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Preface

The papers in this volume were presented at the 14th International Symposium
on Stabilization, Safety, and Security of Distributed Systems (SSS), held on
October 1–4, 2012 in Toronto, Canada.

SSS is an international forum for researchers and practitioners working on the
design and development of distributed systems with self-* properties: (classical)
self-stabilizing, self-configuring, self-organizing, self-managing, self-repairing, self-
healing, self-optimizing, self-adaptive, and self-protecting. Research in distributed
systems is now at a crucial point in its evolution, marked by the importance of
dynamic systems such as peer-to-peer networks, large-scale wireless sensor net-
works, mobile ad hoc networks, cloud computing, robotic networks, etc. More-
over, new applications such as grid and web services, banking and e-commerce,
e-health and robotics, aerospace and avionics, automotive, industrial process
control, etc. have joined the traditional applications of distributed systems.

The theory of self-stabilization has been enriched in the last 30 years by
high-quality research contributions in the areas of algorithmic techniques, formal
methodologies, model theoretic issues, and composition techniques. All these
areas are essential to the understanding and maintenance of self-* properties in
fault-tolerant distributed systems.

This year the program was organized into several tracks reflecting most topics
related to self-* systems. The tracks were: (i) Self-Stabilization, (ii) Ad-Hoc and
Sensor Networks, (iii) Fault-Tolerant and Dependable Systems, (iv) Safety and
Security, (v) Cloud Computing, (vi) Formal Methods, (vii) Social Networks, and
(viii) Peer-to-Peer, Self-Organizing, and Autonomic Systems.

We received 75 submissions from 29 countries. Each submission was reviewed
by at least three Program Committee members with the help of external review-
ers. Out of the 75 submissions, 21 papers were selected as regular papers, and
10 papers were accepted as brief announcements. Among the 21 regular papers,
we considered 2 papers for special awards. The best paper award was given
to Tomoya Takimoto, Fukuhito Ooshita, Hirotsugu Kakugawa, and Toshim-
itsu Masuzawa for “Communication-Efficient Self-stabilization in Wireless Net-
works”, and the best student paper award was given to Yanhong A. Liu, Scott D.
Stoller, and Bo Lin for “High-Level Executable Specifications of Distributed Al-
gorithms”. This year, we were very fortunate to have three distinguished keynote
speakers: Dahlia Malkhi, Boaz Patt-Shamir, and Nitin Vaidya.

On behalf of the Program Committee, we would like to thank all the authors
that submitted their work to SSS. We sincerely acknowledge the tremendous
time and effort the Program Track Chairs and the Program Committee members
invested in the symposium. We are also grateful to the external reviewers for their
valuable and insightful comments and to Easychair for tremendously simplifying
the review process and the generation of the proceedings. Finally, we also thank



VI Preface

the Steering Committee members for their valuable advice and the Organizing
Committee members for their time and effort to ensure a successful meeting.

Organizing this event would not have been possible without the financial
support of the Fields Institute for Research in Mathematical Sciences and the
National Science Foundation of the United States.

October 2012 Andrea Richa
Christian Scheideler
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Resilient Distributed Consensus

Nitin H. Vaidya

Dept. of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

Urbana, IL 61801, USA

Abstract. Consensus algorithms allow a set of nodes to reach an agree-
ment on a quantity of interest. For instance, a consensus algorithm may
be used to allow a network of sensors to determine the average value
of samples collected by the different sensors. Similarly, a consensus algo-
rithm can also be used by the nodes to synchronize their clocks. Research
on consensus algorithms has a long history, with contributions from dif-
ferent research communities, including distributed computing, control
systems, and social science.

In this talk, we will discuss two resilient consensus algorithms that
can perform correctly despite the following two types of adversities: (i)
In wireless networks, transmissions are subject to transmission errors,
resulting in packet losses. We will discuss how “average consensus” can
be achieved over such lossy links, without explicitly making the links
reliable, for instance, via retransmissions. (ii) In a distributed setting,
some of the nodes in the network may fail or may be compromised. We
will discuss a consensus algorithm that can tolerate “Byzantine” failures
in partially connected networks.



Low-Congestion Distributed Algorithms

Boaz Patt-Shamir*

School of Electrical Engineering, Tel Aviv University, Tel Aviv 69978, Israel
boaz@eng.tau.ac.il

The traditional model for computing over a communication network (called lo-
cal) allows sending a message of arbitrary size in a single time step. This way,
the time complexity is a measure of the locality of algorithms: saying that an
algorithm runs in time T is equivalent, under the local model, to saying that
the problem can be solved if each node learns all information the nodes which
are reachable within T hops. Therefore, in this model any problem can be solved
in time linear in the network diameter.

While work on the local model has produced many interesting results, it
is widely accepted that this model does not capture the true complexity of dis-
tributed computing: it is mainly useful in understanding what cannot be done
distributively, i.e., lower bounds. A better approximation of reality is the con-
gest model, where a link can carry only a bounded number of bits in a time step.
Usually, it is assumed that message size is O(log n) bits, so that each message can
carry a constant number of reasonably-sized pieces of information, such as node
identifiers, or values of polynomial magnitude. It turned out that in this model,
many problems cannot be solved in o(

√
n) time, even in networks of diameter,

say, O(log n) hops. On the other hand, letting D denote the network diameter
in hops, there are some problems in which the O(D +

√
n) time upper bound is

nearly achievable in the congest model (to within a polylogarithmic factor).
In this talk we review some known results in the congest model, as well as

some new progress directions. In particular, we will consider approximate all-
pairs shortest-paths in weighted graphs, namely we assume that each link has a
positive weight, and the task is to find, for each possible source and destination
nodes a route that connects them, whose total weight is not much larger than
the minimum possible. The best known distributed algorithm for this problem to
date in the congest model in the classical Bellman-Ford algorithm [1, 2], whose
time complexity is proportional to the maximal number of hops in a weighted
shortest path, which could be Ω(n) even in graphs of constant hop-diameter.

References

1. Bellman, R.E.: On a routing problem. Quart. Appl. Math. 16, 87–90 (1958)
2. Ford, L.R.: Network flow theory. Report P-923, The Rand Corp. (1956)

* Supported in part by the Israel Science Foundation (grant 1372/09) and by Israel
Ministry of Science and Technology.



What Happens When Systems Go Elastic?

Dahlia Malkhi

Microsoft Research, Silicon Valley
1288 Pear Ave

Mountain View, CA 94043, USA

Abstract. A reconfiguration operation allows systems to deploy new
hardware, remove failed components, and change various configuration
properties like node roles and weights.
This talk is titled ‘what happens when systems go elastic?’ because the
foundations of dynamic distributed systems are weird. For example, the
classic theory of replication indicates that you need 2F+1 machines to
tolerate F failures, but the entire engineering world uses primary-back
(two-way) replication with F = 1; until recently, there was no existing
liveness model of the type ‘F -out-of-N crashes’ for dynamic systems;
and when you examine Paxos, the flagship consensus protocol for state-
machine-replication, you find that dynamic Paxos reconfiguration causes
unintended violation of causal ordering.
In this talk, we cover progress on several fundamental issues regarding
dynamically reconfigurable systems.

– We tackle the question of liveness, and overview a pioneering straw-
man failure model in which a dynamic system is guaranteed to make
progress. Our model is cast as a dynamic interplay between an ad-
versary and system events.

– We explain precisely the above claim on Paxos, implying a foun-
dational distinction between the popular State-Machine-Replication
paradigm and Virtual Synchrony (a.k.a. group communication).

– Accordingly, We give a recipe for virtually-synchronous reconfigura-
tion of replicated services.

– We demystify the F + 1 vs. 2F + 1 seeming gap, by rigorously inte-
grating into the execution model an auxiliary configuration service
(e.g., industry solutions like Chubby and ZooKeeper).

– We overview our successful efforts to extend the ZooKeeper coordi-
nation service itself to be elastic.

– We demonstrate that no source of agreement is actually necessary for
dynamism per se, breaking the popular gospel that dynamic systems
must maintain agreement on system views.

Acknowledgements: Marcos Aguilera, Ken Birman, Flaviu Junqueira,
Idit Keidar, Leslie Lamport, JP Martin, Ben Reed, Alex Shraer, Robbert
VanRenesse, Lidong Zhou
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Optimal Grid Exploration by Asynchronous Oblivious Robots . . . . . . . . . 64
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José Parizi, Rolf Johansson, and Renato Librino



Table of Contents XIX

Brief Announcement : Arbitrators in the Security Infrastructure . . . . . . . . 236
Shlomi Dolev, Niv Gilboa, and Ofer Hermoni

Optimization in a Self-stabilizing Service Discovery Framework for
Large Scale Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Eddy Caron, Florent Chuffart, Anissa Lamani, and Franck Petit

Scalable Byzantine Agreement with a Random Beacon . . . . . . . . . . . . . . . . 253
Olumuyiwa Oluwasanmi and Jared Saia

On Finding Better Friends in Social Networks . . . . . . . . . . . . . . . . . . . . . . . 266
Philipp Brandes and Roger Wattenhofer

Brief Announcement : Detecting Users’ Connectivity on Online Social
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Na Li, Sajal K. Das, and Nan Zhang

Brief Announcement : Discovering and Assessing Fine-Grained Metrics
in Robot Networks Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

François Bonnet, Xavier Défago, Franck Petit,
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Communication-Efficient Self-stabilization

in Wireless Networks�

Tomoya Takimoto, Fukuhito Ooshita,
Hirotsugu Kakugawa, and Toshimitsu Masuzawa

Graduate School of Information Science and Technology, Osaka University, Japan
{t-takimt,f-oosita,kakugawa,masuzawa}@ist.osaka-u.ac.jp

Abstract. A self-stabilizing protocol is guaranteed to eventually reach
a safe (or legitimate) configuration even when started from an arbitrary
configuration. Most of self-stabilizing protocols require each process to
keep communicating with all of its neighbors forever even after reaching
a safe configuration. Such permanent communication impairs efficiency,
but is necessary in nature of self-stabilization.

The concept of communication-efficiency was introduced to reduce
communication after reaching a safe configuration. The previous concept
targets the point-to-point communication model, and is not appropriate
to the wireless network model where a process can locally broadcast a
message to its neighbors all at once.

In this paper, we refine the concept of the communication-efficiency
for the wireless network model, and investigate its possibility in self-
stabilization for some fundamental problems; the minimal (connected)
dominating set problem, the maximal independent set problem, and the
spanning tree construction problem.

1 Introduction

A self-stabilizing protocol [1] is guaranteed to eventually reach a safe (or legit-
imate) configuration even when started from an arbitrary configuration. This
property enables self-stabilizing protocols to autonomously adapt to transient
faults and dynamical topology changes of networks. A main concern in effi-
ciency of self-stabilizing protocols is efficiency in convergence after faults, i.e.,
the convergence time required to reach a safe configuration from any configu-
ration. The convergence time is a natural efficiency measure of self-stabilizing
protocols since it is very similar to the time complexity measure of ordinary (non-
self-stabilizing) protocols. However, a crucial difference in communication cost
between self-stabilizing and ordinary protocols lies in the cost of communication
after convergence to a safe configuration; self-stabilizing protocols cannot allow
any process to terminate its communication even after reaching a safe configura-
tion, while ordinary ones can eventually allow every process to terminate all the

� This work is supported in part by Grant-in-Aid for Scientific Research ((B)20300012.
(B)22300009, (B)23700056, (C)24500039) of JSPS.

A.W. Richa and C. Scheideler (Eds.): SSS 2012, LNCS 7596, pp. 1–15, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 T. Takimoto et al.

activity. Especially, in practical applications, communication efficiency is more
important after convergence than during convergence: self-stabilizing protocols
are expected to stay at safe configurations most of the time since deviations from
the safe configurations caused by transient faults or topology changes occur in-
frequently. Nevertheless, most of self-stabilizing protocols require each process
to keep communicating with all the neighbors forever.

To circumvent the inefficiency after reaching a safe configuration, the con-
cept of communication-efficiency was introduced [2,3]. The concept is targeting
the point-to-point communication model in the sense that the communication
efficiency is achieved by reducing the number of process pairs that keep commu-
nicating with each other after reaching a safe configuration. Thus, the concept
is not appropriate to the wireless network model where a process can locally
broadcast a message to its neighbors all at once.

Contribution of this paper: The contribution of this paper is threefold.

1. We introduce new communication efficiency measures for the wireless net-
work model, k-broadcast-stability and k(-average)-broadcast-efficiency 1. In-
formally, the k-broadcast-stability guarantees that at most k processes keep
(locally) broadcasting after reaching a safe configuration. On the other hand,
the k(-average)-broadcast-efficiency guarantees that at most k processes
broadcast messages every step (on average) after reaching a safe configu-
ration (the broadcasting processes can differ at different steps). Notice that
these concepts are derived from the k-stability and the k-efficiency in [2] as
refinements for the wireless network model.

2. Concerning the broadcast-stability, we show the following results.

– For the the minimal connected dominating set (MCDS) problem and the
spanning tree construction (ST) problem, the (n− 1)-broadcast-stability
is impossible to attain, where n is the number of processes in the network.
This result implies that any self-stabilizing protocol for the problems
requires all the processes to keep broadcasting forever.

– For the minimal dominating set (MDS) problem and the maximal inde-
pendent set (MIS) problem, (Imin

G −1)-broadcast-stability is impossible to
attain but IMax

G -broadcast-stability is attainable, where Imin
G and IMax

G

are respectively the minimum and the maximum sizes of the maximal
independent set of the network.

An interesting observation from these results is that the connectivity re-
quirement of the minimal dominating set makes an essential difference in
possibility of the broadcast-stability.

3. Concerning the average-broadcast-efficiency, we show the following results.

– For the MCDS, the MDS, the MIS and the ST problems, o(n)-average-
broadcast-efficiency is practically impossible to attain if processes know
no upper bound of n. More precisely, the convergence time of any o(n)-
average-broadcast-efficient protocol cannot be bounded.

1 These measures are also summarized in a brief survey paper [4].
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– When every process knows an upper bound N of n, there exists a uni-
versal 1-average-broadcast-efficient protocol with the convergence time
O(N) for all the static problems. The strong result is obtained by pre-
senting a transformer from a silent self-stabilizing protocol with a known
convergence time T to a 1-average-broadcast-efficient self-stabilizing pro-
tocol with the convergence time O(T +N).

Related works: Aguilera et al. [5] introduced the concept of communication-
efficiency in implementation of failure detector Ω. Following the work, some
papers investigated communication-efficiency in failure detector implementation
[6,7,8,9]. The implementations in [5,6,9] can tolerate any number of crash pro-
cesses and require only n− 1 unidirectional links to carry messages forever.

Some works [2,3] discussed communication-efficiency of self-stabilizing proto-
cols in the point-to-point communication model. The communication-efficiency
is achieved by reducing the number of process pairs that keep communicating
with each other after convergence to a safe configuration. They introduced two
concepts, stability and efficiency, as quantitative measures of communication-
efficiency. Informally, the stability guarantees that the number of process pairs
that keep communicating with each other is limited. On the other hand, the effi-
ciency guarantees that the number of process pairs that communicate with each
other is limited at every step (the pairs can differ at different steps). They inves-
tigated the stability and the efficiency for the vertex coloring problem, the MIS
problem, the maximal matching problem [2], and the ST problem [3]. Another
challenge, communication adaptability, to reduce communication complexity af-
ter reaching a safe configuration is presented in [10].

Kutten et al. [11] pointed out that reducing the communication overhead
after convergence leads longer convergence time, and results in increasing the
communication overhead during convergence. They presented a randomized self-
stabilizing protocol that succeeds to reduce the communication overhead both
during and after convergence for the ST problem.

The rest of the paper is organized as follows. Section 2 presents definitions of
the wireless network model, self-stabilizing protocols, and the communication-
efficiency. Sections 3 and 4 investigate possibility of the broadcast-stability, and
Sections 5 and 6 investigate possibility of the broadcast-efficiency. Section 7
concludes this paper.

2 Preliminaries

2.1 System Model

We consider distributed systems with a (local) broadcast communication prim-
itive such as wireless communication. The system model is defined as follows.

A distributed system is modeled by an undirected labeled graph G = (P (G),
L(G)), where P (G) is the set of n processes and L(G) is the set of bidirectional
communication links. Each process v ∈ P (G) has a unique ID denoted by IDv.
A link connecting processes v and w is denoted by (v, w). We say w is a neighbor
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of v if (v, w) ∈ L(G), and the set of neighbors of v is denoted by NG(v) (or
simply by N(v) when G is apparent). We consider only connected distributed
systems and denote the set of such systems by G.

A process can communicate with its neighbors by (local) broadcast: when
a process v broadcasts a message, each neighbor w ∈ N(v) of v receives the
message. We assume that the broadcast is reliable and all the neighbors correctly
receive the message.

An important feature of wireless networks such as ad hoc ones is that a process
is unaware of its neighbors until it receives messages from them. Thus, we assume
each process v has no knowledge of N(v) or |N(v)|. Also, when v receives a
message, it cannot identify its sender unless the message contains the sender’s ID.

A process is modeled by a state machine and a configuration of a distributed
system G is specified by an n-tuple c = (s0, s1, . . . , sn−1), where si stands for
the state of process vi (0 ≤ i ≤ n − 1). We consider only a synchronous dis-
tributed system where all processes execute actions in a lockstep fashion. In
each synchronous step, every process executes the following three operations.

1. Broadcast a message (depending on its state) to all the neighbors.
2. Receive messages from neighbors that are sent in the beginning of the step.
3. Update its state (depending on its state and the received messages).

When the configuration changes from c to c′ in a step, we denote the transition by
c �→ c′. Execution of a distributed system is an infinite sequence E = c0, c1, c2, . . .
satisfying cj �→ cj+1 (j ≥ 0), where c0 is called the initial configuration. In this
paper, we consider only deterministic protocols, and thus, execution starting
from the initial configuration c0 is uniquely determined.

2.2 Self-stabilizing Protocol

A problem is defined on the output variables of processes and specifies the re-
quirement that the output variables should satisfy. A problem is called static
when the output variables should be eventually stable with satisfying the prob-
lem requirement. All the problems considered in this paper are static.

A configuration c is called safe for a static problem when it satisfies the
problem requirement and the output variables of all processes remain unchanged
in the execution starting from c. A protocol is called self-stabilizing for a static
problem if it eventually reaches a safe configuration even when starting from any
initial configuration.

2.3 Communication Efficiency

The previous concept of communication efficiency [2,3] aims to reduce the num-
ber of communicating process pairs. But it is not adequate to a distributed
system with a broadcast communication primitive, where a process can send
a message to all the neighbors by a single broadcast operation. We introduce
an alternative concept of communication efficiency for distributed systems with
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a broadcast communication primitive. Intuitively, communication-efficiency in
such a system should aim to reduce the number of broadcasts after convergence.

In the following definitions, k : G → IN denotes a function from a distributed
system to a positive integer, and SA,G(c) denotes the set of processes that broad-
cast messages in the step starting at configuration c of a protocol A .

Definition 1 (k(G)-broadcast-stability). Aself-stabilizing protocolA is k(G)-
broadcast-stable if, for any execution c0, c1, . . . of A in any distributed systemG ∈
G, there exists i such that a suffix ci, ci+1, . . . satisfies∣∣∣⋃j≥i SA,G(cj)

∣∣∣ ≤ k(G). ��

The k(G)-broadcast-stability guarantees that eventually at most k(G) processes
keep broadcasting, and thus, at least n− k(G) processes eventually stop broad-
casting.

Definition 2 (k(G)-broadcast-efficiency). A self-stabilizing protocol A is
k(G)-broadcast-efficient if, for any execution c0, c1, . . . of A in any distributed
system G ∈ G, there exists i such that a suffix ci, ci+1, . . . satisfies

∀j ≥ i, |SA,G(cj)| ≤ k(G). ��

The k(G)-broadcast-efficiency guarantees that eventually at most k(G) processes
broadcast messages in every step. Note that the broadcasting processes can
differ at different steps. It is clear that k(G)-broadcast-stability implies k(G)-
broadcast-efficiency, but the converse does not hold.

A relaxed variation of the k(G)-broadcast-efficiency is to allow at most k(G)
processes to broadcast messages in every step on average, which attains communi-
cation-efficiency practically equivalent to the k(G)-broadcast-efficiency. The vari-
ation is defined as follows.

Definition 3 (k(G)-average-broadcast-efficiency). A self-stabilizing proto-
col A is k(G)-average-broadcast-efficient if, for any execution c0, c1, . . . of A in
any distributed system G ∈ G, there exists i such that a suffix ci, ci+1, . . . satisfies

limj→∞ 1
j−i+1

∑j
k=i |SA,G(ck)| ≤ k(G). ��

3 Impossibility of Broadcast-Stability

This section presents impossibility results concerning the broadcast-stability.
The impossibility proofs are based on the simple observations that any process
cannot become aware of changes of the processes that never broadcast messages.
The details of the observations are as follows.

Observation 1: Let G be a distributed system, E = c0, c1, . . . be an execution
of a protocol A in G, and U be a set of processes that never broadcast mes-
sages in E. Consider any distributed system G′ obtained from G by removing
some processes in U , removing some links between remaining processes in
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(a)

′

(b) (c)

′

(d)

Fig. 1. Construction of G′ in Observations. (a) G and U = {p, q, r, s} in Observation
1. (b) An example of G′ in Observation 1. (c) G1, G2, . . . , G6 in Observation 2. (d) An
example of G′ in Observation 2.

U , and adding some links between remaining processes in U (Fig. 1(a),(b)).
(When G′ obtained by the above modification is disconnected, any of its
connected components is considered as G′.) Then, E′ = c′0, c′1, . . . is an ex-
ecution of A in G′ such that the state of every process at c′i is the same as
that at ci for every i (i ≥ 0).

Observation 2: Let G1, G2, . . . , Gn be distributed systems such that the pro-
cess sets are mutually disjoint, Ex = cx,0, cx,1, . . . be an execution of a proto-
col A in Gx, and vx be a process (if exists) that never broadcasts or receives
messages in Ex (1 ≤ x ≤ n). Consider any distributed system G′ consisting
of processes {v1, v2, . . . , vn} and arbitrarily added links (Fig. 1(c),(d)). Then,
E′ = c′0, c

′
1, . . . is an execution of A in G′ such that the state of every process

vx at c′i is the same as that at cx,i for every x (1 ≤ x ≤ n) and i (i ≥ 0).

3.1 Spanning Tree Construction

The spanning tree construction (ST) problem requires each process to select a
neighbor as its parent so that the parent relations of all processes form a spanning
tree of the distributed system. Each process has an output variable prnt to store
the ID of its parent. In the process selected as the root of the spanning tree, prnt
stores its own ID.

The broadcast-stability is impossible to attain for the ST problem:

Theorem 1. Let k(G) be any function satisfying k(G) < n(= |P (G)|) for any
distributed system G ∈ G. There is no k(G)-broadcast-stable self-stabilizing pro-
tocol for the spanning tree construction problem.

Proof. Assume, for contradiction, that there exists a k(G)-broadcast-stable self-
stabilizing protocol A for the ST problem. Then, any execution of A in G has
a suffix E = ci, ci+1, . . . in which a spanning tree is constructed (and remains
unchanged) and at least one process never broadcasts messages.

(a) Case that there exists a non-leaf process, say v, of the spanning tree that
never broadcasts messages in E: Let G′ be the distributed system obtained from
G by removing v, and E′ = c′i, c

′
i+1, . . . be the execution of A in G′ described
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in Observation 1. In E′, the output variable prnt of every process remains un-
changed. However, the variables of all the processes do not form a spanning tree,
since there is a neighbor w ∈ NG(v) of v that selects v as its parent but v does
not exist in G′. This implies that protocol A cannot reach a safe configuration
in E′, which is a contradiction.

(b) Case that only leaf processes of the spanning tree never broadcast messages
in E: Let G′ be the distributed system obtained from G by removing all the
processes that never broadcast in E, and E′ = c′i, c

′
i+1, . . . be the execution of

A in G′ described in Observation 1. No process stops broadcasting in E′, which
contradicts k(G′)-broadcast-stability for k(G′) < |P (G′)|. ��

3.2 Minimal Connected Dominating Set

A dominating set of G is a subset D ⊆ P (G) of processes such that each process
v ∈ P (G) − D has a neighbor in D. If the subgraph G[D] of G induced by
a dominating set D is connected, D is a connected dominating set of G. If no
proper subset of (connected) dominating set D is a (connected) dominating set,
D is a minimal (connected) dominating set.

The minimal connected dominating set (MCDS) problem requires us to choose
processes so that they should form a MCDS of the distributed system. Each
process has a boolean output variable mcds and stores true when it is a member
of the MCDS.

Theorem 2. Let k(G) be any function satisfying k(G) < n(= |P (G)|) for any
distributed system G ∈ G. There is no k(G)-broadcast-stable self-stabilizing pro-
tocol for the minimal connected dominating set problem.

Proof. We can prove this theorem by similar argument to the proof of Theorem
1, with restricting our attention to distributed systems of line topology (n ≥ 6).
Notice that the MCDS of such a system is uniquely determined as the set of all
the processes except for the two end processes. ��

3.3 Minimal Dominating Set and Maximal Independent Set
Problems

For the minimal dominating set (MDS) problem, we can prove the following
impossibility result, which is weaker than Theorem 2 for the MCDS problem.
Actually, we can present a broadcast-stable self-stabilizing protocol for the MDS
problem in Section 4. These results show that the connectivity requirement of
the minimal dominating set brings an essential difference in possibility of the
broadcast-stability.

Theorem 3. Let k(G) be any function satisfying k(G) < Imin
G for any dis-

tributed system G ∈ G where Imin
G is the minimum size of the maximal indepen-

dent set of G. There is no k(G)-broadcast-stable self-stabilizing protocol for the
minimal dominating set problem.
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Proof. We restrict our attention to distributed systems of line topology, and as-
sume, for contradiction, that there exists a k(G)-broadcast-stable self-stabilizing
protocol A for the MDS problem.

Let Pn be the set of n-process distributed systems of line topology. Since
Imin
G = �n/3� holds for any G ∈ Pn, at least n− �n/3�+ 1 processes eventually
stop broadcasting in any execution of A. In case of n = 3� for a positive integer
�, this implies that there exist, in any execution of A, three consecutive processes
that eventually stop broadcasting. Notice that the process in the middle of the
three never broadcasts or receives messages after some configuration in the exe-
cution. Thus, Observation 2 allows us to construct a distributed system of line
topology by choosing such a process from each of some distributed systems.

More concretely, we consider n distributed systems P1, P2, . . . , Pn (Pi ∈ Pn)
such that their ID sets are mutually disjoint. We choose, from each Pi, a pro-
cess vi that never broadcasts or receives messages after some configuration in
an execution. Following Observation 2, we can arbitrarily add links, and thus,
we can construct a line that does not satisfy the MDS specification. This is a
contradiction. ��

An independent set of G is a subset I ⊆ P (G) such that no processes in I are
neighboring. If no proper superset of an independent set I is an independent set,
I is a maximal independent set (MIS). The following theorem on impossibility
of the MIS problem is derived from Theorem 3 since any MIS is a MDS.

Theorem 4. Let k(G) be any function satisfying k(G) < Imin
G for any dis-

tributed system G ∈ G. There is no k(G)-broadcast-stable self-stabilizing protocol
for the maximal independent set problem. ��

4 Broadcast-Stable Self-stabilizing Protocol

Theorems 1 and 2 imply that all processes have to keep broadcasting forever
in any self-stabilizing protocol for the ST and the MCDS problems. Thus the
broadcast-stability is impossible to attain for these problems. In this section, we
show possibility of the broadcast-stability for the other two problems, the MDS
and the MIS problems.

A broadcast-stable self-stabilizing protocol, stable-MIS, for the MIS problem
is presented in Protocol 1. Each process v has a boolean output variable indv
to denote whether v is a member of the constructed MIS: v is a member of the
MIS iff indv = true.

The main idea to achieve the broadcast-stability is that only the processes
in the constructed MIS are allowed to keep broadcasting. The assumption of
synchronous distributed systems guarantees that a process v has a neighbor in
the MIS if and only if v receives a message. To break symmetry, the message
contains the sender’s ID and a process with a larger ID has higher priority to
become a member of the MIS.

The following two lemmas obviously hold.



Communication-Efficient Self-stabilization in Wireless Networks 9

Protocol 1. stable-MIS : actions of process v in each step.

Output Variables:
1: indv : boolean;
Internal Variables:
2: Mv : set of messages;
Actions:
3: if indv = true then
4: Broadcast({IDv});
5: end if
6: Mv ← received messages;
7: if ∃m ∈Mv[m.ID > IDv] then
8: indv ← false;
9: else
10: indv ← true;
11: end if

Lemma 1 (Safe configuration). A configuration c of protocol stable-MIS is
safe if c satisfies the following conditions:

1. ∀v ∈ P (G), [(indv = true)⇒ (∀w ∈ N(v), indw = false)].
2. ∀v ∈ P (G), [(indv = false)⇒ ∃w ∈ N(v) (IDw > IDv ∧ indw = true)].

��

Lemma 2 (Convergence). Starting from any initial configuration, protocol
stable-MIS reaches a safe configuration in at most n steps. ��

The following theorem is derived from Lemmas 1, 2, and the fact that only
processes in the constructed MIS keep broadcasting. The theorem also holds for
the MDS, since protocol stable-MIS is also a solution to the MDS problem (Recall
any MIS is a MDS). In the theorem, IMax

G denotes the size of the maximum
independent set of G ∈ G.

Theorem 5. Protocol stable-MIS is a IMax
G -broadcast-stable self-stabilizing pro-

tocol for the maximal independent set problem and the minimal dominating set
problem. It reaches a safe configuration in at most n steps in any distributed
system G ∈ G. ��

5 Impossibility of Broadcast-Efficiency

The average-broadcast-efficiency can be improved by prohibiting each process
from broadcasting a message every step and, instead, by allowing each process
to broadcast a message only every k steps for some positive integer k. This
reduces the average-broadcast-efficiency by a factor of k (e.g., from n to n/k),
but may increase the convergence time by a factor of k. Actually, we can show a
negative result when no upper bound of the number of processes n is available at
any process: o(n)-average-broadcast-efficiency is practically impossible to attain
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in the sense that any protocol with such efficiency has no upper bound (even
depending on n) on the convergence time.

The negative result is obtained by the argument based on the following ob-
servation, which is similar to Observation 2. Observation 2 was used to show
existence of an infinite execution in which no process broadcasts messages. On
the other hand, the following observation is used to show existence of a suffi-
ciently (but finite) long fragment of execution in which no process broadcasts
messages.

Observation 3: Let G1, G2, . . . , Gn be distributed systems such that the pro-
cess sets are mutually disjoint, Ex = cx,0, cx,1, . . . be an execution of a proto-
col A in Gx, and vx be a process (if exists) that never broadcasts or receives
messages in an execution prefix Et

x = cx,0, cx,1, . . . , cx,t (1 ≤ x ≤ n).
Consider any distributed system G′ consisting of n processes {v1, v2, . . . , vn}
and arbitrarily added links. Then, E′ = c′0, c

′
1, . . . , c

′
t is an execution prefix

of A in G′ such that the state of every process vx at c′i is the same as that
at cx,i for every x (1 ≤ x ≤ n) and i (0 ≤ i ≤ t).

The following lemma holds for distributed systems of line topology.

Lemma 3. Consider any execution E of any k(G)-average-broadcast-efficient
protocol A in a distributed system G ∈ Pm for any m > 3. There exist three
consecutive processes and an execution fragment composed of � m−3

3k(G)� steps such
that the three processes never broadcast messages during the execution fragment.

��

The following theorem can be obtained by argument similar to the proof of
Theorem 3.

Theorem 6. Assume no upper bound of the number of processes n is available
at any process, and consider any o(n)-average-broadcast-efficient protocol A for
the maximal independent set problem, the minimal dominating set problem, the
minimal connected dominating set problem, or the spanning tree construction
problem. Then, the convergence time of A cannot be bounded by any T (which
may depend on n).

Proof. We restrict our attention to distributed systems of line topology, and
assume, for contradiction, that there exists a k(G)-average-broadcast-efficient
self-stabilizing protocol A for the problem, where k(G) = o(n), with the conver-
gence time bounded by T (which may depend on n).

Let G1, G2, . . . , Gn (Gi ∈ Pm) be n distributed systems of m-process line
topology such that the process sets are mutually disjoint. Each Gi contains a
process, say vi, that is the middle of the three consecutive processes in Lemma 3.
Note that vi never broadcasts or receives messages during the execution fragment
of length � m−3

3k(Gi)
� in Gi. Observation 3 allows us to construct a distributed sys-

tem G of line topology consisting of v1, v2, . . . , vn so that its initial configuration
is not safe and no process broadcasts messages in the first � m−3

3k(Gj)
� steps, where
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k(Gj) = max1≤i≤n k(Gi). By setting m to satisfy � m−3
3k(Gj)

� > T (k(Gj) = o(m)

guarantees existence of such m), we can show that the convergence time of A is
longer than T , which is a contradiction. ��

6 Broadcast-Efficient Self-stabilizing Protocol

In Section 5, we showed that the o(n)-average-broadcast-efficiency is impossible
to attain without greatly sacrificing the convergence time if no upper bound
of n is available. However, the situation drastically changes if an upper bound
N of n is available. In this section, we show that knowledge of N allows the
1-average-broadcast-efficiency without paying high penalty on the convergence
time: we present a method for transforming any silent self-stabilizing protocol
with a known (upper bound of) convergence time T to a 1-average-broadcast-
efficient self-stabilizing protocol with the convergence time O(T +N).

We assume that an upper bound N of n is known to each process. We also
assume that a self-stabilizing protocol A given as an input of the transformation
satisfies the following conditions (called input conditions).

(a) A is silent, that is, no process changes its state after reaching a safe config-
uration.

(b) In any execution, every process broadcasts a message every step.
(c) In any unsafe configuration c, there exists at least one process that changes

its state in the step from c.
(d) An upper bound T of the convergence time is known.

Protocol 2 presents the transformation method by showing the protocol Eff(A)
resulting from the input protocol A. The main idea for attaining the 1-average-
broadcast-efficiency is to allow each process to broadcast a message only every
N steps after reaching a safe configuration of A. It is obvious that such slow-
down in activity brings the 1-average-broadcast-efficiency to A. However it is
impossible for a self-stabilizing protocol to correctly detect a safe configuration.
Especially, the fault positive in the detection may increase the convergence time
of A from T to NT : when processes prematurely slow down before reaching a
safe configuration, the convergence time may become N times longer.

The idea for overcoming this difficulty comes from the following observations.

1. Even when every process prematurely detects a safe configuration and re-
stricts it to broadcast a message only every N steps, each process can acquire
the states of all the neighbors in N steps. Thus, from the input condition
(c), there exists a process that changes its state in N steps. This implies that
the premature slowdown can be detected in N steps.

2. When a process detects the premature slowdown, it can signal, in n steps,
all processes to stop the slowdown and come back to ordinary execution of
A that allows all processes to broadcast messages every step.

3. Once all processes execute ordinary execution of A during T steps, the pro-
tocol reaches and remains at a safe configuration.
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To realize a method inspired from the above observations, we use a local clock
of each process and clock synchronization. Each process v has variable clockv :
{0, . . . , T + 2N} as a local clock, and uses it as follows.

1. The local clocks of all the processes become synchronized by executing
clockv ← min{min{clockw|w ∈ NG(v) ∪ {v}}+ 1, T + 2N}.

The intuition is that processes try to adjust their clocks to that with the
lowest clock value, and the clock value is bounded by T + 2N . As long as
clockv is synchronized with those of the neighbors, the clock value increases
by one every step until it reaches T + 2N .

2. Any clock value less than T + 2N suggests that a safe configuration is not
reached yet (though the suggestion may not be correct). Thus, it makes
process v execute ordinary execution of protocol A.

3. Clock value T+2N suggests that the configuration is safe (though the sugges-
tion may not be correct). Thus, it makes process v slowdown and broadcast
a message only every N steps.
Even when clockv = T+2N holds, process v executes actions of A on receipt
of messages. If the configuration is safe, v never changes its state. Thus, a
change of v’s state implies detection of an unsafe configuration. In this case,
v also executes clockv ← 0 to come back to ordinary execution of A. The
clock synchronization mechanism brings, in n steps, all processes back to
ordinary execution of A. We call the process v that executes clockv ← 0 an
initiator.

As we show later, if a safe configuration is not reached sufficiently long time,
the clocks of all processes become synchronized before the clock value of any
process reaches 2N . Once the clocks become synchronized, all processes execute
ordinary execution of A. The ordinary execution lasts during at least T steps
(until the clock value reaches T +2N), which guarantees that protocol A reaches
a safe configuration.

In Protocol 2, each process v has variable statev to store its current state of A,
and executes protocol A using the variable. Each process also has variable cachev
to store the set of messages: for each neighbor w ∈ N(v), the latest message from
w is stored in cachev. Process v uses the stored messages to execute actions of A,
when v receives no message from a neighbor, say w. This situation occurs when
w slows down. Notice that cachev may store false messages from non-neighbors
(that may not exist in the system) in the initial configuration. To eliminate such
false messages, v removes the stored message from w if v receives no message
during N + 1 steps (for simplicity, this action is omitted in Protocol 2).

Lemma 4 (Safe configuration). A configuration of Eff(A) is safe if the fol-
lowing conditions are satisfied.

– ∀v ∈ P (G), clockv = T + 2N .
– ∀v ∈ P (G), cachev stores the latest message from each neighbor w ∈ N(v).
– Letting c′ be an n-tuple (statev0 , . . . , statevn−1) where {v0, . . . , vn−1} = P (G),

c′ is a safe configuration of A. ��
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Protocol 2. Eff(A) : Actions of process v in each step.

Constants:
1: N : upper bound on n
2: T : upper bound on the convergence time of the input protocol A
Variables:
3: statev : a state of v in protocol A
4: cachev : a set of messages received from neighbors
5: clockv : {0, ..., T + 2N}
6: countv : {0, ..., N − 1}
Actions:
7: if clockv < T + 2N then // process v executes ordinary execution of A
8: Broadcast((IDv ,msgv, clockv)); //msgv is the message sent by A
9: Mv ← received messages;
10: Update cachev using Mv to store the latest message from each neighbor;
11: Update statev using cachev by actions of A;
12: clockv ← min({m.clock|m ∈Mv} ∪ {clockv}) + 1;
13: countv ← 0;
14: else // process v executes slowdown execution of A
15: if countv = 0 then
16: Broadcast((IDv ,msgv, clockv)); //msgv is the message sent by A
17: end if
18: Mv ← received messages;
19: Update cachev using Mv to store the latest message from each neighbor;
20: Update statev using cachev by actions of A;
21: if statev changed then // an unsafe configuration is detected
22: clockv ← 0;
23: else if ∃m ∈Mv [m.clock < T + 2N − 1] then
24: clockv ← min{m.clock|m ∈Mv}+ 1;
25: end if
26: countv ← (countv + 1) mod N ;
27: end if

Lemma 5 (Convergence). Starting from any initial configuration, protocol
Eff(A) reaches a safe configuration within 2T + 4N steps.

Proof. We consider any execution E = c0, c1, . . . of Eff(A).

(a) For the case that no initiator appears by cT+N (in the first T + N steps),
we show that Eff(A) reaches a safe configuration by cT+2N : It is clear that the
clocks of all processes become synchronized by cn−1 (although they may already
reach T + 2N). Consider the following T steps (from cn−1 to cT+n−1). If the
clock value does not reach T + 2N by cT+n−1, all processes execute ordinary
execution of A during the T steps, and thus, (statev0 , . . . , statevn−1) reaches a
safe configuration of A by cT+n−1 and remains unchanged after. Then, the clock
value reaches T + 2N by cT+2N , and thus, Eff(A) reaches a safe configuration
by cT+2N . On the other hand, consider the case that the clock value reaches
T + 2N by cT+n−1. Let cg (g ≤ T + n − 1) be the configuration at which the
clock value reaches T +2N . If cg is unsafe, there appears an initiator in the next
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step. Thus, cg is safe, since we are considering the case that no initiator appears
by cT+N . Consequently, Eff(A) reaches a safe configuration by cT+2N .

(b) For the case that an initiator appears by cT+N , we show that Eff(A) reaches a
safe configuration by c2T+4N : Let cf (f ≤ T +N) be the configuration such that
the first initiator, say v, appears in the step from cf−1 to cf . Since clockv ← 0 is
executed in the step, the clock synchronization mechanism spreads the effect to
all the processes in the following n − 1 steps. Thus, the values of all clocks are
no greater than n − 1 at cf+n−1, whether other initiators appear in the period
from cf to cf+n−1 or not. This implies that the clocks of all processes become
synchronized by cf+2n−2 since no initiator appears in the period from cf+n−1

to cf+2n−2. Since the clock value at cf+2n−2 is no greater than 2n, all processes
execute ordinary execution during T steps from cf+2n−2 to cT+f+2n−2, and
(statev0 , . . . , statevn−1) becomes a safe configuration of A by cT+f+2n−2. The
clock value reaches T + 2N by cT+2N+f+n−1. Consequently, Eff(A) reaches a
safe configuration by c2T+4N . ��

It is clear that Protocol Eff(A) is 1-average-broadcast-efficient. Thus, the follow-
ing theorem is obtained from Lemmas 4 and 5.

Theorem 7. Protocol Eff(A) is a self-stabilizing protocol for the problem that
the input self-stabilizing protocol A is targeting. It is also 1-average-broadcast-
efficient and its convergence time is O(T +N), where T is the convergence time
of A and N is a known upper bound of the number of processes n. ��

Many self-stabilizing protocols proposed so far satisfy the input conditions: for
example, self-stabilizing protocols for the MIS problem (also for the MDS prob-
lem) with the convergence time O(n) [12], and for the ST problem with the
convergence time O(N) [13]. Application of the transformer to these protocols
provides 1-average-broadcast-efficient self-stabilizing protocols with the conver-
gence time O(N) for these problems. More interestingly, we can obtain a much
more general result: the 1-average-broadcast-efficiency is attainable for any static
problem without paying high penalty on the convergence time.

Theorem 8. When an upper bound N of the number of processes n is available
at every process, there exists a 1-average-broadcast-efficient self-stabilizing pro-
tocol with the convergence time O(N) for any static problem. ��

To prove Theorem 8, we consider a universal static problem Π on any distributed
system G: each process has an input, and is required to compute an output that
is (deterministically) computable from the complete information of G (i.e., a
graph G where each node v is labeled with IDv and the input of v).

The core of a self-stabilizing protocol for Π is to construct the complete
information of G at each process, and it can be achieved by letting all processes
know the tuple (IDv, NIDv, Inputv) of every process v, where NIDv is the
set of IDs of v’s neighbors and Inputv is the input given at v. There exists a
self-stabilizing protocol for constructing the complete information of G at each
process with the convergence time O(N), and it satisfies the input conditions of
the transformer. Thus, we can obtain Theorem 8.
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7 Conclusion

In this paper, we introduced and investigated communication-efficiency of self-
stabilizing protocols in the distributed system model with the (local) broadcast
primitive. A wireless network is a typical example of the system model, and
the communication-efficiency may play an important role in reducing energy-
consumption, which is a critical issue in the wireless networks. As the first step,
we considered only the reliable broadcast primitive. However, to consider a lossy
broadcast primitive is practically important and is one of our future works.

Another future work is to introduce the sleep mode in which a process stop
broadcasting and receiving messages to save energy consumption, while we as-
sume, in this paper, a process is allowed to receive messages all the time.
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Abstract. Large scale distributed systems require replication of
resources to amplify availability and to provide fault tolerance. The
placement of replicated resources significantly impacts performance. This
paper considers local k-placements: Each node of a network has to place
k replicas of a resource among its direct neighbors. The load of a node in
a given local k-placement is the number of replicas it stores. The local k-
placement problem is to achieve a preferably homogeneous distribution of
the loads. We present a novel self-stabilizing, distributed, asynchronous,
scalable algorithm for the k-placement problem such that the standard
deviation of the distribution of the loads assumes a local minimum.

1 Introduction

Large scale distributed systems such as cloud computing networks, peer-to-peer
file sharing systems, or sensor networks, often require replication of resources.
Replicas are placed on other nodes of the network. There are different reasons to
create replicas: reduction of retrieval time (e.g. caching systems), better utiliza-
tion of computing devices (e.g. load balancing), or the increase of fault tolerance
resp. availability (e.g. backup systems). The placement strategy for the repli-
cated resources significantly impacts performance in all these cases.

This paper considers distributed systems where each node wants to place
replicas of a resource on k different neighbors. The nature of the resource is of
no importance for the following. As an example consider the case where each
node wants to replicate its own state on k neighbors. We pursue the goal to
achieve a preferably homogeneous distribution of the replicas assuming that all
replicas induce the same load. This is called the local k-placement problem.
There are different measures for the homogeneity of a distribution, e.g. the Gini
coefficient, the standard deviation, or the discrepancy which is the difference
between the maximum and the minimum load among all nodes. In many cases the
network topology will not allow to have a complete homogeneous distribution,
i.e. the same load for every node resp. standard deviation 0. Therefore, finding
a distributed algorithm for this placement problem is a real challenge.

The main contribution of this paper is a distributed, asynchronous, self-
stabilizing algorithm that performs placement of k replicated resources on direct
neighbors of each node such that the standard deviation of the distribution
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assumes a local minimum. The basic idea of the algorithm is that each node
periodically checks whether the shifting of one of the node’s replicas from one
neighbor to another would lower the standard deviation of the load of its neigh-
bors. If such a case is detected, the shift of the replica is initiated. The challenge
is to coordinate these movements such that no livelocks will occur and that after
a finite number of moves the homogeneity of the distribution is optimized. The
proposed algorithm is self-stabilizing, i.e. the system provably converges to a
legitimate state in finite time, without any external intervention, and regardless
of its initial configuration. The system remains legitimate until a fault occurs.

The motivation for the proposed algorithm stems from the work on fault-con-
tainment in dynamic networks based on a transformation adding fault-contain-
ment to any silent self-stabilizing protocol [9]. Fault-containment is achieved by
maintaining backups of each node’s local state on a constant number of nodes
in the neighborhood.

The main result of this paper is a self-stabilizing algorithm to determine a
local k-placement that has local minimum variance. The algorithm terminates
after O(nΔ2) moves respectively O(nΔ) rounds under the distributed scheduler.

2 Related Work

Since the early days of distributed computing load distribution received a lot
of attention and many schemes have been devised. In general the term refers
to algorithms improving the overall system performance by transferring some
form of load (e.g. a task or a resource) from heavily to lightly loaded nodes.
In the following we review only work with strong links to this work. Gärtner
et al. present a method to provide load balancing for replicated servers on a
per access basis [3]. In this case the replicated resources are servers, i.e. pro-
cesses and data. But instead of moving resources between nodes, accesses to
the resources are redirected to achieve a homogeneous access distribution. The
self-stabilization property of the algorithm is achieved by a composition of two
distributed algorithms.

Ko et al. present a distributed algorithm that places replicated resources in a
network among all nodes such that the furthest distance to a particular replica of
a resource is minimized [7]. The algorithm guarantees an approximation of ratio
3. No analysis of the time complexity is given. A similar problem is tackled by
Kangasharju et al. They consider techniques for optimally replicating objects in
content distribution networks [4]. The goal is to replicate objects on servers with
finite storage so that when clients fetch objects from the nearest server holding
the requested object, the average number of nodes traversed is minimized. They
show that this optimization problem is NP-complete and present heuristics.

Two self-stabilizing algorithms for migrating the job load around the network
are presented by Flatebo et al. [1]. In the first algorithm each node compares its
own load with the load of its neighbors. In case a neighbor momentarily has a
lower load, the node migrates a job to this neighbor. The second algorithm aims
at migrating jobs globally to lightly loaded nodes. The run-time complexity of
the algorithms is not considered.
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Sauerwald and Sun consider the problem of balancing load items on networks
[11]. Starting with an arbitrary load distribution, in each round nodes exchange
tokens with their neighbors. The goal is to achieve a distribution where all nodes
have nearly the same number of tokens. The authors present a detailed analysis
of their randomized algorithms. Lenzen and Wattenhofer recently determined
tight bounds for a related task the so-called balls-into-bins problem [10].

Load balancing received a lot of attention in the field of peer-to-peer net-
works. The problem arises in two flavors: balancing the distribution of the key
address space to nodes (in DHT-based systems) and balancing the distribution
of items among the nodes. Karger and Ruhl address both problems in the con-
text of a Chord DHT [5]. Serbu et al. present a solution that aims to equilibrate
the request load and routing load of the nodes in DHT-based peer-to-peer sys-
tems where requests follow a Zipf-like distribution [12]. Instead of changing the
placement of objects the routing tables are reorganized.

In contrast to the above reviewed literature, in our work the items to be
distributed are replicas of a node’s state and they are only distributed in the
direct neighborhood of the node and not at arbitrary places in the network. To
the best of our knowledge, this problem has not been tackled yet.

3 Notation
3.1 The Problem
A distributed system is described by an undirected graph G = (V, E). Let n =
|V |, m = |E|, and Δ denote the maximal degree of G. The set of neighbors
of v ∈ V in G is denoted by N(v). Let k > 0. For each v ∈ V let k(v) =
min(k, |N(v)|) and Bk(v) = {B ⊆ N(v) | |B| = k(v)}. A local k-placement
is a function β that assigns to each v ∈ V an element of Bk(v). Denote by
Lβ(v) = |{w ∈ V | v ∈ β(w)}| the load of β on v. There are several expressions
to measure the homogeneity of a local k-placement β. In this paper we consider
the standard deviation, or equivalently the variance:

var(β) = 1
n

∑

v∈V

(Lβ(v) − μβ)2 with μβ = 1
n

∑

v∈V

Lβ(v).

The lower the value of var(β) the more homogeneous is β. Figure 1 depicts two
different local 1-placements of the same graph (arrows indicate the placement
of the replica of each node). The local 1-placement on the left has a variance of
1/2 while that on the right has variance 1/4.

Distributedly computing a local k-placement with the globally minimum vari-
ance seems to be a difficult task. Therefore, we content ourselves with computing
local minima. A local k-placement has local minimum variance, if the reassign-
ment of a single replica from one neighbor to another does not lower the variance.
The local 1-placement on the left of Figure 1 does not have local minimum vari-
ance. If node f shifts its replica from node e to g the variance is decreased and
result in the 1-load balancing shown on the right. This balancing has local mini-
mum variance. Note that an optimal local k-placement of this graph has variance
0. Not all graphs have a local k-placement with variance 0.
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Fig. 1. Two local 1-placements of the same graph

3.2 Model of Computation

The notation we use for describing the self-stabilizing algorithm is based on
the multi-protocol model as described in [8]. In particular the concepts algo-
rithm, protocol, instance, rule, move, configuration, execution, round, and the
different scheduler models are used as defined there. This section stresses some
aspects of the model of computation. The algorithm is described in the shared
memory model. Globally unique identifiers, e.g. for symmetry breaking, are not
required. But in order for a node to keep references to neighboring nodes, neigh-
bors must be distinguishable. Thus, locally unique identifiers are assumed. The
self-stabilization property is first proved for the central scheduler and then for
the distributed scheduler using a variation of the concept of serialization from
[8]. The time-complexity is expressed in both moves and rounds.

4 The Algorithm

This section describes the implementation of an algorithm for the local k-place-
ment problem. Each node intends to place k replicas on k distinct neighbors. k is
assumed to be an integer constant. The goal of the algorithm is to minimize the
standard deviation or equivalently the variance of the number of replicas stored
by each node. Let β be a k-placement and u ∈ β(v). If node v moves its replica
from node u to some neighbor w �∈ β(v), then we obtain another k-placement
β′ for which β′(v) = (β(v) \ {u}) ∪ {w} holds. It satisfies Lβ′(u) = Lβ(u) − 1,
Lβ′(w) = Lβ(w) + 1, and μβ′ = μβ . This yields

var(β) − var(β′) = 2
n

(Lβ(u) − 1 − Lβ(w)) (1)

Thus, the variance of β′ is lower than the one of β if and only if Lβ(u) >
Lβ(w) + 1. This yields the basic strategy of the proposed algorithm: Once a
node v detects such a pair u, w ∈ N(v), it moves a replica on u to w.

Each node v ∈ V maintains a variable v.β which is a set of up to k pointers to
neighboring nodes. Once the algorithm has stabilized, v.β represents the value of
β(v) of the computed local k-placement. Based on variable v.β, the current load
of a node, i.e. the number of replicas placed at the node, is defined as follows:

L(v) := |{w ∈ N(v) | v ∈ w.β}|
However, with distance-1 knowledge only, it is impossible for v to determine the
value of L for a neighbor. Hence, each node v ∈ V maintains the so-called load
variable v.l which is updated with the current value of L(v) whenever possible.
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Fig. 2. Example for oscillation, k = 1

The variable v.l can be out-of-date and that can potentially lead to oscillation,
even under the central scheduler. An example is illustrated in Figure 2. The
numbers next to u and w denote the values of u.l and w.l. The arrows represent
the values of v.β and a.β. The scheduler selects v first and afterwards a. Both
move their replica from u to w. However, the decision of a to do so is based on
outdated values of u.l and w.l. Thus, after updating the values of u.l and w.l,
the situation is symmetric to the initial configuration. Even under a fair central
scheduler, this may result in a livelock.

