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Abstract We present some new asymptotic results for functionals of higher order
differences of Brownian semi-stationary processes. In an earlier work [8] we have
derived a similar asymptotic theory for first order differences. However, the central
limit theorems were valid only for certain values of the smoothness parameter of a
Brownian semi-stationary process, and the parameter values which appear in typical
applications, e.g. in modeling turbulent flows in physics, were excluded. The main
goal of the current paper is the derivation of the asymptotic theory for the whole
range of the smoothness parameter by means of using second order differences.
We present the law of large numbers for the multipower variation of the second
order differences of Brownian semi-stationary processes and show the associated
central limit theorem. Finally, we demonstrate some estimation methods for the
smoothness parameter of a Brownian semi-stationary process as an application of
our probabilistic results.
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1 Introduction

Brownian semi-stationary processes (BS S ) has been originally introduced in [2]
for modeling turbulent flows in physics. This class consists of processes .Xt /t2R of
the form

Xt D �C
Z t

�1
g.t � s/�sW.ds/C

Z t

�1
q.t � s/asds; (1)

where � is a constant, g; q W R>0 ! R are memory functions, .�s/s2R is a càdlàg
intermittency process, .as/s2R a càdlàg drift process and W is the Wiener measure.
When .�s/s2R and .as/s2R are stationary then the process .Xt/t2R is also stationary,
which explains the name Brownian semi-stationary processes. In the following we
concentrate on BS S models without the drift part (i.e. a � 0), but we come back
to the original process (1) in Example 1.

The path properties of the process .Xt/t2R crucially depend on the behaviour
of the weight function g near 0. When g.x/ ' xˇ (here g.x/ ' h.x/ means
that g.x/=h.x/ is slowly varying at 0) with ˇ 2 .� 1

2
; 0/ [ .0; 1

2
/, X has

r-Hölder continuous paths for any r < ˇ C 1
2

and, more importantly, X is not a
semimartingale, because g0 is not square integrable in the neighborhood of 0 (see
e.g. [10] for a detailed study of conditions under which Brownian moving average
processes are semimartingales). In the following, whenever g.x/ ' xˇ , the index
ˇ is referred to as the smoothness parameter of X .

In practice the stochastic process X is observed at high frequency, i.e. the data
points Xi�n , i D 0; : : : ; Œt=�n� are given, and we are in the framework of infill
asymptotics, that is �n ! 0. For modeling and for practical applications in physics
it is extremely important to infer the integrated powers of intermittency, i.e.

Z t

0

j�sjpds; p > 0;

and to estimate the smoothness parameter ˇ. A very powerful instrument for
analyzing those estimation problems is the normalized multipower variation that
is defined as

MPV.X; p1; : : : ; pk/
n
t D �n�

�pC

n

Œt=�n��kC1X
iD1

j�n
i X jp1 � � � j�n

iCk�1X jpk ; (2)

where �n
i X DXi�n � X.i�1/�n , p1; : : : ; pk � 0 and pC D Pk

lD1 pl , and �n is
a certain normalizing sequence which depends on the weight function g and n
(to be defined later). The concept of multipower variation has been originally
introduced in [3] for the semimartingale setting. Power and multipower variation
of semimartingales has been intensively studied in numerous papers; see e.g. [3–
6, 13, 15, 17, 22] for theory and applications.
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However, as mentioned above, BS S processes of the form (1) typically
do not belong to the class of semimartingales. Thus, different probabilistic tools
are required to determine the asymptotic behaviour of the multipower variation
MPV.X; p1; : : : ; pk/nt of BS S processes. In [8] we applied techniques from
Malliavin calculus, which has been originally introduced in [18, 19] and [20], to
show the consistency, i.e.

MPV.X; p1; : : : ; pk/
n
t � �np1;:::;pk

Z t

0

j�sjpC

ds
u.c.p.�! 0;

where �np1;:::;pk is a certain constant and Y n
u.c.p.�!Y stands for supt2Œ0;T � jY nt �Yt j P�!0

(for all T > 0). This holds for all smoothness parameters ˇ 2 .� 1
2
; 0/[ .0; 1

2
/, and

we proved the associated (stable) central limit theorem for ˇ 2 .� 1
2
; 0/.

Unfortunately, the restriction to ˇ 2 .� 1
2
; 0/ in the central limit theorem is not

satisfactory for applications as in turbulence we usually have ˇ 2 .0; 1
2
/ at ultra high

frequencies. The theoretical reason for this restriction is two-fold: (i) long memory
effects which lead to non-normal limits for ˇ 2 . 1

4
; 1
2
/ and more importantly (ii) a

hidden drift in X which leads to an even stronger restriction ˇ 2 .� 1
2
; 0/.

The main aim of this paper is to overcome both problems by considering
multipower variations of higher order differences of BS S processes. We will
show the law of large numbers and prove the associated central limit theorem for all
values of the smoothness parameter ˇ 2 .� 1

2
; 0/ [ .0; 1

2
/. Furthermore, we discuss

possible extensions to other type of processes. We apply the asymptotic results to
estimate the smoothness parameter ˇ of a BS S process X . Let us mention that
the idea of using higher order differences to diminish the long memory effects is
not new; we refer to [12, 16] for theoretical results in the Gaussian framework.
However, the derivation of the corresponding theory for BS S processes is more
complicated due to their more involved structure.

This paper is organized as follows: in Sect. 2 we introduce our setting and
present the main assumptions on the weight function g and the intermittency � .
Section 3 is devoted to limit theorems for the multipower variation of the second
order differences of BS S processes. In Sect. 4 we apply our asymptotic results to
derive three estimators (the realised variation ratio, the modified realised variation
ratio and the change-of-frequency estimator) for the smoothness parameter. Finally,
all proofs are collected in Sect. 5.

2 The Setting and the Main Assumptions

We consider a filtered probability space .˝;F ;F D .Ft /t2R;P/ on which we
define a BS S process X D .Xt/t2R without a drift as

Xt D �C
Z t

�1
g.t � s/�sW.ds/; (3)
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where W is an F-adapted Wiener measure, � is an F-adapted càdlàg processes and
g 2 L

2.R>0/. We assume that

Z t

�1
g2.t � s/�2s ds < 1 a.s.

to ensure thatXt <1 almost surely. We introduce a Gaussian processGD .Gt /t2R,
that is associated to X , as

Gt D
Z t

�1
g.t � s/W.ds/: (4)

Notice that G is a stationary process with the autocorrelation function

r.t/ D corr.Gs;GsCt / D
R1
0
g.u/g.u C t/du

jjgjj2
L2

: (5)

We also define the variance function R of the increments of the processG as

R.t/ D E.jGsCt �Gsj2/ D 2jjgjj2
L2
.1� r.t//: (6)

Now, we assume that the process X is observed at time points ti D i�n with
�n ! 0, i D 0; : : : ; Œt=�n�, and define the second order differences of X by

Þn
iX D Xi�n � 2X.i�1/�n CX.i�2/�n: (7)

Our main object of interest is the multipower variation of the second order
differences of the BS S process X , i.e.

MPVÞ.X; p1; : : : ; pk/
n
t D �n.�

Þ
n /

�pC

Œt=�n��2kC2X
iD2

k�1Y
lD0

j Þn
iC2l X jpl ; (8)

where .�Þ
n /

2 D E.j Þn
i Gj2/ and pC D Pk

lD1 pl . To determine the asymptotic
behaviour of the functional MPVÞ.X; p1; : : : ; pk/n we require a set of assumptions
on the memory function g and the intermittency process � . Below, the functions
LR;LR.4/ ; Lg; Lg.2/ W R>0 ! R are assumed to be continuous and slowly varying

at 0, f .k/ denotes the k-th derivative of a function f and ˇ denotes a number in
.� 1

2
; 0/[ .0; 1

2
/.

