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Abstract. A self-stabilizing protocol is guaranteed to eventually reach
a safe (or legitimate) configuration even when started from an arbitrary
configuration. Most of self-stabilizing protocols require each process to
keep communicating with all of its neighbors forever even after reaching
a safe configuration. Such permanent communication impairs efficiency,
but is necessary in nature of self-stabilization.

The concept of communication-efficiency was introduced to reduce
communication after reaching a safe configuration. The previous concept
targets the point-to-point communication model, and is not appropriate
to the wireless network model where a process can locally broadcast a
message to its neighbors all at once.

In this paper, we refine the concept of the communication-efficiency
for the wireless network model, and investigate its possibility in self-
stabilization for some fundamental problems; the minimal (connected)
dominating set problem, the maximal independent set problem, and the
spanning tree construction problem.

1 Introduction

A self-stabilizing protocol [1] is guaranteed to eventually reach a safe (or legit-
imate) configuration even when started from an arbitrary configuration. This
property enables self-stabilizing protocols to autonomously adapt to transient
faults and dynamical topology changes of networks. A main concern in effi-
ciency of self-stabilizing protocols is efficiency in convergence after faults, i.e.,
the convergence time required to reach a safe configuration from any configu-
ration. The convergence time is a natural efficiency measure of self-stabilizing
protocols since it is very similar to the time complexity measure of ordinary (non-
self-stabilizing) protocols. However, a crucial difference in communication cost
between self-stabilizing and ordinary protocols lies in the cost of communication
after convergence to a safe configuration; self-stabilizing protocols cannot allow
any process to terminate its communication even after reaching a safe configura-
tion, while ordinary ones can eventually allow every process to terminate all the
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activity. Especially, in practical applications, communication efficiency is more
important after convergence than during convergence: self-stabilizing protocols
are expected to stay at safe configurations most of the time since deviations from
the safe configurations caused by transient faults or topology changes occur in-
frequently. Nevertheless, most of self-stabilizing protocols require each process
to keep communicating with all the neighbors forever.

To circumvent the inefficiency after reaching a safe configuration, the con-
cept of communication-efficiency was introduced [2,3]. The concept is targeting
the point-to-point communication model in the sense that the communication
efficiency is achieved by reducing the number of process pairs that keep commu-
nicating with each other after reaching a safe configuration. Thus, the concept
is not appropriate to the wireless network model where a process can locally
broadcast a message to its neighbors all at once.

Contribution of this paper: The contribution of this paper is threefold.

1. We introduce new communication efficiency measures for the wireless net-
work model, k-broadcast-stability and k(-average)-broadcast-efficiency 1. In-
formally, the k-broadcast-stability guarantees that at most k processes keep
(locally) broadcasting after reaching a safe configuration. On the other hand,
the k(-average)-broadcast-efficiency guarantees that at most k processes
broadcast messages every step (on average) after reaching a safe configu-
ration (the broadcasting processes can differ at different steps). Notice that
these concepts are derived from the k-stability and the k-efficiency in [2] as
refinements for the wireless network model.

2. Concerning the broadcast-stability, we show the following results.

– For the the minimal connected dominating set (MCDS) problem and the
spanning tree construction (ST) problem, the (n− 1)-broadcast-stability
is impossible to attain, where n is the number of processes in the network.
This result implies that any self-stabilizing protocol for the problems
requires all the processes to keep broadcasting forever.

– For the minimal dominating set (MDS) problem and the maximal inde-
pendent set (MIS) problem, (Imin

G −1)-broadcast-stability is impossible to
attain but IMax

G -broadcast-stability is attainable, where Imin
G and IMax

G

are respectively the minimum and the maximum sizes of the maximal
independent set of the network.

An interesting observation from these results is that the connectivity re-
quirement of the minimal dominating set makes an essential difference in
possibility of the broadcast-stability.

3. Concerning the average-broadcast-efficiency, we show the following results.

– For the MCDS, the MDS, the MIS and the ST problems, o(n)-average-
broadcast-efficiency is practically impossible to attain if processes know
no upper bound of n. More precisely, the convergence time of any o(n)-
average-broadcast-efficient protocol cannot be bounded.

1 These measures are also summarized in a brief survey paper [4].
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– When every process knows an upper bound N of n, there exists a uni-
versal 1-average-broadcast-efficient protocol with the convergence time
O(N) for all the static problems. The strong result is obtained by pre-
senting a transformer from a silent self-stabilizing protocol with a known
convergence time T to a 1-average-broadcast-efficient self-stabilizing pro-
tocol with the convergence time O(T +N).

