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Abstract. We extend the population protocol model with a cover-time
service that informs a walking state every time it covers the whole net-
work. This is simply a known upper bound on the cover time of a random
walk. This allows us to introduce termination into population protocols,
a capability that is crucial for any distributed system. By reduction to
an oracle-model we arrive at a very satisfactory lower bound on the com-
putational power of the model: we prove that it is at least as strong as
a Turing Machine of space log n with input commutativity, where n is
the number of nodes in the network. We also give a log n-space, but
nondeterministic this time, upper bound. Finally, we prove interesting
similarities of this model to linear bounded automata.

1 Introduction

Networks of tiny artifacts will play a fundamental role in the computational en-
vironments and applications of tomorrow. As a result, over the last decade, there
has been a strong focus on theoretical models of pervasive systems, consisting of
great numbers of computationally restricted, communicating entities. One such
model, called the Population Protocol (PP) model, has been recently introduced
by Angluin et al. [AAD+06]. Their aim was to model sensor networks consisting
of tiny computational devices (called agents) with sensing capabilities that follow
some unpredictable and uncontrollable mobility pattern. Due to the minimalistic
nature of their model, the class of computable predicates was proven [AAER07]
to be fairly small: it is the class of semilinear predicates [GS66], which does not
support e.g. multiplications, exponentiations, and many other important oper-
ations on input variables. Additionally, population protocols do not halt. No
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agent of the population running the protocol can know whether the computa-
tion is completed. The agents forever interact in pairs while their outputs (but
not necessarily their states) stabilize to a certain value.

An interesting question that quickly emerged was whether complex compu-
tations could be performed by using simple protocols and combining their func-
tionality. Given the protocols stabilizing behavior, their sequential execution was
impossible. To circumvent this problem, Angluin et al. introduced the stabilizing
inputs PPs [AAC+05] and they showed that multiple protocols can run in paral-
lel and once one stabilized the others could run correctly (by taking appropriate
actions to restore correct execution) using the stabilized output of the former
as their input. This approach is, however, fairly slow in terms of the number
of interactions (provided some probabilistic assumption on the interaction pat-
tern) since it requires to implement phase clocks based on epidemic protocols
(see [AAE08]).

In this work, we follow an alternative approach. We augment the original
model of computation with a cover-time service (we abbreviate the new model
as CTS ) that informs a walking state every time it covers the whole network.
This is simply a known upper bound on the cover time of a random walk. This
allows us to introduce termination into population protocols, a capability that
is crucial for any distributed system. Then we reduce this model to population
protocols augmented with an abscence detector. An absence detector is an ora-
cle that gives hints about which states are not present in the population. Each
process can interact with this special agent (the absence detector) that monitors
other agents in the system, and maintains flags for each state of the protocol.
The rest of the model is the same as the PP model. All agents, apart from the ab-
sence detector, are modeled as finite-state machines that run the same protocol.
Agents interact in pairs according to some interaction graph which specifies the
permissible interacting pairs, and update their states in the process. No agent
can predict or control its interactions. Within this framework, we explore the
computational capabilities of this new extension, that we call Population Proto-
cols with Absence Detector (AD), and study its properties on a purely theoretical
ground. As we shall see the AD model is computationally stronger than PPs but
this is not what sets it apart. A major new feature of this model is its capability
to perform halting computations, which allows sequential execution of protocols.
Note that although we are currently unaware of how to construct such detectors,
in the future, our detector may be implemented via a Bulletin Board regarding
the existing states (e.g. each device marks its current state in the board, and all
devices can read this board). Such Boards can be implemented easily and have
been used in the past [Edi86].

2 Other Previous Work

In the population protocol model [AAD+06], n computational agents are pas-
sively mobile, interact in ordered pairs, and the temporal connectivity assump-
tion is a strong global fairness condition according to which all configurations
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that may always occur, occur infinitely often. These assumptions give rise to
some sort of structureless interacting automata model. The usually assumed
anonymity and uniformity (i.e. n is not known) of protocols only allow for
commutative computations that eventualy stabilize to a desired configuration.
Most computability issues in this area have now been established. Constant-state
nodes on a complete interaction network (and several variations) compute the
semilinear predicates [AAER07]. Semilinearity persists up to o(log logn) local
space but not more than this [CMN+11]. If constant-state nodes can addition-
ally leave and update fixed-length pairwise marks then the computational power
dramatically increases to the commutative subclass of NSPACE(n2) [MCS11a].
For a very recent introductory text see [MCS11b]. Finally, our CTS model is dif-
ferent than the cover-times considered in [BBCK10] in that we allow protocols
know the cover times and as their cover-times refer to the time for an agent to
meet all other agents.

