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Abstract. We consider deterministic terminating exploration of a grid by a team
of asynchronous oblivious robots. We first consider the semi-synchronous atomic
model ATOM. In this model, we exhibit the minimal number of robots to solve the
problem w.r.t. the size of the grid. We then consider the asynchronous non-atomic
model CORDA. ATOM being strictly stronger than CORDA, the previous bounds
also hold in CORDA, and we propose deterministic algorithms in CORDA that
matches these bounds. The above results show that except in two particular cases,
3 robots are necessary and sufficient to deterministically explore a grid of at least
three nodes. The optimal number of robots for the two remaining cases is: 4 for
the (2, 2)-Grid and 5 for the (3, 3)-Grid, respectively.

1 Introduction

We consider autonomous robots that are endowed with motion actuators and visibility
sensors, but that are otherwise unable to communicate. Those robots must collaborate to
solve a collective task, here the deterministic terminating grid exploration (exploration
for short), despite being limited with respect to input from the environment, asymmetry,
memory, etc. So far, two universes have been studied: the continuous two-dimensional
Euclidean space and the discrete universe. In the former, robots freely move on a plane
using visual sensors with perfect accuracy that permit to locate all other robots with
infinite precision (e.g., [1,2,3]). In the latter, the space is partitioned into a finite num-
ber of locations, conventionally represented by a graph, where the nodes represent the
possible locations that a robot can take and the edges the possibility for a robot to move
from one location to another (e.g., [4,5,6,7,8,9,10]).

In this paper, we pursue research in the discrete universe and focus on the explo-
ration problem when the network is an anonymous unoriented grid, using a team of
autonomous mobile robots. Exploration requires that robots explore the grid and stop
when the task completion. In other words, every node of the grid must be visited by at
least one robot and the protocol eventually terminates.
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The robots we consider are anonymous, uniform, and unable to communicate, how-
ever they can sense their environment and take decisions according to their own view.
In addition, they are oblivious, i.e., they do not remember their past actions.

The fact that robots have to stop after exploring all locations requires them to some-
how remember at any time of the process which part of the graph has been visited yet.
Nevertheless, under this weak scenario, robots have no memory and thus are unable to
remember the various steps taken before. In addition, they are unable to communicate
explicitly. Therefore the positions of the other robots are the only way to distinguish the
different stages of the exploration process. The main complexity measure is then the
minimal number of required robots. Since numerous symmetric configurations induce
a large number of required robots, minimizing the number of robots turns out to be a
difficult problem. As a matter of fact, in [8], it is shown that, in general, Ω(n) robots
are necessary to explore a tree network of n nodes deterministically.

Related Work. In [7], authors proved that no deterministic exploration is possible on
a ring when the number of robots k divides the number of nodes n. In the same pa-
per, the authors proposed a deterministic algorithm that solves the problem using at
least 17 robots provided that n and k are co-prime. In [10], Lamani et al. proved that
there exists no deterministic protocol that can explore an even sized ring with k ≤ 4
robots, even in the atomic model ATOM [3]. Impossibility results in ATOM naturally
extend in the asynchronous non-atomic model CORDA [11]. Lamani et al. also provide
in [10] a protocol in CORDA that allows 5 robots to deterministically explore any ring
whose size is co-prime with 5. By contrast, four robots are necessary and sufficient to
probabilistically explore of any ring of size at least 4 in ATOM [6,5].

To our knowledge, grid-shaped networks were only considered in the context of
anonymous and oblivious robot exploration [4] for a variant of the exploration problem
where robots perpetually explore all nodes in the grid. Also, contrary to this paper,
the protocols presented in [4] make use of a common sense of direction for all robots
(common north, south, east, and west directions) and assume an essentially synchronous
scheduling.

Contribution. In this paper, we propose optimal (w.r.t. the number of robots) solutions
for the deterministic terminating exploration of a grid-shaped network by a team of k
asynchronous oblivious robots in the CORDA model.