Related works: Aguilera et al. [5] introduced the concept of communication-
efficiency in implementation of failure detector Ω. Following the work, some
papers investigated communication-efficiency in failure detector implementation
[6,7,8,9]. The implementations in [5,6,9] can tolerate any number of crash pro-
cesses and require only n− 1 unidirectional links to carry messages forever.

Some works [2,3] discussed communication-efficiency of self-stabilizing proto-
cols in the point-to-point communication model. The communication-efficiency
is achieved by reducing the number of process pairs that keep communicating
with each other after convergence to a safe configuration. They introduced two
concepts, stability and efficiency, as quantitative measures of communication-
efficiency. Informally, the stability guarantees that the number of process pairs
that keep communicating with each other is limited. On the other hand, the effi-
ciency guarantees that the number of process pairs that communicate with each
other is limited at every step (the pairs can differ at different steps). They inves-
tigated the stability and the efficiency for the vertex coloring problem, the MIS
problem, the maximal matching problem [2], and the ST problem [3]. Another
challenge, communication adaptability, to reduce communication complexity af-
ter reaching a safe configuration is presented in [10].

Kutten et al. [11] pointed out that reducing the communication overhead
after convergence leads longer convergence time, and results in increasing the
communication overhead during convergence. They presented a randomized self-
stabilizing protocol that succeeds to reduce the communication overhead both
during and after convergence for the ST problem.

The rest of the paper is organized as follows. Section 2 presents definitions of
the wireless network model, self-stabilizing protocols, and the communication-
efficiency. Sections 3 and 4 investigate possibility of the broadcast-stability, and
Sections 5 and 6 investigate possibility of the broadcast-efficiency. Section 7
concludes this paper.

2 Preliminaries

2.1 System Model

We consider distributed systems with a (local) broadcast communication prim-
itive such as wireless communication. The system model is defined as follows.

A distributed system is modeled by an undirected labeled graph G = (P (G),
L(G)), where P (G) is the set of n processes and L(G) is the set of bidirectional
communication links. Each process v ∈ P (G) has a unique ID denoted by IDv.
A link connecting processes v and w is denoted by (v, w). We say w is a neighbor
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of v if (v, w) ∈ L(G), and the set of neighbors of v is denoted by NG(v) (or
simply by N(v) when G is apparent). We consider only connected distributed
systems and denote the set of such systems by G.

A process can communicate with its neighbors by (local) broadcast: when
a process v broadcasts a message, each neighbor w ∈ N(v) of v receives the
message. We assume that the broadcast is reliable and all the neighbors correctly
receive the message.

An important feature of wireless networks such as ad hoc ones is that a process
is unaware of its neighbors until it receives messages from them. Thus, we assume
each process v has no knowledge of N(v) or |N(v)|. Also, when v receives a
message, it cannot identify its sender unless the message contains the sender’s ID.

A process is modeled by a state machine and a configuration of a distributed
system G is specified by an n-tuple c = (s0, s1, . . . , sn−1), where si stands for
the state of process vi (0 ≤ i ≤ n − 1). We consider only a synchronous dis-
tributed system where all processes execute actions in a lockstep fashion. In
each synchronous step, every process executes the following three operations.

1. Broadcast a message (depending on its state) to all the neighbors.
2. Receive messages from neighbors that are sent in the beginning of the step.
3. Update its state (depending on its state and the received messages).

When the configuration changes from c to c′ in a step, we denote the transition by
c �→ c′. Execution of a distributed system is an infinite sequence E = c0, c1, c2, . . .
satisfying cj �→ cj+1 (j ≥ 0), where c0 is called the initial configuration. In this
paper, we consider only deterministic protocols, and thus, execution starting
from the initial configuration c0 is uniquely determined.

2.2 Self-stabilizing Protocol

A problem is defined on the output variables of processes and specifies the re-
quirement that the output variables should satisfy. A problem is called static
when the output variables should be eventually stable with satisfying the prob-
lem requirement. All the problems considered in this paper are static.

A configuration c is called safe for a static problem when it satisfies the
problem requirement and the output variables of all processes remain unchanged
in the execution starting from c. A protocol is called self-stabilizing for a static
problem if it eventually reaches a safe configuration even when starting from any
initial configuration.