3 Our Results - Roadmap

In Sections 4 and 5, the newly proposed models are formally defined. Subsection
5.1 in particular, defines halting and output stabilizing computations, as well
as the classes of predicates that the AD model can compute in both cases. In
Section 6, we illustrate the new model with a simple leader election protocol
and give some properties of the AD concerning halting computations. Section 7
first establishes the computational equivalence of the CTS and AD models and
then deals with the computational power of the latter. In particular, Section 7.1
shows that all semilinear predicates (whose class is denoted by SEM) are sta-
bly computable by halting ADs. In Section 7.2, several improved computational
lower bounds and an upper bound are presented. In particular, it is first shown
that the class HAD, of all predicates computable by some AD with a unique
leader, includes all multiplication predicates of the form (bNd1

1 Nd2
2 · · ·Ndk

k < c),
where b, c, di, k are constants, b, c ∈ Z and di, k ∈ Z

+. We do so by constructing
an AD (Protocol 2) that performs iterative computation. Then in Subsection 7.2
it is shown that halting ADs can compute any predicate whose support (cor-
responding language on the input alphabet) is decidable by a Turing Machine
(TM) of O(log n) space. This is shown by simulating a One Way k-Counter Ma-
chine (k-CM) [FMR68, Min61] with halting ADs. Moreover, it is shown that all
predicates in HAD are stably computable by a TM of O(log2 n) space. Finally,
some similarities of the AD model with Multilset Linear Bounded Automata with
Detection (MLBADs) are pointed out and it is established (however, the proof
being left for the full paper) that ADs can simulate such automata. In Section
8, we conclude and present potential future research directions.

4 A Cover-Time Service

We equip pairwise-interacting agents with the following natural capability: swap-
ping states can know when they have covered the whole population. Note that we
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refer to states and not to nodes. A node may possibly not be ever able to inter-
act with all other nodes, however if nodes constantly swap their states then the
resulting random walk must be capable of covering the whole population (e.g.
in a complete graph the cover time of a random walk is n logn).

We assume a unique leader in the population which jumps from node to node.
What we require is that the leader state knows when it has passed from all nodes
and we require this to hold iteratively, that is after it knows that it has covered
the whole population it can know the same for the next walk, and so on. So
we just assume a cover-time service which is a black-box for the protocol. We
call this extension of PPs with leader and a cover-time service the Cover-Time
Service (CTS ) model.

Formally, we are given a population of n agents s.t. initially a node u is in state
(l, D, 0) while all other nodes are in state ⊥. What we require is that D ∈ IN
satisfies the following. If in every interaction (v, w), s.t. the state of v is (l, D, i)
and the state of w is ⊥, v updates to ⊥ and w to (l, D, i + 1) (swapping their
states and increasing i by one) if D > i + 1 and to (l, D, 0) otherwise, then in
every D consecutive steps s1, . . . , sD (where we can w.l.o.g. assume that a single
interaction occurs in each step) it holds that {z ∈ V : z has obtained l at least
once in the interval [s1, sD]} = V . That is D is an upper bound on the time
needed for a swapping state (here l) to visit all nodes (called the cover-time).
The leader state, no matter which node it lies on, can detect the coverage of V
when the step/interaction counter i becomes equal to D. We assume that both
D and i are only used for coverage detection and not as additional storage for
internal computation (nodes keep operating as finite-state machines). Another
way to appreciate this is by imagining that all nodes have access to a global
clock that ticks every D rounds.

We explore the computability of the CTS model. In particular, we arrive at
an exact characterization of its computational power. We do so by reducing the
CTS model to an artificial but convenient variant of population protocols that
is equipped with a powerful oracle-node capable of detecting the presence or
absence of any state from the population. Our oracle model is of particular the-
oretical interest as it seems that most PP variants equipped with some capability
to detect termination, and not only our particular CTS example, may as well
reduce to it.

