
On Distribution of Zeros of Random
Polynomials in Complex Plane

Ildar Ibragimov and Dmitry Zaporozhets

Abstract Let Gn.z/ D �0 C �1z C � � � C �nzn be a random polynomial with
i.i.d. coefficients (real or complex). We show that the arguments of the roots of
Gn.z/ are uniformly distributed in Œ0; 2�� asymptotically as n ! 1. We also prove
that the condition E ln.1 C j�0j/ < 1 is necessary and sufficient for the roots to
asymptotically concentrate near the unit circumference.
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1 Inroduction: Problem and Results

Let f�kg1
kD0 be a sequence of independent identically distributed real- or complex-

valued random variables. It is always supposed that P .�0 D 0/ < 1.
Consider the sequence of random polynomials

Gn.z/ D �0 C �1z C � � � C �n�1zn�1 C �nzn:

By z1n; : : : ; znn denote the zeros of Gn. It is not hard to show (see [1]) that there
exists an indexing of the zeros such that for each k D 1; : : : ; n the k-th zero zkn

is a one-valued random variable. For any measurable subset A of complex plain
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C put Nn.A/ D #fzkn W zkn 2 Ag. Then Nn.A/=n is a probability measure on
the plane (the empirical distribution of the zeros of Gn). For any a; b such that
0 6 a < b 6 1 put Rn.a; b/ D Nn.fz W a 6 jzj 6 bg/ and for any ˛; ˇ such that
0 6 ˛ < ˇ 6 2� put Sn.˛; ˇ/ D Nn.fz W ˛ 6 arg z 6 ˇg/. Thus Rn=n and Sn=n

define the empiric distributions of jzknj and arg zkn.
In this paper we study the limit distributions of Nn; Rn; Sn as n ! 1.
The question of the distribution of the complex roots of Gn have been originated

by Hammersley in [1]. The asymptotic study of Rn; Sn has been initiated by Shparo
and Shur in [16]. To describe their results let us introduce the function

f .t/ D

2
64logC logC : : : logC t„ ƒ‚ …

mC1

3
75

1C"

mY
iD1

logC logC : : : logC t„ ƒ‚ …
i

;

where logC s D max.1; log s/. We assume that " > 0; m 2 Z
C and f .t/ D

.logC t/1C" for m D 0.
Shparo and Shur have proved in [16] that if

E f .j�0j/ < 1

for some " > 0; m 2 ZC, then for any ı 2 .0; 1/ and ˛; ˇ such that 0 6 ˛ < ˇ 6 2�

1

n
Rn.1 � ı; 1 C ı/

P�! 1; n ! 1;

1

n
Sn.˛; ˇ/

P�! ˇ � ˛

2�
; n ! 1:

The first relation means that under quite weak constraints imposed on the coeffi-
cients of a random polynomial, almost all its roots “concentrate uniformly” near
the unit circumference with high probability; the second relation means that the
arguments of the roots are asymptotically uniformly distributed.

Later Shepp and Vanderbei [15] and Ibragimov and Zeitouni [5] under additional
conditions imposed on the coefficients of Gn got more precise asymptotic formulas
for Rn.

What kind of further results could be expected? First let us note that if, e.g.,
E j�0j < 1, then for jzj < 1

Gn.z/ ! G.z/ D
1X

kD0

�kzk

as n ! 1 a.s. The function G.z/ is analytical inside the unit disk fjzj < 1g.
Therefore for any ı > 0 it has only a finite number of zeros in the disk fjzj < 1� ıg.
At the other hand, the average number of zeros in the domain jzj > 1=.1 � ı/
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is the same (it could be shown if we consider the random polynomial G.1=z/).
Thus one could expect that under sufficiently weak constraints imposed on the
coefficients of a random polynomial the zeros concentrate near the unit circle
� D fz W jzj D 1g and a measure Rn=n converges to the delta measure at the point
one. We may expect also from the consideration of symmetry that the arguments
arg zkn are asymptotically uniformly distributed. Below we give the conditions for
these hypotheses to hold. We shall prove the following three theorems about the
behavior of Nn=n; Rn=n; Sn=n.

For the sake of simplicity, we assume that P f�0 D 0g D 0. To treat the general
case it is enough to study in the same way the behavior of the roots on the sets
f� 0

n D k; � 00
n D lg, where

� 0
n D maxfi D 0; : : : ; n j �i ¤ 0g; � 00

n D minfj D 0; : : : ; n j �j ¤ 0g:

Theorem A. The sequence of the empirical distributions Rn=n converges to the
delta measure at the point one almost surely if and only if

E log.1 C j�0j/ < 1: (1)

In other words, (1) is necessary and sufficient condition for

P
�

1

n
Rn.1 � ı; 1 C ı/ �!

n!1 1

�
D 1 (2)

hold for any ı > 0.
We shall also prove that if (1) does not hold then no limit distribution for fznkg

exist.