In more details, we first consider the ATOM model, which is a strictly stronger model
than CORDA. We show that it is impossible to explore a grid of at least three nodes with
less than three robots. Next, we show that it is impossible to explore a (2, 2)-Grid with
less than 4 robots, and a (3, 3)-Grid with less than 5 robots, respectively. The two first
results hold for both deterministic and probabilistic explorations, while the latter holds
only in the deterministic case. Note also that these impossibility results naturally extend
to CORDA.

Then, we propose several deterministic algorithms in CORDA to exhibit the optimal
number of robots allowing to explore of a given grid. Our results show that except in
two particular cases, 3 robots are necessary and sufficient to deterministically explore a
grid of at least three nodes. The optimal number of robots for the two remaining cases
is: 4 for the (2, 2)-Grid and 5 for the (3, 3)-Grid, respectively.
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The above results show that, perhaps surprisingly, exploring a grid is easier than ex-
ploring a ring. In the ring, deterministic solutions essentially require five robots [10]
while probabilities enable solutions with only four robots [6,5]. In the grid, three robots
are necessary and sufficient in all but two cases even for deterministic protocols, the two
latter cases do require four or five robots. Also, deterministically exploring a grid re-
quires no primality condition while deterministically exploring a ring expects the num-
ber k of robots to be co-prime with n, the number of nodes.

Roadmap. Section 2 presents the system model and the problem to be solved. Lower
bounds are shown in Section 3. The deterministic general solution using three robots is
given in Section 4. (Note that exploring a (2, 2)-Grid using 4 robots is trivially possible,
henceforth not considered in this paper.) Section 5 gives some concluding remarks.
Due to the lack of space, the special case with five robots is omitted, see the technical
report [12] for details.

2 Preliminaries

Distributed Systems. We consider systems of autonomous mobile entities called agents
or robots evolving in a simple unoriented connected graph G = (V,E), where V is a
finite set of nodes and E a finite set of edges. In G, nodes represent locations that can
be sensed by robots and edges represent the possibility for a robot to move from one
location to another. We assume that G is an (i, j)-Grid (or a Grid, for short) where i, j
are two positive integers, i.e., G satisfies the following two conditions: (i) |V | = i × j
and (ii) there exists an order on the nodes of V , v1, . . . , vi·j , such that ∀x ∈ [1..i× j],
(x mod i) �= 0 ⇒ {vx, vx+1} ∈ E, and ∀y ∈ [1..i× (j − 1)], {vy, vy+i} ∈ E.

We denote by n = i× j the number of nodes in G. We denote by δ(v) the degree of
node v in G. Nodes of the grid are anonymous. (We may use indices, but for notation
purposes only.) Moreover, given two neighboring nodes u and v, there is no explicit or
implicit labelling allowing the robots to determine whether u is either on the left, on the
right, above, or below v. Remark that an (i, j)-Grid and a (j, i)-Grid are isomorphic.
Hence, as the nodes are anonymous, we cannot distinguish an (i, j)-Grid from a (j, i)-
Grid. So, without loss of generality, we always consider (i, j)-Grids, where i ≤ j. Note
also that any (1, j)-Grid is isomorphic to a chain. In any (i, j)-Grid, if i = 1, then either
the grid consists of one single node, or two nodes are of degree 1 and all other nodes
are of degree 2; otherwise, when i > 1, four nodes are of degree 2 and all other nodes
are of degree either 3 or 4. In any grid, the nodes of smallest degree are called corners.
In any (1, j)-Grid with j > 1, the unique chain linking the two corners is called the
borderline. In any (i, j)-Grid such that i > 1, there exist four chains v1, . . . , vm of
length at least 2 such that δ(v1) = δ(vm) = 2, and ∀x, 1 < x < m, δ(vx) = 3, these
chains are also called the borderlines.

Robots and Computation. Operating on G are k ≤ n robots. The robots do not com-
municate in an explicit way; however they see the position of the other robots and
can acquire knowledge based on this information. We assume that the robots cannot
remember any previous observation nor computation performed in any previous step.
Such robots are said to be oblivious (or memoryless).
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Each robot operates according to its (local) program. We call protocol a collection
of k programs, each one operating on one single robot. Here we assume that robots are
uniform and anonymous, i.e., they all have the same program using no local parameter
(such as an identity) that could permit to differentiate them. The program of a robot
consists in executing Look-Compute-Move (LCM) cycles infinitely many times. That
is, the robot first observes its environment (Look phase). Then, based on its observation
and according its program, the robot then decides to move or stay idle (Compute phase).
When the robot decides to move, it moves from its current node to a neighboring node
during the Move phase.