5 Absence Detectors

A Population Protocol with Absence Detector (AD) is a 7-tuple (X,Y,Q, I, ω, δ, γ)
where X,Y and Q are finite sets and X is the input alphabet, Y is the output
alphabet, Q is a set of states, I : X → Q is the input function, ω : Q → Y is
the output function, δ is the transition function δ : Q × Q → Q × Q and γ is
the detection transition function γ : Q× {0, 1}|Q| → Q. If δ(a, b) = (c, d), where
a, b, c, d ∈ Q, we call (a, b) → (c, d) a transition and we define δ1(a, b) = c and
δ2(a, b) = d. We also call transition any (q, a) → c, where q, c ∈ Q, a ∈ {0, 1}|Q|

so that γ(q, a) = c.
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An AD runs on the nodes of an interaction graph G = (V,E) where G is
a directed graph without self-loops and multiple edges, V is a population of
n agents plus a single absence detector (n + 1 entities in total), and E is the
set of permissible, ordered interactions between two agents or an agent and the
absence detector. An absence detector is a special node whose state is a vector
a ∈ {0, 1}|Q|, called absence vector, always representing the absence or not of
each state from the population; that is, q ∈ Q is absent from the population in
the current configuration iff a[q] = 1. From now on we will denote the absence
detector by a unless stated otherwise. Throughout the section we consider only
complete interaction graphs, that is all agents may interact with each other and
with the absence detector.

Initially, each agent except the absence detector senses its environment (as
a response to a global start signal) and receives an input symbol from X . We
call an input assignment to the population, any string x = σ1σ2 . . . σn ∈ X∗,
where by n we denote the population size. Then all agents that received an
input symbol apply the input function on their symbols and obtain their initial
states. Given an input assignment x the absence detector is initialized by setting
a[q] = 0 for all q ∈ Q so that ∃σk ∈ x : I(σk) = q and a[q] = 1 for all other
q ∈ Q.

A population configuration, or more briefly a configuration is a mapping C :
V → Q∪ {0, 1}|Q| specifying a state q ∈ Q for each agent of the population and
a vector a ∈ {0, 1}|Q| for the absence detector. We call an initial configuration, a
configuration that specifies the initial state of each agent of the population and
the initial absence vector of the absence detector w.r.t. a given input assignment
x (as previously described). Let C, C′ be two configurations and u ∈ V − {a},
a ∈ {0, 1}|Q| be an agent and the absence vector of the detector, respectively.
We denote by C(u) the state of agent u ∈ V under configuration C. We say

that C yields C′ via encounter (u, a) ∈ E and denote by C
(u,a)−→ C′, if C′(u) =

γ(C(u), a), C′(w) = C(w), ∀w ∈ (V − {u, a}) and C′(a) = a′ so that a′[q] = 0,
∀q ∈ Q where ∃w ∈ V : C′(w) = q and a′[q] = 1 otherwise. The previous
transition can be similarly defined for the reverse interaction (a, u). In addition,
given two distinct agents u, υ ∈ V , where u, υ �= a, we say that C yields C′ via
encounter e = (u, υ) ∈ E and denoted by C

e−→ C′, if C′(u) = δ1(C(u), C(υ)),
C′(υ) = δ2(C(u), C(υ)), C′(w) = C(w), for all w ∈ (V − {u, υ, a}) and C′(a) =
a′ updated as previously. We say that C can go to C′ in one step, denoted

C → C′, if C t→ C′ for some t ∈ E. We write C
∗→ C′ if there is a sequence of

configurations C = C0, C1, . . . , Ck = C′, such that Ci → Ci+1 for all i, 0 ≤ i < k,
in which case we say that C′ is reachable from C.

We call an execution any finite or infinite sequence of configurations C0, C1,
C2, . . ., where C0 is an initial configuration and Ci → Ci+1, for all i ≥ 0. The
interacting pairs are chosen by an adversary. A strong global fairness condition
is imposed on the adversary to ensure the protocol makes progress. An infinite
execution is fair if for every pair of configurations C and C′ such that C → C′, if
C occurs infinitely often in the execution then so does C′. An adversary scheduler
is fair if it always leads to fair executions. A computation is an infinite fair
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execution. An interaction between two agents is called effective if at least one
of the initiator’s or the responder’s states is modified (that is, if C, C′ are the
configurations before and after the interaction, respectively, then C′ �= C).

