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Preface

This volume is dedicated to the prominent mathematician and leading expert on
probability theory and mathematical statistics Yuri Vasilyevich Prokhorov, who
celebrated his 80-th birthday on 15 December 2009.

It consists of two parts. The first one contains papers written by his colleagues,
friends and pupils who express their deep respect and sincerely love to him and his
scientific activity.

The second part contains two interviews with Yu.V. Prokhorov. The first inter-
view was taken by Friedrich Götze and Willem R. van Zwet between November 13
and 28, 2006 at Bielefeld University.

We decided to reproduce also the interview taken by Larry Shepp and published
in Statistical Science 7 (1992), 123–130.

Moscow, Russia Albert Shiryev
New York, USA S.R.S. Varadhan
Moscow, Russia Ernst Presman
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Yuri Vasilyevich Prokhorov

Yuri Vasil’evich Prokhorov was born in Moscow in the family of a highway
construction engineer. In 1944 after finishing high school as an external student
at the age of fourteen and a half, he entered the Bauman High School (now Moscow
Technical University). In 1945 he voluntary transferred to the Faculty of Mechanics
and Mathematics of Moscow State University and graduated in 1949.

Right after graduating he became a research assistant at the Steklov Institute
of Mathematics. In 1952 he got a PhD degree, and in 1956 defended a Doctorate
dissertation in Physical and Mathematical Sciences.

In 1956 and 1957 he taught at the Moscow Institute of Engineering Physics, and
in 1958 he returned to the Steklov Institute, where he continued working since then,
replaced A.N. Kolmogorov as the head of the Department of Probability Theory
in 1961. In parallel with his work at the Steklov Institute Prokhorov has taught
at Moscow State University. Initially he lectured at the Faculty of Mechanics and
Mathematics, where he received the title of Professor in 1958. In 1970 he moved to
the newly formed Faculty of Computational Mathematics and Cybernetics, where
he continues to head the Mathematical Statistics Department. In 1966 Prokhorov
was elected a Corresponding Member of Academy of Sciences of the USSR, and a
Full Member in 1972.

The scientific activity of Prokhorov began in his student years at the University.
During his third year he started to actively participate in the probability theory
seminar led by Academician Kolmogorov, and from that time he became one of
Kolmogorov’s disciples for many years.

In spring of 1948, being a fourth year student at the age of 18 Prokhorov wrote
his first research paper which was published in 1949 (see [1]).1 A detailed version
was published next year (see [3]).

1All references are given to Sect. II of the List of Publications on pages xix–xxxviii
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xii Yuri Vasilyevich Prokhorov

This paper treated the strong law of large numbers (SLLN) for independent
random variables Xk , k � 1, i. e. the statement that there are centering constants

an such that
Sn

n
� an ! 0 almost surely, where Sn D Pn

kD1 Xk .

In spite of the author’s youth, this paper contained substantial and important
advances in the investigation of the SLLN and was the first in a series of papers, the
most important results of which are now classical.

Namely, in [1, 3] he gave necessary and sufficient conditions for applicability of
the SLLN in terms of the probabilities of large deviations from the medians of the
variables

Yr D 1

2r

2rC1
X

kD2r
Xk:

Using this result Prokhorov obtained also a simpler sufficient condition, which
becomes a necessary condition for Gaussian (normally distributed) random vari-
ables and for random variables satisfying the condition Xk D o.k= log log k/. He
showed that such variables satisfy the SLLN if and only if

1X

rD1
exp f�"=DYrg < 1

for any " > 0, where DYr stands for the variance of Yr . As a corollary the
following sufficient condition was obtained from this statement. If EXk D 0 and
1X

kD1
E

jXkj2r
krC1

< 1 for some r � 1, then
Sn

n
! 0; P-a.s.

In subsequent years (mainly in the 1950s) Prokhorov returned more than once to
this subject (see [17, 18, 20]) finding new and broader conditions for applicability
of the SLLN, some of which are the best possible (for example, o.k= log log k/ in
the above condition was replaced by O.k= ln ln k/, and the weakened condition is
then definitive).

In a later paper related to the law of large numbers (see [53]), Prokhorov
discovered a new phenomenon arising when random variables Xn take values in
a Hilbert space: there are sequences of independent variables Xn with identical

symmetric distributions such that
k Sn k2
bn

! 1 in probability as n ! 1 for some

sequence of constants fbng (this is impossible in the finite-dimensional case).
Prokhorov’s interest to “exponential” bounds for probabilities of large deviations

for sums of independent random variables was methodologically connected with his
study of the law of large numbers. For example, in 1968 (see [45]) he was the first
to obtain an effective multidimensional generalization of Bernstein’s exponential
inequality. Further important advances in this direction were later made by his
students and followers.

Besides his investigations on the SLLN, Prokhorov actively worked in the 1950s
in the classical area of local limit theorems (LLTs) of probability theory. His first
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paper in this direction, which appeared in 1952 (see [4]), contained the beautiful
result that the LLT holds in the mean for sums of independent identically distributed
variablesXi (or, which is the same, that the convergence in the integral limit theorem
holds in variation) if and only if the integral limit theorem holds and the distribution
of the sum

Pm
1 Xi has a non-zero absolutely continuous component for some m D

m0. Somewhat later (see [10]) Prokhorov published new effective conditions for the
LLT for lattice distributions: he found a simply formulated necessary and sufficient
condition for an LLT to hold in a strengthened form for a sequence of independent
uniformly bounded integer-valued random variables.

Many Prokhorov’s results were connected with approximations of probability
distributions and rates of convergence of such approximations. We mention the
1952 papers (see [4–5]) in which the well-known asymptotic expansion refining
the central limit theorem under Cramer’s condition was generalized to a broad class
of discrete distributions. We mention also the remarkable 1953 investigation (see
[8]) of the asymptotic behavior of the binomial distribution, where, in particular, the
following Prokhorov’s transparent and now classical result was obtained on the rate
of approximation of the binomial distribution by the Poisson one in the variation
distance: 1X

kD1
jPn.k/ � �.k/j � 2�

n
min.2; �/;

where �.k/ D �k

kŠ
e��; Pn.k/ D Ck

n p
k.1 � p/n�k; k D 0; 1; : : : ; n; and Pn.k/ D

0; k > n; with p D p.n/ such that np.n/ ! � > 0.
The following fundamental result may serve as another example.

Let Sn D
nX

kD1
Xk be a sum of identically distributed independent random vari-

ables with distribution function F.x/. Denote F n.x/ D P.
Pn

iD1 Xi � x/: The
result obtained in [12] says that for any distribution function F D F.x/ there exists
a sequence of infinitely divisible distribution functions .Gn/n�1, such that

�.F n;Gn/ ! 0;

where �.F;G/ D supx jF.x/ �G.x/j.
Following Kolmogorov, significant progress was made by Prokhorov in inves-

tigating the rate of this convergence. In addition to a sharper upper estimate,
Prokhorov obtained for the first time a lower estimate, which required introducing
of new ideas (see [21]).

The most profound and important work of Prokhorov is undoubtedly the series
of papers on limit theorems for random processes. Short preliminary publications
on this topic appeared in 1953–1954 (see [9, 11]).

The 1950s were marked by the creation of functional limit theorems in prob-
ability theory, in other words – theorems about weak convergence of probability
measures in metric and topological spaces.



xiv Yuri Vasilyevich Prokhorov

Here, the fundamental role belongs to the famous paper by Yu.V. Prokhorov
“Convergence of random processes and limit theorems in probability theory”,
published in 1956 in “Theory of Probability and its Applications”. This paper
formed his doctoral dissertation defended in the same year in Steklov Mathematical
Institute (see [15]).

Paper [14] brought Prokhorov widespread recognition by the international
mathematical community and even celebrity among specialists. Most fundamental
in this paper was the creation of a method for investigating the convergence of
distributions of random processes based on Prokhorov’s criterion for compactness
of a family of measures on a complete separable metric space E .

Prokhorov Theorem 1. Let P D fP˛; ˛ 2 A g be a family of measures given on
a complete separable metric space .E;E ; �/. The family P is relatively compact if
and only if it is tight and sup˛ P˛.E/ < 1:

Tightness of the family P D fP˛; ˛ 2 A g means that for any " > 0 there exists
a compact set K � C such that sup

˛2A
P˛.E n K/ � ". Relative compactness of the

family P D fP˛; ˛ 2 A g means that for any sequence of measures from P there
exists a subsequence that weakly converges to some measure.

In the process of proving the theorem, in the space M of all measures on X
a metric � was constructed (which came to be called the Prokhorov metric) for
which the convergence is equivalent to weak convergence and which turnsM into a
complete space. In one-dimensional case this metric coincides with the Lévy metric.

A considerable part of [14] is devoted to elaboration (often very delicate
technically) of this criterion for diverse function spaces important in applications
(C Œ0I 1�, DŒ0I 1�, and so on).

Of particular interest for Yu.V. Prokhorov was weak convergence in the space of
continuous functions .C;C /.

Prokhorov Theorem 2. Let P and Pn; n� 1; be probability measures on .C;C /.
If the family fPng is tight and finite-dimensional restrictions of measuresPn; n � 1;

converge weakly to the corresponding finite-dimensional restrictions of the mea-
sureP , then the sequence of measuresPn converge weakly to measureP .Pn )P/:

Thus, for solving the problem of weak convergence Pn ) P one needs to find
first of all conditions of tightness of the family Pn; n � 1. The key role plays here
the following

Prokhorov Theorem 3. Let X D .Xt/t�0 be a function in C with the module of
continuity

wX.ı/ D sup
jt�sj<ı

jXt � Xsj:

A sequence of probability measures Pn, n � 1, on .C;C / is tight if and only if
the following conditions hold:

1. For any positive b there exists a such that

Pn.X W jX0j > a/ � b; n � 1I
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2. For any pair of numbers " and b there exists ı, 0 < ı < 1, and an integer n0
such that

Pn.X W wX.ı/ � "/ � b; n � n0:

Under fairly broad conditions, weak convergence of distributions of random
processes implies weak convergence of the distributions of functionals of the
processes. This fact, very important in the theory of random processes, is often
called the Prokhorov invariance principle. In [14] Prokhorov proved ‘functional
central limit theorems’ giving necessary and sufficient conditions for convergence in
distribution of random polygonal curves to processes with independent increments.
For the case of convergence of random polygons to the Wiener process, the
invariance principle is called the Donsker invariance principle. Donsker obtained
the corresponding sufficient conditions in 1951 without using the general notion of
convergence of measures in functional spaces.

In [14] Prokhorov also obtained an estimate of the convergence rate of random
polygons to the Wiener process that was later shown to be the best possible with
respect to order.

Together with the results of A.V. Skorokhod on the weak convergence in the
space D of discontinuous functions and results of Erdös, Kac, Donsker, Gikhman
and others, Prokhorov’s results laid a solid foundations of the theory of functional
limit theorems that, for more than 50 years, have been one of the main tools in
studying asymptotic properties of random processes.

There is also a criterion in [14] for relative compactness of a family of
distributions on a Hilbert space in terms of the characteristic functionals of these
distributions. In the harmonic analysis of distributions in linear topological spaces
this criterion formed the basis for subsequent major advances, which have found
important applications, particularly in the theory of generalized random processes.

On the whole, the methods and results of [14] served as a powerful stimulus
to numerous subsequent investigations both in the USSR and abroad. Prokhorov
himself extended his work on this topic developing further mainly the method of
characteristic functionals (see [23]). In the mid-1960s (see [27, 30, 33]) he also
applied the invariance principle to queueing problems in the study of transient
phenomena in systems with failures, when the expectation of the time �n between
incoming claims and the expectation of the service time �n approach each other as
the number of incoming claims increases. Here the independent variables �n and �n
can have distributions of general form.

In the 1960s Prokhorov became interested in characterization problems of
mathematical statistics (see [40, 42]). A statistic Y is said to characterize a class
P of distributions on a sample space if (1) P1Y �1 D P2Y

�1 for any P1; P2 2 P;

and (2) P 2 P when PY �1 D P1Y
�1: Prokhorov found characterizing statistics

for classes P of general form that are important in applications (while previous
results on this problem were only fragmentary). Moreover, in the case when the
classes P are types of distributions he established continuity of the correspondence
between P and the distributions of certain statistics characterizing them (this is the
so-called stability of the characterization).
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Also in the 1960s Prokhorov investigated the problem of controlling a Wiener
process with the purpose of keeping it within specified limits (see [32]). Unlike
the partial differential equation approach used usually in this area, which led to
the necessity of infinitely frequent switchings for optimal control, he employed
direct probabilistic methods and constructed an optimal control with only a bounded
number of switchings per unit of time. In the area of control of random processes
he also directed a number of investigations by his students.

At the beginning of the 1990s Prokhorov published several papers devoted
to estimating the variance of generalized measures occurring in the Edgeworth
expansion in finite-dimensional Euclidean spaces (see [57, 60]). Knowledge of such
estimates, along with estimates of the remainder terms, is especially important in
using the Edgeworth expansion in statistics when the dimension of the observed
random vectors is comparable with the number of observations. The investigation
of this problem also led to a study of polynomials in random variables having normal
or gamma distributions (see [58, 59]).

It was shown there that if Y is a polynomial of degree n � 1 in a random variable
with the standard normal or a gamma distribution (with a certain lower bound on the
shape parameter), then EjY j=.EjY j2/1=2 � cn; where cn depends only on n.

In the 1990s Prokhorov, together with G. Christoph and V.V. Ulyanov, inves-
tigated the behavior of the density p of the squared norm of a Gaussian random
variable with values in a Hilbert space (see [63, 65, 71–73]). They found a new
upper bound for p, and also indicated the range of values of the parameters for
which p is at least 1=8 of its least upper bound. Furthermore, for large values of the
argument, p turns out to be asymptotically at least 1=8 of its least upper bound for
all values of the parameters.

In 1994–2002 Prokhorov, together with F. Götze and V.V. Ulyanov, has inves-
tigated the behavior of the characteristic functions of polynomials in complex
variables (both one- and multi-dimensional) (see [61, 62, 64, 66–70, 76]). In these
studies they employed very delicate estimates of trigonometric sums and integrals
used in analytic number theory. For instance, they obtained profound results on
estimates of characteristic functions of polynomials in normal and asymptotically
normal random variables, thereby significantly refining the estimates known earlier.
As they themselves have remarked, their estimates ‘are analogous in form to the
improvements to which the Vinogradov method led for trigonometric sums in
comparison with the results of Weyl.’

In 2000s jointly with V.I. Khokhlov and O.V. Viskov a series of papers on
analogues of the Chernov inequalitiy for binomial, negative binomial, Poisson and
Gamma distributions was published (see [74–75, 82, 85]).

In 2005 Prokhorov together with V.Yu. Korolev and V.E. Bening (who are
members of the headed by him Department of Mathematical Statistics of the
Faculty of Computational Mathematics of Moscow State University) was awarded
M.V. Lomonosov prize for the paper “Analytic methods of the theory of the risk
based on a Gaussian mixed models” (see [80]).

It should be mentioned the other papers of this period. The joint papers with
his pupil A.A. Kulikova devoted to the estimate of deviation of the distribution of
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the first digit from the Bedford law (see [79, 81]), and to the investigation of the
distribution law of fractional part of random vectors (see [78, 83]).

Along with purely mathematical problems, Prokhorov has always been interested
in applied topics. Virtually throughout his career in science he has often consulted
specialists in diverse areas of knowledge on applied questions of probability theory
and statistics. We have already mentioned his interest in and contributions to
queueing theory and the control of random processes. Among his other areas of
applied interest we can single out sequential statistical analysis, information theory,
and, especially, applications of statistical methods in geology and geochemistry
(see [29], [31], [38], [41], [47]). He himself has personally taken part in several
geological expeditions.

In the course of nearly half a century of teaching, Prokhorov has had many
students, among them more than a few now known as specialists in probability
theory and mathematical statistics. In his relations with students he is extremely
considerate, he goes through their work in detail, and he demonstrates an uncommon
ability to inspire and encourage boldness and independence in creative research, all
of which has often proved to be very effective.

Prokhorov has expended and continues to expend much effort on his editorial and
publishing activities. Since 1966 (except for 1988–1993) he has been the Editor-
in-Chief of Theory of Probability and its Applications, which was founded by
Kolmogorov and is one of the world’s leading journals in its area. He has also
been on the editorial boards of the prestigious journals Zeitschrift für Wahrschein-
lichkeitstheorie (now called Probability Theory and Related Fields) and Journal of
Applied Probability. He has been especially active in his encyclopedic work: over
several decades he has been on the science publishing council of the Great Soviet
Encyclopedia (now Great Russian Encyclopedia), he is Deputy Editor-in-Chief of
the five-volume Mathematical Encyclopedia, and he is the Editor-in-Chief of the
encyclopedic dictionaries Mathematics and Probability and Mathematical Statistics.
He is the Deputy Editor of the journal “Mathematical Problems of Cryptography”
and the Deputy Editor of the encyclopedia “Discrete Mathematics”.

He has put enormous energy and effort into his administrative work related to
organization of scientific activities. During the period 1969–1986 he was the deputy
director of the Steklov Institute. Since 1966 till 2002 he has been a member of the
Office of the Mathematics Branch of the Academy of Sciences, for many years he
has headed the Committee on Probability Theory and Mathematical Statistics of the
Mathematics Branch (for as long as the committee has existed), from 1975 to 1983
he was a member of the Presidium of the Higher Certification Committee, from
1975 to 1978 he was a member of the Fields Medal Committee of the International
Mathematical Union (IMU), and from 1979 to 1982 he was the Vice-President of
the IMU.

His role in preventing the canceling of ICM-1982 in Warsaw was described
in “Olli Lehto, Mathematics Without Borders. A History of the International
Mathematical Union, Springer-Verlag New York Inc., 1998, p. 232”:

“When the discussion about the Warsaw ICM began on 13 November 1982, at the
Collège de France, present were Carleson (Chairman), Lions (Secretary), Bombieri,
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Cassels, Kneser, Lehto, and Olech. Not much progress had been made, when the
door opened and in came Prokhorov, for the first time in attendance at an Executive
Committee meeting. He soon ask for the floor and quietly elaborated his view on
why holding the Congress would be in the better interests of the IMU than canceling
it. He concluded by saying that as regards international contacts, mathematicians in
Socialist countries were handicapped. They could not participate in the ICM-1986
at Berkeley in great numbers. Warsaw, in contrast, would provide them an excellent
opportunity to meet colleagues from all over the world.

The matter-of-fact performance of Prokhorov was to the taste of the Executive
Committee. He certainly contributed to the final decision. After a long discussion,
the Executive Committee decided to confirm the organization of the ICM-82 in
Warsaw in August 1983”.

He also headed the organizing committee of the 1986 First World Congress of
the Bernoulli Society bringing together international specialists in probability theory
and mathematical statistics; the congress took place in Tashkent and attracted more
than a 1,000 participants. He is one of the founders and a member of Academy of
Cryptography.

The scientific community and the government has highly valued the research,
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B. Grigelionis. Utrecht: VNU Science Press, 1987, xC574 pp.

14. Probability Theory and Mathematical Statistics. Vol. II. Proceedings of the
Fourth International Vilnius Conference held in Vilnius, June 24–29, 1985,
Vilnius. Ed. by Yu.V. Prokhorov, V.A. Statulevičius, V.V. Sazonov and
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Kiadó, Budapest, Academic Press, New York, 1974; Foreword to the Russian
translation: M.: MIR, 1976, 132 pp.

4. P. Whittle, Probability, Penguin Books, 1970; Foreword to the Russian Edition,
M., “Nauka”, 1982, 287 pp. Editor V.V. Sazonov.

5. L.N. Bolshev, N.V. Smirnov, Tables of mathematical statistics, Third edition.
(Russian) With an afterword by Yu.V. Prokhorov and D.M. Chibisov. With a
commentary and bibliography by D.S. Shmerling. “Nauka”, Moscow, 1983. 416
pp. The second edition was published in 1968, Moscow: Vychisl. Tsentr, Akad.
Nauk SSSR, Sibirsk. Otdel.

6. W. Feller, An introduction to probability theory and its applications. Vol. II.
(Russian) Translated from the second English edition and with a preface by
Yu.V. Prokhorov. “Mir”, Moscow, 1984, 752 pp.

7. Ya. Bernulli, The law of large numbers. (Russian) Translated from the Latin by
Ya.V. Uspenski. Translation edited and with a preface by A.A. Markov. Second
edition edited and with a commentary by Yu.V. Prokhorov. With a preface
by A.N. Kolmogorov. With comments by O.B. Sheinin and A.P. Yushkevich.
“Nauka”, Moscow, 1986. 176 pp.

8. L.N. Bolshev, Selected works, Probability theory and mathematical statis-
tics. (Russian) With the collaboration of E.A. Loginov, Yu.I. Kruopis,
M.S. Nikulin and M. Mirvaliev. With comments. Edited and with a preface
by Yu.V. Prokhorov. “Nauka”, Moscow, 1987, 286 pp.

9. S.A. Aivazian, V.S. Mkhitorian, Probability Theory and Applied Statistics, 1,
2001, Moscow: UNITY. 656 pp. With Preface by Yu.V. Prokhorov.

VI Book Reviews

1. R.Balieu, Calcul des probabilites at analyse statistique (éleménts). Louvain,
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1 Introduction

A topic which one might loosely call “random percolation of information through
networks” arises in many different contexts, from epidemic models [2] and com-
puter virus models [10] to gossip algorithms [8] designed to keep nodes of a
decentralized network updated about information needed to maintain the network.
This topic differs from communication networks in that we envisage information as
having a definite source but no definite destination.

In this paper we study an aspect where the vertices of the network are agents, and
where there are costs and benefits associated with the different choices that agents
may make in communicating information. In such “economic game theory” settings
one anticipates a social optimum strategy that maximizes the total net payoff to all
agents combined, and an (often different) Nash equilibrium characterized by the
property that no one agent can benefit from deviating from the Nash equilibrium
strategy followed by all other agents (so one anticipates that any reasonable process
of agents adjusting strategies in a selfish way will lead to some Nash equilibrium).
Of course a huge number of different models of costs, benefits and choices could fit
the description above, but we focus on the specific setting where the value to you
of receiving information depends on how few people know the information before
you do. Two familiar real world examples are gossip in social networks and insider
trading in financial markets. In the first, the gossiper gains perceived social status
from transmitting information, and so is implicitly willing to pay for communicate
to others; in the second the owner of knowledge recognizes its value and implictly
expects to be paid for communication onwards. Our basic model makes the simpler
assumption that the value to an agent attaches at the time information is received,
and subsequently the agent takes no initiative to communicate it to others, but does
so freely when requested, with the requester paying the cost of communication. In
our model the benefits come from, and communication costs are paid to, the outside
world: there are no payments between agents.

Remark. Many arguments are just outlined, not intended as complete rigorous
proofs. This version was written in July 2007 to accompany a talk at the ICTP
workshop “Common Concepts in Statistical Physics and Computer Science”, and
intended as a starting point for future thesis projects which could explore these and
many variant problems in detail. One of the topics herein (first passage percolation
on the N � N torus with short and long range interactions) has now been studied
rigorously by Chatterjee and Durrett [4] (see Sect. 6.2 for their result) and so it
seems appropriate to make this version publicly accessible.

1.1 The General Framework: A Rank-Based Reward Game

There are n agents (our results are in the n ! 1 limit). The basic two rules are:

Rule 1. New items of information arrive at times of a rate-1 Poisson process; each
item comes to one random agent.
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Information spreads between agents by virtue of one agent calling another and
learning all items that the other knows (details are case-specific, described later),
with a (case-specific) communication cost paid by the receiver of information.

Rule 2. The j ’th person to learn an item of information gets reward R.j
n
/.

Here R.u/; 0 < u � 1 is a function such that

R.u/ is decreasing; R.1/ D 0I 0 < NR WD
Z 1

0

R.u/du < 1: (1)

Assuming information eventually reaches each agent, the total reward from each
item will be

Pn
jD1 R.

j

n
/ � n NR. If agents behave in some “exchangeable” way then

the average net payoff (per agent per unit time) is

payoff D NR � (average communication cost per agent per unit time): (2)

Now the average communication cost per unit time can be made arbitrarily small by
simply communicating less often (because an agent learns all items that another
agent knows, for the cost of one call. Note the calling agent does not know in
advance whether the other agent has any new items of information). Thus the “social
optimum” protocol is to communicate arbitrarily slowly, giving payoff arbitrarily
close to NR. But if agents behave selfishly then one agent may gain an advantage by
paying to obtain information more quickly, and so we seek to study Nash equilibria
for selfish agents. In particular there are three qualitative different possibilities. In
the n ! 1 limit, the Nash equilibrium may be

• Efficient (Nash payoff D social optimum payoff)
• Or wasteful (0 < Nash payoff< social optimum payoff)
• Or totally wasteful (Nash payoff D 0).

1.2 Methodology

Allowing agents’ behaviors to be completely general makes the problems rather
complicated (e.g. a subset of agents could seek to coordinate their actions) so in
each specific model we restrict agent behavior to be of a specified form, making
calls at random times with a rate parameter � ; the agent’s “strategy” is just a choice
of � , and for this discussion we assume � is a single real number. If all agents use
the same parameter value � then the spread of one item of information through the
network is as some model-dependent first passage percolation process(see Sect. 2.2).
So there is some function F�;n.t/ giving the proportion of agents who learn the item
within time t after the arrival of the information into the network. Now suppose
one agent ego uses a different parameter value 	 and gets some payoff-per-unit-
time, denoted by payoff.	; �/. The Nash equilibrium value �Nash is the value of �
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for which ego cannot do better by choosing a different value of 	, and hence is the
solution of

d

d	
payoff.	; �/

ˇ
ˇ
ˇ
ˇ
	D�

D 0: (3)

Obtaining a formula for payoff.	; �/ requires knowing F�;n.t/ and knowing
something about the geometry of the sets of informed agents at time t – see (19,26)
for the two basic examples. The important point is that where we know the exact
n ! 1 limit behavior of F�;n.t/ we get a formula for the exact limit �Nash, and
where we know order of magnitude behavior of F�;n.t/ we get order of magnitude
behavior of �Nash.

Note that we have assumed that in a Nash equilibrium each agent uses the same
strategy. This is only a sensible assumption when the network cost structure has
enough symmetry (is transitive – see Sect. 7.1) and the non-transitive case is an
interesting topic for future study.

It turns out (Sect. 4) that for determining the qualitative behavior of the Nash
equilibria, the important aspect is the size of the window width w�;n of the associated
first passage percolation process, that is the time interval over which the proportion
of agents knowing the item of information increases from (say) 10 to 90 %. While
this is well understood in the simplest examples of first passage percolation on
finite sets, it has not been studied for very general models and our game-theoretic
questions provide motivation for future such study.

To interpret later formulas it turns out to be convenient to work with the derivative

of R. Write R0.u/ D �r.u/, so that R.u/ D
Z 1

u
r.s/ds and (1) becomes

r.u/ � 0I 0 < NR WD
Z 1

0

ur.u/du < 1: (4)

1.3 Summary of Results

1.3.1 The Complete Graph Case

Network communication model: Each agent i may, at any time, call any other
agent j (at cost 1), and learn all items that j knows.

Poisson strategy. The allowed strategy for an agent i is to place calls, at the times
of a Poisson (rate �) process, to a random agent.

Result (Sect. 2). In the n ! 1 limit the Nash equilibrium value of � is

�Nash D
Z 1

0

.1C log.1 � u//R.u/du D
Z 1

0

r.u/g.u/du; (5)

where g.u/ D �.1 � u/ log.1 � u/ > 0.
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Our assumptions (1) on R.u/ imply 0 < �Nash < NR. Because an agent’s average
cost per unit time equals his value of � , from (2) the Nash equilibrium payoff
NR � �Nash is strictly less than the social optimum payoff NR but strictly greater than 0.

So this is a “wasteful” case.

1.3.2 The Nearest Neighbor Grid

Network communication model: Agents are at the vertices of the N � N torus
(i.e. the grid with periodic boundary conditions). Each agent i may, at any time, call
any of the four neighboring agents j (at cost 1), and learn all items that j knows.

Poisson strategy. The allowed strategy for an agent i is to place calls, at the times
of a Poisson (rate �) process, to a random neighboring agent.

Result (Sect. 3). The Nash equilibrium value of � is such that as N ! 1

�Nash
N � N�1

Z 1

0

g.u/r.u/du (6)

where g.u/ > 0 is a certain complicated function – see (28).
So here the Nash equilibrium payoff NR � �Nash

N tends to NR; this is an “efficient”
case.

1.3.3 Grid with Communication Costs Increasing with Distance

Network communication model. The agents are at the vertices of theN�N torus.
Each agent i may, at any time, call any other agent j , at cost c.N; d.i; j //, and learn
all items that j knows.

Here d.i; j / is the distance between i and j . We treat two cases, with different
choices of c.N; d/. In Sect. 5 we take cost function c.N; d/ D c.d/ satisfying

c.1/ D 1I c.d/ " 1 as d ! 1 (7)

and

Poisson strategy. An agent’s strategy is described by a sequence
.�.d/I d D 1; 2; 3; : : :/; where for each d :

at rate �.d/ the agent calls a random agent at distance d .

In this case a simple abstract argument (Sect. 5) shows that the Nash equilibrium
is efficient (without calculating what the equilibrium strategy or payoff actually is)
for any c.d/ satisfying (7).
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In Sect. 6 we take

c.N; d/ D 1I d D 1

D cN I d > 1

where 1 	 cN 	 N3, and

Poisson strategy. An agent’s strategy is described by a pair of real numbers
.�near; �near/ D � :

at rate �near the agent calls a random neighbor
at rate �near the agent calls a random non-neighbor.

In this case we show (42) that the Nash equilibrium strategy satisfies

�Nash
near � 
1c

�1=2
N I �Nash

far � 
2c
�2
N

for certain constants 
1; 
2 depending on the reward function. So the Nash equilib-
rium cost � 
1c

�1=2
N , implying that the equilibrium is efficient.

1.3.4 Plan of Paper

The two basic cases (complete graph, nearest-neighbor grid) can be analyzed
directly using known results for first passage percolation on these structures; we
do this analysis in Sects. 2 and 3. There are of course simple arguments for order-
of-magnitude behavior in those cases, which we recall in Sect. 4 (but which the
reader may prefer to consult first) as a preliminary to the more complicated model
“grid with communication costs increasing with distance”, for which one needs to
understand orders of magnitude before embarking on calculations.

1.4 Variant Models and Questions

These results suggest many alternate questions and models, a few of which are
addressed briefly in the sections indicated, the others providing suggestions for
future research.

• Are there cases where the Nash equilibrium is totally wasteful? (Sect. 2.1)
• Wouldn’t it be better to place calls at regular time intervals? (Sect. 7.2)
• Can one analyze more general strategies?
• In the grid context of Sect. 1.3.3, what is the equilibrium strategy and cost for

more general costs c.N; d/?
• What about the symmetric model where, when i calls j , they exchange informa-

tion? (Sect. 7.1)
• In formulas (5,6) we see decoupling between the reward function r.u/ and the

function g.u/ involving the rest of the model – is this a general phenomenon?
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• In the nearest-neighbor grid case, wouldn’t it be better to cycle calls through the
four neighbors?

• What about non-transitive models, e.g. social networks where different agents
have different numbers of friends, so that different agents have different strategies
in the Nash equilibrium?

• To model gossip, wouldn’t it be better to make the reward to agent i depend on
the number of other agents who learn the item from agent i? (Sect. 7.3)

• To model insider trading, wouldn’t it be better to say that agent j is willing to
pay some amount s.t/ to agent i for information that i has possessed for time t ,
the function s.
/ not specified in advance but a component of strategy and hence
with a Nash equilibrium value?

1.5 Conclusions

As the list above suggests, we are only scratching the surface of a potentially
large topic. In the usual setting of information communication networks, the goal
is to communicate quickly, and our two basic examples (complete graph; nearest-
neighbor grid) are the extremes of rapid and slow communication. It is therefore
paradoxical that, in our rank-based reward game, the latter is efficient while the
former is inefficient. One might jump to the conclusion that in general efficiency in
the rank-based reward game was inversely related to network connectivity. But the
examples of the grid with long-range interaction show the situation is not so simple,
in that agents could choose to make long range calls and emulate a highly-connected
network, but in equilibrium they do not do so very often.

2 The Complete Graph

The default assumptions in this section are

Network communication model: Each agent i may, at any time, call any other
agent j (at cost 1), and learn all items that j knows.

Poisson strategy. The allowed strategy for an agent i is to place calls, at the times
of a Poisson (rate �) process, to a random agent.

2.1 Finite Number of Rewards

Before deriving the result (5) in our general framework, let us step outside that
framework to derive a very easy variant result. Suppose that only the first two
recipients of an item of information receive a reward, of amount wn say. Agent
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strategy cannot affect the first recipient, only the second. Suppose ego uses rate
	 and other agents use rate � . Then (by elementary properties of Exponential
distributions)

P.ego is second to receive item/ D 	

	 C .n � 2/�
; (8)

and so

payoff.	; �/ D wn
n

C 	wn
	 C .n � 2/� � 	:

We calculate
d

d	
payoff.	; �/ D .n � 2/�wn

.	 C .n� 2/�/2
� 1

and then the criterion (3) gives

�Nash
n D .n � 2/wn

.n� 1/2
� wn

n
:

To compare this variant with the general framework, we want the total reward
available from an item to equal n, to make the social optimum payoff ! 1, so
we choose wn D n=2. So we have shown that the Nash equilibrium payoff is

payoff D 1 � �Nash
n ! 1

2
: (9)

So this is a “wasteful” case.
By the same argument we can study the case where (for fixed k � 2) the first k

recipients get reward n=k. In this case we find

�Nash
n � k � 1

k

and the Nash equilibrium payoff is

payoff ! 1
k
; (10)

while the social optimum payoff D 1. Thus by taking kn ! 1 slowly we have a
model in which the Nash equilibrium is “totally wasteful”.

2.2 First Passage Percolation : General Setup

The classical setting for first passage percolation, surveyed in [11], concerns nearest
neighbor percolation on the d -dimensional lattice. Let us briefly state our general
setup for first passage percolation (of “information”) on a finite graph. There are
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“rate” parameters �ij � 0 for undirected edges .i; j /. There is an initial vertex v0,
which receives the information at time 0. At time t , for each vertex i which has
already received the information, and each neighbor j , there is chance �ij dt that j
learns the information from i before time t C dt . Equivalently, create independent
Exponential(�ij ) random variables Vij on edges .i; j /. Then each vertex v receives
the information at time

Tv D minfVi0i1 C Vi1i2 C : : :C Vik�1ik g

minimized over paths v0 D i0; i1; i2; : : : ; ik D v.

2.3 First Passage Percolation on the Complete Graph

Let us consider first passage percolation on the complete n-vertex graph with rates
�ij D 1=.n � 1/. Pick k random agents and write NSn.1/; : : : ; NSn.k/ for the times at
which these k agents receive the information. The key fact for our purposes is that
as n ! 1

. NSn.1/ � logn; : : : ; NSn.k/ � logn/
d! .� C S.1/; : : : ; � C S.k// (11)

where the limit variables are independent, � has double exponential distribution
P.� � x/ D exp.�e�x/ and each S.i/ has the logistic distribution with distribution
function

F1.x/ D ex

1C ex
; �1 < x < 1: (12)

Here
d! denotes convergence in distribution. To outline a derivation of (11), fix a

large integer L and decompose the percolation times as

NSn.i/ � logn D .�L � logL/C . NSn.i/ � �L C log.L=n// (13)

where �L is the time at which some L agents have received the information. By
the Yule process approximation (see e.g. [1]) to the fixed-time behavior of the
first passage percolation, the number N.t/ of agents possessing the information at
fixed large time t is approximately distributed asWet , whereW has Exponential(1)
distribution, and so

P.�L � t/ D P.N.t/ � L/ � P.Wet � L/ D exp.�Le�t /

implying �L � logL � � in distribution, explaining the first summand on the
right side of (11). Now consider the proportion H.t/ of agents possessing the
information at time �LC t . This proportion follows closely the deterministic logistic
equation H 0 D H.1 � H/ whose solution is (12) shifted to satisfy the initial
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condition H.0/ D L=n, so this solution approximates the distribution function of
S.i/�log.L=n/. Thus the time NSn.i/ at which a random agent receives the information
satisfies

. NSn.i/ � �L C log.L=n// � S.i/ in distribution

independently as i varies. Now the limit decomposition (11) follow from the finite-n
decomposition (13).

We emphasize (11) instead of more elementary derivations (using methods of
[9, 13]) of the limit distribution for NSn.1/ � logn because (11) gives the correct
dependence structure for different agents. Because only relative order of gaining
information is relevant to us, we may recenter by subtracting � and suppose that
the times at which different random agents gain information are independent with
logistic distribution (12).

2.4 Analysis of the Rank-Based Reward Game

We now return to our general reward framework

The j ’th person to learn an item of information gets reward R. j
n
/

and give the argument for (5).
Suppose all agents use the Poisson(�) strategy. In the case � D 1, the way that a

single item of information spreads is exactly as the first passage percolation process
above; and the general-� case is just a time-scaling by � . So as above, we may
suppose that (all calculations in the n ! 1 limit) the recentered time S� to reach a
random agent has distribution function

F�.x/ D F1.�x/ (14)

which is the solution of the time-scaled logistic equation

F 0
�

1 � F� D �F� (15)

(Recall F1 is the logistic distribution (12)). Now consider the case where all other
agents use a value � but ego uses a different value 	. The (limit, recentered)
time T	;� at which ego learns the information now has distribution function G	;�
satisfying an analog of (15):

G0
	;�

1 �G	;�
D 	F� : (16)

To explain this equation, the left side is the rate at time t at which ego learns the
information; this equals the rate 	 of calls by ego, times the probability F�.t/ that
the called agent has received the information. To solve the equation, first we get
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1 �G	;� D exp

�

�	
Z

F�

�

:

But we know that in the case 	 D � the solution is F� , that is we know

1 � F� D exp

�

��
Z

F�

�

;

and so we have the solution of (16) in the form

1 �G	;� D .1 � F�/
	=� : (17)

If ego gets the information at time t then his percentile rank is F�.t/ and his reward
is R.F�.t//. So the expected reward to ego is

ER.F�.T	;� //I where dist.T	;� / D G	;� :

We calculate

P.F�.T	;� / � u/ D G	;� .F
�1
� .u//

D 1 � .1 � F�.F �1
� .u///	=� by (17)

D 1 � .1 � u/	=� (18)

and so

ER.F�.T	;� // D
Z 1

0

r.u/ .1 � .1 � u/	=� /du:

This is the mean reward to ego from one item, and hence also the mean reward per
unit time in the ongoing process. So, including the “communication cost” of 	 per
unit time, the net payoff (per unit time) to ego is

payoff.	; �/ D �	 C
Z 1

0

r.u/ .1 � .1 � u/	=� /du: (19)

Using the fact d
d	
x	=� D log x

�
x	=� , we have that the criterion (3) for � to be a Nash

equilibrium is,

1 D 1
�

Z 1

0

r.u/ .� log.1 � u// .1 � u/du: (20)

This is the second equality in (5), and integrating by parts gives the first equality.

Remark. For the linear reward function

R.u/ D 2.1� u/I NR D 1
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result (5) gives Nash payoff D 1=2. Consider alternatively

R.u/ D 1
u0
1.u�u0/I NR D 1:

Then the n ! 1 Nash equilibrium cost is

�Nash.u0/ D 1

u0

Z u0

0

.1C log.1 � u// du:

In particular, the Nash payoff 1 � �Nash.u0/ satisfies

1 � �Nash.u0/ ! 0 as u0 ! 0:

In words, as the reward becomes concentrated on a smaller and smaller proportion
of the population then the Nash equilibrium becomes more and more wasteful. In
this sense result (5) in the general framework is consistent with the “finite number
of rewards” result (10).

3 The N �N Torus, Nearest Neighbor Case

Network communication model. There areN2 agents at the vertices of theN �N
torus. Each agent i may, at any time, call any of the four neighboring agents j
(at cost 1), and learn all items that j knows.

Poisson strategy. The allowed strategy for an agent i is to place calls, at the times
of a Poisson (rate �) process, to a random neighboring agent.

We will derive formula (6). As remarked later, the function g.u/ is ultimately
derived from fine structure of first passage percolation in the plane, and seems
impossible to determine as an explicit formula. But of course the main point is that
the Nash equilibrium payoff NR � �Nash

N D NR �O.N�1/ tends to the social optimum
NR (in contrast to the complete graph case).

3.1 Nearest-Neighbor First Passage Percolation on the Torus

Consider (nearest-neighbor) first passage percolation on theN�N torus, started at a
uniform random vertex, with rates �ij D 1 for edges .i; j /. Write .T Ni ; 1 � i � 4/

for the information receipt times of the four neighbors of the origin (using paths not
through the origin), and writeQN.t/ for the number of vertices informed by time t .
Write T N� D min.T Ni ; 1 � i � 4/.

The key point is that we expect as N ! 1 limit of the following form

.T Ni � T N� ; 1 � i � 4I N�2QN .T N� /I .N�1.QN .T N� C t /�QN.T N� //; 0 � t < 1//

d! .�i ; 1 � i � 4I U I .V t; 0 � t < 1// (21)
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where �i ; 1 � i � 4 are nonnegative with mini �i D 0; U has uniform.0; 1/
distribution; 0 < V < 1; with a certain complicated joint distribution for these
limit quantities.

To explain (21), first note that as N ! 1 the differences T Ni � T N� are
stochastically bounded (by the time to percolate through a finite set of edges) but
cannot converge to 0 (by linearity of growth rate in the shape theorem below), so
we expect some non-degenerate limit distribution .�i ; 1 � i � 4/. Next consider
the time T N0 at which the origin is wetted. By uniformity of starting position,
QN.T N0 / must have uniform distribution on f1; 2; : : : ; N 2g, and it follows that

N�2QN .T N� /
d! U . The final assertion

.N�1.QN.T N� C t/ �QN.T N� //; 0 � t < 1/
d! .V t; 0 � t < 1/ (22)

is related to the shape theorem [11] for first-pasage percolation on the infinite lattice
started at the origin. This says that the random set Bs of vertices wetted before time
s grows linearly with s, and the spatially rescaled set s�1Bs converges to a limit
deterministic convex set B:

s�1Bs ! B: (23)

It follows that
N�2QN .sN / ! q.s/ as N ! 1

where q.s/ is the area of sB regarded as a subset of the continuous torus Œ0; 1�2.

Because N�2QN.T N0 /
d! U we have

T N� � T N0 � N2q�1.U /

where q�1.
/ is the inverse function of q.
/. WritingQ0N .
/ for a suitably-interpreted
local growth rate of QN.
/ we deduce

.N�2QN.T N� /; N�1Q0N .T N� //
d! .U; q0.q�1.U ///

and so (22) holds for V D q0.q�1.U //.

3.2 Analysis of the Rank-Based Reward Game

We want to study the case where other agents call some neighbor at rate � but ego
(at the origin) calls some neighbor at rate 	. To analyze rewards, by scaling time
we can reduce to the case where other agents call each neighbor at rate 1 and ego
calls each neighbor at rate � D 	=� . We want to compare the rank MN

� of ego
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(rank = j if ego is the j ’th person to receive the information) with the rank MN
1 of

ego in the � D 1 case. As noted above, MN
1 is uniform on f1; 2; : : : ; N 2g. Writing

.��i ; 1 � i � 4/ for independent Exponential(�/ r.v.’s, the time at which the origin
receives the information is

T N� C min
i
.T Ni � T N� C ��i /

and the rank of the origin is

MN
� D QN.T N� /CN eQN.min

i
.T Ni � T N� C ��i //

where
eQN .t/ D N�1.QN .T N� C t/ �QN.T N� //:

Note we can construct .��i ; 1 � i � 4/ as .��1�1i ; 1 � i � 4/. Now use (22) to see
that as N ! 1

.N�2MN
1 ;N

�1.MN
� �MN

1 //
d! .U; VZ.�// (24)

where
Z.�/ WD min

i
.�i C ��i / � min

i
.�i C �1i /: (25)

Now in the setting where ego calls at rate 	 and others at rate � we have

payoff.	; �/ � payoff.�; �/C .	 � �/ D E

"

R

 
MN
	=�

N 2

!

�R
�
MN
1

N2

�#

and it is straightforward to use (24) to show this

� N�1
Z 1

0

.�r.u// zu.	=�/du; for zu.�/ WD E.VZ.�/jU D u/: (26)

The Nash equilibrium condition

d

d	
payoff.	; �/

ˇ
ˇ
ˇ
ˇ
	D�

D 0

now implies

�Nash
N � N�1

Z 1

0

.�r.u// z0
u.1/du: (27)

Because Z.�/ is decreasing in � we have z0
u.1/ < 0 and this expression is of the

form (6) with

g.u/ D �z0
u.1/ D � d

d�
E.VZ.�/jU D u/j�D1 (28)
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Remark. The distribution of V depends on the function q.
/ which depends on the
limit shape in nearest neighbor first passage percolation, which is not explicitly
known. Also Z.�/ involves the joint distribution of .�i /, which is not explicitly
known, and also is (presumably) correlated with the direction from the percolation
source which is in turn not independent of V . This suggests it would be difficult to
find an explicit formula for g.u/.

4 Order of Magnitude Arguments

Here we mention simple order of magnitude arguments for the two basic cases we
have already analyzed. As mentioned in the introduction, what matters is the size of
the window width w�;n of the associated first passage percolation process We will
re-use such arguments in Sects. 5 and 6.1, in more complicated settings.

Complete graph. If agents call at rate � D 1 then by (11) the window width is
order 1; so if �n is the Nash equilibrium rate then the window width wn is order 1=�n.
Suppose wn ! 1. Then ego could call at some fixed slow rate 	 and (because this
implies many calls are made near the start of the window) the reward to ego will tend
toR.0/, and ego’s payoffR.0/�	 will be larger than the typical payoff NR��n. This
contradicts the definition of Nash equilibrium. So in fact we must have wn bounded
above, implying �n bounded below, implying the Nash equilbrium in wasteful.

Nearest neighbor torus. If agents call at rate � D 1 then by the shape theorem (23)
the window width is orderN . The time difference between receipt time for different
neighbors of ego is order 1, so if ego calls at rate 2 instead of rate 1 his rank (and
hence his reward) increases by order 1=N . By scaling, if the Nash equilibrium rate
is �N and ego calls at rate 2�N then his increased reward is again of order 1=N . His
increased cost is �N . At the Nash equilibrium the increased reward and cost must
balance, so �N is order 1=N , so the Nash equilibrium is efficient.

5 The N �N Torus with General Interactions: A Simple
Criterion for Efficiency

Network communication model. The agents are at the vertices of theN�N torus.
Each agent i may, at any time, call any other agent j , at cost c.d.i; j //, and learn
all items that j knows.

Here d.i; j / is the distance between i and j , and we assume the cost function
c.d/ satisfies

c.1/ D 1I c.d/ " 1 as d ! 1: (29)
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Poisson strategy. An agent’s strategy is described by a sequence
.�.d/I d D 1; 2; 3; : : :/; and for each d :

at rate �.d/ the agent calls a random agent at distance d .

A simple argument below shows

under condition (29) the Nash equilibrium is efficient. (30)

Consider the Nash strategy, and suppose first that the window width wN converges to
a limit w1 <1. Consider a distance d such that the Nash strategy has �Nash.d/>0.
Suppose ego uses �.d/ D �Nash.d/ C 	. The increased cost is 	c.d/ while the
increased benefit is at mostO.w1	/, because this is the increased chance of getting
information earlier. So the Nash strategy must have �Nash.d/ D 0 for sufficiently
large d , not depending on N . But for first passage percolation with bounded range
transitions, the shape theorem (23) remains true and implies that wN scales as N .

This contradiction implies that the window width wN ! 1. Now suppose
the Nash equilibrium were inefficient, with some Nash cost N� >0. Suppose
ego adopts the strategy of just calling a random neighbor at rate 	N , where
	N ! 0; 	NwN ! 1. Then ego obtains asymptotically the same reward NR as
his neighbor, a typical agent. But ego’s cost is 	N ! 0. This is a contradiction with
the assumption of inefficiency. So the conclusion is that the Nash equilibrium is
efficient and wN ! 1.

Remarks. Result (30) is striking. but does not tell us what the Nash equilibrium
strategy and cost actually are. It is a natural open problem to study the case of (29)
with c.d/ D d˛. Instead we study a simpler model in the next section.

6 The N �N Torus with Short and Long Range Interactions

Network communication model. The agents are at the vertices of theN�N torus.
Each agent i may, at any time, call any of the four neighboring agents j (at cost 1),
or call any other agent j at cost cN � 1, and learn all items that j knows.

Poisson strategy. An agent’s strategy is described by a pair of numbers
.�near; �near/ D � :

at rate �near the agent calls a random neighbor
at rate �near the agent calls a random non-neighbor.

This model obviously interpolates between the complete graph model .cN D 1)
and the nearest-neighbor model (cN D 1).

First let us consider for which values of cN the nearest-neighbor Nash equilib-
rium (�near is orderN�1, �near D 0) persists in the current setting. When ego considers
using a non-zero value of �near, the cost is order cN �near. The time for information to
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reach a typical vertex is order N=�near D N2, and so the benefit of using a non-zero
value of �near is order �nearN

2. We deduce that
if cN � N2 then the Nash equilibrium is asymptotically the same as in the

nearest-neighbor case; in particular, the Nash equilibrum is efficient.
Let us study the more interesting case

1 	 cN 	 N2:

The result in this case turns out to be, qualitatively these must balance, so

�Nash
near is order c�1=2

N and �Nash
far is order c�2

N :

In particular, the Nash equilibrum is efficient.
(31)

“Efficient” because the cost cN �near C�near is order c�1=2
N . See (42) for the exact result.

We first do the order-of-magnitude calculation (Sect. 6.1), then analyze the
relevant first passage percolation process (Sect. 6.2), and finally do the exact analysis
in Sect. 6.3.

6.1 Order of Magnitude Calculation

Our order of magnitude argument for (31) uses three ingredients (32, 33, 34).
As in Sect. 4 we consider the window width wN of the associated percolation
process. Suppose ego deviates from the Nash equilibrium .�Nash

near ; �
Nash
far / by setting

his �far D �Nash
far C ı. The chance of thereby learning the information earlier, and

hence the increased reward to ego, is order ıwN and the increased cost is ıcN . At
the Nash equilibrium these must balance, so

wN 
 cN (32)

where 
 denotes “same order of magnitude”. Now consider the difference `N
between the times that different neighbors of ego are wetted. Then `N is order
1=�Nash

near . Write ı D �Nash
near and suppose ego deviates from the Nash equilibrium by

setting his �near D 2ı. The increased benefit to ego is order `N =wN and the increased
cost is ı. At the Nash equilibrium these must balance, so ı 
 `N =wN which
becomes

�Nash
near 
 w�1=2

N 
 c
�1=2
N : (33)

Finally we need to calculate how the window width wN for FPP depends on
.�near; �near/, and we show in the next section that

wN 
 �near
�2=3�near

�1=3: (34)

Granted this, we substitute (32,33) to get

cN 
 c
1=3
N �near

�1=3

which identifies �near 
 c�2
N as stated at (31).
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6.2 First Passage Percolation on theN �N Torus with Short
and Long Range Interactions

We study the model (call it short-long FPP, to distinguish it from nearest-neighbor
FPP) defined by rates

�ij D 1
4
; j a neighbor of i

D �N=N
2; j not a neighbor of i

where 1 � �N � N�3.
Recall the shape theorem (23) for nearest neighbor first passage percolation; let

A be the area of the limit shape B. Define an artificial distance � such that B is
the unit ball in �-distance; so nearest neighbor first passage percolation moves at
asymptotic speed 1 with respect to �-distance. Consider short-long FPP started at
a random vertex of the N � N torus. Write FN;�N for the proportion of vertices
reached by time t and let T.0;0/ be the time at which the origin is reached. The event
fT.0;0/ � tg corresponds asymptotically to the event that at some time t � u there is
percolation across some long edge .i; j / into some vertex j at �-distance � u from
.0; 0/ (here we use the fact that nearest neighbor first passage percolation moves at
asymptotic speed 1 with respect to �-distance). The rate of such events at time t � u
is approximately

N2FN;�N .t � u/ � Au2 � �N=N 2

where the three terms represent the number of possible vertices i , the number
of possible vertices j , and the percolation rate �ij . Since these events occur
asymptotically as a Poisson process in time, we get

1 � FN;�N .t/ � P.T.0;0/ � t/ � exp

�

�A�N
Z 1

0

u2FN;�N .t � u/ du

�

: (35)

This motivates study of the equation (for an unknown distribution function F�)

1 � F�.t/ D exp

�

��
Z t

�1
.t � s/2F�.s/ ds

�

; �1 < t < 1 (36)

whose solution should be unique up to centering. Writing F1 for the � D 1 solution,
the general solution scales as

F�.t/ WD F1.�
1=3t/:

So by (35), up to centering

FN;�N .t/ � F1..A�N /
1=3t/: (37)
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To translate this result into the context of the rank-based rewards game, suppose
each agent uses strategy �N D .�N;near; �N;far/. Then the spread of one item of
information is as first passage percolation with rates

�ij D �N;near=4; j a neighbor of i

D �N;far=.N
2 � 5/; j not a neighbor of i:

This is essentially the case above with �N D �N;far=�N;near, time-scaled by �N;near,
and so by (37) the distribution function FN;�N for the time at which a typical agent
receives the information is

FN;�N .t/ � F1

�
A1=3�N;far

1=3�N;near
2=3t

�
: (38)

In particular the window width is as stated at (34).

The result of Chatterjee and Durrett [4]. Their paper gives a rigorous proof of
analogs of (36, 37) under a slightly different “balloon process” model, consisting of
overlapping circular discs in the continuous torus Œ0; N �2. Disc centers are created
at random times and positions with intensity N�˛� (area of covered region); each
disc radius then expands linearly and deterministically. Their Theorem 3 proves that
the quantity N�2C .s/ (in their notation) representing the proportion of the torus
covered at time  .s/ D R CN˛=3s satisfies

limP.sup
s�t

jN�2C .s/ � F1.s/j � ı/ D 0 for fixed .t; ı/:

Here
R D N˛=3Œ.2 � 2˛=3/ logN � logM�

for M not depending on N . This result pins down the position of the center of the
critical window. Additionally, their Theorem 4 analyses the time until the entire
torus is covered. These two results provide more detail than our (38).

6.3 Exact Equations for the Nash Equilibrium

The equations will involve three quantities:

(i) The solution F1 of (36).
(ii) The area A of the limit set B in the shape theorem (23) for nearest-neighbor

first passage pecolation.
(iii) The limit distribution (cf. (21))

.T ri � T r� ; 1 � i � 4/
d! .�i ; 1 � i � 4/ as r ! 1 (39)
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for relative receipt times of neighbors of the origin in nearest-neighbor first
passage percolation, where now we start the percolation at a random vertex of
�-distance � r from the origin.

To start the analysis, suppose all agents use rates � D .�N;near; �N;far/. Consider the
quantities
S is the first time that ego receives the information from a non-neighbor
T is the first time that ego receives the information from a neighbor
F D FN;�N is the distribution function of T .

We claim that, with probability ! 1 as N ! 1 ego will actually receive
the information first from a neighbor, and so F is asymptotically the distribution
function of the time at which ego receives the information. To check this we need to
show that the chance ego receives the information from a non-neighbor during the
critical window is o.1/. This chance isO.N2��N;far=N

2� wN /, which by the order
of magnitude calculations in Sect. 6.1 is O.c�1

N / D o.1/.
Now suppose ego uses a different rate 	N;far ¤ �N;far for calling a non-neighbor.

This does not affect T but changes the distribution of S to

P.S > t/ � exp

�

�	N;far

Z t

�1
F.s/ ds

�

by the natural Poisson process approximation. Because �N;far is small we can
approximate

P.S � t/ � 	N;far

Z t

�1
F.s/ ds:

The mean reward to ego for one item, as a function of 	N;far, varies as

E.R.F.S//� R.F.T //1.S<T / C constant.

Because U D F.T / is uniform on .0; 1/, in the N ! 1 limit

E.R.F.S//�R.F.T //1.S<T / D E.R.F.S//� R.U //1.F.S/<U/

D
Z 1

0

du E.R.F.S//�R.u//1.F.S/<u/

D
Z 1

0

du E
Z u

min.F .S/;u
r.y/dy

D
Z 1

0

dy .1 � y/r.y/P.F.S/ � y/

D
Z 1

0

dy .1 � y/r.y/P.S � F�1.y//

D 	N;far

Z 1

0

dy .1 � y/r.y/

Z F�1.y/

�1
F.s/ds:
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The cost associated with using 	N;far is cN 	N;far, and at the Nash equilibrium the cost
and reward must balance, so at the Nash equilibrium F D FN;�N must satisfy

cN �
Z 1

0

dy .1 � y/r.y/
Z F�1.y/

�1
F.s/ds: (40)

Now suppose instead that ego uses a different rate 	N;near ¤ �N;near for calling a
neighbor. As in Sect. 3.2, we set � D 	N;near=�N;near so that we can use rate-1 nearest-
neighbor first passage percolation as comparison. For .�i / at (39) and independent
Exponential(�) random variables .��i / write (as at (25))

Z.�/ WD min
i
.�i C ��i / � min

i
.�i C �1i /:

So Z.�/ is the time difference for ego receiving the information, caused by ego
using 	N;near instead of �N;near. This time difference is measured after time-rescaling;
in real time units the time difference is Z.�/=�N;near.

As above, write T for receipt time for ego using �N;near, and F D FN;�N for its
distribution function. Then receipt time for ego using 	N;near is T C Z.�/=�N;near, so
ego’s rank becomes � F.T /C F 0.T /Z.�/=�N;near , and setting U D F.T / the rank
of ego is � U C F 0.F�1.U //Z.�/=�N;near. The associated mean reward change for
ego is asymptotically

z.�/
�N;near

�
Z 1

0

r.u/F 0.F�1.u// duI � D 	N;near=�N;near

where z.�/ D EZ.�/. Because the cost of using rate 	N;near equals 	N;near, the Nash
equilibrium condition (3) implies

�N;near
2 � z0.1/

Z 1

0

r.u/F 0.F�1.u// du: (41)

We have now obtained the desired two equations for FN;�N at the Nash
equilibrium �N . Use (38) to rewrite these Eqs. (40,41) in terms of F1 as

cN � A�1=3�N;far
�1=3�N;near

�2=3
Z 1

0

dy .1 � y/r.y/
Z F�1

1 .y/

�1
F1.s/ds

�N;near
2 � A1=3�N;far

1=3�N;near
2=3z0.1/

Z 1

0

r.u/F 0
1.F

�1
1 .u// du:

Solving for �N;near; �N;far we find

�N;near � Q1=2c
1=2
N ; �N;far � A�1Q�1c�2

N (42)
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for

Q D z0.1/
 Z 1

0

dy .1 � y/r.y/

Z F�1
1 .y/

�1
F1.s/ds

!�Z 1

0

r.u/F 0
1.F

�1
1 .u// du

�

:

7 Variants

7.1 Transitivity and the Symmetric Variant

The examples we have studied so far have a certain property called transitivity in
graph theory [3]. Informally, transitivity means “the network looks the same to each
agent”; formally, it means that for any two agents i; j there is an automorphism of
the network that preserves the network cost structure and maps i to j . This is what
allows us to assume that in a Nash equilibrium each agent uses same strategy.

The general framework of Sect. 1.1 uses the asymmetric model in which agent
i calls agent j (at a certain cost to i ) and learns all items that j knows. In the
symmetric variant, agent i calls agent j (at a certain cost to i ), and each tells the
other all items they know.

For the transitive networks we have studied there is a simple relationship between
the Nash equilibrium values of the asymmetric and symmetric variants of the
Poisson strategies:

�Nash
sym D 1

2
�Nash

asy : (43)

The point is that the percolation process in the symmetric variant is just the
percolation process in the asymmetric variant, run at twice the speed, and this leads
to the following relationship between the reward when ego uses rate 	 and other
agents use rate � :

rewardsym.	; �/ D rewardasy.	 C �; 2�/:

Because payoff.	; �/ D reward.	; �/� 	 in each case, we get

payoffsym.	; �/ D payoffasy.	 C �; 2�/C �

and therefore

d

d	
payoffsym.	; �/ D d

d	
payoffasy.	 C �; 2�/:

The criterion (3) leads to (43).
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7.2 Communication at Regular Intervals

We have studied “Poisson rate �” calling strategies because these are simplest to
analyze explicitly. A natural alternative is the “regular, rate �” strategy in which
agent i calls a random other agent at times

Ui ; Ui C 1
�
; Ui C 2

�
; : : : (44)

where Ui is uniform on .0; 1
�
/.

Consider first the complete graph case, and the setting (Sect. 2.1) where (for fixed
k � 2) the first k recipients get reward n=k. In this case, for k D 2 formula (8) is
replaced by

P.ego is second to receive item/ D
Z min. 1	 ;

1
� /

0

.1 � �u/n�2 	 du

and repeating the analysis in Sect. 2.1 gives exactly the same asymptotics (9,10) as
in the Poisson case. Consider instead the general reward framework

The j ’th person to learn an item of information gets reward R.j
n
/:

If all agents use rate � then the distribution function F� for receipt time for a typical
agent satisfies (as an analog of the logistic equation (15))

1 � F�.t/ D
Z t

t� 1
�

Y

i�0

�
1 � F�.s � i

�
/
�
� ds: (45)

If ego switches to rate 	 then the distribution function G	;� for ego’s receipt time
satisfies (as an analog of (16))

1 �G	;� .t/ D
Z t

t� 1
	

Y

i�0

�
1 � F�.s � i

	
/
�
	 ds: (46)

One can now continue the Sect. 2.4 analysis; we do not get useful explicit solutions
but the qualitative behavior is similar to the “Poisson calls” case, and in particular
the Nash equilibrium is wasteful.

Similarly, on the N � N grid with nearest neighbor interaction, switching from
the “Poisson calls” case to the “regular calls” case preserves the orderN�1 value of
the Nash equilibrium rate �Nash

N and hence preserves its efficiency.
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7.3 Gossip with Reward Based on Audience Size

Perhaps a more realistic model for gossip is to replace Rule 2 by

Rule 3. An agent i gets reward c whenever another agent learns an item from i .

For the complete graph and Poisson(�) strategies we can re-use the Sect. 2.4 analysis
to calculate the Nash equilibrium. First suppose all agents use the same rate � and
consider an agent i who receives the information at percentile u. For j > un the j ’th
agent to receive the information has chance 1

j
to receive it from agent i , and so the

mean reward to agent i is (calculations in the n ! 1 limit) c
R 1

u
1
x
dx D �c log u.

Suppose now ego switches to rate 	. Then (calls incur unit cost)

payoff.	; �/ D �	 C cE.� logF�.T	;� //

where the time T	;� at which ego receives the information has distribution function
G	;� at (17), and where F� at (14) is the distribution function of the time at which a
typical agent receives the information. Now

E.� logF�.T	;� // D
Z 1

0

1
uP.F�.T	;� / � u/ du

D
Z 1

0

1
uP.G�.T	;� / � 1 � .1 � u/	=� / du

D
Z 1

0

1
u .1 � .1 � u//	=� du by (18)

and then we calculate

d

d	
payoff.	; �/ D �1 � c

Z 1

0

log.1�u/
�

.1�u/	=�

u du:

Now the Nash equilibrium criterion (3) implies

�Nash
n ! �c

Z 1

0

1�u
u log.1 � u/ du: (47)

So switching to this “Rule 3” model preserves the wastefulness of the Nash
equilibrium on the compete graph.

However, for the N �N grid with nearest neighbor interaction, switching to the
“Rule 3” models changes the efficient (�Nash

N is order N�1) Nash equilibrium to a
wasteful equilibrium with �Nash

N becoming order 1.
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7.4 Related Literature

We do not know any literature closely related to our model. As well as the epidemic
and the gossip algorithm topics mentioned in the introduction, and classic applied
probability work on stochastic rumors [5], other loosely related work includes

• Models where agents form networks under conditions where there are costs for
maintaining network edges and benefits from being part of a large network [7].

• Prisoners’ Dilemma games between neighboring agents on a graph [6].

One can add many other topics which are harder to model mathematically, e.g.
diffusion of technological innovations [12] or of ideologies.

Acknowledgements I thank an anonymous referee for careful reading and helpful suggestions.
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A Mathematical Model of Investment Incentives

Vadim Arkin and Alexander Slastnikov

Abstract An investment timing problem which takes into account both taxation
(including tax exemptions) and financing by credit is considered. This problem is
reduced to the optimal stopping of a two-dimensional diffusion process. We give the
solution to the investment timing problem as a function of parameters of the model,
in particular, of the tax holiday duration and interest rate for borrowing. We study
the question whether the higher interest rate for borrowing can be compensated by
tax holidays.

Keywords Investment timing problem • Credit • Real options • Optimal
stopping • Tax holidays • Compensation of interest rate
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1 Introduction

There is an important problem how to attract investments to the real sector of the
economy when credit risks are high. Our work is devoted to the analysis of related
tax mechanisms for such attraction. In economies with increased risks (political,
credit etc.) and other unfavorable factors the following question arises: can tax
benefits provide investor with the same conditions for investment as he would have
in a “standard” economy without any risks and unfavorable factors. In other words,
can tax benefits compensate unfavorable factors?
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In order to compensate risks and other unfavorable factors the following tax
benefits are often used to attract investment: tax holidays, i.e. exemption from tax
during a certain period, a reduction in tax rate, and accelerated depreciation.

It is worth noting that increased credit risks imply increasing interest rates
on credit. In practice, tax holidays are considered as a mechanism which can
compensate all arising risks.

Such a compensation problem was formulated and studied in [3, 4], where the
risk is modelled by an additive term to the discount rate (a “risk premium”). Tax
holidays, depreciation policy and a reduction in profit tax rate were considered as
compensating mechanisms.

In the paper, we study a possibility of applying the tax holidays mechanism (on
the corporate profit tax) for the compensation of high-level interest rates.

Various problems related to the influence of tax holidays on investment decisions,
especially under risk and uncertainty, were studied in a number of papers (see, e.g.
[5, 8, 10]). Potential possibilities of tax holidays as a mechanism for maximization
of the expected discounted tax payments from the created firm were explored in [4].

This paper is organized as follows. Section 2 describes the behavior of an investor
under uncertainty and in a fiscal environment, who is interested in investing into
the project aimed at creating a new firm and faces the investment timing problem.
A solution to this problem (an optimal investment rule) is described in Sect. 3.
In Sect. 4 we set the problem whether the higher interest rate for borrowing can
be compensated by tax holidays. Some conclusions and simulation results are
presented in Sect. 5.

2 The Basic Model

Consider an investment project requiring the creation of a new industrial firm
(enterprise). We assume that, at any moment, a decision-maker (investor) can either
accept the project and proceed with the investment or delay the decision until he
obtains new information regarding its environment (product and resource prices,
product demand, etc.). Thus, the main goal of the decision-maker is to find, using
the available information, a “good” time for investing in the project. Thus, this is an
investment timing problem.

The real options theory is a convenient and adequate tool for modelling the
process of firm creation since it allows us to study the effects connected with a
delay in investment (investment waiting). As in the real options literature, we model
investment timing problem as an optimal stopping problem for present values of the
created firm (see, e.g. [6, 9]).

A creation of an industrial enterprise is usually accompanied by certain tax
benefits (in particular, the new firm is exempted from profit taxes during a certain
period). We take into account in explicit form some peculiarities of a corporate profit
taxation system, including tax exemption. Such an approach was applied by authors
for a detailed model of investment project under taxation in [1, 3, 4].
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Uncertainty in the economic system is modelled by some probability space
.˝;F ;P/ with filtration F D .Ft ; t � 0/. Ft can be interpreted as the observable
information about the system up to the time t .

An infinitely-lived investor faces a problem of choosing a stopping time (w.r.t.
filtration F) � � 0, when to invest in the creation of a new firm producing
some goods. Investment is considered to be instantaneous and irreversible, and an
enterprise begins to produce goods just after the investment is made.

The net price for these goods at time t is �t , and the level of production at time
t � � is ��t . So, p�t D �t�

�
t is the flow of profits generated by the firm at time t � � .

To launch a firm at time � and start production, one needs an investment I� . We
assume that the required investment I� is financed by a credit of the duration L and
the interest rate �.

Both the flow of profits p�t and the required investment I� are considered as a
stochastic processes on the given probability space .˝;F ;P/.

The principal repayment schedule (without interest repayment) is described by
the flow of repayments such that C �

�Ct � 0 W R L
0
C �
�Ct dt D I� , and C �

�Ct D 0 for
t > L.

The total repayments (included interest) that the firm pays for borrowing,
discounted to the investment time � are :

K� D K�.�/ D
Z L

0

.C �
�Ct C �R��Ct /e��tdt D F� C �

�
.I� � F�/; (1)

where � is the discount rate, R��Ct D
Z L

t

C �
�Cs ds is a remaining debt at time � C t ,

and F� D
Z L

0

C �
�Ct e��tdt .

Further, we assume that the total credit repayments K�.�/ increase in the
interest rate �. It is a natural economic assumption which allows us to avoid “bad”
repayment schemes.

The created firm is granted with tax holidays, during which it does not pay the
corporate profit tax. Let 
 be a profit tax rate (tax burden), and � be the duration of
the tax holidays.

Interest payments are included in profit tax base, but the maximal value of
deductible interest rates is bounded by the limiting value �b .

The expected net present value (NPV) of the firm, discounted to the investment
time � is:

V� D E

0

@

�Z

0

p��Ct e��tdt C
max.�;L/Z

�

Œp��Ct � 
.p��Ct � N�R��Ct /�e��t dt

C
1Z

max.�;L/

.1 � 
/p��Ct e��tdt

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

F�

1

C
A ; (2)
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where N� D min.�; �b/. This formula uses the existing principle of full-loss offset
(loss carry forward).

The investor solves the following investment timing problem : to find such a
stopping time � (investment rule), that maximizes the NPV from the future firm:

E .V� �K�/ e
��� ! max

�
; (3)

where the maximum is taken over all possible stopping times � (w.r.t. filtration F),
and V� , K� are defined in (1)–(2).

The starting point of this scheme is the known McDonald-Siegel model [9],
which was the base for the real option theory (see, e.g., [6, 13]). More complicated
variants of this scheme, which take into account a detailed structure of cash-flows
as well as a number of different taxes one can find in [3].

3 Solution to the Investment Timing Problem

Main Assumptions

Let .wit ; t � 0/; i D 1; 2; 3 be independent standard Wiener processes on the
stochastic basis .˝;F ;F;P/. These processes are thought as underlying processes
modelling economic stochastics. So, we assume that �-field Ft is generated by
those processes up to t , i.e. Ft D �f.w1s ;w2s ;w3s /; s � tg.

Remind that the flow of profits has the following representation p�t D �t�
�
t ,

t � � , and specify its components.
The process of net prices �t is geometric Brownian motion :

d�t D �t .˛1dt C �1dw1t /; t � 0: (4)

The level of production �u
t is described by a family of non-negative diffusion

processes, homogeneous in u � 0, defined as the solution (in strong sense) by the
stochastic equations

�u
t D � C

tZ

u

a.s�u; �u
s / ds C

tZ

u

Œb1.s�u; �u
s / dw1s C b2.s�u; �u

s / dw2s �; t � u; (5)

with given functions a.t; x/; bi .t; x/; i D 1; 2, which satisfy the standard conditions
for the existence of the strongly unique solution – at most linear growth and
Lipschitz continuity (see, e.g., [11, Ch.5]).

The fluctuations ��t reflects the uncertainty, which can be generated by the firm
created at time � and demand on its production, and are driven by Wiener processes
w1t (related to prices) and w2t . Obviously, p�� D ��� for any � .
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The cost of the required investment It is also described by the geometric
Brownian motion as follows

dIt D It .˛2 dt C �21 dw1t C �22 dw3t /; t � 0; (6)

where �21 � 0; �22 > 0. The appearance of the process w3t in (6) means that the
cost of investment It is correlated with the net price �t .

The flow of the principal repayment at the time t (for the firm created at the
time �) will be represented as:

C �
t D I�ct�� ; � � t � � C L;

where .cs; 0� s�L/ is the “repayment density” (per unit of investment), char-
acterizing a repayment schedule, i.e. non-negative deterministic function such that
Z L

0

cs ds D 1.

Note that repayment density can depend, in general, on the interest rate �, i.e.
ct D ct .�/.

Such a scheme covers various schedules of credit repayment, accepted in practice
(more exactly, their variants in continuous time). For example, fixed principal
repayment can be described by the uniform density ct D 1=L, while the well-known
annuity scheme (fixed payments for a principal plus interest during the repayment
period) corresponds to exponential density ct D �e�t=.e�L � 1/ (0 � t � L).

Derivation of the Present Value

The above assumptions allow us to obtain formulas for the present value of the
future firm.

At first we need the following assertion about the process p�t D �t�
�
t .

Lemma 1. Let � be a stopping time. Then for all t � 0

E.p��Ct jF� / D ��Bt ; where Bt D E.�t �0t /=�0: (7)

Proof. From the Dynkin–Hunt theorem follows that for any stopping time � the
processes bwit D wi�Ct � wi� ; t � 0 .i D 1; 2/ are Wiener processes independent
on F� .

From representation (5) one can see that

���Ct D � C
tZ

0

a.s; ���Cs/ ds C
tZ

0

Œb1.s; �
�
�Cs/ dw1�Cs C b2.s; �

�
�Cs/ dw2�Cs�

D � C
tZ

0

a.s; ���Cs/ ds C
tZ

0

Œb1.s; �
�
�Cs/ dbw1s C b2.s; �

�
�Cs/ dbw2s �:
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This implies that for any stopping time � the process ���Ct coincides (a.s.) with
the unique (in the strong sense) solution to the stochastic equation

�t D � C
tZ

0

a.s; �s/ ds C
tZ

0

Œb1.s; �s/ dbw
1
s C b2.s; �s/ dbw

2
s �;

which is independent on F� .
Then, p��Ct D ��˘

�
�Ct , where ˘�

�Ct D expf.˛1 � 1
2
�21 /t C �1bw1t g���Ct is

independent on F� .
Moreover,˘�

tC� has the same distribution as expf.˛1 � 1
2
�21 /t C �1bwt g�t , i.e. as

.�t=�0/�
0
t . Therefore, E.p�t jF� / D ��E˘�

tC� D ��E.�t �0t /=�0. ut
Let us define the following function :

B.t/ D
1Z

t

Bse
��s ds; t � 0; (8)

where Bs are defined in (7), and assume that B.0/ < 1.
Using Lemma 1 one can derive the following formulae for the present value (2):

V� D E

0

@

�Z

0

p��Ct e��tdt C .1�
/
1Z

�

p��Ct e��tdt C 
 N�
max.�;L/Z

�

R��Ct e��tdt

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
F�

1

A

D �� ŒB.0/�
B.�/�C
 N�I�D.�/; (9)

where

D.�/D
max.�;L/Z

�

0

@

LZ

t

csds

1

Ae��tdt: (10)

Optimal Investment Timing

The above assumptions and formulas show that investment timing problem (3) is
reduced to an optimal stopping problem for bivariate geometric Brownian motion
and linear reward function. Indeed,

K� D I� ŒF C �.1�F /=�� D I�K.�/; (11)

V� �K� D �� ŒB.0/ � 
B.�/� � I�
�
K.�/� 
 N�D.�/	 ; (12)
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where

F D
Z L

0

ct e
��tdt; K.�/ D F C �.1�F /=�: (13)

Let ˇ be a positive root of the quadratic equation

1

2
Q�2ˇ.ˇ � 1/C .˛1 � ˛2/ˇ � .� � ˛2/ D 0; (14)

where Q�2 D .�1 � �21/
2 C �222 > 0 is a “total” volatility of investment project. It is

easy to see that ˇ > 1 whenever � > max.˛1; ˛2/.
The following theorem characterizes completely an optimal investment time.

Theorem 1. Let the processes of profits and required investment be described by
relations (4)–(6). Assume that � > max.˛1; ˛2/ and the following condition is
satisfied:

˛1 � 1

2
�21 � ˛2 � 1

2
.�221 C �222/:

Then the optimal investment time for the problem (3) is

�� D minft � 0 W �t � ��Itg; (15)

where

�� D ��.�; �/ D ˇ

ˇ � 1

 K.�/�


N�D.�/
B.0/�
B.�/ ; (16)

and B.
/; D.
/; K.
/ are defined at (8), (10), (13) respectively.

Formulas of the type (15)–(16) for the difference of two geometric Brownian
motions was first derived, probably, by McDonald and Siegel [9]. But rigorous proof
and precise conditions for its validity appeared a decade later in [7]. It can also be
immediately deduced from general results on optimal stopping for two-dimensional
geometric Brownian motion and homogeneous reward function (e.g., [2]).

In order to avoid the “trivial” investment time �� D 0, we will further suppose
that the initial values of the processes satisfy the relation �0 < ��I0.

The optimal investment level �� characterizes the time when the investor accepts
the project and makes the investment. A decrease in �� implies an earlier investment
time, and, on the contrary, an increase in �� leads to a delayed investment.

Knowing the optimal investment rule, one can derive the expected net present
value N � D E .V���K��/ e����

under the optimal behavior of the investor. Using
the standard technique for boundary value problems (Feynman-Kac formula – see,
e.g., [11, 12, Ch.9]), or the results on homogeneous functionals of two-dimensional
geometric Brownian motion ([2]), one can obtain the following formula.
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Corollary 1. Under the assumptions of Theorem 1

N � D N �.�; �/ D C ŒB.0/ � 
B.�/�ˇ �FC�.1�F /=��
 N�D.�/	1�ˇ ; (17)

where C D .�0=ˇ/
ˇŒI0=.ˇ � 1/�1�ˇ .

4 Compensation of Interest Rates by Tax Holidays

Now we formulate the problem of compensating a higher interest rate by tax
exemptions.

The question is: can one choose such a duration of tax holidays � that given the
index M (related to the investment project) under a higher interest rate � will be
greater (not less) than those index under “the reference” interest rate �0 and without
the tax holidays:

M .�; �/ � M .0; �0/ for some � � 0:

We consider the following indices:

1. Optimal investment level ��, that defines the time when an investor accepts the
project and makes the investment;

2. Optimal NPV of the investor N �.

As the reference interest rate we take the limit rate �0 D �b , which is deducted
in profit tax base.

The assumption about an increasing (in interest rate) total payments on credit
and explicit formulas (16)–(17) imply that the above indices are monotone in �.
Namely, �� increases, and N � decreases. Therefore, it makes sense to consider a
compensation problem only for � > �0.

Compensation in Terms of Optimal Investment Level

Let us begin with an optimal investment level �� D ��.�; �/.
We say that an interest rate � can be compensated in terms of optimal investment

level by tax holidays, if ��.�; �/ � ��.0; �0/ for some duration of tax holidays �,
i.e. in other words, if for some duration of tax holidays �

��.�; �/ � ��.0; �0/: (18)

Since a decrease of �� implies earlier investment time (for any random event),
then a possibility to compensate in terms of an optimal investment level can be
interpreted as a possibility to increase investment activity in the real sector. This
situation is attractive for the State.
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Further, we assume that profits parameters Bt , defined in (8), are such that the
function Bt is differentiable and increasing in t 2 .0; L/. This means that the
expected profit of the firm grows in time. We suppose also that the repayment density
ct is continuous in t 2 .0; L/. These assumptions allow us to avoid some unessential
technical difficulties.

The following result is the criterion for the compensation in terms of an optimal
investment level.

Theorem 2. The interest rate � can be compensated in terms of an optimal
investment level by tax holidays if and only if � � �1, where �1 is a unique root of
the equation

.1 � 
/K.�/ D K.�0/ � 
�0.1 � F0/=�; (19)

andF0 D
Z L

0

ct .�0/e
��tdt corresponds to the repayment schedule with the interest

rate �0.

In other words, there is a “critical” value of interest rate �1 such that if interest
rate is greater than this value, it can not be compensated in terms of optimal
investment level by any tax holidays. Note that the “limiting” interest rate � D �1
can be compensated only by tax holidays with infinite duration.

Proof. If � � L then D.�/D0, and (16) implies that ��D ˇ

ˇ � 1 
 K.�/

B.0/�
B.�/
decreases in �.

If � < L let us denote

rt D
Z L

t

csds; bB.�/ D B.0/�
B.�/; bD.�/ D K�
 N�D.�/: (20)

From (16) we have

bB2.�/
@��

@�
D ˇ

ˇ�1
h
�
 N�D0.�/bB.�/CbD.�/
B 0.�/

i
D 
e��� ˇ

ˇ�1Q.�/; (21)

whereQ.�/ D N�r�bB.�/� bD.�/B�:
As one can see from (21), the optimal investment level is not, in general,

monotone in �. The sign of its derivative is completely defined by the function
Q.�/. Then

Q0.�/ D N�
h
r 0
�
bB.�/C r�bB

0.�/
i

�
h
bD.�/B 0

� CB�bD
0.�/

i

D N�
h
�c�bB.�/C r�
B�e

���
i

�
h
bD.�/B 0

� C 
 N�B�r�e���
i

D �N�c�bB.�/� B 0
�
bD.�/ � 0;

since bB.�/�.1�
/B.0/>0; bD.�/ �
LR

�

ŒctC�.1�
/rt �e��t dt � 0; B 0
� � 0.
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Hence, if
@��

@�
� 0 for some � D �0, then

@��

@�
� 0 for all � > �0. So, the

function �� is either decreasing or having a unique maximum in �.
Therefore, applying formula (16) for an optimal investment level and the

inequality ��.0; �/ > ��.0; �0/ for � > �0, we have that relation (18) holds if
and only if ��.1; �/ � ��.0; �0/, i.e.

ˇ

ˇ � 1 
 K.�/
B.0/

� ˇ

ˇ � 1 
 K.�0/� 
�0D.0/

.1 � 
/B.0/ ; (22)

where

D.0/D
Z L

0

�Z L

t

csds

�

e��tdt D
�

1 �
Z L

0

ct e
��tdt

�

=� D .1 � F0/=�

and ct D ct .�0/ corresponds to repayment schedule with interest rate �0.
Now, the statement of Theorem 2 follows from (22). ut
In most cases the “critical” value �1 can be derived explicitly.

Corollary 2. Suppose that the schedule of the principal repayments does not
depend on the interest rate. Then the interest rate � can be compensated in terms of
optimal investment level by tax holidays if and only if � � �1, where

�1 D �0 C �



1 � 
 
 F

1� F
; (23)

and F is defined in (13).

Proof. The corollary immediately follows from (19) and formula for K.�/

(see (13)). ut

Compensation in Terms of Optimal Investor’s NPV

Now let us consider an optimal investor’s NPV N � D N �.�; �/.
We say that interest rate � can be compensated in terms of optimal investor’s

NPV by tax holidays, if for some duration of tax holidays �

N �.�; �/ � N �.0; �0/: (24)

An increase inN � implies a growth of expected investor’s revenue, therefore the
possibility to compensate in terms of optimal NPV is attractive for the investor.

The following result is similar to Theorem 2 above.



A Mathematical Model of Investment Incentives 39

Theorem 3. The interest rate � can be compensated in terms of optimal investor’s
NPV by tax holidays if and only if � � �2, where �2 is a unique root of the equation

.1 � 
/ˇ=.ˇ�1/K.�/ D K.�0/� 
�0.1 � F0/=�; (25)

F0 D
Z L

0

ct .�0/e
��tdt corresponds to the repayment schedule with the interest

rate �0, and ˇ is a positive root of the equation (14).

Proof. The proof of Theorem 3 follows the general scheme of the proof of
Theorem 2.

If � � L thenD.�/ D 0, and N � increases in � (see (17)).
Using formula (17) and the notations from (20) we have

C�1 @N �

@�
D bBˇ�1.�/bD�ˇ.�/

h
ˇbB 0.�/bD.�/C .1 � ˇ/bB.�/bD0.�/

i

D bBˇ�1.�/bD�ˇ.�/
h

ˇe���B�bD.�/C .1� ˇ/
 N�e���r�bB.�/

i

D 
e���bBˇ�1.�/bD�ˇ.�/S.�/;

where S.�/ D ˇB�bD.�/� .ˇ � 1/bB.�/ N�r� .
Then we have

S 0.�/ D ˇB 0
�
bD.�/C ˇB�
 N�e���r� C .ˇ � 1/bB.�/ N�c� � .ˇ � 1/ N�r�
e���B�

D ˇB 0
�
bD.�/C .ˇ � 1/ N�c�bB.�/C 
 N�r�e���B� � 0:

Using arguments, similar to those in the proof of Theorem 2, we get that the
functionN � is either increasing or having a unique minimum (in �).

Therefore, like in the above case, one can conclude that relation (24) holds if and
only if N �.1; �/ � N �.0; �0/, i.e.

CBˇ.0/K1�ˇ.�/ � C.1 � 
/ˇBˇ.0/ŒK.�0/� 
�0D.0/�
1�ˇ; (26)

where D.0/ D .1 � F0/=� corresponds to the repayment schedule with the interest
rate �0. This implies the statement of Theorem 3. ut

Similarly to the previous case of a compensation in terms of optimal investment
level, the “critical” value �2 can be derived explicitly when the principal repayments
do not depend on the interest rate.

Corollary 3. Suppose that the schedule of the principal repayments does not
depend on the interest rate. Then the interest rate � can be compensated in terms of
optimal investor’s NPV by tax holidays if and only if � � �2, where

�2 D �0.1 � 
/�1=.ˇ�1/ C �
F

1 � F

�
.1 � 
/�ˇ=.ˇ�1/ � 1

	
: (27)
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5 Concluding Remarks

1. It is interest to compare the obtained “critical” interest rates �1 and �2 which
give limits for the compensation in relevant terms.
As Theorems 2 and 3 show, the bound �1 is a root of the equation

K.�/ D K.�0/� 
�0D.0/

1 � 

;

and �2 is a root of the equation

K.�/ D K.�0/ � 
�0D.0/
.1 � 
/ˇ=.ˇ�1/ :

Since the functionK.�/ increases, then �2 > �1.
This fact means that interest rates � < �1 can be compensated by tax holidays
both in terms of optimal investment level and in terms of investor’s NPV. The
opposite is not valid, in general, i.e. a compensation in terms of NPV does not
always imply a compensation in terms of the investment level, and therefore a
growth of investment activity.

2. Note, that the critical bound �2 for the compensation in terms of investor’s NPV
depends (in contrast to the bound �1) on the parameters of the project but only
through the value ˇ (see (14)). As a consequence, if the volatility of the project �
increases, then the bound �2 of the compensation in terms of NPV will increase
also.

3. Usually, it is assumed that the reduction in the refinancing (basic) rate �ref is
a positive factor for a revival of investment activity in the real sector. But this
differs from the conclusions of our model.
Indeed, if tax holidays are absent (� D 0), then an optimal investment level

�� D ��.�ref/ D ˇ

ˇ � 1 
 K.�/� 1:8
�refD.0/

B.0/.1�
/
decreases in �ref. So, �� raises and, hence, investment activity (earlier investor
entry) falls when �ref diminishes.
Similarly, the optimal investor’s NPV increases in �ref, and therefore decreasing
refinancing rate �ref de-stimulates investor.
As calculations show when the refinancing rate �ref falls to two times (from the
current value of 8 %) the optimal investment level grows and optimal investor’s
NPV declines up to 20 %.

4. We performed a number of calculations for a “reasonable” (for Russian econ-
omy) data range. Namely, the typical parameters were as follows:

tax burden 
 D 40%,
discount rate � D 10%,
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credits with period L D 10 (years) and fixed-principal repayment schedule,
reference interest rate �0 D 1:8 � (refinancing rate of the CB of Russia)
D 14.85 %.

Typical characteristics of profits and investment cost gave us the “aggregated”
parameter ˇ in the interval between 3 and 8.

Then, the received estimations for “critical” compensation bounds were the
following: �1 � 25–30 %, �2 � 30–40 %. These values seem to be not extremely
high (especially, for the current economic situation in Russia).
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Abstract Multivariate risk analysis is concerned with extreme observations. If the
underlying distribution has a unimodal density then both the decay rate of the
tails and the asymptotic shape of the level sets of the density are of importance
for the dependence structure of extreme observations. For heavy-tailed densities,
the sample clouds converge in distribution to a Poisson point process with a
homogeneous intensity. The asymptotic shape of the level sets of the density is
the common shape of the level sets of the intensity. For light-tailed densities, the
asymptotic shape of the level sets of the density is the limit shape of the sample
clouds. This paper investigates how the shape changes as the rate of decrease of
the tails is varied while the copula of the distribution is preserved. Four cases are
treated: a change from light tails to light tails, from heavy to heavy, heavy to light
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1 Introduction

Sample clouds evoke densities rather than distribution functions. Here a sample
cloud is a finite set of independent observations from a multivariate distribution,
treated as a geometric object, such as the set of points on a computer screen for a
bivariate sample. Shape is important, the precise scale not.

The classic models such as the multivariate Gaussian distribution and the Student
t distributions have continuous unimodal densities, provided the distribution is non-
degenerate. These densities are determined by a bounded set, the ellipsoid which
describes the shape of the level sets of the density, and by the rate of decrease. In
risk analysis one is interested in extreme observations, and it is the asymptotic shape
of the level sets and the rate of decrease of the tails of the density that are important.
Let us illustrate these two components with a few simple examples.

A homothetic density has all level sets of the same shape, scaled copies of some
given set. It is completely determined by the set and by the density generator which
determines the decay along any ray. Altering the density on compact sets does
not affect the asymptotic behaviour. So assume that the density is asymptotic to
a homothetic density and impose conditions on the rate of decrease along rays –
regular variation, or exponential decay – to ensure a simple asymptotic description
of the tails, and also of the shape of large sample clouds (the two limits are related
as will be explained later). Within this rather restricted setting of multivariate
probability distributions with continuous unimodal densities and level sets with
limit shape, we have a simple theory to describe extremes and say something about
the asymptotic dependence structure. For a Student t density with spherical level
sets the sample clouds, properly scaled, converge to a Poisson point process whose
intensity has spherical level sets and decreases like a negative power along rays. For
the standard Gaussian density the sample clouds converge onto a ball.

For heavy-tailed dfsF , the scaled sample clouds may converge to a Poisson point
process N with mean measure � which is homogeneous:

�.rA/ D �.A/=r�; r > 0 (1)

for all Borel sets A. The measure � is infinite, but the complement of any centered
ball has finite mass. If � has a continuous positive density h then by homogeneity all
level sets fh > cg have the same shape. They are scaled copies of a bounded open
star-shaped set D which contains the origin and which has a continuous boundary.
Let D denote the class of such sets. The function h is the intensity of the point
process N . It is completely determined by the set fh > 1g 2 D and a parameter
� > 0 since by homogeneity of � it satisfies h.rw/ D h.w/=r�Cd . The condition
� > 0 ensures that h is integrable over the complement of the open unit ball B ,
and hence N almost surely has finitely many points on the complement of centered
balls. A continuous density f whose level sets ff > cg asymptotically have shape
D will lie in the domain of attraction of the measure � with density h if on any ray it
is asymptotic to cL.r/=r�Cd for some slowly varying function L where c depends
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on the direction. The set of such densities is denoted by F�. The densities f 2 F�

may be regarded as generalizations of the spherically symmetric Student t density
f� with � degrees of freedom. The asymptotic power decrease c�=r�Cd of f� is
replaced by a regularly varying function cL.r/=r�Cd ; the spherical level sets are
replaced by level sets which asymptotically have the shape D for some D 2 D . In
risk management both the shapeD and the parameter � play a role.

For light-tailed densities there is a similar extended model. The central place is
taken by the standard Gaussian density. Here too there is a one-parameter family,
the spherically symmetric Weibull-type densities g�.x/ D c�e

�r� =� , r D kxk, for
� > 0. One can now introduce the class G� of continuous densities g asymptotic
to a homothetic function whose level sets are scaled copies of a set D 2 D , and
where g decreases like ce� .r/ along rays, with  .r/ a continuous function which
varies regularly with exponent � . The tails of g decrease rapidly. That implies that
sample clouds tend to have a definite shape. For g 2 G� the sample clouds, properly
scaled, converge onto the closure of the set D. In general, one may consider light-
tailed distributions whose scaled sample clouds converge onto a compact set E .
The set E then is star-shaped, but its boundary need not be continuous. The set E
may even have empty interior. For light-tailed densities the limit shape D is quite
robust. If we multiply the standard Gaussian density e�r2=2=2� by a function like
c.1 C x6/er sinx2y2 the new function is integrable and will be a probability density
for an appropriate choice of c > 0. The auxiliary factor fluctuates wildly, but the
new density will have level sets which are asymptotically circular.

The theory so far is geometric. It does not depend on the coordinates. In the
light-tailed case the asymptotics are described by a compact star-shaped set E; in
the heavy-tailed case by a homogeneous measure �. In both cases there is a class
of continuous densities whose asymptotic behaviour is determined by a bounded
open star-shaped set D 2 D , and a positive parameter � or � describing the rate
of decrease of the tails. The parameter determines the severity of the extremes;
the shape tells us where these extremes are more likely to occur. For heavy tails
it is the parameter � which is of greater interest; for light tails the shape becomes
increasingly important since new extremes are likely to occur close to the boundary.

Now introduce coordinates. Points in the sample clouds are d -tuples of random
variables, Z D .Z1; : : : ; Zd /. By deleting some of the coordinates the sample is
projected onto the lower dimensional space spanned by the remaining coordinates.
If we only retain the i th coordinate we have a one-dimensional sample cloud. In the
light-tailed situation this univariate cloud converges onto the set Ei , the projection
of E onto the i th coordinate. The set Ei is an interval Ei D Œ�c�

i ; c
C
i � with ci̇ �

0 since E is star-shaped. The d -dimensional coordinate box Œ�c�; cC� fits nicely
around the limit set E . If E is the closure of a set D 2 D , the 2d constants ci̇ are
strictly positive. If desired, one may then scale the sample clouds such that cC

d D 1.
In the heavy-tailed case the univariate sample clouds converge to a one-dimensional
Poisson point process on Rnf0g. The mean measure of this point process is the
marginal �i of the homogeneous measure �. By the homogeneity property (1),

�i .�1;�t/ D a�
i =t

�; �i .t;1/ D aC
i =t

�; t > 0:
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Here too the balance constants are strictly positive if � has a continuous positive
density, and one may choose the scaling constants for the sample clouds such that
aC
d D 1. The balance constants ai̇ reflect the balance in the upper and lower tails

of the margins fi of the underlying density f 2 F�. There is a slowly varying
function L.t/ such that fi .˙t/ � ai̇ L.t/=t

�C1, i D 1; : : : ; d , for t ! 1.
If the balance constants ci̇ and ai̇ are positive then by the use of simple

coordinatewise transformations one may achieve that these constants are one. This
may be done with semilinear transformations of the form t 7! pt C qjt j with
jqj < p. The limit set now has symmetric and equal projections Ei D Œ�1; 1�;
the homogeneous measure has symmetric and equal margins with tails equal to
1=t�. One may go a step further and transform the margins of the light-tailed
vector to be standard Gaussian, and those of the heavy-tailed vector to be standard
Cauchy. The effect on the limit set and the homogenous limit measure is described
in Theorems 1 and 3 below. A vector whose components are independent with the
light-tailed Weibull-type density in (9) has as limit shape the closed unit ball in
lp-norm. The transformed density is standard normal. Its level sets are Euclidean
balls. For heavy tails there is a simple formula linking the points of the limit Poisson
point process of the transformed vectors to the points W of the original Poisson point
process. The new point process has componentsW �

i 1ŒWi�0� � jWi j�1ŒWi<0�:
Since we use coordinatewise transformations, the copula of the underlying

distribution is not affected. Coordinatewise transformations are widely used in
multivariate extreme value theory (EVT), and for heavy tails the results agree with
EVT where it is standard usage to assume that the vectors have positive components
with Fréchet margins e�1=t� with parameter � D 1.

The main focus of the paper however is on continuous densities whose level sets
have asymptotic shape D 2 D , in particular densities in F� and G� . The shape
D may be regarded as a geometric expression of the asymptotic dependence. It is
natural to ask how the copula changes as one varies the exponent � or � or if one
goes from heavy tails to light tails or vice versa, but retains the shape D of the
level sets. Since we find it difficult to describe “change of the copula” we shall
investigate the dual problem: “How does the shape of the level sets change if one
keeps the copula constant but varies the tail index of f ?”

In answering this question we compare two densities with the same copula but
with different rates of decrease in the tails. What happens to the asymptotic shape of
the level sets and to the sample clouds if we change the margins? We distinguish four
cases: (1) changing from light-tailed margins to light-tailed ones; (2) from heavy to
heavy; (3) from heavy to light; and (4) from light to heavy tails. The copula is kept
constant. The analysis is presented in Sects. 3–6.

In the next section we give precise definitions, review some results on the limit
behaviour of sample clouds, and introduce meta transformations. The paper ends
with our conclusions.
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1.1 Notation

Two positive continuous functions f and g are asymptotic and we write f � g

if g.zn/=f .zn/ ! 1 for every sequence zn for which kznk ! 1. The functions
are weakly asymptotic and we write f 
 g if there exists a constant M > 1 such
that f=M � g � Mf . We write B for the open unit ball in the Euclidean norm
kzk, and @A for the boundary of the set A. Thus @B is the unit sphere. R� denotes
the set of continuous functions f defined on Œ0;1/ which vary regularly in infinity
with exponent � , i.e. f is positive eventually and f .tx/=f .t/ ! x� for t ! 1
and x > 0. The class Dd of bounded open star-shaped sets in R

d and the set F�

of continuous positive densities asymptotic to a homothetic function f�.nD/ with
f� 2 R�.�Cd/ andD 2 Dd will be defined in Sect. 2.

2 Preliminaries

This section contains definitions of certain concepts: star-shaped set and its gauge
function, sample cloud, homothetic function and its generator, homogeneous mea-
sure, von Mises function and its scale function, and meta density. We briefly
review the relation between the asymptotic behaviour of multivariate densities and
of sample clouds, convergence in distribution and convergence onto a set. Meta
densities will play a basic role in our investigation on the relation between shape
(of level sets and sample clouds) and copulas. More detailed information may be
found in [1] and [2].

2.1 Definitions and Basics

A set E in R
d is star-shaped if it contains the origin and if x 2 E implies rx 2 E

for 0 < r < 1. We define D D Dd to be the set of all bounded open star-shaped sets
D in R

d whose boundary is continuous. With such a set D we associate the gauge
function nD . This is the unique function which satisfies the two conditions

D D fnD < 1g; nD.rx/ D rnD.x/; r � 0: (2)

If D is convex and �D D D then the gauge function is a norm and D the
open unit ball in this norm. A bounded open star-shaped set D has a continuous
boundary @D if and only if the gauge function is continuous. A continuous positive
function f0 on R

d is homothetic with shape set D 2 D if the level sets ff0 > cg are
scaled copies of D for 0 < c < supf0. One may use the gauge function (like the
Euclidean norm kzk) to write down explicit expressions for homothetic functions:
f0.z/ D f�.nD.z// for z 2 R

d . The function f� is called the generator of the
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function f0. We shall always assume that f� is a continuous, strictly decreasing,
positive function on Œ0;1/. This implies that f0 is continuous and positive on R

d .
In order to obtain interesting asymptotics we assume that f� varies regularly with
exponent �� � d with � > 0 (to ensure a finite integral) or that f� varies rapidly.

Write F� for the set of all continuous densities f asymptotic to f�.nD/ with
f� 2 R���d and D 2 D . Such a density has heavy tails. Its asymptotics are
described by a function h W Rdnf0g ! .0;1/ of the form

h.w/ D 1=nD.w/�Cd D �.!/=r�Cd ; r D kwk > 0; ! D w=r: (3)

Here � is a continuous positive function on the unit sphere @B . The relation
between � and the boundary @D is simple:

r! 2 @D ” �.!/ D 1=r�Cd :

The function h is the intensity of a Poison point process N with mean measure �.
This measure � is a Radon measure on R

dnf0g. It is homogeneous with exponent
��, see (1). If such a homogeneous measure � has a continuous positive density, the
density has the form (3). The homogeneity condition (1) implies that the margins
�i , i D 1; : : : ; d , are Radon measures on R with density c�

i �=jt j�C1 for t < 0 and
cC
i �=t

�C1 for t > 0. (Apply (1) to A D fxi � �1g or to A D fxi � 1g.) Let
f 2 F�. Then (cf. Proposition 3)

ht .w/ WD f .tw/
f�.t/

! h.w/ D 1

nD.w/�Cd ; t ! 1; w ¤ 0: (4)

Pointwise convergence follows from regular variation of f�. An application of
Potter’s bounds (see [6]) yields L1 convergence on the complement of centered
balls. Choose tn such that tdn f�.tn/ D 1=n. Then htn is the density of a measure
�tn , of mass n. This measure is the mean measure of the sample cloud

Nn D fZ1=tn; : : : ;Zn=tng; (5)

where Z1;Z2; : : : are independent observations from the density f . By definition a
sample cloud is a scaled random sample. The L1 convergence in (4) on the com-
plement of centered balls implies weak convergence �tn ! � on the complement
of centered balls and also convergence of the sample clouds: Nn)N weakly on
the complement of centered balls. Here N is the Poisson point process with mean
measure � on R

dnf0g and ) denotes convergence in distribution.
If the generator f� varies rapidly then the asymptotics are different. Again let

Z1; Z2; : : : be independent observations from a density f asymptotic to f�.nD/.
Then ht .w/ WD f .tw/=f�.t/ tends to 1 uniformly on compact sets in D and tends
to zero uniformly on the complement of any open set U containing the closure of
D. This convergence to zero on U c also holds in L1. Hence the measures �t with
density ht satisfy �t .p C �B/ ! 1, t ! 1, for each point p in the closure of
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D and all � > 0, and �t .U c/ ! 0. Choose tn such that �tn.R
d / D n. Then �tn is

the mean measure of the sample cloud Nn in (5), and these sample clouds converge
onto the compact set E D cl.D/: For p 2 E , � > 0, U any open set containing E ,
and any integerm � 1

PfNn.p C �B/ � mg ! 1; PfNn.U c/ D 0g ! 1:

Typical heavy-tailed densities in F� are multivariate Student densities with �
degrees of freedom and spherical, elliptical or cubical level sets. In the light-tailed
case one may think of generator functions of the form

f�.t/ D e�'.t/ D atbe�pt� ; t � t0; a; p; � > 0:

These functions with Weibull-type tails vary rapidly. They also have the property
that the exponent ' varies regularly with exponent � > 0, and that f� is a von Mises
function with scale function a.t/ D 1=' 0.t/:

f� D e�'; ' 2 C2Œ0;1/; ' 0.t/ > 0; a0.t/ ! 0; t ! 1: (6)

Von Mises functions have simple exponential asymptotic behaviour (see e.g. [9]):

f�.t C a.t/v/=f�.t/ ! e�v; v 2 R; t ! 1: (7)

Convergence in (7) holds in L1 on halflines Œc;1/ for all c 2 R. The von Mises
condition for a df F to lie in the maximum domain attraction of the Gumbel
distribution is .1 � F.t//F 00.t/=.F 0.t//2 ! �1 for t ! 1. This gives (6) for
' D � log.1 � F /.

2.2 Meta Distributions

It is possible to construct a multivariate df G with Gaussian margins and the copula
of a heavy-tailed multivariate elliptical Student t distribution with df F .

For any two continuous strictly increasing dfs F0 and G0 on R there exists a
unique increasing transformation K0 such that G0 D F0 ı K0. Obviously we have
K0 D F�1

0 ıG0. Let the vector Z D .Z1; : : : ; Zd / have df F with continuous strictly
increasing margins Fi , and let Gi be continuous strictly increasing univariate dfs.
Write G D F ıK , whereK is the coordinatewise increasing transformation

K W x 7! z D .K1.x1/; : : : ; Kd .xd //; Ki D F�1
i ıGi ; i D 1; : : : ; d:

Then G is the meta distribution with margins Gi based on the df F . The
transformationK is called the meta transformation. If X has df G then Z D K.X/
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has df F . The distributions F and G have the same copula. In most of our
applications the margins have continuous positive densities.

Proposition 1. If F has a continuous strictly positive density f with continuous
margins fi , and if the univariate dfs G1; : : : ; Gd have continuous positive densities
gi , then the meta df G D F ı K with margins Gi based on F has a continuous
strictly positive density g. Moreover,

g.x1; : : : ; xd /

g1.x1/ 
 
 
gd .xd / D f .z1; : : : ; zd /

f1.z1/ 
 
 
fd .zd / ; z D K.x/ 2 R
d : (8)

For the proof of this result and more information on meta distributions we refer
to [2].

We shall use the notation F and f for the original df and its density and denote
the margins by Fi and fi . The meta df G based on F is specified by its marginsGi .

We can now become concrete. Define Z to have df F with density f asymptotic
to f�.nD/ for a set D 2 D , where the generator f� varies regularly or rapidly.
Choose a continuous symmetric unimodal positive density g0 with tails which vary
regularly or rapidly. Construct the meta density g with margins g0 based on f . Then
f and g have the same copula. What is the asymptotic shape of the level sets of g?
What is the asymptotic behaviour of the sample clouds from the density g?