Assumption 1. It holds that

(i) g.x/ D xˇLg.x/.
(ii) g.2/ D xˇ�2Lg.2/ .x/ and, for any " > 0, we have g.2/ 2 L

2..";1//.
Furthermore, jg.2/j is non-increasing on the interval .a;1/ for some
a>0.
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(iii) For any t > 0

Ft D
Z 1

1

jg.2/.s/j2�2t�sds < 1: (9)

Assumption 2. For the smoothness parameter ˇ from Assumption 1 it holds that

(i) R.x/ D x2ˇC1LR.x/.
(ii) R

.4/
.x/ D x2ˇ�3L

R
.4/ .x/.

(iii) There exists a b 2 .0; 1/ such that

lim sup
x!0

sup
y2Œx;xb �

ˇ̌
ˇLR.4/.y/
LR.x/

ˇ̌
ˇ < 1:

Assumption 3-� . For any p > 0, it holds that

E.j�t � �sjp/ � Cpjt � sj�p (10)

for some � > 0 and Cp > 0.
Some remarks are in order to explain the rather long list of conditions.

• The memory function g: We remark that g.x/ ' xˇ implies g.2/.x/ ' xˇ�2
under rather weak assumptions on g (due to the Monotone Density Theorem; see
e.g. [11, p. 38]). Furthermore, Assumption 1(ii) and Karamata’s Theorem (see
again [11]) imply that

Z 1

"

jg.x C 2�n/� 2g.x C�n/C g.x/j2dx ' "2ˇ�3�4
n (11)

for any " 2 Œ�n; 1/. This fact will play an important role in the following
discussion. Finally, let us note that Assumptions 1(i)–(ii) and 2 are satisfied for
the parametric class

g.x/ D xˇ exp.�	x/;
where ˇ 2 .� 1

2
; 0/ [ .0; 1

2
/ and 	 > 0, which is used to model turbulent flows

in physics (see [2]). This class constitutes the most important example in this
paper. ut

• The central decomposition and the concentration measure: Observe the decom-
position

Þn
i X D

Z i�n

.i�1/�n
g.i�n � s/�sW.ds/

C
Z .i�1/�n
.i�2/�n

�
g.i�n � s/� 2g..i � 1/�n � s/

�
�sW.ds/

C
Z .i�2/�n

�1

�
g.i�n � s/� 2g..i � 1/�n � s/Cg..i � 2/�n � s/

�
�sW.ds/;

(12)
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and the same type of decomposition holds for Þn
i G. We deduce that

.�Þ
n /

2 D
Z �n

0

g2.x/dx C
Z �n

0

�
g.x C�n/ � 2g.x/

�2
dx

C
Z 1

0

�
g.x C 2�n/� 2g.x C�n/C g.x/

�2
dx:

One of the most essential steps in proving the asymptotic results for the
functionals MPVÞ.X; p1; : : : ; pk/n is the approximation Þn

i X � �.i�2/�n Þn
i G.

The justification of this approximation is not trivial: while the first two summands
in the decomposition (12) depend only on the intermittency � around .i � 2/�n,
the third summand involves the whole path .�s/s�.i�2/�n . We need to guarantee
that the influence of the intermittency path outside of .i � 2/�n on the third
summand of (12) is asymptotically negligible. For this reason we introduce the
measure


Þ
n .A/ D

R
A

�
g.x C 2�n/� 2g.x C�n/C g.x/

�2
dx

.�Þ
n /

2
< 1; A 2 B.R>0/;

(13)
and define 
Þ

n .x/ D 
Þ
n ..x;1//. To justify the negligibility of the influence of

the intermittency path outside of .i � 2/�n we need to ensure that


Þ
n ."/ ! 0

for all " > 0. Indeed, this convergence follows from Assumptions 1(i)–(ii) (due
to (11)). ut

• The correlation structure: By the stationarity of the process G we deduce that

rÞ
n .j / D corr.Þn

i G;Þn
iCj G/

D �R..j C 2/�n/C 4R..j C 1/�n/� 6R.j�n/C 4R.jj � 1j�n/�R.jj � 2j�n/
.�Þ
n /

2
:

(14)

Since .�Þ
n /

2 D 4R.�n/�R.2�n/we obtain by Assumption 2(i) the convergence

rÞ
n .j / ! �Þ.j /

D �.j C 2/1C2ˇ C 4.j C 1/1C2ˇ � 6j 1C2ˇ C 4jj � 1j1C2ˇ � jj � 2j1C2ˇ

2
�
4� 21C2ˇ

� :
(15)

We remark that �Þ is the correlation function of the normalized second order

fractional noise
�

Þn
i B

H=
p

var.Þn
i B

H /
�
i�2, whereBH is a fractional Brownian

motion with Hurst parameterH D ˇ C 1
2
. Notice that

j�Þ.j /j � j 2ˇ�3;
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where we write aj � bj when aj =bj is bounded. In particular, it implies thatP1
jD1 j�Þ.j /j < 1. This absolute summability has an important consequence:

it leads to standard central limit theorems for the appropriately normalized
version of the functional MPVÞ.G; p1; : : : ; pk/n for all ˇ 2 .� 1

2
; 0/[.0; 1

2
/. ut

• Sufficient conditions: Instead of considering Assumptions 1 and 2, we can
alternatively state sufficient conditions on the correlation function rÞ

n and the
measure 
Þ

n directly, as it has been done for the case of first order differences
in [8]. To ensure the consistency of MPVÞ.X; p1; : : : ; pk/nt we require the
following assumptions: there exists a sequence h.j / with

jrÞ
n j � h.j /; �n

Œ1=�n�X
jD1

h2.j / ! 0; (16)

and 
Þ
n ."/ ! 0 for all " > 0 (cf. condition (LLN) in [8]). For the proof of the

associated central limit theorem we need some stronger conditions: rÞ
n .j / !

�Þ.j / for all j � 1, there exists a sequence h.j / with

jrÞ
n j � h.j /;

1X
jD1

h2.j / < 1; (17)

Assumption 3-� holds for some � 2 .0; 1� with �.p ^ 1/ > 1
2
, p D

max1�i�k.pi /, and there exists a constant 	 > 1=.p ^ 1/ such that for all
� 2 .0; 1/ and "n D ��

n we have


Þ
n ."n/ D O

�
�	.1��/
n

�
: (18)

(cf. condition (CLT) in [8]). In Sect. 5 we will show that Assumptions 1 and 2
imply the conditions (16)–(18). ut

3 Limit Theorems

In this section we present the main results of the paper. Recall that the multipower
variation process is defined in (8) as

MPVÞ.X; p1; : : : ; pk/
n
t D �n.�

Þ
n /

�pC

Œt=�n��2kC2X
iD2

k�1Y
lD0

j Þn
iC2l X jpl
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with �2n D E.j Þn
i Gj2/ and pC D Pk

lD1 pl . We introduce the quantity

�np1;:::;pk D E

� k�1Y
lD0

ˇ̌
ˇÞ

n
iC2lG
�Þ
n

ˇ̌
ˇpl
�
: (19)

Notice that in the case kD 1, p1 Dp we have that �np DE.jU jp/ with U � N.0; 1/.