2.3 Communication Efficiency

The previous concept of communication efficiency [2,3] aims to reduce the num-
ber of communicating process pairs. But it is not adequate to a distributed
system with a broadcast communication primitive, where a process can send
a message to all the neighbors by a single broadcast operation. We introduce
an alternative concept of communication efficiency for distributed systems with
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a broadcast communication primitive. Intuitively, communication-efficiency in
such a system should aim to reduce the number of broadcasts after convergence.

In the following definitions, k : G → IN denotes a function from a distributed
system to a positive integer, and SA,G(c) denotes the set of processes that broad-
cast messages in the step starting at configuration c of a protocol A .

Definition 1 (k(G)-broadcast-stability). Aself-stabilizing protocolA is k(G)-
broadcast-stable if, for any execution c0, c1, . . . of A in any distributed systemG ∈
G, there exists i such that a suffix ci, ci+1, . . . satisfies

∣
∣
∣

⋃

j≥i SA,G(cj)
∣
∣
∣ ≤ k(G). ��

The k(G)-broadcast-stability guarantees that eventually at most k(G) processes
keep broadcasting, and thus, at least n− k(G) processes eventually stop broad-
casting.

Definition 2 (k(G)-broadcast-efficiency). A self-stabilizing protocol A is
k(G)-broadcast-efficient if, for any execution c0, c1, . . . of A in any distributed
system G ∈ G, there exists i such that a suffix ci, ci+1, . . . satisfies

∀j ≥ i, |SA,G(cj)| ≤ k(G). ��
The k(G)-broadcast-efficiency guarantees that eventually at most k(G) processes
broadcast messages in every step. Note that the broadcasting processes can
differ at different steps. It is clear that k(G)-broadcast-stability implies k(G)-
broadcast-efficiency, but the converse does not hold.

A relaxed variation of the k(G)-broadcast-efficiency is to allow at most k(G)
processes to broadcast messages in every step on average, which attains communi-
cation-efficiency practically equivalent to the k(G)-broadcast-efficiency. The vari-
ation is defined as follows.

Definition 3 (k(G)-average-broadcast-efficiency). A self-stabilizing proto-
col A is k(G)-average-broadcast-efficient if, for any execution c0, c1, . . . of A in
any distributed system G ∈ G, there exists i such that a suffix ci, ci+1, . . . satisfies

limj→∞ 1
j−i+1

∑j
k=i |SA,G(ck)| ≤ k(G). ��

3 Impossibility of Broadcast-Stability

This section presents impossibility results concerning the broadcast-stability.
The impossibility proofs are based on the simple observations that any process
cannot become aware of changes of the processes that never broadcast messages.
The details of the observations are as follows.

Observation 1: Let G be a distributed system, E = c0, c1, . . . be an execution
of a protocol A in G, and U be a set of processes that never broadcast mes-
sages in E. Consider any distributed system G′ obtained from G by removing
some processes in U , removing some links between remaining processes in
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Fig. 1. Construction of G′ in Observations. (a) G and U = {p, q, r, s} in Observation
1. (b) An example of G′ in Observation 1. (c) G1, G2, . . . , G6 in Observation 2. (d) An
example of G′ in Observation 2.

U , and adding some links between remaining processes in U (Fig. 1(a),(b)).
(When G′ obtained by the above modification is disconnected, any of its
connected components is considered as G′.) Then, E′ = c′0, c′1, . . . is an ex-
ecution of A in G′ such that the state of every process at c′i is the same as
that at ci for every i (i ≥ 0).

Observation 2: Let G1, G2, . . . , Gn be distributed systems such that the pro-
cess sets are mutually disjoint, Ex = cx,0, cx,1, . . . be an execution of a proto-
col A in Gx, and vx be a process (if exists) that never broadcasts or receives
messages in Ex (1 ≤ x ≤ n). Consider any distributed system G′ consisting
of processes {v1, v2, . . . , vn} and arbitrarily added links (Fig. 1(c),(d)). Then,
E′ = c′0, c

′
1, . . . is an execution of A in G′ such that the state of every process

vx at c′i is the same as that at cx,i for every x (1 ≤ x ≤ n) and i (i ≥ 0).

3.1 Spanning Tree Construction

The spanning tree construction (ST) problem requires each process to select a
neighbor as its parent so that the parent relations of all processes form a spanning
tree of the distributed system. Each process has an output variable prnt to store
the ID of its parent. In the process selected as the root of the spanning tree, prnt
stores its own ID.