3 Light Tails to Light Tails

For a multivariate normal vector with independent components, the level sets of the
density are balls. If the margins have a Laplace density, the level sets are tetrahedra.
For symmetric Weibull-type margins

ce�jt jp=p; c D p1�1=p=2� .1=p/; p > 0; t 2 R; (9)

the level sets are open balls in `p. Power transformations J 
 for 
 > 0 are the
coordinatewise transformations

J 
 W x 7! z; zi D x


i 1Œxi�0� � jxi j
 1Œxi<0�: (10)

They form a group: J ˛J ˇ D J ˛ˇ and the inverse of J 
 is J 1=
 . Moreover, they
map the unit ball in `q norm into a unit ball in `p norm with p D q=
 . Thus we
have J 
 .Bq/ D Bq=
 where Bp denotes the open unit ball in `p since J 
x 2 Bp
precisely if .jx1j
 /pC
 
 
C.jxd j
 /p < 1, i.e. precisely if x 2 B
p . Since vectors with
independent components have the same copula, the distributions above are linked by
meta transformationsK D .K0; : : : ; K0/. TheK are no power transformations. The
square of an exponential variable is not one-sided normal. Power transformations do
describe the asymptotic relation between level sets of light-tailed densities though.
We need a lemma to link the tail behaviour of the marginal densities and dfs.
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Lemma 1. Let e��.s/ D R1
s e� .t/dt for  2 R� , � > 0. There exists s0 > 1 such

that

 .s/ � log.2s/ � �.s/ � maxf .t/ j s � t � s C 1g; s � s0:

Proof. The second inequality is obvious. For the first one, write

Z 1

s

e� .t/dt D se� .s/
Z 1

1

e�. .rs/� .s//dr;

and observe that the Potter bounds (see [6]) yield an s1 > 1 such that we
have . .rs/ �  .s//= .s/ � � log r for r � 2 and s � s1 (since minr�2.r� �
1/= log r > � and log r << r�=2). Write Jn for the integral on the right over the
interval Œn; nC 1�. First assume  is increasing. Then

J1 � 1; Jm � e�. .ms/� .s// � e�� .s/ logm < 1=m2; m>1;  .s/ > 2=�:

Hence the integral on the right is bounded by �2=6 < 2. If  is not monotone, the
bound 2 will do. ut

3.1 Sample Clouds

We shall first look at sample clouds. They are more intuitive to work with.
Sample clouds from light-tailed unimodal densities tend to have a definite

shape. See Fig. 1 for examples of simulated trivariate sample clouds from meta
distributions discussed in this section. As the sample size goes to infinity, the scatter
plots turn into an octahedron, a Euclidean ball and the ball in `3, which is halfway
between the Euclidean ball and the cube.
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Fig. 1 Sample clouds of 10,000 points from trivariate meta distributions based on the standard
normal distribution. The margins are: standard symmetric exponential (Panel (a)), standard normal
(Panel (b)) and symmetric Weibull-type in (9) with shape parameter p D 3 (Panel (c)). The
parameters � and � are as defined in Theorem 1
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Assume that the sample clouds, suitably scaled, converge onto a compact set E .
Such a limit set is star-shaped (see [7]). If E is the closure of a star-shaped open set
D 2 D then it is reasonable to model the underlying distribution by a continuous
positive density f which is homothetic, or weakly asymptotic to a homothetic
density, or to a unimodal density whose level sets have limit shapeD. Now consider
the meta density with Gaussian margins based on f . What do the sample clouds
from the meta density look like? Can they be scaled to converge onto a limit set, and
if so, what is the relation between this limit set and the compact star-shaped set E?
The answer depends on the tails of the margins.

Theorem 1. Let S 2 R� and T 2 R� with �; � > 0. Let Z1;Z2; : : : be independent
observations from the df F with continuous strictly increasing margins Fi which
satisfy

� logFi .�t/ � T .t/; � log.1 � Fi .t// � T .t/; t ! 1; i D 1; : : : ; d:

(11)
Suppose there exists a compact set E and an > 0 such that the sample clouds

fZ1=an; : : : ;Zn=ang converge onto E . Let Ei denote the projection of E onto the
i th coordinate, and assume maxEd D 1. Then Ei D Œ�1; 1� for i D 1; : : : ; d , and
T .an/ � logn. Let X1;X2; : : : be independent observations from the meta dfG with
continuous strictly increasing marginsGi which satisfy

� logGi.�s/ � S.s/; � log.1 �Gi.s// � S.s/; s ! 1; i D 1; : : : ; d:

Let S.bn/ � logn. Then the sample clouds Nn D fX1=bn; : : : ;Xn=bng converge
onto the compact star-shaped set J 
.E/ with 
 D �=� , where J 
 is the power
transformation in (10).

Proof. The equalityEi D Œ�1; 1� and T .an/ � logn follow from (11) by univariate
EVT; see e.g. [9]. Coordinatewise power transformations map rays onto rays, and
hence map star-shaped sets into star-shaped sets. Continuity of J 
 ensures that the
image J 
.E/ is compact. Let K denote the meta transformation with coordinates
Ki which satisfy Fi .Ki / D Gi . Then we may assume that Xn D M.Zn/ for
n D 1; 2; : : :, where M D K�1, see (13). The coordinatesMi.t/ and �Mi.�t/ are
asymptotic to S�1 ı T for t ! 1, and vary regularly with exponent 
 D �=� > 0.
Let Jn.w/ D M.anw/=bn. By regular variation of the coordinates, and the choice
of an and bn one finds Jn.w/ ! J 
.w/ uniformly on compact sets. Moreover, Jn
maps the complement of the cube Œ�2; 2�d into the complement of a cube Œ�c; c�d
for some c > 1 eventually. It follows that Jn.Nn/ converges onto J 
.E/. ut

The asymptotic equalities in (11) are not very strong. They hold if the marginal

densities fi .˙t/ are asymptotic to Gamma densities ci̇ t
b˙
i e�t where ci̇ > 0 and

bi̇ are arbitrary constants. Yet the implications for the limit set are severe. The
projectionsEi are symmetric and equal. If we replace the condition on the margins
Fi by

� logFi.�t/ � a�
i T .t/; � log.1 � Fi .t// � aC

i T .t/; s ! 1; ai̇ > 0; i D 1; : : : ; d
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and similar conditions on the marginsGi with constants bi̇ > 0 we obtain a similar
result. For simplicity assume T D S . NowEi D Œ�.a�

i /
1=� ; .aC

i /
1=� �, i D 1; : : : ; d ,

and the sample clouds fromG converge onto�c.E/, where�c is the coordinatewise
semilinear transformation

�c W u 7! w; wi D c�
i ui1Œui <0� C cC

i ui 1Œui�0�; ci̇ D .bi̇ =ai̇ /
1=� ; i D 1; : : : ; d:

(12)

The proof is similar.

3.2 Level Sets and Densities

We now turn our attention to light-tailed densities f D f�.nD/ and meta densities
with light-tailed margins based on f . For instance one could think of Gaussian
margins g0 and a Weibull-type generator f�.t/ D ce�t � =� . Do the level sets of the
meta density have a limit shape? If so, what is the relation between this limit shape
and the original set D? The problem here is that we make assumptions about the
structure of the density f , but we need information on the margins of f in order to
determine the meta transformationK linking the dfs F and G. Recall

G D F ıK; Zn D K.Xn/; K W x 7! z D .K1.x1/; : : : ; Kd.xd //: (13)

Under appropriate conditions on the set D and the generator f� D e�'� , see [4]
or Theorem 8.6 in [1], the margins fi of a continuous positive density f � f�.nD/
satisfy the asymptotic condition:

� logfi .t/ � '�.jt j/; jt j ! 1; i D 1; : : : ; d: (14)

Rather than imposing conditions on D and f� we shall make assumptions about
the margins. We assume that the marginal densities of f are continuous positive
functions, fi D e�'i , and

'i .�t/ � a�
i T .t/; 'i .t/ � aC

i T .t/; t ! 1; ai̇ > 0; i D 1; : : : ; d

(15)
for T 2 R� with � > 0. We make a similar assumption about the margins gi D e� i
with respect to S 2 R� with � > 0:

 i .�s/ � b�
i S.s/;  i .s/ � bC

i S.s/; s ! 1; bi̇ > 0; i D 1; : : : ; d:

(16)

Theorem 2. Let D 2 Dd . Let S 2 R� and T 2 R� with �; � > 0. Let f D e�' be
a continuous positive density on R

d with ' � T .nD/ and with continuous positive
margins fi D e�'i , i D 1; : : : ; d . Let gi D e� i be continuous positive densities
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on R. Assume (15) and (16). The level sets of the meta density g D e� with
margins gi based on f then have asymptotic shape Q D � �1.D/ where � is the
coordinatewise semi-power transformation in (19). The function  is asymptotic to
S.nQ/.

Proof. The density g by (8) has the form

g.x/ D f .z/g1.x1/ 
 
 
gd .xd /=.f1.z1/ 
 
 
fd .zd //; z D .K1.x1/; : : : ; Kd .xd //:

(17)
The marginal meta transformations Ki are determined by the tails of the dfs,

1�Fi.Ki .s// D 1�Gi.s/ for all s. Hence 1�Fi D e�˚i and 1�Gi D e��i gives
˚i.Ki.s// D �i.s/. Lemma 1 shows that ˚i.t/ � aC

i T .t/ and �i.s/ � bC
i S.s/,

which implies that Ki 2 R
 for 
 D �

�
, and actually Ki.s/ � cC

i R.s/ with

cC
i D

 
bC
i

aC
i

!1=�

and R D T �1 ı S where we assume S and T continuous and

strictly increasing. Similarly,Ki.�s/ � �c�
i R.s/ for s ! 1 with c�

i D
�
b�
i

a�
i

�1=�
.

Rewrite (17) as

 .x/ D '.K.x//Cı1.x1/C
 
 
Cıd .xd /; ıi .s/ D .'i .t/�˚i.t//�. i .s/��i.s//

with t D Ki.s/, since ˚i.t/ D �i.s/. We claim that  0 D ' ıK satisfies a simple
limit relation and that the ıi may be neglected. By assumption

'.tnwn/=T .tn/ ! n�D.w/; wn ! w; tn ! 1: (18)

Let un � u.n/ ! u 2 R
d and rn ! 1. Then

Ki .rnui .n//

R.rn/
! �i .ui / D cC

i u
i 1Œui�0� � c�
i jui j
 1Œui <0�; ci̇ D

�bi̇
ai̇

�1=�
; 
 D �

�
:

(19)

Hence wn WD K.rnun/=R.rn/ ! � .u/ DW w, and (18) gives

 0.rnun/
S.rn/

D '.K.rnun//
T .R.rn//

D '.R.rn/wn/

T .R.rn//
! n�D.w/ D n�D.� .u// D n�Q.u/:

(20)
Now let vn ! v 2 R. Then yn D Ki.rnvn/=R.rn/ ! �i.v/ by (19). Hence for

tn D R.rn/

S.rn/ D T .tn/;  i .rnvn/ � �i .rnvn/ D o.S.rn//; 'i .tnyn/ �˚.tnyn/ D o.T .tn//

by Lemma 1, (15) and (16). So limit relation (20) also holds for  :  � S.nQ/.
The level sets fg > e�r g D f < rg then have asymptotic shapeQ. ut
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4 Heavy Tails to Heavy Tails

Heavy-tailed distributions have a simple asymptotic theory. There is a nice descrip-
tion of the asymptotic structure. For densities f 2 F�, the asymptotic structure is
described by the homogeneous limit function h D 1=n�Cd

D in (4), and hence by the
shape D and the parameter � for given dimension d . Figures 2 and 3 below show
what happens to the densities and their level sets if we impose Student t margins
with � degrees of freedom on a bivariate spherical Student t density with � degrees
of freedom. The asymptotic shape of the level sets of the new density g is revealed
in the limit function 1=n�Cd

Q for g, see (4). Note that the dramatic change in the
shape of the level sets for the limit excess densities (which become infinite on the
coordinate planes if the tail index � is decreased, and zero if it is increased) is not
visible in the densities themselves even for the large change in � from 1 to 5 in the
figures below.

a b c

Fig. 2 Bivariate meta densities with standard Student t margins (with� degrees of freedom) based
on the spherical t distribution (with � degrees of freedom). (a) � D 1, � D 5. (b) � D � D 1.
(c) � D 5, � D 1
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Fig. 3 Level sets of bivariate meta densities with standard Student t margins (with � degrees of
freedom) based on the spherical t distribution (with � degrees of freedom). Levels are powers of
10�1. (a) � D 1, � D 5. (b) � D � D 1. (c) � D 5; � D 1
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Let us first give an overview of the theory. In general, the asymptotic structure
is described by a homogeneous measure � on R

dnf0g. If Z with df F lies in the
domain of attraction of � (see Definition 1 below) then � determines the balance
conditions of the marginal tails. There is a function T 2 R�� such that

Fi .�t/=T .t/ ! a�
i ; .1� Fi .t//=T .t/ ! aC

i ; t ! 1; i D 1; : : : ; d;

(21)
where the non-negative constants ai̇ are defined by for t > 0 and i D 1; : : : ; d

�i .�1;�t � D �fwi � �tg D a�
i =t

�; �i Œt;1/ D �fwi � tg D aC
i =t

�: (22)

These balance conditions not only hold for the components of the vector Z but
for any non-trivial linear combination Y D �Z D a1Z1 C 
 
 
 C adZd :

PfY � tg=T .t/ ! �f� � 1g; t ! 1; (23)

as will be established below. For f 2 F�, the margins fi satisfy similar balance
conditions. Here one may choose T .t/ D td f�.t/, where f� is the generator of f .
Again, see Proposition 2 below, any non-trivial linear combination Y D �Z has a
continuous density f0 which satisfies

f0.t/ � �f� � 1g�T .t/=t; t ! 1: (24)

The condition that D contains the origin ensures that �f� � 1g is positive, and so
are the 2d balance constants ai̇ .

One of the attractive features of this asymptotic theory is that it is geometric.
One can first determine the limit � and then choose the coordinates. This geometric
point of view has an unexpected consequence. If in the bivariate case the measure
� lives on two lines through the origin then the components of the vector Z are
asymptotically independent if one chooses these lines as coordinate axes; but if one
chooses two other lines as the axes, then � lives on two lines v D au and u D bv
with a; b non-zero and the components of Z are mixed comonotonic.

There is another reason why the asymptotic theory for heavy-tailed distributions
is so rich. There is a close link to multivariate EVT. The non-linear projection

z 7! zC D .z1 _ 0; : : : ; zd _ 0/

maps Rd onto Œ0;1/d . The image �C of the homogeneous limit measure � under
this projection is the exponent measure of the max-stable limit distribution H for
the vector Z:

F n.tnw/ ! H.w/ n ! 1; T .tn/ D 1=n:

The exponent measure �C determines � on .0;1/d . By an appropriate sign change,
replacing Z by�.Z/ for a diagonal matrix with entries ˙1, one can determine � on
the other 2d � 1 orthants. The 2d limits for the coordinatewise extremes, maxima
and minima, determine �. (Mass on coordinate planes will show up in the lower
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dimensional margins.) See [1], Sect. 17.3. This link allows us to use the invariance
principle of multivariate EVT. If one applies a coordinatewise strictly increasing
continuous transformation of Rd onto R

d which transforms the margins of F into
univariate dfs Gi whose tails satisfy a balance condition

Gi.�s/=S.s/ ! b�
i ; .1 �Gi.s//=S.s/ ! bC

i ; s ! 1; i D 1; : : : ; d;

(25)

for S 2 R�� with � > 0, and if all 4d balance constants ai̇ and bi̇ are positive,
then the vector X with the meta dfG with marginsGi based on F lies in the domain
of attraction of a max-stable limit law, as do the 2d � 1 sign-changed vectors�.X/.
The exponent measures are related by a power transformation; the df G lies in the
domain of attraction of a homogeneous measure � and we may write � D � .�/

where � D .�1; : : : ; �d / is a coordinatewise transformation whose margins �i are
determined by the margins �i and �i via �i D �i .�i /. We find, cf (19) with �
replaced by ��:

bC
i

s�
D �i Œs;1/ D �i Œt;1/ D aC

i

t�
)t D �i .s/ D cC

i s

 ; cC

i D
 
aC
i

bC
i

!1=�

; 
 D �=�:

The limiting Poisson point processes for the sample clouds from the dfs F and G
are linked by � .

4.1 Sample Clouds

Let us first say what it means that a probability distribution on R
d lies in the domain

of attraction of a homogeneous measure �.

Definition 1. A measure � on R
dnf0g is homogeneous of order �� and we write

� 2 H� if 0 < �.Bc/ < 1 and if � satisfies (1) for all Borel sets A in
R
dnf0g. A vector Z with probability distribution � and df F lies in the domain

of attraction of this homogeneous measure � and we write Z 2 A .�/ or F 2 A .�/

if p.r/ W D PfkZk > rg is positive for all r > 0 and

�r WD 
�1
r .�/=p.r/ ! � weakly on �Bc; r ! 1; � > 0; (26)

where 
r is the scalar expansion 
r W z 7! rz, and hence 
�1
r .�/ is the distribution

of Z=r .

Weak convergence in (26) implies for Y D �Z with df F0 that

PfY � rsg=p.r/ ! �f� � sg=�.Bc/ D c0�f� � 1g=s�; r ! 1; s > 0
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with c0 D �.Bc/ D 1. If �f� � 1g D a > 0 then .1�F0.rs//=.1�F0.r// ! 1=s�

and 1 � F0.r/ � ap.r/ for r ! 1 and s > 0. Hence, 1 � F0 and p vary regularly
with exponent ��. This establishes (23) and hence (22).

Theorem 3. Let F be a continuous df in A .�/ for a measure � 2 H�. Assume (21)
with ai̇ > 0. Let S 2 R�� and let G1; : : : ; Gd be strictly increasing continuous
univariate dfs which satisfy (25) with bi̇ > 0. Let G be the meta df with margins
Gi based on F . Then G 2 A .�/ where � 2 H�.

Let fW1;W2; : : :g be the limiting Poisson point process (with mean measure �)
for the sample clouds from F . Let X1;X2; : : : be independent observations from the
meta df G. Let S.sn/ D 1=n. Then

Nn D fX1=sn; : : : ;Xn=sng)N D f� �1.W1/; �
�1.W2/; : : :g;

where � is the coordinatewise semipower transformation in (27).

Proof. This follows from the invariance principle of EVT since the mean measures
satisfy � D � .�/; see above. ut

A more direct proof runs along the lines of the proof of Theorem 1. Regular
variation of the tails transforms the relation z D K.u/ into the relation w D � .u/
since K.ru/=R.r/ ! � .u/ gives with the notation in (10) and (12):

� D �1=�
a J�=��

�1=�
b D �cJ


 ; 
 D �=�; ci̇ D .ai̇ =bi̇ /
1=�: (27)

The transformation � is homogeneous of degree 
 , � .ru/ D r
� .u/. Hence

nD.w/ D nD.� .u// D n


Q.u/; Q D � �1.D/: (28)

4.2 Level Sets and Densities

The theory for the transformation of the level sets of densities for heavy tails is simi-

lar to the theory for light tails. Both are based on the limit relation
K.ru/
R.r/

! � .u/,

see (27), resulting from the regular variation of functions associated with the
margins. There are two differences. For heavy tails the contribution of the Jacobian
is not negligible, far from it, and for heavy tails the tail of the density generator f�
together with the shape D determines the tails of the marginal densities fi . (The
margins inherit the balance conditions from the intensity 1=n�Cd

D , and the slowly
varying component from f�.)

If � has density h.w/ D 1=n�Cd
D .w/ then � D � �1.�/with � in (27) has density

k.u/ D
Q
i �

0
i .ui /

n�Cd
D .� .u//

D 
d
Q
i jui j
�1.c�

i 1Œui <0� C cC
i 1Œui�0�/

n

�C
d
��1.D/

.u/
D 1

n
�Cd
Q .u/

; (29)
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where ci̇ D
�
ai̇ =bi̇

�1=�
, i D 1; : : : ; d . Here 
 D �=� and Q is an open set

in R
d , which may be unbounded (if 
 < 1), which need not contain the origin (if


 > 1), and which is bounded and contains the origin for 
 D 1, but need not have
a continuous boundary. If 
 D 1 and c�

i ¤ cC
i the intensity k jumps by a factor

c�
i =c

C
i ¤ 1 on crossing over from ui > 0 to ui < 0.

The heavy tailed meta density g with margins gi based on the density f 2 F�

is linked to f by the symmetric relation (8). Write f�.t/ D T .t/=td with T 2 R��
for the density generator of f and for S 2 R�� define g�.r/ D S.r/=rd . Let r and
t D R.r/ be linked by T .t/ D S.r/. Then the limit relation we want to establish
reads:

g.ru/
S.r/=rd

D f .tw/
T .t/=td

rd

td

Y

i

gi .rui /

fi .twi /
!

Q
i �

0
i .ui /

n�Cd
D .� .u//

DW k.u/: (30)

So assume Z has density f 2 F�. From Theorem 3, the meta density g lies in the
domain of attraction of the homogeneous measure � 2 H�. The relation � D � .�/

yields the density k of � in (29). For � < �, the derivatives � 0
i are negative powers.

The intensity k of the limiting Poisson point process becomes infinite along all
coordinate planes. We shall show that even in this case the limit relation (30) holds
in L1 on the complement of centered balls and uniformly on compact sets of Rdnf0g
in the sense that g.snun/=g�.sn/ ! k.u/ 2 Œ0;1� holds when un ! u ¤ 0 and
sn ! 1. First we show that the margins fi are well-behaved.

Proposition 2. Let Y D �Z for a non-trivial linear functional � with df F0. Then
Y has a continuous density f0 which is asymptotic to �.1 � F0.t//=t for t ! 1.

Proof. Think of � as the vertical coordinate and write z D .x; y/, where x denotes
the horizontal part of the vector. Assume f D f�.nD/. Then

f0.y/ D
Z

f�.nD.x; y//dx D yd�1

Z

f�.ynD.u; 1//du D yd�1J.y/; y > 0;

by homogeneity of the gauge function nD . The function y 7! J.y/ is decreasing
since y 7!f�.ya/ is for a� 0. The functionA.t/D .1�F0.t//=td�1 has derivative
�f0.t/=td�1 � .d � 1/.1 � F0.t//=t

d . Since 1 � F0 2 R�� by the arguments
in the previous section, the second term varies regularly, and hence so does its
integral I.t/� ..d � 1/=.d � 1C �//A.t/. The function A.t/C I.t/ 2 R�.�Cd�1/
has a monotone derivative �f0.t/=td�1, and f0.t/=td�1 then varies regularly by
the Monotone Density Theorem in [6] (where the case of slow variation has to be
excluded!). Regular variation of f0 gives the desired asymptotic equality. ut
Proposition 3. Let the df F have density f in F�. The function f satisfies (4)
pointwise on R

dnf0g and in L1 on the complement of centered balls �B , � > 0. The
margins Fi satisfy (21), where T .t/ � td f�.t/ lies in R��, and ai̇ are positive
constants depending on D and �.
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Proof. Regular variation of f� follows by writing this relation out for .st;w/ and
.t; sw/ and using the homogeneity of nD . This implies regular variation of T . The
2d constants ai̇ in (22) are positive since D contains the origin. Let Z have df F .
Then W D Z=t has density gt .w/ D td f .tw/ and gt � T .t/h by (4) implies
that Fi .�st/ D PfWi < �sg � T .t/�fwi � �sg � a�

i T .ts/ for t ! 1. This
gives (21). ut
Theorem 4. Let f 2 F�. Let S 2 R�� for some � > 0 and let g1; : : : ; gd be
continuous positive densities such that

gi .�s/ � b�
i �S.s/=s; gi .s/ � bC

i �S.s/=s; s ! 1; i D 1; : : : ; d

with bi̇ > 0. The meta density g with margins gi based on f is continuous.

Set g�.s/ D S.s/=sd . Then g.su/=g�.s/ ! k.u/ WD 1=n
�Cd
Q .u/. Here Q is an

open set. Convergence holds uniformly on compact sets which are disjoint from the
coordinate planes and in L1 on the complement of centered balls.

If � > �, convergence holds uniformly on compact sets in R
dnf0g. If � ¤ � then

ksn.un/ ! k.u/ for sn ! 1 and un ! u ¤ 0, where the limit is infinite if � < �

and u lies on a coordinate plane. If � D � and the balance in each coordinate is
preserved, b�

i =b
C
i D a�

i =a
C
i for i D 1; : : : ; d , then � in (27) is a linear map and

Q D c� �1.D/ with c > 0. If � D � and the balance condition for the index i is
violated there is a jump discontinuity over the corresponding coordinate plane by a
factor ¤ 1.

Proof. We may and shall assume that T and S are strictly decreasing, continuous
and map .0;1/ onto itself. Write S D T ı R. Then R 2 R
 with 
 D �=� is
continuous and strictly increasing. Let tn D R.sn/ ! 1. Let un ! u and set
wn D K.snun/=tn. Then in (30) the factor f .tnwn/=.T .tn/=t

d
n / tends to h.� .u//

uniformly on compact sets in R
dnf0g by Proposition (3) since f�.t/ � T .t/=td and

wn D K.rnun/=R.rn/ ! � .u/, see (27). Convergence of the product on the right
is less obvious. Let i 2 f1; : : : ; d g. Write Qn D gi .snun/=fi .tnwn/. Claim:

un ! u ¤ 0 ) Qnsn=tn � �wn=�un ! 
�i.u/=u;

and the left side converges to zero for un ! 0 provided 
 D �=� > 1. The asymp-
totic relations between the tails of the density and the df give the asymptotic equality
provided snun ! 1 sinceGi.snun/ D Fi .tnwn/. Then wn D Kn.snun/=tn ! �i.u/
gives the limit for u ¤ 0. Now assume 
 > 1, We have to prove Qnsn=tn ! 0 for
un ! 0. First assume snun ! 1. Then Ki.s/ � cC

i R.s/ and Potter’s bounds,

see [6], give wn D Ki.snun/=R.sn/ � 2cC
i u.1C
/=2n for snun � M0. A similar bound

holds for snun � �M0. It is possible that un D 0 and wn ¤ 0 if Ki.0/ ¤ 0. But
Ki is a homeomorphism. Hence if jsnunj � M0 then An is bounded and R 2 R


with 
 > 1 implies sn=tn D sn=R.sn/ ! 0 for sn ! 1 and hence in this case
also Qnsn=tn ! 0. By symmetry, a similar result holds for � < �, with the limit
value 1. L1 convergence on the complement of centered balls follows from the
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almost sure convergence of the densities and the weak convergence of the measures
by Fatou’s Lemma as in the proof of Scheffé’s Theorem. ut

The change in the intensity on decreasing the parameter � is dramatic. The spikes
of the new level sets may perhaps be interpreted as an indication of extra asymptotic
independence for lighter tails. Student densities with spherical level sets tend to
complete independence of the coordinates as the exponent � goes to 1, and the
Student distribution converges to the Gaussian distribution.

5 Heavy Tails to Light Tails

The transformation from heavy to light tails gives new and unexpected results.
If we import the copula of the Student t density f D f�.nD/ with the function

f�.r/ D c

.�C r2/.�Cd/=2 � c

r�Cd and D a centered ellipsoid into a density with

standard Gaussian margins, the resulting density is continuous and its level sets
have an asymptotic shape D�, whose boundary is given by a quadratic expression.
In Fig. 4 this shape is clearly visible in a sample cloud of a ten thousand points.
The shape depends only on the parameter �. All other information is lost in the
transformation from heavy to light tails. All f 2 F� yield the same shape D�. We
restrict ourselves here to citing the corresponding theorem from [2], where the proof
may be found and a discussion.

Theorem 5. Suppose f is a density on R
d in F� for some � > 0, and g0 is a

continuous, positive, symmetric density on R asymptotic to a von Mises function
e� with  2RV� for some � >0. Let  .rn/D logn, and let X1;X2; : : : be inde-
pendent observations from the meta density g based on f with equal margins g0.
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Fig. 4 Bivariate sample clouds of 10; 000 points from (a) the standard normal distribution, and
(b) the meta-Cauchy distribution with standard normal margins based on the Cauchy density with
level sets shaped like the ellipse 5x2 C 6xy C 5y2 D 1
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Set c.r/ D g.r; : : : ; r/. Then the level sets fg > c.r/g, scaled by r , converge to the
limit set D�;� D f� < �g where

�.u/ D .�C d/kuk�1 � .ju1j� C 
 
 
 C jud j� /: (31)

The sample clouds Nn D fX1=rn; : : : ;Xn=rng from g converge onto the closure
of D�;� .

The shape of the limit set D�;� 2 D varies continuously in �. For fixed � the
shape D�;� reflects the change in the copula as the tail parameter � varies over
.0;1/ for f 2 F� with the shape D of the level sets fixed. The good behaviour of
the function � 7! D�;� unfortunately is unstable. One can alter the bivariate circle
symmetric Cauchy density without affecting the limit measure � 2 H1 so that the
sample clouds from the meta density with Gaussian margins based on the perturbed
density converge onto the diagonal cross E�, the union of the two diagonals of the
square Œ�1; 1�2. See [3] for details.

6 Light Tails to Heavy Tails

Assume the level sets of a light-tailed density g may be scaled to converge to a
set D 2 D , or more generally, assume the sample clouds from the light-tailed
distribution dG converge onto the closure of D. Turn to the meta distribution dF
with heavy-tailed margins. Can one describe the tails of dF asymptotically by a
homogeneous measure �? Is there a limiting point processN for the sample clouds?

The limit shape of the level sets of the light-tailed meta densities in the previous
section gives no information on the asymptotic shape of the original heavy-tailed
density. In the transition from heavy to light tails, information about the limit shape
is blurred to such an extent that one cannot go back from the asymptotic shape of
the level sets for light-tailed density to the asymptotic shape for heavy-tailed one.
Yet we do have some results. As in EVT all that matters is the shape of D in the
vertices of the circumscribed coordinate box.

6.1 Asymptotic Independence

Theorem 6. Let X have a positive continuous density g. Suppose there exist cn > 0
and 0 < rn ! 1 such that cnC1=cn ! 0, rnC1=rn ! 1 and fg > cng=rn !D 2 D .
Let F1; : : : ; Fd be strictly increasing continuous dfs such that

Fi .�t/ � a�
i T .t/; 1 � Fi .t/ � aC

i T .t/; t ! 1

for positive constants ai̇ and T 2 R��, � > 0. Let Z1;Z2; : : : be independent
observations from the meta df F with margins Fi based on the density g. Suppose
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D is convex with a C1 boundary (in each boundary point there is a unique tangent
plane). Choose an > 0 such that nT .an/ ! 1. Then the sample clouds converge:

Nn D fZ1=an; : : : ;Zn=ang)N weakly on �Bc; � > 0:

The limit N is a Poisson point process with mean measure � which lives on the 2d
halfaxes. It is determined by

�fxi < �tg D a�
i =t

�; �fxi > tg D aC
i =t

�; t > 0:

Proof. The condition on the shape of D implies asymptotic independence of all
coordinates, both positive and negative. See [10] and [5]. ut

The charm of the condition in the theorem above is that it is geometric. Any two
linear combinations of the coordinates X D �X and Y D �X are asymptotically
independent provided the linear functionals � and � are linearly independent.

6.2 Asymptotic Dependence and Homothetic Densities

We now turn to bivariate distributions. For asymptotic independence it suffices
that the limit set cl.D/ of the sample clouds does not contain the coordinatewise
supremum of the points in D: supD 62 cl.D/. Such sets D are called blunt.
This condition ensures that for large sample clouds the maximal horizontal and the
maximal vertical coordinate come from sample points in disjoint subsets. See [5] for
details. Now supposeD is the triangle with vertices .1; 1/; .�1; 0/; .0;�1/. This set
certainly is not blunt. Yet there exist continuous positive densities g with light tails
and convex level sets which, properly scaled, converge to D such that the vector
X with density g has asymptotically independent components. (The level sets are
triangles tD with a tip of size

p
t cut off to blunt them. See [5] for details.) For

asymptotic dependence we need strong conditions. So assume g � g�.nD/ where
g� is a von Mises function. We focus on the positive quadrant. So one could restrict
D to the positive quadrant or assume thatD and g are invariant under sign changes,
of assume that the behaviour of D outside the positive quadrant is harmless. We
shall do the latter.

For Qa; a 2 Œ0; 1� with Qaa < 1 define DQa;a as the set of all D 2 D2 whose closure
intersects the lines x1 D 1 and x2 D 1 only in the one point e D .1; 1/, and whose
closure does not contain the point infD. Moreover in the point e the set D has
tangents with slope Qa and 1=a. In geometric terms this condition means that the sets
n.D � e/ converge to the open sector

C D fx 2 .�1; 0/2 j x1=a < x2 < Qax1g: (32)
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In analytic terms the functions t 7! nD.t; 1/ and t 7! nD.1; t/ have a left
derivative in t D 1. We shall see that the heavy-tailed meta density then lies in
the domain of a homogeneous measure � with a scaled power density on the first
quadrant:

r.x; y/ D c0r0.a0x; b0y/; r0.x; y/ D
(

jxj Q̨�1=jyj Q̌C1; jxj � jyj; 0 < Q̨ D Q̌ � �I
jyj˛�1=jxjˇC1; jyj � jxj; 0 < ˛ D ˇ � �:

(33)

Power densities are associated with exponential densities h.u; v/ on the plane
which satisfy

h.u C t; v C t/ D e�t h.u; v/; u; v 2 R; fh > 1g D C; (34)

where C is an open sector in the negative quadrant.

Theorem 7. Let � > 0 and 0 � a � Qa � 1with Qaa < 1. Let f� denote the standard
Student t density with � degrees of freedom. Let g � g�.nD/ be a continuous
positive density on R

2 where g� is a von Mies function and D 2 DQaa. The meta
density f with margins f� based on g is continuous and positive. It lies in the
domain of the measure � 2 H� whose margins �1 and �2 have density �=jt j�C1 on
Rnf0g. If Qaa D 0 then � lives on the two axes. If Qaa is positive then � lives on the
two negative halfaxes and on the positive quadrant, where it has the power density
r in (33).

Let L denote the ray through the point .1; b/ with b D . Qa=a/1=� � 1. The level
set D� of r containing .1; b/ as a boundary point is bounded by the power curves
y D bx Q� aboveL and y D bx1=� belowL with � D .1�˛/=.1Cˇ/ and Q� defined
similarly. The constants ˛, ˇ and � are determined by a and �:

˛ D a�

1 � a ; ˇ D �

1 � a
; � D ˛ � 1

ˇ C 1
D a� � .1 � a/

�C .1 � a/
; b D

� Qa
a

�1=�
:

The same expressions define Q̨ ; Q̌; Q� in terms of Qa and �. If Qa D 1 then Q� D 1 and
the upper boundary of D� is the line segment from .0; 0/ to .1; b/ along L, and r
vanishes above L. The sets D� satisfy D�1 � D�2 for 0 < �1 < �2.

Proof. The proof proceeds in three steps. (i) The limit relation (4) holds for g if we
replace the scaling by affine normalizations. The limit function h is the density of
the exponent measure � on R

2 associated with a max-stable limit law with Gumbel
margins. (ii) By multivariate EVT, the exponent measure � of the meta df is the
imageK.�/ under the coordinatewise exponential map

K W .u; v/ 7! .x; y/ D .eu=�; ev=�/ 2 .0;1/2; .u; v/ D �.logx; log y/; (35)

with the coordinates scaled by a diagonal linear transformation to ensure that
�fy � 1g D �fx � 1g D 1. (iii) A computation gives the results.
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Fig. 5 Level sets of the density r in (33) with parameters Qa D 1=2, a D 1=3 and �. The values
of � are f1=2; 1; 3=2g in Panel (a) and f2; 3; 7g in Panel (b) corresponding to solid, dashed and
dotted curves, respectively. The original density g in Theorem 7 now is assumed symmetric for
sign changes. Transformations between successive level sets are described in Sect. 4

Let a.t/ be the scale function of the von Mises function g�. It is known that
a.t/=t ! 0; see e.g. [9]. The set D0 D D � .1; 1/, scaled by t=a.t/, converges to
the open sector C in (32). Hence

ht .w/ D g..t; t/C a.t/w/
g.t; t/

! h.w/; t ! 1: (36)

Here h is the exponential function in (34). It is continuous if Qa < 1, and then con-
vergence holds uniformly on compact sets in the plane. If Qa D 1, it vanishes above
the diagonal and convergence is uniform on compact sets disjoint from the diagonal.
In both cases, convergence holds in L1 on halfplanes f.u; v/ j c1u C c2v � cg with
c1; c2 > 0 and c 2 R. If a D 0 then the measure � on R

2 with density h is infinite on
horizontal halfplanes, fv � 0g, and the positive coordinates of the vector .Z1;Z2/
with density f are asymptotically independent, see [5]. So assume 0 < a � Qa.
Then �fv � cg and �fu � cg are finite for all c 2 R. In this case, the partial
maxima converge in distribution to a max-stable limit vector with Gumbel margins
if we apply the coordinatewise affine transformations .tnCa.tn/u; tnCa.tn/v/ for a
suitable sequence tn ! 1, and � is the exponent measure associated with this max-
stable limit law. The coordinatewise maxima from f then converge in distribution
to a max-stable limit vector with Fréchet margins e�1=t� on .0;1/. The associated
exponent measure � satisfies �fx > tg D �fy > tg D 1=t�. It is a positive diagonal
linear transformation of the measure �1 D K.�/ with K in (35). The measure �1
has density �2r0, where r0 is a power function in (33).

Here are some details. Write h.u; 0/ D e Qpu1Œu�0� C e�.1Cp/u1Œu>0�. Then from
(34)

h.u; v/ D e�vh.u � v; 0/ D e Qpu�.1C Qp/v1Œu�v� C epv�.1Cp/u1Œu>v�:
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The sector C is bounded by the lines Qpu D .1 C Qp/v and pv D .1 C p/u, which
gives 1=a D 1 C 1=p and a similar expression for Qa. The measure �1 D K.�/ has
density �2r0, where r0 is the power function in (33) with ˛ D p�, ˇ D .1 C p/�,
Q̨ D Qp� and Q̌ D .1 C Qp/�. The level set fr0 > 1g is bounded by two curves,

y D x Q� and x D y� which meet at .1; 1/, with � D ˛ � 1
ˇ C 1

D a� � .1 � a/

�C .1 � a/
and a similar expression for Q�. Then �1fy � 1g D QA WD .1 � a Qa/= Qa and
�1fx � 1g D A WD .1 � a Qa/=a. Now rescale by Q D diag.q; Qq/ with q D 1=A1=�

and Qq D 1= QA1=�. Then �fx � 1g D �fy � 1g D 1 for � D Q.�1/ and the positive
diagonal maps into the ray L through the point .1; b/ with b D . Qa=a/1=�. The level
sets of the density r of � are scaled copies of the set D��.0;1/2 bounded by the
two curves y D bx Q� and y D bx1=� which meet at .1; b/. ut

There is a discontinuity in the description of the asymptotic behaviour when a
vanishes. For a D 0, the right tangent to D is vertical. Assume Qa D 1=2 and
� D 2. The exponential density h is well-defined and continuous for a D 0 and
the limit (36) holds uniformly on compact sets in the plane, but the mass of vertical
halfspaces is infinite since h � e�u below the diagonal. For a D 0, the level set
fr0 > 1g of the power function r0 is bounded above by a continuous unimodal
curve:

0 < y < x Q�1Œ0<x<1� C x1=�1Œ1�x�; Q� D 1=5; 1=� D �3: (37)

The ray L becomes the positive vertical axis as a ! 0. The normalized density
r yields standard marginal densities 2=t3, but r vanishes uniformly on compact
subsets of the positive quadrant for a ! 1. The information contained in r0 and h is
lost by the normalization, which pulls down the measure onto the one-dimensional
axes.

7 Conclusion

The relation between the asymptotic geometric structure of multivariate densities
and the copula is not as intuitive as one might hope. As observed in [8] the rate of
decrease of the tails plays a crucial role.

This paper presents a systematic investigation of the relation between copula and
shape of the level sets as the decay rate of the tails of the density is varied, both for
light and heavy tails. The most striking results are the loss of information on shape
as one passes from a heavy-tailed density to a light-tailed density, while preserving
the copula, and vice versa passing from light to heavy tails – in both cases there is
a reduction to a finite dimensional parametric family; and the explosive change in
the asymptotic shape of the level sets of heavy-tailed densities as the tail exponent
is varied.
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The paper compares the asymptotic shape of level sets of two multivariate
densities with the same copula but different tails. In the light-tailed case, the shape is
stable. We start with a density with level sets whose asymptotic shape is a bounded
open star-shaped set with a continuous boundary and which contains the origin.
The asymptotic shape for the new density will have the same properties. The new
shape is the image of the old shape under a coordinatewise semi-linear power
transformation. In the heavy-tailed case, the change is more dramatic. Assume
regular variation of the tails. A change in the slowly varying component has no
effect on the shape. A change in the balance between the 2d marginal tails will
have an effect. The new shape is still bounded and contains the origin as interior
point, but the boundary is no longer continuous. As a result, the intensity also has
discontinuities. If the exponent of regular variation is decreased, the new limit shape
is no longer bounded and the new intensity is infinite along the coordinate planes.

Acknowledgements The authors thank the referee for his suggestion to include some three-
dimensional figures.
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Limit Theorems for Functionals of Higher
Order Differences of Brownian Semi-Stationary
Processes

Ole E. Barndorff-Nielsen, José Manuel Corcuera, and Mark Podolskij

Abstract We present some new asymptotic results for functionals of higher order
differences of Brownian semi-stationary processes. In an earlier work [8] we have
derived a similar asymptotic theory for first order differences. However, the central
limit theorems were valid only for certain values of the smoothness parameter of a
Brownian semi-stationary process, and the parameter values which appear in typical
applications, e.g. in modeling turbulent flows in physics, were excluded. The main
goal of the current paper is the derivation of the asymptotic theory for the whole
range of the smoothness parameter by means of using second order differences.
We present the law of large numbers for the multipower variation of the second
order differences of Brownian semi-stationary processes and show the associated
central limit theorem. Finally, we demonstrate some estimation methods for the
smoothness parameter of a Brownian semi-stationary process as an application of
our probabilistic results.
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1 Introduction

Brownian semi-stationary processes (BS S ) has been originally introduced in [2]
for modeling turbulent flows in physics. This class consists of processes .Xt /t2R of
the form

Xt D �C
Z t

�1
g.t � s/�sW.ds/C

Z t

�1
q.t � s/asds; (1)

where � is a constant, g; q W R>0 ! R are memory functions, .�s/s2R is a càdlàg
intermittency process, .as/s2R a càdlàg drift process and W is the Wiener measure.
When .�s/s2R and .as/s2R are stationary then the process .Xt/t2R is also stationary,
which explains the name Brownian semi-stationary processes. In the following we
concentrate on BS S models without the drift part (i.e. a � 0), but we come back
to the original process (1) in Example 1.

The path properties of the process .Xt/t2R crucially depend on the behaviour
of the weight function g near 0. When g.x/ ' xˇ (here g.x/ ' h.x/ means
that g.x/=h.x/ is slowly varying at 0) with ˇ 2 .� 1

2
; 0/ [ .0; 1

2
/, X has

r-Hölder continuous paths for any r < ˇ C 1
2

and, more importantly, X is not a
semimartingale, because g0 is not square integrable in the neighborhood of 0 (see
e.g. [10] for a detailed study of conditions under which Brownian moving average
processes are semimartingales). In the following, whenever g.x/ ' xˇ , the index
ˇ is referred to as the smoothness parameter of X .

In practice the stochastic process X is observed at high frequency, i.e. the data
points Xi�n , i D 0; : : : ; Œt=�n� are given, and we are in the framework of infill
asymptotics, that is �n ! 0. For modeling and for practical applications in physics
it is extremely important to infer the integrated powers of intermittency, i.e.

Z t

0

j�sjpds; p > 0;

and to estimate the smoothness parameter ˇ. A very powerful instrument for
analyzing those estimation problems is the normalized multipower variation that
is defined as

MPV.X; p1; : : : ; pk/
n
t D �n�

�pC

n

Œt=�n��kC1X

iD1
j�n

i X jp1 
 
 
 j�n
iCk�1X jpk ; (2)

where �n
i X DXi�n � X.i�1/�n , p1; : : : ; pk � 0 and pC D Pk

lD1 pl , and �n is
a certain normalizing sequence which depends on the weight function g and n
(to be defined later). The concept of multipower variation has been originally
introduced in [3] for the semimartingale setting. Power and multipower variation
of semimartingales has been intensively studied in numerous papers; see e.g. [3–
6, 13, 15, 17, 22] for theory and applications.



Limit Theorems for Functionals of Higher Order Differences 71

However, as mentioned above, BS S processes of the form (1) typically
do not belong to the class of semimartingales. Thus, different probabilistic tools
are required to determine the asymptotic behaviour of the multipower variation
MPV.X; p1; : : : ; pk/nt of BS S processes. In [8] we applied techniques from
Malliavin calculus, which has been originally introduced in [18, 19] and [20], to
show the consistency, i.e.

MPV.X; p1; : : : ; pk/
n
t � �np1;:::;pk

Z t

0

j�sjpC

ds
u.c.p.�! 0;

where �np1;:::;pk is a certain constant and Y n
u.c.p.�!Y stands for supt2Œ0;T � jY nt �Yt j P�!0

(for all T > 0). This holds for all smoothness parameters ˇ 2 .� 1
2
; 0/[ .0; 1

2
/, and

we proved the associated (stable) central limit theorem for ˇ 2 .� 1
2
; 0/.

Unfortunately, the restriction to ˇ 2 .� 1
2
; 0/ in the central limit theorem is not

satisfactory for applications as in turbulence we usually have ˇ 2 .0; 1
2
/ at ultra high

frequencies. The theoretical reason for this restriction is two-fold: (i) long memory
effects which lead to non-normal limits for ˇ 2 . 1

4
; 1
2
/ and more importantly (ii) a

hidden drift in X which leads to an even stronger restriction ˇ 2 .� 1
2
; 0/.

The main aim of this paper is to overcome both problems by considering
multipower variations of higher order differences of BS S processes. We will
show the law of large numbers and prove the associated central limit theorem for all
values of the smoothness parameter ˇ 2 .� 1

2
; 0/ [ .0; 1

2
/. Furthermore, we discuss

possible extensions to other type of processes. We apply the asymptotic results to
estimate the smoothness parameter ˇ of a BS S process X . Let us mention that
the idea of using higher order differences to diminish the long memory effects is
not new; we refer to [12, 16] for theoretical results in the Gaussian framework.
However, the derivation of the corresponding theory for BS S processes is more
complicated due to their more involved structure.

This paper is organized as follows: in Sect. 2 we introduce our setting and
present the main assumptions on the weight function g and the intermittency � .
Section 3 is devoted to limit theorems for the multipower variation of the second
order differences of BS S processes. In Sect. 4 we apply our asymptotic results to
derive three estimators (the realised variation ratio, the modified realised variation
ratio and the change-of-frequency estimator) for the smoothness parameter. Finally,
all proofs are collected in Sect. 5.

2 The Setting and the Main Assumptions

We consider a filtered probability space .˝;F ;F D .Ft /t2R;P/ on which we
define a BS S process X D .Xt/t2R without a drift as

Xt D �C
Z t

�1
g.t � s/�sW.ds/; (3)
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where W is an F-adapted Wiener measure, � is an F-adapted càdlàg processes and
g 2 L

2.R>0/. We assume that

Z t

�1
g2.t � s/�2s ds < 1 a.s.

to ensure thatXt <1 almost surely. We introduce a Gaussian processGD .Gt /t2R,
that is associated to X , as

Gt D
Z t

�1
g.t � s/W.ds/: (4)

Notice that G is a stationary process with the autocorrelation function

r.t/ D corr.Gs;GsCt / D
R1
0
g.u/g.u C t/du

jjgjj2
L2

: (5)

We also define the variance function R of the increments of the processG as

R.t/ D E.jGsCt �Gsj2/ D 2jjgjj2
L2
.1� r.t//: (6)

Now, we assume that the process X is observed at time points ti D i�n with
�n ! 0, i D 0; : : : ; Œt=�n�, and define the second order differences of X by

ÞniX D Xi�n � 2X.i�1/�n CX.i�2/�n: (7)

Our main object of interest is the multipower variation of the second order
differences of the BS S process X , i.e.

MPVÞ.X; p1; : : : ; pk/
n
t D �n.�

Þ
n /

�pC

Œt=�n��2kC2X

iD2

k�1Y

lD0
jÞniC2l X jpl ; (8)

where .�Þ
n /

2 D E.j Þni Gj2/ and pC D Pk
lD1 pl . To determine the asymptotic

behaviour of the functional MPVÞ.X; p1; : : : ; pk/n we require a set of assumptions
on the memory function g and the intermittency process � . Below, the functions
LR;LR.4/ ; Lg; Lg.2/ W R>0 ! R are assumed to be continuous and slowly varying

at 0, f .k/ denotes the k-th derivative of a function f and ˇ denotes a number in
.� 1

2
; 0/[ .0; 1

2
/.

Assumption 1. It holds that

(i) g.x/ D xˇLg.x/.
(ii) g.2/ D xˇ�2Lg.2/ .x/ and, for any " > 0, we have g.2/ 2 L

2..";1//.
Furthermore, jg.2/j is non-increasing on the interval .a;1/ for some
a>0.
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(iii) For any t > 0

Ft D
Z 1

1

jg.2/.s/j2�2t�sds < 1: (9)

Assumption 2. For the smoothness parameter ˇ from Assumption 1 it holds that

(i) R.x/ D x2ˇC1LR.x/.
(ii) R

.4/
.x/ D x2ˇ�3L

R
.4/ .x/.

(iii) There exists a b 2 .0; 1/ such that

lim sup
x!0

sup
y2Œx;xb �

ˇ
ˇ
ˇ
L
R
.4/.y/

LR.x/

ˇ
ˇ
ˇ < 1:

Assumption 3-
 . For any p > 0, it holds that

E.j�t � �sjp/ � Cpjt � sj
p (10)

for some 
 > 0 and Cp > 0.
Some remarks are in order to explain the rather long list of conditions.

• The memory function g: We remark that g.x/ ' xˇ implies g.2/.x/ ' xˇ�2
under rather weak assumptions on g (due to the Monotone Density Theorem; see
e.g. [11, p. 38]). Furthermore, Assumption 1(ii) and Karamata’s Theorem (see
again [11]) imply that

Z 1

"

jg.x C 2�n/� 2g.x C�n/C g.x/j2dx ' "2ˇ�3�4
n (11)

for any " 2 Œ�n; 1/. This fact will play an important role in the following
discussion. Finally, let us note that Assumptions 1(i)–(ii) and 2 are satisfied for
the parametric class

g.x/ D xˇ exp.��x/;
where ˇ 2 .� 1

2
; 0/ [ .0; 1

2
/ and � > 0, which is used to model turbulent flows

in physics (see [2]). This class constitutes the most important example in this
paper. ut

• The central decomposition and the concentration measure: Observe the decom-
position

Þni X D
Z i�n

.i�1/�n
g.i�n � s/�sW.ds/

C
Z .i�1/�n
.i�2/�n

�
g.i�n � s/� 2g..i � 1/�n � s/

�
�sW.ds/

C
Z .i�2/�n

�1

�
g.i�n � s/� 2g..i � 1/�n � s/Cg..i � 2/�n � s/

�
�sW.ds/;

(12)
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and the same type of decomposition holds forÞni G. We deduce that

.�Þ
n /

2 D
Z �n

0

g2.x/dx C
Z �n

0

�
g.x C�n/ � 2g.x/

�2
dx

C
Z 1

0

�
g.x C 2�n/� 2g.x C�n/C g.x/

�2
dx:

One of the most essential steps in proving the asymptotic results for the
functionals MPVÞ.X; p1; : : : ; pk/n is the approximationÞni X � �.i�2/�nÞni G.
The justification of this approximation is not trivial: while the first two summands
in the decomposition (12) depend only on the intermittency � around .i � 2/�n,
the third summand involves the whole path .�s/s�.i�2/�n . We need to guarantee
that the influence of the intermittency path outside of .i � 2/�n on the third
summand of (12) is asymptotically negligible. For this reason we introduce the
measure

�Þ
n .A/ D

R
A

�
g.x C 2�n/� 2g.x C�n/C g.x/

�2
dx

.�Þ
n /

2
< 1; A 2 B.R>0/;

(13)
and define �Þ

n .x/ D �Þ
n ..x;1//. To justify the negligibility of the influence of

the intermittency path outside of .i � 2/�n we need to ensure that

�Þ
n ."/ ! 0

for all " > 0. Indeed, this convergence follows from Assumptions 1(i)–(ii) (due
to (11)). ut

• The correlation structure: By the stationarity of the process G we deduce that

rÞ
n .j / D corr.Þn

i G;Þn
iCj G/

D �R..j C 2/�n/C 4R..j C 1/�n/� 6R.j�n/C 4R.jj � 1j�n/�R.jj � 2j�n/
.�Þ
n /

2
:

(14)

Since .�Þ
n /

2 D 4R.�n/�R.2�n/we obtain by Assumption 2(i) the convergence

rÞ
n .j / ! �Þ.j /

D �.j C 2/1C2ˇ C 4.j C 1/1C2ˇ � 6j 1C2ˇ C 4jj � 1j1C2ˇ � jj � 2j1C2ˇ

2
�
4� 21C2ˇ

� :
(15)

We remark that �Þ is the correlation function of the normalized second order

fractional noise
�
Þni BH=

p
var.Þni BH /

�

i�2, whereBH is a fractional Brownian

motion with Hurst parameterH D ˇ C 1
2
. Notice that

j�Þ.j /j � j 2ˇ�3;
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where we write aj � bj when aj =bj is bounded. In particular, it implies that
P1

jD1 j�Þ.j /j < 1. This absolute summability has an important consequence:
it leads to standard central limit theorems for the appropriately normalized
version of the functional MPVÞ.G; p1; : : : ; pk/n for all ˇ 2 .� 1

2
; 0/[.0; 1

2
/. ut

• Sufficient conditions: Instead of considering Assumptions 1 and 2, we can
alternatively state sufficient conditions on the correlation function rÞ

n and the
measure �Þ

n directly, as it has been done for the case of first order differences
in [8]. To ensure the consistency of MPVÞ.X; p1; : : : ; pk/nt we require the
following assumptions: there exists a sequence h.j / with

jrÞ
n j � h.j /; �n

Œ1=�n�X

jD1
h2.j / ! 0; (16)

and �Þ
n ."/ ! 0 for all " > 0 (cf. condition (LLN) in [8]). For the proof of the

associated central limit theorem we need some stronger conditions: rÞ
n .j / !

�Þ.j / for all j � 1, there exists a sequence h.j / with

jrÞ
n j � h.j /;

1X

jD1
h2.j / < 1; (17)

Assumption 3-
 holds for some 
 2 .0; 1� with 
.p ^ 1/ > 1
2
, p D

max1�i�k.pi /, and there exists a constant � > 1=.p ^ 1/ such that for all
� 2 .0; 1/ and "n D ��

n we have

�Þ
n ."n/ D O

�
��.1��/
n

�
: (18)

(cf. condition (CLT) in [8]). In Sect. 5 we will show that Assumptions 1 and 2
imply the conditions (16)–(18). ut

3 Limit Theorems

In this section we present the main results of the paper. Recall that the multipower
variation process is defined in (8) as

MPVÞ.X; p1; : : : ; pk/
n
t D �n.�

Þ
n /

�pC

Œt=�n��2kC2X

iD2

k�1Y

lD0
jÞniC2l X jpl
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with �2n D E.jÞni Gj2/ and pC D Pk
lD1 pl . We introduce the quantity

�np1;:::;pk D E

� k�1Y

lD0

ˇ
ˇ
ˇ
ÞniC2lG
�Þ
n

ˇ
ˇ
ˇ
pl
�
: (19)

Notice that in the case kD 1, p1 Dp we have that �np DE.jU jp/ with U � N.0; 1/.

We start with the consistency of the functional MPVÞ.X; p1; : : : ; pk/nt .

Theorem 1. Let the Assumptions 1 and 2 hold. Then we obtain

MPVÞ.X; p1; : : : ; pk/
n
t � �np1;:::;pk

Z t

0

j�s jpC

ds
u.c.p.�! 0: (20)

Proof. See Sect. 5. ut
As we have mentioned in the previous section, under Assumption 2(i) we deduce

the convergence rÞ
n .j / ! �Þ.j / for all j � 1 (see (15)). Consequently, it holds

that

�np1;:::;pk ! �p1;:::;pk D E

� k�1Y

lD0

ˇ
ˇ
ˇ
ÞniC2lBH

q
var.ÞniC2lBH /

ˇ
ˇ
ˇ
pl
�
; (21)

whereBH is a fractional Brownian motion with Hurst parameterH D ˇC 1
2

(notice
that the right-hand side of (21) does not depend on n, because BH is a self-similar
process). Thus, we obtain the following result.

Lemma 1. Let the Assumptions 1 and 2 hold. Then we obtain

MPVÞ.X; p1; : : : ; pk/
n
t

u.c.p.�! �p1;:::;pk

Z t

0

j�s jpC

ds: (22)

Next, we present a multivariate stable central limit theorem for the family
.MPVÞ.X; p

j
1 ; : : : ; p

j

k /
n/1�j�d of multipower variations. We say that a sequence

of d -dimensional processes Zn converges stably in law to a d -dimensional process
Z, where Z is defined on an extension .˝ 0;F 0;P0/ of the original proba-
bility .˝;F ;P/, in the space D.Œ0; T �/d equipped with the uniform topology

(Zn st�! Z) if and only if

lim
n!1E.f .Zn/V / D E

0.f .Z/V /

for any bounded and continuous function f W D.Œ0; T �/d ! R and any bounded
F -measurable random variable V . We refer to [1,14] or [21] for a detailed study of
stable convergence.

Theorem 2. Let the Assumptions 1, 2 and 3-
 be satisfied for some 
 2 .0; 1� with

.p ^ 1/ > 1

2
, p D max1�i�k;1�j�d.pji /. Then we obtain the stable convergence
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��1=2
n

�
MPVÞ.X; p

j
1 ; : : : ; p

j

k /
n
t � �n

p
j
1 ;:::;p

j
k

Z t

0

j�sjp
C
j ds

�

1�j�d
st�!
Z t

0

A1=2s dW 0
s ;

(23)
whereW 0 is a d -dimensional Brownian motion that is defined on an extension of the
original probability space .˝;F ;P/ and is independent of F , A is a d � d -dimen-
sional process given by

Aijs D �ij j�sjp
C
i CpC

j ; 1 � i; j � d; (24)

and the d � d matrix � D .�ij /1�i;j�d is defined as

�ij D lim
n!1��1

n cov
�

MPVÞ.BH ; pi1; : : : ; p
i
k/
n
1;MPVÞ.BH ; p

j
1 ; : : : ; p

j

k /
n
1

�
(25)

with BH being a fractional Brownian motion with Hurst parameterH D ˇ C 1
2
.

Proof. See Sect. 5. ut

We remark that the conditions of Theorem 2 imply that max
1�i�k;1�j�d.p

j
i / >

1

2
since 
 2 .0; 1�.
Remark 1. Notice that the limit process in (23) is mixed normal, because the
Brownian motion W 0 is independent of the process A. In fact, we can transform
the convergence result of Theorem 2 into a standard central limit theorem due to
the properties of stable convergence; we demonstrate this transformation in Sect. 4.
We remark that the limit in (25) is indeed finite; see Theorem 2 in [8] and its proof
for more details. ut
Remark 2. In general, the convergence in (23) does not remain valid when �n

p
j
1 ;:::;p

j
k

is replaced by its limit �
p
j
1 ;:::;p

j
k

defined by (21). However, when the rate of

convergence associated with (21) is faster than ��1=2
n , we can also use the quantity

�
p
j
1 ;:::;p

j
k

without changing the stable central limit theorem in (23). This is the case

when the convergence

��1=2
n .rÞ

n .j / � �Þ.j // ! 0

holds for any j � 1. Obviously, the latter depends on the behaviour of the slowly
varying functionLR from Assumption 2(i) near 0. It can be shown that for our main
example

g.x/ D xˇ exp.��x/;
where ˇ 2 .� 1

2
; 0/ [ .0; 1

4
/ and � > 0, �n

p
j
1 ;:::;p

j

k

can indeed be replaced by the

quantity �
p
j
1 ;:::;p

j
k

without changing the limit in Theorem 2. ut
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Remark 3 (Second order differences vs. increments). Let us demonstrate some
advantages of using second order differences Þni X instead of using first order
increments�n

i X .

(i) First of all, taking second order differences weakens the value of autocor-
relations which leads to normal limits for the normalized version of the
functional MPVÞ.G; p1; : : : ; pk/n (and hence to mixed normal limits for
the value of MPVÞ.X; p1; : : : ; pk/n) for all ˇ 2 .� 1

2
; 0/ [ .0; 1

2
/. This can

be explained as follows: to obtain normal limits it has to hold that

1X

jD1
j�Þ.j /j2 < 1

where �Þ.j / is defined in formula (15) (it relies on the fact that the function
jxjp � E.jN.0; 1/jp/ has Hermite rank 2; see also condition (17)).
This is clearly satisfied for all ˇ 2 .� 1

2
; 0/[ .0; 1

2
/, because we have

j�Þ.j /j � j 2ˇ�3.
In the case of using first order increments �n

i X we obtain the correlation
function � of the fractional noise .BH

i � BH
i�1/i�1 with H D ˇ C 1

2
as the

limit autocorrelation function (see e.g. (4.15) in [8]). As j�.j /j � j 2ˇ�1 it
holds that 1X

jD1
j�.j /j2 < 1

only for ˇ 2 .� 1
2
; 0/[ .0; 1

4
/. ut

(ii) As we have mentioned in the previous section, we need to ensure that
�Þ
n ."/ ! 0, where the measure �Þ

n is defined by (13), for all " > 0 to
show the law of large numbers. But for proving the central limit theorem we
require a more precise treatment of the quantity

�Þ
n ."/ D

R1
"

�
g.x C 2�n/ � 2g.x C�n/C g.x/

�2
dx

.�Þ
n /

2
:

In particular, we need to show that the above quantity is small enough (see
condition (18)) to prove the negligibility of the error that is due to the first
order approximationÞni X � �.i�2/�n Þni G. The corresponding term in the
case of increments is essentially given as

�n."/ D
R1
"

�
g.x C�n/ � g.x/

�2
dx

�2n
;

where �2n D E.j�n
i Gj2/ (see [8]). Under the Assumptions 1 and 2 the

denominators .�Þ
n /

2 and �2n have the same order, but the nominator of
�Þ
n ."/ is much smaller than the nominator of �n."/. This has an important
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consequence: the central limit theorems for the multipower variation of the
increments of X hold only for ˇ 2 .� 1

2
; 0/ while the corresponding results

for the second order differences hold for all ˇ 2 .� 1
2
; 0/[ .0; 1

2
/. ut

Another advantage of using second order differencesÞni X is the higher robustness
to the presence of smooth drift processes. Let us consider the process

Yt D Xt CDt ; t � 0; (26)

where X is a BS S model of the form (3) and D is a stochastic drift. We obtain
the following result.

Proposition 1. Assume that the conditions of Theorem 2 hold and D 2 C v.R�0/
for some v 2 .1; 2/, i.e. D 2 C1.R�0/ (a.s.) andD0 has .v � 1/-Hölder continuous
paths (a.s.). When v � ˇ > 1 then

��1=2
n

�
MPVÞ.Y; p

j
1 ; : : : ; p

j

k /
n
t � �n

p
j
1 ;:::;p

j

k

Z t

0

j�s jp
C
j ds

�

1�j�d
st�!
Z t

0

A1=2s dW 0
s ;

where the limit process is given in Theorem 2. That is, the central limit theorem is
robust to the presence of the drift D.

Proof. Proposition 1 follows by a direct application of the Cauchy-Schwarz and
Minkovski inequalities (see Proposition 6 in [8] for more details). ut

The idea behind Proposition 1 is rather simple. Notice that Þni X D OP.�
ˇC 1

2
n /

(this follows from Assumption 2) whereas Þni D D OP.�
v
n/. It can be easily seen

that the drift process D does not influence the central limit theorem if v � ˇ �
1
2
> 1

2
, because ��1=2

n is the rate of convergence; this explains the condition of
Proposition 1.

Notice that we obtain better robustness properties than in the case of first order

increments: we still have �n
i X D OP.�

ˇC 1
2

n /, but now �n
i D D OP.�n/. Thus, the

drift processD is negligible only when ˇ < 0, which is obviously a more restrictive
condition.

Example 1. Let us come back to the original BS S process from (1), which is of
the form (26) with

Dt D
Z t

�1
q.t � s/asds:

For the ease of exposition we assume that

q.x/ D xˇ1fx2.0;1/g; ˇ > �1;
and the drift process a is càdlàg and bounded. Observe the decomposition

DtC" �Dt D
Z tC"

t

q.t C " � s/asds C
Z t

�1
.q.t C " � s/ � q.t � s//asds:
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We conclude that the process D has Hölder continuous paths of order .ˇ C 1/ ^ 1.
Consequently, Theorem 1 is robust to the presence of the drift process D when
ˇ > ˇ � 1

2
. Furthermore, for ˇ � 0 we deduce that

D0
t D q.0/at C

Z 1

0

q0.s/at�sds:

By Proposition 1 we conclude that Theorem 2 is robust to the presence of D when
the process a has Hölder continuous paths of order bigger than ˇ. ut
Remark 4 (Higher order differences). Clearly, we can also formulate asymptotic
results for multipower variation of q-order differences of BS S processes X .
Define

MPV.q/.X; p1; : : : ; pk/
n
t D �n.�

.q/
n /�pC

Œt=�n��qkCqX

iDq

k�1Y

lD0
j�.q/n

iCqlX jpl ;

where �.q/n
i X is the q-order difference starting at i�n and .�.q/n /2 D E.j�.q/n

i Gj2/.
Then the results of Theorems 1 and 2 remain valid for the class
MPV.q/.X; p1; : : : ; pk/

n with �np1;:::;pk defined as

�np1;:::;pk D E

� k�1Y

lD0

ˇ
ˇ
ˇ
�
.q/n

iCqlG

�
.q/
n

ˇ
ˇ
ˇ
pl
�
:

The Assumptions 1 and 2 have to be modified as follows: (a) g.2/ has to be replaced

by g.q/ in Assumption 1(ii) and 1(iii), and (b) R
.4/

has to be replaced by R
.2q/

in
Assumption 2(ii).

However, let us remark that going from second order differences to q-order
differences with q > 2 does not give any new theoretical advantages (with respect
to robustness etc.). It might though have some influence in finite samples. ut
Remark 5 (An extension to other integral processes). In [8] and [9] we considered
processes of the form

Zt D �C
Z t

0

�sdGs; (27)

where .Gs/s�0 is a Gaussian process with centered and stationary increments.
Define

R.t/ D E.jGsCt �Gsj2/
and assume that Assumption 2 holds for R (we use the same notations as for the
process (3) to underline the parallels between the models (27) and (3)). We remark
that the integral in (27) is well-defined in the Riemann-Stieltjes sense when the
process � has finite r-variation with r < 1=.1=2� ˇ/ (see [8] and [23]), which we
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assume in the following discussion. We associate �Þ
n and MPVÞ.Z; p1; : : : ; pk/nt

with the process Z by (8). Then Theorem 1 remains valid for the model (27) and
Theorem 2 also holds if we further assume that Assumption 3-
 is satisfied for some

 2 .0; 1� with 
.p ^ 1/ > 1

2
, p D max1�i�k;1�j�d.pji /.

We remark that the justification of the approximation Þni Z D �.i�2/�n Þni G is
easier to provide for the model (27) (see e.g. [8]). All other proof steps are performed
in exactly the same way as for the model (3). ut
Remark 6 (Some further extensions). We remark that the use of the power functions
in the definition of MPVÞ.X; p1; : : : ; pk/nt is not essential for the proof of
Theorems 1 and 2. In principle, both theorems can be proved for a more general
class of functionals

MPVÞ.X;H/nt D �n

Œt=�n��2kC2X

iD2
H
�Þni X
�Þ
n

; : : : ;
ÞniC2.k�1/X

�Þ
n

�
;

where H W R
k ! R is a measurable even function with polynomial growth

(cf. Remark 2 in [8]). However, we dispense with the exact exposition.
Another useful extension of Theorem 2 is a joint central limit theorem for

functionals MPVÞ.X; p1; : : : ; pk/
n
t computed at different frequencies (this result

will be applied in Sect. 4.3). For r � 1, define the multipower variation computed
at frequency r�n as

MPVÞ
r .X; p1; : : : ; pk/

n
t D �n.�

Þ
n;r /

�pC

Œt=�n��2kC2X

iD2r

k�1Y

lD0
jÞn;riC2lr X jpl ; (28)

where Þn;ri X D Xi�n � 2X.i�r/�n C X.i�2r/�n and .�Þ
n;r /

2 D E.jÞn;ri Gj2/. Then,
under the conditions of Theorem 2, we obtain the stable central limit theorem

�
�1=2
n

 
MPVÞ

r1
.X; p1; : : : ; pk/

n
t � �

n;r1
p1;:::;pk

R t
0 j�s jpC

ds

MPVÞ
r2
.X; p1; : : : ; pk/

n
t � �

n;r2
p1;:::;pk

R t
0 j�s jpC

ds

!
st�!

Z t

0
j�s jpC

�1=2dW 0
s ;

(29)

whereW 0 is a 2-dimensional Brownian motion independent of F ,

�n;rp1;:::;pk D E

� k�1Y

lD0

ˇ
ˇ
ˇ
Þn;riC2lrG
�Þ
n;r

ˇ
ˇ
ˇ
pl
�

and the 2 � 2 matrix � D .�ij /1�i;j�2 is defined as

�ij D lim
n!1��1

n cov
�

MPVÞ
ri
.BH ; p1; : : : ; pk/

n
1;MPVÞ

rj
.BH ; p1; : : : ; pk/

n
1

�

with BH being a fractional Brownian motion with Hurst parameterH D ˇ C 1
2
.

Clearly, an analogous result can be formulated for any d -dimensional family
.rj Ipj1 ; : : : ; pjk /1�j�d . ut
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4 Estimation of the Smoothness Parameter

In this section we apply our probabilistic results to obtain consistent estimates of the
smoothness parameter ˇ 2 .� 1

2
; 0/ [ .0; 1

2
/. We propose three different estimators

for ˇ: the realised variation ratio (RVRÞ), the modified realised variation ratio

(RVR
Þ

) and the change-of-frequency estimator (COFÞ). Throughout this section
we assume that

��1=2
n .rÞ

n .j / � �Þ.j // ! 0 (30)

for any j � 1, where rÞ
n .j / and �Þ.j / are defined in (14) and (15), respectively.

This condition guarantees that �n
p
j
1 ;:::;p

j

k

can be replaced by the quantity �
p
j
1 ;:::;p

j
k

in

Theorem 2 without changing the limit (see Remark 2). Recall that the condition (30)
holds for our canonical example

g.x/ D xˇ exp.��x/

when ˇ 2 .� 1
2
; 0/[ .0; 1

4
/ and � > 0.

4.1 The Realised Variation Ratio

We define the realised variation ratio based on the second order differences as

RVRÞn
t D MPVÞ.X; 1; 1/nt

MPVÞ.X; 2; 0/nt
: (31)

This type of statistics has been successfully applied in semimartingale models to
test for the presence of the jump part (see e.g. [4]). In the BS S framework the
statistic RVRÞn

t is used to estimate the smoothness parameter ˇ.
Let us introduce the function  W .�1; 1/ ! . 2

�
; 1/ given by

 .x/ D 2

�
.
p
1 � x2 C x arcsin x/: (32)

We remark that  .x/ D E.U1U2/, where U1, U2 are two standard normal variables
with correlation x. Let us further notice that while the computation of the value of
MPVÞ.X; p1; : : : ; pk/nt requires the knowledge of the quantity �Þ

n (and hence the
knowledge of the memory function g), the statistic RVRÞn

t is purely observation
based since

RVRÞn
t D

PŒt=�n��2
iD2 jÞni X jjÞniC2X j
PŒt=�n�

iD2 jÞni X j2
:

Our first result is the consistency of RVRÞn
t , which follows directly from Theorem 1

and Lemma 1.
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Proposition 2. Assume that the conditions of Theorem 1 hold. Then we obtain

RVRÞn
t

u.c.p.�!  .�Þ.2//; (33)

where �Þ.j / is defined by (15).

Note that

�Þ.2/ D �41C2ˇ C 4 
 31C2ˇ � 6 
 21C2ˇ C 4

2
�
4� 21C2ˇ

� ;

�Þ.2/ D �Þ
ˇ .2/ is invertible as a function of ˇ 2 .� 1

2
; 0/ [ .0; 1

2
/, it is positive for

ˇ 2 .� 1
2
; 0/ and negative for ˇ 2 .0; 1

2
/.

Obviously, the function  is only invertible on the interval .�1; 0/ or .0; 1/.
Thus, we can recover the absolute value of �Þ.2/, but not its sign (which is not
a big surprise, because we use absolute values of the second order differences in
the definition of RVRÞn

t ). In the following proposition we restrict ourselves to ˇ 2
.0; 1

2
/ as those values typically appear in physics.

Proposition 3. Assume that the conditions of Theorems 2 and (30) hold. Let
ˇ 2 .0; 1

2
/, �Þ

ˇ .2/ W .0; 1
2
/ ! .�1; 0/,  W .�1; 0/ ! . 2

�
; 1/ and set

f D  ı �Þ
ˇ .2/. Then we obtain for h D f �1

h.RVRÞn
t /

u.c.p.�! ˇ; (34)

and

�
�1=2
n .h.RVRÞn

t / � ˇ/MPVÞ.X; 2; 0/ntq
1
3
jh0.RVRÞn

t /j.1;�RVRÞn
t /�.1;�RVRÞn

t /TMPVÞ.X; 4; 0/nt

d�! N.0; 1/;

(35)
for any t > 0, where � D .�ij /1�i;j�2 is given by

�11 D lim
n!1��1

n var
�

MPVÞ.BH ; 1; 1/n1

�
;

�12 D lim
n!1��1

n cov
�

MPVÞ.BH ; 1; 1/n1;MPVÞ.BH ; 2; 0/n1

�
;

�22 D lim
n!1��1

n var
�

MPVÞ.BH ; 2; 0/n1

�
;

with H D ˇ C 1
2
.

Proposition 3 is a direct consequence of Theorem 2, of the delta-method for stable
convergence and of the fact that the true centering .rÞ

n .2// in (23) can be replaced
by its limit  .�Þ.2//, because of the condition (30) (see Remark 2). We note
that the normalized statistic in (35) is again self-scaling, i.e. we do not require the
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knowledge of �Þ
n , and consequently we can immediately build confidence regions

for the smoothness parameter ˇ 2 .0; 1
2
/.

Remark 7. The constants ˇij , 1 � i; j � 2, can be expressed as

�11 D var.jQ1jjQ3j/C 2

1X

kD1
cov.jQ1jjQ3j; jQ1CkjjQ3Ckj/;

�12 D cov.Q2
2; jQ1jjQ3j/C 2

1X

kD0
cov.Q2

1; jQ1CkjjQ3Ckj/;

�22 D var.Q2
1/C 2

1X

kD1
cov.Q2

1;Q
2
1Ck/ D 2C 4

1X

kD1
j�Þ.k/j2;

with Qi D Þni BH=
p

var.Þni BH/. The above quantities can be computed using
formulas for absolute moments of the multivariate normal distributions. ut

4.2 The Modified Realised Variation Ratio

Recall that the restriction ˇ 2 .0; 1
2
/ is required to formulate Proposition 3. To

obtain estimates for all values ˇ 2 .� 1
2
; 0/[ .0; 1

2
/ let us consider a modified (and,

in fact, more natural) version of RVRÞn
t :

RVR
Þn
t D

PŒt=�n��2
iD2 Þni X ÞniC2X
PŒt=�n�

iD2 jÞni X j2
: (36)

Notice that RVR
Þn
t is an analogue of the classical autocorrelation estimator. The

following result describes the asymptotic behaviour of RVR
Þn
t .

Proposition 4. Assume that the conditions of Theorems 2 and (30) hold, and let
h D .�Þ

ˇ .2//
�1. Then we obtain

h.RVR
Þn
t /

u.c.p.�! ˇ; (37)

and, with MPV
Þ
.X; 1; 1/nt D �n.�

Þ
n /

�2PŒt=�n��2
iD2 Þni X ÞniC2X ,

�
�1=2
n .h.RVR

Þn
t / � ˇ/MPVÞ.X; 2; 0/ntq

1
3
jh0.RVR

Þn
t /j.1;�RVR

Þn
t /�.1;�RVR

Þn
t /TMPVÞ.X; 4; 0/nt

d�! N.0; 1/;

(38)
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for any t > 0, where � D .�ij /1�i;j�2 is given by

�11 D lim
n!1��1

n var
�

MPV
Þ
.BH ; 1; 1/n1

�
;

�12 D lim
n!1��1

n cov
�

MPV
Þ
.BH ; 1; 1/n1;MPVÞ.BH ; 2; 0/n1

�
;

�22 D lim
n!1��1

n var
�

MPVÞ.BH ; 2; 0/n1

�
;

with H D ˇ C 1
2
.

Remark 8. Note that Proposition 4 follows from Remark 6, because the function
H.x; y/ D xy is even one. In fact, its proof is much easier than the corresponding
result of Theorem 2. The most essential step is the joint central limit theorem for

the nominator and the denominator of RVR
Þn
t when X D G (i.e. � � 1). The latter

can be shown by using Wiener chaos expansion and Malliavin calculus. Let H be a
separable Hilbert space generated by the triangular array .Þni G=�Þ

n /n�1;1�i�Œt=�n�
with scalar product h
; 
iH induced by the covariance function of the process
.Þni G=�Þ

n /n�1;1�i�Œt=�n�. Setting �ni D Þni G=�Þ
n we deduce the identities

�1=2
n

Œt=�n��2X

iD2

�
�ni �

n
iC2 � �Þ.2/

�
D I2.f

.1/
n /; f .1/

n D �1=2
n

Œt=�n��2X

iD2
�ni ˝ �niC2;

�1=2
n

Œt=�n�X

iD2

�
j�ni j2 � 1

�
D I2.f

.2/
n /; f .2/

n D �1=2
n

Œt=�n�X

iD2
.�ni /

˝2;

where I2 is the second multiple integral. The joint central limit theorem for the
above statistics follows from [19] once we show the contraction conditions

jjf .1/
n ˝1 f

.1/
n jj

H˝2 ! 0; jjf .2/n ˝1 f
.2/
n jj

H˝2 ! 0;

and identify the asymptotic covariance structure by computing
2 limn!1hf .i/

n ; f
.j /
n i

H˝2 for 1 � i; j � 2. We refer to the appendix of [7] for a
more detailed proof of such central limit theorems. ut
Remark 9. The constants ˇij , 1 � i; j � 2, are now much easier to compute. They
are given as

�11 D var.Q1Q3/C 2

1X

kD1
cov.Q1Q3;Q1CkQ3Ck/

D 1C j�Þ.2/j2 C 2

1X

kD1
.j�Þ.k/j2 C �Þ.k C 2/�Þ.jk � 2j/;
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�12 D cov.Q2
2;Q1Q3/C 2

1X

kD0
cov.Q2

1;Q1CkQ3Ck/

D 2j�Þ.1/j2 C 4

1X

kD1
�Þ.k/�Þ.k C 2/;

�22 D var.Q2
1/C 2

1X

kD1
cov.Q2

1;Q
2
1Ck/ D 2C 4

1X

kD1
j�Þ.k/j2;

with Qi D Þni BH=
p

var.Þni BH /. This follows from a well-known formula

cov.Z1Z2;Z3Z4/ D cov.Z1;Z3/cov.Z2;Z4/C cov.Z2;Z3/cov.Z1;Z4/

whenever .Z1;Z2;Z3;Z4/ is normal. ut

4.3 Change-of-Frequency Estimator

Another idea of estimating ˇ is to change the frequency �n at which the second
order differences are built. We recall that .�Þ

n /
2 D 4R.�n/ � R.2�n/ and

consequently we obtain the relationship

.�Þ
n /

2 ' �2ˇC1
n

by Assumption 2(i). Observing the latter we define the statistic

COFnt D
PŒt=�n�

iD4 jÞn;2i X j2
PŒt=�n�

iD2 jÞni X j2
; (39)

that is essentially the ratio of MPVÞ.X; 2; 0/nt computed at frequencies�n and 2�n.
Recall that .�Þ

n;2/
2 D E.jÞn;2i Gj2/ D 4R.2�n/� R.4�n/ and observe

.�Þ
n;2/

2

.�Þ
n /

2
! 22ˇC1:

As a consequence we deduce the convergence

COFnt
u.c.p.�! 22ˇC1:

The following proposition is a direct consequence of (29) and the properties of stable
convergence.



Limit Theorems for Functionals of Higher Order Differences 87

Proposition 5. Assume that the conditions of Theorems 2 and (30) hold, and let
h.x/ D .log2.x/ � 1/=2. Then we obtain

h.COFnt /
u.c.p.�! ˇ; (40)

and

�
�1=2
n .h.COFnt / � ˇ/MPVÞ.X; 2; 0/ntq

1
3
jh0.COFnt /j.1;�COFnt /�.1;�COFnt /

T MPVÞ.X; 4; 0/nt

d�! N.0; 1/; (41)

for any t > 0, where � D .�ij /1�i;j�2 is given by

�11 D lim
n!1��1

n var
�

MPVÞ
2 .B

H ; 2; 0/n1

�
;

�12 D lim
n!1��1

n cov
�

MPVÞ
2 .B

H ; 2; 0/n1;MPVÞ.BH ; 2; 0/n1

�
;

�22 D lim
n!1��1

n var
�

MPVÞ.BH ; 2; 0/n1

�
;

with H D ˇ C 1
2
.

Let us emphasize that the normalized statistic in (41) is again self-scaling. We recall
that the approximation

.�Þ
n;2/

2

.�Þ
n /

2
� 22ˇC1 D o.�1=2

n /;

which follows from (30), holds for our main example g.x/ D xˇ exp.��x/ when
ˇ 2 .� 1

2
; 0/[ .0; 1

4
/ and � > 0.

Remark 10. Observe the identity

Xi�n � 2X.i�2/�n CX.i�4/�n D Þni X � 2Þni�1 X CÞni�2X:

The latter implies that

�11 D 2C 2�4ˇ
1X

kD1
j�Þ.k C 2/� 4�Þ.k C 1/C 6�Þ.k/ � 4�Þ.jk � 1j/

C�Þ.jk � 2j/j2;
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�12 D 2�2ˇ.�Þ.1/� 1/C 21�2ˇ
1X

kD0
j�Þ.k C 2/� 2�Þ.k C 1/C �Þ.k/j2;

�22 D 2C 4

1X

kD1
j�Þ.k/j2:

ut

5 Proofs

Let us start by noting that the intermittency process � is assumed to be càdlàg, and
thus �� is locally bounded. Consequently, w.l.o.g. � can be assumed to be bounded
on compact intervals by a standard localization procedure (see e.g. Sect. 3 in [5]
for more details). We also remark that the process F defined by (9) is continuous.
Hence, F is locally bounded and can be assumed to be bounded on compact
intervals w.l.o.g. by the same localization procedure.

Below, all positive constants are denoted by C or Cp if they depend on some
parameter p. In the following we present three technical lemmas.

Lemma 2. Under Assumption 1 we have that

E.jÞniX jp/ � Cp.�
Þ
n /

p; i D 2; : : : ; Œt=�n� (42)

for all p > 0.

Proof of Lemma 2: Recall that due to Assumption 1(ii) the function jg.2/j is non-
increasing on .a;1/ for some a > 0 and assume w.l.o.g. that a > 1. By the
decomposition (12) and Burkholder’s inequality we deduce that

E.jÞniX jp/ � Cp

 

.�Þ
n /

p

C E

� Z 1

0

�
g.s C 2�n/ � 2g.s C�n/C g.s/

�2
�2.i�2/�n�sds

�p=2
!

;

since � is bounded on compact intervals. We immediately obtain the estimates

Z 1

0

�
g.s C 2�n/ � 2g.s C�n/C g.s/

�2
�2.i�2/�n�sds � C.�Þ

n /
2;

Z a

1

�
g.s C 2�n/� 2g.s C�n/C g.s/

�2
�2.i�2/�n�sds � C�2

n;
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because g.2/ is continuous on .0;1/ and � is bounded on compact intervals. On the
other hand, since jg.2/j is non-increasing on .a;1/, we deduce that

Z 1

a

�
g.s C 2�n/ � 2g.s C�n/C g.s/

�2
�2.i�2/�n�sds � �2

nF.i�2/�n :

Finally, the boundedness of the process F implies (42). ut
Next, for any stochastic process f and any s > 0, we define the (possibly infinite)

measure

�Þn
f;s .A/ D

R
A

�
g.x C 2�n/� 2g.x C�n/C g.x/

�2
f 2
s�xdx

.�Þ
n /

2
; A 2 B.R>0/;

(43)
and set �Þn

f;s .x/ D �nf;s.fy W y > xg/.
Lemma 3. Under Assumption 1 it holds that

sup
s2Œ0;t �

�Þn
�;s ."/ � C�Þ

n ."/ (44)

for any " > 0, where the measure �Þ
n is given by (13).

Proof of Lemma 3: Recall again that jg.2/j is non-increasing on .a;1/ for some
a > 0, and assume w.l.o.g. that a > ". Since the processes � and F are bounded we
deduce exactly as in the previous proof that

Z 1

"

�
g.x C 2�n/� 2g.x C�n/C g.x/

�2
�2s�xdx

D
Z a

"

�
g.x C 2�n/� 2g.x C�n/C g.x/

�2
�2s�xdx

C
Z 1

a

�
g.x C 2�n/ � 2g.x C�n/C g.x/

�2
�2s�xdx � C.�Þ

n ."/C�2
n/:

This completes the proof of Lemma 3. ut
Finally, the last lemma gives a bound for the correlation function rÞ

n .j /.

Lemma 4. Under Assumption 2 there exists a sequence .h.j //j�1 such that

jrÞ
n .j /j � h.j /;

1X

jD1
h.j / < 1; (45)

for all j � 1.
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Proof of Lemma 4: This result follows directly from Lemma 1 in [7]. Recall that
rÞ
n .j / ! �Þ.j / and

P1
jD1 j�Þ.j /j < 1, so the assertion is not really surprising.

ut
Observe that Lemma 4 implies the conditions (16) and (17).

5.1 Proof of Theorem 1

In the following we will prove Theorems 1 and 2 only for k D 1, p1 D p. The
general case can be obtained in a similar manner by an application of the Hölder
inequality.

Note that MPVÞ.X; p/nt is increasing in t and the limit process of (22) is
continuous in t . Thus, it is sufficient to show the pointwise convergence

MPVÞ.X; p/nt
P�! mp

Z t

0

j�sjpds;

wheremp D E.jN.0; 1/jp/. We perform the proof of Theorem 1 in two steps.

• The crucial approximation: First of all, we prove that we can use the approxi-
mationÞni X � �.i�2/�n Þni G without changing the limit of Theorem 1, i.e. we
show that

�n.�
Þ
n /

�p
Œt=�n�X

iD2

�
jÞniX jp � j�.i�2/�n Þni Gjp

�
P�! 0: (46)

An application of the inequality jjxjp � jyjpj � pjx � yj.jxjp�1 C jyjp�1/ for
p > 1 and jjxjp � jyjpj � jx � yjp for p � 1, (42) and the Cauchy-Schwarz
inequality implies that the above convergence follows from

�n.�
Þ
n /

�2
Œt=�n�X

iD2
E.jÞniX � �.i�2/�n Þni Gj2/ �! 0: (47)

Observe the decomposition

Þni X � �.i�2/�n Þni G D Ani C B
n;"
i C C

n;"
i

with

Ani D
Z i�n

.i�1/�n

g.i�n � s/.�s � �.i�2/�n /W.ds/

C
Z .i�1/�n

.i�2/�n

�
g.i�n � s/� 2g..i � 1/�n � s/

�
.�s � �.i�2/�n /W.ds/
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B
n;"
i D

Z .i�2/�n

.i�2/�n�"

�
g.i�n � s/� 2g..i � 1/�n � s/C g..i � 2/�n � s/

�
�sW.ds/

� �.i�2/�n

Z .i�2/�n

.i�2/�n�"

g.i�n � s/� 2g..i � 1/�n � s/C g..i � 2/�n � s/W.ds/

C
n;"
i D

Z .i�2/�n�"

�1

�
g.i�n � s/� 2g..i � 1/�n � s/C g..i � 2/�n � s/

�
�sW.ds/

� �.i�2/�n

Z .i�2/�n�"

�1

g.i�n � s/� 2g..i � 1/�n � s/C g..i � 2/�n � s/W.ds/

Lemma 3 and the boundedness of � imply that

�n.�
Þ
n /

�2
Œt=�n�X

iD2
E.jCn;"

i j2/ � C�Þ
n ."/; (48)

and by (11) and Assumption 2(i) we deduce that

�n.�
Þ
n /

�2
Œt=�n�X

iD2
E.jCn;"

i j2/ �! 0;

as n ! 1, for all " > 0. Next, set v.s; �/ D supfj�s��r j2j r 2 Œ�t; t �; jr�sj �
�g for s 2 Œ�t; t � and denote by �� the jump process associated with � . We
obtain the inequality

�n.�
Þ
n /

�2
Œt=�n�X

iD2
E.jAni j2/ � �n

Œt=�n�X

iD2
E.v..i � 2/�n; 2�n// (49)

� �C�nE

� X

s2Œ�t;t �
j��sj21fj��s j��g

�
D �.�; n/

for any � > 0. We readily deduce that

lim
�!0

lim sup
n!1

�.�; n/ D 0:

Next, observe the decomposition Bn;"
i D B

n;"
i .1/C B

n;"
i .2/ with

Bn;"i .1/ D
Z .i�2/�n

.i�2/�n�"

�
g.i�n � s/� 2g..i � 1/�n � s/C g..i � 2/�n � s/

�

� .�s � �.i�2/�n�"/W.ds/



92 O.E. Barndorff-Nielsen et al.

B
n;"
i .2/ D .�.i�2/�n�" � �.i�2/�n/

�
Z .i�2/�n

.i�2/�n�"

g.i�n � s/ � 2g..i � 1/�n � s/Cg..i � 2/�n � s/W.ds/:

We deduce that

�n.�
Þ
n /

�2
Œt=�n�X

iD2
E.jBn;"

i .1/j2/ � �n

Œt=�n�X

iD2
E.v..i � 2/�n; "//;

�n.�
Þ
n /

�2
Œt=�n�X

iD2
E.jBn;"

i .2/j2/ � �n

Œt=�n�X

iD2
E.v..i � 2/�n; "/

2/
1
2 : (50)

By using the same arguments as in (49) we conclude that both terms converge to
zero and we obtain (47), which completes the proof of Theorem 1. ut

• The blocking technique: Having justified the approximationÞni X � �.i�2/�nÞni G
in the previous step, we now apply a blocking technique for �.i�2/�n Þni G: we
divide the interval Œ0; t � into big sub-blocks of the length l�1 and freeze the
intermittency process � at the beginning of each big sub-block. Later we let l
tend to infinity.

For any fixed l 2 N, observe the decomposition

MPVÞ.X; p/nt �mp

Z t

0

j�s jpds D �n.�
Þ
n /

�p

Œt=�n�X

iD2

�
j Þn

i X jp � j�.i�2/�n Þn
i Gjp

�
CR

n;l
t ;

where

R
n;l
t D �n.�

Þ
n /

�p
� Œt=�n�X

iD2
j�.i�2/�n Þni Gjp �

Œlt �X

jD1
j�j�1

l
jp

X

i2Il .j /
jÞni Gjp

�

C
�
�n.�

Þ
n /

�p
Œlt �X

jD1
j�j�1

l
jp

X

i2Il .j /
jÞni Gjp �mpl

�1
Œlt �X

jD1
j�j�1

l
jp
�

C mp

�
l�1

Œlt �X

jD1
j�j�1

l
jp �

Z t

0

j�sjpds
�
;

and

Il .j / D
n
i j i�n 2

�j � 1

l
;
j

l

io
; j � 1:

Notice that the third summand in the above decomposition converges to 0 in
probability due to Riemann integrability of � . By Theorem 1 in [8] we know that
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MPVÞ.G; p/nt
u.c.p.�! mpt , because the condition (16) is satisfied (see Lemma 4).

This implies the negligibility of the second summand in the decomposition when
we first let n ! 1 and then l ! 1. As � is càdlàg and bounded on compact
intervals, we finally deduce that

lim
l!1 lim sup

n!1
P.jRn;lt j > "/ D 0;

for any " > 0. This completes the proof of the second step and of Theorem 1. ut

5.2 Proof of Theorem 2

Here we apply the same scheme of the proof as for Theorem 1. We start with the
justification of the approximation Þni X � �.i�2/�n Þni G and proceed with the
blocking technique.

• The crucial approximation: Here we prove that

�1=2
n .�Þ

n /
�p

Œt=�n�X

iD2

�
jÞniX jp � j�.i�2/�n Þni Gjp

�
P�! 0: (51)

Again we apply the inequality jjxjp � jyjpj � pjx � yj.jxjp�1 C jyjp�1/ for
p > 1, jjxjp � jyjpj � jx � yjp for p � 1 and (42) to deduce that

�1=2
n .�Þ

n /
�p

Œt=�n�X

iD2
E

�ˇ
ˇ
ˇjÞniX jp � j�.i�2/�n ÞniGjp

ˇ
ˇ
ˇ
�
j � �1=2

n .�Þ
n /

�.p^1/

�
Œt=�n�X

iD2

�
E.jÞniX � �.i�2/�n ÞniGj2/�

p^1
2 :

Now we use a similar decomposition as in the proof of Theorem 1:

Þni X � �.i�2/�n ÞniG D Ani C B
n;"

.1/
n

i C
lX

jD1
C
n;"

.j /
n ;"

.jC1/
n

i ;

where Ani , Bn;"
.1/
n

i are defined as above, 0 < ".1/n < 
 
 
 < ".l/n < "
.lC1/
n D 1 and
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C
n;"

.j /
n ;"

.jC1/
n

i D
Z .i�2/�n�"

.j /
n

.i�2/�n�"
.jC1/
n

�
g.i�n � s/� 2g..i � 1/�n � s/

Cg..i � 2/�n � s/
�
�sW.ds/

��.i�2/�n

Z .i�2/�n�"
.j /
n

.i�2/�n�"
.jC1/
n

g.i�n � s/� 2g..i � 1/�n � s/C g..i � 2/�n � s/W.ds/:

An application of Assumptions 1, 2 and 3-
 , for 
 2 .0; 1� with 
.p ^ 1/ > 1
2
,

and Lemma 3 implies that (recall that � is bounded on compact intervals)

�1=2
n .�Þ

n /
�p

Œt=�n�X

iD2

�
E.jAni j2/

� p^1
2 � C�


.p^1/� 1
2

n ;

�1=2
n .�Þ

n /
�p

Œt=�n�X

iD2

�

E.jBn;"
.1/
n

i j2/
� p^1

2

� C��1=2
n j".1/n j
.p^1/;

�1=2
n .�Þ

n /
�p

Œt=�n�X

iD2

�

E.jCn;"
.j /
n ;"

.jC1/
n

i j2/
� p^1

2

�

� C��1=2
n j".jC1/

n j
.p^1/j�Þ
n ."

.jC1/
n / � �Þ

n ."
.j /
n /j

p^1
2 ;

�1=2
n .�Þ

n /
�p

Œt=�n�X

iD2

�

E.jCn;"
.l/
n ;"

.lC1/
n

i j2/
� p^1

2

� C��1=2
n �Þ

n ."
.l/
n /

p^1
2 ;

(52)
for 1 � j � l � 1. In [8] (see Lemma 3 therein) we have proved the following
result: if the condition (18) is satisfied then there exist sequences

0 < "
.1/
n < 
 
 
 < ".l/n < "

.lC1/
n D 1

such that all terms on the right-hand side of (52) converge to 0.
Set � D .3 � 2ˇ/.1 � ı/ for some ı > 0 such that � > 1=.p ^ 1/. This is

possible, because 3 � 2ˇ 2 .2; 4/ and the assumptions of Theorem 2 imply that
p > 1=2. We obtain that

�Þ
n ."n/ � C��.1��/

n ;

for any "n D ��
n, � 2 .0; 1/, by (11) and Assumption 2(i). Thus, we deduce (18)

which implies the convergence of (51). ut
• The blocking technique: Again we only consider the case d D 1, k D 1 and
p1 D p. We recall the decomposition from the proof of Theorem 1:

��1=2
n

�
MPVÞ.X; p/nt �mp

Z t

0

j�sjpds
�

D ��1=2
n

�
�n.�

Þ
n /

�p
Œlt �X

jD1
j�j�1

l
jp

X

i2Il .j /
jÞniGjp �mpl

�1
Œt=l�n�X

jD1
j�j�1

l
jp
�

C�1=2
n .�Þ

n /
�p

Œt=�n�X

iD2

�
jÞniX jp � j�.i�2/�n ÞniGjp

�
CR

n;l

t ; (53)
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where

R
n;l

t D �1=2
n .�Þ

n /
�p�

Œt=�n�X

iD2
j�.i�2/�n ÞniGjp �

Œlt �X

jD1
j�j�1

l
jp

X

i2Il .j /
jÞniGjp

�

Cmp�
�1=2
n

�
l�1

Œlt �X

jD1
j�j�1

l
jp �

Z t

0

j�sjpds
�
:

Note that the negligibility of the second summand in the decomposition (53) has
been shown in the previous step. The convergence

lim
l!1 lim sup

n!1
P.jRn;lt j > "/ D 0;

for any " > 0, has been shown in [7] (see the proof of Theorem 7 therein). Finally,
we concentrate on the first summand of the decomposition (53). By Remark 11
in [8] we know that .Gt ;�

�1=2
n .MPVÞ.G; p/nt �mpt// ) .Gt ;

p
�W 0

t /, where
� is defined by (25), because rÞ

n .j / ! �Þ.j / and condition (17) holds (see
again Lemma 4). An application of the condition D00 from Proposition 2 in [1]
shows that

��1=2
n .MPVÞ.G; p/nt �mpt/

st�! p
�W 0

t :

Now we deduce by the properties of stable convergence:

��1=2
n

�
�n.�

Þ
n /

�p
Œlt �X

jD1
j�j�1

l
jp

X

i2Il .j /
jÞniGjp �mpl

�1
Œt=l�n�X

jD1
j�j�1

l
jp
�

st�! p
�

Œlt �X

jD1
j�j�1

l
jp�l

jW
0;

for any fixed l . On the other hand, we have that

p
�

Œlt �X

jD1
j�j�1

l
jp�l

jW
0 P�! p

�

Z t

0

j�sjpdW 0
s

as l ! 1. This completes the proof of Theorem 2. ut
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Retrieving Information from Subordination

Jean Bertoin and Marc Yor

Abstract We recall some instances of the recovery problem of a signal process
hidden in an observation process. Our main focus is then to show that if .Xs; s� 0/
is a right-continuous process, Yt D R t

0
Xsds its integral process and � D .�u; u � 0/

a subordinator, then the time-changed process .Y�u ; u � 0/ allows to retrieve the
information about .X�v ; v � 0/ when � is stable, but not when � is a gamma
subordinator. This question has been motivated by a striking identity in law
involving the Bessel clock taken at an independent inverse Gaussian variable.

Keywords Recovery problem • Subordination • Bougerol’s identity
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1 Introduction and Motivations Stemming from Hidden
Processes

Many studies of random phenomena involve several sources of randomness. To
be more specific, a random phenomenon is often modeled as the combination
C D ˚.X;X 0/ of two processesX andX 0 which can be independent or correlated,
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for some functional ˚ acting on pairs of processes. In this framework, it is natural
to ask whether one can recover X from C , and if not, what is the information on
X that can be recovered from C ? We call this the recovery problem of X given C .
Here are two well-known examples of this problem.

• Markovian filtering: There C is the observation process defined for every t � 0

by Ct D St C Bt where St D R t
0
h.Xs/ds is the signal process arising from a

Markov process X and B D .Bt ; t � 0/ is an independent Brownian motion.
Then the recovery problem translates in the characterization of the filtering
process, that is the conditional law ofXt given the sigma-field Ct D �.Cs; s� t/.
We refer to Kunita [6] for a celebrated discussion.

In the simplest case when X remains constant as time passes, which yields
h.Xt / � AwhereA is a random variable, note thatA can be recovered in infinite
horizon by A D limt!1 t�1Ct , but not in finite horizon. More precisely, it is
easily shown that for a Borel function f � 0, there is the identity

E.f .A/ j Ct / D
R
f .a/E a

t �.da/R
E a
t �.da/

where � is the law of A and E a
t D exp.aCt � ta2=2/; see Chap. 1 in [9].

• Brownian subordination: An important class of Lévy processes may be repre-
sented as

Ct D B�t ; t � 0;

where � a subordinator and B is again a Brownian motion (or more generally a
Lévy process) which is independent of � ; see for instance Chap. 6 in [7]. Geman,
Madan and Yor [4,5] solved the recovery problem of � hidden in C ; we refer the
reader to these papers for the different recovery formulas.

There exist of course other natural examples in the literature; we now say a
few words about the specific recovery problem which we will treat here and the
organization of the remainder of this paper.

We will consider the recovery problem when the signal is Yt D R t
0 Xsds and this

signal is only perceived at random times induced by a subordinator � . By this, we
mean that the observation process is given by C D Y ı � , and we seek to recover
the subordinate process X ı � . The precise formulation of the framework and our
results will be made in Sect. 2. Proofs of the results found in Sect. 2 are presented
in Sect. 3. Finally, in Sect. 4, we apply the results of Sect. 2 to an identity in law
involving a Bessel process, which is equivalent to Bougerol’s identity [2] and has
provided the initial motivation of this work.

2 Framework and Main Statements

We consider on some probability space .˝;A ;P/ an R
d -valued process .Xs; s � 0/

with right-continuous sample paths, and its integral process
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Yt D
Z t

0

Xsds; t � 0 :

Let also .�u; u � 0/ denote a stable subordinator with index ˛ 2 .0; 1/. We stress
that we do not require X and � to be independent. We are interested in comparing
the information embedded in the processes OX and OY which are obtained from X

and Y by the same time-change based on � , namely

OXu D X�u and OYu D Y�u ; u � 0 :

We denote by
� OXu

�

u�0 the usual augmentation of the natural filtration generated

by the process OX , i.e. the smallest P-complete and right-continuous filtration to

which OX is adapted. Likewise, we write
� OYu

�

u�0 for the usual augmentation of the

natural filtration of OY and state our main result.

Theorem 1. There is the inclusion OXu � OYu for every u � 0.

We stress that for u > 0, in general OYu cannot be recovered from the sole process OX ,
and then the stated inclusion is strict. An explicit recovery formula for OXu in terms
of the jumps of OY will be given in the proof of Theorem 1 (see Sect. 3 below).

A perusal of the proof of Theorem 1 shows that it can be extended to the case
when it is only assumed that � is a subordinator such that the tail of its Lévy measure
is regularly varying at 0 with index �˛, which suggests that this result might hold
for more general subordinators. On the other hand, if .Nv; v � 0/ is any increasing
step-process issued from 0, such as for instance a Poisson process, then the time-
changed process .YNv ; v � 0/ stays at 0 until the first jump time of N which is
strictly positive a.s. This readily implies that the germ-�-field

\

v>0

�.YNu ; u � v/

is trivial, in the sense that every event of this field has probability either 0 or
1. Focussing on subordinators with infinite activity, it is interesting to point out
that Theorem 1 fails when one replaces the stable subordinator � by a gamma
subordinator, as can be seen from the following observation (choose Xs � �).

Proposition 1. Let 
 D .
t ; t � 0/ be a gamma-subordinator and � a random
variable with values in .0;1/ which is independent of 
 . Then the germ-�-field

\

t>0

�.�
s; s � t/

is trivial. On the other hand, we also have

\

t>0

.�.�/ _ �.
s; s � t// D �.�/ :
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It is natural to investigate a similar question in the framework of stochastic
integration. For the sake of simplicity, we shall focus on the one-dimensional
case. We thus consider a real valued Brownian motion .Bt ; t � 0/ in some
filtration.Ft /t�0 and an .Ft /-adapted continuous process .Xt ; t � 0/, and consider
the stochastic integral

It D
Z t

0

XsdBs; t � 0 :

We claim the following.

Proposition 2. Fix � > 0 and assume that the sample paths of .Xt ; t � 0/

are Hölder-continuous with exponent � a.s. Suppose also that .�v; v � 0/ is a
stable subordinator of index ˛ 2 .0; 1/, which is independent of F1. Then the
usual augmentation . OIv/v�0 of the natural filtration generated by the subordinate

stochastic integral
� OIv D I�v ; v � 0

�
contains the one generated by .jX�v j; v � 0/.

3 Proofs

3.1 Proof of Theorem 1

For the sake of simplicity, we henceforth suppose that the tail of the Lévy measure
of the stable subordinator � is x 7! x�˛ , which induces no loss of generality. We
shall need the following elementary version of the Law of Large Numbers for the
jumps .��s D �s � �s�; s > 0/ of a stable subordinator.

Fix any ˇ > 2=˛ and introduce for any given b 2 R and " > 0

N";b D Cardfs � " W b��s > "ˇg :

Note that N";b � 0 for b � 0.

Lemma 1. We have

P

�
lim
n!1n1�˛ˇN1=n;b D b˛ for all b > 0

�
D 1:

Remark. The rectangles Œ0; "� � ."ˇ;1/ neither increase nor decrease with " for
" > 0, so Lemma 1 does not reduce to the classical Law of Large Numbers for
Poisson point processes. This explains the requirement that ˇ > 2=˛.

Proof. Recall that for b > 0, N";b is a Poisson variable with parameter

"."ˇ=b/�˛ D b˛"1�ˇ˛ :
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Chebychev’s inequality thus yields the bound

P

�
ˇ
ˇn1�˛ˇN1=n;b � b˛ˇˇ > 1

lnn

�

� b2˛n1�˛ˇ ln2 n

and since 1 � ˛ˇ < �1, we deduce from the Borel-Cantelli lemma that for each
fixed b > 0,

lim
n!1n1�˛ˇN1=n;b D b˛ almost surely:

We can then complete the proof with a standard argument of monotonicity. ut
We now tackle the proof of Theorem 1 by verifying first that X0 is

OY0-measurable. Let us assume that the process X is real-valued as the case of
higher dimensions will then follow by considering coordinates. Set

J" D Cardfs � " W � OYs > "ˇg;

where as usual � OYs D OYs � OYs�. We note that

� OYs � X0��s D
Z �s

�s�

.Xu � X0/du :

Hence if we set a" D sup0�u��" jXu � X0j, then

.X0 � a"/��s � � OYs � .X0 C a"/��s;

from which we deduce N";X0�a" � J" � N";X0Ca" .
Since X has right-continuous sample paths a.s., we have lim"!0 a" D 0 a.s., and

taking " D 1=n, we now deduce from Lemma 1 that

lim
n!1n1�˛ˇJ1=n D .XC

0 /
˛ almost surely:

Hence XC
0 is OY0-measurable, and the same argument also shows that X�

0 is
OY0-measurable.

Now that we have shown that X0 is OY0-measurable, it follows immediately that
for every v � 0, the variable OXv is OYv-measurable. Indeed, define � 0

u D �vCu ��v and
X 0

v D XvC�v . Then � 0 is again a stable.˛/ subordinator and X 0 a right-continuous
process, and

OYvCu � OYv D
Z � 0

u

0

X 0
sds :

Hence X 0
0 D OXv is measurable with respect to the P-complete germ-�-field gener-

ated by the process . OYvCu � OYv; u � 0/, and a fortiori to OYv.
Thus we have shown that the process OX is adapted to the right-continuous

filtration
� OYv

�

v�0. Since by definition the latter is P-complete and right-continuous,

Theorem 1 is established. ut
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3.2 Proof of Proposition 1

Here it is convenient to agree that ˝ denotes the space of càdlàg paths
! W Œ0;1/ ! RC endowed with the right-continuous filtration .At /t�0 generated
by the canonical process !t D !.t/. We write Q for the law on ˝ of the process
.�
t ; t � 0/.