We consider two models: the semi-synchronous and atomic model called ATOM [3],
and the asynchronous non-atomic model called CORDA [11]. In both models, time is
represented by an infinite sequence of instants 0, 1, 2, . . . No robot has access to this
global time. Moreover, every robot executes cycles infinitely many times. Each robot
performs its own cycles in sequence. However, the time between two cycles of the
same robot and the interleavings between cycles of different robots are decided by an
adversary. We are interested in algorithms that correctly operate despite the choices
of the adversary. In particular, our algorithms should also work even if the adversary
forces the execution to be fully sequential or fully synchronous. In ATOM, each LCM
cycle execution is assumed to be atomic: every robot that is activated (by the adversary)
at instant t instantaneously executes a full cycle between t and t+1. In CORDA, LCM
cycles are performed asynchronously by each robot: the time between Look, Compute,
and Move operations is finite yet unbounded, and is decided by the adversary. The only
constraint is that both Move and Look are instantaneous.

Note that in both models, any robot performing a Look operation sees all other robots
on nodes and not on edges. However, in CORDA, a robot R may perform a Look oper-
ation at some time t, perceiving robots at some nodes, then Compute a target neighbor
at some time t′ > t, and Move to this neighbor at some later time t′′ > t′ in which
some robots are at different nodes from those previously perceived by R because in
the meantime they moved. Hence, in CORDA robots may move based on significantly
outdated perceptions. Of course, ATOM is stronger than CORDA. So, to be as general
as possible, in this paper, our impossibility results are written assuming ATOM, while
our algorithms assume CORDA.

Multiplicity. We assume that during the Look phase, every robot can perceive whether
several robots are located on the same node or not. This ability is called Multiplicity
Detection. We shall indicate by di(t) the multiplicity of robots present in node ui at
instant t. We consider two kinds of multiplicity detection: the strong and weak mul-
tiplicity detections. Under the weak multiplicity detection, for every node ui, di is a
function N �→ {◦,⊥,�} defined as follows: di(t) is equal to either ◦, ⊥, or � accord-
ing to ui contains none, one or several robots at time instant t. If di(t) = ◦, then we say
that ui is free at instant t, otherwise ui is said occupied at instant t. If di(t) = �, then
we say that ui contains a tower at instant t. Under the strong multiplicity detection, for
every node ui, di is a function N �→ N where di(t) = j indicates that there are j robots
in node ui at instant t. If di(t) = 0, then we say that ui is free at instant t, otherwise ui

is said occupied at instant t. If di(t) > 1, then we say that ui contains a tower (of di(t)
robots) at instant t.
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As previously, to be as general as possible, our impossibility results are written as-
suming the strong multiplicity detection, while our algorithms assume the weak multi-
plicity detection.

Configurations, Views and Execution. To define the notion of configuration, we need
to use an arbitrary order ≺ on nodes. The system being anonymous, robots do not know
this order. Let v1, . . . , vn be the list of the nodes in G ordered by ≺. The configura-
tion at time t is d1(t), . . . , dn(t). We denote by initial configurations the configurations
from which the system can start at time 0. Every configuration where all robots stay
idle forever is said to be terminal. Two configurations d1, . . . , dn and d′1, . . . , d

′
n are

indistinguishable (distinguishable otherwise) if and only if there exists an automor-
phism f on G satisfying the additional condition: ∀vi ∈ V , we have di = d′j where
vj = f(vi).

The view of robot R at time t is a labelled graph isomorphic to G, where every node
ui is labelled by di(t), except the node where R is currently located, this latter node uj

is labelled by dj(t), ∗. (Indeed, any robot knows the multiplicity of the node where it is
located.) Hence, from its view, a robot can compute the view of each other robot, and
decide whether some other robots have the same view as its own.