The broadcast-stability is impossible to attain for the ST problem:

Theorem 1. Let k(G) be any function satisfying k(G) < n(= |P (G)|) for any
distributed system G ∈ G. There is no k(G)-broadcast-stable self-stabilizing pro-
tocol for the spanning tree construction problem.

Proof. Assume, for contradiction, that there exists a k(G)-broadcast-stable self-
stabilizing protocol A for the ST problem. Then, any execution of A in G has
a suffix E = ci, ci+1, . . . in which a spanning tree is constructed (and remains
unchanged) and at least one process never broadcasts messages.

(a) Case that there exists a non-leaf process, say v, of the spanning tree that
never broadcasts messages in E: Let G′ be the distributed system obtained from
G by removing v, and E′ = c′i, c

′
i+1, . . . be the execution of A in G′ described
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in Observation 1. In E′, the output variable prnt of every process remains un-
changed. However, the variables of all the processes do not form a spanning tree,
since there is a neighbor w ∈ NG(v) of v that selects v as its parent but v does
not exist in G′. This implies that protocol A cannot reach a safe configuration
in E′, which is a contradiction.

(b) Case that only leaf processes of the spanning tree never broadcast messages
in E: Let G′ be the distributed system obtained from G by removing all the
processes that never broadcast in E, and E′ = c′i, c

′
i+1, . . . be the execution of

A in G′ described in Observation 1. No process stops broadcasting in E′, which
contradicts k(G′)-broadcast-stability for k(G′) < |P (G′)|. ��

3.2 Minimal Connected Dominating Set

A dominating set of G is a subset D ⊆ P (G) of processes such that each process
v ∈ P (G) − D has a neighbor in D. If the subgraph G[D] of G induced by
a dominating set D is connected, D is a connected dominating set of G. If no
proper subset of (connected) dominating set D is a (connected) dominating set,
D is a minimal (connected) dominating set.

The minimal connected dominating set (MCDS) problem requires us to choose
processes so that they should form a MCDS of the distributed system. Each
process has a boolean output variable mcds and stores true when it is a member
of the MCDS.

Theorem 2. Let k(G) be any function satisfying k(G) < n(= |P (G)|) for any
distributed system G ∈ G. There is no k(G)-broadcast-stable self-stabilizing pro-
tocol for the minimal connected dominating set problem.

Proof. We can prove this theorem by similar argument to the proof of Theorem
1, with restricting our attention to distributed systems of line topology (n ≥ 6).
Notice that the MCDS of such a system is uniquely determined as the set of all
the processes except for the two end processes. ��

3.3 Minimal Dominating Set and Maximal Independent Set
Problems

For the minimal dominating set (MDS) problem, we can prove the following
impossibility result, which is weaker than Theorem 2 for the MCDS problem.
Actually, we can present a broadcast-stable self-stabilizing protocol for the MDS
problem in Section 4. These results show that the connectivity requirement of
the minimal dominating set brings an essential difference in possibility of the
broadcast-stability.

Theorem 3. Let k(G) be any function satisfying k(G) < Imin
G for any dis-

tributed system G ∈ G where Imin
G is the minimum size of the maximal indepen-

dent set of G. There is no k(G)-broadcast-stable self-stabilizing protocol for the
minimal dominating set problem.
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Proof. We restrict our attention to distributed systems of line topology, and as-
sume, for contradiction, that there exists a k(G)-broadcast-stable self-stabilizing
protocol A for the MDS problem.

Let Pn be the set of n-process distributed systems of line topology. Since
Imin
G = �n/3� holds for any G ∈ Pn, at least n− �n/3�+ 1 processes eventually
stop broadcasting in any execution of A. In case of n = 3� for a positive integer
�, this implies that there exist, in any execution of A, three consecutive processes
that eventually stop broadcasting. Notice that the process in the middle of the
three never broadcasts or receives messages after some configuration in the exe-
cution. Thus, Observation 2 allows us to construct a distributed system of line
topology by choosing such a process from each of some distributed systems.

