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Abstract We present a simplified version of the Stein-Tikhomirov method realized
by defining a certain operator in class of twice differentiable characteristic functions.
Using this method, we establish a criterion for the validity of a nonclassical central
limit theorem in terms of characteristic functions, in obtaining of classical Berry-
Esseen inequality for sampling sums from finite population of independent random
variables.
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1 The Stein-Tikhomirov Method and Nonclassical CLT

Suppose that F .x/ is an arbitrary distribution function and

˚.x/ D 1

2�

xZ

�1
e�u2=2du
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is the standard distribution function for the normal law. In [9] Stein proposed a
universal method for estimating the quantity

ı D sup
x

jF .x/ � ˚ .x/ j;

based on the following arguments. Suppose that h .u/ is a bounded measurable
function on the line and

˚h D 1p
2�

1Z

�1
h .u/e�u2=2du:

Consider the function g .�/ which is a solution of the differential equation

g0 .u/ � ug .u/ D h .u/ � ˚h: (1)

Suppose that � is a random variable with distribution function

P .� < x/ D F .x/ :

Setting
h .u/ D hx .u/ D I.�1;x/ .u/

in (1), we have
F .x/ � ˚ .x/ D E

�
g0 .�/ � �g .�/

�
: (2)

Thus, the problem of estimating ı can be reduced to that of estimating the difference
of the expectations ˇ̌

Eg0 .�/ � E�g .�/
ˇ̌
:

Also note that for the case in which the random variable � has normal distribution,
the right-hand side of (2) vanishes. Using this method, Stein [9] obtained an estimate
of the rate of convergence in the central limit theorem for stationary (in the narrow
sense) sequences of random variables satisfying the strong mixing conditions (in
the sense of Rosenblatt). Moreover, for the summands eighth-order moments must
exits. In his paper, Stein stated his belief that his method is hardly related to that of
characteristic functions.

In [10,11] Tikhomirov refuted Stein’s suggestion. He showed that a combination
of Stein’s ideas with the method of characteristic functions allows one to obtain the
best possible estimates of the rate of convergence in the central limit theorem for
sequences of weakly dependent random variables for less stringent conditions on
the moments. He also used to best advantage the ideas [9] underling the proposed
new method. The combination of methods our lined in [9, 10], later became known
as the Stein-Tikhomirov method.

In the present paper, it will be shown that the arguments used in apply-
ing the Stein-Tikhomirov method can be considerably simplified. Thus will be
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demonstrated in the course of the proof of a nonclassical central limit theorem.
Which can be called the generalized Lindeberg-Feller theorem.

Suppose that
Xn1; Xn2; � � �

is a sequence of independent random variables constituting the scheme of a series
of experiments and

Sn D Xn1 C Xn2 C � � � ; n D 1; 2; � � �

with a possibly infinite number of terms in each sum. Set

EXnj D 0; EX2
nj D �2

nj ; j D 1; 2; � � �

and X
j

�2
nj D 1: (3)

In what follows, condition (3) is assumed to be satisfied. As is well known, in the
theory of summation of independent random variables an essential role is played by
the condition of uniform infinite smallness of the summands

lim
n!1 sup

j

P
�ˇ̌

Xnj

ˇ̌ � "
� D 0 (4)

for any " > 0.
The constraint (4) is needed if we want to make the limiting law for the

distribution of the sum Sn insensitive to the behavior of individual summands.
But in finding conditions for the conditions for the convergence of the sequence
of distributions functions

Fn .x/ D P .Sn < x/

for any given law it is not necessary to introduce constraints of type (4). Following
Zolotarev, limit theorems making no use of condition (4) are said to be nonclassical.
As was noted in the monograph “theory of summation of independent random
variables”, the ideas underlying the nonclassical approach go back to P.Lévy, who
studied various versions of the central limit theorem.

In [7], Rotar’ proved the following theorem, which is generalization of the
classical Lindeberg-Feller theorem.

Theorem A. In order that

sup
x

jFn .x/ � ˚ .x/j ! 0

as n ! 1, it is necessary and sufficient that for any " > 0 the following relation
hold:
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Rn ."/ D
X

i

Z

jxj>"

jxj ˇ̌Fnj .x/ � ˚nj .x/
ˇ̌ ! 0; (5)

where

Fnj .x/ D P
�
Xnj < x

�
; ˚nj .x/ D ˚

�
x

�nj

�
:

Note that this version of Theorem A is not given in [7], but it can be obtained by
combining Propositions 1 and 2 from [7].