Note that since X,Y, and Q are finite, the description of an AD is independent
from the population size n. Moreover, agents cannot have unique identifiers
(uids) since their are unable to store them in their memory. As a result, the
AD model preserves both uniformity and anonymity properties that the basic
Population Protocols have.

5.1 Stable Computation

We call a predicate over X∗ any function p : X∗ → {0, 1}. p is called symmet-
ric if for every x ∈ X∗ and any x′ which is a permutation of x’s symbols, it
holds that p(x) = p(x′) (in words, permuting the input symbols does not affect
the predicate’s outcome). In this work we are interested in the computation of
symmetric predicates.

A configuration C is called output stable if for every configuration C′ that is
reachable from C it holds that ω(C′(u)) = ω(C(u)) for all u ∈ V , where ω(C(u))
is the output of agent u under configuration C. In simple words, no agent changes
its output in any subsequent step and no matter how the computation proceeds.
We assume that a is the only agent that does not have an output. So the output
of the population concerns only the rest of the agents.

A predicate p over X∗ is said to be stably computable by the AD model, if
there exists a ADA such that for any input assignment x ∈ X∗, any computation
of A on a complete interaction graph of |x|+ 1 nodes beginning from the initial
configuration corresponding to x reaches an output stable configuration in which
all agents except a output p(x).

The existence of an absence detector allows for halting computations. An AD
A = (XA, YA, QA, IA, ωA, δA, γA), is halting if there are two special subsets
Qh accept, Qh reject ⊆ QA, in which any agent stops participating in effective
interactions (halts), giving output 1, 0 respectively. We say that a predicate p
over X∗ is computable by a halting AD A if for any input assignment x ∈
X∗, any computation of A on a complete interaction graph of |x| + 1 nodes
beginning from the initial configuration corresponding to x reaches an output
stable configuration in which, after a finite number of interactions, all agents,
except for a, are in states of Qh accept if p(x) = 1 and of Qh reject otherwise.

Let SPACE(f(n)) (NSPACE(f(n))) be the class of languages decidable
by some (non) deterministic TM in O(f(n)) space. For any class L denote by
SL its commutative subclass. In addition, we denote by SEM, the class of the
semilinear predicates, consisting of all predicates definable by first-order logical
formulas of Presburger arithmetic (see, e.g., [GS66]).

6 Examples and Properties

We begin with a leader-election AD. X = {1}, Q = {l, f, qhalt}, I(1) = f , δ is
defined as (l, f) → (l, qhalt), and γ as (f, a) → l, if a[l] = 1 and (l, a) → qhalt, if
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a[f ] = 1. Note that both the output alphabet and the output function are not
specified since the output is meaningless in this setting. The interactions that
are not specified in δ and γ are ineffective.

Proposition 1. The above protocol is a leader election AD.

Proof. It is easy to see that a leader is initially generated that halts the non-
leaders computation. The leader halts once it is informed by the absence detector
that all non-leaders have halted. �

The following are some interesting properties of the AD model.

Proposition 2. Any AD with stabilizing states has an equivalent halting AD.

Proof. {0, 1}|Q| can be partitioned into a state stable subset and a state unstable
subset. a ∈ {0, 1}|Q| is state stable iff for all q1, q2 ∈ Q (not necessarily distinct)
such that a[q1] = a[q2] = 0, δ(q1, q2) = (q1, q2) and γ(q1, a) = q1. If we let
all agents know in advance the above partitioning (note that this is constant
information, so storing it is feasible) then we have the required termination
criterion; that is, an agent halts iff it encounters a detector with a state stable
absence vector. �

From now on, we only consider ADs that halt.

A very interesting feature of ADs is that they can be sequentially composed.
This means that given two ADs A and B we can construct a AD C which has the
input of A and the output of B given A’s output as input. First, C runs as A on
its inputs and once the absence detector detects A’s halt, C starts B’s execution
on using the output of A as input. The next theorem exploits the sequential
composition of ADs to show that any AD can assume the existence of a unique
leader.

Proposition 3. Any AD A has an equivalent AD B that assumes a unique
leader which does not obtain any input.