More concretely, we consider n distributed systems P1, P2, . . . , Pn (Pi ∈ Pn)
such that their ID sets are mutually disjoint. We choose, from each Pi, a pro-
cess vi that never broadcasts or receives messages after some configuration in
an execution. Following Observation 2, we can arbitrarily add links, and thus,
we can construct a line that does not satisfy the MDS specification. This is a
contradiction. ��

An independent set of G is a subset I ⊆ P (G) such that no processes in I are
neighboring. If no proper superset of an independent set I is an independent set,
I is a maximal independent set (MIS). The following theorem on impossibility
of the MIS problem is derived from Theorem 3 since any MIS is a MDS.

Theorem 4. Let k(G) be any function satisfying k(G) < Imin
G for any dis-

tributed system G ∈ G. There is no k(G)-broadcast-stable self-stabilizing protocol
for the maximal independent set problem. ��

4 Broadcast-Stable Self-stabilizing Protocol

Theorems 1 and 2 imply that all processes have to keep broadcasting forever
in any self-stabilizing protocol for the ST and the MCDS problems. Thus the
broadcast-stability is impossible to attain for these problems. In this section, we
show possibility of the broadcast-stability for the other two problems, the MDS
and the MIS problems.

A broadcast-stable self-stabilizing protocol, stable-MIS, for the MIS problem
is presented in Protocol 1. Each process v has a boolean output variable indv
to denote whether v is a member of the constructed MIS: v is a member of the
MIS iff indv = true.

The main idea to achieve the broadcast-stability is that only the processes
in the constructed MIS are allowed to keep broadcasting. The assumption of
synchronous distributed systems guarantees that a process v has a neighbor in
the MIS if and only if v receives a message. To break symmetry, the message
contains the sender’s ID and a process with a larger ID has higher priority to
become a member of the MIS.

The following two lemmas obviously hold.
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Protocol 1. stable-MIS : actions of process v in each step.

Output Variables:
1: indv : boolean;
Internal Variables:
2: Mv : set of messages;
Actions:
3: if indv = true then
4: Broadcast({IDv});
5: end if
6: Mv ← received messages;
7: if ∃m ∈Mv[m.ID > IDv] then
8: indv ← false;
9: else
10: indv ← true;
11: end if

Lemma 1 (Safe configuration). A configuration c of protocol stable-MIS is
safe if c satisfies the following conditions:

1. ∀v ∈ P (G), [(indv = true)⇒ (∀w ∈ N(v), indw = false)].
2. ∀v ∈ P (G), [(indv = false)⇒ ∃w ∈ N(v) (IDw > IDv ∧ indw = true)].

��
Lemma 2 (Convergence). Starting from any initial configuration, protocol
stable-MIS reaches a safe configuration in at most n steps. ��
The following theorem is derived from Lemmas 1, 2, and the fact that only
processes in the constructed MIS keep broadcasting. The theorem also holds for
the MDS, since protocol stable-MIS is also a solution to the MDS problem (Recall
any MIS is a MDS). In the theorem, IMax

G denotes the size of the maximum
independent set of G ∈ G.
Theorem 5. Protocol stable-MIS is a IMax

G -broadcast-stable self-stabilizing pro-
tocol for the maximal independent set problem and the minimal dominating set
problem. It reaches a safe configuration in at most n steps in any distributed
system G ∈ G. ��

5 Impossibility of Broadcast-Efficiency

The average-broadcast-efficiency can be improved by prohibiting each process
from broadcasting a message every step and, instead, by allowing each process
to broadcast a message only every k steps for some positive integer k. This
reduces the average-broadcast-efficiency by a factor of k (e.g., from n to n/k),
but may increase the convergence time by a factor of k. Actually, we can show a
negative result when no upper bound of the number of processes n is available at
any process: o(n)-average-broadcast-efficiency is practically impossible to attain
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in the sense that any protocol with such efficiency has no upper bound (even
depending on n) on the convergence time.

The negative result is obtained by the argument based on the following ob-
servation, which is similar to Observation 2. Observation 2 was used to show
existence of an infinite execution in which no process broadcasts messages. On
the other hand, the following observation is used to show existence of a suffi-
ciently (but finite) long fragment of execution in which no process broadcasts
messages.

Observation 3: Let G1, G2, . . . , Gn be distributed systems such that the pro-
cess sets are mutually disjoint, Ex = cx,0, cx,1, . . . be an execution of a proto-
col A in Gx, and vx be a process (if exists) that never broadcasts or receives
messages in an execution prefix Et

x = cx,0, cx,1, . . . , cx,t (1 ≤ x ≤ n).
Consider any distributed system G′ consisting of n processes {v1, v2, . . . , vn}
and arbitrarily added links. Then, E′ = c′0, c

′
1, . . . , c

′
t is an execution prefix

of A in G′ such that the state of every process vx at c′i is the same as that
at cx,i for every x (1 ≤ x ≤ n) and i (0 ≤ i ≤ t).