Every decision to move is based on the view obtained during the last Look action.
However, it may happen that some edges incident to a node v currently occupied by
the deciding robot look identical in its view, i.e., v lies on a symmetric axis of the
configuration. In this case, if the robot decides to take one of these edges, it may take
any of them. We assume the worst-case decision in such cases, i.e. the actual edge
among the identically looking ones is chosen by the adversary.

We model the executions of our protocol in G by the list of configurations through
which the system goes. So, an execution is a maximal list of configurations γ0, . . . , γi
such that ∀j > 0, we have: (i) γj−1 �= γj , (ii) γj is obtained from γj−1 after some
robots move from their locations in γj−1 to a neighboring node, and (iii) For every
robot R that moves between γj−1 and γj , there exists 0 ≤ j′ ≤ j, such that R takes its
decision to move according to its program and its view in γj′ . An execution γ0, . . . , γi
is said to be sequential if and only if ∀j > 0, exactly one robot moves between γj−1

and γj .

Exploration. We consider the exploration problem, where k robots, initially placed at
different nodes, collectively explore an (i, j)-grid before stopping moving forever. By
“collectively” explore we mean that every node is eventually visited by at least one
robot. More formally, a protocol P deterministically (resp. probabilistically) solves the
exploration problem if and only if every execution e of P starting from a towerless
configuration1 satisfies: (1) e terminates in finite time (resp. with probability 1), and (2)
every node is visited by at least one robot during e.

Observe that the exploration problem is not defined for k > n and is straightforward
for k = n. (In this latter case the exploration is already accomplished in the initial
towerless configuration.)

1 The initial configuration must be towerless to make the exploration solvable in our model.
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3 Bounds

In this section, we first show that, except for trivial case where k = n, if (i) robots are
oblivious, (ii) the model is ATOM, and (iii) the multiplicity is strong (i.e., the strongest
possible assumptions), at least three robots are necessary to solve the (probabilistic or
deterministic) exploration of any grid (Theorem 2). Moreover, in a (2, 2)-Grid, four
robots are necessary (Theorem 3). Finally, at least five robots are necessary to solve
the deterministic exploration of a (3, 3)-Grid (Theorem 4). In the two next sections, we
show that all these bounds are also sufficient to solve the deterministic exploration in
the asynchronous and non-atomic CORDA model.

Given that robots are oblivious, if there are more nodes than robots, then any terminal
configuration should be distinguishable from any possible initial (towerless) configura-
tion. So, we have:

Remark 1. Any terminal configuration of any (probabilistic or deterministic) explo-
ration protocol for a grid of n nodes using k < n oblivious robots contains at least one
tower.

Theorem 2. There exists no (probabilistic or deterministic) exploration protocol in
ATOM using k ≤ 2 oblivious robots for any (i, j)-Grid made of at least 3 nodes.

Proof. By Remark 1, there is no protocol allowing one robot to explore any (i, j)-Grid
made of at least 2 nodes. Indeed, any configuration is towerless in this case. Assume by
contradiction, that there exists a protocolP in ATOM to explore with 2 oblivious robots
an (i, j)-Grid made of at least 3 nodes. Consider a sequential execution e of P that ter-
minates. (By definition, if we consider a deterministic exploration, then all executions
should terminate; while if we consider a probabilistic exploration, at least one of the
sequential execution should terminate.) Then, e starts from a towerless configuration
(by definition) and eventually reaches a terminal configuration containing a tower (by
Remark 1). As e is sequential, the two last configurations of e consist of a towerless con-
figuration followed by a configuration containing one tower. These two configurations
form a possible sequential execution that terminates while only two nodes are visited,
thus a contradiction. �

Any (2, 2)-Grid is isomorphic to a 4-size ring. It is shown in [6] that no (probabilistic or
deterministic) exploration using less than four oblivious robots is possible for any ring
of size at least four in ATOM. So:

Theorem 3 ([6]). There exists no (probabilistic or deterministic) exploration protocol
using k ≤ 3 oblivious robots in ATOM for a (2, 2)-Grid.