The numerical characteristic Rn ."/ defined in (5) is universal; it and its analogs
have been used for some time in the “nonclassical” theory of summation of more
general sequences of random variables (see, for example, [4], Chap. 5, Sect. 6).

Now consider the class of characteristic functions f .t/ given by

F D ˚
f .t/ jf 0 .0/ D 0; D �f 00 .0/ D ��2 < 1�

:

In the class F , we introduce the transformation (the Stein-Tikhomirov operator)

�f .t/ D f 0 .t/ C t�2f .t/ : (6)

Obviously,

�
	
e�t 2�2=2



D 0; (7)

i.e., the operator � .�/ “cancels” the normal characteristic function.
If we consider (6) as a differential equation to be solved for the initial condition

f .0/ D 1, then we obtain

f .t/ � e�t 2�2=2 D e�t 2�2=2

tZ

0

� .f .u// eu2�2=2du: (8)

In relation (8), the sign of the variable of integration is identical with that of t and
juj � jt j. Relations (7) and (8) show that the expression � .f .t// characterizes the
proximity of the distribution with characteristic function f .t/ to the normal law
with mean 0 and variance �2.

It can be readily verified that the operator � .�/ possesses the following important
property.

Lemma. For characteristic functions f .t/ and g .t/ such that

f 0 .0/ D g0 .0/ D 0; max
�ˇ̌

f 00 .0/
ˇ̌
;
ˇ̌
g00 .0/

ˇ̌�
< 1

the following relation holds:

� .f .t/ g .t// D f .t/ � .g .t// C g .t/ � .f .t// : (9)
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It follows from this lemma that the operator � .�/ is the differentiation operator
with respect to the product of characteristic functions.

Theorem 1. In order that

sup
x

jFn .x/ � ˚ .x/j ! 0

as n ! 1, it is necessary and sufficient that for any T > 0 the following relation
holds:

sup
jt j�T

X
j

ˇ̌
�
�
fnj .t/

�ˇ̌ ! 0; (10)

where fnj .�/ is the characteristic function corresponding to the distribution function
Fnj .x/.

Proof. The proof of the sufficiency of condition (10) is simple enough. Indeed,

fn .t/ D EeitSn D
Y

j

fnj .t/

and from relation (8) it follows that

sup
jt j�T

ˇ̌
ˇfn .t/ � e�t 2=2

ˇ̌
ˇ � T � sup

jt j�T

j� .fn .t//j (11)

for any T > 0.
Further, by (9) we have

� .fn .t// D
X

j

Y
k�j �1

fnk .t/�
�
fnj .t/

� Y
s�j C1

fns .t/

and, therefore,

j� .fn .t//j �
X

j

ˇ̌
�
�
fnj .t/

�ˇ̌
: (12)

Relations (11) and (12) prove the necessity of condition (10) for the validity of
the central limit theorem. To demonstrate the necessity of condition (10), let us
prove that is not stronger than (5). Formally, this is sufficient, and the subsequent
arguments will supply the necessary details. Set

'nj .t/ D
1Z

�1
eitxd˚nj .x/ D

1Z

�1
eitxd˚

�
x

�nj

�
:
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Taking into account the fact that �
�
'nj .t/

� D 0 for any j � 1, we have

X
j

ˇ̌
�
�
fnj .t/

�ˇ̌ D
X

j

ˇ̌
�
�
fnj .t/

� � �
�
'nj .t/

�ˇ̌ �
X

j

ˇ̌
ˇf 0

nj .t/ � ' 0
nj .t/

ˇ̌
ˇ

C jt j
X

j

�2
nj

ˇ̌
fnj .t/ � 'nj .t/

ˇ̌ D
X

1 .t/ C jt j
X

2 .t/ : (13)

Noting that

EXnj D 0;