It is well known that for every x > 0 and t > 0, the distribution of the process
.x
s; 0 � s � t/ is absolutely continuous with respect to that of the gamma
process .
s; 0 � s � t/ with density x�t exp ..1 � 1=x/
t /. Because � and 
 are
independent, this implies that for any event� 2 Ar with r < t

Q .�/ D E
�
��t exp ..1 � 1=�/
t / 1f
2�g

�
:

Observe that

lim
t!0C �

�t exp ..1 � 1=�/
t / D 1 a.s.

and the convergence also holds in L1.P/ by an application of Scheffé’s lemma
(alternatively, one may also invoke the convergence of backwards martingales). We
deduce that for every � 2 A0, we have Q.�/ D P.
 2 �/ and the right-hand-side
must be 0 or 1 because the gamma process satisfies the Blumenthal’s 0-1 law. On
the other hand, the independence of � and 
 yields that the second germ sigma field
is �.�/. ut
Remarks. We point out that Proposition 1 holds more generally when 
 is replaced
by a subordinator with logarithmic singularity, also called of class .L /, in the sense
that the drift coefficient is zero and the Lévy measure is absolutely continuous with
density g such that g.x/ D g0x

�1CG.x/where g0 is some strictly positive constant
and G W .0;1/ ! R a measurable function such that

Z 1

0

jG.x/jdx < 1 ; g.x/ � 0 ; and
Z 1

1

g.x/dx < 1 :

Indeed, it has been shown by von Renesse et al. [8] that such subordinators enjoy a
quasi-invariance property analogous to that of the gamma subordinator, and this is
the key to Proposition 1.

Thanks to Theorem 1, if we replace in Proposition 1 the gamma process by � , a
stable subordinator, then both germ sigma fields are equal to �.�/.

3.3 Proof of Proposition 2

The guiding line is similar to that of the proof of Theorem 1. In particular it suffices
to verify that jX0j is measurable with respect to the germ-�-field OI0.

Because Brownian motionB and subordinator � are independent, the subordinate
Brownian motion . OBv D B�v ; v � 0/ is a symmetric stable Lévy process with index
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2˛. With no loss of generality, we may suppose that the tail of its Lévy measure ˘
is given by˘.RnŒ�x; x�/ D x�2˛ . As a consequence, for every ˇ > 2=˛ and " > 0
and b 2 R, if one defines

N";b D Cardfs � " W jb� OBsj2 > "ˇg;

then N";b is a Poisson variable with parameter jbj2˛"1�˛ˇ , and this readily yields
(see Lemma 1)

lim
n!1n1�˛ˇN1=n;b D jbj2˛ for all b 2 R, almost-surely. (1)

Next set

J" D Cardfs � " W j� OIsj2 > "ˇg;
where as usual OIs D I�s , and observe that

� OIs D X0� OBs C .X�s� �X0/� OBs C
Z �s

�s�

.Xu �X�s�/dBu : (2)

Recall the assumption that the paths of X are Hölder-continuous with exponent
� > 0, so the .Ft /-stopping time

T D inf

(

u > 0 W sup
0�v<u

.u � v/��jXu �Xvj2 > 1
)

is strictly positive a.s. In particular, if we write�" D f�" < T g, then P.�"/ tends to
1 as " ! 0C.

We fix a > 0, we consider

K";a D Card

(

s � " W
ˇ
ˇ
ˇ
ˇ

Z �s

�s�

.Xu �X�s�/dBu

ˇ
ˇ
ˇ
ˇ

2

> a"ˇ

)

;

and we claim that

lim
"!0

"˛ˇ�1
E.K";a;�"/ D 0 : (3)

If we take (3) for granted, then we can complete the proof by an easy adaptation of
the argument in Theorem 1. Indeed, we can then find a strictly increasing sequence
of integers .n.k/; k 2 N/ such that with probability one, for all rational numbers
a > 0

lim
k!1n.k/1�˛ˇK1=n.k/;a D 0 : (4)

We observe from (2) that for any a 2 .0; 1=2/, if j� OIsj2 > "ˇ, then necessarily
either

jX0� OBsj2 > .1 � 2a/2"ˇ;
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or
j.X�s� � X0/� OBsj2 > a2"ˇ;

or
ˇ
ˇ
ˇ
ˇ

Z �s

�s�

.Xu �X�s�/dBu

ˇ
ˇ
ˇ
ˇ

2

> a2"ˇ :

As
lim
"!0C sup

0�s�"
jX�s� � X0j D 0;

this easily entails, using (1) and (4), that

lim sup
k!1

n.k/1�˛ˇJ1=n.k/ � lim
k!1n.k/1�˛ˇN1=n.k/;.1�2a/�1jX0j

D .1� 2a/�2˛jX0j2˛; a.s.

where the identity in the second line stems from (1). A similar argument also gives

lim inf
k!1 n.k/1�˛ˇJ1=n.k/ � .1C 2a/�2˛jX0j2˛; a.s.,

and as a can be chosen arbitrarily close to 0, we conclude that

lim
k!1n.k/1�˛ˇJ1=n.k/ D jX0j2˛; a.s.

Hence jX0j is OI0-measurable.
Thus we need to establish (3). As � is independent of F1, we have by an

application of Markov’s inequality that for every s � "

P

 ˇ
ˇ
ˇ
ˇ

Z �s

�s�

.Xu � X�s�/dBu

ˇ
ˇ
ˇ
ˇ

2

> a"ˇ;�" j �
!

� 1

a"ˇ

Z ��s

0

v�dv � .��s/
1C�

a"ˇ
:

It follows that

E.K";a;�"/ � E

 
X

s�"

�
.��s/

1C�

a"ˇ
^ 1

�!

D "c

Z

.0;1/

x�1�˛
�
x1C�

a"ˇ
^ 1

�

dx D O."1�˛ˇ=.1C�//;
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where for the second line we used the fact that the Lévy measure of � is cx�1�˛dx
for some unimportant constant c > 0. This establishes (3) and hence completes the
proof of our claim. ut

4 Application to an Identity of Bougerol

In this section, we answer a question raised by Dufresne and Yor [3], which has
motivated this work.

A result due to Bougerol [2] (see also Alili et al. [1]) states that for each fixed
t � 0 there is the identity in distribution

sinh.Bt /
(law)D
Z t

0

exp.Bs/dWs (5)

where B andW are two independent one-dimensional Brownian motions. Consider
now a two-dimensional Bessel process .Ru; u � 0/ issued from 1 and the associated
clock

Ht D
Z t

0

R�2
u du; t � 0 :

Let also .�s; s � 0/ denote a stable .1=2/ subordinator independent from the Bessel
process R.

In Dufresne and Yor [3], it was remarked that by combining Bougerol’s identity
(5) and the symmetry principle of Désiré André, there is the identity in distribution
for every fixed s � 0

H�s

(law)D �a.s/; (6)

where a.s/ D Argsinh.s/ D log
�
s C p

1C s2
�

.

In [3], the authors wondered whether (6) extends at the level of processes
indexed by s � 0, or equivalently whether . OHs D H�s ; s � 0/ has independent
increments. Theorem 1 entails that this is not the case. Indeed, it implies that the

usual augmentation
� OHs

�

s�0 of the filtration generated by OH contains the one

generated by
� ORs D R�s ; s � 0

�
. On the other hand, .R;H/ is a Markov (additive)

process, and since subordination by an independent stable subordinator preserves
the Markov property, . OR; OH/ is Markovian in its own filtration, which coincides

with
� OHs

�

s�0 by Theorem 1. It is readily seen that for any v > 0, the conditional

distribution of H�sCv given .R�s ;H�s / does not only depend on H�s , but on R�s as

well. Consequently the process OH is not Markovian and a fortiori does not have
independent increments.
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1 Introduction

We first present three theorems from the thesis of Yu. V. Prokhorov [10]. Let

�1; �2; : : : ; �n; : : :

be a sequence of independent identically distributed random variables with distribu-
tion function F.x/ D P f�1 < xg.

Theorem P4. Let F.x/ satisfy one of the following two conditions:

1. F.x/ is a discrete distribution function;
2. There exists an integer n0 such that F �n0.x/ has an absolutely continuous

component.

Then there exists a sequence fGn.x/g of infinitely divisible distribution functions
such that

kF �n.x/ �Gn.x/k ! 0 as n ! 1;

where k 
 k stands for the total variation.

Theorem P5. In order that

kF �n.xBn C An/�G.x/k ! 0; n ! 1;

for some appropriately chosen constants Bn > 0 and An and a stable distribution
function G.x/, the following conditions are necessary and sufficient:

1. F �n.xBn C An/ ! G.x/; n ! 1; x 2 R1;
2. There exists n0 such that

Z 1

�1
pn0.x/ dx > 0;

where pn0.x/ D d
dx
F

�no
.x/ .

Theorem P6. Suppose that �1 takes only the values m D 0;˙1; : : : and that the
stable distribution functionG.x/ has a density g.x/. Then

X

m

ˇ
ˇ
ˇ
ˇP f�1 C 
 
 
 C �n D mg � 1

Bn
g
�m �An

Bn

�ˇˇ
ˇ
ˇ ! 1

if and only if the following two conditions are satisfied:

1. F �n.xBn C An/ ! G.x/; n ! 1; x 2 R1;
2. The maximal step of the distribution of �1 equals 1.

In the case where G.x/ D ˚.x/ is the standard Gaussian distribution function,
the following statement is proved.
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Theorem 1. Let �1 have 0 mean and unit variance. In order that

kF �n.x
p
n/� ˚.x/k D O.n�ı=2/; n ! 1;

for some ı 2 .0; 1�, the following two conditions are necessary and sufficient:

1. supx
ˇ
ˇF �n.x

p
n/ �˚.x/ˇˇ D O.n�ı=2/; n ! 1I

2. There exists n0 such that the distribution function F �n0.x/ has an absolutely
continuous component.

The theorem is proved in [2]. In the same paper, a sequence of random variables
�1; : : : ; �n; : : : with values m D 0;˙1;˙2; : : : is also considered. In this case, the
following statement is proved.

Theorem 2. In order that

X

m

ˇ
ˇ
ˇ
ˇP f�1 C 
 
 
 C �n D mg � 1p

2�n
e�m2=2n

ˇ
ˇ
ˇ
ˇ D O.n�ı=2/

for some ı 2 .0; 1�, the following two conditions are necessary and sufficient:

1. supx
ˇ
ˇF �n.x

p
n/� ˚.x/

ˇ
ˇ D O.n�ı=2/; n ! 1;

2. The maximal step of the distribution of �1 is 1.

In the case where P.A/ is a probability distribution defined in the k-dimensional
space Rk , and ˚.A/ is the standard k-dimensional normal distribution, the follow-
ing theorem is proved in [3].

Theorem 3. In order that

sup
A2Mk

ˇ
ˇP �n.A

p
n/ �˚.A/ˇˇ D O.n�ı=2/;

the following two conditions are necessary and sufficient:

1. supktkD1 supx2R1
ˇ
ˇP �n.

p
nAx.t/// � ˚.Ax.t//

ˇ
ˇ D O.n�ı=2/ as n ! 1;

where Ax.t/ D fu W .t;u/ < xg, ktk is the length of a vector t 2 Rk , and .u; t/
denotes the inner product in Rk ;

2. There exists n0 such that the distribution function F �n0 has a absolutely
continuous component.

The statements of Theorems 1–3 remain valid if one replaces ˚.A/ by “long”
Chebyshev–Cramer asymptotic expansions with appropriate changes in condi-
tion (1) and with no changes in the Prokhorov conditions (in the theorems,
conditions (2)); see [3].
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2 Appell Polynomials

Recall that a sequence of polynomials gn.x/, n D 1; 2; : : :, is called an Appell
polynomial set if

d

dx
gn.x/ D ngn�1.x/; n D 1; 2; : : : ; x 2 R1I

see [6], p. 242.
Often, by Appell polynomials are meant the polynomials

Aj .z/ D .�1/j zjC1
j�1X

lD0
qjl z

l (1)

defined by
�
1C z

�

�� D ez

�

1C
1X

jD1

�1

�

�j
Aj .z/

�

(2)

for jzj < � (see [5, 8]).
The coefficients qj l satisfy the recursion formula

qjl D .j C l/qj�1;l C qj�1;l�1
j C l C 1

(3)

for j D 1; 2; : : :, l D 1; 2; : : : ; j � 2 (see [8]). For l < 0, qjl D 0, and

qj0 D 1

j C 1
; qj;j�1 D 1

2j j Š
:

It is known [8] that

qjl D
X

�1 C 2�2 C � � � C j�j D j

�1 C �2 C � � � C �j D l C 1

jY

iD1



1

�1Š

� 1

i C 1

��i
�

for j D 1; 2; : : :, l D 0; 1; : : : ; j � 1.
Estimating the remainder terms of asymptotic expansions, we will use the

following lemma.

Lemma 1. We have
j�1X

lD0
qjl 6

1

2
; j D 1; 2; : : : : (4)

The lemma can be proved by induction using (3).
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Let us now estimate the remainder term

Rs.z; �/ D
�
1C z

�

�� � ez

�

1C
sX

jD1

�1

�

�j
Aj .z/

�

:

Here z may be a complex number, e.g., the difference of characteristic functions of
random vectors, � > 0, and jzj < � ; s D 1; 2; : : :.

Lemma 2. We have

jRs.z; �/j 6

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

1

2

�
1

�

�s
1

� � jzj jz
sC2ezj if jzj < �;

1

2

�
1

�

�s
1

� � 1 jzsC2ezj if jzj D 1 and � > 1;

1

2

� jzj
�

�sC1
� jzsC2ezj

2.jzj � 1/.� � jzj2/ if 1 < jzj < p
�:

Proof. From (2) and (3) it follows that

Rs.z; �/ D
1X

jDsC1

�1

�

�j
Aj .z/e

z D
�1

�

�sC1
zsC2ez

1X

rD1

�
� z

�

�r rCsX

lD0
qrCsC1;lzl :

Now it remains to apply inequality (4), and the lemma follows after a simple
calculation.

3 Expansion of Convolutions of Measures by Appell
Polynomials

Consider the convolutions of generalized finite-variation measures �.B/, B 2 Mk :

�
�0 C �

n

��n
.B/ D

Z

Rk

�
�0 C �

n

�
.B � x/

�
�0 C �

n

��.n�1/
.dx/;

where �0 is the Dirac measure, 0 D .0; 0; : : : ; 0/ 2 Rk , n D 1; 2; : : :;

�
�0 C �

n

��0 D �0I �0 � � D �:

It is obvious that

�
�
�
�
�0 C �

n

��n��
� 6

��
�
��0 C �

n

�
�
�

�n
:
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Theorem 4. If k�k < n, we have the asymptotic expansion

�
�0 C �

n

��n D e� �



�0 C
1X

jD1

� 1

n

�j
Aj .�/

�

where n D 1; 2; : : :, and

Aj .�/ D .�1/j��.jC1/ �
j�1X

lD0
qjl �

�l

is the Appell polynomial with the powers of � are understood in the convolution
sense.

Proof. Obviously,

�
�0 C �

n

��n D
nX

�D0

�
1

n

��
 
n

�

!

��� D
1X

�D0

���

n�
n.n � 1/ : : : .n � � C 1/

�Š
;

where

n.n � 1/ : : : .n � � C 1/ D
��1X

jD0
.�1/j n��j C .j /

� ;

and C .j /
� is the Stirling number of the first kind.

From the last two equalities it follows that

�
�0 C �

n

��n D �0 C
1X

�C1

���

�Šn�

��1X

jD0
.�1/jC .j /

� n��j

D �0 C
1X

jD0

�
� 1

n

�j 1X

�DjC1

1

�Š
���C .j /

� :

Since C .0/
� D 1 and

C .j /
� D

j�1X

lD0
qjl�.� � 1/ : : : .� � j � l/;
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we obtain

�
�0 C �

n

��n D �0 C
1X

�C1

1

nŠ
���C .0/

� C

C
1X

jD1

�
� 1

n

�j 1X

�DjC1

1

�Š
���

j�1X

kD0
qjk�.� � 1/ : : : .� � j � k/ D

D
1X

�D0

1

�Š
��� C

1X

jD1

�
� 1

n

�j j�1X

kD0
qjk

1X

�DjCkC1

1

.� � j � k � 1/Š
���D

D e� C
1X

jD1

�
� 1

n

�j j�1X

kD0
qjk�

�.jCkC1/ �
� 1X

lD0

1

lŠ
�l
�

D

D e� �



�0 C
1X

jD1

�
� 1

n

�j
��.jC1/ �

� j�1X

kC1
qjk�

�k
��

D

D e� �



�0 C
1X

jD1

�1

n

�j
Aj .�/

�

:

The theorem is proved.

Theorem 5. Let � and �1 be generalized finite-variation measures in Rk . Then,
for every Borel set B 2 Mk , we have

ˇ
ˇ
ˇ
ˇ

�
�1 �

�
�0 C �

n

���n
.B/ � ��n

1 � e� �



�0 C
sX

jD1

�1

n

�j
Aj .�/

�

.B/

ˇ
ˇ
ˇ
ˇ

6

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

1

2

� 1

n

�s
�.B/ if k�k < 1;

1

2.n� 1/
�1

n

�s
�.B/ if k�k D 1;

1

2

�k�k
n

�s �.B/

.k�k � 1/.n� k�k2/ if 1 < k�k < p
n;

where n D 1; 2; : : :, and

�.B/ D sup
x

ˇ
ˇ��n

1 � ��.sC2/ � e�.B � x/
ˇ
ˇ:
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Proof. When k�k < n, the remainder term is

rsC1.B/ D
1X

jDsC1

� 1

n

�j
.�1/j e� � ��n

1 � ��.jC1/
j�1X

lD0
qjl�

�l .B/ D

De� � ��n
1 � ��.sC2/�� 1

n

�sC1 �
1X

rD0

�
� �

n

��r rCsX

lD0
qrCsC1;l��l D

D
�

� 1

n

�sC1 Z

Rk
e� � ��n

1 � ��.sC2/.B � x/

 1X

rD0

�
� �

n

��r rCsX

lD0
qrCsC1;l��l

!

.dx/:

From this it follows that

jrsC1.B/j 6
� 1

n

�sC1
�.B/

1X

rD0

�k�k
n

�r rCsX

lD0
qrCsC1;l .k�k/l : (5)

Here,

1X

rD0

�k�k
n

�r rCsX

lD0
qrCsC1;l .k�k/l 6

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

1

2

n

n � k�k if k�k < 1;

1

2

n

n � 1 if k�k D 1;

1

2

k�ksC1
k�k � 1

n

n� k�k2 if 1 < k�k < p
n:

From this and from (5) the theorem follows.

Suppose that the probability distribution has an inverse generalized mea-
sure G��, i.e.,

G �G�� D G�� �G D E0;

where E0 is the degenerate k-dimensional measure concentrated at 0 2 Rk .
Such a property is possessed by accompanying probability distributions eF�E0 , i.e.,
G�� D e�.F�E0/.

Theorem 6. Let F be a k-dimensional probability distribution, let a probability
distribution G have an inverse G��, and let % D k.F �G/ �G��k < 1. Then

F �n D G�n � en.F�G/�G�� �



E0 C
1X

jD1

� 1

n

�j
Aj .n.F �G/ �G��/

�

; (6)
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where

Aj .n.F �G/�G��/ D .�1/j .n.F �G/�G��/�.jC1/�
j�1X

lD0
qjl .n.F �G/�G��/�l :

To estimate the remainder term

rsC1.B/ D
1X

jDsC1

� 1

n

�j
G�n � en.F�G/�G�� � Aj

�
n.F �G/ �G���.B/;

we use

�.B/ D sup
x

ˇ
ˇG�n � en.F�G/�G�� � �n.F �G/ �G����.sC2/.B � x/

ˇ
ˇ

and

L D
�1

n

�sC1 1X

rD0
%r

rCsX

lD0
qrCsC1;l

�kn%k�l :

It is obvious that
jrsC1.B/j 6 L�.B/; (7)

where

L 6

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

1

2.1� %/
�1

n

�sC1
if n% < 1;

1

2

� 1

n

�s 1

n � 1
if n% D 1;

1

2

%sC1

.1 � n%2/
if 1
n
< % < 1p

n
:

(8)

From (7) and (8) there follows an estimate of the remainder term in the
asymptotic expansion (6).

4 Expansion of a Convolution by Accompanying Probability
Measures

Every k-dimensional probability measure P satisfies the identity

P D eP�E0 � �E0 � .P �E0/�2 �E.E0 � P/��1
�
; (9)

where

E.E0 � P/��1 D
1X

mD0
P f�1 D mg.E0 � P/�m (10)

with P f�1 D mg D mC 1

.mC 2/Š
, m D 0; 1; 2; : : :.
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From (9) and (10) it follows that

�
.P � eP�E0/ � e�.P�E0/��l D .�1/l.P �E0/�2l �E.E0 � P/�zl (11)

for l D 1; 2; : : :, where zl D �1 C �2 C 
 
 
C �l -is the sum of i.i.d. random variables
�1; �2; : : : ; �l .

It is obvious that, for all P ,

�
�
�
.P � eP�E0/ � e�.P�E0/��l�� 6

�
1C e2

4

�l
; l D 1; 2; : : : :

If k.P � E0/
�2k < 4

1Ce2
, then

% D �
�.P � eP�E0 / � e�.P�E0/�� < 1;

and for the convolution P �n, we can apply Theorem 6:

P �n D en.P�E0/ � en� �



E0 C
1X

jD1

� 1

n

�j
Aj .n�/

�

; (12)

where

Aj .n�/ D .�1/j .n�/�.jC1/ �
j�1X

lD0
qjl .n�/

�l

and
� D .P � eP�E0/ � e�.P�E0/:

Let us estimate the remainder term

rsC1.B/ D en.P�E0/ � en� �
�

E0 C
1X

jDsC1

�1

n

�j
Aj .n�/

�

.B/:

From (11) it follows that

��l D .�1/l .P � E0/
�2l �E.E0 � P/�zl

and

rsC1.B/ D.�n/sC2.P � E0/
�2.sC2/ �E.E0 � P /�zsC2 � en.P�E0/�

� exp
˚ � n.P � E0/

�2E.E0 � P /��1
� �

1X

rD0
.��/�r �

rCsX

lD0
qrCsC1;l .n�/�l :
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Theorem 7. Suppose that k.P �E0/�2k < 4
1Ce2

. Then, for all Borel sets B 2 Mk ,

jrsC1.B/j 6 �.B/ 
 L;
where

�.B/ D sup
x

ˇ
ˇ
ˇ
�
n.P �E0/�2

��.sC2/ �E.E0 � P/�.zsC2/�

� exp
˚
n.P � E0/ � .E0 � .P �E0/ �E.E0 � P/��1�.B � x/

ˇ
ˇ
ˇ;

% D k�k, and

L D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:

1

2.1� %/

� 1

n

�sC1
if n% < 1;

1

2

� 1

n

�s 1

n� 1
if n% D 1;

1

2

%sC1

1 � n%2
if 1 < n% <

p
n:

The theorem follows from inequalities (7) and (8).

5 Asymptotic Bergström Expansion

For any k-dimensional probability distributions P and Q,

P �n D
sX

�D0
C �
nQ

�.n��/ � .P �Q/�� C r.sC1/n

(the Bergström identity). Here, for s C 1 < n,

r.sC1/n D
nX

mDsC1
C s
m�1P �.n�m/ � .P �Q/�.sC1/ �Q�.m�s�1/:

Let � be a negative hypergeometric random variable taking the natural values
m D s C 1; s C 2; : : : ; n with probabilities

P f� D mg D C s
m�1
C sC1
n

:

Then we can rewrite the remainder term as

r.sC1/n D C sC1
n .P �Q/�.sC1/ �E.P �.n��/ �Q�.��s�1//;
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where

E.P �.n��/ �Q�.��s�1// D
nX

mDsC1
P f� D mgP �.n�m/ �Q�.m�s�1/:

Lemma 3. Suppose that P andQ have finite j th-order absolute moments and that

Z

Rk
.t; x/rd.P �Q/.x/ D 0

for r D 1; 2; : : : ; j and t 2 Rk. Then

Z

Rk
.t; x/ld.P �Q/�m.x/ D 0

for l D 0; 1; : : : ; .j C 1/m� 1 and t 2 Rk .

Remark. If the first moments of P and Q coincide, then

Z

Rk
.t; x/ld.P �Q/�m.x/ D 0

for l D 0; 1; : : : ; 3m � 1.

The lemma is proved by using characteristic functions and the Faa de Bruno
formula that can be found, e.g., in [8].

Since

C�
n D n�

�Š

�

1C
��1X

jD1

�
� 1

n

�j
C .j /
�

�

;

where C .j /
� is the Stirling number of the first kind, C .0/

� D 1, and

C .j /
� D �.� � 1/ 
 
 
 .� � j /

j�1X

lD0
qjl .� � j � 1/ 
 
 
 .� � j � l/;

we have, for 1 6 s < n,

A.s/n .B/ D Q�n C
sX

�D1
C �
nQ

�.n��/ � .P �Q/��.B/ D

D Q�n.B/C
s�1X

jD0

�1

n

�j sX

�DjC1
.�1/j 1

�Š
C .j /
� Q�.n��/ � .n.P �Q//��.B/:
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Now, the Bergström identity becomes

P �n.B/ DQ�n.B/C
s�1X

jD0

� 1

n

�j sX

�DjC1

.�1/j
�Š

C .j /
� Q�.n��/ � .n.P �Q//��.B/C

C C�
n .P �Q/�.sC1/ �E.P �.n��/ �Q�.��s�1//.B/: (13)

Let us now consider the cases where Q.B/ is the normal k-dimensional
distribution ˚.B/ D P f� 2 Bg, � � Nk.0; ˙/, where ˙ is a nondegenerate
matrix of second moments.

Suppose that the expectation vectors and second-moment matrices of P.B/ and
˚.B/ coincide.

Theorem 8. Suppose that the probability distribution P.B/ D P f� 2 Bg has
finite absolute moments of order 2C ı with 0 < ı 6 1. Then there exists a constant
C , depending only on k, s, and ı, such that

sup
B2Mk

ˇ
ˇ˚�.n��/ � �n.P � ˚/

���
.B

p
n/
ˇ
ˇ 6

�
CE

�
.�T ˙�1�/ 2Cı

2

	

nı=2

��

for 1 6 � 6 s, where

E.�T ˙�1�/
2Cı
2 D

Z

Rk
.xT˙�1x/

2Cı
2 dP.x/;

and �T is the transpose of the vector �.

Theorem 8 is proved in [4]. H. Bergström proved that (see [1])

sup
B2Mk

ˇ
ˇ˚�.n��/ � .n.P � ˚//��.B

p
n/
ˇ
ˇ D O

�
.ln n/k=2

nı=2

��
:

We will estimate the remainder term r
.sC1/
n .B/ for all convex Borel sets B 2 Nk .

Theorem 9. Suppose that the assumptions of Theorem 8 are satisfied and that the
characteristic function of the random vector �1 satisfies Cramer condition (C):

limktk!1jEei.t;�1/j < 1:

Then
sup
B2Nk

jr.sC1/n .B/j D o.n�.ı=2/s/:

The theorem is proved in [4].
In the one-dimensional case (kD 1), Bergström [1] proved that from his asymp-

totic expansion there follows the Chebyshev–Cramer asymptotic expansion.
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For k > 1 andQ.B/ D ˚.B/, from (13) it follows that

P �n.B
p
n/ D˚.B/C

s�1X

jD0

� 1

n

�j sX

�DjC1

.�1/j
�Š

C .j /
� ˚�.n��/ � .n.P �˚//��.B.pn/

C C sC1
n .P �˚/�.sC1/ �E�P �.n��/ � ˚�.��s�1/.B

p
n/
�
: (14)

The formal asymptotic expansion of the density p�.y/ of the convolution

˚�.n��/ � .n.P �˚//��.Bp
n/ D

Z

B

p�.y/dy

is

p�.y/ �
1X

mD0

1X

lD0

� 1p
n

�lC�C2m .��/m
mŠ.3� C l/Š

@mC3�Cl

@"m@%3�Cl �

�
" Z

x2Rk

�
1

p
.1C "/2�

�k
1

pj˙ j�

� exp




� 1

2.1C "/
.y � x%/T˙�1.y � x%/

�

d.P �˚/��.x/
#

ˇ
ˇ " D 0

% D 0

(15)

for 1 6 � 6 s, where j˙ j denotes the determinant of the matrix˙ .
Let �" � Nk.0; .1C "/˙// be a k-dimensional normal random vector. If " D 0,

then
�0 D � � Nk.0; ˙/:

From (14) and (15) we get the following formal expansion of the convolution
P �n.B

p
n/:

P �n.B
p
n/ �˚.B/C

s�1X

jD0

� 1

n

�j sX

�DjC1

.�1/j
�Š

C
.j /
�

1X

mD0

1X

lD0

� 1p
n

�lC�C2m .��/m
mŠ.3� C l/Š





 @mC3�Cl
@"m@%3�Cl

"Z

x2Rk
P f�" C x% 2 Bgd.P � ˚/��.x/

#

ˇ
ˇ " D 0

% D 0

C 
 
 
 D

D P f� 2 Bg C
1X

rD1

� 1p
n

�r s�1X

jD0

sX

�DjC1

1X

mD0

1X

lD0
2jClC�C2mDr

.�1/jCm�m
�ŠmŠ.3� C l/Š

C
.j /
� 



 @mC3�Cl
@"m@%3�Cl

"Z

x2Rk
P f�" C x% 2 Bgd.P � ˚/��.x/

#

ˇ
ˇ " D 0

% D 0

C 
 
 
 ;
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where

P f�" C x% < zg D
�

1
p
2�.1C "/

�k
1

pj˙ j 




Z

y<z
exp




� 1

2.1C "/
.y � x%/T˙�1.y � x%/

�

dy:

The formal expansions are obtained by means of the characteristic functions.

6 Expansion of a Convolution by �2-Distributions

Let �� � Nk.�; ˙/ be a normal k-dimensional random vector with nondegenerate
covariation? matrix˙ . The random variable

�2k D .�� ��/T˙�1.�� ��/

has the �2-distribution with k degrees of freedom, and the random variable

�2k.ı/ D .�� � �/T˙�1.�� � �/

has the noncentral �2-distribution with k degrees of freedom and noncentrality
parameter

ı D .� � �/T˙�1.� � �/:
The distribution function of �2k.ı/ is

P f�2k.ı/ < xg D
1X

jD0



.ı=2/j

j Š
e�ı=2

�

P f�2kC2j < xg (16)

(see [7, 9]).
Let

Sn D 1p
n

nX

jD1
�j

be the sum of i.i.d. k-dimensional vectors �1; : : : ;�n; : : : with zero mean vector
0 2 Rk and nondegenerate covariation matrix˙ . Let � � Nk.0; ˙/ and

Ax D fy 2 Rk W yT˙�1y < xg; x > 0:

We are interested in an asymptotic expansion of

P fSn 2 Axg D P fSTn ˙
�1Sn < xg D P �n.

p
nAx/;
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where P.
p
nAx/ D P

˚ �1p
n

2 Ax
�
, i.e., the difference

P fSTn ˙
�1Sn < xg � P f�T ˙�1� < xg D P �n.

p
nAx/ � P f�2k < xg (17)

for x > 0.
Denote by bP.t/ and b̊.t/ the characteristic functions of the vectors �1 and �.

From the Bergström identity (13) it follows that

�
bP

�
tp
n

��n
Db̊.t/C

s�1X

�D0

� 1

n

�j sX

�DjC1

.�1/j
�Š

C .j /
� 




�
b̊
� tp

n

��n����
bP
� tp

n

�
� b̊

� tp
n

��

n

��
C

C C sC1
n

�
bP
� tp

n

�
� b̊

� tp
n

��sC1




E

�
bP
� tp

n

��n���
b̊
� tp

n

����s�1�
; (18)

where

�
b̊
� tp

n

��n���
n

�
bP
� tp

n

��

� b̊
� tp

n

���
D

D
Z

x2Rk
ei.t=

p
n;x/
�
b̊
� tp

n

��n��
d.n.P � ˚//��.x/:

The Fourier transform is

p�.y/ D
� 1

2�

�k
Z

t2Rk
e�i.t;y/

�
b̊
� tp

n

��n���
n

�
bP
� tp

n

�
� b̊

� tp
n

����
d t D

D
Z

x2Rk
� 1

2�

�k
Z

t2Rk
e�i.t;y�x=

p
n/ exp

n
� 1

2

n� �

n
tT ˙t

o
d t d.n.P � ˚//��.x/:

By the change of variables v D
r
n � �

n
t we obtain
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p�.y/ D
Z

x2Rk

�r
n

n � �
1

2�

�k Z

v2Rk
exp




� i
�

v;

r
n

n � � y � xp
n � �

��





 exp
n

� 1

2
vT˙v

o
dvd.n.P � ˚//��.x/; (19)

where

�r
n

n � �

1

2�

�kZ

v2Rk
exp




� i
�

v;

r
n

n � � y � xp
n � �

��

exp
n

� 1

2
vT˙v

o
dv D

D
�r

n

n � �
�k�

1p
2�

�k
1

pj˙ j

exp




� 1

2

�

y

r
n

n � � � xp
n � �

�T
˙�1

�

y

r
n

n � �
� xp

n � �

��

: (20)

From (17) to (20) after the change of variables u D y
q

n
n��� xp

n�� it follows that

Z

yT ˙�1y<x
p�.y/ dy D

Z

x2Rk

�
1p
2�

�k
1

pj˙ j
Z

.uC xp
n��

/T ˙�1.uC xp
n��

/<x n
n��

e�1=2uT ˙�1udu d.n.P � ˚//��.x/ D

D
Z

x2Rk
P


�

�C xp
n � �

�T
˙�1�� C xp

n � �
�
<x

n

n � �

�

d.n.P �˚//��.x/ D

D
Z

x2Rk
P




�2k.ı.x// < x
n

n � �
�

d.n.P � ˚//��.x/;

where

ı.x/ D 1

n � � xT˙�1x

is the noncentrality parameter of the �2k.ı.x//-distribution. From (16) it follows that

P f�2k.ı.x// < xg D
1X

jD0

� 1

n � �
�j . 12xT ˙�1x/j

j Š
e� 1

2
1

n�� xT ˙�1xP
n
�2kC2j < x

n

n� �

o
:
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Now the asymptotic Bergström expansion writes as

P f�T˙�1� < xg C
s�1X

jD0

�
� 1

n

�j sX

�DjC1

1

�Š
C .j /
�

Z

x2Rk
P
n
�2k.ı.x// < x

n

n � �

o
d.n.P � ˚//��.x/:

To estimate the remainder term, we applied Theorem 9. Thus, we have proved the
following:

Theorem 10. Suppose that a random vector �1 has a finite absolute moment of
order 2C ı for some 0 < ı 6 1 and that the characteristic function bP .t/ satisfies
the Cramer condition

lim
ktk!1

jbP .t/j < 1: (C)

Then

P fSTn ˙
�1Sn < xg D P f�2k < xgC

C
s�1X

�D0

�
� 1

n

�j sX

�DjC1

1

�Š
C .j /
�

1X

rD0

� 1

n � �
�r
P
n
�2kC2r < x

n

n � �

o 1

rŠ
�

�
Z

x2Rk

�
1

2
xT˙�1x

�r
e� 1

2
1

n�� xT ˙�1xd.n.P � ˚//��.x/C o.n�.ı=2/s/

for all x > 0 and s D 1; 2; : : :.

If instead of considering the �2k random variable, we change t , F , �, etc., then we
have also to change the definition of the set Ax and to replace the Cramer condition
(C) by the Prokhorov [11,12] condition that there exists n0 such that the convolution
P �n0.x/ has an absolutely continuous component.
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An Extension of the Concept of Slowly Varying
Function with Applications to Large Deviation
Limit Theorems

Alexander A. Borovkov and Konstantin A. Borovkov

Abstract Karamata’s integral representation for slowly varying functions is
extended to a broader class of the so-called  -locally constant functions,
i.e. functions f .x/> 0 having the property that, for a given non-decreasing
function  .x/ and any fixed v, f .x C v .x//=f .x/ ! 1 as x ! 1. We consider
applications of such functions to extending known theorems on large deviations of
sums of random variables with regularly varying distribution tails.

Keywords Slowly varying function • Locally constant function • Large deviation
probabilities • Random walk
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1 Introduction

Let L.x/ be a slowly varying function (s.v.f.), i.e. a positive measurable function
such that, for any fixed v 2 .0;1/ holds L.vx/ � L.x/ as x ! 1:

lim
x!1

L.vx/

L.x/
D 1: (1)
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Among the most important and often used results on s.v.f.’s are the Uniform Conver-
gence Theorem (see property (U) below) and the Integral Representation Theorem
(property (I)), the latter result essentially relying on the former. These theorems,
together with their proofs, can be found e.g. in monographs [1] (Theorems 1.2.1
and 1.3.1) and [2] (see �1.1).

(U) For any fixed 0 < v1 < v2 < 1, convergence (1) is uniform in v 2 Œv1; v2�.
(I) A function L.x/ is an s.v.f. iff the following representation holds true:

L.x/ D c.x/ exp


 Z x

1

".t/

t
dt

�

; x � 1; (2)

where c.t/ > 0 and ".t/ are measurable functions, c.t/ ! c 2 .0;1/ and
".t/ ! 0 as t ! 1.

The concept of a s.v.f. is closely related to that of a regularly varying function
(r.v.f.)R.x/, which is specified by the relation

R.x/ D x˛L.x/; ˛ 2 R;

where L is an s.v.f. and ˛ is called the index of the r.v.f.‘R. The class of all r.v.f.’s
we will denote by R.

R.v.f.’s are characterised by the relation

lim
x!1

R.vx/

R.x/
D v˛; v 2 .0;1/: (3)

For them, convergence (3) is also uniform in v on compact intervals, while represen-
tation (2) holds for r.v.f.’s with ".t/ ! ˛ as t ! 1.

In Probability Theory there exists a large class of limit theorems on large
deviations of sums of random variable whose distributions F have the property that
their right tails FC.x/ WD F

�
Œx;1/

�
are r.v.f.’s. The following assertion (see e.g.

Theorem 4.4.1 in [2]) is a typical representative of such results. Let �; �1; �2; : : :
be independent identically distributed random variables, E� D 0, E�2 < 1,
Sn WD Pn

kD1 �k and Sn WD maxk�n Sk .

Theorem A. If FC.t/ D P.� � t/ is an r.v.f. of index ˛ < �2 then, as x ! 1,
x.n ln n/�1=2 ! 1; one has

P.Sn � x/ � nFC.x/; P.Sn � x/ � nFC.x/: (4)

Similar assertions hold true under the assumption that the distributions of the
scaled sums Sn tend to a stable law (see Chaps. 2 and 3 in [2]).

There arises the natural question of how essential the conditionFC 2 R is for (4)
to hold. It turns out that this condition can be significantly relaxed.
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The aim of the present paper is to describe and study classes of functions that
are wider than R and have the property that the condition that FC belongs to such a
class, together with some other natural conditions, would ensure the validity of limit
laws of the form (4).

In Sect. 2 of the present note we give the definitions of the above-mentioned
broad classes of functions which we call asymptotically  -locally constant func-
tions. The section also contains assertions in which conditions sufficient for
relations (4) are given in terms of these functions. Section 3 presents the main
results on characterisation of asymptotically -locally constant functions. Section 4
contains the proofs of these results.

2 The Definitions of Asymptotically Locally Constant
Functions. Applications to Limit Theorems on Large
Deviations

Following �1.2 in [2], we will call a positive function g.x/ an asymptotically locally
constant function (l.c.f.) if, for any fixed v 2 .�1;1/,

lim
x!1

g.x C v/

g.x/
D 1 (5)

(the function g.x/, as all the other functions appearing in the present note, will be
assumed measurable; assumptions of this kind will be omitted for brevity’s sake).

If one puts x D ln y, v D ln u, then g.xCv/ D g.lnyu/, so that the composition
L D g ı ln will be an s.v.f. by virtue of (5) and (1). From here and the equality
g.x/ D L.ex/ it follows that an l.c.f. g will have the following properties:

(U1) For any fixed �1< v1 < v2 <1, convergence (5) is uniform in v 2 Œv1; v2�.
(I1) A function g.x/ is an l.c.f. iff it admits a representation of the form

g.x/ D c.x/ exp


 Z ex

1

".t/

t
dt

�

; x � 1; (6)

where c.t/ and ".t/ have the same properties as in (I).

Probability distributions F on R such that FC.t/ WD F
�
Œt;1/

�
is an l.c.f. are

sometimes referred to as long-tailed distributions, or class L distributions. Such
distributions often appear in papers on limit theorems for sums of random variables
with “heavy tails”. Examples of l.c.f.’s are provided by r.v.f.’s and functions of the
form expfx˛L.x/g, where L is an s.v.f., ˛ 2 .0; 1/.
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It is not hard to see that, by virtue of property (U1), definition (5) of an l.c.f. is
equivalent to the following one: for any fixed v 2 .�1;1/ and function v.x/ ! v
as x ! 1, one has

lim
x!1

g.x C v.x//

g.x/
D 1: (7)

Now we will consider a broader concept, which includes both s.v.f.’s and l.c.f.’s
as special cases.

Let  .t/ > 1 be a fixed non-decreasing function.

Definition 1. (See also Definition 1.2.7 in [2].) A function g.x/ > 0 is said to be an
asymptotically  -locally constant function ( -l.c.f.) if, for any fixed v 2 .�1;1/

such that x C v .x/ � cx for some c > 0 and all large enough x, one has

lim
x!1

g.x C v .x//

g.x/
D 1: (8)

If  .x/ � 1 then the class of  -l.c.f.’s coincides with the class of l.c.f.’s, while if
 .x/ � x then the class of  -l.c.f.’s coincides with the class of s.v.f.’s. In the case
when .x/ ! 1 and  .x/ D o.x/ as x ! 1, the class of  -l.c.f.’s occupies, in a
sense, an intermediate (in terms of the zone where its functions are locally constant)
place between the classes of s.v.f.’s and l.c.f.’s.

Clearly, all functions from R are  -l.c.f.’s for any function  .x/ D o.x/.
Note that the concept of  -l.c.f.’s is closely related to that of h-insensitive

functions extensively used in [5] (see Definition 2.18 therein). Our Theorem 1 below
shows that, under broad conditions, a  -l.c.f. will he h-insensitive with  D h:

We will also need the following

Definition 2. (See also Definition 1.2.20 in [2].) We will call a function g an upper-
power function if it is an l.c.f. and, for any p 2 .0; 1/; there exists a constant c.p/,
infp2.p1;1/ c.p/ > 0 for any p1 2 .0; 1/, such that

g.t/ � c.p/g.pt/; t > 0:

It is clear that all r.v.f.’s are upper-power functions.

The concept of  -l.c.f.’s and that of an upper-power function enable one to
substantially extend the assertion of Theorem A. It is not hard to derive from
Theorem 4.8.1 in [2] the following result.

Let h.v/ > 0 be a non-decreasing function such that h.v/ � p
v ln v as v ! 1.

Such a function always has a generalised inverse h.�1/.t/ WD inffv W h.v/ � tg.

Theorem B. Assume that E� D 0, E�2 < 1 and that the following conditions are
satisfied:

1. FC.t/ � V.t/ D t˛L.t/, where ˛ < �2 and L is an s.v.f.
2. The function FC.t/ is upper-power and a  -l.c.f. for  .t/ D p

h.�1/.t/.
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Then relations (4) hold true provided that x ! 1, x � h.n/ and

nV 2.x/ D o
�
FC.x/

�
: (9)

In particular, if x D h.n/ � cnˇ as n ! 1, ˇ > 1=2, then one can put
 .t/ WD t1=2ˇ ( .t/ WD p

t if x � cn).
Condition (9) is always met provided that FC.t/ � cV.t/t�" for some " > 0,

" < �˛ � 2; and c D const. Indeed, in this case, for x � p
n, x ! 1,

nV 2.x/ � c�1x2C"V .x/FC.x/ D o
�
FC.x/

�
:

Now consider the case where E�2 D 1. Let, as before, V.t/ D t˛L.t/ is
an r.v.f. and set �.v/ WD V .�1/.1=v//. Observe that �.v/ is also an r.v.f. (see e.g.
Theorem 1.1.4 in [2]). Further, let h.v/ > 0 be a non-decreasing function such that
h.v/ � �.v/ as v ! 1. Employing Theorem 4.8.6 in [2] (using this opportunity,
note that there are a couple of typos in the formulation of that theorem: the text “with
 .t/ D �.t/ D V .�1/.1=t/” should be omitted, while the condition “x � �.n/”
must be replaced with “x � �.n/ D V .�1/.1=n/”) it is not difficult to establish the
following result.

Theorem C. Let E� D 0 and the following conditions be met:

1. FC.t/ � V.t/ D t˛L.t/, where �˛ 2 .1; 2/ and L is an s.v.f.
2. P.� < �t/ � cV.t/ for all t > 0.
3. The function FC is upper-power and a  -l.c.f. for  .t/ D �

�
h.�1/.t/

�
.

Then relations (4) hold true provided that x ! 1, x � h.n/ and relation (9) is
satisfied.

If, for instance, V.t/ � c1t
˛ as t ! 1, x � c2n

ˇ as n ! 1, ci D const,
i D 1; 2, and ˇ > �1=˛, then one can put  .t/ WD t�1=.˛ˇ/.

Condition (9) of Theorem C is always satisfied provided that x � nı�.1=˛/,
FC.t/ � cV.t/t�" for some ı > 0 and " < ˛2ı=.1 � ˛ı/. Indeed, in this case
n � x�˛=.1�˛ı/ and

nV 2.x/ � c�1FC.x/x"�˛=.1�˛ı/V .x/ D o
�
FC.x/

�
:

Note also that the conditions of Theorems B and C do not stipulate that n ! 1.
The proofs of Theorems B and C basically consist in verifying, for the indicated

choice of functions  , the conditions of Theorems 4.8.1 and 4.8.6 in [2], respec-
tively. We will omit them.

It is not hard to see (e.g. from the representation theorem on p. 74 in [1]) that
Theorems B and C include, as special cases, situations when the right tail of F
satisfies the condition of extended regular variation, i.e. when, for any b > 1 and
some 0 < ˛1 � ˛2 < 1,

b�˛2 � lim inf
x!1

FC.bx/
FC.x/

� lim sup
x!1

FC.bx/
FC.x/

� b�˛1 : (10)
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Under the assumption that the random variable � D � 0 � E� 0 was obtained by
centering a non-negative random variable � 0 � 0, the former of the asymptotic
relations (4) was established in the above-mentioned case in [3]. One could mention
here some further efforts aimed at extending the conditions of Theorem A that
ensure the validity of (4), see e.g. [4, 6].

In conclusion of this section, we will make a remark showing that the presence
of the condition that FC.t/ is a  -l.c.f. in Theorems B and C is quite natural.
Moreover, it also indicates that any further extension of this condition in the class
of “sufficiently regular” functions is hardly possible. If we turn, say, to the proof of
Theorem 4.8.1 in [2], we will see that when x � cn, the main term in the asymptotic
representation for P.Sn � x/ is given by

n

Z N
p
n

�Np
n

P.Sn�1 2 dt/FC.x � t/; (11)

where N ! 1 slowly enough as n ! 1. It is clear that, by virtue of the Central
Limit Theorem, the integral in this expression is asymptotically equivalent to FC.t/
(implying that the former relation in (4) will hold true), provided that FC.t/ is a
 -l.c.f. for  .t/ D p

t .
Since ESn�1 D 0, one might try to obtain such a result in the case when FC.t/

belongs to a broader class of “asymptotically  -locally linear functions”, i.e. such
functions that, for any fixed v and t ! 1,

FC.t C v .t// D FC.t/.1 � cv C o.1//; c D const > 0:

However, such a representation is impossible as 1 � cv < 0 when v > 1=c.

3 The Chracterization of  -l.c.f.’s

The aim of the present section is to prove that, for any  -l.c.f. g, convergence
(8) is uniform in v on any compact set and, moreover, that g admits an integral
representation similar to (2) and (6). To do that, we will need some restrictions on
the function  .

We assume that is a non-decreasing function such that .x/D o.x/ as x! 1.
For such functions, we introduce the following condition:

(A) For any fixed v > 0, there exists a value a.v/ 2 .0;1/ such that

 .x � v .x//

 .x/
� a.v/ for all sufficiently large x: (12)

Letting y WD x C v .x/ > x and using the monotonicity of  , one has
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 .y � v .y// �  .x/:

Therefore, relation (12) implies that, for all large enough x,

 .x C v .x//

 .x/
�  .y/

 .x/
�  .y/

 .y � v .y//
� 1

a.v/
2 .0;1/:

Thus, any function  satisfying condition (A) will also satisfy the following
relation: for any fixed v > 0,

 .x C v .x//

 .x/
� 1

a.v/
for all sufficiently large x: (13)

Observe that the converse is not true: it is not hard to construct an example of a
(piece-wise linear, globally Lipschitz) non-decreasing function  which satisfies
condition of the form (13), but for which condition (A) will hold for no finite
function a.v/.

It is clear that if  is a  -l.c.f.,  .x/ D o.x/, then  satisfies condition (A).
Introduce class K consisting of non-decreasing functions .x/ � 1, x � 0; that

satisfy condition (A) for a function a.v/ such that

Z 1

0

a.u/ du D 1: (14)

Class K1 we define as the class of continuous r.v.f.’s  .x/ D x˛L.x/ with index
˛ < 1 and such that x= .x/ " 1 as x ! 1 and the following “asymptotic
smoothness” condition is met: for any fixed v;

 .x C�/ D  .x/C ˛� .x/

x
.1C o.1// as x ! 1; � D v .x/: (15)

Clearly, K1 � K . Condition (15) is always met for any �� c1 D const,
�D o.x/, provided that the functionL.x/ is differentiable andL0.x/D o .L.x/=x/

as x ! 1.
In the assertions to follow, it will be assumed that  belongs to the class K

or K1. We will not dwell on how far the conditions  2 K or  2 K1 can be
extended. The function  specifies the “asymptotic local constancy zone width” of
the function g under consideration, and what matters for us is just the growth rate
of  .x/ as x ! 1. All its other properties (smoothness, presence of oscillations
etc.) are for us to choose, and so we can assume the function  to be as smooth
as we need. In this sense, the assumption that  belongs to the class K or K1 is
not restrictive. For example, it is quite natural to assume in Theorems B and C from
Sect. 2 that  2 K1.

The following assertion establishes the uniformity of convergence in (8).
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Theorem 1. If g is a  -l.c.f. with  2 K , then convergence in (8) is uniform: for
any fixed real numbers v1 < v2,

.U / lim
x!1 sup

v1�v�v2

ˇ
ˇ
ˇ
ˇ
g
�
x C v .x/

�

g.x/
� 1

ˇ
ˇ
ˇ
ˇ D 0: (16)

Observe that, for monotoneg, the condition 2 K in Theorem 1 is superfluous.
Indeed, assume for definiteness that g is a non-decreasing  -l.c.f. Then, for any v
and v.x/ ! v, there is a v0 > v such that, for all sufficiently large x, one has
v.x/ < v0, and therefore

lim sup
x!1

g.x C v.x/ .x//

g.x/
� lim sup

x!1
g.x C v0 .x//

g.x/
D 1: (17)

A converse inequality for lim inf is established in a similar way. As a consequence,

lim
x!1

g.x C v.x/ .x//

g.x/
D 1; (18)

which is easily seen to be equivalent to (16) (cf. (7)).
Note also that it is not hard to see that monotonicity property required to

derive (17) and (18), could be somewhat relaxed.
Now set


.x/ WD
Z x

1

dt

 .t/
: (19)

Theorem 2. Let  2 K . Then g is a  -l.c.f. iff it admits a representation of the
form

.I / g.x/ D c.x/ exp


 Z e
.x/

1

".t/

t
dt

�

; x � 1; (20)

where c.t/ and ".t/ have the same properties as in (I).

Since, for any " > 0 and all large enough x,

Z e
.x/

1

".t/

t
dt < " ln e
.x/ D "
.x/

and a similar lower bound holds true, Theorem 2 implies the following result.

Corollary 1. If  2 K and g is a  -l.c.f., then

g.x/ D eo.
.x//; x ! 1:

For  2 K1 we put

�.x/ WD x

 .x/
:
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Clearly, �.x/ � .1 � ˛/
.x/ as x ! 1.

Theorem 3. Let  2 K1. Then the assertion of Theorem 2 holds true with 
.x/
replaced by �.x/.

Corollary 2. If  2 K1 and g is a  -l.c.f., then

g.x/ D eo.�.x//; x ! 1:

Since the function �.x/ has a “more explicit” representation in terms of  
than the function 
.x/, the assertions of Theorem 3 and Corollary 2 display the
asymptotic properties  -l.c.f.’s in a more graphical way than those of Theorem 2
and Corollary 1. A deficiency of Theorem 3 is the fact that the condition  2 K1 is
more restrictive than the condition that  2 K . It is particularly essential that, in
the former condition, the equality ˛ D 1 is excluded for the index ˛ of the r.v.f.  .

4 Proofs

Proof of Theorem 1. Our proof will use an argument modifying H. Delange’s proof
of property (U) (see e.g. p. 6 in [1] or �1.1 in [2]).

Let l.x/ WD ln g.x/: It is clear that (8) is equivalent to the convergence

l.x C v .x// � l.x/ ! 0; x ! 1; (21)

for any fixed v 2 R. To prove the theorem, it suffices to show that

Hv1;v2 .x/ WD sup
v1�v�v2

ˇ
ˇl.x C v .x// � l.x/ˇˇ ! 0; x ! 1:

It is not hard to see that the above relation will follow from the convergence

H0;1.x/ ! 0; x ! 1: (22)

Indeed, let v1 < 0 (for v1 � 0 the argument will be even simpler) and

x0 WD x C v1 .x/; xk WD x0 C k .x0/; k D 1; 2; : : :

By virtue of condition (A), one has  .x0/ � a.�v1/ .x/ with a.�v1/ > 0.
Therefore, letting n WD b.v2 � v1/=a.�v1/c C 1; where bxc denotes the integer
part of x, we obtain

Hv1;v2 .x/ �
nX

kD0
H0;1.xk/;

which establishes the required implication.
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Assume without loss of generality that  .0/ D 1: To prove (22), fix an arbitrary
small " 2 �0; a.1/=.1C a.1//

�
and set

Ix WD Œx; x C 2 .x/�; I�
x WD fy 2 Ix W jl.y/� l.x/j � "=2g;

I�
0;x WD fu 2 I0 W jl.x C u .x// � l.x/j � "=2g:

One can easily see that all these sets are measurable and

I�
x D x C  .x/I�

0;x ;

so that for the Lebesgue measure �.
/ on R we have

�.I�
x / D  .x/�.I�

0;x/: (23)

It follows from (21) that, for any u 2 I0, the value of the indicator 1I�
0;x
.u/ tends to

zero as x ! 1. Therefore, by the dominated convergence theorem,

Z

I0

1I�
0;x
.u/ du ! 0; x ! 0:

From here and (23) we see that there exists an x."/ such that

�.I�
x / � "

2
 .x/; x � x."/:

Now observe that, for any s 2 Œ0; 1�, the set Ix\IxCs .x/ D ŒxCs .x/; xC2 .x/�
has the length .2 � s/ .x/ �  .x/: Hence for x � x."/ the set

Jx;s WD �
Ix \ IxCs .x/

� n �I�
x [ I�

xCs .x/
�

will have the length

�.Jx;s/ �  .x/ � "
2

�
 .x/C  .x C s .x//

	

�  .x/ � "

2

�

1C 1

a.1/

�

 .x/ � 1

2
 .x/ � 1

2
;

where we used relation (13) to establish the second inequality. Therefore Jx;s ¤ ¿
and one can choose a point y 2 Jx;s . Then y 62 I�

x and y 62 I�
xCs .x/, so that

jl.x C s .x// � l.x/j � jl.x C s .x// � l.y/j C jl.y/� l.x/j < ":

Since this relation holds for any s 2 Œ0; 1�, the required convergence (22) and hence
the assertion of Theorem 1 are proved. ut
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Proof of Theorem 2. First let g be a  -l.c.f. with  2 K . Since  .t/ D o.t/,
one has 
.x/ " 1 as x " 1 (see (19)). Moreover, the function 
.x/ is continuous
and so always has an inverse 
.�1/.t/ " 1 as t ! 1, so that we can consider the
composition function

g
 .t/ WD .g ı 
.�1//.t/:
If we show that g
 is an l.c.f. then representation (20) will immediately follow from
the relation g.x/ D g
.
.x// and property .I1).

By virtue of the uniformity property .U / which holds for g by Theorem 1, for
any bounded function r.x/ one has

g

�

.x/

� � g.x/ � g
�
x C r.x/ .x/

� D g

�

.x C r.x/ .x//

�
: (24)

Next we will show that, for a given v (let v > 0 for definiteness), there is a
bounded (as x ! 1) value r.x; v/ such that


.x C r.x; v/ .x// D 
.x/C v: (25)

Indeed, we have


.x C r .x// � 
.x/ D
Z xCr .x/

x

dt

 .t/
D
Z r

0

 .x/ d z

 .x C z .x//
DW I.r; x/;

where, by Fatou’s lemma and relation (13),

lim inf
x!1 I.r; x/ �

Z r

0

lim inf
x!1

 .x/

 .x C z .x//
d z � I.r/ WD

Z r

0

a.z/d z " 1

as r " 1 (see (14)). Since, moreover, for any x the function I.r; x/ is continuous
in r , there exists r.v; x/ � rv < 1 such that I

�
r.v; x/; x

� D v, where rv is the
solution of the equation I.r/ D v.

Now choosing r.x/ in (24) to be the function r.x; v/ from (25) we obtain that

g

�

.x/

� � g

�

.x/C v

�

as x ! 1, which means that g
 is an l.c.f. and hence (20) holds true.
Conversely, let representation (20) be true. Then, for a fixed v � 0, any " > 0

and x ! 1, one has

ˇ
ˇ
ˇ
ˇ
ˇ
ln
g
�
x C v .x/

�

g.x/

ˇ
ˇ
ˇ
ˇ
ˇ

�
Z e
.xCv .x//

e
.x/

ˇ
ˇ".t/

ˇ
ˇ

t
dt C o.1/ � �


.x C v .x//� 
.x/�"C o.1/

� "

Z v

0

 .x/ds

 .x C s .x//
C o.1/ � "v C o.1/: (26)

This clearly means that the left-hand side of this relation is o.1/ as x ! 1.
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If v D �u < 0 then, bounding in a similar fashion the integral

Z e
.x/

e
.x�u .x//

ˇ
ˇ".t/

ˇ
ˇdt

t
� "

Z u

0

 .x/ds

 .x � s .x//
;

we will obtain from condition (A) that

lim sup
x!1

ˇ
ˇ
ˇ
ˇln
g.x C v. .x///

g.x/

ˇ
ˇ
ˇ
ˇ � "

Z u

0

lim sup
x!1

 .x/ds

 .x � s .x//
� "

Z u

0

ds

a.s/
;

so that the left-hand side of (26) is still o.1/ as x ! 1. Therefore g.xC v .x// �
g.x/ and hence g is a  -l.c.f. Theorem 2 is proved. ut

It is evident that the assertion of Theorem 2 can also be stated as follows: for
 2 K , a function g is a  -l.c.f. iff g
 .x/ is an l.c.f. (which, in turn, holds iff
g
.ln x/ is an s.v.f.).

Proof of Theorem 3. One can employ an argument similar to the one used to prove
Theorem 2.

Since the function �.x/ is continuous and increasing, it has an inverse �.�1/.t/.
It is not hard to see that if  has property (15), then the function �.x/ D x= .x/

also possesses a similar property: for a fixed v and� D v .x/, x ! 1, one has

�.x C�/ D �.x/C .1 � ˛/��.x/

x
.1C o.1//: (27)

Therefore, as x ! 1,

�.x C v .x// D �.x/C .1 � ˛/v.1C o.1//:

As the function � is monotone and continuous, this relation means that, for any v,
there is a function v.x/ ! v as x ! 1 such that

�.x C v.x/ .x// D �.x/C .1 � ˛/v: (28)

Let g be a  -l.c.f. Then, for the function g� WD g ı �.�1/ we obtain by virtue
of (28) that

g� .�.x// � g.x/ � g.x C v.x/ .x// D g� .�.x C v.x/ .x///D g�.�.x/C .1 � ˛/v/:

Since �.x/ ! 1 as x ! 1, the relation above means that g� is an l.c.f. The direct
assertion of the integral representation theorem follows from here and (6).

The converse assertion is proved in the same way as in Theorem 2. Theorem 3 is
proved. ut
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Similarly to our earlier argument, it follows from Theorem 3 that if  2 K1 then
g is a  -l.c.f. iff g� is an l.c.f. (and g� .lnx/ is an s.v.f.).
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Optimal and Asymptotically Optimal Control
for Some Inventory Models

Ekaterina Bulinskaya

Abstract A multi-supplier discrete-time inventory model is considered as illustra-
tion of problems arising in applied probability. Optimal and asymptotically optimal
control is established for all values of parameters involved. The model stability is
also investigated.

Keywords Optimal and asymptotically optimal policies • Discrete-time inventory
models • Stability
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1 Introduction

It was my scientific adviser Professor Yu.V. Prokhorov who proposed optimal
control of some inventory systems as a topic of my Phd thesis. At the time it
was a new research direction. The subject of my habilitation thesis was stochastic
inventory models. So I decided to return to these problems in the paper devoted to
jubilee of academician of Russian Academy of Sciences Yu.V. Prokhorov.

Optimal control of inventory systems is a particular case of decision making
under uncertainty (see, e.g., [5]). It is well known that construction of a mathemat-
ical model is useful to investigate a real life process or system and make a correct
decision.

There always exist a lot of models describing the process under consideration
more or less precisely. Therefore it is necessary to choose an appropriate model.
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Usually the model depends on some parameters not known exactly. So they are
estimated on the base of previous observations. The same is true of underlying
processes distributions. Hence, the model must be stable with respect to small
parameters fluctuations and processes perturbations (see, e.g., [6]).

To illustrate the problems arising and the methods useful for their solution, a
multi-supplier inventory model is considered.

2 Main Results

The aim of investigation is to establish optimal and asymptotically optimal control.
It is reasonable to begin by some definitions.

2.1 Definitions

To describe any applied probability model one needs to know the following
elements: the planning horizon T , input process Z D fZ.t/; t 2 Œ0; T �g, output
process Y D fY.t/; t 2 Œ0; T �g and control U D fU.t/; t 2 Œ0; T �g. The system
state is given by X D �.Z; Y; U / where functional � represents the system
configuration and operation mode. Obviously, one has also X D fX.t/; t 2 Œ0; T �g.
Moreover, processesZ; Y;U and X can be multi-dimensional and their dimensions
may differ. For evaluation of the system performance quality it is necessary to
introduce an objective function L .Z; Y; U;X; T /. For brevity it will be denoted
by LT .U /. So, a typical applied probability model is described by a six-tuple
.Z; Y; U; �;L ; T /.

Such description is useful for models classification. It also demonstrates the
similarity of models arising in different applied probability domains such as
inventory and dams theory, insurance and finance, queueing and reliability theory,
as well as population growth and many others (see, e.g., [7]). One only gives another
interpretation to processes Z; Y;X in order to switch from one research domain to
another. Thus, input to inventory system is replenishment delivery (or production)
and output is demand, whereas for a queueing system it is arrival and departure of
customers respectively (for details see, e.g., [6]).

Definition 1. A control U �
T D fU �.t/; t 2 Œ0; T �g is called optimal if

LT .U
�
T / D inf

UT 2UT

LT .UT / .or LT .U
�
T / D sup

UT 2UT

LT .UT //; (1)

where UT is a class of all feasible controls. Furthermore, U � D fU �
T ; T � 0g is

called an optimal policy.
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The choice of inf or sup in (1) is determined by the problem we want to solve.
Namely, if we are interested in minimization of losses (or ruin probability) we use
the first expression, whereas for profit (or system life-time) maximization we use
the second one in (1).

Since extremum in (1) may be not attained we introduce the following

Definition 2. A control U "
T is "-optimal if

LT .U
"
T / < inf

UT 2UT

LT .UT /C " .or LT .U
"
T / > sup

UT 2UT

LT .UT / � "/:

Definition 3. A policy QU D f QUT ; T � 0g is stationary if for any T; S � 0

QUT .t/ D QUS.t/; t � min.T; S/:

Definition 4. A policy bU D .bUT ; T � 0/ is asymptotically optimal if

lim
T!1T �1LT .bUT / D lim

T!1T �1LT .U
�
T /:

The changes necessary for discrete-time models are obvious.

2.2 Model Description

Below we consider a discrete-time multi-supplier one-product inventory system. It
is supposed that a store created to satisfy the customers demand can be replenished
periodically. Namely, at the end of each period (e.g., year, month, week, day etc.)
an order for replenishment of inventory stored can be sent to one of m suppliers or
to any subset of them. The i -th supplier delivers an order with .i � 1/-period delay,
i D 1;m. Let ai be the maximal order possible at the i -th supplier, and the ordering
price is ci per unit, i D 1;m. For simplicity, the constant delivery cost associated
with each order is ignored. However we take into account holding cost h per unit
stored per period and penalty p for deficit of unit per period.

Let the planning horizon be equal to n periods. The demand is described by
a sequence of independent identically distributed nonnegative random variables
f�kgnkD1. Here �k is amount demanded during the k-th period. Assume F.x/ to be
the distribution function of �k having a density '.s/ > 0 for s 2 Œ�; �� � Œ0;1/: It
is also supposed that there exists E�k D �, k D 1; n.

Unsatisfied demand is backlogged. That means, the inventory level xk at the end
of the k-th period can be negative. In this case jxkj is the deficit amount.

Expected discounted n-period costs are chosen as objective function. We denote
by fn.x; y1; : : : ; ym�2/ the minimal value of objective function if inventory on hand
(or initial inventory level) is x and yi is already ordered (during previous periods)
quantity to be delivered i periods later, i D 1;m � 2.
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2.2.1 Notation and Preliminary Results

It is supposed that the order amounts at the end of each period depend on the
inventory level x and yet undelivered quantities y1; : : : ; ym�2. Using the Bellman
optimality principle (see, e.g., [2]) it is possible to obtain, for n � 1, the following
functional equation

fn.x; y1; : : : ; ym�2/ D min
0�zi�ai ;iD1;m

Œ

mX

iD1
ci zi C L.x C z1/C (2)

C˛Efn�1.x C y1 C z1 C z2 � �1; y2 C z3; : : : ; ym�2 C zm�1; zm/�:

Here ˛ is the discount factor, E stands for mathematical expectation and zi is the
order size at the first step of n-step process from the i -th supplier, i D 1;m.
Furthermore, the one-period mean holding and penalty costs are represented by

L.v/ D EŒh.v � �1/C C p.�1 � v/C�; with aC D max.a; 0/;

if inventory level available to satisfy demand is equal to v.
The calculations for arbitrarym being too cumbersome, we treat below in detail

the case m D 2. Then we need to know only the initial level x and Eq. (2) takes the
form

fn.x/ D min
0�zi�ai ;iD1;2

Œc1z1 C c2z2 C L.x C z1/C ˛Efn�1.x C z1 C z2 � �1/� (3)

with f0.x/ � 0: Let us introduce the following notation v D xC z1, u D v C z2 and

Gn.v; u/ D .c1 � c2/v C c2u C L.v/C ˛Efn�1.u � �1/:

Then Eq. (3) can be rewritten as follows

fn.x/ D �c1x C min
.v;u/2Dx

Gn.v; u/ (4)

whereDx D fx � v � x C a1; v � u � v C a2g:
The minimum in (4) can be attained either inside ofDx or at its boundary.
To formulate the main results we need the following functions

@Gn

@v
.v; u/ D c1 � c2 C L0.v/ WD K.v/;

@Gn

@u
.v; u/ D c2 C ˛

Z 1

0

f 0
n�1.u � s/'.s/ ds WD Sn.u/:
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Moreover, Tn.v/ D Sn.v/ C K.v/ and Bn.v/ D Sn.v C a2/ C K.v/ represent
dGn.v; v/

dv
and

dGn.v; v C a2/

dv
respectively, whereas

Ra.u/ D c2�˛c1C˛

Z u�Nv

0

K.u�s/'.s/ dsC˛

Z 1

uCa�Nv
K.uCa�s/'.s/ ds: (5)

Let Nv, un, vn, wn and ua be the roots of the following equations

K.Nv/ D 0; Sn.un/ D 0; Tn.vn/ D 0; Bn.wn/ D 0; Ra.ua/ D 0; (6)

provided the solutions exist for a given set of cost parameters. In particular, Nv 2
Œ�; �� is given by

F.Nv/ D p � c1 C c2

p C h

if .c1; c2/ 2 � D f.c1; c2/ W .c1�p/C � c2 � c1 Chg. Otherwise, we set Nv D �1,
if K.v/ > 0 for all v, that is, .c1; c2/ 2 � � D f.c1; c2/ W c2 < .c1 � p/Cg, and
Nv D C1, if K.v/ < 0 for all v, that is, .c1; c2/ 2 � C D f.c1; c2/ W c2 > c1 C hg. A
similar assumption holds for Sn.u/, Tn.v/, Bn.w/ and un, vn, wn, n � 1, as well as
Ra.u/ and ua. Below we are going to use also the following notation. For k � 0 set

�k D f.c1; c2/ W p
k�1X

iD0
˛i < c1 � p

kX

iD0
˛i g; �k D f.c1; c2/ W p

kX

iD1
˛i < c2 � p

kC1X

iD1
˛i g;

where as always the sum over empty set is equal to 0,

�lk D �k \�l ; Ak D [l�k�l ; Ak D [l�k�l ; � ˛ D f.c1; c2/ W .c1 �p/C � c2 � ˛c1g;

� �
n D f.c1; c2/ 2 � W Sn.Nv/ < 0g; � C

n D f.c1; c2/ 2 � W Sn.Nv/ > 0g;

whereas � 0
n D f.c1; c2/ 2 � WSn.Nv/ D 0g: As usual dealing with dynamic

programming all the proofs are carried out by induction.
Thus, it will be proved that functions f 0

n.x/ are non-decreasing as well as K.v/,
Sn.v/, Tn.v/ and Bn.v/. Moreover, to establish that sequences fung, fvng, n � 1, are
non-decreasing it is enough to check that f 0

n.x/�f 0
n�1.x/ � 0 for x � max.un; vn/,

since SnC1.u/ D Sn.u/C ˛Hn.u/ and TnC1.v/ D Tn.v/C ˛Hn.v/ whereHn.u/ D
.f 0
n � f 0

n�1/ � F.u/, here and further on � denotes the convolution.
The crucial role for classification of possible variants of optimal behaviour plays

the following
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Lemma 1. If .c1; c2/ 2 � �
n , then Nv < vn < un; if .c1; c2/ 2 � C

n , then Nv > vn > un,
whereas Nv D vn D un if .c1; c2/ 2 � 0

n , and un; vn; Nv are defined by (6). Moreover, if
.c1; c2/ 2 � �; then vn < un and vn > un, if .c1; c2/ 2 � C, for all n.

Proof. The statement is obvious, since functions K.v/, Sn.v/ and Tn.v/ are non-
decreasing in v, Tn.v/ D Sn.v/CK.v/ andK.v/ < 0 for v < Nv, whileK.v/ > 0 for
v > Nv. ut

2.3 Optimal Control

We begin by treating the case without constraints on order sizes. Although Corol-
lary 1 was already formulated in [4] (under assumption ˛ D 1) a more thorough
investigation undertaken here lets clarify the situation and provides useful tools for
the case with order constraints.

2.3.1 Unrestricted Order Sizes

At first we suppose that the order size at both suppliers may assume any value, that
is, ai D 1, i D 1; 2.

Theorem 1. If c2 > ˛c1, the optimal behaviour at the first step of n-step process
has the form un.x/ D vn.x/ D max.x; vn/. The sequence fvng of critical levels
given by (6) is non-decreasing and there exists limn!1 vn D bv satisfying the
following relation

F.bv/ D p � c1.1 � ˛/
p C h

: (7)

Moreover, for .c1; c2/ 2 �k , k D 0; 1; : : : ; one has vn D �1, n � k and vkC1 is a
solution of the equation

kC1X

iD1
˛i�1F i�.vkC1/ D p

Pk
iD0 ˛i � c1

p C h
: (8)

Proof. For nD 1 it is optimal to take u D v, since S1.u/D c2 >0 for all u, that means
u1 D �1. On the other hand, T1.v/ D c1 � p C .p C h/F.v/, therefore v1 D �1
in A1, whereas in �0 there exists v1 2 Œ0; Nv� such that F.v1/ D .p � c1/=.p C h/.
Thus, the optimal decision has the form u1.x/ D v1.x/ D max.x; v1/:

For further investigation we need only to know

f 0
1 .x/ D �c1 C



0; x < v1;
T1.x/; x � v1;

D

 �c1; x < v1;
L0.x/; x � v1:

(9)
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It is obvious that f 0
1 .x/ is non-decreasing, the same being true of

S2.u/ D c2 � ˛c1 C ˛

Z u�v1

0

T1.u � s/'.s/ ds (10)

and

T2.v/ D Q.v/C ˛

Z v�v1

0

T1.v � s/'.s/ ds (11)

with Q.v/ D c1.1 � ˛/ C L0.v/. Note that in the case v1 D �1 the meaning ofR u�v1
0

in (10) and
R v�v1
0

in (11) is
R1
0

. The same agreement will be used further on.
Thus, S2.u/ > 0 for all u under assumption c2 > ˛c1, that is, u2 D �1. Since

T2.v/ � Q.v/, it follows immediately that v2 �bv andbv is given by (7), hencebv < Nv.
Moreover,bv D �1 for c1 > p.1� ˛/�1. It is also clear that v2 > v1 in �0 because
T2.v1/ D �˛c1. Recalling that in A1

T2.v/ D c1 C L0.v/C ˛

Z 1

0

L0.v � s/'.s/ ds

we get

F.v2/C ˛F 2�.v2/ D p.1C ˛/ � c1
p C h

in �1;

whereas v2 D �1 in A2. Hence, u2.x/ D v2.x/ D max.x; v2/.
Assuming now the statement of the theorem to be valid for k � m, one has

f 0
k .x/ D �c1 C

(
0; x < vk;

Tk.x/; x � vk;
(12)

and

f 0
m.x/ � f 0

m�1.x/ D

8
ˆ̂
<

ˆ̂
:

0; x < vm�1;

�Tm�1.x/; vm�1 � x < vm;

Tm.x/ � Tm�1.x/; x � vm:

(13)

Thus, SmC1.u/ > 0 for all u, that entails umC1 D �1. Moreover, TmC1.v/ � Q.v/
and Hm.vm/ � 0. Hence, vm < vmC1 � bv in [m�1

kD0�k and vmC1 satisfies (8) with
k D m in �m, whereas vmC1 D �1 in AmC1. That means, the theorem statement
is valid formC 1.

The sequence fvng is non-decreasing and bounded. Consequently there exists
limn!1 vn D Mv �bv. It remains to prove that Mv Dbv. In fact, for n > k C 1

Tn.v/ D Q.v/C ˛

Z v�vn�1

0

Tn�1.v � s/'.s/ ds in �k; k � 0;
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so

jQ.vn/j D ˛

Z vn�vn�1

0

Tn�1.vn � s/'.s/ ds

� Tn�1.bv/˛
Z vn�vn�1

0

'.s/ ds � : : : � Tk.bv/˛
n�k

Z vn�vn�1

0

'.s/ ds

where Tk.bv/ � c1 C h
Pk

iD0 ˛i � c1 C h.1 � ˛/�1.
Hence, Q.vn/ ! 0 D Q.bv/, as n ! 1. On the other hand, Q.vn/ ! Q.Mv/,

therefore Mv Dbv. It is clear that this result is true for any 0 < ˛ � 1. ut
Remark 1. The main result of Theorem 1 can be reformulated in the following way:

z.1/n .x/ D z.2/n .x/ D 0 for n � k

and
z.1/n .x/ D .vn � x/C; z.2/n .x/ D 0 for n > k;

if .c1; c2/ 2 �k , k D 0; 1; : : :.
That means, for c2 > ˛c1 it is optimal to use only the first supplier. The inventory

level is raised up to a prescribed critical value vn if the initial level x at the first step
of n-step process is less than vn. Nothing is ordered for x � vn. Furthermore, if
c1 > p

Pk�1
iD0 ˛i then for n � k nothing is ordered for all initial inventory levels x

at the first step of n-step process. If c1 > p.1�˛/�1, it is optimal never to order for
any initial level.

Theorem 2. If c2 < .c1 � p/C, the optimal behaviour at the first step of n-step
process has the form vn.x/ D x, un.x/ D max.x; un/. The sequence fung defined
by (6) is non-decreasing and there exists limn!1 un D u0, where u0 is given by

F 2�.u0/ D ˛p � c2.1 � ˛/

˛.p C h/
: (14)

Moreover, for .c1; c2/ 2 �k�1, k D 1; 2; : : : ; one has un D �1, n � k, and

kC1X

iD2
˛i�2F i�.ukC1/ D p

Pk
iD1 ˛i � c2
˛.p C h/

: (15)

Proof. Recall that Nv D �1 in � � and � � � A1. It follows immediately from here
that u1.x/ D v1.x/ D x and f 0

1 .x/ D L0.x/. Now turn to n D 2. Since

S2.u/ D c2 � ˛p C ˛.p C h/F 2�.u/;

it is obvious that S2.u/ > 0 for all u (that is, u2 D �1) in A1 and there exists
u2 � 0 satisfying (15) with k D 1 in �0. According to Lemma 1 one has v2 < u2,
therefore it is optimal to have v2.x/ D x and u2.x/ D max.x; u2/. Thus,
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f 0
2 .x/ D �c1 C



K.x/; x < u2;
T2.x/; x � u2;

D �c2 C L0.x/C


0; x < u2;
S2.x/; x � u2;

and

S3.u/ D R0.u/C ˛

Z u�u2

0

S2.u � s/'.s/ ds

where R0.u/ given by (5) with a D 0 has the form

c2.1� ˛/C ˛

Z 1

0

L0.u � s/'.s/ ds D c2.1� ˛/ � ˛p C ˛.p C h/F 2�.u/: (16)

It is clear that there exists u0 satisfying R0.u0/ D 0. For c2 � ˛p.1 � ˛/�1 it is
given by (14), otherwise u0 D �1. Since S3.u/ � R0.u/ and S3.u2/ D �˛c2 in
�0, one has u2 < u3 � u0. Moreover, in �1 there exists u3 satisfying (15) with
k D 2, whereas u3 D �1 in A2.

Assuming the statement of the theorem to be valid for k � m one has

f 0
k .x/ D �c1 CK.x/C



0; x < uk;
Sk.x/; x � uk;

(17)

and

f 0
m.x/ � f 0

m�1.x/ D
8
<

:

0; x < um�1;
�Sm�1.x/; um�1 � x < um;
Sm.x/� Sm�1.x/; x � um:

That means SmC1.u/ � R0.u/ for all u andHm.um/ < 0. Thus, um < umC1 � u0 in
[m�2
kD0�k and umC1 � u0 satisfies (15) with k D m in �m�1, whereas umC1 D �1

in Am. It follows immediately that vmC1.x/ D x and umC1.x/ D max.x; umC1/.
Clearly, the theorem statement is valid for mC 1.

The sequence fung is non-decreasing and bounded, consequently there exists
Mu D limn!1 un. It remains to prove that Mu D u0. In fact, for n > k C 2,

Sn.u/ D R0.u/C ˛

Z u�un�1

0

Sn�1.u � s/'.s/ ds in �k; k D 0; 1; : : : ;

and

jR0.un/j D ˛

Z un�un�1

0

Sn�1.un � s/'.s/ ds

� Sn�1.u0/˛
Z un�un�1

0

'.s/ ds � : : : � Sk.u
0/˛n�k

Z un�un�1

0

'.s/ ds;

where Sk.u0/ � c2 C h
PkC1

iD1 ˛i � c2 C h.1 � ˛/�1:
It is clear that R0.un/ ! 0 D R0.u0/, as n ! 1, hence, Mu D u0 for 0 < ˛ � 1.

ut
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Remark 2. In other words, Theorem 2 states that for c2 < c1 � p one has to use
only the second supplier, the order sizes being

z.1/n .x/ D 0; z.2/n .x/ D 0; n � k C 1;

and
z.1/n .x/ D 0; z.2/n .x/ D .un � x/C; n > k C 1;

if .c1; c2/ 2 �k , k D 0; 1; : : : :

Now let us turn to the last and most complicated case.

Theorem 3. If .c1; c2/ 2 � ˛ , the optimal behaviour at the first step of n-step
process has the form vn.x/ D max.x;min.vn; Nv//, un.x/ D max.vn.x/; un/. The
sequence fung is non-decreasing and there exists limn!1 un D u1 where u1 is
given by (5) and (6) with a D 1.

Proof. It is obvious that � ˛ � [1
iD0.�i

i[�i
iC1/ and Nv � � in � ˛ . As in Theorem 1,

for n D 1 one has u1.x/ D v1.x/ D max.x; v1/ where v1 is given by (8) with k D 0

in �0 and v1 D �1 in A1. Thus f 0
1 .x/ has the form (9). Note also that

� 0
1 D f.c1; c2/ W 0 � c1 � p; c2 D 0g:

Moreover, S2.u/ is given by (10) and u2 � v1. It is also clear that
f.c1; c2/ W c2 D ˛c1g � � C

2 . On the other hand, � 0
1 � � �

2 , since S2.Nv/ D �˛c1
in � 0

1 . Furthermore, in �0
0 the function c2 D g2.c1/ is defined implicitly by

S2.Nv/ D c2 � ˛c1 C ˛

Z Nv�v1

0

T1.Nv � s/'.s/ ds D 0;

whence it follows g2.0/ D 0 and

g0
2.c1/ D ˛

'.Nv/ R1
Nv�v1

'.s/ ds C R Nv�v1
0

'.Nv � s/'.s/ ds
'.Nv/C ˛

R Nv�v1
0

'.Nv � s/'.s/ ds
:

Thus, it is clear that 1 � g0
2.c1/ � 0 and g0

2.0/ D ˛, since Nv D v1 for c1 D c2 D 0.
For c1 D p two expressions for S2.Nv/ coincide because

S2.Nv/ ! c2 � ˛p C ˛.p C h/F 2�.Nv/; as c1 " p;

and in �0
1 one has S2.u/ D c2 � ˛p C ˛.p C h/F 2�.u/. It is easy to get that u2 is

determined by (15) with k D 1 in �0
1 and u2 D �1 in �1. We have also

g0
2.c1/ D ˛'2�.Nv/

'.Nv/C ˛'2�.Nv/ in �0
1
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and f.c1; c2/ 2 �0
1 W c2 D c1�pg � � �

2 [� 0
2 , more precisely, g2.p.1C˛// D ˛p.

Hence, � �
2 � �0

0 [ �0
1, moreover, we are going to establish that � �

2 � � �
3 ,

whereas � C
3 � � C

2 . In fact, due to Lemma 1 one has Nv < v2 < u2 in � �
2 . It follows

immediately that v2.x/ D max.x; Nv/ and u2.x/ D max.v2.x/; u2/. That means,

f 0
2 .x/ D �c1 C

8
<

:

0; x < Nv;
K.x/; Nv � x < u2;
T2.x/; x � u2;

(18)

and

S3.u/ D R1.u/C ˛

Z u�u2

0

S2.u � s/'.s/ ds

with R1.u/ given by (5) with a D 1. In other words, we have

R1.u/ D c2 � ˛c1 C ˛

Z u�Nv

0

K.u � s/'.s/ ds:

Since S3.Nv/ D c2 � ˛c1 < 0 in � �
2 , it is clear that � �

2 � � �
3 . From (9) and (18)

one gets

f 0
2 .x/ � f 0

1 .x/ D

8
ˆ̂
<

ˆ̂
:

0; x < v1;
�T1.x/; v1 � x < Nv;
�c2; Nv � x < u2;
T2.x/ � T1.x/; x � u2:

Thus, f 0
2 .x/ � f 0

1 .x/ � 0 for x � u2, that is, H2.u2/ < 0 and u2 < u3. As soon as
S3.u/ � R1.u/, it is obvious that u3 � u1. Hence, f 0

3 .x/ has the form (18) with
indices 3 instead of 2.

Assuming now that .c1; c2/ 2 � C
2 one has v1 � u2 < v2 < Nv due to (10) and

Lemma 1. It entails u2.x/ D v2.x/ D max.x; v2/ and f 0
2 .x/ is given by (12) with

k D 2. Recall also that v2 is given by (8) with k D 1 in �1 and v2 D �1 in A2.
Clearly,

S3.u/ D c2 � ˛c1 C ˛

Z u�v2

0

T2.u � s/'.s/ ds;

that means S3.v2/ D c2 � ˛c1 � 0 in �0 [ �1, consequently, v2 � u3. There are
two possibilities: either u3 � Nv or u3 > Nv. The first case corresponds to � 0

3 [ � C
3 ,

whereas the second one to � �
3 . In the first case u3.x/ D v3.x/ D max.x; v3/, while

in the second one v3.x/ D max.x; Nv/ and u3.x/ D max.v3.x/; u3/. Moreover, in�1
2

S3.u/ D c2 � ˛p.1C ˛/C ˛.p C h/ŒF 2�.u/C ˛F 3�.u/�;

while

T3.v/ D c1 � p.1C ˛ C ˛2/C .p C h/ŒF.v/C ˛F 2�.v/C ˛2F 3�.v/�:
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Thus u3 and v3 are given in �1
2 by (15) and (8) respectively with k D 2, whereas

u3 D �1 in A2 and v3 D �1 in A3. Furthermore, in �1
2

g0
3.c2/ D ˛

'2�.Nv/C ˛'3�.Nv/
'.Nv/C ˛'2�.Nv/C ˛2'3�.Nv/ ;

as well as g3.p.1C ˛ C ˛2// D ˛p.1C ˛/ and � �
3 � [1

lD0.�l
l [�l

lC1/.
Supposing now that the statement of the theorem is true for all k � m we

establish its validity for k D mC 1. Induction assumption means that

� �
k D � �

k�1 [ � 0
k�1 [ .� C

k�1 \ � �
k / � [k�2

lD0.�l
l [�l

lC1/; k D 2;m;

so � �
2 � : : : � � �

m and � C
m � : : : � � C

2 , moreover, � D � �
m [ � 0

m [ � C
m :

Let .c1; c2/ 2 � �
m , then

f 0
m.x/ D �c1 C

8
<

:

0; x < Nv;
K.x/; Nv � x < um;
Tm.x/; x � um;

(19)

while f 0
m�1.x/ has the form (19) with m � 1 instead of m, if .c1; c2/ 2 � �

m�1. If
.c1; c2/ 2 � 0

m�1 [� C
m�1, then f 0

m�1.x/ is given by (12) with k D m� 1. So, one has
either

f 0
m.x/ � f 0

m�1.x/ D
8
<

:

0; x < um�1;
�Sm�1.x/; um�1 � x < um;
Sm.x/� Sm�1.x/; x � um;

or

f 0
m.x/ � f 0

m�1.x/ D

8
ˆ̂
<

ˆ̂
:

0; x < vm�1;
�Tm�1.x/; vm�1 � x < Nv;
�Sm�1.x/; Nv � x < um;
Sm.x/� Sm�1.x/; x � um:

It is clear that H.um/ < 0, that means SmC1.um/ < 0 and umC1 > um > Nv, hence
.c1; c2/ 2 � �

mC1.
Now if .c1; c2/ 2 � C

m [ � 0
m, then f 0

k .x/ has the form (12) for k � m, with
vk D �1 for k � l and vlC1 given by (8) with k D l in �l . This entails

SmC1.u/ D c2 � ˛c1 C ˛

Z u�vm

0

Tm.u � s/'.s/ ds

and SmC1.vm/ D c2�˛c1 � 0, whence it is obvious that vm � umC1. As a result one
has two possibilities: either umC1 � Nv, that is, .c1; c2/ 2 � C

mC1[� 0
mC1, or Nv < umC1,

namely, .c1; c2/ 2 � �
mC1. In the first case there exists vmC1 2 .umC1; Nv/ and f 0

mC1.x/
is given by (12). Furthermore, vmC1 satisfies (8) with k D m in �m. In the second
case f 0

mC1.x/ has the form (19) with indicesmC 1 instead of m. Thus,
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Sn.u/ D R1.x/C ˛

Z u�un�1

0

Sn�1.u � s/'.s/ ds � R1.u/

and un � u1 for n > 2. It is simple to prove, as in Theorem 2, that u1 D
limn!1 un . ut
Corollary 1. If .c1 � p/C � c2 � ˇkc1 with ˇk D Pk�1

iD1 ˛i=
Pk�1

iD0 ˛i , then
.c1; c2/ 2 � �

k , k � 2.

Remark 3. As follows from Theorem 3, for the parameters set � ˛ one uses two
suppliers or only the first one. The order sizes are regulated by critical levels un
and Nv or vn respectively, according to values of cost parameters. More precisely, if
˛c1 > c2 � .c1 � p/C, then there exists n0.c1; c2/ such that for n > n0 it is optimal
to use both suppliers, whereas for n � n0 only the first supplier may be used.

2.4 Order Constraints

Turning to the results with order constraints we begin by the study of the first
restriction impact.

Theorem 4. Let a1 < 1, a2 D 1, then the optimal decision at the first step of
n-step process has the form

z.1/n .x/ D minŒa1; .min.vn; Nv/ � x/C�; z.2/n .x/ D .un � x � z.1/n /
C: (20)

The sequences fung and fvng defined by (6) are non-decreasing. There exists
limn!1 un equal to ua1 in � and u0 in � �.

Proof. As previously, we proceed by induction. At first let us take n D 1. Since
S1.u/ D c2 > 0, that is, u1 D �1, it is optimal to put u D v. On the other hand,
T1.v/ D c1 � p C .p C h/F.v/, therefore v1 D �1 in A1 and in �0 there exists
v1 2 Œ0; Nv� satisfying (8) with k D 0. In the former case u1.x/ D v1.x/ D x for all x
and in the latter case u1.x/ D v1.x/ D xC a1 for x < v1 � a1, u1.x/ D v1.x/ D v1
for x 2 Œv1 � a1; v1/ and u1.x/ D v1.x/ D x for x � v1.

Thus, f 0
1 .x/ D L0.x/ D �p C .p C h/F.x/ in A1, whereas in �0

f 0
1 .x/ D �c1 C

8
<

:

T1.x C a1/; x < v1 � a1;

0; v1 � a1 � x < v1;
T1.x/; x � v1:

(21)

It is obvious that f 0
1 .x/ is non-decreasing, hence the same is true of S2.u/ and

T2.v/ taking values in Œc2 � ˛p; c2 C ˛h� and Œc1 � p.1 C ˛/; c1 C h.1 C ˛/�

respectively. Hence, u2 D �1 in A1, v2 D �1 in A2, so for n D 2 the optimal
decision is u2.x/ D v2.x/ D x if .c1; c2/ 2 D2 D A2 \ A1.
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Proceeding in the same way we establish that in Dk D Ak \ Ak�1, k > 2, one
has un D vn D �1, n � k, so un.x/ D vn.x/ D x is optimal for all n � k and

f 0
n.x/ D �p

n�1X

iD0
˛i C .p C h/

nX

iD1
˛i�1F i�.x/:

Moreover, in �k�1
k there exist ukC1 � � and vkC1 � � given by (15) and (8)

respectively.
Next consider the set � . For each k > 1 it is divided into subsets � �

k and
� C
k by a curve c2 D gk.c1/ defined implicitly by equality Sk.Nv/ D 0. The point

.p
Pk�1

iD0 ˛i ; p
Pk�1

iD1 ˛i / on the boundary of � , corresponding to Nv D �, belongs
to gk.c1/, since Sk.�/ D Tk.�/ D 0 for such .c1; c2/ from �k�2

k�1. According to the
rule of implicit function differentiation and the form of Sk.
/ in �k�2

k�1, we get

g0
k.c1/ D

Pk�1
iD2 ˛i�1'i�.Nv/

Pk�1
iD1 ˛i�1'i�.Nv/

;

whence it is obvious that g0
k.c1/ 2 Œ0; 1�. The last result is valid for other values of

c1 although expression of g0
k.c1/ is more complicated.

Suppose .c1; c2/ 2 � C
k � � C

k�1 and

f 0
k .x/ D �c1 C

8
ˆ̂
<

ˆ̂
:

K.x C a1/; x < uk � a1;
Tk.x C a1/; uk � a1 � x < vk � a1;
0; vk � a1 � x < vk;
Tk.x/; x � vk:

It is not difficult to verify that ukC1 > uk and vkC1 > vk and � C
kC1 � � C

k .
Now let .c1; c2/ 2 � �

k , then

f 0
k .x/ D �c1 C

8
ˆ̂
<

ˆ̂
:

K.x C a1/; x < Nv � a1;

0; Nv � a1 � x < Nv;
K.x/; Nv � x < uk;
Tn.x/; x � uk:

It is easy to check that � �
n � � �

nC1 for any n � k and

SnC1.u/ D Ra1.u/C ˛

Z u�un

0

Sn.u � s/'.s/ ds � Ra1.u/;

entailing un � ua1 for all n.
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Since R1.u/ � Ra1.u/ � R0.u/, for any u and a1 > 0, one has u1 < ua1 < u0.
It is not difficult to establish that limn!1 un D ua1 where ua1 is defined by (6).

Turning to � � � A1 we get, for n > k,

f 0
n.x/ D �c2 C L0.x/C



0; x < un;
Sn.x/; x � un;

if .c1; c2/ 2 � � \�k. Verifying that f 0
n.x/ � f 0

n�1.x/ < 0 for x < un, one obtains
unC1 > un. Furthermore, for all u and n > k,

SnC1.u/ D R0.u/C ˛

Z u�un

0

Sn.u � s/'.s/ ds � R0.u/:

So, un � u0 for all n. Obviously, there exists limn!1 un and it is easy to show that
it is equal to u0.

Finally, if un and vn are finite then for � C it is optimal to take vn.x/ D x C a1,
un.x/ D un for x < un � a1; un.x/ D vn.x/ D x C a1 for x 2 Œun � a1; vn � a1/;
un.x/ D vn.x/ D vn for x 2 Œvn �a1; vn/I and un.x/ D vn.x/ D x for x � vn. ut

To study the impact of the other constraint we formulate at first the almost
obvious

Corollary 2. If c2 > ˛c1 the optimal behaviour for a1 D 1, a2 < 1 has the same
form as that for a1 D a2 D 1 in Theorem 1.

Proof. Proceeding in the same way as in Theorem 1 we easily get the result. ut
Theorem 5. Let a1 � 1, a2 < 1 and .c1; c2/ 2 � �. Then the optimal decision at
the first step of n-step process is given by

z.1/n .x/ D min.a1; .wn � x/C/; z.2/n .x/ D min.a2; .un � x � z.1/n .x//
C/;

where wn and un are defined by (6). There exist limn!1 un �bv and limn!1 wn �bv
withbv defined by (7).

Proof. Begin by treating the case a1 D 1, a2 < 1. It follows easily from
assumptions that u1 D v1 D w1 D �1 and f 0

1 .x/ D L0.x/: Moreover,

S2.u/ D c2�˛pC.pCh/F 2�.u/; T2.c/ D c1�p�˛pC.pCh/ŒF.v/C˛F 2�.v/�

and
B2.v/ D c1 � p � ˛p C .p C h/ŒF.v/C ˛F 2�.v C a2/�:

Since T2.v/ < B2.v/ and S2.v C a2/ < B2.v/ < T2.v C a2/ it follows from here
that w2 < v2 < w2 C a2 < u2. It is clear that w2 > �1 in �0

1
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f2.x/ D �c1x C

8
ˆ̂
<

ˆ̂
:

G2.w2;w2 C a2/; x < w2;
G2.x; x C a2/; w2 � x < u2 � a2;

G2.x; u2/; u2 � a2 � x < u2;
G2.x; x/; x � u2:

It follows immediately that

f 0
2 .x/ � f 0

1 .x/ D

8
ˆ̂
<

ˆ̂
:

�T1.x/; x < w2;
�c2 C S2.x C a2/; w2 � x < u2 � a2;

�c2; u2 � a2 � x < u2;
�c2 C S2.x/; x � u2:

So, f 0
2 .x/� f 0

1 .x/ < 0 for x � u2. This entails the following inequalities w2 < w3,
v2 < v3, u2 < u3.

Then if .c1; c2/ 2 �0
1, it is not difficult to verify by induction that there exist

finite un and wn, n � 2. Furthermore, one has wn < vn < wn C a2 < un. Hence,
it is optimal to take vn.x/ D wn, un.x/ D wn C a2 for x < wn; vn.x/ D x,
un.x/ D xC a2 for x 2 Œwn; un � a2/; vn.x/ D x, un.x/ D un for x 2 Œun � a2; un/
and un.x/ D vn.x/ D x for x � un. Consequently, one gets

f 0
n.x/ D �c1 C

8
ˆ̂
<

ˆ̂
:

0; x < wn;
Bn.x/; wn � x < un � a2;

K.x/; un � a2 � x < un;
Tn.x/; x � un;

D �c2 C L0.x/C

8
ˆ̂
<

ˆ̂
:

�K.x/;
Sn.x C a2/;

0;

Sn.x/;
(22)

and Bn.v/ � c1.1 � ˛/ C L0.x/. That means, wn �bv for all n and a2. Using (22)
one also obtains limn!1 un �bv.

If .c1; c2/ 2 �0
l , there exists wlC1 > �1, whereas wm D �1 for m � l . Thus,

f 0
n.x/ D �c1 C

8
<

:

Bn.x/; x < un � a2;
K.x/; un � a2 � x < un;
Tn.x/; x � un;

for 1 < n � l and f 0
n.x/ has the form (22) for n > l .

The subsets �k
l corresponding to k � 1 are treated in the same way giving also

z.1/n .x/ D .wn � x/C, z.2/n D min.a2; .un � x � z.1/n .x//C/.
Changes necessary under assumption a1 < 1 are almost obvious, so the details

are omitted. ut
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2.5 Sensitivity Analysis

We begin studying the impact of model parameters on the optimal decision by the
motivating

Example. Assume � D 0, � D d and '.s/ D d�1, s 2 Œ�; ��, that is, distribution of
�i is uniform. Obviously,F.u/ D u=d , u 2 Œ0; d �, and v D d.pC c2 � c1/=.pCh/,
while F 2�.u/ D u2=2d2, u 2 Œ0; d �, F 2�.u/ D 1 � .u � 2d/2=2d2, u 2 Œd; 2d �.
Suppose also a1 < 1 and ˛ D 1.

According to (21) the form of g2.c1/, given by the relation S2.v/ D 0, depends
on a1 for .c1; c2/ 2 �0

0. Moreover, c2 � p C .p C h/F 2�.u/ D S
.0/
2 .u/ � S

.a1/
2 .u/

and S.a1/2 .u/ � S
.1/
2 .u/ D c2 C R u�v1

0 L0.u � s/'.s/ ds, whence it follows that the
domain � �

2 decreases as a1 increases.
On the other hand, the curve g2.c1/ is the same for all a1 if .c1; c2/ 2 �0

1. It is

determined by equation S.0/2 .v/ D 0, which can be rewritten in the form

2.pC h/.p � c2/ D .p C c2 � c1/2; for h � p:

Thus, g.0/2 .c1/ does not depend on d . It starts from the point c1 D 2p, c2 D p

and crosses the line c1 D p at c2 D �.2p C h/Cp
5p2 C 4phC h2 and then the

line c2 D c1 at c2 D pŒ1� p=2.pC h/�. For h D p these values of c2 are equal to
p.

p
10 � 3/ and 3p=4 respectively.

Next, if c1 D 0 one has c2 D .pCh/Œp1C 2p.p C h/�1�1� equal to p.2
p
3�3/

for h D p. However, the set � �
2 \ fc2 > c1g is empty when a1 D 1.

As usual for dynamic programming, the optimal control depends on the planning
horizon. Moreover, for n fixed there exist stability domains of cost parameters
.� �

n ; �
C
n ; �

� \�k; � C \�l; k; l � 0/ where the optimal behaviour has the same
type, that is determined by the same set of critical levels un; vn;wn, n � 2, and Nv.

Fortunately, using the "-optimal and asymptotically optimal stationary controls
one can reduce the number of stability domains and exclude dependence on n.

We prove below only the simplest results demonstrating the reasoning necessary
for the general case.

Theorem 6. Let 0<˛<1, a1 D 1, a2 � 1 and c2 > ˛c1. Then for any ">0 there
exists n0 D n0."; k/ such that it is "-optimal to use un.x/ D vn.x/ D max.x;bv/
at the first step of n-step process with n > n0 if .c1; c2/ 2 �k , k D 0; 1; : : :. The
critical levelbv is given by (7).

Proof. Put for brevity gn.x/ D Gn.x; x/. According to Theorem 1 and Corollary 2
we can write for n > k C 1

fn.x/ D �c1x C


gn.vn/; x < vn;
gn.x/; x � vn;
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and

fn.x/ � fn�1.x/ D
8
<

:

gn.vn/� gn�1.vn�1/; x < vn�1;
gn.vn/� gn�1.x/; vn�1 � x < vn;
gn.x/� gn�1.x/; x � vn;

if .c1; c2/ 2 �k , k D 0; 1; : : : :

Taking into account that gn.vn/ D minx gn.x/ one easily gets

max
x�z

jfn.x/ � fn�1.x/j � max
vn�1�x�max.z;bv/

jgn.x/ � gn�1.x/j:

Recalling that gn.x/ D c1x C L.x/ C ˛
R1
0 fn�1.x � s/'.s/ ds it is possible to

write for z >bv the following chain of inequalities

max
x�z

jfn.x/ � fn�1.x/j � ˛max
x�z

jfn�1.x/ � fn�2.x/j � : : : � ˛n�kık.z/:

Here ık.z/ D maxvkC1�x�z j R1
0
.fkC1.x � s/ � fk.x � s/'.s/ dsj < 1 in �k ,

k D 0; 1; : : :, in particular, ı0.z/ D c1�C max.L.z/; L.v1//.
Clearly, we have established that fn.x/ tends uniformly to a limit f .x/ on any

half-line fx � zg. This enables us to state that continuous function f .x/ satisfies
the following functional equation

f .x/ D �c1x C min
v�x Œc1v C L.v/C ˛

Z 1

0

f .v � s/'.s/ ds�:

Furthermore, if the planning horizon is infinite the optimal behaviour at each step is
determined by a critical levelbv.

Since un.x/ D vn.x/ D x for all n, if x �bv, it follows immediately that for any
" > 0 one can find n0."; c1/ such that ordering .bv � x/C at the first step of n-step
process with n > n0 we obtain an "-optimal control. It is obvious that n0."; c1/ can
be chosen the same for the parameter set �k , that is, n0 D n0."; k/. ut

As follows from Definitions 3 and 4, a control is stationary if it prescribes the
same behaviour at each step and it is asymptotically optimal if

lim
n!1n�1bf n.x/ D lim

n!1n�1fn.x/

where bf n.x/ represents the expected n-step costs under this control.

Theorem 7. If ˛ D 1, a1 D 1, a2 � 1 and c2 > c1, it is asymptotically optimal
to take z.1/n .x/ D .t � x/C, z.2/n .x/ D 0 for all n with t given by L0.t/ D 0.

Proof. Denote by f l
n .x/ the expected n-step costs if t is applied during the first l

steps, whereas the critical levels vk , k � n� l , optimal under the assumptions made,
are used during the other steps.
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It is clear that f n
n .x/ D bf n.x/ and f 0

n .x/ D fn.x/, hence

bf n.x/ � fn.x/ D
nX

lD1
.f l
n .x/ � f l�1

n .x//: (23)

Suppose for simplicity that c1 < p, that is, v1 is finite.
Since vn � vnC1, n � 1, and vn ! Nt , as n ! 1, one can find, for any " > 0,

suchbn D n."/ that Nt � " < vn � Nt , if n �bn. Furthermore, we have

max
x

jf l
n .x/ � f l�1

n .x/j � max
x

jf 1n�lC1 � f 0
n�lC1.x/j

and

f 1
k .x/ � f 0

k .x/ D
8
<

:

c1.Nt � vk/C L.Nt/ �L.vk/C V.vk/; x < vk;
c1.Nt � x/C L.Nt /� L.x/C V.x/; vk � x < Nt ;
0; x � Nt ;

where V.x/ D R1
0 .fk�1.Nt � s/� fk�1.x � s//'.s/ ds.

Obviously, k � 1 D n � l �bn for l � n �bn, therefore

max
x

jf 1
k .x/ � f 0

k .x/j � d" with d D 2.c1 C max.p; h//

and
n�bnX

lD1
jf l
n .x/ � f l�1

n .x/j � .n �bn/d": (24)

On the other hand,

nX

lDn�bnC1
jf l
n .x/ � f l�1

n .x/j �bnb.x/ (25)

where b.x/ D max
k�bn jf 1

k .x/ � f 0
k .x/j � L.v1/C d Nt < 1, for all x.

It follows immediately from (23) to (25) that

n�1.bf n.x/ � fn.x// ! 0; as n ! 1:

To complete the proof we have to verify that there exists, for all x,

lim
n!1n�1bf n.x/ D c1�C L.Nt/; � D E�k; k � 1: (26)

This is obvious for x � Nt , since in this case
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bf n.x/ D c1.Nt � x/C c1

n�1X

kD1
E�k C nL.Nt /:

Now let x > Nt . Then we do not order during the first mx steps where

mx D inffk W
kX

iD1
�i > x � Ntg:

In other words, we wait until the inventory falls below the level Nt proceeding after
that as in the previous case. Hence,

bf n.x/ D L.x/C E
mx�1X

iD1
L.x �

iX

kD1
�k/C c1E

2

4
x C
n�1X

iDmxC1
�i

3

5C E.n�mx/L.Nt /

here 
x D Pmx
iD1 �i � .x � Nt/ is the overshot of the level x � Nt by the random walk

with jumps �i , i � 1.
Thus, it is possible to rewrite bf n.x/ as follows

bf n.x/ D n.c1�C L.Nt //CW.x/:

Using Wald’s identity and renewal processes properties (see, e.g. [1]), as well as, the
fact that L.Nt / is the minimum of L.x/ it is possible to establish that jW.x/j < 1
for a fixed x. So (26) follows immediately.

