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Abstract We recall some instances of the recovery problem of a signal process
hidden in an observation process. Our main focus is then to show that if .Xs; s � 0/

is a right-continuous process, Yt D R t

0
Xsds its integral process and � D .�u; u � 0/

a subordinator, then the time-changed process .Y�u ; u � 0/ allows to retrieve the
information about .X�v ; v � 0/ when � is stable, but not when � is a gamma
subordinator. This question has been motivated by a striking identity in law
involving the Bessel clock taken at an independent inverse Gaussian variable.
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1 Introduction and Motivations Stemming from Hidden
Processes

Many studies of random phenomena involve several sources of randomness. To
be more specific, a random phenomenon is often modeled as the combination
C D ˚.X; X 0/ of two processes X and X 0 which can be independent or correlated,
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for some functional ˚ acting on pairs of processes. In this framework, it is natural
to ask whether one can recover X from C , and if not, what is the information on
X that can be recovered from C ? We call this the recovery problem of X given C .
Here are two well-known examples of this problem.

• Markovian filtering: There C is the observation process defined for every t � 0

by Ct D St C Bt where St D R t

0
h.Xs/ds is the signal process arising from a

Markov process X and B D .Bt ; t � 0/ is an independent Brownian motion.
Then the recovery problem translates in the characterization of the filtering
process, that is the conditional law of Xt given the sigma-field Ct D �.Cs; s � t/.
We refer to Kunita [6] for a celebrated discussion.

In the simplest case when X remains constant as time passes, which yields
h.Xt / � A where A is a random variable, note that A can be recovered in infinite
horizon by A D limt!1 t�1Ct , but not in finite horizon. More precisely, it is
easily shown that for a Borel function f � 0, there is the identity

E.f .A/ j Ct / D
R

f .a/E a
t �.da/

R
E a

t �.da/

where � is the law of A and E a
t D exp.aCt � ta2=2/; see Chap. 1 in [9].

• Brownian subordination: An important class of Lévy processes may be repre-
sented as

Ct D B�t ; t � 0;

where � a subordinator and B is again a Brownian motion (or more generally a
Lévy process) which is independent of � ; see for instance Chap. 6 in [7]. Geman,
Madan and Yor [4,5] solved the recovery problem of � hidden in C ; we refer the
reader to these papers for the different recovery formulas.

There exist of course other natural examples in the literature; we now say a
few words about the specific recovery problem which we will treat here and the
organization of the remainder of this paper.

We will consider the recovery problem when the signal is Yt D R t

0 Xsds and this
signal is only perceived at random times induced by a subordinator � . By this, we
mean that the observation process is given by C D Y ı � , and we seek to recover
the subordinate process X ı � . The precise formulation of the framework and our
results will be made in Sect. 2. Proofs of the results found in Sect. 2 are presented
in Sect. 3. Finally, in Sect. 4, we apply the results of Sect. 2 to an identity in law
involving a Bessel process, which is equivalent to Bougerol’s identity [2] and has
provided the initial motivation of this work.

2 Framework and Main Statements

We consider on some probability space .˝; A ;P/ an R
d -valued process .Xs; s � 0/

with right-continuous sample paths, and its integral process
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Yt D
Z t

0

Xsds; t � 0 :

Let also .�u; u � 0/ denote a stable subordinator with index ˛ 2 .0; 1/. We stress
that we do not require X and � to be independent. We are interested in comparing
the information embedded in the processes OX and OY which are obtained from X

and Y by the same time-change based on � , namely

OXu D X�u and OYu D Y�u ; u � 0 :

We denote by
� OXu

�

u�0
the usual augmentation of the natural filtration generated

by the process OX , i.e. the smallest P-complete and right-continuous filtration to

which OX is adapted. Likewise, we write
� OYu

�

u�0
for the usual augmentation of the

natural filtration of OY and state our main result.

Theorem 1. There is the inclusion OXu � OYu for every u � 0.

We stress that for u > 0, in general OYu cannot be recovered from the sole process OX ,
and then the stated inclusion is strict. An explicit recovery formula for OXu in terms
of the jumps of OY will be given in the proof of Theorem 1 (see Sect. 3 below).