We start with the consistency of the functional MPVÞ.X; p1; : : : ; pk/nt .

Theorem 1. Let the Assumptions 1 and 2 hold. Then we obtain

MPVÞ.X; p1; : : : ; pk/
n
t � �np1;:::;pk

Z t

0

j�s jpC

ds
u.c.p.�! 0: (20)

Proof. See Sect. 5. ut
As we have mentioned in the previous section, under Assumption 2(i) we deduce

the convergence rÞ
n .j / ! �Þ.j / for all j � 1 (see (15)). Consequently, it holds

that

�np1;:::;pk ! �p1;:::;pk D E

� k�1Y
lD0

ˇ̌
ˇ Þn

iC2lBH

q
var.Þn

iC2lBH /

ˇ̌
ˇpl
�
; (21)

whereBH is a fractional Brownian motion with Hurst parameterH D ˇC 1
2

(notice
that the right-hand side of (21) does not depend on n, because BH is a self-similar
process). Thus, we obtain the following result.

Lemma 1. Let the Assumptions 1 and 2 hold. Then we obtain

MPVÞ.X; p1; : : : ; pk/
n
t

u.c.p.�! �p1;:::;pk

Z t

0

j�s jpC

ds: (22)

Next, we present a multivariate stable central limit theorem for the family
.MPVÞ.X; p

j
1 ; : : : ; p

j

k /
n/1�j�d of multipower variations. We say that a sequence

of d -dimensional processes Zn converges stably in law to a d -dimensional process
Z, where Z is defined on an extension .˝ 0;F 0;P0/ of the original proba-
bility .˝;F ;P/, in the space D.Œ0; T �/d equipped with the uniform topology

(Zn st�! Z) if and only if

lim
n!1E.f .Zn/V / D E

0.f .Z/V /

for any bounded and continuous function f W D.Œ0; T �/d ! R and any bounded
F -measurable random variable V . We refer to [1,14] or [21] for a detailed study of
stable convergence.

Theorem 2. Let the Assumptions 1, 2 and 3-� be satisfied for some � 2 .0; 1� with
�.p ^ 1/ > 1

2
, p D max1�i�k;1�j�d.pji /. Then we obtain the stable convergence
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��1=2
n

�
MPVÞ.X; p

j
1 ; : : : ; p

j

k /
n
t � �n

p
j
1 ;:::;p

j
k

Z t

0

j�sjp
C
j ds

�
1�j�d

st�!
Z t

0

A1=2s dW 0
s ;

(23)
whereW 0 is a d -dimensional Brownian motion that is defined on an extension of the
original probability space .˝;F ;P/ and is independent of F , A is a d 	 d -dimen-
sional process given by

Aijs D �ij j�sjp
C
i CpC

j ; 1 � i; j � d; (24)

and the d 	 d matrix � D .�ij /1�i;j�d is defined as

�ij D lim
n!1��1

n cov
�

MPVÞ.BH ; pi1; : : : ; p
i
k/
n
1;MPVÞ.BH ; p

j
1 ; : : : ; p

j

k /
n
1

�
(25)

with BH being a fractional Brownian motion with Hurst parameterH D ˇ C 1
2
.

Proof. See Sect. 5. ut

We remark that the conditions of Theorem 2 imply that max
1�i�k;1�j�d.p

j
i / >

1

2
since � 2 .0; 1�.
Remark 1. Notice that the limit process in (23) is mixed normal, because the
Brownian motion W 0 is independent of the process A. In fact, we can transform
the convergence result of Theorem 2 into a standard central limit theorem due to
the properties of stable convergence; we demonstrate this transformation in Sect. 4.
We remark that the limit in (25) is indeed finite; see Theorem 2 in [8] and its proof
for more details. ut
Remark 2. In general, the convergence in (23) does not remain valid when �n

p
j
1 ;:::;p

j
k

is replaced by its limit �
p
j
1 ;:::;p

j
k

defined by (21). However, when the rate of

convergence associated with (21) is faster than ��1=2
n , we can also use the quantity

�
p
j
1 ;:::;p

j
k

without changing the stable central limit theorem in (23). This is the case

when the convergence

��1=2
n .rÞ

n .j / � �Þ.j // ! 0

holds for any j � 1. Obviously, the latter depends on the behaviour of the slowly
varying functionLR from Assumption 2(i) near 0. It can be shown that for our main
example

g.x/ D xˇ exp.�	x/;
where ˇ 2 .� 1

2
; 0/ [ .0; 1

4
/ and 	 > 0, �n

p
j
1 ;:::;p

j

k

can indeed be replaced by the

quantity �
p
j
1 ;:::;p

j
k

without changing the limit in Theorem 2. ut
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Remark 3 (Second order differences vs. increments). Let us demonstrate some
advantages of using second order differences Þn

i X instead of using first order
increments�n

i X .

(i) First of all, taking second order differences weakens the value of autocor-
relations which leads to normal limits for the normalized version of the
functional MPVÞ.G; p1; : : : ; pk/n (and hence to mixed normal limits for
the value of MPVÞ.X; p1; : : : ; pk/n) for all ˇ 2 .� 1

2
; 0/ [ .0; 1

2
/. This can

be explained as follows: to obtain normal limits it has to hold that

1X
jD1

j�Þ.j /j2 < 1

where �Þ.j / is defined in formula (15) (it relies on the fact that the function
jxjp � E.jN.0; 1/jp/ has Hermite rank 2; see also condition (17)).
This is clearly satisfied for all ˇ 2 .� 1

2
; 0/[ .0; 1

2
/, because we have

j�Þ.j /j � j 2ˇ�3.
In the case of using first order increments �n

i X we obtain the correlation
function � of the fractional noise .BH

i � BH
i�1/i�1 with H D ˇ C 1

2
as the

limit autocorrelation function (see e.g. (4.15) in [8]). As j�.j /j � j 2ˇ�1 it
holds that 1X

jD1
j�.j /j2 < 1

only for ˇ 2 .� 1
2
; 0/[ .0; 1

4
/. ut

(ii) As we have mentioned in the previous section, we need to ensure that

Þ
n ."/ ! 0, where the measure 
Þ

n is defined by (13), for all " > 0 to
show the law of large numbers. But for proving the central limit theorem we
require a more precise treatment of the quantity


Þ
n ."/ D

R1
"

�
g.x C 2�n/ � 2g.x C�n/C g.x/

�2
dx

.�Þ
n /

2
:

In particular, we need to show that the above quantity is small enough (see
condition (18)) to prove the negligibility of the error that is due to the first
order approximation Þn

i X � �.i�2/�n Þn
i G. The corresponding term in the

case of increments is essentially given as


n."/ D
R1
"

�
g.x C�n/ � g.x/

�2
dx

�2n
;

where �2n D E.j�n
i Gj2/ (see [8]). Under the Assumptions 1 and 2 the

denominators .�Þ
n /

2 and �2n have the same order, but the nominator of

Þ
n ."/ is much smaller than the nominator of 
n."/. This has an important
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consequence: the central limit theorems for the multipower variation of the
increments of X hold only for ˇ 2 .� 1

2
; 0/ while the corresponding results

for the second order differences hold for all ˇ 2 .� 1
2
; 0/[ .0; 1

2
/. ut

Another advantage of using second order differences Þn
i X is the higher robustness

to the presence of smooth drift processes. Let us consider the process

Yt D Xt CDt ; t � 0; (26)

where X is a BS S model of the form (3) and D is a stochastic drift. We obtain
the following result.