The same result is valid for c1 � p. The calculations being long and tedious are
omitted. ut
Remark 4. For the parameter sets treated in Theorems 2 and 3 the asymptotically
optimal policy is also of threshold type being based either on u0 or Nv and u1.

Since Nt D g.p; h/, with g.a1; a2/ D F inv.a1=.a1 C a2//, it is useful to check its
sensitivity with respect to small fluctuations of parametersp and h and perturbations
of distribution F .

We apply the local technique, more precisely, differential importance measure
(DIM) introduced in [3] is used. Let a0 D .a01; a

0
2/ be the base-case values of

parameters, reflecting the decision maker (researcher) knowledge of assumptions
made. The (DIM) for parameter as , s D 1; 2, is defined as follows

Ds.a
0; da/ D g0

as
.a0/ das

0

@
2X

jD1
g0
aj
.a0/ daj

1

A

�1

.D dgs.a
0/=dg.a0/

if dg.a0/ ¤ 0. Whence, for uniform parameters changes: das D u, s D 1; 2, we get
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D1s.a
0/ D g0

as
.a0/

� 2X

jD1
g0
aj
.a0/: (27)

Theorem 8. Under assumptions of Theorem 7, (DIM)s for parameters p and h do
not depend on distribution F .

Proof. The result follows immediately from (27) and definition of function g. Since

g0
a1
.a0/ D '�1.Nt0/a02=.a01 C a02/

2; g0
a2
.a0/ D �'�1.Nt0/a01=.a01 C a02/

2;

it is clear that

D11.a
0/ D a02

a02 � a01
; D12.a

0/ D � a01

a02 � a01
D 1 �D11.a0/:

Thus, they are well defined for a01 ¤ a02 and do not depend on F . Moreover,
D11.a

0/ > 1, D12.a0/ < 0 for a02 > a01 and D11.a0/ < 0, D12.a0/ > 1 for
a02 < a

0
1. ut

Note that a similar result is valid forbv if 0 < ˛ < 1.
Now we can establish that the asymptotically optimal policy is stable with respect

to small perturbations of distribution F .
Denote by Ntk value of Nt corresponding to distribution Fk.t/. Moreover, set


.Fk; F / D sup
t

jFk.t/ � F.t/j;

that is, 
 is the Kolmogorov (or uniform) metric.

Lemma 2. Let distribution function F.t/ be continuous and strictly increasing.
Then Ntk ! Nt , provided 
.Fk; F / ! 0, as k ! 1.

Proof. According to assumptions Fk.Ntk/ D F.Nt / and jFk.Ntk/� F.Ntk/j � 
.F; Fk/.
Hence jF.Nt/ � F.Ntk/j � 
.F; Fk/. That means, Ntk ! Nt , as k ! 1. ut

This result is also important for construction of asymptotically optimal policies
under assumption of none a priori information about distribution F .

3 Conclusion

We have treated in detail the case of two suppliers and obtained the explicit form
of optimal, "-optimal and asymptotically optimal policies for various sets of cost
parameters. Stability of model to small fluctuations of parameters and perturbations
of underlying process is also established. The case of m suppliers, m > 2, can be
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investigated using induction procedure and numerical methods. Due to lack of space
the results will be published in a forthcoming paper.
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Levy Preservation and Associated Properties
for f -Divergence Minimal Equivalent
Martingale Measures

Suzanne Cawston and Lioudmila Vostrikova

Abstract We study such important properties of f -divergence minimal martingale
measure as Levy preservation property, scaling property, invariance in time property
for exponential Levy models. We give some useful decomposition for f -divergence
minimal martingale measures and we answer on the question which form should
have f to ensure mentioned properties. We show that f is not necessarily common
f -divergence. For common f -divergences, i.e. functions verifying f 00.x/D ax
 ;

a > 0; 
 2 R, we give necessary and sufficient conditions for existence of
f -minimal martingale measure.

Keywords f -divergence • Exponential Levy models • Minimal martingale
measures • Levy preservation property
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1 Introduction

This article is devoted to some important and exceptional properties of f -divergen-
ces. As known, the notion of f -divergence was introduced by Ciszar [3] to measure
the difference between two absolutely continuous probability measures by mean of
the expectation of some convex function f of their Radon-Nikodym density. More

precisely, let f be a convex function andZ D dQ

dP
be a Radon-Nikodym density of
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two measuresQ and P , Q 	 P . Supposing that f .Z/ is integrable with respect to
P , f -divergence of Q with respect to P is defined as

f .QjjP/ D EP Œf .Z/�:

One can remark immediately that this definition cover such important cases as vari-
ation distance when f .x/D jx � 1j, as Hellinger distance when f .x/D .

p
x � 1/2

and Kulback-Leibler information when f .x/D x ln.x/. Important as notion,
f -divergence was studied in a number of books and articles (see for instance
[14, 19])

In financial mathematics it is of particular interest to consider measures Q�
which minimise on the set of all equivalent martingale measures the f -divergence.
This fact is related to the introducing and studying so called incomplete models,
like exponential Levy models (see [2,6,7,20,22]). In such models contingent claims
cannot, in general, be replicated by admissible strategies. Therefore, it is important
to determine strategies which are, in a certain sense optimal. Various criteria are
used, some of which are linked to risk minimisation (see [9, 25, 26]) and others
consisting in maximizing certain utility functions (see [1,11,16]). It has been shown
(see [11,18]) that such questions are strongly linked via Fenchel-Legendre transform
to dual optimisation problems, namely to f -divergence minimisation on the set of
equivalent martingale measures, i.e. the measures Q which are equivalent to the
initial physical measure P and under which the stock price is a martingale.

Mentioned problems has been well studied in the case of relative entropy, when
f .x/D x ln.x/ (cf. [10, 21]), also for power functions f .x/D xq , q > 1 or q <0
(cf. [15]), f .x/D � xq , 0<q <1 (cf. [4, 5]) and for logarithmic divergence
f .x/D � ln.x/ (cf. [17]), called common f -divergences. Note that the three
mentioned functions all satisfy f 00.x/D ax
 for an a>0 and a 
 2R. The converse
is also true, any function which satisfies f 00.x/D ax
 is, up to linear term, a
common f -divergence. It has in particular been noted that for these functions, the
f -divergence minimal equivalent martingale measure, when it exists, preserves the
Levy property, that is to say that the law of Levy process under initial measure
P remains a law of Levy process under the f -divergence minimal equivalent
martingale measure Q�.

The aim of this paper is to study the questions of preservation of Levy property
and associated properties such as scaling property and invariance in time property
for f -divergence minimal martingale measures when P is a law of d -dimensional
Levy process X and Q� belongs to the set of so called equivalent martingale
measures for exponential Levy model, i.e. measures under which the exponential of
X is a martingale. More precisely, let fix a convex function f defined on R

C;� and
denote by M the set of equivalent martingale measures associated with exponential
Levy model related to X . We recall that an equivalent martingale measure Q� is
f -divergence minimal if f .Z�/ is integrable with respect to P where Z� is the
Radon-Nikodym density of Q� with respect to P , and
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f .Q�jjP/ D min
Q2M

f .QjjP/:

We say that Q� preserves Levy property if X remains Levy process underQ�. The
measureQ� is said to be scale invariant if for all x 2 R

C, EP jf .xZ�/j < 1 and

f .xQ�jjP/ D min
Q2M

f .xQjjP/:

We also recall that an equivalent martingale measureQ� is said to be time invariant
if for all T > 0, and the restrictions QT ,PT of the measures P;Q on time interval
Œ0; T �, EP jf .Z�

T /j < 1 and

f .Q�
T jjPT / D min

Q2M
f .QT jjPT /

In this paper we study the shape of f belonging to the class of strictly convex tree
times continuously differentiable functions and ones used as f -divergence, gives an
equivalent martingale measure which preserves Levy property. More precisely, we
consider equivalent martingale measuresQ belonging to the class K � such that for
all compact sets K of RC;�

EP jf .dQT

dPT
/j < C1; EQjf 0.dQT

dPT
/j < C1; sup

t�T
sup
�2K

EQŒf
00.�dQt

dPt
/
dQt

dPt
� < C1:

We denote by Z�
T Radon-Nikodym density of Q�

T with respect to PT and by
ˇ� and Y � the corresponding Girsanov parameters of an f -divergence minimal
measureQ� on Œ0; T �, which preserves the Levy property and belongs to K �.

To precise the shape of f we obtain fundamental equations which necessarily

verify f . Namely, in the case
ı

supp .�/ ¤ ;, for a.e. x 2 supp.Z�
T / and a.e.

y 2 supp.�/, we prove that

f 0.xY �.y//� f 0.x/ D ˚.x/

dX

iD1
˛i .e

yi � 1/ (1)

where ˚ is a continuously differentiable function defined on the set on
ı

supp .Z�
T /

and y D >.y1; y2; 
 
 
yd /, ˛ D >.˛1; ˛2; 
 
 
˛d / are vectors of Rd . Furthermore, if
c ¤ 0, for a.e. x 2 supp.Z�

T / and a.e. y 2 supp.�/, we get that

f 0.xY �.y// � f 0.x/ D xf 00.x/
dX

iD1
ˇ�
i .e

yi � 1/C
dX

jD1
Vj .e

yj � 1/ (2)
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where ˇ� D> .ˇ�
1 ; 
 
 
 ; ˇ�

d / is a first Girsanov parameter and V D >.V1; 
 
 
 ; Vd /
is a vector which belongs to the kernel of the matrix c, i.e. cV D 0.

Mentioned above equations permit us to precise the form of f . Namely, we prove
that if the set flnY �.y/; y 2 supp.�/g is of non-empty interior and it contains zero,
then there exists a > 0 and 
 2 R such that for all x 2 supp.Z�

t /,

f 00.x/ D ax
 : (3)

Taking in account the known results we conclude that in considered case the rela-
tion (3) is necessary and sufficient condition for f -divergence minimal martingale
measure to preserve Levy property. In addition, as we will see, such f -divergence
minimal measure will be also scale and time invariant.

In the case when >ˇ�cˇ� ¤ 0 and support of � is nowhere dense but when there
exists at least one y 2 supp.�/ such that ln.Y �.y// ¤ 0, we prove that there exist
n 2 N, the real constants bi ; Qbi ; 1 � i � n; and 
 2 R, a > 0 such that

f 00.x/ D ax
 C x

nX

iD1
bi .ln.x//i C 1

x

nX

iD1
Qbi .ln.x//i�1

The case when >ˇ�cˇ� D 0 and supp.�/ is nowhere dense, is not considered in
this paper, and from what we know, form an open question.

We underline once more the exceptional properties of the class of functions such
that:

f 00.x/ D ax


and called common f -divergences. This class of functions is exceptional in a sense
that they verify also scale and time invariance properties for all Levy processes.
As well known, Q� does not always exist. For some functions, in particular
f .x/D x ln.x/, or for some power functions, some necessary and sufficient con-
ditions of existence of a minimal measure have been given (cf. [13, 15]). We will
give a unified version of these results for all functions which satisfy f 00.x/ D ax
 ,
a > 0, 
 2 R. We give also an example to show that the preservation of Levy
property can have place not only for the functions verifying f 00.x/ D ax
 .

The paper is organized in the following way: in Sect. 2 we recall some known
facts about exponential Levy models and f -divergence minimal equivalent martin-
gale measures. In Sect. 3 we give some known useful for us facts aboutf -divergence
minimal martingale measures. In Sect. 4 we obtain fundamental equations for Levy
preservation property (Theorem 3 ). In Sect. 5 we give the result about the shape of
f having Levy preservation property for f -divergence minimal martingale measure
(Theorem 5). In Sect. 6 we study the common f-divergences, i.e. with f verifying
f 00.x/ D ax
 , a > 0. Their properties are given in Theorem 6.
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2 Some Facts About Exponential Levy Models

Let us describe our model in more details. We assume the financial market consists
of a bank account B whose value at time t is

Bt D B0e
rt ;

where r � 0 is the interest rate which we assume to be constant. We also assume
that there are d � 1 risky assets whose prices are described by a d -dimensional
stochastic process S D .St /t�0,

St D >.S.1/0 eX
.1/
t ; 
 
 
 ; S.d/0 eX

.d/
t /

where X D .Xt/t�0 is a d -dimensional Levy process, Xt D >.X.1/
t ; 
 
 
 ; X.d/

t / and
S0 D >.S.1/0 ; 
 
 
 ; S.d/0 /. We recall that Levy processes form the class of processes
with stationary and independent increment and that the characteristic function of the
law of Xt is given by the Levy-Khintchine formula: for all t � 0, for all u 2 R,

EŒei<u;Xt>� D et .u/

where

 .u/ D i < u; b > �1
2

>ucu C
Z

Rd

Œei<u;y> � 1� i < u; h.y/ >��.dy/

where b 2 R
d , c is a positive d � d symmetric matrix, h is a truncation function

and � is a Levy measure, i.e. positive measure on R
d n f0g which satisfies

Z

Rd

.1 ^ jyj2/�.dy/ < C1:

The triplet .b; c; �/ entirely determines the law of the Levy processX , and is called
the characteristic triplet of X . From now on, we will assume that the interest rate
r D 0 as this will simplify calculations and the more general case can be obtained
by replacing the drift b by b � r . We also assume for simplicity that S0 D 1.

We will denote by M the set of all locally equivalent martingale measures:

M D fQ loc� P; S is a martingale underQg:

We will assume that this set is non-empty, which is equivalent to assuming the

existence of Q
loc� P such that the drift of S underQ is equal to zero. We consider

our model on finite time interval Œ0; T �, T > 0, and for this reason the distinction
between locally equivalent martingale measures and equivalent martingale measures
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does not need to be made. We recall that the density Z of any equivalent to P
measure can be written in the form Z D E .M/ where E denotes the Doleans-
Dade exponential andM D .Mt /t�0 is a local martingale. It follows from Girsanov
theorem theorem that there exist predictable functions ˇ D >.ˇ.1/; 
 
 
ˇ.d// and Y
verifying the integrability conditions: for t � 0 (P -a.s.)

Z t

0

>ˇscˇsds < 1;

Z t

0

Z

Rd

j h.y/ .Ys.y/� 1/ j�X;P .ds; dy/ < 1;

and such that

Mt D
dX

iD1

Z t

0

ˇ.i/s dX
c;.i/
s C

Z t

0

Z

Rd

.Ys.y/ � 1/.�X � �X;P /.ds; dy/ (4)

where �X is a jumps measure of the process X and �X;P is its compensator with
respect to P and the natural filtration F, �X;P .ds; dy/ D ds �.dy/ (for more details
see [14]). We will refer to .ˇ; Y / as the Girsanov parameters of the change of
measure from P into Q. It is known from Grigelionis result [12] that a semi-
martingale is a process with independent increments under Q if and only if their
semi-martingale characteristics are deterministic, i.e. the Girsanov parameters do
not depend on!, i.e. ˇ depends only on time t and Y depends on time and jump size
.t; x/. Since Levy process is homogeneous process, it implies that X will remain a
Levy process under Q if and only if there exists ˇ 2 R and a positive measurable
function Y such that for all t � T and all !, ˇt .!/ D ˇ and Yt.!; y/ D Y.y/.

We recall that if Levy property is preserved, S will be a martingale under Q if
and only if

b C 1

2
diag.c/C cˇ C

Z

Rd

Œ.ey � 1/Y.y/� h.y/��.dy/ D 0 (5)

where ey is a vector with components eyi ; 1 � i � d; and y D >.y1; 
 
 
 ; yd /. This
follows again from Girsanov theorem and reflects the fact that under Q the drift of
S is equal to zero.

3 Properties of f -Divergence Minimal Martingale Measures

Here we consider a fixed strictly convex continuously differentiable on R
C;�

function f and a time interval Œ0; T �. We recall in this section a few known
and useful results about f -divergence minimisation on the set of equivalent
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martingale measures. Let .˝;F ;F; P / be a probability filtered space with the
natural filtration FD .Ft /t�t satisfying usual conditions and let M be the set
of equivalent martingale measures. We denote by Qt , Pt the restrictions of the
measuresQ, P on Ft . We introduce Radon-Nikodym density processZ D .Zt /t�0
related to Q, an equivalent martingale measure, where for t � 0

Zt D dQt

dPt
:

We denote by Z� Radon-Nikodym density process related with f -divergence
minimal equivalent martingale measure Q�.

Definition 1. An equivalent martingale measure Q� is said to be f -divergence
minimal on the time interval Œ0; T � if EP jf .Z�

T /j < 1 and

EP Œf .Z
�
T /� D min

Q2M
EP Œf .ZT /�

where M is a class of locally equivalent martingale measures.

Then we introduce the subset of equivalent martingale measures

K D fQ 2 M j EP jf .ZT /j < C1 and EQŒjf 0.ZT /j� < C1:g (6)

We will concentrate ourselves on the case when the minimal measure, if it exists,
belongs to K . Note that for a certain number of functions this is necessarily the
case.

Lemma 1 (cf. [19], Lemma 8.7). Let f be a convex continuously differentiable on
R

C;� function. Assume that for c > 1 there exist positive constants c0; c1; c2; c3 such
that for u > c0,

f .cu/ � c1f .u/C c2u C c3 (7)

Then a measureQ 2 M which is f -divergence minimal necessarily belongs to K .

We now recall the following necessary and sufficient condition for a martingale
measure to be minimal.

Theorem 1 (cf. [11], Theorem 2.2). Consider Q� 2 K . Then, Q� is minimal if
and only if for all Q 2 K ,

EQ� Œf 0.Z�
T /� � EQŒf

0.Z�
T /�:

This result is in fact true in the much wider context of semi-martingale modelling.
We will mainly use it here to check that a candidate is indeed a minimal measure.
We will also use extensively another result from [11] in order to obtain conditions
that must be satisfied by minimal measures.
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Theorem 2 (cf. [11], Theorem 3.1). AssumeQ� 2 K is an f -divergence minimal
martingale measure. Then there exists x0 2 R and a predictable d -dimensional
process 	 such that

f 0.
dQ�

T

dPT
/ D x0 C

dX

iD1

Z T

0

	
.i/
t dS

.i/
t

and such that
Pd

iD1
R �
0 	

.i/
t dS

.i/
t defines a martingale under the measure Q�.

4 A Fundamental Equation for f -Divergence Minimal Levy
Preserving Martingale Measures

Our main aim in this section is to obtain an equation satisfied by the Radon-
Nikodym density of f -divergence minimal equivalent martingale measures. This
result will both enable us to obtain information about the Girsanov parameters
of f -divergence minimal equivalent martingale measures and also to determine
conditions which must be satisfied by the function f in order to a f-minimal
equivalent martingale measure exists. Let us introduce the class K � of locally
equivalent martingale measures verifying: for all compact sets K of RC;�

EP jf .ZT /j < C1; EQjf 0.ZT /j < C1; sup
t�T

sup
�2K

EQŒf
00.�Z�

t /Z
�
t � < C1:

(8)

Theorem 3. Let f be strictly convexe C 3.RC;�/ function. Let Z� be the density of
an f -divergence minimal measureQ� on Œ0; T �, which preserves the Levy property

and belongs to K �. We denote by .ˇ�; Y �/ its Girsanov parameters. Then, if
ı

supp
.�/ ¤ ; , for a.e. x 2 supp.Z�

T / and a.e. y 2 supp.�/, we have

f 0.xY �.y//� f 0.x/ D ˚.x/

dX

iD1
˛i .e

yi � 1/ (9)

where ˚ is a continuously differentiable function defined on the set
ı

supp .Z�
T / and

˛D >.˛1; ˛2; 
 
 
˛d / is a vector ofRd . Furthermore, if c ¤ 0, for a.e. x 2 supp.Z�
T /

and a.e. y 2 supp.�/, we have

f 0.xY �.y// � f 0.x/ D xf 00.x/
dX

iD1
ˇ�
i .e

yi � 1/�
dX

jD1
Vj .e

yj � 1/ (10)

where ˇ� D> .ˇ�
1 ; 
 
 
 ; ˇ�

d / and V D >.V1; 
 
 
 ; Vd / belongs to the kernel of the
matrix c, i.e. cV D 0.
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We recall that for all t � T , since Q� preserves Levy property, Z�
t and

Z�
T

Z�
t

are

independent under P and that L .
Z�
T

Z�
t

/ D L .Z�
T�t /. Therefore denoting

�.t; x/ D EQ� Œf 0.xZ�
T�t /�;

and taking cadlag versions of processes, we deduce that Q�-a.s. for all t � T

EQ� Œf 0.Z�
T /jFt � D �.t; Z�

t /

We note that the proof of Theorem 3 is based on the identification using
Theorem 2 and an application of decomposition formula to function �. However,
the function � is not necessarily twice continuously differentiable in x and once
continuously differentiable in t . So, we will proceed by approximations, by
application of Ito formula to specially constructed function �n. In order to do this,
we need a number of auxiliary lemmas given in the next section.

Since the result of Theorem 3 is strongly related to the support of Z�
T , we are

also interested with the question: when this support is an interval? This question
has been well studied in [24, 27] for infinitely divisible distributions. In our case,
the specific form of the Girsanov parameters following from preservation of Levy
property allow us to obtain the following result proved in Sect. 4.3.

Proposition 1. Let Z� be the density of an f -divergence minimal equivalent
martingale measure on Œ0; T �, which preserves the Levy property and belongs to
K �. Then

.i/ If >ˇ�cˇ� ¤ 0, then supp.Z�
T / D R

C;�.

.ii/ If >ˇ�cˇ� D 0,
ı

supp .�/ ¤ ;, 0 2 supp.�/ and Y � is not identically 1 on
ı

supp .�/, then

.j/ In the case ln.Y.y// > 0 for all y 2 supp.�/, there exists A > 0 such
that supp.Z�

T / D ŒA;C1Œ;
.jj/ In the case ln.Y.y// < 0 for all y 2 supp.�/ there exists A > 0 such

that supp.Z�
T / D�0; A�;

.jjj/ In the case when there exist y; Ny 2 supp.�/ such that ln.Y �.y//.
ln.Y �. Ny// < 0, we have supp.Z�

T / D R
C;�.

4.1 Some Auxiliary Lemmas

We begin with approximation lemma. Let a strictly convex tree times continuously
differentiable on R

C;� function f be fixed.

Lemma 2. There exists a sequence of bounded functions .	n/n�1, which are of
class C 2 on R

C�, increasing, such that for all n � 1, 	n coincides with f 0 on
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the compact set Œ 1
n
; n� and such that for sufficiently big n the following inequalities

hold for all x; y > 0 :

j	n.x/j � 4jf 0.x/j C ˛ , j	0
n.x/j � 3f 00.x/ , j	n.x/� 	n.y/j � 5jf 0.x/ � f 0.y/j

(11)
where ˛ is a real positive constant.

Proof. We set, for n � 1,

An.x/ D f 0.
1

n
/�

Z 1
n

x_ 1
2n

f 00.y/.2ny � 1/2.5 � 4ny/dy

Bn.x/ D f 0.n/C
Z x^.nC1/

n

f 00.y/.nC 1 � y/2.1C 2y � 2n/dy

and finally

	n.x/ D

8
ˆ̂
<

ˆ̂
:

An.x/ if 0 � x < 1
n
;

f 0.x/ if 1
n

� x � n;

Bn.x/ if x > n:

Here An and Bn are defined so that 	n is of class C 2 on R
C;�. For the

inequalities we use the fact that f 0 is increasing function as well as the estimations:
0� .2nx� 1/2.5�4nx/ � 1 for 1

2n
� x � 1

n
and 0 � .nC1�x/2.1C2x�2n/ � 3

for n � x � nC 1. ut
Let Q be Levy property preserving locally equivalent martingale measure and

.ˇ; Y / its Girsanov parameters when change from P into Q. We use the function

�n.t; x/ D EQŒ	n.xZT�t /�

to obtain the following analog to Theorem 4, replacing f 0 with 	n.
For this let us denote for 0 � t � T

�
.n/
t .x/ D EQŒ	

0
n.xZT�t / ZT�t � (12)

and
H
.n/
t .x; y/ D EQŒ	n.xZT�t Y.y//� 	n.xZT�t /� (13)

Lemma 3. We haveQ�-a.s., for all t � T ,

�n.t; Zt / D EQŒ	n.ZT /�C (14)

dX

iD1
ˇi

Z t

0

�.n/s .Zs�/Zs�dX.c/;Q;i
s C

Z t

0

Z

Rd

H .n/
s .Zs�; y/ .�X � �X;Q/.ds; dy/
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where ˇ D >.ˇ1; 
 
 
 ; ˇd / and �X;Q is a compensator of the jump measure �X with
respect to .F;Q/.

Proof. In order to apply the Ito formula to �n, we need to show that �n is twice
continuously differentiable with respect to x and once with respect to t and that the
corresponding derivatives are bounded for all t 2 Œ0; T � and x � �, � > 0: First of
all, we note that from the definition of 	n for all x � � > 0

j @
@x
	n.xZT�t /j D jZT�t 	0

n.xZT�t /j � .nC 1/

�
sup
z>0

j	0
n.z/j < C1:

Therefore, �n is differentiable with respect to x and we have

@

@x
�n.t; x/ D EQŒ	

0
n.xZT�t / ZT�t �:

Moreover, the function .x; t/ 7! 	0
n.xZT�t /ZT�t is continuousP -a.s. and bounded.

This implies that @
@x
�n is continuous and bounded for t 2 Œ0; T � and x � �.

In the same way, for all x � � > 0

j @
2

@x2
	n.xZT�t /j D Z2

T�t 	00
n .xZT�t / � .nC 1/2

�2
sup
z>0

	00
n .z/ < C1:

Therefore, �n is twice continuously differentiable in x and

@2

@x2
�n.t; x/ D EQŒ	

00
n .xZT�t /Z2

T�t �

We can verify easily that it is again continuous and bounded function. In order to
obtain differentiability with respect to t , we need to apply the Ito formula to 	n:

	n.xZt / D 	n.x/C
dX

iD1

Z t

0

x	0
n.xZs�/ˇiZs�dX.c/;Q;i

s

C
Z t

0

Z

Rd

	n.xZs�Y.y// � 	n.xZs�/ .�X � �X;Q/.ds; dy/

C
Z t

0

 n.x;Zs�/ds

where

 n.x;Zs�/ D >ˇcˇŒxZs�	
0
n.xZs�/C 1

2
x2 Z2

s�	
00
n .xZs�/�

C
Z

Rd

Œ.	n.xZs�Y.y//� 	n.xZs�// Y.y/� x	0
n.xZs�/Zs�.Y.y/� 1/��.dy/:
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Therefore,

EQŒ	n.xZT�t /� D
Z T�t

0

EQŒ n.x;Zs�/�ds

so that �n is differentiable with respect to t and

@

@t
�n.t; x/ D �EQŒ n.x;Zs�/�jsD.T�t /

We can also easily verify that this function is continuous and bounded. For this we
take in account the fact that 	n, 	0

n and 	00
n are bounded functions and also that the

Hellinger process of QT and PT of the order 1=2 is finite.
We can finally apply the Ito formula to �n. For that we use the stopping times

sm D infft � 0 jZt � 1

m
g;

with m � 1 and inff;g D C1. Then, from Markov property of Lévy process we
have :

�n.t ^ sm;Zt^sm/ D EQ.	n.�ZT / j Ft^sm/

We remark that .EQ.	n.�ZT / j Ft^sm/t�0 is Q-martingale, uniformly integrable
with respect to m. From Ito formula we have:

�n.t ^ sm;Zt^sm/ D EQ.	n.�ZT //C
Z t^sm

0

@�n

@s
.s;Zs�/ds

C
Z t^sm

0

@�n

@x
.s;Zs�/dZs C 1

2

Z t^sm

0

@2�n

@x2
.s; Zs�/d < Zc >s

C
X

0�s�t^sm
�n.s; Zs/ � �n.s;Zs�/� @�n

@x
.s;Zs�/�Zs

where�Zs D Zs �Zs�. After some standard simplifications, we see that

�n.t ^ sm;Zt^sm/ D At^sm CMt^sm

where .At^sm/0�t�T is predictable process, which is equal to zero,

At^sm D
Z t^sm

0

@�n

@s
.s;Zs�/ds C 1

2

Z t^sm

0

@2�n

@x2
.s; Zs�/d < Zc >s C

Z t^sm

0

Z

R

Œ�n.s; Zs� C x/ � �n.s;Zs�/ � @�n

@x
.s;Zs�/x��Z;Q.ds; dx/
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and .Mt^sm/0�t�T is a Q-martingale,

Mt^sm D EQ.	n.�ZT //C
Z t^sm

0

@�n

@x
.s;Zs�/dZc

s C
Z t^sm

0

Z

R

Œ�n.s; Zs� C x/ � �n.s;Zs�/�.�Z.ds; dx/ � �Z;Q.ds; dx//

Then, we pass to the limit as m ! C1. We remark that the sequence .sm/m�1 is
going to C1 as m ! 1. From [23], Corollary 2.4, p. 59, we obtain that

lim
m!1EQ.	n.ZT / j Ft^sm/ D EQ.	n.ZT / j Ft /

and by the definition of local martingales we get:

lim
m!1

Z t^sm

0

@�n

@x
.s;Zs�/dZc

s D
Z t

0

@�n

@x
.s;Zs�/dZc

s D
Z t

0

��.n/s .Zs�/dZc
s

and

lim
m!1

Z t^sm

0

Z

R

Œ�n.s; Zs� C x/ � �n.s;Zs�/�.�Z.ds; dx/ � �Z;Q.ds; dx// D
Z t

0

Z

R

Œ�n.s; Zs� C x/ � �n.s;Zs�/�.�Z.ds; dx/ � �Z;Q.ds; dx//

Now, in each stochastic integral we pass from the integration with respect to the
process Z to the one with respect to the process X . For that we remark that

dZc
s D

dX

iD1
ˇ.i/Zs�dXc;Q;i

s ; �Zs D Zs�Y.�Xs/:

Lemma 3 is proved. ut

4.2 A Decomposition for the Density of Levy Preserving
Martingale Measures

This decomposition will follow from a previous one by a limit passage. Let again
Q be Levy property preserving locally equivalent martingale measure and .ˇ; Y /
the corresponding Girsanov parameters when passing from P to Q. We introduce
cadlag versions of the following processes: for t > 0

�t .x/ D EQŒf
00.xZT�t /ZT�t �
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and
Ht.x; y/ D EQŒf

0.xZT�t Y.y//� f 0.xZT�t /� (15)

Theorem 4. Let Z be the density of a Levy preserving equivalent martingale
measure Q. Assume that Q belongs to K �. Then we have Q- a.s, for all t � T ,

EQŒf
0.ZT /jFt � D EQŒf

0.ZT /�C (16)

dX

iD1
ˇi

Z t

0

�s.Zs�/Zs�dX.c/;Q;i
s C

Z t

0

Z

Rd

Hs.Zs�; y/ .�X � �X;Q/.ds; dy/

We now turn to the proof of Theorem 4. In order to obtain the decomposition
for f 0, we obtain convergence in probability of the different stochastic integrals
appearing in Lemma 3.

Proof of Theorem 4. For a n � 1, we introduce the stopping times

�n D infft � 0 jZt � n or Zt � 1

n
g (17)

where inff;g D C1 and we note that �n ! C1 (P -a.s.) as n ! 1 . First of all,
we note that

jEQŒf 0.ZT /jFt � � �n.t; Zt /j � EQŒjf 0.ZT /� 	n.ZT /jjFt �

As f 0 and 	n coincide on the interval Œ 1
n
; n�, it follows from Lemma 3 that

jEQŒf 0.ZT /jFt � � �n.t; Zt /j � EQŒjf 0.ZT /� 	n.ZT /j1f�n�T gjFt �

� EQŒ.5jf 0.ZT /j C ˛/1f�n�T gjFt �:

Now, for every � > 0, by Doob inequality and Lebesgue dominated convergence
theorem we get:
limn!C1Q.supt�T EQŒ.5jf 0.ZT /j C ˛/1f�n�T gjFt � > �/

� lim
n!C1

1

�
EQŒ.5jf 0.ZT /j C ˛/1f�n�T g� D 0

Therefore, we have

lim
n!C1Q.sup

t�T
jEQŒf 0.ZT /� �n.t; Zt /jFt �j > �/ D 0:

We now turn to the convergence of the three elements of the right-hand side
of (14). We have almost surely limn!C1 	n.ZT / D f 0.ZT /, and for all n � 1,
j	n.ZT /j � 4jf 0.ZT /j C ˛. Therefore, it follows from the dominated convergence
theorem that,
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lim
n!C1EQŒ	n.ZT /� D EQŒf

0.ZT /�:

We prove now the convergence of continuous martingale parts of (14). It follows
from Lemma 2 that

Zt j�.n/t .Zt /� �t .Zt /j �EQŒZT j	0
n.ZT /� f 00.ZT /j j Ft � �

4EQŒZT jf 00.ZT /j1f�n�T gjFt �:

Hence, we have as before for � > 0

lim
n!C1Q.sup

t�T
Zt j�.n/t .Zt /� �t .Zt /j > �/ � lim

n!C1
4

�
EQŒZT f

00.ZT /1f�n�T g� D 0

Therefore, it follows from the Lebesgue dominated convergence theorem for
stochastic integrals (see [14], Theorem I.4.31, p. 46 ) that for all � > 0 and 1 � i � d

lim
n!C1Q.sup

t�T
ˇ
ˇ
Z t

0

Zs� .�.n/s .Zs�/ � �s.Zs�//dX.c/;Q;i
s

ˇ
ˇ > �/ D 0:

It remains to show the convergence of the discontinuous martingales to zero as
n ! 1. We start by writing

Z t

0

Z

Rd

ŒH .n/
s .Zs�; y/�Hs.Zs�; y/�.�X � �X;Q/.ds; dy/ D M

.n/
t CN

.n/
t

with

M
.n/
t D

Z t

0

Z

A
ŒH .n/

s .Zs�; y/�Hs.Zs�; y/�.�X � �X;Q/.ds; dy/;

N
.n/
t D

Z t

0

Z

A c

ŒH .n/
s .Zs�; y/�Hs.Zs�; y/�.�X � �X;Q/.ds; dy/;

where A D fy W jY.y/� 1j < 1
4
g.

For p � 1, we consider the sequence of stopping times �p defined by (17) with
replacing n by real positive p. We introduce also the processes

M.n;p/ D .M
.n;p/
t /t�0; N .n;p/ D .N

.n;p/
t /t�0

with M.n;p/
t D M

.n/
t^�p , N.n;p/

t D N
.n/
t^�p . We remark that for p � 1 and � > 0

Q.sup
t�T

jM.n/
t CN

.n/
t j > �/ � Q.�p � T /CQ.sup

t�T
jM.n;p/

t j > �

2
/CQ.sup

t�T
jN.n;p/
t j > �

2
/:
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Furthermore, we obtain from Doob martingale inequalities that

Q.sup
t�T

jM.n;p/
t j > �

2
/ � 4

�2
EQŒ.M

.n;p/
T /2� (18)

and

Q.sup
t�T

jN.n;p/
t j > �

2
/ � 2

�
EQjN.n;p/

T j (19)

Since �p ! C1 as p ! C1 it is sufficient to show that EQŒM
.n;p/
T �2 and

EQjN.n;p/
T j converge to 0 as n ! 1.

For that we estimate EQŒ.M
.n;p/
T /2� and prove that

EQŒ.M
.n;p/
T /2� �

C
�
Z T

0

sup
v2K

E
2
QŒZs f

00.vZs/1f�qn<sg�ds
� �
Z

A
.
p
Y.y/ � 1/2�.dy/�

where C is a constant,K is some compact set of RC;� and qn D n
4p

.
First we note that on stochastic interval ŒŒ0; T ^ �p/�� we have 1=p � Zs� � p,

and, hence,

EQŒ.M
.n;p/
T /2� D EQŒ

Z T^�p

0

Z

A
jH.n/

s .Zs�; y/ �Hs.Zs�; y/j2 Y.y/�.dy/ds� �
Z T

0

Z

A

sup
1=p�x�p

jH.n/
T�s.x; y/ �HT�s.x; y/j2 Y.y/�.dy/ds

To estimate the difference jH.n/
T�s.x; y/ �HT�s.x; y/j we note that

H
.n/
T�s.x; y/�HT�s.x; y/ D EQŒ	n.xZsY.y//�	n.xZs/�f 0.xZsY.y//Cf 0.xZs/�

From Lemma 2 we deduce that if xZsY.y/ 2 Œ1=n; n� and xZs 2 Œ1=n; n�

then the expression on the right-hand side of the previous expression is zero. But if
y 2 A we also have: 3=4 � Y.y/ � 5=4 and, hence,

jH.n/
T�s.x; y/ �HT�s.x; y/j �
jEQŒ1f�qn�sgj	n.xZsY.y// � 	n.xZs/ � f 0.xZsY.y//C f 0.xZs/j�:

Again from the inequalities of Lemma 2 we get:

jH.n/
T�s.x; y/ �HT�s.x; y/j � 6EQŒ1f�qn�sgjf 0.xZsY.y// � f 0.xZs/j�:
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Writing

f 0.xZsY.y// � f 0.xZs/ D
Z Y.y/

1

xZsf
00.xZs�/d�

we finally get

jH.n/
T�s.x; y/ �HT�s.x; y/j � 6 sup

3=4�u�5=4
EQŒ1f�qn�sg xZs f 00.xuZs/�jY.y/ � 1j

and this gives us the estimation of EQŒ.M
.n;p/
T /2� cited above.

We know that PT � QT and this means that the corresponding Hellinger process
of order 1/2 is finite:

hT .P;Q;
1

2
/ D T

2
>ˇcˇ C T

8

Z

R

.
p
Y.y/ � 1/2�.dy/ < C1:

Then Z

A
.
p
Y.y/ � 1/2�.dy/ < C1:

From Lebesgue dominated convergence theorem and (8) we get:

Z T

0

sup
v2K

E
2
QŒZsf

00.vZs/1f�qn�sg�ds ! 0

as n ! C1 and this information together with the estimation of EQŒ.M
.n;p/
T /2�

proves the convergence of EQŒ.M
.n;p/
T /2� to zero as n ! C1.

We now turn to the convergence of EQjN.n;p/
T j to zero as n ! C1. For this we

prove that

EQjN.n;p/
T j � 2TEQŒ1f�n�T g.5jf 0.ZT /j C ˛/�

Z

A c

Y.y/d�

We start by noticing that

EQjN.n;p/
T j � 2EQŒ

Z T^�p

0

Z

A c

jH.n/
s .Zs�; y/ �Hs.Zs�; y/jY.y/�.dy/ds� �

2

Z T

0

Z

A c

EQŒjH.n/
s .Zs�; y/�Hs.Zs�; y/jY.y/�.dy/ds�

To evaluate the right-hand side of previous inequality we write
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jH.n/
s .x; y/ �Hs.x; y/j

� EQj	n.xZT�sY.y// � f 0.xZT�sY.y//j CEQj	n.xZT�s/ � f 0.xZT�s/j:

We remark that in law with respect to Q

j	n.xZT�sY.y//� f 0.xZT�sY.y//j D EQŒj	n.ZT /� f 0.ZT /j jZs D x Y.y/�

and
j	n.xZT�s/� f 0.xZT�s/j D EQŒj	n.ZT / � f 0.ZT /j jZs D x�

Then
H.n/
s .x; y/ �Hs.x; y/j � 2EQj	n.ZT /� f 0.ZT /j

From Lemma 2 we get:

EQj	n.xZT /� f 0.xZT /j � EQŒ1f�n�T gj	n.ZT /� f 0.ZT /j�
� EQŒ1f�n�T g.5jf 0.ZT /j C ˛/�

and is proves the estimation for EQjN.n;p/
T j.

Then, Lebesgue dominated convergence theorem applied for the right-hand side
of the previous inequality shows that it tends to zero as n ! 1. On the other
hand, from the fact that the Hellinger process is finite and also from the inequality
.
p
Y.y/� 1/2 � Y.y/=25 verifying on A c we get

Z

Ac
Y.y/d� < C1

This result with previous convergence prove the convergence of EQjN.n;p/
T j to zero

as n ! 1. Theorem 4 is proved. ut

4.3 Proof of Theorem 3 and Proposition 1

Proof of Theorem 3. We define a process OX D >. OX.1/; 
 
 
 OX.d// such that for
1 � i � d and t 2 Œ0; T �

S
.i/
t D E . OX.i//t

where E .
/ is Dolean-Dade exponential. We remark that if X is a Levy process then
OX is again a Levy process and that

d S
.i/
t D S

.i/
t� d OX.i/

t :

In addition, for 1 � i � d and t 2 Œ0; T �



Levy Preservation and Properties for Minimal Equivalent Martingale Measures 181

OX.c/;i
t D X

.c/;i
t

�
OX.i/;Q� D .eyi � 1/ 
 �X.i/;Q�

:

Replacing in Theorem 2 the process S by the process OX we obtain Q-a.s. for all
t � T :

EQ� Œf 0.Z�
T /jFt � D x0C

dX

iD1
Œ

Z t

0
	
.i/
s S

.i/
s�d OX.c/;Q� ;i

s C
Z t

0

Z

Rd
	
.i/
s S

.i/
s� d.�

OX.i/�� OX.i/;Q�

/�

(20)

Then it follows from (20), Theorem 4 and the unicity of decomposition of
martingales on continuous and discontinuous parts, that Q� � a:s:, for all s � T

and all y 2 supp.�/,

Hs.Z
�
s�; y/ D

dX

iD1
	.i/s S

.i/
s�.eyi � 1/ (21)

and for all t � T

dX

iD1

Z t

0

�s.Z
�
s�/Z�

s� ˇ�
i dX

.c/;Q�;i
s D

dX

iD1

Z t

0

	.i/s S
.i/
s�dX.c/;Q�;i

s : (22)

We remark that Q� � a:s: for all s � T

Hs.Z
�
s ; y/ D EQ�.f 0.Y �.y/Z�

T /� f 0.Z�
T / j Fs/:

Moreover, Hs.Z
�
s�; y/ coincide with Hs.Z

�
s ; y/ in points of continuity of Z�.

Taking the sequence of continuity points of Z� tending to T and using that
ZT D ZT� (Q�-a.s.) we get that Q� � a:s: for y 2 supp.�/

f 0.Z�
T Y

�.y// � f 0.Z�
T / D

dX

iD1
	
.i/
T�S

.i/
T�.e

yi � 1/ (23)

We fix an arbitrary y0 2 ı
supp .�/. Differentiating with respect to yi , i � d , we

obtain that

Z�
T

@

@yi
Y �.y0/f 00.Z�

T Y
�.y0// D 	

.i/
T�S

.i/
T�e

y0;i

We also define:
˚.x/ D xf 00.xY �.y0//
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and

˛i D e�y0;i @
@yi

Y �.y0/:

We then have 	.i/T�S
.i/
T� D ˚.Z�

T /˛i ; and inserting this in (23), we obtain (9).
Taking quadratic variation of the difference of the right-hand side and left-hand

side in (22), we obtain that Q� � a:s: for all s � T

>Œ�s.Z�
s�/Z�

s� ˇ� � Ss�	s� c Œ�s.Z�
s�/Z�

s� ˇ� � Ss�	s� D 0

where by convention Ss�	s D .S
.i/
s�	.i/s /1�i�d . Now, we remark that Q� � a:s: for

all s � T

Z�
s �s.Z

�
s / D EQ�.f 00.Z�

T /Z
�
T j Fs/

and that it coincides with �.Z�
s�/ in continuity points of Z�. We take a set of

continuity points of Z� which goes to T and we obtain since Levy process has
no predictable jumps that Q� � a:s:

>ŒZ�
T f

00.Z�
T /ˇ

� � ST�	T�� c ŒZ�
T f

00.Z�
T /ˇ

� � ST�	T�� D 0

Hence, if c ¤ 0,

Z�
T f

00.Z�
T /ˇ

� � ST�	T� D V

where V 2 R
d is a vector which satisfies cV D 0. Inserting this in (23) we

obtain (10). Theorem 3 is proved. ut
Proof of Proposition 1. Writing Ito formula we obtain P -a.s. for t � T :

ln.Z�
t / D

dX

iD1
ˇ�
i X

.c/;i
t C

Z t

0

Z

Rd

ln.Y �.y//d.�X � �X;P /




� t
2

>̌ �cˇ� C t

Z

Rd

Œln.Y �.y//� .Y �.y/ � 1/
�

�.dy/

(24)

As we have assumed Q� to preserve the Levy property, the Girsanov parameters
.ˇ�; Y �/ are independent from .!; t/, and the process ln.Z�/ D .ln.Z�

t //0�t�T is
a Levy process with the characteristics:

blnZ� D Œ�1
2

>̌ �cˇ� C
Z

Rd

Œln.Y �.y//� .Y �.y/ � 1/� �.dy/;

clnZ� D >̌ �cˇ�;

d� lnZ� D ln.Y �.y/ �.dy/:
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Now, as soon as >ˇ�cˇ� ¤ 0, the continuous component of ln.Z�/ is non zero,
and from Theorem 24.10 in [24] we deduce that supp.Z�

T / D R
C;� and, hence, i).

If Y �.y/ is not identically 1 on
ı

supp .�/, then in (9) the ˛i , 1 � i � d , are not
all zeros, and hence, the set supp.� ln.Z�// D flnY �.y/; y 2 supp.�/g contains an

interval. It implies that
ı

supp .� lnZ�

/ ¤ ;. Since 0 2 supp.�/, again from (9) it
follows that 0 2 supp.� lnZ�

/. Then ii) is a consequence of Theorem 24.10 in [24].
ut

5 So Which f Can Give MEMM Preserving Levy Property?

If one considers some simple models, it is not difficult to obtain f -divergence
minimal equivalent martingale measures for a variety of functions. In particular, one
can see that the f -divergence minimal measure does not always preserve the Levy
property. What can we claim for the functions f such that f -divergence minimal
martingale measure exists and preserve Levy property?

Theorem 5. Let f W R
C� ! R be a strictly convex function of class C 3 and

let X be a Levy process given by its characteristics .b; c; �/. Assume there exists
an f -divergence minimal martingale measure Q� on a time interval Œ0; T �, which
preserves the Levy property and belongs to K �.

Then, if supp.�/ is of the non-empty interior, it contains zero and Y is not
identically 1; there exists a > 0 and 
 2 R such that for all x 2 supp.Z�

T /,

f 00.x/ D ax
 :

If >ˇ�cˇ� ¤ 0 and there exists y 2 supp.�/ such that Y �.y/ ¤ 1, then there exist
n 2 N, 
 2 R, a > 0 and the real constants bi ; Qbi ; 1 � i � n, such that

f 00.x/ D ax
 C x

nX

iD1
bi .ln.x//i C 1

x

nX

iD1
Qbi .ln.x//i�1

We deduce this result from the equations obtained in Theorem 3. We will

successively consider the cases when
ı

supp .�/ ¤ ;, then when c is invertible,
and finally when c is not invertible.

5.1 First Case: The Interior of supp.�/ Is Not Empty

Proof of Theorem 5. We assume that
ı

supp .�/ ¤ ;, 0 2 supp.�/, Y � is not
identically 1 on supp.�/. According to the Proposition 1 it implies in both cases
>ˇ�cˇ� ¤ 0 and >ˇ�cˇ� D 0, that supp.Z�

T / is an interval, say J . Since the
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interior of supp.�/ is not empty, there exist open non-empty intervals I1; : : : Id
such that I D I1 � : : :� Id � ı

supp .�/. Then it follows from Theorem 3 that for all
.x; y/ 2 J � I ,

f 0.xY �.y//� f 0.x/ D ˚.x/

dX

iD1
˛i .e

yi � 1/ (25)

where ˚ is a differentiable on
ı
J function and ˛ 2 R

d . If we now fix x0 2 ı
J , we

obtain

Y �.y/ D 1

x0
.f 0/�1.f 0.x0/C ˚.x0/

dX

iD1
˛i .e

yi � 1//

and so Y � is differentiable and monotonous in each variable. Since Y � is not
identically 1 on

ı
supp .�/ we get that ˛ ¤ 0. We may now differentiate (25) with

respect to yi corresponding to ˛i ¤ 0, to obtain for all .x; y/ 2 J � I ,

�.x0/f
00.xY �.y// D �.x/f 00.x0Y �.y//; (26)

where �.x/ D ˚.x/

x
. Differentiating this new expression with respect to x on the

one hand, and with respect to yi on the other hand, we obtain the system

(
�.x0/Y

�.y/f 000.xY �.y// D f 00.x0Y �.y//� 0.x/
�.x0/xf

000.xY �.y// D x0f
000.x0Y �.y//�.x/

(27)

In particular, separating the variables, we deduce from this system that there exists


 2 R such that for all x 2 ı
J ,

� 0.x/
�.x/

D 


x
:

Hence, there exists a > 0 and 
 2 R such that for all x 2 ı
J , �.x/ D ax
 . It then

follows from (26) and (27) that for all .x; y/ 2 J � I ,

f 000.xY �.y//
f 00.xY �.y//

D 


xY �.y/

and hence that f 00.xY �.y// D a.xY �.y//
 .
We take now the sequence of .ym/m�1, ym 2 supp.�/, going to zero. Then, the

sequence .Y �.ym//m�1 according to the formula for Y �, is going to 1. Inserting ym

in previous expression and passing to the limit we obtain that for all x 2 ı
J ,

f 000.x/
f 00.x/

D 


x
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and it proves the result on
ı

supp .Z�
T /. The final result on supp.Z�

T / can be proved
again by limit passage. ut

5.2 Second Case: c Is Invertible and � Is Nowhere Dense

In the first case, the proof relied on differentiating the function Y �. This is of
course no longer possible when the support of � is nowhere dense. Howerever,
since >ˇ�cˇ� ¤ 0, we get from Proposition 1 that supp.Z�/ D R

C;�. Again
from Theorem 3 we have for all x > 0 and y 2 supp.�/,

f 0.xY �.y// � f 0.x/ D xf 00.x/
dX

iD1
ˇ�
i .e

yi � 1/: (28)

We will distinguish two similar cases: b > 1 and 0 < b < 1. For b > 1 we fix �,
0 < � < 1, and we introduce for a 2 R the following vector space:

Va;b D f	 2 C 1.Œ�.1^b/; 1 _ b
�

�/; such that for x 2 Œ�; 1
�
�; 	.bx/�	.x/ D ax	0.x/g

with the norm
jj	jj1 D sup

x2Œ�; 1� �
j	.x/j C sup

x2Œ�; 1� �
j	.bx/j

It follows from (28) that f 0 2Va;b with bDY �.y/ and aD Pd
iD1 ˇ�

i .e
yi � 1/.

The condition that there exist y 2 supp.�/ such that Y �.y/ ¤ 1 insure thatPd
iD1 ˇ�

i .e
yi � 1/ ¤ 0.

Lemma 4. If a ¤ 0 then Va;b is a finite dimensional closed in jj 
 jj1 vector space.

Proof. It is easy to verify that Va;b is a vector space. We show that Va;b is a closed
vector space: if we consider a sequence .	n/n�1 of elements of Va;b which converges
to a function 	, we denote by  the function such that  .x/ D 	.bx/�	.x/

ax
. We then

have

lim
n!C1 jj	0

n �  jj1 � 1

�jaj.1 ^ b/ lim
n!C1 jj	n � 	jj1 D 0

Therefore, 	 is differentiable and we have 	0 D  . Therefore, 	 is of class C 1 and
belongs to Va;b . Hence, Va;b is a closed in jj 
 jj1 vector space. Now, for 	 2 Va;b and
x; y 2 Œ�; 1

�
�, we have

j	.x/�	.y/j � sup
u2Œ�; 1� �

j	0.u/jjx�yj � sup
u2Œ�; 1� �

j	.bu/� 	.u/j
jauj jx�yj � jj	jj1

jaj� jx�yj
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Therefore, the unit ball of Va;b is equi-continuous, hence, by Ascoli theorem, it is
relatively compact, and now it follows from the Riesz Theorem that Va;b is a finite
dimensional vector space. ut

We now show that elements of Va;b belong to a specific class of functions.

Lemma 5. All elements of Va;b are solutions to a Euler type differential equation,
that is to say there exists m 2 N and real numbers .�i /0�i�m such that

mX

iD0
�i x

i	.i/.x/ D 0: (29)

Proof. It is easy to see from the definition of Va;b that if 	 2 Va;b , then the function
x 7! x	0.x/ also belongs to Va;b . If we now denote by 	.i/ the derivative of order
i of 	, we see that the span of .xi	.i/.x//i�0 must be a subvector space of Va;b and
in particular a finite dimensional vector space. In particular, there exists m 2 N and
real constants .�i /0�i�m such that (29) holds. ut
Proof of Theorem 5. The previous result applies in particular to the function f 0
since f 0 verify (28). As a consequence, f 0 satisfy Euler type differential equation.
It is known that the change of variable xD exp.u/ reduces this equation to a
homogeneous differential equation of order m with constant coefficients. It is also
known that the solution of such equation can be written as a linear combination of
the solutions corresponding to different roots of characteristic polynomial. These
solutions being linearly independent, we need only to considerer a generic one,
say f 0

� , � being the root of characteristic polynomial. If the root of characteristic
polynomial � is real and of the multiplicity n, n � m, then

f 0
�.x/ D a0x

� C x�
nX

iD1
bi .ln.x//i

and if this root is complex then

f 0
�.x/ D xRe.�/

nX

iD0
Œci cos.ln.Im.�/x//C di sin.ln.Im.�/x//� ln.x/i

where a0; bi ; ci ; di are real constants. Since f 0 is increasing, we must have for all
i � n, ci D di D 0. But f is strictly convex and the last case is excluded. Putting

f 0
�.x/ D a0x

� C x�
nX

iD1
bi .ln.x//i
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into the equation
f 0.bx/ � f 0.x/ D axf 00.x/ (30)

we get using linear independence of mentioned functions that

a0.b
� � a� � 1/C b�

nX

iD1
bi .ln b/i � ab1 D 0 (31)

and that for all 1 � i � n,

nX

kDi
b�bkC

i
k.ln.b//

k�i � bi .1C a�/ � abiC1.i C 1/ D 0 (32)

with bnC1 D 0. We remark that the matrix corresponding to (32) is triangular matrix
M with b��1�a� on the diagonal. If b��1�a� ¤ 0, then the system of equations
has unique solution. This solution should also verify:for all x > 0

f 00
� .x/ > 0 (33)

If b��1�a�D 0, then rang.M/D 0, and bi are free constants. Finally, we conclude
that there exist a solution

f 0
�.x/ D ax� C x�

nX

iD1
bi .ln.x//

i

verifying (33) with any � verifying b� � 1 � a� D 0. ut

5.3 Third Case: c Is Non Invertible and � Is Nowhere Dense

We finally consider the case of Levy models which have a continuous component
but for which the matrix c is not invertible. It follows from Theorem 3 that in this
case we have for all x 2 supp.Z�/ and y 2 supp.�/

f 0.xY �.y// � f 0.x/ D xf 00.x/
dX

iD1
ˇ�
i .e

yi � 1/�
dX

jD1
Vj .e

yj � 1/ (34)

where cV D 0.

Proof of Theorem 5. First of all, we note that if f 0 satisfies (34) then
	 W x 7! xf 00.x/ satisfies (30). The conclusions of the previous section then
hold for 	. ut



188 S. Cawston and L. Vostrikova

6 Minimal Equivalent Measures When f 00.x/ D ax�

Our aim in this section is to consider in more detail the class of minimal martingale
measures for the functions which satisfy f 00.x/ D ax
 . First of all, we note that
these functions are those for which there exists A > 0 and real B ,C such that

f .x/ D Af
.x/C Bx C C

where

f
.x/ D

8
ˆ̂
<

ˆ̂
:

c
x

C2 if 
 ¤ �1;�2;

x ln.x/ if 
 D �1;
� ln.x/ if 
 D �2:

(35)

and c
 D signŒ.
C1/=.
C2/�. In particular, the minimal measure for f will be the
same as that for f
 . Minimal measures for the different functions f
 have been well
studied. It has been shown in [8,15,16] that in all these cases, the minimal measure,
when it exists, preserves the Levy property.

Sufficient conditions for the existence of a minimal measure and an explicit
expression of the associated Girsanov parameters have been given in the case of
relative entropy in [10, 13] and for power functions in [15]. It was also shown in
[13] that these conditions are in fact necessary in the case of relative entropy or for
power functions when d D 1. Our aim in this section is to give a unified expression
of such conditions for all functions which satisfy f 00.x/D ax
 and to show that,
under some conditions, they are necessary and sufficient, for all d -dimensional Levy
models.

We have already mentioned that f -divergence minimal martingale measures
play an important role in the determination of utility maximising strategies. In this
context, it is useful to have further invariance properties for the minimal measures
such as scaling and time invariance properties. This is the case when f 00.x/ D ax
 .

Theorem 6. Consider a Levy process X with characteristics .b; c; �/ and let f be
a function such that f 00.x/D ax
 , where a>0 and 
 2 R. Suppose that c ¤ 0

or
ı

supp .�/ ¤ ;. Then there exists an f -divergence minimal equivalent to P
martingale measureQ preserving Levy properties if and only if there exist 
; ˇ 2 R

d

and measurable function Y W Rd n f0g ! R
C such that

Y.y/ D .f 0/�1.f 0.1/C
dX

iD1

i .e

yi � 1// (36)

and such that the following properties hold:

Y.y/ > 0 � � a:e:; (37)
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dX

iD1

Z

jyj�1
.eyi � 1/Y.y/�.dy/ < C1: (38)

b C 1

2
diag.c/C cˇ C

Z

Rd

..ey � 1/Y.y/� h.y//�.dy/ D 0: (39)

If such a measure exists the Girsanov parameters associated with Q are ˇ and Y ,
and this measure is scale and time invariant.

We begin with some technical lemmas.

Lemma 6. LetQ be the measure preserving Levy property. Then,QT � PT for all
T > 0 iff

Y.y/ > 0 � � a:e:; (40)
Z

Rd

.
p
Y.y/� 1/2�.dy/ < C1: (41)

Proof. See Theorem 2.1, p. 209 of [14]. ut
Lemma 7. Let ZT D dQT

dPT
. Under QT � PT , the condition EP jf .ZT /j < 1 is

equivalent to

Z

Rd

Œf .Y.y// � f .1/ � f 0.1/.Y.y/� 1/��.dy/ < C1 (42)

Proof. In our particular case, EP jf .ZT /j < 1 is equivalent to the existence of
EPf .ZT /. We use Ito formula to express this integrability condition in predictable
terms. Taking for n � 1 stopping times

sn D infft � 0 W Zt > n orZt < 1=ng

where inff;g D C1, we get for 
 ¤ �1;�2 and ˛ D 
 C 2 that P -a.s.

Z˛T^sn D 1C
Z T^sn
0

˛ Z˛s�ˇdXcs C
Z T^sn
0

Z

Rd
Z˛s�.Y ˛.y/� 1/.�X � �X;P /.ds; dy/

C1

2
˛.˛ � 1/ˇ2 c

Z T^sn
0

Z˛s� ds C
Z T^sn
0

Z

Rd
Z˛s�ŒY ˛.y/� 1 � ˛.Y.y/� 1/�ds �.dy/

Hence,

Z˛
T^sn D E .N .˛/ C A.˛//T^sn (43)
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where

N
.˛/
t D

Z t

0

˛ ˇdXc
s C

Z t

0

.Y ˛.y/ � 1/.�X � �X;P /.ds; dy/

and

A
.˛/
t D

Z t

0

Z

Rd

ŒY ˛.y/ � 1 � ˛.Y.y/ � 1/�ds �.dy/

Since ŒN .˛/; A.˛/�t D 0 for each t � 0 we have

Z˛
T^sn D E .N .˛//T^snE .A.˛//T^sn

If EPZ˛
T < 1, then by Jensen inequality

0 � Z˛
T^sn � EP .Z

˛
T j FT^sn /

and since the right-hand side of this inequality form uniformly integrable sequence,
.Z˛

T^sn /n�1 is also uniformly integrable. We remark that in the case ˛ > 1 and

˛ < 0, A.˛/t � 0 for all t � 0 and

E .A.˛//T^sn D exp.A.˛/T^sn / � 1:

It means that .E .N .˛//T^sn/n2N� is uniformly integrable and

EP .Z
˛
T / D exp.A.˛/T /: (44)

If (42) holds, then by Fatou lemma and since E .N .˛// is a local martingale we
get

EP .Z
˛
T / � limn!1EP .ZT^sn / � exp.A.˛/T /:

For 0 < ˛ < 1, we have again

Z˛
T^sn D E .N .˛//T^snE .A.˛//T^sn

with uniformly integrable sequence .Z˛
T^sn /n�1. Since

E .A.˛//T^sn D exp.A.˛/T^sn / � exp.A.˛/T /;

the sequence .E .N .˛//T^sn /n2N� is uniformly integrable and

EP .Z
˛
T / D exp.A.˛/T /: (45)

For 
 D �2 we have that f .x/ D x ln.x/ up to linear term and
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ZT^sn ln.ZT^sn / D
Z T^sn
0

.ln.Zs�/C 1/Zs�ˇdXcs

C
Z T^sn
0

Z

Rd
Œln.Zs�/.Y.y/ � 1/ � Y.y/ ln.Y.y//�.�X � �X;P /.ds; dy/

C1

2
ˇ2 c

Z T^sn
0

Zs� dsC
Z T^sn
0

Z

Rd
Zs�ŒY.y/ ln.Y.y//� Y.y/C 1�ds �.dy/

Taking mathematical expectation we obtain:

EP ŒZT^sn ln.ZT^sn /� D EP

Z T^sn

0

Z

Rd

Zs�ŒY.y/ ln.Y.y//� Y.y/C 1�ds �.dy/

(46)

If EP ŒZT ln.ZT /� < 1, then the sequence .ZT^sn ln.ZT^sn //n2N� is uniformly
integrable and EP .Zs�/D 1 and we obtain applying Lebesgue convergence theo-
rem that

EP ŒZT ln.ZT /� D T

2
ˇ2 c C T

Z

Rd

ŒY.y/ ln.Y.y//� Y.y/C 1��.dy/ (47)

and this implies (42). If (42), then by Fatou lemma from (46) we deduce that
EP ŒZT ln.ZT /� < 1.

For 
 D �1, we have f .x/ D � ln.x/ and exchanging P andQ we get:

EP Œ� ln.ZT /� D EQŒ QZT ln. QZT /� D T

2
ˇ2 c C T

Z

Rd
Œ QY .y/ ln. QY .y// � QY .y/C 1��Q.dy/

where QZT D 1=ZT and QY .y/ D 1=Y.y/. But �Q.dy/ D Y.y/�.dy/ and, finally,

EP Œ� ln.ZT /� D T

2
ˇ2 c C T

Z

Rd

Œ� ln.Y.y//C Y.y/ � 1��.dy/ (48)

Again by Fatou lemma we get that EP Œ� ln.ZT /� < 1 which implies (42). ut
Lemma 8. If the second Girsanov parameter Y has a particular form (36) then the
condition

dX

iD1

Z

jyj�1
.eyi � 1/Y.y/�.dy/ < C1 (49)

implies the conditions (40) and (42).

Proof. We can cut each integral in (40) and (42) on two parts and integrate on the
sets fjyj � 1g and fjyj > 1g. Then we can use a particular form of Y and conclude
easily writing Taylor expansion of order 2. ut
Proof of Theorem 6. Necessity. We suppose that there exist f -divergence minimal
equivalent martingale measure Q preserving Levy property of X . Then, since
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QT � PT , the conditions (37) and (40) follow from Theorem 2.1, p. 209 of [14].
From Theorem 3 we deduce that (36) holds. Then, the condition (38) follows from
the fact that S is a martingale under Q. Finally, the condition (39) follows from
Girsanov theorem since Q is a martingale measure and, hence, the drift of S under
Q is zero.

Sufficiency. We take ˇ and Y verifying the conditions (37)–(39) and we construct

Mt D
dX

iD1

Z t

0

ˇ.i/dXc;.i/
s C

Z t

0

Z

Rd

.Y.y/ � 1/.�X � �X;P /.ds; dy/ (50)

As known from Theorem 1.33, p. 72–73, of [14], the last stochastic integral is well
defined if

C.W / D T

Z

Rd

.Y.y/ � 1/2IfjY.y/�1j�1g�.dy/ < 1;

C.W 0/ D T

Z

Rd

jY.y/� 1jIfjY.y/�1j>1g�.dy/ < 1:

But the condition (38), the relation (36) and Lemma 8 implies (40). Consequently,
.Y � 1/ 2 Gloc.�X/ and M is local martingale. Then we take

ZT D E .M/T

and this defines the measure QT by its Radon-Nikodym density. Now, the condi-
tions (37) and (38) together with the relation (36) and Lemma 8 imply (40), and,
hence, from Lemma 6 we deduce PT � QT .

We show that EP jf .ZT /j < 1. Since PT � QT , the Lemma 7 gives needed
integrability condition.

Now, since (39) holds,Q is martingale measure, and it remains to show thatQ is
indeed f -divergence minimal. For that we take any equivalent martingale measure
NQ and we show that

EQf
0.ZT / � E NQf 0.ZT /: (51)

If the mentioned inequality holds, the Theorem 1 implies that Q is a minimal.
In the case 
 ¤ �1;�2 we obtain from (43) replacing ˛ by 
 C 1:

Z

C1
T D E .N .
C1//T exp.A.
C1/

T /

and using a particular form of f 0 and Y we get that for 0 � t � T

N
.
C1/
t D

dX

iD1
�.i/ OX.i/

t
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where � D ˇ if c ¤ 0 and � D 
 if c D 0, and OX.i/ is a stochastic logarithm of
S.i/. So, E .N .
C1// is a local martingale and we get

E NQZ

C1
T � exp.A.
C1/

T / D EQZ

C1
T

and, hence, (51).
In the case 
 D �1 we prove using again a particular form of f 0 and Y that

f 0.ZT / D EQ.f
0.ZT //C

dX

iD1
�.i/ OX.i/

T

with � D ˇ if c ¤ 0 and � D 
 if c D 0. Since E NQ OXT D 0 we get that

E NQ.f 0.ZT // � EQ.f
0.ZT //

and it proves that Q is f -divergence minimal.
The case 
 D �2 can be considered in similar way.
Finally, note that the conditions which appear in Theorem 6 do not depend in any

way on the time interval which is considered and, hence, the minimal measure is
time invariant. Furthermore, if Q� is f -divergence minimal, the equality

f .cx/ D Af .x/C Bx C C

with A;B;C constants, A > 0, gives

EP Œf .c
d NQ
dP

/� D AEP Œf .
d NQ
dP

/�CB CC � AEP Œf .
dQ

dP
/�CB CC D EP Œf .c

dQ

dP
/�

andQ is scale invariant. ut

6.1 Example

We now give an example of a Levy model and a convex function which does not
satisfy f 00.x/D ax
 yet preserves the Levy property. We consider the function
f .x/D x2

2
C x ln.x/ � x and the R

2-valued Levy process given by equality
Xt D .Wt C ln.2/Pt ;Wt C ln.3/Pt � t/, where W is a standard one-dimensional
Brownian motion and P is a standard one-dimensional Poisson process. Note that
the covariance matrix

c D
�
1 1

1 1

�
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is not invertible. The support of the Levy measure is the singleton a D .ln.2/; ln.3//,
and is in particular nowhere dense. Let Q be a martingale measure for this model,
and .ˇ; Y / its Girsanov parameters, where >ˇ D .ˇ1; ˇ2/. In order for Q to be a
martingale measure preserving Levy property, we must have

ln.2/C 1

2
C ˇ1 C ˇ2 C Y.a/ D 0;

ln.3/� 1

2
C ˇ1 C ˇ2 C 2Y.a/ D 0;

(52)

and, hence, Y.a/ D 1� ln. 3
2
/. Now, it is not difficult to verify using Ito formula that

the measure Q satisfy: EPZ2
T < 1 and, hence, EP jf .ZT /j < C1 . Moreover,

the conditions (37) and (38) are satisfied meaning that PT � QT .
Furthermore, in order forQ to be minimal we must have according to Theorem 3:

f 0.xY.y// � f 0.x/ D xf 00.x/
2X

iD1
ˇi .e

ai � 1/C
2X

iD1
vi .e

ai � 1/

with a1 D ln 2; a2 D ln 3 and V D >.v1; v2/ such that cV D 0. We remark that
v2 D �v1. Then for x 2 supp.ZT /

ln.Y.a//C x.Y.a/ � 1/ D .x C 1/.ˇ1 C 2ˇ2/ � v1

and since supp.ZT / D R
C;� we must have

ˇ1 C 2ˇ2 D Y.a/� 1 and ˇ1 C 2ˇ2 � v1 D ln.Y.a//

Using (52), this leads to

8
ˆ̂
<

ˆ̂
:

v1 D � ln.1 � ln. 3
2
// � ln. 3

2
/

ˇ1 D 3 ln.3/� 5 ln.2/� 3

ˇ2 D 3
2

C 3 ln.2/� 2 ln.3/

We now need to check that the martingale measure given by these Girsanov
parameters is indeed minimal. Note that the decomposition of Theorem 4 can now
be written

f 0.ZT / D EQŒf
0.ZT /�C

2X

iD1

Z T

0




ˇi .
1

Zs�
C EQŒZT�s�/C vi

�
dSis
Sis�

But for s � 0
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dSis
Sis�

D OXi
s

and right-hand side of previous equality is a local martingale with respect to any
martingale measure NQ. Taking a localising sequence and then the expectation with
respect to NQ we get after limit passage that

E NQŒf
0.ZT /� � EQŒf

0.ZT /�;

and so, it follows from Theorem 1 that the measureQ is indeed minimal.
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One of the main objects in Number Theory is the so-called Möbius function. It
is defined as follows

�.n/ D

8
ˆ̂
<

ˆ̂
:

1 if n=1;

0 if n is not square-free;

.�1/k if n is the product of k distinct primes.

Throughout the paper, when we write nDp1p2 
 
 
pk we assume thatp1 < : : : <pk
are the first k prime numbers. Many properties of the Möbius function are connected
with the Riemann zeta function. For example, while the Prime Number Theorem is
equivalent to the fact that X

n�N
�.n/ D o.N /;

the Riemann Hypothesis is equivalent to

X

n�N
�.n/ D O"

�
N1=2C"�

for every " > 0.
Recently, a conjecture by Sarnak [15] has fostered a great interest towards the

connections between the Möbius function and Ergodic Theory, and in particular the
works of Furstenberg [7] and Green and Tao [10].

2 A Probabilistic Model for Square-Free Numbers

Fixm > 1 and introduce the set˝m, whose elements have the form n D Qm
jD1 p

�j
j ,

where �j 2 f0; 1g. Then �.n/ D ˙1 iff n 2 ˝m for some m. Define on ˝m the
probability distribution˘m for which

�m.n/ D 1

Zm

1

n
D 1

Zm
Qm
jD1 p

�j
j

; (1)

In (1) Zm is the normalizing factor and

Zm D
X

�1;:::;�m

1
Qm
jD1 p

�j
j

D
mY

jD1

�

1C 1

pj

�

D exp

8
<

:

mX

jD1
ln

�

1C 1

pj

�
9
=

;
D

D exp

8
<

:
O.1/C

mX

jD1

1

pj

9
=

;
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as m ! 1. Denote by N.t/ the number of primes which are less or equal than t .
The Prime Number Theorem says thatN.t/ � t

ln t as t ! 1 and a slightly stronger
version asserts that

N.t/� t

ln t
D O

�
t

ln2 t

�

: (2)

We can write, by summation by parts,

mX

jD1

1

pj
D

pmX

tD1

1

t
.N.t/�N.t � 1// D N.pm/

pm C 1
C

pmX

tD1

N.t/

t.t C 1/
D

D m

pm C 1
C

pmX

tD1
N.t/

�
1

t2
CO

�
1

t3

��

D O.1/C
pmX

tD2

1

t ln t
D O.1/C ln lnpm;

i.e. Zm � O.1/ lnpm. A more precise asymptotic follows from Mertens’ product
formula [13]

lim
n!1 ln n

Y

p�n

�

1 � 1

p

�

D e�
 � 0:561459;

where 
 is Euler-Mascheroni constant. In fact

1

lnn

Y

p�n

�

1C 1

p

�

D
�Q

p�n 1
1�p�2

��1

lnn
Q
p�n

�
1 � 1

p

� �! 
.2/�1

e�
 as n ! 1.

Thus

Zm � e



.2/
lnpm: (3)

By analogy with Statistical Physics, Zm is called partition function.
It is easy to check that w.r.t. ˘m, the random variables �j are independent and

˘mf�j D 0g D pj

1C pj
; ˘mf�j D 1g D 1

1C pj
; 1 � j � m:

Indeed,

˘mf�j D 0g D 1

Zm

X

�1;:::;�j�1

X

�jC1;:::;�m

1
Qj�1
lD1 p

�l
l

Qm
lDjC1 p

�l
l

D

D
Qj�1
lD1

�
1C 1

pl

�Qm
lDjC1

�
1C 1

pl

�

Qm
lD1

�
1C 1

pl

� D pj

1C pj
:



200 F. Cellarosi and Y.G. Sinai

Since

n D
mY

jD1
p
�j
j D exp

8
<

:

mX

jD1
�j lnpj

9
=

;
;

the statistical properties of n with respect to ˘m are determined by the properties
of
Pm

jD1 �j lnpj , which are sums of independent random variables. However
the Central Limit Theorem cannot be applied here because �j are not identically
distributed. Instead, the following limit theorem is valid.

Theorem 1. Let 
m D 1

lnpm

mX

jD1
�j lnpj . As m ! 1 the distributions of 
m

converge weakly to the infinitely divisible distribution whose characteristic function
'.�/ has the form

'.�/ D exp


Z 1

0

ei�v � 1
v

dv

�

: (4)

Proof. The characteristic function 'm of 
m is

'm.�/ D eei�
m D e exp

8
<

:

i�

lnpm

mX

jD1
�j lnpj

9
=

;
D

mY

jD1

�
pj

1C pj
C 1

1C pj
e
i� lnpj

lnpm

�

D

D
mY

jD1

�

1C 1

1C pj

�

e
i� lnpj
lnpm � 1

��

D

D exp

(
pmX

tD1
.N.t/ �N.t � 1// ln

�

1C 1

1C t

�
e
i� ln t
lnpm � 1

��
)

D

D exp

(

fm.pm C 1/N.pm/ �
pmX

tD1
N.t � 1/.fm.t C 1/� fm.t//

)

;

by summation by parts, where fm.s/ D ln
�
1C 1

1Cs
�
e
i� ln s
lnpm � 1

��
. Since fm is

complex-valued, the identity fm.t C 1/ � fm.t/ D f 0
m.t C �/ for some 0 < � < 1

does not follow from the mean value theorem and we have to work with the real and
imaginary parts separately. Writing fm D <fm C i=fm we have

<fm.s/ D ln

ˇ
ˇ
ˇ
ˇ1C 1

1C s

�
e
i� ln s
lnpm � 1

�ˇˇ
ˇ
ˇ D 1

2
ln

0

@
s2 C 2s cos

�
� ln s
lnpm

�
C 1

.1C s/2

1

A

and (by choosing the principal branch of the natural logarithm)

=fm.s/ D arg

�

1C 1

1C s

�
e
i� ln s
lnpm � 1

��

D arctan

0

@
sin
�
� ln s
lnpm

�

s C cos � ln s
lnpm

1

A :
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Now, by applying the mean value theorem twice to <fm and =fm separately, we get

<fm.t C 1/� <fm.t/ D .<fm/0.t C �1/ D .<fm/0.t/C �1.<fm/00.t C � 0
1/

for some 0 < � 0
1 < �1 < 1, and

=fm.t C 1/� =.fm/.t/ D .=fm/0.t C �2/ D .=fm/0.t/C �2.=fm/00.t C � 0
2/

for some 0 < � 0
2 < �2 < 1. Thus

ln'm.�/ D fm.pm C 1/N.pm/�

�
pmX

tD1
N.t�1/ �f 0

m.t/C�1.<fm/00.tC� 0
1/C�2.=fm/00.tC� 0

2/
�
: (5)

We claim that the sum involving f 0
m.t/ gives the main term. In fact, the first term

and the other sums in (5) tend to zero as m ! 1 (see Appendix). Thus, the main
term comes from the following sum:

�
pmX

tD1
N.t � 1/f 0

m.t/ D �
pmX

tD2

�
t

ln t
CO

�
t

ln2 t

��
1

1C 1
1Ct

�
e
i� i� ln t

lnpm � 1
� 







� 1

.t C 1/2

�
e
i� i� ln t

lnpm � 1
�

C 1

t.t C 1/
e
i� i� ln t

lnpm
i�

lnpm

�

D

D
pmX

tD1

�
1

t ln t
CO

�
1

t ln2 t

�� 

1C 1 � e i� ln t
lnpm

t C e
i� ln t
lnpm

!






2

4
�
e
i� ln t
lnpm � 1

�
�
.2t C 1/

�
e
i� ln t
lnpm � 1

�

.t C 1/2
� i�

lnpm

t

t C 1
e
i� ln t
lnpm

3

5 : (6)

By opening the brackets in (6) we obtain 12 sums. Let us look at the first sum
and consider the change of variables (which will be used in the Appendix too)
v D v.t/ D ln t

lnpm
for which dv D v.tC1/�v.t/ D v0.tC�3/ D v0.t/C�3v00.tC� 0

3/

for some 0 < � 0
3 < �3 < 1. We get

pmX

tD2

1

t ln t

�
e
i� ln t
lnpm � 1

�
D
X

v

�

dv C �

.t C � 0/2 lnpm

�
ei�v � 1

v
�!

Z 1

0

ei�v � 1
v

dv
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as m ! 1 since for some C > 0

ˇ
ˇ
ˇ
ˇ
ˇ

pmX

tD2

�

.t C � 0/2 lnpm

ei�v � 1

v

ˇ
ˇ
ˇ
ˇ
ˇ

� C j�j
lnpm

pmX

tD2

1

t2
�! 0:

All the remaining 11 sums coming from (6) tend to zero (see Appendix).
To show that distribution corresponding to '.�/ is infinitely divisible, we use the

characterization due to Kolmogorov (see, e.g. [8] for a detailed account on infinite
divisibility). He proved [12] that a probability distribution P� over R with finite
variance is infinitely divisible if and only if its characteristic function '.�/ has the
form

ln'.�/ D i��C
Z

R

.ei�v � 1 � i�v/
dK.v/

v2
; (7)

where � is a constant and v 7! K.v/ is a non-decreasing function of bounded
variation satisfying limv!�1K.v/ D 0. It easy to check that � D R

R
xdP.x/ D E�

and limv!1K.v/ D E.� � E�/2. In our case

� D e�

Z 1

0

�.t/ D 1;

lim
v!1K.v/ D � d2

d�2
'.�/j�D0 � �2 D 3

2
� 1 D 1

2
;

and by choosing

K.v/ D

8
ˆ̂
<

ˆ̂
:

0 if v < 0I
v2

2
if 0 � v � 1I

1
2

if v > 1

in (7) we obtain (4). This concludes the proof of Theorem 1. ut
Notice that

Z
cos.�v/� 1

v
dv D �

Z 1

j�jv
cos u

u
du � ln v and

lim
x!0C

�

�
Z 1

x

cos u

u
du � ln x

�

D 
;

where 
 is the Euler-Mascheroni constant as before. Therefore the improper integral
R 1
0

cos.�v/�1
v dv converges to �
 � R1

j�j
cos u

u du � ln j�j. On the other hand

Z
sin.�v/

v
dv D sgn.�/

Z j�jv

0

sin u

u
du gives

Z 1

0

sin.�v/

v
dv D sgn.�/

Z j�j

0

sin u

u
du:
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This shows that

'.�/ D

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

exp

(

�
�


 C
Z 1

�

cos u

u
du C ln�

�

C i

Z �

0

sin u

u
du

)

� > 0 ;

1 �=0 ;

exp

(

�
�


 C
Z 1

��
cos u

u
du C ln.��/

�

� i
Z ��

0

sin u

u
du

)

� < 0:

It is known (see [1]) that '.�/ is the characteristic function of the Dickman-De
Bruijn distribution, with density e�
�.t/, where �.t/ is determined by the initial
condition

�.t/ D
(
0; t � 0I
1; 0 < t � 1;

(8)

and the integral equation

t�.t/ D
Z t

t�1
�.s/ds; t 2 R:

It also satisfies the delay differential equation

t�0.t/C �.t � 1/ D 0

for t � 1 (at t D 1 we consider the right derivative) and for every k D 1; 2; 3; : : :

there is an analytic function �k.t/ that gives �.t/ on k � 1 � t � k. For example,
�1 � 1, �2.t/ D 1� ln t and �3.t/ D 1� ln t C R t

2 ln.u � 1/ du
u . It is also easy to see

that � 2 Ck.Œk;1// for each k.
Among other properties of �.t/ one can mention that it is log-concave on Œ1;1/

and

�.t/ D exp




�t
�

ln t C ln ln t � 1C ln ln t

ln t
CO

�
.ln ln t/2

.ln t/2

���

as t ! 1. In other words, the limiting density e�
�.t/ is constant on the interval
.0; 1�, where it takes the value e�
 , and decays faster then exponentially on .1;1/,
like Poisson distribution. In particular, all its moments exist.

The Dickman-De Bruijn function � first appeared in the theory of smooth
numbers (i.e. numbers with small prime factors). Let �.x; y/ denote the number
of integers � x whose prime factors are � y (such numbers are called y-smooth).
Dickman [4] showed that �.x; x1=u/ � x�.u/ as x ! 1. The range of y such that
the asymptotic formula �.x; y/ � x�.u/, where x D yu, has been significantly
enlarged by De Bruijn [1–3] (y � exp..lnx/5=8C"/) and Hildebrand [11]
(y� exp..ln lnx/5=3C"/). Our ensemble˝m coincides (as a set) with the intersection
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of the set of all square-free numbers with the set of pm-smooth numbers less or
equal than p1p2 
 
 
pm. Therefore we are in the case when y � lnx. In this regime

Erdös [6] showed that ln�.x; ln x/ � ln 4 lnx

ln ln x
as x ! 1 and therefore the

asymptotic is no longer given by the function �. In other words a phase transition
occurs in the asymptotic behavior of �.x; y/. For a survey on the theoretical and
computational aspects of smooth numbers see [9]. In our problem, we still get the
Dickman-De Bruijn distribution in the limit because of the probability distribution
we put on ˝m.

It is worth to mention that in many limit theorems in Number Theory there appear
limiting densities which are constants on some interval starting at 0. An example can
be found in the work of Elkies and McMullen [5] on the distribution of the gaps in
the sequence fpn mod 1g.

Here is another example from Probability Theory where the Dickman-De Bruijn
distribution appears. Let f�j gj�1 be a sequence of independent random variables
such that

P f�k D kg D 1

k
and P f�k D 0g D 1 � 1

k
;

and let �n D Pn
jD1 �j then

lim
n!1P fn�1�n < xg D e�


Z x

0

�.t/dt:

Theorem 1 has several important corollaries and applications. An immediate
consequence of (4) is that

˘mfn � psmg D
X

n�psm; n2˝m
�m.x/ �! e�


Z s

0

�.t/dt

as m ! 1. For instance, for s D 2 we get e�
 .3 � ln 4/ � 0:90603. In other
words, despite the fact that the largest element of our ensemble ˝m is of order mm,
approximately 90 % of the “mass” of our probability distribution˘m is concentrated
on numbers less than p2m for largem.

Let us fix 0 < � � 1 and decompose the interval .0; �/ onto K equal intervals
.ık; ıkC1/, ık D �k

K
, k D 0; : : : ; K � 1. For fixed K , Theorem 1 states that

˘m




ık <
lnn

lnpm
< ıkC1

�

�! e�
�
K

(9)

as m ! 1. Let us consider the error term in (9)

E.�/
m .k;K/ WD ˘m




ık <
ln n

lnpm
< ıkC1

�

� e�
�
K

:
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In the rest of this paper we provide some estimates about the error terms E.�/
m .k;K/

whenK grows with n. We prove the following

Theorem 2. For every " > 0 and every functionK.m/ such that limm!1 ln3 pm
K.m/2

D
c � 0 there exists m� D m�.";K/ such that the inequalities

� c�3

12
.2/
� " � Zm

p�m

K.m/�1X

kD0
pıkm E

.�/
m .k;K.m// � c�3

12
.2/
C " (10)

hold for every m � m� and every 0 < � � 1.

An important tool in the proof of Theorem 2 is given by the counting function

Mm.t/ D # fn � t W n 2 ˝mg :
This is analogous to the classical quantity

M.t/ D # fn � t W �.n/ ¤ 0g ;
for which the asymptotic

lim
t!1

M.t/

t
D 1


.2/
D 6

�2
� 0:607927:

holds (see, e.g., [14]). Even though the ensemble ˝m is very sparse, its initial
segment of length pm contains all square-free numbers less or equal than pm. In
particular limm!1 Mm.p

�
m/

p�m
D 1


.2/
for every 0 < � � 1. For � D 1 this fact can be

rephrased as

lim
m!1

1

pm

X

n�pm
�2.n/ D 1


.2/

and can be compared with

lim
m!1

1

lnpm

X

n�pm

�2.n/

n
D 1


.2/
;

which is a corollary of our Theorem 1 and (3).
The following Lemma provides some simple estimates that will be used in the

proof of Theorem 2.

Lemma 1. The following inequalities hold:

0 <

K�1X

kD0
p
ıkC1
m

�

K
� p�m � 1

lnpm
� �3p�m ln2 pm

12K2
C �.p�m � 1/

2K
; (11)

��
3p�m ln2 pm
12K2

� �.p�m � 1/

2K
�

K�1X

kD0
pıkm

�

K
� p�m � 1

lnpm
< 0: (12)
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Proof. The right (resp. left) Riemann sum
PK�1

kD0 p
ıkC1
m

�
K

(resp.
PK�1

kD0 pıkm �
K

)

converges as K ! 1 to the integral
R �
0 e

ı lnpmdı D p�m�1
lnpm

. Moreover, since the
function t 7! ptm is increasing, the right (resp. left) sum is strictly bigger (resp.
smaller) than the integral. This proves the first inequality in (11) and the second
inequality in (12). A classical result from Calculus states that in the absolute value
of the error performed by approximating the integral

R b
a
f .x/dx by the trapezoidal

Riemann sum
�
1

2
f .x0/C f .x1/C f .x2/C : : :C f .xK�1/C 1

2
f .xK/

�

�x;

xk D aCk b�a
K

is bounded by M.b�a/3
12K2 where supa�x�b jf 00.x/j � M . This implies

that the error for the right Riemann sum

.f .x1/C : : :C f .xK//�x

is bounded from above by M.b�a/3
12K2 C .f .b/ � f .a// b�a

2K
and gives the second

inequality of (11) when applied to the function t 7! ptm over the interval Œ0; ��.
On the other hand, the error given by the left Riemann sum

.f .x0/C : : :C f .xK�1//�x

is bounded from below by �M.b�a/3
12K2 � .f .b/ � f .a// b�a

2K
and this gives the first

inequality in (12). ut
Proof (of Theorem 2). A direct estimate yields

Mm.p
�
m/

p�m
D Zm

p�m

X

n 2 ˝m

n � p�m

n�m.n/ D Zm

p�m

K�1X

kD0

X

n 2 ˝m

p
ık
m < n � p

ıkC1
m

n�m.n/ �

� Zm

p�m

K�1X

kD0
p
ıkC1
m

X

n 2 ˝m

p
ık
m < n � p

ıkC1
m

�m.n/ D

D Zm

p�m
e�


K�1X

kD0
p
ıkC1
m

�

K
C Zm

p�m

K�1X

kD0
p
ıkC1
m E.�/

m .k;K/

Applying Lemma 1 to the right Riemann sum
PK�1

kD0 p
ıkC1
m

�
K

we obtain the estimate

Mm.p
�
m/

p�m
� e�
Zm

lnpm

p�m � 1

p�m
C e�
Zm

lnpm

 
�3 ln3 pm
12K2

C p�m � 1

p�m

� lnpm
2K

!

C

CZm

p�m

K�1X

kD0
p
ıkC1
m E.�/

m .k;K/;

which is true for everym and K .
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Since, as m ! 1, Mm.p
�
m/

p�m
! 1


.2/
, Zm

lnpm
! e



.2/
, and by hypothesis ln3 pm

K.m/2
! c

(and thus lnpm
K.m/

! 0), then for every " > 0 the inequality

Zm

p�m

K.m/�1X

kD1
p
ıkC1
m E.�/

m .k;K.m// � � c�3

12
.2/
� "

holds true for sufficiently largem. By noticing that p
ıkC1
m D pıkm

�
1C .e

� lnpm
K.m/ � 1/

�

and 0 � .e
� lnpm
K.m/ � 1/ ! 0 asm ! 1, we obtain the first inequality of (10). On the

other hand

Mm.p
�
m/

p�m
� Zm

p�m

K�1X

kD0
pıkm

X

n 2 ˝m

p
ık
m < n � p

ıkC1
m

�m.n/ D Zm

p�m
e�


K�1X

kD0
pıkm

�

K
C

CZm

p�m

K�1X

kD0
pıkm E

.�/
m .k;K/

and applying Lemma 1 to the left Riemann sum
PK�1

kD0 pıkm �
K

we obtain the estimate

Mm.p
�
m/

p�m
� e�
Zm

lnpm

p�m � 1
p�m

� e�
Zm
lnpm

 
�3 ln3 pm
12K2

C p�m � 1
p�m

� lnpm
2K

!

C

Zm

p�m

K�1X

kD0
pıkm E

.�/
m .k;K/;

which is true for everym and K . Proceeding as above we have that for every " > 0
the inequality

Zm

p�m

K.m/�1X

kD0
pıkm E

.�/
m .k;K.m// � c�3

12
.2/
C "

holds for sufficiently large m and we have the second inequality of (10). ut
An immediate consequence of Theorem 2 is the following

Corollary 1. Consider a functionK.m/ such that

lim
m!1

ln3 pm
K.m/2

D c � 0:

Then the sum of the error terms coming from (9), with weights p��Cık
m , satisfies the

asymptotic estimate
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K.m/�1X

kD0

E
.�/
m .k;K.m//

p
��ık
m

D

8
ˆ̂
<

ˆ̂
:

O
�

1
lnpm

�
if c > 0;

o
�

1
lnpm

�
if c D 0;

(13)

asm ! 1 for every 0 < � � 1.

Notice that implied constant in the O-notation depends explicitly on c and � by (3)
and (10). Moreover, as k ranges from 0 to K.m/ � 1, the weights vary from p��

m

(! 0 as m ! 1) to e�� lnpm
K.m/ (! 1 as m ! 1). This means that the error

terms E.�/
m .k;K.m// corresponding to small values of k are allowed to be larger

in absolute value.
In order to get estimates on the mean value of the error term (for which al weights

are equal to 1
K.m/

) we just replace the weights p��Cık
m by either p�� or 1 in (10).

This yields, for every " and sufficiently largem,

1

Zm

�

� c�3

12
.2/
� "

�

�
K.m/�1X

kD0
E.�/
m .k;K.m// � p�m

Zm

�
c�3

12
.2/
C "

�

:

In particular we get, as m ! 1,

hE.�/
m i WD 1

K.m/

K.m/�1X

kD0
E.�/
m .k;K.m// D

8
ˆ̂
<

ˆ̂
:

O
�

p�m
ln5=2 pm

�
if c > 0;

o
�

p�m
K.m/ lnpm

�
if c D 0.

Let us point out that, even though by (9) the error term E
.�/
m .k;K.m// tends to

zero as m ! 1 for each k, it is not a priori true that hE.�/
m i tends to zero as well.

It follows from our Theorem 2 that this is indeed the case when p�m
K.m/ lnpm

remains
bounded (i.e. a particular case of c D 0). Let us summarize this fact in the following

Corollary 2. Let 0 < � � 1 and consider a functionK.m/ such that

lim
m!1

p�m
K.m/ lnpm

< 1:

Then, as m ! 1,

hE.�/
m i D o

�
p�m

K.m/ lnpm

�

: (14)

In other words, ifK grows sufficiently fast (namely as const
 p�m
lnpm

or faster), then the

mean value of the error hE.�/
m i tends to zero asm ! 1 and the rate of convergence

to zero is controlled explicitly in terms of � and K .
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Notice that one would expect the error termE
.�/
m .k;K.m// in (9) to be o

�
1

K.m/

�
,

however we could only derive the weaker asymptotic estimates (13) and (14) from
Theorem 2. A possible approach to further investigate the size of the error term
in (9) would be to first prove an analogue of Theorem 1 for shrinking intervals. This
is, however, beyond the aim of this paper.
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Appendix

This Appendix contains the estimates for the error terms in the proof Theorem 1.
By Cj , j D 1; : : : ; 21, we will denote some positive constants.

The first term of (5) tends to zero as m ! 1 uniformly in �. In fact using (2)
we obtain

<fm.pm C 1/N.pm/ D

D N.pm/

2
ln

0

@
.pm C 1/2 C 2.pm C 1/ cos

�
� ln.pmC1/

lnpm

�
C 1

.pm C 2/2

1

A D

D N.pm/

2

�

ln

�

1CO
�
1

pm

��

� ln

�

1CO
�
1

pm

���

D O

�
pm

lnpm

�

O

�
1

pm

�

D

D O

�
1

lnpm

�

;

and

=fm.pm C 1/N.pm/ D N.pm/ arctan

0

@
sin
�
�

ln.pmC1/
lnpm

�

pm C 1C cos
�
�

ln.pmC1/
lnpm

�

1

A D

D O

�
pm

lnpm

�

O

�
1

pm

�

D O

�
1

lnpm

�

asm ! 1, and the implied constants do not depend on �. An explicit computation
shows that

.<fm/00.s/ D f .1/
m .s/C f .2/

m .s/C f .3/
m .s/;
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where

f .1/
m .s/ D ��2

2s C .1C s2/ cos
�
� ln s
lnpm

�

s
�
s2 C 2s cos

�
� log s
logpm

�
C 1

�2
ln2 pm

;

f .2/
m .s/ D �

�
3s2 C 2s cos

�
� ln s
lnpm

�
� 1

�
sin
�
� ln s
lnpm

�

s
�
s2 C 2s cos

�
� log s
logpm

�
C 1

�2
lnpm

;

f .3/
m .s/ D

2
�

cos
�
� ln s
lnpm

�
� 1

� �
s3 � s2 � s � 1C .s2 � 2s � 1/ cos

�
� ln s
lnpm

��

.1C s/2
�
s2 C 2s cos

�
� log s
logpm

�
C 1

�2 :

We have
ˇ
ˇf .1/
m .s/

ˇ
ˇ � C1�

2

s3 ln2 pm
;

ˇ
ˇf .2/
m .s/

ˇ
ˇ � C2j�j

s3 lnpm

and thus
ˇ
ˇ
ˇ
ˇ
ˇ

pmX

tD1
N.t � 1/�1f .1/

m .t C � 0
1/

ˇ
ˇ
ˇ
ˇ
ˇ

� C3�
2

ln2 pm

pmX

tD2

1

t2 ln t
�! 0 and

ˇ
ˇ
ˇ
ˇ
ˇ

pmX

tD1
N.t � 1/�1f .2/

m .t C � 0
1/

ˇ
ˇ
ˇ
ˇ
ˇ

� C4j�j
lnpm

pmX

tD2

1

t2 ln t
�! 0 as m ! 1:

The third function satisfies the estimate

ˇ
ˇf .3/
m .s/

ˇ
ˇ �

s3
ˇ
ˇ
ˇ2 cos

�
� ln s
lnpm

�
� 2

ˇ
ˇ
ˇC s2C5

.1C s/2.1 � s/4
�
C6

�
1 � cos

�
� ln s
lnpm

��

s3
:

We now perform the same change of variables v D v.t/ D ln t
lnpm

as before (using �3
and � 0

3 as in the proof of Theorem 1). We get

ˇ
ˇ
ˇ
ˇ
ˇ

pmX

tD1
N.t � 1/�1f .3/

m .t C � 0
1/

ˇ
ˇ
ˇ
ˇ
ˇ

� C7

pmX

tD2

1 � cos
�
� ln t
lnpm

�

t2 ln t
�

� C8
X

v

�

dv C �3

.t C � 0
3/
2 lnpm

�
1 � cos.�u/

t v
�! 0

as m ! 1. Another explicit computation shows that

.=fm/00.s/ D f .4/
m .s/C f .5/

m .s/C f .6/
m .s/;
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where

f .4/
m .s/ D �2

.s2 � 1/ sin
�
� log s
logpm

�

s
�
s2 C 2s cos

�
� log s
logpm

�
C 1

�2
ln2 pm

;

f .5/
m .s/ D ��

1C 5s2 C 2s2 cos2
�
� log s
logpm

�
C .3s3 C 5s/ cos

�
� log s
logpm

�

s2
�
s2 C 2s cos

�
� log s
logpm

�
C 1

�2
lnpm

f .6/
m .s/ D

2
�
s C cos

�
� log s
logpm

��
sin
�
� log s
logpm

�

�
s2 C 2s cos

�
� log s
logpm

�
C 1

�2 :

We have the estimates

ˇ
ˇf .4/
m .s/

ˇ
ˇ � C10�

2

s3 ln2 pm
;

ˇ
ˇf .5/
m .s/

ˇ
ˇ � C11j�j

s3 lnpm

and thus
ˇ
ˇ
ˇ
ˇ
ˇ

pmX

tD1
N.t � 1/�1f

.4/
m .t C � 0

1/

ˇ
ˇ
ˇ
ˇ
ˇ

� C12�
2

ln2 pm

pmX

tD2

1

t2 ln t
�! 0 and

ˇ
ˇ
ˇ
ˇ
ˇ

pmX

tD1
N.t � 1/�1f

.5/
m .t C � 0

1/

ˇ
ˇ
ˇ
ˇ
ˇ

� C13j�j
lnpm

pmX

tD2

1

t2 ln t
�! 0 as m ! 1:

The estimate

ˇ
ˇf .6/
m .s/

ˇ
ˇ �

C14s sin
�
� log s
logpm

�

.s � 1/4
�
C15 sin

�
� log s
logpm

�

s3

yields, as m ! 1,

ˇ
ˇ
ˇ
ˇ
ˇ

pmX

tD1
N.t � 1/�1f

.6/
m .t C � 0

1/

ˇ
ˇ
ˇ
ˇ
ˇ

� C15

pmX

tD2

sin
�
� ln t
lnpm

�

t2 ln t
�

� C16
X

v

�

dv C �3

.t C � 0
3/
2 lnpm

�
sin.�v/

t v
! 0:

This concludes the analysis of the error terms coming from (5).
Let us now deal with the error terms coming from (6). One sum (giving the main

term) is already discussed in the proof of Theorem 1. Amongst the remaining 11



212 F. Cellarosi and Y.G. Sinai

sums coming from (6), it is enough to check that the following three tend to zero as
m ! 1 (the other 8 being dominated by these):

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

pmX

tD2

1

t ln t

.2t � 1/

�

e
i� ln t
lnpm � 1

�

.t C 1/2

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

� C17

pmX

tD1

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

e
i� ln t
lnpm � 1

ln t
lnpm

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1

t2 lnpm
� C18j�j

lnpm

pmX

tD2

1

t2
! 0;

ˇ
ˇ
ˇ
ˇ
ˇ

i�

lnm

pmX

tD2

1

t ln t

t

t C 1
e
i� ln t
lnpm

ˇ
ˇ
ˇ
ˇ
ˇ

� C19j�j
lnm

X

v

�

dv C �

.t C � 0/2 lnpm

�
ei�v

v
! 0;

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

pmX

tC2

1

t ln t

�

e
i� ln t
lnpm � 1

�2

t C e
i� ln t
lnpm

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

� C20

pmX

tD2

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

�

e
i� ln t
lnpm � 1

�2

�
ln t

lnpm

�2

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

ln t

t2 ln2 pm
� C21�

2

ln2 pm

pmX

tD2

ln t

t2
! 0:
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Additive Functions and Gaussian Measures

Linan Chen and Daniel W. Stroock

Abstract In this paper we examine infinite dimensional analogs of the measure
theoretic variations of Cauchy’s classical functional equation for additive functions.
In particular, we show that the a naı̈ve generalization of the finite dimensional
statement fails in infinite dimensions and show how it has to be altered to make
it true. In the process, we develop various techniques which lead naturally to results
about the structure of abstract Wiener spaces.

Keywords Abstract Wiener spaces

Mathematics Subject Classification (2010): 60G15, 60G60

1 Introduction

The classical Cauchy functional equation

f .x C y/ D f .x/C f .y/ (1)

has a rich history. When f W R �! R, the problem of determining which functions
satisfy (1) is well understood. It is easy to see that the only continuous solutions
are linear. In the absence of any further conditions, all that one can say is that
f .qx/D qf .x/ for all q 2Q (the field of rational numbers) and x 2R. In fact, as an
application of Zorn’s Lemma, one can construct solutions which are Q-valued and
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therefore certainly not continuous. On the other hand, if f is Lebesgue measurable
solution, then it must be linear. The argument is simple but worth repeating. Namely,
given a Lebesgue measurable solution, chooseR > 0 so that� � fx W jf .x/j � Rg
has positive Lebesgue measure. Then, by the lemma of Vitali on which the standard
example of a non-measurable set relies, � D � � � contains an interval Œ�ı; ı�
for some ı > 0, and clearly jf .x/j � 2R for all x 2 �. Further, for any
x 2 R n f0g, one can find a positive q 2 Q such that q � ı

2jxj and qx 2 �. Hence,

jf .x/j D jf .qx/j
q

� 4Rjxj
ı

, which means that f is continuous at 0 and therefore
everywhere.

When f is a map from one real Banach space E into a second F , the R-valued
result shows that the only Borel measurable solutions to (1) must be linear. If one
combines this with L. Schwartz’s result (cf. [3] or, for a proof which is more in
keeping with the present paper, [6]) which says that all Borel measurable, linear
functions are continuous, then one arrives at the conclusion that the only Borel
measurable solutions f W E �! F to (1) are continuous, linear maps. In particular,
when F D R, f .x/ D hx; x�i for some x� 2 E�.

P. Erdös asked what could be said when f W R �! R and one replaces (1) by

f .x C y/ D f .x/C f .y/ for Lebesgue-almost every .x; y/ 2 R
2: (2)

A definite answer was given by N.G. de Bruijn [1] and W.B. Jurkat [2] who showed
that, even if f is not measurable, every solution to (2) is almost everywhere equal
to an additive function, and therefore every Lebesgue measurable solution to (2) is
almost everywhere equal to a linear function.

In this article, we will study the analogous problem for maps between Banach
spaces. Of course, since there is no Lebesgue measure on an infinite dimensional
space, (2) as it stands makes no sense there. Thus, instead of Lebesgue measure,
we take a Gaussian measure as the reference measure. That is, when E and F
are separable, real Banach spaces and W is a non-degenerate, centered Gaussian
measure on E , we will investigate the W -measurable functions f W E �! F

which satisfy

f .x C y/ D f .x/C f .y/ W 2-almost surely: (3)

Among other things, we will show that there are solutions to (3) which are not
W -almost surely equal to a linear function. On the other hand, if (3) is replaced by

f .˛x C ˇy/ D f̨ .x/C f̌ .y/ W 2-almost surely; (4)

for some pair .˛; ˇ/ 2 .0; 1/2 satisfying ˛2 C ˇ2 D 1, we will show that there is a
dense, Borel measurable, linear subspaceL ofE and a Borel measurable linear map
` W L �! F such that W .L/ D 1 and f � L D ` W -almost surely. In general,
the linear map ` will not be continuous or even admit an extension to E , and so we
investigate how E can be modified so that ` becomes continuous.
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2 Wiener Maps

Let E be a separable, real Banach space. A non-degenerate, centered Gaussian
measure W on E is a Borel probability measure with the property that, for each
x� 2 E�nf0g, x hx; x�i is a non-degenerate, centered Gaussian random variable
under W . When E is finite dimensional, any such W is equivalent to Lebesgue
measure. However, when E is infinite dimensional, there are uncountably many,
mutually singular choices of W . Indeed, given a W and an ˛ 2 R, let W˛ denote
the distribution of x ˛x under W . Then for any ˛ … f�1; 1g, W˛ is singular to W .
As a consequence, the distribution of .x; y/ 2 E2 7�! xCy 2 E under W 2 is also
singular to W . In particular, the W -analog

f .x C y/ D f .x/C f .y/ for W 2-almost every .x; y/ 2 E2 (5)

of (2) is somewhat suspect, and so it is not too surprising that there are Borel
measurable, R-valued solutions to (5) which are very far from being linear.

To produce a highly non-linear, Borel measurable solution to (5), assume that E
is infinite dimensional, and choose fx�

m W m � 0g � E� so that

E
W
�h 
 ; x�

mih 
 ; x�
n i	 D ım;n:

Then fh 
 ; x�
mi W m � 0g is a sequence of mutually independent, standard Gaussian

random variables under W , and so, by the strong law of large numbers,

lim
n!1

1

n

n�1X

mD0
hx; x�

mi2 D 1 for W -almost every x 2 E:

Now let A be the set of x 2 E for which limn!1 1
n

Pn�1
mD0hx; x�

mi2 exists in R.
Obviously, A is a Borel measurable subset of E , and so the function f W E �! R

given by

f .x/ D
(

limn!1 1
n

Pn�1
mD0hx; x�

mi2 if x 2 A
0 if x … A

is Borel measurable. Next, take A0 to be the subset of x 2 A for which f .x/ D 1,
and let B denote the subset of .x; y/ 2 A0 � A0 for which

lim
n!1

1

n

n�1X

mD0
hx; x�

mihy; x�
mi D 0:

Clearly B is Borel measurable, and another application of the strong law shows that
W 2.B/ D 1. In addition, f .x C y/ D f .x/ C f .y/ for .x; y/ 2 B . On the other
hand, if x 2 A0, then f .2x/ D 4 ¤ 2 D 2f .x/, and so f is W -almost everywhere
non-linear.
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The preceding example shows that, in infinite dimensions, (5) is not a good
replacement for (2). A more satisfactory replacement is provided by the notion of a
Wiener map. To describe this, say that .˛; ˇ/ is a Pythagorian pair if .˛; ˇ/ 2 .0; 1/2
and ˛2 C ˇ2 D 1. Then a Wiener map f W E �! F is a W -measurable map which
satisfies

f .˛x C ˇy/ D f̨ .x/C f̌ .y/ for W 2-almost all .x; y/ 2 E2 (6)

for some Pythagorian pair .˛; ˇ/. Notice that, since the distribution of .x; y/ ˛xC
ˇy under W 2 is W , (6) makes perfectly good sense even though, in general, f is
well defined only up to a set of W -measure 0. For this reason, one should suspect
that (6) has virtues which (5) does not possess.