Theorem 4. There exists no deterministic exploration protocol in ATOM using k ≤ 4
oblivious robots for a (3, 3)-Grid.

Proof Outline. From Theorem 2, k must be greater or equal to 3. Consider first the
case of k = 3 robots and, assume for the sake of contradiction, that there exists a
deterministic protocol P in ATOM that uses 3 robots to explore a (3, 3)-Grid. Then, we
can show the following claims:
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1. There exist sequential executions of P , e = γ0, . . . , γw, in which: (a) for every x, y
with 0 ≤ x < y, γx and γy are distinguishable, and (b) only the first configuration
γ0 is towerless.

2. If there exists an execution of P , e = γ0 . . . γx . . ., where γx contains a tower of 3
robots, then there exists an execution e′ starting with the prefix e = γ0 . . . γx such
that at most one new node can be visited after γx.

3. In any suffix γw, . . . , γz of any sequential execution of P where (a) for every x, y
with 0 ≤ x < y, γx and γy are distinguishable, and (b) γw contains a tower of 2
robots, then at most 4 new nodes can be visited from γw before a robot of the tower
moves.

Using these three claims, we can show that there exist some executions of P that termi-
nate while at least one node has not been visited, a contradiction.
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Fig. 1. Three possible configurations in a (3, 3)-Grid with 4 robots. Numbers inside the circles
represent the multiplicity of the node.

Consider now the case of four robots. The proof consists in showing that, starting
from particular configurations, the adversary can always maintain symmetries. To see
this, refer to Figure 1 that depicts three possible configurations for a (3, 3)-Grid with 4
robots — numbers inside the circles represent the multiplicity of the node. Note that
both Configuration (a) and (b) can be initial configurations. By activating the four
robots synchronously and starting from Configuration (a), the adversary may lead the
system in either Configuration (b) or Configuration (c). Then, in both cases, the adver-
sary may prevent the termination of the exploration, no matter the protocol is. �

4 Deterministic Solution Using Three Robots

In this section, we focus on the deterministic exploration of a grid by three robots, in
CORDA, and assuming weak multiplicity detection. Recall that there exists no deter-
ministic solution for the exploration using three robots in a (2, 2)- or (3, 3)-grid as-
suming that model (Section 3). Moreover, exploring a (1, 3)-grid using three robots is
straightforward. So, we consider all remaining cases. We split our study in two cases.
An overview of the deterministic solution for any (i, j)-grid such that j > 3 is given in
Subsection 4.1. The particular case of the (2, 3)-grid is solved in Subsection 4.2.



Optimal Grid Exploration by Asynchronous Oblivious Robots 71

4.1 Main Algorithm

Overview. Our algorithm works according to the following three phases:

• Set-Up. The aim of this phase is to reach a configuration, called Set-Up configu-
ration, where there is a single line of robots starting at a corner and along one of the
longest borderlines of the grid—refer to Figure 2. The phase is initiated from any
towerless configuration that is not a Set-Up configuration. Note that no tower is
created during this phase. Details about this phase are given in the next subsection.

• Orientation. This phase follows the Set-Up phase and consists of a single
move where the robot which is at the corner move to its adjacent occupied node.
Once it has moved, a tower is created. The resulting configuration is called an
Oriented configuration in which, the robots can agree on a common coordinate
system as show in Figure 3. The node with coordinates (0, 0) is the unique corner
that is the closest to the tower. The x-axis is given by the vector linking the node
(0, 0) to the node where the tower is located. The y-axis is given by the vector
linking the node (0, 0) to its neighboring node that does not contain the tower.