To prevent a livelock, the algorithm uses a synchronization mechanism. Before
node v ∈ V moves a replica from u to w, it will lock u with regards to removal
and w with regards to addition of replicas. While u and w are locked, it is not
allowed for other nodes to move their replica away from u or towards w. Also,
during the locking procedure, both u.l and w.l will be updated. Hence, at the
time v has successfully locked u and w it is safe to assume the following:

u.l > w.l + 1 ⇒ L(u) > L(w) + 1 (2)
It is, however, still possible for nodes other than v to move their replicas towards
u or away from w. Hence, L(u) may grow larger than u.l and L(w) may become
less than w.l. This has no impact on Equation (2). The two locking mechanisms,
one for removal and one for addition of replicas, are implemented using two
pointer variables each, called query and ack. In order for node v to lock a neigh-
boring node u with respect to replica additions, v first sets its query v.qa := u. It
then waits until u changes its ack to u.aa = v. Once v and u point at each other,
u is said to be locked by v. Thus, a node can be locked for addition by at most
one neighbor at a time. If no query is made or there is no query to acknowledge,
then v.qa and u.aa assume the special value ⊥. In order to lock a neighbor u
with respect to replica removal instead of addition, the variables v.qr and u.ar

are used instead of v.qa and u.aa.
The proposed algorithm A = {PL, PAr , PAa , PQ} consists of four protocols.

Their implementation is shown in Figure 3. Protocol PL updates the variable v.l
whenever the instance (v, PL) is selected by the scheduler. Protocols PAr and PAa

provide the acknowledgments for the locking mechanisms. Note, that instances
(v, PAr ) and (v, PAa ) only acknowledge queries if the load-variable v.l is up-to-
date. The value of v.ar and v.aa is controlled via the sets Ar(v) and Aa(v). They
contain all neighbors waiting for an acknowledgment by v. (v, PAr ) updates v.ar

such that v.ar ∈ Ar(v) or v.ar = ⊥ if Ar(v) = ∅. (v, PAa ) implements the same
for v.aa and Aa(v). Note, that no assumption about the function choose(X) are
being made in case that X contains multiple elements. choose(X) may return
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validLoad(v) ≡ v.l = L(v)
validPlacement(v) ≡ |v.β| = k(v) ∧ v.β ⊆ N(v)

ackNeedsUpdatex(v) ≡ v.ax �∈ Ax(v) ∧ (Ax(v) �= ∅ ∨ v.ax �= ⊥) for x ∈ {a, r}
queryNeedsUpdatex(v) ≡ v.qx �∈ Qx(v) ∧ (Q′

x(v) �= ∅ ∨ v.qx �= ⊥) for x ∈ {a, r}
queryValidAndAckedx(v) ≡ v.qx ∈ Qx(v) ∧ (v.qx).ax = v for x ∈ {a, r}

choose(X) :=
{

⊥ if X = ∅
element of X otherwise

Protocol PL: ¬validLoad(v) −→ v.l := L(v)
Protocol PAr : validLoad(v) ∧ ackNeedsUpdater(v) −→ v.ar := choose(Ar(v))
Protocol PAa : validLoad(v) ∧ ackNeedsUpdatea(v) −→ v.aa := choose(Aa(v))
Protocol PQ:

Rule Q1: ¬validPlacement(v) −→
v.β := v.β ∩ N(v) ; add k(v) − |v.β| pointers to v.β

Precondition for Rules Q2–Q5: validPlacement(v)
Rule Q2: queryNeedsUpdater(v) −→ v.qr := choose(Q′

r(v)) ; v.qa := ⊥
Rule Q3: ¬(queryNeedsUpdater(v) ∨ queryValidAndAckedr(v)) ∧ v.qa �= ⊥ −→

v.qa := ⊥
Rule Q4: queryValidAndAckedr(v) ∧ queryNeedsUpdatea(v) −→

v.qa := choose(Q′
a(v))

Rule Q5: queryValidAndAckedr(v) ∧ queryValidAndAcked a(v) −→
v.β := (v.β \ {v.qr}) ∪ {v.qa} ; v.qr := ⊥ ; v.qa := ⊥

Fig. 3. Algorithm A

any non-deterministically chosen element of X . The definition of the sets Ar(v)
and Aa(v) is as follows:

Ar(v) ={w ∈ N(v) | w.qr = v ∧ v ∈ w.β}
Aa(v) ={w ∈ N(v) | w.qa = v ∧ v �∈ w.β}

Protocol PQ controls the queries and the current placement. Rule Q1 of (v, PQ)
is responsible for removing all invalid pointers from v.β, i.e. pointers that do
not refer to a neighbor of v, and adding valid pointers until v.β has reached the
desired cardinality k(v). Rules Q2 to Q4 of (v, PQ) are responsible for setting the
queries v.qr and v.qa. The values of the variable v.qr is controlled via the sets
Qr(v) and Q′

r(v). The former contains those neighbors w ∈ N(v) with maximal
w.l at which v currently places a replica and for which a neighbor u ∈ N(v)
exists which currently does not store a replica and satisfies u.l < w.l − 1. Q′

r(v)
contains only those w ∈ Qr(v) which do not already acknowledge a query by v
such that it is save to assume that (w, PAr ) will update w.l before providing an
acknowledgment. The query v.qr is said to be valid, if v.qr ∈ Qr(v). If v.qr is not
valid, Rule Q2 updates v.qr such that v.qr ∈ Q′

r(v) or v.qr = ⊥ if Q′
r(v) = ∅.

Note that Rule Q2 also resets v.qa to ⊥. As long as the query v.qr is either
invalid or not acknowledged, v.qa must remain ⊥ such that locks with respect to
addition of replicas are not established before the removal lock. This is essential
for deadlock-free operation. Rule Q3 makes sure that v.qa is reset to ⊥ to avoid
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any premature queries, e.g. due to transient faults or initial inconsistencies. If
v.qr is valid and acknowledged, then Rule Q4 controls the value of v.qa via
Qa(v) and Q′

a(v). The former contains all neighbors w ∈ N(v) that currently do
not hold replicas of v and have minimal w.l. Again Q′

a(v) contains only those
neighbors w ∈ Qa(v) which do not already acknowledge in order to ensure an
update of w.l before the lock is being established.

Qr(v) ={w ∈ N(v) ∩ v.β | w.l = max{u.l | u ∈ N(v) ∩ v.β} ∧
∃u ∈ N(v) \ v.β : u.l < w.l − 1}

Qa(v) ={w ∈ N(v) \ v.β | w.l = min{u.l | u ∈ N(v) \ v.β}}
Q′

r(v) ={w ∈ Qr(v) | w.ar �= v.id}
Q′

a(v) ={w ∈ Qa(v) | w.aa �= v.id}
If both v.qr and v.qa are valid and acknowledged, then Rule Q5 is enabled and
will move one replica of v from v.qr to v.qa by changing v.β. Note, that both
queries might be reset via Rules Q2 or Q4 multiple times as Qr(v) and Qa(v)
change whenever a neighbor executes a move of protocol PL. The following
Boolean predicate identifies all legitimate configurations of A:

LegitA ≡ ∀v ∈ V : validLoad(v) ∧ validPlacement(v)
∧ v.qr = v.ar = v.qa = v.aa = ⊥ ∧ Qr(v) = ∅

5 Potential Function for the Central Scheduler

Potential functions were used as a tool to prove self-stabilization for the first
time in [6]. Kessels defines a potential function as a function mapping the set
of configurations Σ to an ordered set without an infinitely decreasing sequence.
The aim is to find a potential function whose value is strictly decreasing with
every step of A. In this section we will present the potential function potvec that
maps Σ to the lexicographically sorted N6

0. Furthermore, this section will present
a technique to transform potvec into the potential function pot whose co-domain
is merely N0. For the construction of pot, the central scheduler is assumed. Hence,
the maximum value of pot is an upper bound the move-complexity of A under
the central scheduler. The distributed scheduler is discussed in Section 6.

potvec(c) :=

⎛

⎜⎜⎜⎜⎜⎜⎝

#v∈V ¬validPlacement(v)
#v∈V malicious(v)

σ(c)
#v∈V ¬validLoad(v)∑

v∈V progressQ(v)∑
v∈V progressA(v)

⎞

⎟⎟⎟⎟⎟⎟⎠
with σ(c) :=

∑

v∈V

L(v)2

For a Boolean predicate X(v) the term #v∈V X(v) denotes the number of nodes
for which X(v) is satisfied. The key component of potvec is posed by σ(c). Very
similar to the variance, σ(v) decreases by L(u) − 1 − L(w) if a replica is moved
from node u to w (cf. Equation (1)). Since algorithm A is based on the idea to
move a replica from u to w whenever L(u) > 1 + L(w), it can be expected that
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σ(c) decreases regularly, namely due to the execution of Rule Q5. However, two
scenarios exist, in which σ(c) actually increases.

The first scenario is a node v executing Rule Q5, but in spite having locked
neighbors u and w, either L(u) is less than u.l or L(w) is larger than w.l. such
that L(u) > L(w) + 1 does not hold. Hence, Equation (2) is violated. Still, v
moves a replica from u to w based on the outdated values of u.l and w.l. Such
situations can only arise from inconsistencies in the initial configuration and
executions of Rule Q1. Nodes, which will (depending on the schedule) be able to
execute Rule Q5 under such circumstances at some future point in the execution
are called malicious (see the corresponding predicate below). The number of
malicious nodes constitutes another component of potvec. Depending on the
choices of the scheduler, a node may become non-malicious if either u.l or w.l
is updated before v executes Rule Q5. Also note, that a node becomes non-
malicious by executing Rule Q5 and that the locking mechanism ensures that
no malicious nodes are created. The only exception is Rule Q1 which bypasses
the locking mechanism and thereby may increase the number of (potentially)
malicious nodes. An execution of Rule Q1 also poses the second scenario in
which the variance actually increases. To reflect that, the first component of
potvec denotes the number of nodes enabled with respect to Rule Q1. It decreases
whenever a node executes Rule Q1 which happens at most once per node during
an execution.

malicious(v) ≡ queryValidAndAckedr(v) ∧ (L(v.qr) < (v.qr).l
∨ (queryValidAndAckeda(v) ∧ L(v.qa) > (v.qa).l))

progressQ(v) :=

⎧
⎪⎪⎨

⎪⎪⎩

0 if queryValidAndAckedr(v) ∧ v.qa ∈ Qa(v)
1 if v.qr ∈ Qr(v) ∧ v.qa = ⊥
2 if v.qr = ⊥ ∧ v.qa = ⊥
3 otherwise

progressA(v) :=

⎧
⎨

⎩

0 if ¬ackNeedsUpdater(v) ∧ ¬ackNeedsUpdatea(v)
1 if ackNeedsUpdater(v) �= ackNeedsUpdatea(v)
2 if ackNeedsUpdater(v) ∧ ackNeedsUpdatea(v)

The remaining components of potvec are the number of nodes with an out-of-date
load variable, and the functions progressQ and progressA reflecting the progress
of the locking procedures.

Function potvec has been designed such that with every step of A, at least one
component of the potential vector decreases. If components of potvec increase,
then there is at least one decreasing component with a smaller index. Hence, with
every step of A, potvec decreases with respect to the lexicographical order. To
obtain an upper bound on the move-complexity of A under the central scheduler,
we construct a potential function with a scalar value using a weighted sum of
the components of potvec:

pot(c) :=
6∑

i=1
wi · potveci(c)
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where w6 = 1. The other weights are determined iteratively from w5 to w1 as
follows: In order to determine wj , 1 ≤ j ≤ 5, we consider all transitions c0 → c1
which are the result of a single move of a single instance and for which potvecj

is the left-most component that changes. Let dj denote the minimal amount by
which potvecj decreases. Then chose wj such that the following holds for all such
transitions c0 → c1:

dj · wj ≥ 1 +
6∑

i=j+1
wi(potveci(c1) − potveci(c0))

If necessary, wj is modified such that wj ≥ 1 for all Δ ≥ 1 and k ≥ 1. Using this
technique, we obtained the values as given below. The reasoning for obtaining
each individual weight is contained in the proof of Lemma 1.

w6 = 1 w5 = 4 w4 = 12Δ + 1
w3 = 12Δ + 7 w2 = 24Δ2 − 22Δ w1 = 48kΔ2 − 8kΔ − 6k + 13

Lemma 1. Under the central scheduler, pot decreases with every step of A.

Proof. Let (v, p) ∈ V × A denote an enabled instance of A and let r denote the
rule of (v, p) that is enabled. In the following it is shown that pot(c) decreases
under an execution of Rule r of (v, p). In the following, a case-by-case analysis
is conducted.

p = PL: The number of nodes with invalid pointer as well as σ(c) do not
change. Also, progressA will not increase for any node, since Aa and Ar do
not depend on the value of load variables. The number of malicious nodes may
decrease, however it cannot grow. The number of nodes with an invalid load
variable will decrease by at least 1. progressQ may increase from 0 to 3 for up to
Δ neighbors of v since Qr or Qa change for them. For all other nodes, progressQ

does not change. Hence, pot decreases by at least (12Δ + 1) − 3Δ · 4 = 1.
p ∈ {PAr , PAa}: (v, PAr ) and (v, PAa ) do not modify v.β. Hence the number

of nodes with an invalid placement does not increase. The number of malicious
nodes does not increase since the rule is only enabled if v.l = L(v). Also, σ(c)
does not change. The number of nodes with an invalid load variable does not
increase as well. progressQ does not change for any node. progressA remains
unchanged for all nodes except v, for which it decreases by 1. So pot decreases
by at least 1.

p = PQ ∧ r = Q1: The number of nodes with invalid placement decreases
by 1. The number of malicious nodes can increase by at most k. σ(c) increases
by at most k(2Δ − 1). The number of nodes with invalid load variable increases
by at most k. progressQ does not change for all nodes except v, for which it
may increase from 0 to 3. progressA does not change for any node. Hence, pot
decreases by at least (48kΔ2 − 8kΔ − 6k + 13) − k · (24Δ2 − 22Δ) − k(2Δ − 1) ·
(12Δ + 7) − k · (12Δ + 1) − 3 · 4 = 1.

p = PQ ∧ r = Q2: progressQ(v) is either 3 or 2 before the move of v. After
executing Rule Q2, progressQ(v) is equal to 1. So progressQ(v) decreases by at
least 1. Rule Q2 resets v.qr and v.qa. In the worst case, it holds v.qr ∈ N(v) both
before and after the move. So progressA increases by 1 for two neighbors of v.
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Also, v.qa ∈ N(v) might hold prior to the reset of v.qa to ⊥. Hence, progressA

increases by 1 for a third node in the worst case. For all other nodes, progressA

remains unchanged. The number of nodes with invalid placement or load variable
does not increase. σ(c) does not change. Also, the number of malicious nodes
cannot not increase, since Q′

r(v) only contains nodes u with u.ar �= v. So pot
decreases by at least 4 − 3 = 1.

p = PQ ∧ r = Q3: progressQ(v) is 3 if Rule Q3 is enabled. After the execution
of Rule Q2, progressQ(v) is either 2 or 1. Hence progressQ(v) decreases by at
least 1. progressA increases by 1 for at most one node. For all other nodes,
progressA remains unchanged. All other components of the potential function
remain unchanged. So pot decreases by at least 4 − 1 = 3

p = PQ ∧ r = Q4: If Rule Q4 is enabled, then progressQ(v) is either 3 or 1. If
3, then it decreases to either 1 or 0. If 1, then it decreases to 0. So progressQ(v)
decreases by at least 1. progressA increases by 1 for at most one node. For all
other nodes, progressA remains unchanged. All other components of the potential
function remain unchanged. So pot decreases by at least 4 − 1 = 3.

p = PQ ∧ r = Q5 ∧ ¬malicious(v): From ¬malicious(v) it follows that
L(v.qr) > (v.qr).l and L(v.qa) < (v.qa).l. From the guard of Rule Q5 it fol-
lows that v.qr ∈ Qr(v) and v.qa ∈ Qa(v) yielding (v.qr).l > (v.qa).l + 1 and
L(v.qr) > L(v.qa) + 1. Hence the σ(c) decreases by at least 2. Also, the number
of nodes with invalid load variables increases by 2. progressQ does increase for v
from 0 to 2. For all other nodes progressQ remains unchanged, since v.l is not up-
dated. However, since v.qr and v.qa are set to ⊥, progressA increases by 1 for two
neighbors of v. For all other nodes, progressA remains unchanged. Also, the num-
ber of malicious nodes and the number of nodes with invalid placement does not
increase. Hence, pot decreases by at least 2 ·(12Δ+7)−2 ·(12Δ+1)−2 ·4−2 = 2.

p = PQ ∧ r = Q5 ∧ malicious(v): The number of nodes with invalid placement
does not increase. However, the number of malicious nodes decreases by at least
1, since both v.qr and v.qa are reset to ⊥. σ(c) may increase by at most 2Δ − 4.
The number of invalid load variables grows by at most 1, since one load variable
must already be outdated for v to be malicious. progressQ(v) increases from 0 to
2 and progressA increases by 1 for two nodes. For all other nodes, progressQ and
progressA remain unchanged. Hence, pot decreases by at least (24Δ2 − 22Δ) −
(2Δ − 4) · (12Δ + 7) − 1 · (12Δ + 1) − 2 · 4 − 2 = 17. ��

6 Potential Function for the Distributed Scheduler

In the previous section, a potential function for the central scheduler was pre-
sented. The distributed scheduler selects a set S ⊆ V × A of enabled instances
in each step. The instances execute their moves in parallel. Composite atomic-
ity is assumed. Due to the parallel execution of moves, a single step under the
distributed scheduler can result in an increase of pot when using the weights as
defined in Section 5. This section shows that pot is strictly decreasing and thus
is a valid potential function under the distributed scheduler, if the weights w3,



26 S. Köhler, V. Turau, and G. Mentges

w2, and w1 are increased. The value of pot will decrease by at least |S| for every
step S under the distributed scheduler. Thus, pot is suitable for obtaining an
upper bound on the move complexity of A under the distributed scheduler.

In [8] we proposed a new technique for proving self-stabilization under the
distributed scheduler. The idea is to substitute a step S under the distributed
scheduler with a sequence of steps 〈m1, m2, . . . , mx〉 under the central scheduler
such that (c : m1 : m2 : . . . : mx) = (c : S) with mi ∈ S. The notations (c : m1)
and (c : S) are defined in [8]. The sequence 〈m1, m2, . . . , mx〉 is called serializa-
tion of S. For algorithm A such serializations do not always exist. However, in
this section a so-called partial serialization of the steps of A is constructed. A
partial serialization of a step S ⊆ V ×A under the distributed scheduler consists
of the sequence 〈m1, m2, . . . , mx, S′, mx+1, mx+2, . . . , my〉 where each mi ∈ S
denotes a step under the central scheduler and S′ ⊆ S denotes as step under the
distributed scheduler such that

(c : m1 : m2 : . . . : mx : S′ : mx+1 : mx+2 : . . . : my) = (c : S)
The intention is that S′ is is less complex than S. The partial serialization
for a step S ⊆ V × A is constructed via a so-called ranking r, which assigns a
value of the lexicographically sorted Z2 to each instance. The partial serialization
〈m1, m2, . . . , mx, S′, mx+1, mx+2, . . . , my〉 consists of all instances mi ∈ S sorted
by their rank r(mi) in ascending order. The set S′ consists of all instances mi ∈ S
with rank r(mi) = (3, 0).

r(v, p) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⊥ if (v, p) is disabled, otherwise:
(0, 1 − 2v.l) if p = PAa

(0, min{−2u.l | u ∈ Qa(v) ∧ u.aa = v}) if p = PQ ∧ e(Q4)
(1, 0) if p = PQ ∧ e(Q3)
(2, 1 + 2v.l) if p = PAr

(2, min{2u.l | u ∈ Qr(v) ∧ u.ar = v}) if p = PQ ∧ e(Q2)
(3, 0) if (p = PQ ∧ e(Q5)) ∨ p = PL

(4, 0) if p = PQ ∧ e(Q1)
where min ∅ = ∞ and the Boolean predicate e(Qx) is true if and only if (v, PQ)
is enabled with respect to Rule Qx.

Lemma 2. The sequence 〈m1, m2, . . . , mx, S′, mx+1, mx+2, . . . , my〉 as induced
by r is a valid partial serialization of S.

Proof. The proof shows that r is a valid invariancy-ranking (as defined in [8])
considering the parallel execution of all moves with rank (3, 0). Due to space
constraints, the proof has been omitted. ��
Lemma 3. Under the distributed scheduler, pot decreases by at least |S| with
every step S of A under the distributed scheduler if

w3 = 12Δ + 21 w2 = 48Δ2 − 18Δ w1 = 96kΔ2 + 12kΔ − 20k + 13

Proof. Let S ⊆ V × A be a step under the distributed scheduler. By Lemma 2,
〈m1, m2, . . . , mx, S′, mx+1, mx+2, . . . , my〉 is a valid partial serialization. Let c0
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denote the configuration prior to the step S. Let c1 denote configuration (c :
m1 : m2 : . . . : mx), c3 configuration (c1 : S′), and c4 configuration (c3 :
mx+1 : mx+2 : . . . : my). Then c4 = (c0 : S) holds. It is easy to verify that
Lemma 1 still holds for the adjusted values of w1 to w3. Lemma 1 then yields
that pot(c1) ≤ pot(c0) − x and pot(c4) ≤ pot(c3) − (y − x). To prove the claim it
remains to show that pot(c3) ≤ pot(c1) − |S′|.

S′ only contains instances of PQ which are enabled with respect to Rule Q5
since r is a valid invariancy ranking. Note that the sequential execution of all
(v, PQ) yields the same result as their parallel execution in a single step, since
Rule Q5 only changes v.β, v.qr , and v.qa, all of which do not impact any the
execution of Rule Q5 on a neighboring node u ∈ N(v) in any way. Hence, S′ can
be replaced by a sequential execution of Rule Q5 for all instances (v, PQ) ∈ S′

under the central scheduler followed by sequence of moves that set the load
variable v.l to the value of L(v) in c1 for each (v, PL) ∈ S′. Let c2 denote the
configuration after all execution of Rule Q5 and prior to the moves that set the
load variables.

Note, that pot decreases from c1 to c2 by Lemma 1. However, from c2 to c3,
the value of pot may increase due to the moves which change load variables. We
distinguish three types of nodes v ∈ V . Type A: The value of L(v) is identical in
c1 and c2. Type B: The value of L(v) differs in c1 and c2 and L(v) �= v.l in c2.
Type C: The value of L(c) differs in c1 and c2 and L(v) = v.l holds in c2.

If v is of type A then the update of v.l is identical to a regular execution
of protocol PL and pot decreases by Lemma 1. If v is of type B, the number
of nodes with an invalid load variable does not increase. However, replacing
one invalid counter value with another may invalidate queries of at most two
u ∈ N(v). For them, progressQ(u) increases by at most 3. If v being of type C,
#v∈V ¬validLoad(v) increases by one in addition to the increase of progressQ

as described for type B. In total, the update of v.l increases pot by at most
1 · (12Δ + 1) + 3 · 4 = 12Δ + 13.

For all three types, progressA nor validPlacement do not change for any node.
Also, the number of malicious nodes does not increase from c2 to c3. Assume
¬malicious(v) in c2. If (v, PQ) ∈ S′ then v.qr = v.qa = ⊥ in c2 and thus in c3.
Hence v is not malicious in c3. If (v, PQ) �∈ S′, v and (u, PL) ∈ S′ with v.qr = u
and u.ar = v, then L(u) ≥ u.l in c2. From u.ar = v it follows that L(u) cannot
decrease from c1 to c2. Hence, L(u) ≥ u.l still holds in c3 and v is not malicious
in c3. The case v.qa = u and u.aa = v is analogous.

An execution of Rule Q5 by each (v, PQ) ∈ S′ results in at most two type B/C
nodes (namely v.qr and v.qa). All other nodes are of type A. In the following, we
show that each (v, PQ) ∈ S′ compensates the increase of pot for at least 2 type C
nodes. Following the same reasoning as in the proof of Lemma 1, a move (v, PQ)
decreases pot by at least 2 · (12Δ + 21) − 2 · (12Δ + 1) − 2 · 4 − 2 = 24Δ + 30 if
¬malicious(v) and (48Δ2 −18Δ)−(2Δ−4) ·(12Δ+21)−1 ·(12Δ+1)−2 ·4−2 =
24Δ + 73 otherwise. It follows that pot(c3) ≤ pot(c1) − |S′|. ��



28 S. Köhler, V. Turau, and G. Mentges

7 Analysis

Lemma 4 (Correctness). If A has terminated, then LegitA is satisfied.

Proof. validLoad(v), validPlacement(v), and ¬queryNeedsUpdater(v) hold for all
nodes v ∈ V (Protocol PL and Rules Q1, Q2). Assume there exists a node v ∈ V
such that w = v.aa �= ⊥. Protocol PAa implies that w ∈ Aa(v), hence w.qa = v
and (w.qa).aa = w. Rule Q3 implies queryValidAndAckedr(w). This yields that
w.qa ∈ Qa(w) (Rule Q4). Furthermore, by Rule Q5, queryValidAndAckeda(w)
is false, hence (w.qa).aa �= w. This contradiction proves that all v ∈ V satisfy
v.aa = ⊥ and Aa(v) = ∅.

Assume there exists v ∈ V such that w = v.qa �= ⊥. Then w ∈ v.β since
Aa(w) = ∅. This implies w �∈ Qa(v) and hence queryNeedsUpdatea(v) is true. By
Rule Q4 queryValidAndAckedr(w) is false, therefore v.qa = ⊥ by Rule Q3. This
contradiction proves that all v ∈ V satisfy v.qa = ⊥.

Assume there exists v ∈ V such that w = v.qr �= ⊥. ¬queryNeedsUpdater(v)
implies v.qr ∈ Qr(v), hence Qa(v) �= ∅. Protocol PAr and Ar(w) �= ∅ imply that
w.ar �= ⊥. W.l.o.g. assume v = w.ar. Hence queryValidAndAckedr(v) and thus
v.qa �= ⊥ by Rule Q4. This contradicts the result of the last paragraph. Hence
v.qr = ⊥ for all v ∈ V . This yields Ar(v) = ∅ for all v ∈ V and thus v.ar = ⊥
by Protocol PAr . Furthermore, Qr(v) = Q′

r(v) for all v ∈ V . Thus, Qr(v) = ∅
by Rule Q2. This proves that LegitA is satisfied. ��
Lemma 5 (Closure). If LegitA is satisfied, then A has terminated.

Proof. Let v denote a node and consider a legitimate configuration. (v, PL) and
Rule Q1 are disabled for v since validLoad(v) and validPlacement(v). It also
holds v.ar = v.aa = ⊥ and u.qr = u.qa = ⊥ for all neighbors u ∈ N(v).
Hence, (v, PAr ) and (v, PAa ) are disabled for v since Ar(v) = Aa(v) = ∅. From
Qr(v) = ∅ it follows that Q′

r(v) = ∅. Since v.qr = ⊥, Rule Q2 is disabled. Rule
Q3 is disabled since v.qa = ⊥. Rule Q4 and Q5 are disabled since the query
v.qr = ⊥ is not valid. ��
Theorem 6. Algorithm A is self-stabilizing under the distributed scheduler

Proof. Correctness and Closure follow from Lemmas 4 and 5 and Termination
from Lemmas 1 and 3. ��
Theorem 7. In a legitimate configuration, the variables v.β of all v ∈ V induce
a local k-placement with local minimum variance.

Proof. For each v ∈ V let β(v) = v.β. LegitA implies validPlacement(v) and
therefore β(v) ⊆ N(v) and |β(v)| = k(v) for all v ∈ V . Hence, β is a local
k-placement. From Qr(v) = ∅ for all v ∈ V it follows that no node can lower the
variance by moving a replica from one of its neighbors to another. ��
Theorem 8. Algorithm A terminates after at most O(nΔ2) moves under the
distributed scheduler.
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Proof. For each node v ∈ V , L(v) can not be larger than Δ. The value of
σ reaches its maximum if the k · n replicas are concentrated on as few nodes
as possible. Hence, σ(c) can not become larger than � kn

Δ �Δ2 ∈ O(nΔ) and
w3σ(c) ∈ O(nΔ2). All other components of potvec are O(n) and the wj are
O(Δ2). Hence pot(c) ∈ O(nΔ2). The claim follows from Lemmas 1 and 3. ��
Theorem 9. Algorithm A terminates after at most O(nΔ) rounds under the
distributed scheduler.

Proof. Let c0 be the initial configuration of an execution and ci denote the
configuration at the end of round i. Note that ci−1 is the first configuration of
round i. Within the first round, each node that is enabled with respect to Rule
Q1 in c0 executes Rule Q1. Note that #v∈V validPlacement(v) never increases.
Hence in c1 all nodes v ∈ V satisfy validPlacement(v) and any execution starting
in a configuration such as c1 never contains any moves of Rule Q1.

During the second round, all malicious nodes become non-malicious either by
executing Rule Q5 or due to a move of Protocol PL of neighboring nodes. Hence
in c2, all nodes v ∈ V satisfy ¬malicious(v) and validPlacement(v).

Let c2 denote any configuration in which all nodes satisfy ¬malicious(v) and
validPlacement(v). In the following it is shown that any execution e starting
in c2 that does not contain a move of Rule Q5 is at most 5 rounds in length.
Since e does not contain an execution of Rule Q5, it must hold that in c3 and
all subsequent configurations of e, all nodes v ∈ V satisfy validLoad(v). Hence,
Qr(v) and Qa(v) are constant in the suffix of e starting with c3. Let v ∈ V with
Qr(v) �= ∅ and let v.qr and v.qa be invalid or equal to ⊥. In c4, v.qr is valid. In
c5, the node u = v.qr acknowledges a removal query. W.l.o.g. let u.ar = v. In c6,
v.qa is a valid query. In c7, the node w = v.qa acknowledges an additional query.
W.l.o.g. let w.aa = v. Starting with c7, v is enabled with respect to Rule Q5. If
the execution would continue for another round, then v would execute Rule Q5.
If Qr(v) = ∅ for all nodes v ∈ V in c2, then all nodes reset their queries to ⊥ and
all nodes have updated their load variable in c3. In c4, all nodes have reset their
acknowledgments to ⊥. The algorithm then terminates in c4. The claim follows
from the fact that the maximum of σ is O(nΔ) (cf. the proof of Theorem 8). ��

8 Concluding Remarks

This paper presented a novel self-stabilizing algorithm for the k-placement prob-
lem that stabilizes in O(nΔ2) moves respectively O(nΔ) rounds under the
distributed scheduler. The produced k-placements have the property that the
standard deviation of the distribution of the loads assumes a local minimum.
The algorithm can be applied in different areas of distributed computing. In par-
ticular it complements the work on a transformer to achieve fault-containment
as described in [9].

Another approach to solve the k-placement problem is to design an algorithm
in the distance-2 model. Note that under the distributed scheduler, a naive
algorithm (merely consisting of the equivalent of Rule Q5) would be vulnerable to
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a livelock resembling the one shown in Figure 2. Also, transforming the algorithm
to the distance-1 model as described in [13,2] leads to an increase of the move-
complexity by a factor of O(m). The resulting algorithm would not achieve the
efficiency of the proposed algorithm. Furthermore, the transformations require
unique node identifiers which is not the case for this work.

We are aware of scenarios, in which algorithm A requires O(Δ) rounds. In
particular, for a complete graph, A requires O(n) = O(Δ) rounds. We are not
aware of an example where algorithm A actually requires O(nΔ) rounds. The
proof of Theorem 9 does not consider that multiple nodes can move their replicas
simultaneously. However, how many nodes can do so heavily depends on the
topology and the initial local k-placement. However, it seems difficult to account
for this in the analysis. Nevertheless, we conjecture that A always stabilizes in
O(n) rounds.
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Abstract. The graph partitioning problem consists of dividing a graph
into parts, patterns or partitions which satisfy some specifications. Graph
partitioning problems are known to be NP-complete. In this paper, we
focus on the particular pattern of triangles and present the first Self-
stabilizing algorithm for Maximal Partitioning of arbitrary graphs into
Triangles (MPT). Then, we give the correctness and convergence proofs
of the proposed algorithm.

Keywords: Graph partitioning, Independent triangles, Self-stabilization.

1 Introduction

The notion of self-stabilization was introduced by Dijkstra [8]. The distributed
system is self-stabilizing if it can start from any possible configuration and con-
verge to a desired configuration in finite time by itself without any external inter-
vention. Convergence is also guaranteed when the system is affected by transient
faults. This makes self-stabilization an elegant approach for non-masking fault-
tolerance [9]. Each node has only a partial view of the system, called the local
state. The node’s local state includes the state of the node itself and the state of
its neighborhood. The union of the local states of all the nodes gives the global
state of the system. Based on its local state, a node can decide to make a move.
Therefore, self-stabilizing algorithms are given as a set of rules of the form [If
p(i) Then M ], where p(i) is a predicate and M is a move. p(i) is true when
the state of the node i is locally illegitimate. In this case, the node i is called a
privileged/active node. If all nodes of the system are not active, we say that this
configuration is safe.

Many self-stabilizing algorithms were proposed in the graph theory such self-
stabilizing algorithms for finding graph parameters including a minimal domi-
nating set, a maximal matching, an independent set [16], a spanning tree [6]. The
graph partitioning problem is defined on a graph G = (V,E), where V is the set
of nodes and E is the set of edges, such that it is possible to partition the graph
G into smaller components with some specific properties. These properties are
often defined on the size of the partitions (clusters), on their shape (subgraphs)
or both (patterns).
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The problem of graph partitioning has several applications including scientific
computing, scheduling, load balancing and parallel computing [2,25], clustering
and detection of cliques and communities in social networks [26].

In the literature, some works were proposed for graph partitioning problems
according to self-stabilization paradigm. Graph partitioning into clusters was
considered by E. Caron et al. in [7] and by D. Bein et al. in [4]. In [5], F.
Belkouch et al. considered a particular graph partitioning problem that consists
in decomposing the graph into k partitions of order k. Their algorithm relies
on self-stabilizing spanning tree construction then it converges within 3(h + 1)
steps where h is the height of the spanning tree. H. Ishii et al. considered the
partitioning of the graph into maximal cliques [22]. They proved the impossibility
of finding maximal cliques in anonymous networks, and they proposed a self-
stabilizing algorithm that finds maximal cliques in ID-based networks within
O(n4) under central daemon. In [17], R. Hadid and M. H. Karaata proposed a
self-stabilizing algorithms that finds all the disjoint paths in anonymous mesh
networks. Briefs announcements were also proposed in [23] and [1] for both
disjoint paths and edge-disjoint paths in arbitrary graphs.

All algorithms cited above consider graph partitioning into some particular
subgraphs where at most either particular shape (e.g. clique, path, ...) is needed
or particular number of nodes is needed in each partition. In this paper, we give
interest to graph partitioning problem into particular patterns where both shape
and number of nodes in partitions are imposed. One famous problem strongly
related to graph partitioning into particular patterns is the problem of finding
maximal matching in graphs. This problem consists in finding maximal parti-
tioning of the graphs into independent edges. The first self-stabilizing algorithm
considering this problem was proposed by S. Hsu et al. [21]. The algorithm sta-
bilizes within O(n4) under a centralized daemon. The complexity of the solution
was first improved by G. Tel [27], who proposed a proof for a complexity of
O(n2). This value was later improved by S. T. Hedetniemi et al. who proved a
stabilization within O(m) under the central daemon [20]. They also proposed
a generalization of the problem called Maximal b-Matching where each node
could be connected to at most b matched edges [13]. The generalized algorithm
also runs within O(m) under central daemon. In [14], W. Goddard et al. consid-
ered the maximal matching problem under the synchronous daemon. However,
the work of F. Manne et al. [24] seems to be the most elaborated for the self-
stabilizing maximal matching problem. Indeed, it proves that the problem could
not be considered in anonymous networks and proposes an algorithm that sta-
bilizes within O(m) even under unfair distributed daemon. While all of these
cited works gave interest to provide approximative solutions (maximal match-
ings), work of R. Hadid et al. [18] proposed a self-stabilizing solution for finding
optimal matching (maximum matching) but only on bipartite graphs.

The purpose of this paper is to develop a self-stabilizing algorithm for graph
partitioning into particular patterns that are triangles. The perfect partitioning
into triangles is one of the classical NP-complete problems [11]. Hence, the per-
fect partitioning into triangles does not always exist for an arbitrary graph, so,
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we consider maximal graph partitioning into triangles such that there exists a
local maximization criterium (no new triangle can be added using only nodes
not already in a triangle). To the best of our knowledge, this is the first work
that considers this problem.

The rest of this paper is organized as follows: the next section defines the used
model and some definitions. In Section 3, we give a self-stabilizing algorithm for
graph partitioning into triangles. We then present the correctness proof of our
algorithm in Section 4, and the convergence and the complexity proof by using
variant function in Section 5. Finally, Section 6 gives the conclusion of this work.

2 System Model and Definitions

In this paper, we mean by graph an undirected connected graph. So, the system
is represented by a graph G = (V,E), such that V is a set of nodes and E is a
set of edges. We assume that each node has an unique id which is locally distinct
(radius 2 is sufficient). We denote by � the maximum node degree in the graph
G. Assuming that each node knows his neighbors, we denote by N(i) and N [i]
the open and the closed neighborhoods of the node i, respectively, such that
N [i] = N(i) ∪ {i}.

The problem of graph partitioning into triangles is defined as follows [11].
Given q such that n = 3.q where q is a positive integer and n is the number of

nodes in the graph G, the Partition into triangles is q disjoint sets V1, V2, ....., Vq

of the three nodes each such that, for each Vi = {vi[1], vi[2], vi[3]}, the three
edges {vi[1], vi[2]}, {vi[1], vi[3]}, {vi[2], vi[3]} belong to E. For example, in Fig-
ure 1, {1,2,3} and {4,5,6} form triangle partitions. The NP-complete proof was
presented in [11].

1

2 3 4 5

6

Fig. 1. Partition into triangles

Self-stabilizing algorithms can be designed according to different daemons,
also called schedulers. There are two types of daemons which are often assumed
in the literature of self-stabilizing algorithms: (i) Centralized type. At each step,
the centralized daemon selects only one privileged node arbitrarily, and a selected
node makes a move. (ii) Distributed type. At each step, the distributed daemon
selects an arbitrary non-empty set of privileged nodes, and the selected nodes
make their moves simultaneously. A special case of distributed daemon is called
synchronous daemon, where all privileged nodes are selected by the daemon for
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making their moves simultaneously at each step. A good taxonomy of existing
daemons was presented in [10].

We find also the notion of fairness, the demons can be fair (weakly) or unfair
(adversarial). Fair daemon means that every node that is continuously enabled
is eventually selected but for the unfair demon, there is no such restriction on
the fairness, so the daemon may execute any enabled node at every step.

Generally, algorithms are designed assuming a specific daemon. An algorithm
designed for one daemon may not work with another daemon. Thus, in order
to simplify algorithm development, some mechanisms, called Transformers of
self-stabilizing algorithms from some daemons into other daemons have been
proposed in the literature [3,15,19,12].

In this paper, we assume unfair central daemon, meaning that, there is no
restriction on the fairness. This kind of daemon can be considered as an adversary
against the stabilization of our algorithm.

3 Maximal Graph Partitioning into Triangles (MPT)

Sine perfect partitioning, as defined in the previous section, does not always
exist for an arbitrary graph, so, we consider the partitioning of an arbitrary
graph G into triangles as a set of disjoint subsets Ti of nodes such each subset
Ti forms a triangle and 1 � i � �n3 �. Since, the subsets Ti are disjoint, we
say the formed triangles are independent. A partitioning into triangles MPT
of G is called maximal iff there are no u, v, w ∈ V : {u, v, w} � MPT and
(u, v), (v, w), (u,w) ∈ E.

The main idea of the proposed algorithm can be summarized as follows: each
node i, in the graph G, maintains a list of pointers L(i) that defines to which
triangle i may belong. We say L(i) is valid, if |L(i)| = 0 or |L(i)| = 2; L(i)
contains only pointers (id) to neighbors of i (L(i) ⊆ N(i)) and doesn’t contain
duplicate id. So, it is possible that at the starting of the system, the list is not
valid, however, it is easy to add a rule that forces it to become valid. For this
raison, and to simplify the description of the algorithm, we assume that the
lists are valid. The nodes try to coordinate between them in order to belong to
exactly one triangle. To do this, we have three rules:

– The invitation Rule (R1) : when the pointer list of the node i is empty
(L(i) = φ) and there are two neighbors (say, j and k) forming a triangle with
i and their lists are empty, then node i invites/points the two neighbors j, k
by executing the Rule R1.

– TheWithdrawal rule (R2) : when i points on two nodes to form a triangle and
one of these two nodes points another adjacent triangle. In this situation, we
say that i is chaining. Hence, node i withdraws its invitation by executing the
Rule R2. R2 is also executed when the pointer list does not form a triangle
in the graph G.

– The acceptation Rule (R3) : if the pointer list of the node i is empty and
there is at least a node belonging to the same triangle {i, j, k} which pointes
it, then the node i accepts the invitation. We added another condition in the
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Rule R3 imposing to a node to agree the belonging to a triangle as quickly as
possible in order to achieve it. For example, in Figure 2, the node i accepts
to belong to the triangle {i, j, k} instead of the triangle {i, j1, j2}.
This last condition reduces the complexity of the stabilization of the sys-
tem and provides a local stabilization (in radius 3) and avoids the wave
stabilization that affects the entire system (diameter max).

i

j

k

j
1

j
2

Fig. 2. When i execute R3

The proposed algorithm MPT needs two predicates. The first predicate is
Is trianglei(j, k), means that the set {i, j, k} forms a triangle in the graph G.
We assume that this predicate uses distance-2 information for the node i knows
if it belongs to a triangle or not. The second predicate, Is pointedi(j, k) means
that it exists at least one node j or k which points the node i and the second
node remained such as Is trianglei(j, k) is true. Formally the two predicates are
defined as follows:

– Is trianglei(j, k) :: {i, j, k} ⊆ N [j]
⋂
N [k] and i �= j �= k.

– Is pointedi(j, k) :: (L(j) = {i, k} ∨ L(k) = {i, j}) ∧ Is trianglei(j, k).

The proposed algorithm is composed from the three following rules:

Algorithm 1. Algorithm MPT

Require: input arbitrary Graph G
Ensure: output Graph partitioning into triangles MPT

R1 [Invitation]:
IF L(i) = φ∧ (∀j, k ∈ N(i) : ¬Is pointedi(j, k))∧ (∃j, k ∈ N(i) : L(j) = L(k) = φ ∧
Is trianglei(j, k)) THEN L(i) = {j, k};
R2 [Withdrawal]:
IF L(i) = {j, k} ∧ (¬Is trianglei(j, k) ∨ |{i} ∪ L(i) ∪ L(j) ∪ L(k)| > 3) THEN
L(i) = φ;
R3 [Acceptation]:
IF L(i) = φ ∧ (∃j, k ∈ N(i) : Is pointedi(j, k) ∧ |L(j) ∪ L(k)| ≤ 3) ∧ (�j1, j2 ∈
N(i) : Is pointedi(j1, j2) ∧ |L(j) ∪ L(k)| < |L(j1) ∪ L(j2)| ≤ 3 ∧ j1 
= j) THEN
L(i) = {j, k};
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4 Correctness Proof

Lemma 1: When the algorithm MPT stabilizes, if a node i has L(i) = {j, k}
then {i, j, k} forms a triangle.

Proof: we prove this Lemma by contradiction. Suppose that the algorithm MPT
stabilizes and ∃i ∈ V such that L(i) = {j, k} and {i, j, k} is not a triangle. The
algorithm MPT stabilizes, means that all rules are not enabled and by assump-
tion L(i) = {j, k} and {i, j, k} is not a triangle. In this case, the Rule R2 is
enabled for the node i. So, contradiction with assumption.

Lemma 2: When the algorithm MPT stabilizes, ∀i ∈ V , if L(i) = {j, k} then
L(j) = {i, k} ∧ L(k) = {i, j}.

Proof: we prove this Lemma by contradiction, the algorithm MPT stabilizes
and ∃i : L(i) = {j, k} such L(j) �= {i, k} ∨ L(k) �= {i, j}.

As the reasoning is symmetric for j and k, so, we assume that L(i) = {j, k} ∧
L(j) �= {i, k}. In this situation, we have : L(j) �= {i, k} ⇔ L(j) = φ ∨ L(j) =
{i, x} ∨ L(j) = {x, y} ∨ L(j) = {k, x}.

– Assumption 1: L(i) = {j, k} ∧ L(j) = φ.
By Lemma 1, L(i) = {j, k} ⇒ {i, j, k} forms a triangle. We have two cases
for the node k. If L(k) = φ then the node j has to execute the Rule R3,
contradiction with Assumption 1. The second case, L(k) �= φ, we will have
then two situations: The first one, if the node k points another triangle else
{i, j, k}, it means that |{i}∪L(i)∪L(j)∪L(k)| > 3 then the node i executes
R2 to withdraw the invitation, implying contradiction with Assumption 1.
For the second situation, if the node k points the same triangle {i, j, k} then
the node j has to execute the Rule R3 in order to accept the invitation for
forming the triangle {i, j, k} else the node j has to accept another triangle
than {i, j, k}, implying |{i} ∪ L(i) ∪ L(j) ∪ L(k)| > 3. This pushes the node
i to execute the Rule R2 for the removal, implying also contraction with
Assumption 1.

– Assumption 2: L(i) = {j, k} ∧ L(j) = {i, x} such x �= k.
By Lemma 1, if L(i) = {j, k} ∧ L(j) = {i, x} then {i,j,k} and {i,j,x} forms
two adjacent triangles, with common edge (i, j). This implies |{i} ∪ L(i) ∪
L(j)∪L(k)| > 3 and |{i}∪L(i)∪L(j)∪L(x)| > 3, so, at least, the two nodes
are activated by the Rule R2. Contradiction with Assumption 2.

– Assumption 3: L(i) = {j, k} ∧ L(j) = {x, y} such i �= k �= x �= y.
By Lemma 1, if L(i) = {j, k}∧L(j) = {x, y} then {i, j, k} and {i, x, y} forms
two adjacent triangles, with common node j. This implies |{i}∪L(i)∪L(j)∪
L(k)| > 3, so, at least, the node j is activated by the Rule R2. Contradiction
with Assumption 3.
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– Assumption 4: L(i) = {j, k} ∧ L(j) = {k, x} such i �= j �= k �= x.
The proof is similar to that of Assumption 2, but with considering the com-
mon edge to be (j, k).

Lemma 3: When the algorithm MPT stabilizes, ∀i ∈ V , if L(i) = {j, k} then
{i, j, k} forms an independent triangle.

Proof: By Lemma 1, L(i) = {j, k} ⇒ {i, j, k} forms a triangle and by Lemma
2, L(i) = {j, k} ⇒ L(j) = {i, k} ∧ L(k) = {i, j}, so, each node in the graph can
belong to only one triangle.

Lemma 4: When the system is stable, the algorithm MPT always gives maxi-
mal triangle partitions.

Proof: System is stable and the algorithm is not maximal partition triangles,
means that we can find three nodes which belong to the same triangle and their
pointer lists are empty.

It is obvious that when the system is stable, every node i in the graph has
L(i) = {j, k} ∨ L(i) = φ. If L(i) = {j, k}, by Lemmas 3 and 4, {i, j, k} forms
an independent triangle (partition) composed of three nodes. The rest of nodes,
which their pointers list L(i) = φ, cannot be activated by R1 or R2, are called
in the next section the single nodes.

We assume that the system is stable and ∃i, j, k ∈ V : L(i) = L(j) = L(k) =
φ ∧ Is trianglei(j, k). Given a node i, if i is not pointed, then it will execute
the Rule R1 in order to invite j and k else i executes R2 in order to accept the
invitation. So, this is in contradiction with our assumption.

Theorem 1: When the system is stable, the algorithm MPT finds always max-
imal partitioning graph into triangles.

Proof: Theorem 1 is a direct consequence of Lemmas 1 to 4.

5 Convergence and Complexity

In a configuration c, the node i could be in one of the following states: (see
Figure 3)

– Agree(i) ≡ L(i) = {j, k} ∧ L(j) = {i, k} ∧ L(k) = {i, j}.
– Single(i) ≡ L(i) = φ ∧ (∀j, k ∈ N(i) : Is trianglei(j, k) ⇒ Agree(j) ∨

Agree(k)).
– Waiting(i) ≡ L(i) = {j, k} ∧ L(j) = {i, k} ∧ L(k) = φ.
– Free(i)≡ L(i)= φ∧(∃j, k ∈ N(i) :Is trianglei(j, k)∧¬Agree(j)∧¬Agree(k)).
– Chaining(i)≡ L(i)={j, k}∧(|{i}∪L(i)∪L(j)∪L(k)|> 3)∨¬Is trianglei(j, k)).
– Proposing(i) ≡ L(i) = {j, k} ∧ (j, k ∈ N(i) : L(j) = L(k) = φ).
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Fig. 3. States of nodes

Lemma 5: If Agree(i) or Single(i) then the node i will never make a move again.

Proof: If Agree(i) ⇒ L(i) = {j, k} ∧ L(j) = {i, k} ∧ L(k) = {i, j}, this im-
plies |{i} ∪ L(i) ∪ L(j) ∪ L(k)| = 3 and by Lemma 3, {i, j, k} forms inde-
pendent triangle. In this case, the three rules are not enabled. So, neither i
nor j nor k will make a move again. If Single(i), means that L(i) = φ and
∀j, k ∈ N(i) : Is trianglei(j, k)⇒ Agree(j)∨Agree(k)) then i has not available
pair of nodes which can form a triangle with them, because j or k is agree and
can never make a move, so the node i is dead and it can never execute any rule.

Lemma 6: If ∃i such that Waiting(i) ∨ Free(i) ∨ Chaining(i) ∨ Proposing(i)
then there exists at least one enabled node in the system.

Proof: we prove that in each State, we have at least one enabled node: State
1: if proposing(i), meaning that L(i) = {j, k} and L(j) = L(k) = φ, then
the node j and k are enabled by the Rule R3. State 2: if waiting(i), meaning
that L(i) = {j, k} and L(j) = {i, k} and L(k) = φ then the node k is en-
abled by the Rule R3. State 3: if chaining(i), means that L(i) = {j, k} and
(i, j, k) is not a triangle, so, the node i is enabled by R2. If L(i) = {j, k} and
|{i} ∪ L(i) ∪ L(j) ∪ L(k)| > 3 then the node i is also enabled by R2. State
4: free (i), meaning that L(i) = φ and (∃j, k ∈ N(i) : Is trianglei(j, k) and
¬Agree(j) ∧ ¬Agree(k). If Free(j) and Free(k) then the node i is enabled by
R1. Else, the nodes j and k can be proposing, waiting or chaining states, and
we prove in States 1, 2, 3 and 4 that in each situation, there are at least one
node that is enabled. So, we prove that in each node State (proposing, waiting,
chaining and free) there are at least one node that is enabled. So, there exists a
node in these States, the configuration of the system is not safe.

Lemma 7: The system converges in O(n4) moves.
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Proof: We define A, S, W, F, P and C as total number of agree, single, waiting,
free, proposing and chaining nodes, respectively, in the c configuration.

We use variant function method to prove the convergence of the algorithm MPT.
For this, we define the function VF(c) which returns a vector (A+S, W, P, F, C).
We define lexicographical order between these vectors, for example (3,2,1,4,4) is
greater than (3,2,1,3,5).

Note that every c configuration for which VF(c)=(n,0,0,0,0) is a safe config-
uration, once the system reaches a safe configuration, no node moves. Whereas,
by Lemma 6, in every non-safe configuration, there exists at least one node that
can make move when it is selected by the unfair central daemon. So, in this
section, we show that every rule increases the value of our function VF.

1. Invitation Rule [R1]

If the node i executes the Rule R1 then the node i is not pointed by any
neighbor with whom i could form a triangle and L(i) = φ (i.e i is a free node).
So, after the execution of the Rule R1, the number of proposing nodes in-
creases by one and the number of free nodes decreases by 1.

2. Withdrawal Rule [R2]

If the node i is chaining, so it is activated by the Rule R2. In this situation,
we have three cases for activating R2:

(a) Case 1: when i is not pointed by another neighbor with whom i could
form a triangle.

In this case, when the node i executes R2, the number of chaining
nodes decreases by 1 and the number of free or single nodes increases
by 1. Note, that the node i becomes a single node if all triangles to
which it can belong are not available anymore (Formally, �j, k ∈ N(i) :
Is trianglei(j, k) ∧ ¬Agree(j) ∧ ¬Agree(k)).

(b) Case 2: when i is pointed by another neighbor with whom i could form
a triangle.

In such configuration, since i is pointed and L(i) �= φ, and all nodes
pointing i are chaining. Let x be the number of these nodes. Since i
is enabled by R2, means that i is also chaining, then, we have x + 1
chaining nodes. Once i executes R2, a node that was pointing to i will
become either proposing or waiting node. Let y be the number of nodes
that become waiting and let z be the number of nodes that become
proposing. We have x = y + z. Hence, when i executes R2, the number
of free nodes increases by 1, the number of chaining nodes decreases by
x+1, the number of proposing and waiting nodes increases, respectively,
by y and z.



40 B. Neggazi et al.

(c) Case 3: when i points two neighbors that not form a triangle (Formally,
L(i) = {j, k} ∧ ¬Is trianglei(j, k)).
In this case, when the node executes R2, the number of chaining nodes
decreases by 1 and the number of free or single node increases by 1.

3. Acceptation Rule [R3]

If a node i is enabled by R3 then free(i). In this situation, we have two cases:

(a) Case 1: when the node i is pointed by at least 2 waiting nodes j, k which
belong to the same triangle. (see Figure 4(a))

In this case, when the node i executes the R3, the number of agree nodes
increases by 3, the number of free nodes and waiting nodes decreases,
respectively, by 1 and 2. Note, that in this case, we can have another
proposing or waiting nodes pointing the node i which they will be chain-
ing after the move of node i by accepting the node j and k. Even in these
situations the VF increases.

(b) Case 2: when the node i is pointed by x proposing nodes.(see Figure
4(b))

We have x triangles to which i may belong. So, when it executes the Rule
R3, it will arbitrary chose one triangle among x. In this configuration,
the number of proposing nodes reduces by x, the number of free node
reduces by 1, and the number of chaining and waiting nodes increase,
respectively, by x− 1 and 2.

K

i

j

(a) When the node i is
pointed by at least 2 waiting
nodes.

i

T

TT 2

1

x

(b) When the node i is
pointed by x proposing nodes.

