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Abstract An investment timing problem which takes into account both taxation
(including tax exemptions) and financing by credit is considered. This problem is
reduced to the optimal stopping of a two-dimensional diffusion process. We give the
solution to the investment timing problem as a function of parameters of the model,
in particular, of the tax holiday duration and interest rate for borrowing. We study
the question whether the higher interest rate for borrowing can be compensated by
tax holidays.
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1 Introduction

There is an important problem how to attract investments to the real sector of the
economy when credit risks are high. Our work is devoted to the analysis of related
tax mechanisms for such attraction. In economies with increased risks (political,
credit etc.) and other unfavorable factors the following question arises: can tax
benefits provide investor with the same conditions for investment as he would have
in a “standard” economy without any risks and unfavorable factors. In other words,
can tax benefits compensate unfavorable factors?
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In order to compensate risks and other unfavorable factors the following tax
benefits are often used to attract investment: tax holidays, i.e. exemption from tax
during a certain period, a reduction in tax rate, and accelerated depreciation.

It is worth noting that increased credit risks imply increasing interest rates
on credit. In practice, tax holidays are considered as a mechanism which can
compensate all arising risks.

Such a compensation problem was formulated and studied in [3, 4], where the
risk is modelled by an additive term to the discount rate (a “risk premium”). Tax
holidays, depreciation policy and a reduction in profit tax rate were considered as
compensating mechanisms.

In the paper, we study a possibility of applying the tax holidays mechanism (on
the corporate profit tax) for the compensation of high-level interest rates.

Various problems related to the influence of tax holidays on investment decisions,
especially under risk and uncertainty, were studied in a number of papers (see, e.g.
[5, 8, 10]). Potential possibilities of tax holidays as a mechanism for maximization
of the expected discounted tax payments from the created firm were explored in [4].

This paper is organized as follows. Section 2 describes the behavior of an investor
under uncertainty and in a fiscal environment, who is interested in investing into
the project aimed at creating a new firm and faces the investment timing problem.
A solution to this problem (an optimal investment rule) is described in Sect. 3.
In Sect. 4 we set the problem whether the higher interest rate for borrowing can
be compensated by tax holidays. Some conclusions and simulation results are
presented in Sect. 5.

2 The Basic Model

Consider an investment project requiring the creation of a new industrial firm
(enterprise). We assume that, at any moment, a decision-maker (investor) can either
accept the project and proceed with the investment or delay the decision until he
obtains new information regarding its environment (product and resource prices,
product demand, etc.). Thus, the main goal of the decision-maker is to find, using
the available information, a “good” time for investing in the project. Thus, this is an
investment timing problem.

The real options theory is a convenient and adequate tool for modelling the
process of firm creation since it allows us to study the effects connected with a
delay in investment (investment waiting). As in the real options literature, we model
investment timing problem as an optimal stopping problem for present values of the
created firm (see, e.g. [6, 9]).

A creation of an industrial enterprise is usually accompanied by certain tax
benefits (in particular, the new firm is exempted from profit taxes during a certain
period). We take into account in explicit form some peculiarities of a corporate profit
taxation system, including tax exemption. Such an approach was applied by authors
for a detailed model of investment project under taxation in [1, 3, 4].
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Uncertainty in the economic system is modelled by some probability space
.˝; F ; P/ with filtration F D .Ft ; t � 0/. Ft can be interpreted as the observable
information about the system up to the time t .

An infinitely-lived investor faces a problem of choosing a stopping time (w.r.t.
filtration F) � � 0, when to invest in the creation of a new firm producing
some goods. Investment is considered to be instantaneous and irreversible, and an
enterprise begins to produce goods just after the investment is made.

The net price for these goods at time t is �t , and the level of production at time
t � � is ��

t . So, p�
t D �t �

�
t is the flow of profits generated by the firm at time t � � .

To launch a firm at time � and start production, one needs an investment I� . We
assume that the required investment I� is financed by a credit of the duration L and
the interest rate �.