The following lemma holds for distributed systems of line topology.

Lemma 3. Consider any execution E of any k(G)-average-broadcast-efficient
protocol A in a distributed system G ∈ Pm for any m > 3. There exist three
consecutive processes and an execution fragment composed of � m−3

3k(G)� steps such
that the three processes never broadcast messages during the execution fragment.

��
The following theorem can be obtained by argument similar to the proof of
Theorem 3.

Theorem 6. Assume no upper bound of the number of processes n is available
at any process, and consider any o(n)-average-broadcast-efficient protocol A for
the maximal independent set problem, the minimal dominating set problem, the
minimal connected dominating set problem, or the spanning tree construction
problem. Then, the convergence time of A cannot be bounded by any T (which
may depend on n).

Proof. We restrict our attention to distributed systems of line topology, and
assume, for contradiction, that there exists a k(G)-average-broadcast-efficient
self-stabilizing protocol A for the problem, where k(G) = o(n), with the conver-
gence time bounded by T (which may depend on n).

Let G1, G2, . . . , Gn (Gi ∈ Pm) be n distributed systems of m-process line
topology such that the process sets are mutually disjoint. Each Gi contains a
process, say vi, that is the middle of the three consecutive processes in Lemma 3.
Note that vi never broadcasts or receives messages during the execution fragment
of length � m−3

3k(Gi)
� in Gi. Observation 3 allows us to construct a distributed sys-

tem G of line topology consisting of v1, v2, . . . , vn so that its initial configuration
is not safe and no process broadcasts messages in the first � m−3

3k(Gj)
� steps, where



Communication-Efficient Self-stabilization in Wireless Networks 11

k(Gj) = max1≤i≤n k(Gi). By setting m to satisfy � m−3
3k(Gj)

� > T (k(Gj) = o(m)

guarantees existence of such m), we can show that the convergence time of A is
longer than T , which is a contradiction. ��

6 Broadcast-Efficient Self-stabilizing Protocol

In Section 5, we showed that the o(n)-average-broadcast-efficiency is impossible
to attain without greatly sacrificing the convergence time if no upper bound
of n is available. However, the situation drastically changes if an upper bound
N of n is available. In this section, we show that knowledge of N allows the
1-average-broadcast-efficiency without paying high penalty on the convergence
time: we present a method for transforming any silent self-stabilizing protocol
with a known (upper bound of) convergence time T to a 1-average-broadcast-
efficient self-stabilizing protocol with the convergence time O(T +N).

We assume that an upper bound N of n is known to each process. We also
assume that a self-stabilizing protocol A given as an input of the transformation
satisfies the following conditions (called input conditions).

(a) A is silent, that is, no process changes its state after reaching a safe config-
uration.

(b) In any execution, every process broadcasts a message every step.
(c) In any unsafe configuration c, there exists at least one process that changes

its state in the step from c.
(d) An upper bound T of the convergence time is known.

Protocol 2 presents the transformation method by showing the protocol Eff(A)
resulting from the input protocol A. The main idea for attaining the 1-average-
broadcast-efficiency is to allow each process to broadcast a message only every
N steps after reaching a safe configuration of A. It is obvious that such slow-
down in activity brings the 1-average-broadcast-efficiency to A. However it is
impossible for a self-stabilizing protocol to correctly detect a safe configuration.
Especially, the fault positive in the detection may increase the convergence time
of A from T to NT : when processes prematurely slow down before reaching a
safe configuration, the convergence time may become N times longer.

The idea for overcoming this difficulty comes from the following observations.

1. Even when every process prematurely detects a safe configuration and re-
stricts it to broadcast a message only every N steps, each process can acquire
the states of all the neighbors in N steps. Thus, from the input condition
(c), there exists a process that changes its state in N steps. This implies that
the premature slowdown can be detected in N steps.

2. When a process detects the premature slowdown, it can signal, in n steps,
all processes to stop the slowdown and come back to ordinary execution of
A that allows all processes to broadcast messages every step.