Fig. 4. Case when i is activated by R3.
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We conclude that each of these rules increments the value of the function
VF. The number of executions is bounded by the number of all possible vector
values. So, the fact that A+ S +W + P + F + C = n, such that n is the num-
ber of the nodes in the graph. The system reaches a safe configuration when no
increment is possible (i.e VF (c) = (n, 0, 0, 0, 0)). Hence, the system reaches a
safe configuration after at most O(n4) moves.

Theorem 2: The proposed algorithm MPT is a self-stabilizing algorithm for
maximal partitioning graph into triangles and converges in O(n4) under unfair
central daemon.

Proof: Lemma 7, show that the algorithm MPT converges in O(n4) and in
light of Theorem 1, we conclude that the proposed algorithm is self-stabilizing
algorithm for maximal graph partitioning into triangles.

6 Conclusion

In this paper, we proposed the first self-stabilizing algorithm for graph partition-
ing into triangles. Our algorithm operates under the unfair central daemon but
it can be combined with any transformer [3,15] for working under distributed
daemons. For example, by using [15], the transformed algorithm stabilizes in
O(�n4) under unfair distributed daemon where � is the maximum node degree
in the graph. As future works, we aim to improve the proposed algorithm MPT
for working under distributed daemons.
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1 Introduction 

This brief announcement presents a fault-tolerant self-stabilizing distributed clock 
synchronization protocol for an arbitrary, non-partitioned digraph.  Synchronization 
algorithms are essential for managing the use of resources and controlling 
communication in a distributed system.  Synchronization of a distributed system is the 
process of achieving and maintaining a bounded skew among independent local time 
clocks.  A distributed system is said to be self-stabilizing if, from an arbitrary state, it is 
guaranteed to reach a legitimate state in a finite amount of time and remain in a 
legitimate state. For clock synchronization, a legitimate state is a state where all parts 
in the system are in synchrony. The self-stabilizing distributed-system clock 
synchronization problem is, therefore, to develop an algorithm (i.e., a protocol)  
to achieve and maintain synchrony of local clocks in a distributed system after 
experiencing system-wide disruptions in the presence of network element 
imperfections. The convergence and closure properties address achieving and 
maintaining network synchrony, respectively. 

The main challenge associated with distributed synchronization is the complexity 
of developing a correct and verifiable solution. It is possible to have a solution that is 
hard to prove or refute.  Such a solution, however, is not likely to be accepted or used 
in practical systems. Thus, a proposed solution must be proven to be correct. The 
proposed solution must restore synchrony and coordinated operations after 
experiencing system-wide disruptions in the presence of network element 
imperfections and, for ultra-reliable distributed systems, in the presence of various 
faults. A fault is a defect or flaw in a system component resulting in an incorrect state 
[1]. Furthermore, addressing network element imperfections, e.g., oscillators drift 
with respect to real time and differences in the lengths of the physical communication 
media, is necessary to make a solution applicable to realizable systems. 

There exist many clock synchronization algorithms for special cases and restricted 
conditions.  There are many solutions that are based on randomization and, therefore, 
are non-deterministic, e.g., the second protocol in [2].  There are many solutions that 
deal with the closure property [3] but either do not address convergence or provide an 
ad hoc solution [4] for initialization and integration, separately. Typically, the 
assumed topology is a regular graph such as a fully connected graph or a ring. These 
topologies do not necessarily correspond to practical applications or biological, social, 



44 M.R. Malekpour 

 

or technical networks.  Furthermore, the existing models and solutions do not solve 
the general case of the distributed synchronization problem. Even when the solutions 
achieve synchrony, the time to achieve synchrony is very large for many of the 
solutions. 

We have addressed all these issues in our proposed solution. We have developed 
and mechanically verified a deterministic fault-tolerant self-stabilizing distributed 
clock synchronization protocol for an arbitrary, non-partitioned, strongly connected 
directed graph (digraph) ranging from fully connected to 1-connected network while 
allowing for differences in the network elements and tolerating detectably bad faults. 
Using authentication and error detection techniques, it is possible to substantially 
reduce the effects of variety of faults in the system. Furthermore, the classical 
definition of a self-stabilizing algorithm assumes generally that either there are no 
faults in the system [5] or all faults are detectable. Thus, we restricted our solution to 
detectably bad faults. Our proposed protocol does not rely on assumptions about the 
initial state of the system, and no central clock or a centrally generated signal, pulse, 
or message is used. Nodes are anonymous, i.e., they do not have unique identities. 
There is no theoretical limit on the maximum number of participating nodes. The only 
constraint on the behavior of a node is that the interactions with other nodes are 
restricted to defined links and interfaces.  The protocol deterministically converges 
within a time bound that is a linear function of the self-stabilization period. There is 
neither a central system clock nor an externally generated global pulse or message at 
the network level.  The communication links and nodes can behave arbitrarily 
provided that eventually the system adheres to the protocol assumptions. For a 
complete technical report about our proposed solution, related literature and 
protocols, the reader is referred to [5, 6, 7]. 

2 How the Protocol Works 

In this section we provide an intuitive description of the protocol behavior. Each node 
is driven by an independent, free-running local physical oscillator (i.e., the phase is 
not controlled in any way) and a logical-time clock (i.e., a counter), denoted 
LocalTimer, which locally keeps track of the passage of time and is driven by the 
local physical oscillator. The nodes communicate with each other by broadcasting 
Sync messages. Broadcast of a message by a node is realized by transmitting the 
message, at the same time, to all nodes that are directly connected to it. A node 
periodically undergoes a resynchronization process either when its LocalTimer times 
out or when it receives a Sync message.  If it times out, it broadcasts a Sync message 
and so initiates a new round of a resynchronization process.  However, since we are 
assuming detectably bad faults, when a node receives a Sync message, except during  
a predefined time interval, it accepts the Sync message and undergoes the 
resynchronization process where it resets its LocalTimer and relays the Sync message 
to others. This process continues until all nodes participate in the resynchronization 
process and converge to a guaranteed precision. The predefined time interval where 
the node ignores all incoming Sync messages, referred to as ignore window, provides 
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a means for the protocol to prevent the endless cycle of resynchronization processes 
triggered by the succession of Sync messages. 

3 Protocol Verification 

A bounded model of the protocol was mechanically verified for a subset of digraphs 
and modeling challenges of the protocol and the system were addressed [6]. The 
model checking effort was focused on verifying correctness of the bounded model of 
the protocol as well as confirmation of claims of determinism and linear convergence 
with respect to the self-stabilization period.  In [7] we present a deductive proof of the 
correctness of the protocol as it applies to networks consisting of unidirectional and/or 
bidirectional links.  The crux of the proof is to answer whether or not it is possible for 
a message to circulate within the network without dying out and whether or not it is 
possible for all nodes to transmit Sync messages without ever timing out, assuming 
the synchronization period is sufficiently large.  As a result of our analysis and 
verification effort, we conjecture that the protocol solves the general case of this 
problem.  In [5] we also presented several variations of the protocol and discussed 
that this synchronization protocol is indeed an emergent system.  
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1 Problem

Given a network of processes G, where each process has a fixed input bit ,
Input(x), the disjunction problem is for each process to compute Output =∨

x∈G Input(x), the disjunction of all input bits in the network.
A distributed solution to the disjunction problem is a distributed algorithm

which computes an output bit for each process, such that all output bits are
equal to Output. The solution given in this paper, the distributed algorithm
DISJ, correctly solves the disjunction problem if the network is connected. DISJ
is self-stabilizing [1,2], meaning that a correct output configuration is reached in
finite time after arbitrary initialization, and is silent, meaning that eventually the
computation of DISJ will halt. DISJ works under the unfair scheduler (daemon).
DISJ is uniform, meaning that every process has the same program, and is
anonymous, meaning that processes are not required to have distinguished IDs.
The round complexity of DISJ is O(n), where n is the size of the network. We
use the composite model of computation [2]. We are not aware of any closely
related work in the literature. Although we use some of the same techniques
in this paper that are used for leader election, the disjunction problem in an
anonymous network cannot be solved by using a leader election algorithm, nor
by using an algorithm to construct a spanning tree. In fact, there is no distributed
algorithm which elects a leader or which constructs a spanning tree for general
anonymous networks.

2 DISJ

Our algorithm, DISJ, solves the disjunction problem in an anonymous connected
network, G. The fundamental idea of DISJ is to build a local BFS tree rooted at
every process whose input bit is 1. Each process will join the tree rooted at the
nearest process with input bit 1; ties will be broken arbitrarily. The construction
of the BFS trees is by flooding.

The main difficulty with this method is the possibility that, in the initial
configuration (which is arbitrary) there could be “fictitious” BFS trees. It is
necessary to delete all such fictitious trees. This is an easy task if Output = 1,
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but is difficult if Output = 0, where there is a danger that the algorithm will
never eliminate all fictitious trees. Fictitious trees continually delete themselves
from the root end; our problem is to ensure that the tree does not grow as fast
at the leaf end as it deletes itself from the root end.

The method we use to ensure deletion of fictitious trees is derived from the
color wave method of [3]. Each process in a tree, whether true or fictitious, has
a color , either 0 or 1. A process can only recruit a new process to the tree if
its color is 1, and the recruited process will initially have color 0. Colors change
in pipelined convergecast waves. These rules guarantee that fictitious trees will
lose processes from the root end approximately twice as fast as they recruit new
leaves.

In our algorithm, colors change in convergecast waves which cannot pass each
other. Each wave is behind its predecessor by some positive amount. In order
for a wave to reach the root of a tree, all preceding waves must be absorbed by
the root. Only a process whose input bit is 1 can absorb waves. A fictitious tree
will not be rooted at a process with input bit 1, and thus color waves will not be
absorbed. “Color lock,” the situation where the waves are maximally crowded
and cannot move up, will eventually stop the growth of any fictitious tree.

We are able to prove, using fairly straightforward methods, that DISJ con-
verges in O(d) rounds if Output = 1, where d is the diameter of the network.
On the other hand, DISJ requires O(n) rounds to delete all fictitious trees if
Output = 0. The worst case round complexity for DISJ is thus O(n).

We use the concept of energy introduced in [3] to prove that DISJ is self-
stabilizing and has time complexity O(n). Energy(x) is a positive integer for
each process x whose output bit is 1. If Output = 0, Energy(x) ≤ 2n for all x,
and the maximum value of Energy decreases by at least 1 during every round,
and must eventually reach zero. At that point, every process has output bit 0.

In the case that Output = 1, all BFS trees will be in their final form within
O(d) rounds, where d is the diameter of the network. All color waves will then
stop within O(d) additional rounds, after which DISJ will be silent.

In DISJ, each process x has the following variables.
x.out , Boolean, the output bit of x. When DISJ converges, all values of x.out

are equal to Output. During execution of DISJ, each process has output bit 1 if
and only if it is currently a member of a tree.

x.level , which is either a non-negative integer or ∞. If Outpt = 1, x.level
converges to the distance from x to the nearest process whose input bit is 1. If
Output = 0, x.level =∞ for all x after convergence.

x.parent ∈ N(x)∪{⊥}, the parent of x in its BFS tree, where N(x) is the set
of neighbors of x. If Input(x) = 1 or Output = 0, then x.parent = ⊥ when DISJ
converges.

x.color ∈ {0, 1}, the color of x.
x.done , Boolean, used to indicate that DISJ is finished and the color waves

should stop.
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DISJ has five actions, as follows.

Reset: A process which detects that it is an erroneous state, or needs to decrease
its level, executes this action, setting x.out to 0 and x.parent to ⊥, becoming a
free process.

Initialize: A free process whose output bit is zero becomes the root of a new
BFS tree.

Join: A free process x whose output bit and input bits are both 0, but which
has a neighbor whose output bit is 1, joins a BFS tree by linking to a neighbor.

Change Color: A process x which is a member of a BFS tree changes color,
from 0 to 1 or from 1 to 0. In order to change color, all children of x (in its BFS
tree) must have color opposite to x, while either the color of x.parent equals
x.color , or x is the root of a BFS tree. When a root changes color, a color wave
is deleted, as we explain below.

Finish: In the case that Output = 1, the network eventually consists of the
disjoint union of one or more BFS trees, one rooted at each process whose input
bit is 1. In order for DISJ to be silent, we must freeze the color waves. This
action enables a convergecast finishing wave to move up each BFS tree; when
that wave reaches the root, that root will no longer execute the change color
action. Eventually, DISJ will halt.

Normal Growth. A true tree grows by processes executing the Join action.
Only a process of color 1 can recruit a neighbor, and the new recruit is given
the color 0. That new recruit may wait two rounds before it can recruit new
processes itself. If there are no fictitious trees, color waves move up the tree, and
the new recruit will eventually be enabled to be the recruiter.

Fictitious Trees. A fictitious tree recruits as a true tree, but the color waves
are unable to move up indefinitely; thus its growth eventually stops. After a
fictitious tree becomes “color locked,” it deletes itself by repeated execution of
the Reset action. Within O(n) rounds, there will be no more fictitious trees;
within O(d) additional rounds, a legitimate configuration will be reached.
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Abstract. We investigate self-stabilizing algorithms for anonymous and
oblivious robots in uniform ring networks, that is, we focus on algorithms
that can start from any initial configuration (including those with mul-
tiplicity points). First, we show that there exists no probabilistic self-
stabilizing gathering algorithm in the non-atomic CORDA model or if
only global-weak and local-strong multiplicity detection is available. This
impossibility result implies that a common assumption about initial con-
figurations (no two robots share an node initially) is a very strong one.

On the positive side, we give a probabilistic self-stabilizing algorithm
for the gathering and orientation problems in the atomic ATOM model
with global-strong multiplicity detection. With respect to impossibility
results, those are the weakest system hypotheses. In addition, as an appli-
cation of the previous algorithm, we provide a self-stabilizing algorithm
for the set formation problem. Our results imply that any static set for-
mation can be realized in a self-stabilizing manner in this model.

1 Introduction

Background and Motivation. Studies for mobile robot networks have emerged re-
cently in the field of distributed computing. Their goal is to achieve some tasks by
a team of mobile robots with weak capabilities. Most studies assume that robots
are identical (robots execute the same algorithm and cannot be distinguished by
their appearance) and oblivious (robots have no memory and cannot remember
the history of their execution). In addition, it is assumed that robots cannot
communicate with other robots directly. The communication among robots is
done in an implicit way having each robot observe the positions of others.

Since Suzuki and Yamashita presented a pioneering work [12], many results
about such robots have been published. Some works consider problem solvabil-
ity in a two-dimensional Euclidean space [5, 6, 12], while others consider it in
graphs [4, 7, 9–11]. In this paper, we focus on an unoriented anonymous ring net-
work since algorithms for ring networks give solutions for the essential difficulties
that arise in robot networks such as symmetry breaking. The most fundamental
problems in ring networks are the gathering problem and the exploration prob-
lem. The goal of the gathering problem is to make all the robots gather at a
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non-predetermined single node, and the goal of the exploration problem is to
make every node visited by at least one robot. There are many algorithms under
various settings for gathering [7, 9, 10] and exploration [4, 11]. The main inter-
est of the works on a ring network is to characterize the minimum assumptions
that allow deterministic algorithms. Klasing et al. [9, 10] propose deterministic
gathering algorithms in the asynchronous model. They assume the global-weak
multiplicity detection, that is, each robot can detect whether the number of
robots on every node is one or more than one (it cannot detect the number of
robots exactly). In [7, 8], the assumption is weakened to the local-weak multi-
plicity detection, that is, each robot can detect whether the number of robots
on its current node is one or more than one.

All aforementioned works in the discrete (aka graph) model for robots makes
the assumption that initial robot positions are unique, that is, in the initial
configuration, no two robots share the same node. Still, it is generally accepted
that robot algorithms, due to the obliviousness of the robots, are “almost” self-
stabilizing, that is, they can recover from an arbitrary initial global state. Char-
acterizing what “almost” means in this context is the topic of this paper, and our
goal is to clarify the set of problems that can be solved in a self-stabilizing setting,
considering classical hypotheses in robot networks (deterministic vs. probabilis-
tic, non-atomic CORDA vs atomic ATOM model, global vs local multiplicity
detection, strong vs weak multiplicity detection, etc.). Obviously, in an arbi-
trary initial configuration where occupied nodes host the same number of robots
and are symmetric, no deterministic protocol can break the symmetry, which is
needed for solving e.g. gathering or orienting a ring. Hence, only probabilistic
algorithms may be self-stabilizing.

Our Contribution. In the first part of this paper, we investigate the difficulty of
probabilistic self-stabilizing algorithms using weak assumptions. In more details,
we show that there exists no probabilistic self-stabilizing algorithm that achieves
gathering in the non-atomic CORDA model or if only local-strong and global-
weak multiplicity detection is available. Remind that the local-strongmultiplicity
detection permits to obtain the number of robots on the current hosting node.
This impossibility means that the assumption about initial configurations made
in previous works is very strong: removing it requires many additional assump-
tions. Simply put, robot algorithms on graphs are not “almost” self-stabilizing.

In the second part, we investigate which problems can be solved in a self-
stabilizing manner, and we focus on the gathering and orientation problems.
Those two problems are essential to solve most tasks in mobile robot networks.
In fact, the difficulty of most problems comes from the lack of agreement on
robots’ views, i.e., no origin and no orientation in the network. For example,
consider the problem that deploys a minimal independent set (MIS) of robots
in the network. It is easy for robots to recognize the same form of a MIS from
the number of nodes in the ring network. If the network has some origin and
orientation, robots can easily recognize the corresponding nodes that construct
a MIS. However, if the network has no origin or no orientation, robots cannot
uniquely recognize the same nodes due to symmetry of the network configuration
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even though they know the exact shape of a MIS for a particular number of
robots and ring size. Construction of a global origin and orientation is realized
by the gathering and orientation problem.

We give probabilistic self-stabilizing algorithms for the gathering and orienta-
tion problems. We assume the weakest possible model with respect to impossi-
bility results: we assume the semi-synchronous ATOM model and global-strong
multiplicity detection. Remind that the global-strong multiplicity detection can
return the number of robots on every node. First, we give a self-stabilizing gath-
ering algorithm that achieves gathering in O(n log k) expected asynchronous
rounds and O(kn) expected moves, where k is the number of robots and n is the
number of nodes. Since the gathering requires Ω(kn) moves from initial configu-
rations where robots are evenly scattered, the proposed algorithm is asymptoti-
cally optimal for the number of moves. Second, we give a self-stabilizing orienta-
tion algorithm using the gathering algorithm. This algorithm not only provides
an orientation of the ring but also extracts � robots from the robot pool cre-
ated by the gathering algorithm, where � is the number of robots required to
solve an application problem. This algorithm works if k ≥ � + 2, and requires
O((log k + �)n) expected asynchronous rounds and O(kn) expected moves. Fi-
nally, as an application of the proposed algorithms, we provide a self-stabilizing
algorithm for the set formation problem. The set formation problem can form
any static set such as a uniform distribution and a MIS. For the set of size s such
that s ≤ k − 1, this algorithm requires O((log k + s)n) expected asynchronous
rounds and O(kn) expected moves.

Related Works. Many results about a network of mobile robots have been pub-
lished since Suzuki and Yamashita presented the pioneering work [12]. They
formalize a network of mobile robots in two-dimensional Euclidean space. They
give possibility and impossibility results of the gathering and convergence prob-
lem, and characterize the class of geometric patterns that robots can form. Note
that they prove that two robots cannot achieve gathering deterministically in a
two-dimensional Euclidean space. Consequently any deterministic gathering al-
gorithm assumes some conditions on the number of robots or the initial positions.
Dieudonné and Petit [2] show that with the global-strong multiplicity detection,
there exists a deterministic self-stabilizing gathering algorithm if and only if the
number of robots is odd. Probabilistic self-stabilizing gathering algorithms in
the continuous model are proposed in [1, 6].

On the other hand, algorithms for mobile robots in graph networks are consid-
ered in [4, 7, 9–11]. For ring networks, Klasing et al. [9, 10] propose deterministic
gathering algorithms in the asynchronous model with the global-weak multiplic-
ity detection. They also show that there exist some initial configurations where
any deterministic algorithm cannot achieve gathering. Izumi et al. [7] provide a
deterministic gathering algorithm with local-weak multiplicity detection. The al-
gorithm assumes that initial configurations are non-symmetric and non-periodic,
and the number of robots is less than half number of nodes. For odd number of
robots in the same model, Kamei et al. [8] propose the gathering algorithm that
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also works in symmetric configurations. Note that all of the above works assume
some initial configurations and thus they are not self-stabilizing.

Many algorithms for pattern formation problems in two-dimensional Euclidean
space are proposed, however algorithms for set formation problems in rings are
scarcely proposed. To the best of our knowledge, the work in [3] is only the
one that considers the uniform distribution on a ring. The work proposes deter-
ministic algorithms in a weaker model but they also assume that each node is
occupied by at most one robot in the initial configuration.

2 Model

System Models. The system consists of n nodes and k mobile robots. The nodes
v0, v1, . . . , vn−1 construct an unoriented and undirected ring in this order. For
simplicity we consider mathematical operations to indices of nodes as operations
modulo n. Neither nodes nor links have any identifiers and labels, and conse-
quently robots cannot distinguish nodes and links. Robots occupy some nodes
of the ring.

Robots considered here have the following characteristics and capabilities.
Robots are identical, that is, robots execute the same algorithm and cannot be
distinguished by their appearance. Robots are oblivious, that is, robots have
no memory and cannot remember the history of its execution. Robots cannot
communicate with other robots directly, however they can observe the positions
of other robots. This means robots can communicate implicitly by their positions.
We assume each robot has some multiplicity detection. We consider two types
of multiplicity detection: the global-strong multiplicity detection, and the local-
strong and global-weak multiplicity detection. When each robot has a global-
strong multiplicity detection, each robot can detect the number of robots on each
node. When each robot has a local-strong and global-weak multiplicity detection,
each robot can detect the number of robots only on its current node and detect
whether the number of robots is one or more than one for every node.

Each robot executes the algorithm by repeating cycles. At the beginning of
each cycle, the robot observes the environment and the positions of other robots
(look phase). According to the observation, the robot computes whether it moves
to its adjacent node or stays idle (compute phase). If the robot decides to move,
it moves to the node by the end of the cycle (move phase). We consider two types
of the synchronous models: the ATOM model and the CORDA model. In the
ATOM model, a set of activated robots is selected by the scheduler, and cycles of
the activated robots are executed synchronously. In the CORDA model, cycles
of robots are executed asynchronously. Note that in the CORDA model each
robot can move based on the outdated view, which the robot observed before.
On the other hand, robots can move based on the latest view in the ATOM
model. For both models, the scheduler is fair, which guarantees that each robot
is activated infinitely often. When we analyze the worst-case performance of
algorithms, we consider the scheduler as an adversary. That is, we assume that
the scheduler knows every information, such as positions and decisions of all
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robots, and activates cycles to degrade the performance of algorithms as much
as possible.

A configuration of the system is defined as the number of robots on each node.
If a node is occupied by some robots, the node is called a robot node. If a node is
occupied by exactly m robots, the node is called a m-robot node. When m ≥ 2
holds, a m-robot node is also called a tower node. If a node is occupied by no
robots, the node is called a free node. In addition, we define a 1-robot block as a
maximal set of consecutive 1-robot nodes. We define the size of a 1-robot block
as the number of nodes in the 1-robot block. A 1-robot node with size 1 is also
called an isolated 1-robot node. If there exists an axis of symmetry of the ring
in configuration C, C is called symmetric. If configuration C is symmetric, some
robots may recognize the ring in different direction from other robots.

When a robot observes the environment, it gets a view of the system. Con-
sider a configuration such that nodes vi0 , vi1 , . . . , viw−1 (i0 < i1 < · · · < iw−1)
are robot nodes and each robot node vix is occupied by mix robots. Then,
when we assume a global-strong multiplicity detection, the view of a robot on
node vix is defined as a sequence max{(M0, D0,M1, D1, . . . ,Mw−1, Dw−1), (M0,
Dw−1,Mw−1, . . . ,M1, D0)}, where My = mi(x+y) mod w

, Dy = (i(x+y+1) mod w −
i(x+y) mod w) mod n, and two sequences are compared by lexicographical order.
When we assume a local-strong and global-weak multiplicity detection, the view
of a robot on node vix is defined similarly except that My (0 < y < w) is one
or two: My = 1 implies mi(x+y) mod w

= 1 and My = 2 implies mi(x+y) mod w
>

1. When (M0, D0,M1, D1, . . . ,Mw−1, Dw−1) = (M0, Dw−1,Mw−1, . . . ,M1, D0)
holds, we say that the view on vix is symmetric. In this case the robot on vix
cannot distinguish two directions when it moves. In such cases, we assume the
scheduler decides which direction each robot moves to. This means that, even
if a robot moves to a direction with probability 1/2 and to the opposite with
probability 1/2, the scheduler makes it move in the same direction at all times.

We evaluate the algorithm with the number of expected asynchronous rounds
and expected total number of moves. A round is defined as the shortest fragment
of an execution in which each robot executes at least one complete cycle. The
total number of moves is the sum of moves each agent makes.

The Problems to Be Solved. We give the definition of the problems to be solved
in this paper. First, we define the gathering problem, which aims to collect all
the robots at a single node.

Definition 1. An algorithm A solves the gathering problem if and only if the
system reaches the configuration where all robots stay at a single node and do
not move.

Next, we define the orientation problem, which aims to make an orientation in
a ring. In this paper, we construct a configuration such that applications can
easily use the orientation. To be concrete, we construct a configuration such
that there exist exactly one tower node and exactly one 1-robot block with size
� neighboring to the tower node, where � is the given input for the application
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ℓ

Fig. 1. The goal of the orientation problem

(See Fig. 1). As we show later, the configuration is useful because each robot in
1-robot block can easily recognize its role from the position.

Definition 2. An algorithm A solves the orientation problem (and 1-robot block
creation) for given input � if and only if the system reaches the configuration
satisfying the following conditions: 1) All robots do not move, 2) there exists
exactly one tower node, and 3) there exists exactly one 1-robot block with size �
that is neighboring to the tower node.

Next, we give the definition of the set formation problem. The aim of the set
formation problem is to construct the target set by robot nodes. However, since
the ring is unoriented and nodes have no identifiers, it is impossible to exactly
indicate nodes by the target set. Instead we indicate the target set by the relative
set SET ⊂ {0, 1, . . . , n − 1}. From the set SET , the family of terminal sets
F(SET ) is defined as follows:

F(SET ) =
⋃

0≤i≤n−1

⎧⎨
⎩

⋃
j∈SET

{
v(i+j) mod n

}
,
⋃

j∈SET

{
v(i−j) mod n

}⎫⎬
⎭ .

For example, to realize a uniform distribution for 12-node rings, we can define
SET = {0, 3, 6, 9}. Then, node sets such as {v0, v3, v6, v9} and {v1, v4, v7, v10}
are included in F(SET ). We define the set formation problem as follows.

Definition 3. An algorithm A solves the set formation problem for a given set
SET ⊂ {0, 1, . . . , n − 1} if and only if the system reaches the configuration
satisfying the following conditions: 1)All robots do not move, and 2) letting St

be the set of robot nodes, St ∈ F(SET ) holds.

Lastly, we give the definition of probabilistic self-stabilizing algorithms.

Definition 4. An algorithm A is a probabilistic self-stabilizing algorithm for
problem P if and only if, for some function p : N × N → (0, 1], algorithm A
solves P with probability at least p(k, n) from any initial configuration for n-node
and k-robot rings.

3 Impossibility of Probabilistic Self-stabilizing Gathering
Algorithms in Weak Models

In this section, we show the impossibility of probabilistic self-stabilizing gath-
ering algorithms on weak models. As we described in Section 1, we assume the
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ATOMmodel and the global-strongmultiplicity detection to propose algorithms.
In this section we show that such strong assumptions are necessary to realize a
self-stabilizing gathering algorithm.

First we consider the CORDA model as a weaker synchronous model. Remind
that cycles of robots are executed asynchronously in the CORDA model. Hence,
it is possible that, after robot r observes the configuration and decides to move,
some robots repeatedly observe and move before r actually moves.

Theorem 1. There exists no probabilistic self-stabilizing gathering algorithm
with the global-strong multiplicity detection in the CORDA model.

Proof. Assume that there exists a probabilistic self-stabilizing gathering algo-
rithm A that achieves gathering with probability at least p(k, n) for some func-
tion p. Consider a n-node ring and k = n robots r0, r1, . . . , rk−1 such that each
node is occupied by one robot in the initial configuration. Note that each robot
has the same view in the initial configuration. In this view, each robot has to
move probabilistically, otherwise the configuration is never changed when they
are activated synchronously (Note that, since the view of each robot is symmet-
ric, all the robots move to the same direction by the scheduler if they move).

Consider the above configuration. For an arbitrary positive integer X , we
define the procedure of the scheduler Proc(X) as follows:

1. First the scheduler tries to make r0 decide to move. To be concrete, the
scheduler activates the look and compute phases of r0. If r0 decides to stay,
the scheduler activates the move phase (Here r0 does not move). Then, the
scheduler activates the look and compute phases of r0 again. This activation
is repeated at most X times for r0. If r0 decides to move or r0 is activated
X times, the scheduler goes to the next step. Note that, after r0 decides
to move, the move phase is not activated here. This is possible because we
consider the CORDA model.

2. Next, the scheduler similarly tries to make ri (i = 1, 2, . . . , k − 1) decide to
move.

3. Then, the scheduler activates the move phase of ri for each i.

The scheduler can make all robots move to the same direction, if they decide to
move, since the view of any robot is symmetric. Consequently, if all robots decide
to move, the configuration is not changed after Proc(X). This implies that at
least one robot must stay after Proc(X) to achieve gathering. Let P (X) be the
probability that at least one robot stays after Proc(X). It is clear that, for any
positive number p′, there exists a positive integer X ′ such that P (X ′) < p′.

Let p be a small constant satisfying p < p(k, n). Let Xj (j = 1, 2, . . .) be
a positive integer satisfying P (Xj) < p/2j. We consider the scheduler such
that it executes procedures Proc(X1), P roc(X2), . . . in this order. Note that this
scheduler is fair because each robot is activated infinitely often. Then, letting
P ∗ be the probability that A achieves gathering under this scheduler, we have
P ∗ < P (X1) + P (X2) + P (X3) + · · · < p. This is a contradiction. ��
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Next we consider the local-strong and global-weak multiplicity detection as the
weaker multiplicity detection. For this case, we have a similar result.

Theorem 2. There exists no probabilistic self-stabilizing gathering algorithm
with the local-strong and global-weak multiplicity detection in the ATOM model.

4 An Algorithm for the Gathering Problem

In the rest of the paper, we propose probabilistic self-stabilizing algorithms for
the gathering problem, the orientation problem, and the set formation problem.
All the algorithms assume the ATOM model and the global-strong multiplicity
detection. Remind that we consider n-node and k-robot rings in the following.

In this section, we consider the gathering problem. The goal of the gathering
problem is to form the configuration such that there exists exactly one tower
node and all robots are on this tower. We denote a set of such configurations by
Cg. For any configuration C, we define M(C) as the maximum number of robots
that occupy one node.

The behavior of each robot at configuration C (C /∈ Cg) is given as follows.

– Case 1: Case where there exists exactly one M(C)-robot node. Let vt be
the M(C)-robot node. Let NC(vi) be the number of robots on node vi at
configuration C.
• For each x (0 < x ≤ �n/2�), every robot on node vt+x such that∑x

i=1 NC(vt+i) < M(C) moves to vt+x−1.
• For each x (0 < x < n − �n/2�), every robot on node vt−x such that∑x

i=1 NC(vt−i) < M(C) moves to vt−x+1.
– Case 2: Case where there exists more than one M(C)-robot node. For each

M(C)-robot node v, we define hv be the distance from v to its closer neigh-
boring robot node. Let hmin = min{hv|v is a M(C)-robot node}. Let V1 be
the set of robot nodes such that the distance to a M(C)-robot node is hmin.
Let R1 be the set of robots that occupy nodes in V1. Note that R1 is a set
of robots that are closest to some other M(C)-robot node.
• (Case 2-1) If |R1| = 1, the robot in R1 moves toward its closest M(C)-
robot node.

• (Case 2-2) If |R1| > 1, each robot in R1 moves toward its closest M(C)-
robot node with probability 1/(2|R1|).

First, we briefly explain the behavior to reach a configuration in Cg. In Case 1,
there exists exactly one M(C)-robot node and other robots move to the M(C)-
robot node. Consequently, the system reaches a configuration in Cg. In Case 2,
there exists more than one M(C)-robot node. In Case 2-1, the robot in R1 moves
toward a M(C)-robot node and joins it. Then, the configuration becomes one in
Case 1. In Case 2-2, exactly one robot moves toward a M(C)-robot node with
constant probability. Then, the configuration becomes one in Case 1 (when the
robot moves to a M(C)-robot node) or Case 2-1 (when the robot moves to a
free node). Therefore, the system reaches a configuration in Cg eventually.
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In the following, we prove the complexity of the algorithm. The important
behavior of the algorithm is that, when d robots can make probabilistic moves,
each robot decides to move with probability 1/(2d). Since the worst behavior
of the algorithm is to make more than one robot move simultaneously, the ad-
versarial scheduler may activate these d robots simultaneously. The following
lemma says exactly one robot moves with probability 1/4 even in this case. If
the scheduler activates them separately, the probability becomes higher.

Lemma 1. Consider the configuration in which there are d robots that move
with probability 1/(2d) and other robots cannot move. Then, the probability that
the configuration changes in one round and exactly one robot moves in the con-
figuration change is at least 1/4.

From Lemma 1, we can show that the system reaches a configuration in Cg in
O(n log k) rounds and O(kn) moves with constant probability from any initial
configuration. Even if the system does not reach a configuration in Cg, the system
can reach the configuration by repeating the algorithm constant expected times.
This implies the following theorem.

Theorem 3. The proposed algorithm solves the gathering problem in O(n log k)
expected rounds and O(kn) expected moves from any initial configuration.

5 An Algorithm for the Orientation Problem

The goal of the orientation problem in this paper is to make a configuration
such that 1) it includes exactly one tower node and one 1-robot block with size
� (� is a given input value) and 2) the tower node and the 1-robot block are
neighboring (See Fig. 1). Our algorithm requires that k ≥ � + 2, that is, there
should exist enough number of robots to create one tower node and one 1-robot
block with size �.

Our orientation algorithm achieves such configuration from the gathering con-
figuration. That is, we first execute the gathering algorithm and then execute
the orientation algorithm. Note that, as we describe later, some configurations
for the orientation algorithm are the same as those for the gathering algorithm.
Since robots are oblivious, it seems to be impossible for robots to recognize which
algorithm is executed in the configurations. However, by executing the orienta-
tion algorithm preferentially, robots can execute the orientation algorithm after
the gathering algorithm. This means that the gathering algorithm is switched to
the orientation algorithm as soon as the configuration becomes one included in
the orientation algorithm.

In the following, we describe the overview of the orientation algorithm. For
simplicity we assume � ≤ n−3 (This assumption will be removed later). The ori-
entation algorithm is divided into three phases. In the first phase, the algorithm
achieves the target configuration for � = 1, i.e., it extracts one robot from the
tower node. Note that the orientation is made in this phase because the configu-
ration after the first phase is not symmetric. This orientation is conserved during
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Fig. 2. The first and second phases of the orientation algorithm

the execution. The second phase achieves the target configuration for � = 2, and
the third phase achieves the target configuration for any �.

5.1 The First Phase

The goal of this phase is to reach configurations Cfg such that there exist one
tower node and one 1-robot node neighboring to the tower node (See Fig. 2). If
� = 1, the orientation algorithm finishes in the first phase.

In this phase we do not execute the orientation algorithm after the gathering
algorithm, but execute the orientation algorithm and the gathering algorithm in
parallel. More concretely, the first phase is as follows:

– If the configuration is in Cfg, each robot does not move.
– If the configuration is in Cg, each robot moves to its neighboring node with

probability 1/(2k).
– Otherwise, each robot executes the gathering algorithm.

From Lemma 1, exactly one robot moves in a configuration in Cg with probability
at least 1/4, and then the system reaches a configuration in Cfg. If multiple robots
move, the system reaches a configuration in Cg again in O(n log k) expected
rounds and O(kn) expected moves from Theorem 3. Therefore, we have the
following lemma.

Lemma 2. From any initial configuration, the system reaches a configuration
in Cfg in O(n log k) expected rounds and O(kn) expected moves.

5.2 The Second Phase

The goal of the second phase is to construct a configuration such that there
exist one tower node and one 1-robot block with size 2 neighboring to the tower
node. We denote such configurations by Csg (See Fig. 2). If � = 2, the orientation
algorithm finishes in the second phase.

We provide the behavior of robots from a configuration in Cfg. First, a robot
on the 1-robot node moves to its neighboring free node. After the move, the
configuration becomes configurations Cs1 such that there exists one free node
between the tower node and the 1-robot node. Then, each robot on the tower
node moves toward the 1-robot node with probability 1/(2(k − 1)). After the
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Fig. 3. The third phase of the orientation algorithm

move, the configuration becomes one in Csg with probability at least 1/4 from
Lemma 1. Otherwise, if all robots move, the configuration becomes one in Cfg
again. If multiple (not all) robots move, the configuration becomes one such that
there exist two tower nodes. We denote such configurations by Cs2. In Cs2, each
robot on the tower node neighboring to the 1-robot node moves to the other
tower node. If all the robots move, the configuration becomes one in Cs1. Due
to the scheduler of the ATOM model, it is possible that not all robots move at
the same time. If one robot remains, the configuration becomes one in Csg. Note
that, since we assume � ≤ n − 3, each configuration in the second phase is not
symmetric.

In summary, the second phase of the orientation algorithm is as follows (Note
that the algorithm includes the first phase and thus the algorithm works from
any initial configuration):

– If the configuration is in Csg, each robot does not move.
– If the configuration is in Cfg, a robot on the 1-robot node moves to its

neighboring free node.
– If the configuration is in Cs1, each robot on the tower node moves toward

the 1-robot node with probability 1/(2(k − 1)).
– If the configuration is in Cs2, each robot on the tower node neighboring to

the 1-robot node moves to the other tower node.
– Otherwise, each robot executes the first phase of the orientation algorithm.

From the algorithm and Lemma 2, we can clearly have the following lemma.

Lemma 3. From any initial configuration, the system reaches a configuration
in Csg in O(n log k) expected rounds and O(kn) expected moves.

5.3 The Third Phase

The goal of the third phase is the same as that of the orientation problem, that
is, to construct a configuration such that 1) it includes only one tower node and
one 1-robot block with size �, and 2) the tower node and the 1-robot block are
neighboring. Since the orientation algorithm finishes before the third phase in
the case of � < 3, we assume � ≥ 3 in the following.

First, we list all the possible configurations in this phase. We denote these
configurations by regular configurations. Before we define regular configurations,
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we define some sets of configurations Cmr1, Cmr2, Cmr3, and Cmr4 for each m ≥ 2 (see
Fig. 3).

– Configuration C is in Cmr1 iff C satisfies the following conditions:
• There exist one 1-robot block with size m, one tower node, and no other
robot nodes,

• and the 1-robot block and the tower node are neighbors.
– Configuration C is in Cmr2 iff C satisfies the following conditions:

• There exist one 1-robot block with size m, one tower node, one isolated
1-robot node, and no other robot nodes,

• and the 1-robot block and the tower node are neighbors.
– Configuration C is in Cmr3 iff C satisfies the following conditions:

• There exist one 1-robot block with size m, two tower nodes, and no other
robot nodes,

• the 1-robot block and a tower node are neighbors,
• and the two tower nodes are neighbors.

– Configuration C is in Cmr4 iff C satisfies the following conditions:
• There exist one 1-robot block with size m, one tower node, and no other
robot nodes,

• and there exists exactly one free node between the 1-robot block and the
tower node.

We define Cmr = Cmr1 ∪ Cmr2 ∪ Cmr3 ∪ Cmr4 and a set of regular configurations Cr =⋃
2≤m≤�−1 Cmr . By definitions, the goal of the extracting phase is to reach a

configuration C in Ce = C�r1. Note that, since we assume � ≤ n− 3, each regular
configuration is not symmetric.

The behavior of each robot for the third phase is given as follows.

– Case 1: If C ∈ Cmr1, each robot on the tower node moves to its neighboring
free node with probability 1/(2d), where d = k −m is the number of robots
on the tower node.

– Case 2: If C ∈ Cmr2, a robot on an isolated 1-robot node moves toward the
1-robot block.

– Case 3: If C ∈ Cmr3, each robot in the tower node that is not a neighbor of
the 1-robot block moves to the other tower node.

– Case 4: If C ∈ Cmr4, each robot in the tower node moves to the free node
between the 1-robot block and the tower node.

– Goal: If C ∈ Ce, each robot does not move.
– Other case: If C /∈ Cr ∪ Ce, each robot executes the second phase of the

orientation algorithm.

Clearly, after some robots move at regular configurations, the configuration is
still regular or becomes one in Ce. In the following, we prove the correctness of
the algorithm.

Lemma 4. From any configuration C such that C ∈ Cmr and 2 ≤ m ≤ � − 1,
the system reaches a configuration in Cm+1

r1 in O(n) expected rounds and O(n)
expected moves.
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From Lemma 4, if the number of nodes in the 1-robot block is less than �, it is
increased in O(n) expected rounds and O(n) expected moves. Consequently, the
following lemma holds.

Lemma 5. From any configuration in Cr, the system reaches a configuration in
Ce in O(�n) expected rounds and O(�n) expected moves.

Since Csg = C2r1 ⊂ Cr, the proposed algorithm solves the orientation problem for
input � such that � ≤ n− 3 from Lemmas 3 and 5.

Lastly we remove the assumption � ≤ n − 3. Consider case � = n − 2. From
the above algorithm, we can construct a configuration in C�−1

r1 . From this config-
uration, each robot on the tower node moves to its neighboring free node with
probability 1/(2d), where d is the number of robots on the tower node. By this
behavior, exactly one robot moves with at least probability 1/4 and then the
robot can join the 1-robot block. Even if multiple robots move, the system can go
back to a configuration in C�−1

r1 again in O(n log k) expected rounds and O(kn)
expected moves. Therefore, by repeating the above behavior constant times, the
system reaches the target configuration for � = n−2. For the case of � = n−1, we
can construct the algorithm similarly. Therefore, we have the following theorem.

Theorem 4. The proposed algorithm solves the orientation problem for input �
in O((log k + �)n) expected rounds and O(kn) moves from any initial configura-
tion if k ≥ �+ 2 holds.

6 Application: An Algorithm for the Set Formation
Problem

In this section, we show an algorithm for the set formation problem as an appli-
cation of our gathering and orientation algorithm. The goal of the set formation
problem is to form SET in Definition 3. Similarly to the previous section, we
first execute the orientation algorithm for � = |SET | − 1 and then execute an
algorithm for the set formation problem. That is, we assume that initial config-
uration C is in Ce. The set formation algorithm is executed preferentially, and
thus if the system reaches a configuration in the set formation algorithm during
the execution of the gathering or orientation algorithm, the system transits to
the phase for the set formation immediately.

Since a configuration in Ce is not symmetric, all the robots can recognize the
ring network in the same direction. Without loss of generality, we assume that
v0 is the tower node and v1, v2, . . . , v� form the 1-robot block.

To realize the set formation algorithm, each robot has to decide the positions
that form the target set. In our algorithm, each robot decides the positions based
on a tower node v0. That is, we assume each robot knows a function SET (v0)
that tells positions that form the target set based on a tower node v0. Without
loss of generality, we assume that SET (v0) satisfies the following conditions: 1)
v0 ∈ SET (v0), 2) vn−1 /∈ SET (v0), and 3) If va and vb are nodes with minimum
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Fig. 4. The set formation algorithm. Black circles denote nodes in SET (v0)

index a and maximum index b such that va and vb are in SET (v0) respectively,
a ≤ n− b holds (va is closer to v0).

The algorithm is very simple: Each robot on the 1-robot block moves to a
node in SET (v0) one by one (See Fig. 4). To explain more, let va be a free node
with maximum index a such that va is in SET (v0). Let vb be a 1-robot node
with maximum index b such that b < a. Then, a robot on vb moves toward va.

Since v0 ∈ SET (v0) and vn−1 /∈ SET (v0), the configuration never becomes
symmetric during the execution of the algorithm before a robot on v1 moves.
After the robot on v1 moves, the configuration never becomes symmetric during
the execution because of the third condition of SET (v0). Note that, even if a
configuration that forms SET (v0) is symmetric, the last configuration becomes
symmetric but configurations during the execution are not symmetric. Since
at least one robot moves in each round, each robot moves at most n times.
Therefore, since the number of moving robots is at most � = |SET |− 1, and the
following lemma holds.

Lemma 6. From any configuration in Ce, the system reaches a configuration
that forms SET . This takes at most O(|SET |n) rounds and O(|SET |n) moves.

By combining the previous algorithms, we can obtain a self-stabilizing algorithm
for the set formation problem. From Theorem 4 and Lemma 6, we have the
following theorem.

Theorem 5. The proposed algorithm solves the set formation problem for set
SET in O((log k + |SET |)n) expected rounds and O(kn) expected moves from
any initial configuration if k ≥ |SET |+ 1.

7 Conclusion

In this paper, we investigated self-stabilizing algorithms for robots in ring net-
works. We have proved that there exists no probabilistic self-stabilizing gathering
algorithm in the non-atomic CORDA model or if robots are only endowed with
global-weak and local-strong multiplicity detection. This means that, contrary
to popular belief, robot algorithms are not “almost” self-stabilizing, as removing
the assumption on the initial global configuration of robot positions implies mak-
ing very strong system hypotheses to retain problem solvability. On the other
hand, we have presented a probabilistic self-stabilizing algorithm for the gather-
ing and orientation problem in the ATOM model with global-strong multiplicity
detection. Since the gathering and orientation algorithm solves the essential dif-
ficulties that arise in robot networks, many algorithms can be derived by the
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proposed algorithms. As an example application of our scheme, we provided a
self-stabilizing algorithm for the set formation problem. This means any static
set formation can be realized in a self-stabilizing manner in our model.

An interesting path for future research is to clarify the problems that could
be solved in a self-stabilizing setting with weaker hypotheses (e.g. non-atomic
CORDA model, no global-strong multiplicity detection, etc.). Another interest-
ing path is to consider a weak scheduler. In this paper, we assume the strong
scheduler that adapts to decisions of robots. It is interesting to consider the
solvability under the scheduler that is oblivious to decisions of robots.
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Abstract. We consider deterministic terminating exploration of a grid by a team
of asynchronous oblivious robots. We first consider the semi-synchronous atomic
model ATOM. In this model, we exhibit the minimal number of robots to solve the
problem w.r.t. the size of the grid. We then consider the asynchronous non-atomic
model CORDA. ATOM being strictly stronger than CORDA, the previous bounds
also hold in CORDA, and we propose deterministic algorithms in CORDA that
matches these bounds. The above results show that except in two particular cases,
3 robots are necessary and sufficient to deterministically explore a grid of at least
three nodes. The optimal number of robots for the two remaining cases is: 4 for
the (2, 2)-Grid and 5 for the (3, 3)-Grid, respectively.

1 Introduction

We consider autonomous robots that are endowed with motion actuators and visibility
sensors, but that are otherwise unable to communicate. Those robots must collaborate to
solve a collective task, here the deterministic terminating grid exploration (exploration
for short), despite being limited with respect to input from the environment, asymmetry,
memory, etc. So far, two universes have been studied: the continuous two-dimensional
Euclidean space and the discrete universe. In the former, robots freely move on a plane
using visual sensors with perfect accuracy that permit to locate all other robots with
infinite precision (e.g., [1,2,3]). In the latter, the space is partitioned into a finite num-
ber of locations, conventionally represented by a graph, where the nodes represent the
possible locations that a robot can take and the edges the possibility for a robot to move
from one location to another (e.g., [4,5,6,7,8,9,10]).

In this paper, we pursue research in the discrete universe and focus on the explo-
ration problem when the network is an anonymous unoriented grid, using a team of
autonomous mobile robots. Exploration requires that robots explore the grid and stop
when the task completion. In other words, every node of the grid must be visited by at
least one robot and the protocol eventually terminates.
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The robots we consider are anonymous, uniform, and unable to communicate, how-
ever they can sense their environment and take decisions according to their own view.
In addition, they are oblivious, i.e., they do not remember their past actions.

The fact that robots have to stop after exploring all locations requires them to some-
how remember at any time of the process which part of the graph has been visited yet.
Nevertheless, under this weak scenario, robots have no memory and thus are unable to
remember the various steps taken before. In addition, they are unable to communicate
explicitly. Therefore the positions of the other robots are the only way to distinguish the
different stages of the exploration process. The main complexity measure is then the
minimal number of required robots. Since numerous symmetric configurations induce
a large number of required robots, minimizing the number of robots turns out to be a
difficult problem. As a matter of fact, in [8], it is shown that, in general, Ω(n) robots
are necessary to explore a tree network of n nodes deterministically.

Related Work. In [7], authors proved that no deterministic exploration is possible on
a ring when the number of robots k divides the number of nodes n. In the same pa-
per, the authors proposed a deterministic algorithm that solves the problem using at
least 17 robots provided that n and k are co-prime. In [10], Lamani et al. proved that
there exists no deterministic protocol that can explore an even sized ring with k ≤ 4
robots, even in the atomic model ATOM [3]. Impossibility results in ATOM naturally
extend in the asynchronous non-atomic model CORDA [11]. Lamani et al. also provide
in [10] a protocol in CORDA that allows 5 robots to deterministically explore any ring
whose size is co-prime with 5. By contrast, four robots are necessary and sufficient to
probabilistically explore of any ring of size at least 4 in ATOM [6,5].

To our knowledge, grid-shaped networks were only considered in the context of
anonymous and oblivious robot exploration [4] for a variant of the exploration problem
where robots perpetually explore all nodes in the grid. Also, contrary to this paper,
the protocols presented in [4] make use of a common sense of direction for all robots
(common north, south, east, and west directions) and assume an essentially synchronous
scheduling.

Contribution. In this paper, we propose optimal (w.r.t. the number of robots) solutions
for the deterministic terminating exploration of a grid-shaped network by a team of k
asynchronous oblivious robots in the CORDA model.

In more details, we first consider the ATOM model, which is a strictly stronger model
than CORDA. We show that it is impossible to explore a grid of at least three nodes with
less than three robots. Next, we show that it is impossible to explore a (2, 2)-Grid with
less than 4 robots, and a (3, 3)-Grid with less than 5 robots, respectively. The two first
results hold for both deterministic and probabilistic explorations, while the latter holds
only in the deterministic case. Note also that these impossibility results naturally extend
to CORDA.

Then, we propose several deterministic algorithms in CORDA to exhibit the optimal
number of robots allowing to explore of a given grid. Our results show that except in
two particular cases, 3 robots are necessary and sufficient to deterministically explore a
grid of at least three nodes. The optimal number of robots for the two remaining cases
is: 4 for the (2, 2)-Grid and 5 for the (3, 3)-Grid, respectively.
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The above results show that, perhaps surprisingly, exploring a grid is easier than ex-
ploring a ring. In the ring, deterministic solutions essentially require five robots [10]
while probabilities enable solutions with only four robots [6,5]. In the grid, three robots
are necessary and sufficient in all but two cases even for deterministic protocols, the two
latter cases do require four or five robots. Also, deterministically exploring a grid re-
quires no primality condition while deterministically exploring a ring expects the num-
ber k of robots to be co-prime with n, the number of nodes.

Roadmap. Section 2 presents the system model and the problem to be solved. Lower
bounds are shown in Section 3. The deterministic general solution using three robots is
given in Section 4. (Note that exploring a (2, 2)-Grid using 4 robots is trivially possible,
henceforth not considered in this paper.) Section 5 gives some concluding remarks.
Due to the lack of space, the special case with five robots is omitted, see the technical
report [12] for details.

2 Preliminaries

Distributed Systems. We consider systems of autonomous mobile entities called agents
or robots evolving in a simple unoriented connected graph G = (V,E), where V is a
finite set of nodes and E a finite set of edges. In G, nodes represent locations that can
be sensed by robots and edges represent the possibility for a robot to move from one
location to another. We assume that G is an (i, j)-Grid (or a Grid, for short) where i, j
are two positive integers, i.e., G satisfies the following two conditions: (i) |V | = i × j
and (ii) there exists an order on the nodes of V , v1, . . . , vi·j , such that ∀x ∈ [1..i× j],
(x mod i) �= 0⇒ {vx, vx+1} ∈ E, and ∀y ∈ [1..i× (j − 1)], {vy, vy+i} ∈ E.

We denote by n = i× j the number of nodes in G. We denote by δ(v) the degree of
node v in G. Nodes of the grid are anonymous. (We may use indices, but for notation
purposes only.) Moreover, given two neighboring nodes u and v, there is no explicit or
implicit labelling allowing the robots to determine whether u is either on the left, on the
right, above, or below v. Remark that an (i, j)-Grid and a (j, i)-Grid are isomorphic.
Hence, as the nodes are anonymous, we cannot distinguish an (i, j)-Grid from a (j, i)-
Grid. So, without loss of generality, we always consider (i, j)-Grids, where i ≤ j. Note
also that any (1, j)-Grid is isomorphic to a chain. In any (i, j)-Grid, if i = 1, then either
the grid consists of one single node, or two nodes are of degree 1 and all other nodes
are of degree 2; otherwise, when i > 1, four nodes are of degree 2 and all other nodes
are of degree either 3 or 4. In any grid, the nodes of smallest degree are called corners.
In any (1, j)-Grid with j > 1, the unique chain linking the two corners is called the
borderline. In any (i, j)-Grid such that i > 1, there exist four chains v1, . . . , vm of
length at least 2 such that δ(v1) = δ(vm) = 2, and ∀x, 1 < x < m, δ(vx) = 3, these
chains are also called the borderlines.