Both the flow of profits p�
t and the required investment I� are considered as a

stochastic processes on the given probability space .˝; F ; P/.
The principal repayment schedule (without interest repayment) is described by

the flow of repayments such that C �
�Ct � 0 W R L

0
C �

�Ct dt D I� , and C �
�Ct D 0 for

t > L.
The total repayments (included interest) that the firm pays for borrowing,

discounted to the investment time � are :

K� D K�.�/ D
Z L

0

.C �
�Ct C �R�

�Ct /e
��t dt D F� C �

�
.I� � F�/; (1)

where � is the discount rate, R�
�Ct D

Z L

t

C �
�Cs ds is a remaining debt at time � C t ,

and F� D
Z L

0

C �
�Ct e

��t dt .

Further, we assume that the total credit repayments K�.�/ increase in the
interest rate �. It is a natural economic assumption which allows us to avoid “bad”
repayment schemes.

The created firm is granted with tax holidays, during which it does not pay the
corporate profit tax. Let � be a profit tax rate (tax burden), and � be the duration of
the tax holidays.

Interest payments are included in profit tax base, but the maximal value of
deductible interest rates is bounded by the limiting value �b .

The expected net present value (NPV) of the firm, discounted to the investment
time � is:

V� D E

0

@
�Z

0

p�
�Ct e

��t dt C
max.�;L/Z

�

Œp�
�Ct � �.p�

�Ct � N�R�
�Ct /	e

��t dt

C
1Z

max.�;L/

.1 � �/p�
�Ct e

��t dt

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
F�

1

C
A ; (2)
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where N� D min.�; �b/. This formula uses the existing principle of full-loss offset
(loss carry forward).

The investor solves the following investment timing problem : to find such a
stopping time � (investment rule), that maximizes the NPV from the future firm:

E .V� � K�/ e��� ! max
�

; (3)

where the maximum is taken over all possible stopping times � (w.r.t. filtration F),
and V� , K� are defined in (1)–(2).

The starting point of this scheme is the known McDonald-Siegel model [9],
which was the base for the real option theory (see, e.g., [6, 13]). More complicated
variants of this scheme, which take into account a detailed structure of cash-flows
as well as a number of different taxes one can find in [3].

3 Solution to the Investment Timing Problem

Main Assumptions

Let .wi
t ; t � 0/; i D 1; 2; 3 be independent standard Wiener processes on the

stochastic basis .˝; F ;F; P/. These processes are thought as underlying processes
modelling economic stochastics. So, we assume that 
-field Ft is generated by
those processes up to t , i.e. Ft D 
f.w1

s ; w2
s ; w3

s /; s � tg.
Remind that the flow of profits has the following representation p�

t D �t �
�
t ,

t � � , and specify its components.
The process of net prices �t is geometric Brownian motion :

d�t D �t .˛1dt C 
1dw1
t /; t � 0: (4)

The level of production �u
t is described by a family of non-negative diffusion

processes, homogeneous in u � 0, defined as the solution (in strong sense) by the
stochastic equations

�u
t D � C

tZ

u

a.s�u; �u
s / ds C

tZ

u

Œb1.s�u; �u
s / dw1

s C b2.s�u; �u
s / dw2

s 	; t � u; (5)

with given functions a.t; x/; bi .t; x/; i D 1; 2, which satisfy the standard conditions
for the existence of the strongly unique solution – at most linear growth and
Lipschitz continuity (see, e.g., [11, Ch.5]).

The fluctuations ��
t reflects the uncertainty, which can be generated by the firm

created at time � and demand on its production, and are driven by Wiener processes
w1

t (related to prices) and w2
t . Obviously, p�

� D ��� for any � .
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The cost of the required investment It is also described by the geometric
Brownian motion as follows

dIt D It .˛2 dt C 
21 dw1
t C 
22 dw3

t /; t � 0; (6)

where 
21 � 0; 
22 > 0. The appearance of the process w3
t in (6) means that the

cost of investment It is correlated with the net price �t .
The flow of the principal repayment at the time t (for the firm created at the

time �) will be represented as:

C �
t D I�ct�� ; � � t � � C L;

where .cs; 0 � s � L/ is the “repayment density” (per unit of investment), char-
acterizing a repayment schedule, i.e. non-negative deterministic function such thatZ L

0

cs ds D 1.

