v
sup \45*(”_”) * (n(P — @))*U(B\/EH < (CE[(n > ])

§/2
Bemk n®/

for1 < v < s, where
EqT s = / " =% dpx),
Rk

and 37 is the transpose of the vector ).

Theorem 8 is proved in [4]. H. Bergstrom proved that (see [1])

sup |@*) x (n(P — @)™ (B/n)| = o(ﬂnn)k/z)v.

§/2
Bemk n®/

We will estimate the remainder term r,gﬁ_l) (B) for all convex Borel sets B € M.

Theorem 9. Suppose that the assumptions of Theorem 8 are satisfied and that the
characteristic function of the random vector n, satisfies Cramer condition (C):

m||t||_)oo|Eei(t’"1)| < 1.

Then
sup |ri TV (B)] = o(n™?).
Benk
The theorem is proved in [4].
In the one-dimensional case (k = 1), Bergstrom [1] proved that from his asymp-
totic expansion there follows the Chebyshev—Cramer asymptotic expansion.
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For k > 1 and Q(B) = ®@(B), from (13) it follows that

P*"(B/n) @(B)+Z(l)]Z = 1.) CHO™™ s (n(P — @)™ (B(V/n)

v=j+1
+ CN (P — @) Y« E(P7O) 5 0* OB ). (14)
The formal asymptotic expansion of the density p,(y) of the convolution

@* ) % (n(P — B))*(B/n) = /Bpu(y)dy

is

o X I+v+2m  (—p)™ gmt3vtl
EDY Z( ) m\(3v + 1) dem g+ |

m=0 /=0

* [/ (miﬁ)k \/|17|X

y—x0)' > ' (y- XQ)} d(P — ®)* (x)

]
X _——_—,——
exP{ 21+ ¢)

e=0
e=0

5)

for 1 < v < s, where | ¥'| denotes the determinant of the matrix X.
Let &, ~ Ni¢(0, (1 + ¢)X)) be a k-dimensional normal random vector. If ¢ = 0,
then

§o=4§~ Ni(0.2).

From (14) and (15) we get the following formal expansion of the convolution

P*"(B Jn):

s—1 . s
N (- 1), o I+v+am  (—p)™
*n ~ — / ’
PB Vi) ~D(B) + ) (=) > SO ZZ( =) ml(Gv +1)!
=0 v=j+1 m=0[=0
8m+3v+l
: 88m3Q3V+I

|:/ P{ES+XQ€B}d(P—CI§)*V(x)i| 4=
x€ Rk

B 1 : (—=1)/ tm cW).
P{’EEBHZ(J—) ]X%V;ln;);)wmv@vﬂ)v v
2j++v+2m=r

am+3v+l
’ e 8Q3v+l

|:/ P{&, +x0¢€ B}d(P—CD)*"(x)i| + .-
x€RK e=0
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where

1 ko
P{££+xg<z}:( 27‘[(1+8)) m

1

The formal expansions are obtained by means of the characteristic functions.

6 Expansion of a Convolution by y2-Distributions

Let &, ~ Ni(p, X) be a normal k-dimensional random vector with nondegenerate
covariation? matrix X. The random variable

G=E,—w'T7E, -
has the )(z-distribution with k degrees of freedom, and the random variable
256 =&, —v)' =7, —v)

has the noncentral y2-distribution with k degrees of freedom and noncentrality
parameter

§=m-—»)"2(n—v).
The distribution function of x7(§) is

o

PLE® <x} =Y [(‘Sﬁ.—?]e—‘ﬂ PU ) <) (16)

J=0

(see [7,9]).
Let

1 n
S, = — :
ﬁg’“

be the sum of i.i.d. k-dimensional vectors 3,,...,7,,... with zero mean vector
0 € R* and nondegenerate covariation matrix X. Let £ ~ N; (0, ¥') and

Ac={yeR\:y'x'y<x}, x>0.
We are interested in an asymptotic expansion of

P{S, € A} = P{S' ¥7'S, < x} = P*(VnA,),
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where P(/nA,) = P{Zl/_l,; € A,}, i.e., the difference
P{STY7!S, < x}— P{ET X7 < x} = P*(VnAy) — P{yi <x} (17)

for x > 0.
Denote by ﬁ(t) and a(t) the characteristic functions of the vectors 5, and &.

From the Bergstrom identity (13) it follows that

~(t)) =~ LN N (1)
() -s0e£6) 3, e

v=j+1

T (CES R CES) N

where

- /R e (5(%))Hd (n(P = &)™ (x).

The Fourier transform is

po=(5) [ (3(5)) ((P()-8(55))) ar-

k . —
=/ (i) / eI (ty=x//m) exp { - lutTEt} dtd(n(P — ®))*" (x).
XE Rk 2 te Rk 2 n

By the change of variables v = ,/ . t we obtain
n
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Po(y) =/X€Rk (\/Z%)k/vemexp{ —i(v, niv _ J;Tv)}

- exp { - %VTEV}dv d(n(P — @))*"(x), (19)

where
n 1 k/ ( n X ) { 1TE }d
v/ — expl —i(v, — expl — =v' Xvydv =
n—v2m/) Jyegk P n—v Jn—v P 2

(%) () o=

1 n X TE_I n X 20)
expy — = — = .
P 2 y n—v Jn—v y n—v n—v
From (17) to (20) after the change of variablesu =y /7 1t follows that

[ nway= (#)k#
yI y—ly<x ' X€ RK \/E \/m

/ Edud(n(P — @)™ (x) =
WtA)T 5 A <vts

X ro X n .
Z/xekkp%(“m)z (e m)“n_v}d(n(*"@” () =

-/ {xk(&x)) <x
xeRk

where

}d(n(P )" (),

x' X7 1x

5(x) =

n—v

is the noncentrality parameter of the )(]% (8(x))-distribution. From (16) it follows that

=)

o]

PURG) <xb= Y (-—

j=0 /!

x'y—

e 2n v

1 i (xT - 1x)J
) (2 ) P{X}%_sz <Xn
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Now the asymptotic Bergstrom expansion writes as

s—1 . K
PETE <x}+Z(— 1)] > %cw
j=0 ’

n -
v=j+1

n

}d(n(P — D) (%)

n—v

| plrew) <
XERK

A. Bikelis

To estimate the remainder term, we applied Theorem 9. Thus, we have proved the

following:

Theorem 10. Suppose that a random vector n, has a finite absolute moment of
order 2 + § for some 0 < § < 1 and that the characteristic function P (t) satisfies

the Cramer condition R
lim |P(t)] < 1.

lltll—>o0

Then
P{SI'Y7!S, < x} = P{y; <x}+

s—1 . K

IS SO T o

v=0 v=j+1

1 )rP{ 5 n }1
<X —x
n—v Kie-2r n—vlr!

1 r _
x/ (-xTz—lx) e 2 X TG (P — ®))* (%) + o(n /D)
xerk \ 2

forallx >0ands =1,2,....

©

If instead of considering the )(]% random variable, we change ¢, F, i, etc., then we
have also to change the definition of the set A, and to replace the Cramer condition
(C) by the Prokhorov [11,12] condition that there exists n( such that the convolution

P*"0(x) has an absolutely continuous component.
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