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Abstract From Markov’s bounds for binomial coefficients (for which a short proof
is given) upper bounds are derived for Bernstein basis functions of approximation
operators and their maximum. Some related inequalities used in approximation
theory and those for concentration functions are discussed.
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1 Markov’s Bounds for Binomial Coefficients. Preliminaries

One can get upper bounds for Bernstein basis functions of approximation operators,
i.e., binomial probabilities

b.kI n; p/ D C k
n pk.1 � p/n�k; p 2 Œ0; 1�; k D 0; 1; : : : ; n;

using direct analytic or probabilistic methods.
First estimates of b.kI n; p/ can be found in “Ars Conjectandi” by J. Bernoulli,

see [3] and commentary by Yu.V. Prokhorov “Law of Large Numbers and Estimates
for Probabilities of Large Deviations” on pp. 116–155 in the same [3]. Using an
additional argument together with one to obtain the Stirling formula Markov proved
the double inequality for binomial coefficients C k

n which we prefer to write in the
form of bounds for b.kI n; p/ (see [12], pp. 72, 73 or formula (16) on p. 135 in
above mentioned commentary in [3]; cf. formula (135) in Chap. IV “The rate of
approximation of functions by linear positive operators” of [11]):

Theorem A. Let n � 1, k � 1, n � k � 1 and p 2 .0; 1/. Then
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DW Ma.kI n; p/: (1)

Let us give a short proof of (1) with 1=.12n C 1/ instead of 1=.12n/ in the
exponent in the left-hand side.

Proof. The proof is based on the double inequality which refines Stirling asymp-
totics

.2�/1=2nnC1=2e�nC1=.12nC1/ < nŠ < .2�/1=2nnC1=2e�nC1=.12n/ (2)

(see Feller’s book [5], Chap. II, and Robbins’ paper [15] referred therein).
Due to (2) we have

C k
n D nŠ=ŒkŠ.n � k/Š� < Œn=.2� k.n � k//�1=2nn k�k .n � k/�.n�k/

� expŒ1=.12n/ � 1=.12k C 1/ � 1=.12.n � k/ C 1/�: (3)

The nominator of the latter exponent equals to

.12k C 1/.12.n � k/ C 1/ � 12n.12n C 2/

D 144Œk.n � k/ � .1=4/n2� � 108n2 � 12n C 1;
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which is negative for each n > 1 and k. Multiplication of both sides of inequality
(3) by pk.1 � p/n�k completes the proof of right-hand inequality of (1). Dealing
with the left-hand inequality similarly we find that the exponent is negative, too,
both in initial and weakened form.

From (1) immediately follows that for some p and n the binomial probabilities
b.npI n; p/ is less than its De Moivre–Laplace asymptotic expression.

Corollary 1. (a) For any rational p 2 .0; 1/ and n such that np is an integer

b.npI n; p/ <
1p
2�

1p
np.1 � p/

DW MoLa.n; p/: (4)

(b) Inequality (4) is valid for b.k0.n/I n; p/ with p D k0.n/=n for any integer
k0.n/ such that 0 < k0.n/ < n.

(c) In both cases (a) and (b) inequality (4) holds for b.kI n; p/ with any k D
0; 1; : : : ; n:

(d) The constant 1p
2�

in (4) is best possible.

It is worth to mention that in the standard situation when for binomial proba-
bilities Poisson’s asymptotic formula is valid, i.e., b.kI n; p/ � Po.kI np/ ! 0 as
n ! 1, p ! 0 and np remaining bounded, for any fixed k 2 N D f0; 1; : : :g
with Po.kI �/ D �k e��=kŠ, � > 0, one can derive the following representations of
Ma.kI n; p/ as upper bounds for b.kI n; p/ and b.n � kI n; p/ for fixed k and n � k

respectively.