Note that repayment density can depend, in general, on the interest rate �, i.e.
ct D ct .�/.

Such a scheme covers various schedules of credit repayment, accepted in practice
(more exactly, their variants in continuous time). For example, fixed principal
repayment can be described by the uniform density ct D 1=L, while the well-known
annuity scheme (fixed payments for a principal plus interest during the repayment
period) corresponds to exponential density ct D �e�t =.e�L � 1/ (0 � t � L).

Derivation of the Present Value

The above assumptions allow us to obtain formulas for the present value of the
future firm.

At first we need the following assertion about the process p�
t D �t �

�
t .

Lemma 1. Let � be a stopping time. Then for all t � 0

E.p�
�Ct jF� / D �� Bt ; where Bt D E.�t �

0
t /=�0: (7)

Proof. From the Dynkin–Hunt theorem follows that for any stopping time � the
processes bwi

t D wi
�Ct � wi

� ; t � 0 .i D 1; 2/ are Wiener processes independent
on F� .

From representation (5) one can see that

��
�Ct D � C

tZ

0

a.s; ��
�Cs/ ds C

tZ

0

Œb1.s; ��
�Cs/ dw1

�Cs C b2.s; ��
�Cs/ dw2

�Cs	

D � C
tZ

0

a.s; ��
�Cs/ ds C

tZ

0

Œb1.s; ��
�Cs/ dbw1

s C b2.s; ��
�Cs/ dbw2

s 	:
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This implies that for any stopping time � the process ��
�Ct coincides (a.s.) with

the unique (in the strong sense) solution to the stochastic equation

�t D � C
tZ

0

a.s; �s/ ds C
tZ

0

Œb1.s; �s/ dbw1
s C b2.s; �s/ dbw2

s 	;

which is independent on F� .
Then, p�

�Ct D �� ˘�
�Ct , where ˘�

�Ct D expf.˛1 � 1
2

2

1 /t C 
1bw1
t g��

�Ct is
independent on F� .

Moreover, ˘�
tC� has the same distribution as expf.˛1 � 1

2

2

1 /t C 
1bwt g�t , i.e. as
.�t =�0/�

0
t . Therefore, E.p�

t jF� / D �� E˘�
tC� D �� E.�t �

0
t /=�0. ut

Let us define the following function :

B.t/ D
1Z

t

Bse
��s ds; t � 0; (8)

where Bs are defined in (7), and assume that B.0/ < 1.
Using Lemma 1 one can derive the following formulae for the present value (2):

V� D E

0

@
�Z

0

p�
�Ct e

��t dt C .1��/

1Z

�

p�
�Ct e

��tdt C � N�
max.�;L/Z

�

R�
�Ct e

��t dt

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
F�

1

A

D �� ŒB.0/��B.�/	C� N�I�D.�/; (9)

where

D.�/D
max.�;L/Z

�

0

@
LZ

t

csds

1

Ae��t dt: (10)

Optimal Investment Timing

The above assumptions and formulas show that investment timing problem (3) is
reduced to an optimal stopping problem for bivariate geometric Brownian motion
and linear reward function. Indeed,

K� D I� ŒF C �.1�F /=�	 D I�K.�/; (11)

V� � K� D �� ŒB.0/ � �B.�/	 � I�

�
K.�/ � � N�D.�/

�
; (12)
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where

F D
Z L

0

ct e
��t dt; K.�/ D F C �.1�F /=�: (13)

Let ˇ be a positive root of the quadratic equation

1

2
Q
2ˇ.ˇ � 1/ C .˛1 � ˛2/ˇ � .� � ˛2/ D 0; (14)

where Q
2 D .
1 � 
21/
2 C 
2

22 > 0 is a “total” volatility of investment project. It is
easy to see that ˇ > 1 whenever � > max.˛1; ˛2/.

The following theorem characterizes completely an optimal investment time.