1Z

�1
x2dFnj D

1Z

�1
x2d˚nj D �2

nj ;

and integrating by parts, we obtain

ˇ̌
ˇf 0

nj .t/ � ' 0
nj .t/

ˇ̌
ˇ D

ˇ̌
ˇ̌
ˇ̌

1Z

�1
.ix/

�
eitx � 1 � i tx

�
d
�
Fnj � ˚nj

�
ˇ̌
ˇ̌
ˇ̌

�
ˇ̌
ˇ̌
ˇ̌

1Z

�1

�
eitx � 1 � i tx

� �
Fnj .x/ � ˚nj .x/

�
dx

ˇ̌
ˇ̌
ˇ̌

C jt j
ˇ̌
ˇ̌
ˇ̌

1Z

�1
.ix/

�
eitx � 1

� �
Fnj .x/ � ˚nj .x/

�
dx

ˇ̌
ˇ̌
ˇ̌ :

Therefore

X
1 .t/ � t2"

X
i

Z

jxj�"

jxj ˇ̌Fnj .x/ � ˚nj .x/
ˇ̌
dx

C �jt j C t2
�X

i

Z

jxj�"

jxj ˇ̌Fnj .x/ � ˚nj .x/
ˇ̌
dx

� t2"
X

i

2�2
nj C �jt j C t2

�
Rn ."/ � 2

�jt j C t2
�

." C Rn ."// : (14)

To derive (14), we use the following fact. If F .x/ is a distribution function with
mean 0 and variance �2, then

1Z

0

u .1 � F .u/ C F .�u// du D �2

2
:
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It was established in [3] that

X
2 .t/ � 2

	
t2 C jt j3



." C Rn ."// : (15)

It follows from relations (13)–(15) that if condition (5) is satisfied, then for any
T > 0 we have

sup
t�T

X
j

ˇ̌
�
�
fnj .t/

�ˇ̌ ! 0; n ! 1:

We can easily verify condition (10) using the following simple example of
increasing sums of independent Bernoulli random variables as an illustration.
Suppose that

Yj D
�

1 with probability pj ;

0 with probability qj D 1 � pj :

Taking into account the fact that M Yj D pj , DXj D pj qj , we set

B2
n D

nX
j D1

pj qj ; Xnj D Yj � pj

Bn

; Sn D
nX

j D1

Xnj :

In the case considered, we have

fnj .t/ D EitXnj D pj eitqj =Bn C qj e�i tpj =Bn :

Let us show that if Bn ! 1, then condition (10) holds. Indeed, it is easy to see that

fnj .t/ D 1 � pj qj

2B2
n

t2 C pj qj

B2
n

"n .t/ ; (16)

f 0
nj .t/ D �pj qj

B2
n

t C pj qj

B2
n

"0
n .t/ ; (17)

where

sup
jt j�T

j"n.t/j D O

�
1

Bn

�
; n ! 1;

for any T > 0.
It follows from relation (16) and (17) that, as n ! 1, we have

sup
jt j�T

X
j

ˇ̌
�.fnj .t//

ˇ̌ D O

�
1

Bn

�
: (18)

Obviously, for our sequence of simple random variables the direct verification of
(5) or of the classical Lindeberg condition is more complicated that the estimates
(18) obtained in this paper.
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Remark 1. One can give more complicated examples of sequences of random
variables for which the proof of the validity of the central limit theorem simplifies
if the criterion (10) is used. Apparently, the present paper is the first paper in which
the criterion for the convergtnce of the distribution of the sum Sn to the normal law
is stated in terms of characteristic function of the summands.

Remark 2. In proving limit theorems for the distribution functions of sums of
independent and weakly dependent random variables by the method of characteristic
functions, on is mainly occupied with proving the fact that the characteristic function
of these sums fn.t/ does not vanish in a sufficiently large of neighborhood of the
point t D 0. But there is no need for such a proof if we use the Stein-Tikhomirov
method, this shows the advantage of this method over others.

Remark 3. Relation (8) and (11) show that the arguments used in the proof of
the Theorem 1 allow us to obtain an estimate of the rate of convergence in the
nonclassical case. Subsequent papers by this author will be concerned with exact
statements and proofs for the corresponding assertion.