Proof. For the one direction, B may trivially simulate A by ignoring the leader.
Then for all computations of A on n agents there is an equivalent computation
of B on n+ 1 agents. For the other direction, A first elects a unique leader and
then simulates B by considering the input of the agent that has been elected as
a leader as a “virtual” agent. The leader creates a bit which moves between the
non-leaders. Whenever the leader encounters the bit it interacts with the virtual
agent that it carries in its own state. The role of the leader in the “virtual”
interaction, that is, whether it is the initiator or the responder can be determined
by its role in the real interaction in which it encountered the bit. Note that B’s
computations on n+ 1 ≥ 3 agents are simulated by A on n agents. �

Based on this fact, we only consider ADs that assume the existence of such a
unique leader in the initial configuration that is responsible for all effective inter-
actions (non-leader interactions do not cause state modifications). We denote by
HAD the class of all predicates computable by some AD with a unique leader.
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6.1 The Power of 2 Protocol

We now construct an AD that computes the non-semilinear predicate (N1 = 2d),
which is true if the number of 1s in the input is a power of 2 (Protocol 1). This
protocol illustrates the ability of ADs to perform iterative computations (which
was impossible in PP model).

Protocol 1. Power of 2

1: X = {1}, Q = ({l} × {q0, q1, q2, q3, q4}) ∪ ({n} × {1, 1̄, 1′}) ∪ {qaccept, qreject},
2: I(1) = (n, 1) only for the non-leaders,
3: the leader is initialized to (l, q0),
4: δ:

(l, q0), (n, 1) → (l, q1), (n, 1̄)

(l, q1), (n, 1) → (l, q2), (n, 1̄)

(l, q2), (n, 1) → (l, q3), (n, 1
′)

(l, q3), (n, 1) → (l, q2), (n, 1̄)

(l, q4), (n, 1
′) → (l, q4), (n, 1)

5: γ:

(l, q2), a → qaccept, if a[n, 1] = a[n, 1′] = 1

→ (l, q4), if if a[n, 1] = 1 and a[n, 1′] = 0

(l, q3), a → qreject, if a[n, 1] = 1 and a[n, 1′] = 0

(l, q4), a → (l, q1), if a[n, 1′] = 1

7 Computational Power

We now explore the computational power of the CTS model via the AD model.
In particular, we provide several lower bounds and an upper bound for the class
HAD. By Theorem 1, that we just present, these results carry over to the class
of languages computable by CTS protocols.

Theorem 1. The CTS model is computationally equivalent to the leader-AD
model.

Proof. The CTS-leader may form an absence vector by walking around and
keeping track of present states until it covers the whole population. The AD-
leader detects the completion of a covering by marking all nodes that it meets
and asking the absence detector whether all nodes have been marked. �




Terminating Population Protocols 85

7.1 PPs vs. ADs

In [AAER07], they defined the k-truncate of a configuration c ∈ INQ as τk(c)[q] :=
min(k, c[q]) for all q ∈ Q.

Lemma 1. For all finite k and any initial configuration c ∈ INQ, there is an
AD that aggregates in one agent τk(c).

Proof. The unique leader is aware of the finite bound k and initiates a |Q|-
vector full of zeros except for a 1 in the position of its own state (note that since
the leader election protocol is halting we are allowed to first elect a leader and
then execute a second procedure based on the assumption of a leader). When a
leader interacts with a non-leader, then the non-leader halts and if the leader’s
counter corresponding to the non-leader’s state was less than k, then the leader
increments it by one. The leader halts when the absence detector informs it that
non-leaders are absent. �

Theorem 2. SEM ⊆ HAD.

Proof. It was proved in [AAER07] that, for any PP with stabilizing outputs,
there exists a finite k such that a configuration is output stable iff its k-truncate
is output stable (and the output values are preserved). We let the AD know the k
corresponding to the simulated PP. The AD-leader performs a constant number
of simulation steps, e.g. k, and then does the following. It marks all non-leaders
one after the other, while gathering the k-truncate of their current configuration
c. When the detector informs the leader that no unmarked non-leaders have
remained, the leader checks whether τk(c) is output-stable (since k is finite and
independent of the population size, we may as in Proposition 2 assume that the
leader knows in advance the subset of output stable k-truncates). If it is, then c
must also be output stable and the protocol halts. If not, then neither is c and
the leader drops this truncate, restores one after the other all non-leaders and
when no marked non-leader has remained it continues the PP’s simulation for
another constant number of steps, and so on. �

Taking into account Theorem 2 and the non-semilinear power of 2 predicate
(Protocol 1) we have that SEM � HAD.