Theorem B. Suppose the condition (1) holds. Then the empirical distribution Nn=n

almost surely converges to the probability measure N.�/ D �.� \ � /=.2�/, where
� D fz W jzj D 1g and � is the Lebesgue measure.

Theorem C. The empirical distribution Sn=n almost surely converges to the
uniform distribution, i.e.,

P
�

1

n
Sn.˛; ˇ/ �!

n!1
ˇ � ˛

2�

�
D 1

for any ˛; ˇ such that 0 6 ˛ < ˇ 6 2� .

Let us remark here that Theorem C does not require any additional conditions on
the sequence f�kg.

The next result is of crucial importance in the proof of Theorem C.

Theorem D. Let f�kg1
kD0 be a sequence of independent identically distributed real-

valued random variables. Put gn.x/ D Pn
kD0 �kxk and by Mn denote the number

of real roots of the polynomial gn.x/. Then
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P
�

Mn

n
�!
n!1 0

�
D 1; E Mn D o.n/; n ! 1:

Theorem D is also of independent interest. In a number of papers it was shown
that under weak conditions on the distribution of �0 one has E Mn � c � log n;

n ! 1 (see [2–4, 6, 9, 10]). L. Shepp proposed the following conjecture: for any
distribution of �0 there exist positive numbers c1; c2 such that E Mn > c1 � log n

and E Mn 6 c2 � log n for all n. The first statement was disproved in [17,18]. There
was constructed a random polynomial gn.x/ with E Mn < 1 C ". It is still unknown
if the second statement is true. However, Theorem D shows that an arbitrary random
polynomial can not have too much real roots (see also [14]).

In fact, in the proof of Theorem C we shall use a slightly generalized version of
Theorem D:

Theorem E. For some integer r consider a set of r non-degenerate probability
distributions. Let f�kg1

kD0 be a sequence of independent real-valued random
variables with distributions from this set. As above, put gn.x/ D Pn

kD0 �kxk and
by Mn denote the number of real roots of the polynomial gn.x/. Then

P
�

Mn

n
�!
n!1 0

�
D 1; E Mn D o.n/; n ! 1: (3)

2 Proof of Theorem A

Let us establish the sufficiency of (1). Let it hold and fix ı 2 .0; 1/. Prove that the
radius of convergence of the series

G.z/ D
1X

kD0

�kzk (4)

is equal to one with probability one.
Consider 	 > 0 such that P fj�0j > 	g > 0. Using the Borel-Cantelli lemma we

obtain that with probability one the sequence f�kg contains infinitely many �k such
that j�kj > 	. Therefore the radius of convergence of the series (4) does not exceed
1 almost surely.

On the other hand, for any non-negative random variable 


1X
kD1

P .
 > k/ 6 E 
 6 1 C
1X

kD1

P .
 > k/: (5)

Therefore, it follows from (1) that
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1X
kD1

P .j�kj > e�k/ < 1

for any positive constant � . It follows from the Borel-Cantelli lemma that with
probability one j�kj < e�k for all sufficiently large k. Thus, according to the Cauchy-
Hadamard formula (see, e.g., [11]), the radius of convergence of the series (4) is at
least 1 almost surely.

Hence with probability one G.z/ is an analytical function inside the unit ball
fjzj < 1g. Therefore if 0 6 a < b < 1, then R.a; b/ < 1, where R.a; b/ denotes
the number of the zeros of G inside the domain fz W a 6 jzj 6 bg. It follows
from the Hurwitz theorem (see, e.g., [11]) that Rn .0; 1 � ı/ 6 R .0; 1 � ı=2/ with
probability one for all sufficiently large n. This implies

P
�

1

n
Rn.0; 1 � ı/ �!

n!1 0

�
D 1:

In order to conclude the proof of (2) it remains to show that

P
�

1

n
Rn.1 C ı; 1/ �!

n!1 0

�
D 1:

In other words, we need to prove that P fAg D 0, where A denotes the event that
there exists " > 0 such that

Rn .1 C ı; 1/ > "n

holds for infinitely many values n.
By B denote the event that G.z/ is an analytical function inside the unit disk

fjzj < 1g. For m 2 N put


m D sup
k2ZC

j�ke�k=mj:

By Cm denote the event that 
m < 1. It was shown above that P fBg D P fCmg D 1

for m 2 N. Therefore, to get P fAg D 0, it is sufficient to show that P fABCmg D 0

for some m.
Let us fix m. The exact value of it will be chosen later. Suppose the event

ABCm occurred. Index the roots of the polynomial Gn.z/ according to the order
of magnitude of their absolute values:

jz1j 6 jz2j 6 � � � 6 jznj:

Fix an arbitrary number C > 1 (an exact value will be chosen later). Consider indices
i; j such that



308 I. Ibragimov and D. Zaporozhets

jzi j < 1 � ı=C; jziC1j > 1 � ı=C;

jzj j 6 1 C ı; jzj C1j > 1 C ı:

If jz1j > 1 � ı=C , then i D 0; if jznj 6 1 C ı then j D n.
It is easily shown that if

jzj < min

�
1;

j�0j
n � maxkD1;:::;n j�kj

�
;

then
j�0j > j�1zj C j�2z2j C � � � C j�nznj:

Therefore such z can not be a zero of the polynomial Gn. Taking into account that
the event Cm occurred, we obtain a lower bound for the absolute values of the zeros
for all sufficiently large n:

jz1j > min

�
1;

j�0j
n � maxkD1;:::;n j�kj

�
> j�0j

n
men=m
> j�0j
�1

m e�2n=m:

Therefore for any integer l satisfying j C 1 6 l 6 n and all sufficiently large n

jz1 : : : zl j D jz1 : : : zi jjziC1 : : : zj jjzj C1 : : : zl j

> j�0ji 
�i
m e�2ni=m

�
1 � ı

C

�j �i

.1 C ı/l�j :

Since A occurred, n�j > n" for infinitely many values of n. Therefore if l satisfies
n � p

n 6 l 6 n, then the inequalities j C 1 6 l 6 n and l � j > n"=2 hold for
infinitely many values of n. According to the Hurwitz theorem for all sufficiently
large n we have i 6 Rn.0; 1 � ı=C / 6 R.0; 1 � ı=.2C //. Therefore for infinitely
many values of n

jz1 : : : zl j >
� j�0j


m

�R.0;1�ı=.2C //

e�2nR.0;1�ı=.2C //=m

�
1 � ı

C

�n

.1 C ı/n"=2:

Choose now C large enough to yield

�
1 � ı

C

�
.1 C ı/"=2 > 1:

Furthermore, holding C constant choose m such that

b D e�2R.0;1�ı=.2C //=m

�
1 � ı

C

�
.1 C ı/

"
2 > 1:

Since
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� j�0j

m

�R.0;1�ı=.2C //=n

�!
n!1 1;

there exists a random variable a > 1 such that for infinitely many values of n

jz1 : : : zl j >
� j�0j


m

�R.0;1�ı=.2C //

bn D
 

b

� j�0j

m

�R.0;1�ı=.2C //=n
!n

> an:

On the other hand, it follows from n � p
n 6 l and Viéte’s formula that

jzlC1 : : : znj >
 

n

n � p
n

!�1

j
X

i1<���<in�l

zi1 : : : zin�l
j D

 
n

n � p
n

!�1 j�l j
j�nj :

We combine these two inequalities to obtain for infinitely many values of n

j�0j
j�nj D jz1 : : : znj > an

 
n

n � p
n

!�1 j�l j
j�nj

> c1a
n .

p
n/

p
nC 1

2 .n � p
n/n�p

nC 1
2

nnC 1
2

j�l j
j�nj > c2a

n.
p

n/�p
n

�
1 � 1p

n

�n j�l j
j�nj

> c3 exp

�
n log a �

p
n log n

2
� p

n

� j�l j
j�nj > e˛n j�l j

j�nj ;

where ˛ is a positive random variable. Multiplying left and right parts by j�nj, we get

ABCm �
1[

iD1

Di ;

where Di denotes the event that j�0j > en=i maxn�p
n6l6n j�l j for infinitely many

values of n.
To complete the proof it is sufficient to show that P fDi g D 0 for all i 2 N.

Having in mind to apply the Borel-Cantelli lemma, let us introduce the following
events:

Hin D
(

j�0j > en=i max
n�p

n6l6n
j�l j
)

:

Considering � > 0 such that P fj�0j 6 �g D F.�/ < 1, we have

Hin � ˚j�0j > �en=i
� [

(
max

n�p
n6l6n

j�l j 6 �

)
;

consequently,
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1X
nD1

P fHing 6
1X

nD1

P fj�0j > �en=ig C
1X

nD1

.F.�//
p

n < 1

and, according to the Borel-Cantelli lemma, P fDig D 0.
We prove the implication (2))(1) arguing by contradiction. Suppose (1) does

not hold, i.e.,
E log.1 C j�oj/ D 1:

It follows from (5) that
1X

nD1

P .j�nj > e�n/ D 1 (6)

for an arbitrary positive � . For k 2 N introduce an event Fk that j�nj > ekn holds
for infinitely many values of n. It follows from (6) and the Borel-Cantelli lemma
that P fFkg D 1 and, consequently, P f\1

kD1Fkg D 1. This yields

P
�

lim sup
n!1

j�nj1=n D 1
�

D 1:

Therefore with probability one for infinitely many values of n

j�nj1=n > max
iD0;:::;n�1

j�i j1=i ; j�nj1=n >
3

"
; j�0j < 2n�1;

where " > 0 is an arbitrary fixed value. Let us hold one of those n. Suppose jzj > ".
Then

j�0 C �1z C � � � C �n�1zn�1j
6 2n�1 C j�nznj1=n C j�nznj2=n C � � � C j�nznj.n�1/=n

D 2n

2
� 1 C j�nznj � 1

j�1=n
n zj � 1

6 j�1=n
n zjn

2
� 1 C j�nznj � 1

.3="/ � " � 1
< j�nznj:

Thus with probability one for infinite number of values of n all the roots of the
polynomial Gn are located inside the circle fz W jzj D "g, where " is an arbitrary
positive constant. This means that (2) does not hold for any ı 2 .0; 1/.