Theorem 1. Let the processes of profits and required investment be described by
relations (4)–(6). Assume that � > max.˛1; ˛2/ and the following condition is
satisfied:

˛1 � 1

2

2

1 � ˛2 � 1

2
.
2

21 C 
2
22/:

Then the optimal investment time for the problem (3) is

�� D minft � 0 W �t � ��Itg; (15)

where

�� D ��.�; �/ D ˇ

ˇ � 1
� K.�/�� N�D.�/

B.0/��B.�/
; (16)

and B.�/; D.�/; K.�/ are defined at (8), (10), (13) respectively.

Formulas of the type (15)–(16) for the difference of two geometric Brownian
motions was first derived, probably, by McDonald and Siegel [9]. But rigorous proof
and precise conditions for its validity appeared a decade later in [7]. It can also be
immediately deduced from general results on optimal stopping for two-dimensional
geometric Brownian motion and homogeneous reward function (e.g., [2]).

In order to avoid the “trivial” investment time �� D 0, we will further suppose
that the initial values of the processes satisfy the relation �0 < ��I0.

The optimal investment level �� characterizes the time when the investor accepts
the project and makes the investment. A decrease in �� implies an earlier investment
time, and, on the contrary, an increase in �� leads to a delayed investment.

Knowing the optimal investment rule, one can derive the expected net present
value N � D E .V���K��/ e����

under the optimal behavior of the investor. Using
the standard technique for boundary value problems (Feynman-Kac formula – see,
e.g., [11, 12, Ch.9]), or the results on homogeneous functionals of two-dimensional
geometric Brownian motion ([2]), one can obtain the following formula.
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Corollary 1. Under the assumptions of Theorem 1

N � D N �.�; �/ D C ŒB.0/ � �B.�/	ˇ
�
F C�.1�F /=��� N�D.�/

�1�ˇ
; (17)

where C D .�0=ˇ/ˇŒI0=.ˇ � 1/	1�ˇ .

4 Compensation of Interest Rates by Tax Holidays

Now we formulate the problem of compensating a higher interest rate by tax
exemptions.

The question is: can one choose such a duration of tax holidays � that given the
index M (related to the investment project) under a higher interest rate � will be
greater (not less) than those index under “the reference” interest rate �0 and without
the tax holidays:

M .�; �/ � M .0; �0/ for some � � 0:

We consider the following indices:

1. Optimal investment level ��, that defines the time when an investor accepts the
project and makes the investment;

2. Optimal NPV of the investor N �.

As the reference interest rate we take the limit rate �0 D �b , which is deducted
in profit tax base.

The assumption about an increasing (in interest rate) total payments on credit
and explicit formulas (16)–(17) imply that the above indices are monotone in �.
Namely, �� increases, and N � decreases. Therefore, it makes sense to consider a
compensation problem only for � > �0.

Compensation in Terms of Optimal Investment Level

Let us begin with an optimal investment level �� D ��.�; �/.
We say that an interest rate � can be compensated in terms of optimal investment

level by tax holidays, if ��.�; �/ � ��.0; �0/ for some duration of tax holidays �,
i.e. in other words, if for some duration of tax holidays �

��.�; �/ � ��.0; �0/: (18)

Since a decrease of �� implies earlier investment time (for any random event),
then a possibility to compensate in terms of an optimal investment level can be
interpreted as a possibility to increase investment activity in the real sector. This
situation is attractive for the State.
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Further, we assume that profits parameters Bt , defined in (8), are such that the
function Bt is differentiable and increasing in t 2 .0; L/. This means that the
expected profit of the firm grows in time. We suppose also that the repayment density
ct is continuous in t 2 .0; L/. These assumptions allow us to avoid some unessential
technical difficulties.

The following result is the criterion for the compensation in terms of an optimal
investment level.

Theorem 2. The interest rate � can be compensated in terms of an optimal
investment level by tax holidays if and only if � � �1, where �1 is a unique root of
the equation

.1 � �/K.�/ D K.�0/ � ��0.1 � F0/=�; (19)

and F0 D
Z L

0

ct .�0/e
��t dt corresponds to the repayment schedule with the interest

rate �0.

In other words, there is a “critical” value of interest rate �1 such that if interest
rate is greater than this value, it can not be compensated in terms of optimal
investment level by any tax holidays. Note that the “limiting” interest rate � D �1

can be compensated only by tax holidays with infinite duration.