7.2 Better Lower Bounds and an Upper Bound

We construct now an AD that computes the predicate (bNd1
1 Nd2

2 · · · Ndk

k < c),
where b and c are integer constants and di and k are nonnegative constants. We
again make w.l.o.g. the assumption of a unique leader, and for further simplifi-
cation we forget about the leader’s input.

To simplify the description we first present an AD (Protocol 2) that computes
(bNd

1 < c). Define [c] := {0, 1, . . . , |c|} if c < 0 and [c] := {−c,−c+ 1, . . . , 0} if
c ≥ 0. Define u−i to be the subvector of a vector u consisting of all components
of u except from component i. We write a vector u as (j, u−i) when we want to
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Protocol 2. VarPower

1: X = {s1}, Q = ({l1, l2, . . . , ld, le1, le2, . . . , led} × [c]) ∪ {0, 1}d ∪ {qaccept, qreject},
2: I(s1) = 0d,
3: the initial state of the leader is (l1,−c),
4: δ:

(li, w), (0, u−i) → (li+1, w), (1, u−i), if i < d

→ qaccept, if i = d and c ≥ 0, w + b ≤ −c or c < 0, w + b < 0

→ qreject, if i = d and c ≥ 0, w + b ≥ 0 or c < 0, w + b ≥ −c

→ (li, w + b), (1, u−i), if i = d and c ≥ 0,−c ≤ w + b < 0 or

c < 0, 0 ≤ w + b < |c|
(lei , w), (1, u−i) → (lei , w), (0, u−i)

5: γ:

(li, w), a → (lei , w), if a[0, u−i] = 1 and i > 1

→ qaccept, if a[0, u−i] = 1, i = 1 and w < 0

→ qreject, if a[0, u−i] = 1, i = 1 and w ≥ 0

(lei , w), a → (li−1, w), if a[1, u−i] = 1

emphasize that component i of u has the value j. Given an absence vector a,
a[j, u−i] = 1 is true iff (j, u−i) is absent from the population for all u−i.

We now extend the above construction to devise an AD for the predicate
(bNd1

1 Nd2
2 · · ·Ndk

k < c), where b and c are integer constants and k is a nonneg-
ative constant. The idea is simple. The leader now holds a k-vector of vectors,
l, where li is a di-vector of states, similar to those of Protocol 2, in order to
execute k copies of Protocol 2. The leader still holds a unique counter initialized
to −c. Similarly, each agent has k components, one for each subprotocol. The
AD, in fact, produces all possible assignments of states to lij . Initially, one step
of each subprotocol is executed, then all steps of subprotocol k is executed, then
k is reinitialized, k − 1 is proceeded for one step and again all possible steps of
k are executed, when all possible combinations of k − 1 and k have been ex-
hausted, k− 2 proceeds for one step, and all possible combinations of k− 1 and
k are reproduced, and so on. After each step, except for the first k− 1 steps, the
terminating conditions of Protocol 2 are checked and if no one is satisfied b is
added to the leader’s counter.

Finally, by exploiting the above constructions we devise an AD that computes
the predicate

∑l
d1,d2,...,dk=0 ad1,d2,...,dk

Nd1
1 Nd2

2 · · ·Ndk

k < c, where ad1,d2,...,dk
and

c are integer constants and l and k are nonnegative constants. Here, a difference
to the previous protocol is that we have many copies of it running in parallel,
their number being equal to the number of nonzero coefficients, and each one of
them adds to the counter its own coefficient ad1,d2,...,dk

.
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A key difference is that the counter bounds are now set to −s, s, where s :=
max(maxd1,d2,...,dk=0,...,l |ad1,d2,...,dk

|, |c|), and that when we say “in parallel” we
can implement this in a round-robin fashion, and let the protocol terminate when
no subprotocol can proceed without exceeding the bounds. Then the halting de-
cision simply depends on whether the leader’s counter is negative or not. We
conclude with the following lower bound on HAD.

Theorem 3. Any predicate of the form
∑l

d1,d2,...,dk=0 ad1,d2,...,dk
Nd1

1 Nd2
2 · · ·

Ndk

k < c, where ad1,d2,...,dk
and c are integer constants and l and k are non-

negative constants, is in HAD.