3 Proof of Theorem B

The proof of Theorem B follows immediately from Theorems A and C. However,
the additional assumption (1) significantly simplifies the proof.

Consider a set of sequences of reals
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fa11g; fa12; a22g; : : : ; fa1n; a2n; : : : anng; : : : ;

where all aj n 2 Œ0; 1�. We say that faj ng are uniformly distributed in Œ0; 1� if for any
0 6 a < b 6 1

lim
n!1

#fj 2 f1; 2; � � � ; ng W aj n 2 Œa; b�g
n

D b � a:

The definition is an insignificant generalization of the notion of uniformly dis-
tributed sequences (see, e.g., [7]). It is easy to see that the Weyl criterion (see Ibid.)
continues to be valid in this case:

The set of sequences faj n; j D 1; : : : ; ng; n D 1; 2; : : : ; is uniformly distributed
if and only if for all l D 1; 2; : : :

1

n

nX
j D1

e2�ilajn ! 0; n ! 1:

Let zj n D rj nei�jn be a zero of Gn.z/; rj n D jzj nj; �j n D arg zj n; 0 6 �j n < 2�:

The asymptotic uniform distribution of the arguments is equivalent to the statement
that the set of sequences f�j n=.2�/g is uniformly distributed. Thus, according to
Weyl’s criterion, it is enough to show that for any l D 1; 2; : : :

lim
n

1

n

nX
j D1

eil�jn D 0

with probability 1.
For the simplicity we assume that �0 ¤ 0. Consider the random polynomial

QGn.z/ D �n C �n�1z C � � � C �1zn�1 C �0zn:

Its roots are z�1
kn . According to Newton’s formulas (see, e.g., [8]),

nX
j D1

1

zl
j n

D 'l

�
�1

�0

; : : :
�l

�0

�
;

where 'l.x1; : : : xl / are polynomials which do not depend on n (for example,
'1.x/ D �x). It follows that

1

n

nX
j D1

e�i l�jn D 1

n

nX
j D1

e�i l�jn

 
1 � 1

rl
j n

!
C 'l

n
: (7)
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As was shown in the proof of Theorem A, for jzj < 1 the polynomials Gn.z/
converge to the analytical function G.z/ D P1

kD0 �kzk with probability 1. Since
�0 ¤ 0, the function G.z/ has no zeros inside a circle fz W jzj 6 	g; Pf	 > 0g D 1.
Hence for n > N; PfN < 1g; the polynomials Gn.z/ have no zeros inside
fz W jzj 6 	g: Let � > 0 be a positive number. It follows from (7) that

ˇ̌
ˇ 1
n

nX
j D1

e�i l�jn

ˇ̌
ˇ 6 .l C 1/

�

.1 � �/l
C 1

n

�
1 C 1

	

�
#fj W jrj n � 1j > �; i D 1; : : : ng C 'l

n
:

Theorem A implies that the second member on the right-hand side goes to zero as
n ! 1 with probability 1. Hence

1

n

nX
j D1

e�i l�j n ! 0; n ! 1;

with probability 1 and the theorem follows.

4 Proof of Theorem C

Consider integer numbers p; q1; q2 such that 0 6 q1 < q2 < p � 1. Put 'j D qj =p,
j D 1; 2; and try to estimate Sn D Sn.2�'1; 2�'2/. Evidently Sn D limR!1 SnR,
where SnR is the number of zeros of Gn.z/ inside the domain AR D fz W jzj 6 R;

2�'1 6 arg z 6 2�'2g. It follows from the argument principle (see, e.g., [11])
that SnR is equal to the change of the argument of Gn.z/ divided by 2� as z
traverses the boundary of AR. The boundary consists of the arc �R D fz W jzj D R;

2�'1 6 arg z 6 2�'2g and two intervals Lj D fz W 0 6 jzj 6 R; arg z D �'j g;
j D 1; 2. It can easily be checked that if R is sufficiently large, then the change of
the argument as z traverses �R is equal to n.'2 �'1/Co.1/ as n ! 1. If z traverses
a subinterval of Lj and the change of the argument of Gn.z/ is at least � , then the
function jGn.z/j cos.arg Gn.z// has at least one root in this interval. It follows from
Theorem E that with probability one the number of real roots of the polynomial

gn;j .x/ D
nX

kD0

xk<.�ke2�ik'j / D
nX

kD0

xk�k;j

is o.n/ as n ! 1. Thus the change of the argument of Gn.z/ as z traverses Lj is
o.n/ as n ! 1 and

P
�

1

n
Sn.2�'1; 2�'2/ D .'2 � '1/ C o.1/; n ! 1

�
D 1:
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The set of points of the form expf2�iq=pg is dense in the unit circle
fz W jzj D 1g. Therefore

P
�

1

n
Sn.˛; ˇ/ �!

n!1
ˇ � ˛

2�

�
D 1

for any ˛; ˇ such that 0 6 ˛ < ˇ 6 2� .