Proposition 1. Assume that the conditions of Theorem 2 hold and D 2 C v.R�0/
for some v 2 .1; 2/, i.e. D 2 C1.R�0/ (a.s.) andD0 has .v � 1/-Hölder continuous
paths (a.s.). When v � ˇ > 1 then

��1=2
n

�
MPVÞ.Y; p

j
1 ; : : : ; p

j

k /
n
t � �n

p
j
1 ;:::;p

j

k

Z t

0

j�s jp
C
j ds

�
1�j�d

st�!
Z t

0

A1=2s dW 0
s ;

where the limit process is given in Theorem 2. That is, the central limit theorem is
robust to the presence of the drift D.

Proof. Proposition 1 follows by a direct application of the Cauchy-Schwarz and
Minkovski inequalities (see Proposition 6 in [8] for more details). ut

The idea behind Proposition 1 is rather simple. Notice that Þn
i X D OP.�

ˇC 1
2

n /

(this follows from Assumption 2) whereas Þn
i D D OP.�

v
n/. It can be easily seen

that the drift process D does not influence the central limit theorem if v � ˇ �
1
2
> 1

2
, because ��1=2

n is the rate of convergence; this explains the condition of
Proposition 1.

Notice that we obtain better robustness properties than in the case of first order

increments: we still have �n
i X D OP.�

ˇC 1
2

n /, but now �n
i D D OP.�n/. Thus, the

drift processD is negligible only when ˇ < 0, which is obviously a more restrictive
condition.

Example 1. Let us come back to the original BS S process from (1), which is of
the form (26) with

Dt D
Z t

�1
q.t � s/asds:

For the ease of exposition we assume that

q.x/ D xˇ1fx2.0;1/g; ˇ > �1;
and the drift process a is càdlàg and bounded. Observe the decomposition

DtC" �Dt D
Z tC"

t

q.t C " � s/asds C
Z t

�1
.q.t C " � s/ � q.t � s//asds:
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We conclude that the process D has Hölder continuous paths of order .ˇ C 1/ ^ 1.
Consequently, Theorem 1 is robust to the presence of the drift process D when
ˇ > ˇ � 1

2
. Furthermore, for ˇ � 0 we deduce that

D0
t D q.0/at C

Z 1

0

q0.s/at�sds:

By Proposition 1 we conclude that Theorem 2 is robust to the presence of D when
the process a has Hölder continuous paths of order bigger than ˇ. ut
Remark 4 (Higher order differences). Clearly, we can also formulate asymptotic
results for multipower variation of q-order differences of BS S processes X .
Define

MPV.q/.X; p1; : : : ; pk/
n
t D �n.�

.q/
n /�pC

Œt=�n��qkCqX
iDq

k�1Y
lD0

j�.q/n

iCqlX jpl ;

where �.q/n
i X is the q-order difference starting at i�n and .�.q/n /2 D E.j�.q/n

i Gj2/.
Then the results of Theorems 1 and 2 remain valid for the class
MPV.q/.X; p1; : : : ; pk/

n with �np1;:::;pk defined as

�np1;:::;pk D E

� k�1Y
lD0

ˇ̌
ˇ�

.q/n

iCqlG

�
.q/
n

ˇ̌
ˇpl
�
:

The Assumptions 1 and 2 have to be modified as follows: (a) g.2/ has to be replaced

by g.q/ in Assumption 1(ii) and 1(iii), and (b) R
.4/

has to be replaced by R
.2q/

in
Assumption 2(ii).

However, let us remark that going from second order differences to q-order
differences with q > 2 does not give any new theoretical advantages (with respect
to robustness etc.). It might though have some influence in finite samples. ut
Remark 5 (An extension to other integral processes). In [8] and [9] we considered
processes of the form

Zt D �C
Z t

0

�sdGs; (27)

where .Gs/s�0 is a Gaussian process with centered and stationary increments.
Define

R.t/ D E.jGsCt �Gsj2/
and assume that Assumption 2 holds for R (we use the same notations as for the
process (3) to underline the parallels between the models (27) and (3)). We remark
that the integral in (27) is well-defined in the Riemann-Stieltjes sense when the
process � has finite r-variation with r < 1=.1=2� ˇ/ (see [8] and [23]), which we
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assume in the following discussion. We associate �Þ
n and MPVÞ.Z; p1; : : : ; pk/nt

with the process Z by (8). Then Theorem 1 remains valid for the model (27) and
Theorem 2 also holds if we further assume that Assumption 3-� is satisfied for some
� 2 .0; 1� with �.p ^ 1/ > 1

2
, p D max1�i�k;1�j�d.pji /.

We remark that the justification of the approximation Þn
i Z D �.i�2/�n Þn

i G is
easier to provide for the model (27) (see e.g. [8]). All other proof steps are performed
in exactly the same way as for the model (3). ut
Remark 6 (Some further extensions). We remark that the use of the power functions
in the definition of MPVÞ.X; p1; : : : ; pk/nt is not essential for the proof of
Theorems 1 and 2. In principle, both theorems can be proved for a more general
class of functionals

MPVÞ.X;H/nt D �n

Œt=�n��2kC2X
iD2

H
�Þn

i X

�Þ
n

; : : : ;
Þn
iC2.k�1/X
�Þ
n

�
;

where H W R
k ! R is a measurable even function with polynomial growth

(cf. Remark 2 in [8]). However, we dispense with the exact exposition.
Another useful extension of Theorem 2 is a joint central limit theorem for

functionals MPVÞ.X; p1; : : : ; pk/
n
t computed at different frequencies (this result

will be applied in Sect. 4.3). For r � 1, define the multipower variation computed
at frequency r�n as

MPVÞ
r .X; p1; : : : ; pk/

n
t D �n.�

Þ
n;r /

�pC

Œt=�n��2kC2X
iD2r

k�1Y
lD0

j Þn;r
iC2lr X jpl ; (28)

where Þn;r
i X D Xi�n � 2X.i�r/�n C X.i�2r/�n and .�Þ

n;r /
2 D E.j Þn;r

i Gj2/. Then,
under the conditions of Theorem 2, we obtain the stable central limit theorem

�
�1=2
n

 
MPVÞ

r1
.X; p1; : : : ; pk/

n
t � �

n;r1
p1;:::;pk

R t
0 j�s jpC

ds

MPVÞ
r2
.X; p1; : : : ; pk/

n
t � �

n;r2
p1;:::;pk

R t
0 j�s jpC

ds

!
st�!

Z t

0
j�s jpC

�1=2dW 0
s ;

(29)

whereW 0 is a 2-dimensional Brownian motion independent of F ,

�n;rp1;:::;pk D E

� k�1Y
lD0

ˇ̌
ˇÞ

n;r
iC2lrG
�Þ
n;r

ˇ̌
ˇpl
�

and the 2 	 2 matrix � D .�ij /1�i;j�2 is defined as

�ij D lim
n!1��1

n cov
�

MPVÞ
ri
.BH ; p1; : : : ; pk/

n
1;MPVÞ

rj
.BH ; p1; : : : ; pk/

n
1

�

with BH being a fractional Brownian motion with Hurst parameterH D ˇ C 1
2
.