Robots and Computation. Operating on G are k ≤ n robots. The robots do not com-
municate in an explicit way; however they see the position of the other robots and
can acquire knowledge based on this information. We assume that the robots cannot
remember any previous observation nor computation performed in any previous step.
Such robots are said to be oblivious (or memoryless).
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Each robot operates according to its (local) program. We call protocol a collection
of k programs, each one operating on one single robot. Here we assume that robots are
uniform and anonymous, i.e., they all have the same program using no local parameter
(such as an identity) that could permit to differentiate them. The program of a robot
consists in executing Look-Compute-Move (LCM) cycles infinitely many times. That
is, the robot first observes its environment (Look phase). Then, based on its observation
and according its program, the robot then decides to move or stay idle (Compute phase).
When the robot decides to move, it moves from its current node to a neighboring node
during the Move phase.

We consider two models: the semi-synchronous and atomic model called ATOM [3],
and the asynchronous non-atomic model called CORDA [11]. In both models, time is
represented by an infinite sequence of instants 0, 1, 2, . . . No robot has access to this
global time. Moreover, every robot executes cycles infinitely many times. Each robot
performs its own cycles in sequence. However, the time between two cycles of the
same robot and the interleavings between cycles of different robots are decided by an
adversary. We are interested in algorithms that correctly operate despite the choices
of the adversary. In particular, our algorithms should also work even if the adversary
forces the execution to be fully sequential or fully synchronous. In ATOM, each LCM
cycle execution is assumed to be atomic: every robot that is activated (by the adversary)
at instant t instantaneously executes a full cycle between t and t+1. In CORDA, LCM
cycles are performed asynchronously by each robot: the time between Look, Compute,
and Move operations is finite yet unbounded, and is decided by the adversary. The only
constraint is that both Move and Look are instantaneous.

Note that in both models, any robot performing a Look operation sees all other robots
on nodes and not on edges. However, in CORDA, a robotR may perform a Look oper-
ation at some time t, perceiving robots at some nodes, then Compute a target neighbor
at some time t′ > t, and Move to this neighbor at some later time t′′ > t′ in which
some robots are at different nodes from those previously perceived by R because in
the meantime they moved. Hence, in CORDA robots may move based on significantly
outdated perceptions. Of course, ATOM is stronger than CORDA. So, to be as general
as possible, in this paper, our impossibility results are written assuming ATOM, while
our algorithms assume CORDA.

Multiplicity. We assume that during the Look phase, every robot can perceive whether
several robots are located on the same node or not. This ability is called Multiplicity
Detection. We shall indicate by di(t) the multiplicity of robots present in node ui at
instant t. We consider two kinds of multiplicity detection: the strong and weak mul-
tiplicity detections. Under the weak multiplicity detection, for every node ui, di is a
function N �→ {◦,⊥,�} defined as follows: di(t) is equal to either ◦, ⊥, or � accord-
ing to ui contains none, one or several robots at time instant t. If di(t) = ◦, then we say
that ui is free at instant t, otherwise ui is said occupied at instant t. If di(t) = �, then
we say that ui contains a tower at instant t. Under the strong multiplicity detection, for
every node ui, di is a function N �→ N where di(t) = j indicates that there are j robots
in node ui at instant t. If di(t) = 0, then we say that ui is free at instant t, otherwise ui

is said occupied at instant t. If di(t) > 1, then we say that ui contains a tower (of di(t)
robots) at instant t.
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As previously, to be as general as possible, our impossibility results are written as-
suming the strong multiplicity detection, while our algorithms assume the weak multi-
plicity detection.

Configurations, Views and Execution. To define the notion of configuration, we need
to use an arbitrary order≺ on nodes. The system being anonymous, robots do not know
this order. Let v1, . . . , vn be the list of the nodes in G ordered by ≺. The configura-
tion at time t is d1(t), . . . , dn(t). We denote by initial configurations the configurations
from which the system can start at time 0. Every configuration where all robots stay
idle forever is said to be terminal. Two configurations d1, . . . , dn and d′1, . . . , d

′
n are

indistinguishable (distinguishable otherwise) if and only if there exists an automor-
phism f on G satisfying the additional condition: ∀vi ∈ V , we have di = d′j where
vj = f(vi).

The view of robotR at time t is a labelled graph isomorphic to G, where every node
ui is labelled by di(t), except the node whereR is currently located, this latter node uj

is labelled by dj(t), ∗. (Indeed, any robot knows the multiplicity of the node where it is
located.) Hence, from its view, a robot can compute the view of each other robot, and
decide whether some other robots have the same view as its own.

Every decision to move is based on the view obtained during the last Look action.
However, it may happen that some edges incident to a node v currently occupied by
the deciding robot look identical in its view, i.e., v lies on a symmetric axis of the
configuration. In this case, if the robot decides to take one of these edges, it may take
any of them. We assume the worst-case decision in such cases, i.e. the actual edge
among the identically looking ones is chosen by the adversary.

We model the executions of our protocol in G by the list of configurations through
which the system goes. So, an execution is a maximal list of configurations γ0, . . . , γi
such that ∀j > 0, we have: (i) γj−1 �= γj , (ii) γj is obtained from γj−1 after some
robots move from their locations in γj−1 to a neighboring node, and (iii) For every
robotR that moves between γj−1 and γj , there exists 0 ≤ j′ ≤ j, such thatR takes its
decision to move according to its program and its view in γj′ . An execution γ0, . . . , γi
is said to be sequential if and only if ∀j > 0, exactly one robot moves between γj−1

and γj .

Exploration. We consider the exploration problem, where k robots, initially placed at
different nodes, collectively explore an (i, j)-grid before stopping moving forever. By
“collectively” explore we mean that every node is eventually visited by at least one
robot. More formally, a protocol P deterministically (resp. probabilistically) solves the
exploration problem if and only if every execution e of P starting from a towerless
configuration1 satisfies: (1) e terminates in finite time (resp. with probability 1), and (2)
every node is visited by at least one robot during e.

Observe that the exploration problem is not defined for k > n and is straightforward
for k = n. (In this latter case the exploration is already accomplished in the initial
towerless configuration.)

1 The initial configuration must be towerless to make the exploration solvable in our model.
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3 Bounds

In this section, we first show that, except for trivial case where k = n, if (i) robots are
oblivious, (ii) the model is ATOM, and (iii) the multiplicity is strong (i.e., the strongest
possible assumptions), at least three robots are necessary to solve the (probabilistic or
deterministic) exploration of any grid (Theorem 2). Moreover, in a (2, 2)-Grid, four
robots are necessary (Theorem 3). Finally, at least five robots are necessary to solve
the deterministic exploration of a (3, 3)-Grid (Theorem 4). In the two next sections, we
show that all these bounds are also sufficient to solve the deterministic exploration in
the asynchronous and non-atomic CORDA model.

Given that robots are oblivious, if there are more nodes than robots, then any terminal
configuration should be distinguishable from any possible initial (towerless) configura-
tion. So, we have:

Remark 1. Any terminal configuration of any (probabilistic or deterministic) explo-
ration protocol for a grid of n nodes using k < n oblivious robots contains at least one
tower.

Theorem 2. There exists no (probabilistic or deterministic) exploration protocol in
ATOM using k ≤ 2 oblivious robots for any (i, j)-Grid made of at least 3 nodes.

Proof. By Remark 1, there is no protocol allowing one robot to explore any (i, j)-Grid
made of at least 2 nodes. Indeed, any configuration is towerless in this case. Assume by
contradiction, that there exists a protocolP in ATOM to explore with 2 oblivious robots
an (i, j)-Grid made of at least 3 nodes. Consider a sequential execution e of P that ter-
minates. (By definition, if we consider a deterministic exploration, then all executions
should terminate; while if we consider a probabilistic exploration, at least one of the
sequential execution should terminate.) Then, e starts from a towerless configuration
(by definition) and eventually reaches a terminal configuration containing a tower (by
Remark 1). As e is sequential, the two last configurations of e consist of a towerless con-
figuration followed by a configuration containing one tower. These two configurations
form a possible sequential execution that terminates while only two nodes are visited,
thus a contradiction. �

Any (2, 2)-Grid is isomorphic to a 4-size ring. It is shown in [6] that no (probabilistic or
deterministic) exploration using less than four oblivious robots is possible for any ring
of size at least four in ATOM. So:

Theorem 3 ([6]). There exists no (probabilistic or deterministic) exploration protocol
using k ≤ 3 oblivious robots in ATOM for a (2, 2)-Grid.

Theorem 4. There exists no deterministic exploration protocol in ATOM using k ≤ 4
oblivious robots for a (3, 3)-Grid.

Proof Outline. From Theorem 2, k must be greater or equal to 3. Consider first the
case of k = 3 robots and, assume for the sake of contradiction, that there exists a
deterministic protocolP in ATOM that uses 3 robots to explore a (3, 3)-Grid. Then, we
can show the following claims:
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1. There exist sequential executions ofP , e = γ0, . . . , γw, in which: (a) for every x, y
with 0 ≤ x < y, γx and γy are distinguishable, and (b) only the first configuration
γ0 is towerless.

2. If there exists an execution of P , e = γ0 . . . γx . . ., where γx contains a tower of 3
robots, then there exists an execution e′ starting with the prefix e = γ0 . . . γx such
that at most one new node can be visited after γx.

3. In any suffix γw, . . . , γz of any sequential execution of P where (a) for every x, y
with 0 ≤ x < y, γx and γy are distinguishable, and (b) γw contains a tower of 2
robots, then at most 4 new nodes can be visited from γw before a robot of the tower
moves.

Using these three claims, we can show that there exist some executions of P that termi-
nate while at least one node has not been visited, a contradiction.
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Fig. 1. Three possible configurations in a (3, 3)-Grid with 4 robots. Numbers inside the circles
represent the multiplicity of the node.

Consider now the case of four robots. The proof consists in showing that, starting
from particular configurations, the adversary can always maintain symmetries. To see
this, refer to Figure 1 that depicts three possible configurations for a (3, 3)-Grid with 4
robots — numbers inside the circles represent the multiplicity of the node. Note that
both Configuration (a) and (b) can be initial configurations. By activating the four
robots synchronously and starting from Configuration (a), the adversary may lead the
system in either Configuration (b) or Configuration (c). Then, in both cases, the adver-
sary may prevent the termination of the exploration, no matter the protocol is. �

4 Deterministic Solution Using Three Robots

In this section, we focus on the deterministic exploration of a grid by three robots, in
CORDA, and assuming weak multiplicity detection. Recall that there exists no deter-
ministic solution for the exploration using three robots in a (2, 2)- or (3, 3)-grid as-
suming that model (Section 3). Moreover, exploring a (1, 3)-grid using three robots is
straightforward. So, we consider all remaining cases. We split our study in two cases.
An overview of the deterministic solution for any (i, j)-grid such that j > 3 is given in
Subsection 4.1. The particular case of the (2, 3)-grid is solved in Subsection 4.2.
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4.1 Main Algorithm

Overview. Our algorithm works according to the following three phases:

• Set-Up. The aim of this phase is to reach a configuration, called Set-Up configu-
ration, where there is a single line of robots starting at a corner and along one of the
longest borderlines of the grid—refer to Figure 2. The phase is initiated from any
towerless configuration that is not a Set-Up configuration. Note that no tower is
created during this phase. Details about this phase are given in the next subsection.

• Orientation. This phase follows the Set-Up phase and consists of a single
move where the robot which is at the corner move to its adjacent occupied node.
Once it has moved, a tower is created. The resulting configuration is called an
Oriented configuration in which, the robots can agree on a common coordinate
system as show in Figure 3. The node with coordinates (0, 0) is the unique corner
that is the closest to the tower. The x-axis is given by the vector linking the node
(0, 0) to the node where the tower is located. The y-axis is given by the vector
linking the node (0, 0) to its neighboring node that does not contain the tower.

• Exploration. This phase starts from an Oriented configuration. Note that in
nodes of coordinates (0, 0), (0, 1), and (0, 2) have been visited. So, the goal is to
visit all the other nodes. To ensure that the exploration phase remains distinct from
the previous phases and keep the coordinate system, we only authorize the robot
that does not belong to the tower to move. This robot is called the explorer.
To explore all remaining nodes, the explorer should order all coordinates in such
a way that (a) (0, 0) and (0, 1) are before its initial position (that is (0, 2)) and
all other coordinates are after; and (b) for all non-maximum coordinates (x, y), if
(x′, y′) are successor of (x, y) in the order, then the nodes of coordinates (x, y)
and (x′, y′) are neighbors. An example of such an order is  , defined as follows:
(x, y)  (x′, y′) if and only if y < y′ ∨ [y = y′ ∧ (x = x′ ∨ y mod 2 = 0 ∧ x <
x′ ∨ y mod 2 = 1 ∧ x > x′)].
Using  , the explorer moves as follows: While the explorer is not located at the
node having the maximum coordinates according to  , the explorer moves to the
neighboring node whose coordinates are successors of the coordinates of its current
position, as described in Figure 4.

The Set-Up Phase. In the following, we denote by Dist(R,R′) the distance (i.e., the
length of the shortest path) between the two nodes of the grid where R and R′ are
respectively located.

We now present the behavior of the three robots, respectively referred to asR1,R2,
and R3,2 according to three main kinds of configurations: Leader, Choice, and
Undefined. These classes will be split into several sub-classes.

I) The configuration is of type Leader: Any towerless configuration where there is
exactly one robot that is at a corner of the grid. LetR1 be this robot.
Let consider the following subcases:

2 Recall that robots are anonymous, so these notations are only used to ease the explanations.
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Fig. 2. Set-Up Configuration

(0,3) (0,4) (0,5) (0,6)

(1,6)(1,5)(1,4)(1,3)(1,2)(1,1)(1,0)

(2,0) (2,1) (2,2) (2,3) (2,4) (2,5) (2,2)

(3,6)(3,5)(3,4)(3,3)(3,2)(3,1)(3,0)

(4,6)(4,5)(4,4)(4,3)(4,2)(4,1)(4,0)

(0,0) (0,1) (0,2)

Fig. 3. Coordinate system built by the
Orientation phase

Fig. 4. Exploration phase

C1 C2

R1 R2

R3

Fig. 5. Sample of a configuration of type
Undefined4-4

A) The configuration is of type Strict-Leader: In such a configuration, there is
no other robot on any borderline having the corner whereR1 is located as extrem-
ity. In this case, the robots that are the closest to R1 are the ones allowed to move.
Their destination is their adjacent free node on a shortest path towards the closest
free node that is on a longest borderline having the corner where R1 is located as
extremity. (If there is several shortest paths, the adversary makes the choice.)
B) The configuration is of type Half-Leader: In such a configuration, among
R2 andR3, only one robot, sayR2, is on a borderline having the corner whereR1
is located as extremity. Two subcases are possible:

– The configuration is of type Half-Leader1:R2 is on a longest borderline.
In this case, the third robotR3 is the one allowed to move. Its destination is an
adjacent free node towards a closest free node on the borderline that contains
both R1 and R2. (If there is several shortest paths, the adversary makes the
choice.)

– The configuration is of type Half-Leader2:R2 is not on the longest border-
line. In this case,R2 is the one allowed to move, its destination is the adjacent
free node outside the borderline, if any. In the case where there is no such a free
node,R2 moves to a free node on its own borderline. (In case of symmetry, the
adversary makes the choice.)

C) The configuration is of type All-Leader: All the robots are on a borderline
having the corner where R1 is located as extremity. In this case, R2 and R3 are
not necessarily on the same borderline. So, we have two subcases:
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– The configuration is of type Fully-Leader: In such a configuration, all the
robots are on the same borderline, D1. The two following subcases are then
possible:

(1) The configuration is of type Fully-Leader1: In this case, D1 is a
longest borderline. If the robots form a line, then the Set-Up configuration
is reached and the phase is done. Otherwise, let R2 be the closest robot from
R1. IfR1 andR2 are not neighbors, thenR2 is the only one allowed to move
and its destination is the adjacent free node towardsR1. In the other case, R3
is the only robot allowed to move and its destination is the adjacent free node
towardsR2.
(2) The configuration is of type Fully-Leader2: In this case, D1 is not
a longest borderline. Then, the robot among R2 and R3 that is the closest to
R1 leaves the borderline by moving to its neighboring free node outside the
borderline.

– The configuration is of type Semi-Leader:R2 andR3 are not on the same
borderline. Two subcases are possible:

(1) The configuration is of type Semi-Leader1: In this case, i �= j. The
unique robot among R2 and R3 which is located on a smallest borderline
moves to the adjacent free node outside its borderline.
(2) The configuration is of type Semi-Leader2: In this case, i = j. Let de-
note by Dist(R,R′) the distance (that is, the length of the shortest path) in
the grid between the two nodes where R and R′ are respectively located. If
Dist(R1,R2) �= Dist(R1,R3), then the robot amongR2 andR3 that is the
closest to R1 is the only one allowed to move, its destination is the adjacent
free node outside the borderline. Otherwise (Dist(R1,R2) =Dist(R1,R3)),
either (a) there is a free node betweenR1 andR2, or (b)R1 is both neighbor of
R2 and R3. In case (a), R1 is the only robot allowed to move and its destina-
tion is an adjacent free node towards one of its two borderlines. (The adversary
makes the choice.) In case (b), R2 and R3 move and their destination is their
adjacent free node on their borderline.

II) The configuration is of type Choice: Any towerless configuration, where at least
two robots are located at a corner.
We consider two cases:
A) The configuration is of type Choice1: In this configuration, there are exactly
two robots that are located at a corner of the grid. Let R1 andR2 be these robots.

– In the case whereR3 is on the same borderline as eitherR1 orR2 but not both
— suppose R1 — then R2 is the one allowed to move, its destination is the
adjacent free node towards the closest free node of the borderline that contains
bothR1 andR3.

– In the case where the three robots are on the same borderline. Then:
(1) If Dist(R1,R3) �= Dist(R2,R3), then the robot amongR1 andR2 that
is farthest toR3 moves to the adjacent free node on the borderline towardsR3.
(2) Otherwise (Dist(R1,R3) = Dist(R2,R3)), and R3 has either or not
an adjacent free node on the borderline. In the former case, R3 moves to an
adjacent free node on the borderline towards eitherR1 or R2. (The adversary
makes the choice.) In the latter case,R3 moves to its adjacent free node outside
the borderline.
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– If R3 is not on any borderline, it moves to an adjacent free node on a shortest
path towards the closest free node that is on a longest borderline that contains
eitherR1 orR2. (In case of symmetry, the adversary makes the choice.)

B) The configuration is of type Choice2: In this configuration, all the robots are
located at a corner. The robot allowed to move is the one that is located at a node
that is common to the two borderlines of the other robots. Let R1 be this robot.
The destination ofR1 is the adjacent free node on a longest borderline. (In case of
symmetry, the adversary makes the choice.)

III) The configuration is of type Undefined: Any towerless configuration where there
is no robot that is located at any corner.
The cases below are then possible:
A) The configuration is of type Undefined1: In this case, i = j and there is one
borderline that contains two robotsR1 andR2 such thatR1 is closer from a corner
thanR2 andR3. Let D1 be this borderline.R3 is the only one allowed to move and
its destination is an adjacent free node on a shortest path towards the closest free
node of D1. (If there are several shortest paths, the adversary makes the choice.)
B) The configuration is of type Undefined2: It is any configuration different
from Undefined1, where there is exactly one robot that is the closest to a corner.
In this case, this robot is the only one allowed to move, its destination is an adjacent
free node on a shortest path to a closest corner. (If there are several possibilities,
the adversary makes the choice.)
C) The configuration is of type Undefined3: There are exactly two robots that
are closest to a corner. LetR1 andR2 be these two robots.

– If Dist(R1,R3) = Dist(R2,R3), then R3 is the only one allowed to move,
and either Dist(R1, R3) = 1 or Dist(R1,R3) > 1. In the former case, R3
moves to an adjacent free node. (If there are two possibilities, the adversary
makes the choice.) In the latter case, R3 moves to an adjacent free node from
which its distance to R1 will be different from its distance to R2. (There will
be two possibilities and the adversary will make a choice.)

– If Dist(R1,R3) �= Dist(R2,R3), then the robot among R1 and R2 that is
closest to R3 is the only one allowed to move. Its destination is the adjacent
free node that is on a shortest path to a closest corner. (If there are several
possibilities, the adversary makes the choice.)

D) The configuration is of type Undefined4: There are three robots that are
closest to a corner. Again, four cases are possible:

– The configuration is of type Undefined4-1: There is exactly one robot that
is on a borderline. In this case, this robot is the only one allowed to move. Its
destination is an adjacent free node that is on a shortest path to a closest corner.
(In case of two shortest paths, the adversary breaks the symmetry in the first
step.)

– The configuration is of type Undefined4-2: In such a configuration, there
are exactly two robots on a borderline. LetR1 andR2 be these two robots. The
robot allowed to move is R3. Its destination is the adjacent free node towards
a closest corner. (The adversary may have to break the symmetry.)

– The configuration is of type Undefined4-3: The three robots are on border-
lines of the grid.
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(1) There are more than one robot on the same borderline: In this case, there
are exactly two robots on the same borderline, and let R1 and R2 be these
robots. Then R3 is the only one allowed to move and its destination is an
adjacent free node towards a closest corner. (The adversary may have to break
the symmetry.)
(2) There is at most one robot on each borderline: Exactly one borderline is
perpendicular to the two others. Only the robot on that borderline moves and
its destination is the adjacent node towards a closest corner. (The adversary
may have to break the symmetry.)

– The configuration is of type Undefined4-4: In this case, there is no robot
on any borderline.
(1) In the case where there are two robots, R1 and R2, that are closest to the
same corner, and this corner is not a closest corner to R3, then R3 is the only
robot allowed to move and its destination is an adjacent free node on a shortest
path towards a closest corner. (If there are several possibilities, the adversary
makes the choice.)
(2) In the case where there are two robots, R1 and R2, that are closest to
corners C1 and C2, respectively, where C1 �= C2, and R3 is closest to both
C1 and C2, then R3 is the only one allowed to move (see Figure 5), and it
moves toward C1 or C2 according to a choice of the adversary.
(3) In the case where all the robots are closest to different corners, there is one
robot R1 whom corner is between the two corners targeted by R2 and R3.
The robot allowed to move is R1, its destination is an adjacent free node on a
shortest path towards its closest corner. (If there are several shortest paths, the
adversary makes the choice.)

The next theorem can be proven using the state diagram of the algorithm:

Theorem 5. The three phases Set-Up, Orientation, and Exploration deter-
ministically solve the exploration problem with 3 oblivious robots in CORDA for any
(i, j)-Grid such that j > 3.

4.2 Exploring a (2,3)-Grid

The idea for the (2, 3)-Grid is rather simple. Consider the two longest borderlines of
the grid. Since there are initially three isolated robots on the grid, there exists one of the
two longest borderlines, say D, that contains either all the robots or exactly two robots.
In the second case, the robot that is not part of D moves to the adjacent free node on the
shortest path towards the free node of D. Thus, the three robots are eventually located
on D. Next, the robot not located at any corner moves to one of its two neighboring
occupied nodes. (The destination is chosen by the adversary.) Thus, a tower is created.
Once the tower is created, the grid is oriented. Then, the single robot moves to the
adjacent free node in the longest borderline that does not contain any tower. Next, it
explores the nodes of this line by moving towards the tower. When it becomes neighbor
of the tower, all the nodes of the (2, 3)-Grid have been explored.

Theorem 6. The deterministic exploration of a (2, 3)-Grid can be solved in CORDA
using 3 oblivious robots.
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5 Conclusion

We presented necessary and sufficient conditions to explore a grid with a team of k
asynchronous oblivious robots. Our results show that, perhaps surprisingly, exploring a
grid is easier than exploring a ring. In the ring, deterministic (respectively, probabilis-
tic) solutions essentially require five (resp., four) robots. In the grid, three robots are
necessary (even in the probabilistic case) and sufficient (even in the deterministic case)
in the all but two cases, while the two remaining instances do require four and five
robots, respectively. Note that the general algorithm given in that paper requires exactly
three robots. It is worth investigating whether exploration of a grid of n nodes can be
achieved using any number k (3 > k ≥ n− 1) of robots, in particular when k is even.
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2. Dieudonné, Y., Labbani-Igbida, O., Petit, F.: Circle formation of weak robots. ACM Trans-
actions on Adaptive and Autonomous Systems (TAAS) 3(4), 16:1–16:20 (2008)

3. Suzuki, I., Yamashita, M.: Distributed anonymous mobile robots: Formation of geometric
patterns. SIAM J. Comput. 28(4), 1347–1363 (1999)

4. Baldoni, R., Bonnet, F., Milani, A., Raynal, M.: On the Solvability of Anonymous Partial
Grids Exploration by Mobile Robots. In: Baker, T.P., Bui, A., Tixeuil, S. (eds.) OPODIS
2008. LNCS, vol. 5401, pp. 428–445. Springer, Heidelberg (2008)

5. Devismes, S.: Optimal exploration of small rings. In: Proceedings of the Third International
Workshop on Reliability, Availability, and Security, WRAS 2010, pp. 9:1–9:6. ACM, New
York (2010)

6. Devismes, S., Petit, F., Tixeuil, S.: Optimal Probabilistic Ring Exploration by Semi-
synchronous Oblivious Robots. In: Kutten, S., Žerovnik, J. (eds.) SIROCCO 2009. LNCS,
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Abstract. We extend the population protocol model with a cover-time
service that informs a walking state every time it covers the whole net-
work. This is simply a known upper bound on the cover time of a random
walk. This allows us to introduce termination into population protocols,
a capability that is crucial for any distributed system. By reduction to
an oracle-model we arrive at a very satisfactory lower bound on the com-
putational power of the model: we prove that it is at least as strong as
a Turing Machine of space log n with input commutativity, where n is
the number of nodes in the network. We also give a log n-space, but
nondeterministic this time, upper bound. Finally, we prove interesting
similarities of this model to linear bounded automata.

1 Introduction

Networks of tiny artifacts will play a fundamental role in the computational en-
vironments and applications of tomorrow. As a result, over the last decade, there
has been a strong focus on theoretical models of pervasive systems, consisting of
great numbers of computationally restricted, communicating entities. One such
model, called the Population Protocol (PP) model, has been recently introduced
by Angluin et al. [AAD+06]. Their aim was to model sensor networks consisting
of tiny computational devices (called agents) with sensing capabilities that follow
some unpredictable and uncontrollable mobility pattern. Due to the minimalistic
nature of their model, the class of computable predicates was proven [AAER07]
to be fairly small: it is the class of semilinear predicates [GS66], which does not
support e.g. multiplications, exponentiations, and many other important oper-
ations on input variables. Additionally, population protocols do not halt. No
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agent of the population running the protocol can know whether the computa-
tion is completed. The agents forever interact in pairs while their outputs (but
not necessarily their states) stabilize to a certain value.

An interesting question that quickly emerged was whether complex compu-
tations could be performed by using simple protocols and combining their func-
tionality. Given the protocols stabilizing behavior, their sequential execution was
impossible. To circumvent this problem, Angluin et al. introduced the stabilizing
inputs PPs [AAC+05] and they showed that multiple protocols can run in paral-
lel and once one stabilized the others could run correctly (by taking appropriate
actions to restore correct execution) using the stabilized output of the former
as their input. This approach is, however, fairly slow in terms of the number
of interactions (provided some probabilistic assumption on the interaction pat-
tern) since it requires to implement phase clocks based on epidemic protocols
(see [AAE08]).

In this work, we follow an alternative approach. We augment the original
model of computation with a cover-time service (we abbreviate the new model
as CTS ) that informs a walking state every time it covers the whole network.
This is simply a known upper bound on the cover time of a random walk. This
allows us to introduce termination into population protocols, a capability that
is crucial for any distributed system. Then we reduce this model to population
protocols augmented with an abscence detector. An absence detector is an ora-
cle that gives hints about which states are not present in the population. Each
process can interact with this special agent (the absence detector) that monitors
other agents in the system, and maintains flags for each state of the protocol.
The rest of the model is the same as the PP model. All agents, apart from the ab-
sence detector, are modeled as finite-state machines that run the same protocol.
Agents interact in pairs according to some interaction graph which specifies the
permissible interacting pairs, and update their states in the process. No agent
can predict or control its interactions. Within this framework, we explore the
computational capabilities of this new extension, that we call Population Proto-
cols with Absence Detector (AD), and study its properties on a purely theoretical
ground. As we shall see the AD model is computationally stronger than PPs but
this is not what sets it apart. A major new feature of this model is its capability
to perform halting computations, which allows sequential execution of protocols.
Note that although we are currently unaware of how to construct such detectors,
in the future, our detector may be implemented via a Bulletin Board regarding
the existing states (e.g. each device marks its current state in the board, and all
devices can read this board). Such Boards can be implemented easily and have
been used in the past [Edi86].

2 Other Previous Work

In the population protocol model [AAD+06], n computational agents are pas-
sively mobile, interact in ordered pairs, and the temporal connectivity assump-
tion is a strong global fairness condition according to which all configurations
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that may always occur, occur infinitely often. These assumptions give rise to
some sort of structureless interacting automata model. The usually assumed
anonymity and uniformity (i.e. n is not known) of protocols only allow for
commutative computations that eventualy stabilize to a desired configuration.
Most computability issues in this area have now been established. Constant-state
nodes on a complete interaction network (and several variations) compute the
semilinear predicates [AAER07]. Semilinearity persists up to o(log logn) local
space but not more than this [CMN+11]. If constant-state nodes can addition-
ally leave and update fixed-length pairwise marks then the computational power
dramatically increases to the commutative subclass of NSPACE(n2) [MCS11a].
For a very recent introductory text see [MCS11b]. Finally, our CTS model is dif-
ferent than the cover-times considered in [BBCK10] in that we allow protocols
know the cover times and as their cover-times refer to the time for an agent to
meet all other agents.

3 Our Results - Roadmap

In Sections 4 and 5, the newly proposed models are formally defined. Subsection
5.1 in particular, defines halting and output stabilizing computations, as well
as the classes of predicates that the AD model can compute in both cases. In
Section 6, we illustrate the new model with a simple leader election protocol
and give some properties of the AD concerning halting computations. Section 7
first establishes the computational equivalence of the CTS and AD models and
then deals with the computational power of the latter. In particular, Section 7.1
shows that all semilinear predicates (whose class is denoted by SEM) are sta-
bly computable by halting ADs. In Section 7.2, several improved computational
lower bounds and an upper bound are presented. In particular, it is first shown
that the class HAD, of all predicates computable by some AD with a unique
leader, includes all multiplication predicates of the form (bNd1

1 Nd2
2 · · ·Ndk

k < c),
where b, c, di, k are constants, b, c ∈ Z and di, k ∈ Z+. We do so by constructing
an AD (Protocol 2) that performs iterative computation. Then in Subsection 7.2
it is shown that halting ADs can compute any predicate whose support (cor-
responding language on the input alphabet) is decidable by a Turing Machine
(TM) of O(log n) space. This is shown by simulating a One Way k-Counter Ma-
chine (k-CM) [FMR68, Min61] with halting ADs. Moreover, it is shown that all
predicates in HAD are stably computable by a TM of O(log2 n) space. Finally,
some similarities of the AD model with Multilset Linear Bounded Automata with
Detection (MLBADs) are pointed out and it is established (however, the proof
being left for the full paper) that ADs can simulate such automata. In Section
8, we conclude and present potential future research directions.

4 A Cover-Time Service

We equip pairwise-interacting agents with the following natural capability: swap-
ping states can know when they have covered the whole population. Note that we
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refer to states and not to nodes. A node may possibly not be ever able to inter-
act with all other nodes, however if nodes constantly swap their states then the
resulting random walk must be capable of covering the whole population (e.g.
in a complete graph the cover time of a random walk is n logn).

We assume a unique leader in the population which jumps from node to node.
What we require is that the leader state knows when it has passed from all nodes
and we require this to hold iteratively, that is after it knows that it has covered
the whole population it can know the same for the next walk, and so on. So
we just assume a cover-time service which is a black-box for the protocol. We
call this extension of PPs with leader and a cover-time service the Cover-Time
Service (CTS ) model.

Formally, we are given a population of n agents s.t. initially a node u is in state
(l, D, 0) while all other nodes are in state ⊥. What we require is that D ∈ IN
satisfies the following. If in every interaction (v, w), s.t. the state of v is (l, D, i)
and the state of w is ⊥, v updates to ⊥ and w to (l, D, i + 1) (swapping their
states and increasing i by one) if D > i + 1 and to (l, D, 0) otherwise, then in
every D consecutive steps s1, . . . , sD (where we can w.l.o.g. assume that a single
interaction occurs in each step) it holds that {z ∈ V : z has obtained l at least
once in the interval [s1, sD]} = V . That is D is an upper bound on the time
needed for a swapping state (here l) to visit all nodes (called the cover-time).
The leader state, no matter which node it lies on, can detect the coverage of V
when the step/interaction counter i becomes equal to D. We assume that both
D and i are only used for coverage detection and not as additional storage for
internal computation (nodes keep operating as finite-state machines). Another
way to appreciate this is by imagining that all nodes have access to a global
clock that ticks every D rounds.

We explore the computability of the CTS model. In particular, we arrive at
an exact characterization of its computational power. We do so by reducing the
CTS model to an artificial but convenient variant of population protocols that
is equipped with a powerful oracle-node capable of detecting the presence or
absence of any state from the population. Our oracle model is of particular the-
oretical interest as it seems that most PP variants equipped with some capability
to detect termination, and not only our particular CTS example, may as well
reduce to it.

5 Absence Detectors

A Population Protocol with Absence Detector (AD) is a 7-tuple (X,Y,Q, I, ω, δ, γ)
where X,Y and Q are finite sets and X is the input alphabet, Y is the output
alphabet, Q is a set of states, I : X → Q is the input function, ω : Q → Y is
the output function, δ is the transition function δ : Q × Q → Q × Q and γ is
the detection transition function γ : Q× {0, 1}|Q| → Q. If δ(a, b) = (c, d), where
a, b, c, d ∈ Q, we call (a, b) → (c, d) a transition and we define δ1(a, b) = c and
δ2(a, b) = d. We also call transition any (q, a)→ c, where q, c ∈ Q, a ∈ {0, 1}|Q|

so that γ(q, a) = c.
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An AD runs on the nodes of an interaction graph G = (V,E) where G is
a directed graph without self-loops and multiple edges, V is a population of
n agents plus a single absence detector (n + 1 entities in total), and E is the
set of permissible, ordered interactions between two agents or an agent and the
absence detector. An absence detector is a special node whose state is a vector
a ∈ {0, 1}|Q|, called absence vector, always representing the absence or not of
each state from the population; that is, q ∈ Q is absent from the population in
the current configuration iff a[q] = 1. From now on we will denote the absence
detector by a unless stated otherwise. Throughout the section we consider only
complete interaction graphs, that is all agents may interact with each other and
with the absence detector.

Initially, each agent except the absence detector senses its environment (as
a response to a global start signal) and receives an input symbol from X . We
call an input assignment to the population, any string x = σ1σ2 . . . σn ∈ X∗,
where by n we denote the population size. Then all agents that received an
input symbol apply the input function on their symbols and obtain their initial
states. Given an input assignment x the absence detector is initialized by setting
a[q] = 0 for all q ∈ Q so that ∃σk ∈ x : I(σk) = q and a[q] = 1 for all other
q ∈ Q.

A population configuration, or more briefly a configuration is a mapping C :
V → Q∪ {0, 1}|Q| specifying a state q ∈ Q for each agent of the population and
a vector a ∈ {0, 1}|Q| for the absence detector. We call an initial configuration, a
configuration that specifies the initial state of each agent of the population and
the initial absence vector of the absence detector w.r.t. a given input assignment
x (as previously described). Let C, C′ be two configurations and u ∈ V − {a},
a ∈ {0, 1}|Q| be an agent and the absence vector of the detector, respectively.
We denote by C(u) the state of agent u ∈ V under configuration C. We say

that C yields C′ via encounter (u, a) ∈ E and denote by C
(u,a)−→ C′, if C′(u) =

γ(C(u), a), C′(w) = C(w), ∀w ∈ (V − {u, a}) and C′(a) = a′ so that a′[q] = 0,
∀q ∈ Q where ∃w ∈ V : C′(w) = q and a′[q] = 1 otherwise. The previous
transition can be similarly defined for the reverse interaction (a, u). In addition,
given two distinct agents u, υ ∈ V , where u, υ �= a, we say that C yields C′ via
encounter e = (u, υ) ∈ E and denoted by C

e−→ C′, if C′(u) = δ1(C(u), C(υ)),
C′(υ) = δ2(C(u), C(υ)), C′(w) = C(w), for all w ∈ (V − {u, υ, a}) and C′(a) =
a′ updated as previously. We say that C can go to C′ in one step, denoted

C → C′, if C t→ C′ for some t ∈ E. We write C
∗→ C′ if there is a sequence of

configurations C = C0, C1, . . . , Ck = C′, such that Ci → Ci+1 for all i, 0 ≤ i < k,
in which case we say that C′ is reachable from C.

We call an execution any finite or infinite sequence of configurations C0, C1,
C2, . . ., where C0 is an initial configuration and Ci → Ci+1, for all i ≥ 0. The
interacting pairs are chosen by an adversary. A strong global fairness condition
is imposed on the adversary to ensure the protocol makes progress. An infinite
execution is fair if for every pair of configurations C and C′ such that C → C′, if
C occurs infinitely often in the execution then so does C′. An adversary scheduler
is fair if it always leads to fair executions. A computation is an infinite fair
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execution. An interaction between two agents is called effective if at least one
of the initiator’s or the responder’s states is modified (that is, if C, C′ are the
configurations before and after the interaction, respectively, then C′ �= C).

Note that since X,Y, and Q are finite, the description of an AD is independent
from the population size n. Moreover, agents cannot have unique identifiers
(uids) since their are unable to store them in their memory. As a result, the
AD model preserves both uniformity and anonymity properties that the basic
Population Protocols have.

5.1 Stable Computation

We call a predicate over X∗ any function p : X∗ → {0, 1}. p is called symmet-
ric if for every x ∈ X∗ and any x′ which is a permutation of x’s symbols, it
holds that p(x) = p(x′) (in words, permuting the input symbols does not affect
the predicate’s outcome). In this work we are interested in the computation of
symmetric predicates.

A configuration C is called output stable if for every configuration C′ that is
reachable from C it holds that ω(C′(u)) = ω(C(u)) for all u ∈ V , where ω(C(u))
is the output of agent u under configuration C. In simple words, no agent changes
its output in any subsequent step and no matter how the computation proceeds.
We assume that a is the only agent that does not have an output. So the output
of the population concerns only the rest of the agents.

A predicate p over X∗ is said to be stably computable by the AD model, if
there exists a ADA such that for any input assignment x ∈ X∗, any computation
of A on a complete interaction graph of |x|+ 1 nodes beginning from the initial
configuration corresponding to x reaches an output stable configuration in which
all agents except a output p(x).

The existence of an absence detector allows for halting computations. An AD
A = (XA, YA, QA, IA, ωA, δA, γA), is halting if there are two special subsets
Qh accept, Qh reject ⊆ QA, in which any agent stops participating in effective
interactions (halts), giving output 1, 0 respectively. We say that a predicate p
over X∗ is computable by a halting AD A if for any input assignment x ∈
X∗, any computation of A on a complete interaction graph of |x| + 1 nodes
beginning from the initial configuration corresponding to x reaches an output
stable configuration in which, after a finite number of interactions, all agents,
except for a, are in states of Qh accept if p(x) = 1 and of Qh reject otherwise.

Let SPACE(f(n)) (NSPACE(f(n))) be the class of languages decidable
by some (non) deterministic TM in O(f(n)) space. For any class L denote by
SL its commutative subclass. In addition, we denote by SEM, the class of the
semilinear predicates, consisting of all predicates definable by first-order logical
formulas of Presburger arithmetic (see, e.g., [GS66]).

6 Examples and Properties

We begin with a leader-election AD. X = {1}, Q = {l, f, qhalt}, I(1) = f , δ is
defined as (l, f)→ (l, qhalt), and γ as (f, a)→ l, if a[l] = 1 and (l, a)→ qhalt, if
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a[f ] = 1. Note that both the output alphabet and the output function are not
specified since the output is meaningless in this setting. The interactions that
are not specified in δ and γ are ineffective.

Proposition 1. The above protocol is a leader election AD.

Proof. It is easy to see that a leader is initially generated that halts the non-
leaders computation. The leader halts once it is informed by the absence detector
that all non-leaders have halted. ��

The following are some interesting properties of the AD model.

Proposition 2. Any AD with stabilizing states has an equivalent halting AD.

Proof. {0, 1}|Q| can be partitioned into a state stable subset and a state unstable
subset. a ∈ {0, 1}|Q| is state stable iff for all q1, q2 ∈ Q (not necessarily distinct)
such that a[q1] = a[q2] = 0, δ(q1, q2) = (q1, q2) and γ(q1, a) = q1. If we let
all agents know in advance the above partitioning (note that this is constant
information, so storing it is feasible) then we have the required termination
criterion; that is, an agent halts iff it encounters a detector with a state stable
absence vector. ��

From now on, we only consider ADs that halt.
A very interesting feature of ADs is that they can be sequentially composed.

This means that given two ADs A and B we can construct a AD C which has the
input of A and the output of B given A’s output as input. First, C runs as A on
its inputs and once the absence detector detects A’s halt, C starts B’s execution
on using the output of A as input. The next theorem exploits the sequential
composition of ADs to show that any AD can assume the existence of a unique
leader.

Proposition 3. Any AD A has an equivalent AD B that assumes a unique
leader which does not obtain any input.

Proof. For the one direction, B may trivially simulate A by ignoring the leader.
Then for all computations of A on n agents there is an equivalent computation
of B on n+ 1 agents. For the other direction, A first elects a unique leader and
then simulates B by considering the input of the agent that has been elected as
a leader as a “virtual” agent. The leader creates a bit which moves between the
non-leaders. Whenever the leader encounters the bit it interacts with the virtual
agent that it carries in its own state. The role of the leader in the “virtual”
interaction, that is, whether it is the initiator or the responder can be determined
by its role in the real interaction in which it encountered the bit. Note that B’s
computations on n+ 1 ≥ 3 agents are simulated by A on n agents. ��

Based on this fact, we only consider ADs that assume the existence of such a
unique leader in the initial configuration that is responsible for all effective inter-
actions (non-leader interactions do not cause state modifications). We denote by
HAD the class of all predicates computable by some AD with a unique leader.
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6.1 The Power of 2 Protocol

We now construct an AD that computes the non-semilinear predicate (N1 = 2d),
which is true if the number of 1s in the input is a power of 2 (Protocol 1). This
protocol illustrates the ability of ADs to perform iterative computations (which
was impossible in PP model).

Protocol 1. Power of 2

1: X = {1}, Q = ({l} × {q0, q1, q2, q3, q4}) ∪ ({n} × {1, 1̄, 1′}) ∪ {qaccept, qreject},
2: I(1) = (n, 1) only for the non-leaders,
3: the leader is initialized to (l, q0),
4: δ:

(l, q0), (n, 1)→ (l, q1), (n, 1̄)

(l, q1), (n, 1)→ (l, q2), (n, 1̄)

(l, q2), (n, 1)→ (l, q3), (n, 1
′)

(l, q3), (n, 1)→ (l, q2), (n, 1̄)

(l, q4), (n, 1
′)→ (l, q4), (n, 1)

5: γ:

(l, q2), a→ qaccept, if a[n, 1] = a[n, 1′] = 1

→ (l, q4), if if a[n, 1] = 1 and a[n, 1′] = 0

(l, q3), a→ qreject, if a[n, 1] = 1 and a[n, 1′] = 0

(l, q4), a→ (l, q1), if a[n, 1′] = 1

7 Computational Power

We now explore the computational power of the CTS model via the AD model.
In particular, we provide several lower bounds and an upper bound for the class
HAD. By Theorem 1, that we just present, these results carry over to the class
of languages computable by CTS protocols.

Theorem 1. The CTS model is computationally equivalent to the leader-AD
model.

Proof. The CTS-leader may form an absence vector by walking around and
keeping track of present states until it covers the whole population. The AD-
leader detects the completion of a covering by marking all nodes that it meets
and asking the absence detector whether all nodes have been marked. ��
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7.1 PPs vs. ADs

In [AAER07], they defined the k-truncate of a configuration c ∈ INQ as τk(c)[q] :=
min(k, c[q]) for all q ∈ Q.

Lemma 1. For all finite k and any initial configuration c ∈ INQ, there is an
AD that aggregates in one agent τk(c).

Proof. The unique leader is aware of the finite bound k and initiates a |Q|-
vector full of zeros except for a 1 in the position of its own state (note that since
the leader election protocol is halting we are allowed to first elect a leader and
then execute a second procedure based on the assumption of a leader). When a
leader interacts with a non-leader, then the non-leader halts and if the leader’s
counter corresponding to the non-leader’s state was less than k, then the leader
increments it by one. The leader halts when the absence detector informs it that
non-leaders are absent. ��

Theorem 2. SEM ⊆ HAD.

Proof. It was proved in [AAER07] that, for any PP with stabilizing outputs,
there exists a finite k such that a configuration is output stable iff its k-truncate
is output stable (and the output values are preserved). We let the AD know the k
corresponding to the simulated PP. The AD-leader performs a constant number
of simulation steps, e.g. k, and then does the following. It marks all non-leaders
one after the other, while gathering the k-truncate of their current configuration
c. When the detector informs the leader that no unmarked non-leaders have
remained, the leader checks whether τk(c) is output-stable (since k is finite and
independent of the population size, we may as in Proposition 2 assume that the
leader knows in advance the subset of output stable k-truncates). If it is, then c
must also be output stable and the protocol halts. If not, then neither is c and
the leader drops this truncate, restores one after the other all non-leaders and
when no marked non-leader has remained it continues the PP’s simulation for
another constant number of steps, and so on. ��

Taking into account Theorem 2 and the non-semilinear power of 2 predicate
(Protocol 1) we have that SEM � HAD.

7.2 Better Lower Bounds and an Upper Bound

We construct now an AD that computes the predicate (bNd1
1 Nd2

2 · · · Ndk

k < c),
where b and c are integer constants and di and k are nonnegative constants. We
again make w.l.o.g. the assumption of a unique leader, and for further simplifi-
cation we forget about the leader’s input.

To simplify the description we first present an AD (Protocol 2) that computes
(bNd

1 < c). Define [c] := {0, 1, . . . , |c|} if c < 0 and [c] := {−c,−c+ 1, . . . , 0} if
c ≥ 0. Define u−i to be the subvector of a vector u consisting of all components
of u except from component i. We write a vector u as (j, u−i) when we want to
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Protocol 2. VarPower

1: X = {s1}, Q = ({l1, l2, . . . , ld, le1, le2, . . . , led} × [c]) ∪ {0, 1}d ∪ {qaccept, qreject},
2: I(s1) = 0d,
3: the initial state of the leader is (l1,−c),
4: δ:

(li, w), (0, u−i)→ (li+1, w), (1, u−i), if i < d

→ qaccept, if i = d and c ≥ 0, w + b ≤ −c or c < 0, w + b < 0

→ qreject, if i = d and c ≥ 0, w + b ≥ 0 or c < 0, w + b ≥ −c
→ (li, w + b), (1, u−i), if i = d and c ≥ 0,−c ≤ w + b < 0 or

c < 0, 0 ≤ w + b < |c|
(lei , w), (1, u−i)→ (lei , w), (0, u−i)

5: γ:

(li, w), a→ (lei , w), if a[0, u−i] = 1 and i > 1

→ qaccept, if a[0, u−i] = 1, i = 1 and w < 0

→ qreject, if a[0, u−i] = 1, i = 1 and w ≥ 0

(lei , w), a→ (li−1, w), if a[1, u−i] = 1

emphasize that component i of u has the value j. Given an absence vector a,
a[j, u−i] = 1 is true iff (j, u−i) is absent from the population for all u−i.

We now extend the above construction to devise an AD for the predicate
(bNd1

1 Nd2
2 · · ·Ndk

k < c), where b and c are integer constants and k is a nonneg-
ative constant. The idea is simple. The leader now holds a k-vector of vectors,
l, where li is a di-vector of states, similar to those of Protocol 2, in order to
execute k copies of Protocol 2. The leader still holds a unique counter initialized
to −c. Similarly, each agent has k components, one for each subprotocol. The
AD, in fact, produces all possible assignments of states to lij . Initially, one step
of each subprotocol is executed, then all steps of subprotocol k is executed, then
k is reinitialized, k − 1 is proceeded for one step and again all possible steps of
k are executed, when all possible combinations of k − 1 and k have been ex-
hausted, k− 2 proceeds for one step, and all possible combinations of k− 1 and
k are reproduced, and so on. After each step, except for the first k− 1 steps, the
terminating conditions of Protocol 2 are checked and if no one is satisfied b is
added to the leader’s counter.

Finally, by exploiting the above constructions we devise an AD that computes
the predicate

∑l
d1,d2,...,dk=0 ad1,d2,...,dk

Nd1
1 Nd2

2 · · ·Ndk

k < c, where ad1,d2,...,dk
and

c are integer constants and l and k are nonnegative constants. Here, a difference
to the previous protocol is that we have many copies of it running in parallel,
their number being equal to the number of nonzero coefficients, and each one of
them adds to the counter its own coefficient ad1,d2,...,dk

.
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A key difference is that the counter bounds are now set to −s, s, where s :=
max(maxd1,d2,...,dk=0,...,l |ad1,d2,...,dk

|, |c|), and that when we say “in parallel” we
can implement this in a round-robin fashion, and let the protocol terminate when
no subprotocol can proceed without exceeding the bounds. Then the halting de-
cision simply depends on whether the leader’s counter is negative or not. We
conclude with the following lower bound on HAD.

Theorem 3. Any predicate of the form
∑l

d1,d2,...,dk=0 ad1,d2,...,dk
Nd1

1 Nd2
2 · · ·

Ndk

k < c, where ad1,d2,...,dk
and c are integer constants and l and k are non-

negative constants, is in HAD.

Simulating a Counter Machine. In this Section, we prove that ADs and
one-way (online) counter machines (CMs) [FMR68, Min61] can simulate each
other.

The space required by a CM in processing its input is the maximum value that
any of its counters obtains in the course of the computation. A language L ⊆ Σ∗

is said to be CM-decidable in O(f(n)) space if some CM which operates in space
O(f(n)) accepts any w ∈ L and rejects any w′ ∈ Σ∗\L. Let CMSPACE(f(n))
(NCMSPACE(f(n)) for nondeterministic CMs) be the class of all languages
that are CM-decidable in O(f(n)) space. Recall that by SCMSPACE(f(n))
(SNCMSPACE(f(n))) we denote its symmetric subclass. The following well-
known theorem states that any CM of space O(f(n)) can be simulated by a TM
of space O(log f(n)) and conversely.

Theorem 4 ([FMR68]). CMSPACE(f(n)) = SPACE(log f(n)) and
NCMSPACE(f(n)) = NSPACE(log f(n)).

The above result can also be found as Lemma 3, page 94, in [Iba04].

Corollary 1. SCMSPACE(f(n)) = SSPACE(log f(n)) and
SNCMSPACE(f(n)) = SNSPACE(log f(n)).

We are now ready to establish our final bounds on HAD.

Theorem 5. SSPACE(logn) = SCMSPACE(n) ⊆ HAD ⊆
SNSPACE(logn) ⊆ SSPACE(log2 n).

Proof. For the lower bound, we show that ADs can simulate CMs (SSPA-
CE(logn) = SCMSPACE(n) is from [FMR68]). The CM consists of a control
unit, an input terminal, and a constant number of counters. The AD simulates
the control unit by its unique leader, which is responsible for carrying out the
simulation. The input terminal is formed by the actual input slots of the agents.
The k counters are stored by creating a k-vector of bits in the memory of each
agent. In this manner, each counter is distributed across the agents. The value
of the ith counter at any time is determined by the number of 1s appearing in
the ith components of the agents. Since the number of agents is equal to the
number of input symbols the space of each counter is linear to the input size
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(in fact, we can easily make this O(n) by allowing c bits in each component
instead of just one). To take a step, the CM reads or not the next symbol from
the input and the sign (0 or positive) of each tape and then, if it read the input,
moves to the next input symbol and updates the contents of the counters. The
leader of the AD waits or not to encounter an agent whose input is not erased
(unread), in the former case erases that input symbol, and waits to encounter
the absence detector to learn the set of zero counters. When the latter happens,
the leader obtains a vector of -1s, 0, and 1, representing the value to be added to
each counter. From that point on, the leader adds these values wherever possi-
ble until all of them have been added. Then the leader continues the simulation
as above. The proof for the upper bound is similar to the one of Theorem 15
in [AAD+06]. We construct a TM that, starting from any initial configuration,
nondeterministically guesses all reachable configurations and always stores at
most one. We also invoke Savitch’s theorem [Sav70]. ��

In the full paper, we also prove that ADs can simulate Multiset Linear Bounded
Automata with Detection (MLBAD) [CVMVM01, Vas08]. This implies that ADs
can compute any language produced by random context grammars. Finally, we
establish that nondeterministic ADs are computationally equivalent to the de-
terministic ones.

8 Conclusions

In this work, we proposed the CTS model a new extension of the PP model of
Angluin et al. that additionally assumes the existence of a cover-time service. By
reduction to the absence detector oracle model we were able to investigate and
almost completely characterize the computational power of the new model. The
introduced global knowledge enables CTSs to perform halting computations, a
feature that was missing from the PP model. We explored the properties and
the computability of the new model and focused more on halting computations.
We showed that all predicates in SSPACE(logn) are also in HAD and that
the latter is a subset of SSPACE(log2 n).