Proof. If � � L then D.�/D0, and (16) implies that ��D ˇ

ˇ � 1
� K.�/

B.0/��B.�/
decreases in �.

If � < L let us denote

rt D
Z L

t

csds; bB.�/ D B.0/��B.�/; bD.�/ D K�� N�D.�/: (20)

From (16) we have

bB2.�/
@��

@�
D ˇ

ˇ�1

h
�� N�D0.�/bB.�/CbD.�/�B 0.�/

i
D �e��� ˇ

ˇ�1
Q.�/; (21)

where Q.�/ D N�r�
bB.�/ � bD.�/B�:

As one can see from (21), the optimal investment level is not, in general,
monotone in �. The sign of its derivative is completely defined by the function
Q.�/. Then

Q0.�/ D N�
h
r 0

�
bB.�/ C r�

bB 0.�/
i

�
h
bD.�/B 0

� C B�
bD0.�/

i

D N�
h
�c�

bB.�/ C r��B�e���
i

�
h
bD.�/B 0

� C � N�B�r�e���
i

D �N�c�
bB.�/ � B 0

�
bD.�/ � 0;

since bB.�/�.1��/B.0/>0; bD.�/ �
LR

�

Œct C�.1��/rt 	e
��t dt � 0; B 0

� � 0.
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Hence, if
@��

@�
� 0 for some � D �0, then

@��

@�
� 0 for all � > �0. So, the

function �� is either decreasing or having a unique maximum in �.
Therefore, applying formula (16) for an optimal investment level and the

inequality ��.0; �/ > ��.0; �0/ for � > �0, we have that relation (18) holds if
and only if ��.1; �/ � ��.0; �0/, i.e.

ˇ

ˇ � 1
� K.�/

B.0/
� ˇ

ˇ � 1
� K.�0/ � ��0D.0/

.1 � �/B.0/
; (22)

where

D.0/D
Z L

0

�Z L

t

csds

�

e��tdt D
�

1 �
Z L

0

ct e
��tdt

�

=� D .1 � F0/=�

and ct D ct .�0/ corresponds to repayment schedule with interest rate �0.
Now, the statement of Theorem 2 follows from (22). ut
In most cases the “critical” value �1 can be derived explicitly.

Corollary 2. Suppose that the schedule of the principal repayments does not
depend on the interest rate. Then the interest rate � can be compensated in terms of
optimal investment level by tax holidays if and only if � � �1, where

�1 D �0 C �
�

1 � �
� F

1 � F
; (23)

and F is defined in (13).

Proof. The corollary immediately follows from (19) and formula for K.�/

(see (13)). ut

Compensation in Terms of Optimal Investor’s NPV

Now let us consider an optimal investor’s NPV N � D N �.�; �/.
We say that interest rate � can be compensated in terms of optimal investor’s

NPV by tax holidays, if for some duration of tax holidays �

N �.�; �/ � N �.0; �0/: (24)

An increase in N � implies a growth of expected investor’s revenue, therefore the
possibility to compensate in terms of optimal NPV is attractive for the investor.

The following result is similar to Theorem 2 above.
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Theorem 3. The interest rate � can be compensated in terms of optimal investor’s
NPV by tax holidays if and only if � � �2, where �2 is a unique root of the equation

.1 � �/ˇ=.ˇ�1/K.�/ D K.�0/ � ��0.1 � F0/=�; (25)

F0 D
Z L

0

ct .�0/e
��t dt corresponds to the repayment schedule with the interest

rate �0, and ˇ is a positive root of the equation (14).

Proof. The proof of Theorem 3 follows the general scheme of the proof of
Theorem 2.

If � � L then D.�/ D 0, and N � increases in � (see (17)).
Using formula (17) and the notations from (20) we have

C �1 @N �

@�
D bBˇ�1.�/bD�ˇ.�/

h
ˇbB 0.�/bD.�/ C .1 � ˇ/bB.�/bD0.�/

i

D bBˇ�1.�/bD�ˇ.�/
h
�ˇe���B�

bD.�/ C .1 � ˇ/� N�e���r�
bB.�/

i

D �e���bBˇ�1.�/bD�ˇ.�/S.�/;

where S.�/ D ˇB�
bD.�/ � .ˇ � 1/bB.�/ N�r� .