Clearly, an analogous result can be formulated for any d -dimensional family
.rj Ipj1 ; : : : ; pjk /1�j�d . ut
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4 Estimation of the Smoothness Parameter

In this section we apply our probabilistic results to obtain consistent estimates of the
smoothness parameter ˇ 2 .� 1

2
; 0/ [ .0; 1

2
/. We propose three different estimators

for ˇ: the realised variation ratio (RVRÞ), the modified realised variation ratio

(RVR
Þ

) and the change-of-frequency estimator (COFÞ). Throughout this section
we assume that

��1=2
n .rÞ

n .j / � �Þ.j // ! 0 (30)

for any j � 1, where rÞ
n .j / and �Þ.j / are defined in (14) and (15), respectively.

This condition guarantees that �n
p
j
1 ;:::;p

j

k

can be replaced by the quantity �
p
j
1 ;:::;p

j
k

in

Theorem 2 without changing the limit (see Remark 2). Recall that the condition (30)
holds for our canonical example

g.x/ D xˇ exp.�	x/

when ˇ 2 .� 1
2
; 0/[ .0; 1

4
/ and 	 > 0.

4.1 The Realised Variation Ratio

We define the realised variation ratio based on the second order differences as

RVRÞn
t D MPVÞ.X; 1; 1/nt

MPVÞ.X; 2; 0/nt
: (31)

This type of statistics has been successfully applied in semimartingale models to
test for the presence of the jump part (see e.g. [4]). In the BS S framework the
statistic RVRÞn

t is used to estimate the smoothness parameter ˇ.
Let us introduce the function  W .�1; 1/ ! . 2



; 1/ given by

 .x/ D 2



.
p
1 � x2 C x arcsin x/: (32)

We remark that  .x/ D E.U1U2/, where U1, U2 are two standard normal variables
with correlation x. Let us further notice that while the computation of the value of
MPVÞ.X; p1; : : : ; pk/nt requires the knowledge of the quantity �Þ

n (and hence the
knowledge of the memory function g), the statistic RVRÞn

t is purely observation
based since

RVRÞn
t D

PŒt=�n��2
iD2 j Þn

i X jj Þn
iC2X jPŒt=�n�

iD2 j Þn
i X j2

:

Our first result is the consistency of RVRÞn
t , which follows directly from Theorem 1

and Lemma 1.
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Proposition 2. Assume that the conditions of Theorem 1 hold. Then we obtain

RVRÞn
t

u.c.p.�!  .�Þ.2//; (33)

where �Þ.j / is defined by (15).

Note that

�Þ.2/ D �41C2ˇ C 4 � 31C2ˇ � 6 � 21C2ˇ C 4

2
�
4� 21C2ˇ

� ;

�Þ.2/ D �Þ
ˇ .2/ is invertible as a function of ˇ 2 .� 1

2
; 0/ [ .0; 1

2
/, it is positive for

ˇ 2 .� 1
2
; 0/ and negative for ˇ 2 .0; 1

2
/.

Obviously, the function  is only invertible on the interval .�1; 0/ or .0; 1/.
Thus, we can recover the absolute value of �Þ.2/, but not its sign (which is not
a big surprise, because we use absolute values of the second order differences in
the definition of RVRÞn

t ). In the following proposition we restrict ourselves to ˇ 2
.0; 1

2
/ as those values typically appear in physics.

Proposition 3. Assume that the conditions of Theorems 2 and (30) hold. Let
ˇ 2 .0; 1

2
/, �Þ

ˇ .2/ W .0; 1
2
/ ! .�1; 0/,  W .�1; 0/ ! . 2



; 1/ and set

f D  ı �Þ
ˇ .2/. Then we obtain for h D f �1

h.RVRÞn
t /

u.c.p.�! ˇ; (34)

and

�
�1=2
n .h.RVRÞn

t / � ˇ/MPVÞ.X; 2; 0/ntq
1
3
jh0.RVRÞn

t /j.1;�RVRÞn
t /�.1;�RVRÞn

t /TMPVÞ.X; 4; 0/nt

d�! N.0; 1/;

(35)
for any t > 0, where � D .�ij /1�i;j�2 is given by

�11 D lim
n!1��1

n var
�

MPVÞ.BH ; 1; 1/n1

�
;

�12 D lim
n!1��1

n cov
�

MPVÞ.BH ; 1; 1/n1;MPVÞ.BH ; 2; 0/n1

�
;

�22 D lim
n!1��1

n var
�

MPVÞ.BH ; 2; 0/n1

�
;

with H D ˇ C 1
2
.

Proposition 3 is a direct consequence of Theorem 2, of the delta-method for stable
convergence and of the fact that the true centering .rÞ

n .2// in (23) can be replaced
by its limit  .�Þ.2//, because of the condition (30) (see Remark 2). We note
that the normalized statistic in (35) is again self-scaling, i.e. we do not require the



84 O.E. Barndorff-Nielsen et al.

knowledge of �Þ
n , and consequently we can immediately build confidence regions

for the smoothness parameter ˇ 2 .0; 1
2
/.

Remark 7. The constants ˇij , 1 � i; j � 2, can be expressed as

�11 D var.jQ1jjQ3j/C 2

1X
kD1

cov.jQ1jjQ3j; jQ1CkjjQ3Ckj/;

�12 D cov.Q2
2; jQ1jjQ3j/C 2

1X
kD0

cov.Q2
1; jQ1CkjjQ3Ckj/;

�22 D var.Q2
1/C 2

1X
kD1

cov.Q2
1;Q

2
1Ck/ D 2C 4

1X
kD1

j�Þ.k/j2;

with Qi D Þn
i B

H=
p

var.Þn
i B

H/. The above quantities can be computed using
formulas for absolute moments of the multivariate normal distributions. ut

4.2 The Modified Realised Variation Ratio

Recall that the restriction ˇ 2 .0; 1
2
/ is required to formulate Proposition 3. To

obtain estimates for all values ˇ 2 .� 1
2
; 0/[ .0; 1

2
/ let us consider a modified (and,

in fact, more natural) version of RVRÞn
t :

RVR
Þn
t D

PŒt=�n��2
iD2 Þn

i X Þn
iC2XPŒt=�n�

iD2 j Þn
i X j2

: (36)

Notice that RVR
Þn
t is an analogue of the classical autocorrelation estimator. The

following result describes the asymptotic behaviour of RVR
Þn
t .

Proposition 4. Assume that the conditions of Theorems 2 and (30) hold, and let
h D .�Þ

ˇ .2//
�1. Then we obtain

h.RVR
Þn
t /

u.c.p.�! ˇ; (37)

and, with MPV
Þ
.X; 1; 1/nt D �n.�

Þ
n /

�2PŒt=�n��2
iD2 Þn

i X Þn
iC2X ,

�
�1=2
n .h.RVR

Þn
t / � ˇ/MPVÞ.X; 2; 0/ntq

1
3
jh0.RVR

Þn
t /j.1;�RVR

Þn
t /�.1;�RVR

Þn
t /TMPVÞ.X; 4; 0/nt

d�! N.0; 1/;

(38)



Limit Theorems for Functionals of Higher Order Differences 85

for any t > 0, where � D .�ij /1�i;j�2 is given by

�11 D lim
n!1��1

n var
�

MPV
Þ
.BH ; 1; 1/n1

�
;

�12 D lim
n!1��1

n cov
�

MPV
Þ
.BH ; 1; 1/n1;MPVÞ.BH ; 2; 0/n1

�
;

�22 D lim
n!1��1

n var
�

MPVÞ.BH ; 2; 0/n1

�
;

with H D ˇ C 1
2
.