Many interesting questions remain open. The bounds given in this work for
halting ADs are not tight. An exact characterization of HAD is still elusive. In
addition, what happens in the case where the detector does not correctly de-
tect the existing states in the population? Do the protocols presented here work
correctly in the case of an adversarial detector? In addition, how is the com-
putability of graph properties of the interaction graph affected by the absence
detectors presence? Finally, can one simplify the proof of the upper bound of
PPs [AAER07] by simulating them by a one-way 1-CM or by a nondeterministic
pushdown automaton?
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Abstract. A strategy to increase an algorithm’s robustness against in-
ternal memory corruption is to let processes actively discard part of
their accumulated knowledge during execution. We study how different
strategies of forgetting affect the performance of a synchronizer in an
environment with probabilistic message loss.

Introduction. Network synchronizers allow to tolerate asynchrony, as well as
certain types of failures, while using programs devised for lock-step synchronous
execution. We study a retransmission-based variant of the α-synchronizer in-
troduced by Awerbuch [1] as the first in a series of synchronizer algorithms for
asynchronous message-passing systems. Its main idea is that each process con-
tinuously broadcasts its current round number together with the corresponding
application data. A process starts the next round when it has received the mes-
sages of its current round from all other processes.

In distributed systems such as low-power wireless sensor networks, one can
observe two types of failures: (i) Messages can be dropped or corrupted, and
(ii) the processes’ internal memory can be corrupted. Failures of type (i) are
already dealt with by the synchronizer itself: Since each process continuously
retransmits its current round message until it starts its next round, dropping
messages may only result in larger times between round switches, but not in
incorrect behavior. The occurrence of corrupted messages can be made negligible
by using error detection codes, often directly supported by transceiver chips.
In this paper we thus assume that a message is either correctly received or
dropped. Failures of type (ii) may occur for instance by ionized particle hits
in memory cells. The longer the time between the write of a memory cell and
its successive read, the higher is the likelihood that the read returns corrupted
data. By actively resetting (part of) the nodes’ internal memory, one reduces
the likelihood of reading corrupted memory content. More “forgetful” strategies
correspond to maintaining less internal state, which should increase robustness
against failures but decrease performance.
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Fig. 1. Expected round durations in systems with three processes

System model and algorithm. Processes 1, . . . , N take steps simultaneously at all
integral times, but each message transmission succeeds only with constant inde-
pendent probability p. Messages that do arrive have a transmission delay of 1.
A step consists in (a) receiving messages from other processes, (b) performing
local computations, and (c) broadcasting a message to the other processes (i.e.,
performing N −1 point-to-point message transmissions). Processes continuously
broadcast their local round number and maintain a knowledge vector which con-
tains the information on other processes’ local round numbers accumulated via
received messages. After updating its local round number, a process may forget,
i.e., reset its knowledge vector. We consider three different conditions on when
processes forget: (I) Never. (II) When starting a new local round. (III) Always,
in every step.

Results. We state an explicit formula for the expected asympotic round duration
for condition (III) and give efficiently computable bounds for the other two
conditions. These bounds are shown to approximate the exact value well if the
probability p of successful message transmission is high. We show that for all
three conditions, the expected round durations collapse when p → 1: All three
expected round durations, as well as their first derivatives as a function of p,
coincide in p = 1. We prove that for p → 0, the expected round durations
for conditions (I) and (II) follow the same order of growth, namely Θ(p−1),
whereas condition (III) gives rise to Θ(p−(N−1)). Fig. 1 shows the behavior of
the expected round duration in three-processor systems as a parameter of the
probability parameter p. Monte Carlo simulations support our analytic results.
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1 Introduction

The rendezvous problem of mobile agents is to make agents, which are initially dis-
tributed in a network, meet at a non-predefined location. The challenging issue is to
design rendezvous algorithms which work in anonymous systems. Previous works such
as [2,4,5] characterized its solvability with the symmetricity and periodicity of network
topology and initial locations of agents. However, most existing works (except [3]) as-
sume “static” networks, where its topology does not change during the execution.

As dynamic computer networks, where the network topology and/or the participants
continuously change (e.g., the Internet, P2P networks, MANETs), become widely used,
distributed systems over such networks are expected to autonomously adapt to dynamic
changes. Our question is “is it possible to rendezvous in dynamic networks?”. In a
“static” network, all agents recognize the same network, i.e., the sequence of local
connectivity (such as the adjacent links) at each node represents the global network.
However, in a “dynamic” network, each agent only recognizes temporal connectivity at
each node, and all agents do not always recognize the same global network.

This paper newly introduces the rendezvous problem in dynamic networks modeled
with edge evolving graphs [1]. Given a graph G, an evolving graph of G is a sequence of
subgraphs of G. As original graph G, we focus on anonymous undirected oriented rings,
which are one of the simplest topologies with periodicity and symmetricity. Our interest
is to reveal the solvability of the rendezvous problem on the edge evolving rings1. We try
to characterize the solvability on evolving rings by a given evolving graph and initial
locations of agents. We first show an impossibility result: If the initial allocation of
agents and every subgraph of evolving rings have the same periodicity, the rendezvous
problem cannot be solved. We then present some deterministic rendezvous algorithms,
and show their memory complexities and the graph classes where the algorithms realize
the rendezvous and terminate.

� This work is supported in part by KAKENHI no.22700017, no.22700074 and no.2370019.
1 If a given edge evolving ring is in the impossible case, then we allow agents to continue their

execution forever.
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2 Preliminaries

Given a graph G = (V, E), an edge evolving graph of G is an infinite sequence S G =

G0,G1, . . . where for each Gi = (Vi, Ei) (0 ≤ i), Vi = V and Ei ⊆ E. We assume that for
each edge e in E, graphs which have e appear in sequence S G infinitely often. Every edge
is locally labeled in a globally consistent way, and the label is fixed during an execution.
Each node is provided with a whiteboard, which is local storage where agents on the node
can write and read some data. We assume that each agent knows the number k of agents
(otherwise, the rendezvous is not solvable [2]), and that the system is asynchronous.

About the relationship between the timing of graph transition and the behavior of
agents, we make following assumptions:1) An agent is not destroyed by deletion of
edges, and 2) the time interval of the transition of graphs is long enough for the agents
to visit all the nodes on a segment (i.e., a connected component). As for the detection of
graph transitions, we introduce three models: Any agent can detect a transition 1) any-
time in global detection model, 2) when the edges incident to the nodes in the segment
where the agent resides change in semi-local detection model, and 3) when the edges
incident to the node where it stays change in local detection model.

If ring G is represented by a periodic sequence of segment lengths, then G is called
periodic. The periodic number is defined by the number of copies in the sequence of
G, and its set is denoted by P(G). For an initial allocation of agents, the periodicity and
periodic number are also defined similarly. Let α be a periodic allocation of agents and
P(α) be the set of periodic numbers of α. The maximum and minimum periodic number
of α are denoted by pmax(α) and pmin(α), respectively.

3 Overview of the Results

For the rendezvous problem on static graphs, several impossibilities are caused by the
periodicity of graphs and agents allocation [2]. For dynamic networks, we have a similar
negative result.

Theorem 1. Assume that an initial allocation α of agents is periodic. Then, even in the
global detection model, the rendezvous is unsolvable if every Gi in S G is periodic with
pmin(α) ∈ P(Gi) or a ring.

We also show some positive results. In all our algorithms, every agent collects the initial
allocation α of agents. So, if α is not periodic, the rendezvous can be solved. In the fol-
lowings, we discuss the other solvable cases. First, consider a simple case: We assume
the semi-local detection model and the edge occurrence restriction, where evolving ring
S G satisfies that for any i, if {u, v}(∈ E) � Ei then {u, v} ∈ Ei+1. Graph G is said to have p-
periodic segments if the sequence of segment lengths of G contains the equally-spaced
p segments of the same length.

Theorem 2. Let Gi do not have cp-periodic segments for any p ∈ P(α), where c is a
positive integer. In the semi-local detection model, there is a deterministic rendezvous
algorithm with O(n · log n) bits memory per agent if S G satisfies the edge occurrence
restriction and contains graph Gi.

The outline of our algorithm is as follows: To agree on a rendezvous node, each agent
collects the allocation of home nodes (i.e., initial nodes of agents) and the lengths of
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segments where it stays (by using O(n · log n) bits memory). Then, the agent shares the
collected information with the others by writing and reading on the home nodes. By
comparing the sequence of segment lengths which each agent collects, the agent can
decide which it is a winner or loser. If there is a non-periodicity in the allocation of
home nodes of winner agents, they recognize and agree on a rendezvous node.

For the subclass of instances defined in Theorem 2, we can reduce the memory
complexity to O(n) bits: Instead of segment lengths, each agent keeps the locations of
clockwise end nodes on each segment (by using O(n) bits memory). By comparing the
sequences of the recorded locations, the agents select the winners among them, and de-
cide the rendezvous node if the locations of winners’ home nodes have a non-periodicity.

Theorem 3. Let Gi have a segment whose length l satisfies (n/pmin(α))+ 1 ≤ l ≤ n− 1.
In the semi-local detection model, there is a deterministic rendezvous algorithm with
O(n) bits memory per agent if S G satisfies the edge occurrence restriction and contains
graph Gi.

Next, we consider the case without the edge occurrence restriction. In this case, unfor-
tunately, we cannot take the same approach above because there may be some agents
who do not notice a transition of graphs in which some segments do not change their
topologies. The outline of the algorithm is as follows: Each agent moves in the clock-
wise direction, and on each transition of graphs, if it moves at least one edge on a graph
then it records the location of the end node. For each lap, every track of agents are
shared and merged on each agent. Let the merged track denote by S . The agents decide
the rendezvous node by S , a conjunctive and disjunctive sequence of S and α.

Theorem 4. In the semi-local detection model, the algorithm solves the rendezvous on
edge evolving rings if there is a lap in which S is non-periodic or in which the number
of recorded nodes in S is coprime to pmax(α).

The edge evolving rings satisfying the above conditions can be characterized by simu-
lating the agent behavior, which is omitted due to the space restriction.

In the local detection model, we can get the same positive results by modifying the
above algorithms: When a transition of ring Gi to non-ring Gi+1 occurs, the agents
decide the non-periodicity of the evolving graph based on their home nodes and end
nodes of segments where they stay.

Theorem 5. For the local detection model, Theorem 2, 3, and 4 also hold.
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Abstract. This paper describes a method for specifying complex dis-
tributed algorithms at a very high yet executable level, focusing in par-
ticular on general principles for making properties and invariants explicit
while keeping the control flow clear. This is critical for understanding the
algorithms and proving their correctness. It is also critical for generat-
ing efficient implementations using invariant-preserving transformations,
ensuring the correctness of the optimizations.

We have studied and experimented with a variety of important dis-
tributed algorithms, including well-known difficult variants of Paxos, by
specifying them in a very high-level language with an operational seman-
tics. In the specifications that resulted from following our method, crit-
ical properties and invariants are explicit, making the algorithms easier
to understand and verify. Indeed, this helped us discover improvements
to some of the algorithms, for correctness and for optimizations.

1 Introduction

Distributed algorithms are at the core of distributed systems, which are in-
creasingly indispensable in our daily lives. Yet, understanding and proving the
correctness of distributed algorithms remain challenging, recurring tasks. Study
of distributed algorithms has relied on either pseudo code with English, which
is high-level but imprecise, or formal specification languages, which are precise
but harder to understand or not executable.

For example, the well-known Paxos algorithm for distributed consensus, from
when Lamport first described it in 1990 [16], through all the variations, investiga-
tions, and practical deployments (including Google’s Chubby distributed locking
and storage service [6]) over the years, e.g., [8, 17, 5], remains as actively studied
as ever in specification and verification, e.g., [20, 33]. The description by van Re-
nesse [33] finally provides precise pseudo code for full Paxos—multi-Paxos—with
comprehensive detailed explanations.

This paper describes a method to help make it easier to understand and verify
complex distributed algorithms by specifying them at a very high yet executable
level. The method focuses in particular on general principles for making prop-
erties and invariants explicit while keeping the control flow clear. It exploits
message history sequences and queries over sets and sequences to abstract the
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handling of received messages, and to abstract synchronization, when to send
what messages to whom, and sending of messages collectively.

Making properties and invariants explicit is critical also for generating effi-
cient implementations using invariant-preserving transformations, ensuring the
correctness of the optimizations. In fact, it was during the study of these opti-
mizations in the last several years, while trying to better understand and teach
distributed algorithms, that we developed the abstractions and the specification
method.

We have studied and experimented with a variety of important distributed
algorithms, including well-known difficult variants of Paxos, by specifying them
in a very high-level language with an operational semantics. In the specifications
that resulted from following our method, critical properties and invariants are
explicit, making the algorithms easier to understand and verify. Indeed, this
helped us discover improvements to some of the algorithms, both for correctness
and for optimizations, and also exposed some remaining correctness concerns.

2 Language and Case Studies

We use a very high level, executable language, called DistAlgo, that has an
operational semantics [23]. We use parts of two case studies as examples in
describing our method.

Language. To support distributed programming at a high level, we add four
main concepts to commonly used object-oriented programming languages, such
as Java and Python: (1) processes as objects, and sending of messages, (2) yield
points and waits for control flows, and handling of received messages, (3) com-
putations using high-level queries and message history sequences, and (4) config-
uration of processes and communication mechanisms. The following paragraphs
describe the constructs that support these concepts in DistAlgo. For other con-
structs, we mostly use Python syntax (indentation for scoping, ’:’ for separa-
tion, ’#’ for comments, etc.), for succinctness, except with a few conventions
from Java. The skip statement does nothing. We adopt the convention that any
method named setup implicitly assigns each of its parameters to a field with
the same name as the parameter before executing the rest of its body.

Processes and Sending of Messages. Process definition is done by defining
classes that extend a special class Process. This is analogous to thread defini-
tion in Java and Python, which is done by defining classes that extend a special
class Thread. The class must define a run method. The start method inherited
from Process starts the execution of the process, which executes its run method.
Processes can be created using constructors of process classes. Those construc-
tors have an optional additional parameter that specifies the site (machine) on
which the new process should be created. Processes can also be created by call-
ing newprocesses(n,P,s), which creates and returns a set of n processes of class
P on site s.
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A send-statement send m to p sends a message m to a process p. If p is a set of
processes, m is sent to each process in the set. A message can be a tuple, where
the first component is a string specifying the kind of the message.

Control Flows and Handling of Received Messages. The key idea is to
use labels to specify program points where control flow can yield to handling of
messages and resume afterwards. A yield point is a statement of the form -- l,
where l is a label that names this point in the program. Messages are handled
only at yield points, so code segments not containing yield points are atomic.
Handling of received messages is expressed using receive-definitions, which are
members of class definitions for processes and are of the form:

receive m1 from p1,...,mk from pk at l1,...,lj: stmt

where each mi is a variable or tuple pattern. This allows messages that match any
one of m1 from p1, ..., mk from pk to be handled at yield points labeled any one
of l1,...,lj, by executing the statement stmt at those points. A tuple pattern is
a tuple in which each component is a constant, a variable possibly prefixed with
“=”, or a wildcard. A variable prefixed with “=” means that the corresponding
part of the tuple being matched must equal the value of the variable for pattern
matching to succeed. A variable that is not prefixed with “=” matches any value
and gets bound to the corresponding part of the tuple being matched. A wildcard,
written as “_”, matches any value. The at-clause is optional, and the default
means all yield points. The from-clause is also optional. As syntactic sugar, a
receive-definition used at only one yield point can be written at that point.

Synchronization uses the await-statement, whose general form is

await bexp1: stmt1 or ... or bexpk: stmtk timeout t: stmt

This statement waits for one of the Boolean expressions bexpi to become true
or until t seconds have passed and then executes the corresponding statement.
The statements stmti and the timeout-clause are optional. An await-statement
must be preceded by a yield point; if a yield point is not specified explicitly, the
default is that all message handlers can be executed at this point.

High-Level Queries. Synchronization conditions can be expressed using high-
level queries—quantifications, comprehensions, and aggregates—over sets of pro-
cesses and sequences of messages. We define operations on sets; operations on
sequences are the same except that elements are processed in order, and square
brackets are used in place of curly braces.

– Quantifications are of the following two forms. Each variable vi enumerates
elements of the set value of expression expi; the return value is whether, for
each or some, respectively, combination of values of v1,...,vk, the value of
Boolean expression bexp is true.

each v1 in exp1, ..., vk in expk | bexp
some v1 in exp1, ..., vk in expk | bexp



98 Y.A. Liu, S.D. Stoller, and B. Lin

– Comprehensions are of the following form. Each variable vi enumerates el-
ements of the set value of expression expi; for each combination of values
of v1,...vk, if the value of Boolean expression bexp is true, the value of
expression exp forms an element of the resulting set.

{ exp: v1 in exp1, ..., vk in expk | bexp }

We abbreviate {v: v in exp | bexp} as {v in exp | bexp}.
– Aggregates are of the form agg(exp), where agg is an operation, such as count

or min, specifying the kind of aggregation over the set value of exp.
– In the query forms above, each vi can also be a tuple pattern, in which case

each enumerated element of the set value of expi is matched against the
pattern before bexp is evaluated. We omit |bexp when bexp is true.

We use {} for empty set; s.add(x) and s.del(x) for element addition and deletion,
respectively; and x in s and x not in s for membership test and its negation,
respectively. We overload or to work for sets; s1 or s2 returns s1 if s1 is non-
empty, otherwise it returns s2.

DistAlgo has two built-in sequences, received and sent, containing all mes-
sages received and sent, respectively, by a process.

– Sequence received is updated only at yield points. An arrived message m
for which the program contains a matching receive-definition is added to
received when the program reaches a yield point where m is handled, and all
matching message handlers associated with that yield point are executed for
m. An arrived message for which the program contains no matching receive-
definitions is added to received at the next yield point. The sequence sent
is updated at each send-statement.

– received(m from p) is a shorthand for m from p in received; from p is op-
tional, but when it is used, each message in received is automatically asso-
ciated with the corresponding sender. sent(m to p) is a shorthand for m to
p in sent; to p is optional, but when it is used, p is the process or set of
processes in the corresponding send-statement.

Configuration. Configuration statements can specify various aspects of config-
uration. For example, use fifo_channel and use reliable_channel specify that
channels are required to be FIFO and reliable, respectively; by default, chan-
nels are not required to be FIFO or reliable. The configuration statement use
Lamport_clock specifies that Lamport logical clock [15, 9, 25] is used; this con-
figures sending and receiving of messages to update the clock, and defines a
function Lamport_clock() that returns the value of the clock.

Case Studies. We use parts of two important algorithms as case studies: (1)
van Renesse’s pseudo code for multi-Paxos for distributed consensus [33], which
has been worked on for a long time, with the pseudo code remaining the same
for a year or more, and is in the process of being made a technical report, and
(2) Lamport’s description of distributed mutual exclusion algorithm [15], which
Lamport developed to illustrate the logical clock he invented. We use them
because they are the clearest descriptions we found for these problems.
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van Renesse’s pseudo code for multi-Paxos is for a set of leaders, commanders,
scouts, and acceptors to reach consensus among a set of replicas in serving a
sequence of requests from clients. A replica receives client requests and proposes
to leaders, and receives decisions from leaders and replies back to clients; a
leader spawns off commander and scouts to do the two phases of the consensus
algorithm; commander and scouts communicates with acceptors to try to have
proposed values accepted.

Lamport’s distributed mutual exclusion is for a set of processes accessing
a shared resource that can only be used by one process at a time. A process
maintains a queue of pending requests sorted by their logical timestamps, adds
self to the request queue and sends a message to all others to request the resource,
waits for all others to reply and for self to be first on the queue to get access,
and sends release messages to all and dequeues itself afterwards; it enqueues any
request upon receiving the request message, and dequeues it upon receiving the
release message.

3 High-Level Specifications of Distributed Algorithms

Our method aims to specify distributed algorithms at a high level while keep-
ing them fully executable as they are designed for. The key idea is to preserve
the sending and receive of messages while abstracting away details of local
computations.

Abstractions for Specifying Distributed Algorithms. Our method ex-
ploits two basic abstractions—message history sequences and queries over sets
and sequences—and has four main components:

1. abstracting waiting on received messages using high-level synchronization
with explicit wait,

2. abstracting when to send messages using high-level assertions over sets and
sequences,

3. abstracting what to send in messages to whom using high-level set and ag-
gregate computations, and

4. abstracting what messages to send collectively using loops and high-level
queries.

These abstractions help make invariants maintained in distributed algorithms
explicit, and thus help make the algorithms easier to understand and to verify.
Note that our method does not yet make all invariants explicit, if that is possible.

The method emphasizes sending of messages and synchronization, because
a process has no control over when it receives what messages from whom, but
only when and how to handle them once they arrive, and handling of received
messages is driven by the need to send messages, besides waiting and yielding.
Therefore, handling is implied by the four components above, especially as they
all heavily use queries over received messages.
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Message Sequences. For a distributed process to make decisions, the key
input is the history of messages it has sent and received. Therefore, at a high
level, these decisions should be expressed in terms of the sequences of messages
sent and received, not lower-level local updates after each message is sent or
received.

High-Level Queries. Because distributed computations involve sets of pro-
cesses and sequences of message, decision making mainly involves assertions and
other computations over sets and sequences. To specify these assertions and com-
putations at a high level, our method uses queries extensively, including logic
quantifications, set comprehensions, and aggregate computations.

Overall Method. The four components of our method are orthogonal and can
be applied independently. We describe these components in more detail in four
subsections and show precisely how they help specify distributed algorithms at
a higher level.

Incremental Computations. Although abstractions with high-level queries
help make algorithms easier to understand and to verify, computations using
these abstractions can be extremely inefficient, because they involve iteration
over sets and sequences, and they are performed repeatedly as the sets and
sequences are updated. This can take asymptotically much more time than nec-
essary, and furthermore the space usage may be unbounded if the history of
messages sent and received is used in actual implementations.

Optimization by incrementalization, e.g., [28, 12, 22, 21], transforms such ex-
pensive computations into efficient incremental maintenance of appropriate aux-
iliary values as the sets and sequences are updated. For distributed algorithms,
the resulting incremental computations become efficient message handlers [23].
In fact, it was during the study of such optimizations in the last several years
that we developed the abstractions, which we believe was instrumental in leading
us to discover improvements to some of the algorithms.

3.1 Explicit High-Level Synchronization

Synchronization is at the core of distributed systems. It requires waiting for cer-
tain conditions to become true before taking the corresponding actions. Because
message passing is generally asynchronous in distributed systems, synchroniza-
tion must be achieved by explicitly tracking synchronization conditions, main-
taining their truth values as messages are received, until the conditions become
true, and then taking the corresponding actions.

Expressing such synchronization at a low level requires, in general, sophisti-
cated updates driven by the events of different kinds of messages being received,
making it difficult to understand and verify the conditions that the process is
waiting for.

We use three principles in specifying such synchronization at a high level:
(1) specify the waiting on the conditions and corresponding actions explicitly
using await-statements, (2) express the conditions using high-level queries over



High-Level Executable Specifications of Distributed Algorithms 101

sequences of messages sent and received, and (3) minimize local updates in the
actions.

Example. In multi-Paxos [33], a commander process is spawned by a leader
for each adopted triple of ballot number, slot number, and proposal, to try to
have it accepted by acceptors and notify replicas of the decisions, and in case of
being preempted by a different ballot number, to notify the leader.

Fig. 1 shows the pseudo codeprocess Commander(λ, acceptors, replicas, 〈b, s, p〉)
var waitfor := acceptors;

∀α ∈ acceptors : send(α, 〈p2a, self(), 〈b, s, p〉〉);
for ever
switch receive()
case 〈p2b, α, b′〉 :
if b′ = b then

waitfor := waitfor− {α};
if |waitfor| < |acceptors|/2 then
∀ρ ∈ replicas :

send(ρ, 〈decision, s, p〉);
exit();

end if;
else

send(λ, 〈preempted, b′〉);
exit();

end if;
end case

end switch
end for

end process

Fig. 1. Pseudo code for a commander in multi-
Paxos [33]

for a commander in multi-Paxos.
A commander maintains waitfor—
the set of acceptors from which it
waits for p2b messages. It sends a
p2a message to all acceptors and
then handles each p2b message it
receives from an acceptor, main-
taining waitfor in one of two cases.
When |waitfor|<|acceptors|/2 in
the first case, it sends a decision
message to all replicas and exits;
it sends a preempted message in
the second case.

We specify a commander at a
high level as follows. First, we spec-
ify the synchronization explicitly
using an await-statement. Then,
we note that waitfor can be queried
from the set of p2b messages re-
ceived and the given set of ac-
ceptors, so we do not maintain
waitfor explicitly; instead of start-

ing from all acceptors and removing certain acceptors until a minority remain,
we directly check whether those certain acceptors are a majority. Finally, the
corresponding actions are simply single send-actions, yielding the specification
in Fig. 2.

The result is that the flow that leads to each send-action is made clearer, and
the conditions for the actions can easily be read off. Similar improvements can
be made to the specification of a scout.

3.2 Direct High-Level Assertions

Determining the state of a distributed system is key to synchronization and
to making decisions in general. Because there is no shared memory, a process
must assert the state to the best of its knowledge through sending and receiving
messages. The truth values of assertions about the state must be updated as
messages are sent and received.

We express assertions using high-level queries over sequences of messages sent
and received, as for synchronization conditions. The queries may be in the forms



102 Y.A. Liu, S.D. Stoller, and B. Lin

class Commander extends Process:
def setup(leader, acceptors, replicas, b, s, p): skip

def run():
send (’p2a’, b, s, p) to acceptors
await count({a: received((’p2b’, =b) from a)}) > count(acceptors)/2:

send (’decision’, s, p) to replicas
or received(’p2b’, b2) and b2!=b:

send (’preempted’, b2) to leader

Fig. 2. Higher-level specification for a commander in multi-Paxos

of quantifications, comprehensions, and aggregates. However, a same assertion
may be expressed using different forms of queries. Because quantifications are
usually not supported in executable languages, loops and low-level updates are
most often used. Even in many high-level specifications, comprehensions and
aggregates are often used in place of quantifications; this can be error-prone or
lead to poor performance.

For example, an existential quantification may be specified indirectly as a set
comprehension followed by an emptiness test, but this may incur unnecessary
space for maintaining the intermediate set. For another example, a universal
quantification asserting that a number is greater than all elements in a set may
be specified indirectly as the number being greater than the maximum element
in the set, but this causes an error when the set is empty; a special boundary
value may be used in case the set is empty, but this is error-prone and may be
sensitive to the maximum or minimum number that can be represented, which
may be determined by the memory word size.

Our core principle in specifying assertions at a high level is to express existen-
tially and universally quantified properties directly using logic quantifications,
not indirectly using aggregates or comprehensions. Quantifications are easier and
clearer for correctly stating the requirements, and can be systematically con-
verted to aggregates and comprehensions that allow the best optimizations [23].

Example. In Lamport’s distributed mutual exclusion [15], a process that re-
quests a resource at time c needs to wait for the following two key conditions to
hold before it is granted the resource:

(i) the request time (c,self) in its request queue is ordered before every other
request in the queue, and (ii) it has received an acknowledgment message from
every other process timestamped later than c.

We express the assertion directly using three quantifications, including a
nested quantification in the second condition. The result is that the conditions
can be directly read off the assertion.

each (’request’,c2,p2) in q | (c2,p2)!=(c,self) implies (c,self) < (c2,p2)
and each p2 in s | some (’ack’, c2, =p2) in received | c2 > c
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3.3 Straightforward High-Level Computations

A distributed algorithm is designed for a set of processes to achieve a goal via
sending and receiving messages. Computations needed for achieving the goal
generally involve various collections of processes and messages. This means that
the algorithm specification must capture the effects of sending and receiving
messages on the needed computations.

Expressing these computations at a low level requires explicitly storing the
results of these computations and updating their values appropriately as rele-
vant messages are sent and received. Maintaining these low-level values correctly
through updates can be challenging and error-prone; some of them require com-
binations of sophisticated data structures, while others are tedious.

We use three principles in specifying such computations at a high level: (1)
specify computations of aggregate values using aggregate queries over message
sequences, (2) specify computations of set values using comprehensions over mes-
sage sequences, and (3) specify repeated computations straightforwardly where
the results are used.

Example. In multi-Paxos [33], an acceptor process responds to p1a messages
from scouts with p1b messages in the first phase, and responds to p2a messages
from commanders with p2b messages in the second phase.

Fig. 3 shows the pseudo code
process Acceptor()
var ballot num := ⊥, accepted := ∅;
for ever
switch receive()
case 〈p1a, λ, b〉 :
if b > ballot num then

ballot num := b;
end if;
send(λ, 〈p1b, self(), ballot num, accepted〉);

end case
case 〈p2a, λ, 〈b, s, p〉〉 :
if b ≥ ballot num then

ballot num := b;
accepted := accepted ∪ {〈b, s, p〉};

end if
send(λ, 〈p2b, self(), ballot num〉);

end case
end switch

end for
end process

Fig. 3. Pseudo code for an acceptor in multi-
Paxos [33]

for an acceptor in multi-Paxos.
An acceptor maintains
ballot_num—a ballot number,
and accepted—a set of accepted
triples of ballot number,
slot number, and proposal. It
handles a p1a message by up-
dating ballot_num and replying
with a p1b message containing
ballot_num and accepted, and
handles a p2a message by up-
dating ballot_num and accepted
and replying with a p2a mes-
sage containing ballot_num.

We specify an acceptor at a
high level as follows. First, we
note that ballot_num is updated
to be the maximum from p1a
and p2a messages, so we com-
pute it using an aggregate. Then,
we compute it straightforward-

ly where it is used in message handlers, yielding the specification in Fig. 4.
The result is that the invariants relating the sent messages to the received

messages are made clearer. In particular, it allowed us to make explicit the
property that (b,s,p) is added to accepted only if b equals ballot_num.
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class Acceptor extends Process:
def setup(): self.accepted = {}

def run(): await false

receive m:
self.ballot_num = max({b: received(’p1a’,b)}+{b: received(’p2a’,b,_,_)} or {(-1,-1)})

receive (’p1a’, _) from scout:
send (’p1b’, ballot_num, accepted) to scout

receive (’p2a’, b, s, p) from commander:
if b == ballot_num: accepted.add((b,s,p))
send (’p2b’, ballot_num) to commander

Fig. 4. Higher-level specification for an acceptor in multi-Paxos

3.4 Collective Send-Actions

Distributed algorithms generally involve sending and receiving collections of re-
lated messages. Precise specifications of distributed algorithms are commonly
centered around handling of individual received messages. This lower-level model
makes it harder than necessary to understand the overall working of the
algorithms.

In contrast, a distributed algorithm can be viewed as driven by send-actions,
because send-actions are observable externally, which then incur the needed com-
putations. Thus, distributed algorithms may be expressed at a higher level by
specifying send-actions collectively.

Our method aims to specify send-actions collectively in three steps: (1) iden-
tify the kinds of sent messages, (2) for each kind of sent messages, collect all
situations in which messages of this kind are sent, and (3) express the collective
situations using loops, choosing for-loops over while-loops if possible.

Example. In multi-Paxos [33], a replica process holds the state of the appli-
cation; it handles requests of operations from clients and proposes them with
minimum slot numbers to leaders, and it handles decisions of operations from
leaders, applies the operations following the order of slot numbers, and sends
the results to clients.

Fig. 5 shows the pseudo code for a replica in multi-Paxos. A replica main-
tains state—the state of the application, slot_num—a slot number for the next
operation to be applied, proposals—the set of proposals it sent to leaders, and
decisions—the set of decisions it received from leaders. It handles a request mes-
sage by calling function propose. It handles a decision message by repeatedly
checking decisions, re-proposing a proposal if overridden by a decision, and call-
ing function perform. Function propose(p) checks that requested operation p is
not in decisions, finds a minimum unused slot number for it, updates proposals,
and sends a propose message. Function perform checks whether the operation in
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the argument is in decisions; if so, it only increments slot_num; otherwise, it ap-
plies the operation to state, atomically updates state and increments slot_num,
and sends the result to the client.

process Replica(leaders, initial state)
var state := initial state, slot num := 1;
var proposals := ∅, decisions := ∅;
function propose(p)
if 
 ∃s : 〈s, p〉 ∈ decisions then

s′ := min{s | s ∈ N+ ∧

 ∃p′ : 〈s, p′〉 ∈ proposals ∪ decisions};

proposals := proposals ∪ {〈s′, p〉};
∀λ ∈ leaders : send(λ, 〈propose, s′, p〉);

end if
end function

function perform(〈κ, cid, op〉)
if ∃s : s < slot num ∧

〈s, 〈κ, cid, op〉〉 ∈ decisions then
slot num := slot num + 1;

else
〈next, result〉 := op(state);
atomic

state := next;
slot num := slot num + 1;

end atomic
send(κ, 〈response, cid, result〉);

end if
end function

for ever
switch receive()
case 〈request, p〉 :

propose(p);
case 〈decision, s, p〉 :

decisions := decisions ∪ {〈s, p〉};
while ∃p′ : 〈slot num, p′〉 ∈ decisions do
if ∃p′′ : 〈slot num, p′′〉 ∈ proposals ∧

p′′ 
= p′ then
propose(p′′);

end if
perform(p′);

end while;
end switch

end for
end process

Fig. 5. Pseudo code for a replica in multi-
Paxos [33]

We specify a replica process at a
high level as follows. First, we iden-
tify the two send-actions as the driving
goals of the process. Then, we collect
all situations in which propose mes-
sages are sent: they are for all request
messages received, including those al-
ready proposed but whose proposed
slots are overridden by decisions. Here,
we add details to replace the set of
positive natural numbers N+ with the
range of integers from 1 to the max-
imum of the slot numbers used plus
1. Finally, we collect all situations in
which response messages are sent: they
are for all decision messages received,
applied in increasing order of slot num-
bers. Here we increment slot_num in
both branches together, not worrying
about breaking the atomic block, be-
cause the local updates are atomic by
default without any yield point in be-
tween. We obtain the specification in
Fig. 6.

4 Experiments

We experimented with specifying a va-
riety of important distributed algo-
rithms in DistAlgo, including the same
algorithms specified at both high lev-
els and low levels, and discovered im-
provements to some of the algorithms.
We also implemented DistAlgo, as de-
scribed in [23], by automatically gen-
erating Python code from DistAlgo
specifications following the operational
semantics, and we tested the invariants
and performance by running the gener-
ated implementations on many inputs.

Algorithm specifications. Table 1 lists five algorithms with which we had the
most interesting experiences. The last two columns show the sizes of DistAlgo
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class Replica extends Process:
def setup(leaders, initial_state):

self.state = initial_state
self.slot_num = 1

def run():
while true:
-- propose
for (’request’,p) in received:
if each (’propose’,s,=p) in sent | some received(’decision’,=s,p2) | p2!=p:

s = min({s in 1.. max({s: sent(’propose’,s,_)}+{s: received(’decision’,s,_)})+1

| not (sent(’propose’,s,_) or received(’decision’,s,_))})
send (’propose’, s, p) to leaders

-- perform
while some (’decision’, =slot_num, p) in received:

if not some (’decision’, s, =p) in received | s < slot_num:
client, cmd_id, op = p
state, result = op(state)
send (’respond’, cmd_id, result) to client

slot_num += 1

Fig. 6. Higher-level specification for a replica in multi-Paxos

specifications at a high level and sizes of DistAlgo specifications containing low-
level incremental updates; for multi-Paxos in the last row, the second size is
for a specification corresponding to the pseudo code in [33]. Each specification
includes specification of a driver for configuring and running the algorithm.

These sizes are clearly smaller than specifications in other languages. For
example, our high-level specification for La Paxos is 44 lines, compared with 83
lines of PlusCal [26], 145 lines of I/O automata [13], 230 lines of Overlog [27],
and 157 lines of Bloom [29]. For multi-Paxos, our high-level specification is 86
lines, compared with 130 lines of pseudo code in [33], and about 3000 lines of
Python in an implementation of that pseudo code [32].

Table 1. Distributed algorithms and sizes of DistAlgo specifications (number of lines)

Algorithm Description Spec size Incr size
La mutex Lamport’s distributed mutual exclusion [15] 31 43
2P commit Two-phase commit [11] 32 55
La Paxos Lamport’s Paxos for distributed consensus [16, 17] 44 59
CL Paxos Castro-Liskov’s Byzantine Paxos [5] 72 81
vR Paxos van Renesse’s pseudo code for multi-Paxos [33] 86 132
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Improvements. We discovered improvements to some of the algorithms, as
well as correctness and performance issues, explained below.

La mutex. Our method specifies the key synchronization conditions using quan-
tifications directly, as discussed in Section 3.2. Transforming them into best
forms of set and aggregate queries led to two discoveries: (1) Lamport’s orig-
inal algorithm can be simplified to not enqueue and dequeue a process’s own
request, and (2) a standard heap-like data structure for maintaining the min-
imum of all pending requests in O(log n) time per update can be removed,
and the number of pending earlier requests can be maintained instead in
O(1) time per update.

2P commit. Our method leads to a succinct specification of a coordinator pro-
cess consisting mainly of 4 queries: 2 await-conditions, an if-condition, and a
set comprehension. Even though the core algorithm does not specify timeout
for the waits, the succinct specification makes it easy to see that allowing
timeout of the first await-statement is safe, but allowing timeout of the sec-
ond await-statement is not safe.

La Paxos and CL Paxos. Our method eventually led to specifications that use
quantifications directly and cleanly, almost exactly as stated in the original
informal algorithm descriptions. Our earlier versions used aggregates, and
we discovered later that some of them were incorrect, while others needed
to use special boundary values.

vR Paxos. Our method led to a specification easier to understand, as discussed
in Sections 3.1, 3.3, and 3.4. The clearer specification led to two discoveries:
(1) for a commander and scout, if the division operator /, which returns
an integer in common programming languages, is used directly, the original
checking of minority would be incorrect, and (2) for a replica, re-proposals,
due to earlier proposals being overridden, are delayed unnecessarily.

Code Generation. The table below shows the sizes (number of lines) of
Python implementations generated from DistAlgo specifications, and the compi-
lation time (ms) for generating the implementations. Our generated implemen-
tation of multi-Paxos corresponding to the pseudo code in [33] is 1099 lines of
Python, much smaller than a manually written implementation of 3000 lines of
Python [32]. Smaller higher-level specifications may take longer to compile than
larger lower-level specifications, because transforming queries that use received
and sent takes extra time, and may produce longer, more generic code.

We also measured time and space performance of generated implementations
from both high-level and low-level DistAlgo specifications for these algorithms.
The measurements confirmed the analyzed time and space complexities. The
graph below shows the running times of generated implementations of 2P commit
and 2P commit incr, for the commit case and abort case.
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Spec Gen’d Compil
Algorithm size size time

La mutex 31 951 4.451
La mutex incr 43 960 4.988
2P commit 32 978 5.910
2P commit incr 55 1001 6.816
La Paxos 44 1003 9.121
La Paxos incr 59 999 7.613
CL Paxos 72 1044 13.055
CL Paxos incr 81 1024 12.348
vR Paxos 86 1116 19.064
vR Paxos incr 132 1099 21.602

“incr” indicates specifications containing
low-level incremental updates.
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Running times are averaged over 50 rounds
and 15 independent runs, measured on an
Intel Core-i7 2600K CPU with 16GB of
main memory, running Linux 3.0.0 kernel
and Python 3.2.2.

5 Related Work

There has been much study on distributed algorithms, e.g., [30, 24, 10, 31], in-
cluding especially much work on Paxos, from original [16], Byzantine [5, 20],
made simple [17], made live in Google’s Chubby service [6], and many more,
to most recently precise pseudo code for full Paxos [33]. Distributed algorithms
have been heavily and increasingly studied both because of their importance
in increasingly more distributed applications, e.g., Google’s computing infras-
tructure, and because of challenges in precisely specifying, implementing, and
improving them to satisfy the needs of applications.

Distributed algorithms have been expressed in a wide range of languages and
notations, from informal pseudo code to formal state machine based specifica-
tions, with many variations in between. Formal specification languages, such as
I/O automata [24, 14], TLA+ [18], and PlusCal [19], are instrumental in precise
verification. While study of languages is important, making specifications higher
level is orthogonal, because the most essential language features are already
present in many existing languages.

Besides state-machine based approaches, e.g., I/O automata [24, 14], estab-
lished specification methods include notably the actor model [1] and general
event-driven models where events include receipts of messages. These models
focus on specifying actions and state transitions driven by the receipts of indi-
vidual messages. Our specification method aims to make it easier to understand
the algorithms at a high level, by abstracting away low-level state updates. It
focuses on relating send-actions, which are externally observable, with the his-
tory of messages sent and received at a high level, by using high-level queries to
express the assertions and computations.

More declarative languages for expressing distributed algorithms have also
been studied, e.g., Datalog-based languages Overlog [2] and Bloom [3], and a
logic-based language EventML [4, 7]. More declarative languages generally ab-
stract away some or all control flow information and may be more succinct, but
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they are also harder to understand when used for specifications of algorithms, in
which control flow is essential. Our method uses declarative queries over sets and
sequences to express assertions and computations, and keeps the control flow of
sending and receiving messages clear.

Our method can make the resulting executable specifications extremely in-
efficient if executed straightforwardly, because of repeated expensive high-level
queries. Optimization by incrementalization [28, 12, 22, 21, 23] transforms such
expensive queries into efficient incremental maintenance of appropriate auxiliary
values. Invariants made explicit following our specification method not only help
prove the correctness of the algorithms, but also help apply the optimizations.
How to make more or all invariants explicit to make verification of distributed
algorithms even easier is open for future study; so is the verification.
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Abstract. Firewalls are a prerequisite for securing any communication
network. In cloud computing environments, virtual machines are dy-
namically and frequently migrated across data centers. This frequent
modification in the topology requires frequent reconfiguration of security
appliances, particularly firewalls. In this paper, we address the issue of
security policy preservation in a distributed firewall configuration within
a highly dynamic context. Thus, we propose a systematic procedure to
verify security compliance of firewall policies after VM migration. First,
the distributed firewall configurations in the involved data centers are de-
fined according to the network topology expressed using Cloud Calculus.
Then, these configurations are expressed as propositional constraints and
used to build a verification model based on the constraint satisfaction
problem framework, which allows reasoning on security policy preserva-
tion. Finally, we present a case study inspired from Amazon EC2 to show
the applicability and usefulness of our approach.

1 Introduction

Virtualization enables a dynamic computing infrastructure supporting the elastic
nature of service provisioning and de-provisioning as requested by users while
maintaining high levels of reliability and security [1]. In this setting, Virtual
Machines (VMs) are software implementations created within a virtualization
layer and their capacity to be easily moved, copied, and reassigned between
host servers is a key-enabler technology that enhances load balancing, scheduled
maintenance, as well as power management. However, VM migration creates new
security challenges in the data centers.

VMs are protected using various security mechanisms including firewalls, in-
trusion detection/prevention, etc. Specifically, firewalls are used to allow only
authorized traffic to reach the protected VMs. While VMs lively migrate around,
not only the memory and the states on the hypervisor need to be migrated, but
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also the network states including firewall rules. Failing to do this may expose the
running services on the migrated VM to security problems. An illustrative exam-
ple of this case is firewall access control lists (ACLs). Assume that a VM migrates
to a new location under a different firewall configuration. On the one hand, if
the ACLs at the new location are more permissive than those at the original
location, some packets that should be blocked may be allowed. This may open
up several security vulnerabilities to the VM. On the other hand, if they are less
permissive, some packets that should be allowed may be blocked. Furthermore,
some virtual machine’s running services might require specific filtering rules.
As virtual machines are dynamically and frequently moved between sites, man-
aging manually complex firewall rules can be time-consuming and error-prone.
Furthermore, scale and complexity of data centers are continually increasing,
which makes it difficult to rely on the administrators to update and validate the
security mechanisms.

In our previous work [2], we proposed an algebraic framework named cloud
calculus that can be used to specify cloud networks topology and the migration of
virtual machines along with their security policies. We also defined based on the
concept of testing equivalence the formal foundation for the verification of secu-
rity policy consistency. However, the need for test cases generation, which might
be tedious and incomplete, hinders the practical use of such an approach. In this
paper, we propose an alternative formal and systematic approach for the verifica-
tion of security policy preservation after VM migration that has the advantage
of being more automatable and complete. Furthermore, we consider multiple
paths in data centers with distributed firewall configurations. More specifically,
we address the issue of security policy preservation in dynamic cloud computing
environments focusing on distributed firewalls as the principal security mech-
anism. Binary Decision Diagram (BDD), propositional satisfiability problem,
and model-checking are the three principal approaches that are proposed in the
state-of-the-art for verifying firewalls configuration conformance to security pol-
icy. The bottleneck of using BDD is the amount of memory required to store
and manipulate BDDs [3], which can grow exponentially. Furthermore, the most
performance degradation points in the BDD is the building and initialization
time, which make it impractical for the analysis of dynamic environments [4].
Additionally, model-checking based approaches do not scale well. Also, it was
shown that propositional satisfiability problems can be solved with modern SAT
solvers without suffering from space explosion problem [3].

Thus, we propose to model security policy consistency preservation as a con-
straint satisfaction problem (CSP) and use Sugar [5], a SAT-based constraint
solver, to asses security of VMs in the cloud after VMs migration. The main
contributions of this paper are threefold. (1) Extend Cloud Calculus to handle
distributed asymmetric firewall configurations (2) Define the concept of secu-
rity policy preservation in dynamic cloud computing environment. (3) Define a
systematic procedure to validate security policy preservation using a constraint
satisfaction problem solver. The remaining of the paper is organized as follows.
Section 2 provides an overview on related work in the context of firewall security
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policy verification. Section 3 presents the extended Cloud Calculus framework.
Section 4 introduces a language for specifying distributed firewall composition.
Section 5 is dedicated for presenting the paradigm of constraint satisfaction
problems and encoding of distributed firewall configurations into CSP. Section
6 defines the concept of security policy preservation and presents our approach
to verify security preservation in cloud data centers after VM migration. Section
7 is dedicated for a case study showing the applicability of our approach and
illustrating scenarios where the migration is performed with errors and how our
approach can be used to detect such a problem.

2 Related Work

In this section, we review the state-of-the-art in the verification and validation
of firewall policy with respect to security requirements. Yuan et al. [6] propose
FIREMAN, a static analysis toolkit implemented using BDDs and their related
operations such as intersection and union. It performs symbolic model-checking
of a set of networked firewalls configurations and analyze them in order to detect
misconfigurations such as policy violations, inconsistencies, and inefficiencies at
intra-firewall, inter-firewall, and cross-path levels. Jeffrey and Samak [4] propose
bounded model-checking based on a SAT solver for the analysis of a network of
IPtables firewall policy configurations. Reachability of a given rule and cyclicity
in the firewall configuration are investigated. Ben Youssef et al. [7] propose an
automated approach for the verification of the conformance of a distributed fire-
walls configuration to a predefined security policy based on Satisfiability Modulo
Theories (SMT) technique. Their approach detects conflicts within the security
policy and returns key elements for the correction of flawed firewall configura-
tions. Gawanmeh et al. [8] propose an approach based on domain restriction for
modeling and verifying firewall configuration. The approach is implemented in
Event-B. They use invariant checking to verify the consistency of firewall con-
figurations in Event-B theorem proving framework. Al-Shaer et al. [9] propose
symbolic model-checking based on BDDs in order to verify network reachabil-
ity and security requirements. The network model specified as a state machine
captures the end-to-end behavior of access control configurations of a network
including routers, IPSec, and firewalls. The model can be very large as it captures
all possible types of packet headers. The verified properties are expressed in the
Computation Tree Logic (CTL). Acharya and Gouda [10] study the equivalence
of firewall verification and firewall redundancy checking problems for stateles
firewalls. They demonstrate that any algorithm that can be used to solve ei-
ther problem can be also used to solve the other problem with the same time
and space complexity. Kotenko et al. [11] propose a model-checking approach
intended for detection and resolution of filtering anomalies in the specification
of security policy using SPIN model-checker. Anomalies detection is based on
the verification of a set of LTL properties. Gouda et at. [12] propose a method
to verify the correctness of firewall networks configuration with tree topologies
based on Firewall Decision Diagram (FDD). The method consists of two algo-
rithms that can be used to decide whether a given firewall tree satisfies a given,
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accept or discard, property of that tree. Yin et al. [13] propose to map the veri-
fication of consistency between security policy and firewall policy into CSP. The
problem is then solved using the Sugar CSP solver. This latter work is the closest
to our work. However, we consider distributed firewalls with multiple ACL rules
and we do not verify the consistency of a firewall policy with respect to a given
security policy but we derived an approach that ensures that the modification of
a distributed firewall configurations does not introduce security breaches, which
is useful in network where policy and firewall configuration modifications are
frequently performed.

3 Cloud Calculus

Cloud Calculus (CC) [2] is a process algebra used to specify cloud network
topology and virtual machines migrations. In this section, we briefly present
CC and focus on its use to express distributed firewalls topology and firewall
rules migration. Cloud calculus is built upon a subset of the Mobile Ambients
(MA) [14] and the Non-interfering Boxed Ambients [15]. However, it extends
them to handle specific security related features, including security appliances
and cloud-related concepts, including dynamic firewall re-configuration.

According to Cardelli and Gordon [14], an ambient is a bounded place, where
the boundary determines its inside and its outside. Ambients can be nested and
moved as a whole. Each ambient has a name and a collection of local processes
that represent computations running directly within the ambient and, in a sense,
control it. Ambients allow representing any type of resources including firewalls,
switches, routers, gateways, physical hosts, and VMs. Initially, MA calculus is
based on the concepts of hierarchy and grouping. However, we extend it with
a construct that allows referring to an already defined ambient n. This enables
expressing topologies with multiple paths leading to a given same ambient. The
syntax of cloud calculus is presented in Figure 1. In the following, we only detail
a subset of the processes and the firewall constructs. The explanation of the
other constructs can be found in [2].

A process P can be defined as the inactive process 0, the parallel composition
of two processes P | Q, the restriction of a new name n within the scope P ,
denoted by (νn)P , an ambient named n containing a running process P , de-
noted by n[P ], a security ambient named n containing a running process P and
protected by a security policy defined in F , denoted by F �� n[P ], a reference
to an ambient named n, the unbounded replication of the process P , denoted
by !P , and finally the process that executes a capability M , and then continues
as P , denoted by M.P . The syntax of a firewall configuration language in BNF
is presented in Figure 2. The proposed syntax, an improved version of the lan-
guage presented in [2], allows expressing a wide packet filtering firewall systems
where both single, and multiple linked ACLs can be specified. Multiple ACL, in
the IPtables style, are useful to express different access control lists for different
attributes of the packets’ headers, which has a performance advantage over fil-
tering using single list. The bit-length of the allocated network prefix is denoted
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Terms Ambients Names
T � �= M capability A � �= u variable

� A ambient � n name
� G rules Locations
� x variable η � �= A child
� f(

��

T ) function application � � parent
� � local

Processes Capabilities
P,Q � �= 0 inactivity M,N � �= ε empty path

� (νn)P restriction � x variable
� P | Q composition � in A enter A
� !P replication � out A exit A
� M.P capability � M.N path
� A[P ] ambient � � (x,A,A′) export rules
� F �� A[P ] security ambient � 	 (G,A) import rules
� A reference to ambient A
� (x)η.P input
� 
T �η .P output

Fig. 1. Cloud Calculus Syntax

by num and the name of a given interface of the firewall is denoted by iface.
The symbol *, depending on its position, denotes the range of possible values in
terms of IP, port, or protocol. A firewall configuration F can be composed of a
number of ACLs L. For a given category of firewalls, the configuration language,
rules’ organization, and the interaction between multiple ACLs are the main
variation factors between firewalls from different vendors. An ACL, denoted by
L, is associated with a name m. The latter allows naming ACLs in order to link
an ACL to another using the construct Jump m. The firewall rules in a given
ACL are organized in sequential order. Let fi be a single firewall rule, denoted
by pi � di where pi is a predicate representing the filtering condition of the
rule and di is the corresponding decision. The predicate pi is the conjunction of
the set of predicates on the proceeded packet’s attributes. The commonly used
attributes in the packet header are the protocol, the source IP address, the des-
tination IP address, the source port number, and the destination port number.
For instance, the topology of the data center DC1 depicted in Figure 4 can be
expressed using cloud calculus as follows:

D1 = F1 �� G1[ F2 �� S1[ S3[ PS1[PWEB1] ] ] � P ]

where P = F3 �� S2[ S3 � S4[ PS2[PAP1] ] ] and PWEB1 = VM5 � VM6 � VM7

The topology of the data center DC2 can be expressed as follows:
D2 = F4 ��G2[ F5 �� S5[ S6[ PS3[PDB1] � PS4[VM1 � VM2 � VM3 � VM4]] ]]

The CC operational semantics is defined in terms of reduction rules and struc-
tural congruence. Firewall rules migration can be described using the CC reduc-
tion rules. Because of lack of space, we refer the reader to [2] for full description
of the operational semantics of cloud calculus.
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Firewall Configuration Rule Predicate
F � �= {m � L,�, m � L} multiple ACL p � �= sip  add source addr
L � �= nop empty � ps  port source port

� (p � d).L sequence � dip  add destination addr
d � �= allow allow decision � pd  port destination port

� deny deny decision � pr = prot protocol
� Jump m link to ACL m � p � p conjunction

ip � �= val.val.val.val add � �= *
subnet � �= ip�num � subnet
val � [0,255] � ip
pval � [0,65535] port � �= *
prot � �= tcp � udp � * � pval
 � �=,⊂� � pval .. pval

Fig. 2. Firewall Syntax

4 Firewall Composition

In the case of a well-engineered network with distributed firewalls, multiple paths
may exist to reach a given destination and dynamic routing is used in order
to improve performance and reliability. Packets crossing different paths may
be processed by different firewalls rules. Consequently, a packet could traverse
different ACL at different times. In this section, we define a language to express
distributed firewalls composition, denoted by T . Two firewalls may be either
composed in serial or in parallel. The syntax of T is provided in BNF as follows:

T � �= F � T � T � T � T

where F is a single firewall configuration, T1�T2 denotes serial composition of T1

and T2, and T1 � T2 is the parallel composition of two firewall configurations T1

and T2. In serial composition, T1�T2 means that a packet that survives filtering
of rules of T1 is then necessarily filtered by T2. The operator � is associative and
distributive over �. With respect to parallel composition1, T1 � T2 means that
a packet is either filtered by T1 or by T2. The operator � is commutative and
associative.