To fully describe these virtues, it is necessary to introduce a little terminology.
For a given W onE , there is a unique Hilbert space, known as the Cameron–Martin
space, H continuously embedded as a dense subspace of E which has the property
that, for each x� 2 E�, khx�k2H is the variance of h 
 ; x�i under W , where hx� is the
element ofH determined by .h; hx�/H D hh; x�i for h 2 H . In particular, because
fhx� W x� 2 E�g is a dense subspace of H , there is a unique isometry, known as
the Paley–Wiener map, I W H �! L2.W IR/ such that I .hx�/ D h 
 ; x�i for
all x� 2 E�. Moreover, the image of H under I is a centered Gaussian family in
L2.W IR/.

The following statement is essentially the same as the one of Theorem 2.5 in [5].

Theorem 1. If f W E �! F is W -measurable, then f is a Wiener map if and
only if there is a bounded, linear map A W H �! F such that hf; y�i D I .A>y�/
W -almost surely for each y� 2 F �, where A> W F � �! H is the adjoint of A.
Moreover, if A exists, then it is unique, it is continuous from the weak* topology on
H into the strong topology on F , and, for any orthonormal basis fhk W k � 1g,

f D
1X

kD1
I .hk/Ahk W -almost surely; (7)

where the convergence is W -almost sure as well as in Lp.W IR/ for each
p 2 Œ1;1/. In particular, if FA is the closure in F of the range AH of A, then
f .x/ 2 FA W -almost surely.

In [5], this theorem was proved under slightly different hypotheses. For one
thing, f was assumed there to be Borel measurable, but, because, as was pointed
out above, the W 2-distribution of .x; y/ ˛x C ˇy is W , assuming that f is
Borel measurable causes no loss in generality. Second, and more significant, is the
difference between the definition of a Wiener map here and the one there. Namely,
in [5] it was assumed that ˛ D 2� 1

2 D ˇ. However, the modification of the proof
given in [5] which is required to cover the generalization to arbitrary Pythagorian
pairs is trivial. In addition, the conclusion drawn in Theorem 1 shows that if f is a
Wiener map relative to one Pythagorian pair, then it is a Wiener map relative to any
other Pythagorian pair.
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As an immediate corollary to Theorem 1, we have the following.

Corollary 1. If f W E �! F is a Wiener map, then there is a dense, linear
subspace L of W -measure 1 and a Borel measurable linear map ` W L �! F

such that f � L D ` W -almost surely.

Proof. Simply take L to be the set of x 2 E for which the series on the right hand
side of (7) converges in F , and define ` on L to be the sum of that series.

Corollary 1 represents the best approximation we have in infinite dimensions
to the result, alluded to earlier, proved by de Bruijn and Jurkat in the real-valued
setting. In fact, at least when f is assumed to be Lebesgue measurable, Corollary 1
contains their result. To see this, what one has to show is that if f W R �! R is a
Lebesgue measurable function satisfying (2), then f is a Wiener map. To this end,
first argue that, for each n � 1, f .nx C y/ D nf .x/ C f .y/ for almost every
.x; y/ 2 R

2. Indeed, there is nothing to do when n D 1, and, assuming that it holds
for n, one has that, for almost every .x; y/,

f
�
.nC1/xCy� D f

�
nxC.xCy/� D f .nx/Cf .xCy/ D .nC1/f .x/Cf .y/;

where we have used the fact that the Lebesgue distribution of .x; y/ .nx; xCy/ is
equivalent to that of .x; y/. At the same time, because .x; y/ 

�
.nC1/x; y/ has the

same Lebesgue distribution as .x; y/, f
�
.nC 1/xC y

�Df
�
.nC 1/x

�C f .y/ for
almost every .x; y/. Hence, by Fubini’s Theorem, f

�
.n C 1/x

� D .nC 1/f .x/

almost everywhere. Knowing that f .nx/D nf .x/ almost everywhere, one can
repeat the same sort of argument to show first that f .qx/D qf .x/ almost every-
where for all q 2Q

C �Q\ .0;1/ and then that f .q1xCq2y/D q1f .x/Cq2f .y/

almost everywhere for all .q1; q2/2 .QC/2. In particular, by taking q1 D 3
5

and
q2 D 4

5
, one concludes that f is a Wiener map. Finally, any non-degenerate Gaussian

measure on R is equivalent to Lebesgue measure and because R itself is the only
subspace of R to which a non-degenerate Gaussian measure assigns measure 1,
we arrive at the conclusion that there is a linear function to which f is almost
everywhere equal.

Remark. It should be clear where the preceding line of reasoning breaks down
in the infinite dimensional setting. Specifically, in infinite dimensions, there is no
counterpart of the equivalence of measures assertions which were crucial in the
proof that f is a Wiener map if it satisfies (2).

3 A Refinement

By the result, alluded to earlier, in [6], the linear map ` in Corollary 1 can be
extended as a W -measurable, linear map on the whole of E if and only if it is
continuous. Thus, because W gives positive mass to every non-empty open subset
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ofE and W .E nL/ D 0, there is at most one such extension. In this section, we will
show how to modify E so that, for a given W -measurable f W E �! R satisfying
(6), a continuous extension will exist.

By Theorem 1, for each Wiener map f W E �! R there is a g 2 H such
that f D I .g/. Thus, what we need to show is that for each g 2 H there is a
Banach space Eg which is a Borel measurable subset of E such that W .Eg/ D 1,�
H;Eg;W � Eg

�
is an abstract Wiener space, and

sup
˚ˇ
ˇ
�
g; h

�
H

ˇ
ˇ W khkEg � 1

�
< 1: (8)

Indeed, if (8) holds, then, becauseH is dense inEg, there is a unique x� 2 E�
g such

that .g; h/H D Eghh; x�iE�
g

for all h and therefore I .g/ D Egh 
 ; x�iE�
g

W -almost
surely.

The construction ofEg mimicks a line of reasoning introduced by L. Gross when
he proved (cf. Corollary 8.3.10 in [4]) that one can always find a Banach space
E0 � E such that bounded subsets of E0 is relatively compact in E and�
H;E0;W � E0

�
is an abstract Wiener space. To be precise, given a finite

dimensional subspace L of H , there is a W -almost surely unique PL W E �! H

such that, for each h 2 H , I .h/ ı PL D I .˘Lh/ W -almost surely, where
˘L denotes orthogonal projection from H onto L. In fact, given any orthonormal
basis fb1; : : : ; bmg for L, one can take PLx D Pm

`D1ŒI .b`/�.x/b`. Now choose
fx�
n W n � 0g � E� so that fhn W n � 0g is an orthonormal basis in H when

hn D hx�
n

. Using Theorem 8.3.9 in [4], one can find a strictly increasing sequence
fnm W m � 0g � N so that n0 D 0 and, for m � 1, EW

�kPLxk2E
	 � 4�m for all

finite dimensional L ? fh0; : : : ; hnmg. Now define

Q0x D hx; x�
0 i and, form � 1, Qmx D

nmX

nm�1C1
hx; x�

n ihn;

and set Sm D Pm
`D0 Q` and

sm.x/ D �
g; Sm.x/

�
H

D
nmX

`D0
hx; x�̀i�g; h`

�
H
:

By Theorem 8.3.3 in [4], Sm.x/ �! x and sm.x/ �! ŒI .g/�.x/ for W -almost
every x 2 E . In addition, in both cases, the convergence takes place in L2. In
particular, by passing to another subsequence if necessary, we may and will assume
that fnm W m � 0g has been chosen so that EW

�jsm � sm�1j2
	 � 4�m for m � 1.

Finally, take Eg to be the set of x 2 E such that Sm.x/ �! x and

kxkEg �
1X

mD0

�
kQmxkE C ˇ

ˇ
�
g;Qmx

�
H

ˇ
ˇ
�
< 1:
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Repeating the argument given to prove Theorem 8.3.10 cited above, one
can show that Eg is a dense, measurable, subspace with W .Eg/D 1, Eg with
norm k 
 kEg is a Banach space which is continuously embedded in E , and
�
H;Eg;W �Eg

�
is an abstract Wiener space. In addition, it is an easy matter

to check that, for each x 2 Eg , Sm.x/ �! x in Eg and fsm.x/ W m � 0g converges
in R, and that, for each h 2 H , j.g; h/H j � khkEg . Thus, we have justified the
following statement.

Theorem 2. Let .H;E;W / be an abstract Wiener space, and let fx�
n W n� 0g �E�

be chosen so that fhx�
n

W n � 0g is an orthonormal basis inH . Then for each g 2 H
there is a Banach space Eg, a unique element x� 2 E�

g , and a strictly increasing
subsequence fnm W m � 0g � N such that

1. Eg is continuously embedded inE as a measurable subspace with W .Eg/ D 1;

2.
�
H;Eg;W � Eg

�
is an abstract Wiener space,

3. limm!1
Pnm

`D0hg; x�̀ihx; x�̀i D Eghx; x�iE�
g

for each x 2 Eg.

In particular, ŒI .g/�.x/ D Eghx; x�iE�
g

for W -almost every x 2 Eg.

Corollary 2. Let .H;E;W / be an abstract Wiener space and f W E �! R a
Wiener map. Then there is a Banach space Ef which is continuously embedded as
a dense, measurable subspace of E with W .Ef / D 1 and a unique x� 2 E�

f such

that
�
H;Ef ;W � Ef

�
is an abstract Wiener space and f .x/ D Efhx; x�iE�

f
for

W -almost every x 2 Ef .

4 Concluding Considerations

The result in Theorem 2 has an interesting application to the structure of abstract
Wiener spaces. Namely, it gives a simple proof of the fact that

H D
\˚

E W �H;E;W � E� is an abstract Wiener space
�
: (9)

In fact, given an abstract Wiener space .H;E;W /, choose fx�
n W n � 0g � E�

so that fhx�
n

W n � 0g is an orthonormal basis in H , and, for each g 2 H , let Eg
be taken accordingly, as in that theorem. If x 2 T

g2H Eg , then, for each g 2 H ,
�.g; x/ D limn!1�n.g; x/ exists, where

�n.g; x/ �
nX

`D0
hg; x�̀ihx; x�̀i:

To see this, suppose that limn!1�n.g; x/ fails to exist for some g 2 H . Then

1X

`D0

ˇ
ˇhg; x�̀ihx; x�̀iˇˇ D 1:
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But, if h 2 H is determined so that hh; x�̀i D ˙hg; x�̀i, where the C sign is chosen
if hg; x�̀ihx; x�̀i � 0 and the � sign is chosen if hg; x�̀ihx; x�̀i < 0, then we have
the contradiction that

(
nX

`D0
hh; x�̀ihx; x�̀i W n � 0

)

has no convergent subsequence.
Since �. 
 ; x/ is the weak limit of the continuous, linear functionals �n. 
 ; x/

on H , �. 
 ; x/ is itself a continuous linear functional on H . Equivalently, there
is a Cx < 1 such that j�.g; x/j � CxkgkH , and from this is clear first thatP1

`D0hx; x�̀i2 � C2
x < 1 and then (cf. Lemma 8.2.3 in [4]) that x 2 H . Hence,

we have shown that H D T
g2H Eg, which certainly implies (9).

We close with an observation which, in some sense, complements (9). Namely,
given a separable, real Banach space E ,

E D
[˚

H W H is the Cameron-Martin space for some W on E
�
: (10)

Theorem 3. Suppose that fLn W n � 1g is a non-decreasing sequence of finite
dimensional subspaces of E and that L � S1

nD1 Ln is dense in E . Then there
exists an abstract Wiener space .H;E;W / and a sequence fx�

n W n � 1g � E�
such that, for each n � 1 and x 2 Ln, hx; x�

nC1i D 0 and x D hx� , where
x� D P1

nD1hx; x�
n ix�

n . In particular, L � fhx� W x� 2 E�g � H .

Proof. Without loss in generality, we will assume that dim.Ln/ D n. We now apply
a Gram–Schmit orthogonalization procedure to produce fxn W n � 1g � E and
fx�
n W n � 1g � E� so that fx1; : : : ; xng is a basis for Ln, kxnkE D 1

n2
, and

hxm; x�
n i D ım;n. That is, choose x1 2 L1 with kx1kE D 1 and x�

1 2 E� so that
hx1; x�

1 i D 1. Given fx1; : : : ; xng and fx�
1 ; : : : ; x

�
n g, choose ynC1 2 LnC1 n Ln,

and set

xnC1 D ynC1 �Pn
mD1hynC1; x�

mixm
.nC 1/2

�
�ynC1 �Pn

mD1hynC1; x�
mixm

�
�
E

:

Finally, choose x�
nC1 2 E� so that hxnC1; x�

nC1i D 1 and hxm; x�
nC1i D 0 for

1 � m � n.
Now let 
 denote the standard Gauss measure on R. Then, because

P1
nD1 kxnkE < 1,

P1
nD1 j!njkxnkE < 1 for P � 
Z

C

-almost every ! 2 R
Z

C

.

Thus, there is a random variable X W RZ
C �! E such that X.!/ D P1

nD1 !nxn
for P-almost every !. Let W denote the distribution of X under P. Then

E
W
�hx; x�i2	 D

1X

nD1
hxn; x�i2;
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and so, since L is dense in E , W is a non-degenerate, centered Gaussian measure
on E . In addition,

hx� D
Z

E

hx; x�ixW .dx/ D
1X

nD1
hxn; x�ixn;

from which is clear that xn D hx�
n

. Finally, if x 2 Ln, then hx; x�
mi D 0 when

m > n and x D Pn
mD1hx; x�

mixm.
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Free Infinitely Divisible Approximations
of n-Fold Free Convolutions

Gennadii Chistyakov and Friedrich Götze

Abstract Based on the method of subordinating functions we prove a free analog
of error bounds in classical Probability Theory for the approximation of n-fold
convolutions of probability measures by infinitely divisible distributions.
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divisible probability measures • n-fold additive free convolutions of probability
measures
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1 Introduction

In recent years a number of papers are investigating limit theorems for the free
convolution of probability measures defined by D. Voiculescu. The key concept
of this definition is the notion of freeness, which can be interpreted as a kind of
independence for noncommutative random variables. As in the classical proba-
bility where the concept of independence gives rise to the classical convolution,
the concept of freeness leads to a binary operation on the probability measures on
the real line, the free convolution. Classical results for the convolution of probability
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measures have their counterpart in this new theory, such as the law of large numbers,
the central limit theorem, the Lévy-Khintchin formula and others. We refer to
Voiculescu, Dykema and Nica [26] and Hiai and Petz [17] for introduction to these
topics. Bercovici and Pata [10] established the distributional behavior of sums of
free identically distributed random variables and described explicitly the correspon-
dence between limits laws for free and classical additive convolution. Chistyakov
and Götze [14] generalized the results of Bercovici and Pata to the case of free
non-identically distributed random variables. They showed that the parallelism
found by Bercovici and Pata holds in the general case of free non-identically
distributed random variables. Using the method of subordination functions they
proved the semi-circle approximation theorem (an analog of the Berry-Esseen
inequality). See Kargin’s paper [18] as well.

In the classical probability Doeblin [15] showed that it is possible to construct
independent identically distributed random variables X1;X2; : : : such that the dis-
tribution of the centered and normalized sum b�1

nk
.X1 C 
 
 
 C Xnk � ank / does not

converge to any nondegenerate distribution, whatever the choice of the constants an
and bn and of the sequence n1 < n2 < : : : . Kolmogorov [19] initiated the study of
approximations of sequences f�n�g1

nD1 of convolutions of some distribution � by
elements of the class of infinitely divisible distributions in some metric as n ! 1.
Prokhorov [23] and Kolmogorov [20] studied this problem which subsequently led
to seminal results by Arak and Zaitsev in their monograph [5] on this problem.

Due to the Bercovici–Pata parallelism between limits laws for free and classical
additive convolution results like those of Doeblin should hold for free random
variables as well, which we discuss in Sect. 2. Thus Kolmogorov’s approach would
be natural in free Probability Theory as well but has not been done yet and we would
like to start research in this direction. In particular in this paper we study the problem
of approximating n-fold additive free convolutions of probability measures by
additive free infinitely divisible probability measures.

The paper is organized as follows. In Sect. 2 we formulate and discuss the main
results of the paper. In Sect. 3 we formulate auxiliary results. Section 4 contains a
upper bound in the approximation problem.

2 Results

Denote by M the family of all Borel probability measures defined on the real line
R. On M define the associative composition laws denoted � and � as follows. For
�1; �2 2 M let a probability measure�1��2 denote the classical convolution of�1
and�2. In probabilistic terms,�1��2 is the probability distribution ofXCY , where
X and Y are (commuting) independent random variables with distributions �1 and
�2, respectively. A measure �1 � �2 on the other hand denotes the free (additive)
convolution of �1 and �2 introduced by Voiculescu [25] for compactly supported
measures. Free convolution was extended by Maassen [21] to measures with finite
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variance and by Bercovici and Voiculescu [9] to the class M . Thus, �1 � �2 is
the probability distribution of X C Y , where X and Y are free random variables
with distributions �1 and �2, respectively.

Let �.�; �/ be the Kolmogorov distance between probability measures � and �,
i.e.,

�.�; �/ D sup
x2R

j�..�1; x//� �..�1; x//j:

In 1955 Prokhorov [23] proved that

�.�n�;D�/ WD inf
�2D�

�.�n�; �/ ! 0; n ! 1; (1)

for any �2 M , where �n� denotes the n-fold convolution of the probability
measure � and D� denotes the set of infinitely divisible probability measures
(with respect to classical convolution). Kolmogorov [20] noted that the convergence
in (1) is uniform with respect to � throughout the class M . Work by a number of
researchers (a detailed history of the problem may be found in [5]) eventually proved
upper and lower bounds for the function  .n/ WD sup�2M �.�n�;D�/. A final
answer was given by Arak [3, 4], who proved the following bound:

c1n
�2=3 �  .n/ � c2n

�2=3;

where c1 and x2 are absolute positive constants. Chistyakov [12] returned to
Prohorov’s result [23] and studied the problem of determining the possible rate of
convergence of �.�n�;D�/ to zero as n ! 1 for probability measures � 62 D�.

Define the distance in variation between two signed measures � and � by

�var .�; �/ WD sup
S2 B

j�.S/� �.S/j;

where B denotes the �-algebra of Borel subsets of R. If �; � are probability
measures, then �var .�; �/ WD var.� � �/=2. It is natural to consider the analogous
problems for the distance in variation. Prokhorov’s paper [23] states that the quantity

�var .�
n�;D�/ WD inf

�2D�
�var .�

n�; �/ (2)

tends to zero as n ! 1 if � 2 M is discrete or it has a nondegenerate absolutely
continuous component.

Zaitsev [28] proved that there exist probability measures � whose set of n-fold
convolutions is uniformly separated from the set of infinitely divisible measures in
the sense of the variation distance.

Let � 2 M , denote �n� WD � � 
 
 
 � � (n times). Recall that � 2 M is
�-infinitely divisible if, for every n 2 N, there exists �n 2 M such that � D �n�

n .
In the sequel we will write in this case that � 2 D�.
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Fix now �; � 2 M . We will say that � belongs to the partial �-domain of
attraction (resp., partial �-domain of attraction) of � if there exist measures
�1; �2; : : : equivalent to �, and natural numbers k1 < k2 < : : : such that

�n � �n � 
 
 
 � �n; .kn times/
�

resp:; �n � �n � 
 
 
� �n; .kn times/
�

converges weakly to � as n ! 1. Recall that �j and � are equivalent if there exist
real numbers a; b with a > 0, such that �j .S/ D �.aS C b/ for every S 2 B.
Denote by P�.�/ (resp., P�.�/) the partial �-domain of attraction (resp., partial
�-domain of attraction) of �. Khinchin proved the following result for the classical
convolution (for free convolution it was proved by Pata [22]).

A measure � 2 M is �-infinitely divisible (resp., �-infinitely divisible) if and
only if P�.�/ (resp., P�.�/) is not empty.

The next result is due to Bercovici and Pata [10] and is known as the Bercovici-
Pata bijection.

There exists a bijection � $ �0 between �-infinitely divisible measures � and
�-infinitely divisible measures �0 such that P�.�/ D P�.�

0/. More precisely, let
�n 2 M , let k1 < k2 < : : : be positive integers, and set

�n D �n � �n � 
 
 
 � �n .kn times/; �0
n D �n � �n � 
 
 
� �n .kn times/:

Then �n converges weakly to � if and only if �0
n converges weakly to �0.

We return to Doeblin’s result [15]. Using this result and the two last results
about P�.�/ and P�.�/ we see that there exist free identically distributed random
variables X1;X2; : : : such that the distribution of the centered and normalized
sum b�1

nk
.X1 C 
 
 
 C Xnk � ank / does not converge weakly to any nondegenerate

distribution, whatever the choice of the constants an and bn and of the sequence
n1 < n2 < : : : .

Introduce the quantity

�var .�
n�;D�/ WD inf

�2D�

�var .�
n�; �/

and raise the question of the behavior of this quantity when n ! 1.
In the sequel we denote by c.�/; c1.�/ positive constants depending on � only,

while c.�/ is used to denote either generic constants for cases where we are not
interested in particular values.

In order to formulate our main result we introduce the following notation

c1.�/ WD =
�
1
.Z

R

�.dt/

i � t
�

� 1:

It is easy to see that c1.�/ > 0 if and only if � ¤ ıb with b 2 R, where ıb denotes
the Dirac measure concentrated at the point b.
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Theorem 1. Let � 2 M and c1.�/ > 0. Then

�var .�
n�;D�/ � c.�/

� 1p
n

Z

Œ�Nn=8;Nn=8�
juj�.du/C �.R n Œ�Nn=8;Nn=8�/

�
; n 2 N;

(3)

where Nn WD p
c1.�/.n � 1/.

It was proved in [6] that �n� is Lebesgue absolutely continuous when n is
sufficiently large, provided that � ¤ ıb for any b. Therefore we immediately obtain
from Theorem 1 a free analog of Prokhorov’s result (2).

Corollary 1. For � 2 M ,

�var .�
n�;D�/ ! 0; as n ! 1:

In addition this corollary shows that in contrast to the classical case the approx-
imation of n-fold free additive convolutions by free infinitely divisible probability
measures can be shown in variation distance for all � 2 M .

Denote by Md ; d � 0, the set of probability measures such that

ˇd .�/ WD
Z

R

jxjd �.dx/ < 1:

We easily obtain from Theorem 1 the following upper bound.

Corollary 2. Let � 2 Md with some d > 0. Then

�var .�
n�;D�/ � c.�; d/n� minfd=2;1=2g; n 2 N; (4)

where c.�; d/ denotes a constant depending on � and d only.
From this corollary it follows that for all � 2 M1 the order of approximation of

�n� by free infinitely divisible measures is of order n�1=2 in variation distance.
In the classical case there exist results with a rate of approximation in the

Kolmogorov metric which depend on the number of existing moments. See, for
example, the paper of Zaitsev [29].

Proof. Let d0 WD minf1; d g and c1.�/ > 0. We have

Z

Œ�Nn=8;Nn=8�
juj�.du/ �

�Nn

8

�1�d0 Z

Œ�Nn=8;Nn=8�
jujd0 �.du/ � ˇd0.�/

�c1.�/n

64

� 1�d0
2
:

(5)
In addition

�.Rn Œ�Nn=8;Nn=8�/ �
� 8

Nn

�d0
Z

juj>Nn=8
jujd0 �.du/ � ˇd0.�/

� 64

c1.�/.n � 1/
� d0

2
:

(6)
Now we see that (4) follows immediately from (3), (5) and (6). ut
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3 Auxiliary Results

We shall need some results about some classes of analytic functions (see [1], Sect. 3,
and [2], Sect. 6, �59).

Let C
C denote the open upper half of the complex plane. The class N

(Nevanlinna, R.) denotes the class of analytic functions f .z/ W CC ! fz W =z � 0g.
For such functions there is an integral representation

f .z/ D aCbzC
Z

R

1C uz

u � z
�.du/ D aCbzC

Z

R

� 1

u � z
� u

1C u2

�
.1Cu2/ �.du/ (7)

for z 2 C
C, where b � 0, a 2 R, and � is a nonnegative finite measure. Moreover,

a D <f .i/ and �.R/ D =f .i/ � b. From this formula it follows that

f .z/ D .b C o.1//z (8)

for z 2 C
C such that j<zj==z stays bounded as jzj tends to infinity (in other words

z ! 1 non-tangentially to R). Hence if b ¤ 0, then f has a right inverse f .�1/
defined on the region

�˛;ˇ WD fz 2 C
C W j<zj < ˛=z; =z > ˇg

for any ˛ > 0 and some positive ˇ D ˇ.f; ˛/.
A function f 2 N admits the representation

f .z/ D
Z

R

�.du/

u � z
; z 2 C

C; (9)

where � is a finite nonnegative measure, if and only if supy�1 jyf .iy/j < 1 and
�.R/ D limy!1 y=f .iy/.

For � 2 M , define its Cauchy transform by

G�.z/ D
1Z

�1

�.dt/

z � t
; z 2 CC: (10)

The measure � can be recovered from G�.z/ as the weak limit of the measures

�y.dx/ D � 1

�
=G�.x C iy/ dx; x 2 R; y > 0;

as y # 0. If the function =G�.z/ is continuous at x 2 R, then the probability
distribution functionD�.t/ D �..�1; t// is differentiable at x and its derivative is
given by

D0
�.x/ D �=G�.x/=�: (11)
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This inversion formula allows to extract the density function of the measure � from
its Cauchy transform.

Following Maassen [21] and Bercovici and Voiculescu [9], we shall consider in
the following the reciprocal Cauchy transform

F�.z/ D 1

G�.z/
: (12)

The corresponding class of reciprocal Cauchy transforms of all �2 M will be
denoted by F . This class coincides with the subclass of Nevanlinna functions f
for which f .z/=z ! 1 as z ! 1 non-tangentially to R. Indeed, reciprocal Cauchy
transforms of probability measures have obviously such property. Let f 2 N and
f .z/=z ! 1 as z ! 1 non-tangentially to R. Then, by (8), f admits the represen-
tation (7) with b D 1. By (8) and (9), �1=f .z/ admits the representation (9) with
� 2 M .

The function 	�.z/ D F
.�1/
� .z/ � z is called the Voiculescu transform of �. It is

not difficult to show that 	�.z/ is an analytic function on �˛;ˇ and =	�.z/ � 0 for
z 2 �˛;ˇ, where 	� is defined. Furthermore, note that 	�.z/ D o.z/ as jzj ! 1,
z 2 �˛;ˇ .

Voiculescu [27] showed that for compactly supported probability measures there
exist unique functions Z1;Z2 2 F such that G�1��2.z/ D G�1.Z1.z// D
G�2.Z2.z// for all z 2 C

C. Maassen [21] proved the similar result for probability
measures with finite variance. Using Speicher’s combinatorial approach [24] to
freeness, Biane [11] proved this result in the general case.

Chistyakov and Götze [13], Bercovici and Belinschi [7] and Belinschi [8],
proved, using methods from complex analysis, that there exist unique functions
Z1.z/ and Z2.z/ in the class F such that, for z 2 C

C,

z D Z1.z/CZ2.z/ � F�1.Z1.z// and F�1.Z1.z// D F�2.Z2.z//: (13)

The function F�1.Z1.z// belongs again to the class F and there exists a probability
measure � such that F�1.Z1.z// D F�.z/, where F�.z/ D 1=G�.z/ and G�.z/ is
the Cauchy transform as in (10).

Specializing to �1 D�2 D : : : D�n D� write �1 � 
 
 
� �n D�n�. The rela-
tion (13) admits the following consequence (see for example [13]).

Proposition 1. Let � 2 M . There exists a unique function Zn.z/ 2 F such that

z D nZn.z/ � .n � 1/F�.Zn.z//; z 2 C
C; (14)

and F�n�.z/ D F�.Zn.z//.

Using the last proposition we now state and prove some auxiliary results about
the behavior of the functionZn.z/.

From (14) we obtain the formula

Z.�1/
n .z/ D nz � .n � 1/F�.z/ (15)
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for z 2 �˛;ˇ with some ˛; ˇ > 0. This equation provides an analytic continuation of

the function Z.�1/
n .z/ defined on C

C. By (7), we have the following representation
for the function F�.z/

F�.z/ D c C z C
Z

R

1C uz

u � z
�.du/; z 2 C

C; (16)

where c 2 R, and � is a nonnegative finite measure. Moreover, c D <F�.i/ and
�.R/ D =F�.i/ � 1 D =.1=G�.i// � 1 D c1.�/.

Bercovici and Voiculescu [9] proved the following result.

Proposition 2. A probability measure � is �-infinitely divisible if and only if
the function 	�.z/ has an analytic continuation defined on C

C, with values in
C

� [ R, such that

lim
y!C1

	�.iy/

y
D 0: (17)

It follows from Proposition 2 and (15), (16) that a probability measure �n such
that F�n.z/ D Zn.z/; z 2 C

C, is�-infinitely divisible.
The next lemma was proved in [13].

Lemma 1. Let g W CC ! C
� be analytic with

lim inf
y!C1

jg.iy/j
y

D 0: (18)

Then the function f W CC ! C defined via z 7! z C g.z/ takes every value in C
C

precisely once. The inverse f .�1/ W CC ! C
C thus defined is in the class F .

This lemma generalizes a result of Maassen [21] (see Lemma 2.3). Maassen
proved Lemma 1 under the additional restriction jg.z/j � c.g/==z for z 2 C

C,
where c.g/ is a constant depending on g.

Denote z D x C iy, where x; y 2 R. Using the representation (16) for F�.z/ we
see that, for =z > 0,

=
�
nz � .n � 1/F�.z/

�
D y

�
1 � .n � 1/I�.x; y/

�
;

where

I�.x; y/ WD
Z

R

.1C u2/ �.du/

.u � x/2 C y2
:

For every real fixed x, consider the equation

y
�
1� .n � 1/I�.x; y/

�
D 0; y > 0: (19)
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Since in the case �.R/ ¤ 0 y 7! I�.x; y/; y > 0, is positive and monotone, and
decreases to 0 as y ! 1, it is clear that the Eq. (19) has at most one positive
solution. If such a solution exists, denote it by yn.x/. Note that (19) does not have
a solution y > 0 for any given x 2 R if and only if I�.x; 0/ � 1=.n� 1/. Consider
the set S WD fx 2 R W I�.x; 0/ � 1=.n � 1/g. We put yn.x/ D 0 for x 2 S .
By Fatou’s lemma, I�.x0; 0/ � lim infx!x0 I�.x; 0/ for any given x0 2 R, hence
the set S is closed. Therefore R n S is the union of finitely or countably many
intervals .xk; xkC1/; xk < xkC1. The function yn.x/ is continuous on the interval
.xk; xkC1/. Since the set fz 2 C

C W n=z � .n � 1/=F�.z/ > 0g is open, we see
that yn.x/ ! 0 if x # xk and x " xkC1. Hence the curve 
n given by the equation
z D x C iyn.x/; x 2 R, is a Jordan curve. In the case �.R/ D 0 we put yn.x/ WD 0

for all x 2 R.
Consider the open domainDn WD fz D x C iy; x; y 2 R W y > yn.x/g.

Lemma 2. Let Zn.z/ be the solution of the Eq. (14). The map Zn.z/ W CC 7! Dn

is univalent. Moreover the functionZn.z/; z 2 C
C, is continuous up to the real axis

and it maps the real axis bicontinuously onto the curve 
n.

Proof. Using the formula (15) for z 2�˛;ˇ with some ˛; ˇ >0, we see that the func-

tion Z.�1/
n .z/ has an analytic continuation defined on C

C. In view of the represen-
tation (16) for the function F�.z/, we note that Z.�1/

n .z/D z C g.z/; z 2C
C, where

g.z/ is analytic on C
C and satisfies the assumptions of Lemma 1. By Lemma 1,

we conclude that the function Z.�1/
n .z/ takes every value in C

C precisely once.
Moreover, as it is easy to see, Z.�1/

n .Dn/DC
C and <Z.�1/

n .x C iyn.x//! ˙ 1
as x ! ˙1. The inverse Zn.z/ gives us a conformal mapping of CC onto Dn. By
well-known results of the theory of analytic functions (see [16]),Zn.z/ is continuous
up to the real axis and it maps the real axis bicontinuously onto the curve 
n. ut
Lemma 3. Let c1.�/ > 0 and let Zn.z/ be the solution of the Eq. (14). Then the
following lower bound holds

jZn.z/j � 1

4

p
c1.�/.n � 1/; z 2 C

C; n � c.�/: (20)

Proof. We shall prove that, for real x such that jxj � 1
4
Nn D 1

4

p
c1.�/.n � 1/,

the lower bound yn.x/ > 1
2
Nn holds. Indeed, for jxj � 1

4
Nn and juj � 1

4
Nn, the

inequality .u � x/2 C y2n.x/ � 1
4
c1.�/.n� 1/C y2n.x/ D 1

4
�.R/.n� 1/C y2n.x/ is

valid. Therefore, using (19), we deduce the following chain of inequalities

1

n� 1

Z

Œ�Nn=4;Nn=4�

�.du/
1
4
�.R/C 1

n�1y2n.x/
�

Z

Œ�Nn=4;Nn=4�

�.du/

.u � x/2 C y2n.x/

�
Z

R

.1C u2/ �.du/

.u � x/2 C y2n.x/
� 1

n � 1
: (21)
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Assume that there exists an x0 2 ŒNn=4;Nn=4� such that 0 � yn.x0/ � Nn=2. Then
it follows from (21) that

�.Œ�Nn=4;Nn=4�/
1
4
�.R/C 1

4
�.R/

� 1: (22)

Since, for all sufficiently large n � c.�/, the lower bound �.Œ�Nn=4;Nn=4�/ �
3
4
�.R/ holds, we arrive at contradiction.

Finally note that the assertion of the lemma follows from Lemma 2. ut

4 A Upper Bound in the Approximation Theorem

Proof of Theorem 1. By Proposition 1 there exists a unique function Zn.z/ 2 F
such that (14) holds and G�n�.z/ D G�.Zn.z//; z 2 C

C. We have shown in

Sect. 3 that the function Zn satisfies 1=Zn.z/ D G�n.z/; z 2 C
C, where �n is an

�-infinitely divisible probability measure. Our aim is to estimate �var .�
n�; �n/ for

all n 2 N. For any z 2 C
C, we may represent G�n�.z/ as

G�n�.z/ D In1.z/C In2.z/ WD
� Z

Œ�Nn=8;Nn=8�
C

Z

RnŒ�Nn=8;Nn=8�

� �.du/

Zn.z/ � u
: (23)

Since Zn.z/ 2 F , by (8), we have Zn.iy/ D .1C o.1//iy as y ! 1. Therefore

�y= 1

Zn.iy/ � u
D y

=Zn.iy/
jZn.iy/ � uj2 D 1C o.1/

as y ! 1 for all fixed u 2 R, and, by the inequality =Zn.iy/ � y; y > 0,

�y= 1

Zn.iy/ � u
� y

=Zn.iy/ � 1; u 2 R; y > 0:

By Lebesgue’s theorem, we easily deduce the relations

lim
y!1.�y=In1.iy// D �.Œ�Nn=8;Nn=8�/

and
lim
y!1.�y=In2.iy// D �.R n Œ�Nn=8;Nn=8�/:

Therefore, by (9),

Inj .z/ D
Z

R

�nj .dt/

z � t ; z 2 C
C; j D 1; 2;



Free Infinitely Divisible Approximations of n-Fold Free Convolutions 235

where �nj ; j D 1; 2, denote nonnegative measures such that
�n1.R/ D �.Œ�Nn=8;Nn=8�/ and �n2.R/ D �.R n Œ�Nn=8;Nn=8�/.

By Lemma 2, the map Zn.z/ W CC 7! Dn is univalent. Moreover the function
Zn.z/ is continuous on C

C [ R and it maps R bicontinuously onto the curve 
n.
The function F�.z/ admits the representation (16), where, by the assumption of
the theorem, �.R/ D c1.�/ > 0.

By (20), we have

jZn.x C i"/� uj � jZn.x C i"/j � juj � 1

8
Nn (24)

for x 2 R; " 2 .0; 1� and u 2 Œ�Nn=8;Nn=8�. Therefore, by Lemmas 2 and (24),
1
�

lim"#0 =.1=.u � Zn.x C i"/// exists for every x 2 R; u 2 Œ�Nn=8;Nn=8�, and
this limit is a continuous probability density for every fixed u 2 Œ�Nn=8;Nn=8�.
By Lebesgue’s theorem the measure �n1 is absolutely continuous and its density
p1.x/ has the form

p1.x/ D 1

�

Z

Œ�Nn=8;Nn=8�
lim
"#0

= 1

u �Zn.x C i"/
�.du/:

The probability measure �n is absolutely continuous as well with a density

p2.x/ D � 1
�

lim
"#0

= 1

Zn.x C i"/
:

Since

=
� 1

Zn.x C i"/� u
� 1

Zn.x C i"/

�
D u

2<Zn.x C i"/� u

jZn.x C i"/� uj2 = 1

Zn.x C i"/
;

we obtain, using (24),

ˇ
ˇ
ˇ=
� 1

Zn.x C i"/� u
� 1

Zn.x C i"/

�ˇ
ˇ
ˇ � �c.�/ jujp

n
= 1

Zn.x C i"/

for all x 2 R; u 2 Œ�Nn=8;Nn=8� and " 2 .0; 1�. From this bound we conclude that

Z

R

jp1.x/ � �.Œ�Nn=8;Nn=8�/p2.x/j dx

D 1

�

Z

R

ˇ
ˇ
ˇ

Z

Œ�Nn=8;Nn=8�
lim
"#0

=
� 1

u �Zn.x C i"/
C 1

Zn.x C i"/

�
�.du/

ˇ
ˇ
ˇdx
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� 1

�

Z

R

Z

Œ�Nn=8;Nn=8�
lim sup
"#0

ˇ
ˇ
ˇ=
� 1

u �Zn.x C i"/
C 1

Zn.x C i"/

�ˇ
ˇ
ˇ�.du/ dx

� c.�/p
n

Nn=8Z

�Nn=8
juj�.du/

Z

R

1

�
lim
"#0

ˇ
ˇ
ˇ= 1

Zn.x C i"/

ˇ
ˇ
ˇ dx � c.�/p

n

Nn=8Z

�Nn=8
juj�.du/:

(25)

In view of the relation

var.�n� � �n/ D var.�n1 C �n2 � �n/

� var.�n1 � �.Œ�Nn=8;Nn=8�/�n/C var �n2

C �.R n Œ�Nn=8;Nn=8�/ var �n;

we have

�var .�
n�; �n/ � 1

2

Z

R

jp1.x/� �.Œ�Nn=8;Nn=8�/ p2.x/j dx

C 1

2
�n2.R/C 1

2
�.R n Œ�Nn=8;Nn=8�/

� 1

2

Z

R

jp1.x/� �.Œ�Nn=8;Nn=8�/ p2.x/j dx C �.R n Œ�Nn=8;Nn=8�/:

(26)

Note that the statement of the theorem now follows immediately from (25)
and (26). ut
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1 Introduction

In the present paper we continue to study properties of high-dimensional Gaussian
random vectors. We get new results for basic statistics connected with high-
dimensional vectors. In Christoph, Prokhorov and Ulyanov [2] two-sided bounds
were constructed for a probability density function p.u; a/ of a random variable
jY � aj2; where Y is a Gaussian random element with zero mean in a Hilbert space
H . The constructed bounds are sharp in the sense that starting from large enough u
a ratio of upper bound to lower one equals 8 and does not depend on any parameters
of a distribution of jY � aj2. The results hold for finite-dimensional space H D Rd

as well provided that its dimension d � 3. In Kawaguchi, Ulyanov and Fujikoshi [8]
geometric representation of N observations on n variables were studied. It is useful
to describe asymptotic behavior of the following statistics:

• Length of n-dimensional observation vector,
• Distance between two independent observation vectors and
• Angle between these vectors.

In Hall, Marron and Neeman [6] the asymptotic distributions of these statistics
were pointed out in a high-dimensional framework when the dimension n tends to
infinity while the sample size N is fixed. In Kawaguchi, Ulyanov and Fujikoshi [8]
we obtained the computable error bounds for approximations of the length and the
distance. The aim of the present paper is to get a computable error bounds for the
angle. Moreover, in order to construct the bounds we study approximations for
the sample correlation coefficients. Assuming that X1; : : : ;XN is a sample from
a normal distribution N.0; In/ with zero mean and identity covariance matrix In.
Hall, Marron and Neeman [6] showed that

� D ang.Xi ;Xj / D 1

2
� COp.n

�1=2/; i; j D 1; : : : ; N; i ¤ j; (1)

whereOp denotes the stochastic order. Since

cos � D kXik2 C kXjk2 � kXi � Xjk2
2 kXik kXj k D Rij ;

where Rij is the sample correlation coefficient for the vectors Xi and Xj , the
computable error bounds for � will follow from computable error bounds for Rij .
Below we omit the indices i and j and write simplyRDRij . There are many results
about asymptotic properties of R, see e.g. Johnson, Kotz and Balakrishnan [7],
Chap. 32. Some of the most precise approximations of the distributions of R and
Fisher’s normalizing and variance stabilizing z-transform

Z.R/ D .1=2/ lnf.1CR/=.1� R/g (2)
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by short Edgeworth-Chebyshev expansions were suggested by Konishi [9]. The
remainder terms have the order O.n�3=2/. The accuracy of the proposed approxi-
mations is examined comparing the normal short Edgeworth-Chebyshev expansions
with the exact values due to David [4]. However, our paper is first one containing
the computable error bounds of approximations.

The structure of the paper is the following. In Sect. 2 we consider the sample
correlation coefficient and the angle between the involved vectors. In Sect. 3 some
asymptotes for the constant factor with the Gamma-functions in the density function
of the correlation coefficient are given. Computable error bounds of order O.n�3/
or O.n�2/ are constructed in Sect. 4 when the distributions of R or the angle
between the vectors are approximated by short asymptotic expansions using one
of the representations for the probability density of R. In Sect. 5 some Bartlett-
type corrections are considered. A new transform of R similar to Fisher transform
is constructed. This transform can be approximated by normal distribution up
to order O.n�2/. In Sect. 6 we give an error bound also of order O.n�2/ as
corollary of general results for scale-mixed distributions, see Fujikoshi, Ulyanov
and Shimizu [5], Chap. 13, and the fact that

p
n � 2R =

p
1 � R2 has Student’s

t-distribution with n � 2 degrees of freedom. The last Sect. 7 contains the proofs.

2 Sample Correlation Coefficient and Angle Between Vectors

Let X D .X1; : : : ; Xn/
T , and Y D .Y1; : : : ; Yn/

T be two vectors from an n-dimen-
sional normal distribution N.0; In/ with zero mean, identity covariance matrix In
and the sample correlation coefficient

R D R.X;Y/ D
Pn

kD1 Xk YkqPn
kD1 X2

k

Pn
kD1 Y 2k

:

The so-called null density function pR.r In/ of R is given in Johnson, Kotz and
Balakrishnan [7], Chap. 32, formula (32.7):

pR .r In/ D � ..n � 1/=2/p
� � ..n � 2/=2/

�
1 � r2

�.n�4/=2
I.�1; 1/.r/; n � 5; (3)

where IA.x/ denotes indicator function of set A.
R is two point distributed with P.RD � 1/DP.RD 1/D 1=2 if nD 2 and it is

U -shaped fornD 3with density pR.r I 3/D� �2.1=2/ .1 � r2/�1=2 I.�1;1/.r/. The
sample correlation coefficient R is uniform fornD 4: pR.r I 4/D 1=2 I.�1;1/.r/.
Moreover, for n � 5 the density function pR.r In/ is unimodal.

Consider now the standardized correlation coefficientR D p
n � c Rwith some

correcting real constant c < n having density
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pR.r In; c/ D � ..n � 1/=2/p
n � c

p
� � ..n � 2/=2/

�

1 � r2

n � c
�.n�4/=2

Ifjr j<p
n�c g.r/; (4)

which converges to the standard normal density '.r/D e� r2=2 =
p
2 � , r 2 R1 for

c D O.1/ as n ! 1 and by Konishi [9]

F �
n .x/ WD P

�p
n� 2 R � x

�
D ˚.x/C 1

n � 2
�

� x

4
C x3

4

�

'.x/CO.n�3=2/ (5)

and

Fn.x/ WD P
�p

n � 2:5 R � x
�

D ˚.x/C 1

n � 2:5

x3

4
'.x/CO.n�3=2/: (6)

as n ! 1, where ˚.x/ D R x
�1 '.r/dr is standard normal distribution function.

Note that in Konishi [9] the sample size (in our case the dimension of vectors) is
nC1 and our c D 1C2�with Konishi’s correcting constant�. Moreover (5) and (6)
are corollaries for independent components in the pairs .Xk; Yk/, k D 1; : : : ; n from
the more general Theorem 2.2 in the mentioned paper.

Usually the asymptotic for R is (5), where c D 2 since it is related to the
t-distributed statistic

p
n � 2R =

p
1 � R2. With the correcting constant c D 2:5,

one term in the asymptotic in (6) vanishes.
Let us consider now the connection between the correlation coefficientR and the

angle � of the involved vectors, defined in (1). For any fixed constant c < n; and
arbitrary x with jxj=pn � c < �=2 we write for the angle � W 0 < � < �:

P
�p
n � c.� � �=2/ � x

� D P
�
� � �=2C x=

p
n � c�

D P
�
cos � � cos.�=2C x=

p
n � c/

�

D P
�
R � � sin.x=

p
n � c/�

D P
�p
n � c R � p

n � c sin.x=
p
n � c/� (7)

because R is symmetric and P.R � x/ D P.�R � x/.

3 Some Preliminaries and Remarks

Before we calculate the error bounds in (5) and (6), we prove some estimates
for the constant factor with the Gamma-functions in the density (4) which are of
independent interest. Define for arbitrary correcting real constant c < n

An.c/ WD
p
2 � ..n � 1/=2/p

n � c � ..n � 2/=2/
; An WD An.2:5/ and A�

n WD An.2/: (8)
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Lemma 1. For n � 7 we have with c D 2

ˇ
ˇ
ˇ
ˇA

�
n � 1C 1

4 .n� 2/ � 1

32 .n� 2/2

ˇ
ˇ
ˇ
ˇ � 23

360 .n� 2/3
: (9)

and with c D 2:5

ˇ
ˇ
ˇ
ˇAn � 1 � 1

16 .n� 2:5/2

ˇ
ˇ
ˇ
ˇ � 319

2;880 .n� 2:5/3
: (10)

Remark 1. Stirling’s formula, see Abramowitz and Stegun [1], formula (3.6.37),
allows us to find the asymptotic of functionAn given in (8) with c D 2:5 as n ! 1:

An D 1C 1

16 .n� 2:5/2
C 1

8 .n� 2:5/3
C 77

512 .n� 2:5/4 CO
�
n� 5

�
:

Remark 2. Consider now an arbitrary c in (8), then we may obtain the following
asymptotic behavior as n ! 1:

An.c/ D 1C 2c � 5
4 .n� 2/

C 1 � 4.c � 2/C 12.c � 2/2

32 .n� 2/2 C O
�
n� 3

�
: (11)

Only for c D 5=2 the term with 1=.n�2/ in the asymptotic expansion (11) vanishes.

From (4) and (8) it follows that

pR.r In; c/ D An.c/p
2�

�

1 � r2

n � c
�.n�4/=2

Ifjr j<p
n�c g.r/: (12)

Define

qR.r In; c/ WD 1p
2�

�

1 � r2

n � c
�.n�4/=2

Ifjr j<p
n�c g.r/: (13)

Then we obtain

pR.r In; c/ � qR.r In; c/ D An.c/ � 1p
2�

�

1 � r2

n � c

�.n�4/=2
Ifjr j<p

n�c g.r/
(14)

and An.c/ � 1 can be estimated with Lemma 1.

Remark 3. Equation (14) permits a non-uniform bound. Using 1� z � e�zwe find

�
1 � r2

n � c
�.n�4/=2 � exp




� r2 .n � 4/

2 .n� c/
�

for jr j < p
n � c:

For jr j � p
n � c and n > 4 Lemma 1 leads to
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ˇ
ˇ
ˇ
ˇ
ˇ
pR.r In; 2:5/�

�
1C 1

16 .n� 2:5/2
�
qR.r In; 2:5/

ˇ
ˇ
ˇ
ˇ
ˇ

� 319 qR.r In; 2:5/
2;880 .n� 2:5/3

(15)

for c D 2:5, whereas in case of c D 2 we obtain

ˇ
ˇ
ˇ
ˇ
ˇ
pR.r In; 2/�

�

1 � 1

4 .n� 2/
C 1

32 .n� 2/2

�

qR.r In; 2/
ˇ
ˇ
ˇ
ˇ
ˇ

� 23 qR.r In; 2/
360 .n� 2/3 :

Finally let us consider upper and lower bounds for Mills’ ratio with the standard
normal law, which follow from formula (7.1.13) of Abramowitz and Stegun [1]:

2 e�r2=2

r C p
r2 C 4

�
Z 1

r

e�t 2=2 dt � 2 e�r2=2

r Cp
r2 C 8=�

: (16)

Using E.Y 2k/ D .2k � 1/ŠŠ if Y is standard normal distributed and integrating by
parts for k D 6; 5; 4; 3; 2 together with the lower bound of (16) for k D 0 , we find

Z A

0

r2k'.r/ dr D
Z 1

0

r2k '.r/ dr �
Z 1

A

r2k '.r/ dr � .2k � 1/Š Š

2
� U2k.A/;

(17)
where

U12.A/ D
�
A11 C 11A9 C 99A7 C 693A5 C 3;465A3 C 10;395A

C 20;790=.AC
p
A2 C 4 /

�
'.A/;

U10.A/ D
�
A9 C 9A7 C 63A5 C 315A3 C 945A

C 1;890=.AC
p
A2 C 4 /

�
'.A/;

U8.A/ D
�
A7 C 7A5 C 35A3 C 105AC 210=.AC

p
A2 C 4 /

�
'.A/ and

U6.A/ D
�
A5 C 5A3 C 15AC 30=.AC

p
A2 C 4 /

�
'.A/;

Usually, the integral on the left hand side of (17) will be estimated by the 2 k-th
moment of the normal random variable. The term U2k.A/ decreases exponentially
fast, nevertheless it has a remarkable influence on the numerical values of the bounds
for A < 200, for larger A its influence is not remarkable. Using (17) in Christoph
and Ulyanov [3] we could significantly decrease the numerical constants in similar
results for the standardized chi-squared distribution, obtained in Ulyanov, Christoph
and Fujikoshi [11].
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4 Main Results

First we prove an estimate for the standardized correlation coefficient with a second
order Edgeworth-Chebyshev expansion, which leads to smaller numerical constants
in the error bounds in (5) and (6). DefineQ2.x/D .�3 x7C 13 x5C 2 x3C 6 x/ '.x/:

Theorem 1. Let R be the sample correlation coefficient with density (3). Then for
any n � 7 and any � W 0 < � < 1 with �

p
n � 2:5 � 1:7we have

sup
x

ˇ
ˇ
ˇ
ˇP
�p

n � 2:5 R � x
�

� ˚.x/ � x3 '.x/

4 .n � 2:5/
� Q2.x/

96 .n � 2:5/2
ˇ
ˇ
ˇ
ˇ � Cn.�/

.n � 2:5/3
;

(18)

where with N D n � 2:5 and n� D �
p
N

Cn.�/ D
�
1C 1

16N 2

�
"

e9=.16N/C9=.32N2/C�6=4
�105 � 2U8.n�/

16
C 945 � 2U10.n�/

20N .1 � �2/

�

C 1:148999

2;304 N

�
10;6785 � 32U12.n�/C 144U10.n�/ � 162U8.n�/

�

C 1

384

�
2;161:560294 � U12.n�/C 9U10.n�/ � 27U8.n�/C 27U6.n�/

�

C 1

96

�
990:574299 � 4U10.n�/C 21U8.n�/ � 27U6.n�/

�

C N3:5

p
2� � .N C 1=2/

�
1 � �2

�N=2C 1=4 C 2N 2:5 '.n�/
�
1C 1=.16N 2/

�

�
�
1C

q
1C 8=

�
� �2t

� �

C �3 N 2:5 '.n�/

4
C N

jQ2.n�/j
96

#

C 0:062610 C 0:009614=N:

Theorem 1 leads to computable error bounds in (5) and (6) of orderO.n�2/.

Theorem 2. Let R be the sample correlation coefficient with density (3). Then for
any n � 7 and any � W 0 < � < 1 with �

p
n � 2:5 � 1:7we have

supx

ˇ
ˇ
ˇ
ˇP
�p

n � 2:5 R � x
�

� ˚.x/ � x3 '.x/

4 .n� 2:5/

ˇ
ˇ
ˇ
ˇ � Bn.�/

.n � 2:5/2
(19)

and

supx

ˇ
ˇ
ˇ
ˇP
�p

n � 2 R � x
�

� ˚.x/ � .�x C x3/ '.x/

4 .n� 2/

ˇ
ˇ
ˇ
ˇ � B�

n .�/

.n � 2/2 ; (20)

where Bn.�/ WD 0:15372984 C Cn.�/ = .n� 2:5/ and
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Table 1 Numerical values of Cn.�/,Bn.�/,B�
n .�/,Dn.�/ andD�

n .�/ for some n

n 7 10 25 50 75 100 500 1000

� 0.8854 0.8481 0.7609 0.6717 0.6071 0.5580 0.3103 0.2341

Cn.�/ 7.74551 14.64497 28.22116 26.87359 25.61820 25.00013 23.78460 23.66564

Bn.�/ 1.875004 2.106477 1.408088 0.719574 0.507169 0.410226 0.201623 0.177539

B�
n .�/ 2.083101 2.298199 1.584401 0.891985 0.678381 0.580864 0.370904 0.346655

Dn.�/ 5.240261 5.471734 4.226421 2.705223 2.234399 2.011559 1.509904 1.449459
D�
n .�/ 1.929972 2.161445 1.463056 0.774542 0.562137 0.465194 0.256591 0.232507

B�
n .�/ WD Bn.�/C 0:036471

1� 1=.2n� 4/ C 0:014454

.1 � 1=.2n� 4//2
C 0:114414

.1 � 1=.2n� 4//5=2 :

Equation (7) shows the connection between the correlation coefficient R and the
angle � among the vectors involved.

Theorem 3. Let � be the angle between two vectors, defined in (1). Then for
any n � 7 and any � W 0 < � < 1 with �

p
n � 2:5 � 1:7we have for

jxj � �
p
n � 2:5 =2

supx

ˇ
ˇ
ˇ
ˇP
�p

n � 2:5.� � �=2/ � x
�

� ˚.x/ � x3 '.x/

12 .n� 2:5/
ˇ
ˇ
ˇ
ˇ � Dn.�/

.n � 2:5/2 ;
(21)

where with Bn.�/ given in Theorem 2

Dn.�/ D Bn.�/C 1:084341C minf2:280916; 0:151842C 35:597236=.n� 2:5/g:

If only the domain jxj � �
p
n � 2:5 =6 is considered and the supremum in (21)

is taken in that interval, then Dn.�/ may be replaced by D�
n .�/ D Bn.�/ C

0:054968.

Note that for n � 20 the second term in the minf:; :g inDn.x/ is the smaller one.
In the Table 1 some numerical calculation performed by MAPLE are given.

For fixed n we found optimal � to calculate the constants Cn.�/ by n�3 and then
Bn.�/,B�

n .�/,Dn.�/ andD�
n .�/ by n�2 in the bounds in Theorems 1–3.

Remark 4. The relationship (7) leads to

P
�p
n � c .� � �=2/ � x

� D P
�
R � sin.x=

p
n � c /�

D P
�p
n � c arcsin.R/ � x

�
:

Hence, Theorem 3 gives also an countable error bound for the arcsin-transform of
the sample correlation coefficient arcsin.R/, investigated in Konishi [9], formula
(4.3) in the mentioned paper with an error term of O.n�2/.
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Remark 5. Many authors used Fisher transform Z.R/, given in (2) to calculate
quantiles of sample correlation coefficient R. The inverse to Z function is

Z�1.u/ D .e2u � 1/=.e2u C 1/ D u � u3=3CO.juj5/ as u ! 0:

It follows from Theorem 2 with x D p
n� c Z�1.y=

p
n � c/ and Taylor expansion

that with the correcting constants c D 2:5 or c D 2 as n ! 1

P.
p
n � c Z.R/ � y/ D ˚.y/ � .6.2:5 � c/ y C y3/ '.y/

12 .n� 2:5/
CO.n�2/; (22)

which improves the error rate for the approximation of Fisher transform Z.R/ in
Konishi [9], formula (4.2). Using (22) with y D y.x/ D p

n � c Z.x=pn� c/

we find P.
p
n � c R � x/ D ˚c

�
y.x/; n

� C O.n�2/ as n ! 1 and for
c D 2:5

˚2:5.y; n/ WD ˚.y/� y3 '.y/

12 .n � 2:5/ with y D p
n � 2:5Z.x=pn � 2:5/ (23)

or for c D 2

˚2.y; n/ WD ˚.y/ � 3y C y3 '.y/

12 .n� 2/ with y D p
n � 2Z.x=

p
n � 2/: (24)

5 Bartlett Type Corrections

Assume the distribution function of some statistic S admits an asymptotic expansion

P.S � x/ D ˚.x/C pn.x/ '.x/CO.n�˛�1=2/ as n ! 1; (25)

where pn.x/ D O.n�˛/ is a polynomial usually with ˛ D 1=2 or 1. Then we
understand under Bartlett type correction of S a monotone transformation T such
that

P.T .S/ � x/ D ˚.x/CO.n�˛�1=2/ as n ! 1: (26)

The following elementary proposition gives this kind of transformations, see more
advanced discussion in Sect. 5.7 in Fujikoshi, Ulyanov and Shimizu [5].

Theorem 4. Let the distribution function of statistic S admit asymptotic expan-
sion (25) and the function x C pn.x/ be increasing. Then the transformation

T .z/ D z C pn.z/ (27)

is a Bartlett type correction, i.e. (26) holds for the distribution function ofT .S/.
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The expansions (6) and (5) allow transformations like (27):

T .x/ D x C 1

n � 2:5

x3

4
or T1.x/ D x C 1

n � 2

x3 � x
4

: (28)

With the correcting constant c D 2:5 in (4) one term in the expansion (6) is removed
by comparison with (5). It follows from Theorem 4 that

P.
p
n � 2:5 T .R/ � x/ D ˚.x/CO.n�2/ and P.

p
n � 2 T1.R/ � x/ D ˚.x/CO.n�2/:

A Fisher-like transform leads to another kind of Bartlett type correction. Consider
the transformation

F.y/ D 1p
3

ln

 
1C p

3 y=2

1 � p
3 y=2

!

for � 1 � y � 1: (29)

The functionF.y/ is increasing and F.y/ D yCy3=4CO.jyj5/ as y ! 0. Having
in mind (25) and (26), we may use our Fisher-like transform F.y/ also as Bartlett
correction function.

Theorem 5. Let R be sample correlation coefficient with density (3). Then as
n! 1

P.
p
n � 2:5 F.R/ � x/ D ˚.x/CO.n�2/; (30)

and

P.
p
n � 2:5 R � x/ D ˚.

p
n � 2:5 F.x=pn � 2:5//CO.n�2/ (31)

Remark 6. In difference to the distribution ofZ.R/ in (22) the distribution of F.R/
in (30) may be approximated only by the normal law ˚.:/ up to the orderO.n�2/.

Remark 7. In this Section we showed how to apply Bartlett type correction in order
to improve approximation. Another approach can be find in Niki and Konishi [10].
It is connected with the fact that approximate formulae using a large number of
terms of Edgeworth asymptotic expansions for the distributions of statistics often
produce spurious oscillations and give poor fits to the exact distribution functions in
parts of the tails. A general method for suppressing these oscillations and leading to
more accurate approximations see in Niki and Konishi [10], in particular for Fisher
statistics based on sample correlation coefficient.

In order to compare the results some numerical calculation performed by
MAPLE are given in Tables 2 and 4 for c D 2:5 and in Table 3 for c D 2.

Remark 8. The Tables 2–4 show the accuracy of asymptotic approximations to the
exact values for the quantiles of the sample correlation coefficient, given in the
columns A. The normal approximation (columns N ) can remarkable be improved
by adding the term by 1=n (columnsN1) and the term by 1=n2 (columnsN2) of the
Edgeworth-Chebyshev expansions. The columnsE andE1 of Table 3 show that the
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Table 2 Numerical values ofA D P.
p
n� 2:5R � x/,N D ˚.x/,N1 D ˚.x/ C

x3 '.x/
4 .n� 2:5/

, N2 D N1 C Q2.x/

96 .n� 2:5/2
, E1 D ˚2:5.y.x/; n/, U D ˚.T .x// and G D

˚
�p

n� 2:5 F
�

xp
n� 2:5

��
with n D 50 for some values x, where ˚2:5, T and F are defined

in (23), (28) and (29)

x A N N1 N2 E1 U G

0.1 0.539831 0.539828 0.539830 0.539831 0.539829 0.539830 0.539830
0:3 0.617969 0.617911 0.617966 0.617969 0.617966 0.617966 0.617966
1:0 0.842638 0.841345 0.842618 0.842638 0.842628 0.842615 0.842627
2:26147 0.990000 0.988135 0.990017 0.990003 0.989996 0.989893 0.989977
2:48824 0.995000 0.993581 0.995045 0.995004 0.995000 0.994905 0.994980
2:94093 0.999000 0.998363 0.999071 0.999003 0.999005 0.998947 0.998989

Table 3 Numerical values of A D P.
p
n� 2R � x/,N D ˚.x/,N1 D ˚.x/ C

.x3 � x/ '.x/
4.n� 2/

, E D ˚.
p
n� 2Z.x=

p
n� 2// E1 D ˚2.y.x/; n/ and U D ˚.T1.x// with

n D 50 for some values x, where ˚2 and T1 are defined in (24) and (28)

x A N N1 E E1 U

0:1 0.539624 0.539828 0.539623 0.539831 0.539623 0.539623
0:3 0.617370 0.617911 0.617369 0.617983 0.617369 0.617369
1:0 0.841358 0.841345 0.841345 0.843040 0.841354 0.841345
2:27334 0.990000 0.988497 0.989983 0.990878 0.990014 0.989902
2:50130 0.995000 0.993813 0.995010 0.995595 0.995016 0.994918
2:95636 0.999000 0.998444 0.999045 0.999207 0.999013 0.998949

Table 4 Numerical values ofA D P.
p
n� 2:5R � x/,N D ˚.x/,N1 D ˚.x/C x3 '.x/

4 .n� 2:5/
,

N2 D N1 C Q2.x/

96 .n� 2:5/2
, E1 D ˚2:5.y.x/; n/, U D ˚.T .x// and G D

˚
�p

n� 2:5 F
�

xp
n� 2:5

��
with n D 25 for some values x, where ˚2:5, T and F are defined

in (23), (28) and (29)

x A N N1 N2 E1 U G

0:1 0.539837 0.539828 0.539832 0.539837 0.539832 0.539832 0.539832
0:3 0.618041 0.617911 0.618026 0.618040 0.618026 0.618026 0.618026
1:0 0.844124 0.841345 0.844033 0.844123 0.844077 0.844018 0.844073
2:19256 0.99000 0.988135 0.990053 0.990025 0.989980 0.989547 0.989894
2:39629 0.995000 0.993581 0.995173 0.995038 0.995001 0.994601 0.994909
2:78844 0.999000 0.998363 0.999321 0.999039 0.999020 0.998775 0.998949
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additional term by 1=n improves significant the accuracy of the Fisher transform.
Moreover, the first order Fisher approximations and the given Bartlett corrections
lead to approximations like the first order normal approximation in N1.

6 Estimates Followed from Approximations for Scale-Mixed
Distributions

As it was noted in Introduction the random variable
p
n � 2R=p1 �R2 has

Student’s t-distribution with n � 2 degrees of freedom. At the same time the ratio

Tn D Z=

q
�2n=n

has t-distribution with n degrees of freedom, where Z is standard normal random
variable, �2n is chi-squared random variable with n degrees of freedom and Z

and �2n are independent. The ratio Tn can be considered as scale mixture of two
distributions. Therefore, we can apply general theory of approximations for the
distributions of scale mixtures, see Fujikoshi, Ulyanov and Shimizu [5], Sect. 13.2.

Let Gn.x/ be a distribution function of random variable Tn. It follows from
Theorem 13.2.3 (cf. Example 13.2.1) in Fujikoshi, Ulyanov and Shimizu [5] that

supx jGn.x/ �˚�1;4.n; x/j � 6 .nC 4/

n3
; (32)

where

˚�1;4.n; x/ D ˚.x/ �
�x3 C x

4 n
� x5 C 2x3 C 3x

6 n2

�
'.x/:

Let us fix any natural n > 2 and put for x W �1 < x < 1,

g.x/ D x
p
n � 2p
1 � x2

:

Since the function g.x/ is increasing, we have for any constant c W c < n

P
�p

n � c R � x
�

D P
�
g.R/ � g.x=

p
n � c/

�
D P

�
Tn�2 � g.x=

p
n � c/

�
:

Therefore, by (32) we get

sup
ˇ
ˇ
ˇP
�p

n � c R � x
�

� ˚�1;4.n � 2; g.x=pn � c//
ˇ
ˇ
ˇ � 6 .nC 2/

.n � 2/3 : (33)

Using (33), we can obtain results similar to Theorems 1 and 2. However, the upper
bounds for errors of approximation, say Mn, will be worse comparing with right
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hand sides in the inequalities (19) and (20). In fact, according to (33) we shall have
for all n > 2 that

.n � 2/2 Mn � 6:

Compare it with values for Bn.�/ in Table 1.
It is not surprising that (33) implies the worse result because in Theorems 1 and 2

we have used essentially the representation (4) and, in particular, the properties of
Gamma-function while Theorem 13.2.3 in Fujikoshi, Ulyanov and Shimizu [5] is
obtained for the general distributions of scale mixtures.

7 Proofs

Proof of Lemma 1. The error term estimations for asymptotic expansions of
logarithm of Gamma function in Abramowitz and Stegun [1], formula (6.1.42),
imply

1

12 x
� 1

360 x3
� ln � .x/ �

�
x � 1

2

�
ln x C x � 1

2
ln.2 �/ � 1

12 x
; x > 0:

(34)
Consider now for x � 1 the function

h.x/ WD ln
� .x/

� .x � 1=2/
�
�
x � 1

2

�
ln x C .x � 1/ ln

�
x � 1

2

�
C 1

2
: (35)

Taking into account (34) and similar inequalities for the argument x � 1=2 we find

a.x/ WD 1

12 x
� 1

360 x3
� 1

12 .x � 1=2/

� h.x/ � 1

12 x
� 1

12 .x � 1=2/
C 1

360 .x � 1=2/3
DW b.x/: (36)

Using 1x � 1
x � 1=2 D � 1

2 x .x � 1=2/
D � 1

2 .x � 1=2/2
C 1
4 x .x � 1=2/2

we obtain for x � 1

a.x/ D � 1

24 .x � 1=2/2 C 1

48 x .x � 1=2/2 � 1

360 x3
(37)

and

b.x/ D � 1

24.x � 1=2/2
C 17

720.x � 1=2/3 � 1

96 x .x � 1=2/3 : (38)

Remember some well-known inequalities where k is an integer:



252 G. Christoph et al.

0 � � ln.1 � z/ � z � : : : � zk

k
� zkC1

k C 1
C zkC2

.k C 2/ .1� z/
; 0 � z < 1; k � 1;

(39)
0 � ln.1C z/ � z C z2=2 � z3=3 C z4=4 � z5=5; 0 � z < 1; (40)

and for integer k � 0

0 � sgnkC1.z/
�
ez � 1 � z � : : : � zk

kŠ

�
�
(

zkC1 ez = .k C 1/Š; z � 0

.�z/kC1 = .k C 1/Š; z < 0
: (41)

Using (35) for x D y C 1=2 and y > 1 we define the function

g.y/ WD h.y C 1=2/ � ln
� .y C 1=2/

� .y/
C 1

2
ln.y/ D 1

2
� y ln

�

1 C 1

2 y

�

:

The inequalities (40) for z D 1=.2y/ lead to upper and lower bounds for g.y/:

� 1

160 y4
� g.y/ � 1

8 y
C 1

24 y2
� 1

64 y3
� 0; y > 1: (42)

Next we are going to estimate the function

R.y/ WD h.y C 1=2/� g.y/ D ln
� .y C 1=2/

� .y/
� 1

2
ln.y/:

Supposem WD n � 2 � 5. Using (36)–(38) and (42) with y D x � 1=2 D m=2 and

1

6 .mC 1/m2
� 1

45 .mC 1/3
� 1

8m3
D 7u3 C 90u2 C 300u C 80

360.mC 1/3m3
> 0; u D m�5;

to obtain the lower bound we find

� 1 < � 1

4m
� R.m=2/ � � 1

4m
C 23

360m3
< 0: (43)

Since A�
n D eR..n�2/=2/ D eR.m=2/ with �1 < R.m=2/ < 0 we find A�

n < 1 and
define

r1.m/ WD eR.m=2/ � 1 � R.m=2/� R2.m=2/=2 and r2.m/ WD R.m=2/C1=.4m/:

Making use of (41) with k D 2 for �1 < z < 0 and (43) we find

� 1
384m3

� r1.m/� 0; 0� r2.m/ � 23

360m3
;

� 23
1;440m4

� R2.m=2/

2
� 1

32m2
� 0;

which lead to (9) for m D n � 2 � 5.
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Let now c D 5=2 and put N D n � 2:5. Note An D p
1C 1=.2N / A�

n , then
by (9)

ˇ
ˇ
ˇ
ˇAn �

�
1C 1

2N

�1=2 C 1

4N

�
1C 1

2N

�� 1=2 � 1

32N 2

�
1C 1

2N

�� 3=2
ˇ
ˇ
ˇ
ˇ � 23

360N 3
:

The binomial series .1 C x/˛ for 0 � x � 1 and ˛ 2 f�3=2;�1=2; 1=2g, see
Abramowitz and Stegun [1], formula (3.6.9), imply

� 3

4N
�
�
1C 1

2N

�� 3=2 � 1 � 0; 0 �
�
1C 1

2N

�� 1=2 � 1 � 1

4N
� 1

32N 2

and

0 �
�
1C 1

2N

�1=2 � 1 � 1

4N
C 1

32N 2
� 1

128N 3
:

Hence (10) holds for n � 7. ut
Proof of Theorem 1. Let Fn.x/ be the distribution function of the standardized
correlation coefficient R having density (4) with c D 2:5, see (6). Put

˚n.x/ WD ˚.x/C '.x/

 
x3

4 .n� 2:5/
C �3x7 C 13x5 C 2x3 C 6x

96 .n� 2:5/2

!

:

Our aim is to estimate Fn.x/�˚n.x/ with an error having the order C=.n� 2:5/3.
Note Fn.0/�˚n.0/ D 0, therefore we suppose x ¤ 0. Moreover, we may consider
only case x > 0 since pR.r In; 2:5/, qR.r In; 2:5/ and '.r/ are symmetric functions,
hence jFn.x/ �˚n.x/j D jFn.� x/� ˚n.� x/j .

Using (13) define for x > 0 with N D n � 2:5

Hn.�x/ D 1 �Hn.x/ WD
�

1C 1

16N 2

�Z p
N

x

qR.r In; 2:5/ dr:

Then we have

jFn.x/ � ˚n.x/j � jFn.x/ � Hn.x/j C jHn.x/ � ˚n.x/j: (44)

For 0 � x � p
N with (15), (12) and (10) we find An � 1 and

ˇ
ˇ
ˇ Fn.x/�Hn.x/

ˇ
ˇ
ˇ �

ˇ
ˇ
ˇ

Z p
N

x

�

pR.r I n; 2:5/ �
�

1C 1

16N2

�

qR.r In; 2:5/
�

dr

ˇ
ˇ
ˇ

� 319

2;880N3

2An

2An
p
2�

Z p
N

0

 

1 � r2

N

!N=2�3=4
dr � 319

5;760 An N3
� 319

5;760 N3
:

(45)
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Now we have to estimate jHn.x/ � ˚n.x/j. DefineQ2.x/ WD Q2.x/C6.1�˚.x//,

'n.x/ WD d

dx
˚n.x/ D '.x/

�
1� x4 � 3x2

4N
C 3x8 � 34x6 C 63x4 C 6

96N 2

�

and 'n.x/ WD 'n.x/ � '.x/ = .16N 2/. Then we obtain for x > 0

jHn.x/�˚n.x/j � K1C 1

16N 2
K2 � K1

�
1C 1

16N 2

�
C 0:462541

64N 3
C 14:766155

1;536N 4
;

(46)
where

K1 WD
ˇ
ˇ
ˇ
ˇ

Z 1

x

.qR.r In/ � 'n.r//dr

ˇ
ˇ
ˇ
ˇ ; K2 D

ˇ
ˇ
ˇ
ˇ

Z 1

x

.qR.r In/ � '.r//dr

ˇ
ˇ
ˇ
ˇ � K1 CK3

K3 D
ˇ
ˇ
ˇ
ˇ

Z 1

x

'.x/
�

� x4 � 3x2

4N
C 3x8 � 34x6 C 63x4

96N 2

�
dr

ˇ
ˇ
ˇ
ˇ � x3'.x/

4N
C jQ2.x/j

96N 2

sup
x >0

x3'.x/ D .3=e/3=2p
2�

� 0:462541 and sup
x >0

jQ2.x/j D Q2.3/ � 14:766155:

Now we have to estimate K1 � J1 C J2 C J3, where with � 2 .0; 1/

J1 WD IŒ0; �
p
N / .x/

Z �
p
N

x

ˇ
ˇ
ˇ
ˇ
ˇ

1p
2�

�

1 � r2

N

�N=2� 3=4

� 'n.r/

ˇ
ˇ
ˇ
ˇ
ˇ
dr;

J2 WD
Z p

N

�
p
N

1p
2�

�

1 � r2

N

�N=2� 3=4

dr;

J3 WD
ˇ
ˇ
ˇ

Z 1

�
p
N

'n.r/ dr
ˇ
ˇ
ˇ D j1� ˚n.�

p
N/j

and ˚n.x/ D ˚n.x/C .1 � ˚.x//=.16N 2/. Substituting u2 D r2=N we find

J2 D
p
Np
2�

Z 1

�

u

u

�
1 � u2

�N=2� 3=4

du �
p
Np

2� � .N C 1=2/

�
1 � �2

�N=2C 1=4

:

Using the second inequality of (16) to estimate 1 � ˚.�
p
N/ we find

J3 � 2 '.�
p
N/
�
1C 1=.16N 2/

�

�
p
N
�
1C

q
1C 8=

�
� �2t

� � C .�
p
N/3 '.�

p
N/

4N
C Q2.�

p
N/j

96N 2
:

Let now 0 < x � �
p
N . To estimate J1 we suppose 0 < r � �

p
N and define
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a1.r/ D N

2

"

ln

 

1 � r2

N

!

C r2

N
C r4

2N 2
C r6

3N 3

#

�3
4

"

ln

 

1 � r2

N

!

C r2

N
C r4

2N 2

#

;

a2.r/ D �N�1�r4=4 � 3 r2=4� and a3.r/ D �N�2�r6=6� 3 r4=8
�
:

Then we have 'n.r/ D '.r/
�
1C a2.r/C a22.r/=2C a3.r/

�
and

�
1 � r2=N

�N=2� 3=4 D e�r2=2Ca1.r/Ca2.r/Ca3.r/

D e�r2=2
h
ea2.r/Ca3.r/

�
ea1.r/ � 1

�C ea2.r/
�
ea3.r/ � 1 � a3.r/

�

Cea2.r/�1C a3.r/
�i
:

Using (41),aC
k WD max.0; ak/ anda�

k WD max.0; � ak/, k D 1; 2; 3, we find

J1 �
Z �

p
N

0
'.r/

ˇ
ˇea1.r/Ca2.r/Ca3.r/ � �

1C a2.r/C a22.r/=2C a3.r/
�ˇ
ˇdr �

X4

kD1 J1;k;

where

J1;1 WD
Z �

p
N

0

'.r/ea2.r/Ca3.r/
ˇ
ˇea1.r/ � 1

ˇ
ˇdr �

Z �
p
N

0

'.r/
ˇ
ˇa1.r/

ˇ
ˇea2.r/Ca3.r/Ca

C
1 .r/dr;

J1;2 WD
Z �

p
N

0

'.r/ea2.r/
ˇ
ˇea3.r/ � 1� a3.r/

ˇ
ˇ dr �

Z �
p
N

0

'.r/
a23.r/

2
ea2.r/Ca

C
3 .r/dr;

J1;3 WD
Z �

p
N

0

'.r/
ˇ
ˇ
ˇea2.r/ � 1 � a2.r/ � a22.r/

2

ˇ
ˇ
ˇdr �

Z �
p
N

0

'.r/
ja32.r/j
6

ea
C
2 .r/dr

and

J1;4 WD
Z �

p
N

0

'.r/
ˇ
ˇ
�
ea2.r/ � 1�a3.r/

ˇ
ˇ dr �

Z �
p
N

0

'.r/
ˇ
ˇa2.r/ a3.r/

ˇ
ˇea

C
2 .r/dr:

Let N � 4:5 and 0 < r � �
p
N . It follows from (39) with y D r2=N that

� a1.r/ WD �
�
r8

8N 3
C r10

10N 4 .1� �2/

�

� a1.r/ � r6

4N 3

C 3 r8

16N 4 .1 � �2/
DW a1.r/;
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Z s

0

'.r/a1.r/ dr �
Z s

0

'.r/a1.r/ dr for s � 1:7 and

aC
1 .r/ � r6=.4N 3/ � �6=4:

For r > 0 the functions a2.r/ and a3.r/ take both their only maximum at r Dp
3=2,

a2.r/ D 3 r2 � r4

4 t


 � 0; r � p
3

> 0; r <
p
3

with aC
2 .r/ �



0; r � p

3

9=.16N /; r <
p
3

and

a3.r/ D 9r4 � 4r6

24 t2


 � 0; r � 3=2

> 0; r < 3=2
with aC

3 .r/ �


0 ; r � 3=2

9=.32N 2/; r < 3=2
:

Then we find with e�a�
k .r/ � 1, (17) and the moments E.Y 4/ D 3, E.Y 6/ D 15,

E.Y 8/ D 105, E.Y 10/ D 945 and E.Y 12/ D 10;395 if Y is standard normal
distributed

J11 � e9=.16N/C9=.32N2/C�6=4
Z �

p
N

0

'.r/
� r8

8N 3
C r10

10N 4 .1 � �2/
�
dr

� e9=.16N/C9=.32N2/C�6=4 �105� 2U8.�
p
N/

16N 3
C 945� 2U10.�

p
N/

20N 4 .1 � �2/
�
;

J12 � e9=.16 � 4:5/C9=.32 � 4:52/

1;152 N 4

Z �
p
N

0

'.r/
�
16 r12 � 72 r10 C 81 r8

�
dr

� 1:14899

2;304 N 4

�
106;785� 32U12.�

p
N/C144U10.�

p
N/�162U8.�

p
N/
�
;

with a2.r/ � 0 only for 0 � r � p
3 and .r4 � 3 r2�3 D r12 � 9r10 C 27r8 � 27r6

J13 � 1

384N 3

� Z �
p
N

0

'.r/
�
r4 � 3 r2�3 dr C �

1C e9=.16 � 4:5/�

Z p
3

0

'.r/
�
3 r2 � r4

�3
dr
�

� 1

384N 3

�
2;160� U12.�

p
N/C 9U10.�

p
N/� 27U8.�

p
N/

C27U6.�
p
N/C 2:937248

�

and with a2.r/ a3.r/ D .96N 3/�1 .4r10�21 r8C27r6/ � 0 only for 3=2 � r � p
3
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J14 �
� Z �

p
N

0

'.r/ a2.r/a3.r/ dr C �
e9=.16 � 4:5/ � 1�

Z 3=2

0

'.r/ a2.r/ a3.r/ dr

C�1C e9=.16 � 4:5/�
Z p

3

3=2

'.r/
� � a2.r/ a3.r/

�
dr
�

� 1

96N 3

�
990� 4U10.�

p
N/C 21U8.�

p
N/� 27U6.�

p
N/C 0:574299

�
:

Hence, J1 and also K1 are estimated. Taking estimates (44)–(46) together, we
obtain (18). ut
Proof of Theorem 2 The first bound (19) follows immediately from Theorem 1 and
supx >0 jQ2.x/j � 14:758064. To prove (20) we use (19) and Taylor expansion. As
in the proof of Theorem 1 we may suppose x > 0. Here we have

F �
n .x/ D P.

p
n � 2R � x/ D P

�p
n � 2:5R � x

p
1 � 1=.2n� 4/

�
D Fn.y/

with y D x
p
1 � 1=.2n� 4/: The bound (19) leads to

sup
y>0

ˇ
ˇ
ˇ
ˇFn.y/ � ˚.y/ � y3 '.y/

4 .n� 2:5/

ˇ
ˇ
ˇ
ˇ � Bn.�/

.n � 2:5/2
: (47)

Put M D 2 .n� 2/ D 2 n� 4. Consider now the Taylor expansions

˚.y/ D ˚.x/ � '.x/ .x � y/C ' 0.z/ .y � x/2=2 with 0 < y < z < x;

'.x/ .x � y/ D x '.x/=.2M/CR1.n/ and x � y D x .1 �p
1� 1=M/;

where

R1.n/ WD '.x/
�
x � y � x=.2M/

� D x '.x/
�
1 �p

1 � 1=M � 1=.2M/
�

and

R2.n/ WD j' 0.z/j .y � x/2=2 D z3 '.z/
�
x=z

�2 �
1 �p

1 � 1=M � 1=.2M/
�
:

Formula (3.6.9) in Abramowitz and Stegun [1] implies

0 � 1 �p
1 � 1=M � 1=.2M/ � 1

ı�
8M2 .1 � 1=M/

� D 1
ı�
8M .M � 1/

�

and
0 � 1 �

p
1 � 1=M � 1

ı�
2M .1� 1=M/

� D 1
ı�
2 .M � 1/

�

Hence, with .x=z/2 � .x=y/2 D .1 � 1=M/�1 we obtain
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R1.n/ � e�1=2
p
2 � 8M2 .1 � 1=M/

and R2.n/ � .3=e/3=2p
2 � 8M2 .1 � 1=M/2

:

(48)
Using y D x

p
1 � 1=M , n � 2:5 D .n � 2/.1 � 1=M/ and the Taylor expansion

'.y/ D '.x/C ' 0.z/ .y � x/ with 0 < y < z < x; we find

y3 '.x/

4 .n� 5=2/
D x3 '.x/

4 .n � 2/
p
1 � 1=M D x3 '.x/

4 .n � 2/ � R3.n/

with

R3.n/ WD x3 '.x/

2M

�
1 �p

1 � 1=M � � .3=e/3=2p
2 � 4M2 .1 � 1=M/

: (49)

It remains to estimate

R4.n/ WD y3 ' 0.z/ .x � y/
4 .n � 5=2/ D y3 z '.z/ x

�
1 �p

1� 1=M
�

2.M � 1/

� z5 '.z/
�
1 �p

1 � 1=M �

p
1 � 1=M 2.M � 1/

� .5=e/5=2

4M2 .1 � 1=M/5=2
: (50)

Taking (47)–(50) together we obtain (20). ut
Proof of Theorem 3 Define N D p

n � 2:5 and h.x/ D p
N sin.x=

p
N/. Starting

from (7), we have to prove (21). Considering (7) and thatR is symmetric and sin.x/
is an odd function, we may limit us to the case x > 0. In order to get smaller
constants we use both Taylor expansions

˚.h.x// D ˚.x/C '.x/ .h.x/� x/C ' 0.x/ .h.x/� x/2=2C ' 00.z/
�
h.x/� x�3=6

or

˚.h.x// D ˚.x/C '.x/ .h.x/ � x/C ' 0.z/ .h.x/ � x/2=2; 0 < h.x/ < z < x:
(51)

Using
ˇ
ˇ
p
N sin.x=

p
N/� x C x3

ı
.6N /

ˇ
ˇ � x5

ı
.120N 2/, we find

'.x/ .h.x/ � x/ D x3
ı
.6N /C S1.n/;

where

S1.n/ WD '.x/
ˇ
ˇ
ˇ
p
N sin.x=

p
N/ � x � x3

6N

ˇ
ˇ
ˇ � x5 '.x/

120N2
� .5=e/2:5

120
p
2� N2

D 0:015256

N2
:
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With
ˇ
ˇ
p
N sin.x=

p
N/ � x

ˇ
ˇ�x3ı.6N /, 0<x=z � xı�pN sin.x=

p
N/
���=2

for 0<x��=2 and having in mindS2.n/ WD minfS2a.n/; S2b.n/CS2c.n/g,
where

S2a.n/ WD j'0.z/j
2

.
p
N sin.x=

p
N/� x/2 � z '.z/ x6

72N2
� .7=e/3:5 .�=2/9

72
p
2 � N2

D 2:280916

N2

or alternatively

S2b.n/ WD j' 0.x/j
2

.
p
N sin.x=

p
N/�x/2 � x7 '.x/

72N 2
� .7=e/3:5

72
p
2 � N2

D 0:151842

N 2

and since jz11 � z9j '.z/ takes its maximum for z D 3=
p
2C p

6=2

S2c.n/ WD j' 00.z/j
6

ˇ
ˇ
p
N sin.x=

p
N/ � xˇˇ3 � jz11 � z9j '.z/ .�=2/9

1;296N 3

�
�
.3=

p
2C p

6=2/11 � .3=
p
2C p

6=2/9
�
.�=2/9

1;296
p
2 � expf.3=p2C p

6=2/2=2gN3
D 35:597236

N 3
:

Note that S2b.n/C S2c.n/ < S2a.n/ for n � 20.
Finally we define m.x/ WD x3 '.x/ then we have

m.h.x// D m.x/Cm0.z/
�
h.x/ � x

�
for 0 < h.x/ < z < x:

Sincem0.x/ D .3 x2 � x4/ '.x/ and the function .z7 � 3z5/ '.z/ takes its maximum

at zmax D
p
5C p

10 we obtain

S3.n/ WD j3z2 � z4j '.z/
4N

jpN sin.x=
p
N/ � xj � j3z2 � z4j '.z/ x3

24N 2

�
�
z7max � 3 z5max

�
'.zmax/ .�=2/3

24 N 2
D 1:069085

N 2

and (21) is proved. Changing .�=2/k by .�=6/k in the estimates of S2a, S2c and S3,
we find D�

n . ut
Proof of Theorem 4. Since the transformation T is assumed to be increasing, we
get

P.S � x/ D P.T .S/ � T .x//:

Therefore, in order (26) holds it is enough to find the function T such that

˚.T .x// D ˚.x/C pn.x/ '.x/CO.n�˛�1=2/:

Hence, by smoothness properties of ˚.x/ we may take T given by (27). ut



260 G. Christoph et al.

Proof of Theorem 5. Put N D n � 2:5 and h.x/ D p
N F�1.x=

p
N/, where

F �1.y/ D 2p
3

e
p
3 y � 1

e
p
3 y C 1

for jyj � ln.7C 4
p
3/p

3

is the inverse function to F.y/, given in (29). Then we find by Theorem 2 as n ! 1

P
�p

NF.R/ � x
�

DP
�p

N R � h.x/
�

D ˚
�
h.x/

�Ch3.x/ '.h.x//

4N
CO.n�2/:

Using (51) and Z�1.y/ D y � y3=4 C O.y5/ as y ! 0 we find in our case as
n ! 1

˚.h.x// D ˚.x/�x3'.x/=.4N /CO.n�2/ and h3.x/'.h.x// D x '.x/CO.n�1/;

which lead to (30). With F.y/ D y C y3=4 C O.jyj7/ as y ! 0 and similar
calculations we find (31). ut
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The Stein-Tikhomirov Method
and Berry-Esseen Inequality for Sampling Sums
from a Finite Population of Independent
Random Variables
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Abstract We present a simplified version of the Stein-Tikhomirov method realized
by defining a certain operator in class of twice differentiable characteristic functions.
Using this method, we establish a criterion for the validity of a nonclassical central
limit theorem in terms of characteristic functions, in obtaining of classical Berry-
Esseen inequality for sampling sums from finite population of independent random
variables.
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1 The Stein-Tikhomirov Method and Nonclassical CLT

Suppose that F .x/ is an arbitrary distribution function and
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is the standard distribution function for the normal law. In [9] Stein proposed a
universal method for estimating the quantity

ı D sup
x

jF .x/ �˚ .x/ j;

based on the following arguments. Suppose that h .u/ is a bounded measurable
function on the line and

˚h D 1p
2�

1Z

�1
h .u/e�u2=2du:

Consider the function g .
/ which is a solution of the differential equation

g0 .u/� ug .u/ D h .u/� ˚h: (1)

Suppose that 
 is a random variable with distribution function

P .
 < x/ D F .x/ :

Setting
h .u/ D hx .u/ D I.�1;x/ .u/

in (1), we have
F .x/ � ˚ .x/ D E

�
g0 .
/� 
g .
/	 : (2)

Thus, the problem of estimating ı can be reduced to that of estimating the difference
of the expectations ˇ

ˇEg0 .
/�E
g .
/ˇˇ :
Also note that for the case in which the random variable 
 has normal distribution,
the right-hand side of (2) vanishes. Using this method, Stein [9] obtained an estimate
of the rate of convergence in the central limit theorem for stationary (in the narrow
sense) sequences of random variables satisfying the strong mixing conditions (in
the sense of Rosenblatt). Moreover, for the summands eighth-order moments must
exits. In his paper, Stein stated his belief that his method is hardly related to that of
characteristic functions.

In [10,11] Tikhomirov refuted Stein’s suggestion. He showed that a combination
of Stein’s ideas with the method of characteristic functions allows one to obtain the
best possible estimates of the rate of convergence in the central limit theorem for
sequences of weakly dependent random variables for less stringent conditions on
the moments. He also used to best advantage the ideas [9] underling the proposed
new method. The combination of methods our lined in [9, 10], later became known
as the Stein-Tikhomirov method.

In the present paper, it will be shown that the arguments used in apply-
ing the Stein-Tikhomirov method can be considerably simplified. Thus will be
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demonstrated in the course of the proof of a nonclassical central limit theorem.
Which can be called the generalized Lindeberg-Feller theorem.

Suppose that
Xn1;Xn2; 
 
 


is a sequence of independent random variables constituting the scheme of a series
of experiments and

Sn D Xn1 CXn2 C 
 
 
 ; n D 1; 2; 
 
 


with a possibly infinite number of terms in each sum. Set

EXnj D 0; EX2
nj D �2nj ; j D 1; 2; 
 
 


and X

j

�2nj D 1: (3)

In what follows, condition (3) is assumed to be satisfied. As is well known, in the
theory of summation of independent random variables an essential role is played by
the condition of uniform infinite smallness of the summands

lim
n!1 sup

j

P
�ˇ
ˇXnj

ˇ
ˇ � "

� D 0 (4)

for any " > 0.
The constraint (4) is needed if we want to make the limiting law for the

distribution of the sum Sn insensitive to the behavior of individual summands.
But in finding conditions for the conditions for the convergence of the sequence
of distributions functions

Fn .x/ D P .Sn < x/

for any given law it is not necessary to introduce constraints of type (4). Following
Zolotarev, limit theorems making no use of condition (4) are said to be nonclassical.
As was noted in the monograph “theory of summation of independent random
variables”, the ideas underlying the nonclassical approach go back to P.Lévy, who
studied various versions of the central limit theorem.

In [7], Rotar’ proved the following theorem, which is generalization of the
classical Lindeberg-Feller theorem.

Theorem A. In order that

sup
x

jFn .x/ � ˚ .x/j ! 0

as n ! 1, it is necessary and sufficient that for any " > 0 the following relation
hold:
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Rn ."/ D
X

i

Z

jxj>"
jxj ˇˇFnj .x/ �˚nj .x/

ˇ
ˇ ! 0; (5)

where

Fnj .x/ D P
�
Xnj < x

�
; ˚nj .x/ D ˚

�
x

�nj

�

:

Note that this version of Theorem A is not given in [7], but it can be obtained by
combining Propositions 1 and 2 from [7].

The numerical characteristic Rn ."/ defined in (5) is universal; it and its analogs
have been used for some time in the “nonclassical” theory of summation of more
general sequences of random variables (see, for example, [4], Chap. 5, Sect. 6).

Now consider the class of characteristic functions f .t/ given by

F D ˚
f .t/ jf 0 .0/ D 0; D �f 00 .0/ D ��2 < 1�

:

In the class F , we introduce the transformation (the Stein-Tikhomirov operator)

�f .t/ D f 0 .t/C t�2f .t/ : (6)

Obviously,

�
�
e�t 2�2=2

�
D 0; (7)

i.e., the operator�.
/ “cancels” the normal characteristic function.
If we consider (6) as a differential equation to be solved for the initial condition

f .0/ D 1, then we obtain

f .t/ � e�t 2�2=2 D e�t 2�2=2
tZ

0

� .f .u// eu2�2=2du: (8)

In relation (8), the sign of the variable of integration is identical with that of t and
juj � jt j. Relations (7) and (8) show that the expression�.f .t// characterizes the
proximity of the distribution with characteristic function f .t/ to the normal law
with mean 0 and variance �2.

It can be readily verified that the operator�.
/ possesses the following important
property.

Lemma. For characteristic functions f .t/ and g .t/ such that

f 0 .0/ D g0 .0/ D 0; max
�ˇ
ˇf 00 .0/

ˇ
ˇ ;
ˇ
ˇg00 .0/

ˇ
ˇ
�
< 1

the following relation holds:

�.f .t/ g .t// D f .t/ � .g .t//C g .t/ � .f .t// : (9)
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It follows from this lemma that the operator �.
/ is the differentiation operator
with respect to the product of characteristic functions.

Theorem 1. In order that

sup
x

jFn .x/ � ˚ .x/j ! 0

as n ! 1, it is necessary and sufficient that for any T > 0 the following relation
holds:

sup
jt j�T

X

j

ˇ
ˇ�
�
fnj .t/

�ˇ
ˇ ! 0; (10)

where fnj .
/ is the characteristic function corresponding to the distribution function
Fnj .x/.

Proof. The proof of the sufficiency of condition (10) is simple enough. Indeed,

fn .t/ D EeitSn D
Y

j

fnj .t/

and from relation (8) it follows that

sup
jt j�T

ˇ
ˇ
ˇfn .t/ � e�t 2=2

ˇ
ˇ
ˇ � T 
 sup

jt j�T
j�.fn .t//j (11)

for any T > 0.
Further, by (9) we have

�.fn .t// D
X

j

Y

k�j�1
fnk .t/�

�
fnj .t/

� Y

s�jC1
fns .t/

and, therefore,

j�.fn .t//j �
X

j

ˇ
ˇ�
�
fnj .t/

�ˇ
ˇ: (12)

Relations (11) and (12) prove the necessity of condition (10) for the validity of
the central limit theorem. To demonstrate the necessity of condition (10), let us
prove that is not stronger than (5). Formally, this is sufficient, and the subsequent
arguments will supply the necessary details. Set

'nj .t/ D
1Z

�1
eitxd˚nj .x/ D

1Z

�1
eitxd˚

�
x

�nj

�

:
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Taking into account the fact that �
�
'nj .t/

� D 0 for any j � 1, we have

X

j

ˇ
ˇ�
�
fnj .t/

�ˇ
ˇ D

X

j

ˇ
ˇ�
�
fnj .t/

� �� �'nj .t/
�ˇ
ˇ �

X

j

ˇ
ˇ
ˇf 0
nj .t/ � ' 0

nj .t/
ˇ
ˇ
ˇ

C jt j
X

j

�2nj
ˇ
ˇfnj .t/ � 'nj .t/

ˇ
ˇ D

X
1 .t/C jt j

X
2 .t/ : (13)

Noting that

EXnj D 0;

1Z

�1
x2dFnj D

1Z

�1
x2d˚nj D �2nj ;

and integrating by parts, we obtain

ˇ
ˇ
ˇf 0
nj .t/ � ' 0

nj .t/
ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1Z

�1
.ix/

�
eitx � 1 � i tx

�
d
�
Fnj � ˚nj

�

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

�
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1Z

�1

�
eitx � 1 � i tx

� �
Fnj .x/ �˚nj .x/

�
dx

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

C jt j
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

1Z

�1
.ix/

�
eitx � 1� �Fnj .x/ �˚nj .x/

�
dx

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
:

Therefore

X
1 .t/ � t2"

X

i

Z

jxj�"
jxj ˇˇFnj .x/ � ˚nj .x/

ˇ
ˇdx

C �jt j C t2
�X

i

Z

jxj�"
jxj ˇˇFnj .x/ �˚nj .x/

ˇ
ˇdx

� t2"
X

i

2�2nj C �jt j C t2
�
Rn ."/ � 2

�jt j C t2
�
."CRn ."// : (14)

To derive (14), we use the following fact. If F .x/ is a distribution function with
mean 0 and variance �2, then

1Z

0

u .1 � F .u/C F .�u// du D �2

2
:
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It was established in [3] that

X
2 .t/ � 2

�
t2 C jt j3

�
."CRn ."// : (15)

It follows from relations (13)–(15) that if condition (5) is satisfied, then for any
T > 0 we have

sup
t�T

X

j

ˇ
ˇ�
�
fnj .t/

�ˇ
ˇ ! 0; n ! 1:

We can easily verify condition (10) using the following simple example of
increasing sums of independent Bernoulli random variables as an illustration.
Suppose that

Yj D


1 with probability pj ;

0 with probability qj D 1 � pj :
Taking into account the fact thatMYj D pj , DXj D pj qj , we set

B2
n D

nX

jD1
pj qj ; Xnj D Yj � pj

Bn
; Sn D

nX

jD1
Xnj :

In the case considered, we have

fnj .t/ D EitXnj D pj e
itqj =Bn C qj e

�i tpj =Bn :

Let us show that if Bn ! 1, then condition (10) holds. Indeed, it is easy to see that

fnj .t/ D 1 � pj qj

2B2
n

t2 C pj qj

B2
n

"n .t/ ; (16)

f 0
nj .t/ D �pj qj

B2
n

t C pj qj

B2
n

"0
n .t/ ; (17)

where

sup
jt j�T

j"n.t/j D O

�
1

Bn

�

; n ! 1;

for any T > 0.
It follows from relation (16) and (17) that, as n ! 1, we have

sup
jt j�T

X

j

ˇ
ˇ�.fnj .t//

ˇ
ˇ D O

�
1

Bn

�

: (18)

Obviously, for our sequence of simple random variables the direct verification of
(5) or of the classical Lindeberg condition is more complicated that the estimates
(18) obtained in this paper.
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Remark 1. One can give more complicated examples of sequences of random
variables for which the proof of the validity of the central limit theorem simplifies
if the criterion (10) is used. Apparently, the present paper is the first paper in which
the criterion for the convergtnce of the distribution of the sum Sn to the normal law
is stated in terms of characteristic function of the summands.

Remark 2. In proving limit theorems for the distribution functions of sums of
independent and weakly dependent random variables by the method of characteristic
functions, on is mainly occupied with proving the fact that the characteristic function
of these sums fn.t/ does not vanish in a sufficiently large of neighborhood of the
point t D 0. But there is no need for such a proof if we use the Stein-Tikhomirov
method, this shows the advantage of this method over others.

Remark 3. Relation (8) and (11) show that the arguments used in the proof of
the Theorem 1 allow us to obtain an estimate of the rate of convergence in the
nonclassical case. Subsequent papers by this author will be concerned with exact
statements and proofs for the corresponding assertion.

2 Berry-Esseen Inequality for Sampling Sums from Finite
Population

Let fX1;X2; : : : ; XN g be a population of independent random variables and Sn be a
sampling sum of size n. The last means that the sum Sn consist from such random
variables which hit in a sample of size n from the parent population. One can give the
exact meaning to the formation of the sum Sn as follows. Let I D .I1; I2; : : : ; IN /

be an indicator random vectors such that Ik D 0 or 1 .1 � k � N/ and Sn
contains the term Xk if and only if Ik D 1. Hence,

Sn D
NX

kD1
IkXk:

It is assumed that I is independent from random variables X1;X2; : : : ; XN and for
every ordered sequence i D .i1; i2; : : : ; iN / of n units and N � n zeros

P .I D i/ D 1
�
N
n

� D �
Cn
N

��1
:

We have EIk D n
N

D f - the sampling ratio, and EIkIi D n
N


 n�1
N�1 for k ¤ i . We

introduce the moments EXk D �k , EX2
k D ˇk and then get

ESn D
NX

kD1
EIkXk D f

NX

kD1
�k;
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ES2n D n

N

NX

kD1
ˇk C n

N

 n � 1

N � 1
X

k¤i
�k�i :

We will assume that (without loss of generality) the parent population of random
variables has 0 mean and unit variance, i.e.

NX

kD1
�k D 0;

1

N

NX

kD1
ˇk D 1: (19)

Thus,

ESn D 0; DSn D varSn D n

�

1 � n � 1

N � 1
˛2
�

; ˛2 D 1

N

NX

kD1
�2k:

We prove that Sn=
p
n has approximately normal distribution with 0 mean and

variance 1�f ˛2, and also give an estimation of the remainder term. In addition, the
obtained result is a generalization of the classical Berry-Esseen estimation in CLT
(Sn is turned into usual sum of n independent random variables when n D N ).

The special case Xi D ai D const is very important in statistical applications
of sampling sums. This case was investigated in details be B. Rosen [6]. The
convergence rate in CLT were studied by A. Bikelis [1] in the case Xi D const
and by B. von Bahr [3] for arbitrary population of independent random variables. In
the present work the result of last paper is made more precise.

Set

E jXkj3 D 
k; LN D 1

N

NX

kD1

k; ˚.x/ D 1p

2�

xZ

�1
e�u2=2du:

Theorem 2. There exists an absolute positive constant C such that

sup
x

ˇ
ˇ
ˇ
ˇ
ˇ
P

 
Sn

p
n.1 � f ˛2/ < x

!

� ˚ .x/

ˇ
ˇ
ˇ
ˇ
ˇ

� C 
 LNp
n.1 � f ˛2/3=2 :

Remark 4. In [12] C D 60 and it is involved less exact characteristic


 D max
1�k�N 
k

instead of LN .

Remark 5. Rather rough calculation shows that C < 60 in given theorem, but we
note that the exact calculation of the constant C doesn’t enter is our task.
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Remark 6. If the set of random variables .X1;X2; : : : ; XN / doesn’t satisfy the
normalizing conditions (19), we can easily obtain a new set

�
X 0
1; X

0
2; : : : ; X

0
N

�
which

satisfies (1), by a linear transformation. Application of the result of Theorem 2 to
this new set of random variables gives, in terms of the original variables

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

P

0

B
B
B
B
@

Sn � n�
s

1
n



1
N

NP

kD1
�2k C 1�f

N

NP

kD1
.�k � �/2

� < x

1

C
C
C
C
A

�˚.x/

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

�

� Cp
n


 LN


1
N

NP

kD1
�2k C 1�f

N

NP

kD1
.�k � �/2

�3=2 ;

where

�k D EXk; � D 1

N

NX

kD1
�k and �2k D varXk:

Proof of the Theorem 2 is conducted by means of the Stein-Tikhomirov method
above mentioned at the point 1. Notice that in the papers [2, 8] are demonstrated
application of initial variant of Stein-Tikhomirov method for obtained of classical
Berry-Esseen inequality in the case of usual sum from independent random variables
(i.e. as .N D n/ ). Let � be a random variable with uniform distribution
on the set f1; 2; : : : ; N g that is not independent neither from random variables
X1;X2; : : : ; XN nor from indicator vector I and FIX be a �-algebra generated by
random variablesfI1; I2; : : : ; IN ;X1;X2; : : : ; XN g.

Further we denote

!n D Np
DSn

I�X�:

It is not difficult to see that

NSn D E .!n=FIX/ D Snp
DSn

: (20)

Set also
fn.t/ D Eeit

NSn:

As it follows from the point 1, we must calculate the operator �.fn .t// by the
formula (6).

By virtue of (20)

E
�
i!ne

it NSn
�

D E
h
E
�
i!ne

it NSn=FIX

�i
D E

h
iE .!n=FIX/ e

it NSn
i

D E
�
i NSneit NSn

�
:
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Therefore,

f 0
n.t/ D E

�
i NSneit NSn

�
D E

�
i!ne

it NSn
�
: (21)

By direct calculation we can obtain the following equalities:

E!n D E .E .!n=FIX// D E NSn D 0: (22)

E!2n D N

1 � n�1
N�1˛2

D n

f
�
1 � n�1

N�1˛2
� ; (23)

E
ˇ
ˇ!3n

ˇ
ˇ D N2

p
n
�
1 � n�1

N�1˛2
�3=2 
 LN D n2

f 2 
 p
n
�
1 � n�1

N�1˛2
�3=2 ; (24)

Further, set

Sn� D 1p
DSn

X

i¤�
IiXi :

By virtue of (21) we have

f 0
n.t/ D E

�
i!ne

itSn �
�C E

h
i!n

�
eit

NSn � eitSn �
�i
:

Since !n and Sn� are independent on construction, we have

E
�
i!ne

itSn �
� D E

�
eitSn �

�
E .i!n/ D 0:

Thus,
f 0
n.t/ D E

�
i!n

�
eit!n=N � 1�	 
EeitSn � : (25)

In addition

EeitSn � D Eeit
NSn C E

�
eitSn� � eit NSn

�
D fn.t/C E

�
eitSn�

�
1 � eit!n=N

�	
: (26)

It follows from (25) and (26) that

f 0
n.t/DE

�
i!n

�
eit!n=N � 1

�	
fn.t/CE

�
i!n

�
eit!n=N � 1

�	
E
�
1�eit!n=N �EeitSn� :

(27)
Using the equalities (22)–(24) we can obtain the following estimates

ˇ
ˇE
�
i!n

�
eit!n=N � 1

�	C t
ˇ
ˇ � t2

2

LNp
n.1 � f ˛2/3=2

; (28)

ˇ
ˇE
�
1 � eit!n=N

�ˇ
ˇ � c0t

2 LNp
n.1 � f ˛2/3=2 ; (29)
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In what follows, the letter c0 denotes different absolute constants.
Now, with regard to the inequalities (28) and (29), we can rewrite (27) in the

form
f 0
n.t/ D An.t/fn.t/C Bn.t/ (30)

where

An.t/ D �t C �

2
t2 NLN ; jBn.t/j � c0t

2 jfn�.t/j NLN ;

fn�.t/ D EeitSn� ; j� j � 1; NLN D LNp
n .1 � f ˛2/

3=2
:

We can consider the equality (14) as the differential equation that we must to
solve under the initial condition fn.0/ D 1. Then we have

fn.t/ D exp

8
<

:

tZ

0

An.u/du

9
=

;
C

tZ

0

Bn.u/ exp

8
<

:

tZ

u

An.s/ds

9
=

;
du: (31)

Further, we obtain

tZ

0

An.u/du D � t
2

2
C �

6
NLN jt j3 ; (32)

tZ

u

An.s/ds D � t
2

2
C u2

2
C an .t; u/ ; (33)

where

jan .t; u/j D
ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
�

NLN
2

tZ

u

s2ds

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ

�
NLN
2

jt j �t2 � u2
�
: (34)

By direct calculation we obtain that

fn�.t/ D
NX

jD1
E
�
eitSn � ; � D j

� D 1

N

1

Cn
N

NX

jD1

X

.r1;:::;rn/

nY

kD1
.j /frk

�
tp
DSn

�

; (35)

where fj .t/ D EeitXj ;
Q

.j / means that in product
nQ

kD1
fk.t/ the factor with

index rj is equal to 1 and the summation is produced on all samples .r1; : : : ; rn/ of
size n.