Remark 8. Note that Proposition 4 follows from Remark 6, because the function
H.x; y/ D xy is even one. In fact, its proof is much easier than the corresponding
result of Theorem 2. The most essential step is the joint central limit theorem for

the nominator and the denominator of RVR
Þn
t when X D G (i.e. � � 1). The latter

can be shown by using Wiener chaos expansion and Malliavin calculus. Let H be a
separable Hilbert space generated by the triangular array .Þn

i G=�
Þ
n /n�1;1�i�Œt=�n�

with scalar product h�; �iH induced by the covariance function of the process
.Þn

i G=�
Þ
n /n�1;1�i�Œt=�n�. Setting �ni D Þn

i G=�
Þ
n we deduce the identities

�1=2
n

Œt=�n��2X
iD2

�
�ni �

n
iC2 � �Þ.2/

�
D I2.f

.1/
n /; f .1/

n D �1=2
n

Œt=�n��2X
iD2

�ni ˝ �niC2;

�1=2
n

Œt=�n�X
iD2

�
j�ni j2 � 1

�
D I2.f

.2/
n /; f .2/

n D �1=2
n

Œt=�n�X
iD2

.�ni /
˝2;

where I2 is the second multiple integral. The joint central limit theorem for the
above statistics follows from [19] once we show the contraction conditions

jjf .1/
n ˝1 f

.1/
n jj

H˝2 ! 0; jjf .2/n ˝1 f
.2/
n jj

H˝2 ! 0;

and identify the asymptotic covariance structure by computing
2 limn!1hf .i/

n ; f
.j /
n i

H˝2 for 1 � i; j � 2. We refer to the appendix of [7] for a
more detailed proof of such central limit theorems. ut
Remark 9. The constants ˇij , 1 � i; j � 2, are now much easier to compute. They
are given as

�11 D var.Q1Q3/C 2

1X
kD1

cov.Q1Q3;Q1CkQ3Ck/

D 1C j�Þ.2/j2 C 2

1X
kD1

.j�Þ.k/j2 C �Þ.k C 2/�Þ.jk � 2j/;
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�12 D cov.Q2
2;Q1Q3/C 2

1X
kD0

cov.Q2
1;Q1CkQ3Ck/

D 2j�Þ.1/j2 C 4

1X
kD1

�Þ.k/�Þ.k C 2/;

�22 D var.Q2
1/C 2

1X
kD1

cov.Q2
1;Q

2
1Ck/ D 2C 4

1X
kD1

j�Þ.k/j2;

with Qi D Þn
i B

H=
p

var.Þn
i B

H /. This follows from a well-known formula

cov.Z1Z2;Z3Z4/ D cov.Z1;Z3/cov.Z2;Z4/C cov.Z2;Z3/cov.Z1;Z4/

whenever .Z1;Z2;Z3;Z4/ is normal. ut

4.3 Change-of-Frequency Estimator

Another idea of estimating ˇ is to change the frequency �n at which the second
order differences are built. We recall that .�Þ

n /
2 D 4R.�n/ � R.2�n/ and

consequently we obtain the relationship

.�Þ
n /

2 ' �2ˇC1
n

by Assumption 2(i). Observing the latter we define the statistic

COFnt D
PŒt=�n�

iD4 j Þn;2
i X j2PŒt=�n�

iD2 j Þn
i X j2

; (39)

that is essentially the ratio of MPVÞ.X; 2; 0/nt computed at frequencies�n and 2�n.
Recall that .�Þ

n;2/
2 D E.j Þn;2

i Gj2/ D 4R.2�n/� R.4�n/ and observe

.�Þ
n;2/

2

.�Þ
n /

2
! 22ˇC1:

As a consequence we deduce the convergence

COFnt
u.c.p.�! 22ˇC1:

The following proposition is a direct consequence of (29) and the properties of stable
convergence.
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Proposition 5. Assume that the conditions of Theorems 2 and (30) hold, and let
h.x/ D .log2.x/ � 1/=2. Then we obtain

h.COFnt /
u.c.p.�! ˇ; (40)

and

�
�1=2
n .h.COFnt / � ˇ/MPVÞ.X; 2; 0/ntq

1
3
jh0.COFnt /j.1;�COFnt /�.1;�COFnt /

T MPVÞ.X; 4; 0/nt

d�! N.0; 1/; (41)

for any t > 0, where � D .�ij /1�i;j�2 is given by

�11 D lim
n!1��1

n var
�

MPVÞ
2 .B

H ; 2; 0/n1

�
;

�12 D lim
n!1��1

n cov
�

MPVÞ
2 .B

H ; 2; 0/n1;MPVÞ.BH ; 2; 0/n1

�
;

�22 D lim
n!1��1

n var
�

MPVÞ.BH ; 2; 0/n1

�
;

with H D ˇ C 1
2
.

Let us emphasize that the normalized statistic in (41) is again self-scaling. We recall
that the approximation

.�Þ
n;2/

2

.�Þ
n /

2
� 22ˇC1 D o.�1=2

n /;

which follows from (30), holds for our main example g.x/ D xˇ exp.�	x/ when
ˇ 2 .� 1

2
; 0/[ .0; 1

4
/ and 	 > 0.

Remark 10. Observe the identity

Xi�n � 2X.i�2/�n CX.i�4/�n D Þn
i X � 2Þn

i�1 X C Þn
i�2X:

The latter implies that

�11 D 2C 2�4ˇ
1X
kD1

j�Þ.k C 2/� 4�Þ.k C 1/C 6�Þ.k/ � 4�Þ.jk � 1j/

C�Þ.jk � 2j/j2;
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�12 D 2�2ˇ.�Þ.1/� 1/C 21�2ˇ
1X
kD0

j�Þ.k C 2/� 2�Þ.k C 1/C �Þ.k/j2;

�22 D 2C 4

1X
kD1

j�Þ.k/j2:

ut

5 Proofs

Let us start by noting that the intermittency process � is assumed to be càdlàg, and
thus �� is locally bounded. Consequently, w.l.o.g. � can be assumed to be bounded
on compact intervals by a standard localization procedure (see e.g. Sect. 3 in [5]
for more details). We also remark that the process F defined by (9) is continuous.
Hence, F is locally bounded and can be assumed to be bounded on compact
intervals w.l.o.g. by the same localization procedure.

Below, all positive constants are denoted by C or Cp if they depend on some
parameter p. In the following we present three technical lemmas.

Lemma 2. Under Assumption 1 we have that

E.j Þn
iX jp/ � Cp.�

Þ
n /

p; i D 2; : : : ; Œt=�n� (42)

for all p > 0.

Proof of Lemma 2: Recall that due to Assumption 1(ii) the function jg.2/j is non-
increasing on .a;1/ for some a > 0 and assume w.l.o.g. that a > 1. By the
decomposition (12) and Burkholder’s inequality we deduce that

E.j Þn
iX jp/ � Cp

 
.�Þ
n /

p

C E

� Z 1

0

�
g.s C 2�n/ � 2g.s C�n/C g.s/

�2
�2.i�2/�n�sds

�p=2!
;

since � is bounded on compact intervals. We immediately obtain the estimates

Z 1

0

�
g.s C 2�n/ � 2g.s C�n/C g.s/

�2
�2.i�2/�n�sds � C.�Þ

n /
2;

Z a

1

�
g.s C 2�n/� 2g.s C�n/C g.s/

�2
�2.i�2/�n�sds � C�2

n;
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because g.2/ is continuous on .0;1/ and � is bounded on compact intervals. On the
other hand, since jg.2/j is non-increasing on .a;1/, we deduce that

Z 1

a

�
g.s C 2�n/ � 2g.s C�n/C g.s/

�2
�2.i�2/�n�sds � �2

nF.i�2/�n :

Finally, the boundedness of the process F implies (42). ut
Next, for any stochastic process f and any s > 0, we define the (possibly infinite)

measure


Þn
f;s .A/ D

R
A

�
g.x C 2�n/� 2g.x C�n/C g.x/

�2
f 2
s�xdx

.�Þ
n /

2
; A 2 B.R>0/;

(43)
and set 
Þn

f;s .x/ D 
nf;s.fy W y > xg/.
Lemma 3. Under Assumption 1 it holds that

sup
s2Œ0;t �


Þn
�;s ."/ � C
Þ

n ."/ (44)

for any " > 0, where the measure 
Þ
n is given by (13).