Then we have

S 0.�/ D ˇB 0
�
bD.�/ C ˇB�� N�e���r� C .ˇ � 1/bB.�/ N�c� � .ˇ � 1/ N�r��e���B�

D ˇB 0
�
bD.�/ C .ˇ � 1/ N�c�

bB.�/ C � N�r�e���B� � 0:

Using arguments, similar to those in the proof of Theorem 2, we get that the
function N � is either increasing or having a unique minimum (in �).

Therefore, like in the above case, one can conclude that relation (24) holds if and
only if N �.1; �/ � N �.0; �0/, i.e.

CBˇ.0/K1�ˇ.�/ � C.1 � �/ˇBˇ.0/ŒK.�0/ � ��0D.0/	1�ˇ; (26)

where D.0/ D .1 � F0/=� corresponds to the repayment schedule with the interest
rate �0. This implies the statement of Theorem 3. ut

Similarly to the previous case of a compensation in terms of optimal investment
level, the “critical” value �2 can be derived explicitly when the principal repayments
do not depend on the interest rate.

Corollary 3. Suppose that the schedule of the principal repayments does not
depend on the interest rate. Then the interest rate � can be compensated in terms of
optimal investor’s NPV by tax holidays if and only if � � �2, where

�2 D �0.1 � �/�1=.ˇ�1/ C �
F

1 � F

�
.1 � �/�ˇ=.ˇ�1/ � 1

�
: (27)
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5 Concluding Remarks

1. It is interest to compare the obtained “critical” interest rates �1 and �2 which
give limits for the compensation in relevant terms.
As Theorems 2 and 3 show, the bound �1 is a root of the equation

K.�/ D K.�0/ � ��0D.0/

1 � �
;

and �2 is a root of the equation

K.�/ D K.�0/ � ��0D.0/

.1 � �/ˇ=.ˇ�1/
:

Since the function K.�/ increases, then �2 > �1.
This fact means that interest rates � < �1 can be compensated by tax holidays
both in terms of optimal investment level and in terms of investor’s NPV. The
opposite is not valid, in general, i.e. a compensation in terms of NPV does not
always imply a compensation in terms of the investment level, and therefore a
growth of investment activity.

2. Note, that the critical bound �2 for the compensation in terms of investor’s NPV
depends (in contrast to the bound �1) on the parameters of the project but only
through the value ˇ (see (14)). As a consequence, if the volatility of the project 


increases, then the bound �2 of the compensation in terms of NPV will increase
also.

3. Usually, it is assumed that the reduction in the refinancing (basic) rate �ref is
a positive factor for a revival of investment activity in the real sector. But this
differs from the conclusions of our model.
Indeed, if tax holidays are absent (� D 0), then an optimal investment level

�� D ��.�ref/ D ˇ

ˇ � 1
� K.�/ � 1:8��refD.0/

B.0/.1��/

decreases in �ref. So, �� raises and, hence, investment activity (earlier investor
entry) falls when �ref diminishes.
Similarly, the optimal investor’s NPV increases in �ref, and therefore decreasing
refinancing rate �ref de-stimulates investor.
As calculations show when the refinancing rate �ref falls to two times (from the
current value of 8 %) the optimal investment level grows and optimal investor’s
NPV declines up to 20 %.

4. We performed a number of calculations for a “reasonable” (for Russian econ-
omy) data range. Namely, the typical parameters were as follows:

tax burden � D 40 %,
discount rate � D 10 %,
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credits with period L D 10 (years) and fixed-principal repayment schedule,
reference interest rate �0 D 1:8 � (refinancing rate of the CB of Russia)
D 14.85 %.

Typical characteristics of profits and investment cost gave us the “aggregated”
parameter ˇ in the interval between 3 and 8.

Then, the received estimations for “critical” compensation bounds were the
following: �1 � 25–30 %, �2 � 30–40 %. These values seem to be not extremely
high (especially, for the current economic situation in Russia).
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