By using the paper [12] and (35) we can prove that under jt j � � NLN
��1=3

jfn� .t/j � e�t 2=3: (36)
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From (31)–(34), (36) we obtain finally that under jt j � � NLN
��1=3

ˇ
ˇ
ˇfn .t/ � e�t 2=2

ˇ
ˇ
ˇ � c0 NLN jt j3 e�t 2=6: (37)

Further way of the proof is the same as the proof of the classical Berry-Esseen
inequality for sums from independent random variables (see [5]).
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On One Inequality for Characteristic Functions

Nicko Gamkrelidze

Abstract This paper deals with an inequality for characteristic functions. This
inequality (see (3) below) founds connection between “measure of almost normal-
ity” and characteristic functions. Also an analysis of accuracy in the local limit
theorem and connection between the central limit and local limit theorem are given.

Keywords Characteristic functions • Limit theorems • Central limit theorem •
Local limit theorem
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A good deal of probability theory consists of the study of limit theorems, because
“in reality the epistemological value of the theory of probability is revealed only by
limit theorems” (see [4]).

Important part of this area consists of the upper estimation of the rate of con-
vergence in the central limit theorem. It is quite reasonable turn to the construction
of the lower estimates. Unfortunately, many mathematicians working in the field of
theory of limit theorems pay less attention to such a kind of problems.

This paper focuses around one inequality for characteristic function. It should
be noted that this one don’t demands from limit theorems. Taking account of this
notion at first we introduce following
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Definition. An integer valued random variable � is said .A;B; �/ normal if there
are some constants A;B � 1; �; .0 < � < B/ and integer k.�1 < k < 1/ such
that

sup
k

ˇ
ˇ
ˇP.� D k/� .2�/�1=2B�1 exp

n
� .k � A/2

2B2

oˇ
ˇ
ˇ � �

B
: (1)

We will show that � may be estimate from below by

1

4�

Z

ı�jt j<�
jf .t; �k/j2dt where ı > 0:

The exact formulation of this assertion will be given later (see Theorem 1 below).
Denote by 
 D ��� 0 symmetrized random variable, where � and � 0 are independent

and identically distributed with characteristic function f .t; 
/ D
ˇ
ˇ
ˇf .t; �/

ˇ
ˇ
ˇ
2

Proposition 1. Let � be .A;B; �/ normal random variable, then for symmetrized
random variable 
 we have:

sup
k

ˇ
ˇ
ˇP.
 D k/ � 1

2
p
�B

e
� k2

4B2

ˇ
ˇ
ˇ � �

B
; (2)

where � D 2; 01.�C 1

2
p
�
e��2B2/.

Starting from this assertion we get main result:

Theorem 1. Let � be .A;B; �/t normal (1). Then for every integer k � 1.

1

4�

Z

2�
2kC1�jt j��

jf .t; �/j2dt � 2�

B
C 1

2
p
�B

�

1 � e
� k2

4B2

�

: (3)

Proof of Proposition 1. Denote by

Q.x/ D 1p
2�B

e� x2

2 :

Write

P.
 D k/ D
1P

jD�1
P�.k C j /P� .j /

D
1P

jD�1
ŒP�.k C j /.P� .j / �Q.xj //� C

1P
jD�1

ŒP�.k C j / �Q.xkCj /�Q.xj /

C
1P

jD�1
Q.xkCj /Q.xj /:

(4)
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Denote by

S1 W D
1X

jD�1
Q.xj /; and S2 W D

1X

jD�1
Q.xkCj /Q.xj /:

We apply special case of Poisson summation formula (see [1] p. 629). By this
formula for any real s and t > 0 we have

p
2�p
t

X

j

exp




� 1

2t
.s C 2j�/2

�

D
1X

mD�1
e�m2t

2 cos.ms/

D 1C 2

1X

mD1
e�m2t

2 cos.ms/:

(5)

Put s D �2�A; t D 4�2B2 and write the left-hand side (5) as

S1 D 1p
2�B

X

j

exp




� 1

2B2
.j � A/2

�

:

On the right-hand side (5) we get

1C 2

1X

mD1
e�2m2�2B2 cos.m 
 2�A/ (6)

Since B � 1 we can write

2e�2�2B2 1P
mD1

e�2.m2�1/�2B2 � 2e�2�2B2
�

1C
1P
mD2

.e�2�2B2/m
�

� 2e�2�2B2
�
1C e�4�2

1�e�2�2

�
:

The evaluation c WD e�4�2=1� e�2�2 gives c < 10�17. Consequently

S1 D 1C�12; 01e
�2�2B2 ; j�1j < 1: (7)

In the same way we estimate S2. At first consider j -th term of the sum S2

1

2�B2
exp




� 1

2B2

h
.k C j � A/2 C .j �A/2

i�

:

Note that

.k C j � A/2 C .j �A/2 D 2
�
j � .A � k=2/

�2 C k2

2
:
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So

S2 D 1

2
p
�B

e
� k2

4B2

X

j

1

2�B
exp




� 1

B2

�
j � .a � k=2/

�2
�

D 1

2
p
�B

e
� k2

4B2 S 0
1;

(8)

where S 0
1 is the same as S1 but with changing B to B=

p
2 and A to A� k

2
.

According (8) we have

S 0
1 D 1C�2 
 2; 01e��2B2 ; j�2j � 1: (9)

Taking in account (1) and (6)–(9) we receive the statement (2).

Remark 1. Applying Euler’s summation formula or Yu. V. Prokhorov’s Lemma
from [6], to the estimation S1 and S2 we can write

� D 2�C 2

�B

�
1C p

2��
�
:

In preparation for the proof of main inequality (3) we are in need of

Lemma 1. For any integer valued random variable � and integer k � 1

#k.�/ W D P.� D 0/� 1

2k C 1

kX

jD�k
P.� D j /

D 1

2�

�Z

��

�

1 � sin..2k C 1/t=2/

.2k C 1/ sin.t=2/

�

f .t; �/dt:

(10)

Proof of Lemma 1. By inversion formula we have

P.� D j / D 1

2�

�Z

��
e�itjf .t; �/dt

and
kX

jD�k
P.� D j / D 1

2�

�Z

��

0

@
kX

jD�k
e�itj

1

A f .t; �/dt:

Since
kX

jD�k
.e�it/j D 1C 2

kX

jD1
cos tj D sin.2k C 1/t=2

sin t
2

this gives (10).



On One Inequality for Characteristic Functions 279

Lemma 2. Let � be integer valued random variable with nonnegative characteris-
tic function. Then for any integer k � 1

1

4�

Z

2�
2kC1�jt j��

f .t; �/dt � #k.�/ (11)

Proof of Lemma 2. It is obvious that for jt j � �

ˇ
ˇ
ˇ
ˇ

sin.2k C 1/t=2

.2k C 1/ sin t=2

ˇ
ˇ
ˇ
ˇ � 1

.2k C 1/j sin t=2j
and

j sin
t

2
j � jt j

�
:

Thus ˇ
ˇ
ˇ
ˇ
sin.2k C 1/ t

2

2k C 1

ˇ
ˇ
ˇ
ˇ � 1

.2k C 1/j sin t
2
j � �

.2k C 1/jt j � 1

2
; (12)

where jt j � 2�
2kC1 . Therefore by (10) and (12) follows (11). This proves Lemma 2.

Proof of Theorem 1. It is enough to show that right-hand side of inequality (3) is
correct. Since

P.� D 0/ D 1

2
p
�B

C �

B

for jj j � k we get

P.� D j / � 1

2
p
�B

e
� j 2

4B2 � �

B
� 1

2
p
�B

e
� k2

4B2 � �

B
;

which completes the proof (3).

Remark 2. Sometimes it is more convenient in application less sharp estimation
of (3):

#k.�/ � 2�

B
C k2

8
p
�B3

:

Finally, let us consider a sequence of independent identically distributed random
variables Sn D �1 C 
 
 
 C �n taking only integer values, An D ESn; B

2
n D DSn

and let

sup
m

ˇ
ˇ
ˇP.Sn D m/� 1p

2�Bn
e� .m �An/2

2B2
n

ˇ
ˇ
ˇ � �n

Bn
:

Then

In D Bn

Z

2�
2knC1�jt j��

jf .t; Sn/j2dt � c
� c1

Bn
C c2�n

�
; (13)
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where c; c1 and c2 are absolute constants and kn equal to the integer part of

Bn

r
c1

Bn
C c2�n we can set c D 2C 1

8
p
�
; c1 D 2.1C p

2�/

�
; c2 D 2:

This inequality (13) can be exploited in order to estimate the number of
summands needed to achieve a given accuracy in the local limit theorem (l.l.t.) [2].

Moreover: Firstly, the inequality (13) presents necessary condition for the
applicability of the l.l.t. Secondly, since conditions for the validity of the central
limit theorem (c.l.t.), are well known the question arises naturally what has to be
added to the conditions for the central limit theorem in order that the local theorems
holds.

Yu.Prokhorov’s hypothesis was that from (c.l.t.) asymptotically uniformly dis-
tributed (a.u.d.) and infinite negligibility property (i.n.p.) follows l.l.t. Unfortunately
this is not so, we construct a sequence of a.u.d. independent random variables for
which c.l.t. and i.n.p. holds and at the same time the l.l.t. fails to hold, because the
necessary condition In ! 0 (when n ! 1) is violated (3) (see [3, 5, 7]).

Acknowledgements This note would not have been written without the support of acad.
Yu. Prokhorov. To him go my foremost thanks.
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On the Nonlinear Filtering Equations
for Superprocesses in Random Environment

Bronius Grigelionis

Abstract In the paper we define the Dawson-Watanabe type superprocesses in ran-
dom environment as solutions to the related martingale problems. An environment
is modelled by a finite state time homogeneous Markov process with the given
transition probability intensity matrix. A system of nonlinear stochastic equations
is derived for a posteriori probabilities. Reduced system of linear equations is also
obtained.
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superprocess • Martingale problem • Nonlinear filtering • Random environment •
Reduced equation • Stochastic integral
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1 Introduction

Dawson-Watanebe type of superprocesses in Rd arise as the scaling limits of
branching particle systems, which undergo near critical branching and Markov
spatial motions, characterized via Prokorov’s relative compactness criterion as
unique solutions to the related martingale problems (see, e.g., [9]).

Restricting ourselves to the finite variance state depending branching mecha-
nisms and diffusions with jumps spatial motions, we shall arrive to the following
definition.
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Let

Cb.R
d / D ff W Rd ! R1; f is continuous and boundedg;

C 2
b .R

d / D ff W Rd ! R1; f is C2 with bounded partials of order 2 or lessg;

equipped with the topology of uniform convergence on compact sets,

.Af /.x/

D
dX

jD1
bj .x/

ıf

ıxj
.x/C 1

2

dX

j;kD1
ajk.x/

ı2f

ıxj ıxk
.x/

C
Z

Rd nfxg

2

4f .y/� f .x/� 1jx�yj�1.y/
X

jD1
.yj � xj / ıf

ıxj
.x/

3

5˘.x; dy/; x 2Rd;

with coefficients, satisfying the standard Lipschitz continuity and linear growth
conditions,

A W C2
b .R

d / ! Cb.R
d /;

MF .R
d / be a space of finite measures on Rd , endowed with the topology of weak

convergence, �.f /D R

Rd

f .x/�.dx/, 
 WRd ! Œ0;1/ and hj WRd !R1; j D 0;

1; : : : ; N are continuous bounded functions, 1A is an indicator function.
Let .˝;F ;F;P/ be a stochastic basis, F D fFt ; t � 0g, Mloc.P;F/ be the class

of .P;F/ – local martingales, Mc
loc.P;F/ be the class of continuous .P;F/ – local

martingales. (For used terminology and notations from stochastic analysis see, e.g.,
[5, 7]).

Consider a stochastic process f.�t ; Xt/; t � 0g, taking values in f0; 1; : : : ; N g �
MF.R

d/, where f�t ; t � 0g is a finite state time homogeneous .P;F/ – Markov
chain with the transition probability intensity matrix � D .�.j; k//0�j;k�N and
fXt; t � 0g is an F – adapted MF .R

d/ – valued process such that, for each
f 2 C2

b .R
d /,

Mt.f / WD Xt.f / �X0.f / �
Z t

0

Xs.Af C h�sf /ds; t � 0;

is a continuous .P;F/ – local martingale, satisfying

hM.f /it D
tZ

0

Xs.
f
2/ds; t � 0:
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The process fXt; t � 0g we call the superprocess in random environment with the
branching variance function 
 , the conditional drift functions hj ; j D 0; 1; : : : ; N ,
and the diffusion with jumps spatial motions, defined by the generator A. The
environment is modelled by the Markov chain � . Existence of such processes and
properties, in a sense analogous to the classical diffusions, can be easily derived
from [9], Theorem II.5.1 and [8], Proposition 3.1.

Observe, that fMt; t � 0g is a cylindrical local martingale taking values
in fMF .R

d/ WD MF .R
d/ � MF.R

d/ with the covariance operator function
Qt WC2

b .R
d / ! fMF .R

d/ as

Qt.f /.dx/ D 
.x/f .x/Xt .dx/; t � 0:

Let

FX
t D

\

">0

�fXs; s � t C "g; F
X D fFX

t ; t � 0g:

Following [4], in this paper we shall derive stochastic differential equations for the
a posteriori probabilities

�j .t/ WD Pf�t D j jFX
t g; j D 0; 1; : : : ; N; t � 0;

and their reduced form.

2 Nonlinear Filtering Equations for Superprocesses
in Random Environment

For f 2 C2
b .R

d /, write

Mt.f / D Xt.f /� X0.f /�
tZ

0

Xs

0

@Af C
NX

jD0
hj�j .s/f

1

A ds; t � 0:

Lemma 1 (cf. [2]). For each f 2 C2
b .R

d/, M.f / 2 Mc
loc.P;F

X/ and

hM.f /it D
tZ

0

Xs.
f
2/ds; t � 0: (1)

Proof. Taking

Tn D inf

8
<

:
t � 0 W

tZ

0

Xs.
f
2/ds D n

9
=

;
; n D 1; 2; : : : ;
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as the localizing sequence of stopping times and observing that, for 0 � s < t ,

Mt.f /�Ms.f / D Mt.f /�Ms.f /C
tZ

s

Xu.h�uf �

�
NX

jD0
hj �j .u/f /du; (2)

we find that, for each n � 1, P-a.s.

E.Mt�Tn .f / �Ms�Tn .f /jFX
s / D E

0

@

t�TnZ

s�Tn

Xu.h�uf �

�
NX

jD0
hj �j .u/f /dujFX

s

1

A D 0;

proving that M.f / 2 Mc
loc.P;F

X/.

In order to prove (1), let sD t
.�/
0 < t

.�/
1 < : : : < t

.�/
� D t and max

1�k��.t
.�/

k � t .�/k�1/! 0

as � ! 1. From (2) we have

�X

kD1

�
M

t
.�/

k ^Tn.f / �M
t
.�/

k�1^Tn.f /
�2 �

�X

kD1

�
M
t
.�/

k ^Tn.f / �M
t
.�/

k�1^Tn.f /
�2 D

D 2

�X

kD1

�
M
t
.�/
k ^Tn.f / �M

t
.�/
k�1^Tn.f /

�

0

B
B
@

t
.�/

k ^TnZ

t
.�/
k�1^Tn

Xu.h�uf �

�
NX

jD0
hj�j .u/f /du

1

C
C
AC

�X

kD1

0

B
B
@

t
.�/
k ^TnZ

t
.�/
k�1^Tn

Xu.h�uf �
NX

jD0
hj�j .u/f /du

1

C
C
A

2

(3)

From Theorem 2 of [6, p. 92], there exists a subsequence f�r ; r � 1g such that the
sums on the left hand side of (3) converge P-a.s. to hM.f /it^Tn � hM.f /is^Tn �
hM.f /it^Tn C hM.f /is^Tn as �r ! 1. The sums on the right hand side of (3),
obviously, converge to 0 P-a.s. as � ! 1, implying that P-a.s.

hM.f /it D hM.f /it D
Z t

0

Xs.
f
2/ds; t � 0:

ut
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Let P.FX/ be the �-algebra of FX -predictable subsets of Œ0;1/ �˝:
Let ˚2

loc.Q;P;F
X/ be the class of P.FX/

N
B.Rd /-measurable functions

' W Œ0;1/ �˝ � Rd ! R1 such that, for each t � 0, P-a.s.

tZ

0

Z

Rd

'2.s; !; x/
.x/Xs.dx/ds < 1:

We shall further assume that, for each t > 0,

E exp

8
<

:

1

2

tZ

0

Xs.H
/ds

9
=

;
< 1; (4)

whereH.x/ D max
0�j�N h

2
j .x/; x 2 Rd .

Lemma 2. Under the assumption (4), each L 2 Mloc.P;F
X/ has a form:

Lt D L0 C
tZ

0

Z

Rd

'.s; x/M.ds; dx/ (5)

for some ' 2 ˚2
loc.Q;P;F

X/, where M.ds; dx/ means Ito’s stochastic integral with
respect to the cylindrical local martingaleM.f /, f 2 C2

b .R
d / (see [7, 8])

Proof. Define the probability measurebP by means of the equalities

dbP

dP
jFX

t
D exp

8
<

:
�

tZ

0

Z

Rd

h.s; x/M.ds; dx/ �

� 1

2

tZ

0

Z

Rd

�
h.s; x/

�2

.x/Xs.dx/ds

9
=

;
; t � 0; (6)

where h.t; x/ D
NP

jD0
hj .x/�j .t/.

Because

�
h.t; x/

�2 � H.x/

NX

jD0
�j .t/ D H.x/; (7)
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for each t � 0, P-a.s.

tZ

0

Z

Rd

�
h.s; x/

�2

.x/Xs.dx/ds < 1;

i.e. h 2 ˚2
loc.Q;P;F

X/. From the other hand, from (4) and (7) it follows that, for
each t > 0,

E exp

8
<

:

1

2

tZ

0

Z

Rd

�
h.s; x//2
.x/Xs.dx/

�
ds

9
=

;
�

E exp

8
<

:

1

2

tZ

0

Xs.H
/ds

9
=

;
< 1:

From the Novikov’s criterion we find that the definition (6) is correct and
from the Girsanov’s type theorem (see, e.g., [5]) we derive that, for each
f 2 C2

b .R
d /;fM.f / 2 Mc

loc.
bP;FX/ andbP-a.s.

hfM.f /it D
tZ

0

Xs.
f
2/ds; t � 0;

where

fMt WD Xt.f /� X0.f /�
tZ

0

Xs.Af /ds: (8)

Applying the uniqueness theorem in [9] and the Jacod’s theorem on predictable
stochastic integral representation of local martinagles in [5], we conclude the proof
of Lemma 2. ut
Theorem 1. Under the assumption (4), for each t � 0, P-a.s.

�j .t/ D �j .0/C
tZ

0

NX

kD0
�.k; j /�k.s/ds C

C
tZ

0

Z

Rd

�j .s/

"

hj .x/ �
NX

kD0
hk.x/�k.s/

#

M.ds; dx/; j D 0; 1; : : : ; N:
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Proof. is based on the Lemma 2 and the properties of semimartingales, reducing the
filtrations and changing probability measures (cf. [1, 2, 4]).

Observe that for any g W f0; 1; : : : ; N g ! R1, g.�t /; t � 0, is a .P;F/-special
semimartingale such that

g.�t /� g.�0/�
tZ

0

NX

kD0
g.k/�.�s; k/ds; t � 0; (9)

is a .P;F/-local martingale and

E
�
g.�t /jFX

t

� �E�g.�0/jFX
0

� �
tZ

0

NX

j;kD0
g.k/�.j; k/�j .s/ds; t � 0; (10)

is a .P;FX/-local martingale.
Taking gj .k/D 1fj g.k/; j; kD 0; 1; : : : ; N , from (10) we have that

Lj 2 Mloc.P;F
X/; j D 0; 1; : : : ; N , where

Lj .t/ WD �j .t/ � �j .0/�
tZ

0

NX

kD0
�.k; j /�k.s/ds; t � 0:

From Lemma 2, for any j D 0; 1; : : : ; N , there exists 'j 2˚2
loc.Q;P;F

X/ such that

Lj .t/ D Lj .0/C
tZ

0

Z

Rd

'j .s; x/M.ds; dx/; t � 0:

It remains to identify that up to equivalence as elements of ˚2
loc.Q;P;F

X/

'j .s; x/ D �j .s/

 

hj .x/ �
NX

kD0
hk.x/�k.s/

!

:

The technical details, using Lemma 2, are standard (cf.[1,2,4]) and are omitted here.
ut

Remark 1. IfA is a generator of a d -dimensional Lévy process, then we easily have
that A W C2

b .R
d/ ! Cb.R

d /.
Now let us define the probability measureeP by means of the equalities

deP

dP

ˇ
ˇ
ˇ
ˇ
Ft

DW eZt ; t � 0;
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where eZt , t � 0, solves the linear stochastic equation

eZt D 1 �
tZ

0

Z

Rd

eZsh�s .x/M.ds; dx/; t � 0;

i.e.

eZt D exp

8
<

:
�

tZ

0

Z

Rd

h�s .x/M.ds; dx/ � 1

2

tZ

0

Xs.h
2
�s

/ds

9
=

;
; t � 0:

If (4) is fulfilled, the definition is correct, because

jh�t .x/j2 � H.x/; x 2 Rd :

Lemma 3. Under the assumption (4), fM.f /, f 2 C2
b .R

d /, defined by (8), is the
cylindrical .eP, F/-local martingale,

hfM.f /it D
tZ

0

Xs.
f
2/ds

and each eL 2 Mloc.eP;F
X/ has a form:

eLt D eL0 C
tZ

0

Z

Rd

e'.s; x/fM.ds; dx/; t � 0;

for somee' 2 ˚2
loc.Q;

eP;FX/.

Proof. Similarly to the proof of Lemma 2, the statement of Lemma 3 follows from
Girsanov’s type theorem, uniqueness theorem in [9] and the Jacod’s theorem in [5].

ut
Observe that the inverse density

Zt D 1

eZt

D exp

8
<

:

tZ

0

Z

Rd

h�s .x/
fM.ds; dx/ �

� 1

2

tZ

0

Z

Rd

h2�s .x/
.x/Xs.dx/ds

9
=

;
; t � 0;
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solves the equation

Zt D 1C
tZ

0

Z

Rd

Zsh�s .x/
fM.ds; dx/; t � 0: (11)

Theorem 2 (cf. [3, 4]). If (4) is fulfilled, for each t � 0

�j .t/ D e�j .t/
NP

kD0
e�j .t/

; t � 0; j D 0; 1; : : : ; N;

where e�j .t/; t � 0; j D 0; 1; : : : ; N , solve the reduced nonlinear filtering
equations:

e�j .t/ D e�j .0/C
tZ

0

NX

kD0
�.k; j /e�k.s/ds C

C
tZ

0

Z

Rd

e�j .s/hj .x/fM.ds; dx/; t � 0; j D 0; 1; : : : ; N:

Proof. Let eE be the mean value with respect to the probability measureeP,

e�j .t/ WD eE.Zt1f�tDj gjFX
t /; t � 0; j D 0; 1; : : : ; N:

From the Bayes formula

e�cj .t/ D
eE.Zt1f�tDj gjFX

t /

eE.Zt jFX
t /

D e�j .t/

eE.Zt
NP

kD0
1f�tDkgjFX

t /

D e�j .t/
NP

kD0
e�k.t/

; t � 0; j D 0; 1; : : : ; N:

Because Zt ; t � 0, is a continuous .eP;F/-martingale and

1f�tDj g � 1f�0Dj g �
tZ

0

�.�s;j /ds; j D 0; 1; : : : ; N; (12)
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are purely discontinuous .P;F/ – martingales, then (12) define (eP;F/-martingales
also (see [5]).

From (11), (12) and Ito’s formula we find that

1f�tDj gZt � 1f�0Dj gZ0 �
tZ

0

Zs�.�s; j /ds; t � 0; j D 0; 1; : : : ; N;

are .eP;F/-local martingales and, having in mind that

�.�s; j / D
NX

kD0
�.k; j /1f�sDkg;

eLj .t/ W D eE.Zt1f�tDj gjFX
t //� eE.Z01�0Dj jFX

0 /�

�
tZ

0

NX

kD0
�.k; j /eE.Zs1�sDkjFX

s /ds; t � 0; j D 0; 1; : : : ; N;

are .eP, FX/-local martingales. From Lemma 3, for any j D 0; 1; : : : ; N , there exists
e'j 2 ˚2

loc.Q;
eP;FX/ such that

eLj .t/ D eLj .0/C
tZ

0

Z

Rd

e'j .s; x/fM.ds; dx/; t � 0:

It remains to identify that up to equivalence as elements of ˚2
loc.Q;

eP;FX/

e'j .s; x/ D e�j .s/hj .x/; s � 0; x 2 Rd :

The technical details, using Lemma 3 are standard (cf. [1,2,4]) and are again omitted
here. ut
Example 1 (change-point model). Let

�t D
(
0; if t < T;

1; if t � T;

where P fT > tg D e��t , t � 0, � > 0.
In this case N D 1, �.0; 0/ D 0, �.1; 0/ D 0, �.0; 1/ D �, �.1; 1/ D ��,

�0.t/ D 1 � �1.t/, t � 0.
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Thus, the following equations hold true:

�1.t/ D �1.0/C�

tZ

0

.1 � 2�1.s//ds C

C
tZ

0

Z

Rd

�1.s/.1 � �1.s//.h1.x/ � h0.x//M.ds; dx/; t � 0;

and

e�0.t/ D e�0.0/C
tZ

0

Z

Rd

e�0.s/h0.x/fM.ds; dx/; t � 0;

e�1.t/ D e�1.0/C�

tZ

0

.e�0.s/�e�1.s//ds C

C
tZ

0

Z

Rd

e�1.s/h1.x/fM.ds; dx/; t � 0:
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6. Meyer, P.A.: Intégrales Stochastiques, I–IV, Séminaire de Probabilités de Strasbourg I. Lecture
Notes in Mathematics, vol. 39, pp. 72–162. Springer, Berlin (1967)
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8. Mikulevičius, R., Rozovskii, B.L.: Martingale problems for stochastic PDE’s In: Carmona, R.,
Rozovskii, B.L. (eds.) Stochastic Partial Differential Equations: Six Perspectives. Mathematical
Surveys and Monographs vol. 64, pp. 243–325. Amer. Math. Soc., Providence (1999)

9. Perkins, E.: Dawson-Watanabe superprocesses and measure-valued diffusions. In: Lecture Notes
in Mathematics, vol. 1781, pp. 135–192. Springer, Berlin (2002)



Upper Bounds for Bernstein Basis Functions

Vijay Gupta and Tengiz Shervashidze

Abstract From Markov’s bounds for binomial coefficients (for which a short proof
is given) upper bounds are derived for Bernstein basis functions of approximation
operators and their maximum. Some related inequalities used in approximation
theory and those for concentration functions are discussed.

Keywords Bernstein basis functions for approximation operators • Markov
bounds for binomial coefficients • Zeng’s upper bounds for binomial probabilities •
Extension of upper bounds for binomial probabilities via discretization of the
argument. Rogozin’s and some other inequalities for concentration functions

Mathematics Subject Classification (2010): 41A36, 41A44, 60E15, 60G50

V. Gupta (�)
School of Applied Sciences, Netaji Subhas Institute of Technology, Sector 3 Dwarka,
New Delhi-110078, India
e-mail: vijaygupta2001@hotmail.com

T. Shervashidze
A. Razmadze Mathematical Institute, 1, M. Aleksidze St., Tbilisi 0193, Georgia

I. Vekua Institute of Applied Mathematics, I. Javakhishvili Tbilisi State University, 2,
University St., Tbilisi 0186, Georgia
e-mail: sher@rmi.ge

A.N. Shiryaev et al. (eds.), Prokhorov and Contemporary Probability Theory,
Springer Proceedings in Mathematics & Statistics 33,
DOI 10.1007/978-3-642-33549-5 17, © Springer-Verlag Berlin Heidelberg 2013

293



294 V. Gupta and T. Shervashidze

1 Markov’s Bounds for Binomial Coefficients. Preliminaries

One can get upper bounds for Bernstein basis functions of approximation operators,
i.e., binomial probabilities

b.kIn; p/ D Ck
n p

k.1 � p/n�k; p 2 Œ0; 1�; k D 0; 1; : : : ; n;

using direct analytic or probabilistic methods.
First estimates of b.kIn; p/ can be found in “Ars Conjectandi” by J. Bernoulli,

see [3] and commentary by Yu.V. Prokhorov “Law of Large Numbers and Estimates
for Probabilities of Large Deviations” on pp. 116–155 in the same [3]. Using an
additional argument together with one to obtain the Stirling formula Markov proved
the double inequality for binomial coefficients Ck

n which we prefer to write in the
form of bounds for b.kIn; p/ (see [12], pp. 72, 73 or formula (16) on p. 135 in
above mentioned commentary in [3]; cf. formula (135) in Chap. IV “The rate of
approximation of functions by linear positive operators” of [11]):

Theorem A. Let n � 1, k � 1, n� k � 1 and p 2 .0; 1/. Then

e
1
12n� 1

12k� 1
12.n�k/

r
n

2�k.n � k/
�np

k

�k
�
n.1 � p/

n � k

�n�k

< b.kIn; p/ <
r

n

2�k.n � k/
�np

k

�k
�
n.1 � p/

n � k

�n�k
DW Ma.kIn; p/: (1)

Let us give a short proof of (1) with 1=.12n C 1/ instead of 1=.12n/ in the
exponent in the left-hand side.

Proof. The proof is based on the double inequality which refines Stirling asymp-
totics

.2�/1=2nnC1=2e�nC1=.12nC1/ < nŠ < .2�/1=2nnC1=2e�nC1=.12n/ (2)

(see Feller’s book [5], Chap. II, and Robbins’ paper [15] referred therein).
Due to (2) we have

Ck
n D nŠ=ŒkŠ.n � k/Š� < Œn=.2� k.n � k//�1=2nn k�k .n � k/�.n�k/

� expŒ1=.12n/� 1=.12k C 1/� 1=.12.n� k/C 1/�: (3)

The nominator of the latter exponent equals to

.12k C 1/.12.n� k/C 1/� 12n.12nC 2/

D 144Œk.n� k/ � .1=4/n2� � 108n2 � 12nC 1;
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which is negative for each n > 1 and k. Multiplication of both sides of inequality
(3) by pk.1 � p/n�k completes the proof of right-hand inequality of (1). Dealing
with the left-hand inequality similarly we find that the exponent is negative, too,
both in initial and weakened form.

From (1) immediately follows that for some p and n the binomial probabilities
b.npIn; p/ is less than its De Moivre–Laplace asymptotic expression.

Corollary 1. (a) For any rational p 2 .0; 1/ and n such that np is an integer

b.npIn; p/ < 1p
2�

1
p
np.1 � p/ DW MoLa.n; p/: (4)

(b) Inequality (4) is valid for b.k0.n/In; p/ with p D k0.n/=n for any integer
k0.n/ such that 0 < k0.n/ < n.

(c) In both cases (a) and (b) inequality (4) holds for b.kIn; p/ with any k D
0; 1; : : : ; n:

(d) The constant 1p
2�

in (4) is best possible.

It is worth to mention that in the standard situation when for binomial proba-
bilities Poisson’s asymptotic formula is valid, i.e., b.kIn; p/ � Po.kInp/ ! 0 as
n ! 1, p ! 0 and np remaining bounded, for any fixed k 2 N D f0; 1; : : :g
with Po.kI�/ D �k e��=kŠ, � > 0, one can derive the following representations of
Ma.kIn; p/ as upper bounds for b.kIn; p/ and b.n� kIn; p/ for fixed k and n� k
respectively.

Corollary 2. If k is fixed, then for n > k

b.kIn; p/ < `Ma.kIn; p/

WD Po.kInp/
r

n

n � k
kŠp

2�k.k=e/k
enp�k

�

1C k � np

n � k

�n�k
: (5)

If l D n � k is fixed, then for n > l

b.l In; p/ D b.n� l In; 1 � p/ < `Ma.n � l In; 1 � p/ DW rMa.l In; p/: (6)

The chain of results which has inspired our small contribution has began by the
inequality established and used by Guo [7], to estimate the rate of convergence of
the Durrmeyer operators for functions of bounded variation. His proof was based on
the Berry–Esseen theorem; Guo obtained the inequality

b.kIn; p/ � C
p
np.1 � p/

; p 2 .0; 1/; 0 � k � n;

with C D 5=2. In the year 1998, Zeng [17] has improved this bound having proved
the following assertion.
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Theorem B. For a fixed j 2 N and

Cj D ..j C 1=2/jC1=2=j Š/e�.jC1=2/ (7)

for all k; p such that j � k � n � j , p 2 .0; 1/, there holds

b.kIn; p/ < Cj
p
np.1 � p/

DW Zj .n; p/: (8)

Moreover, the coefficient Cj is best possible .that is to say, for arbitrary " > 0,
it can not be replaced by Cj � "/, and the estimate order n�1=2 is the optimal also.

The sequence of constants Cj decreases strictly and

lim
j!1Cj D 1p

2�
:

Hence for all j 2 N , there holds

1p
2�

< Cj � C0 D 1p
2e
: (9)

In particular, for j D 0 (8) reduces to

b.kIn; p/ < 1
p
2enp.1 � p/ D Z0.n; p/; p 2 .0; 1/; 0 � k � n: (10)

Bastien and Rogalski solved in [2] a problem posed by V. Gupta in a private
communication, having given there another proof that the upper bound (10) obtained
by Zeng [17] is the optimum.

In the year 2001 Zeng and Zhao [18] have obtained the bound (4) for Bernstein
basis functions (in fact assertions (b), (c) and (d) of our Corollary 1 of Theorem A
from [11] and [3]).

In [1, 9] and [8] upper bound (10) is used to obtain the rate of convergence for
Bernstein–Durrmeyer operators. Here we present the result of our collaboration to
investigate the above mentioned problem concerning the optimal constant in the
inequality (10).

Our first observation is that the inequalities given by Corollary 1 and Theorem B,
namely relations (4) and (10) in fact are estimates for maximal probability of
binomial distribution

b.n; p/ D max
0�k�n

b.kIn; p/:

It is well-known that due to De Moivre–Laplace local limit theorem, for p 2
.0; 1/ b.n; p/ is equivalent to

.2�np.1 � p//�1=2



Upper Bounds for Bernstein Basis Functions 297

5
1 2 3 4

5
0.25 0.5 0.75

5 5

Fig. 1 Graphs of b.kIn; p/
as functions of p 2 Œ0; 1�,
k D 0; : : : ; n for n D 4, their
maxima and intersection
points. In this figure, b.n; p/
is drawn by a thick line

as n ! 1 (a nice proof is given in Feller’s book [5], Chap. VII). It turns out that
the latter expression is at the same time an upper bound for b.n; p/ for rational
p and n such that np is an integer. The above equivalence shows that dependence
on n and the constant in this upper bound are optimal. The fine structure of the
system of modal binomial values m D Œ.n C 1/p�, where Œ
� denotes the integer
part, leads to an immediate upper bound for any n and p by substitution of p
with the step function p� D m=nI see Fig. 1 and a few useful facts concerning m,
namely:

(a) The most probable value (or modal value or mode) m of the binomial distribu-
tion is defined by the inequality

.nC 1/p � 1 < m � .nC 1/p; (11)

if m D .nC 1/p; there are two modal values b.m� 1In; p/ D b.mIn; p/.
(b) The suitable binomial probability is not greater than maximum of b.mIn; p/ in

p attained at p D p� D m=n, that is

b.mIn; p/ � b.mIn; p�/: (12)
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2 Bounds for b.n; p/

The following proposition is in fact a reformulation of Corollary 1 for b.n; p/.

Proposition 1. For any k0 D k0.n/ such that 0 < k0.n/ < n and p D k0.n/=n

there holds
b.n; k0.n/=n/ < MoLa.n; p/: (13)

The estimate coefficient 1p
2�

is the best possible.
In particular, for a constant rational probability p; 0 < p < 1, and n such that np

is an integer, for b.n; p/ D b.npIn; p/ inequality (13) holds true.
The right-hand side of inequality (12) is covered by Proposition 1. Thus we

obtain

Proposition 2. Define for 0 < p < 1 the function p� D p�.p/ D m=n, where
m D m.p/ D Œ.n C 1/p� is the (maximal) mode of binomial distribution (m=n is
equal to 0 on .0; 1=.n C 1//, to 1=n on Œ1=.n C 1/; 2=.n C 1//; : : : and to 1 on
Œn=.nC 1/; 1/). Then for any n and 1=.nC 1/ � p < n=.nC 1/ the inequality

b.n; p/ < .2�np�.1 � p�//�1=2 D MoLa.n; p�/ (14)

holds.

Proposition 3. For any p 2 Œ1=.nC 1/; n=.nC 1// we have

b.n; p/ < Ma.mIn; p/ D
� p
p�

�np�� 1�p
1�p�

�n.1�p�/

p
2�np�.1 � p�/

: (15)

Let us now try to discuss whether Propositions 2 and 3 have some advantage in
approximation theory compared with the curves

z0.n; p/ D 1 _Z0.n; p/ D 1 _ .2enp.1 � p//�1=2; p 2 .0; 1/;
z1.n; p/ D 1 _Z1.n; p/ D 1 _ C1.np.1 � p//�1=2; p 2 .0; 1/

(cf.(5) and (10); see (4) and (9) for C1), which seem natural to be introduced as
b.n; p/ does not exceed 1.

Denote
v.n; p/ D 1 _ MoLa.n; p/; p 2 .0; 1/:

Our results make it meaningful to consider the function v�.n; p/ as v.n; p�/
which reduces the interval .0; 1/ for p to

1=.nC 1/ � p < n=.nC 1/I

out of this range lie the values of p for which m D 0 or m D n which correspond
to the values 0 and 1 for p� excluded in the proposition. So we are motivated to
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0

0.2

0.25

0.3

0.35

0.4

n+1
n

n+1
1

1

Fig. 2 Approximations of b.n; p/ ( 1
nC1

� p < n
nC1

, n D 12) Thick line: b.n; p/, Dashed line:
Ma.mIn; p/, Step line: MoLa.n; p�/, Pointed line: Z1.n; p/, Thin line: MoLa.n; p/

introduce probabilities b.0In; p/ and b.nIn; p/ on corresponding intervals for p as
extra summands into modified v�.n; p/:

v��.n; p/ D v�.n; p/C .1 � p/nI.0;1=.nC1//.p/C pnIŒn=.nC1/;1/.p/;

where IE.p/ stands for the indicator of a set E .
Figure 2 illustrates the fact that at least for p from some neighborhood of 1/2

the curves z0.n; p/ and z1.n; p/ lie over v��.n; p/. In the same sense Ma.mIn; p/
behaves much better.

In all the papers where Zeng’s inequality (10) is used to obtain approximation
estimations, see, e.g., [1, 8, 9], those will be evidently improved using inequalities
(14) and (15).

As for each fixed k and l b.kIn; k=n/ and b.n � l In; 1 � l=n/, according to
Prokhorov’s famous result (1953) [14], is better to treat via Poisson approximation
than by normal one, this way may lead to better estimates useful for approximation
theory.

Being motivated by this advantage for p close to 0 or 1, we tried to explore the
following expression, using for Ma.kIn; p/ the representations `Ma.kIn; p/ for
k < n=2; 0 < p < 1=2 and r Ma.kIn; p/ for k � n=2; 1=2 � p < 1 (see relations
(5) and (6)), each without two factors tending to one from three such ones:

Ma�.n; p/ D I.0;1=2/.p/ max
0�k<n=2

p
n=.n � k/ Po.kInp/

C IŒ1=2;1/.p/ max
n=2�k<n

p
n=k Po.n � kIn.1 � p//:
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Computer experiment shows that Ma�.n; p/ fits with b.n; p/ much better than
Ma.m; n; p/. This phenomenon is to be explained with theoretical argument.

An alternative way to construct estimates b.n; p/ D O.n�1=2/ for Bernstein
basis functions and similar ones for some other basis functions goes via inequalities
for concentration functions of the sum Sn of the integer-valued i.i.d. random
variables �1; : : : ; �n, namely for maximal probabilities of such a sum. For example,
Rogozin gave in [16] the estimate which implies that

max
k
P.Sn D k/ � c..1 � p0/n/

�1=2; (16)

where p0 stands for the maximal probability of each summand and c is an absolute
constant.

In the case of binomial distribution p0 D p_.1�p/ and as 1�p0 D p^.1�p/;
we havep.1�p/ < 1�p0 in (0,1) and thus dependence onp in Rogozin’s inequality
turns out to be better. As for the constant c its comparison with De Moivre–Laplace
asymptotic expression shows that c � 1=�1=2: The upper bound 2� for this constant
is available from [13] (the suitable inequality is wrongly reproduced in the Russian
translation of [10]). A general explanation of optimality of the order n�1=2 in bounds
of type of (16) can be found in [4] (see also [10] and [6]).

Acknowledgements The authors thank very much Prof. Mamuka Jibladze who kindly found time
to read the initial version of the manuscript, to discuss it with the second author and to prepare
Figs. 1 and 2 using Mathematica.
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On Distribution of Zeros of Random
Polynomials in Complex Plane

Ildar Ibragimov and Dmitry Zaporozhets

Abstract Let Gn.z/ D �0 C �1z C 
 
 
 C �nzn be a random polynomial with
i.i.d. coefficients (real or complex). We show that the arguments of the roots of
Gn.z/ are uniformly distributed in Œ0; 2�� asymptotically as n! 1. We also prove
that the condition E ln.1 C j�0j/<1 is necessary and sufficient for the roots to
asymptotically concentrate near the unit circumference.

Keywords Roots of random polynomial • Roots concentration • Random analytic
function
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Let f�kg1
kD0 be a sequence of independent identically distributed real- or complex-

valued random variables. It is always supposed that P .�0 D 0/ < 1.
Consider the sequence of random polynomials

Gn.z/ D �0 C �1z C 
 
 
 C �n�1zn�1 C �nzn:

By z1n; : : : ; znn denote the zeros of Gn. It is not hard to show (see [1]) that there
exists an indexing of the zeros such that for each kD 1; : : : ; n the k-th zero zkn
is a one-valued random variable. For any measurable subset A of complex plain
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C put Nn.A/D #fzkn W zkn 2 Ag. Then Nn.A/=n is a probability measure on
the plane (the empirical distribution of the zeros of Gn). For any a; b such that
0 6 a < b 61 put Rn.a; b/ D Nn.fz W a 6 jzj 6 bg/ and for any ˛; ˇ such that
0 6 ˛ < ˇ 6 2� put Sn.˛; ˇ/ D Nn.fz W ˛ 6 arg z 6 ˇg/. Thus Rn=n and Sn=n
define the empiric distributions of jzknj and arg zkn.

In this paper we study the limit distributions of Nn;Rn; Sn as n ! 1.
The question of the distribution of the complex roots of Gn have been originated

by Hammersley in [1]. The asymptotic study ofRn; Sn has been initiated by Shparo
and Shur in [16]. To describe their results let us introduce the function

f .t/ D

2

6
4logC logC : : : logC t
„ ƒ‚ …

mC1

3

7
5

1C"
mY

iD1
logC logC : : : logC t
„ ƒ‚ …

i

;

where logC s D max.1; log s/. We assume that ">0;m 2 Z
C and f .t/ D

.logC t/1C" for m D 0.
Shparo and Shur have proved in [16] that if

Ef .j�0j/ < 1

for some " > 0;m 2 Z
C, then for any ı 2 .0; 1/ and ˛; ˇ such that 06 ˛ < ˇ 6 2�

1

n
Rn.1 � ı; 1C ı/

P�! 1; n ! 1;

1

n
Sn.˛; ˇ/

P�! ˇ � ˛

2�
; n ! 1:

The first relation means that under quite weak constraints imposed on the coeffi-
cients of a random polynomial, almost all its roots “concentrate uniformly” near
the unit circumference with high probability; the second relation means that the
arguments of the roots are asymptotically uniformly distributed.

Later Shepp and Vanderbei [15] and Ibragimov and Zeitouni [5] under additional
conditions imposed on the coefficients of Gn got more precise asymptotic formulas
for Rn.

What kind of further results could be expected? First let us note that if, e.g.,
E j�0j < 1, then for jzj < 1

Gn.z/ ! G.z/ D
1X

kD0
�kzk

as n! 1 a.s. The function G.z/ is analytical inside the unit disk fjzj<1g.
Therefore for any ı > 0 it has only a finite number of zeros in the disk fjzj < 1� ıg.
At the other hand, the average number of zeros in the domain jzj > 1=.1 � ı/
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is the same (it could be shown if we consider the random polynomial G.1=z/).
Thus one could expect that under sufficiently weak constraints imposed on the
coefficients of a random polynomial the zeros concentrate near the unit circle
� D fz W jzj D 1g and a measure Rn=n converges to the delta measure at the point
one. We may expect also from the consideration of symmetry that the arguments
arg zkn are asymptotically uniformly distributed. Below we give the conditions for
these hypotheses to hold. We shall prove the following three theorems about the
behavior of Nn=n;Rn=n; Sn=n.

For the sake of simplicity, we assume that P f�0 D 0g D 0. To treat the general
case it is enough to study in the same way the behavior of the roots on the sets
f� 0
n D k; � 00

n D lg, where

� 0
n D maxfi D 0; : : : ; n j �i ¤ 0g; � 00

n D minfj D 0; : : : ; n j �j ¤ 0g:

Theorem A. The sequence of the empirical distributions Rn=n converges to the
delta measure at the point one almost surely if and only if

E log.1C j�0j/ < 1: (1)

In other words, (1) is necessary and sufficient condition for

P


1

n
Rn.1 � ı; 1C ı/ �!

n!1 1

�

D 1 (2)

hold for any ı > 0.
We shall also prove that if (1) does not hold then no limit distribution for fznkg

exist.

Theorem B. Suppose the condition (1) holds. Then the empirical distributionNn=n
almost surely converges to the probability measure N.
/ D �.
 \ � /=.2�/, where
� D fz W jzj D 1g and � is the Lebesgue measure.

Theorem C. The empirical distribution Sn=n almost surely converges to the
uniform distribution, i.e.,

P


1

n
Sn.˛; ˇ/ �!

n!1
ˇ � ˛

2�

�

D 1

for any ˛; ˇ such that 0 6 ˛ < ˇ 6 2� .

Let us remark here that Theorem C does not require any additional conditions on
the sequence f�kg.

The next result is of crucial importance in the proof of Theorem C.

Theorem D. Let f�kg1
kD0 be a sequence of independent identically distributed real-

valued random variables. Put gn.x/ D Pn
kD0 �kxk and by Mn denote the number

of real roots of the polynomial gn.x/. Then
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P


Mn

n
�!
n!1 0

�

D 1; EMn D o.n/; n ! 1:

Theorem D is also of independent interest. In a number of papers it was shown
that under weak conditions on the distribution of �0 one has EMn � c � logn;
n ! 1 (see [2–4, 6, 9, 10]). L. Shepp proposed the following conjecture: for any
distribution of �0 there exist positive numbers c1; c2 such that EMn > c1 � logn
and EMn 6 c2� logn for all n. The first statement was disproved in [17,18]. There
was constructed a random polynomial gn.x/ with EMn < 1C ". It is still unknown
if the second statement is true. However, Theorem D shows that an arbitrary random
polynomial can not have too much real roots (see also [14]).

In fact, in the proof of Theorem C we shall use a slightly generalized version of
Theorem D:

Theorem E. For some integer r consider a set of r non-degenerate probability
distributions. Let f�kg1

kD0 be a sequence of independent real-valued random
variables with distributions from this set. As above, put gn.x/ D Pn

kD0 �kxk and
by Mn denote the number of real roots of the polynomial gn.x/. Then

P


Mn

n
�!
n!1 0

�

D 1; EMn D o.n/; n ! 1: (3)

2 Proof of Theorem A

Let us establish the sufficiency of (1). Let it hold and fix ı 2 .0; 1/. Prove that the
radius of convergence of the series

G.z/ D
1X

kD0
�kzk (4)

is equal to one with probability one.
Consider � > 0 such that P fj�0j > �g > 0. Using the Borel-Cantelli lemma we

obtain that with probability one the sequence f�kg contains infinitely many �k such
that j�kj > �. Therefore the radius of convergence of the series (4) does not exceed
1 almost surely.

On the other hand, for any non-negative random variable 


1X

kD1
P .
 > k/ 6 E 
 6 1C

1X

kD1
P .
 > k/: (5)

Therefore, it follows from (1) that
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1X

kD1
P .j�kj > e
k/ < 1

for any positive constant 
 . It follows from the Borel-Cantelli lemma that with
probability one j�kj < e
k for all sufficiently large k. Thus, according to the Cauchy-
Hadamard formula (see, e.g., [11]), the radius of convergence of the series (4) is at
least 1 almost surely.

Hence with probability one G.z/ is an analytical function inside the unit ball
fjzj < 1g. Therefore if 0 6 a < b < 1, then R.a; b/ < 1, where R.a; b/ denotes
the number of the zeros of G inside the domain fz W a 6 jzj 6 bg. It follows
from the Hurwitz theorem (see, e.g., [11]) that Rn .0; 1 � ı/ 6 R .0; 1 � ı=2/ with
probability one for all sufficiently large n. This implies

P


1

n
Rn.0; 1� ı/ �!

n!1 0

�

D 1:

In order to conclude the proof of (2) it remains to show that

P


1

n
Rn.1C ı;1/ �!

n!1 0

�

D 1:

In other words, we need to prove that P fAg D 0, where A denotes the event that
there exists " > 0 such that

Rn .1C ı;1/ > "n

holds for infinitely many values n.
By B denote the event that G.z/ is an analytical function inside the unit disk

fjzj < 1g. For m 2 N put


m D sup
k2ZC

j�ke�k=mj:

By Cm denote the event that 
m < 1. It was shown above that P fBg D P fCmg D 1

form 2 N. Therefore, to get P fAg D 0, it is sufficient to show that P fABCmg D 0

for some m.
Let us fix m. The exact value of it will be chosen later. Suppose the event

ABCm occurred. Index the roots of the polynomial Gn.z/ according to the order
of magnitude of their absolute values:

jz1j 6 jz2j 6 
 
 
 6 jznj:

Fix an arbitrary numberC >1 (an exact value will be chosen later). Consider indices
i; j such that
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jzi j < 1 � ı=C; jziC1j > 1 � ı=C;
jzj j 6 1C ı; jzjC1j > 1C ı:

If jz1j > 1 � ı=C , then i D 0; if jznj 6 1C ı then j D n.
It is easily shown that if

jzj < min

�

1;
j�0j

n � maxkD1;:::;n j�kj
�

;

then
j�0j > j�1zj C j�2z2j C 
 
 
 C j�nznj:

Therefore such z can not be a zero of the polynomial Gn. Taking into account that
the event Cm occurred, we obtain a lower bound for the absolute values of the zeros
for all sufficiently large n:

jz1j > min

�

1;
j�0j

n � maxkD1;:::;n j�kj
�

> j�0j
n
men=m

> j�0j
�1
m e�2n=m:

Therefore for any integer l satisfying j C 1 6 l 6 n and all sufficiently large n

jz1 : : : zl j D jz1 : : : zi jjziC1 : : : zj jjzjC1 : : : zl j

> j�0ji 
�i
m e

�2ni=m
�

1� ı

C

�j�i
.1C ı/l�j :

Since A occurred, n�j > n" for infinitely many values of n. Therefore if l satisfies
n � p

n 6 l 6 n, then the inequalities j C 1 6 l 6 n and l � j > n"=2 hold for
infinitely many values of n. According to the Hurwitz theorem for all sufficiently
large n we have i 6 Rn.0; 1 � ı=C / 6 R.0; 1 � ı=.2C //. Therefore for infinitely
many values of n

jz1 : : : zl j >
� j�0j

m

�R.0;1�ı=.2C //
e�2nR.0;1�ı=.2C //=m

�

1 � ı

C

�n
.1C ı/n"=2:

Choose now C large enough to yield

�

1 � ı

C

�

.1C ı/"=2 > 1:

Furthermore, holding C constant choosem such that

b D e�2R.0;1�ı=.2C //=m
�

1 � ı

C

�

.1C ı/
"
2 > 1:

Since
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� j�0j

m

�R.0;1�ı=.2C //=n
�!
n!1 1;

there exists a random variable a > 1 such that for infinitely many values of n

jz1 : : : zl j >
� j�0j

m

�R.0;1�ı=.2C //
bn D

 

b

� j�0j

m

�R.0;1�ı=.2C //=n!n
> an:

On the other hand, it follows from n � p
n 6 l and Viéte’s formula that

jzlC1 : : : znj >
 

n

n � p
n

!�1
j

X

i1<���<in�l

zi1 : : : zin�l
j D

 
n

n � p
n

!�1 j�l j
j�nj :

We combine these two inequalities to obtain for infinitely many values of n

j�0j
j�nj D jz1 : : : znj > an

 
n

n � p
n

!�1 j�l j
j�nj

> c1an
.
p
n/

p
nC 1

2 .n � p
n/n�p

nC 1
2

nnC 1
2

j�l j
j�nj > c2a

n.
p
n/�

p
n

�

1 � 1p
n

�n j�l j
j�nj

> c3 exp

�

n log a �
p
n logn

2
� p

n

� j�l j
j�nj > e

˛n j�l j
j�nj ;

where ˛ is a positive random variable. Multiplying left and right parts by j�nj, we get

ABCm �
1[

iD1
Di ;

where Di denotes the event that j�0j > en=i maxn�p
n6l6n j�l j for infinitely many

values of n.
To complete the proof it is sufficient to show that P fDi g D 0 for all i 2 N.

Having in mind to apply the Borel-Cantelli lemma, let us introduce the following
events:

Hin D
(

j�0j > en=i max
n�p

n6l6n
j�l j
)

:

Considering � > 0 such that P fj�0j 6 �g D F.�/ < 1, we have

Hin � ˚j�0j > �en=i
� [

(

max
n�p

n6l6n
j�l j 6 �

)

;

consequently,
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1X

nD1
P fHing 6

1X

nD1
P fj�0j > �en=ig C

1X

nD1
.F.�//

p
n < 1

and, according to the Borel-Cantelli lemma, P fDig D 0.
We prove the implication (2))(1) arguing by contradiction. Suppose (1) does

not hold, i.e.,
E log.1C j�oj/ D 1:

It follows from (5) that
1X

nD1
P .j�nj > e
n/ D 1 (6)

for an arbitrary positive 
 . For k 2 N introduce an event Fk that j�nj > ekn holds
for infinitely many values of n. It follows from (6) and the Borel-Cantelli lemma
that P fFkg D 1 and, consequently, P f\1

kD1Fkg D 1. This yields

P



lim sup
n!1

j�nj1=n D 1
�

D 1:

Therefore with probability one for infinitely many values of n

j�nj1=n > max
iD0;:::;n�1 j�i j1=i ; j�nj1=n > 3

"
; j�0j < 2n�1;

where " > 0 is an arbitrary fixed value. Let us hold one of those n. Suppose jzj > ".
Then

j�0 C �1z C 
 
 
 C �n�1zn�1j
6 2n�1 C j�nznj1=n C j�nznj2=n C 
 
 
 C j�nznj.n�1/=n

D 2n

2
� 1C j�nznj � 1

j�1=nn zj � 1
6 j�1=nn zjn

2
� 1C j�nznj � 1

.3="/� " � 1 < j�nznj:

Thus with probability one for infinite number of values of n all the roots of the
polynomial Gn are located inside the circle fz W jzj D "g, where " is an arbitrary
positive constant. This means that (2) does not hold for any ı 2 .0; 1/.

3 Proof of Theorem B

The proof of Theorem B follows immediately from Theorems A and C. However,
the additional assumption (1) significantly simplifies the proof.

Consider a set of sequences of reals



On Distribution of Zeros of Random Polynomials in Complex Plane 311

fa11g; fa12; a22g; : : : ; fa1n; a2n; : : : anng; : : : ;

where all ajn 2 Œ0; 1�. We say that fajng are uniformly distributed in Œ0; 1� if for any
0 6 a < b 6 1

lim
n!1

#fj 2 f1; 2; 
 
 
 ; ng W ajn 2 Œa; b�g
n

D b � a:

The definition is an insignificant generalization of the notion of uniformly dis-
tributed sequences (see, e.g., [7]). It is easy to see that the Weyl criterion (see Ibid.)
continues to be valid in this case:

The set of sequences fajn; j D 1; : : : ; ng; n D 1; 2; : : : ; is uniformly distributed
if and only if for all l D 1; 2; : : :

1

n

nX

jD1
e2�ilajn ! 0; n ! 1:

Let zjn D rjne
i�jn be a zero of Gn.z/; rjn D jzjnj; �jn D arg zjn; 06 �jn < 2�:

The asymptotic uniform distribution of the arguments is equivalent to the statement
that the set of sequences f�jn=.2�/g is uniformly distributed. Thus, according to
Weyl’s criterion, it is enough to show that for any l D 1; 2; : : :

lim
n

1

n

nX

jD1
eil�jn D 0

with probability 1.
For the simplicity we assume that �0 ¤ 0. Consider the random polynomial

QGn.z/ D �n C �n�1z C 
 
 
 C �1z
n�1 C �0z

n:

Its roots are z�1
kn . According to Newton’s formulas (see, e.g., [8]),

nX

jD1

1

zlj n
D 'l

�
�1

�0
; : : :

�l

�0

�

;

where 'l.x1; : : : xl / are polynomials which do not depend on n (for example,
'1.x/ D �x). It follows that

1

n

nX

jD1
e�i l�jn D 1

n

nX

jD1
e�i l�jn

 

1 � 1

rljn

!

C 'l

n
: (7)
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As was shown in the proof of Theorem A, for jzj < 1 the polynomials Gn.z/
converge to the analytical function G.z/ D P1

kD0 �kzk with probability 1. Since
�0 ¤ 0, the function G.z/ has no zeros inside a circle fz W jzj 6 �g; Pf� > 0g D 1.
Hence for n > N; PfN < 1g; the polynomials Gn.z/ have no zeros inside
fz W jzj 6 �g: Let 
 > 0 be a positive number. It follows from (7) that

ˇ
ˇ
ˇ
1

n

nX

jD1
e�i l�jn

ˇ
ˇ
ˇ 6 .l C 1/




.1 � 
/l
C 1

n

�

1C 1

�

�

#fj W jrjn � 1j > 
; i D 1; : : : ng C 'l

n
:

Theorem A implies that the second member on the right-hand side goes to zero as
n ! 1 with probability 1. Hence

1

n

nX

jD1
e�i l�jn ! 0; n ! 1;

with probability 1 and the theorem follows.

4 Proof of Theorem C

Consider integer numbers p; q1; q2 such that 06 q1 < q2 <p � 1. Put 'j D qj =p,
j D 1; 2; and try to estimate Sn D Sn.2�'1; 2�'2/. Evidently Sn D limR!1 SnR,
where SnR is the number of zeros of Gn.z/ inside the domain AR D fz W jzj 6 R;
2�'1 6 arg z 6 2�'2g. It follows from the argument principle (see, e.g., [11])
that SnR is equal to the change of the argument of Gn.z/ divided by 2� as z
traverses the boundary of AR. The boundary consists of the arc �R D fz W jzj D R;

2�'1 6 arg z 6 2�'2g and two intervals Lj D fz W 0 6 jzj 6 R; arg z D �'j g;
j D 1; 2. It can easily be checked that if R is sufficiently large, then the change of
the argument as z traverses �R is equal to n.'2�'1/Co.1/ as n ! 1. If z traverses
a subinterval of Lj and the change of the argument of Gn.z/ is at least � , then the
function jGn.z/j cos.argGn.z// has at least one root in this interval. It follows from
Theorem E that with probability one the number of real roots of the polynomial

gn;j .x/ D
nX

kD0
xk<.�ke2�ik'j / D

nX

kD0
xk�k;j

is o.n/ as n ! 1. Thus the change of the argument of Gn.z/ as z traverses Lj is
o.n/ as n ! 1 and

P


1

n
Sn.2�'1; 2�'2/ D .'2 � '1/C o.1/; n ! 1

�

D 1:
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The set of points of the form expf2�iq=pg is dense in the unit circle
fz W jzj D 1g. Therefore

P


1

n
Sn.˛; ˇ/ �!

n!1
ˇ � ˛

2�

�

D 1

for any ˛; ˇ such that 0 6 ˛ < ˇ 6 2� .

5 Proof of Theorem E

First we convert the problem of counting of real zeros of gn.x/ to the problem of
counting of sign changes in the sequence of the derivatives fg.j /n .1/gnjD0.

Let faj gnjD0 be a sequence of real numbers. By Z.faj g/ denote the number of
sign changes in the sequence faj g, which is defined as follows. First we exclude
all zero members from the sequence. Then we count the number of the neighboring
members of different signs.

For any polynomialp.x/ of degree n put Zp.x/ D Z.fp.j /.x/g/, i.e., the number
of sign changes in the sequence p.x/; p0.x/; : : : ; p.n/.x/.

Lemma 1 (Budan-Fourier Theorem). Suppose p.x/ is a polynomial such that
p.a/; p.b/ ¤ 0 for some a < b. Then the number of the roots of p.x/ inside .a; b/
does not exceed Zp.a/� Zp.b/. Moreover, the difference between Zp.a/� Zp.b/ and
the number of the roots is an even number.

Proof. See, e.g., [8]. ut
Corollary 1. The number of the roots of p.x/ inside Œ1;1/ does not exceedZp.1/.

Proof. For all sufficiently large x the sign of p.j /.x/ coincides with the sign of the
leading coefficient. ut
Corollary 2. The function Zp.x/ does not increase.

Let us turn back to the random polynomial gn.x/. Here and elsewhere we shall
omit the index n when it can be done without ambiguity. By Mn.a; b/ denote the
number of zeros of g.x/ inside the interval Œa; b�.

First let us prove that

EZg.1/ D o.n/; n ! 1: (8)

Fix some " > 0 and � 2 .0; 1=2/. Since the distributions of f�j g belong to a finite
set, there exists K D K."/ such that

sup
j2Z1

P fj�j j > Kg 6 ": (9)
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Let I be a subset of f0; 1; : : : ; ng consisting of indices j such that j�j j < K and
Œ�n� 6 j 6 Œ.1 � �/n�. Put

g1.x/ D
X

j2I
�j x

j ; g2.x/ D g.x/ � g1.x/:

Let �k be the indicator of fjg.k/1 .1/j > jg.k/2 .1/jg and �j be the indicator of
fj�j j > Kg.

Lemma 2. Let a1; a1; b1; b2 be real numbers. If .a1Ca2/.b1Cb2/<0 and a2b2> 0,
then either ja1j > ja2j or jb1j > jb2j.
Proof. The proof is trivial. ut

It follows from Lemma 2 that

Zg.1/ D Zg1Cg2.1/ 6 Zg2.1/C 2

nX

jD0
�j 6 Zg2.1/C 2�nC 2C 2

Œ.1��/n�X

jDŒ�n�
�j :

Owing to the monotonicity of the functionZg2.x/, one has

Zg2.1/ 6 Zg2.0/ 6
nX

jD0
�j :

Hence,

Zg.1/ 6 2�nC 2C
nX

jD0
�j C 2

Œ.1��/n�X

jDŒ�n�
�j : (10)

Using (9) we have E�j D P fj�j j > Kg 6 ", therefore,

EZg.1/ 6 2�nC 2C ".nC 1/C 2E
Œ.1��/n�X

jDŒ�n�
�j : (11)

Let us now estimate the value E �j . Note that g.k/.x/ D Pn
lDk �lAk;lxl�k , where

Ak;l D l.l � 1/ 
 
 
 .l � k C 1/. Fix some integer k such that �n 6 k 6 .1� �/n. If
n � 1 > j > k, then

Ak;j 6 .1 � �/Ak;jC1;

which implies

Ak;j 6 Ak;Œ.1��/n�.1 � �/Œ.1��/n��j

for �n 6 k 6 j 6 .1 � �/n. Consequently,
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jg.k/1 .1/j D
ˇ
ˇ
ˇ
X

j2J;j>k
�jAk;j

ˇ
ˇ
ˇ

6 KAk;Œ.1��/n�
Œ.1��/n�X

jD0
.1 � �/j 6 K

�
Ak;Œ.1��/n�:

This yields that

E �k D P
n
jg.k/1 .1/j > jg.k/2 .1/j

o

6 P
n
jg.k/1 .1/j > jg.k/1 .1/C g

.k/
2 .1/j � jg.k/1 .1/j

o

D P
n
jg.k/.1/j 6 2jg.k/1 .1/j

o
6 P




jg.k/.1/j 6 2K
�
Ak;Œ.1��/n�

�

:

For an arbitrary random variableX define the concentration functionQ.hIX/ as
follows:

Q.hIX/ D sup
a2R1

P fa 6 X 6 a C hg:

If X; Y are independent random variables, then (see, e.g., [12])

Q.hIX C Y / 6 min .Q.hIX/;Q.hIY // :

Therefore,

E �k 6 P

 jg.k/.1/j
Ak;Œ.1��/n�

6 2K
�

�

(12)

6 P


g.k/.1/

Ak;Œ.1��/n�
6 2K

�

�

6 Q
�
2K

�
I g.k/.1/

Ak;Œ.1��/n�

�

D Q

0

@2K

�
I

nX

jDk

Ak;j

Ak;Œ.1��/n�
�j

1

A 6 Q

0

@2K

�
I

nX

jDŒ.1��/n�

Ak;j

Ak;Œ.1��/n�
�j

1

A :

To estimate the right-hand side of (12) we use the following result.

Lemma 3 (the Kolmogorov-Rogozin inequality). Let X1;X2; : : : ; Xn be inde-
pendent random variables. Then for any 0 < hj 6 h; j D 1; : : : ; n;

Q.hIX1 C 
 
 
 CXn/ 6
Ch

qPn
jD1 h2j .1 �Q.hj IXj //

; (13)

where C is an absolute constant.
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Proof. See [13]. ut
Since the distributions of f�j g belong to a finite set, we get

ı D ı."; �/ D inf
j2Z1




1 �Q

�
2K

�
I �j

��

> 0:

Putting h D hj D 2K=� in (13) and using (12), we obtain

E �k 6 C

2

4
nX

jDŒ.1��/n�




1 �Q

�
2K

�
I Ak;j

Ak;Œ.1��/n�
�j

��
3

5

�1=2

6 C

2

4
nX

jDŒ.1��/n�




1 �Q
�
2K

�
I �j

��
3

5

�1=2

6 Cp
ı�n

:

Combining this with (11), we have

EZg.1/ 6 2�nC 2C ".nC 1/C 2C
p
ı."; �/�

n1=2:

Since �; " are arbitrary positive numbers, we obtain (8), which together with the
corollary from Lemma 1 implies

EMn.1;1/ D o.n/; n ! 1:

Considering the random polynomials g.1=x/ and g.�x/, it is possible to obtain
similar estimates for Mn.0; 1/ and Mn.�1; 0/. Thus the second part of (3) holds.
To prove the first one, we estimate the probabilities of large deviations for the sumsP
�j and

P
�j . The elementary considerations or the application of Bernstein

inequalities (see, e.g., [12]) leads to

P

8
<

:

ˇ
ˇ
ˇ

nX

jD0
�j

ˇ
ˇ
ˇ > 2.nC 1/"

9
=

;
6 2e�n"=8: (14)

The analysis of the behavior of
P
�j is slightly more difficult.

Henceforth we shall use the following notation: for any positive functions f1; f2
we write f1 	 f2, if there exists an absolute constant C such that f1 6 Cf2 in the
domain of these functions.

Lemma 4. There exists a constant c depending only on �; " and the distributions
of f�j g such that

E �k 6 cn�2

for �n 6 k 6 .1 � �/n.
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Proof. As was shown in (12),

E �k 6 Q

0

@2K

�
I

nX

jDŒ.1��/n�

Ak;j

Ak;Œ.1��/n�
�j

1

A : (15)

To estimate the concentration function in the right-hand side we use the result of
Esseen (see, e.g., [12]). Let X be a random variable with a characteristic function
f .t/. Then

Q.hIX/ 	 max

�

h;
1

T

�Z T

�T
jf .t/j dt

uniformly for all T > 0.
Putting T D �=.KAk;Œ.1��/n�/ and applying (15) , we obtain

E �k 	 1

T

Z T

�T

nY

jDŒ.1��/n�
jfj .Akj t/j dt;

where fj .t/ is a characteristic function of �j . Further,

E �k 	 1

T

Z T

�T

2

4
nY

jDŒ.1��/n�
jfj .Akj t/j2

3

5

1
2

dt

	 1

T

Z T

�T
exp

8
<

:
�1
2

nX

jDŒ.1��/n�

�
1 � jf .Akj t/j2

�
9
=

;
dt

D 1

T

Z T

�T
exp

8
<

:
�1
2

nX

jDŒ.1��/n�

Z 1

�1
�
1 � cos.Akj tx/

	
Pj .dx/

9
=

;
dt;

where Pj is a distribution of the symmetrized �j , i.e., a distribution of �j � �0
j ,

where �0
j is an independent copy of �j .

There are at most r different distributions among fPj g.1��/n6j6n. Therefore
there exist a distribution P and a subset J � fj W .1 � �/n 6 j 6 ng such that
jJ j > n�=r and Pj D P for all j 2 J . By

P0 denote the summation taking over
all indices such that j 2 J . Thus,

E �k 	 1

T

Z T

�T
exp

8
<

:
�1
2

nX0

jDŒ.1��/n�

Z 1

�1
�
1 � cos.Akj tx/

	
P.dx/

9
=

;
dt:

Choose ı > 0 such that 
 D Pfx W jxj > ıg>0. Since the integrands are non-
negative, we get
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E �k 	 1

T

Z T

�T
exp

8
<

:
�1
2

nX0

jDŒ.1��r /n�

Z

jxj>ı
�
1 � cos.Akj tx/

	
P.dx/

9
=

;

D 1

T

Z T

�T
e�ˇnCs.t/ dt;

where �r D �.2r � 1/=.2r/; ˇ D jJ \ fj W .1 � �r/n 6 j 6 ngj=.2n/ and

s.t/ D 1

2

Z

jxj>ı

nX0

jDŒ.1��r /n�
cos.Akj tx/P.dx/:

Put ˛ D �
=.4r/ and consider �1 D ft 2 Œ�T; T � W js.t/j < ˛n=2g and �2 D
Œ�T; T � n �1. Since jJ j > n�=r and by the definition of ˇ, we have ˇ > ˛.
Therefore,

E �k 	 e�˛n=2 C �.�2/

T
; (16)

where � denotes the Lebesgue measure.
Let us estimate �.�2/. It follows from Chebyshev’s and Hölder’s inequalities

that

�.�2/ 6
16

˛4n4

Z T

�T
js.t/j4 dt 6 1

˛4n4

Z

jxj>ı
dP

Z T

�T

ˇ
ˇ
ˇ

nX0

jDŒ.1��r /n�
cos.Akj tx/

ˇ
ˇ
ˇ
4

dt:

(17)
Put

S.x/ D
Z T

�T

ˇ
ˇ
ˇ

nX0

jDŒ.1��r /n�
cos.Akj tx/

ˇ
ˇ
ˇ
4

dt

and assume, for simplicity, that r D 1, i.e., �r D �=2;
P D P0 and the summation

is taken over all j . The general case is considered in a similar way.
We have

S.x/ D
Z T

�T

�X

j1

cos4.Akj1 tx/C
X

j1¤j2
cos3.Akj1tx/ cos.Akj2 tx/ (18)

C
X

j1¤j2
cos2.Akj1 tx/ cos2.Akj2 tx/

C
X

j1¤j2¤j3
cos2.Akj1tx/ cos.Akj2tx/ cos.Akj3 tx/

C
X

j1¤j2¤j3¤j4
cos.Akj1 tx/ cos.Akj2 tx/ cos.Akj3tx/ cos.Akj4tx/

�

dt:
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The first three summands in (18) are easily estimated as follows:

ˇ
ˇ
ˇ

Z T

�T

�X

j1

cos4.Akj1 tx/C
X

j1¤j2
cos3.Akj1 tx/ cos.Akj2 tx/ (19)

C
X

j1¤j2
cos2.Akj1tx/ cos2.Akj2tx/

�

dt
ˇ
ˇ
ˇ 	 T n2:

The next two summands have a common method of estimation. We consider only
the last one. From the formula cosy D .eiy C e�iy/=2 it is easily shown that

ˇ
ˇ
ˇ

Z T

�T

X

j1¤j2¤j3¤j4
cos.Akj1tx/ cos.Akj2tx/ cos.Akj3 tx/ cos.Akj4 tx/ dt

ˇ
ˇ
ˇ (20)

	
X

j1¤j2¤j3¤j4
min

�
T; jxj�1j ˙ Akj1 ˙ Akj2 ˙ Akj3 ˙ Akj4 j�1

�

	
X

j1>j2>j3>j4

min

�

T; jxj�1A�1
kj1

ˇ
ˇ
ˇ1 � Akj2

Akj1
� Akj3

Akj1
� Akj4

Akj1

ˇ
ˇ
ˇ
�1�

;

The summation in the middle term is taken over all possible combinations of signs.
Consider the partition of the index set

fj D .j1; j2; j3; j4/ W j1 > j2 > j3 > j4g D K1 [K2;

where

K1 D



j W j1 � j2 6 10
�
; j1 � j3 6 10

�
j ln�j

�

andK2 is the complement ofK1. Clearly, jK1j 	 n2j ln�j=�2. Therefore,

X

j2K1
min

�

T; jxj�1A�1
kj1

ˇ
ˇ
ˇ1 � Akj2

Akj1
� Akj3

Akj1
� Akj4

Akj1

ˇ
ˇ
ˇ
�1� 	 T n2j ln�j

�2
: (21)

Consider now
X

j2K2
A�1
kj1

ˇ
ˇ
ˇ1 � Akj2

Akj1
� Akj3

Akj1
� Akj4

Akj1

ˇ
ˇ
ˇ
�1
:

Putting p D j1 � j2, we have

Akj2

Akj1
D .j1 � p/ 
 
 
 .j1 � p � k C 1/

j1 
 
 
 .j1 � k C 1/

D
�

1 � p

j1

�


 
 

�

1 � p

j1 � k C 1

�

6 exp

8
<

:
�p

j1X

lDj1�kC1

1

l

9
=

;
:
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Since for any natural l

1

l
> ln

�

1C 1

l

�

D ln.l C 1/� ln l;

we get

j1X

lDj1�kC1

1

l
> ln.j1 C 1/� ln.j1 � k C 1/ D � ln

�

1 � k

j1 C 1

�

:

Taking into account �n 6 k 6 .1 � �/n and .1 � �=2/n 6 j1 6 n and using the
inequality

� ln.1� t/ > t; t 2 Œ0; 1�;
we get

j1X

lDj1�kC1

1

l
> �n

nC 1
> 1
2
�:

Therefore,
Akj2

Akj1
6 exp




��
2
p

�

D exp




��
2
.j1 � j2/

�

: (22)

If j 2 K2 and j1 � j2 > 10=�, then

Akj4

Akj1
6
Akj3

Akj1
6
Akj2

Akj1
6 e�5 <

1

4
;

which implies

1 � Akj2

Akj1
� Akj3

Akj1
� Akj4

Akj1
> 1
4
: (23)

Suppose now j 2 K2 and j1 � j3 > 10j ln�j=�. Using (22) and � 2 .0; 1=2/,
we get

1 � Akj2

Akj1
> 1 � e��=2 > �

2

�

1 � �

4

�

> 7

16
�:

Further, (22) also holds for j3. Therefore,

Akj4

Akj1
6 Akj3
Akj1
6 exp




��
2
.j1 � j3/

�

6 exp




�10
2

j ln�j
�

6 �5 6 1

16
�:

Thus,

1� Akj2

Akj1
� Akj3

Akj1
� Akj4

Akj1
> 5

16
�: (24)

It follows from (23) and (24) that
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X

j2K2
A�1
kj1

ˇ
ˇ
ˇ1 � Akj2

Akj1
� Akj3

Akj1
� Akj4

Akj1

ˇ
ˇ
ˇ
�1 	 1

�

X

j

A�1
kj1
:

Taking into account the structure of the index set fj g, we have

X

j

A�1
kj1
6 .�n/4

Ak;Œ.1��=2/n�
;

consequently,

X

j2K2
A�1
kj1

ˇ
ˇ
ˇ1 � Akj2

Akj1
� Akj3

Akj1
� Akj4

Akj1

ˇ
ˇ
ˇ
�1 	 �3n4

Ak;Œ.1��=2/n�
: (25)

Combining (18)–(21) and (25), we obtain

S.x/ 	 T n2 C T n2j ln�j
�2

C �3n4

jxjAk;Œ.1��=2/n� :

Applying this to (17), we get

�.�2/ 	 T

˛4n2
C T j ln�j
�2˛4n2

C �3

˛4ıAk;Œ.1��=2/n�
:

By (16),

E �k 	 e�˛n=2 C 1

˛4n2
C j ln�j
�2˛4n2

C �3

T ˛4ıAk;Œ.1��=2/n�
:

Recalling that T D �=.KAk;Œ.1��/n�/, we obtain

E �k 	 e�˛n=2 C 1

˛4n2
C j ln�j
�2˛4n2

C �2KAk;Œ.1��/n�
˛4ıAk;Œ.1��=2/n�

:

It follows from (22) that
Ak;Œ.1��/n�
Ak;Œ.1��=2/n�

6 e��2n=4:

Thus,

E �k 	 e�˛n=2 C 1

˛4n2
C j ln�j
�2˛4n2

C �2K

˛4ı
e��2n=4:

Recalling that ˛ D 
�=4, we obtain

E �k 	 e�
�n=8 C 1


4�4n2
C j ln�j

4�6n2

C K


4�2ı
e��2n=4:
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Since K is defined by " and 
; ı are defined by the distributions of f�j g, Lemma 4
is proved. ut

Now we are ready to complete the proof of Theorem E. It follows from (10) that

Mn.1;1/ 6 2�nC 2C
nX

jD0
�j C 2

Œ.1��/n�X

jDŒ�n�
�j : (26)

By Lemma 4 and Chebyshev’s inequality,

P

8
<

:

Œ.1��/n�X

kDŒ�n�
�k > n

3=4

9
=

;
6
PŒ.1��/n�

jDŒ�n� E �k

n3=4
6 c1n�5=4: (27)

Further, it follows from (14) that there exists a constant c2 > 0 depending only on "
such that

P

8
<

:

nX

jD0
�j > 2"n

9
=

;
6 c2n�2: (28)

Combining (26)–(28), we get

P
˚
Mn.1;1/ > 2�nC 2C 2n3=4 C 2"n

�
6 c1n�5=4 C c2n

�2:

Considering the random polynomials g.1=x/ and g.�x/, it is possible to obtain
similar estimates for Mn.0; 1/ and Mn.�1; 0/. Thus there exist positive constants
c0
1; c

0
2 such that

P
˚
Mn > 2�nC 2C 2n3=4 C 2"n

�
6 c0

1n
�5=4 C c0

2n
�2:

According to the Borel-Cantelli lemma, with probability one there exists only a
finite number of n such that Mn > 2�nC 2C 2n3=4 C 2"n. Since �; " are arbitrary
small,

P


Mn

n
�!
n!1 0

�

D 1:

Theorem E is proved.
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Dependence and Interaction in Branching
Processes

Peter Jagers and Fima C. Klebaner

Abstract Independence of reproducing individuals can be viewed as the very
defining property of branching processes. It is crucial for the most famous results
of the theory, the determination of the extinction probability and the dichotomy
between extinction and exponential increase. In general processes, stabilisation of
the age-distribution under growth follows, and indeed of the over-all population
composition, and so do the many fine results of the area, like conditional stabili-
sation of the size of non-extinct subcritical processes. The last two decades have
witnessed repeated attempts at treating branching processes with various kinds of
dependence between individuals, ranging from local dependence between close
relatives only to population size dependence. Of particular interest are very recent
findings on processes that change from being supercritical to subcriticality at some
threshold size, the carrying capacity of the habitat. We overview the development
with an emphasis on these recent results.
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1 Introduction

A drastic pedagogical example, illustrating the role of independence in branching
processes is the “follow-the-generation-leader process”. It also serves to demon-
strate that non-linearity on the expectation level is not the same as dependence
between individuals. It is defined like a Galton-Watson branching process, but
without the requirement that individuals reproduce independently. Instead they
all reproduce in the same manner in each generation, follow the leader of their
generation as it were. The leaders of different generations have independent and
identically distributed offspring numbers, say k with probability pk; 0 < p0 < 1.
If the process is supercritical, m D P

kpk > 1, expectations, or for that sake the
corresponding deterministically modelled population, will grow geometrically, like
mn. The actual population will, however, die out at the first instant the generation
leader chooses to have no children. To a probabilist such phenomena will come as no
surprise – from the point of view of prevailing deterministic population dynamics,
based on differential operators, they may be illuminating.

If dependence, on the contrary, is local in the pedigree, so that e.g. only siblings
may influence each other, the branching character remains. Indeed, as has been
developed by Olofsson, [14] e.g., this situation can be reduced to a multi-type
branching process. For single-type Galton-Watson processes with interacting sib-
lings this is easily described: the whole sibship is turned into a “macro-individual”.
Different macro-individuals are independent but not identically distributed. Indeed,
the sibship size matters. Thus, this number is the type of the multi-type process, and
the rest goes by multi-type theory [16]. Results continue to hold for quite general
branching processes. A broad investigation of various forms of dependence not
destroying classical branching behaviour is contained in [8, 9].

More interesting are those dependence structures that result in new phenomena.
One, and maybe the one of greatest importance, is that of population size depen-
dence. Here the individual remains the initiator of reproduction, but the distribution
of the latter is influenced by population size. This is straightforward in case of
discrete time with non overlapping generations (the “Galton-Watson” case), less
so for general processes, which evolve in continuous time and where individuals
can give birth any time. Still, for quite (but not completely) general branching
processes, those that are Markovian in the age structure, [6], this is feasible in
terms of age-dependent intensities. Most literature concerns simpler, Galton-Watson
and birth-and-death style, processes and populations where reproduction forces
stabilise when population size grows to infinity, usually around a limiting critical
reproduction. We shall focus upon populations with a finite so called carrying
capacity, i.e. populations living in a habitat with a finite capacity, so that the
population is supercritical while below this capacity and subcritical above [12].
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2 No Bounded Population Can Persist

Branching processes are characterized by the fundamental dichotomy between
extinction and exponential, Malthusian growth. As is well known Markov chains
with zero as sole absorbing state and communication between states otherwise,
exhibit a similar behaviour: extinction or else growth beyond all limits, albeit not
necessarily at an exponential rate. The latter dichotomy holds much more generally,
indeed for any natural closed population model, as seen from the following
elementary but elegant theorem.

Theorem 1 (General Dichotomy). Consider non-negative (not necessarily integer
valued) random variablesX1;X2; : : :. Assume 0 absorbing (i.e.Xn D 0)XnC1 D 0)
and suppose that for any x there is a ı > 0 such that P.9nIXn D 0jX1; : : : Xk/ � ı,
if onlyXk � x. Then, with probability one, either there is an n such that all Xk D 0

for k � n or Xk ! 1, as k ! 1. If EŒXn� remains bounded, it follows that Xn
must turn zero, almost surely.

An example of non-exponential population growth is the well-known linear
increase in molecule number showing up in PCR, the polymerase chain reaction,
mathematically a consequence of asymptotic criticality, as the number of molecules
tends to infinity [11].

Proof. LetD D f9nIXn D 0g be the event of extinction. By Lévy’s theorem on the
convergence of conditional expectations with respect to increasing sigma-algebras,
or more generally by martingale convergence,

P.DjX1; : : : Xk/ ! 1D; k ! 1;

since D is measurable with respect to the �-algebra generated by all the
Xi; i D 1; 2; : : :. If the outcome is such that Xk does not tend to infinity, then
it comes under some level x infinitely often. The conditional extinction probability
on the left hand side exceeds ı, and hence so must 1D . But 1D > 0 ) 1D D 1.

If thus any population with, say, a bounded expected size must die out, the question
arises when and how this will occur, and if there may be a quasi-stationary plateau,
persisting a long time before extinction. Another interesting question would be how
size and composition distribution during such a quasi-stationary stage might relate
to the stationary limit distributions exhibited by deterministic, differential equations
based population dynamics.

3 General Branching Processes with Carrying Capacities

3.1 Process Definition and Martingale Representation

Consider a population of individuals with ages .a1; : : : ; az/DA. A member indi-
vidual of age a has a random life span with hazard rate hA.a/. During life she gives
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birth with intensity bA.a/, both rates dependent on the individual’s age as well as the
whole setup of ages. Finally, when she dies, she splits into a random number Y.a/
of off-spring with a distribution that may be influenced by the age a of the mother at
death/splitting and beyond that by the number of individuals around and their ages
A. Childbearing and life length may thus be affected by population size and age
structure, but apart from this individuals live and reproduce independently of each
other. We write mA.a/ D EŒY.a/� and vA.a/ for the second moment, and generally
suffix entities by age vectors to indicate present or starting age distribution. Thus,
PA and EA indicate that the population started at time t D 0 not from one newborn
ancestor but rather from z individuals, of ages A D .a1; : : : ; az/, respectively. No
index means start from a given age configuration.

It is convenient to look at the collection of ages A as a measure

A D
zX

iD1
ıai ;

where ıa denotes the point measure at a. If there were no deaths and no births, then
the population would change only by ageing. When an individual dies, its point mass
disappears and an offspring number of point masses appear at zero. Similarly, when
an individual gives birth during life, a point mass appears at zero. Thus, population
evolution in time is given by a measure-valued process. When a carrying capacity
K is introduced, intensities will be influenced by the value of the latter, and a whole
family of such processes, indexed by K , obtains.

Existence of such processes follow from the general Ulam-Harris construction,
[7] or from general Markov theory, since these are measure-valued Markov pro-
cesses. Following [12], we proceed to the generator and the integral representation,
known as Dynkin’s formula. (For any function f on R

.f; A/ D
Z

f .x/A.dx/ D
zX

iD1
f .ai /:

Theorem 2 ([10]). For a bounded differentiable function F on RC and a continu-
ously differentiable function f on RC, the following limit exists

lim
t!0

1

t
EA

n
F..f;At //� F..f;A//

o
D GF..f;A//; (1)

where

GF..f;A// D F 0..f;A//.f 0; A/C
zX

jD1
bA.a

j /fF.f .0/C .f;A// � F..f;A//gC

C
zX

jD1
hA.a

j /fEAŒF.Y.aj /f .0/C .f;A/ � f .aj //�� F..f;A//g; (2)
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and Y.a/ denotes the number of children at death of a mother, dying at age a.
Consequently, Dynkin’s formula holds: for a bounded C1 function F on R and a
C1 function on RC

F..f;At // D F..f;A0//C
Z t

0

GF..f;As//ds CM
F;f
t ; (3)

where MF;f
t is a local martingale with predictable quadratic variation

˝
MF;f ;MF;f

˛
t

D
Z t

0

GF 2..f; As//ds � 2
Z t

0

F ..f; As//GF..f;As//ds:

As a corollary, the following representation was also obtained in [10]:

Theorem 3. For a C1 function f on RC

.f; At / D .f; A0/C
Z t

0

.LAsf; As/ds CM
f
t ; (4)

where the linear operators LA are defined by

LAf D f 0 � hAf C f .0/.bA C hAmA/; (5)

andMf
t is a local square integrable martingale with the sharp bracket given by

˝
Mf ;Mf

˛
t

D
Z t

0

�
f 2.0/bAs C f 2.0/v2AshAs C hAsf

2 � 2f .0/mAshAsf; As
�
ds;

(6)

A further corollary gives the corresponding representation of the population size
Zt D .1; At/:

Zt D Z0 C
Z t

0

.bAs C .mAs � 1/hAs ; As/ds CM1
t ; (7)

since LA1 D bA C hA.mA � 1/.
Studies of populations by measure-valued Markov processes have been done in

the past with various setups, see e.g. [1–3] Sect. 9.4, [4, 13, 15], and [17], which
comes closest to the already quoted [10] and [12].

3.2 Criticality and the Carrying Capacity

The concepts of super-, sub-, and plain criticality are well known when there is no
population dependence. In the Bellman-Harris case, when reproduction occurs only
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at death and independently of mother’s age then, they are easily generalised to the
present, more general set-up: criticality (at the age-configuration A) is determined
by the offspring mean mA, being greater, smaller or equal to 1 respectively. In
the presence of births during lifetime the situation is more involved. In fact, from
the martingale representation (7) reproduction is critical in the population-age-
dependent case precisely when the criticality function

�A D LA1 D bA C .mA � 1/hA (8)

satisfies .�A;A/ D 0. Super- or sub-criticality holds when .�A;A/ is positive or
negative, respectively. We recover the observation that without child-bearing during
life (bA D 0) but with Bellman-Harris splitting the usual criticality description
persists but in general criticality at an age composition A is defined by (8).

A stronger criticality concept could be termed strict: A population process is
strictly critical atA if and only if �A.a/D bA.a/ChA.a/.mA.a/�1/D 0 identically
in a. For Bellman-Harris type processes the two concepts obviously coincide.

Third, one could speak of annealed criticality at A, if the reproduction of an
individual living in a non-population dependent branching population and having
the reproduction parameters bA; hA, and mA with A fixed throughout life is critical
in the classical sense. In the Bellman-Harris case all three concepts coincide.

Following notation in population biology, we denote the carrying capacity byK .
We think of it as a comparatively large number, such that reproduction is subcritical
above and supercritical below the threshold levelK , though this is a vague assertion
until we make it clear what type of criticality we have in mind.

Provided that dependence on population composition is through the scaled
population size x D z=K only, it follows that any A with total mass K , or scaled
mass 1, is a criticality point. In terms of the criticality function �,

�A D �x; �1 D 0:

We refer to this as population size (or density) dependence and allow ourselves to
index parameters analogously, bx; hx;mx.

3.3 Early Extinction

Now consider a population size dependent process with carrying capacity K ,
starting at time t D 0 from z individuals. To ease notation we take them all as
newborn. What are chances that population size will reach a vicinity of the carrying
capacity before extinction? We write T for the time to extinction and Td for the time
the population first attains a size � dK; 0 < d < 1. Clearly (since such a population
must die out eventually),

T < Td ) 8t; Zt < dK:
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Now assume that reproduction decreases with increasing population and let units
with a tilde denote entities pertaining to a not-population dependent branching
process with the parameters bd ; hd ;md . Then

P.T < Td / � P. QT < 1/ D Qqz;

where Qq is the extinction probability of the not population dependent branching
process. IfMd > 1 and Vd denote the mean and variance of the all-life reproduction
of this latter process, we have by Haldane’s inequality ([5], p. 125) that the
probability of the original population never reaching dK is

P.T < Td / �
�

1� 2.Md � 1/
Vd CMd.Md � 1/

�z

;

quite small in typical cases (even if z is not excessively large). With a positive chance
the population will thus reach a size or order K . Since it grows quicker than the
process QZt while under the level dK , and the latter grows exponentially, we can
conclude that this will occur after a time of order logK .

Theorem 4. If reproduction decreases with population size, any population size
dK; 0 < d < 1 is attained with positive probability within a time Td D O.logK/,
asK ! 1.

3.4 Lingering Around the Carrying Capacity

So what happens if the population does not die out without approaching its carrying
capacity? Ultimate extinction can not be avoided, but when will it happen and how
will the process behave before it? To investigate this, we assume that the population
is density dependent and strictly critical at the carrying capacity, �1 D 0. Further,
we assume a Lipschitz continuity in the neighbourhood of 1, j�x j � C jx � 1j, for
some constant C . Then:

Theorem 5. Assume that XK
0 ! 1 in probability, as K ! 1. Then the

total population size scaled by the carrying capacity XK
t DZK

t =K converges in
probability to 1, uniformly on any time interval Œ0; T �; T > 0. In other words, for
any � > 0

lim
K!1P.sup

t�T
jXK

t � 1j > �/ D 0:

To prove the final result about remaining an exponential time around the carrying
capacity, the existence of a moment generating function of the offspring number at
splitting is required, and a condition that guarantees clear subcriticality not too far
above K . Write 	A.t/.a/ WD EAŒe

tY.a/� for the moment generating function of the
number Y.a/ of offspring at the splitting of an a-aged individual in a population of
age-compositionA.
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Assumption. There exists a population size VK > K such that

.e1=K � 1/bA C .	A.1=K/e
�1=K � 1/hA D 0; when jAj D VK and (9)

.e1=K � 1/bA C .	A.1=K/e
�1=K � 1/hA � 0; whenever .1; A/ > VK:

Since the reproduction is subcritical for population sizes larger than K , such a
number exists. What is needed, and guaranteed by this assumption is that it is not
too far away from K . For example, when b D 0 and Y is a binary splitting with
P.YA D 2/ D K=.K C z/, then VK is determined from

z

K C z
e�1=K C K

K C z
e1=K D Eze

.Y�1/=K D 1:

Solving for z gives VK D e1=KK .

Theorem 6. LetXK
0 D 1 and � D infft W jXK

t �1j > "g for any " > 0. Suppose that
the previous assumptions hold and that the number of children possible at splitting
is bounded by some constant. Then E� is exponentially large in K , i.e. for some
positive constants C; c

E� > CecK:

The proofs hinge upon the various martingale representations (3), (4), and (7); the
reader is referred to [12]. For related results in a somewhat different setup, cf. [17].
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Abstract Two discrete random variables, � and � are considered. The goal
is to decide whether � is a function of �. A series of tests are performed,
.�i ; �i /; 1� i �m, are independent experiences with the same distribution as .�; �/.
The hypothesis is declined if �i D �j ; �i ¤ �j holds for some i ¤ j . A condition
is given on the character of convergence of the joint distribution of � and � ensuring
the rejection of the hypothesis with a given limiting probability p.

Keywords Dependence testing • Sieve method

Mathematics Subject Classification (2010): 60F99

1 Introduction

Let � and � be two, not necessarily independent random variables. The goal of
the present paper is to study the situation when one needs to decide if � is a
(deterministic) function of � or not, by using many independent tests.

The probability of the event that � D k and � D ` is pk;`, the probability of �
being k is pk D P

` pk`. Suppose that we have m tests. Let �i .�i / .1 � i � m/ be
totally independent copies of � .�/. We will study the probability Pr.� ! �;m/ of
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the event that m experiments (mis)indicate that � (deterministically) determines �,
that is, there are no i and j .1 � i; j � m/ such that �i D �j ; �i 6D �j .

Of course, if � is really a function of � then Pr.� ! �;m/ D 1 for every m,
otherwise it is a decreasing function of m. The most practical case is when the
probabilities pk;` are constant. Then the probability Pr.� ! �;m/ tends to 0 when
m ! 1. One could ask many questions in this case, for instance to study the rate
of convergence as a function of the pk;`’s, but we will be investigating another case,
namely the one when the probabilities are very small.

In the rest of the paper a series of probability distributions will be considered,
that is pk;`.n/; pk.n/ where n tends to infinity. The number of possible values
of � and � are finite, but this is also increasing with n. One can easily see that
the smaller probabilities require a larger m to give a counter-example for the
functional connection. Thereforem is also supposed to depend on n. For the sake of
convenience we will not denote this dependence.

Heuristic form of Theorem 1. If the probabilities uniformly decrease and m is
increasing faster than

1
qP

k p
2
k �P

k;` p
2
k;`

then a counter-example shows, with large probability, that � is not a function of
�. On the other hand, if m is increasing slower than the quantity above then the
probability of a counter-example is nearly 0.

It is more convenient to use a logarithmic form in the precise formulation, this is
why we introduce the following quantity:

H2.� ! �/ D � log2

0

@
X

k

p2k �
X

k;`

p2k;`

1

A : (1)

Since the probabilities depend on n, the quantityH2.� ! �/will also do so (without
denoting this dependence).

2 The Statement

Let p.�; �; I / denote the probability of the event that the pair .�1; �1/; .�2; �2/ gives
a counter-example, that is, Pr.�1 D �2; �1 6D �2/.

Similarly p.�; �; V / denotes the probability of the event that the triple .�1; �1/,
.�2; �2/; .�3; �3/ gives two counter-examples in the following way: �1 D �2 D �3;

�1 6D �2 6D �3:
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Finally p.�; �;N / is the probability of the event that the quadruple .�1; �1/;
.�2; �2/; .�3; �3/; .�4; �4/ gives three counter-examples forming a path: �1 D �2 D
�3 D �4; �1 6D �2 6D �3 6D �4:

Theorem 1. Suppose that
p.�; �; V /2

p.�; �; I /3
! 0

and
p.�; �;N /

p.�; �; I /2
! 0

hold. Then

Pr.� ! �;m/ !
8
<

:

0 if 2 log2 m �H2.� ! �/ ! C1;

e�2a�1
if 2 log2 m �H2.� ! �/ ! a;

1 if 2 log2 m �H2.� ! �/ ! �1:

The values p.�; �; I /; p.�; �; V / and p.�; �;N / will be expressed by the proba-
bilities in the next section.

Motivations, consequences, related literature, and analysis of the conditions are
postponed to the last section.

3 The Proofs

Lemma 1. p.�; �; I / D P
k p

2
k �P

k;` p
2
k;`.

Proof. The left hand side is equal to Pr.�u D �v; �u 6D �v/ by definition, what is
equal to X

k

X

6̀D`0

pk;`pk;`0 D
X

k

X

`;`0

pk;`pk;`0 �
X

k

X

`

p2k;`

D
X

k

 
X

`

pk;`

!2

�
X

k;`

p2k;` D
X

k

p2k �
X

k;`

p2k;`

Observe thatH2.� ! �/ D � log2 p.�; �; I /: ut
Lemma 2.

p.�; �;V/ D
X

k

p3k � 2
X

k;`

pkp
2
k;` C

X

k;`

p3k;`
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Proof. Use the simple sieve for the “space” �1 D �2 D �3.

p.�; �;V/ D Pr.�1 D �2 D �3; �1 6D �2 6D �3/ D

Pr.�1 D �2 D �3/ � Pr.�1 D �2 D �3; �1 D �2/ � Pr.�1 D �2 D �3; �2 D �3/C
Pr.�1 D �2 D �3; �1 D �2 D �3/ D

Pr.�1 D �2 D �3/ � 2 Pr.�1 D �2 D �3; �1 D �2/C
Pr.�1 D �2 D �3; �1 D �2 D �3/ D

X

k

p3k � 2
X

k

Pr.�3 D k/ Pr.�1 D �2 D k; �1 D �2/C
X

k;`

p3k;`

ut
Lemma 3.

p.�; �;N/ D
X

k

p4k � 3
X

k;`

p2kp
2
k;` C 2

X

k;`

pkp
3
k;` C

X

k

 
X

`

p2k;`

!2

�
X

k;`

p4k;`:

The proof is analogous to that of Lemma 2. ut
Let Ck;` .1 � k; ` � m/ be a partition of the set f1; 2; : : : ; mg, where some

classes can be empty. The partition is denoted by C . The vertex set of the graph
G.C / is f1; 2; : : : ; mg, two vertices x and y are joined by an edge if x 2 Ck;`;

y 2 Ck;`0 holds for some ` 6D `0. Define Ck D [`Ck;`, and let jCkj D ck . The
subgraph of G.C / induced by Ck is called a component even in the case when it is
an empty graph (that is Ck;` are empty for all ` with one exception). Suppose that
jCk;1j � jCk;2j � : : : � jCk;mj.

A subgraph consisting of vertex-disjoint edges of a graph is a matching inG. The
vertex-disjoint union of a matching and one path consisting of two edges is called a
V-matching. Finally, the vertex-disjoint union of a matching and one path consisting
of three edges is an N-matching.

Lemma 4. Let G.C / be the graph defined above. Then

X

matching of
j edges

.�1/j C 2
X

V-matching

1C
X

N-matching

1 � 0 (2)

where the matchings, V-matchings and N-matchings are subgraphs of G.C /.

Proof. First suppose that ck > 2 holds for at least one k. Let MC .M�/ denote
the family of all matchings of G.C / consisting of even (odd) number of edges.
Furthermore, V and N denote the families of all V-matchings and N-matchings,
respectively. We will give a mapping f from M� to MC [ V [ N .
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Suppose that M 2 M� has two edges in one of the components. It is easy to
see that G.C / contains an edge joining endpoints of these edges. Add this edge to
M . The so obtained set f .M/ of edges is in N . If M contains at most one edge in
every component and a Ck with ck > 2 contains an edge e then add another edge
to this component, having a common endpoint with e. The so obtained set f .M/

of edges is in V . Finally, suppose that every component contains at most one edge
of M , but the components Ck with ck > 2 none. Then add an edge of such a Ck
with the smallest index. The so obtained f .M/ contains an even number of edges,
therefore f .M/ 2 MC holds.

The mapping f is not an injection, but “almost”. If M 0 2 N then the middle
edge of the path is uniquely determined, jf �.M 0/j D 1. On the other hand, if
M 0 2 V thenM 0 could be obtained in two different ways, therefore jf �.M 0/j � 2.
Finally, if M 0 2 MC then the new edge can be only in the component having the
smallest index k with ck > 2. Then, jf �.M 0/j D 1 holds, again. The mapping f
indirectly associates a C1 term with every �1 on the left hand side of (1), since the
terms associated with the V-matchings are doubled. This proves the inequality in
this case.

The only remaining case is when ck D 2 .1 � k � r/. If jCkj D jCk;`j holds
for some ` then this component contains no edge, it plays no role in (1). Therefore
one can suppose that jCk;1j D jCk;2j D 1 holds for every k. Let the number of
components with at least one edge be r . Then G.C / has r vertex-disjoint edges. It
contains neither a V-matching nor an N-matching. The number of matchings M of

j edges in G.C / is

 
r

j

!

therefore the left hand side of (1) is

rX

jD0

 
r

j

!

.�1/j

which is 0 if 0 < r and 1 if r D 0. ut
Lemma 5. If G.C / has at least one edge then

X

matching of
j edges

.�1/j C 2
X

V�matching

.�1/C
X

N�matching

.�1/ � 0 (3)

where the matchings, V-matchings and N-matchings are subgraphs of G.C /.

Proof. The proof is analogous to the previous one. A mapping g can be defined
from MC to M� [V [N , basically in the same way as in the previous proof. ut
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Lemma 6.

1C
bm2 cX

jD1

.�1/j
j Š

 
m

2

! 
m � 2

2

!


 
 

 
m � 2j C 2

2

!

2�jH2.�!�/�

�
bm�3

2 cX

jD0

1

j Š
3

 
m

3

! 
m � 3

2

! 
m � 5

2

!


 
 

 
m � 2j � 1

2

!

p.�; �;V/2�jH2.�!�/�

�
bm�4

2 cX

jD0

1

j Š
12

 
m

4

! 
m � 4
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� Pr.� ! �;m/ � (4)

� 1C
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C
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! 
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m � 2j � 2
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p.�; �;N/2�jH2.�!�/:

Proof. The random pairs .�i ; �i / .1 � i � m/ define a random partition on the
set f1; 2; : : : ; mg in a natural way, by the equality of these pairs: Ck;` D fi W
.�i ; �i / D .k; `/g. Then Ck D [`Ck;` is the kth class in the partition defined by
�’s. The event that � seems to be functionally dependent on �, that is, there is no
pair .k; `/; .k; `0/.` 6D `0/ among the m outcomes is equivalent to the event that
G.C / has no edge, that is, Pr.� ! �;m/ equals Pr.G.C /is an empty graph/. In
other words,

Pr.� ! �;m/ D Pr.G.C /is an empty graph/C
X

C

0 
 Pr.the pairs .�i ; �i / determine the partition C /; (5)

where the sum runs over all partitions with a non-empty G.C /. The elements
1; 2; : : : ; m are of course numbered, but the classes are not.

The left hand side of (2) is 1 for the C with the empty G.C /, otherwise it is
non-negative by Lemma 4. Therefore, replacing the weights of the probabilities by
this left hand side, an upper bound is obtained for (5):
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X

C

0

B
B
@

X

matching of
j edges

.�1/j C 2
X

V�matching

1C
X

N�matching

1

1

C
C
A 


Pr.the pairs .�i ; �i / determine the partition C / (6)

where the matchings, V-matchings and N-matchings are subgraphs of G.C / for the
given C . Break this sum into three parts and consider first the part

X

C

X

matching of
j edges

.�1/j Pr.the pairs .�i ; �i / determine the partition C / D

X

matching of
j edges

.�1/j
X

C

Pr.the pairs .�i ; �i / determine the partition C /: (7)

The last sum is nothing else but the probability of the event that all the edges in
the given matchingM are in C , that is,

Pr.8fu; vg 2 M the relations �u D �v; �u 6D �v hold/:

Because of the independence, this is the j th power of p.�; �; I / what is equal to

X

k

p2k �
X

k;`

p2k;` D 2H2.�!�/ (8)

by Lemma 1 and (1). We obtained
X

matching of
j edges

.�1/j 2�jH2.�!�/ (9)

for (7).
The number of matchings consisting of j edges is

1

j Š

 
m

2

! 
m � 2

2

!


 
 

 
m � 2j C 2

2

!

:

Using this in (9), a new form of (7) is obtained:

1C
bm2 cX

jD1

.�1/j
j Š

 
m

2

! 
m � 2

2

!


 
 

 
m � 2j C 2

2

!