Proof of Lemma 3: Recall again that jg.2/j is non-increasing on .a;1/ for some
a > 0, and assume w.l.o.g. that a > ". Since the processes � and F are bounded we
deduce exactly as in the previous proof that

Z 1

"

�
g.x C 2�n/� 2g.x C�n/C g.x/

�2
�2s�xdx

D
Z a

"

�
g.x C 2�n/� 2g.x C�n/C g.x/

�2
�2s�xdx

C
Z 1

a

�
g.x C 2�n/ � 2g.x C�n/C g.x/

�2
�2s�xdx � C.
Þ

n ."/C�2
n/:

This completes the proof of Lemma 3. ut
Finally, the last lemma gives a bound for the correlation function rÞ

n .j /.

Lemma 4. Under Assumption 2 there exists a sequence .h.j //j�1 such that

jrÞ
n .j /j � h.j /;

1X
jD1

h.j / < 1; (45)

for all j � 1.
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Proof of Lemma 4: This result follows directly from Lemma 1 in [7]. Recall that
rÞ
n .j / ! �Þ.j / and

P1
jD1 j�Þ.j /j < 1, so the assertion is not really surprising.

ut
Observe that Lemma 4 implies the conditions (16) and (17).

5.1 Proof of Theorem 1

In the following we will prove Theorems 1 and 2 only for k D 1, p1 D p. The
general case can be obtained in a similar manner by an application of the Hölder
inequality.

Note that MPVÞ.X; p/nt is increasing in t and the limit process of (22) is
continuous in t . Thus, it is sufficient to show the pointwise convergence

MPVÞ.X; p/nt
P�! mp

Z t

0

j�sjpds;

wheremp D E.jN.0; 1/jp/. We perform the proof of Theorem 1 in two steps.

• The crucial approximation: First of all, we prove that we can use the approxi-
mation Þn

i X � �.i�2/�n Þn
i G without changing the limit of Theorem 1, i.e. we

show that

�n.�
Þ
n /

�p
Œt=�n�X
iD2

�
j Þn

iX jp � j�.i�2/�n Þn
i Gjp

�
P�! 0: (46)

An application of the inequality jjxjp � jyjpj � pjx � yj.jxjp�1 C jyjp�1/ for
p > 1 and jjxjp � jyjpj � jx � yjp for p � 1, (42) and the Cauchy-Schwarz
inequality implies that the above convergence follows from

�n.�
Þ
n /

�2
Œt=�n�X
iD2

E.j Þn
iX � �.i�2/�n Þn

i Gj2/ �! 0: (47)

Observe the decomposition

Þn
i X � �.i�2/�n Þn

i G D Ani C B
n;"
i C C

n;"
i

with

Ani D
Z i�n

.i�1/�n

g.i�n � s/.�s � �.i�2/�n /W.ds/

C
Z .i�1/�n

.i�2/�n

�
g.i�n � s/� 2g..i � 1/�n � s/

�
.�s � �.i�2/�n /W.ds/
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B
n;"
i D

Z .i�2/�n

.i�2/�n�"

�
g.i�n � s/� 2g..i � 1/�n � s/C g..i � 2/�n � s/

�
�sW.ds/

� �.i�2/�n

Z .i�2/�n

.i�2/�n�"

g.i�n � s/� 2g..i � 1/�n � s/C g..i � 2/�n � s/W.ds/

C
n;"
i D

Z .i�2/�n�"

�1

�
g.i�n � s/� 2g..i � 1/�n � s/C g..i � 2/�n � s/

�
�sW.ds/

� �.i�2/�n

Z .i�2/�n�"

�1

g.i�n � s/� 2g..i � 1/�n � s/C g..i � 2/�n � s/W.ds/

Lemma 3 and the boundedness of � imply that

�n.�
Þ
n /

�2
Œt=�n�X
iD2

E.jCn;"
i j2/ � C
Þ

n ."/; (48)

and by (11) and Assumption 2(i) we deduce that

�n.�
Þ
n /

�2
Œt=�n�X
iD2

E.jCn;"
i j2/ �! 0;

as n ! 1, for all " > 0. Next, set v.s; / D supfj�s��r j2j r 2 Œ�t; t �; jr�sj �
g for s 2 Œ�t; t � and denote by �� the jump process associated with � . We
obtain the inequality

�n.�
Þ
n /

�2
Œt=�n�X
iD2

E.jAni j2/ � �n

Œt=�n�X
iD2

E.v..i � 2/�n; 2�n// (49)

� 	C�nE

� X
s2Œ�t;t �

j��sj21fj��s j�	g
�

D �.	; n/

for any 	 > 0. We readily deduce that

lim
	!0

lim sup
n!1

�.	; n/ D 0:

Next, observe the decomposition Bn;"
i D B

n;"
i .1/C B

n;"
i .2/ with

Bn;"i .1/ D
Z .i�2/�n

.i�2/�n�"

�
g.i�n � s/� 2g..i � 1/�n � s/C g..i � 2/�n � s/

�

	 .�s � �.i�2/�n�"/W.ds/
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B
n;"
i .2/ D .�.i�2/�n�" � �.i�2/�n/

	
Z .i�2/�n

.i�2/�n�"

g.i�n � s/ � 2g..i � 1/�n � s/Cg..i � 2/�n � s/W.ds/:

We deduce that

�n.�
Þ
n /

�2
Œt=�n�X
iD2

E.jBn;"
i .1/j2/ � �n

Œt=�n�X
iD2

E.v..i � 2/�n; "//;

�n.�
Þ
n /

�2
Œt=�n�X
iD2

E.jBn;"
i .2/j2/ � �n

Œt=�n�X
iD2

E.v..i � 2/�n; "/
2/

1
2 : (50)

By using the same arguments as in (49) we conclude that both terms converge to
zero and we obtain (47), which completes the proof of Theorem 1. ut

• The blocking technique: Having justified the approximation Þn
i X � �.i�2/�nÞn

i G

in the previous step, we now apply a blocking technique for �.i�2/�n Þn
i G: we

divide the interval Œ0; t � into big sub-blocks of the length l�1 and freeze the
intermittency process � at the beginning of each big sub-block. Later we let l
tend to infinity.