5 Proof of Theorem E

First we convert the problem of counting of real zeros of gn.x/ to the problem of
counting of sign changes in the sequence of the derivatives fg.j /

n .1/gn
j D0.

Let faj gn
j D0 be a sequence of real numbers. By Z.faj g/ denote the number of

sign changes in the sequence faj g, which is defined as follows. First we exclude
all zero members from the sequence. Then we count the number of the neighboring
members of different signs.

For any polynomial p.x/ of degree n put Zp.x/ D Z.fp.j /.x/g/, i.e., the number
of sign changes in the sequence p.x/; p0.x/; : : : ; p.n/.x/.

Lemma 1 (Budan-Fourier Theorem). Suppose p.x/ is a polynomial such that
p.a/; p.b/ ¤ 0 for some a < b. Then the number of the roots of p.x/ inside .a; b/

does not exceed Zp.a/ � Zp.b/. Moreover, the difference between Zp.a/ � Zp.b/ and
the number of the roots is an even number.

Proof. See, e.g., [8]. ut
Corollary 1. The number of the roots of p.x/ inside Œ1; 1/ does not exceed Zp.1/.

Proof. For all sufficiently large x the sign of p.j /.x/ coincides with the sign of the
leading coefficient. ut
Corollary 2. The function Zp.x/ does not increase.

Let us turn back to the random polynomial gn.x/. Here and elsewhere we shall
omit the index n when it can be done without ambiguity. By Mn.a; b/ denote the
number of zeros of g.x/ inside the interval Œa; b�.

First let us prove that

E Zg.1/ D o.n/; n ! 1: (8)

Fix some " > 0 and � 2 .0; 1=2/. Since the distributions of f�j g belong to a finite
set, there exists K D K."/ such that

sup
j 2Z1

P fj�j j > Kg 6 ": (9)
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Let I be a subset of f0; 1; : : : ; ng consisting of indices j such that j�j j < K and
Œ�n� 6 j 6 Œ.1 � �/n�. Put

g1.x/ D
X
j 2I

�j xj ; g2.x/ D g.x/ � g1.x/:

Let k be the indicator of fjg.k/
1 .1/j > jg.k/

2 .1/jg and �j be the indicator of
fj�j j > Kg.

Lemma 2. Let a1; a1; b1; b2 be real numbers. If .a1Ca2/.b1Cb2/ < 0 and a2b2 > 0,
then either ja1j > ja2j or jb1j > jb2j.
Proof. The proof is trivial. ut

It follows from Lemma 2 that

Zg.1/ D Zg1Cg2.1/ 6 Zg2 .1/ C 2

nX
j D0

j 6 Zg2.1/ C 2�n C 2 C 2

Œ.1��/n�X
j DŒ�n�

j :

Owing to the monotonicity of the function Zg2.x/, one has

Zg2.1/ 6 Zg2.0/ 6
nX

j D0

�j :

Hence,

Zg.1/ 6 2�n C 2 C
nX

j D0

�j C 2

Œ.1��/n�X
j DŒ�n�

j : (10)

Using (9) we have E �j D P fj�j j > Kg 6 ", therefore,

E Zg.1/ 6 2�n C 2 C ".n C 1/ C 2E
Œ.1��/n�X
j DŒ�n�

j : (11)

Let us now estimate the value E j . Note that g.k/.x/ D Pn
lDk �l Ak;lx

l�k , where
Ak;l D l.l � 1/ � � � .l � k C 1/. Fix some integer k such that �n 6 k 6 .1 � �/n. If
n � 1 > j > k, then

Ak;j 6 .1 � �/Ak;j C1;

which implies

Ak;j 6 Ak;Œ.1��/n�.1 � �/Œ.1��/n��j

for �n 6 k 6 j 6 .1 � �/n. Consequently,
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jg.k/
1 .1/j D

ˇ̌
ˇ
X

j 2J;j >k

�j Ak;j

ˇ̌
ˇ

6 KAk;Œ.1��/n�

Œ.1��/n�X
j D0

.1 � �/j 6 K

�
Ak;Œ.1��/n�:

This yields that

E k D P
n
jg.k/

1 .1/j > jg.k/
2 .1/j

o

6 P
n
jg.k/

1 .1/j > jg.k/
1 .1/ C g

.k/
2 .1/j � jg.k/

1 .1/j
o

D P
n
jg.k/.1/j 6 2jg.k/

1 .1/j
o

6 P
�

jg.k/.1/j 6 2K

�
Ak;Œ.1��/n�

�
:

For an arbitrary random variable X define the concentration function Q.hI X/ as
follows:

Q.hI X/ D sup
a2R1

P fa 6 X 6 a C hg:

If X; Y are independent random variables, then (see, e.g., [12])

Q.hI X C Y / 6 min .Q.hI X/; Q.hI Y // :

Therefore,

E k 6 P
� jg.k/.1/j

Ak;Œ.1��/n�

6 2K

�

�
(12)

6 P
�

g.k/.1/

Ak;Œ.1��/n�

6 2K

�

�
6 Q

�
2K

�
I g.k/.1/

Ak;Œ.1��/n�

�

D Q

0
@2K

�
I

nX
j Dk

Ak;j

Ak;Œ.1��/n�

�j

1
A 6 Q

0
@2K

�
I

nX
j DŒ.1��/n�

Ak;j

Ak;Œ.1��/n�

�j

1
A :

To estimate the right-hand side of (12) we use the following result.

Lemma 3 (the Kolmogorov-Rogozin inequality). Let X1; X2; : : : ; Xn be inde-
pendent random variables. Then for any 0 < hj 6 h; j D 1; : : : ; n;

Q.hI X1 C � � � C Xn/ 6 C hqPn
j D1 h2

j .1 � Q.hj I Xj //
; (13)

where C is an absolute constant.
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Proof. See [13]. ut
Since the distributions of f�j g belong to a finite set, we get

ı D ı."; �/ D inf
j 2Z1

�
1 � Q

�
2K

�
I �j

��
> 0:

Putting h D hj D 2K=� in (13) and using (12), we obtain

E k 6 C

2
4

nX
j DŒ.1��/n�

�
1 � Q

�
2K

�
I Ak;j

Ak;Œ.1��/n�

�j

��3
5

�1=2

6 C

2
4

nX
j DŒ.1��/n�

�
1 � Q

�
2K

�
I �j

��3
5

�1=2

6 Cp
ı�n

:

Combining this with (11), we have

E Zg.1/ 6 2�n C 2 C ".n C 1/ C 2Cp
ı."; �/�

n1=2:

Since �; " are arbitrary positive numbers, we obtain (8), which together with the
corollary from Lemma 1 implies

E Mn.1; 1/ D o.n/; n ! 1:

Considering the random polynomials g.1=x/ and g.�x/, it is possible to obtain
similar estimates for Mn.0; 1/ and Mn.�1; 0/. Thus the second part of (3) holds.
To prove the first one, we estimate the probabilities of large deviations for the sumsP

�j and
P

j . The elementary considerations or the application of Bernstein
inequalities (see, e.g., [12]) leads to

P

8<
:
ˇ̌
ˇ

nX
j D0

�j

ˇ̌
ˇ > 2.n C 1/"

9=
; 6 2e�n"=8: (14)

The analysis of the behavior of
P

j is slightly more difficult.
Henceforth we shall use the following notation: for any positive functions f1; f2

we write f1 � f2, if there exists an absolute constant C such that f1 6 Cf2 in the
domain of these functions.

Lemma 4. There exists a constant c depending only on �; " and the distributions
of f�j g such that

E k 6 cn�2

for �n 6 k 6 .1 � �/n.
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Proof. As was shown in (12),

E k 6 Q

0
@2K

�
I

nX
j DŒ.1��/n�

Ak;j

Ak;Œ.1��/n�

�j

1
A : (15)

To estimate the concentration function in the right-hand side we use the result of
Esseen (see, e.g., [12]). Let X be a random variable with a characteristic function
f .t/. Then

Q.hI X/ � max

�
h;

1

T

�Z T

�T

jf .t/j dt

uniformly for all T > 0.
Putting T D �=.KAk;Œ.1��/n�/ and applying (15) , we obtain

E k � 1

T

Z T

�T

nY
j DŒ.1��/n�

jfj .Akj t/j dt;

where fj .t/ is a characteristic function of �j . Further,

E k � 1

T

Z T

�T

2
4

nY
j DŒ.1��/n�

jfj .Akj t/j2
3
5

1
2

dt

� 1

T

Z T

�T

exp

8<
:�1

2

nX
j DŒ.1��/n�

�
1 � jf .Akj t/j2�

9=
; dt

D 1

T

Z T

�T

exp

8<
:�1

2

nX
j DŒ.1��/n�

Z 1

�1
	
1 � cos.Akj tx/



Pj .dx/

9=
; dt;

where Pj is a distribution of the symmetrized �j , i.e., a distribution of �j � �0
j ,

where �0
j is an independent copy of �j .