• Exploration. This phase starts from an Oriented configuration. Note that in
nodes of coordinates (0, 0), (0, 1), and (0, 2) have been visited. So, the goal is to
visit all the other nodes. To ensure that the exploration phase remains distinct from
the previous phases and keep the coordinate system, we only authorize the robot
that does not belong to the tower to move. This robot is called the explorer.
To explore all remaining nodes, the explorer should order all coordinates in such
a way that (a) (0, 0) and (0, 1) are before its initial position (that is (0, 2)) and
all other coordinates are after; and (b) for all non-maximum coordinates (x, y), if
(x′, y′) are successor of (x, y) in the order, then the nodes of coordinates (x, y)
and (x′, y′) are neighbors. An example of such an order is �, defined as follows:
(x, y) � (x′, y′) if and only if y < y′ ∨ [y = y′ ∧ (x = x′ ∨ y mod 2 = 0 ∧ x <
x′ ∨ y mod 2 = 1 ∧ x > x′)].
Using �, the explorer moves as follows: While the explorer is not located at the
node having the maximum coordinates according to �, the explorer moves to the
neighboring node whose coordinates are successors of the coordinates of its current
position, as described in Figure 4.

The Set-Up Phase. In the following, we denote by Dist(R,R′) the distance (i.e., the
length of the shortest path) between the two nodes of the grid where R and R′ are
respectively located.

We now present the behavior of the three robots, respectively referred to as R1,R2,
and R3,2 according to three main kinds of configurations: Leader, Choice, and
Undefined. These classes will be split into several sub-classes.

I) The configuration is of type Leader: Any towerless configuration where there is
exactly one robot that is at a corner of the grid. Let R1 be this robot.
Let consider the following subcases:

2 Recall that robots are anonymous, so these notations are only used to ease the explanations.
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Fig. 2. Set-Up Configuration

(0,3) (0,4) (0,5) (0,6)

(1,6)(1,5)(1,4)(1,3)(1,2)(1,1)(1,0)

(2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (2,2)

(3,6)(3,5)(3,4)(3,3)(3,2)(3,1)(3,0)

(4,6)(4,5)(4,4)(4,3)(4,2)(4,1)(4,0)

(0,0) (0,1) (0,2)

Fig. 3. Coordinate system built by the
Orientation phase

Fig. 4. Exploration phase

C1 C2

R1 R2

R3

Fig. 5. Sample of a configuration of type
Undefined4-4

A) The configuration is of type Strict-Leader: In such a configuration, there is
no other robot on any borderline having the corner where R1 is located as extrem-
ity. In this case, the robots that are the closest to R1 are the ones allowed to move.
Their destination is their adjacent free node on a shortest path towards the closest
free node that is on a longest borderline having the corner where R1 is located as
extremity. (If there is several shortest paths, the adversary makes the choice.)
B) The configuration is of type Half-Leader: In such a configuration, among
R2 and R3, only one robot, say R2, is on a borderline having the corner where R1
is located as extremity. Two subcases are possible:

– The configuration is of type Half-Leader1: R2 is on a longest borderline.
In this case, the third robot R3 is the one allowed to move. Its destination is an
adjacent free node towards a closest free node on the borderline that contains
both R1 and R2. (If there is several shortest paths, the adversary makes the
choice.)

– The configuration is of type Half-Leader2:R2 is not on the longest border-
line. In this case, R2 is the one allowed to move, its destination is the adjacent
free node outside the borderline, if any. In the case where there is no such a free
node, R2 moves to a free node on its own borderline. (In case of symmetry, the
adversary makes the choice.)

C) The configuration is of type All-Leader: All the robots are on a borderline
having the corner where R1 is located as extremity. In this case, R2 and R3 are
not necessarily on the same borderline. So, we have two subcases:
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– The configuration is of type Fully-Leader: In such a configuration, all the
robots are on the same borderline, D1. The two following subcases are then
possible:

(1) The configuration is of type Fully-Leader1: In this case, D1 is a
longest borderline. If the robots form a line, then the Set-Up configuration
is reached and the phase is done. Otherwise, let R2 be the closest robot from
R1. If R1 and R2 are not neighbors, then R2 is the only one allowed to move
and its destination is the adjacent free node towards R1. In the other case, R3
is the only robot allowed to move and its destination is the adjacent free node
towards R2.
(2) The configuration is of type Fully-Leader2: In this case, D1 is not
a longest borderline. Then, the robot among R2 and R3 that is the closest to
R1 leaves the borderline by moving to its neighboring free node outside the
borderline.