2�jH2.�!�/

and this is the first row of the upper estimate in Lemma 6.
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Now consider the second part of (6):

X

C

X

V�matching

Pr.the pairs .�i ; �i / determine the partition C / D

X

V�matching

X

C

Pr.the pairs .�i ; �i / determine the partition C /: (10)

The last sum is nothing else but the probability of the event that all the edges in the
given V-matching V (containing j C 2 edges) are in C , that is,

Pr.8fu; vg 2 V the relations �u D �v; �u 6D �v hold/:

Because of the independence, this is the j th power of (8) (D 2�H2.�!�/) times
p.�; �; V / what is given in Lemma 2. The result for (10) is

X

V�matching of
jC2 edges

0

@
X

k

p3k � 2
X

k;`

pkp
2
k;` C

X

k;`

p3k;`

1

A 2�jH2.�!�/: (11)

Since the number of V-matchings is

bm�3
2 cX

jD0

1

j Š
3

 
m

3

! 
m � 3

2

! 
m � 5

2

!


 
 

 
m � 2j � 1

2

!

;

(11) leads to a new form of (10), giving the second row of the upper estimate of
Lemma 6.

The third row can be obtained in an analogous way, the only difference is that
p.�; �;N / should be used rather than p.�; �; V /. This finishes the proof of the upper
bound.

The proof of the lower bound is the same, but Lemma 5 should be the starting
point rather than Lemma 4. ut

Lemma 7. If
2 log2 m �H2.� ! �/ ! a (12)

where a is a constant, independent on n andm ! 1 then

1C
bm2 cX

jD1

.�1/j
j Š

 
m

2

! 
m � 2

2

!


 
 

 
m � 2j C 2

2

!

2�jH2.�!�/ (13)

tends to
e�2a�1

:
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Proof. The inequalities

.m � 2j /2j
2j

�
 
m

2

! 
m � 2

2

!


 
 

 
m � 2j C 2

2

!

� m2j

2j

lead to the following lower and upper estimates for (13):

�
X

jD1;3;:::;2j�m

1

j Š

 m

2j

2j
2�jH2.�!�/ C 1C

X

jD2;4;:::;2j�m

1

j Š

 .m� 2j /2j

2j
2�jH2.�!�/ D

�
X

jD1;3;:::;2j�m

1

j Š
2j.2 logm�H2.�!�/�1/ C 1C

X

jD2;4;:::;2j�m

1

j Š
2j.2 log.m�2j /�H2.�!�/�1/

(14)

and

� X

jD1;3;:::;2j�m

1

j Š
� .m� 2j /2j

2j
2�jH2.�!�/ C 1C X

jD2;4;:::;2j�m

1

j Š
� .m/

2j

2j
2�jH2.�!�/ D

� X

jD1;3;:::;2j�m

1

j Š
2j.2 log.m�2j /�H2.�!�/�1/ C 1C X

jD2;4;:::;2j�m

1

j Š
2j.2 logm�H2.�!�/�1/

(15)

Compare the members with logm and log.m � 2j /, respectively:

2j.2 logm�H2.�!�/�1/ � 2j.2 log.m�2j /�H2.�!�/�1/ D (16)

2j.2 logm�H2.�!�/�1/ �1 � 22j.log.m�2j /�logm/� D

2j.2 logm�H2.�!�/�1/
 

1 �
�
m � 2j
m

�2j
!

D

D 2j.2 logm�H2.�!�/�1/
 

1 �
�

1 � 2j

m

�2j
!

:

Since 2j � m, the last factor can be upperbounded using the Bernoulli
inequality:

1 �
�

1 � 2j

m

�2j
� 2j

2j

m
D 4j 2

m
:

Hence

2j.2 logm�H2.�!�/�1/ 4j 2

m
(17)

is an upper bound for (16).
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Consider the total change in (14) if the terms with log.m � 2j / are replaced by
terms with logm and use (17).

X

jD2;4;:::;2j�m

1

j Š
2j.2 logm�H2.�!�/�1/ �

X

jD2;4;:::;2j�m

1

j Š
2j.2 log.m�2j /�H2.�!�/�1/ �

X

jD2;4;:::;2j�m

1

j Š
2j.2 logm�H2.�!�/�1/ 4j 2

m
: (18)

We need to show that this tends to 0 with n. Since 2 logm � H2.� ! �/ � 1

tends to a� 1, there is a threshold n1 such that 2 logm�H2.� ! �/� 1 � a when
n > n1. Each term in (18) tends to 0, therefore the sum of the terms until j � n1
will do so. In the terms with j > n1 the expression 2 logm�H2.� ! �/�1 can be

replaced by a without decreasing them. The value 1
m

4j 2

j Š
2ja is obtained as an upper

bound for the j th term. Extend the sum with the odd terms and the large terms the
following upper bound is obtained:

4

m

1X

jD0

j 2

j Š
2ja D 4

m

�
22.aC1/e2a C 2aC1e2a

�

which obviously tends to 0 with n! 1. This shows that log.m � 2j / can be
replaced by logm in (14) without changing its limit for n ! 1. Then (14) becomes

e�22 logm�H2.�!�/�1

which tends to e�2a�1
. Therefore the lim inf of (13) is at least this much. Starting

from (15), the same steps prove that that the lim sup of (13) cannot be more. This is
really its limit. ut
Lemma 8. Suppose that m ! 1, (12) and

p.�; �; V /2

p.�; �; I /3
! 0 (19)

hold. Then
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m � 3
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! 
m � 5
2

!


 
 

 
m � 2j � 1

2

!

p.�; �;V/2�jH2.�!�/ ! 0:

Proof. It will be similar to that of Lemma 7. Start with the upper estimate
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� m2j
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:

This leads to the following upper estimate for the investigated quantity:
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p.�; �;V/e2
2 logm�H2.�!�/�1

:

Here the last factor tends to e2
a�1

by (12), therefore we only have to show that

3

 
m

3

!

p.�; �;V/ ! 0: (20)

Relation (12) implies
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@
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3
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3a
2 :

This convergence and the square root of (19) prove (20). ut
Lemma 9. Suppose that m ! 1, (12) and
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hold. Then
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Proof. It is analogous to the previous one. ut

Now the statement of the theorem is an easy consequence of Lemmas 6–9. ut

4 Previous Work, Remarks, Future Work

Related earlier work. The problem in question was studied in the papers of
Selivanov [8] and Mihailov and Selivanov [3]. They have proved limit theorems on
the convergence of the quantity studied here to the Poisson and normal distributions,
respectively.

Our motivation: database theory. Our primary motivation was database theory.
A very simple model of a database is an m � n matrix, where the columns are
representing the types of data (called attributes), say last name, first name, etc. while
the data of one individual are in one row. A fundamental concept in the theory is the
functional dependency. Let A be a set of columns, b one column. We say that b
functionally depends on A if the individuals having the same data in the columns
belonging to A have the same data in b. Shortly, the data in A uniquely determine
the data in b. More precisely, the matrix has no two rows having the same entries in
the columns in A and different in b. In notation A ! b. In most of the older works
it is supposed that there is a “logical connection” among the data, so the functional
dependencies are a priori given. Here we adopt the view that only those functional
dependenciesA ! b exist which are determined by the given matrix.

Suppose that some probabilistic connections are a priori given among the data,
that is a joint distribution

Pr.
1 D u1; 
2 D u2; : : : ; 
n D un/

is given among the n data in one row. (We might know or we might not know this
distribution.) The choice of the rows is totally independent. Let 
A be the random
vector with the components 
i for all i 2 A. Of course, the distribution of a row
determines the joint distribution of the pair 
A; 
b . For fixed n;A and b we could
speak about the probability Pr.
A ! 
b;m/ of the event that the m actual rows
indicate that A ! b. This situation leads to the problem only mentioned in the
Introduction, but not considered in the present paper.

Now we describe our real motivating problem. Suppose that n is large, them (it is
a function of n) rows of the matrix are chosen following the given joint distribution.
What are the sizes of A satisfying A ! b for some b, that is, what are the typical
sizes of the functional dependencies appearing in the matrix. It is intuitively clear
that for small (say of fixed size) A this cannot happen (unless the distribution gives
a functional dependency). The sizes of the A’s showing A ! b must increase by n.
Then 
A as a vector of growing size has an increasing number of possible values,
and their probabilities are typically decreasing. This is how we arrived to the model
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of the paper when the probabilities of � are decreasing with n. We will show in a
forthcoming paper how to use the results of the present paper for the determination
of the typical sizes of A’s in a functional dependencyA ! b in a large database.

The special case when the 
i ’s are independent was considered in [2]. The method
of the present paper is a generalization of that paper. Similar (but not identical)
results using different methods can be found in [1]. Papers [6] and [7] contain
somewhat related results on random databases.

On the conditions of the main theorem. The two conditions (19) and (21) are
chosen by a very simple reason: the proof works under them. When are they
satisfied? It is easy to see that if the probabilities “uniformly” tend to 0, � and �
are “nearly independent” that is there are constants c; d; C;D such that

C

n
< pk <

D

n
;

c

n2
< pk;` <

d

n2

hold then (19) and (21) are satisfied. On the other hand, if one pk does not tend to
0 then the conditions are not satisfied. More work is needed to find necessary and
sufficient conditions for the probability distributions under which these conditions
are true. We do not even know whether the two conditions are independent or not.
Does (19) imply (21)?

Our functionH2.� ! �/, special cases. It is slightly related to the Rényi entropy
of order 2 (see [4] and [5] ):

H2.�/ D � log2
X

k

p2k:

However our formula (1) is far from being a “conditional entropy” derived from the
Rényi entropy.

If � is a function of � then there is a unique ` for which pk;` is non-zero, that is,
pk;` � pk . Hence p.�; �; I / D P

k p
2
k �P

k;` p
2
k;` D 0 and H2.� ! �/ D 1. The

trivial statement Pr.� ! �;m/ D 1 in this case really follows from Theorem 1.
Suppose now that � and � are independent. Define q` D P

k pk;`: Also suppose
that � is not “nearly one-valued” that is there is no ` for which q` is near to 1
for infinitely many n. More precisely we suppose that there is an " such that
1 � " >P` q

2
` for large n’s. Then

X

k;`

p2k;` D
X

k;`

p2kq
2
` D

X

k

p2k

X

`

q2`

therefore

p.�; �; I / D
X

k

p2k �
X

k;`

p2k;` D
X

k

p2k

 

1 �
X

`

q2`

!
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and

H2.� ! �/ D � log2

 
X

k

p2k

!

� log2

 

1 �
X

`

q2`

!

hold. The second term on the right hand side is upperbounded by log2 ", while the
first term tends to infinity by (19). Hence H2.� ! �/ asymptotically depends only
on �. By Theorem 1, the same is implied for Pr.� ! �;m/ as it is expected in this
case.
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The Symmetry Group of Gaussian States
in L2.Rn/

Kalyanapuram R. Parthasarathy

Abstract This is a continuation of the expository article by Parthasarathy (Com-
mun Stoch Anal 4:143–160, 2010) with some new remarks. Let Sn denote the set
of all Gaussian states in the complex Hilbert space L2.Rn/; Kn the convex set of all
momentum and position covariance matrices of order 2n in Gaussian states and let
Gn be the group of all unitary operators in L2.Rn/ conjugations by which leave Sn
invariant. Here we prove the following results.Kn is a closed convex set for which a
matrix S is an extreme point if and only if S D 1

2
LT L for some L in the symplectic

group Sp.2n;R/: Every element in Kn is of the form 1
4
.LTL C MTM/ for some

L;M in Sp.2n;R/: Every Gaussian state in L2.Rn/ can be purified to a Gaussian
state in L2.R2n/: Any element U in the group Gn is of the form U D �W.˛/� .L/

where � is a complex scalar of modulus unity, ˛ 2 C
n; L 2 Sp.2n;R/; W.˛/

is the Weyl operator corresponding to ˛ and � .L/ is a unitary operator which
implements the Bogolioubov automorphism of the Lie algebra generated by the
canonical momentum and position observables induced by the symplectic linear
transformationL:
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1 Introduction

In [4] we defined a quantum Gaussian state in L2.Rn/ as a state in which every
real linear combination of the canonical momentum and position observables
p1; p2; : : : ; pnI q1; q2; : : : ; qn has a normal distribution on the real line. Such a state
is uniquely determined by the expectation values of p1; p2; : : : ; pnI q1; q2; : : : ; qn
and their covariance matrix of order 2n: A real positive definite matrix S of order
2n is the covariance matrix of the observables p1; p2; : : : ; pnI q1; q2; : : : ; qn if and
only if the matrix inequality

2S � i J � 0 (1)

holds where

J D


0 �I
I 0

�

; (2)

the right hand side being expressed in block notation with 0 and I being of order
n�n:We denote byKn the set of all possible covariance matrices of the momentum
and position observables in Gaussian states so that

Kn D fS jS is a real symmetric matrix of order 2n and 2S � iJ � 0g : (3)

Clearly,Kn is a closed convex set. Here we shall show that S is an extreme point of
Kn if and only if S D 1

2
LT L for some matrix L in the real symplectic matrix group

Sp.2n;R/ D ˚
LjLT JL D J

�
(4)

with the superfix T indicating transpose. Furthermore, it turns out that every element
S in Kn can be expressed as

S D 1

4
.LT LCMTM/

for someL;M 2 Sp.2n;R/: This, in turn implies that any Gaussian state inL2.Rn/
can be purified to a pure Gaussian state in L2.R2n/:

Let ˛2 .˛1; ˛2; : : : ; ˛n/T 2C
n; LD ..`ij //2Sp.2n;R/ and let ˛j Dxj C iyj

with xj ; yj 2 R: Define a new set of momentum and position observables
p0
1; p

0
2; : : : ; p

0
nI q0

1; q
0
2; : : : ; q

0
n by

p0
i D

nX

jD1

˚
`ij .pj � xj /C `inCj .qj � yj /

�
;

q0
i D

nX

jD1

˚
`nCi j .pj � xj /C `nCi nCj .qj � yj /

�
;
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for 1 � i � n: Here one takes linear combinations and their respective closures to
obtain p0

i ; q
0
i as selfadjoint operator observables. Then p0

1; p
0
2; : : : ; p

0
nI q0

1; q
0
2; : : : ; q

0
n

obey the canonical commutation relations and thanks to the Stone-von Neumann
uniqueness theorem there exists a unitary operator � .˛; L/ satisfying

p0
i D � .˛; L/ pi � .˛; L/

�;

q0
i D � .˛; L/ qi � .˛; L/

�

for all 1 � i � n. Furthermore, such a � .˛; L/ is unique upto a scalar multiple
of modulus unity. The correspondence .˛; L/ ! � .˛; L/ is a projective unitary
and irreducible representation of the semidirect product group C

n s Sp.2n;R/:

Here any element L of Sp.2n;R/ acts on C
n real-linearly preserving the imaginary

part of the scalar product. The operator � .˛; L/ can be expressed as the product
of W.˛/ D � .˛; I / and � .L/ D � .0; L/. Conjugations by W.˛/ implement
translations of pj ; qj by scalars whereas conjugations by � .L/ implement sym-
plectic linear transformations by elements of Sp.2n;R/; which are the so-called
Bogolioubov automorphisms of canonical commutation relations. In the last section
we show that every unitary operator U in L2.Rn/; with the property that U�U � is
a Gaussian state whenever � is a Gaussian state, has the form U D �W.˛/� .L/

for some scalar � of modulus unity, a vector ˛ in C
n and a matrix L in the group

Sp.2n;R/:

The following two natural problems that arise in the context of our note seem to
be open. What is the most general unitary operator U in L2.Rn/ with the property
that whenever j i is a pure Gaussian state so is U j i‹ Secondly, what is the most
general trace-preserving and completely positive linear map� on the ideal of trace-
class operators on L2.Rn/ with the property that �.�/ is a Gaussian state whenever
� is a Gaussian state?

2 Exponential Vectors, Weyl Operators, Second
Quantization and the Quantum Fourier Transform

For any z D .z1; z2; : : : ; zn/T in C
n define the associated exponential vector e.z/ in

L2.Rn/ by

e.z/.x/ D .2�/�n=4 exp
nX

jD1

�

zjxj � 1

2
z2j � 1

4
x2j

�

: (5)

Writing scalar products in the Dirac notation we have

he.z/je.z0/i D exphzjz0i

D exp
nX

jD1
Nzj z0

j : (6)
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The exponential vectors constitute a linearly independent and total set in the Hilbert
space L2.Rn/: If U is a unitary matrix of order n then there exists a unique unitary
� .U / in L2.Rn/ satisfying

� .U /je.z/i D je.U z/i 8 z 2 C
n: (7)

The operator � .U / is called the second quantization of U: For any two unitary
matrices U; V in the unitary group U .n/ one has

� .U /� .V / D � .UV /:

The correspondence U ! � .U / is a strongly continuous unitary representation of
the group U .n/ of all unitary matrices of order n:

For any ˛ 2 C
n there is a unique unitary operatorW.˛/ in L2.Rn/ satisfying

W.˛/ je.z/i D e� 1
2k˛k2�h˛jzi je.z C ˛/i 8 z 2 C

n: (8)

For any ˛;ˇ in C
n one has

W.˛/ W.ˇ/ D e�i Imh˛jˇi W.˛C ˇ/: (9)

The correspondence ˛ ! W.˛/ is a projective unitary and irreducible represen-
tation of the additive group C

n: The operator W.˛/ is called the Weyl operator
associated with ˛: As a consequence of (9) it follows that the map t ! W.t˛/;

t 2 R is a strongly continuous one parameter unitary group admitting a selfadjoint
Stone generator p.˛/ such that

W.t˛/ D e�itp.˛/ 8 ˛ 2 C
n: (10)

Writing ej D .0; 0; : : : ; 0; 1; 0; : : : ; 0/T with 1 in the j -th position,

pj D 2� 1
2 p.ej /; qj D �2� 1

2 p.iej / (11)

aj D qj C ipjp
2

; a
�
j D qj � ipjp

2
(12)

one obtains a realization of the momentum and position observables pj ; qj ;
1 � i � n obeying the canonical commutation relations (CCR)

Œpi ; pj � D 0; Œqi ; qj � D 0; Œqr ; ps� D iırs

and the adjoint pairs aj ; a
�
j of annihilation and creation operators satisfying

Œai ; aj � D 0; Œai ; a
�
j � D ıij
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in appropriate domains. If we write

psj D 2� 1
2 pj ; qsj D 2

1
2 qj

one obtains the canonical Schrödinger pairs of momentum and position observables
in the form �

psj 
�
.x/ D 1

i

@ 

@xj
.x/;

�
qsj 

�
.x/ D xj  .x/

in appropriate domains. We refer to [5] for more details.
We now introduce the sympletic group Sp.2n;R/ of real matrices of order 2n

satisfying (4). Any element of this group is called a symplectic matrix. As described
in [1,4], for any symplectic matrix L there exists a unitary operator � .L/ satisfying

� .L/ W.˛/ � .L/� D W. QL˛/ 8 ˛ 2 C
n (13)

where 

Re QL˛
Im QL˛

�

D L



Re ˛
Im ˛

�

: (14)

Whenever the symplectic matrix L is also a real orthogonal matrix then QL is
a unitary matrix and � .L/ coincides with the second quantization � . QL/ of QL:
Conversely, if U is a unitary matrix of order n; LU is the matrix satisfying

LU



x

y

�

D



Re U.x C iy/

Im U.x C iy/

�

thenLU is a symplectic and real orthogonal matrix of order 2n and� .LU /D� .U /:

Equations (13) and (10) imply that � .L/ implements the Bogolioubov automor-
phism determined by the symplectic matrix L through conjugation.

For any state � in L2.Rn/ its quantum Fourier transform O� is defined to be the
complex-valued function on C

n given by

O�.˛/ D Tr �W.˛/; ˛ 2 C
n: (15)

In [4] we have described a necessary and sufficient condition for a complex-valued
function f on C

n to be the quantum Fourier transform of a state in L2.Rn/: Here
we shall briefly describe an inversion formula for reconstructing � from O�: To this
end we first observe that (15) is well defined whenever � is any trace-class operator
in L2.R/: Denote by F1 and F2 respectively the ideals of trace-class and Hilbert-
Schmidt operators in L2.Rn/: Then F1 � F2 and F2 is a Hilbert space with the
inner product hAjBi D TrA�B: There is a natural isomorphism between F2 and
L2.Rn/˝L2.Rn/; which can, in turn, be identified with the Hilbert space of square
integrable functions of two variables x;y in R

n:We denote this isomorphism by I
so that I .A/.x;y/ is a square integrable function of .x;y/ for any A 2 F2 and

I .je.u/ihe.Nv/j/.x;y/ D e.u/.x/e.v/.y/ (16)
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for all u; v 2 C
n; Nv denoting .Nv1; Nv2; : : : ; Nvn/: From (8) and (15) we have

.je.u/ihe.Nv/j/^.˛/ D he.Nv/ jW.˛/j e.u/i

D exp




�1
2

k˛k2 � h˛jui C hNvj˛i C hvjui
�

:

Substituting ˛ D x C iy and using (5), the equation above, after some algebra, can
be expressed as

.je.uihe.Nv/j/^.x C iy/ D .2�/n=2e.u0/.
p
2x/e.v0/.

p
2y/ (17)

where



u0
v0
�

D U



u
v

�

;

U D 2�1=2

�I I

iI iI

�

: (18)

Let D�; � > 0 denote the unitary dilation operator in L2.Rn/˝ L2.Rn/ defined by

.D�f /.x;y/ D �nf .�x; �y/: (19)

Then (17) can be expressed as

.je.u/ihe.Nvj/^.x C iy/ D �n=2
n
Dp

2� .U /e.u/˝ e.v/
o
.x;y/

where � .U / is the second quantization operator in L2.R2n/ associated with
the unitary matrix U in (18) of order 2n: Since exponential vectors are total
and Dp

2 and � .U / are unitary we can express the quantum Fourier transform
� ! O�.x C iy/ as

O� D �n=2Dp
2 � .U / I .�/: (20)

In particular, O�.x C iy/ is a square integrable function of .x;y/ 2 R
n � R

n and

� D ��n=2 I �1 � .U �/ D2�1=2 O� (21)

is the required inversion formula for the quantum Fourier transform. It is a curious
but an elementary fact that the eigenvalues of U in (18) are all 12th roots of unity
and hence the unitary operators � .U / and � .U �/ appearing in (20) and (21) have
their 12-th powers equal to identity. This may be viewed as a quantum analogue of
the classical fact that the fourth power of the unitary Fourier transform in L2.Rn/ is
equal to identity.
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3 Gaussian States and Their Covariance Matrices

We begin by choosing and fixing the canonical momentum and position observables
p1; p2; : : : ; pnI q1; q2; : : : ; qn as in equation (11) in terms of the Weyl operators.
They obey the CCR. The closure of any real linear combination of the form
nP

jD1
.xj pj �yj qj / is selfadjoint and we denote the resulting observable by the same

symbol. As in [4], for ˛ D .˛1; ˛2; : : : ; ˛n/
T ; ˛j D xj C iyj with xj ; yj 2 R; the

Weyl operatorW.˛/ defined in Sect. 2 can be expressed as

W.˛/ D e
�ip2

nP

jD1

.xj pj�yj qj /
: (22)

Sometimes it is useful to express W.˛/ in terms of the annihilation and creation
operators defined by (12):

W.˛/ D e

nP

jD1
.˛j a

�
j�N̨j aj /

(23)

where the linear combination in the exponent is the closed version. A state � in

L2.R/ is said to be Gaussian if every observable of the form
nP

jD1
.xjpj � yj qj / has

a normal distribution on the real line in the state � for xj ; yj 2 R: From [4] we have
the following theorem.

Theorem 1. A state � in L2.Rn/ is Gaussian if and only if its quantum Fourier
transform O� is given by

O�.˛/ D Tr �W.˛/

D exp




�ip2 �`Tx �mTy
� � �

xT ;yT
�
S

�
x

y

��

(24)

for every ˛ D x C iy, x;y 2 R
n where `; m are vectors in R

n and S is a real
positive definite matrix of order 2n satisfying the matrix inequality 2S � iJ � 0;

with J as in (2).

Proof. We refer to the proof of Theorem 3.1 in [4]. ut
We remark that `;m and S in (24) are defined by the equations

`Tx �mT y D Tr �
nX

jD1
.xj pj � yj qj /

.xT ;yT /S

�
x

y

�

D Tr � X2 � .Tr �X/2;X D
nX

jD1
.xj pj � yj qj /:
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It is clear that `j is the expectation value of pj ; mj is the expectation value of qj
and S is the covariance matrix of p1; p2; : : : ; pnI �q1;�q2; : : : ;�qn in the state �
defined by (24). By a slight abuse of language we call S the covariance matrix of
the Gaussian state �: All such Gaussian covariance matrices constitute the convex
set Kn defined already in (3). We shall now investigate some properties of this
convex set.

Proposition 1 (Williamson’s normal form [1]). LetA be any real strictly positive
definite matrix of order 2n: Then there exists a unique diagonal matrix D of order
n with diagonal entries d1 � d2 � 
 
 
 � dn > 0 and a symplectic matrix M in
Sp.2n;R/ such that

A D MT



D 0

0 D

�

M: (25)

Proof. Define
B D A1=2 J A1=2

where J is given by (2). ThenB is a real skew symmetric matrix of full rank. Hence
its eigenvalues, inclusive of multiplicity, can be arranged as ˙id1;˙id2; : : : ;˙idn
where d1 � d2 � 
 
 
 � dn > 0: Define D D diag.d1; d2; : : : ; dn/; i.e., the diagonal
matrix with di as the ii-th entry for 1 � i � n. Then there exists a real orthogonal
matrix � of order 2n such that

� T B � D


0 �D
D 0

�

:

Define

L D A1=2 �



D�1=2 0

0 D�1=2
�

:

Then LT JL D J and

A D L



D 0

0 D

�

LT :

Putting M D LT we obtain (25).
To prove the uniqueness of D; suppose that D0 D diag.d 0

1; d
0
2; : : : ; d

0
n/ with

d 0
1 � d 0

2 � 
 
 
 � d 0
n > 0 andM 0 is another symplectic matrix of order 2n such that

A D MT



D 0

0 D

�

M D M 0T


D0 0
0 D0

�

M 0:

Putting N D MM
0�1

we get a symplectic N such that

NT



D 0

0 D

�

N D


D0 0
0 D0

�

:
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Substituting NT D JN�1J�1 we get

N�1


0 D

�D 0

�

N D


0 D0

�D0 0

�

:

Identifying the eigenvalues on both sides we get D D D0 ut
Theorem 2. A real positive definite matrix S is in Kn if and only if there exists a
diagonal matrix D D diag.d1; d2; : : : ; dn/ with d1 � d2 � 
 
 
 � dn � 1

2
and a

symplectic matrix M 2 Sp.2n;R/ such that

S D MT



D 0

0 D

�

M: (26)

In particular,

detS D
nY

i

d 2j � 4�n: (27)

Proof. Let S be a real strictly positive definite matrix in Kn: From (3) we have
S � i

2
J and therefore, for any L 2 Sp.2n;R/;

LT S L � i

2
J: (28)

Using Proposition 1 choose L so that

LT S L D


D 0

0 D

�

whereD D diag.d1; d2; : : : ; dn/; d1 � d2 � 
 
 
 � dn > 0: Now (28) implies



D i

2
I

� i
2
I D

�

� 0:

The minor of second order in the left hand side arising from the jj; j nCj; nCjj;

nC j nC j entries is d2j � 1
4

� 0: Choosing L D M�1 we obtain (26) and (27).
Now we drop the assumption of strict positive definiteness on S: From the definition
of Kn in (3) it follows that for any S 2 Kn one has S C "I 2 Kn for every " > 0:

Since S C "I is strictly positive definite detS C "I � 4�n 8 " > 0: Letting " ! 0

we see that (27) holds and S is strictly positive definite.
To prove the converse statement, let us consider an arbitrary diagonal matrix

D D diag.d1; d2; : : : ; dn/ with d1 � d2 � 
 
 
 � dn � 1
2
: Clearly

2



D 0

0 D

�

� i


0 �I
I 0

�

� 0;
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and hence for any M 2 Sp.2n;R/

2MT



D 0

0 D

�

M � i



0 �I
I 0

�

� 0:

In other words,

MT



D 0

0 D

�

M 2 Kn M 2 Sp.2n;R/:

Finally, the uniqueness of the parameters d1 � d2 � 
 
 
 � dn � 1
2

in the theorem is
a consequence of Proposition 1. ut

We now prove an elementary lemma on diagonal matrices before the statement
of our next result on the convex set Kn:

Lemma 1. Let D � I be a positive diagonal matrix of order n: Then there exist
positive diagonal matrices D1;D2 such that

D D 1

2
.D1 CD2/ D 1

2
.D�1

1 CD�1
2 /:

Proof. We write D2 D D1X and solve forD1 and X so that

2D D D1.I CX/ D D�1
1 .I CX�1/;

D1 and X being diagonal. EliminatingD1 we get the equation

.I CX/.I CX�1/ D 4D2

which reduces to the quadratic equation

X2 C .2 � 4D2/X C I D 0:

Solving for X we do get a positive diagonal matrix solution

X D I C 2.D2 � 1/C 2D.D2 � I /1=2:

Writing
D1 D 2D.I CX/�1; D2 D D1X

we get D1;D2 satisfying the required property. ut
Theorem 3. A real positive definite matrix S of order 2n belongs toKn if and only
if there exist symplectic matrices L;M such that

S D 1

4
.LT LCMTM/:

Furthermore, S is an extreme point of Kn if and only if S D 1
2
LT L for some

symplectic matrix L:
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Proof. Let S 2 Kn: By Theorem 2 we express S as

S D NT



D 0

0 D

�

N (29)

where N is symplectic and D D diag.d1; d2; : : : ; dn/; d1 � d2 � 
 
 
 � dn � 1
2
:

Thus 2D � I and by Lemma 1 there exist diagonal matrices D1 > 0; D2 > 0

such that

2D D 1

2
.D1 CD2/ D 1

2
.D�1

1 CD�1
2 /:

We rewrite (29) as

S D 1

4
NT

�

D1 0

0 D�1
1

�

C


D2 0

0 D�1
2

��

N:

Putting

L D
"
D
1=2
1 0

0 D
�1=2
1

#

N; M D
"
D
1=2
2 0

0 D
�1=2
2

#

we have

S D 1

4
.LT LCMTM/:

Since

"
D
1=2
i 0

0 D
�1=2
i

#

; i D 1; 2 are symplectic it follows that L and M are

symplectic. This proves the only if part of the first half of the theorem.
Since 


I 0

0 I

�

� i


0 �I
I 0

�

� 0

multiplication by LT on the left and L on the right shows that LTL � iJ � 0 for
any symplectic L: Hence 1

2
LTL 2 Kn 8 L 2 Sp.2n;R/: Since Kn is convex,

1
4
.LTLCMTM/ 2 Kn; completing the proof of the first part.

The first part also shows that for an element S ofKn to be extremal it is necessary
that S D 1

2
LT L for some symplectic L: To prove sufficiency, suppose there exist

L 2 Sp.2n;R/; S1; S2 2 Kn such that

1

2
LT L D 1

2
.S1 C S2/:

By the first part of the theorem there exist Lj 2 Sp.2n;R/ such that

LTL D 1

4

4X

jD1
LTj Lj (30)
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where S1 D 1
4
.LT1 L1 C LT2 L2/; S2 D 1

4
.LT3 L3 C LT4 L4/: Left multiplication by

.LT /�1 and right multiplication by L�1 on both sides of (30) yields

I D 1

4

4X

jD1
Mj (31)

where
Mj D .LT /�1LTj LjL�1:

EachMj is symplectic and positive definite. Multiplying by J on both sides of (31)
we get

J D 1

4

4X

jD1
MjJ

D 1

4

4X

jD1
MjJMjM

�1
j

D 1

4
J

4X

jD1
M�1
j :

Thus

I D 1

4

4X

jD1
Mj D 1

4

4X

jD1
M�1
j D 1

4

4X

jD1

1

2
.Mj CM�1

j /;

which implies
4X

jD1

�
M

1=2
j �M�1=2

j

�2 D 0;

or
Mj D I 8 1 � j � 4

Thus
LTj Lj D LTL 8 j

and S1 D S2: This completes the proof of sufficiency. ut
Corollary 1. Let S1; S2 be extreme points of Kn satisfying the inequality S1 � S2:

Then S1 D S2:

Proof. By Theorem 3 there exist Li 2 Sp.2n;R/ such that Si D 1
2
LTi Li ; i D 1; 2:

Note that M D L2L
�1
1 is symplectic and the fact that S1 � S2 can be expressed as

MTM � I: Thus the eigenvalues ofMTM lie in the interval .0; 1� but their product
is equal to .detM/2 D 1: This is possible only if all the eigenvalues are unity, i.e.,
MTM D I: This at once implies LT1 L1 D LT2 L2: ut
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Using the Williamson’s normal form of the covariance matrix and the transfor-
mation properties of Gaussian states in Sect. 3 of [4] we shall now derive a formula
for the density operator of a general Gaussian state. As in [4] denote by �g.`;m; S/
the Gaussian state in L2.Rn/ with the quantum Fourier transform

�g.`;m; S/
^.z/ D exp �ip2.`T x �mT y/ � .xT yT /S

�
x

y

�

; z D x C iy

where `;m 2 R
n and S has the Williamson’s normal form

S D MT



D 0

0 D

�

M

with M 2 Sp.2n;R/; D D diag.d1; d2; : : : ; dn/; d1 � d2 � 
 
 
 � dn � 1
2
: From

Corollary 3.3 of [4] we have

W

�
mC i`p

2

��
�g.`;m; S/W

�
mC i`p

2

�

D �g.0; 0; S/

and Corollary 3.5 of [4] implies

�g.0; 0; S/ D � .M/�1�g
�

0; 0;



D 0

0 D

��

� .M/:

Since



D 0

0 D

�

is a diagonal covariance matrix

�g

�

0; 0;



D 0

0 D

��

D
nO

jD1
�g.0:0; dj I2/

where the j -th component in the right hand side is the Gaussian state in L2.R/ with
means 0 and covariance matrix dj I2; I2 denoting the identity matrix of order 2: If
dj D 1

2
we have

�g

�

0; 0;
1

2
I2

�

D je.0/ihe.0/j in L2.R/:

If dj > 1=2; writing dj D 1
2
coth 1

2
sj ; one has

�g.0; 0; dj I2/ D .1 � e�sj /e�sj a�a

D 2 sinh
1

2
sj e

� 1
2 sj .p

2Cq2/ in L2.R/
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with a; a�; p; q denoting the operator of annihilation, creation, momentum and
position respectively in L2.R/:We now identifyL2.Rn/ and L2.R/˝n

and combine
the reductions done above to conclude the following:

Theorem 4. Let �g.`;m; S/ be the Gaussian state in L2.Rn/ with mean
momentum and position vectors `;m respectively and covariance matrix S with
Williamson’s normal form

S D MT



D 0

0 D

�

M; M 2 Sp.2n;R/;

D D diag.d1; d2; : : : ; dn/; d1 � d2 � 
 
 
 � dm > dmC1 D dmC2 D 
 
 
 D dn D 1
2
;

dj D 1
2
coth1

2
sj ; 1 � j � m; sj > 0. Then

�g.`;m; S/ D W

�
mC i`p

2

�

� .M/�1
mY

jD1
.1� e�sj / �

e�Pm
jD1 sj a

�
j aj ˝ .je.0/i � he.0/j/˝n�m

� .M/W

�
mC i`p

2

��1
(32)

where W.
/ denotes Weyl operator, � .M/ is the unitary operator implementing
the Bogolioubov automorphism of CCR corresponding to the symplectic linear
transformation M and je.0/i denotes the exponential vector corresponding to 0
in any copy of L2.R/:

Proof. Immediate from the discussion preceding the statement of the theorem. ut
Corollary 2. The wave function of the most general pure Gaussian state inL2.Rn/
is of the form

j i D W.˛/� .U / je�1ije�2i 
 
 
 je�ni
where

e�.x/ D .2�/�1=4��1=2 exp �4�1��2x2; x 2 R; � > 0;

˛ 2 C
n; U is a unitary matrix of order n; W.˛/ is the Weyl operator associated

with ˛; � .U / is the second quantization unitary operator associated with U and
�j ; 1 � j � n are positive scalars.

Proof. Since the number operator a�a has spectrum f0; 1; 2; : : :g it follows from
Theorem 4 that �g.`;m; S/ is pure if and only if m D 0 in (32). This implies that
the corresponding wave function j i can be expressed as

j i D W.˛/� .M/�1.je.0/i/˝n

(33)

whereM 2 Sp.2n;R/ and ˛ D mCi`p
2
: The covariance matrix of this pure Gaussian

state is 1
2
MTM: The symplectic matrix M has the decomposition [1]
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M D V1



D 0

0 D�1
�

V2

where V1 and V2 are real orthogonal as well as symplectic and D is a positive
diagonal matrix of order n: Thus

MTM D V T
2



D2 0

0 D�2
�

V2

D NTN

where

N D


D 0

0 D�1
�

V2:

Since the covariance matrix of j i in (33) can also be written as 1
2
N TN; modulo a

scalar multiple of modulus unity j i can also be expressed as

j i D W.˛/� .V2/
�1�

�

D�1 0
0 D

��

je.0/i˝n

: (34)

If U is the complex unitary matrix of order n satisfying

U.x C iy/ D x0 C iy 0;


x0
y 0
�

D V T
2



x

y

�

8 x;y 2 R
n

andD�1 D diag.�1; �2; : : : ; �n/ we can express (34) as

j i D W.˛/� .U /

8
<

:

nO

jD1
�

 "
�j 0

0 ��1
j

#!

je.0/i
9
=

;

D W.˛/� .U / je�1ije�2i 
 
 
 je�ni

where we have identified L2.Rn/ with L2.R/˝n
:

We conclude this section with a result on the purification of Gaussian states. ut
Theorem 5. Let � be a mixed Gaussian state in L2.Rn/: Then there exists a pure
Gaussian state j i in L2.Rn/˝ L2.Rn/ such that

� D Tr2 U j ih jU �

for some unitary operator U in L2.Rn/ ˝ L2.Rn/ with Tr2 denoting the relative
trace over the second copy of L2.Rn/:
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Proof. First we remark that by a Gaussian state in L2.Rn/ ˝ L2.Rn/ we mean
it by the canonical identification of this product Hilbert space with L2.R2n/: Let
� D �g.`;m; S/ where by Theorem 3 we can express

S D 1

4

�
LT1 L1 C LT2 L2

�
; L1; L2 2 Sp.2n;R/:

Now consider the pure Gaussian states,

j Li i D � .Li /
�1 je.0/i; i D 1; 2

in L2.Rn/ and the second quantization unitary operator �0 satisfying

�0 e.u ˚ v/ D e

�
u C vp
2

˚ u � vp
2

�

8 u; v 2 C
n

in L2.R2n/ identified with L2.Rn/˝ L2.Rn/; so that

e.u ˚ v/ D e.u/˝ e.v/:

Then by Proposition 3.11 of [4] we have

Tr2 �0 .j L1ih L1 j ˝ j L2ih L2 j/ � �
0 D �g.0; 0; S/:

If ˛ D mCi`p
2

we have

W.˛/�g.0; 0; S/W.˛/
� D �g.`;m; S/:

Putting
U D .W.˛/˝ I / �0

�
� .L1/

�1 ˝ � .L2/
�1�

we get
�g .`;m; S/ D Tr2 U je.0/˝ e.0/ihe.0/˝ e.0/j U �

where je.0/i is the exponential vector in L2.Rn/: ut
For a more comprehensive account of quantum Fourier transform and its

applications to the systematic study of various properties of Gaussian states in terms
of their means and covariance matrices we refer to Chap. V of [3].

4 The Symmetry Group of the Set of Gaussian States

Let Sn denote the set of all Gaussian states in L2.R/: We say that a unitary
operator U in L2.Rn/ is a Gaussian symmetry if, for any � 2 Sn; the state U�U �

is also in Sn: All such Gaussian symmetries constitute a group Gn: If ˛ 2 C
n

and L 2 Sp.2n;R/ then the associated Weyl operator W.˛/ and the unitary
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operator � .L/ implementing the Bogolioubov automorphism of CCR correspond-
ing to L are in Gn (See Corollary 3.5 in [4].) The aim of this section is to show that
any element U in Gn is of the form �W.˛/� .L/ where � is a complex scalar of
modulus unity, ˛ 2 C

n and L 2 Sp.2n;R/: This settles a question raised in [4].
We begin with a result on a special Gaussian state.

Theorem 6. Let s1 > s2 > 
 
 
 > sn > 0 be irrational numbers which are linearly
independent over the field Q of rationals and let

�s D �g.0; 0; S/ D
nY

jD1
.1 � e�sj /e

�
nP

jD1
sj a

�
j aj

be the Gaussian state in L2.Rn/ with zero position and momentum mean vectors
and covariance matrix

S D


D 0

0 D

�

; D D diag.d1; d2; : : : ; dn/

with dj D 1
2
coth 1

2
sj : Then a unitary operator U in L2.Rn/ has the property that

U�sU
� is a Gaussian state if and only if, for some ˛ 2 C

n; L 2 Sp.2n;R/ and a
complex-valued function ˇ of modulus unity on Z

nC

U D W.˛/� .L/ˇ.a
�
1a1; a

�
2a2; : : : ; a

�
nan/ (35)

where ZC D f0; 1; 2; : : :g:
Proof. Sufficiency is immediate from Corollaries 3.3 and 3.5 of [4]. To prove
necessity assume that

U�sU
� D �g.`;m; S

0/ (36)

Since a�a in L2.R/ has spectrum ZC and each eigenvalue k has multiplicity

one [2] it follows that the selfadjoint positive operator
nP

jD1
sj a

�
j aj ; being a

sum of commuting self adjoint operators sj a
�
j aj ; 1 � j � n has spectrum

(
nP

jD1
sj kj

ˇ
ˇ
ˇ
ˇ
ˇ
kj 2 ZC 8 j

)

with each eigenvalue of multiplicity one thanks to the

assumption on fsj ; 1 � j � ng: Since �s and U�sU�1 have the same set of
eigenvalues and same multiplicities it follows from Theorem 4 that

U�sU
�1 D W.z/� .M/�1�t� .M/W.z/�1 (37)

where z 2 C
n; M 2 Sp.2n;R/; t D .t1; t2; : : : ; tn/

T and

�t D
nY

jD1
.1 � e�tj /e

�
nP

jD1

tj a
�
j aj

:
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Since the maximum eigenvalues of �s and �t are same it follows that

Y
.1 � e�sj / D

Y
.1 � e�tj /:

Since the spectra of �s and �t are same it follows that

8
<

:

nX

jD1
sj kj

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
kj 2 ZC 8 j

9
=

;
D
8
<

:

nX

jD1
tj kj

ˇ
ˇ
ˇ
ˇ
ˇ
ˇ
kj 2 ZC 8 j

9
=

;
:

Choosing k D .0; 0; : : : ; 0; 1; 0; : : : ; 0/T with 1 in the k-th position we conclude the
existence of matrices A;B of order n � n and entries in ZC such that

t D As; s D Bt

so that BAs D s: The rationally linear independence of the sj ’s implies BA D I:

This is possible only if A and B D A�1 are both permutation matrices.
Putting V D � .M/W.z/�U we have from (37)

V�s D �tV:

Denote by jki the vector satisfying

a
�
j aj jki D kj jki

where jki D jk1ijk2i 
 
 
 jkni: Then

V�s jki D
nY

jD1
.1 � e�sj /e�P

sj kj V jki

D �t V jki; k 2 Z
nC:

Thus V jki is an eigenvector for �t corresponding to the eigenvalue

Y
.1 � e�sj /e�sT k D

nY

jD1
.1 � e�tj /e�tT BT k

D
nY

jD1
.1 � e�tj /e�tT Ak:

Hence there exists a scalar ˇ.k/ of modulus unity such that

V jki D ˇ.k/ jAki
D � .A/ˇ.a

�
1a1; a

�
2a2; : : : ; a

�
nan/ jki 8 k 2 Z

nC:
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where � .A/ is the second quantization of the permutation unitary matrix A acting
in C

n: Thus
U D W.z/� .M/�� .A/ˇ.a

�
1a1; a

�
2a2; : : : ; a

�
nan/:

which completes the proof. ut
Theorem 7. A unitary operator U in L2.Rn/ is a Gaussian symmetry if and only
if there exist a scalar � of modulus unity, a vector ˛ in C

n and a symplectic matrix
L 2 Sp.2n;R/ such that

U D �W.˛/� .L/

where W.˛/ is the Weyl operator associated with ˛ and � .L/ is a unitary operator
implementing the Bogolioubov automorphism of CCR corresponding to L:

Proof. The if part is already contained in Corollaries 3.3 and 3.5 of [4]. In
order to prove the only if part we may, in view of Theorem 6, assume that
U D ˇ.a

�
1a1; a

�
2a2; : : : ; a

�
nan/ where ˇ is a function of modulus unity on Z

nC: If
such a U is a Gaussian symmetry then, for any pure Gaussian state j i; U j i is
also a pure Gaussian state. We choose

j i D e� 1
2kuk2 je.u/i D W.u/je.0/i

where u D .u1; u2; : : : ; un/T 2 C
n with uj ¤ 0 8 j: By our assumption

j 0i D e� 1
2 kuk2ˇ.a�1a1; a

�
2a2; : : : ; a

�
nan/je.u/i (38)

is also a pure Gaussian state. By Corollary 2, 9˛ 2 C
n; a unitary matrix A of order

n and �j > 0; 1 � j � n such that

j 0i D W.˛/� .A/ je�1ije�2i 
 
 
 je�ni: (39)

Using (38) and (39) we shall evaluate the function f .z/ D h 0je.z/i in two different
ways. From (38) we have

f .z/ D e� 1
2 kuk2he.u/

ˇ
ˇ
ˇ Ň.a�1a1; a�2a2; : : : ; a�nan/

ˇ
ˇ
ˇ e.z/i

D e� 1
2 kuk2 X

z2Zn
C

Ň.k1; k2; : : : ; kn/
k1Šk2Š : : : knŠ

.Nu1z1/k1 : : : .Nunzn/kn jk1k2 
 
 
kni (40)

where jk1k2 
 
 
kni D jk1ijk2i 
 
 
 jkni and je.z/i D P

k2ZC

zkp
kŠ

jki for z 2 C:

Since jˇ.k/j D 1; (40) implies

jf .z/j � exp

8
<

:
�1
2

kuk2 C
nX

jD1
juj j jzj j

9
=

;
: (41)
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From the definition of je�i in Corollary 2 and the exponential vector je.z/i in
L2.R/ one has

he�je.z/i D
s

2�

1C �2
exp

1

2

�
�2 � 1
�2 C 1

�

z2; � > 0; z 2 C:

This together with (39) implies

f .z/ D he�1 ˝ e�2 ˝ 
 
 
 ˝ e�n j� .A�1/W.�˛/e.z/i
D eh˛jzi� 1

2k˛k2he�1 ˝ e�2 ˝ 
 
 
 ˝ e�n j e.A�1.z C ˛//i

which is a nonzero scalar multiple of the exponential of a polynomial of degree 2 in
z1; z2; : : : ; zn except when all the �j ’s are equal to unity. This would contradict the
inequality (40) except when �j D 1 8 j: Thus �j D 1 8 j and (39) reduces to

j 0i D W.˛/� .A/ je.0i
D e� 1

2k˛k2 je.˛/i:

Now (38) implies

ˇ.a
�
1a1; a

�
2a2; : : : ; a

�
nan/ je.u/i

D e
1
2 .kuk2�k˛k2/ je.˛/i;

or

X

k2Zn
C

uk11 uk22 : : : u
kn
np

k1Š 
 
 

p
knŠ
ˇ.k1; k2; : : : ; kn/ jk1k2 : : : kni

D e
1
2 .kuk2�k˛k2/X ˛

k1
1 ˛

k2
2 : : : ˛

kn
np

k1Š 
 
 

p
knŠ

jk1k2 : : : kni:

Thus

ˇ.k1; k2; : : : ; kn/ D e
1
2 .kuk2�k˛k2/

�
˛1

u1

�k1

 
 

�
˛n

un

�kn
:

Since jˇ.k/j D 1 and uj ¤ 08 j it follows that j ˛juj
j D 1 and

ˇ.k/ D e
i

nP

jD1

�j kj 8 k 2 Z
nC

where �j ’s are real. Thus ˇ.a�1a1; a
�
2a2; : : : ; a

�
nan/ D � .D/; the second quantiza-

tion of the diagonal unitary matrix D D diag.ei�1 ; ei�2 ; : : : ; ei�n/: This completes
the proof. ut
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Solution of the Optimal Stopping Problem
for One-Dimensional Diffusion Based
on a Modification of the Payoff Function

Ernst Presman

Abstract A problem of optimal stopping for one-dimensional time-homogeneous
regular diffusion with the infinite horizon is considered. The diffusion takes values
in a finite or infinite interval �a; bŒ. The points a and b may be either natural
or absorbing or reflecting. The diffusion may have a partial reflection at a finite
number of points. A discounting and a cost of observation are allowed. Both can
depend on the state of the diffusion. The payoff function g.z/ is bounded on any
interval Œc; d �, where a < c < d < b, and twice differentiable with the exception
of a finite (may be empty) set of points, where the functions g.z/ and g0.z/ may
have a discontinuities of the first kind. Let L be an infinitesimal generator of
diffusion which includes the terms corresponding to the discounting and the cost
of observation. We assume that the set fz W Lg.z/ > 0g consists of a finite number
of intervals. For such problem we propose a procedure of constructing the value
function in a finite number of steps. The procedure is based on a fact that on intervals
where Lg.z/ > 0 and in neighborhoods of points of partial reflections, points of
discontinuities, and points a or b in case of reflection, one can modify the payoff
function preserving the value function. Many examples are considered.
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1 Introduction

We consider a time-homogenous strong Markov process Z D .Zt /t�0 with values
in X

S
e, where .X;B/ is a measurable space, and e is an absorbing state. The

time may be discrete or continuous. We assume that Z is defined on some filtered
probabilistic space and that the following measurable functions are given:
�.z/ � 0 – killing intensity; g.z/ – payoff function, g.e/ D 0; c.z/ – cost of

observations, c.e/ D 0.
In the continuous time we consider the functional

V.z; �/ D Ez

2

4g.Z� /�
�Z

0

c.Zs/ds

3

5 ; (1)

where � is an arbitrary stopping time with respect to the given filtration. In the
discrete time instead of the integral one has a sum from 0 to � � 1.

We assume that the expectation is defined for any � . The optimal stopping
problem consists in a maximization of the functional (1). This problem is equivalent
to the problem where instead of absorbtion one has in the continuous time the
functional

V.z; �/ D NEz

2

4g.Z� /e
�

�R

0

�.Zu/du
ds �

�Z

0

c.Zs/e
�

sR

0

�.Zu/du
ds

3

5 ;

where NE corresponds to the process without absorbtion. In the discrete time instead

of exp.�
tR

0

�.Zu/du/ one has
Qt�1

uD0.1 � �.Zu//.

The aim of this paper is to present a procedure for constructing the value function

V.z/ D sup
�

V.z; �/:

There are numerous papers devoted to the optimal stopping problems. We
mention only some, related to our approach. The general theory of optimal stopping
and some methods to obtain the value function can be found in Shiryaev [19],
Peskir and Shiryaev [13]. Dayanik and Karatzas [3] reduce optimal stopping of one-
dimensional diffusion to the optimal stopping of Brownian motion, Salminen [18]
uses Martin’s boundaries for solution of optimal stopping problem, Bronstein
et al. [2] consider one-dimensional diffusion on a halfline with discounting depen-
dent on state and piecewise constant nondecreasing payoff function.

The main point of the proposed approach is the following simple lemma. Let
C 2 B and �C D infft W t � 0; Zt … C g be a stopping time. Define

gC .z/ D V.z; �C / D Ez

2

4g.Z�C /�
�CZ

0

c.Zs/ds

3

5 :
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By the definition gC .z/ D g.z/ if z … C . The definition for the discrete time is
similar.

Lemma 1. If gC .z/ > g.z/ for all z 2 C , then C belongs to the continuation set
and the problem of optimal stopping with the payoff function gC .z/ has the same
value function as the problem with the payoff function g.z/.

Proof. Let VC .z/ be the value function in the problem with the payoff function
gC .z/. It follows from gC .z/ � g.z/ that VC .z/ � V.z/. On the other side for any �
one can define � 0 D infft W t � �;Zt … C g: Then by the strong Markov property

V.z; � 0/ D Ez

2

4�
�Z

0

c.Zs/ds C Ez�

2

4g.Z� 0/ �
� 0Z

�

c.Zs/ds

3

5

3

5

D Ez

2

4�
�Z

0

c.Zs/ds C gC .z� /

3

5 D VC .z; �/;

and consequently V.z/ � VC .z/. The proof for the discrete time is similar. ut
We say that a function f .z/ is a modification of the payoff function g.z/ (or is
a modified payoff function) if there exists C 2 B such that f .z/ D gC .z/ and
gC .z/ > g.z/ for all z 2 C . It follows from Lemma 1 that the optimal stopping
problems with the payoff function g.z/ and the modified payoff function gC .z/ have
the same value function.

The question is how to find such a set C . In Sect. 2 we discuss very shortly the
case of the discrete time. In Sect. 3 we formulate the procedure for one-dimensional
diffusion. The proofs of all lemmas from Sect. 3 are given in Sect. 6. In Sect. 4 all
examples from [3] are considered from the point of view of modification of the
payoff function. In Sect. 5 some other examples are considered.

2 Discrete Time

The case of the discrete time was considered in [15]. It was assumed that functions
g.z/; c.z/ are bounded and there exists n0 > 0 such that PzfZn0 D eg � 1�ˇ > 0

for all z 2 X . Let T be the revaluation operator, i.e. Tf .z/ D �c.z/ C Ezf .Z1/.
The following statements were proved.

(a) If C D fz W Tg.z/ > g.z/g is empty, then V.z/ D g.z/,
(b) If C D fz W Tg.z/ > g.z/g is not empty, then gC .z/ is a modification of the

payoff function g.z/.

Let g0.z/ D g.z/; C1 D fz W Tg.z/ > g.z/g;

CkC1 D fz W TgCk .z/ > g.z/g D Ck
[

fz W TgCk .z/ > gCk .z/g
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and gk.z/ D gCk .z/; k � 1. The respective sequence of the modified payoff
functions gk.z/ is nondecreasing. There are two possibilities.

(1) There exists k0 such that the set fz W Tgk0.z/ > g.z/g is empty. This always
holds if X is finite. If such k0 exists then gk.z/ D gk0.z/ for all k � k0,
gk0.z/ coincides with the value function and the set Ck0 coincides with the
continuation set.

(2) If such k0 does not exists then the sequence gk.z/ converges to the value
function, and the sequence Ck converges to the continuation set.

Sonin [21–23] was the first who used the set fz W Tg.z/ > g.z/g to solve the
optimal stopping problem. For the case of finite state space X he proposed to
eliminate the states from this set and to consider a new Markov chain, with a new
reduced state space and new transition probabilities. These probabilities coincide
with the distribution of the initial chain at the time of the first return to the new
state space. They can be simply recalculated from the old ones. In the case of a
finite number of states after finite number of steps we obtain the new chain and
the new state space for which the reward for stopping – which equals to the payoff
function – is greater than or equal to the expected reward for doing one more step for
all points. In such situation the stopping set coincides with the final state space and
the value function coincides with the reward for the instant stopping. After that the
value functions corresponding to the previous chains can be restored sequentially.

The possibilities of generalization of Sonin’s elimination algoriphm to the
countable case in some situations were discussed in [23]. A generalization to a
special case with not necessary countable state space was considered in [17]. In
[14] the algorithm was modified to study the case of an arbitrary state space.

The modification of the payoff function was proposed in [15]. The algorithms
which are close to the modification procedure in discrete time were elaborated in
[7, 8] and [11].

3 One-dimensional Diffusion

We consider a time-homogeneous strong Markov process Z D .Zt /t�0 with values
in X

S
e, where e is an absorbing state and X D�a; bŒ; �1 � a < b � C1. We

assume that the following measurable functions are given:
�.z/ � 0 – diffusion coefficient, m.z/ – drift coefficient, �.z/ � 0 – killing

intensity.
We assume that

(I) 8z 2�a; bŒ 9" > 0 W
zC"Z

z�"

�
1C jm.u/j
�2.u/

C �.u/

�

du < 1, which implies that

the diffusion is regular (see for example [3]);
(II) There exists a finite (possibly empty) set A0 inside �a; bŒ where the diffusion

has a partial reflection, i.e. there exists a function ˛.z/ such that
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�1 < ˛.z/ < 1; ˛.z/ ¤ 0 for z 2 A0; ˛.z/ D 0 for z … A0;

and

PzŒZt > z� ! 1C ˛.z/

2
as t ! 0I

(III) Each point a and b is either natural (it can not be reached during the finite
time) or reflecting or adsorbing.

We assume also that the following measurable functions are given:

g.z/ – payoff function, g.e/ D 0; c.z/ – cost of observation, c.e/ D 0.

Additional assumptions on the function g.z/ will be given later.
As above we define a functional

V.z; �/ D Ez

2

4g.Z� /�
�Z

0

c.Zs/ds

3

5 ;

and the value function V.z/ D sup
�

V.z; �/.

For any interval �c; d Œ such that a < c < d < b let us define the stopping time

��c; d Œ D infft W t � 0; Zt …�c; d Œg
and the respective function

g�c; d Œ.z/ D V
�
z; ��c; d Œ

�
:

Obviously g�c; d Œ.z/ D g.z/ for z … �c; d Œ: Let us define also

g�a; d Œ.z/ D lim sup
c#a

g�c; d Œ.z/; g�c; bŒ.z/ D lim sup
d"b

g�c; d Œ.z/;

We define the following two operators:

Lf .z/ WD �2.z/

2

d2

d z2
f .z/Cm.z/

d

d z
f .z/ � �.z/f .z/ � c.z/;

L1f .z/ WD .1C ˛.z//f 0C.z/ � .1 � ˛.z//f 0�.z/ ;

where ˛.z/ is defined in II) and f 0�.z/ is the left and f 0C.z/ is the right derivative of
the function f .z/.

The following statement is well known for the case without partial reflection (see,
for example, [13] Sect. 7). The case of partial reflection can be found in [5, 11].
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Statement 1. A function f .z/ is continuous, twice differentiable for z 2�c; d Œ;
a < c < d < b; z … A, and satisfies on �c; d Œ the relations

Lf .z/ D 0 for z 2�c; d Œ; z … A0; L1f .z/ D 0 for z 2�c; d Œ
\

A0; (2)

and boundary conditions f .c/ D g.c/; f .d/ D g.d/, if and only if
f .z/ D g�c; d Œ.z/ on �c; d Œ.

If a is a reflecting point, then f .z/ is continuous, twice differentiable for
z 2�a; d Œ; a < d < b; z … A; and satisfies on �a; d Œ the relations (2) with c D a and
boundary conditions f 0C.a/ D 0; f .d/ D g.d/ if and only if f .z/ D gŒa; d Œ.z/ on
�a; d Œ.

If b is a reflecting point, then f .z/ is continuous, twice differentiable for
z 2�c; bŒ; a < c < b; z … A; and satisfies on �c; bŒ; the relations (2) with d D b

and boundary conditions f 0�.b/ D 0; f .c/ D g.c/ if and only if f .z/ D g�c; b�.z/
on �c; bŒ.

Now we are ready to formulate the rest of the assumed properties of g.z/. In what
follows we assume that g.z/ 2 C , where C is the set of functions f .z/ satisfying
the following properties.

(1) f .z/ is bounded 8 �c; d Œ; a < c < d < b; f 00.z/ exists and is finite and
continuous on �a; bŒ with exception of a finite (possibly empty) set A1; f .z/
and f 0.z/ have left and right limits at points from A0

S
A1.

(2) If a is natural then f .a/ is not defined, if a is reflecting or absorbing then f .a/
is finite. Analogously for the point b.

(3) The set of points whereLf .z/ > 0 is either empty or consists of a finite number
of intervals. Denote by A2 the set of the endpoints of these intervals.

Let ADA0
S
A1
S
A2 D fz1; : : : ; z kg, where aD z 0 < z 1 < : : : < z k < z kC1 D b.

In what follows we consider only functions from C .
Below we present a procedure of a sequential modification of the payoff function

for the model satisfying conditions (I)–(III) with g.z/ 2 C . On each step we modify
the payoff function. By the definition it means that the modified payoff function also
belongs to C and the optimal stopping problem with the modified payoff function
has the same value function as the initial problem. After finite number of steps we
obtain the new payoff function which satisfies the conditions of Theorem 1 below,
and, according to this theorem, coincides with the value function. This procedure is
based on Lemma 1 and the following theorems and lemmas. Below we assume that
g.zi / � max .g.ziC/; g.zi�// for all i D 0; : : : ; k C 1. At the end of this section
we shall show that in the case g.zi / < max .g.ziC/; g.zi�// for some i , the value
function is the same as for the case of equality.

The following theorem describes a situation when the value function coincides
with the payoff function and consequently the optimal stopping time identically
equals to zero. The proof for the case without partial reflection is standard and can
be found, for example, in [13]. The proof for the case with partial reflection follows
the same scheme and uses the results from [11].
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Theorem 1. Let (a) the function g.z/ be continuous;

(b) the set where Lg.z/ > 0 be empty I (c) L1g.z/ � 0 for all z 2 AI
(d1) if a is reflecting then g0C.a/ � 0I (d2) if b is reflecting then � g0�.b/ � 0:

Then V.z/ D g.z/.

In the procedure that we describe below we shall modify sequentially the payoff
function in such a way, that it will satisfy conditions (a), (b), (c), (d1), (d2) of
Theorem 1.

The following lemma shows that one always can modify the payoff function to
make it continuous, i.e. satisfying condition (a) of Theorem 1.

Lemma 2. If 1 � i � k and g.z i / > g.ziC/ then there exists " 2�z i ; z iC1Œ such
that g�z i ;"Œ.z/ > g.z/ for z 2�z i ; "Œ (see Fig. 1a). A similar statement is true for the
case g.z i / > g.zi�/ and for points a and b in case they are absorbing.

a b c

Fig. 1 Illustration of Lemmas 2, 3, and 4. (a) g.zi/ > g.zi�/ > g.ziC/, (b) Lg.z/ > 0 for
z 2�zi; ziC1Œ, and (c) L1g.zi / > 0

To construct the continuous modification we need no more then 2k C 2 steps,
corresponding to the modification at the left and the right neighborhood of the points
zi ; i D 1; : : : ; k; and at the points a and b. The set A corresponding to modified
payoff function consists of no more then 3k C 2 points.

The next lemma shows that the continuous payoff function can be modified in
such a way, that it will satisfy the condition (b) of Theorem 1.

Lemma 3. If g.z/ is continuous, Lg.z/ > 0 for z 2�z i ; z iC1Œ and some 0 � i < k;

then g�z i ;z iC1Œ.z/ is a modification of g.z/ (see Fig. 1b). Moreover Lg�z i ;z iC1Œ.z/ D 0

for z 2�z i ; z iC1Œ and

g0
�z i ;z iC1ŒC.zi / > g

0C.zi /; g0
�z i ;z iC1Œ�.z iC1/ < g

0�.z iC1/:

We shall consider now the payoff functions which are continuous and such
that application of the operator L gives nonpositive values. In this case in the
neighborhood of the points, where an application of the operator L1 is positive,
the payoff function can be modified.
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Lemma 4. Let g.z/ be continuous,Lg.z/ � 0 for z … A, andL1g.zi / > 0 for some
i D 1; : : : ; k : Then (see Fig. 1c):

(a) There exist "1 2�zi�1; zi Œ and ı1 2 �zi ; ziC1Œ; such that g�";ıŒ.z/ is a
modification of g.z/ for any " 2 Œ"1; zi Œ and any ı 2 �zi ; ı1�, and, moreover,
L1g�";ıŒ."/ > 0 ; L1g�";ıŒ.ı/ > 0 for any " 2�"1; zi Œ and any ı 2 �zi ; ı1Œ.

(b) IfLg.z/ D 0 for z 2�"2; zi Œ; and some "2 2 Œzi�1; zi Œ; then one can take "1 D "2
in statement (a). Moreover, g0

�"2;ıŒC."2/ > g
0C."2/ A similar statement is true for

the interval �zi ; ı2Œ:

If g�";ıŒ.z/ > g.z/ for z 2�"; ıŒ and at least one of inequalities L1g�";ıŒ."/ > 0;

L1g�";ıŒ.ı/ > 0 holds, then applying Lemma 4 to the point " or/and ı one can see
that the interval �"; ıŒ where g�";ıŒ.z/ > g.z/ can be enlarged.

In the next theorem we consider the payoff function which satisfies conditions
(a) and (b) of Theorem 1 on �a; bŒ, condition (c) on �a; zi Œ for same i , and such that
L1g.zi / > 0. We prove the existence of a modification, that satisfies condition (c) on
�a; ziC1Œ. For this aim it is convenient to define the function Ng�c;d Œ.z/ as follows:
Ng�c;d Œ.z/ D g�c;d Œ.z/ for z 2�c; d Œ; Ng�c;d Œ.z/ satisfies (2) on �a; bŒ. The functions
NgŒa;d Œ.z/ and Ng�c;a�.z/ are defined similarly.

Theorem 2. Let g.z/ be continuous; Lg.z/ � 0 for z … A; and there exist zi 2 A

such that L1g.z i / > 0 and L1g.z j / � 0 for all j; 1 � j � i � 1 : Then there exist
unique c� 2 Œa; z i Œ ; d� 2�z i ; z iC1� ; and c1� 2 Œa; c�� ; d 1� 2 Œd�; z iC1� ; such that
g�c� ; d�Œ.z/ is a modification of g.z/ (see Fig. 2) and

Ng�c�; d�Œ.z/ > g.z/ for z 2�a; c1�Œ
S
�c�; d�Œ

S
�d 1�; ziC1Œ ;

Ng�c� ; d�Œ.z/ D g.z/; so that Lg.z/ D 0; L1g.z/ D 0 for z 2�c1�; c��
S
Œd�; d 1�Œ:

a

]c* ,d*[

* * * *
1 1

ii i+1

Fig. 2 Illustration of Theorem 2

To prove Theorem 2 and describe properties of the interval �c�; d�Œ , which
help to find the values c� and d�; we shall formulate the following two lemmas.
Lemma 5 describes a positional relationship between a payoff function, that satisfies
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conditions (a), (b) and (c) of Theorem 1 on some interval �c; d Œ� Œa; b� and an
arbitrary solution of (2). It appears that the situation is the same as for the Brownian
motion, i.e. for the concave function and the set of liner functions.

Lemma 5. Let the functions f .z/; g.z/ be continuous; Lg.z/ � 0; L1g.z/ � 0

for all z 2�c; d Œ� Œa; b� ; Lf .z/ D 0; L1f .z/ D 0 for all z 2�a; bŒ : Then either
f .z/ > g.z/ for all z 2�c; d Œ I or there exist c1; d1 2 Œc; d � such that c1 � d1; f .z/ >
g.z/ for all z 2 Œc; d � n Œc1; d1�; and either f .z/ D g.z/ for all z 2�c1; d1Œ��c; d Œ I
or f .z/ < g.z/ for all z 2�c1; d1Œ ; and in this case if c1 < d1 and g.c1/ D f .c1/

then f 0C.c1/ < g0C.c1/, if c1 < d1 and g.d1/ D f .d1/ then f 0�.d1/ > g0�.d1/:

It is convenient to define a generalized tangent line at point h, i.e. the function
gh.z/; z 2�a; bŒ, depending on a parameter h 2 Œa; b�, such that gh.h/ D g.h/,
g0
h.h/ D g0.h/ and gh.z/ satisfies (2) on �a; bŒ. We assume that ga.z/ D ghC.z/;
gh.z/ D gh�.z/ if these limits exist, and if h 2 A then two functions are defined:
ghC.z/ and gh�.z/. Lemma 6 describes the behavior of the generalized tangent line
as a function of h for any fixed z.

Lemma 6. Let function g.z/ be continuous; Lg.z/ � 0; L1g.z/ � 0 for all
z 2�c; d Œ : Then for each fixed z 2�a; bŒ function gh.z/ nonincreases in h for h < z
and nondecreases in h for h > z (see Fig. 3).

h2

h1

1 2

Fig. 3 Illustration of Lemma 6

Proof of Theorem 2 . Theorem 2 is a simple consequence of Lemmas 5 and 6.
Indeed, for h 2 Œzi ; ziC1� consider gh.z/ as a function f .z/ in Lemma 5. Since for
any fixed z 2�a; zi �, the function gh.z/ nondecreases in h, we obtain that d1.h/ from
Lemma 5 nonincreases in h and, by Lemma 4, zi� d1.h/ is positive and small if
h�zi is small. Respectively, c1.h/ from Lemma 5 nondecreases in h. Consequently,
either there exists d� 2�zi ; ziC1� such that d1.d�/ D c�; c1.d�/ D c1�, or d� D ziC1
and we shall consider functions f t .z/ such that f t .ziC1/ D g.ziC1/, f t 0.ziC1/ D t ,
t < g0�.ziC1/, and f t .z/ satisfies (2) on �a; ziC1Œ. Decreasing t we obtain c� and c1�.

The next theorem describes properties of the interval �c�; d�Œ , which help to find
the values c� and d�:
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Theorem 3. Under conditions of Theorem 2 the following properties hold:

(a) If g.z/ D g�c;z i Œ.z/ for z 2�c; zi Œ for some c 2 Œa; zi Œ ; then c� � cI
if Lg.z/ D 0 for z 2�zi ; d Œ for some d 2�zi ; ziC1Œ; then d� � d I

(b) The following relations hold:

(b1) L1g�c; d�Œ.c/ < 0 for c 2�a; c1�Œ ; L1g�c; d�Œ.c/ > 0 for c 2�c�; zi Œ ;
L1g�c; d�Œ.c/ D 0 for c 2�c1�; c�Œ I (see Fig. 4a)

(b2) L1g�c�; d Œ.d />0 for d 2�zi ; d�Œ ; L1g�c� ; d Œ.d /<0 for d1� � d<ziC1 ;
L1g�c�; d Œ.d / D 0 for d 2 Œd�; d 1�Œ I (see Fig. 4b)

(c) For each fixed z < d function gd .z/ nondecreases in d . If d� < ziC1 then:

(c1) If gziC.aC/ � g.aC/ then g.z/ > gziC.z/ for all z 2�a; zi Œ and c� > a;

(c2) In the opposite case for any c 2�a; zi Œ there exists dc � d� such that

gdc .c/ D g.c/, so that gdc .z/ D g�c;dc Œ.z/ for z 2�c; dc Œ. Moreover,
L1g�c; dc Œ.c/ < 0 for c 2�a; c1�Œ and L1g�c; dc Œ.c/ > 0 for c 2�c�; zi Œ .

a a

]c
*
,d

*
[

]c
*  

,d [

]c
*  

,d [

]c,d*[

]c,d*[

* * **i ii+1 i+1

a b

Fig. 4 Illustration of Theorem 3. (a) L1g�Lc;d� Œ.Lc/ < 0, L1g�c;d�Œ.c/ > 0 and (b) L1g�c�;d Œ.d/ > 0,

L1g�c�; LdŒ.
Ld/ < 0

Remark 1. Statement (b) is an analog of the well-known smooth fitting conditions.

Proof of Theorem 3. The statement (a) follows from statement (b) of Lemma 4.
Statements (b) and (c) are direct consequences of Lemmas 5 and 6.

To check the properties (d) of Theorem 2 we shall consider now points a, b.

Lemma 7. Let g.z/ be continuous, Lg.z/ � 0 for all z … A and L1g.z/ � 0 for all
z 2 A: If a is reflecting and g0C.a/ > 0 then:

(a) There exist unique d� 2�a; b� and d1� 2 Œd�; b� such that (see Fig. 5)

NgŒa;d� Œ.z/ >g.z/ for z 2 Œa; d�Œ
[

�d 1� ; bŒ I NgŒa;d� Œ.z/ D g.z/; for z 2 Œd� ; d 1�Œ I
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(b) If g.z/ D g�a;d Œ.z/ for some d then d� � d ;
(c) The following relations hold:

L1gŒa dŒ.d / > 0 for d 2�a; d�Œ ; L1gŒa; d Œ.d / D 0 for d 2 Œd�; d 1�Œ ;

L1gŒa; d1�Œ.d
1�/ � 0 ; L1gŒa; d Œ.d / < 0 for d1� � d < b:

Similar statements hold for the point b if �g0�.b/ > 0.

a                    z 

] a,d
*
[

* *
1

Fig. 5 Illustration of
Lemma 7

Now we can formulate the procedure.
At the first stage using Lemma 2 after no more than 2kC 2 steps we obtain a

modification g1.z/ which satisfies the condition (a) of Theorem 1.
At the second stage using Lemma 3 after no more than k steps we obtain the

modification g2.z/ of g1.z/, which satisfies the conditions (a) and (b) of Theorem 1.
The set A2 corresponding to g2.z/ coincides with the set A1 corresponding to g1.z/.

At the third stage we use Theorem 2. On each step the number of points, where
the result of application of operator L1 to the new payoff function is positive,
decreases. So, after no more than 3k C 2 steps we obtain the modification g3.z/
of g2.z/ which satisfies the conditions (a), (b), and (c) of Theorem 1.

At the fourth stage we use Lemma 7. As a result we obtain the modified payoff
function which satisfies all conditions of Theorem 1 and therefore coincides with
the value function.

Remark 2. Let QA D fi W g.zi / < max .g.ziC/; g.zi�// : Then the value function
for the payoff function g.z/ is the same as the value function for the payoff function
Qg.z/, where Qg.z/ D g.z/ for z … QA, and Qg.z/ D max .g.ziC/; g.zi�// for z 2 QA.
To show this it suffices for example in the case g.ziC/ � g.zi�/ to construct the
value function for the payoff function gC .z/, where C D S

i2 QA�zi , "i Œ; "i < ziC1
and then take "i # zi .

4 Eleven Examples from Dayanik and Karatzas [3]

In this section we consider the same examples which were considered in the paper
[3]. In all examples the set A0 is empty and only in Example 9 the function c.z/
differs from identical zero.

Example 1 (Karatzas and Wang [9]). Pricing an “Up–and–out” barrier put–option
of American type: geometric Brownian motion Zt on �0; b� with parameters .r; �/,
killing intensity r , absorbtion at b and g.z/ D .q � z/C; q < b (see Fig. 6).
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q d*=b

0 c q d b z

]c,d [

Fig. 6 Examples 1 and 2

For this problem the operator L has a form

Lf .z/ WD �
�2z2=2

�
f 00.z/C rzf 0.z/� rf .z/: (3)

Since Lg.z/ D �rq < 0 for 0 < z < q and Lg.z/ D 0 for q < z < b, we are
under conditions of Theorem 2, where the set A consists of one point z1 D q with
L1g.q/ D g0C.q/ � g0�.q/ D 1 > 0. It follows from Lemma 1 and Theorem 2
that instead of g.z/ one can consider g�c� ;d�Œ.z/, where according to statement (a)
of Theorem 3 d� D b, and according to statement (b1) of Theorem 3 either the
equation

g0
�c; bŒC.c/ D �1 .D g0.c// (4)

has a unique root in �0; qŒ and c� coincides with this root, or c� D 0 and in this case
g0CŒc; bŒ.c/ > �1 for 0 < c < q. It follows from (3) and Statement 1 that

g�c;bŒ.z/ D .q � c/ b .b=z/ˇ � z

b .b=c/ˇ � c
; z 2 Œc; b�; (5)

where ˇ D 2r=�2. Hence

g0
�c;bŒC.c/ D �.q � c/

1C ˇ .b=c/1Cˇ

b .b=c/ˇ � c ; (6)

and g0
�c;bŒC.c/ ! �1, i. e. the Eq. (4) has a unique root c� in �0; qŒ. By (6) Eq. (4)

can be rewritten as ˇq � c.1 C ˇ/ C q .c=b/1Cˇ D 0 : The respective function
g�c� ;bŒ.z/ (see (5)) satisfies conditions of Theorem 1 and therefore coincides with
the value function.

Example 2 (Dayanik and Karatzas [3]). Pricing an “Up–and–out” barrier put–
option of American type under the Constant–Elasticity–of–Variance (CEV model).
It means that the stock price dynamics are described according to the CEV model,
dSt D rStdt C �S1�˛t dBt , S0 2�0; bŒ, for some ˛ 2�0; 1Œ, with killing intensity r ,
absorbtion at b, and g.z/ D .q � z/C; q < b; c.z/ � 0 (see Fig. 6).

For this problem the operator L has a form

Lf .z/ WD �
�2z2.1�˛/=2

�
f 00.z/C rzf 0.z/ � rf .z/: (7)
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Since Lg.z/ D �rq < 0 for 0 < z < q and Lg.z/ D 0 for q < z < b, we are
under conditions of Theorem 2, where the set A consists of one point z1 D q with
L1g.q/ D g0C.q/ � g0�.q/ D 1 > 0. It follows from Lemma 1 and Theorem 2
that instead of g.z/ one can consider g�c� ;d�Œ.z/, where according to statement (a)
of Theorem 3 d� D b, and according to statement (b1) of Theorem 3 either the
equation

g0
�c; bŒC.c/ D �1 .D g0.c//

has a unique root in �0; qŒ and c� coincides with this root, or c� D 0 and in this case
limc!0 g

0
�c; bŒC.c/ � �1. It follows from (7) and Statement 1 that

g�c;bŒ.z/ D .q � c/

z
bR

z

1
v2
e

� r

˛�2
v2˛
dv

c
bR

c

1
v2
e

� r

˛�2
v2˛
dv

; z 2 Œc; b� 0 < c < q:

Differentiating and integrating by parts we obtain for z 2�c; bŒ

g0
�c;bŒ.z/ D � .q � c/

c
bR

c

1
v2
e

� r

˛�2
v2˛
dv

2

4
1

b2
e

� r

˛�2
b2˛ C

bZ

z

r

˛�2
v2.˛�1/e� r

˛�2
v2˛
dv

3

5 ; (8)

lim
c#0

g0
�c;bŒC.c/ D �qA.b; ˛; r; �/;

where

A.b; ˛; r; �/ D
2

4 1

b2
e

� r

˛�2
b2˛ C

bZ

z

r

˛�2
v2.1�˛/e� r

˛�2
v2˛
dv

3

5 :

Now we can apply statement (b1) of Theorem 3. If qA.d; ˛; r; �/ � 1 (it is possible
only for 1=2 < ˛ � 1) then c� D 0. If qA.d; ˛; r; �/ > 1 then c� satisfies
g0
�c� ;bŒ�.c�/ D �1 (see (8)). The respective function g�c� ;bŒ.z/ (see (8)) satisfies

conditions of Theorem 1 and therefore coincides with the value function.

Example 3 (Broadie and Detemple [1]). Pricing an American Capped Call Option
on Dividend–Paying Assets: geometric Brownian motion Zt on �0;1Œ with param-
eters .r�
; �/, killing intensity r and g.z/ D .minŒl; z��K/C, dividend rate 
 � 0,
strike price K � 0 and the cap l > K (see Fig. 7).

For this problem the operator L has a form

Lf .z/ WD �
�2z2=2

�
f 00.z/C .r � 
/zf 0.z/� rf .z/; (9)

and Lg.z/ D 0 for 0 < z < K , Lg.z/ D �
z C rK for K < z < l;

Lg.z/ D �r.l �K/ for z > l .
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l - K

0 c        K         d l z

] c,d [

Fig. 7 Example 3

Let d1 D maxŒK;minŒl; Kr=
��. So, the set A consists of three or two points:
K; d1; l . According to Lemmas 1 and 3 we can change g.z/ to g�K;d1Œ.z/. With
the payoff function g�K;d1Œ.z/ we are under conditions of Theorem 2. According
to Statement 1, L1g�K;d1Œ.K/ D g0

�K;d1ŒC.K/ � g0C.K/ D 1, and we can apply
statement (a) of Theorem 3 to z1 D K and change g�K;d1Œ.z/ to g�0;d1Œ.z/.

With the payoff function g�0;d1Œ.z/ we are under conditions of Theorem 2, where
the set A1 consists of one point d1, and according to Lemma 3, L1g�0;d1Œ.d1/ > 0. It
follows from Lemma 1 and Theorem 2 that instead of g�0;d1Œ.z/ one can consider
g�0;d� Œ.z/, where according to statements (b2) of Theorem 3 either the equation
g0
�0; d Œ�.d/ D 1 .D g0.c// has a unique root in �d1; lŒ and d� coincides with this

root, or d� D l and in this case g0
�0; d Œ�.d/ < 1 for d 2�d1; lŒ.

Let '.k/ WD �2�2 � ��2 � 2.r � 
/
�
� � 2r and �C > �� be the solutions of the

equation '.k/ D 0. It follows from '.0/ < 0; '.1/ < 0 that �C > 1 and �� < 0. It
follows from (9) and Statement 1 that

g�0;d Œ.z/ D .d �K/.z=d/�C for z 2�0; d �; d 2�K; l�; (10)

so that g0
�0;d Œ�.d/ D �C

d �K

d
. The equation g0

�0;d Œ�.d/ D 1 .D g0.d// has

a root d� on �K; lŒ iff d� D K
�C

�C � 1 < l . According to Theorem 2 we can

change g�0;d1Œ.z/ to g�0;d� Œ.z/where d� D min




l; K
�C

�C � 1
�

. The function g�0;d� Œ.z/

(see (10)) satisfies conditions of Theorem 1 and therefore coincides with the value
function.

Example 4 (Guo and Shepp [4]). Options for Risk–Averse Investors: geometric
Brownian motion Zt on �0;1� with parameters .m; �/, killing intensity � and
g.z/ D maxŒl; z� (see Fig. 8).

For this problem the operator L has a form

Lf .z/ WD �
�2z2=2

�
f 00.z/Cmzf 0.z/ � �f .z/; (11)

and Lg.z/ D ��l for z 2�0; lŒ, Lg.z/ D .m � �/z for z > l .
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l

c0 l d z

]c,d [

Fig. 8 Example 4

Let '.�/ D �2�2 � �
�2 � 2m

�
� � 2� and �C > 0; �� < 0 be the solutions of

the equation '.�/ D 0. According to (11) and Statement 1

g�c;d Œ.z/ D l
.z=d/�� � .z=d/�C

.c=d/�� � .c=d/�C
C d

.z=c/�C � .z=c/��

.d=c/�C � .d=c/��
for c < z < d ; (12)

where 0 < c � l < d < C1:

If m > � then Lg.z/ D .m � �/z > 0 and according to Lemmas 1 and 3
V.z/ � g�l;d Œ.z/ for any d > l . Since g�l;d Œ.z/ ! C1 as d ! C1 for any z > l

we obtain that in this case V.z/ D C1.
The case m D � will be considered in Example 5.
Let now m<�. Then Lg.z/�0 for all z 2�0;1Œ, z ¤ l , and we are under condi-

tions of Theorem 2, where A consists of one point z1 D l . It follows from here and
(12) that limc#0 g0

�c;d Œ�.c/D�1 for any d > l , and limd#C1 g0
�c;d Œ�.d/ D �C > 1

for any 0 < c < l , and hence, according to statement (b) of Theorem 3 there exists
a unique solution fc�; d�g of the system L1g�c;d Œ.c/ D 0, L1g�c;d Œ.d / D 0. We can
rewrite this (see (12)) as follows:

g�c� ;d�Œ.z/ D l

�C � ��




�C
�

z

c�

���

� ��
�

z

c�

��C
�

for c� < z < d�; (13)

where

c� D l

�

1 � 1

�C

� ���
�C���

�

1 � 1

� �

� 1��CC��

�C���

; d� D c�
�

�C.1 � ��/
.�C � 1/.���/

� 1
�C���

:

The function g�c�;d�Œ.z/ (see (13)) satisfies conditions of Theorem 1 and therefore
coincides with the value function.

Example 5 (Guo and Shepp [4]). Another “Exotic” Option: geometric Brownian
motion Zt on the half-line �0;1Œ with parameters .m; �/, killing intensity m and
g.z/ D .maxŒl; z� � K/C with 0 < K < l (see Fig. 9).

For this problem the operator L has a form

Lf .z/ WD �2z2

2
f 00.z/Cmzf 0.z/ �mf.z/: (14)
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l-K

0 c    l-K   l d z

]c,¥[

]e,d [

]e,¥[

e

Fig. 9 Example 5

Since Lg.z/ D mK > 0 for z > l; Lg.z/ D �m.l �K/ < 0 for 0 < z < l ,
we are under conditions of Theorem 2, where the set A consists of one point z1 D l

with L1g.l/ D g0C.l/� g0�.l/ D 1 > 0. It follows from Lemma 1 and Theorem 2
that instead of g.z/ one can consider g�c� ;d�Œ.z/, where according to statement (a)
of Theorem 3 d� D 1, and according to statement (b1) of Theorem 3 either the
equation g0

�c;1ŒC.c/ D 0 .D g0.c// has a unique root in �0;1Œ and c� coincides
with this root, or c� D 0 and then g0

�c;1ŒC.c/ < 0 for all c 2�0;1Œ. It follows from
(14) and Statement 1 that

g�c;d Œ.z/ D .l �K/ .z=d/
�2m=�2 � .z=d/

.c=d/�2m=�2 � .c=d/ C d
.z=c/ � .z=c/�2m=�2

.d=c/ � .d=c/�2m=�2
; z 2 Œc; d � ;

where 0 < c < l < d < 1; and hence

g�c;1Œ.z/ D z C .l �K � c/
� z

c

��2m=�2
for z � c: (15)

So, g0
�c;1ŒC.c/ D 1 � 2m

l �K � c
c�2

. Since g0
�c;1ŒC.c/ ! �1 as c ! 0, the

equation g0
�c;1ŒC.c/ D 0 has a unique root c� D 2m

2mC �2
.l � K/ in �0; lŒ.

The function g�c�;1Œ.z/ (see (15)) satisfies conditions of Theorem 1 and therefore
coincides with the value function. Note, that there is no optimal � in this problem.

Example 6 (An Example of Taylor [24]). Brownian motion Zt on � � 1;1Œ with
parameters .m; 1/, killing intensity � and g.z/ D zC (see Fig. 10).

For this problem the operator L has a form

Lf .z/ D .1=2/f 00.z/Cmf 0.z/ � �f .z/: (16)

It follows from (16) thatLg.z/D 0 for z<0, Lg.z/Dm� z�> 0 for z 2�0;m�Œ ;
Lg.z/Dm � z�<0 for z>m�: We can apply Lemmas 3 and 1 and change g.z/
to g�0;m=�Œ.z/. With the payoff function g�0;m=�Œ.z/ we are under conditions of Theo-
rem 2, where A consists of two points: z1 D 0, z2 Dm=�, with L1g�0;m=�Œ.0/>0,
L1g�0;m=�Œ.m=�/>0. Using statement (a) of Theorem 3 and Lemma 1 we can
change g�0;m=�Œ.z/ to g��1;m=�Œ.z/. With the payoff function g��1;m=�Œ.z/ we are
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g(z) 

g]c,d[(z)

c  0 d z

Fig. 10 Example 6

under conditions of Theorem 2, where A consists of one point: z1 D m=�, with
L1g��1;m=�Œ.m=�/ > 0. Using statement (a) of Theorem 3 and Lemma 1 we can
change g��1;m=�Œ.z/ to g��1;c� Œ.z/, where according to statement (b2) of Theorem 3
either the equation g0

��1; d Œ�.d/ D 1 .D g0.d// has a unique root in �0;1Œ and d�
coincides with this root, or d� D C1 and in this case g0

��1; d Œ�.d/ < 1 for all
d > 0.

It follows from (16) and Statement 1 that

g�c;d Œ.z/ D d
e.z�c/
C � e.z�c/
�

e.d�c/
C � e.d�c/
�
; z 2 Œc; d � ;

where c < 0 < d , and 
C > 0; 
� < 0 are solutions of 
2C2m
 �2� D 0. Hence
g��1;d Œ.z/ D de.z�d/
C and g0

��1;d Œ�.d/ D d
C. The equation g0
��1;d Œ�.d/D 1

has a unique root d� D 1=
C on �0;1Œ. The function g��1;d� Œ.z/ satisfies conditions
of Theorem 1 and therefore coincides with the value function.

Example 7 (Salminen [18] (see Fig. 11)). Brownian motion Zt with parameters
.m; 1/, killing intensity � and g.z/ D 1 for z � 0 and g.z/ D 2 for z > 0.

g ] c, 0[(z)

c 0

2

z

Fig. 11 Example 7

According to Remark 2 we have the same value function if we set g.0/ D 2.
By Lemma 2 instead of g.z/ one can consider g�c;0Œ.z/, where c < 0, jcj is small
enough. For this problem the operator L has a form

Lf .z/ WD f 00.z/Cmf 0.z/ � �f .z/: (17)

Since Lg�c;0Œ.z/ � 0 for all z, we are under conditions of Theorem 2 with kD 2;

z1 D c; z2 D 0; i D 1. It follows from Lemma 1 and Theorem 2 that instead of g.z/
one can consider g�c� ;d�Œ.z/, where according to statement (a) of Theorem 3 d� D 0,
and according to statements (b1) of Theorem 3 either the equation g0

�c; 0ŒC.c/ D 0



388 E. Presman

has a unique root in � � 1; 0Œ and c� coincides with this root, or c� D �1 and in
this case g0

�c; 0ŒC.c/ > 0 for all c 2� � 1; 0Œ. It follows from (17) and Statement 1
that

g�c;0Œ.z/ D .1 � 2ec
C/ ez
� � .1 � 2ec
�/ ez
C

ec
� � ec
C
; z 2 Œc; 0�; c < 0 ; (18)

where 
C>0, 
�<0; are solutions of 
2�m
 � �D0. It follows from (18) that�
1 � ec.
C�
�/

�
g0
�c;0Œ.c/D f .c/where f .c/ D 
� .1� 2ec
C/C
Cec
C .2�e�c
�/

and, hence, limc#�1 g0
�c;0Œ.c/ D 
� < 0. So, there exists a unique c� such that

f .c�/ D 0. The function g�c� ;0Œ.z/ satisfies conditions of Theorem 1 and therefore
coincides with the value function.

Example 8 (Dayanik and Karatzas [3]). Standard Brownian motion Zt on �0;1Œ

with parameters .0; 1/, killing intensity �, absorbtion at z D 0 and g.z/ D zp (see
Fig. 12).

zp 

g]0,d[(z)

0 d z

Fig. 12 Example 8

For this problem the operator L has a form

Lf .z/ D .1=2/f 00.z/� �f .z/ ; (19)

and Lg.z/ D zp�2 �p.p � 1/� �z2
�
.

If p � 1 then Lg.z/ < 0 for all z > 0 and therefore �� � 0.
If p > 1 then Lg.z/ > 0 for 0 � z < d1 WD p

p.p � 1/=�. According
to Lemmas 1 and 3 we can change g.z/ to g�0;d1Œ.z/, where L1g�0;d1Œ.d1/ > 0.
With the payoff function g�0;d1Œ.z/ we are under conditions of Theorem 2, with
k D 1; z1 D d1. It follows from Lemma 1 and Theorem 2 that instead of g�0;d1Œ.z/
one can consider g�0;d� Œ.z/, where according to statement (b2) of Theorem 3 either
the equationL1g�0; d Œ.d / WD pdp�1�g0

�0; d Œ�.d/ D 0 has a unique root d� in �d1;1Œ

and d� coincides with this root, or d� D 1 and in this case L1g�0; d Œ.d / > 0 for all
d � d1. It follows from (19) and Statement 1 that

g�0;d Œ.z/ D ez
p
2� � e�z

p
2�

ed
p
2� � e�dp

2�
dp for z 2 Œ0; d �: (20)
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Hence L1g�0; d Œ.d / D pdp�1 � 1C e�2dp
2�

1� e�2dp
2�
dp
p
2� : Since L1g�0; d Œ ! �1 as

d ! 1 we have that d� is finite and satisfies e�2dp
2� D p � d

p
2�

p C d
p
2�

. The function

g�0;d� Œ.z/ (see (20)) satisfies conditions of Theorem 1 and therefore coincides with
the value function.

Example 9 (Karatzas and Ocone [8]). Brownian motionZt on �0;1Œ with parame-
ters .�m; 1/, killing intensity �, absorbtion at z D 0 ; and g.z/ D �ız2; c.z/ D z2

V .z/ WD sup��0 Ez




�ıZ2
� �

�R

0

Z2
t dt

�

.

Let V.z; m; �; ı/ be the value function corresponding to the problem. Consider-
ing the process QZt D mZt=m2 we obtain that

V.z; m; �; ı/ D 1

m4
V
�
mz; 1;

�

m2
; ım2

�
:

So, in what follows we shall assume without restriction of generality that m D 1.
For the problem with m D 1 the operator L has a form

Lf .z/ WD .1=2/f 00.z/ � f 0.z/� �f .z/ � z2; (21)

and Lg.z/ D ı'.z/ where '.z/ D xz2 C 2z � 1; x D � � 1

ı
2 � � 1; �Œ :

If x � �1 then '.z/ � 0 for all z and by Theorem 1 �� � 0 and V.z/ D g.z/.

If �1 < x < � then there exist 
1 D �1C p
1C x

x
and 
2 D �1 � p

1C x

x
such that '.z/ change sign at these points.

It remains to consider two cases: (1) 0 � x < �; (2) �1 < x < 0.

(1) 0 � x < �: In this case '.z/ < 0 for z 2 Œ0; 
1 Œ and '.z/ > 0 for z > 
1. By
Lemma 1 and Lemma 3 we can change g.z/ to g�
1;1Œ.z/ withL1g�
1;1Œ.
1/ > 0.
It follows from Theorem 2 and Lemma 1 with A D fz1 D 
1g; that there exists
c� 2 Œ0; 
1Œ such that V.z/ D g�c�;1Œ.z/, where either L1g�c;1Œ.c/ > 0 for all
c 2�0; 
1 Œ and in this case c� D 0, or c� is a unique root of L1g�c;1Œ.c/ D 0

(see Fig. 13a).

]c
*
,¥[

]g1,¥[

]g1,g2[

* * *1

]c* ,d*[

1 2

22

a b

Fig. 13 Example 9 (a) 0 � �� 1
ı
< � and (b) �1 � � � 1

ı
< 0



390 E. Presman

(2) �1 < x < 0. In this case '.z/ > 0 for z 2 �
1; 
2Œ ; '.z/ < 0 for z … �
1; 
2Œ :
Applying Lemma 3 and Lemma 1 to g.z/, then Theorem 2 and Lemma 1 to
g�
1;
2Œ.z/ at first to the point 
1 and then to the point 
2, and then Theorem 1,
we obtain that V.z/ D g�c� ;d�Œ.z/ for some c� 2 Œ0; 
1Œ and d� 2�
2;1� (see
Fig. 13b).

We shall find now c� and d� for both cases (1) and (2).

Let P.z/ D �1
�

z2C 2

�2
z� 1

�2
� 2

�3
; P1.z/ D g.z/�P.z/; and �C > 0; �� < 0

be the roots of the equation �2 � 2� � 2� D 0. Then LP.z/ D 0, and according to
Statement 1 and (21)

g�c;d Œ.z/ D P.z/C P1.d/
e�C.z�c/ � e��.z�c/
e�C.d�c/ � e��.d�c/ C P1.c/

e��.z�d/ � e�C.z�d/
e��.c�d/ � e�C.c�d/ ; z 2�c; d Œ :

(22)

(1) 0 � x < �: It follows from (22) that in this case

g�c;1Œ.z/ D P.z/C P1.c/e
��.z�c/ for z > c; c 2�0; 
1Œ ; (23)

and hence L1g�c;1Œ.c/ D �P 0
1.c/C ��P1.c/ WD �P�.c/. It is simple to check

that
��3P�.0/ D 2�C

�
1 �p

1C 2�
�
.2C �/ < 0:

Due to statement (b1) of Theorem 3, the equation ��P1.c/ D P 0
1.c/ has a

unique positive root, c� coincides with this root and V.z/ is given by (23) with
c D c�.

(2) �1 < x < 0. It follows from (22) that in this case

lim
d!1

L1g�c;d Œ.d /

P1.d/
D lim

d!1
g0.z/ � g0

�c;d Œ�.d/
P1.d/

D ��C as d ! 1:

Since P1.z/=z2 ! 1

�
� ı > 0, using statement (b2) of Theorem 3 we have

that d� < 1. To find c� and d� we shall use statement (c) of Theorem 3. It is
convenient to define P˙.z/ D P 0

1.z/� �˙P1.z/. Let

f .d; z/ D P.z/C P�.d/
�C � ��

e��C.d�z/ � PC.d/
�C � ��

e���.d�z/: (24)

Since f .d; z/ satisfies (21), f .d; d/Dg.d/;
@f

@z
.d; d/Dg0.d/, we obtain that

f .d; z/ concides with the generalized tangent line gd .z/ and if gd .c/ D g.c/

for some c < d then g�c;d Œ.z/ D f .d; z/ for z 2�c; d Œ.
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According to statement (c) of Theorem 3, if f .
2; 0/ > 0 then c� > 0 and, due to
statement (b) of Theorem 3, c� and d� are the unique solution of the system

g.c/ D f .d; c/; L1g�c;d Œ.c/ D 0: (25)

The first equality can be rewritten in the form

PC.d/e���.d�c/ D P�.d/e��C.d�c/ � .�C � ��/P1.c/ : (26)

Using first (24) and then (26) we obtain

L1g�c;d Œ.c/ D @f

@z
.d; c/ � g0.c/ D �CP�.d/e��C.d�c/ � ��PC.d/e���.d�c/

�C � ��
� P 0

1.c/

D P�.d/e��C.d�c/ � P�.c/:
(27)

Using (27) and substituting equality P�.d/e��C.d�c/ D P�.c/ into (26) we obtain
that the system (25) for c�; d� can be rewritten in the form

P�.d/e��C.d�c/ D P�.c/; PC.d/e���.d�c/ D PC.c/: (28)

If f .
2; 0/ � 0 then, according to statement (c1) of Theorem 3,
for each c 2 Œ0; 
2Œ there exists d D dc 2�
2;1Œ, such that equality (26) holds. For
these c and dc equality (27) holds also.

If P�.d0/e��C.d0/ � P�.0/, where d0 is defined from (26) with c D 0, then due
to statement (c2) of Theorem 3, c� D 0 and d� D d0. If P�.d0/e��C.d0/ < P�.0/
then c� > 0, and c�; d� are defined from (28).

Example 10 (Dayanik and Karatzas [3]). An optimal stopping problem for a mean-
reverting diffusion: A diffusion on �0;1Œ with m.z/ D z�.˛ � z/; �.z/ D z� for
some ˛;�; � > 0, with killing intensity �, g.z/ D .z �K/C; K > 0 (see Fig. 14).

g (z )      

g]c,d[(z)

0 c K d z

Fig. 14 Example 10

For this problem the operator L has a form

Lf .z/ WD �
�2z2=2

�
f 00.z/C z�.˛ � z/f 0.z/ � �f .z/; (29)

and Lg.z/ WD '.z/ D ��z2 C .˛� � �/z C �K for z > K , Lg.z/ D 0 for
0 < z < K . Let 
 be the positive root of the equation '.z/ D 0. Then Lg.z/ < 0

for z > maxŒK; 
�, Lg.z/ > 0 for K < z < maxŒK; 
�.
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Let d1 D maxŒK; 
�. So, the set A consists of two or one point:K; d1. According
to Lemmas 1 and 3 we can change g.z/ to g�K;d1Œ.z/. With the payoff function
g�K;d1Œ.z/ we are under conditions of Theorem 2. According to Statement 1
L1g�K;d1Œ.K/ D g0

�K;d1ŒC.K/ � g0C.K/ D 1 and we can apply statement (a) of
Theorem 3 to z1 D K and change g�K;d1Œ.z/ to g�0;d1Œ.z/.

With the payoff function g�0;d1Œ.z/ we are under conditions of Theorem 2, where
the set A1 consists of one point d1, and according to Statement 1, L1g�0;d1Œ.d1/ > 0.
It follows from Lemma 1 and Theorem 2 that instead of g�0;d1Œ.z/ one can consider
g�0;d� Œ.z/, where according to statements (b2) of Theorem 3 either the equation
g0
�0; d Œ�.d/ D 1 .D g0.d// has a unique root in �d1;1Œ and d� coincides with this

root, or d� D 1 and in this case g0
�0; d Œ�.d/ < 1 for d 2�d1;1Œ.

It is easy to check that the function '.a; b; u/ D
Z 1

0

etuta�1.1 � t/bdt satisfies

the equation

u
d2

dt2
'.a; b; u/C .a C b C 1 � u/

d

dt
'.a; b; u/� a'.a; b; u/ D 0 (30)

(it suffices to differentiate under the sign of the integral, substitute the results in (30)

and then integrate by parts the term
Z 1

0

ta.1� t/bC1detu ). Let �C > 0; �� < 0, be

the roots of the equation �.� � 1/C ˛
2�

�2
� � 2�

�2
D 0. It follows from (30) that

 .z/ D
�

z
2�

�2

��C

'

�

�C;���; z
2�

�2

�

D
�

z
2�

�2

��C
1Z

0

e
tz 2�
�2 t �C�1.1 � t/���dt

(31)

satisfies the equation L .z/ D 0 (see (29)) with the boundary condition  .0/ D 0.
Hence, according to Statement 1,

g�0;d Œ.z/ D .d �K/ .z/= .d/ for d > K; z 2 Œ0; d � : (32)

It is easy to check that g0
�0;d Œ�.d/ D .d �K/ 0.d/= .d/ > 1 if d is large enough,

and d� < 1 is defined as the unique root of the equation .d �K/ 0.d/= .d/ D 1.
The function g�0;d� Œ.z/ (see (31) and (32)) satisfies conditions of Theorem 1 and
therefore coincides with the value function.

Example 11 (Oksendal and Reikvam [12]). Brownian motionZt on ��1;1Œwith
parameters .0; 1/, killing intensity �, and g.z/ D 1 for z � 0; g.z/ D 1 � hz for
0 < z < a; g.z/ D 1 � ha > 0 for z � a (see Fig. 15).

For this problem the operator L has a form

Lf .z/ D .1=2/f 00.z/� �f .z/: (33)
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1- ha

0 c a d z

]c,d[

Fig. 15 Example 11

Since Lg.z/ < 0 for all z, we are under conditions of Theorem 2, where A
consists of two points: z1 D 0 with L1g.q/ D g0C.0/ � g0�.0/ D �h < 0, and
z2 D a with L1g.a/ D g0C.a/ � g0�.a/ D h > 0, i.e. i D 2. It is evident that
g�0;d Œ.z/ < 1 for any z 2�0; d �; d > 0. Hence L1g�0;d Œ.0/ � 0 for any d � a.
It follows from Lemma 1 and Theorem 2 that instead of g.z/ one can consider
g�c� ;d�Œ.z/, where c� 2 Œ0; aŒ; d� 2�a;1�. It follows from (33) and Statement 1 that

g�c;d Œ.z/ D g.c/ sinh..d � z/�/C g.d/ sinh..z � c/�/

sinh..d � c/�/
for z 2 Œ0; d � ; (34)

where � D p
2�, so that

g0
�c;d Œ�.d/ D �

g.d/ cosh..d � c/�/ � g.c/

sinh..d � c/�/
; (35)

g0
�c;d ŒC.c/ D �

g.d/� g.c/ cosh..d � c/�/
sinh..d � c/�/ : (36)

The relations (35)–(36) yield that L1g�c;d Œ.d / D �g0
�c;d Œ�.d/ ! �.1 � ha/ < 0

for any c, and L1g�c;d Œc/ D �g0
�c;d ŒC.c/ < 0 for c < 0. Hence, due to statement (b)

of Theorem 3, d� is finite and c� 2 Œ1; aŒ.
Consider now for c 2 Œ1; aŒ the function

f .c; z/ D .1 � ha/ cosh..d.c/� z/�/; (37)

where d.c/ > c is chosen from the condition f .c; c/ D g.c/ D 1 � hc, so that

d.c/ D c C ln
1 � hc Cp

h.a � c/.2 � h.a � c//
1 � ha

: (38)

It follows from (33) and Statement 1 that g�c;d.c/Œ.z/Df .c; z/ for 1� c � z � d.c/,
and therefore, using (37) and equality f .c; c/ D 1 � hc we obtain

g0
�c;d.c/ŒC.c/D�.1�ha/

p
.cosh..d.c/ � c/�//2 � 1 D �

p
.1 � hc/2 � .1 � ha/2;

and hence limc#0 L1g0
�c;d.c/ŒC.c/ D p

2�.1� .1 � ha/2/ � h.
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If � � h

a.2 � ha/ then limc#0 L1g0
�c;d.c/ŒC.c/ � 0, and according to statement

(c) of Theorem 3 we have c� D 0. If � >
h

a.2 � ha/ then limc#0 L1g0
�c;d.c/ŒC.c/ <

0, and according to statement (c) of Theorem 3 the value c� is defined
from the conditions f 0.c; c/ D �h; f .c; c/ D 1 � hc, so that c� D
h�1

�
1Cp

.1 � ha/2 C h=.2�/
�

. The value d� is defined from (38) for c D c�.

The respective function g�c� ;bŒ.z/, where g�c�;bŒ.z/ D f .c�; z/ for c� � z � d�
(see (37)), satisfies conditions of Theorem 1 and therefore coincides with the value
function.

It is written in [3]: “Oksendal and Reikvam show that the value function of an
optimal stopping problem is the unique viscosity solution to the relevant variational
inequalities under suitable assumptions. Later, they use their results to solve the
problem by further assuming that 4�a

1C2�a2 < c. The origin turns out to be one of
the boundaries of the optimal continuation region and since the reward function
g.z/ is not differentiable at the origin, using smooth-fit principle would not give the
solution. They also point out that the solution could not have been found by using
the verification lemma in Brekke and Oksendal (1998), either”.

In our construction we do not need the notion of viscosity solution, variational
inequalities, smooth-fit principle, and verification theorems. We just use Lemma 1
and Theorems 2 and 3 for the constructive construction of the value function.

5 Other Examples

Example 12. Geometric Brownian motion Zt on Œ1I 1� with parameters .�m; �/,
killing intensity �, reflection at z D 1 and functional Ez Œx� �. i.e. g.z/ D z (see
Fig. 16).

*

[1,d [

]1,d* [
Fig. 16 Example 12

This example corresponds to the Russian option (see [13], Sect. 26).
For this problem the operator L has a form

Lf .z/ WD �
�2z2=2

�
f 00.z/�mzf 0.z/ � �f .z/: (39)
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Since Lg.z/ D �.m C �/z < 0, we are under conditions of Lemma 7. According
to this Lemma instead of g.z/ we can consider gŒ1;d� Œ.z/, where either the equation
L1gŒ1;d Œ.d / D 0 has a unique root in �1;1Œ and d� coincides with this root, or
d� D 1 and in this case L1gŒ1;d Œ.d / � 0 for all d > 1.