Corollary 2. If k is fixed, then for n > k

b.kI n; p/ < `Ma.kI n; p/

WD Po.kI np/

r
n

n � k

kŠp
2�k.k=e/k

enp�k

�
1 C k � np

n � k

�n�k

: (5)

If l D n � k is fixed, then for n > l

b.l I n; p/ D b.n � l I n; 1 � p/ < `Ma.n � l I n; 1 � p/ DW rMa.l I n; p/: (6)

The chain of results which has inspired our small contribution has began by the
inequality established and used by Guo [7], to estimate the rate of convergence of
the Durrmeyer operators for functions of bounded variation. His proof was based on
the Berry–Esseen theorem; Guo obtained the inequality

b.kI n; p/ � Cp
np.1 � p/

; p 2 .0; 1/; 0 � k � n;

with C D 5=2. In the year 1998, Zeng [17] has improved this bound having proved
the following assertion.
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Theorem B. For a fixed j 2 N and

Cj D ..j C 1=2/j C1=2=j Š/e�.j C1=2/ (7)

for all k; p such that j � k � n � j , p 2 .0; 1/, there holds

b.kI n; p/ <
Cjp

np.1 � p/
DW Zj .n; p/: (8)

Moreover, the coefficient Cj is best possible .that is to say, for arbitrary " > 0,
it can not be replaced by Cj � "/, and the estimate order n�1=2 is the optimal also.

The sequence of constants Cj decreases strictly and

lim
j !1 Cj D 1p

2�
:

Hence for all j 2 N , there holds

1p
2�

< Cj � C0 D 1p
2e

: (9)

In particular, for j D 0 (8) reduces to

b.kI n; p/ <
1p

2enp.1 � p/
D Z0.n; p/; p 2 .0; 1/; 0 � k � n: (10)

Bastien and Rogalski solved in [2] a problem posed by V. Gupta in a private
communication, having given there another proof that the upper bound (10) obtained
by Zeng [17] is the optimum.

In the year 2001 Zeng and Zhao [18] have obtained the bound (4) for Bernstein
basis functions (in fact assertions (b), (c) and (d) of our Corollary 1 of Theorem A
from [11] and [3]).

In [1, 9] and [8] upper bound (10) is used to obtain the rate of convergence for
Bernstein–Durrmeyer operators. Here we present the result of our collaboration to
investigate the above mentioned problem concerning the optimal constant in the
inequality (10).

Our first observation is that the inequalities given by Corollary 1 and Theorem B,
namely relations (4) and (10) in fact are estimates for maximal probability of
binomial distribution

b.n; p/ D max
0�k�n

b.kI n; p/:

It is well-known that due to De Moivre–Laplace local limit theorem, for p 2
.0; 1/ b.n; p/ is equivalent to

.2�np.1 � p//�1=2
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Fig. 1 Graphs of b.kI n; p/

as functions of p 2 Œ0; 1�,
k D 0; : : : ; n for n D 4, their
maxima and intersection
points. In this figure, b.n; p/

is drawn by a thick line

as n ! 1 (a nice proof is given in Feller’s book [5], Chap. VII). It turns out that
the latter expression is at the same time an upper bound for b.n; p/ for rational
p and n such that np is an integer. The above equivalence shows that dependence
on n and the constant in this upper bound are optimal. The fine structure of the
system of modal binomial values m D Œ.n C 1/p�, where Œ�� denotes the integer
part, leads to an immediate upper bound for any n and p by substitution of p

with the step function p� D m=nI see Fig. 1 and a few useful facts concerning m,
namely:

(a) The most probable value (or modal value or mode) m of the binomial distribu-
tion is defined by the inequality

.n C 1/p � 1 < m � .n C 1/p; (11)

if m D .n C 1/p; there are two modal values b.m � 1I n; p/ D b.mI n; p/.
(b) The suitable binomial probability is not greater than maximum of b.mI n; p/ in

p attained at p D p� D m=n, that is

b.mI n; p/ � b.mI n; p�/: (12)
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2 Bounds for b.n; p/

The following proposition is in fact a reformulation of Corollary 1 for b.n; p/.

Proposition 1. For any k0 D k0.n/ such that 0 < k0.n/ < n and p D k0.n/=n

there holds
b.n; k0.n/=n/ < MoLa.n; p/: (13)

The estimate coefficient 1p
2�

is the best possible.
In particular, for a constant rational probability p; 0 < p < 1, and n such that np

is an integer, for b.n; p/ D b.npI n; p/ inequality (13) holds true.
The right-hand side of inequality (12) is covered by Proposition 1. Thus we

obtain

Proposition 2. Define for 0 < p < 1 the function p� D p�.p/ D m=n, where
m D m.p/ D Œ.n C 1/p� is the (maximal) mode of binomial distribution (m=n is
equal to 0 on .0; 1=.n C 1//, to 1=n on Œ1=.n C 1/; 2=.n C 1//; : : : and to 1 on
Œn=.n C 1/; 1/). Then for any n and 1=.n C 1/ � p < n=.n C 1/ the inequality

b.n; p/ < .2�np�.1 � p�//�1=2 D MoLa.n; p�/ (14)

holds.