A perusal of the proof of Theorem 1 shows that it can be extended to the case
when it is only assumed that � is a subordinator such that the tail of its Lévy measure
is regularly varying at 0 with index �˛, which suggests that this result might hold
for more general subordinators. On the other hand, if .Nv; v � 0/ is any increasing
step-process issued from 0, such as for instance a Poisson process, then the time-
changed process .YNv ; v � 0/ stays at 0 until the first jump time of N which is
strictly positive a.s. This readily implies that the germ-�-field

\

v>0

�.YNu ; u � v/

is trivial, in the sense that every event of this field has probability either 0 or
1. Focussing on subordinators with infinite activity, it is interesting to point out
that Theorem 1 fails when one replaces the stable subordinator � by a gamma
subordinator, as can be seen from the following observation (choose Xs � �).

Proposition 1. Let � D .�t ; t � 0/ be a gamma-subordinator and � a random
variable with values in .0; 1/ which is independent of � . Then the germ-�-field

\

t>0

�.��s; s � t/

is trivial. On the other hand, we also have

\

t>0

.�.�/ _ �.�s; s � t// D �.�/ :
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It is natural to investigate a similar question in the framework of stochastic
integration. For the sake of simplicity, we shall focus on the one-dimensional
case. We thus consider a real valued Brownian motion .Bt ; t � 0/ in some
filtration.Ft /t�0 and an .Ft /-adapted continuous process .Xt ; t � 0/, and consider
the stochastic integral

It D
Z t

0

XsdBs; t � 0 :

We claim the following.

Proposition 2. Fix � > 0 and assume that the sample paths of .Xt ; t � 0/

are Hölder-continuous with exponent � a.s. Suppose also that .�v; v � 0/ is a
stable subordinator of index ˛ 2 .0; 1/, which is independent of F1. Then the
usual augmentation . OIv/v�0 of the natural filtration generated by the subordinate

stochastic integral
� OIv D I�v ; v � 0

�
contains the one generated by .jX�v j; v � 0/.

3 Proofs

3.1 Proof of Theorem 1

For the sake of simplicity, we henceforth suppose that the tail of the Lévy measure
of the stable subordinator � is x 7! x�˛ , which induces no loss of generality. We
shall need the following elementary version of the Law of Large Numbers for the
jumps .��s D �s � �s�; s > 0/ of a stable subordinator.

Fix any ˇ > 2=˛ and introduce for any given b 2 R and " > 0

N";b D Cardfs � " W b��s > "ˇg :

Note that N";b � 0 for b � 0.

Lemma 1. We have

P

�
lim

n!1 n1�˛ˇN1=n;b D b˛ for all b > 0
�

D 1:

Remark. The rectangles Œ0; "	 � ."ˇ; 1/ neither increase nor decrease with " for
" > 0, so Lemma 1 does not reduce to the classical Law of Large Numbers for
Poisson point processes. This explains the requirement that ˇ > 2=˛.

Proof. Recall that for b > 0, N";b is a Poisson variable with parameter

"."ˇ=b/�˛ D b˛"1�ˇ˛ :
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Chebychev’s inequality thus yields the bound

P

�ˇ
ˇn1�˛ˇN1=n;b � b˛

ˇ
ˇ >

1

ln n

�

� b2˛n1�˛ˇ ln2 n

and since 1 � ˛ˇ < �1, we deduce from the Borel-Cantelli lemma that for each
fixed b > 0,

lim
n!1 n1�˛ˇN1=n;b D b˛ almost surely:

We can then complete the proof with a standard argument of monotonicity. ut
We now tackle the proof of Theorem 1 by verifying first that X0 is

OY0-measurable. Let us assume that the process X is real-valued as the case of
higher dimensions will then follow by considering coordinates. Set

J" D Cardfs � " W � OYs > "ˇg;

where as usual � OYs D OYs � OYs�. We note that

� OYs � X0��s D
Z �s

�s�

.Xu � X0/du :

Hence if we set a" D sup0�u��"
jXu � X0j, then

.X0 � a"/ ��s � � OYs � .X0 C a"/ ��s;

from which we deduce N";X0�a" � J" � N";X0Ca" .
Since X has right-continuous sample paths a.s., we have lim"!0 a" D 0 a.s., and

taking " D 1=n, we now deduce from Lemma 1 that

lim
n!1 n1�˛ˇJ1=n D .XC

0 /˛ almost surely:

Hence XC
0 is OY0-measurable, and the same argument also shows that X�

0 is
OY0-measurable.