There are at most r different distributions among fPj g.1��/n6j 6n. Therefore
there exist a distribution P and a subset J � fj W .1 � �/n 6 j 6 ng such that
jJ j > n�=r and Pj D P for all j 2 J . By

P0 denote the summation taking over
all indices such that j 2 J . Thus,

E k � 1

T

Z T

�T

exp

8<
:�1

2

nX0

j DŒ.1��/n�

Z 1

�1
	
1 � cos.Akj tx/



P.dx/

9=
; dt:

Choose ı > 0 such that � D Pfx W jxj > ıg > 0. Since the integrands are non-
negative, we get
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E k � 1

T

Z T

�T

exp

8<
:�1

2

nX0

j DŒ.1��r /n�

Z
jxj>ı

	
1 � cos.Akj tx/



P.dx/

9=
;

D 1

T

Z T

�T

e�ˇnCs.t/ dt;

where �r D �.2r � 1/=.2r/; ˇ D jJ \ fj W .1 � �r/n 6 j 6 ngj=.2n/ and

s.t/ D 1

2

Z
jxj>ı

nX0

j DŒ.1��r /n�

cos.Akj tx/ P.dx/:

Put ˛ D ��=.4r/ and consider �1 D ft 2 Œ�T; T � W js.t/j < ˛n=2g and �2 D
Œ�T; T � n �1. Since jJ j > n�=r and by the definition of ˇ, we have ˇ > ˛.
Therefore,

E k � e�˛n=2 C �.�2/

T
; (16)

where � denotes the Lebesgue measure.
Let us estimate �.�2/. It follows from Chebyshev’s and Hölder’s inequalities

that

�.�2/ 6 16

˛4n4

Z T

�T

js.t/j4 dt 6 1

˛4n4

Z
jxj>ı

dP

Z T

�T

ˇ̌
ˇ

nX0

j DŒ.1��r /n�

cos.Akj tx/
ˇ̌
ˇ
4

dt:

(17)
Put

S.x/ D
Z T

�T

ˇ̌
ˇ

nX0

j DŒ.1��r /n�

cos.Akj tx/
ˇ̌
ˇ
4

dt

and assume, for simplicity, that r D 1, i.e., �r D �=2;
P D P0 and the summation

is taken over all j . The general case is considered in a similar way.
We have

S.x/ D
Z T

�T

�X
j1

cos4.Akj1 tx/ C
X

j1¤j2

cos3.Akj1tx/ cos.Akj2 tx/ (18)

C
X

j1¤j2

cos2.Akj1 tx/ cos2.Akj2 tx/

C
X

j1¤j2¤j3

cos2.Akj1tx/ cos.Akj2tx/ cos.Akj3 tx/

C
X

j1¤j2¤j3¤j4

cos.Akj1 tx/ cos.Akj2 tx/ cos.Akj3tx/ cos.Akj4tx/

�
dt:
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The first three summands in (18) are easily estimated as follows:

ˇ̌
ˇ
Z T

�T

�X
j1

cos4.Akj1 tx/ C
X

j1¤j2

cos3.Akj1 tx/ cos.Akj2 tx/ (19)

C
X

j1¤j2

cos2.Akj1tx/ cos2.Akj2tx/

�
dt
ˇ̌
ˇ � T n2:

The next two summands have a common method of estimation. We consider only
the last one. From the formula cos y D .eiy C e�iy/=2 it is easily shown that

ˇ̌
ˇ
Z T

�T

X
j1¤j2¤j3¤j4

cos.Akj1tx/ cos.Akj2tx/ cos.Akj3 tx/ cos.Akj4 tx/ dt
ˇ̌
ˇ (20)

�
X

j1¤j2¤j3¤j4

min
�
T; jxj�1j ˙ Akj1 ˙ Akj2 ˙ Akj3 ˙ Akj4 j�1

�

�
X

j1>j2>j3>j4

min

�
T; jxj�1A�1

kj1

ˇ̌
ˇ1 � Akj2

Akj1

� Akj3

Akj1

� Akj4

Akj1

ˇ̌
ˇ
�1
�

;

The summation in the middle term is taken over all possible combinations of signs.
Consider the partition of the index set

fj D .j1; j2; j3; j4/ W j1 > j2 > j3 > j4g D K1 [ K2;

where

K1 D
�

j W j1 � j2 6 10

�
; j1 � j3 6 10

�
j ln �j

�

and K2 is the complement of K1. Clearly, jK1j � n2j ln �j=�2. Therefore,

X
j 2K1

min

�
T; jxj�1A�1

kj1

ˇ̌
ˇ1 � Akj2

Akj1

� Akj3

Akj1

� Akj4

Akj1

ˇ̌
ˇ
�1
�

� T n2j ln �j
�2

: (21)

Consider now X
j 2K2

A�1
kj1

ˇ̌
ˇ1 � Akj2

Akj1

� Akj3

Akj1

� Akj4

Akj1

ˇ̌
ˇ
�1

:

Putting p D j1 � j2, we have

Akj2

Akj1

D .j1 � p/ � � � .j1 � p � k C 1/

j1 � � � .j1 � k C 1/

D
�

1 � p

j1

�
� � �
�

1 � p

j1 � k C 1

�
6 exp

8<
:�p

j1X
lDj1�kC1

1

l

9=
; :
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Since for any natural l

1

l
> ln

�
1 C 1

l

�
D ln.l C 1/ � ln l;

we get

j1X
lDj1�kC1

1

l
> ln.j1 C 1/ � ln.j1 � k C 1/ D � ln

�
1 � k

j1 C 1

�
:

Taking into account �n 6 k 6 .1 � �/n and .1 � �=2/n 6 j1 6 n and using the
inequality

� ln.1 � t/ > t; t 2 Œ0; 1�;

we get
j1X

lDj1�kC1

1

l
> �n

n C 1
> 1

2
�:

Therefore,
Akj2

Akj1

6 exp

�
��

2
p

�
D exp

�
��

2
.j1 � j2/

�
: (22)

If j 2 K2 and j1 � j2 > 10=�, then

Akj4

Akj1

6
Akj3

Akj1

6
Akj2

Akj1

6 e�5 <
1

4
;

which implies

1 � Akj2

Akj1

� Akj3

Akj1

� Akj4

Akj1

> 1

4
: (23)

Suppose now j 2 K2 and j1 � j3 > 10j ln �j=�. Using (22) and � 2 .0; 1=2/,
we get

1 � Akj2

Akj1

> 1 � e��=2 > �

2

�
1 � �

4

�
> 7

16
�:

Further, (22) also holds for j3. Therefore,

Akj4

Akj1

6 Akj3

Akj1

6 exp

�
��

2
.j1 � j3/

�
6 exp

�
�10

2
j ln �j

�
6 �5 6 1

16
�:

Thus,

1 � Akj2

Akj1

� Akj3

Akj1

� Akj4

Akj1

> 5

16
�: (24)

It follows from (23) and (24) that
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X
j 2K2

A�1
kj1

ˇ̌
ˇ1 � Akj2

Akj1

� Akj3

Akj1

� Akj4

Akj1

ˇ̌
ˇ
�1 � 1

�

X
j

A�1
kj1

:

Taking into account the structure of the index set fj g, we have

X
j

A�1
kj1

6 .�n/4

Ak;Œ.1��=2/n�

;

consequently,

X
j 2K2

A�1
kj1

ˇ̌
ˇ1 � Akj2

Akj1

� Akj3

Akj1

� Akj4

Akj1

ˇ̌
ˇ
�1 � �3n4

Ak;Œ.1��=2/n�

: (25)

Combining (18)–(21) and (25), we obtain

S.x/ � T n2 C T n2j ln �j
�2

C �3n4

jxjAk;Œ.1��=2/n�

:

Applying this to (17), we get

�.�2/ � T

˛4n2
C T j ln �j

�2˛4n2
C �3

˛4ıAk;Œ.1��=2/n�

:

By (16),

E k � e�˛n=2 C 1

˛4n2
C j ln �j

�2˛4n2
C �3

T ˛4ıAk;Œ.1��=2/n�

:

Recalling that T D �=.KAk;Œ.1��/n�/, we obtain

E k � e�˛n=2 C 1

˛4n2
C j ln �j

�2˛4n2
C �2KAk;Œ.1��/n�

˛4ıAk;Œ.1��=2/n�

:

It follows from (22) that
Ak;Œ.1��/n�

Ak;Œ.1��=2/n�

6 e��2n=4:

Thus,

E k � e�˛n=2 C 1

˛4n2
C j ln �j

�2˛4n2
C �2K

˛4ı
e��2n=4:

Recalling that ˛ D ��=4, we obtain

E k � e���n=8 C 1

�4�4n2
C j ln �j

�4�6n2
C K

�4�2ı
e��2n=4:
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Since K is defined by " and �; ı are defined by the distributions of f�j g, Lemma 4
is proved. ut

Now we are ready to complete the proof of Theorem E. It follows from (10) that

Mn.1; 1/ 6 2�n C 2 C
nX

j D0

�j C 2

Œ.1��/n�X
j DŒ�n�

j : (26)

By Lemma 4 and Chebyshev’s inequality,

P

8<
:

Œ.1��/n�X
kDŒ�n�

k > n3=4

9=
; 6

PŒ.1��/n�

j DŒ�n� E k

n3=4
6 c1n

�5=4: (27)

Further, it follows from (14) that there exists a constant c2 > 0 depending only on "

such that

P

8<
:

nX
j D0

�j > 2"n

9=
; 6 c2n�2: (28)

Combining (26)–(28), we get

P
˚
Mn.1; 1/ > 2�n C 2 C 2n3=4 C 2"n

�
6 c1n�5=4 C c2n

�2:

Considering the random polynomials g.1=x/ and g.�x/, it is possible to obtain
similar estimates for Mn.0; 1/ and Mn.�1; 0/. Thus there exist positive constants
c0

1; c0
2 such that

P
˚
Mn > 2�n C 2 C 2n3=4 C 2"n

�
6 c0

1n
�5=4 C c0

2n�2:

According to the Borel-Cantelli lemma, with probability one there exists only a
finite number of n such that Mn > 2�n C 2 C 2n3=4 C 2"n. Since �; " are arbitrary
small,

P
�

Mn

n
�!
n!1 0

�
D 1:

Theorem E is proved.
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