Let �C > 1 and �� < 0 be the solutions of �2�2 � �
�2 C 2m

�
� � 2� D 0. Due

to Statement 1 and (39)

gŒ1;d/.z/ D d .�Cz�� � ��z�C/

�Cd�� � ��d�C
for z 2 Œ1; d / ;

and hence L1gŒ1;d/.d / D 1 � �C��
1 � d�C���

�C � ��d�C���
! 1 � �C < 0 as d ! 1.

From here we obtain that d� is finite and coincides with the unique solution of

the equation L1gŒ1;d/.d / D 0, i.e. d� D
�
��.1 � �C/
�C.1 � ��/

�1=.�C���/

: The function

gŒ1;d� Œ.z/ satisfies conditions of Theorem 1 and therefore coincides with the value
function.

Example 13. The same process and the same functional as in Example 9, but with
� D 0. Just as in the Example 9 we shall assume without restriction of generality

that m D 1. Note , that E


Z t

0

Z2
s ds

�

! 1 as t ! 1 in this case and it is

impossible to change the reward function, as it was done in [3] for � > 0.

For this problem with m D 1 the operator L has a form

Lf .z/ WD .1=2/f 00.z/� f 0.z/ � z2; (40)

and Lg.z/ D �ı C 2ız � z2.
If ı � 1 then Lg.z/ � 0 for all z and by Theorem 1 �� � 0 and V.z/ D g.z/.
If ı > 1 then Lg.z/ > 0 for z 2�
�; 
CŒ and Lg.z/ < 0 for z … Œ
�; 
C�,

where 
˙ D ı ˙ p
ı2 � ı. Applying Lemmas 3 and 1 to g.z/, then Theorems 2

and 3 and Lemma 1 to g�
� ;
CŒ.z/ at first to the point 
� and then to the point 
C,
and then Theorem 1, we obtain that V.z/ D g�c�;d�Œ.z/ for some c� 2 Œ0; 
�Œ and
d� 2�
C;1� (see Fig. 13b).

We shall find now c� and d�. Let

P.z/ D �1
6

z.z2C3zC3/; P1.z/ D g.z/�P.z/ D 1

6
z.2z2C3.1�2ı/zC3/: (41)

Then LP.z/ D 0, and according to Statement 1 and (40)

g�c;d Œ.z/ D P.z/C P1.d/
z � ce2.z�c/
d � ce2.d�c/ C P1.c/

z � de2.z�d/

c � de2.c�d/ ; z 2�c; d Œ : (42)
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It follows from (42) that

lim
d!1

L1g�c;d Œ.d /

P1.d/
D lim

d!1
g0.d/� g0

�c;d Œ�.d/
P1.d/

D �2 as d ! 1 :

Since P1.z/=z3 ! 1

6
> 0, using statement (b2) of Theorem 3 we get that d� < 1.

To find c� and d� we shall use statement (c) of Theorem 3. It is convenient to define
two functions

P�.z/ D zP 0
1.z/� P1.z/

2z � 1 D z2

6.2z � 1/.4z C 3.1� 2ı//; (43)

PC.z/ D P 0
1.z/ � 2P1.z/

2z � 1
D 1

6.2z � 1/
.�4z3 C 12ız2 � 12ız C 3/: (44)

Let
f .d; z/ D P.z/C P�.d/e2.z�d/ � PC.d/z: (45)

Since f .d; z/ satisfies (40), f .d; d/ D g.d/;
@f

@z
.d; d/ D g0.d/, we obtain that

gd .z/ D f .d; z/ and if gd .c/ D g.c/ for some c < d then g�c;d Œ.z/ D f .d; z/ for
z 2�c; d Œ.

We shall show now that c� > 0. Indeed, according to (45)

f .
C; 0/ D P�.
C/e�2
C D 
2C
6
e�2
C

h
4
�
ı C

p
ı2 � ı

�
� 3.2ı � 1/

i
:

If ı > ı1 D 1C p
23

6
� 1; 0486 then g
C

.0/ D f .
C; 0/ > 0 and, according to

statement (c1) of Theorem 3, c� > 0.
Consider now the case ı 2�1; ı1Œ, Then g
C

.z/ D f .
C; 0/ � 0, and according
to statement (c2) of Theorem 3 there exists d0 � 
C such that f .d0; 0/ D g.0/ D 0.
It follows from (45) and (43) that

P�.d0/ D 0; so that d0 D 3

4
.2ı � 1/: (46)

Consider L1 D lim
c#0

g�c;d0Œ.c/ D @

@z
f .d0; 0/: It follows from (45) and (43), first

equality in (46) and (44), and the second equality in (46) that

2.2d0 � 1/L1 D �1 � 2d0 � 2PC.d0/ D 2.2ı � 1/d0 � 4ıd20 C 4

3
d30

D 8

3
d20 � 4ıd20 C 4

3
d30 D d20

8
.5 � 6ı/ < 0 for ı 2�1; ı1Œ :

(47)

It follows from statement (c2) of Theorem 3 that c� > 0.
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Due to statement (b) of Theorem 3, c� and d� are the unique solution of the
system

g.c/ D f .d; c/; L1g�c;d Œ.c/ D 0: (48)

The first equality can be rewritten in the form

P�.d/e2.c�d/ D cPC.d/C P1.c/ : (49)

Using sequentially (45), (49), and (45) we obtain

L1g�c;d Œ.c/ D @f

@z
.d; c/ � g0.c/ D 2P�.d/e2.c�d/ � PC.d/� P 0

1.c/

D .2c � 1/.PC.d/� PC.c//:
(50)

Using (50), second equality in (48), substituting equality PC.d/ D P�.c/ into (49),
and using (44) we obtain that the system (48) for c�; d� can be rewritten in the form

PC.d/e�2d D PC.c/e�2c ; P�.d/ D P�.c/:

Example 14. The diffusion is the same as in Example 10. The payoff function
equals g.z/ D . .z/ �K/C, where  .z/ is defined in (31).

For this problem the operator L is given by (29) and Lg.z/ D 0 for 0 < z < dK ,
Lg.z/D �K >0 for z>dK , where dK is the unique root of the equation  .z/DK .
According to Lemmas 3 and 1 instead of g.z/ we can consider g�dK ;1Œ.z/. With the
payoff function g�dK ;1Œ.z/ we are under conditions of Theorem 2, where the set A1
consists of one point dK , and according to statement (a) of Theorem 3 and Lemma 1
instead of g�dK ;1Œ.z/ we can consider g�0;1Œ.z/.

It follows from Statement 1 that g�0;d Œ.z/ D . .d/ �K/ .z/

 .d/
for z 2 Œ0; d �; d >

dK and hence g�0;1Œ.z/ �  .z/. The function .z/ satisfies conditions of Theorem 1
and therefore coincides with the value function. Note that there is no optimal
stopping time in this problem.

Example 15 (Presman [16]). We consider a standard Wiener process wt with an
initial point z 2 .�1;C1/ and a functional Ez Œe

���g.w� /�. Such problem is
equivalent to the problem with functional QEz Œg. Qw� /�, where Qwt is a standard Wiener
process with a killing intensity �. Without restriction of generality we take � D 1=2.

The differential operator corresponding to this process is

Lf .z/ D .1=2/f 00.z/ � .1=2/f .z/ : (51)

We shall consider the case, when g.0/D 0, Lg.z/ < 0 for z ¤ 0, g0C.0/Dh> 0;

g0�.0/ D f < 0, and limd!1.g0.d/ � g.d// < 0; limc!�1.g.c/ � g0.c// < 0.
The payoff function g.z/ D f z for z � 0 and g.z/ D hz for z � 0 satisfies these
relations.
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Under these assumptions we are under conditions of Theorem 2 were A consists
of one point z1 D 0 with L1g.0/ D h � f > 0 and according to this theorem
and Lemma 1 there exist c� 2 Œ�1; 0Œ; d� 2�0;1� such that instead of g.z/ we
can consider g�c� ;d�Œ.z/. Moreover the function g�c� ;d�Œ.z/ satisfies the conditions of
Theorem 1 and hence V.z/ D g�c� ;d�Œ.z/. So, we need just to construct the values
c�; d�.

It follows from (51) and Statement 1 that

g�c;d Œ.z/ D g.d/
sinh.z � c/

sinh.d � c/
C g.c/

sinh.d � z/

sinh.d � c/ for z 2 .c; d /: (52)

From here and our assumptions we obtain that

lim
d!1L1g�c;d Œ.d / D lim

d!1.g
0.d/ � g0

�c;d Œ�.d// D lim
d!1.g

0.d/� g.d// < 0

and similarly limc!�1L1g.c;d/.c/ < 0. It follows from here and statement (b) of
Theorem 3 that in our case the values c� and d� are finite and are the roots of the
system of equations L1g�c;d Œ.d / D 0, L1g�c;d Œ.c/ D 0, which can be written in the
form

g.d/ � g.c/ cosh.d � c/ D g0.c/ sinh.d � c/ ; (53)

g.d/ cosh.d � c/ � g.c/ D g0.d/ sinh.d � c/ : (54)

The inequalities (53)–(54) can be considered as linear equations with respect to
cosh.d � c/ and sinh.d � c/. So, there are two excluding each other possibilities.

(a) g.d/g0.c/C g.c/g0.d/ D 0.

It follows from (53)–(54) that in this case g.d�/ D g.c�/, g0.d�/ D �g0.c�/ and

g.d�/.1 � cosh.d� � c�// D �g0.d�/ sinh.d� � c�/: (55)

(b) g.d/g0.c/C g.c/g0.d/ D 0.

In this case the system (53)–(54) can be rewritten as

g.d/g0.d/C g.c/g0.c/ D .g.d/g0.c/C g.c/g0.d// cosh.d � c/ ; (56)

g2.d/� g2.c/ D .g.d/g0.c/C g.c/g0.d// sinh.d � c/ ; (57)

and therefore g.d�/ ¤ g.c�/. Using the equality cosh2.x/ � sinh2.x/ D 1 the
system (56)–(57) can be rewritten as

.g.d/g0.d/Cg.c/g0.c//2 � .g2.d/�g2.c//2 D .g.d/g0.c/Cg.c/g0.d//2 ; (58)

g2.d/� g2.c/ D .g.d/g0.c/C g.c/g0.d// sinh.d � c/ : (59)
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Equation (58) can be represented in the form
�
g2.d/� g2.c/

� ��
g2.d/� g2.c/

� � �
.g0.d//2 � .g0.c//2

�	 D 0 : (60)

So, in case (b) the system (53)–(54) is equivalent to

g2.d/�g2.c/ D .g0.d//2�.g0.c//2 D .g.d/g0.c/Cg.c/g0.d// sinh.d�c/ : (61)

Consider now the case g.z/ D hz for z < 0, g.z/ D f z for z < 0.
If h D �f then, due to the symmetry, c� D �d� and we are under conditions

(a), and in accordance with the equality (55), d� is the root of the equation
d�.cosh.2d� � 1/ D sinh.2d�/, which does not depend on the specific value of f .

If h ¤ �f , the solution hd D fc of (60) contradicts to (59). So the optimal
values c�; d� are the roots of the system

h2d2 � f 2c2 D h2 � f 2 D hf .d C c/ sinh.d � c/ ; (62)

Solving the first equation in (62) with respect to c and substituting the result into
the second we obtain the equation with respect to d� which has a unique positive
solution.

Example 16. Brownian motion Zt on the interval Œa; b�; a < 0 < b; with the
absorbtion at points a and b, and a partial reflection with a coefficient ˛, 0 < j˛j<1,
at the point 0, and the functional Ez Œg.Z� /�, where g.z/ is a twice differentiable
function defined for all z � a and such that g00.z/ < 0. The function g.z/ D p

z � a1
with a1 � a satisfies this conditions.

For this problem the operator L has a form Lf .z/ D f 00.z/. Since Lg.z/ < 0,
L1g.0/ D 2˛g0.0/ we have that if ˛g0.0/ � 0, then, by Theorem 1, �� D 0 and
V.z/ D g.z/.

If ˛g0.0/ > 0, we are under conditions of Theorem 2, where the set A consists
of one point z1 D 0. It follows from Theorem 2 and Lemma 1 that we can change
g.z/ to g�c� ;d�Œ.z/; c� 2 Œa; 0Œ; d� 2�0; b�, which satisfies conditions of Theorem 1
and hence V.z/ D g�c� ;d�Œ.z/. The values c� and d� can be found from Theorem 3
using function

gd .z/ D
8
<

:

g.d/C .z � d/g0.d/ for z > 0;

g.d/ � dg0.d/C z
1C ˛

1 � ˛ g
0.d/ for z < 0:

(63)

gc.z/ D
8
<

:

g.c/C .z � c/g0.c/ for z < 0;

g.c/ � cg0.d/C z
1 � ˛
1C ˛

g0.c/ for z > 0:
(64)

Consider the case g.z/ D p
z � a1. Then for c 2�a1; 0Œ the equation gdc .c/ D g.c/

can be written as
p
dc � a1 � dc

2
p
dc � a1

C .1C ˛/c

.1 � ˛/2
p
dc � a1

D p
c � a1, or as
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.dc � a1/.1� ˛/C 2a1˛C .c � a1/.1C ˛/ D 2.1� ˛/p.c � a1/.dc � a1/: (65)

The equation g0
dc
.c/ D g0.c/ can be written as

1C ˛

.1 � ˛/2
p
.dc � a1/

D 1

2
p
c � a1 : (66)

Substituting dc � a1 from (66) into (65) we obtain that the system (65)–(66)

has a unique solution NcD 2˛

1C ˛
a1; Nd D � 2˛

1C ˛
a1. If a � Nc; b � Nd then

c� D Nc; d� D Nd .
Let Nc < a < 0. It is simple to check that then c� D a, and: if b � da then

d� D da; if 0 < b � da then d� D b; where da is defined from (65) with c D a.
Let a1 < a � Nc; b < Nd . It is simple to check that then d� D b, and: if cb � a < Nc

then c� D a; if a1 � a � cb then c� D cb; where cb is defined from

.cb � a1/.1C ˛/� 2a1˛C .b � a1/.1� ˛/ D 2.1C ˛/
p
.cb � a1/.b � a1/: (67)

6 Proofs

Proof of Lemma 2. Consider g�zi ;ziC1Œ.z/. If g�zi ;ziC1Œ.z/ > g.z/ for all z 2�zi ; ziC1Œ
then the lemma is proved. Otherwise, by the continuity of g.z/ and g�zi ;ziC1Œ.z/ on
�zi ; ziC1Œ there exists " 2�zi ; ziC1Œ such that g�zi ;ziC1Œ.z/ > g.z/ for all z 2�zi ; "Œ and
g�zi ;ziC1Œ."/ D g."/. But due to Statement 1, g�zi ;ziC1Œ.z/ D g�zi ;"Œ.z/ for all z 2�zi ; "Œ.
Proof of Lemma 3. SetLg.z/ D Qc.z/; h.z/ D g�zi ;ziC1Œ.z/�g.z/. Then h.z/ satisfies
on �zi ; ziC1Œ the equation

�2.z/

2

d2

d z2
h.z/Cm.z/

d

d z
h.z/ � �.z/h.z/C Qc.z/ D 0 (68)

with boundary conditions h.zi / D h.ziC1/ D 0 and therefore, due to Statement 1,

h.z/DEz

"
� �zi ;ziC1ŒR

0

Qc.Zs/ds
#

. If z 2�zi ; ziC1Œ then Zs 2�zi ; ziC1Œ for 0�s<� �zi ;ziC1Œ.

Since Qc.z/ > 0 for z 2�zi ; ziC1Œ we get that h.z/ > 0. Due to Statement 1,
Lg�zi ;ziC1Œ.z/ D 0.

Set Nzi D .ziCziC1/=2; h1.z/ D g�zi ;Nzi Œ.z/�g.z/. Just as above we get that h1.z/ >
0 for z 2�zi ; Nzi Œ; h1.zi / D 0, and therefore h0

1C.zi / � 0. The functionsh.z/ and h1.z/
satisfy on �zi ; Nzi Œ the same Eq. (68), and h.zi / D h1.zi / D 0; h.Nzi / > h1.Nzi / D 0:

Hence h0C.zi / > h0
1C.zi /. Since h0

1C.zi / � 0 we get that h0C.zi / > 0. This is
equivalent to g0

�zi ;ziC1ŒC.zi /� g0C.zi / > 0. The proof for the point ziC1 is similar.
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Remark 3. LetLg.z/� 0 on �zi ; ziC1Œ for some zi2A. Then either g�zi ;ziC1Œ.z/Dg.z/
for all z 2�zi ; ziC1Œ or there exists w 2�zi ; ziC1Œ such that g�zi ;ziC1Œ.w/ ¤ g.w/. It is
evident from the proof of Lemma 3 that the result of Lemma 3 is valid for �g.z/ on
�zi ; ziC1Œ, and so in the second case g�zi ;ziC1Œ.z/ < g.z/ for all z 2�zi ; ziC1Œ and the
inequalities for the derivatives are also valid.

Proof of Lemma 4. It follows from the equalities

g�";ıŒ."/ D g."/; g."/ D g.zi /� g0�.zi /.zi � "/C o.j"� zi j/;

g�";ıŒ."/ D g�";ıŒ.zi / � g0��";ıŒ.zi /.zi � "/C o.j"� zi j/
that

g�";ıŒ.zi /� g.zi / D
�
g0
�";ıŒ�.zi / � g0�.zi /

�
.zi � "/C o.j"� zi j/:

Similarly

g�";ıŒ.zi /� g.zi / D �
�
g0
�";ıŒC.zi /� g0C.zi /

�
.ı � zi /C o.jı � zi j/:

Multiplying the first of this equalities by .1 � ˛/.ı � zi /, the second one by
.1 C ˛/.zi � "/, adding the result and taking into account that L1g�";ıŒ.zi / D 0

we get

."C ıC ˛.zi � "C zi � ı//.g�";ıŒ.zi /� g.zi // D .zi � "/.ı � zi /.L1g.zi /C o.1//:

It follows from here and L1g.zi / > 0, that there exist "1 and ı1 such that

g�";ıŒ.zi / � g.zi / > 0 for all " 2�"1; zi Œ; ı 2�zi ; ı1Œ : (69)

From the last inequality just as in the proof of Lemma 3 one obtains that
g�";ıŒ.z/ � g.z/ > 0 for z 2�"; ıŒ: From the definition of L1 and (69) follows that

L1g�";ıŒ."/ D g0
�";ıŒC."/� g0."/ D g�";ıŒ.zi / � g.zi /

zi � " C o.1/ > 0:

The proof for the point ı is similar. It proves statement (a).
Let " and ı are from statement (a). The function g0

�c;ıŒC.c/�g0C.c/ is continuous
on Œ"2; zi Œ and positive on Œ"; zi �. Then it is either positive for all c 2 Œ"2; zi � or
there exists c1 such that it equals to 0 at c1. If such a point exists then the functions
g�c;ıŒ.z/ and g.c/ identically equal on Œc; zi �, since they satisfies the same differential
equation and coincide at point c together with derivatives. It contradicts to the fact
that g�c;ıŒ.zi / > g.zi /, g0

�c;ıŒ�.ı/ > g0�.ı/.

Proof of Lemma 5. It suffices to consider three cases.

(a) There exist u; v;w 2 Œc; d � such that u<w< v and f .u/Dg.u/; f .v/Dg.v/;
f .w/ ¤ g.w/:

(b) There exist u; v 2 Œc; d � such that u < v and f .z/ D g.z/ for all z 2 Œu; v�
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(c) There exists u 2 Œc; d � such that f .u/Dg.u/; f .z/¤g.z/ for all z 2 Œc; d �nfug:
Let us show that under conditions a) the following inequalities hold.

f .z/ < g.z/ for all z 2�u; vŒ; f 0C.u/ < g0C.u/; f 0�.v/ > g0�.v/: (70)

Indeed, let J D fj W zj 2�u; vŒg, i D minfj W j 2 J g, l D maxfj W j 2 J g:
Let g1.z/ be obtained from g.z/ by application of Remark 3 to �u; vŒ if J D ;, or
by sequential application of this remark to intervals �u; zi Œ, �zl ; vŒ, and �zj ; zjC1Œ if
j; j C 1 2 J . The function g1.z/ satisfies Lg1.z/ D 0 for all z 2�u; vŒ; z … A.

Let g2.z/ be obtained from g1.z/ by application of statement (b) of Lemma 3 to
points zj ; j 2 J . The function g2.z/ satisfies Lg2.z/ D 0 for all z 2�u; vŒ; z … A,
and L1g2.z/ D 0 for all zj ; j 2 J . Hence g2.z/ D f .z/. Since f .w/ ¤ g.w/ at
least on one step we obtain a strong inequality. It proves (70).

It follows from the inequalities for the derivatives in (70) that if u ¤ c (v ¤ d )
then f .z/ > g.z/ in the left neighborhood of u (in the right neighborhood of u). The
existence of w1 2 Œc; uŒ (of w1 2 Œc; uŒ) such that f .w1/ D g.w1/ would contradict
to (70). It completes the proof of Lemma 5 for the case (a), where we can take
c1 D u, d1 D v.

The proofs for the cases (b) and (c) are even simpler, and we omit them.

Proof of Lemma 6. Applying Lemma 5 to functions g.z/; gh.z/ and interval �c; d Œ
we obtain that if g.Qz/ ¤ gd .Qz/ for some Qz 2�c; d Œ then g.z/ < gh.z/ for all z 2�c; d Œ
such that g.z/ ¤ gh.z/.

Let h1 > h > z, gh.z/ ¤ gh1.z/ and Qg.z/ D gh.z/ for z 2�a; hŒ, Qg.z/ D g.z/ for
z 2�h; bŒ. Applying Lemma 5 to functions Qg.z/; gh1 .z/ and interval �a; bŒ we obtain
that gh.z/ < gh1.z/ for all z < h. The proof for the case h1 < h < z is similar.

Proof of Lemma 7. This lemma follows from Lemma 5. Indeed, it suffices to take
NgŒa;d Œ.z/ as f .z/ in Lemma 5. If d � d�, then d coincides with c1 in Lemma 5.
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The Times of Yuri Vasilyevich Prokhorov

Friedrich Götze and Willem R. van Zwet

Abstract Yuri Vasilyevich Prokhorov is the eminence grise of Russian probability
theory. Every one of us interested in probability or asymptotic statistics has come
across his celebrated weak compactness theorem at one time or another. He was
interviewed earlier by Larry Shepp (Stat Sci 7: 123–130, 1992). That interview dealt
largely with his impressive career and scientific work, his international contacts and
the issue of discrimination in the Soviet Union.

The world has changed considerably in the intervening years and our knowledge
and perspective of the past has developed accordingly. It seemed natural to us to talk
once more to the man who lived through these turbulent times as the intellectual heir
of Kolmogorov, and as one who was in a position to observe the inner workings of
the powerful Soviet (later Russian) Academy of Sciences, the Steklov Mathematical
Institute in Moscow, and the activities of his many colleagues throughout the country
and elsewhere. This interview took place between November 13 and 28, 2006 at
Bielefeld University. As it was more like a friendly three-way conversation than a
formal interview, we did not identify the two interviewers, but merely indicated the
person who asked a question as “interviewer”.

A Promising Young Man

Interviewer: Yuri Vasilyevich, we are happy that you have agreed to a second
interview after 15 years. First of all, let us encourage readers to read Larry Shepp’s
interview first, as we shall try to keep overlap at a minimum. However, we do need to
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start with a brief review of your early years. You were born in Moscow on December
15, 1929 and after the war started, the family moved to the town of Chistopol, about
800 km East of Moscow in August 1941. I think that at this point you want to make
a correction of the earlier interview.

Yu.P.: Yes, Larry mentioned that Chistopol is on the Volga, but it is not. It is on the
Kama River. I realize that not many people will be interested in the exact location
of Chistopol, but I like to get such details right. Little foxes destroy the vineyards.1

Interviewer: You returned to Moscow in August 1943. Presumably, Moscow was
a much safer place then.

Yu. P.: Before we left in August 1941 the air defence was far from perfect and I
saw lots of bombed buildings. In the fall of 1941 it became much more effective and
even though the German army came very close to Moscow, there was less damage.
At night aerostats were launched. They were attached to the ground with wires that
were almost invisible for the pilots and could destroy a plane when it hit them. I later
learned that Kolmogorov had recommended randomizing the location as well as the
height of each aerostat every night which made this threat completely unpredictable.
When we were back in Moscow I saw the aerostats, but I only remember that they
were handled by very pretty girls in nice uniforms.

Interviewer: In Chistopol on Kama you passed through grades 5 through 8 in
2 years and after your return to Moscow you repeated this performance by passing
through grades 9 and 10 in a year. This gave you a high school diploma in the
summer of 1944 at age 14 and after spending a brief period at the Bauman High
School (now Moscow Technical University) to study engineering, you walked into
the office of the Dean of the Faculty of Mechanics and Mathematics of Moscow
University. Why and what happened?

Yu.P.: I had decided that I wanted to study mathematics, so in the winter of 1944–
1945 I went to the Dean’s office. Nowadays it is difficult to see the Dean, even for
full professors. But I, a 14-year old boy, just walked in from the street and told
the secretary I would like to speak to the Dean. Dean Golubev had a background
in mathematics and gave courses at one of the military academies with the rank of
general-major. He was thin and wore a pince-nez. He also wore an overcoat because
it was cold at the university. He asked me very politely what I wanted. I replied
that I would like to be a student of mathematics. ‘Maybe next year. You are young’
he replied. I asked him to give me permission to take exams for first-year students.
During the winter you could take exams in analytic geometry, algebra, analysis and
English. He wrote something on a small piece of paper that would allow me to take
these exams. I was graded “good” once and “excellent” three times, so I again asked
the Dean to be admitted. In May 1945 I formally transferred to Moscow University.

1Song of Solomon 2.15.
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Interviewer: What was life like as a freshman?

Yu.P.: At the university it was cold. When I arrived in the morning I took a chair
and with that chair and my bag and coat I went from classroom to classroom: Omnia
mea mecum porto.2 It was dangerous to leave a chair just for a moment because
another student would take it. The large lecture halls of Moscow University were
constructed in the eighteenth century and there were two small lamps on the ceiling.
I had weak eyes, even in childhood, and by the time I was 16, one eye was �6 and
the other �7. I had difficulty reading what was written on the blackboard. But there
was also an advantage. At age 16 I received a certificate that I was a soldier of the
second kind, meaning that I didn’t have to serve in the army. Still my eyesight kept
bothering me throughout my life. In the 1980s it suddenly became much worse. The
doctors had no explanation.

In contrast to some other departments and institutions, students in the department
of mechanics and mathematics did not get a deferment from military service during
1944-46. As a result, when I was admitted in 1945 there were almost no male
students. In mathematics there were maybe 15–20 boys and about 100 girls. The
boys were either too young for the army – like me – or they were wounded veterans
who had been discharged.

Interviewer: What about professors? Where they still around in the middle of the
war?

Yu. P.: Of course not all of them, but we were certainly kept busy. There were
16 or 17 seminars and special courses, and as students we competed who would
attend the most. I myself took two courses in differential geometry from Fennikov
and Rashevsky, and one in simplectic geometry from Bakhvalov. I gave a talk
on boundary properties in a seminar on analytic functions, attended a seminar of
Gelfond on number theory and lectures of Novikov on mathematical logic. You
can’t say we were not broadly educated!

Then in 1947 the great demobilization sharply increased the number of male
students and for the girls it was of course a great opportunity to get married.
These were the boys born in 1922–1923 and among them were very clever people.
There was Bolshev going from the air force into statistics, Mischenko, student of
Pontryagin on optimal control, and many others. Quite a few of them later became
members of the Academy. It was an exciting time with teachers like Kolmogorov,
Petrovskii, Stepanov, Nemytsky, Keldysh and many others.

Interviewer: Please tell us how you first came to know Kolmogorov.

Yu. P.: Kolmogorov gave me a topic for a seminar talk on the strong law of large
numbers. Then he invited Sevastyanov and me to his apartment in Moscow on
December 15, 1947. When he asked me ‘How old are you?’ I told him ‘Today is
my birthday, and I’m now 18 years old’. He then wanted to know whether I liked

2I carry all of my possessions with me. Seneca, Epistulae Morales 9.18–19.
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skiing, and I said I did, whereupon he invited me to his house in Komarovka. So
since 1947 I think I saw Kolmogorov for 15 or 17 years practically every day. It was
an excellent education. He taught me mathematics, but also other important matters
such as making things happen and getting them organized. Over the years he left
more and more things to me and people got accustomed to view me as a kind of
deputy of Kolmogorov. He also asked me to check his book with Gnedenko on limit
theorems, and as a young man, I was mighty proud that they thanked me for the
many corrections.

Interviewer: Did this early acquaintance also make you decide to choose proba-
bility theory as your main area?

Yu. P.: Yes, at first I was fascinated by number theory. Partly complex variables
as well. But after Kolmogorov’s lectures I decided that I would devote whatever
abilities I had, to the study of probability theory.

I finished in June 1949 and moved to the Division of Probability of the
Steklov Institute. It was a small division, but with Kolmogorov, Smirnov, Khinchin,
Sevastyanov, what more could you want? After some time I became a member of the
scientific council of the Steklov Institute and I am still at the Institute after 57 years.

During this entire period I have also been teaching at Moscow University. In
1952 I gave my first special course on limit theorems and among my audience
were Hasminskii, Borovkov, Zolotarev and Yushkevich. I remember that when I
started this course, Kolmogorov told me to be dignified and modest! In 1957 I was
appointed full professor in the Department of Mathematics. At Moscow University
there is a special cloakroom for professors with an attendant watching over their
overcoats. He probably took me for a student and refused to take my coat. Luckily
I spotted the rector of the university, academician Petrovsky and asked him “Ivan
Georgievich, please tell this gentleman that I’m entitled to leave my coat here”. The
rector said “Yuri Vasilyevich is young but he is a professor at the university. Please
help him”.

In 1970 I moved from the Department of Mathematics to become the Chair of
Mathematical Statistics in the new Department of Computational Mathematics and
Cybernetics, where I have remained ever since.

Adventures with Geologists

Interviewer: For a moment let us change to a somewhat lighter note. You and I
both like to drink vodka, in civilized quantities of course. You once told me that you
learned to drink with the miners in the Ural Mountains. This sounds exciting.

Yu. P.: Yes, Kolmogorov once told me that when he was young, he was drinking
with sailors, but at the same time he objected to my drinking. One summer day
a young geologist showed up at the Steklov Institute His colleagues said he was
an excellent geologist, but with a peculiar hobby of studying Cramér’s book on
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mathematical statistics all day. When I spoke to him, he told me about granite,
which is something I never saw outside Red Square. He then proposed that I should
join a geologist party going to Central Kazakhstan. So I spent the summer of 1961
in Kazakhstan and the next summer in the Polar Ural, where there is no sunset
during the summer. In 1963 we were near the Chinese border South of Chita, and in
1965, just after my return from the Berkeley Symposium, my friends and I went to
Kamchatka. So in three weeks time, I saw the Pacific from both sides.

For me it was a different life. In these geologist parties, it doesn’t matter who you
are, what titles and degrees you have; you should just be a man of good character.
When we left for Central Kazakhstan, a small ceremony was arranged, complete
with herring and spiritus vini (alcoholic spirits) of 95 %. These spirits are a special
story. It is dangerous to breathe while drinking and you should drink some water
immediately afterwards, because otherwise you ruin your throat. The geologists at
the table were pleasantly surprised that a Prof. Dr. of Mathematics did pass this test,
and quite frankly, so was I!

Incidentally, these high percentage spirits are transported to distant places in
Russia, because water to dilute it is available everywhere and it makes no sense
to carry it around. Diluted to 55 % it is called spirit for drinking.

By the way, this reminds me of another story involving herring and vodka. In
Holland you have these herring stalls in the street, where they clean and sell raw
salted herring. The Dutch grab the fish by the tail and eat it on the spot. So one day
Ildar Ibragimov and I were in Leiden and I happened to have some vodka with me.
Ildar told me that his wife would never allow him to drink vodka in the street, but
if she would see me do it, it would probably be all right. So he suggested that we
improve on this Dutch custom by having some vodka with our raw herring, and we
did.

Interviewer: Wasn’t there an anti-alcohol campaign during Gorbachev’s rule,
much like prohibition American style?

Yu. P.: Yes, but I don’t think it was Gorbachev’s idea. In a TV documentary he said
that he used to drink in the old days and was still drinking today, but now the doctors
recommended that he should only drink vodka. They say it was Gorbachev’s deputy
Ligachev who was the main figure in this anti-alcohol campaign. The campaign
cost the state 72 billion roubles, which went into the so-called grey economy and
was later used to buy factories and oil fields. It was a heavy blow for the state, but
the party was against alcohol! But where is this party now? We do know where the
alcohol is: on the shops’ shelves! Ligachev claimed that in 1988 they saw that this
campaign was becoming so dangerous for the USSR that they stopped it, but at that
time they didn’t have enough power to stop the dissolution of the USSR itself! So in
the Crimea they destroyed centuries old vineyards with exceptional types of grapes.
It was really very stupid. It was just one of those initiatives which sound convincing,
but in practical realization only lead to disaster. The leaders may have one idea, but
at the local level many other things will play a role. As the proverb says: ‘People
are ready to burn down my house to get fried eggs for themselves’.
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There was another attempt this year, but Putin and the Russian prime-minister
Fradkov were strongly opposed and tried to find out who was responsible for
artificially limiting the supply of alcohol. This was because many people died or
became very ill drinking bad alcohol produced by nobody knows whom. The price
of the usual bottle of vodka is around 100 roubles, but you can buy an illegal bottle
for 20 roubles and end up in hospital.

Interviewer: I understood that while they were trying to ban alcohol, there was a
sudden shortage of sugar.

Yu. P.: Certainly, because people tried to produce alcohol themselves. The car
factory ZIL produced a device which looked like a small case made of stainless
steel. You carry this case with you, add sugar and water and after some time you are
supposed to get good vodka. In Georgia for centuries they added some apricots or
other fruit to give it a special flavour.

When Roosevelt became president of the USA, a delegation of American workers
visited the USSR and Stalin met with them. They asked Stalin why there is no
prohibition in the USSR. Stalin replied that (1) it will not stop the use of alcohol
and (2) we need the 800,000 golden roubles for the industrialization of the country.
The reason I know this for a fact is that is was a compulsory subject for study when
I was a student.

The Academy of Sciences

Interviewer: Let us return to more serious academic matters. In 1966 you became
a corresponding member of the Soviet Academy of Sciences.

Yu. P.: Actually I was proposed for this in 1964, but failed to be elected. In the
Division of Mathematics of the Academy some people thought that I was one of
these overly abstract mathematicians they called ‘abstractionists’ and for whom
they had no use. Two years later I received strong support from the Minister of
Geology who wrote that I did some important work with geologists, and apparently
this changed their minds. Also Jerzy Neyman spoke to Bernstein and asked him to
support me in the election. At the same time Neyman was thinking of nominating
me for election in the National Academy of Sciences in the United States. He sent
me the necessary forms to fill out, but I was timid enough to tell the Director of the
Steklov Institute about this. He made a grimace as if he just tasted something very
unsavoury. I was to be his deputy for 16 years and I decided not to go ahead with
this.

What I hadn’t realized was that becoming a corresponding member was not
only an honour, but would also turn into a demanding job. The secretary of the
Mathematics Division was Bogoljubov and upon my election I was appointed as
his deputy. The division secretary took part in the work of the Presidium of the
Academy, and in Bogoljubov’s absence this task fell to me. At the time Bogoljubov
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was the head of the Institute of Nuclear Research in Dubna which is a very pleasant
place about 100 km from Moscow. He had a dacha there, so he was absent from
Moscow quite often. As his deputy this gave me a chance to see the work of the
powerful presidium at first hand. I took my task very seriously and tried to advance
the interest of mathematics and mathematicians, while avoiding any action that
would benefit me personally. People noticed this and repaid me with their trust.
For my part I learned how important problems involving large sums of money are
solved by competent administration.

The Mathematics Division itself is also quite interesting but complicated. There
is a permanent struggle between various subgroups. If there is a position for a new
member, it is often difficult to reach a compromise on whom to propose. If there is
no winner after three rounds of voting, then the position is lost and goes to another
division. Of course the physicists are much better organized. They wait patiently
until the mathematicians loose the position and immediately propose a physicist.

The heavy workload had a price and in 1968 I suffered a heart attack. I spent
about a month in hospital and more or less completed my recovery by sports
activities. During the winter after this I went skiing four times in the mountains
at home and in France. In 1972 I became an Academician.

As early as 1954, before the International Congress of Mathematicians in
Amsterdam, Kolmogorov said to me “Yura, I decided to leave probability and move
to another subject, say, ergodic problems in celestial mechanics.”3 He suggested
beautiful problems to his students such as the three body problem. From then
on he sent people to me if something should be decided concerning probability
theory. When the Division of Mathematics of the Academy appointed a committee
for probability with Skorokhod, Koroljuk, Petrov, Ibragimov, Borovkov and many
others as members, Kolmogorov insisted that I should chair this committee. Once
a year we met in a suburb of Moscow and discussed matters of common interest,
concerning publications and dissertations, for instance. I would be sitting to the
right of Kolmogorov who was, of course, still the leader. But in this way people
got accustomed to talk to me about any problems they had, so that Kolmogorov
would not be bothered except in very rare cases. Of course this was exactly what
Kolmogorov had in mind! So after he became seriously ill and then passed away,
there was no break and it was a very smooth transition period when the leadership
came to me. As always, I tried to convince people rather than to press them.

Interviewer: In Western Europe we admired the Soviet Academy for taking an
independent position, as it did, for instance, in the Sakharov case. As you obviously
know the Academy inside out, let us discuss in how far the Academy is really
independent of political interference and pressure.

3Kolmogorov developed a method to avoid the problem of ‘small denominators’ in the series
describing the mutual pertubation of the movement of celestial bodies, which subsequently led
to the famous KAM-Theory (Komogorov-Arnol’d-Moser).
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Yu. P.: The Academy is definitely an independent organization. In Soviet times
some members of the Central Committee wanted to be elected as Academicians.
A gentleman from Belorussia – in fact the President of the Belorussian Academy –
even proposed to elect Brezhnev as a member of the Academy in the Division of
Process Control. He argued that Brezhnev controlled the entire state! Sometimes
such candidates passed the first step in the appropriate division, but the General
Assembly usually voted against them. These votes are secret.

However, it so happens that while we are having this interview, there is a
movement to turn the Academy into a State organization. The President of the
Academy would no longer be elected by the members, but appointed by the
President of the country. This movement started just 6 months ago and it is very
powerful. Of course the Academy wishes to remain independent and as far as
I understand, Putin is also against these plans. In this uncertain situation he has
allowed the Academy to postpone the election of the next president for 2 years. So
the present president Osipov will remain in office for 2 years after his 5-year tenure
is finished. What happens after that, nobody knows.

Interviewer: But who are proposing these changes? People in the government?

Yu. P.: Partly. But I think the initiative comes from business people. You see,
the Academy owns a lot of very valuable real estate. It owns areas in the centre
of Moscow, in very fashionable places, and also outside of Moscow. Of course
developers would like to replace small buildings such as the Mathematical Institute
and the Institute of Physics by 3, 4, or 5 star hotels, and maybe, casinos and brothels.
Several attempts were already made to get hold of this property of the Academy, but
so far they failed. But if the Academy would be a State organization, the government
could do whatever it wanted. Today there is one government, tomorrow another;
today one president, tomorrow someone else. So the Academy would be subject
to all political oscillations.4 In Soviet times, nobody approached this matter in this
way. The Central Committee and the Government had other means to pressure the
Academy, but not like this. Some people believe that the Church should be part of
the State, but the Church hierarchy said that there is no need for this at all and that
it would be harmful for the Church. The same is true for the Academy.

Interviewer: Please tell us how the Academy reacted to the political pressure to
expel Sakharov.

Yu. P.: Before I do that, I would like to tell you how Sakharov became an
Academician. In 1953 two outstanding physicists Kurchatov who was officially the
Head of the atomic project, and Tamm came to the general meeting of the Division
of Mathematics and Physics (it was still a joint division at the time). They appealed
to the members to believe them that Sakharov should be an Academician, even

4At the time of publication of this interview, it seems that this threat to the independence of the
Academy has been temporarily (?) lifted. The economic crisis has had the healthy effect that right
now few people in Moscow are interested in building five star hotels, casinos, or even brothels.
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though they could not explain why. Of course there were rumours among scientists
and some people – including Kolmogorov – had some idea of what Sakharov was
doing. Sakharov had three golden stars of Hero of Socialist Labour and the times
when these stars were awarded coincided more or less with the dates of successful
experiments with a nuclear weapon. So Sakharov became an Academician very
early.

When the Academy came under pressure to expel Sakharov for his political
views, Academy President Alexandrov simply replied that it would be impossible
to get the necessary 2/3 of the votes for this. Then Sakharov was sent in exile to
Nizhny Novgorod where he remained under house arrest. He was later brought back
to Moscow and to power by Gorbachev who supported him.

The case of Sakharov was not at all exceptional. During the entire Soviet period
hardly anyone was expelled from the Academy. Of course the Academy could not
protect its members against other problems with the regime, especially in the days of
Stalin. Nina Solomonovna Stern was in exile in Kazakhstan at about the time of the
Jewish doctors’ case, an alleged plot to murder the political and military leadership
of the Soviet Union. When she returned to Moscow and asked to be reinstated in
the Academy, she was told ‘Please go to your bank and check your account. Your
salary as an Academician was paid during the years of your absence’. The geneticist
Nikolai Vavilov, whose brother Sergei was president of the Academy, died in prison
but he was not expelled from the Academy. So in a sense, Academy membership is
like royalty or nobility: You can be beheaded, but you are beheaded while being a
king or a duke. Those who were in power found this difficult to understand. They
remove people in very high positions from the Party with the stroke of a pen. But
the Academy is not a party!

By the way, it was not exceptional in those days that one family member
would hold an important position while another would be in prison or executed.
Kaganovich was among the six people closest to Stalin when his brother was
shot. Molotov’s wife Polina Zhemchuzhnaya and the wife of Kalinin were in prison.
There were TV documentaries “Wives of the Kremlin” about this. When people
from the NKVD came to arrest the wife of Semyon Budenny, Hero of the Soviet
Union, he drew his famous sabre and threatened to kill them. They had to give up
and when Stalin heard about this, he roared with laughter and ordered them not
to repeat this effort. Similarly an attempt of the NKVD to arrest Voroshilov’s wife
was stopped when he threatened to shoot them. There is a – strictly fictional – film
called ‘The wife of Stalin’ where Stalin tells his Russian wife ‘All of my friends
have married Jewish girls. These girls are very clever and obey their husbands. And
you love only yourself and not me’.

Interviewer: I guess there is some historical truth in this, in the sense that quite a
few revolutionary leaders had Jewish wives?

Yu. P.: Yes, definitely. Earlier under Lenin quite a few of the leaders themselves
were Jewish too and you can find Jews in leading positions in the KGB throughout
the Soviet period. In Lenin’s time, they often changed their names. Trotsky was in
fact Bronstein and Kamenev was Rosenfeld. There is a cynical anecdote of a Jew
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who applied to have his name changed to Ivanov. Some time later he wanted his
name changed to Petrov and when asked why he didn’t change it to Petrov right
away, he explained ‘If someone asks me what my former name is, I can now say
Ivanov’. Of course the worst anti-Semitism occurred near the end of Stalin’s rule,
but we’ll speak about that later.

Interviewer: Didn’t the Academy also have honorary and foreign members?

Yu. P.: Before the revolution honorary members were, say, members of the family
of the Czar. Konstantin Romanov, the brother of Nikolai II even became President
of the Academy. He published translations of Shakespeare into Russian under the
pen name KR. Also ruling heads of other countries, such as Emperor Wilhelm I,
who was elected in the same year as Gauss. Poisson became a member during the
centenary celebration of the Academy in 1824.

During the Soviet years honorary members were also elected and the last three
were Gamaleya who was a specialist in biology and medicine, Stalin and Molotov.
Gamaleya died in the forties and Stalin in 1953, which left Molotov as the only
honorary member. The Presidium didn’t know what to do about this and at last
decided to abolish the notion of honorary member altogether, so that Molotov
automatically lost this title. Stalin used to call Molotov jokingly ‘cast-iron but’
for his capacity to sit in his chair and work for many hours without stopping.
Molotov lived up to this nickname and proved to be remarkably tough. He became
a member of the Central Committee of the Party in 1921 and died in 1986 at the
age of 96. A few years later the names of Gamaleya, Stalin and Molotov were
discretely deleted from the list of past and present Academy members. Perhaps
we should now consider restoring the notion of honorary academician. There are
obvious advantages and disadvantages!

In recent years strange new Academies appeared, such as the Academy of TV
Arts, the Academy of Journalists, etc. The main reason seems to be that the members
of these Academies sign their letters as Academician Ivanov or Academician Petrov
without mentioning to which Academy this refers. The same thing happened in
Stalin’s time, but Stalin himself decreed that the word Academician could only be
used for members of the Academy of Sciences of the USSR. In practical matters
like this, Stalin was often quite sensible. He spent much time in prison and in exile
in far away places, so perhaps he knew real life much better than most people. He
was a professional revolutionary, unlike the next generations of bureaucrats whose
life was largely restricted by the walls of their offices.

Interviewer: Let us look at the public image of the Academy. It has always been a
highly prestigious institution and Academicians commanded a great deal of respect
in the Soviet Union.

Yu.P.: When Kolmogorov died his obituary was published in the two central Soviet
newspapers Pravda and Izvestiya and signed by all members of the Politburo,
members of the Government and the Academy. They wrote that Soviet science
should be proud that such a scientist worked in our country. Kolmogorov received
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a golden star of Hero of Socialist Labour and seven orders of Lenin, which was the
highest distinction in the USSR.

Interviewer: Obviously Kolmogorov was exceptional, but why were science and
scientists so important?

Yu.P.: People understood, especially after the war, the important contributions
of science to our national defence. Stalin met with Kurchatov, the head of the
atomic project, and at the end of their conversation Stalin said: “Scientists are
people who do not ask much for themselves. Please ask them what they need for
more effective research”. Kurchatov collected opinions and soon large settlements
for members of the Academy with houses imported from Finland appeared in
Mozzhinka, Abramtsevo and Lutsino. The scientists received these houses free of
charge. Vinogradov said: “I have a hectare of land with my own river and my
own mushrooms”. Not only physicists and chemists who participated in the nuclear
programme were rewarded, but scientists in other fields received similar privileges.

Interviewer: And what is the situation now? Are Academicians still very important
people?

Yu.P.: I would not say so. When I was young, Kolmogorov told me: “Yura, keep
in mind that each member of the Academy equals one research institute!” This is
no longer so. Major defence programs have come to a stop and we don’t hear much
about the aerospace program anymore.

Interviewer: Science could also contribute to the strategic industrial development
of the country. Doesn’t the government care about this?

Yu.P.: Nowadays we buy everything abroad: Modern technical development,
computers, and so on. Even the Ministry of Defence buys the computers they need,
say, in Germany, our main trade partner. Presumably they check a PC to see whether
some additional hardware was put inside. In Soviet time we tried to make everything
ourselves. That was not wise. Now we sell oil, gas and electricity to other countries
and buy what we need. The wisdom of this is not clear either.

An effort was made to develop a modern computer at Zelenograd not far
from Moscow. Some kind of Silicon Valley. Khruschev supported the project, but
Brezhnev did not give real support and the project collapsed. Such things do not
only depend on the scientists, but also on the political leadership.

Discrimination

Interviewer: In the earlier interview with Shepp the extent of discrimination of
Jews in the Soviet Union was discussed at some length. Then and above, you argued
that Jews played an important role in the early Soviet regime and that evidence of
serious systematic discrimination in the sciences before World War II would be
difficult to find. You also noted that the worst anti-Semitism occurred near the end
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of the Stalin era. Without reopening this discussion, would you mind elaborating on
the last point?

Yu.P.: In the interview it says World War I, but I obviously meant World War II.
All right, a few words about Stalin’s last years. When the State of Israel was

founded in 1948 it was immediately recognized by the Soviet Union. Especially
Stalin himself supported this. He thought that Israel could perhaps be drawn into the
sphere of influence of the Soviet Union, rather than the United States. When Golda
Meir became the first Israeli ambassador to the USSR in 1948-49, she naturally met
Soviet leaders and also spoke (in Yiddish) with Molotov’s wife. Golda Meir told
Stalin ‘You have a Jewish Autonomic Republic in the Far East of the Soviet Union.
Why not give the Crimea to the Jewish people?’ Stalin probably didn’t react, but
after she left he said ‘I don’t like the idea of having American warships in the Black
Sea’. Some time later he had apparently given up the idea of this approach to Israel,
because in the last few years of his life he started a vicious anti-Semitic campaign
that culminated in hundreds of arrests after an alleged plot of Jewish doctors to
kill members of the Soviet elite had been ‘uncovered’. Three weeks after Stalin’s
death in 1953, Beria insisted that this campaign should be stopped and all people
connected with the affair be released from prison. So altogether this was a brief but
serious outburst of anti-Semitism.

I also remember a discussion between Shepp and Statulevicius when Shepp
insisted that during World War II, Jews in Lithuania suffered much more from the
local population than from the Germans. After twenty minutes Statulevicius agreed.
However, this is not directly relevant for discrimination in science. More to the point
is my experience in choosing the delegation of probabilists for the Congress in Nice.
It required a lot of effort but I succeeded to include Gikhman in the delegation. Then
people said: “He is not an ordinary Jew. He is a probabilistic Jew.”

Finally, let me dig up a curious fact from Czarist times. There was a so-called
settlement line surrounding an area in Belorussia and the Ukraine that Jews were
not allowed to enter. There were exceptions for midwives, important merchants
and people with higher education who could cross this line. In the first edition of
the Soviet Encyclopaedia you can read that Sergei Bernstein could not get higher
education in Russia before the revolution. He went to Paris and returned as a person
with higher education and could live in Russia wherever he wanted.

Interviewer: I imagine that Khruschev put a definite end to the Stalin era. But how
does the average Russian feel about this?

Yu.P.: When Khruschev gave his speech against the Cult of Personality at the
XX’th Party Congress in 1956, the delegates were invited to the Kremlin at 2 a.m.
and the speech continued until 6 a.m.. They then went back to their homes and
hotels. Two days later the full text of the speech was published in the United
States. Two months later, the speech was read at the Steklov Institute, first to Party
members, then to members of the Scientific Council, and later to the others. The
speech was never published in the Soviet Union. Many people were not ready for
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these things, or for the many changes that would follow. They are tired. For ordinary
people it is important to know what the world will be like tomorrow and next year.
Repeated major changes make people uncertain and their lives very difficult.

Interviewer: Later Jewish people who applied for visa allowing them to emigrate
to Israel had very serious problems.

Yu P.: There were very different periods. The first reaction was very negative.
It was considered unpatriotic behaviour that should be punished. It was proposed
that these Jews should pay large sums of money for the education they received
in the USSR. Some Western journalists commented tongue-in-cheek that it would
be more profitable for the USSR to educate more Jews than to develop industry
and agriculture. Another idea was that the scientific councils that awarded degrees
of candidate and doctor should cancel the degrees of these Jews. However, these
councils operate by secret voting, so this invention of the administration never
worked either. I know this for a fact because I did some work for the Supreme
Committee on Attestation.

The number of applicants peaked in the late seventies and many of these people
had great difficulties. Under Gorbachev the situation changed. It became much
easier to go abroad for all kinds of people, including those who wanted to emigrate.

How to Predict Who Could Travel

Interviewer: For a number of years during the Soviet period I wrestled with the
problem how to invite conference speakers from the Soviet Union who would have
something interesting to say and would actually show up. There were usually lots of
suggestions for interesting speakers, but they never came when invited. For me the
practical solution of this problem was to talk to Albert Shiryaev who would discuss
this back home with the appropriate people and would then suggest some excellent
speakers who actually came. However, I’m still curious to know how it could be
predicted who would get permission for foreign travel.

Yu.P.: You know, Francis Bacon wrote in one of his essays that the State never
gives credit to the unmarried.5 Because most of those who went to the enemy, or
at least to the United States, were single! But in Soviet times there was a professor
of chemistry who went to Canada and didn’t come back. People from the Foreign
Department told Academician Semyonov, the Nobel Prize laureate for his branching
processes in physics, that they had recommended that it was better not to send this
gentleman abroad. Why? He had three wives. Yes, consecutively, but this is also not
good! So it is better not to send him. When he remained in Canada there was some

5Unmarried men are best friends, best masters, best servants, but not always best subjects, for they
are light to run away, and almost all fugitives are of this condition. Of Marriage and Single Life,
Francis Bacon Essays (1601).
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scandal. These things came in waves and after such an incident the rules would
be tightened. For example, at one point these limitations on foreign travel were
weakened, but then a Deputy Minister of Aviation didn’t come back from France
and immediately the rules were tightened. But after some time there was a generally
known procedure. First you went abroad to one of the people’s democratic republics:
Hungary, or Poland, etc. Poland was a little suspicious. At first you go abroad in
company, to a conference, not alone. Next you would go to a developing country
like India and if there are still no objections, you may be able to go to Britain or the
US. But some colleagues of mine were told that if they wanted to go to the US, then
they’d better join the Party. They did, but for me that would go several steps too far!

Interviewer: But it can’t be as simple as that.

Yu.P.: Of course there is more to it than this. Even today there is a problem if you
have ever handled classified information. When you apply for a foreign passport
you have to fill out a form which contains the question whether you have the right to
read classified documents. A colleague of mine did have this right, but never used it.
He decided to write NO on the form, but was punished for giving false information.
A friend of mine, who worked for 3 years on a nuclear project, was not allowed to
go abroad for 18 years. Through the Division of Mathematics of the Academy I got
involved in an attempt to straighten this out because Bogoljubov thought that I could
find the proper arguments even though I knew nothing about the case. Much later I
noticed that all buses in Bielefeld have a quotation from the bible right next to the
driver that explains Bogoljubov’s strategy. It reads: “Verlaß dich auf den Herrn von
ganzen Herzen” but omits the second part of the quote that continues with: “und
verlaß dich nicht auf deinen Verstand.”6

The problem with classified information is that in advising the authorities about
a proposal to send someone abroad, I can’t say that they should let this person
go because he didn’t have access to classified information. This is also classified
information that I’m not supposed to know. Once when Bogoljubov was on vacation
and I was acting Head of the Mathematics Division, they did not allow Dobrushin
to go abroad because he once worked for some applied institute that objected to this
trip. There was nothing I could do about it.

Some people joined defence institutes where they do classified work on purpose.
They may be able to get an apartment in Moscow or double their salary if they agree
to get stars on their shoulders. Later they find out that there is also a downside to
this.

Interviewer: I remember that at an ISI Session many years ago someone who was
obviously not a scientist, spoke about Lenin’s thoughts about statistics, or something
like that. How could that happen?

6Trust in the Lord with all your heart and do not rely on your own insight. Proverbs of Solomon 3.5.
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Yu P.: Most likely they invited a delegation without mentioning all of the names of
the members. Just to take part in the meeting. Of course, people with administrative
power would take advantage of this and push some other candidate off the list.

Interviewer: I understand that refusing a scientist permission for foreign travel
was also used as punishment for breaking the rules.

Yu P.: Certainly! In the late sixties a group of 99 scientists, mostly mathematicians,
signed a letter of protest to the Ministry of Health concerning a mathematician who
had been put in a psychiatric clinic without a proper investigation. Unfortunately,
the letter was read in a BBC radio transmission before it had reached the Ministry.
This infuriated the government and the 99 were denied permission to go abroad for
many years.

Interviewer: One final question about foreign travel of a different kind. Jerzy
Neyman invited Kolmogorov to visit Berkeley and it was announced many times
that he would come. However, it never happened. I don’t suppose that he wouldn’t
get permission. Do you know what the reason was?

Yu P.: Kolmogorov’s last flight was in the fall of 1954 when we attended a very
interesting meeting on probability and mathematical statistics organized in Berlin
by Gnedenko, who was at that time at Humboldt University. On the way there was
one stop at Warsaw or Prague and Kolmogorov asked the pilot to go down as slowly
as possible because his ears were hurting from the pressure change as the plane
went down. After that he never travelled by air again. Of course he could travel in
Europe by train, but he still wanted to visit the United States. He asked the Foreign
Department of the Academy to let him go by boat. But they refused because it was
too much trouble for them with visa and so on. He tried a number of times and
thought he would succeed eventually, which is why he never gave up plans to come
to Berkeley but never made it either.

Interviewer: This sounds like the same problem that Lucien Le Cam suffered. In
his case it was cured by the simple trick of puting tiny tubes in his eardrums to
release the pressure. They used to do that with children with frequent ear infections.

Meetings Abroad: ICM and Berkeley Symposium

Interviewero: Your travel abroad followed the pattern you have just described:
First you went to the meeting organized by Gnedenko in East Berlin in 1954
when Kolmogorov’s ear problems manifested themselves. In 1956 you went to
the first information theory meeting in Prague and in 1958 you came to Western
Europe when you attended the International Congress of Mathematicians (ICM)
in Edinburgh. Please tell us about these ICM’s and the International Mathematical
Union (IMU), the body that organizes these congresses every four years. Relations
between IMU and the Soviet Union had been somewhat stormy in the past.
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Yu.P.: Yes, in 1950 in Cambridge, Mass. in the United States, nobody from
the Soviet Union attended. In Amsterdam in 1954, after the death of Stalin,
Kolmogorov, Alexandrov, Nikol’sky and Panov attended. Kolmogorov gave the
opening lecture. The congress was held at the famous concert hall Concertgebouw
in Amsterdam, and as a true lover of classical music Kolmogorov began his lecture
by saying: “I know this auditorium as the place where Mengelberg conducted his
orchestra”. The closing lecture was given by John von Neumann.

Interviewer: We knew Kolmogorov, Alexandrov and Nikol’sky. But who was
Panov?

Yu.P.: I believe Panov was an expert in computing problems. But perhaps he was
just accompanying the others.

Interviewer: . . . and keeping an eye on them, I suppose.

Yu.P.: Maybe. There is an interesting sequel to the fact that Kolmogorov and
von Neumann were the only two plenary speakers in Amsterdam. At one time we
asked Springer to publish a translation of Khinchin’s collected papers. We were
thinking of the blue series where Pontryagin’s collected papers were published.
Doob was greatly in favour of this plan but Springer refused. The collected papers
of Kolmogorov did not appear in this series either. The reason for that was that
Springer sent a young gentleman to negotiate with Kolmogorov about publishing
his collected papers, but he didn’t seem to know who Kolmogorov was and didn’t
approach his errand very tactfully. This was right after the Amsterdam congress
and by way of explanation Kolmogorov said “Right now I’m sharing first and
second place in the world with somebody else”. When the young man returned to
Heidelberg with this message and his lack of success, he was immediately sent back
to Moscow with instructions to agree with everything Kolmogorov asked for, but it
was too late. The rights went to another publisher.

Interviewer: This was not at all the style of Julius Springer, the founder of
Springer, who was a personal friend of people like Einstein and Hilbert!

Yu.Pr.: Right. And Kolmogorov told me that when Felix Klein was editor of Math.
Annalen, he also contacted authors very often himself.

In 1958 in Edinburgh many more people from the USSR attended the ICM.
There was even a ‘tourist group’ for young people including three probabilists:
Statulevicius, Sirazhdinov and me. This opportunity to meet people like Feller and
Kac was very important for me.

In 1970 in Nice I had more responsibilities. I already mentioned that it was hard
work to get Gikhman permission to attend, but together with Pontryagin, Yablonskii,
Mushelishvili and Lavrentiev who was vice-president of IMU at the time, I also
belonged to the official Soviet delegation that took part in the meeting of the general
assembly of IMU. In the years that followed I served on the committee to select
invited speakers and on the committee for the Fields medal. Next I was elected
vice-president of IMU for the period 1978–1982. It was a very difficult period
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because the next ICM had been scheduled for 1982 in Warsaw, but this was the
time of Solidarnost and the situation in Poland was very unstable. The possibility of
moving the ICM to another venue was discussed. During a meeting of the executive
committee of IMU in Paris, Czeslaw Olech of the Mathematical Institute of the
Polish Academy of Sciences and I argued that the ICM had only been cancelled
during both World Wars and that there was no reason to do so again. The final
decision was to organize the ICM in Warsaw, but 1 year later in 1983. The French
supported their catholic brethren in Poland and I promised to send 300 participants
to Warsaw. Indeed, the ICM did take place in Warsaw in 1983, Faddeev became
vice-president and later president of IMU.

Interviewer: In 1945 Jerzy Neyman organized the (first) Berkeley Symposium on
Mathematical Statistics and Probability. Five more were to follow at 5 year intervals
until the sixth and final symposium in 1970. Neyman’s idea was to make researchers
all over the world partners in the development of probability and statistics. During
the fifth symposium in 1965 we were sitting in a lecture room listening to one of the
speakers when the door of the room opened and you quietly walked into the room
with Linnik and Yaglom. For the first time a delegation from the Soviet Union had
arrived and people started to applaud. The speaker was standing with his back to
you and probably thought he had said something sensational.

Yu.Pr.: Yes, everybody congratulated Neyman because the Russian probabilists
were finally taking part for the first time and were having their papers published in
the Proceedings of the Berkeley Symposium. For us the symposium was a unique
opportunity for meeting and getting personally acquainted with so many interesting
people. Five one-hour lectures a day with coffee breaks and dinner also gave you a
chance to find out what these people were doing. For me this was a very important
thing for the rest of my life. Then there was a 3–4 day break around Independence
Day and Linnik and I went to Asilomar.

Interviewer: There was also an excursion to Stinson Beach and I believe that you
and I were the only people foolish enough to try and go for a swim in the ocean.
We didn’t realize that the water over there comes straight from Alaska. I was quite
skinny in those days and almost froze.

Yu.Pr.: Linnik was never one to waste time on such things, so on the day we arrived
in Berkeley he bought a small typewriter and started to write some paper. Yaglom
and I knocked on the door of his room and when he opened the door he was wearing
his pants and a heavy mackintosh and in the corner of the room we saw a large
carton of milk and a straw.

Interviewer: He was probably working very vigorously on one of these very long
and complicated papers of his.

Yu.Pr.: Certainly. He was very surprised that in a discussion of one of his papers
in the Mathematical Reviews the reviewer remarked at the end that there was a gap
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in the proof of lemma 64. So 63 lemmas were fine, but there was a problem with
lemma 64. I said “Yuri Vladimirovich, please look . . . ”, but he said “No, no. This
gap can easily be repaired”.

Let me take this opportunity to tell you a bit more about Linnik because he was
such an interesting character. We can return to the Berkeley Symposium in a minute.
Linnik’s father was a Ukrainian astronomer and also an Academician. His mother
was half Tartar, half Jewish. Linnik used to say: “They can not have anything against
me because I’m baptised, my children are baptised and I’m good at arithmetic”.

Interviewer: Didn’t he also have three wives?

Yu.P.: No, according to him he had five wives, but the first, third and fifth
coincided.

Linnik started out in number theory and for his work he received a Stalin prize
and became a corresponding member of the Academy in 1953. In the meantime he
had published his first paper in probability in 1947, possibly because Vinogradov
and Bernstein insisted that he should move to this new domain. Speaking about his
work in probability he said later: “I introduced heavy theory of functions of complex
variables in probability”. If you read his papers you see that this is true. Before him,
nobody would have thought of using Lindelöf’s principle or the properties of zeros
of entire functions, etc. in probability.

Interviewer: The problems that Linnik left are very hard.

Yu.Pr.: I once asked Wassily Hoeffding about the work of Linnik. He smiled and
said: “Hmmm. Too much analysis”.

Interviewer: That is typical for Hoeffding, who was the master of simplicity.
He never stopped until he could prove his results with the absolute minimum of
technical tools.

Yu.Pr.: Linnik was really in functional analysis. He never gave a probability course
for mathematicians at Leningrad University. He said: “I do not like these sigma-
algebras. I have Romanovsky and Sudakov. They know”.

Interviewer: He didn’t like Lusin-type analysis.

Yu.Pr.: Linnik had an office in LOMI, the Leningrad branch of the Steklov
Insitute. He liked people who knew several foreign languages. He knew perhaps
ten languages: Bulgarian, Polish, etc. On his desk there was a bell-button he could
push. If he pushed it once, it meant that Kagan should come; twice Romanovsky or
Sudakov; three times Mitrofanova, the lady who worked with him. Linnik also tried
to protect Kagan who had serious problems after applying for visa for Israel.

In Moscow nobody checks when people come to work and leave. Your results
are what counts. In LOMI people were afraid that Linnik would become director.
Every day he arrived at 9 a.m. and left at 6 p.m. and people felt sure that he would
expect the same from them.
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Interviewer: Somewhere I read a story that Kolmogorov wrote his famous Grund-
begriffe der Wahrscheinlichkeitstheorie because he needed money to have the roof of
his “dacha” in Komarovka repaired. The person who wrote this quoted this jokingly
as a major triumph of kapitalism! However, you told me that this story is really
about Linnik’s roof.

Yu.P.: Well, Linnik once told me: “I have no money now. I gave 150,000 roubles to
my father-in-law for building my “dacha”. He assured me that this would be enough,
but now the money is gone and only a part of the first floor is finished. So I wrote a
book about the method of least squares”. Writing a book was perhaps the only way
to get a large amount of money at once, because the publisher pays in advance.

Interviewer: Thank you for sketching an interesting and very clear picture of
Linnik. Now let’s go back to the Berkeley Symposium, or rather to your travel
through the US after this.

Yu.Pr.: We had quite a few invitations after the symposium, but not enough time
to go everywhere. Linnik, Yaglom and I paid a brief visit to Lukacs at Catholic
University in Washington DC, and went to Columbia University and Cornell. At
Columbia we met Herbert Robbins. When I asked whether he wrote ‘What is
mathematics’ with Courant, he replied “Yes, I am the famous Robbins”. He was
very friendly to us. I met Robbins again in 1991. Of course he had grown older, but
he was still very critical about his colleagues.

Interviewer: That sounds like Robbins all right! I understand his relationship with
Courant was far from perfect. He was also very cynical, but I really liked him.

Yu.Pr: Before we went to Cornell, Linnik said to me: “Yuri, please write to
Wolfowitz that we need some money to visit Cornell”. I did and we received a brief
reply: “Dear Yuri, Your travel expenses will be more than met”.

I had met Jacob Wolfowitz before, together with Gnedenko. On that occasion he
said to us: “I have a car with me, I can bring you to your hotel. It is inconvenient for
me. But I can bring you to the hotel”.

In 1963 Wolfowitz attended a conference in Tbilisi. On the way there we had
dinner in hotel Ukraina. Wolfowitz checked his coat in the cloakroom, but when we
left he told us he had lost the ticket with his number on it. I asked him whether he
could identify his coat and he did. I explained the situation and gave 5 roubles to the
attendant. At the time this was not an entirely trivial amount, but the problem was
solved. Afterwards Yaglom told me: “He did not loose the ticket, but he just wanted
to see what would happen”.

Interviewer: It sounds as if you were the subject of some psychological experi-
ment.

Yu.Pr.: At Cornell we also met Kiefer and Hunt. Hunt told me he would very much
like to visit Moscow. I asked him whom he would be interested in seeing. He said:
“Vladimir Kutz” who was the world champion 10,000 meter runner at the time.
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The World Meeting at Tashkent

Interviewer: You said earlier that Kolmogorov not only taught you mathematics,
but also how to make things happen and getting them organized. This is indeed a
very difficult art and the Bernoulli Society World Meeting in Tashkent in 1986 must
have been one of your masterpieces! It was the first meeting where large numbers
of mathematical statisticians and probabilists from all over the world got together to
discuss their science at a very high level.

I presume it is easier and nicer to organize such a meeting in a Republic away
from Moscow, but on the other hand the enormous distance between Moscow and
Tashkent must have posed some problems too.

Yu.P.: For me it was a real struggle to organize this congress. Some people in
mathematics were jealous and tried to prevent the congress from being held, or at
least to create some difficulties for its organization. Luckily I got some support from
Marchuk who was at that time Head of the Committee on Science and Technology
and a member of government. Also V. Kotel’nikov, first vice president of the
Academy supported me and my colleagues.

The local organizer in Tashkent was S. Kh. Sirazhdinov. At the recommendation
of Romanovsky he spent 2 years from 1949 to 1951 at the Steklov Institute in
Moscow to complete his Doctor of Science thesis with Kolmogorov as advisor.
After that Kolmogorov offered him a position in the Department of Mathematics
of Moscow University which he held for three more years. In Uzbekistan there
was some resentment of people who told Kolmogorov that they would also like
to work in Moscow. But life in Moscow is very different from that in Tashkent
in many aspects such as climate and food, so Sirazhdinov decided to return to
Tashkent. After his return he soon became Director of the Mathematical Institute
named after Romanovsky, then he was elected Academician, next Vice-President of
the Academy of Uzbekistan and Rector of the University of Tashkent. He also held
many other positions. Clearly we had a very powerful friend in Tashkent.

You ask about the advantage of organizing a meeting like this in one of the
Republics. In Moscow perhaps the President of the Academy could get in touch
directly with the people in government who make the decisions, but even for him
this would probably not be easy. In the Republics the lines of command were
much shorter. Sirazhdinov could very easily make an appointment with the first
secretary or the prime-minister of the Republic Uzbekistan. Moreover, important
large congresses increased the prestige of the Republic. Shirazhdinov and I visited
the prime-minister and gave him a conference bag. In return he provided financial
support for the conference and made 50–70 cars with drivers available for the invited
speakers. Also you and I, David Kendall and David Cox lived in the residence where
apartment #1 was used by Brezhnev when he came to Tashkent.

Interviewer: Yes, I vividly remember my apartment in the residence. What
impressed me most were a large wall safe, a gigantic TV set and Persian carpets
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even in the bathroom. Also the setting in a park was very pleasant. When I asked
whether I needed some kind of identification to get past the armed guards at the
gate, I was told this wasn’t necessary because they would recognize my face!

Yu.P.: This meeting was inconceivable in Moscow or Leningrad. So we preferred
the Republics. And we are not the only ones: physicists and specialists in mechanics
prefer to arrange conferences there. Also the Soviet-Japanese (later Russian-
Japanese) meetings were held in Khabarovsk, Tashkent, Tbilisi, and Kiev. In all
cases the reasons were the same.

Let me mention an interesting occurrence during the congress. Mark Freidlin
was asked to present an invited Section report. I was in another building when
he presented his paper. People came to me to tell me that he invited everyone to
Israel. This did not seem possible and Freidlin’s invitation seemed to have upset
some people. I have my own opinion about this matter, but during a conversation
with Freidlin that followed, I noticed something interesting. While we spoke, other
people were standing far away from us, not approaching, but watching what we were
doing. You see, this is not a new feature of Russian people. In the beginning of the
nineteenth century Lermontov wrote in the introduction of ‘Hero of our time’ that
when people see two diplomats having a friendly conversation during a dinner, they
believe that each of them is betraying his country.7 They do not understand polite
behaviour, independent of one’s point of view.

Interviewer: You also handed out a number of beautiful Bernoulli medals to
people who worked hard to make the meeting a success.

Yu.P.: Yes, A. Holevo found a very good specialist who made the medal. Through
my geologist friend I also obtained a small box made of malachite which I presented
to Mr Drescher, the representative of Springer Verlag who arranged the book
exhibition. He left all the books brought for the exhibition in Tashkent.

We also had help from an unexpected quarter. At one point we had to wrap up
several hundreds of books and nobody had the time and energy for this chore. One of
my colleagues found some children who were willing to do this for a small reward.

Interviewer: Let me add one personal memory of this meeting. The Bernoulli
Society has a tradition to organize a mid-week excursion for all participants during
their meetings, and some other societies now do the same. I have participated in
hikes, watched various performances, sailed down the Nile, but the excursion (by
airplane) to Samarkand was a lifetime experience.

7Our public is like the person from the sticks who, overhearing a conversation between two
diplomats belonging to hostile courts, becomes convinced that each is being false to his own
government for the sake of a tender mutual friendship. Lermontov, M. (1840). A Hero of Our
Time, Author’s preface to the 2nd Edition.
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Applied Statistics

Interviewer: Yuri, there seems to be a feeling that applied statistics was not doing
very well in the USSR. With a few notable exceptions, very little applied work of
high quality became known to the outside world. What can you tell us about that?

Yu.P.: After the Tashkent conference the First Secretary of the Communist Party in
Uzbekistan invited several participants. Among them was David Kendall who said
that statistics in the USSR was in a bad state. One can think of several reasons for
this.

When statistical data were collected, they were often kept secret. For example,
the number of people having a certain blood type, or suffering from a certain disease,
constituted strategic data and were therefore not made available. But even when
statistical data were available, there was still the question how useful they were.
People like Khruschev did not believe in the limitation of science. According to him
any problem could be solved if we wanted to. However, statistics is useful only in
societies in a more or less stable situation. When the situation changes from day
to day and from month to month, it is generally impossible to predict the future,
with or without the use of statistics. The future with Jeltsin was one, that with Putin
another. With Putin’s successors it may again be different. Another example: it was
announced on TV that at least 20 % of all medicine is fake. Aspirin you buy may
not be aspirin at all. So why study the properties of a drug when it is simpler and
cheaper to sell fake stuff?

There were other periods when the Academy was heavily pressed to make
some statistical recommendations. When Abraham Wald’s work became known
after the war, it was clear that this could produce considerable savings in finding
the defective items in mass production. Academy president M. Keldysh spoke
to Kolmogorov and insisted that he start investigations in this area. Students of
Kolmogorov such as Sevastyanov, Bolshev and Sirazhdinov went to major factories
in Moscow such as Frazer which produced drills and made some recommendations.
From time to time the necessary statistical data were collected, but when our
mathematicians went to the factories themselves they saw in a rather obvious way
that on Mondays the percentage defectives was much higher after the workers had
spent their Sundays drinking vodka. So statistical quality control is not much help,
if you can’t enforce a minimum amount of discipline. Some time later Kolmogorov
and Bolshev studied the toxic effects of medicines and reported to the Ministry of
Health, but unfortunately the results disappeared.

Interviewer: I believe that in the automobile industry they call these unsatisfactory
products “Monday morning cars”. I think that you are basically saying that statistics
makes little sense if the rules of the game are not clear, or at least not being followed.
You are absolutely right. But was quality control not enforced for important products
for which correct performance is really critical?

Yu.P.: Yes, in the production of shells to be used against tanks, they did use
quality control because of the major risks involved. They would develop their own
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standards, or use those of other countries, for instance Japan where quality control
was far advanced.

Interviewer: Let me try to suggest another reason why applied statistics may not
have been easy. Suppose you are the director of a factory that produces tractors. The
5-years plan says that you will produce 10,000 tractors. A statistician shows up and
wants to know how many tractors you have produced. Of course you say 10,000
because otherwise you’ll be in trouble. Statistics based on such ‘data’ is of course
nonsense.

Yu.P.: Yes, the violation of the plan had very bad consequences for those who
violated it.

There is yet one more circumstance that contributed to the unsatisfactory
development of applied statistics, and perhaps applied mathematics in general.
During the war and many years after, many mathematicians were involved in applied
research on problems related to our national defence such as atomic research, and
later to the aerospace program. Kolmogorov, for instance, investigated procedures
for artillery fire and found that it is not a good idea to try and hit the target with every
shot. An artificially larger dispersion around the target is usually better. Lawrentjev
invented cumulative anti-tank shells. Bogoljubov, Vladimirov, Tikhonov and others
were active participants in the atomic program. Before he became president of the
Academy, Keldysh was closely connected with the space project and computed the
trajectory of a space device travelling around the moon to get information about
the back of the moon. Chentsov did important research on an aerospace problem
and also on the problem of detecting underground explosions.

At the time I graduated in the late 1940s mathematicians had no problem finding
jobs. Some people continued their education as PhD students, but others started
working in defence related institutes. Recruiters for these institutes were sitting
behind a table in one of the large auditoriums of the old university building in
the centre of Moscow and asked students: “How would you like an interesting
job within 5 min from a subway station?”. That was about all the information they
provided. When you accepted the offer, you found yourself at one of a number of
very serious institutes which – for instance – did not produce rockets, but computed
their trajectories.

Interviewer: I would imagine that cybernetics of Norbert Wiener could play a
useful role here, but I understand the party didn’t like it.

Yu.P.: There were different views concerning cybernetics: one from the Marxist
theorists and another from the Defence Ministry. The defence people were more
enthusiastic! Two popular books at that time were Wiener’s Extrapolation of random
processes’ which was called the yellow peril because of its bright yellow cover, and
volume I of Feller’s Introduction to Probability Theory and Its Applications which
gave solutions to many problems for discrete random variables, that were unknown
to specialists in Moscow.
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So applied mathematicians were quite active in those days, but then times
changed. Officially, the Russian Federation had no more enemies and therefore
no need to develop weapons. Jeltsin said that our rockets were not directed at
any one particular place, so presumably their directions were uniformly distributed
over the half-sphere. Defence spending went down sharply and funding for the
aerospace program also decreased considerably. Of course applied research suffered
accordingly.

Interviewer: Finally there was the problem of applied research that went against
the official views in the USSR. A prominent example is Kolmogorov’s 1940 paper
On a new confirmation of Mendel’s laws in which he showed with elementary
statistical methods that the same data used by Lysenko’s proponents to discredit
Mendel’s theory, were in fact an impressive confirmation of the theory. This was not
without risk as Lysenko’s ideas on inheritability of acquired characteristics were
supposed to revolutionize Soviet agriculture and were strongly supported by Party
leaders. For all of these reasons, it is hardly surprising that applied statistics wasn’t
too popular.

Yu.P.: It is interesting to note that when the Russian translation of volume I of
Feller’s Introduction to Probability Theory and Its Applications appeared, the part
dealing with the theory of Mendel and Morgan was omitted. Kolmogorov agreed
because he figured that it was a choice between loosing 1–2 % of the text, and not
publishing the book in Russian at all. He was convinced that the complete text would
be published eventually, and the second Russian edition already proved him right.

Kolmogorov

Interviewer: Toward the end of this interview you said: “I tried to tell you what I
know about mathematical life in the Soviet Union”. You most certainly have, and if
you have made one thing clear, it is the role of the towering figure of Kolmogorov
in this history. It seems almost impossible that one person could influence matters
to such an extent. When he was in Moscow, Tuesday through Thursday and part of
Friday, people wanted to talk to him all of the time. However he had a perfect way
of recovering from this kind of stress during the remainder of the week.

Yu.Pr: His wife said: “Andrei, in Moscow you have no time to eat dinner with a
phone permanently in your hand”. But in the house that he and Alexandrov owned
in Komarovka it was a different world. Here mathematics, culture and physical
exercise played the major role.

There was gymnastic exercise and it was a strictly regulated life. At 8 a.m.
coffee, milk, cheese and black bread.. At 1 p.m. lunch, consisting of half a litre
of fresh milk from a neighbouring farm, white bread and jam. After lunch skiing,
and in summertime some other exercise. At 5 p.m dinner. The colour of the table
cloth changed every time, so there were three colours during the day. At 7 p.m.
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tea, and after tea Kolmogorov invited students for scientific conversation. But that
could also happen at other moments, for example during skiing, so the students had
better be well prepared! After that there was time to listen to classical music or
to read. Reading was often Russian classics, but for Alexandrov’s students it was
compulsory to read Faust in German. To me it all was like an oasis, like an island
with a very organized life and a friendly atmosphere.

Interviewer: The people who came to Komarovka, were of course mainly from
the Moscow school of probability. Leningrad was far away. However, I understand
that Ildar Ibragimov was an exception and spent much time in Kolmogorov’s house
in Komarovka.

Yu.Pr.: Yes, Ibragimov was perhaps the only representative of the Leningrad
school of probability who spent much time in Kolmogorov’s house. He was between
the Leningrad and the Moscow school of probability. The two of them also made
long trips to South Osetia.

Interviewer: I’m happy to hear that the house in Komarovka is still being used, so
perhaps we shall meet there one day! Yuri, we thank you for taking the trouble to
give us this extensive interview.
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took place at the Steklov Institute in early September 1990. It was taped in Russian
and translated by Abram Kagan. The final version was edited by Ingram Olkin.

The Early Years

Shepp: Yuri Vasilyevich, you are the only full member (Academician) of the USSR
Academy of Sciences whose field is probability and statistics. Please draw the main
lines of your biography, talking about the main events in your life since your birth.
I know that you are a member of the Scientific Council of Steklov Mathematical
Institute. What are the other positions at the Academy you kept in the past and keep
now?

Prokhorov: I was born in Moscow on December 15, 1929. My parents also lived in
Moscow, and it seems that earlier ancestors were also Moscovites. I went to school,
and in the summer of 1941 when the war began the family was evacuated to a small
town of Chistopol on the Volga River (about 300 miles east of Moscow), not far
from Kazan. We Larry lived there for 2 years, and in 1943 came back to Moscow.

When we left for Chistopol, I finished 4 years of school. While in evacuation
I had much time, and in 2 years studied the curriculum of 4 years so that I came
to Moscow as a student of the 8th year. Also, in Moscow, I finished the 2-year
curriculum in 1 year, and in 1944 graduated from high school.

Like my father, I wanted to become an engineer, and I first entered the Higher
Technical College named after Bauman (actually, a Technical University). There,
I took a class in mathematical analysis of Professor Adolph Pavlovich Yuškevič,
renowned in particular by his works in the history of mathematics. Pretty soon I
understood that my primary interests were in mathematics. I began taking classes at
Moscow University, first as an external student and in the next year transferred to the
university. My main interests at the time were in analysis and number theory, and
the first seminar I attended was that of Professor Alexander Gel’fond in elementary
number theory, without any theory of analytic functions.

But in the fall of 1946 Kolmogorov started, for the first time at Moscow
University, a course entitled “Supplementary Chapter of Analysis”. Actually, the
course contained foundations of functional analysis, measure theory and theory of
orthogonal series. It was a big and serious course. When I took this course – and I
attended all the classes and took notes – I decided at once that it would be my field.

Shepp: Was there any special subject in Kolmogorov’s course you liked most?

Prokhorov: Yes, measure theory. Simultaneously with this course, Kolmogorov
began another one in probability, along the line of his book “Basic Concepts of
Probability Theory”. The next year Kolmogorov had a seminar in probability that I
attended. Thus, my fate turned out to be tied to probability theory. Kolmogorov saw
that I knew analysis and had an interest in set theoretical problems.

Shepp: What year was this?
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Prokhorov: It was the fall of 1946 and spring of 1947. I was in my 3rd and 4th
years at the university.

Shepp: Where were you during the war?

Prokhorov: During the war? In 1944 I entered Bauman College and in the spring
of 1945, when the war was approaching its end, I transferred to the university. I was
only 16 at the time. This was the way I came to Kolmogorov’s seminar. The seminar
was very small at that time. Its participants were A.M. Obukhov, A.S. Monin,
E.B. Dynkin and B.A. Sevastyanov, who was already working in the theory of
branching processes. It was a small group and the seminar increased significantly
later, in a few years, about the time when V.M. Zolotarev, R.L. Dobrusin and
A.A. Yuškevič (unior) were finishing their studies at the university.

Shepp: And afterwards you got a Candidate of Science (Ph.D) degree?

Prokhorov: My first paper on the strong law of large numbers was a success. It
was my diploma (M.Sc.) work. My Candidate of Science work dealt with local
limit theorems.

Shepp: When did all this happen?

Prokhorov: I got my Candidate degree in 1952 and at the same time changed
the topic of my research. Again, under Kolmogorov’s influence, I began to study
distributions in functional spaces. In 1956, I wrote a dissertation on this subject for
a Doctor of Science degree.

Shepp: Oh, it is your very well-known work!

Prokhorov: Yes, a larger part of it was published in our journal, Probability Theory
and Its Applications, but a part has never been published.

Shepp: The paper was also a great success in the West. And afterwards? Please
describe your career in general lines. What positions have you had?

Prokhorov: As to formal positions, in 1966 I was elected a corresponding
member, and in 1972 an Academician of the USSR Academy. For many years I
was a Vice-Secretary of the Mathematics Department of the Academy. This was
from 1966 through 1989.

Shepp: A very long period.

Prokhorov: Such positions at the Academy were permanent at that time. Now
it is different. Recently, changes have been voted for, and since the end of 1989
N.N. Bogoljubov is no longer the Academician Secretary of the Mathematics
Department. Other people at the Academy were replaced as well. For 18 years I
was also a Deputy Director of the Steklov Institute.

Shepp: What positions do you hold now?
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Prokhorov: Now, within the Academy, I am only a member of the Bureau of the
Mathematics Department. It is a relatively small position; I hold no other positions.

Shepp: Aren’t you a member of the Academy Presidium?

Prokhorov: I have never been one. I used to attend meetings of the Presidium and
take part in its activities in my capacity as Bogolyubov’s Deputy. Bogolyubov, then
Academician Secretary of the Mathematics Department, was often out of Moscow,
and on those occasions I took part in the Presidium’s activities. I also held some
positions related to international mathematical bodies. Of them, the most significant
was that of Vice- President of the International Mathematical Union that I occupied
from 1978 to 1982.

International Contacts

Shepp: Yuri Vasilyevich, you and your colleagues here, in the Soviet Union, have
had for many years contacts with probabilists from abroad. I shall go through the list
with several names and ask you to share with me and future readers your personal
reflections on meetings and talks to these people. I shall begin with Joe Doob.

Prokhorov: I have known him personally since his visit to Moscow. I think it
happened in the fall of 1963 when Doob spent a few days here, and almost all of
those days we spent together. I had known his work long before; as a student I had
studied his papers that later became a part of his monograph on stochastic processes.

Shepp: On martingales?

Prokhorov: Yes. I had very good relations with Doob, and after 1963 we corre-
sponded for some time. However, we did not meet any more.

Shepp: Other probabilists? Maybe you can tell something about their relations with
you or other Soviet colleagues.

Prokhorov: I remember that such people as Will Feller were vividly interested in
our results.

Shepp: Probably you know that Feller was my teacher. Go on, please.

Prokhorov: The first time I met Feller was at the International Congress of
Mathematicians in Edinburgh in 1958. I made a closer acquaintance with him
during the Fifth Berkeley Symposium in 1965 when I had an opportunity to spend
a long time with him. He came to give a talk and afterwards we had a long walk
together. Besides his original results, I highly appreciated his excellent two volumes
on probability. Together with my students, we prepared the Russian translation of
the second edition of the books. In the foreword, I had an opportunity to express my
gratitude to both the author and his remarkable book. I think that for many more
years to come it will be highly useful for all those who work in probability.
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Shepp: I completely agree with you. What about Mark Kac?

Prokhorov: I have known him as well. The first time I met him was in Edinburgh,
and later in Berkeley we again met each other, and probably elsewhere. I remember
that we got along rather well. I took the initiative to translate into Russian his small,
but very well-written book on statistical independence.

Shepp: May I ask you to compare his style and achievements with those of people
mentioned previously? I am trying to, get a general idea of how you personally
estimate different achievements. Certainly, you do not have to answer the question.

Prokhorov: In his work, other aspects were more important. (Thinks.) I can tell
you that I read with interest the papers of Kac and found them very useful.

Shepp: Maybe, his approach was different? More concrete?

Prokhorov: Yes, more concrete, if you like. It is difficult to find the proper words.

Shepp: How about Harald Cramér?

Prokhorov: Cramér was well known in our country for his two books: the small
book Random Variables and Probability Distributions from Cambridge Tracts
and his larger work Mathematical Methods of Statistics. These were translated
into Russian on Kolmogorov’s initiative. By the way, the translation of the latter
gave an impetus to creating Russian statistical terminology. At that time, many
English statistical terms had no Russian analogs. Kolmogorov should be credited
for changing this.

Cramér came to the Soviet Union in 1963 to attend the All-Union Conference
on Probability and Statistics, in Tbilisi, near the Turkish border. Yu. V. Linnik and
I met him in Moscow, and we spent much time together in Tbilisi. Actually, I saw
Cramér before when he visited the USSR in 1955 or 1956 (this was his first visit to
our country), as he remembered. But, at that time, I had not been introduced to him.

Shepp: Did Cramér have close contacts with some of your colleagues?

Prokhorov: Judging from his recollections, Fifty Years in Probability, published
in the Annals of Statistics, he was closer in scientific interests to Kolmogorov,
A.M. Yaglom and J.A. Rozanov, since they all worked in the field of random
processes.

Shepp: Carl-Gustav Essén?

Prokhorov: I should say that his memoir of 1945 was studied here by practically
everyone who works in the field of limit theorems. By the way, it is now on my desk,
and I am rereading it. A significant part of the memoir, its main theorems, were
included into the well-known monograph by B.V. Gnedenko and A.N. Kolmogorov.
His subsequent papers, although shorter, were always noted here with great interest.

Shepp: Paul Lévy?
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Prokhorov: As far back as in Kolmogorov’s seminar, I began to study Lévy’s
monograph Théorie de l’Addition des Variables Aléatoires and many times returned
to it. I have never met Paul Lévy; however, for a short time, we corresponded.
Once, I asked him to recommend my paper for publication in Comptes Rendus.
His monograph and the later Concrete Problems of Functional Analysis were very
useful.

Shepp: May I ask if you know about Kolmogorov’s relations with his colleagues,
especially with Paul Lévy?

Prokhorov: What I know for sure is that Kolmogorov corresponded with Paul
Lévy, and some of Kolmogorov’s theorems were contained in his letters to Lévy.

Shepp: Kyosi Itô?

Prokhorov: I have met him, in particular, at the Soviet-Japanese symposia on
probability and statistics. I never went to Japan, but Itô came here.

Shepp: I think there were many Soviet-Japanese symposia.

Prokhorov: Yes, we have had many. It seems that the first time I met Itô was in
Berkeley around 1965. That visit to Berkeley was extremely useful, since during
the 18 or 20 days that we spent there we met with many colleagues. It was an
exceptional opportunity.

Shepp: Norbert Wiener?

Prokhorov: I have never met him.

Shepp: Maybe ’you can say something about Kolmogorov’s meetings with
Wiener?

Prokhorov: I have to say that during Wiener’s visit to the Soviet Union, it was
after WWII (I think Wiener visited the Soviet Union only once), Kolmogorov
and Wiener did not meet. However, one can read Kolmogorov’s article in the
Soviet Encyclopedia entitled “Norbert Wiener” and will find it very interesting.
Kolmogorov liked writing biographical articles. He was very proud of his article
about Hilbert in the same Soviet Encyclopedia; it is a short article, but Kolmogorov
prepared it for a long period. He also wrote about Wiener. I have heard that there
was a discussion among mathematicians, at least, of the priority question relating to
their work on stationary processes. I think that everything Kolmogorov wanted to
say about the subject he said in the article “Norbert Wiener”.

Shepp: Monroe Donsker?

Prokhorov: I have met him. We were working independently in almost parallel
ways on the invariance principle. I began with studying the wellknown paper by
Paul Erdös and Mark Kac related to the invariance principle. It contained a special
case of it. Donsker and I were advancing on almost parallel courses, although by
different methods.
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Shepp: Henry McKean?

Prokhorov: I have never been acquainted with him.

Shepp: Frank Spitzer?

Prokhorov: I became acquainted with Spitzer in 1965, when I visited Cornell
University on my way back from Berkeley to Moscow. In Ithaca we rode a canoe
and almost immediately I fell into the water. Later, Spitzer visited the Soviet Union.
I liked his book Principles of Random Walk very much and suggested a Russian
translation of it; my students later translated it. Afterwards, I did not meet Spitzer
any more, unfortunately, but always followed his work.

Shepp: Jerzy Neyman?

Prokhorov: (Laughs.)

Shepp: Why are you laughing?

Prokhorov: The thing is that I probably met Jerzy Neyman more often than the
other people you mentioned. We met the first time in Berkeley in 1965 and then
during his multiple visits to Moscow. Practically every time he came to Moscow, I
had opportunities for long talks with him and attended his seminars. He was always
very interested in Soviet life, both scientific and everyday. He knew Russian culture
and spoke fluent Russian. By the way, he supported me when I was nominated to
the Soviet Academy.

Shepp: He was a foreign member of the Soviet Academy, wasn’t he?

Prokhorov: No, he wasn’t, but he wrote a personal letter on my behalf when I
was nominated as a corresponding member. I know that he was discussing my
nomination with Sergei Natanovitch Bernstein and supported me.

Shepp: Did Neyman meet with your colleagues?

Prokhorov: Neyman used to spend much time with Kolmogorov. In particular,
Neyman’s works on rain stimulation were continued in Kolmogorov’s laboratory
at Moscow University. Some of Neyman’s other work was continued at the
Mathematical Institute. Neyman had good connections with many people here.

Shepp: Has anyone in the Soviet Union had any contacts with Karl or Egon
Pearson?

Prokhorov: To the best of my knowledge, no.

Shepp: Ronald Fisher?

Prokhorov: It is possible that some of the older generation here could have
corresponded with him, but I don’t know about it.

Shepp: Kendall?

Prokhorov: Maurice Kendall?
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Shepp: Both Maurice and David.

Prokhorov: Maurice Kendall’s books were translated into Russian, as well as
R.A. Fisher’s. The monograph Statistical Methods for Researchers was published
here several times. There was a paper by S.N. Bernstein containing a discussion of
Fisher’s viewpoint on confidence probabilities. Kolmogorov highly praised Fisher’s
works on mathematical genetics, and the last time he quoted them was in 1969 in
Oberwolfach at a small conference on branching processes. Kendall’s multivolume
book was translated into Russian on Kolmogorov’s suggestion, who praised it.

As for David Kendall, Kolmogorov knew him personally and, on a number of
occasions, praised his works. David Kendall was one of those foreign scholars who,
like Cramér, attended the All-Union Conference on Probability in Statistics held in
Tbilisi in 1963. Actually, it was our first conference attended by our colleagues from
abroad: Harald Cramér, David Kendall, Murray Rosenblatt and Jack Wolfowitz.
Maybe, I forgot some; there were not that many foreigners there, but they were
renowned scholars.

Shepp: Were there other scholars from abroad who had good contacts with you or
other Soviet colleagues?

Prokhorov: I think we have talked about most of them, although I may have
forgotten a few names.

Scientific Work

Shepp: May I ask you what you consider your main scientific or administrative
achievements? I know that you have contributed much, and I ask you to describe in
a few words what you consider most important.

Prokhorov: Certainly, my most successful work was on the applications of
functional-analytic methods to limit theorems.

Shepp: Yes, no doubt. That paper of 1956 has been a tremendous success!

Prokhorov: In the years that followed, I returned to the subject, although in shorter
papers. This is my principal contribution if we speak about mathematics. As for the
administrative sphere, my greatest success may well be the organization of the 1st
Congress of the Bernoulli Society in Tashkent. It required a lot of effort, and I made
maximum use of all the positions I had at the Academy at the time to arrange many
things related to the Congress.

Shepp: I heard that the Congress was a success, although I could not attend it.

Prokhorov: It was mainly organizational, administrative work, and I did use all
my administrative possibilities in order for the Congress to take place.
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Statistics in the Soviet Union

Shepp: My next question is why mathematical statistics in the Soviet Union has
developed so slowly if you agree with such an assessment of the situation with
statistics.

Prokhorov: Yes, I do. Both we and our colleagues from abroad see this situation.
After the Tashkent Congress, when we were discussing its scientific results, David
Kendall noticed a backwardness of statistics in the Soviet Union. I think the
explanation is that here there has not existed a demand for serious statistical research
compared with, say, those in the U.S. or England. After we learned about Abraham
Wald’s work and became interested in statistical acceptance control, Kolmogorov –
with his students – began to work in the field and wrote a few papers. But the
thing is that statistical acceptance quality control is aimed at the well-organized
manufacturer, and very often the need here was not in implementing statistical
control but in arranging the elementary order. Now, I think we are approaching
the time when the government or its institutions have become interested in reliable
statistics, and it will result in a demand for statistical researchers. As for the present
situation in the Soviet Union, there is not a single statistics department. All the
statisticians at universities, if there are any, come from mathematics departments.

Shepp: I think I have seen somewhere here the sign on a door, “Department of
Statistics.”

Prokhorov: It means a chair and not a department in your understanding of the
word. Usually, it is a small unit, maybe five persons.

Shepp: Do you think glasnost will eventually help in developing statistics here?

Prokhorov: I think it may help. For example, our weekly Arguments and Facts,
with its huge circulation, publishes in almost every issue statistical data, such as
survey results. Readers are gradually becoming accustomed to statistical data.

Shepp: I think that now it is possible to describe everyday life through statistical
data, certainly in newspapers. Changing direction a bit, may I ask you to describe
changes at Steklov Institute after Vinogradov’s death, if there are any.

Prokhorov: I can tell you that since Bogolyubov has become the Director, the
Institute has hired some people who did not work here before, as for example,
V. I. Arnol’d.

Shepp: I believe these changes are for the better. Is the process going on?

Prokhorov: I think so, yes.
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Electronic Mail

Shepp: What do you think about the offer, now under discussion, to provide the
Steklov Institute with the equipment for electronic mail correspondence?

Prokhorov: It will make postal connections with other countries easier and should
be welcome.

Shepp: This offer came in a package along with the idea that the equipment
(computer, modem, etc.) for E-mail correspondence be allowed for use also by
mathematicians and not affiliated with the Steklov Institute, say, by members of
the Moscow Mathematical Society. What is your opinion about the free access to
the E-mail terminal installed at the Institute?

Prokhorov: The following is an example. The Institute has a very good mathemat-
ical library, and many mathematicians working at the university prefer to use our
library for borrowing books and journals, since our library receives them earlier,
and some journals can be found only at the institute’s library. As a rule they are
not refused. I think that if we can get something else that we can share with our
colleagues working elsewhere, we shall do it.

On Discrimination

Shepp: I think it will also be good. Now I would like to pursue another direction
and ask you to tell us the story about the group of students at Moscow University to
which you belonged. I have heard about it from many people, but maybe you would
like to add details.

Prokhorov: Yes. The story lasted for a short time, but was very instructional like
many similar stories that happened at the time. Let us hope now that the times have
changed and such stories are no longer possible.

Shepp: But what happened at that old time? Can you and do you want to tell us the
story? I am sure that practically none of the readers of Statistical Science have ever
heard about it.

Prokhorov: The story was very simple. A group of students, some of them war
veterans and serious people, met at participants’ homes.

Shepp: And discussed. . . ?

Prokhorov: As I understand, there was nothing criminal there, from the partici-
pants’ viewpoint. Among the participants there were serious people, war veterans
and party members. Maybe, on some occasions, we showed thoughtlessness. For
example, we promised each other to be together in the years to come and never be
separated. But once in the form of a joke, all of these wishes were written down as a
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document. At that time, those things should not have been done, and even the most
experienced members of the group did not understand it. This resulted in a rather
severe punishment: participants were expelled from the university, and also the party
members from the party. Similar things used to happen in later times, for example, in
1956 when comparatively innocent – according to present-day standards – students’
actions were promptly and severely condemned. Such an incident happened at the
Mathematics Department in 1956, I think.

Shepp: Why did the KGB act so promptly and uncompromisingly?

Prokhorov: The story of our group developed as follows. It was openly discussed
within the party and Komsomol (young communist league) organizations. The
investigation lasted for several days. A big meeting of students of the Mathematics
Department took place, and professors also attended the meeting. A general
accusation aimed at all members of the group was that they had formed an
organization opposed to Komsomol. The accusation was based on the discovery
of the origins of an organization in the meeting’s record. It was a general accusation
against all. Moreover, an additional accusation not directly connected, was charged
against Jewish members of the group, namely because of Jewish nationalism.

Shepp: I didn’t know about the second accusation, although I heard that members
of the group were Jews.

Prokhorov: Yes, there were. They were accused also of Jewish nationalism.

Shepp: (Joking) You weren’t among them were you?

Prokhorov: I don’t know how serious these accusations were, but the words
“Jewish nationalism” were spoken at the meeting. Recall the time, it was 1949.
It was the time when any nationalism, Jewish in particular, was persecuted.

Shepp: Thanks for this clarification. I guess that Soviet science is falling behind.
I cannot judge Soviet sciences as a whole, nor the whole of mathematics, so
I am speaking mainly about probability. It seems to me that the Soviet school
of probability, which under Kolmogorov and even earlier (before the revolution,
and later in the twenties, thirties and forties) was a world leader, is gradually
falling behind. I would like to know if at this point you agree with me, that this
falling behind has resulted, to a certain degree, from discrimination. I appreciate
that you already mentioned the discrimination based on the fifth paragraph. (In
standard Soviet questionnaires, the fifth paragraph asks for the nationality, e.g.,
Russian, Ukrainian, Jewish, etc.) Certainly, there also existed discrimination based
on political grounds and on some other grounds that I don’t know. In any case, it
was part of the academician I. M. Vinogradov’s policy. Do you think some energetic
actions should be taken in order to correct the situation inherited from Vinogradov?

Prokhorov: Your question turned out very long, actually consisting of two parts.
The first concerns the falling behind of the Soviet probability, although rela-
tive. When I came to the Institute, the head of its Probability Department was
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Kolmogorov. Bernstein worked here, although in another department, and Khinchin
(A.Ya. Hinčin) and N.V. Smirnov worked in Kolmogorov’s department. Earlier,
Slutsky (E.E. Slutskii) also worked in the department, but by the time I came to
the Institute, he had passed away. Certainly now the department, however good,
has not reached that level. It is a small piece of the overall picture, but it reveals the
general situation. We are facing the serious problem of how not to lose what we have
inherited from our predecessors but to preserve and multiply it. A similar problem
is faced by the son who inherited his father’s business. He has to behave properly to
push the business upward, not let it go down.

The second part of your question concerns the Mathematical Institute. One
should distinguish different periods of its activities. If you address the prewar or
even World War I years and look for discrimination on the basis of nationality, you
will see that one of the most active researchers was Lazar Aronovitch Lusternick,
for example, and the scientific secretary of the institute (i.e., actually the closest aid
of Vinogradov was Alexander Lvovitch Seagel). Thus, up to a certain period, the
situation looked normal.

Shepp: There was no discrimination?

Prokhorov: In any case, it was impossible to detect it. If we try to detect
discrimination by statistical methods, it could be found in the postwar period.

Shepp: How do you think the situation should be changed?

Prokhorov: I think the events are now developing in such a way that the problem
will be resolved automatically.

Shepp: I think we owe much to the Russian and Soviet schools of probability and
have to help it in overcoming its lagging position. Personally, I am trying to provide
the Mathematical Institute with the equipment for E-mail correspondence. As I have
understood you, you support the idea of getting the equipment and even installing it
in your department. I am glad to see that you support the idea of getting the E-mail
equipment for the Institute and look to the future with optimism.

Prokhorov: The final decision will be made by the director. The scientific council
also votes.

Shepp: Maybe you want to add something else concerning other topics of the
interview.

Prokhorov: Yes, I would like to add the name of C.R. Rao to the list of foreign
colleagues who collaborated with us. I’ve met him several times, was his guest in
India and hosted him during his visits to our country.

Shepp: Do you collaborate with India now?

Prokhorov: Yes, in particular, there is an agreement including probability and
statistics.
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Shepp: Certainly, I have known of Rao’s close ties to Soviet colleagues but
somehow missed his name. I’m extremely glad that you recalled Rao’s significant
contribution to strengthening the cooperation of Soviet and foreign scholars. Do you
want to make other comments?

Prokhorov: I would like to add that the now arising opportunities for personal con-
tacts, visits to and from other countries that have become by and large more free than
before will contribute much to the advancement of mathematical science and espe-
cially to the progress of younger mathematicians. Imagine that there was time after
WWII when even correspondence was practically prohibited. I remember that Kol-
mogorov neither wrote nor received letters from abroad, and it was in a sharp con-
trast to the intensive correspondence before the war. Here, as probably in other coun-
tries, we face the problem of selecting able young students and directing them to
probability and especially mathematical statistics. The problem is not simple at all,
since at mathematics departments there is a strong competition for capable students
and the probability is high that they will choose other fields of mathematics, more
modern, in a sense. If an able student enters a mathematics department, the odds are
high that the student chooses modern algebra or geometry rather than probability.
When Kolmogorov was alive, his personality alone attracted many strong students.

Shepp: Maybe a part of the problem is also in that probability in the Soviet Union
is falling behind?

Prokhorov: One more reason is evident, but somehow we have not mentioned it.
All the great Russian and Soviet probabilists, starting with Chebyshev, Markov,
Lyapunnov and then Bernstein, Kolmogorov, Khinchin, Linnik, were all mathemati-
cians of broad profiles. They were not only probabilists, but knew much more. We
are losing this feature of breadth and together with it connections of probability
with other areas of mathematics are being lost. Maybe a similar picture can be seen
elsewhere, but certainly probability does not benefit from it. We are in a difficult
situation. On one side, we have to understand applications, in particular, of statistics
since nobody else will do it. For example, the first papers by A.N. Shiryaev on
disorder were directed toward practical applications (by the way, the very first paper
was joint with Kolmogorov). Some very good papers on statistical quality control
were written by Kolmogorov. Those and similar research are a probabilist’s task. On
the other hand, probabilists here have to keep the level of their science of probability
sufficiently high. In a sense, they are carrying a double burden.

Shepp: I am glad you mentioned Shiryaev’s papers on change-points. I have read
them with interest and found them extremely useful.

Prokhorov: Yes, they were very good. After WWII, some papers by Kolmogorov
on fire control were published in the Proceedings of Steklov Institute. Probably, they
were written during the war, but like some papers by Wald, were not published at
that time. Certainly, applications are important, and we have to deal with them. But
look, we have fewer people working in probability and statistics than the United
States.
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Shepp: This happens despite the fact that probability and statistics are important
for applications?

Prokhorov: Yes. When we are looking for speakers at congresses, conferences,
etc., we often find this task difficult, and time and again choose the same people.

Shepp: We also have problems. Yuri Vasilyevich, thank you very much for a
pleasant conversation. I wish you all good wishes in everything. We have known
each other for many years, and I was glad to have this opportunity to interview you
for Statistical Science.

Prokhorov: Thank you very much for the opportunity to give an interview for
Statistical Science. It is a rare opportunity. Actually, it is the first interview in
my life, and I ask you and future readers to excuse me in advance for all its
shortcomings. Maybe, on working together on the final text, we’ll be able to improve
it and make it interesting and pleasant reading.

Shepp: For me, it is also the first experience as an interviewer. Thank you very
much.
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