Given a cloud calculus term expressing the topology of a cloud data center,
one can parse it in order to infer the resulting firewalls composition expressed
in the above syntax. Thus, we define a function P that takes as input a cloud
calculus term and an ambient name A and returns the firewall composition
expression. For instance, for the data center expressed in Section 3 using CC as
D1, P(D1, PS1) =(FW1�FW2)�(FW1�FW3). In contrast, P(D1, PS2) =
FW1�FW3. For the data center expressed as D2, P(D2, PS4)=(FW4�FW5).

1 The parallel firewalling operation is useful for better high availability. In this case if
one of the links goes down, the second is used to carry the traffic to the destination.
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5 Encoding Firewall Configuration in CSP

Constraint satisfaction is the process of finding a solution to a propositional
reasoning problem that is specified using a vector of variables that must satisfy
a set of constraints. A solution is therefore a vector of values that satisfies all
constraints. Many problems including those of scheduling, test generation, and
verification can be encoded in CSP. Constraint satisfaction problems are typ-
ically identified with problems based on constraints on a finite domain. More
formally, a CSP is defined by a set of variables �xi�1� i� n and a set of con-
straints �Cj�1� j� m. Each variable xi is defined within a domain Di of possible
values. Each constraint Cj involves all or a subset of the variables and specifies
the allowable combinations of values for that variables. A state of the problem
is defined by an assignment of values to some or all of the variables. A consis-
tent or legal assignment is one that does not violate any constraint. A complete
assignment is one in which all variables are assigned values. A solution to a CSP
is a complete assignment that satisfies all the constraints. There exist programs
that solves CSP problems and are called constraints solver. We use Sugar CSP
solver, a SAT-based constraint solver based on a new SAT-encoding method
named “order encoding” [5]. Sugar accepts Lisp-like expressions. For instance,
the constraint C1 	 C2 is equivalent to the expression (and C1 C2) in Sugar
syntax. The complete language accepted by Sugar can be found in [16]. After
submitting a problem to Sugar, two possible conclusion are output: either satis-
fiable (denoted hereafter as SAT), if all constraints are satisfied or unsatisfiable
(denoted hereafter as UNSAT), otherwise. For instance, for a conjunction of
constraints c1 	 
 	 cn, a SAT conclusion allows to infer that �ci�1�i�n are not
disjoint whereas UNSAT conclusion asserts that they are indeed disjoint.

In the following, we present how we encode a single firewall and then a dis-
tributed firewall configuration in Sugar. The CSP variables are the set of integer
variables V needed to encode the condition filters of a given firewall rule. In or-
der to represent an IP address, 4 integer variables within the range [0,255] are
used. A source (resp. destination) IP address is represented by �sipi�1�i�4 (resp.
�dipi�1�i�4). The integer variable pr � [0,255] represents the protocol number.
We also define two integer variables to encode the source and destination port
numbers, respectively ps and pd within the range of values [0,65535]. Thus, the
set of integer variables is V = �pr, sip1, sip2, sip3, sip4, ps, dip1, dip2, dip3, dip4,
pd�. Declaring an integer variable in Sugar syntax, for instance pr, within the
range [0,255] is denoted by (int pr 0 255). Each single firewall rule predicate
p is encoded as a CSP constraint. It is a conjunctive logical formula over the
variables in V . The corresponding CSP constraint is written as follows:

pr = v1 	 sip1 = v2 	 sip2 = v3 
 	 dip4 = v10 	 pd = v11

where vi is to be replaced by the actual value in the corresponding firewall rule.
The firewall ACL is encoded as a constraint C built as a disjunctive logical
formula over all firewall rules formulas. Thus, the ordered sequence of firewall
rules (pn � dn).(pn−1 � dn−1). 
 .nop are encoded as the logical formula p1 
p2
pn. In Sugar syntax, this is denoted by (or p1 . . . pn ). Since we consider
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that all rules have “allow” decisions, this constraint represents the set of packets
accepted by the firewall configuration. Sugar parses C and returns satisfiable with
a complete assignment solution of the problem, which is a packet that matches
one of the firewall rules predicate. A !C represents the set of packets denied
by the firewall configuration. With respect to distributed firewalls, we consider
each possible path to the migrating VM in source and destination data centers.
Given the cloud calculus term, one can infer the firewall composition of the data
center topology expressed in the syntax defined in Section 4. Therein, paths are
composed using the � operator, i.e. P1 �
�Pn, where Pi consists of the serial
composition of k firewalls, denoted by F1 �
�Fk.

6 Preservation of Security Consistency as CSP

In this section, we present our approach to verify security policy preservation in
dynamic cloud computing environment. First, we present security policy preser-
vation concept and summarize our assumptions. Then, we formally define secu-
rity policy preservation in source and destination data centers as well as for a
migrating VM. Afterward, we elaborate on the CSP constrains, which satisfiabil-
ities allow verifying the defined security policy preservation. Finally, we describe
the proposed verification procedure and explain the interpretation the outcome
of Sugar solver.

In dynamic cloud computing environment, a virtual machine may leave a data
center D1, called source data center, to be relocated in another data center D2,
called destination data center. During migration, the security enforcement rules
located initially in D1 should follow the VM. Thus, they have to be removed
from the source data center and then reinforced at the destination data center.
Thus, it is very important to ensure each time that the migrating VM security
requirements have not been compromised. Furthermore, as this involves mod-
ification of security rules in both source and destination data centers, we also
have to ensure that security requirements of the non-migrating virtual machines
located therein have not been compromised. We suppose that all firewalls are
anomalies-free and that all rules decisions are of type “allow” and the default
one is a “deny” rule. Although, in case of existence of both deny and allow rules,
one can use the algorithm defined in [17], which computes the effective represen-
tation of the firewall rules consisting of the equivalent allow rules. Furthermore,
we assume the initial configurations in both data centers are compliant with the
pre-defined security policy.

In the following, we formally define security preservation in dynamic cloud
computing environment. Let Ab

src, Aa
src, Av be the accepted traffic in the source

data center before migration, the accepted traffic in the source data center after
migration, and the accepted traffic destined to the migrating VM v, respectively.
Intuitively, security is preserved in the source data center if the only difference
between traffic accepted before and after migration is the one destined to the
migrating VM v. This is defined formally as follows:
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Definition 1. Security Preservation in Source Data Center
Security is preserved in source data center if and only if for any path, we have
Aa

src = Ab
src �Av and Av � �. ��

Note here that we require Av � � otherwise, this will be a trivial case where no
rule is migrated. In the destination data center, security preservation is defined
as follows:

Definition 2. Security Preservation in Destination Data Center
Security is preserved in destination data center if and only if for any path, we
have Ab

dst = Aa
dst �Av and Av � �. ��

Since we are assuming that security requirements of the migrating VM are met
in the source data center, its security is preserved if the traffic accepted to that
VM in the destination data center after migration and the source data center
before migration are equal.

Definition 3. Security Preservation for the Migrating VM
Security is preserved for the migrated VM if and only if for any path in the
destination data center Aa

dst �Ab
dst = Ab

src �Aa
src. ��

In order to verify security preservation in both data centers and for the migrating
VM, we encode all firewall rules in both data centers as explained in Section 5 and
use the aforementioned definitions in order to infer the corresponding equivalent
constraint satisfiability problem.

Let Cb
src(Pi) (resp. Cb

dst(Pj)) be the constraint that encodes the filtering condi-
tions of the firewall at the source (resp. destination) data center before migration
on path Pi (resp. Pj). The constraints Cb

src(Pi) and Cb
dst(Pj) represent the en-

coding in CSP of Ab
src and Ab

dst, respectively. Let Ca
src(Pi) (resp. Ca

dst(Pj)) be
the constraint that encodes the filtering conditions of the firewall at the source
(resp. destination) data center after migration. The constraints Ca

src(Pi) and
Ca

dst(Pj) represent the encoding in CSP of Aa
src and Aa

dst, respectively. Let Cv
be the constraint that specifies the packets that are destined to the migrating
VM v. According to the set theory, two sets A and B are equal, denoted A = B,
if and only if A � B and B � A. We use this concept in order to prove security
preservation as defined in Definition 1, Definition 2, and Definition 3 using CSP
framework. From Definition 1, Aa

src = Ab
src �Av if and only if Aa

src � Ab
src �Av

and Ab
src � Av � Aa

src. This condition holds if the following CSP problems are
unsatisfiable for all paths:

Ca
src(Pi)	!(Cb

src(Pi)	!Cv) (1)
Cb

src(Pi)	!Cv	!Ca
src(Pi) (2)

Equation (1) is equivalent to (Ca
src(Pi)	!Cb

src(Pi))  (C
a
src(Pi) 	 Cv).

The condition Av � � is verified if Cb
src(Pi)	!Ca

src(Pi) is satisfiable. Therefore,
proving security preservation in source data center is equivalent to prove for all
paths that:



120 Y. Jarraya et al.

– C1 = Cb
src(Pi)	!Ca

src(Pi) is satisfiable
– C2 = Ca

src(Pi)	!Cb
src(Pi) is unsatisfiable

– C3 = Ca
src(Pi) 	 Cv is unsatisfiable

– C4 = Cb
src(Pi)	!Cv	!Ca

src(Pi) is unsatisfiable

From Definition 2, Ab
dst = Aa

dst�Av if and only if Ab
dst � Aa

dst�Av and Aa
dst�Av �

Ab
dst. This condition holds if the following CSP problems are unsatisfiable for all

paths:

Cb
dst(Pj)	!(Ca

dst(Pj)	!Cv) (3)

Ca
dst(Pj)	!Cv	!Cb

dst(Pj) (4)

Equation (3) is equivalent to Cb
dst(Pj)	!Ca

dst(Pj)C
b
dst(Pj)	Cv. The unsatisfiabil-

ity of formula Cb
dst(Pj)	Cv states that before migration none of the rules concern

v. This trivially holds thus, we do not consider it in the verification process. The
condition Av � � is verified if Ca

dst(Pi)	!Cb
dst(Pi) is satisfiable. Thus, proving

security preservation in the destination data center is equivalent to prove for all
paths that:

– C5 = Ca
dst(Pj)	!Cb

dst(Pj) is satisfiable.
– C6 = Cb

dst(Pj)	!Ca
dst(Pj) is unsatisfiable.

– C7 = Ca
dst(Pj)	!Cv	!Cb

dst(Pj) is unsatisfiable.

C1(Pi) C2(Pi)

e1 e2

Security Preserved 

in src DC throughout Pi

SAT

UNSAT

UNSAT

SAT

UNSAT

e3

SAT

C3(Pi)
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e4

SAT

C4(Pi)

(a) Step 1 for a Path Pi in Source
Data Center
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in dst DC throughout Pj
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Pj in Destination Data
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Fig. 3. Security Verification Approach

For Definition 3, Aa
dst�A

b
dst = Ab

src�A
a
src hold if and only if Aa

dst�A
b
dst �A

b
src�A

a
src

and Ab
src�Aa

src � Aa
dst�Ab

dst. This condition holds if the following CSP problems
are unsatisfiable for all paths Pj , with a reference path in the source data center
Pref :

C8 = C
b
src(Pref)	!Ca

src(Pref )	!(Ca
dst(Pj)	!Cb

dst(Pj)) (5)

C9 = C
a
dst(Pj)	!Cb

dst(Pj)	!(Cb
src(Pref )	!Ca

src(Pref)) (6)
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Table 1. Interpretations of the Unexpected Constraints’ Satisfaction Values

e1 Ab
src � Aa

src

e2 Ab
src ⊂ Aa

src

e3 �p � p � Av and p � Aa
src

e4 �p � p � Ab
src and p � Av and p � Aa

src

e5 Aa
dst � Ab

dst

e6 Aa
dst ⊂ Ab

dst

e7 �p � p � Aa
dst and p � Av and p � Ab

dst

e8 Av,dst ⊂ Av,src, some rules from source data center did not migrate
e9 Av,src ⊂ Av,dst, more rules than migrated in destination data center

Thus, proving security preservation for the migrating VM is equivalent to prove
for all paths in destination data center that both C8 and C9 are unsatisfiable.
The satisfiability of any one of them implies that there is discrepancy between
the migrated rules from source data center and the rules migrated into the des-
tination data center for path Pj . Figure 3 illustrates the verification approach,
which consists of three steps: security preservation in source data center, secu-
rity preservation in destination data center and then security preservation of the
migrated VM. Note that the horizontal bar in this figure means that all condi-
tions have to hold before concluding on the security preservation. For instance,
in Figure 3a, C1 has to be satisfiable and C2, C3, and C4 have to be unsatisfiable
in order to conclude on the security preservation in source data center. The eval-
uation of these constraints is interpreted relatively to a given path in source or
destination data center. In the case of a constraint satisfiability, the CSP solver
provides a solution that can be used to identify the problematic rule(s). The
interpretation of the undesired outputs as identified in Figure 3 are summarized
in Table 1.

7 Case Study

To better illustrate our approach, we present a case study consisting of two data
centers DC1 and DC2 with distributed firewall settings as depicted in Figure 4,
inspired from Amazon Elastic Compute Cloud (Amazon EC2) [18]. The service
is built using a three-tier architecture: web, application, and database. Table 2
summarizes the firewall rules in both data centers before migration. We suppose
that for the sake of load balancing, VM1 has to be migrated from the physical
server PS4 in data center DC2 to PS1 in data center DC1. The need for virtual
machine mobility across data centers, has been expressed by many providers
as it serves several reasons including data center infrastructure maintenance,
disaster avoidance, or data center expansion to address power, cooling, and space
constraints. Even though the technology is not widespread at the moment, but
we believe it is coming in the near future. The traffic destined to application
group should traverse FW1 and FW3, whereas traffic destined to web group 1
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Fig. 4. Cloud Network Model Case Study

can either traverse FW1 followed by FW2, or FW1 followed by FW3. Thus, all
firewall configurations along the paths to the destination physical server PS1 in
data center DC1 have to be updated. In order to demonstrate the applicability
of our verification approach, we consider three scenarios:

Scenario 1 - Migration Error 1. The administrator correctly updated FW2 but
omitted to add the rules to FW3. In such a scenario, FW3 rules after migration
will be the same as before (FW3 in Table 2).
Scenario 2 - Migration Error 2. The administrator correctly migrated the firewall
rules to FW2 but missed some rules in FW3.
Scenario 3 - Correct Migration. The firewall rules are correctly migrated on every
path of the network and are provided in Table 3. Note that FW1 and FW4 do
not need to be modified after migration.

In order to verify security preservation, we translate the distributed firewall
configuration for each scenario into CSP syntax and use Sugar SAT-solver. The
verification results for the three scenarios are summarized in Table 4. Therein,
we show only the results for the path that has a firewall configuration error
(i.e. FW1�FW3). Values in bold show the constraints, which satisfactions are
not as expected. When the solver returns satisfiable for a constraint expected
to be unsatisfiable, a solution is provided that pinpoints one of the rules that
makes security requirements fails. This indicates a possible error that should be
investigated in order to correct the firewall configuration. In order to have an
assessment of the performance overhead, we performed a set of experiments on
an Intel Core i7 2.67 GHz processor with 12Gbytes of RAM. The verification
performance depends on the total number of firewall rules. Table 5 summarizes
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Table 2. Firewall Rules in Data Centers DC1 and DC2- Before Migration

FW1
1. TCP *.*.*.* ANY *.*.*.* 80 Allow
2. TCP *.*.*.* ANY *.*.*.* 443 Allow
3. TCP *.*.*.* ANY *.*.*.* 22 Allow
4. TCP *.*.*.* ANY *.*.*.* 8000 Allow
FW2
1. TCP *.*.*.* ANY VM5,VM6,VM7 80 Allow
2. TCP *.*.*.* ANY VM5,VM6,VM7 443 Allow
3. TCP CorpIP ANY VM5,VM6,VM7 22 Allow
FW3
1. TCP *.*.*.* ANY VM5,VM6,VM7 80 Allow
2. TCP *.*.*.* ANY VM5,VM6,VM7 443 Allow
3. TCP CorpIP ANY VM5,VM6,VM7 22 Allow
4. TCP VM1,VM2,VM3,VM4,VM5,VM6,VM7 ANY AP1 8000 Allow
5. TCP CorpIP ANY AP1 22 Allow
FW4
1. TCP *.*.*.* ANY *.*.*.*, 80 Allow
2. TCP *.*.*.* ANY *.*.*.*, 443 Allow
3. TCP *.*.*.* ANY *.*.*.*, 22 Allow
4. TCP *.*.*.* ANY *.*.*.* 3306 Allow
FW5
1. TCP *.*.*.* ANY VM1,VM2,VM3,VM4 80 Allow
2. TCP *.*.*.* ANY VM1,VM2,VM3,VM4 443 Allow
3. TCP CorpIP ANY VM1,VM2,VM3,VM4 22 Allow
4. TCP AP1 ANY DB1 3306 Allow
5. TCP CorpIP ANY DB1 22 Allow

Table 3. Updated Firewall Rules in Data Centers DC1 and DC2- After Migration

FW2
1. TCP *.*.*.* ANY VM5,VM6,VM7,VM1 80 Allow
2. TCP *.*.*.* ANY VM5,VM6,VM7,VM1 443 Allow
3. TCP CorpIP ANY VM5,VM6,VM7,VM1 22 Allow
FW3
1. TCP *.*.*.* ANY VM5, VM6,VM7, VM1 80 Allow
2. TCP *.*.*.* ANY VM5, VM6,VM7, VM1 443 Allow
3. TCP CorpIP ANY VM5, VM6,VM7, VM1 22 Allow
4. TCP VM1,VM2,VM3,VM4,VM5,VM6,VM7 ANY AP1 8000 Allow
5. TCP CorpIP ANY AP1 22 Allow
FW5
1. TCP *.*.*.* ANY VM2,VM3,VM4 80 Allow
2. TCP *.*.*.* ANY VM2,VM3,VM4 443 Allow
3. TCP CorpIP ANY VM2,VM3,VM4 22 Allow
4. TCP AP1 ANY DB1 3306 Allow
5. TCP CorpIP ANY DB1 22 Allow

Table 4. Sugar CSP Solver Results for the Three Scenarios

C1 C2 C3 C4 C5 C6 C7 C8 C9

Scen. 1 SAT UNSAT UNSAT UNSAT UNSAT UNSAT UNSAT SAT UNSAT
Scen. 2 SAT UNSAT UNSAT UNSAT SAT UNSAT UNSAT SAT UNSAT
Scen. 3 SAT UNSAT UNSAT UNSAT SAT UNSAT UNSAT UNSAT UNSAT
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Table 5. Performance Evaluation

Number of Rules Number of VMs CPU Time (seconds)
22 5 0.278
202 50 0.324
2002 500 0.340
20002 5000 0.762
40002 10000 2.150

the result in terms of CPU time for an increased number of rules which is mostly
due to increasing the number of VMs. The result shows that the CPU time
consumption increases approximately linearly, also confirmed by [19].

8 Conclusion

In this paper, we addressed the issue of security policy preservation in elastic
cloud computing environment with distributed firewalls as the principal security
mechanism. We proposed a novel verification and validation approach based on
the notion of security policy preservation and the constraint satisfaction prob-
lems framework. First, the formal definition of security preservation in source
and destination data center as well as for the migrating VM was provided. Then,
we elaborated a framework that describes these security preservation problems
in terms of constraint satisfaction problems based on Sugar, a SAT-based con-
straint solver. In order to automate the encoding, we proposed to model cloud
network topology using cloud calculus and to use an intermediate syntax in order
to express serial and parallel composition of firewalls. The presented automated
approach is helpful for practitioners to tackle the uprising issues of network se-
curity in highly dynamic cloud computing. For future work, we are going to
continue on the verification and validation of security policies in the cloud con-
sidering not only packet filtering firewalls, but also stateful firewalls, intrusion
detection and prevention, and secure tunneling.
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Abstract. We simulate a stabilizing propagation of information with
feedback (PIF) program to evaluate its response to perturbations. Un-
der several classic execution models, we vary the extent of the fault as
well as the system scale. We study the program’s speed of stabilization
and overhead incurred by the fault. Our simulation provides insight into
practical program behavior that is sometimes lacking in theoretical cor-
rectness proofs. This indicates that such simulation is a useful research
tool in studies of fault tolerance.

1 Introduction

System stabilization [2, 12, 8, 1] of various flavors is an attractive approach to op-
timistic failure recovery. A system is stabilizing if, regardless of the initial state,
it eventually arrives at a legitimate state. This allows the program to recover
from any fault, regardless of its nature, after the influence of the fault stops. This
property allows researchers in this area to effectively ignore the nature of the
fault. Classic papers on stabilization usually contain the algorithm description,
proof of its correctness, and performance bound estimates.

Extensive performance evaluations are relatively rare in the field [4–7, 13]. If
stabilization simulation is carried out, the researchers tend to focus on time of
algorithm recovery from randomly chosen initial global states. We believe that
such studies give an incomplete picture of robust algorithm behavior. A ran-
dom initial state is expected to represent a systemic fault. However, uniformly
random states tend to present a rather mild challenge to the algorithm as in-
dividual process states end up being evenly distributed across the state space.
Moreover, such initial states may not adequately represent the states that occur
after faults influence legitimate states of the algorithm. In effect, random initial
states tend to hide the complexity of faulty behavior and resultant algorithm
recovery. Another simplification is the focus on recovery time, a staple of stabi-
lization research. We believe that other characteristics, such as the expense of

� This work was supported in part by ANR project SHAMAN.

A.W. Richa and C. Scheideler (Eds.): SSS 2012, LNCS 7596, pp. 126–132, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Evaluating Practical Tolerance Properties of Stabilizing Programs 127

recovery in terms of fault-induced extra steps, is also an important characteristic
of a stabilizing algorithm.

In this paper, we describe the performance evaluation of a stabilizing propa-
gation of information with feedback [11] algorithm. Variants of such algorithm
have been extensively studied in stabilization literature. Taking this algorithm
as an example, we studied its recovery from faults of increasing scale under clas-
sic execution semantics. We measured the algorithm’s stabilization time as well
as its stabilization overhead. The result is a detailed chart of the algorithm’s
behavior across fault scales and system sizes.

2 Algorithm Description

The algorithm implements propagation of information with feedback (PIF) for
rooted trees. Each process has access to the read-only variables parent and Ch
that respectively contain the identifier of the parent, and the set of identifiers of
the children for this process. Each process can be in one of the three states: idle,
requesting and replying. This state is encoded in the variable st as i, rq, and rp
respectively. The root can only be requesting or idle while a leaf can be either
idle or replying. Each process can read the state of its neighbors and update its
own in a single atomic step. The actions of the algorithm are shown in Figure 1.
Let us consider any chain of processes from the root to a leaf and possible
legitimate states in this chain. In case the request has not reached the leaf, the
chain starts with a possibly empty sequence of requesting processes, followed by
at least one idle process and concluding by a possibly empty sequence of replying
processes that belong to the previous request. Once the request has reached the
leaf, the chain starts with a non-empty sequence of requesting processes followed
by a non-empty chain of replying processes. This algorithm is proven self- and
ideally-stabilizing [8, 9]. That is, regardless of the initial state, the algorithm
achieves one of the above legitimate states in a specified sequence and remains
in a legitimate state afterwards. A variant of this algorithm is proven snap-
stabilizing [1]. That is, the algorithm transitions to a legitimate state within a
single wave cycle.

request : st.root = i ∧ (∀q ∈ Ch.root : st.q = i) −→ st.root := rq
clear : st.root = rq ∧ (∀q ∈ Ch.root : st.q = rp)−→ st.root := i
forward : st.parent = rq∧ st.p = i ∧ (∀q ∈ Ch.p : st.q = i) −→ st.p := rq
back : st.parent = rq∧ st.p = rq ∧ (∀q ∈ Ch.p : st.q = rp) −→ st.p := rp
stop : st.parent = i ∧ st.p 
= i −→ st.p := i
reflect : st.parent = rq∧ st.leaf = i −→ st.leaf := rp
reset : st.parent = i ∧ st.leaf = rp −→ st.leaf := i

Fig. 1. PIF algorithm actions. Actions request and clear belong to the root process;
actions forward, back, and stop – to an intermediate processes; actions reflect and reset
– to a leaf.
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3 Experiment Description and Results

Tree Generation. The PIF algorithm evaluation requires rooted tree selection.
Unbiased tree selection is a non-trivial task. We use Prüfer sequences [10]. A
labeled sequence of size n − 2 uniquely defines one of all possible trees of n
nodes. Hence, selecting a uniformly random labeled sequence of length n − 2
gives each tree an equal probability of being chosen. An example tree is shown
in Figure 2. For the generated tree, we select the root uniformly at random.

Initial State Selection. For the initial state of the algorithm computation, we
select a legitimate state and then perturb it by a fault. The initial state selection
for PIF also requires care: in the execution of the algorithm, certain states may
appear more often than others. For example, in a tree of large size, in most of the
states, the root is requesting. Indeed, once the root receives the feedback from
one wave, it immediately starts the next one. Hence, the global states where
the root process is idle are rare. Due to uneven occurrence of global state in a
computation, the states are not evenly exposed to faults. In other words, faults
are more likely to occur in states of the algorithm that happen more often. To
generate an initial legitimate state, we randomly select the number of execution
steps between zero and the number that is ten times the system size. We then
start the algorithm from the legitimate initial state where all processes are idle
and run the algorithm for the selected number of steps. Thus obtained state is
used as the initial state for our experiment.

Fig. 2. Example random tree
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Execution Semantics. To produce the computations of our algorithm we im-
plement three classic algorithm execution semantics (also known as schedulers or
daemons [3]): interleaving (centralized), powerset (distributed) and (maximally)
synchronous. To produce the next state of the computation, for each execution
semantics we evaluate each process to determine which actions are enabled. The
execution semantics differ by the selection of enabled actions for execution. For
interleaving semantics, we randomly select one of the enabled actions to execute.
For the other two semantics the selection procedure is more complicated. The
algorithm is proven correct in interleaving semantics only. Thus, the actions of
two neighbor processes cannot be executed in a single step without compromis-
ing the correctness of the algorithm. The enabled action selection is as follows.
We randomly choose one of the enabled actions. After that, we eliminate the
neighbor process actions from consideration and repeat the selection. For pow-
erset semantics the number of selected enabled actions is chosen at random
between 1 and the total number of enabled actions. For synchronous semantics
we continue the selection until no more actions remain.

Selection of Fault Model. To measure the robustness of our algorithm, we
introduce faults in the initial state of the system. In a faulty process, the state
is randomly selected from the range of possible states. Note that the fault may
perturb the process back into the legitimate state. In other words, a fault may
have no observable effect. This method sounds counterintuitive. However, it pre-
cludes the correct state of the process from influencing the faulty state. If every
process is faulty, the resultant state is completely random.

Stabilization Time and Overhead. We focus on two stabilization metrics:
stabilization time and processing overhead. The stabilization time is the number
of execution steps it takes the algorithm to achieve the legitimate state. The
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overhead is the number of extra action executions that the fault induces the
algorithm to perform. To describe out definition of overhead, let us revisit a
chain of processes from the root to a leaf. Even in an illegitimate state there
is an non-empty sequence of processes that starts with the root and conforms
to the definition of PIF legitimacy. Let us consider the longest such sequence.
An action is counted as overhead if it is executed outside this sequence and not
counted as overhead otherwise. In other words, the overhead actions are those
that the algorithm executes before it achieves the legitimate state excluding
the actions involved in the root request propagation. In the literature on snap-
stabilization [1], for the interleaving execution semantics this metric is called
wait time.

Experiments. We ran two sets of experiments. We used the system of 100
processes and varied the number of faults from one to 100. For each number of
faults, we run 1, 000 experiments. In each experiment we selected a random tree
and a random initial state for it. The generated trees had the average height of
21.6± 4.9 and the average number of children was 37.5± 3.1. As we varied the
faults, we calculated the stabilization time and overhead for the three execution
semantics. The results are shown in Figures 3 and 4. In the second set of experi-
ments, we fixed the particular fault rate and varied the scale of the system. The
results are shown in Figure 5.
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Analysis. The simulation results present a detailed picture of PIF fault re-
covery behavior. As the number of faults increases, the stabilization time and
overhead rises and then gradually subsides. This seems counterintuitive. How-
ever, further investigation indicated the reason for such algorithm behavior. If
a state is legitimate, a single fault may initiate a spurious wave that runs in
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the opposite direction to the legitimate wave. This happens, for example, if the
reply propagates towards the root and the fault changes the state of one of the
replying processes to idle. This may also happen if the wave propagates towards
the leaves and the fault switches the state of one of the requesting processes to
replying. Stabilization from such faults takes time proportional to the system
size. Further faults tend to break up these long spurious waves and decrease
stabilization time.

The overhead and stabilization time of parallel and power-set execution se-
mantics is lower than that of the interleaving semantics. The execution semantics
that allow greater concurrency lead to faster stabilization and thus lower over-
head. As the scale set of experiments indicates, as the size of the system grows,
the stabilization time grows linearly. Similarly to the first experiment set, the
growth for the completely random initial state (100% fault rate) is lower than
for the smaller number of faults. For 1% rate, the stabilization time is about
twice the system size, while for 100% fault rate, it is about one and a half.

 0

 500

 1000

 1500

 2000

 2500

 100  200  300  400  500  600  700  800  900  1000

a
v
e

ra
g

e
 s

ta
b

ili
z
a

ti
o

n
 t

im
e

, 
s
te

p
s

system size, processes

1% faults
20% faults
50% faults

100% faults

Fig. 5. Stabilization time dependence on system size. Interleaving semantics.

4 Conclusion

The performance of PIF is by no means exhaustive. For example, depending
on its location, a fault affects stabilization of the algorithm differently. A fault
closer to the root may be a lot more detrimental since it has greater potential to
spread state corruption throughout the tree. Similarly, estimating the reliabil-
ity of our simulation with confidence intervals would be useful. More extensive
investigation of PIF performance could be the subject of further research.

However, performance evaluation of the stabilizing PIF algorithm in this paper
makes a case for more extensive simulation studies of stabilizing algorithms.
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We believe this greater engagement with applied algorithm study would benefit
stabilizing algorithm design itself. Once the researchers observe the algorithm
behavior in the case of practical faults, they will construct stabilizing algorithms
that are specifically designed to counteract such realistic conditions. This will
lead to greater applicability of stabilizing research overall.
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Abstract. End-to-end communication over the network layer (or data
link in overlay networks) is one of the most important communication
tasks in every communication network, including legacy communication
networks as well as mobile ad hoc networks, peer-to-peer networks and
mash networks. We study end-to-end algorithms that exchange packets
to deliver (high level) messages in FIFO order without omissions or
duplications. We present a self-stabilizing end-to-end algorithm that can
be applied to networks of bounded capacity that omit, duplicate and
reorder packets. The algorithm is network topology independent, and
hence suitable for always changing dynamic networks with any churn rate.

1 Introduction

End-to-end communication is a basic primitive in communication networks. A
sender must transmit messages to a receiver in an exactly once fashion, where no
omissions, duplications and reordering are allowed. Errors occur in transmitting
packets among the network entities – one significant source of error is noise in
the transmission media. Thus, error detection and error correcting techniques are
employed as an integral part of the transmission in the communication network.
These error detection and correction codes function with high probability. Still,
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when there is a large volume of communication sessions, the probability that
an error will not be detected becomes high, leading to a possible malfunction of
the communication algorithm. In fact, it can lead the algorithm to an arbitrary
state from which the algorithm may never recover unless it is self-stabilizing [8].
By using packets with enough distinct labels infinitely often, we present a
self-stabilizing end-to-end communication algorithm that can be applied to
dynamic networks of bounded capacity that omit, duplicate and reorder packets.

Contemporary communication and network technologies enhance the need
for automatic recovery and interoperability of heterogeneous devices and the
means of wired and wireless communications, as well as the churn associated
with the totally dynamic communication networks. Having a self-stabilizing,
predictable and robust basic end-to-end communication primitive for these
dynamic networks facilitates the construction of high-level applications. Such
applications are becoming extremely important nowadays where countries’
main infrastructures, such as the electrical smart-grid, water supply networks
and intelligent transportation, are based on cyber-systems. Defining the
communication network as a bounded capacity network that allows omissions,
duplications and reordering of packets and building (efficient) exactly once
message transmission using packets, allows us to abstract away the exact network
topology, dynamicity and churn.

The dynamic and difficult-to-predict nature of electrical smart-grid and
intelligent transportation systems give rise to many fault-tolerance issues and
require efficient solutions. Such networks are subject to transient faults due
to hardware/software temporal malfunctions or short-lived violations of the
assumed settings for the location and state of their nodes. Fault-tolerant systems
that are self-stabilizing [8,7] can recover after the occurrence of transient faults,
which can drive the system to an arbitrary system state. The system designers
consider all configurations as possible configurations from which the system is
started. The self-stabilization design criteria liberate the system designer from
dealing with specific fault scenarios, the risk of neglecting some scenarios, and
having to address each fault scenario separately.

Related Work and Our Contribution. End-to-end communication and
data-link algorithms are fundamental for any network protocol [25]. End-to-end
algorithms provide the means for message exchange between senders and
receivers over unreliable communication links. Not all end-to-end communication
and data-link algorithms assume initial synchronization between senders
and receivers. For example, Afek and Brown [1] presented a self-stabilizing
alternating bit protocol (ABP) for FIFO packet channels without the need for
initial synchronization. Self-stabilizing token passing was used as the bases for
self-stabilizing ABP over unbounded capacity and FIFO preserving channels
in [17,11]. Spinelli [24] introduced two self-stabilizing sliding window ARQ
protocols for unbounded FIFO channels. Dolev and Welch [15] considered
tolerating network errors in dynamic networks with FIFO non-duplicating
communication links, and use source routing over paths to cope with crashes. In



Self-Stabilizing End-to-End Communication in Dynamic Networks 135

contrast, we do not consider known network topology nor base our algorithms
on a specific routing policy. We merely assume bounded network capacity.

In [2], an algorithm for self-stabilizing unit capacity data link over a FIFO
physical link is assumed. Flauzac and Villai [16] described a snapshot algorithm
that uses bidirectional and FIFO communication channels. Cournier et al. [5]
considered a snap-stabilizing algorithm [3] for message forwarding over message
switched network. They ensure one time delivery of the emitted message to
the destination within a finite time using destination based buffer graph and
assuming underline FIFO packet delivery.

In the context of dynamic networks and mobile ad hoc networks, Dolev,
Schiller and Welch [14,12,13] presented self-stabilizing algorithms for token
circulation, group multicast, group membership, resource allocation and
estimation of network size. Following [14,12,13], similar approaches to cope with
constantly changing networks have been investigated [22] in addition to other
fundamental problems such as clock synchronization [21], dissemination [18,20],
leader election [19,6,4], and consensus [23] to name a few. In this paper,
we investigate the basic networking tasks of end-to-end communication over
the network layer (or overlay networks), that are required for the design
of fundamental problems, such as the aforementioned problems considered
in [21,22,18,20,19,6,4,23].

Recently, Dolev et al. [9] presented a self-stabilizing data link algorithm for
reliable FIFO message delivery over bounded non-FIFO and non-duplicating
channel. This paper presents the first, to the best of our knowledge,
self-stabilizing end-to-end algorithms for reliable FIFO message delivery over
bounded non-FIFO and duplicating channel.

Due to space limit, some of the proofs are omitted from this extended abstract
and can be found in [10].

2 System Settings

We consider a distributed system that includes nodes (or processors),
p1, p2, . . . , pN . We represent a distributed system by a communication graph
that may change over time, where each processor is represented as a node.
Two neighboring processors, pi and pj , that can exchange packets directly are
connected by a link in the communication graph. Packet exchange between
neighbors is carried via (directed) communication links, where packets are sent
from pi to pj through the directed link (pi, pj) and packets are sent from pj
to pi through (pj , pi), the opposite directed link. End-to-end communication
among non-neighbor nodes, ps and pr, is facilitated by packet relaying from
one processor to neighbors. Thus, establishing a (virtual) communication link
between ps and pr in which ps is the sender and pr is the receiver. We assume the
communication graph is dynamic, and is constantly changed, while respecting N
as the upper bound on the number of nodes in the system. Packets are exchanged
by the sender and the receiver in order to deliver (high level) messages in a
reliable fashion. We assume that the entire number of packets in the system
at any given time, does not exceed a known bound. We allow any churn rate,
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assuming that joining processors reset their own memory, and by that assist in
respecting the assumed bounded packet capacity of the entire network.

The communication links are bidirectional. Namely, between every two nodes,
pi and pj , that can exchange packets, there is a unidirectional channel (set) that
transfers packets from pi to pj and another unidirectional channel that transfer
packets from pj to pi. We model the (communication) channel, from node pi
to node pj as a (non-FIFO order preserving) packet set that pi has sent to
pj and pj is about to receive. When pi sends a packet m to pj, the operation
send inserts a copy of m to the channel from pi to pj as long as the upper
bound of packets in the channel is respected. Once m arrives, pj triggers the
receive event and m is deleted from the set. The communication channel is
non-FIFO and has no reliability guarantees. Thus, at any time the sent packets
may be omitted, reordered, and duplicated, as long as the link capacity bound
is not violated. We note that transient faults can bring the system to consist
of arbitrary, and yet capacity bounded, channel sets from which convergence
should start. We assume that when node pi sends a packet, pckt, infinitely often
through the communication link from pi to pj , pj receives pckt infinitely often.
We intentionally do not specify (the possible unreliable) routing scheme that is
used to forward a packet from the sender to the receiver, e.g., flooding, shortest
path routing. We assume that the overall network capacity allows a channel
from pi to pj to contain at most capacity packets at any time, where capacity
is a known constant. However, it should be noted that although the channel has
a maximal capacity, packets in the channel may be duplicated infinitely many
times because even if the channel is full, packets in the channel may be either lost
or received. This leaves places for other packets to be (infinitely often) duplicated
and received by pj .

Self-stabilizing algorithms do not terminate (see [8]). The non-termination
property can be easily identified in the code of a self-stabilizing algorithm: the
code is usually a do forever loop that contains communication operations with
the neighbors. An iteration is said to be complete if it starts in the loop’s first
line and ends at the last (regardless of whether it enters branches).

Every node, pi, executes a program that is a sequence of (atomic) steps. Where
a step starts with local computations and ends with a single communication
operation, which is either send or receive of a packet. For ease of description,
we assume the interleaving model, where steps are executed atomically, a single
step at any given time. An input event can either be the receipt of a packet or
a periodic timer going off triggering pi to send. Note that the system is totally
asynchronous and the non-fixed spontaneous send of nodes and node processing
rates are irrelevant to the correctness proof.

The state, si, of a node pi consists of the value of all the variables of the node
including the set of all incoming communication channels. The execution of
an algorithm step can change the node state. The term (system) configuration
is used for a tuple of the form (s1, s2, · · · , sN ), where each si is the state of
node pi (including packets in transit for pi). We define an execution (or run)
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R = c[0], a[0], c[1], a[1], . . . as an alternating sequence of system configurations
c[x] and steps a[x], such that each configuration c[x + 1] (except the initial
configuration c[0]) is obtained from the preceding configuration c[x] by the
execution of the step a[x]. We often associate the notation of a step with its
executing node pi using a subscript, e.g., ai. An execution R is fair if every node,
pi, executes infinitely many steps in R. We represent the omissions, duplications
and reordering using environment steps that are interleaved with the steps of the
processors in the run R. In every fair run, the environment steps do not prevent
communication, namely, infinite send operations of pi of a packet, pckt, to pj
implies infinite receive operations of pckt by pj.

The system is asynchronous and the notion of time, for example, when
considering system convergence to legal behavior, is measured by the number of
asynchronous rounds, where the first asynchronous round is the minimal prefix
of the execution in which every node sends at least one packet to every neighbor
and one of these packets is received by each neighbor. Thus, we nullify the infinite
power of omissions, duplications and reordering when measuring the algorithm
performance. Moreover, we ensure that packets sent are eventually received;
otherwise the channel is, in fact, disconnected. The second asynchronous round
is the first asynchronous round in the suffix of the run that follows the first
asynchronous round, and so on. We measure the communication costs by the
number of packets sent in synchronous execution in which each packet sent
by ps arrives to its destination, pr, in one time unit, and before ps sends any
additional packet to pr.

We define the system’s task by a set of executions called legal executions (LE)
in which the task’s requirements hold. A configuration c is a safe configuration
for an algorithm and the task of LE provided that any execution that starts in c
is a legal execution (belongs to LE). An algorithm is self-stabilizing with relation
to the task LE when every (unbounded) execution of the algorithm reaches a
safe configuration with relation to the algorithm and the task.

The self-stabilizing end-to-end communication (S2E2C) algorithm provides
FIFO guarantee for bounded networks that omit duplicate and reorder packets.
Moreover, the algorithm considers arbitrary starting configurations and ensures
error-free message delivery. In detail, given a system’s execution R, and a pair,
ps and pr, of sending and receiving nodes, we associate the message sequences
sR = m0,m1,m2, . . ., of messages fetched by ps, with the message sequence
rR = m′

0,m
′
1,m

′
2, . . . of messages delivered by pr. Note that we list messages

according to the order they are fetched (from the higher level application) by
the sender, thus two or more (consecutive or non-consecutive) messages can be
identical. The S2E2C task requires that for every legal execution R ∈ LE, there
is an infinite suffix, R′, in which infinitely many messages are delivered, and
sR′ = rR′ . It should be noted that packets are not actually received by the
receiver in their correct order but eventually it holds that messages are delivered
by the receiver (to higher level application) in the right order.
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3 The End-to-End Algorithm

Dynamic networks have to overcome a wide range of faults, such as message
corruption and omission. It often happens that networking techniques, such as
retransmissions and multi-path routing, which are used for increasing robustness,
can cause undesirable behavior, such as message duplications and reordering.
We present a self-stabilizing end-to-end communication algorithm that uses
the network’s bounded capacity, to cope with packet corruptions, omissions,
duplications, and reordering. We abstract the entire network by two directed
channels, one from the sender to the receiver and one from the receiver to the
sender, where each abstract channel is of a bounded capacity. These two abstract
channels can omit, reorder and duplicate packets. We regard two nodes, ps, pr,
as sender and receiver, respectively. Sender ps sends packets with distinct labels
infinitely often until ps receives a sufficient amount of corresponding distinct
acknowledgment labels from the receiver pr.

For the sake of readability, we start describing the algorithm using large
overhead, before showing ways to dramatically reduce the overhead. The sender
repeatedly sends each message m with a three state alternating index, which
is either 0, 1 or 2. We choose to discuss, without the loss of generality, the
case of a message with alternating index 0, where 〈0,m〉 is repeatedly sent in
(2 · capacity + 1) packet types. Each type uses a distinct label in the range
1 to twice the capacity plus 1. Namely, the types are: 〈0, 1,m〉, 〈0, 2,m〉, . . .,
〈0, 2 · capacity + 1,m〉. The sender waits for an acknowledgment of the packet
arrival for each of the (2 · capacity + 1) distinct labels, and an indication that
the receiver delivered a message due to the arrival of (capacity+1) packets with
alternating index 0. The receiver accumulates the arriving packets in an array of
(2 · capacity+1) entries, where each entry, j, stores the last arriving packet with
distinct label j. Whenever the receiver finds that (capacity + 1) recorded array
entries share the same alternating index, for example 1, the receiver delivers
the message m encapsulated in one in-coming packet recorded in the array –
this packet has the alternating index of the majority of recorded packets; 1 in
our example. Then, the receiver resets its array and starts accumulating packets
again, until (capacity + 1) recorded copies, with the same alternating index
reappear. The receiver always remembers the last delivered alternating index,
ldai, that caused the reset of its array, and does not deliver two successive
messages with the same alternating index. Each packet 〈ai, lbl,m〉 that arrives
to the receiver is acknowledged by 〈lbl, ldai〉. The sender accumulates the arriving
packet in an array of (2 · capacity + 1) entries and waits to receive a packet for
each entry, and to have a value of ldai that is equal to the alternating index
the sender is currently using in the sent packets in at least (capacity + 1) of
the recorded packets. Once such a packet set arrives, the sender resets its array,
fetches a new message, m′, to be delivered, and increments the alternating index
by 1 modulo 3 for the transmission process of the next message, m′.

The correctness considers the fact that the receiver always acknowledges
incoming packets, and hence the sender will infinitely often fetch messages.
Following the first fetch of the sender, the receiver follows the sender’s alternating
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index, records it in ldai, and acknowledges this fact. We consider an execution in
which the sender changes the alternating index in to x, x+1, x+2, x (all modulo
3). In this execution, the sender is acknowledged that the receiver changes ldai to
x+1 and then to x+2, while the sender does not send packets with alternating
index x, thus, the last x delivery in the sequence must be due to fresh packets,
packets sent after the packets with alternating index x+ 2 were sent, and cause
a delivery.

In the preceding text a simplified algorithm with a large overhead was
presented – a more efficient algorithm is described in the following. The basic
idea is to enlarge the arrays to have more than n > (2 · capacity + 1) recorded
packets. Roughly speaking, in such a case the minority of the distinct label
packets accumulated in the arrays are erroneous, i.e., packet copies that were
accumulated in the network prior to the current fetch (maximum capacity). The
other (n− capacity) distinct label accumulated packets are correct. Thus, as we
know the maximal amount of unrelated packets, we can manipulate the data so
that the n− capacity correct packets, each of length pl will encode, by means of
error correcting codes, pl messages each of length ml, a length slightly shorter
than n. The sender fetches a window of pl messages each of length ml, where
pl is the maximal packet length beyond the header. The sender then uses error
correcting codes so that a message of length ml is coded by a word of length n,
such that the encoded word can tolerate up to capacity erroneous bits. The pl
encoded messages of length n are then converted to n packets of length pl in a
way that the ith message out of theml fetched messages is encoded by the ith bits
of all the n distinct packets that are about to be transmitted. So eventually, the
first bit of all distinct labeled packets, ordered by their distinct labels, encode,
with redundancy, the first message, and the second bit of all distinct labeled
packets, encode, with redundancy, the second message, etc. Fig. 1 shows the
formation of the n packets from the pl messages. When the receiver accumulates
n distinct label packets, the capacity of the packets may be erroneous. However,
since the ith packet, out of the n distinct packets, encodes the ith bits of all
the pl encoded messages, if the ith packet is erroneous, then the receiver can
still decode the data of the original pl messages each of length ml < n. The ith

bit in each encoded message may be wrong, in fact, capacity of packets maybe
erroneous yielding capacity of bits that may be wrong in each encoded message,
however, due to the error correction, all the original pl messages of length ml can
be recovered, so the receiver can deliver the correct pl messages in the correct
order.

In this case, the sender repeatedly sends n distinct packets and the receiver
keeps sending (capacity + 1) packets each with a distinct label in the range
1 to (capacity + 1). In addition, each of these packets contains the receiver’s
current value of ldai. The packets from the receiver are sent infinitely often, not
necessarily as a response to its received packets. When the receiver accumulates
n distinct label packets with the same alternating index, it recovers the original
pl messages, delivers them, resets its received packets array and changes its ldai
to the alternating index of the packets that it just delivered. We note that these
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received packets must be different from its current ldai because the receiver does
not accumulate packets if their alternating index is equal to its current ldai. The
sender may continue sending the n packets with alternating index ldai, until the
sender accumulates (capacity + 1) distinct label acknowledging packets with
alternating index ldai. However, because now the packets’ alternating index is
equal to its current ldai, the receiver does not accumulate them, and hence does
not deliver a duplicate. Once the sender accumulates (capacity+1) packets with
ldai equal to its alternating index, it will fetch pl new messages, encode and
convert them to n distinct label packets and increase its alternating index by 1
modulo 3.
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Fig. 1. Packet formation from messages

The correctness
arguments use the same
facts mentioned above
in the majority based
algorithm. Eventually,
we will reach an
execution in which
the sender fetches a new
set of messages infinitely
often and the receiver
will deliver the messages
fetched by the sender
before the sender fetches
the next set of messages.
Eventually, every set of pl fetched messages is delivered exactly once because
after delivery the receiver resets its packets record array and changes ldai to
be equal to the senders alternating index. The receiver stops accumulating
packets from the sender until the sender fetches new messages and starts
sending packets with a new alternating index. Between two delivery events of
the receiver, the receiver will accumulate n distinct label packets of an identical
alternating index, where (n− capacity) of them must be fetched by the sender
after the last delivery of messages by the receiver. The fact, which reflects such
behavior at the receiver node, is that the sender only fetches new messages after
it gets (capacity + 1) distinct packets with ldai equal to its current alternating
index. When the receiver holds n distinct label packets with maximum capacity
erroneous packets, it can convert the packets back to the original messages by
applying the error correction code capabilities and deliver the original message
correctly.
Algorithm Description. Algorithms 1 and 2 implement the proposed S2E2C
sender-side and receiver-side algorithms, respectively. The two nodes, ps and
pr, are the sender and the receiver nodes respectively. The Sender algorithm
consists of a do forever loop statement (line 2 of the Sender algorithm), where
the sender, ps, assures that all the data structures comprises only valid contents.
I.e., ps checks that the ACK sets holds packets with alternating index equal to
the senders current AltIndexs and the labels are between 1 and (capacity + 1).
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Algorithm 1. Self-Stabilizing End-to-End Algorithm (Sender)

Persistent variables:
AltIndex: an integer ∈ [0, 2] that states the current alternating index value
ACK set: at most (capacity + 1) acknowledgment set, where items contain
labels and last delivered alternating indexes, 〈lbl, ldai〉
packet set: n packets, 〈AltIndex, lbl, dat〉, to be sent, where lbl ∈ [1, n] and dat
is data of size pl bits

Interface:
Fetch(NumOfMessages) Fetches NumOfMessages messages from the
application and returns them in an array of size NumOfMessages according to
their original order
Encode(Messages[]) receives an array of messages of length ml each, M , and
returns a message array of identical size M ′, where message M ′[i] is the
encoded original M [i], the final length of the returned M ′[i] is n and the code
can tolerate capacity errors

1 Do forever begin
2 if (ACK set 
⊆ {AltIndex} × [1, capacity + 1]) then

(ACK set,messages)← (∅, Encode(Fetch(pl)))
3 foreach pckt ∈ packet set() do send pckt

4 Upon receiving ACK = 〈lbl, ldai〉 begin
5 if lbl ∈ [1, capacity + 1] ∧ ldai = AltIndex then
6 ACK set← ACK set ∪ {ACK}
7 if capacity <| ACK set | then begin
8 AltIndex← (AltIndex+ 1) mod 3
9 (ACK set,messages)← (∅, Encode(Fetch(pl)))

10 Function packet set() begin
11 foreach (i, j) ∈ [1, n]× [1, pl] do let data[i].bit[j] = messages[j].bit[i]
12 return {〈AltIndex, i, data[i]〉}i∈[1,n]

In case any of these conditions is unfulfilled, the sender resets its data
structures (line 2 of the Sender algorithm). Subsequently, ps triggers the Fetch
and the Encode interfaces (line 2 of the Sender algorithm). Before sending the
packets, ps executes the packet set() function (line 3 of the Sender algorithm).

The Sender algorithm, also, handles the reception of acknowledgments
ACKs = 〈lbl, ldai〉 (line 4 of the Sender algorithm). Each ACKs has distinct
labels, corresponding to already transmitted packets. On the reception of the
(capacity + 1) distinct label ACKs, ps keeps ACKs in ACK sets (line 6 of the
Sender algorithm), if ACKs have the value of ldai (last delivered alternating
index) equals to AltInex (line 5 of the Sender algorithm). When ps gets an
ACKs packet (capacity + 1) times (line 7 of the Sender algorithm), ps changes
AltIndexs (line 8 of the Sender algorithm). Afterwards, ps does reset ACK sets
and calls Fetch() and Encode() interfaces (line 9 of the Sender algorithm).
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Algorithm 2. Self-Stabilizing End-to-End Algorithm (Receiver)

Persistent variables:
packet set: packets, 〈AltIndex, lbl, dat〉, received, where label ∈ [1, n] and dat is
data of size pl bits
LastDeliveredIndex: an integer ∈ [0, 2] that states the alternating index value
of the last delivered packets

Interface:
Decode(Messages[]) receives an array of encoded messages, M ′, of length n
each, and returns an array of decoded messages of length ml, M , where M [i] is
the decoded M ′[i]. The code is the same error correction coded by the sender
and can correct up to capacity mistakes
Deliver(messages[]) receives an array of messages and delivers them to the
application by the order in the array

Macros:
P (ind) = {〈ind, ∗, ∗〉 ∈ packet set}

1 Do forever begin
2 if {〈ai, lbl〉 : 〈ai, lbl, ∗〉 ∈ packet set} 
⊆

{[0, 2] \ {LastDeliveredIndex}} × [1, n]× {∗}∨
(∃〈ai, lbl, dat〉 ∈ packet set : 〈ai, lbl, ∗〉 ∈ packet set \ {〈ai, lbl, dat〉})∨
(∃pckt = 〈∗, ∗, data〉 ∈ packet set :| pckt.data |
= pl)∨
1 <| {AltIndex : n ≤| {〈AltIndex, ∗, ∗〉 ∈ packet set} |} | then
packet set← ∅

3 foreach i ∈ [1, capacity + 1] do send 〈lbl, LastDeliveredIndex〉
4 Upon receiving pckt = 〈ai, lbl, dat〉 begin
5 if 〈ai, lbl, ∗〉 
∈ packet set∧

〈ai, lbl〉 ∈ ({[0, 2] \ {LastDeliveredIndex}} × [1, n])∧ | dat |= pl then
6 packet set← packet set ∪ {pckt}
7 if ∃ ! ind : ind 
= LastDeliveredIndex ∧ n ≤| P (ind) |: P (ind) =

{〈ind, ∗, ∗〉 ∈ packet set} then
8 foreach (i, j) ∈ [1, pl]× [1, n] do
9 let messages[i].bit[j] = data.bit[i] : 〈ind, j, data〉 ∈ P (ind)

10 (packet set,LastDeliveredIndex)← (∅, ind)
11 Deliver(Decode(messages))

The Receiver algorithm executes at the receiver side, pr. The receiver pr
assures its data structure, namely, packet setr, in do forever loop (line 2 of the
Receiver algorithm). The receiver pr audits: (i) the packet setr holds packets
with alternating index, ai ∈ [0, 2], except LastDeliveredIndexr, labels (lbl)
between 1 and n and data of size pl; (ii) the packet setr holds exactly one group
of ai that has at least n elements. When any of the aforementioned conditions are
falsified, pr assigns the empty set to packet setr. In addition, pr acknowledges
ps by (capacity + 1) packets (line 3 of the Receiver algorithm).
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Node pr receives a packet pcktr = 〈ai, lbl, dat〉, see line 4 of the Receiver
algorithm. If pcktr has data (dat) in the size of pl bits and pcktr has alternating
index (ai) in the range from 0 to 2, excluding the LastDeliveredIndex and
pcktr has a label (lbl) in the range of 1 to n (line 5 of the Receiver algorithm),
pr puts pcktr in packet setr (line 6 of the Receiver algorithm). When pr gets
n distinct label packets of identical ai (line 7 of the Receiver algorithm),
pr forms the message from the packets (line 9 of the Receiver algorithm).
Subsequent steps include the reset of the packet setr data structure and change
of LastDeliveredIndexr to ai (line 10 of the Receiver algorithm). Next, pr
decodes and delivers the message (line 11 of the Receiver algorithm).