Now that we have shown that X0 is OY0-measurable, it follows immediately that
for every v � 0, the variable OXv is OYv-measurable. Indeed, define � 0

u D �vCu ��v and
X 0

v D XvC�v . Then � 0 is again a stable.˛/ subordinator and X 0 a right-continuous
process, and

OYvCu � OYv D
Z � 0

u

0

X 0
sds :

Hence X 0
0 D OXv is measurable with respect to the P-complete germ-�-field gener-

ated by the process . OYvCu � OYv; u � 0/, and a fortiori to OYv.
Thus we have shown that the process OX is adapted to the right-continuous

filtration
� OYv

�

v�0
. Since by definition the latter is P-complete and right-continuous,

Theorem 1 is established. ut
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3.2 Proof of Proposition 1

Here it is convenient to agree that ˝ denotes the space of càdlàg paths
! W Œ0; 1/ ! RC endowed with the right-continuous filtration .At /t�0 generated
by the canonical process !t D !.t/. We write Q for the law on ˝ of the process
.��t ; t � 0/.

It is well known that for every x > 0 and t > 0, the distribution of the process
.x�s; 0 � s � t/ is absolutely continuous with respect to that of the gamma
process .�s; 0 � s � t/ with density x�t exp ..1 � 1=x/�t /. Because � and � are
independent, this implies that for any event 
 2 Ar with r < t

Q .
/ D E
�
��t exp ..1 � 1=�/�t / 1f�2
g

�
:

Observe that

lim
t!0C ��t exp ..1 � 1=�/�t / D 1 a.s.

and the convergence also holds in L1.P/ by an application of Scheffé’s lemma
(alternatively, one may also invoke the convergence of backwards martingales). We
deduce that for every 
 2 A0, we have Q.
/ D P.� 2 
/ and the right-hand-side
must be 0 or 1 because the gamma process satisfies the Blumenthal’s 0-1 law. On
the other hand, the independence of � and � yields that the second germ sigma field
is �.�/. ut
Remarks. We point out that Proposition 1 holds more generally when � is replaced
by a subordinator with logarithmic singularity, also called of class .L /, in the sense
that the drift coefficient is zero and the Lévy measure is absolutely continuous with
density g such that g.x/ D g0x�1CG.x/ where g0 is some strictly positive constant
and G W .0; 1/ ! R a measurable function such that

Z 1

0

jG.x/jdx < 1 ; g.x/ � 0 ; and
Z 1

1

g.x/dx < 1 :

Indeed, it has been shown by von Renesse et al. [8] that such subordinators enjoy a
quasi-invariance property analogous to that of the gamma subordinator, and this is
the key to Proposition 1.

Thanks to Theorem 1, if we replace in Proposition 1 the gamma process by � , a
stable subordinator, then both germ sigma fields are equal to �.�/.

3.3 Proof of Proposition 2

The guiding line is similar to that of the proof of Theorem 1. In particular it suffices
to verify that jX0j is measurable with respect to the germ-�-field OI0.

Because Brownian motion B and subordinator � are independent, the subordinate
Brownian motion . OBv D B�v ; v � 0/ is a symmetric stable Lévy process with index
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2˛. With no loss of generality, we may suppose that the tail of its Lévy measure ˘

is given by ˘.RnŒ�x; x	/ D x�2˛ . As a consequence, for every ˇ > 2=˛ and " > 0

and b 2 R, if one defines

N";b D Cardfs � " W jb� OBsj2 > "ˇg;

then N";b is a Poisson variable with parameter jbj2˛"1�˛ˇ , and this readily yields
(see Lemma 1)

lim
n!1 n1�˛ˇN1=n;b D jbj2˛ for all b 2 R, almost-surely. (1)

Next set

J" D Cardfs � " W j� OIsj2 > "ˇg;
where as usual OIs D I�s , and observe that

� OIs D X0� OBs C .X�s�

� X0/� OBs C
Z �s

�s�

.Xu � X�s�

/dBu : (2)

Recall the assumption that the paths of X are Hölder-continuous with exponent
� > 0, so the .Ft /-stopping time

T D inf

(

u > 0 W sup
0�v<u

.u � v/��jXu � Xvj2 > 1

)

is strictly positive a.s. In particular, if we write 
" D f�" < T g, then P.
"/ tends to
1 as " ! 0C.