– The configuration is of type Semi-Leader: R2 and R3 are not on the same
borderline. Two subcases are possible:

(1) The configuration is of type Semi-Leader1: In this case, i �= j. The
unique robot among R2 and R3 which is located on a smallest borderline
moves to the adjacent free node outside its borderline.
(2) The configuration is of type Semi-Leader2: In this case, i = j. Let de-
note by Dist(R,R′) the distance (that is, the length of the shortest path) in
the grid between the two nodes where R and R′ are respectively located. If
Dist(R1,R2) �= Dist(R1,R3), then the robot among R2 and R3 that is the
closest to R1 is the only one allowed to move, its destination is the adjacent
free node outside the borderline. Otherwise (Dist(R1,R2) =Dist(R1,R3)),
either (a) there is a free node betweenR1 andR2, or (b) R1 is both neighbor of
R2 and R3. In case (a), R1 is the only robot allowed to move and its destina-
tion is an adjacent free node towards one of its two borderlines. (The adversary
makes the choice.) In case (b), R2 and R3 move and their destination is their
adjacent free node on their borderline.

II) The configuration is of type Choice: Any towerless configuration, where at least
two robots are located at a corner.
We consider two cases:
A) The configuration is of type Choice1: In this configuration, there are exactly
two robots that are located at a corner of the grid. Let R1 and R2 be these robots.

– In the case where R3 is on the same borderline as either R1 or R2 but not both
— suppose R1 — then R2 is the one allowed to move, its destination is the
adjacent free node towards the closest free node of the borderline that contains
both R1 and R3.

– In the case where the three robots are on the same borderline. Then:
(1) If Dist(R1,R3) �= Dist(R2,R3), then the robot among R1 and R2 that
is farthest to R3 moves to the adjacent free node on the borderline towards R3.
(2) Otherwise (Dist(R1,R3) = Dist(R2,R3)), and R3 has either or not
an adjacent free node on the borderline. In the former case, R3 moves to an
adjacent free node on the borderline towards either R1 or R2. (The adversary
makes the choice.) In the latter case, R3 moves to its adjacent free node outside
the borderline.
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– If R3 is not on any borderline, it moves to an adjacent free node on a shortest
path towards the closest free node that is on a longest borderline that contains
either R1 or R2. (In case of symmetry, the adversary makes the choice.)

B) The configuration is of type Choice2: In this configuration, all the robots are
located at a corner. The robot allowed to move is the one that is located at a node
that is common to the two borderlines of the other robots. Let R1 be this robot.
The destination of R1 is the adjacent free node on a longest borderline. (In case of
symmetry, the adversary makes the choice.)

III) The configuration is of type Undefined: Any towerless configuration where there
is no robot that is located at any corner.
The cases below are then possible:
A) The configuration is of type Undefined1: In this case, i = j and there is one
borderline that contains two robots R1 and R2 such that R1 is closer from a corner
than R2 andR3. Let D1 be this borderline.R3 is the only one allowed to move and
its destination is an adjacent free node on a shortest path towards the closest free
node of D1. (If there are several shortest paths, the adversary makes the choice.)
B) The configuration is of type Undefined2: It is any configuration different
from Undefined1, where there is exactly one robot that is the closest to a corner.
In this case, this robot is the only one allowed to move, its destination is an adjacent
free node on a shortest path to a closest corner. (If there are several possibilities,
the adversary makes the choice.)
C) The configuration is of type Undefined3: There are exactly two robots that
are closest to a corner. Let R1 and R2 be these two robots.

– If Dist(R1,R3) = Dist(R2,R3), then R3 is the only one allowed to move,
and either Dist(R1, R3) = 1 or Dist(R1,R3) > 1. In the former case, R3
moves to an adjacent free node. (If there are two possibilities, the adversary
makes the choice.) In the latter case, R3 moves to an adjacent free node from
which its distance to R1 will be different from its distance to R2. (There will
be two possibilities and the adversary will make a choice.)

– If Dist(R1,R3) �= Dist(R2,R3), then the robot among R1 and R2 that is
closest to R3 is the only one allowed to move. Its destination is the adjacent
free node that is on a shortest path to a closest corner. (If there are several
possibilities, the adversary makes the choice.)