Proposition 3. For any p 2 Œ1=.n C 1/; n=.n C 1// we have

b.n; p/ < Ma.mI n; p/ D
� p

p�

�np�� 1�p

1�p�

�n.1�p�/

p
2�np�.1 � p�/

: (15)

Let us now try to discuss whether Propositions 2 and 3 have some advantage in
approximation theory compared with the curves

z0.n; p/ D 1 _ Z0.n; p/ D 1 _ .2enp.1 � p//�1=2; p 2 .0; 1/;

z1.n; p/ D 1 _ Z1.n; p/ D 1 _ C1.np.1 � p//�1=2; p 2 .0; 1/

(cf.(5) and (10); see (4) and (9) for C1), which seem natural to be introduced as
b.n; p/ does not exceed 1.

Denote
v.n; p/ D 1 _ MoLa.n; p/; p 2 .0; 1/:

Our results make it meaningful to consider the function v�.n; p/ as v.n; p�/

which reduces the interval .0; 1/ for p to

1=.n C 1/ � p < n=.n C 1/I

out of this range lie the values of p for which m D 0 or m D n which correspond
to the values 0 and 1 for p� excluded in the proposition. So we are motivated to
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Fig. 2 Approximations of b.n; p/ ( 1
nC1

� p < n
nC1

, n D 12) Thick line: b.n; p/, Dashed line:
Ma.mI n; p/, Step line: MoLa.n; p�/, Pointed line: Z1.n; p/, Thin line: MoLa.n; p/

introduce probabilities b.0I n; p/ and b.nI n; p/ on corresponding intervals for p as
extra summands into modified v�.n; p/:

v��.n; p/ D v�.n; p/ C .1 � p/nI.0;1=.nC1//.p/ C pnIŒn=.nC1/;1/.p/;

where IE.p/ stands for the indicator of a set E .
Figure 2 illustrates the fact that at least for p from some neighborhood of 1/2

the curves z0.n; p/ and z1.n; p/ lie over v��.n; p/. In the same sense Ma.mI n; p/

behaves much better.
In all the papers where Zeng’s inequality (10) is used to obtain approximation

estimations, see, e.g., [1, 8, 9], those will be evidently improved using inequalities
(14) and (15).

As for each fixed k and l b.kI n; k=n/ and b.n � l I n; 1 � l=n/, according to
Prokhorov’s famous result (1953) [14], is better to treat via Poisson approximation
than by normal one, this way may lead to better estimates useful for approximation
theory.

Being motivated by this advantage for p close to 0 or 1, we tried to explore the
following expression, using for Ma.kI n; p/ the representations ` Ma.kI n; p/ for
k < n=2; 0 < p < 1=2 and r Ma.kI n; p/ for k � n=2; 1=2 � p < 1 (see relations
(5) and (6)), each without two factors tending to one from three such ones:

Ma�.n; p/ D I.0;1=2/.p/ max
0�k<n=2

p
n=.n � k/ Po.kI np/

C IŒ1=2;1/.p/ max
n=2�k<n

p
n=k Po.n � kI n.1 � p//:
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Computer experiment shows that Ma�.n; p/ fits with b.n; p/ much better than
Ma.m; n; p/. This phenomenon is to be explained with theoretical argument.

An alternative way to construct estimates b.n; p/ D O.n�1=2/ for Bernstein
basis functions and similar ones for some other basis functions goes via inequalities
for concentration functions of the sum Sn of the integer-valued i.i.d. random
variables �1; : : : ; �n, namely for maximal probabilities of such a sum. For example,
Rogozin gave in [16] the estimate which implies that

max
k

P.Sn D k/ � c..1 � p0/n/�1=2; (16)

where p0 stands for the maximal probability of each summand and c is an absolute
constant.

In the case of binomial distribution p0 D p_.1�p/ and as 1�p0 D p^.1�p/;

we have p.1�p/ < 1�p0 in (0,1) and thus dependence on p in Rogozin’s inequality
turns out to be better. As for the constant c its comparison with De Moivre–Laplace
asymptotic expression shows that c � 1=�1=2: The upper bound 2� for this constant
is available from [13] (the suitable inequality is wrongly reproduced in the Russian
translation of [10]). A general explanation of optimality of the order n�1=2 in bounds
of type of (16) can be found in [4] (see also [10] and [6]).
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