Simulating a Counter Machine. In this Section, we prove that ADs and
one-way (online) counter machines (CMs) [FMR68, Min61] can simulate each
other.

The space required by a CM in processing its input is the maximum value that
any of its counters obtains in the course of the computation. A language L ⊆ Σ∗

is said to be CM-decidable in O(f(n)) space if some CM which operates in space
O(f(n)) accepts any w ∈ L and rejects any w′ ∈ Σ∗\L. Let CMSPACE(f(n))
(NCMSPACE(f(n)) for nondeterministic CMs) be the class of all languages
that are CM-decidable in O(f(n)) space. Recall that by SCMSPACE(f(n))
(SNCMSPACE(f(n))) we denote its symmetric subclass. The following well-
known theorem states that any CM of space O(f(n)) can be simulated by a TM
of space O(log f(n)) and conversely.

Theorem 4 ([FMR68]). CMSPACE(f(n)) = SPACE(log f(n)) and
NCMSPACE(f(n)) = NSPACE(log f(n)).

The above result can also be found as Lemma 3, page 94, in [Iba04].

Corollary 1. SCMSPACE(f(n)) = SSPACE(log f(n)) and
SNCMSPACE(f(n)) = SNSPACE(log f(n)).

We are now ready to establish our final bounds on HAD.

Theorem 5. SSPACE(logn) = SCMSPACE(n) ⊆ HAD ⊆
SNSPACE(logn) ⊆ SSPACE(log2 n).

Proof. For the lower bound, we show that ADs can simulate CMs (SSPA-
CE(logn) = SCMSPACE(n) is from [FMR68]). The CM consists of a control
unit, an input terminal, and a constant number of counters. The AD simulates
the control unit by its unique leader, which is responsible for carrying out the
simulation. The input terminal is formed by the actual input slots of the agents.
The k counters are stored by creating a k-vector of bits in the memory of each
agent. In this manner, each counter is distributed across the agents. The value
of the ith counter at any time is determined by the number of 1s appearing in
the ith components of the agents. Since the number of agents is equal to the
number of input symbols the space of each counter is linear to the input size
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(in fact, we can easily make this O(n) by allowing c bits in each component
instead of just one). To take a step, the CM reads or not the next symbol from
the input and the sign (0 or positive) of each tape and then, if it read the input,
moves to the next input symbol and updates the contents of the counters. The
leader of the AD waits or not to encounter an agent whose input is not erased
(unread), in the former case erases that input symbol, and waits to encounter
the absence detector to learn the set of zero counters. When the latter happens,
the leader obtains a vector of -1s, 0, and 1, representing the value to be added to
each counter. From that point on, the leader adds these values wherever possi-
ble until all of them have been added. Then the leader continues the simulation
as above. The proof for the upper bound is similar to the one of Theorem 15
in [AAD+06]. We construct a TM that, starting from any initial configuration,
nondeterministically guesses all reachable configurations and always stores at
most one. We also invoke Savitch’s theorem [Sav70]. �

In the full paper, we also prove that ADs can simulate Multiset Linear Bounded
Automata with Detection (MLBAD) [CVMVM01, Vas08]. This implies that ADs
can compute any language produced by random context grammars. Finally, we
establish that nondeterministic ADs are computationally equivalent to the de-
terministic ones.

8 Conclusions

In this work, we proposed the CTS model a new extension of the PP model of
Angluin et al. that additionally assumes the existence of a cover-time service. By
reduction to the absence detector oracle model we were able to investigate and
almost completely characterize the computational power of the new model. The
introduced global knowledge enables CTSs to perform halting computations, a
feature that was missing from the PP model. We explored the properties and
the computability of the new model and focused more on halting computations.
We showed that all predicates in SSPACE(logn) are also in HAD and that
the latter is a subset of SSPACE(log2 n).

Many interesting questions remain open. The bounds given in this work for
halting ADs are not tight. An exact characterization of HAD is still elusive. In
addition, what happens in the case where the detector does not correctly de-
tect the existing states in the population? Do the protocols presented here work
correctly in the case of an adversarial detector? In addition, how is the com-
putability of graph properties of the interaction graph affected by the absence
detectors presence? Finally, can one simplify the proof of the upper bound of
PPs [AAER07] by simulating them by a one-way 1-CM or by a nondeterministic
pushdown automaton?
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