3. Once all processes execute ordinary execution of A during T steps, the pro-
tocol reaches and remains at a safe configuration.
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To realize a method inspired from the above observations, we use a local clock
of each process and clock synchronization. Each process v has variable clockv :
{0, . . . , T + 2N} as a local clock, and uses it as follows.

1. The local clocks of all the processes become synchronized by executing
clockv ← min{min{clockw|w ∈ NG(v) ∪ {v}}+ 1, T + 2N}.

The intuition is that processes try to adjust their clocks to that with the
lowest clock value, and the clock value is bounded by T + 2N . As long as
clockv is synchronized with those of the neighbors, the clock value increases
by one every step until it reaches T + 2N .

2. Any clock value less than T + 2N suggests that a safe configuration is not
reached yet (though the suggestion may not be correct). Thus, it makes
process v execute ordinary execution of protocol A.

3. Clock value T+2N suggests that the configuration is safe (though the sugges-
tion may not be correct). Thus, it makes process v slowdown and broadcast
a message only every N steps.
Even when clockv = T+2N holds, process v executes actions of A on receipt
of messages. If the configuration is safe, v never changes its state. Thus, a
change of v’s state implies detection of an unsafe configuration. In this case,
v also executes clockv ← 0 to come back to ordinary execution of A. The
clock synchronization mechanism brings, in n steps, all processes back to
ordinary execution of A. We call the process v that executes clockv ← 0 an
initiator.

As we show later, if a safe configuration is not reached sufficiently long time,
the clocks of all processes become synchronized before the clock value of any
process reaches 2N . Once the clocks become synchronized, all processes execute
ordinary execution of A. The ordinary execution lasts during at least T steps
(until the clock value reaches T +2N), which guarantees that protocol A reaches
a safe configuration.

In Protocol 2, each process v has variable statev to store its current state of A,
and executes protocol A using the variable. Each process also has variable cachev
to store the set of messages: for each neighbor w ∈ N(v), the latest message from
w is stored in cachev. Process v uses the stored messages to execute actions of A,
when v receives no message from a neighbor, say w. This situation occurs when
w slows down. Notice that cachev may store false messages from non-neighbors
(that may not exist in the system) in the initial configuration. To eliminate such
false messages, v removes the stored message from w if v receives no message
during N + 1 steps (for simplicity, this action is omitted in Protocol 2).

Lemma 4 (Safe configuration). A configuration of Eff(A) is safe if the fol-
lowing conditions are satisfied.

– ∀v ∈ P (G), clockv = T + 2N .
– ∀v ∈ P (G), cachev stores the latest message from each neighbor w ∈ N(v).
– Letting c′ be an n-tuple (statev0 , . . . , statevn−1) where {v0, . . . , vn−1} = P (G),

c′ is a safe configuration of A. ��
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Protocol 2. Eff(A) : Actions of process v in each step.

Constants:
1: N : upper bound on n
2: T : upper bound on the convergence time of the input protocol A
Variables:
3: statev : a state of v in protocol A
4: cachev : a set of messages received from neighbors
5: clockv : {0, ..., T + 2N}
6: countv : {0, ..., N − 1}
Actions:
7: if clockv < T + 2N then // process v executes ordinary execution of A
8: Broadcast((IDv ,msgv, clockv)); //msgv is the message sent by A
9: Mv ← received messages;
10: Update cachev using Mv to store the latest message from each neighbor;
11: Update statev using cachev by actions of A;
12: clockv ← min({m.clock|m ∈Mv} ∪ {clockv}) + 1;
13: countv ← 0;
14: else // process v executes slowdown execution of A
15: if countv = 0 then
16: Broadcast((IDv ,msgv, clockv)); //msgv is the message sent by A
17: end if
18: Mv ← received messages;
19: Update cachev using Mv to store the latest message from each neighbor;
20: Update statev using cachev by actions of A;
21: if statev changed then // an unsafe configuration is detected
22: clockv ← 0;
23: else if ∃m ∈Mv [m.clock < T + 2N − 1] then
24: clockv ← min{m.clock|m ∈Mv}+ 1;
25: end if
26: countv ← (countv + 1) mod N ;
27: end if

Lemma 5 (Convergence). Starting from any initial configuration, protocol
Eff(A) reaches a safe configuration within 2T + 4N steps.

Proof. We consider any execution E = c0, c1, . . . of Eff(A).