We fix a > 0, we consider

K";a D Card

(

s � " W
ˇ
ˇ
ˇ
ˇ

Z �s

�s�

.Xu � X�s�

/dBu

ˇ
ˇ
ˇ
ˇ

2

> a"ˇ

)

;

and we claim that

lim
"!0

"˛ˇ�1
E.K";a; 
"/ D 0 : (3)

If we take (3) for granted, then we can complete the proof by an easy adaptation of
the argument in Theorem 1. Indeed, we can then find a strictly increasing sequence
of integers .n.k/; k 2 N/ such that with probability one, for all rational numbers
a > 0

lim
k!1 n.k/1�˛ˇK1=n.k/;a D 0 : (4)

We observe from (2) that for any a 2 .0; 1=2/, if j� OIsj2 > "ˇ, then necessarily
either

jX0� OBsj2 > .1 � 2a/2"ˇ;



104 J. Bertoin and M. Yor

or
j.X�s�

� X0/� OBsj2 > a2"ˇ;

or ˇ
ˇ
ˇ
ˇ

Z �s

�s�

.Xu � X�s�

/dBu

ˇ
ˇ
ˇ
ˇ

2

> a2"ˇ :

As
lim

"!0C sup
0�s�"

jX�s�

� X0j D 0;

this easily entails, using (1) and (4), that

lim sup
k!1

n.k/1�˛ˇJ1=n.k/ � lim
k!1 n.k/1�˛ˇN1=n.k/;.1�2a/�1jX0j

D .1 � 2a/�2˛jX0j2˛; a.s.

where the identity in the second line stems from (1). A similar argument also gives

lim inf
k!1 n.k/1�˛ˇJ1=n.k/ � .1 C 2a/�2˛jX0j2˛; a.s.,

and as a can be chosen arbitrarily close to 0, we conclude that

lim
k!1 n.k/1�˛ˇJ1=n.k/ D jX0j2˛; a.s.

Hence jX0j is OI0-measurable.
Thus we need to establish (3). As � is independent of F1, we have by an

application of Markov’s inequality that for every s � "

P

 ˇ
ˇ
ˇ
ˇ

Z �s

�s�

.Xu � X�s�

/dBu

ˇ
ˇ
ˇ
ˇ

2

> a"ˇ; 
" j �

!

� 1

a"ˇ

Z ��s

0

v�dv � .��s/
1C�

a"ˇ
:

It follows that

E.K";a; 
"/ � E

 
X

s�"

�
.��s/

1C�

a"ˇ
^ 1

�!

D "c

Z

.0;1/

x�1�˛

�
x1C�

a"ˇ
^ 1

�

dx D O."1�˛ˇ=.1C�//;
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where for the second line we used the fact that the Lévy measure of � is cx�1�˛dx

for some unimportant constant c > 0. This establishes (3) and hence completes the
proof of our claim. ut

4 Application to an Identity of Bougerol

In this section, we answer a question raised by Dufresne and Yor [3], which has
motivated this work.

A result due to Bougerol [2] (see also Alili et al. [1]) states that for each fixed
t � 0 there is the identity in distribution

sinh.Bt /
(law)D
Z t

0

exp.Bs/dWs (5)

where B and W are two independent one-dimensional Brownian motions. Consider
now a two-dimensional Bessel process .Ru; u � 0/ issued from 1 and the associated
clock

Ht D
Z t

0

R�2
u du; t � 0 :

Let also .�s; s � 0/ denote a stable .1=2/ subordinator independent from the Bessel
process R.

In Dufresne and Yor [3], it was remarked that by combining Bougerol’s identity
(5) and the symmetry principle of Désiré André, there is the identity in distribution
for every fixed s � 0

H�s

(law)D �a.s/; (6)

where a.s/ D Argsinh.s/ D log
�
s C p

1 C s2
�

.

In [3], the authors wondered whether (6) extends at the level of processes
indexed by s � 0, or equivalently whether . OHs D H�s ; s � 0/ has independent
increments. Theorem 1 entails that this is not the case. Indeed, it implies that the

usual augmentation
� OHs

�

s�0
of the filtration generated by OH contains the one

generated by
� ORs D R�s ; s � 0

�
. On the other hand, .R; H/ is a Markov (additive)

process, and since subordination by an independent stable subordinator preserves
the Markov property, . OR; OH/ is Markovian in its own filtration, which coincides

with
� OHs

�

s�0
by Theorem 1. It is readily seen that for any v > 0, the conditional

distribution of H�sCv given .R�s ; H�s / does not only depend on H�s , but on R�s as

well. Consequently the process OH is not Markovian and a fortiori does not have
independent increments.
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