For any fixed l 2 N, observe the decomposition

MPVÞ.X; p/nt �mp

Z t

0

j�s jpds D �n.�
Þ
n /

�p

Œt=�n�X
iD2

�
j Þn

i X jp � j�.i�2/�n Þn
i Gjp

�
CR

n;l
t ;

where

R
n;l
t D �n.�

Þ
n /

�p
� Œt=�n�X

iD2
j�.i�2/�n Þn

i Gjp �
Œlt �X
jD1

j�j�1
l

jp
X
i2Il .j /

j Þn
i Gjp

�

C
�
�n.�

Þ
n /

�p
Œlt �X
jD1

j�j�1
l

jp
X
i2Il .j /

j Þn
i Gjp �mpl

�1
Œlt �X
jD1

j�j�1
l

jp
�

C mp

�
l�1

Œlt �X
jD1

j�j�1
l

jp �
Z t

0

j�sjpds
�
;

and

Il .j / D
n
i j i�n 2

�j � 1

l
;
j

l

io
; j � 1:

Notice that the third summand in the above decomposition converges to 0 in
probability due to Riemann integrability of � . By Theorem 1 in [8] we know that
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MPVÞ.G; p/nt
u.c.p.�! mpt , because the condition (16) is satisfied (see Lemma 4).

This implies the negligibility of the second summand in the decomposition when
we first let n ! 1 and then l ! 1. As � is càdlàg and bounded on compact
intervals, we finally deduce that

lim
l!1 lim sup

n!1
P.jRn;lt j > "/ D 0;

for any " > 0. This completes the proof of the second step and of Theorem 1. ut

5.2 Proof of Theorem 2

Here we apply the same scheme of the proof as for Theorem 1. We start with the
justification of the approximation Þn

i X � �.i�2/�n Þn
i G and proceed with the

blocking technique.

• The crucial approximation: Here we prove that

�1=2
n .�Þ

n /
�p

Œt=�n�X
iD2

�
j Þn

iX jp � j�.i�2/�n Þn
i Gjp

�
P�! 0: (51)

Again we apply the inequality jjxjp � jyjpj � pjx � yj.jxjp�1 C jyjp�1/ for
p > 1, jjxjp � jyjpj � jx � yjp for p � 1 and (42) to deduce that

�1=2
n .�Þ

n /
�p

Œt=�n�X
iD2

E

�ˇ̌
ˇj Þn

iX jp � j�.i�2/�n Þn
iGjp

ˇ̌
ˇ
�
j � �1=2

n .�Þ
n /

�.p^1/

	
Œt=�n�X
iD2

�
E.j Þn

iX � �.i�2/�n Þn
iGj2/� p^1

2 :

Now we use a similar decomposition as in the proof of Theorem 1:

Þn
i X � �.i�2/�n Þn

iG D Ani C B
n;"

.1/
n

i C
lX

jD1
C
n;"

.j /
n ;"

.jC1/
n

i ;

where Ani , Bn;"
.1/
n

i are defined as above, 0 < ".1/n < � � � < ".l/n < "
.lC1/
n D 1 and
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C
n;"

.j /
n ;"

.jC1/
n

i D
Z .i�2/�n�"

.j /
n

.i�2/�n�"
.jC1/
n

�
g.i�n � s/� 2g..i � 1/�n � s/

Cg..i � 2/�n � s/
�
�sW.ds/

��.i�2/�n

Z .i�2/�n�"
.j /
n

.i�2/�n�"
.jC1/
n

g.i�n � s/� 2g..i � 1/�n � s/C g..i � 2/�n � s/W.ds/:

An application of Assumptions 1, 2 and 3-� , for � 2 .0; 1� with �.p ^ 1/ > 1
2
,

and Lemma 3 implies that (recall that � is bounded on compact intervals)

�1=2
n .�Þ

n /
�p

Œt=�n�X
iD2

�
E.jAni j2/

� p^1
2 � C�

�.p^1/� 1
2

n ;

�1=2
n .�Þ

n /
�p

Œt=�n�X
iD2

�
E.jBn;"

.1/
n

i j2/
� p^1

2

� C��1=2
n j".1/n j�.p^1/;

�1=2
n .�Þ

n /
�p

Œt=�n�X
iD2

�
E.jCn;"

.j /
n ;"

.jC1/
n

i j2/
� p^1

2

�

� C��1=2
n j".jC1/

n j�.p^1/j
Þ
n ."

.jC1/
n / � 
Þ

n ."
.j /
n /j

p^1
2 ;

�1=2
n .�Þ

n /
�p

Œt=�n�X
iD2

�
E.jCn;"

.l/
n ;"

.lC1/
n

i j2/
� p^1

2

� C��1=2
n 
Þ

n ."
.l/
n /

p^1
2 ;

(52)
for 1 � j � l � 1. In [8] (see Lemma 3 therein) we have proved the following
result: if the condition (18) is satisfied then there exist sequences

0 < "
.1/
n < � � � < ".l/n < "

.lC1/
n D 1

such that all terms on the right-hand side of (52) converge to 0.
Set 	 D .3 � 2ˇ/.1 � ı/ for some ı > 0 such that 	 > 1=.p ^ 1/. This is

possible, because 3 � 2ˇ 2 .2; 4/ and the assumptions of Theorem 2 imply that
p > 1=2. We obtain that


Þ
n ."n/ � C�	.1��/

n ;

for any "n D ��
n, � 2 .0; 1/, by (11) and Assumption 2(i). Thus, we deduce (18)

which implies the convergence of (51). ut
• The blocking technique: Again we only consider the case d D 1, k D 1 and
p1 D p. We recall the decomposition from the proof of Theorem 1:

��1=2
n

�
MPVÞ.X; p/nt �mp

Z t

0

j�sjpds
�

D ��1=2
n

�
�n.�

Þ
n /

�p
Œlt �X
jD1

j�j�1
l

jp
X
i2Il .j /

j Þn
iGjp �mpl

�1
Œt=l�n�X
jD1

j�j�1
l

jp
�

C�1=2
n .�Þ

n /
�p

Œt=�n�X
iD2

�
j Þn

iX jp � j�.i�2/�n Þn
iGjp

�
CR

n;l

t ; (53)



Limit Theorems for Functionals of Higher Order Differences 95

where

R
n;l

t D �1=2
n .�Þ

n /
�p� Œt=�n�X

iD2
j�.i�2/�n Þn

iGjp �
Œlt �X
jD1

j�j�1
l

jp
X
i2Il .j /

j Þn
iGjp

�

Cmp�
�1=2
n

�
l�1

Œlt �X
jD1

j�j�1
l

jp �
Z t

0

j�sjpds
�
:

Note that the negligibility of the second summand in the decomposition (53) has
been shown in the previous step. The convergence

lim
l!1 lim sup

n!1
P.jRn;lt j > "/ D 0;

for any " > 0, has been shown in [7] (see the proof of Theorem 7 therein). Finally,
we concentrate on the first summand of the decomposition (53). By Remark 11
in [8] we know that .Gt ;�

�1=2
n .MPVÞ.G; p/nt �mpt// ) .Gt ;

p
�W 0

t /, where
� is defined by (25), because rÞ

n .j / ! �Þ.j / and condition (17) holds (see
again Lemma 4). An application of the condition D00 from Proposition 2 in [1]
shows that

��1=2
n .MPVÞ.G; p/nt �mpt/

st�! p
�W 0

t :

Now we deduce by the properties of stable convergence:

��1=2
n

�
�n.�

Þ
n /

�p
Œlt �X
jD1

j�j�1
l

jp
X
i2Il .j /

j Þn
iGjp �mpl

�1
Œt=l�n�X
jD1

j�j�1
l

jp
�

st�! p
�

Œlt �X
jD1

j�j�1
l

jp�l
jW

0;

for any fixed l . On the other hand, we have that

p
�

Œlt �X
jD1

j�j�1
l

jp�l
jW

0 P�! p
�

Z t

0

j�sjpdW 0
s

as l ! 1. This completes the proof of Theorem 2. ut
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