Correction proof. The correct packet exchange between the sender and
the receiver requires coordination. The sender should wait after fetching a
new message batch, i.e., executing lines 8 to 9 of the Sender algorithm, until
the receiver delivers a message batch, i.e., executing line 11 of the Receiver
algorithm. We describe the set of legal executions for correct packet exchange
before demonstrating that the Sender and the Receiver algorithms satisfy these
requirements in Theorem 1, which says that the studied algorithms implement
self-stabilizing end-to-end communication (S2E2C) task.

Let asα be the αth time that the sender is fetching a new message batch,
i.e., executing lines 8 to 9 of the Sender algorithm. Let arβ be the βth

time that the receiver is delivering a message batch, i.e., executing line 11
of the Receiver algorithm. With respect to the self-stabilizing end-to-end
communication (S2E2C) task and the algorithms of the Sender and the Receiver,
the legal execution set includes executions, R, that interleave the asα and the
arβ steps in a manner that matches the alternating index labels. Namely, after
the occurrence of asα ∈ R in which the sender fetches a new message batch, the
step asα+1 should not occur before arβ ∈ R in which the receiver delivers that
message batch (Lemma 3). Similarly, after the occurrence of arβ ∈ R in which
the receiver delivers a message batch, the step arβ+1

should not occur before
asα ∈ R in which the sender fetches the next message batch (Lemma 4).

In addition, the asα and the arβ steps should have matching alternating
indices. The proof shows that the sender, ps, increments its AltIndexs =
s indexα value on every asα in a modulo 3 fashion, and the receiver, pr, adopts
s indexα and deliver its message batch in step arβ after receiving at least
(n− capacity) packets that are tagged by s indexα. Similarly, pr acknowledges
the received packets using the tag LastDeliveredIndexr = r indexβ, and then
ps proceeds to fetch a next message batch in asα+1 after receiving at least more
than capacity acknowledgments.

We note that the proof implies that within a constant number of asynchronous
rounds, the receiver, pr, receives an entire batch of n packets from its incoming
abstract channel out of which (n − capacity) packets are from the sender,
ps. This is true because: (1) we assume that when the sender sends a packet
infinitely often through the abstract channel, the receiver receives the packet
infinitely often, and (2) the proof shows that the sender does not stop sending its
current batch of messages, before guaranteeing that the current message batch
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had arrived to the receiver, pr, and pr had delivered it. Moreover, analogous
arguments to arguments (1) and (2) above imply the number of asynchronous
rounds, in which the sender, ps, receives an entire batch of (capacity + 1)
acknowledgments that at least one of them is from the receiver.

Lemmas 1 and 2 are needed for the proof of lemmas 3 and 4. Throughout we
refer to R as an execution of the Sender and the Receiver algorithms, where ps
executes the Sender algorithm and pr executes the Receiver algorithm.

Lemma 1. Let csα(x) be the xth configuration between asα and asα+1 and
ACKα = {ackα(�)}�∈[1,capacity+1] be a set of acknowledgment packets, where
ackα(�) = 〈�, s indexα〉. For any given α > 0, there is a single index value,
s indexα ∈ [0, 2], such that for any x > 0, it holds that AltIndexs = s indexα

in csα(x). Moreover, between asα and asα+1 there is at least one configuration
crβ , in which LastDeliveredIndexr = s indexα. Furthermore, between asα and
asα+1 , the sender, ps, receives from the channel from pr to ps, the entire set,
ACKα, of acknowledgment packets (each packet at least once), and between (the
first) crβ and asα+1 the receiver must send at least one ackα(�) ∈ ACKα packet,
which ps receives.

Proof. We start by showing that s indexα exists before showing that crβ exists
and that ps receives ackα from pr between asα and asα+1 .

The value of AltIndexs = s indexα is only changed in line 8 of the Sender
algorithm. By the definition of asα , line 8 is not executed by any step between asα
and asα+1 . Therefore, for any given α, there is a single index value, s indexα ∈
[0, 2], such that for any x > 0, it holds that AltIndexs = s indexα in csα(x).

We show that crβ exists by showing that, between asα and asα+1 , there is
at least one acknowledge packet, 〈lbl, ldai〉, that pr sends and ps receives, where
ldai = s indexα. This proves the claim because pr’s acknowledgments are always
sent with ldai = LastDeliveredIndexr, see line 3.

We show that, between asα and asα+1 , the receiver pr sends at least one of
the ackα(�) ∈ ACKα packets that ps receives. We do that by showing that ps
receives, from the channel from pr to ps , more than capacity packets, i.e., the
set ACKα. Since capacity bounds the number of packets that, at any time, can
be in the channel from pr to ps , at least one of the ACKα packets, say ackα(�

′),
must be sent by pr and received by ps between asα and asα+1 . This in fact proves
that pr sends ackα(�

′) after crβ .
In order to demonstrate that ps receives the set ACKα, we note that

ACK set = ∅ in configuration csα(1), which immediately follows asα , see line 9
of the Sender algorithm. The sender tests the arriving acknowledgment packet,
ackα, in line 5 of the Sender algorithm. It tests ackα’s label to be in the range of
[1, capacity + 1], and that they are of ackα’s form. Moreover, it counts that
(capacity + 1) different packets are added to ACK set by adding them to
ACK set, and not executing lines 8 to 9 of the Sender algorithm before at
least (capacity + 1) distinct packets are in ACK set.

Lemma 2 (proof appears in [10]). Let crβ (y) be the y
th configuration between

arβ and arβ+1
, and PACKETβ(r index′

β) = {packetβ(�, r index′
β)}�∈[1,n] be
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a packet set, where packetβ,r index′
β
(�) = 〈r index′

β , �, ∗〉. For any given β >

0, there is a single index value, r indexβ ∈ [0, 2], such that for any y >
0, it holds that LastDeliveredIndexr = r indexβ in configuration crβ (y).
Moreover, between arβ and arβ+1

there is at least one configuration, csα , such
that AltIndexs �= r indexβ. Furthermore, there exists a single r index′

β ∈
[0, 2] \ {r indexβ}, such that the receiver, pr, receives all the packets in
PACKETβ(r index′

β) at least once between csα and arβ+1
, where at least

n− capacity > 0 of them are sent by the sender ps between arβ and arβ+1
.

Lemmas 3 and 4 borrow their notations from lemmas 1 and 2. Lemma 4 shows
that between asα and asα+1 , there is exactly one arβ step.

Lemma 3. Between asα and asα+1 , the receiver takes exactly one arβ step, and
that between arβ , and arβ+1

, the sender takes exactly one asα+1 step.

Proof. We start by showing that between asα and asα+1 , there is at least one
arβ step before showing that there is exactly one such arβ step when α > 2.
Then, we consider a proof for showing that between arβ and arβ+1

, there is at
least one asα step before showing that between arβ and arβ+1

, there is exactly
one asα step when β > 2.

By Lemma 1 and line 8 of the Sender algorithm, in any configuration, cs1(x),
that is between as1 and as2 , the sender is using a single alternating index,
s index1, and in any configuration, cs2(x), that is between as2 and as3 , the
sender is using a single alternating index, s index2, such that s index2 =
s index1+1 mod 3. In a similar manner, we consider configuration, csα(x), that
is between asα and asα+1 .

Lemma 1 also shows that for α ∈ (1, 2, . . .), there are configurations, crα ,
in which LastDeliveredIndexr = s indexα. This implies that between asα and
asα+1 , the receiver changes the value of LastDeliveredIndexr at least once,
where α ∈ (1, 2, . . .). Thus, by arβ ’s definition and line 10 of the Receiver
algorithm, there is at least one arβ step between asα and asα+1 .

To see that when α > 2 there is exactly one such arβ step between asα and
asα+1 , we consider the case in which between asα and asα+1 , there are several arβ
steps, i.e., arβfirst

, . . . , arβlast
. In particular we consider the asα−1 , arβ−1last

, asα ,

arβfirst
, arβlast

, asα+1 steps and show that arβ+1first
= arβ+1last

. Let us assume,

in the way of a proof by contradictions that arβ+1first
�= arβ+1last

. We show that

there is an asα′ step between arβ+1first
and arβ+1last

.

By Lemma 2, between arβfirst
and arβlast

, there is at least one configuration,

csα′ (x), for which AltIndexs �= r indexβ−1last
, and at least one configuration,

csα′′ (x), for which AltIndexs �= r indexβ+1first
.

Suppose that α′ = α′′. By asα ’s definition, line 3 of the Sender algorithm
and the function packet set(), the sender changes AltIndexs’s value in step
asα′ that occurs between arβ+1first

and arβ+1last
. For the case of α′ �= α′′,

we use similar arguments and consider the sequence of all csα′ (x), csα′′ (x), . . .
configurations between arβfirst

and arβlast
and their corresponding AltIndexs’s

values. By similar arguments to the case of α′ = α′′, any consecutive pair of
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AltIndexs implies the existence of an asα between arβfirst
and arβlast

. Thus, a

contradiction.

Lemma 4 shows that between arβ and arβ+1
, there is exactly one asα step, and

its proof follows similar arguments as the ones in Lemma 3.

Lemma 4 (proof appears in [10]). Between arβ and arβ+1
, the sender takes

exactly one asα+1 step.

Lemmas 3 and 4 facilitates the proof of Theorem 1.

Theorem 1 (S2E2C). Within a constant number of asynchronous rounds,
the system reaches a safe configuration (from which a legal execution starts).
Moreover, following a safe configuration, Algorithm 2 delivers every new sent
message batch within a constant number of asynchronous rounds.

4 Conclusions

Self-stabilizing end-to-end data communication algorithms for bounded capacity
dynamic networks have been presented in this extended abstract. The proposed
algorithms inculcate error correction techniques for the delivery of messages
to their destination without omissions, duplications or reordering. We consider
two nodes, one as the sender and the other as the receiver. In many cases,
however, two communicating nodes may act both as senders and receivers
simultaneously. In such situations, acknowledgment piggybacking may reduce
the overhead needed to cope with the capacity irrelevant packets that exist in
each direction, from the sender to the receiver and from the receiver to the
sender. Using piggybacking, the overhead is similar in both directions. The
obtained overhead is proportional to the ratio between the number of bits in the
original message, and the number of bits in the coded message, which is a code
that withstands capacity corruptions. Thus, for a specific capacity, assuming the
usage of efficient encoding, the overhead becomes smaller as the message length
grows.
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dynamic networks. ACM Trans. Comput. Syst. 23(3), 219–252 (2005)

21. Kuhn, F., Locher, T., Oshman, R.: Gradient clock synchronization in dynamic
networks. Theory Comput. Syst. 49(4), 781–816 (2011)

22. Kuhn, F., Lynch, N.A., Oshman, R.: Distributed computation in dynamic
networks. In: ACM Symposium on Theory of Computing (STOC 2010), pp.
513–522 (2010)

23. Kuhn, F., Oshman, R., Moses, Y.: Coordinated consensus in dynamic networks.
In: 30th ACM Symposium on Principles of Distributed Computing (PODC 2011),
pp. 1–10 (2011)

24. Spinelli, J.: Self-stabilizing sliding window arq protocols. IEEE/ACM Trans.
Netw. 5(2), 245–254 (1997)

25. Tanenbaum, A.S.: Computer networks, 4th edn. Prentice-Hall (2002)



Self-stabilizing Distributed Data Fusion
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Abstract. The Theory of Belief Functions is a formal framework for
reasoning with uncertainty that is well suited for representing unreliable
information and weak states of knowledge. In information fusion appli-
cations, it is mainly used in a centralized way, by gathering the data on
a single node before computation.

In this paper, a distributed algorithm is proposed to compute the
neighborhood confidence of each node, by combining all the data of its
neighbors using an adaptation of the well known Dempster’s rule. More-
over, a distributed algorithm is proposed to compute the distributed
confidence of each node, by combining all the data of the network us-
ing an adaptation of the cautious operator. Then, it is shown that when
adding a discounting to the cautious operator, it becomes an r-operator
and the distributed algorithm becomes self-stabilizing. This means that
it converges in finite time despite transient faults.

Using this approach, uncertain and imprecise distributed data can be
processed over a network without gathering them on a central node, even
on a network subject to failures, saving important computing and net-
working resources. Moreover, our algorithms converge in finite time what-
ever is the initialization of the system and for any unknown topology.

This contribution leads to new interesting distributed applications
dealing with uncertain and imprecise data. This is illustrated in the pa-
per: an application for sensors networks is detailed all along the paper to
ease the understanding of the formal approach and to show its interest.

1 Introduction

Algorithms for gathering data spread out over a network of communicating pro-
cess units are well known [17,25,7]. However, in the real world, information is
almost always tainted with various kinds of imperfection, such as imprecision,
uncertainty, ambiguity, etc. Following [10], if a variable X takes its values in Ω
(domain or frame of discernment), an item of information about X could be
represented as a pair (value, confidence). The value component corresponds to
a subset of Ω while the confidence component is an indication on the reliability
of the item of information. Imprecision is related to the value, uncertainty is
related to the confidence. For instance, when using the output of any disposal
(sensor, algorithm, model, expert...), it would be preferable to distinguish be-
tween the following pieces of information: “the value is between 15 and 25”, “the
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value is probably 20”, “the value is probably between 15 and 25”. The first one
is imprecise but certain, the second is precise but uncertain while the last is
both imprecise and uncertain. The Set-Membership approach can represent the
imprecision but lacks robustness while the Probability theory models aleatory
uncertainty but does not express any notion of imprecision. The Theory of Be-
lief Functions has been introduced by Dempster (1968) [5] and Shafer (1976)
[18], and has been further developed by Smets (Transferable Belief Model) in
the 1990’s [23]. It is also known as Dempster-Shafer theory or Evidence. It is
a formal framework for representing and reasoning from partial (uncertain, im-
precise) information, by generalizing both the Set-Membership approach and
the Probability Theory. Many applications in the field of data fusion are devel-
oped through belief functions framework [21]. However, even if the sources of
data are distributed in space or in time, the proposed approaches are variant of
centralized fusion methods [16].

As more and more sensors are present in our life (in smart-phones, vehicles,
clothes, body, etc.), and as more and more networking connections appear be-
tween all these devices, a distributed approach for computing belief functions
appear useful and is promising to many applications. In fact, such an approach
would not be limited to information produced by sensors but could be applied to
any imprecise and uncertain information, even on the distributed system itself.
Recent works have been done in [3,2] where each node discounts information
according to the distance and the age of the received message before to combine
it with a local knowledge. The notion a data contamination due to the vehicular
network context was taken into account for the choice of the combination rules.
This work has been extended in [26]. In [15], a spanning tree is used for dealing
with the loops of the network. In all these works, the network is supposed to be
reliable.

Instead of gathering the information and then processing it in a central node,
it would be very advantageous in terms of networking and computing resources
to compute locally the belief functions. Generally, every node produces locally
an information and then a local belief function (called in the following direct
confidence). It would be very interesting to enrich such a confidence with infor-
mation from other nodes. However in many cases, the result will depend on the
position of the node and it is expected that node u should have a different result
as compared to that of node v. In this (very common) case, computing the belief
function locally using a distributed algorithm appears to be the best approach.

Nevertheless, distributed algorithms are subject to faults, especially when the
devices are cheap and the underlying network opportunistic. We present in this
paper algorithms able to compute a belief function on every node of a network
subject to crash and transient faults. Our first algorithm computes on every
node its neighborhood confidence relying on the direct confidences of neighbors.
The second algorithm builds on every node its distributed confidence, taken into
account all the direct confidences produced in the network, while favoring the
closest ones. Our algorithms are self-stabilizing, so that they recover correct
behavior after finite time starting from an arbitrary global state caused by a
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transient fault [8,9]. All these results are given for a simplified communication
model relying on a simple push action, periodically called by the nodes. This can
be implemented in an idealized WiFi network or in the classical shared-register
model. The correctness of the algorithms is shown thanks to previous works on
r-operators [12]. By modeling local algorithms with operators, global properties
(termination, self-stabilization in different communication model) can be inferred
by checking the algebraic properties of the operators [14,13,4]. However, for
applying such a general scheme (and reusing generic proofs), the problem to be
solved has to be modeled as an algebraic operator.

The contributions of our paper are threefold. First we explain how the process-
ing of uncertain and imprecise data in a distributed system can be modeled by
algebraic operators over a specific finite set, namely vectors of discretized weights.
Second we propose two distributed algorithms for computing data fusion over
distributed data in a network of unknown topology, the first one combining close
information, the second one combining also remote information. Finally, we show
that this second algorithm can be modeled as an r-operator (namely discounted
cautious over the vectors of discretized weights), that satisfies the requirements
for ensuring the self-stabilization of the distributed system.

Such contributions allows to process uncertain and imprecise distributed data
without gathering them on a central node, even on a network subject to failures,
saving important computing and networking resources. Moreover, our algorithms
converge in finite time whatever is the initialization of the system and for any
unknown topology. We believe that many applications can take benefit of this
approach; we detail an application for sensors networks all along the paper to
ease the understanding of the formal approach and to show its interest.

In Section 2, we present the distributed system we consider. Then, in Sec-
tion 3, we explain how to model the processing of uncertain and imprecise data
using local computations based on an adaptation of the Dempster’rule over a
specific set (the vectors of discretized weights), and we present an algorithm for
neighborhood confidence computation. In Section 4, we extend these results by
presenting a distributed algorithm able to process all the uncertain and imprecise
data of the distributed system. We show that such algorithm can be modeled as
an r-operator (discounted cautious) and is self-stabilizing.

2 Self-stabilizing Distributed Systems

System. We consider a distributed system S composed of communicating com-
puting nodes. Each node owns a local memory and a sequential computing unit
so that it is able to run a local algorithm. Nodes are not synchronized. The local
memory of node v is composed by its private memory PRIVv, an incoming mem-
ory INv and an output memory OUTv. The private memory of v contains its direct
confidence and is regularly updated thanks to an external local disposal (eg. a
sensor). The output memory will store the result of the local computation on
v, namely its neighborhood confidence (Algorithm 1, Section 3) or its distributed
confidence (Algorithm 2, Section 4). Communications are done through a simple
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atomic action called push: when a sender node u executes push(m), the value m
stored in its output memory is copied into the input memories of some receiver
nodes v1, v2, . . . , vk.

We assume transient faults sometimes occur at the memories. To circumvent
this problem, we will introduce self-stabilization.

Moving Topology. The receivers of a push action on v are not known from the
sender v and do not know v. They are determined by the current topology of S
and could be different from those of a previous push on the same node v. There
is a link (u, v) between u and v if a data m pushed by u is received by v. Such
a link disappears when a data m′ pushed by u is not received by v. A link (u, v)
may exist while the link (v, u) does not exist. The channel capacity is a single
message.

In order our algorithms stabilizes, it is required that the topology remains
stable for a period longer than the stabilization phase. We say that the topology
of S stabilizes if it remains the same for further push actions (same links, that is,
same receivers for a given sender). Such a topology is modeled by a directed graph
G(V,E) where V is the set of nodes and E is the set of current links. We denote
by Γ 01

v the set of ancestors of v included v itself: Γ 01
v = {v}∪{u ∈ V, (u, v) ∈ E}

and by Γv the set of all ancestors of v included v itself: Γv = {v} ∪ {u ∈
V, ∃u1, . . . , uk ∈ V s.t. (u, u1), (u1, u2), . . . , (uk, v) ∈ E}.

Example. This communication scheme can be implemented on a wireless network
with a link capacity of a single message: a push is implemented using a local
broadcast followed by an idle period longer than the maximal communication
duration (which is bounded in wireless protocols such as IEEE802.11). Nodes
moves and collisions add/delete links according to the communication range.

When the topology remains stable, this communication model can also be
implemented through shared registers: a push by a writer u is simply a write
into the register it shares with some readers v1, . . . , vn. Then transformers can
be used to extend this model to other communication models [1,11].

In the rest of this paper, we develop an example in the context of wireless
sensor networks, where each node regularly push its result to potential neighbors.
Nodes only own a local clock and may push their results at different frequencies.

Self-stabilization. A configuration of a distributed system S is an instance of the
states of its processors and links. The set of configurations of S is denoted as C. A
distributed algorithm is a collection of local algorithms running on every node of
S. Processors actions change the global system configuration. An execution e is a
sequence of configurations c1, c2, . . .. Configuration c1 is the initial configuration
of execution e.

A specification is a predicate on executions that are admissible for a dis-
tributed system. A system matches its specification if all its possible executions
match the specification. This paper considers problems whose solutions consist
in computing a global result (static task); the specification can then be given in
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terms of a set of configurations. The set of configurations that matches the spec-
ification of static problems is called the set of legitimate configurations (denoted
as L).

Self-stabilization is defined through the concept of closed attractor.

Definition 1 (Closed Attractor). Let Ca and Cb be subsets of C. Cb is an
attractor for Ca if and only if for any initial configuration c1 ∈ Ca, for any
execution e = c1, c2, . . ., there exists i ≥ 1 such that ci ∈ Cb. It is closed if for
any j ≥ i, cj ∈ Cb.

In the usual (non-stabilizing) distributed systems, possible executions can be
restricted by allowing the system to start only from some well-defined initial
configurations. In stabilizing systems, problems cannot be solved using this con-
venience, since all possible configurations are admissible initial configurations.

Definition 2 (Self-stabilization). A system S is called self-stabilizing if and
only if there exists a non-empty subset L ⊂ C of legitimate configurations such
that L is a closed attractor for C.

3 Neighborhood Confidence Algorithm

In this section, we consider a network where each node owns a private data and
we propose a distributed algorithm for computing a neighborhood confidence.
After summarizing our approach, we explain how to build the domain of our
variables (vectors of discretized weights). Next we introduce an adaptation of
the Dempster operator for data combination. We then present our algorithm
and its properties. We terminate by explaining how to exploit its outputs.

3.1 Neighborhood Confidence Principle

We consider a network where each node owns a private data. Such an information
is regularly updated using a local external disposal (sensor, other algorithm...).
As the data are uncertain and imprecise, instead of collecting on each node the
data of its neighbors, the purpose of our algorithm is to evaluate a neighborhood
confidence using the direct confidences, these lasts being computed by each node
starting from their private data and their local external disposal.

Our scheme is general enough for covering many applications but to fix ideas,
we illustrate it all along the paper using an example (marked with a vertical
rule): a very simple weather forecast application. We assume that each node is
able to measure the local atmospheric pressure and to determine whether it is
decreasing, stable or increasing, allowing us to deduce a weather forecast. As
the accuracy of the measurement is not perfect, we consider intervals instead
of reals: each pressure measurement is an interval I ⊂ R+ and the pressure
gradientΔI computed with the two last measures Ik and Ik−1 is then an interval
of R. Moreover, the sensor is not totally trusted because it could be damaged.
Hence, we consider a confidence in the information, by affecting so-calledmasses
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to the sets ΔI and R in such a way that the sums of the masses is 1. The mass
on R corresponds to the proportion of time when the sensor is not working
correctly; the more the sensor is reliable, the lower is the mass on R. Hence,
thanks to its disposal, each node v obtains a result which can be interpreted as
follows: “I have a confidence of 80% that the atmospheric pressure is increasing
or stable, announcing a good weather”. This is the direct confidence of node v.

The direct confidences are the local inputs of our algorithms. Starting from
them, our first algorithm builds on each node v its Neighborhood Confidence
by combining the direct confidence of v with those it receives from its direct
ancestors. For this purpose, the confidences are stored as vectors of discretized
weights ; they are combined using an adaptation of the Dempster’rule.

3.2 Domain K: Vectors of Discretized Weights

In this section, the domain on which operate our algorithms is introduced.
The state of belief of a node is expressed on a frame of discernment Θ using a

basic belief assignment (BBA for short). Such a BBA can be represented by sev-
eral means, the most common one being with a mass function. A mass function
mΘ is a mapping from the set of subsets of Θ, denoted P(Θ), to the set of masses
[0, 1] ⊂ R such that

∑
X⊂Θ mΘ(X) = 1. A set X ⊂ Θ such that m(X) > 0 is

called focal set. If every focal set X satisfies |X | = 1, m is said to be Bayesian
and it corresponds to a probability mass function. However, the main interest
of the Theory of Belief Functions is to consider every subset X of Θ. The more
a node is confident in X , the higher is mΘ(X). If the empty set ∅ is not a focal
set, the mass is normal. A mass on ∅ is used to model conflict between pieces of
evidence on which m is based. If Θ is not a focal set, the mass is dogmatic. A
mass on Θ is used to model lack of knowledge. The higher mΘ(Θ) is, the less the
mass function mΘ is informative. If mΘ(Θ) = 1, the mass function is vacuous.
Finally, a mass function is simple if it admits at most two focal sets including Θ.

In our example, the pressure gradient interval ΔI belongs to Θ = R. Each
node then determines a simple mass function mΘ such that mΘ(ΔI) = 1 − α
and mΘ(Θ) = α. The size of pressure measure interval (and then the size of ΔI)
is related to the accuracy of the measure, while α is related to the reliability of
the measure disposal (sensor).

Starting from a mass function mΘ on the frame of discernment Θ, it is conve-
nient to build another mass function on a coarser, finite frame of discernment Ω.
Such a coarsening allows us to work on a finite set with simple interpretation.
It will also limit the amount of data exchanged between nodes.

For our simple weather forecast example, we consider Ω = {wet, cloud, sun}.
Each node determines a simple mass function mΩ depending on the position of
ΔI ∈ R regarding 0. If ΔI << 0 (case a in Fig. 1), then mΩ({wet}) = 1 − α
while if ΔI >> 0 (case d), then mΩ({sun}) = 1 − α. When ΔI is close to
0, there are some uncertainties: if 0 ∈ ΔI (case e in Fig. 1), then mΩ(Ω) =
1 because a node cannot determine whether the pressure increase or not; if
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0 < ΔI (case c) then mΩ({cloud, sun}) = 1−α, while if ΔI < 0 (case b), then
mΩ({wet, cloud}) = 1− α.

0

a b c d

e

wet cloud sun

Fig. 1. Determining mΩ from the comparison of ΔI with 0

Besides classical mass functions, a basic belief assignment can be represented
by other functions, such as commonality and weights functions. Our algorithms
work with weights, which are obtained from masses using commonalities [20] [6],
as summarized in the following table.

mass function commonality function weight function
m : P(Ω)→ [0, 1]

A �→ m(A)
q : P(Ω)→ [0, 1]

A �→ q(A)
μ : P(Ω) \Ω → R+

A �→ w(A)∑
A⊂Ω m(A) = 1 q(A) =

∑
B⊂Ω,A⊆B m(B) μ(A) = ΠB⊂Ω,A⊆Bq(B)(−1)|B|−|A|+1

In our example, we considered simple mass functions mΩ defined by
mΩ(X) = 1 − α for a single subset X ⊂ Ω and mΩ(Ω) = α. We then ob-
tain qΩ(∅) = qΩ(X) = 1 and qΩ(Y ) = α for any other subset Y of Ω not
included in X . Regarding the weight functions, we obtain μΩ(X) = α and
μΩ(Y ) = 1 for any other Y � Ω (our approach works also with more complex
mass functions).

Whenever the mass functions are not dogmatic (m(Ω) > 0), the weights are
strictly positive. Moreover, any separable mass function ensures that the weights
are smaller than or equal to 1 and reciprocally. A mass function m is separable
([18] Chapter 4) if it admits a canonical decomposition in simple mass functions
mi so that the conjunctive combination of these simple mass functions is equal
to the mass function itself: m = ©∩mi. We introduce the conjunctive operator�∩ hereafter. Hence, by restricting the considered mass functions to the set of
separable non dogmatic normalized mass functions, we can represent them as
weight functions from P(Ω) \ {Ω, ∅} to the interval (0, 1] ⊂ R. The data set we
consider is then a set of values in (0, 1], one per subset of Ω except ∅ and Ω.

However, to ensure convergence in finite time, finite memory consumption
and finite message size, we consider a discretization of (0, 1], denoted by W:
W ⊂ (0, 1] with |W| ∈ N and 1 ∈ W. We denote by ε ∈ W the smallest element
of W.

As a conclusion, the data set of our algorithms is W2|Ω|−2, that is vectors
of 2|Ω| − 2 values taken into W, which is a discretization of the weights that
represent a BBA expressing a state of knowledge over a frame of discernment
Ω. We call this set vectors of discretized weights and we denote it K. Any vector
of weights w in K can be coded with (2|Ω| − 2) ln(|W|) bits. We denote by w⊥
(resp. w) the element of K composed only with weights ε (resp. 1).
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In our example, supposing we discretize (0, 1] up to the thousandth, as |Ω| =
3, the vectors of weights require a size of 60 bits.

3.3 Operations on K: Discretized Dempster Operator

The BBAs can be combined using some operators in the aim of forging a better
knowledge from several sources of information. Given two mass functions m1 and
m2 over the same discernment set Ω, the conjunctive operator �∩ builds a new
mass function denoted m1�∩ 2 by emphasizing the agreement between the sources
that induced the BBAs, providing they are reliable [19]. The sources should be
independent, that is, they provide distinct, non overlapping pieces of evidence
[18]. The conflict between two BBAs m1 and m2 is given by m1�∩ 2(∅). It can
be spread over other sets when the conflict is ignored. The resulting operator is
called Dempster ’s rule, denoted by ⊕. Operators �∩ and ⊕ are commutative and
associative and admit the vacuous mass function as neutral element.

Conjunctive operator Dempster operator

m1�∩ 2(A) =
∑

B∩C=Am1(B) ·m2(B) m1⊕2(A) = m1�∩ 2(A)/
(
1−m1�∩ 2(∅)

)
A �= ∅

0 A = ∅
In our example, supposes that node u determines its direct confidence as

a mass function mdu such that mdu({cloud, sun}) = 0.8 and mdu(Ω) = 0.2
(hence its disposal is reliable at 80% but the pressure gradient ΔI was close
above 0). Supposes that a neighbor v of u determines its direct confidence as
a mass function mdv such that mdv({sun}) = 0.7 and mdv(Ω) = 0.3 (v trusts
its disposal at 70% only but the pressure gradient is clearly above 0). Then,
by combining these two BBAs, we find: mdu⊕dv({sun}) = 0.7. Now, if another
neighbor w determines its direct confidence as a mass function mdw such that
mdw({wet, cloud}) = 0.9 and mdw(Ω) = 0.1, the belief in ”sun” decreases to
0.538, but is not null because w does not fully trust its disposal.

When the BBAs are expressed with weight functions, the Dempster operator
becomes a product: if μ1 and μ2 are two weight functions expressing BBAs on
the same discernment frame Ω, then μ1⊕2 = μ1 ⊕ μ2 is defined by: μ1⊕2(A) =
μ1(A) × μ2(A). Nevertheless, as the weights we manipulate belong to the finite
set W, we need to introduce a product operation on W, that we denote by ∗.
We then obtain a discretized Dempster-like operator denoted � on K as follows.
For any vector w1 and w2 belonging to K, w1�2 = w1 � w2 is defined by:
w1�2(A) = w1(A) ∗ w2(A) for any subset A of Ω except Ω and ∅. By lack of
place, the “discrete multiplication” ∗ is not defined here.

As a conclusion, in our first algorithm, the direct confidence expressed as vec-
tors of K will be combined using the operator �, an adaptation of the Dempster
operator using the operator ∗ for multiplying the weights of W.

3.4 Algorithm 1: Neighborhood Confidence Computation

Now that we have defined the data set and the operator used to combine the data,
the algorithm is simply described as follows. The direct confidence of each node
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is regularly updated by an external mean, as explained previously, and stored
in the private memory PRIVv. It is coded (as all other variables) by a vector of
discretized weights belonging to the finite set K. The incoming memory INv on
node v stores all data pushed by some ancestors since the last timer expiration.
The output memory OUTv contains the neighborhood confidence computed by v.

Nodes are not synchronized. Timers are given by local clocks and may have an
unbounded drift. Upon timer expiration, each node computes its neighborhood
confidence by combining its own direct confidence with those it has received since
the last timer expiration, using operator �. It also pushes its direct confidence.

Algorithm 1: Neighborhood Confidence, node v

1 Upon timer expiration:
2 PRIVv ← current direct confidence
3 OUTv ← PRIVv � Initializing the iterative computation
4 for each entry u in INv do � Iterative computation of the output
5 OUTv ← OUTv � INv[u]
6 end for
7 push( PRIVv ) � Sending the direct confidence to neighbors
8 Reset INv
9 Restart the timer

The legitimate configurations of Algorithm 1 can only be defined when the
topology is stable as well as the direct confidences stabilized. Indeed, in case the
direct ancestors or their direct confidences vary, no stabilization of the outputs
can be obtained. Assuming these conditions are fulfilled, the set of legitimate
configurations L1 of Algorithm 1 is defined by:

∀c ∈ L1, ∀v ∈ S, OUTv(c) =©∩ u∈Γ 01
v
PRIVu(c)

Proposition 1. Algorithm 1 is self-stabilizing: it converges in finite time to a
legitimate configuration of L1 after the last occurrence of a transient fault and
the last modification of either the topology or the direct confidences (inputs).

Proof. Let e be an execution of Algorithm 1 on the distributed system S. Let
c ∈ e be the first configuration from which the topology and the inputs are stable
and such that there is no transient fault from c in e. Note that there is no more
crash faults from c as they affect the topology. As there is no more transient
faults from c, the private memories do contain the direct confidences. Let c′ ∈ e
a configuration reachable from c such that, for any node v, its timer has expired
between c and c’. Then all the incoming memories have been purged (line 8).
Let c′′ ∈ e a configuration reachable from c′ such that, for any node v, its timer
has expired between c′ and c′′. Since the topology is stable and there is no more
transient fault, the direct confidence of each node u has been copied into the
incoming memory of any node v such that u is a direct ancestor of v. Then any
node v will compute ©∩ u∈Γ 01

v
PRIVu(c) that will be stored in OUTv. Hence, any

configuration of e from c′′ belongs to L1. �
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3.5 Exploiting the Output: From Discretized Weights to Decision

By considering focal sets of cardinality larger than one (e.g., {wet, cloud}), the
Theory of Belief Functions generalizes the Bayesian Probability Theory and is
well adapted for representing weak states of knowledge. Nevertheless, when a
decision has to be taken, one need to go back to focal sets of cardinality one.
For this purpose the result BBA (expressed as a vector of weights) is converted
in a mass function m and is then mapped to a pignistic probability function P

[22], defined by: P (A) =
∑

∅�=B⊂Ω(B) |A∩B|
|B| .

Applying to our example, the decision would be: Is the umbrella necessary?
By computing the pignistic probability on our previous numerical example,
we find for instance that P ({sun}) = 0.84 when considering only the direct
confidences of u and v while it is equal to 0.645 when considering the direct
confidence of w, which did not agree with u and v.

4 Distributed Confidence Algorithm

Starting from Algorithm 1, we present an algorithm that computes on every node
its distributed confidence, by combining the direct confidence of all the nodes,
not only those of its neighbors.

4.1 Distributed Confidence Principle

The algorithm presented in the previous section is able to compute the so-called
neighborhood confidence of every node by combining the direct confidence of its
direct ancestors. The algorithm relies on local exchanges of belief functions rep-
resented as vector of masses belonging to K. However, the information produced
by a node will never impact nodes at more than one hop in the network. Yet in
many cases it would be interesting to take into account remote information.

For instance, in our weather forecast example, the neighborhood confidence is
preferable to the direct confidence because it relies on several measures. However
it cannot determine the weather by advance. To the contrary, if remote measures
are taken into account in the computation, a node could be warn about a
depression before it arrives on it (supposing the distributed algorithm converges
more rapidly than the wind!).

In order to preserve the networking and computing resources over the network,
it is preferable that each node computes its distributed confidence using the one
computed by its neighbors instead of using the direct confidence of remote nodes.
By the way, the modification to be done in Algorithm 1 is at line 7: each node v
will push its output OUTv, containing the result of its local computation, instead
of its input INv containing its direct confidence.

7 push( OUTv )

This has some consequences on the distributed algorithm, and the operator
has to be changed at line 5. We first introduce Algorithm 2a in Section 4.2, that
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uses the cautious operator. Then we show it cannot support transient failures
and we introduce Algorithm 2b in Section 4.3, based on the cautious operator
and a discounting function. This last one is self-stabilizing.

4.2 Cautious Operator: Algorithm 2a

While it makes sense to use the Dempster operator to combine all the direct
confidences, this is no more suitable with our algorithm modified at line 7 to
push the output of each node. Indeed, whenever the network admits two distinct
paths between nodes u and v, the direct confidence of u will be taken into account
several times in the result built by node v. This problem is known as data incest.
By the way, Algorithm 1 with the above mentioned modification at line 7 is only
suitable for stable networks having a topology corresponding to a tree.

Besides the data incest, the algorithm would converge to the vector w⊥ ∈ K
(composed only with ε values) whenever there is a loop in the network because
the multiplications by operator ∗ will converge to ε. As explained in [12], an
idempotent operator is required for ensuring the convergence in a network with
circuits.

In [6], an idempotent operator has been introduced for combining non dog-
matic BBAs: the cautious operator denoted by �. It is based on the Least Com-
mitment Principle, which states that: ”when several belief functions are compat-
ible with a set of constraints, the least informative should be selected”. When
the BBAs are represented by weight functions, it is computed by taking the min-
imum of each component: μ1�2 = μ1�μ2 is defined by μ1�2(A) = μ1(A)∧μ2(A)
for any A � Ω, where ∧ denotes the minimum operator on R.

Translated in K, the discretization is here straightforward. We have, for any
subset A of Ω with A �= Ω and A �= ∅, w1 � w2[A] = w1[A] ∧ w2[A], where
w[A] denotes the component of the vector w corresponding to the subset of A,
and ∧ the minimum operator on W. This operator is associative, commutative
and idempotent on K. It admits w as neutral element (vector composed only
with some 1). It solves the data incest problem.

In fact, besides solving the data incest problem, operator � also ensures the
termination of the distributed computation. Let Algorithm 2a be the algorithm
obtained from Algorithm 1 with line 7 replaced by push(OUTv) and line 5 mod-
ified to use operator � instead of �. Let c0 be the initial configuration defined
by: for all nodes v in S, INv is empty and OUTv = w. Assuming the topology is
stable and the direct confidences stabilized, the set of legitimate configurations
L2 of Algorithm 2 is defined by:

∀c ∈ L2a, ∀v ∈ S, OUTv(c) = �u∈ΓvPRIVu(c)

As the cautious operator is a law of an idempotent semi-group, the following
proposition holds (Proposition 4 in [14]).

Proposition 2. Algorithm 2a stabilizes in a fixed topology starting from config-
uration c0, assuming the direct confidences (inputs) stabilizes.
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4.3 Cautious and Discounting: Algorithm 2b

In contrast with Algorithm 1, Algorithm 2 stabilizes to a legitimate configuration
only when it starts from the initial configuration c0 (cf. Propositions 1 and 2).
Indeed, an associative, commutative and idempotent operator leads to a self-
stabilizing distributed algorithm only on networks corresponding to trees. For
instance, consider a distributed system S in form of a loop composed of two
nodes u and v and suppose that, due to a transient fault, the vector of weights
w⊥ appears in the incoming memory of u. The next output of u will be w⊥,
which will be sent to v. Both nodes will then converge to w⊥ whatever are their
direct confidences (Proposition 7 in [14]).

On another hand, one may object that the legitimate configurations of Algo-
rithm 2a are not always satisfactory. Indeed, it gives a single result per connected
components of the network. When the information admits a local meaning (such
as the weather forecast in our example), the result on a node u should differ from
the result of a far node v except if all the nodes agree on their direct confidence.
Hence, while it is useful to take into account remote information, all the nodes
should not always converge to the same belief function.

We then introduce a discounting function r, which is applied to each incom-
ing data before the computation with the cautious operator (line 5). We call
Algorithm 2b the algorithm obtained by modifications of the line 7 (for pushing
OUTv) and of the line 5 as follows:

5 OUTv ← OUTv � r(INv[u])

The function r is called a discounting; it is used to decrease the information
in a given basic belief function. The choice of the discounting is application-
dependent. Nevertheless, we impose two conditions on r. As � is associative,
commutative and idempotent, it defines an order relation denoted ≺� by:w1 ≺�

w2 if and only if w1 �= w2 and w1 � w2 = w1.

Condition 1. The discounting function r is an endomorphism of (K,�): for
any w1 and w2 in K, r(w1) and r(w2) belong to K and r(w1 � w2) = r(w1) �

r(w2).

Condition 2. The function r is expansive on K: ∀w ∈ K \ {w}, w ≺� r(w)
and r(w) = w.

Condition 1 is justified as follows. Consider a path u1, u2, . . . , uk in a stable net-
work and suppose that the algorithm has converged (all the outputs of the nodes
do not change any more). Then we have: OUTuk

= PRIVuk
�r(OUTuk−1

)� · · · . Re-
cursively, OUTuk−1

= PRIVuk−1
� r(OUTuk−2

)� · · · . Since r is an homomorphism,
we have OUTuk

= PRIVuk
� r(PRIVuk−1

) � r2(PRIVuk−2
) · · · . Hence, thanks to

Condition 1, the output of a node takes into account every received direct confi-
dence a single time but discounted accordingly to the distance from the sender.
The second condition is required for discounting the received BBA compared
to the local direct confidence. It is also required for the convergence (else every
node v in a loop would converge to w).
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In our example, the weights being discretized up to the thousandth, the
application r : w → r(w) defined by r(w)[A] = min(1,w[A] + 0.1) for any
A ⊂ Ω (A �= Ω and A �= ∅) is convenient.

4.4 Self-stabilizing Property of Algorithm 2b

It is a remarkable result that the cautious operator along with a discounting is a
strictly idempotent r-operator. Under certain conditions, the r-operators lead to
self-stabilization of the global computation [12,14,13,4]. This is a convenient way
to design new self-stabilizing silent tasks: by only checking algebraic properties
of the operator modeling the local computation, global properties over the whole
networks are ensured.

An r-operator is the law of an r-semi-group [12], which generalizes the idempo-
tent Abelian semi-group. Let (S, ') be a set endowed by an operator ' (magma).
It admits a right-identity element e� if ∀x ∈ S, x = x'e�. It is weak left can-
cellative iff ∀y, z ∈ S, (∀x ∈ S, x'y = x'z) ⇔ (y = z). Let r : S → S be a
mapping. Then (S, ') is r-associative iff ∀x, y, z ∈ S, x'(y'z) = x'y'r(z). It
is r-commutative iff ∀x, y ∈ S, r(x)'y = r(y)'x. It is r-idempotent iff ∀x ∈ S,
r(x)'x = r(x).

Definition 3 (r-semi-group). Let (S, �) be a weak left cancellative magma
admitting the right identity element e	, and let r : S → S be an endomorphism.
Then (S, �) is an r-semi-group if it is r-associative, r-commutative, r-idempotent
with the application r.

Proposition 3. Let r : K→ K a mapping satisfying Conditions 1 and 2. Let �
the operator defined on K by w1��w2 = w1 � r(w2). Then (K,�� ) is a strictly
idempotent r-semi-group.

Assuming the topology is stable and the direct confidences stabilized, the set of
legitimate configurations L2b of Algorithm 2b is defined by (we states dist(v, v) =
0):

∀c ∈ L2b, ∀v ∈ S, OUTv(c) = �� u∈ΓvPRIVu(c) = �u∈Γvr
dist(u,v)(PRIVu(c))

Proposition 4. Algorithm 2b is self-stabilizing: it converges in finite time to a
legitimate configuration of L2b after the last occurrence of a transient fault and
the last modification of either the topology or the direct confidences (inputs).

Proof. As �� induces a partial order relation on K (≺� based on ∧ component
per component of vectors), we apply results of [13], proved for the shared register
model. As soon as the topology stabilizes, the distributed system S is assimilated
to a shared-registers system, with the difference that links are unforeseen (not
known at the beginning, not known by the senders and the receivers when the
system is stabilized). Moreover, as the topology was moving, any value could
have been copied in the incoming memories. This means that, during the stabi-
lizing phase, Algorithm 2b runs on an unknown directed topology starting from
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any configuration. Thanks to Proposition 4 and Condition 2, Theorem 9 of [13]
applies and Algorithm 2b is self-stabilizing. �

Let k be the integer defined by rk(w⊥) = w and D the diameter of the
stabilized topology. Supposing a synchronous system, the stabilization time is
O(k + D). In a system without transient fault, when starting from the good
initial configuration c0 (§ 4.2), the convergence time is O(D) .

In our weather forecast example, our discounting function r satisfies k = 10.

5 Conclusion

In this paper, two algorithms have been presented for dealing with distributed
imprecise an uncertain data in a network. The first one builds the neighborhood
confidence of each node based on the inputs of its neighbors. The second one
extends this computation to the whole network: each input is taken into account
while favoring close information. These algorithms are self-stabilizing, meaning
that, they converge in finite time in a legitimate configuration after the topology
and the inputs become stable.

These results rely on the r-operators introduced for stabilizing distributed
computations and on the cautious operator introduced for dealing with data in-
cest in the Theory of Belief Functions, completed with a discounting for ensuring
the self-stabilization and discretized for ensuring the convergence in finite time.

We believe that a large set of applications, either fundamental or practical,
could take benefit of this approach. In particular, our simple weather forecast
application is more efficient than other schemes based on data gathering while
allowing to process uncertain and imprecise data given by cheap sensors. It
supports crash faults of sensors, network reconfigurations and transient faults
affecting memories. It can be implemented on wireless sensors networks.

Future work will concern extension of this approach as well as the study of
its applications.
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Abstract. We propose a transformer building a silent self-stabilizing
with service guarantee 1-hop clustering protocol T P of an input silent
self-stabilizing 1-hop clustering protocol P . From an arbitrary configu-
ration, T P reaches a safe configuration in at most 3 rounds, where the
following useful minimal service is provided: “each node belongs to a
1-hop cluster having an effective leader”. During stabilization of T P ,
the minimal service is preserved, so the clustering structure is available
throughout the entire network. The minimal service is also maintained
despite the occurrences of some external disruptions, called highly toler-
ated disruptions, denoted HT D. T P reaches a terminal (also legitimate)
configuration in at most 4∗SP rounds where SP is the stabilization time
of P protocol. Moreover, T P requires only 2 bits per node more than P .

1 Introduction

Self-stabilization has a major limitation: during stabilization periods, a self-
stabilizing protocol does not guarantee any property (except the eventual
convergence) even if perturbations could be handled in a safe manner. Thus, self-
stabilization is suited for distributed systems with intermittent disruptions, where
the delay between successive disruptions is so large that the system can recover to
a legitimate configuration providing its optimum service for some time. However,
in large scale dynamic networks, the network topology changes very often, and
the paradigm of self-stabilization is no more satisfying. Indeed, the systemmay be
continuously disrupted, causing a total loss of service. As consequence, the avail-
ability and reliability of self-stabilizing systems are compromised when disrup-
tions are frequent. To overcome these drawbacks, the paradigm self-stabilization
with service guarantee has been recently introduced in [17,21,18].

A protocolP is self-stabilizing with service guarantee if: (1)P is self-stabilizing;
(2) from an arbitrary configuration, P quickly reaches a safe configuration, where
a safety property is satisfied, so a minimal service is provided; (3) the safety prop-
erty (minimal service) holds during progress of P towards the optimum service
(i.e., during stabilization despite actions of P) and, (4) the safety property (min-
imal service) is also maintained despite the occurrences of some specific external
disruptions, called highly tolerated disruptions, denoted HT D.
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Whatever the occurrences of HT D disruptions, the useful minimal service is
still provided. Whereas, other disruptions are handled by self-stabilization, i.e.,
after their occurrences, the system may behave arbitrarily, but it will quickly
reach a safe configuration. Therefore, the service guarantee property is provided
through both: fast recovering to the minimal service, and preservation of the
minimal service despite the occurrences of HT D disruptions.

Clustering. This work addresses the transformation of a silent self-stabilizing 1-
hop weight-based clustering protocol to a self-stabilizing with service guarantee
one. The clustering of networks consists of partitioning network nodes into non-
overlapping groups called clusters. Each cluster has a single head, called leader,
that acts as local coordinator of the cluster, and eventually a set of standard
nodes. In 1-hop clusters, the standard nodes are neighbor (at distance 1) of their
leader. Clustering is found very attractive in infrastructure-less networks, like
ad-hoc networks, since it limits the responsibility of network management only
to leaders, and it allows the use of hierarchical routing. This is why numerous
clustering protocols were proposed in the literature [1,2,6,11,15,17,20,21,22,24].

When the clustering is weight-based, each node of the network has a weight
value that can change during time. The weight value represents the capability
of nodes to be leaders. Hence, in weight-based clustering protocols, leaders are
chosen according to their weight value in order to be the most suitable nodes in
their clusters. Protocols proposed in [1,6,16,17,20,21] are weight-based.

Related Works. Self-stabilization with service guarantee is related to snap-
stabilization [4], safe convergence [22] and super-stabilization [13]. The common
goal of these approaches is to provide a desired safety property during the con-
vergence phase, after the occurrence of one or several well defined events.

A protocol is snap-stabilizing if it always behaves according to its specifica-
tion whatever its initial configuration. The safety property in snap-stabilization
is user-centric [10] (not system-centric as in safe convergence, super-stabilization
and self-stabilization with service guarantee approaches). It ensures that the an-
swer to a properly initiated request by the protocol is correct. This approach is
thus suited for service-oriented protocols, but not to silent protocols like clus-
tering protocols. The safe convergence ensures that (1) the system quickly con-
verges to a safe configuration, and (2) the safety property stays satisfied dur-
ing the stabilization under protocol actions. However, external disruptions are
not handled in safe convergence. Let us study the self-stabilizing with service
guarantee protocol [18] building the knowledge of 1-hop neighbor clusters. The
stabilization time of this protocol is 4 rounds as the time to reach a safe con-
figuration. In this case, the safe convergence contributes nothing compared to
the self-stabilization (they become equivalents). The main specifity of [18] is
the maintain of safety property in spite of disruptions made by clustering pro-
tocol (i.e., reconstruction of clusters). A super-stabilizing protocol guarantees
that (1) starting from a legitimate configuration, a safety property is preserved
after only one specific topology change (of a set HT D), and (2) the safety prop-
erty is maintained during recovering to a legitimate configuration assuming that
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no more topology change occurs during stabilization phase. Self-stabilization
with service guarantee provides and maintains the safety property even before
stabilization, unlike super-stabilization. For example, the super-stabilizing col-
oring algorithm [13] stabilizes in O(N) rounds (N is the number of nodes), but
from an illegitimate configuration it does not quickly converge to a safe configu-
ration. Furthermore, a self-stabilizing with service guarantee protocol preserves
the safety property in spite of several HT D disruptions that are simultaneous or
not. Whereas, a super-stabilizing protocol handles only one disruption: if disrup-
tions occur in bursts, super-stabilizing protocol handles them as a self-stabilizing
protocol.

Some transformers related to previous approaches were proposed. In [23], the
proposed protocol transforms almost all non self-stabilizing protocols to self-
stabilizing one. The method proposed in [8] transforms a self-stabilizing wave
protocol with a unique initiator to a snap-stabilizing one. In [7], authors propose
a snap-stabilizing version of four fundamental protocols: reset, snapshot, leader
election, termination detection, based on a snap-stabilizing PIF (Propagation of
Information with Feedback) algorithm. Thereafter, they propose a method to
provide a snap-stabilizing version of any protocol. In [3], the proposed method
transforms a self-stabilizing protocol constructing spanning tree and optimizing
any arbitrary tree metric to a loop-free super-stabilizing protocol.

Motivation and Contributions. The stabilization time of weight-based clus-
tering protocols is proportional to the network diameter [21]. Nevertheless, a
crucial challenge of ad-hoc networks is the fast establishment and maintenance
of clustering structure in spite of topological changes like node/link failures.

In this paper, we propose a generic scheme to transform a silent self-stabilizing
1-hop weight-based clustering protocol P , to a silent self-stabilizing with service
guarantee protocol, called transformed protocol T P. T P quickly reaches, in at
most 3 rounds, a safe configuration from any initial one, and thereafter it reaches
a terminal configuration in at most 4 ∗SP rounds where SP is stabilization time
of P protocol. In a safe configuration, each standard node belongs to a cluster,
and each cluster has an effectual leader; so the clustering structure is available
throughout the entire network. This safety property holds during stabilization
phases even despite the occurrence ofHT D disruptions (Definition 5). Moreover,
compared to P protocol, T P requires only 2 extra bits per node.