2 Berry-Esseen Inequality for Sampling Sums from Finite
Population

Let fX1; X2; : : : ; XN g be a population of independent random variables and Sn be a
sampling sum of size n. The last means that the sum Sn consist from such random
variables which hit in a sample of size n from the parent population. One can give the
exact meaning to the formation of the sum Sn as follows. Let I D .I1; I2; : : : ; IN /

be an indicator random vectors such that Ik D 0 or 1 .1 � k � N/ and Sn

contains the term Xk if and only if Ik D 1. Hence,

Sn D
NX

kD1

IkXk:

It is assumed that I is independent from random variables X1; X2; : : : ; XN and for
every ordered sequence i D .i1; i2; : : : ; iN / of n units and N � n zeros

P .I D i/ D 1�
N
n

� D �
C n

N

��1
:

We have EIk D n
N

D f - the sampling ratio, and EIkIi D n
N

� n�1
N �1

for k ¤ i . We
introduce the moments EXk D �k , EX2

k D ˇk and then get

ESn D
NX

kD1

EIkXk D f

NX
kD1

�k;
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ES2
n D n

N

NX
kD1

ˇk C n

N
� n � 1

N � 1

X
k¤i

�k�i :

We will assume that (without loss of generality) the parent population of random
variables has 0 mean and unit variance, i.e.

NX
kD1

�k D 0;
1

N

NX
kD1

ˇk D 1: (19)

Thus,

ESn D 0; DSn D varSn D n

�
1 � n � 1

N � 1
˛2

�
; ˛2 D 1

N

NX
kD1

�2
k:

We prove that Sn=
p

n has approximately normal distribution with 0 mean and
variance 1�f ˛2, and also give an estimation of the remainder term. In addition, the
obtained result is a generalization of the classical Berry-Esseen estimation in CLT
(Sn is turned into usual sum of n independent random variables when n D N ).

The special case Xi D ai D const is very important in statistical applications
of sampling sums. This case was investigated in details be B. Rosen [6]. The
convergence rate in CLT were studied by A. Bikelis [1] in the case Xi D const
and by B. von Bahr [3] for arbitrary population of independent random variables. In
the present work the result of last paper is made more precise.

Set

E jXkj3 D �k; LN D 1

N

NX
kD1

�k; ˚.x/ D 1p
2�

xZ

�1
e�u2=2du:

Theorem 2. There exists an absolute positive constant C such that

sup
x

ˇ̌
ˇ̌
ˇP
 

Snp
n.1 � f ˛2/

< x

!
� ˚ .x/

ˇ̌
ˇ̌
ˇ � C � LNp

n.1 � f ˛2/3=2
:

Remark 4. In [12] C D 60 and it is involved less exact characteristic

� D max
1�k�N

�k

instead of LN .

Remark 5. Rather rough calculation shows that C < 60 in given theorem, but we
note that the exact calculation of the constant C doesn’t enter is our task.
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Remark 6. If the set of random variables .X1; X2; : : : ; XN / doesn’t satisfy the
normalizing conditions (19), we can easily obtain a new set

�
X 0

1; X 0
2; : : : ; X 0

N

�
which

satisfies (1), by a linear transformation. Application of the result of Theorem 2 to
this new set of random variables gives, in terms of the original variables

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌
P

0
BBBB@

Sn � n�s
1
n

�
1
N

NP
kD1

�2
k C 1�f

N

NP
kD1

.�k � �/2

 < x

1
CCCCA � ˚.x/

ˇ̌
ˇ̌
ˇ̌
ˇ̌
ˇ̌

�

� Cp
n

� LN�
1
N

NP
kD1

�2
k C 1�f

N

NP
kD1

.�k � �/2

3=2
;

where

�k D EXk; � D 1

N

NX
kD1

�k and �2
k D varXk:

Proof of the Theorem 2 is conducted by means of the Stein-Tikhomirov method
above mentioned at the point 1. Notice that in the papers [2, 8] are demonstrated
application of initial variant of Stein-Tikhomirov method for obtained of classical
Berry-Esseen inequality in the case of usual sum from independent random variables
(i.e. as .N D n/ ). Let � be a random variable with uniform distribution
on the set f1; 2; : : : ; N g that is not independent neither from random variables
X1; X2; : : : ; XN nor from indicator vector I and FIX be a �-algebra generated by
random variablesfI1; I2; : : : ; IN ; X1; X2; : : : ; XN g.

Further we denote

!n D Np
DSn

I�X�:

It is not difficult to see that

NSn D E .!n=FIX / D Snp
DSn

: (20)

Set also
fn.t/ D Eeit NSn:

As it follows from the point 1, we must calculate the operator � .fn .t// by the
formula (6).