D) The configuration is of type Undefined4: There are three robots that are
closest to a corner. Again, four cases are possible:

– The configuration is of type Undefined4-1: There is exactly one robot that
is on a borderline. In this case, this robot is the only one allowed to move. Its
destination is an adjacent free node that is on a shortest path to a closest corner.
(In case of two shortest paths, the adversary breaks the symmetry in the first
step.)

– The configuration is of type Undefined4-2: In such a configuration, there
are exactly two robots on a borderline. Let R1 and R2 be these two robots. The
robot allowed to move is R3. Its destination is the adjacent free node towards
a closest corner. (The adversary may have to break the symmetry.)

– The configuration is of type Undefined4-3: The three robots are on border-
lines of the grid.
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(1) There are more than one robot on the same borderline: In this case, there
are exactly two robots on the same borderline, and let R1 and R2 be these
robots. Then R3 is the only one allowed to move and its destination is an
adjacent free node towards a closest corner. (The adversary may have to break
the symmetry.)
(2) There is at most one robot on each borderline: Exactly one borderline is
perpendicular to the two others. Only the robot on that borderline moves and
its destination is the adjacent node towards a closest corner. (The adversary
may have to break the symmetry.)

– The configuration is of type Undefined4-4: In this case, there is no robot
on any borderline.
(1) In the case where there are two robots, R1 and R2, that are closest to the
same corner, and this corner is not a closest corner to R3, then R3 is the only
robot allowed to move and its destination is an adjacent free node on a shortest
path towards a closest corner. (If there are several possibilities, the adversary
makes the choice.)
(2) In the case where there are two robots, R1 and R2, that are closest to
corners C1 and C2, respectively, where C1 �= C2, and R3 is closest to both
C1 and C2, then R3 is the only one allowed to move (see Figure 5), and it
moves toward C1 or C2 according to a choice of the adversary.
(3) In the case where all the robots are closest to different corners, there is one
robot R1 whom corner is between the two corners targeted by R2 and R3.
The robot allowed to move is R1, its destination is an adjacent free node on a
shortest path towards its closest corner. (If there are several shortest paths, the
adversary makes the choice.)

The next theorem can be proven using the state diagram of the algorithm:

Theorem 5. The three phases Set-Up, Orientation, and Exploration deter-
ministically solve the exploration problem with 3 oblivious robots in CORDA for any
(i, j)-Grid such that j > 3.

4.2 Exploring a (2,3)-Grid

The idea for the (2, 3)-Grid is rather simple. Consider the two longest borderlines of
the grid. Since there are initially three isolated robots on the grid, there exists one of the
two longest borderlines, say D, that contains either all the robots or exactly two robots.
In the second case, the robot that is not part of D moves to the adjacent free node on the
shortest path towards the free node of D. Thus, the three robots are eventually located
on D. Next, the robot not located at any corner moves to one of its two neighboring
occupied nodes. (The destination is chosen by the adversary.) Thus, a tower is created.
Once the tower is created, the grid is oriented. Then, the single robot moves to the
adjacent free node in the longest borderline that does not contain any tower. Next, it
explores the nodes of this line by moving towards the tower. When it becomes neighbor
of the tower, all the nodes of the (2, 3)-Grid have been explored.

Theorem 6. The deterministic exploration of a (2, 3)-Grid can be solved in CORDA
using 3 oblivious robots.
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5 Conclusion

We presented necessary and sufficient conditions to explore a grid with a team of k
asynchronous oblivious robots. Our results show that, perhaps surprisingly, exploring a
grid is easier than exploring a ring. In the ring, deterministic (respectively, probabilis-
tic) solutions essentially require five (resp., four) robots. In the grid, three robots are
necessary (even in the probabilistic case) and sufficient (even in the deterministic case)
in the all but two cases, while the two remaining instances do require four and five
robots, respectively. Note that the general algorithm given in that paper requires exactly
three robots. It is worth investigating whether exploration of a grid of n nodes can be
achieved using any number k (3 > k ≥ n− 1) of robots, in particular when k is even.
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