(a) For the case that no initiator appears by cT+N (in the first T + N steps),
we show that Eff(A) reaches a safe configuration by cT+2N : It is clear that the
clocks of all processes become synchronized by cn−1 (although they may already
reach T + 2N). Consider the following T steps (from cn−1 to cT+n−1). If the
clock value does not reach T + 2N by cT+n−1, all processes execute ordinary
execution of A during the T steps, and thus, (statev0 , . . . , statevn−1) reaches a
safe configuration of A by cT+n−1 and remains unchanged after. Then, the clock
value reaches T + 2N by cT+2N , and thus, Eff(A) reaches a safe configuration
by cT+2N . On the other hand, consider the case that the clock value reaches
T + 2N by cT+n−1. Let cg (g ≤ T + n − 1) be the configuration at which the
clock value reaches T +2N . If cg is unsafe, there appears an initiator in the next
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step. Thus, cg is safe, since we are considering the case that no initiator appears
by cT+N . Consequently, Eff(A) reaches a safe configuration by cT+2N .

(b) For the case that an initiator appears by cT+N , we show that Eff(A) reaches a
safe configuration by c2T+4N : Let cf (f ≤ T +N) be the configuration such that
the first initiator, say v, appears in the step from cf−1 to cf . Since clockv ← 0 is
executed in the step, the clock synchronization mechanism spreads the effect to
all the processes in the following n − 1 steps. Thus, the values of all clocks are
no greater than n − 1 at cf+n−1, whether other initiators appear in the period
from cf to cf+n−1 or not. This implies that the clocks of all processes become
synchronized by cf+2n−2 since no initiator appears in the period from cf+n−1

to cf+2n−2. Since the clock value at cf+2n−2 is no greater than 2n, all processes
execute ordinary execution during T steps from cf+2n−2 to cT+f+2n−2, and
(statev0 , . . . , statevn−1) becomes a safe configuration of A by cT+f+2n−2. The
clock value reaches T + 2N by cT+2N+f+n−1. Consequently, Eff(A) reaches a
safe configuration by c2T+4N . ��
It is clear that Protocol Eff(A) is 1-average-broadcast-efficient. Thus, the follow-
ing theorem is obtained from Lemmas 4 and 5.

Theorem 7. Protocol Eff(A) is a self-stabilizing protocol for the problem that
the input self-stabilizing protocol A is targeting. It is also 1-average-broadcast-
efficient and its convergence time is O(T +N), where T is the convergence time
of A and N is a known upper bound of the number of processes n. ��
Many self-stabilizing protocols proposed so far satisfy the input conditions: for
example, self-stabilizing protocols for the MIS problem (also for the MDS prob-
lem) with the convergence time O(n) [12], and for the ST problem with the
convergence time O(N) [13]. Application of the transformer to these protocols
provides 1-average-broadcast-efficient self-stabilizing protocols with the conver-
gence time O(N) for these problems. More interestingly, we can obtain a much
more general result: the 1-average-broadcast-efficiency is attainable for any static
problem without paying high penalty on the convergence time.

Theorem 8. When an upper bound N of the number of processes n is available
at every process, there exists a 1-average-broadcast-efficient self-stabilizing pro-
tocol with the convergence time O(N) for any static problem. ��
To prove Theorem 8, we consider a universal static problem Π on any distributed
system G: each process has an input, and is required to compute an output that
is (deterministically) computable from the complete information of G (i.e., a
graph G where each node v is labeled with IDv and the input of v).

The core of a self-stabilizing protocol for Π is to construct the complete
information of G at each process, and it can be achieved by letting all processes
know the tuple (IDv, NIDv, Inputv) of every process v, where NIDv is the
set of IDs of v’s neighbors and Inputv is the input given at v. There exists a
self-stabilizing protocol for constructing the complete information of G at each
process with the convergence time O(N), and it satisfies the input conditions of
the transformer. Thus, we can obtain Theorem 8.
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7 Conclusion

In this paper, we introduced and investigated communication-efficiency of self-
stabilizing protocols in the distributed system model with the (local) broadcast
primitive. A wireless network is a typical example of the system model, and
the communication-efficiency may play an important role in reducing energy-
consumption, which is a critical issue in the wireless networks. As the first step,
we considered only the reliable broadcast primitive. However, to consider a lossy
broadcast primitive is practically important and is one of our future works.

Another future work is to introduce the sleep mode in which a process stop
broadcasting and receiving messages to save energy consumption, while we as-
sume, in this paper, a process is allowed to receive messages all the time.
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