By virtue of (20)

E
	
i!neit NSn



D E

h
E
	
i!neit NSn=FIX


i
D E

h
iE .!n=FIX/ eit NSn

i
D E

	
i NSneit NSn



:
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Therefore,

f 0
n.t/ D E

	
i NSneit NSn



D E

	
i!neit NSn



: (21)

By direct calculation we can obtain the following equalities:

E!n D E .E .!n=FIX // D E NSn D 0: (22)

E!2
n D N

1 � n�1
N �1

˛2
D n

f
�
1 � n�1

N �1
˛2
� ; (23)

E
ˇ̌
!3

n

ˇ̌ D N 2

p
n
�
1 � n�1

N �1
˛2
�3=2

� LN D n2

f 2 � p
n
�
1 � n�1

N �1
˛2
�3=2

; (24)

Further, set

Sn� D 1p
DSn

X
i¤�

Ii Xi :

By virtue of (21) we have

f 0
n.t/ D E

�
i!neitSn �

�C E
h
i!n

	
eit NSn � eitSn �


i
:

Since !n and Sn � are independent on construction, we have

E
�
i!neitSn �

� D E
�
eitSn �

�
E .i!n/ D 0:

Thus,
f 0

n.t/ D E
�
i!n

�
eit!n=N � 1

�� � EeitSn � : (25)

In addition

EeitSn � D Eeit NSn C E
	
eitSn� � eit NSn



D fn.t/ C E

�
eitSn�

�
1 � eit!n=N

��
: (26)

It follows from (25) and (26) that

f 0
n.t/ D E

�
i!n

�
eit!n=N � 1

��
fn.t/CE

�
i!n

�
eit!n=N � 1

��
E
�
1�eit!n=N

�
EeitSn� :

(27)
Using the equalities (22)–(24) we can obtain the following estimates

ˇ̌
E
�
i!n

�
eit!n=N � 1

��C t
ˇ̌ � t2

2

LNp
n.1 � f ˛2/3=2

; (28)

ˇ̌
E
�
1 � eit!n=N

�ˇ̌ � c0t2 LNp
n.1 � f ˛2/3=2

; (29)
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In what follows, the letter c0 denotes different absolute constants.
Now, with regard to the inequalities (28) and (29), we can rewrite (27) in the

form
f 0

n.t/ D An.t/fn.t/ C Bn.t/ (30)

where

An.t/ D �t C 	

2
t2 NLN ; jBn.t/j � c0t

2 jfn�.t/j NLN ;

fn�.t/ D EeitSn� ; j	 j � 1; NLN D LNp
n .1 � f ˛2/

3=2
:

We can consider the equality (14) as the differential equation that we must to
solve under the initial condition fn.0/ D 1. Then we have

fn.t/ D exp

8<
:

tZ

0

An.u/du

9=
;C

tZ

0

Bn.u/ exp

8<
:

tZ

u

An.s/ds

9=
; du: (31)

Further, we obtain

tZ

0

An.u/du D � t2

2
C 	

6
NLN jt j3 ; (32)

tZ

u

An.s/ds D � t2

2
C u2

2
C an .t; u/ ; (33)

where

jan .t; u/j D
ˇ̌
ˇ̌
ˇ̌	

NLN

2

tZ

u

s2ds

ˇ̌
ˇ̌
ˇ̌ �

NLN

2
jt j �t2 � u2

�
: (34)

By direct calculation we obtain that

fn�.t/ D
NX

j D1

E
�
eitSn � ; � D j

� D 1

N

1

C n
N

NX
j D1

X
.r1;:::;rn/

nY
kD1

.j /frk

�
tp

DSn

�
; (35)

where fj .t/ D EeitXj ;
Q

.j / means that in product
nQ

kD1

fk.t/ the factor with

index rj is equal to 1 and the summation is produced on all samples .r1; : : : ; rn/ of
size n.

By using the paper [12] and (35) we can prove that under jt j � � NLN

��1=3

jfn� .t/j � e�t 2=3: (36)
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From (31)–(34), (36) we obtain finally that under jt j � � NLN

��1=3

ˇ̌
ˇfn .t/ � e�t 2=2

ˇ̌
ˇ � c0

NLN jt j3 e�t 2=6: (37)

Further way of the proof is the same as the proof of the classical Berry-Esseen
inequality for sums from independent random variables (see [5]).
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