Paper Outline. The rest of the paper is organised as follows. In section 2,
communication and computation models are defined, and the general form of
original protocol P is described. Transformed protocol T P is presented in section
3. In sections 4 , 5 and 6, we give the sketch proof of service guarantee, correctness
and termination of T P protocol. Finally, in section 7, the memory space and
time complexity of T P protocol as well as the futur works are discussed.

2 Model and Concepts

A distributed system S is an undirected graph G = (V,E) where vertex set V
is the set of (mobile) nodes and edge set E is the set of communication links.
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A link (u, v) ∈ E if and only if u and v can directly communicate (links are
bidirectional); so, u and v are neighbors. We note by Nv the set of v’s neighbors:
Nv = {u ∈ V | (u, v) ∈ E}. Furthermore, every node v in the network is assigned
a unique identifier, and a weight value wv (a real number). The weight value of a
node can increase or decrease during time reflecting changes in the node’s state.
For the sake of simplicity, we assume that nodes weight are different (the tie in
node’s weight could be broken using nodes identifier id).

We use the local shared memory model introduced in [12]. Each node v main-
tains a set of local variables such that v can read its own variables and those of
its neighbors, but it can modify only its variables. The state of a node is defined
by the values of its local variables. The union of states of all nodes determines
the configuration of the system. The program of each node is a set of rules. Each
rule has the form: Rulei :< Guardi >−→< Actioni >. The guard of a v’s rule
is a Boolean expression involving the state of the node v, and those of its neigh-
bors. The action of a v’s rule updates v’s state. A rule can be executed only if
it is enabled, i.e., its guard evaluates to true. A node is said to be enabled if at
least one of its rules is enabled. In a terminal configuration, no node is enabled.

Nodes are not synchronized; nevertheless several nodes may perform their ac-
tions at the same time. During a computation step ci → ci+1, one or several en-
abled nodes perform an enabled action and the system reaches the configuration
ci+1 from ci. A computation e is a sequence of configurations e = c0, c1, ..., ci, ...,
where ci+1 is reached from ci by one computation step: ∀i � 0, ci → ci+1. We
say that a computation e is maximal if it is infinite, or if it reaches a terminal
configuration. A computation is weakly fair, if for any node v that is always
enabled along this computation, it eventually performs an action. In this paper,
we study only weakly fair computations. We note by C the set of all possible con-
figurations, and by E the set of all weakly fair computations. The set of weakly
fair computations starting from a particular configuration c ∈ C is denoted Ec.
EA denotes the set of weakly fair computations where the initial configuration
belongs to the set of configurations A ⊂ C.

We say that a node v is neutralized during a computation step cs ci → ci+1, if
v is enabled in ci and disabled in ci+1, but it did not execute any action during
cs. The neutralization of a node v happens when one v’s neighbor changes its
state during cs, and after this change, the guard of all v’s actions are not verified.

We use the round notion to measure the time complexity. The first round of
a computation e = c1, ..., cj , ... is the minimal prefix e1 = c1, ..., cj , such that
every enabled node v in c1 either executes a rule or it is neutralized during a
computation step of e1. Let e2 be the suffix of e such that e = e1e2. The second
round of e is the first round of e2, and so on.

Definition 1 (Attractor). Let B1 and B2 be subsets of C. B2 is an attractor
from B1, if and only if the following conditions hold:

• Convergence: ∀c ∈ B1, If (Ec = ∅) then c ∈ B2

∀e ∈ EB1(e = c1, c2, ...), ∃i � 1, ci ∈ B2

• Closure: ∀e ∈ EB2(e = c1, ...), ∀i � 1 : ci ∈ B2.
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Definition 2 (Self-stabilization). A distributed system S is self-stabilizing if
and only if there exists a non-empty set L ⊆ C, called set of legitimate configu-
rations, such that the following conditions hold:

• L is an attractor from C.
• Configurations of L match the specification problem.

A self-stabilizing protocol is silent if once the system is stabilized, no node
modifies its state.

Stabilization time. The stabilization time is the number of disjoint rounds of
a computation reaching a legitimate configuration from any initial one.

Definition 3 (Self-stabilization with service guarantee). Let SP be the
safety predicate that stipulates the minimal service (safety property), and HT D
be the set of highly tolerated disruptions. A self-stabilizing system has service
guarantee despite HT D if and only if the set of configurations satisfying SP is:

• An attractor from C.
• Closed under any disruption of HT D.

2.1 The Original Protocol P

We are placing in the context of clustering protocols where nodes proclaim them-
selves leaders like [1,2,6,11,15,17,20,21,24], and not in the context of protocols
where leaders are nominated by other nodes like [5,9].

The general form of the original silent self-stabilizing weight-based 1-hop clus-
tering protocol P is described in Protocol 1. Such protocol has four class of rules.
The Election, Affiliation and Resignation rules for a node v update at least the
head identity of v’s cluster (i.e., Head(v)). Whereas the Complementary rules
(named Complement(v)) update other variables if there exist.

Protocol 1. The original protocol P on node v

Output variables
• Head(v) ∈ Nv ∪ {v}; Head(v) returns the head’s identity of the v’s cluster.
• NextHead(v) ∈ Nv ∪ {v}; NextHead(v) returns the identity of head that will be

chosen by the affiliation or resignation rule if it is enabled. It return v if the Election
rule is enabled. Otherwise, it returns Head(v).

Rules
Election(v) : GE(v) −→ AE(v); The election rule
Affiliation(v) : GA(v) −→ AA(v); The affiliation rule
Resignation(v) : GR(v) −→ AR(v); The resignation rule
Complement(v) : GC(v) −→ AC(v); Complementary rules if there exist

The variable Head(v) indicates the identity of v’s head and, whether v is a leader
(i.e., Head(v) = v) or v is a standard node (i.e., Head(v) �= v).

Note that rules of P protocol are not necessarily explicitly written in this
form, but they can be distinguished according to how they update Head(v) vari-
able. Any rule does not updating Head(v) is classified as Complementary rule.
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Election rule is enabled only by standard nodes verifying the election guard GE

(1st Precondition). Upon execution of Election rule, the standard node becomes
leader. Conversely, Resignation rule is enabled only by leaders verifying the res-
ignation guard GR (2nd Precondition), and after execution of Resignation rule,
the leader chooses a new head and it becomes a standard node. Nodes having
Affiliation rule enabled are standard nodes verifying the affiliation guard GA (3rd

Precondition). By performing this rule, the standard node changes its cluster.
Both actions AE, AR and AA are called clustering actions because they modify
Head(v) and they set it to NextHead(v). When Election rule is enabled, then
NextHead(v) = v (1st Precondition). If Resignation or Affiliation rule is enabled,
then NextHead(v) �= v (2nd and 3rd Preconditions), NextHead(v) �= Head(v) and
NextHead(v) is currently leader (4th Precondition).

P is weight-based clustering protocol. In weight-based clustering protocols,
each node v has a dynamic input value, its weight named wv, representing its
suitability to be leader. Such protocols select nodes having a higher weight to be
leader, and try as soon as possible to assign standard nodes to the best leader
in their neighborhood. Thus, the value of NextHead in such protocols depends
intrinsically on the weight of nodes (see 5th Precondition on P).

The fact that P is self-stabilizing and weight-based, is summarized by the fol-
lowing Preconditions 1-5, whereas Preconditions 6-7 are consequences of silence
property of P . The formal description of these preconditions in follows facilitates
the proof of service guarantee, correctness and termination of T P protocol.

1. GE(v)⇒ Head(v) �= v ∧ NextHead(v) = v

2. GR(v)⇒ Head(v) = v ∧ NextHead(v) �= v

3. GA(v)⇒ Head(v) �= v ∧ NextHead(v) �= v

4. GA(v) ∨ GR(v)⇒
NextHead(v) �= Head(v) ∧ Head(NextHead(v)) = NextHead(v) (1)

5. The function updating NextHead is based on node’s weight,

(NextHead(v) �= Head(v))⇒ (NextHead(v) = v) ∨ (wNextHead(v) > wv) (2)

6. Along a computation where a standard node v never changes of cluster (so,
its Head(v) value), v performs a finite number of time Complementary rules.

7. Along a computation where the cluster of a leader v does not change, v
performs a finite number of time Complementary rules.

3 The Transformed Protocol T P

During stabilization of P protocol, a node may not belong to a cluster. One goal
of T P protocol is to avoid such situation: once a node is in a cluster, it will belong
to a cluster having an effectual leader during all stabilization period despite the
occurrence of HT D events. The main idea of transformation is to control the
execution of P protocol by changing/adding some rules in order: (1) to form
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temporary clusters, (2) to delay actions by making cluster-heads resign only after
their clusters become empty, and by avoiding standard nodes to affiliate with a
currently resigning leader. Moreover, this transformation modifies the execution
of P since it forces some nodes to become leaders although the Election rule is
disabled in P protocol. This forced election does not impact the final clusters
produced by T P protocol compared to final clusters of P (see Correction proofs,
Sec 5). Transformed protocol T P is described in Protocols 2 and 3.

Protocol 2. Variables and predicates of the Transformed Protocol T P
Output variables

• Statusv ∈ {CH,O,NO,NCH} ; Hierarchical status of node v. It can be Cluster-
head (CH), Ordinary (O), Nearly Ordinary (NO) and Nearly Cluster-head (NCH).

Input variables

• Readyv ∈ {RO,RCH} ; It indicates if v is ready to become cluster-head (Readyv =
RCH) or ordinary (Readyv = RO).

Predicates

• Is_Leader(v) ∈ {T, F}; It indicates if v is a leader or a standard node.
If Head(v) = v then v is leader (Is_Leader(v) = T ), otherwise v is a standard node
(Is_Leader(v) = F ); i.e., Is_Leader(v) ≡ (Head(v) = v).

• ClusterEmpty(v) ∈ {T, F}; It indicates if the v’s cluster is empty or not.
ClusterEmpty(v) ≡ ∀u ∈ Nv , Head(u) 
= v.

• MustAffiliate(v) ∈ {T, F}; It indicates if node v must affiliate with the NextHead

or not. MustAffiliate(v) ≡ GA(v) ∧ StatusNextHead(v) = CH .

• MustResign(v) ∈ {T, F}; It indicates if node v has to resign and join the cluster
headed by NextHead or not. MustResign(v) ≡ GR(v) ∧ StatusNextHead(v) = CH .

• MustBecomeHead(v) ∈ {T, F}; It indicates if the node v has to become cluster-head:
if GE(v) is enabled or v cannot affiliate with NextHead and it cannot join an existing
cluster. MustBecomeHead(v) ≡ GE(v) ∨ (¬MustAffiliate(v) ∧ StatusHead(v) 
= CH).

Our transformation is applied to a class of original clustering protocols that
can have a deep difference between them. The original protocol may build a
dominating set, independent dominating set, k-fold dominating set, capacitated

Status = O Status = NCH

Status = CHStatus = NO

Pre-Election

TElection
Rollback-Election

Pre-Resignation

TResignation
Rollback-Resignation

TAffiliation

Fig. 1. Status transition in T Pprotocol

dominating set, connected or weakly
connected dominating set etc. The
transformed protocol builds the same
kind of clusters as the original protocol.
The computations of original protocol
are however modified to ensure the ser-
vice guarantee to T P protocol despite
HT D disruptions. Protocols GDMAC [1],
building a k-fold dominating set, and
BSC [20] building a capacitated domi-
nating set, are transformed respectively
to R-GDMAC [21], and R-BSC [17] using
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our transformer. To ensure the service guarantee, T P protocol maintains, in
addition to variables of P protocol, a variable Status that indicates the hier-
archical status of a node. The hierarchical status of a node v is : cluster-head
(Statusv = CH), ordinary node (Statusv = O), nearly ordinary (Statusv =
NO), or nearly cluster-head (Statusv = NCH). The status transition diagram
of a node v is illustrated in Figure 1, where transitions are the rules executed by
v (and defined in Protocol 3).

Protocol 3. Rules of the Transformed Protocol T P
Correct1(v) : Is_Leader(v)∧ (Statusv = O ∨ Statusv = NCH) −→ Statusv := CH

Correct2(v) : ¬Is_Leader(v) ∧ (Statusv = CH ∨ Statusv = NO) −→ Statusv := O

Pre-Election(v) : Statusv = O ∧ ¬Is_Leader(v) ∧ MustBecomeHead(v)
−→ Statusv := NCH ;

TElection(v) : Statusv = NCH ∧ ¬Is_Leader(v) ∧ Readyv = RCH ∧
MustBecomeHead(v) −→ Statusv := CH ; AE(v);

Rollback-Election(v) : Statusv = NCH ∧ ¬Is_Leader(v) ∧ ¬MustBecomeHead(v) ∧
¬MustAffiliate(v) −→ Statusv := O;

Pre-Resignation(v) : Statusv = CH ∧ Is_Leader(v) ∧ MustResign(v)
−→ Statusv := NO;

TResignation(v) : Statusv = NO ∧ Is_Leader(v) ∧ ClusterEmpty(v) ∧
Readyv = RO ∧ MustResign(v) −→ Statusv := O; AR(v);

Rollback-Resignation(v) : Statusv = NO ∧ Is_Leader(v) ∧ ¬MustResign(v)
−→ Statusv := CH ;

TAffiliation(v) : ¬Is_Leader(v) ∧ MustAffiliate(v) −→ Statusv := O; AA(v);

TComplement(v) : GC(v) −→ AC(v); // Complementary rules are not changed.

The value of Ready variable is an input to T P protocol, and it is updated
by an upper-layer hierarchical protocol, called UHP . Ready does not have any
impact on the transformation of P to T P, i.e., T P is self-stabilizing with service
guarantee without using Ready variable. Ready allows just the control of T P
actions by UHP in order to ensure the service guarantee of UHP protocol. For
example, UHP can be the knowledge of neighbor clusters protocol proposed in
[18], where the minimal service is “the permanent availability of paths leading
to the head of each neighbor cluster”. Ready is thus an interface that enables
the implantation of self-stabilizing with service guarantee protocols on the top
of T P protocol, as hierarchical routing protocols. The value RO (resp. RCH) of
Readyv indicates that v is ready to become ordinary (resp. cluster-head) without
violating some properties on UHP . For ordinary nodes the default value of Ready
is RO, and for cluster-heads the default value is RCH .

Assumption 1. Let v be a node. If Statusv = NCH (resp. Statusv = NO)
and Readyv = RO (resp. Readyv = RCH), there exist successive enabled actions
from the UHP protocol that set Readyv to RCH (resp. RO) in a finite time.

Predicates and Rules. Correction rules Correct1(v) and Correct2(v) update
initially the value of Status(v) according to the value of Is_Leader(v) predicate.
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Only one of these rules is enabled at a time by a node v. After execution of one
of these rules, both rules are disabled forever on v.

Affiliation process. In P protocol, a node v affiliates to NextHead’s cluster if
GA(v) is satisfied. However, if v and NextHead(v) perform respectively Affiliation
and Resignation rules during the same computation step, v will be affiliated to
a standard node (v is now orphan, because its head is not leader). To avoid
generating orphan nodes, T P protocol authorises the affiliation of v to cluster
of NextHead only if GA(v)∧StatusNextHead(v) = CH (i.e., MustAffiliate(v)).

Resignation process. For the same reason above, it is not enough that a leader v
satisfying GR(v) resigns its leadership. Otherwise, v could be orphan, and it could
generate orphan nodes after its resignation. This is why in T P protocol, a leader
v must satisfy the predicate MustResign(v), and its cluster should be empty be-
fore becoming a standard node. The resignation process is thus done in two
steps. First, a cluster-head v satisfying MustResign(v) has the Pre-Resignation
rule enabled. By the execution of Pre-Resignation rule, v becomes nearly ordi-
nary (it still behaves as leader). In this state (i.e., Statusv = NO), no node u
having NextHeadu = v can join the v’s cluster because ¬MustAffiliate(u) and
¬MustResign(u) are satisfied. Furthermore, the members of v’s cluster have to
leave their cluster, because they satisfy MustAffiliate∨ MustBecomeHead, and
so they eventually quit the v’s cluster. In the other hand, while v is nearly ordi-
nary, UHP protocol will update Ready to RO in a finite time (Assumption 1).
Once the v’s cluster is empty (i.e., ClusterEmpty(v) = T ) and Readyv = RO,
the rule TResignation(v) is enabled. By performing TResignation(v) rule, v be-
comes ordinary, and the Resignation action AR(v) is executed. If MustResign(v)
becomes unsatisfied when Statusv = NO, then Rollback-Resignation(v) rule is
enabled. Execution of Rollback-Resignation stops the resignation process.
These conditions guarantee that during the construction/maintenance of clus-
ters, no cluster-head abandons its leadership and generates orphan nodes.

Election process. A standard node v has to become leader if MustBecomeHead(v)
is verified: either due to the satisfaction of GE(v), or because v has to leave its
cluster (the v’s head is nearly ordinary) but v cannot affiliate with another clus-
ter. The election process is done in two steps. First, an ordinary node satisfy-
ing MustBecomeHead(v) has the Pre-Election rule enabled. After its execution, v
takes the nearly cluster-head status (it still behaves as a standard node). While v
is nearly cluster-head, the protocol UHP will update Ready to RCH in a finite
time (Assumption 1). Once Readyv = RCH and MustBecomeHead(v) is satis-
fied, the rule TElection is enabled for v. By executing TElection(v), v becomes
cluster-head, and it performs the Election action AE(v). If MustBecomeHead(v)
is no more satisfied when Statusv = NCH , then Rollback-Election(v) rule
is enabled. Its execution leads v to ordinary status and stops the election
process.

4 Service Guarantee of the Transformed Protocol T P
In this section, we prove that T P protocol quickly reaches a safe configuration,
in at most 3 rounds. Moreover, the safety property is preserved under any action
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of T P protocol and also despite the occurrence ofHT D disruptions. Some proofs
are omitted due to lack of space. They can be found in [19].

Lemma 1. A1 =
{
c ∈ C | ∀v ∈ V :

(
Is_Leader(v)⇒Statusv ∈ {CH,NO}

)
∧(

¬Is_Leader(v)⇒ Statusv ∈ {NCH,O}
)}

is an attractor from C in one round.

Observation 1. In a configuration of A1, the rules Correct1(v) and Correct2(v)
are disabled for any node v.

Definition 4 (Safety Predicate). Let us define the safety predicate SP as
follows: SPv ≡ Head(Head(v)) = Head(v)

SP ≡ ∀v ∈ V : SPv

Notation 1. Let c be a configuration, and X be a variable or a predicate. We
note by X [c] the value of X in the configuration c.

Lemma 2. Following the execution of TElection, TResignation or TAffiliation
rule by a node v, SPv is satisfied.

Proof. Let c1 be a configuration of A1, and cs be a computation step of T P
protocol c1

cs−→ c2. Let v be a node. During cs, if v performs the TElection rule,
the predicate SPv is verified in c2 (Head(v)[c2] = v).
Let us study the case where v performs TResignation or TAffiliation rule during
cs. We note u the head selected by v during cs (NextHead(v)[c1] = u). In c1, we
have Statusu = CH , otherwise predicates MustResign(v) and MustAffiliate(v)
are not satisfied in c1. SPv[c2] is satisfied because u cannot modify the value of
Head(u) by performing TResignation or TAffiliation rule during cs. �

Lemma 3. The set of configurations A2 = A1 ∩ {c ∈ C | SP is satisfied } is
closed under any computation step of the T P protocol.

Proof. Let c1 be a configuration of A2, and cs be a computation step of T P
protocol c1

cs−→ c2. Let v be a node. During cs, there are two possibilities.
• v did not change its head during cs. Let u be the head of v in c1, i.e.,
u = Head(v)[c1] = Head(v)[c2], and Head(u)[c1] = u. TElection(u) and TAffilia-
tion(u) rules are disabled in c1. So, TResignation(u) is the only rule that mod-
ifies the value of Head(u). However, TResignation(u) is disabled in c1 because
ClusterEmpty(u)[c1] is not satisfied. Thus, SPv stays satisfied in c2.
• v changes its head during cs. Note that the Pre-Election, Rollback-Election,
Pre-Resignation, Rollback-Resignation, TComplementary rules do not change
the v’s head identity. During cs, if v performs the other rules, SPv becomes
verified in c2 (according to Lemma 2).

We conclude that A2 is closed under any computation step of T P protocol. �

Theorem 1. A2 is an attractor for T P protocol from A1 in at most two rounds.

Corollary 1. A safe configuration is reached in at most 3 rounds.
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Proof. Each configuration of A2 is safe. The remaining of the proof follows di-
rectly from Lemma 1 and Theorem 1. �

Definition 5 (Highly Tolerated Disruptions). The set of highly tolerated
disruptions HTD handled by the protocol T P is:

• the change of node’s weight, • the crash of standard nodes,
• the failure of a link between (1) two leaders, or (2) two standard nodes,
• the joining of sub-networks verifying the predicate SP.

Theorem 2. SP is closed under any disruption of HT D.

Proof. Let v be a standard node (v is ordinary or nearly cluster-head), and u
its head (u is cluster-head or nearly ordinary). Let c ∈ A2. Starting from c, SPv

will be not verified only if one of the following events occurs: u’s removal from
the network or crash, or failure of the communication link between u and v.
Therefore, SP is preserved under any disruption of HT D. �

5 Correctness of the Transformed Protocol T P

In this section, we prove that a terminal configuration of T P protocol is not due
to a deadlock situation, but it corresponds to a terminal configuration of P .

Theorem 3. In a terminal configuration c of T P protocol, no action of P pro-
tocol is enabled.

Proof. Let u, v, w be nodes, and let ct be a terminal configuration of T P proto-
col. According to Theorem 1, ct belongs to A2. In the configuration ct, all rules
of T P protocol are disabled.

Assume that in ct, v satisfies ¬Is_Leader(v). In the configuration ct we have:
• Statusv = NCH ∨ Statusv = O, since ct ∈ A1.
• ¬MustBecomeHead(v) is satisfied, otherwise the Pre-Election or TElection rule
is eventually enabled according to Observation 1.
• Statusv = O, because otherwise the rule Rollback-Election is enabled.
• ¬MustAffiliate(v) is satisfied, otherwise the rule TAffiliation is enabled.
• ¬GE(v) ∧ StatusHead(v) = CH , since ¬MustBecomeHead(v) is satisfied.
We conclude that in ct, ¬Is_Leader(v)⇒

Statusv = O ∧ ¬GE(v) ∧ ¬MustAffiliate(v) ∧ StatusHead(v) = CH (3)

In addition, according to 2nd and 3rd Preconditions, we have

Is_Leader(v)⇒ ¬GA(v) ∧ ¬GE(v) ⇒ ¬MustAffiliate(v) ∧ ¬GE(v)

Therefore, in ct, we have :

∀v ∈ V : ¬MustAffiliate(v) ∧ ¬GE(v) (4)

Assume that in ct the node w satisfies Is_Leader(w), and it is nearly ordinary
(Statusw = NO). According to our assumptions, in ct we have:
• MustResign(w) is satisfied, otherwise the rule Rollback-Resignation is enabled.
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• ¬ClusterEmpty(w) is satisfied, otherwise TResignation(w) is eventually en-
abled (Observation 1). Thus, ∃u ∈ Nw : Head(u) = w (i.e., ¬Is_Leader(u)). We
have, StatusHead(u) = NO. According to Equation 3, node u does not exist.
• There is a contradiction, in ct Is_Leader(w) implies Statusw �= NO.

Assume now that in ct w is cluster-head, thus in ct we have:
• ¬MustResign(w) is satisfied, otherwise Pre-Resignation(w) is enabled.
We establish that in ct,

Is_Leader(w)⇒ Statusw = CH ∧ ¬MustResign(w) (5)

According to 1st Precondition, ¬Is_Leader(w)⇒ ¬GR(w)⇒ ¬MustResign(w).
Therefore, in ct, we have:

∀v ∈ V : ¬MustResign(v) (6)

According to Equation 1, in ct we have: GA(v) ⇒ Is_Leader(NextHead(v)).
Thus, StatusNextHead(v) = CH (Equation 5). We conclude that in ct,

¬MustAffiliate(v)⇒ ¬GA(v) (7)

Similarly, according to Equation 1, in ct we have: GR(w) ⇒
Is_Leader(NextHead(w)). Thus, StatusNextHead(w) = CH (Equation 5). We con-
clude that in ct, ¬MustResign(w)⇒ ¬GR(w) (8)

In ct, GC(v) guards are disabled because TComplementary(v) rules are disabled.

In terminal configuration ct, the guards GE(v) (Equation 4), GA(v) (Equations
4 and 7), GR(v) (Equations 5 and 8) and GC(v) are disabled for any node v. This
is a terminal configuration for P . �

6 Termination of the Transformed Protocol T P

The proof of termination of T P protocol poses a technical challenge. Indeed,
some times the rule TElection in T P protocol may be enabled whereas the
Election rule in P protocol is disabled, i.e., GE is not verified but MustBecomeHead
is verified. The execution of TElection rule when MustBecomeHead∧ ¬GE allows
to empty a cluster headed by a Nearly-ordinary node, and so it ensures the
convergence of T P protocol.

Requirement 1. For the following, we assume that Ap = A2∩{c ∈ C | ∀v ∈ V,
P1(v) ∧ P2(v)} is an attractor for T P protocol from A2 where:

P1(v) ≡ (GA(v) ∨ GE(v)) ∧ (Head(Head(v)) = Head(v))
⇒ wNextHead(v) > wHead(v)

P2(v) ≡ (∀u ∈ V,wu < wv or u will never perform a clustering action)⇒
The value of GR(v) does not change while v does not perform an action.

The predicate P1 is related to the fact that P is weight-based: a standard node
of a well-formed cluster (its head is a leader) changes of cluster only to affiliate to
a better leader. The predicate P2 is related to silent and weigh-based properties
of P : a leader v is neutralized only by an action of a stronger node (its weight
is larger than v’s weight).



From Self- to Self-stabilizing with Service Guarantee 175

Termination Scheme: Let e be a computation of T P protocol starting from
a configuration of A2 ∩ Ap. Along e, the stabilization of nodes of V is done in
steps. At the end of the ith step, a suffix ei of e is reached where all nodes of
Si executes only Pre-Election and Rollback-Election rules. We define the set Si,
and the suffix ei as follows:

• S0 = ∅; e0 = e; i � 1;

• Vi = V − Si−1;

• Let vi be the node of Vi having the highest weight.

• Let ei be a suffix of ei−1, such that along ei the following stabilization prop-
erties are always satisfied for the node vi:

1. Statusvi ∈ {CH,NCH,O}, and vi will never change its head identity.

2. If vi is cluster-head, then vi is disabled forever, and the vi’s cluster is
stable (i.e., no node joins or leaves the cluster headed by vi).

3. If vi is ordinary or nearly cluster-head, then vi only executes Pre-Election
and Rollback-Election rules.

• Si = Si−1 ∪ {vi}.

Lemma 4. For all i � 1, the suffix ei of ei−1 exists assuming that the suffix
ei−1 of e0 exists.

Theorem 4. All computations of T P protocol, starting from a configuration of
A2 ∩ Ap, reach a terminal configuration.

Proof. Let j = |V | be an integer. The suffix ej exists (where stabilization prop-
erties are satisfied for all nodes of V ), and it is reached by any computation of
T P protocol (Lemma 4). Along ej, nodes may only execute Pre-Election and
Rollback-Election rules. So, no node executes a clustering action (i.e., AA, AE,
AR, and AC actions), and the value of guards GA(v), GE(v), GR(v), and GC(v) does
not change for any node v. Furthermore, along ej , ∀v ∈ V, Statusv �= NO.
Assume that ej is infinite. So, there exists a set of nodes, denoted Inf �= ∅, that
perform infinitely often Pre-Election and Rollback-Election rules. Let v be the
node of Inf having the highest weight.
Along ej , each time v satisfies MustBecomeHead(v) (to perform Pre-Election
rule) then the guard GE(v) is satisfied, because StatusHead(v) = CH . Since no
node performs a clustering action, the node v satisfying GE(v) stays enabled
along ej unless it performs a clustering action. By fairness, v executes TElection
rule after Pre-Election rule and it leaves its cluster. This is impossible along
ej . We conclude that GE(v) is not verified along ej . Moreover, along ej we have
StatusHead(v) = CH . Thus, MustBecomeHead(v) is never satisfied along ej .
Therefore, along ej , Pre-Election(v) is disabled forever, and after the execution
of Rollback-Election(v) rule, v is disabled forever.

We conclude that v does not perform infinitely often the Pre-Election and
Rollback-Election rules: Inf = ∅. So, ej reaches a terminal configuration. �
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7 Complexity Measures and Concluding Remarks

Time Complexity. A comparison between the time complexity of P and T P
protocols is illustrated in Table 1, where UHP rules are rules of UHP protocol
updating the variable Ready, and U is the time required by UHP rules to achieve
such update. We conclude that an upper bound of the stabilization time of T P
protocol is (4 + 2U) ∗ SP , where SP is the stabilization time of P protocol.

Memory Space Complexity. Let MP be the memory requirement of protocol
P at each node. The protocol T P differs from P by the variable Status added
at each node. This variable has 4 values, so it can be coded by 2 bits. Thus, the
memory space complexity of T P protocol is MP + 2 bits per node.

Table 1. Comparison between time complexity of P and T P protocols

Protocol P Protocol T P
Rule Number of rounds Rule Number of rounds

Complementary 1 round TComplementary 1 round

Affiliation 1 round TAffiliation 1 round

Election 1 round Pre-Election + UHP
rules + TElection

2 + U rounds

Resignation 1 round Pre-Resignation + (Pre-
Election + UHP rules +
TElection or TAffiliation)
+ UHP rules + TResig-
nation

4 + 2U rounds

The proposed scheme constructs a silent self-stabilizing with service guaran-
tee 1-hop clustering protocol T P starting from a silent self-stabilizing one P .
In at most 3 rounds (Corollary 1), T P provides the following useful minimal
service: ”each node belongs to a cluster having an effectual leader”. The service
guarantee property of T P protocol ensures that this minimal service stays pro-
vided during the stabilization phase, even despite the occurrences of disruptions
HT D (see Definition 5). Thus, the hierarchical organization of the network is
quickly available and it is maintained over the time, which allows the continuity
of operation of upper-layer hierarchical protocols.

Futur Works. The presented transformer is adapted only to self-stabilizing 1-
hop weight-based protocols. A first generalization of this work is the design of
a transformer dealing with k-hops weight-based protocols (i.e. the cluster-head
being at distance at most k of its cluster’s members). A second generalization
is the design of a transformer adapted to any k-hops protocol; for instance [14]
where the selection of cluster-heads is randomized and not weight-based.
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Abstract. We focus on the verification of stabilizing programs using
SMT solvers. SMT solvers have the potential to convert the verification
problem into a satisfiability problem of a Boolean formula and utilize
efficient techniques to determine whether it is satisfiable. In this work, we
study the approach of utilizing techniques from bounded model checking
to determine whether the given program is stabilizing.

Keywords: Verification, Stabilization, Model checking.

1 Introduction

One of the successful automated approaches is model checking [2]. Model check-
ing is a technique to automatically verify whether a given model meets a given
property. If the program does not meet the given property, the process of model
checking typically produces a counterexample.

In this paper, we evaluate the effectiveness of SMT solvers in verifying stabi-
lization with the use of bounded model checking. The process of using bounded
model checking stabilization to verify consists of two parts, (1) verification of
closure and (2) verification of convergence. Specifically, the former requires that
if the program begins in a legitimate state then it remains in legitimate states.
And, the latter requires that if the program starts in a state outside its set of
legitimate states then it eventually reaches a legitimate state.

2 Approach for Verifying Stabilization with SMT Solvers

In this section, we present the approach of verifying self-stabilization properties
with SMT solvers by utilizing techniques from bounded model checking.

Verification of stabilization consists of two parts: (1) verifying closure and (2)
verifying convergence. In Section 2.1, we identify the formula whose satisfiability
can be used to determine whether closure property is satisfied. In Section 2.2,
we identify the formula whose satisfiability can be used to determine whether
convergence property is satisifed.
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2.1 Verifying Closure

Let P be the given program and let I be the legitimate state predicate to con-
clude that P is stabilizing. Let T be the predicate that characterizes transitions
of P .

Observe that the closure property requires that if (s0, s1) is a transition of
program P and state s0 is a legitimate state then state s1 is also a legitimate
state. Thus, this can be captured by formula ¬Ψl, where

Ψl = (I(s0) ∧ T (s0, s1) ∧ ¬I(s1))
Remark. For compactness, the formula Ψl does not explicitly specify the pro-
gram or the set of legitimate states that are inputs in deciding closure.

Based on whether Ψl is satisfiable or not, we have two scenarios, SC1 and
SC2:

1. SC1 : if Ψl is satisfiable then it proves that it is possible to begin in a
legitimate state, execute a program transition and be in a state that is not
a legitimate state. This implies that the closure property is not satisfied.
Moreover, in this case, assignment to s0 and s1 (which in turn includes values
of variables of the program in state s0 and s1) provides a counterexample.

2. SC2 : if Ψl is unsatisfiable then this implies that the closure property is
satisfied.

2.2 Verifying Convergence

We verify convergence by checking that starting from an arbitrary state, the
program, say P , reaches a legitimate state (in I) in k steps, where k is a given
parameter used in the verification. Observe that the convergence property re-
quires us to consider a sequence of states, s0, s1, · · · , sk such that each successive
transitions are program transitions. Moreover, to verify (negation of) conver-
gence requirement, we require that I(sk) should be false. Additionally, in this
verification, we can utilize the closure requirement to add additional constraints
requiring that I(sj), 0 ≤ j ≤ k, should be false. Additionally, in bounded model
checking, one typically adds constraint about what the initial state should be.
Thus, the formula Ψv used for verifying convergence is as follows:

Ψv = T (s0, s1) ∧ T (s1, s2) ∧ · · · ∧ T (sk−1, sk)
¬I(s0) ∧ ¬I(s1) ∧ · · · ∧ ¬I(sk)

Based on whether Ψv is satisfiable or not, we have the following two scenarios:

1. SC3 : if Ψv is satisfiable, convergence cannot be achieved in k steps. In this
case, the number of steps needs to be increased. If the state space of the
program is finite and k equals the number of states in the program then this
implies that the convergence property is not satisfied.

2. SC4 : if Ψv is unsatisfiable, then it proves that even if we begin in an arbitrary
state, it is impossible for the program to be in an illegitimate state if it
executes for k steps. In other words, the convergence property is satisfied.
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3 Study Case: K-State Token Ring Program

In this section, we study Dijkstra’s K-state token ring program [1] for illustration
purpose. The token ring program is as follows: The program consists of N + 1
processes, numbered from 0 to N . Each process p.i, 0 ≤ i ≤ N , has one variable
x.i. The domain of x.i is {0, 1, . . . , K − 1}. These processes are organized in a
unidirectional ring.

The program consists of two types of actions. The first type is for process 0.
This action is enabled when x.0 equals x.N . When p.0 executes its action, it
increments x.0 by 1 in modulo K arithmetic. The second type of action is for
process p.i, i �= 0. This action is enabled when x.i is not equal to x.(i−1). When
p.i executes its action, it copies x.(i − 1). Thus, the actions are as follows:

K0:: x.0= x.N −→ x.0 = (x.0 + 1) mod K;
Ki:: x.i �= x.(i− 1) −→ x.i = x.(i − 1);

Performance Evaluation. We evaluate the performance of the token ring program
in Table 1. In particular, Table 1 illustrates the time for verifying the closure
and the convergence property.

Table 1. Verification Time for Ψv for Token Ring

Number of nodes state space
Number of steps
for convergence

Execution time(s)

for convergence

Execution time(s)

for closure

3 101 4 0.008944 0.005617
4 102 14 0.494496 0.005979
5 103 25 214.0957 0.013349

4 Conclusion

We find that the effectiveness of SMT solvers in verification of stabilization is
mixed. Specifically, compared with existing approaches [3, 4] that utilize BDD
based model checkers to verify stabilization, the time for verification is larger
with SMT solvers. However, BDD based tools require one to identify the order
of program variables in the BDD. An incorrect ordering of variables can increase
the verification time by orders of magnitude making it significantly worse than
the corresponding verification time with SMT solvers. Also, the results in [3, 4]
apply only for verifying finite state programs. By contrast, the results in this
paper demonstrate the feasibility of verifying infinite state program.
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Introduction. Software model checking [4] is a useful and practical branch of verifica-
tion for verifying the implementation of the system. The wide usability comes at a price
of low time and space efficiency. In fact, model checking of even simple single-process
programs can take several hours using state-of-the-art techniques [6]. Verification com-
plexity gets even worse for concurrent programs that simultaneously execute loosely
coupled processes. Verification efficiency can be greatly improved by capturing the
state of the program, a technique generally referred to as stateful model checking [2].
Intuitively, state capture enables to detect that two states are identical and, therefore, to
consider only a representative state for verification. Unfortunately, capturing the state in
general software systems can be very hard, even if the entire state of the system resides
in the (local) memory. As a result, certain verification approaches (commonly called
stateless model checking) do not capture the system’s state at all [4]. Stateful model
checking is in principle possible for software, however, at a price of considerable over-
head. Therefore, stateful model checking is efficient only if the achieved reduction of
redundantly explored states compensate for the overhead.

Our focus is on fault-tolerant message-passing protocols, a class of systems that can
particularly benefit from formal verification for various mission-critical applications.
Although the verification of fault-tolerant message-passing protocols is known to be
a hard problem due to concurrency and faults, model checking has proven to be an
efficient approach to debug and verify small instances of deployed protocols [5].

In this brief announcement, we propose the state capture algorithm MP-State, which
improves software model-checking of general message-passing protocols. MP-State
makes use of two techniques that enable time- and space-efficient model checking. The
first technique is a selective hashing mechanism that captures state information only if
this might interfere with the specification. The second technique is a selective push-on-
stack strategy, which is an optimization that filters the states that are pushed onto the
search stack and, hence, are subject to backtracking. Selective push-on-stack is sound
because filtered-out states have no unvisited successor states.

Motivating Example. We give the intuition behind the proposed approach through a
simple message-passing example with two processes, p1 and p2. Process p1 sends two
messages m1 and m2 to process p2. Process p2 stores in its local state the messages it
receives. It is possible for m2 to arrive later than m1 at p2 due to network delays and p2
can process available messages (m1 and m2) in one atomic step. Having received m1
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(a) (b)

Fig. 1. (a) Naive depth-first search (DFS) and (b) MP-State search

and m2, p2 sends an ack message to p1, informing that it has successfully received the
messages sent by p1.

Figure 1(a) shows the state graph of the protocol as explored by a naive depth-first
search (DFS) and the corresponding operations of the search stack. We observe that
software model checkers can utilize auxiliary variables for the implementation of the
model checking process. These variables are not specified by the protocol under test.
For example, in Basset and MP-Basset [1], an auxiliary variable stores the messages de-
livered by a transition that is scheduled for execution. As a result, s5 and s6 are different
states, with the overhead of storing two states and exploring the successor state s two
times. In addition to auxiliary variables, model checkers may have auxiliary transitions.
Auxiliary transitions are the transitions that are ”independent” from the protocol under
test. For example, Basset and MP-Basset uses auxiliary transitions for the purpose of
switching context between processes, which is related to the model checker, not to the
protocol. As a result, states involved in the execution of such transitions (such as s2 and
s3 in Figure 1) are considered by DFS as any other state.

Selective Hashing. We observe that (a) the transitions of common message-passing
protocols depend only on the local states of the processes and pending (undelivered)
messages; and (b) the usual properties of these protocols concern only about local states.
Therefore, it is sufficient to capture local states and pending messages of each visited
state. We refer to this technique as selective hashing. In our example, the state graph
resulting from selective hashing is shown in Figure 1(b). Note that states s5 and s6 col-
lapse into the same state because p1 and p2 have the same local states in both states and
the set of pending messages is empty. The gain of selective hashing is that (i) different
states resulting from differing values of auxiliary variables have to be processed only
once by the model checker, e.g., for successor states of s5 and s6, which is s, and (ii) it
is time efficient because state capture does not need to process the entire state.
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Selective Push-on-Stack. We also observe that (c) usually auxiliary transitions are not
concurrent with other transitions and (d) auxiliary transitions and states where these
transitions are executed do not have to be remembered for counterexamples. Therefore,
states with enabled auxiliary transitions do not have to be pushed onto the search stack.
We refer to this technique as selective push-on-stack. Consider the auxiliary transition
t from s2 to s3 in our example. Since t is the only transition that can be executed in s2,
no state remains unvisited if s2 is not backtracked by the search. Also, a path excluding
s2 and t preserves all protocol-specified information. The application of selective push-
on-stack to our example leads us to the search stack in Figure 1(b), where s2 is not
involved in any stack operation. Note that selective push-on-stack visits the same states
as the naive search but it is more time efficient thanks to fewer stack operations.

MP-State and other Reductions. Broadly-studied and intuitive reductions are
partial-order (POR) [3] and symmetry reductions (SR) [7]. Figure 1 demonstrates that
MP-State is not a special case of these reductions. Firstly, POR is based on the idea of
swapping the order of commutative transitions but the path (s1 → s2 → s3 → s6 → s)
that is excluded in the reduced state graph in Figure 1(b) cannot be obtained by re-
ordering the transitions of another path in the graph. Formally, considering the main-
stream POR semantics, Figure 1(b) is not a stubborn/persistent/ample set reduction of
(a) because in every state of the reduced state graph the number of enabled transitions
is the same as in the unreduced one.

Secondly, SR is based on the symmetrical structure of the state graph but there is no
such symmetry in Figure 1(a). Formally speaking, there is no permutation acting over
the set of states (the formal notion of symmetry [7]) that would preserve the transition
relation. In fact, in order to symmetry reduce Figure 1(a) into (b), a permutation would
have to transpose s5 and s6 but these two states are not “symmetric” because of s4.

Our Achieved Reductions Up to 69%. Our evaluation of MP-State with deployed fault
tolerant message-passing protocols (Paxos consensus, distributed storage, and
atomic broadcast) fortifies our initial claim that despite its overhead, stateful model
checking outperforms stateless model checking. Besides, the results of our experiments
show that MP-State is highly efficient, achieving a reduction of model checking time
and memory by up to 69% over naive (unreduced) stateful model checking with depth-
first search. In one of our experiments, we managed to reduce model checking time
from 22 hours 19 minutes to 10 hours 22 minutes.
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Abstract. Preserving anonymity and privacy of customer actions within
a complex software system, such as a cloud computing system, is one of
the main issues that must be solved in order to boost private compu-
tation outsourcing. In this paper, we propose a coordination paradigm,
namely oblivious assignment with m slots of a resource R (with m ≥ 1),
allowing processes to compete to get a slot of R while ensuring, at the
same time, both fairness of resource allocation and obliviousness, that is,
the impossibility for any process to infer which slot of R is assigned to
any other process. We study oblivious assignment with m slots solvabil-
ity issues based on the message pattern of the algorithm. We also present
a distributed algorithm solving oblivious assignment with m slots within
a distributed system, assuming the existence of at least two honest pro-
cesses and m ≤ n (where n is the number of processes). The algorithm
is based on a rotating token paradigm and employs an adaptation of the
ElGamal encryption scheme to work with multiple parties and to ensure
obliviousness of the assignment. Finally, the correctness of the algorithm
is formally proved.

Keywords: distributed coordination abstractions, secure computations,
mutual exclusion, distributed systems.

1 Introduction

In this paper, we investigate the problem of oblivious assignment with m slots.
Informally, we consider n non-anonymous processes competing for accessing one
of the m slots of a resource R. Each slot can be assigned to at most one process
at a time. When a resource is not needed anymore, it is released and assigned to
another requesting process. Note that, processes are utterly identifiable but we
strive to protect the allocations of resource slots to processes. Thus, processes are
oblivious and in particular they are unaware of assignments between processes
and resource slots.

A.W. Richa and C. Scheideler (Eds.): SSS 2012, LNCS 7596, pp. 187–201, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



188 G. Ateniese et al.

This problem is particularly interesting because it crystallizes the difficulty
in coordinating processes that wish to interact with a resource without being
noticed by anyone else. Resource sharing environments, channel assignments in
telco systems are examples of domains where this problem can be relevant. As an
example, an oblivious assignment scheme can help a group of clients of a cloud
provider to hide and protect their allocation of resources within a virtualized en-
vironment or across distinct domains. Resources can thus be obliviously allocated
to clients. Not even the cloud provider is aware of these various assignments.
We target organizations moving to the cloud, or outsourcing their services, that
wish to access or allocate virtual resources anonymously. Cryptographic systems,
such as fully homomorphic encryption [11], do not solve the oblivious assignment
problem. Homomorphic encryption allows clients to perform computation over
encrypted data ensuring that sensitive information remain inaccessible to the
cloud provider. However, the provider can derive which resources are allocated
to which clients. This constitutes a side-channel leak we aspire to prevent. We
stress that this type of side-channel has not been considered before in the context
of cloud computing.

The paper first defines the oblivious assignment with m slots (O-mA) problem.
More precisely, if an honest process pi gets a slot rj , then no other process is
aware of this assignment.We also provide a stronger form of this problem, namely
strong oblivious assignment with m slots (SO-mA). In this case, given a process
pi, no other process will learn whether any slot was assigned to pi or not. That
is, it is not possible to infer whether a specific process is using a resource slot
or not. We study solvability issues of O-mA and SO-mA problems based upon
the message pattern generated by distributed algorithms. We will show that
SO-mA and O-mA can be implemented via token-based algorithms. We also
show that a standard perpetual circulating algorithm is successful only in the
presence of n−1 honest processes (where n is the number of processes). Then, we
introduce a rotating token distributed algorithm solving O-mA where we assume
the existence of at least two honest processes and with m ≤ n. The algorithm
employs an adaptation of ElGamal encryption scheme to ensure obliviousness of
the assignment. Finally, the correctness of the algorithm is formally proved.

The rest of the paper is organized as follows: related work is in Section 2
and the system model is defined in Section 3. Section 4 formalizes the oblivi-
ous assignment with m slots problem and provides some solvability conditions,
while Section 5 presents a distributed algorithm solving the oblivious assignment
problem. Finally, Section 6 concludes the paper. Due to the lack of space some
proofs are omitted in the text and can be found in [1].

2 Related Work

Defining distributed algorithms for accessing resources in mutual exclusion has
been a mainstream field of research in the eighties [18] and several efficient al-
gorithms have been devised (e.g., [19], [21], [16] just to cite a few). To facilitate
fault tolerance without assuming failure detection, the general mutual exclusion
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problem has been extended to the k-mutual exclusion one [17], where at most k
different processes can concurrently access the same resource; general strategies
working in a failure-free environment have been adapted to solve this more gen-
eral problem in an asynchronous message passing system (e.g. [14], [8]).
A different generalization of the mutual exclusion problem, namely k-assignment,
has been presented in [9]. In k-assignment there are k < n identical, named re-
sources that may be requested by n processes and the authors shown that the
problem can be solved in an asynchronous distributed system, as long as at most
k/2 processes can fail.

Similarly, in the renaming problem [3], each participating process is initially
associated to a unique identifier from a large name space and the final objec-
tive is to select unique identifiers from a smaller name space. A more general
specification, called k-assignment with m slots, is defined in [4] by combining
together renaming and k-exclusion. Informally, such a problem requires that at
most k processes access concurrently one of the m distinct available slots. All
these existing algorithms do not mask the assignment between slots and compet-
ing processes. On the contrary, they exploit their knowledge about assignments
to minimize the number of exchanged messages.

Generally, the oblivious assignment problem can be solved using secure multi-
party computation [22]. This is a paradigm that allows several parties to evaluate
a function f(x1, . . . , xn), or multiple functions, without revealing the inputs
x1, . . . , xn. That is, every party pi contributes xi but at the end of the protocol
it will only learn f(x1, . . . xn) and nothing else. Unfortunately, these generic
techniques are notoriously very expensive and call for an exorbitant number
of messages to be exchanged. However, there exist more efficient alternatives
for many functionalities. The one that is more closely related to the oblivious
assignment functionality is referred to as mental poker. Mental poker algorithms
[20] allow people to play card games over networks without any trusted dealer.
The basic idea is to assign cards to players such that cards stay private and can be
safely shuffled. In addition, it is possible to detect cheaters. While the original
scheme [20] represented each card with a large number of bits, more recent
work [6] makes card sizes smaller and independent of the number of players.

The oblivious assignment problem does not fit completely within the mental
poker framework, however. In our model, we must avoid starvation and ensure
liveness and thus allow a process to pick a specific slot of a resource within a
fixed amount of time (while this is not possible in mental poker). The release of
a resource is also significantly simpler than discarding a card from hand. Indeed,
we do not have to preserve the value of the slot (or card) and thus we can just
set, obliviously, a boolean flag.

3 System Model

The distributed system is composed of a set of n processes Π = {p1, p2 . . . , pn},
each one having a unique identifier, that compete form distinct slots {r1, . . . , rm}
of a resource R, where m ≤ n. Each process pi competes to get exclusive access
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to a slot of R. At any time, each slot can be assigned to at most one process
and allocated slots must be released within a finite period of time. Specifically,
when process pi needs to acquire one of the m slots of R, it invokes a request()
operation and waits until a grantResource() event occurs returning the id of the
slot rj assigned to pi. To release the slot rj , pi invokes a release() operation.
Note that we operate under the assumption that processes do not crash.

We assume the existence of a coalition C (with 1 ≤ |C| ≤ n − 2) of honest-
but-curious processes [12]. Such processes act according to their algorithm but
they can collaborate to acquire and share information about others processes.
Processes not belonging to the coalition C are said to be honest, i.e., they are
correct, behave according to the algorithm and do not attempt to infer other
information, except the ones obtained during the algorithm execution.

Processes coordinate their access to slots of R by exchanging messages. We
assume that for any pair of processes pi, pj ∈ Π , there exists a reliable FIFO
point-to-point communication channel connecting them. Messages are delivered
”most of the time” within δ time units, that is the underlying communication
system is synchronous most of the time. However, there could be finite periods
of time where the systems behaves as asynchronous. We assume that processes
belonging to the coalition C are powerful enough to know both the communica-
tion bound δ and if the system is in a synchronous period or not. Such processes
can use this knowledge to infer information about other honest processes.

4 Oblivious Assignment with m Slots

Given a generic resource R, it can be used concurrently by different processes;
however, any of its m slots can be used in an exclusive way. We remark that every
process can always get at most one slot of R, that is, the assignment of multiple
slots to a single process is not allowed. At the same time, it must be guaranteed
that competing processes will eventually obtain a slot of R. In addition, resource
assignment must be kept private.

4.1 Problem Definition

The Oblivious assignment with m Slots (O-mA) problem is specified by the
following properties:

1. UniqueAssignment : If pi and pj access concurrently the resource R, then the
slot rx assigned to pi is different from the slot ry assigned to pj .

2. LockoutAvoidance : If a process pi requests the access to the resource R, then
it eventually gets a slot rj of R.

3. ObliviousAssignment : if a slot rj is assigned to an honest process pi, then no
other process is aware of this assignment.

As an example, consider a distributed system composed by two honest processes,
p1 and p2, and n− 2 honest-but-curious processes. Let r1 and r2 be two slots of
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a resource. Suppose that after a run of an oblivious assignment algorithm both
processes obtain a single slot, thus only two assignments are possible: (i) 〈p1, r1〉,
〈p2, r2〉 or (ii) 〈p1, r2〉, 〈p2, r1〉. The ObliviousAssignment property requires that
the coalition of n− 2 honest-but-curious processes will not be able to determine
which is the actual assignment between the two possible options.

4.2 Strong Oblivious Assignment with m Slots (SO-mA)

We consider a stronger variant of the O-mA problem, which is referred to as
SO-mA, where it is not possible to determine whether resources are allocated to
a specific process. The SO-mA problem can be defined as O-mA by replacing
the ObliviousAssignment property with the following one:

StrongObliviousAssignment : For any process pi, no other process can infer
whether pi owns a slot of a resource R or not.

In the previous example, the n− 2 honest-but-curious processes may not know
what was the actual assignment but they can collectively determine that certain
slots were assigned to p1 and p2. This violates the Strong Oblivious Assignment
property.

4.3 Solvability Issues for O-mA and SO-mA Problems

In the following, we will show a necessary condition for an algorithm to solve
O-mA and SO-mA. In particular, we will show that there exist constraints on
the message pattern that any algorithm must satisfy to solve our problem.

Lemma 1. Let A be a slot assignment algorithm, ensuring properties 1 and 2.
If the message pattern of A expects a process pi to send a request message m to
another process pj to acquire a slot rj and |C| ≥ 1, then A cannot solve O-mA.

Proof Let’s consider the following protocol run, where pi is a process in the
honest-but-curious coalition C and pj needs to access a slot of a resource R. It
is possible for pj to ask for a slot rj from pi. As a consequence, pi will learn that
pj is willing to access the slot rj . From this time on, pi declares the assignment
〈pj , rj〉. Considering that A satisfies properties 1 and 2, pi will eventually access
the slot and this violates property 3. �Lemma 1

A a consequence of Lemma 1, assignment algorithms based on explicit per-
missions for resource allocation cannot solve O-mA and thus neither SO-mA.
Examples of such algorithms in the context of distributed mutual exclusion are
( [14], [16], [17], [18]). A class of algorithms that satisfies the necessary condition
of Lemma 1 is the one based on a rotating coordinator approach (also called
perpetual circulating token [5], [15]) as shown in the next section.
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5 A Rotating Token Algorithm for Solving O-mA

5.1 Ruling Out Trivial Perpetual Circulating Token Algorithms

Let us consider a standard token-based algorithm, namely trivial-A, assigning
slots as follows: When a process receives the token, it could select and access a
slot of the resource R, without sending out any notification.

Once the token owner releases the slot, the token is forwarded to another
process, according to a deterministic order defining a logical ring.

Note that, this algorithm satisfies property 1 and 2 and it is not in the family
defined by Lemma 1.

The following Lemmas show that this simple algorithm implements O-mA
and SO-mA only if there is at most one honest-but-curious process.

Lemma 2. Consider an algorithm trivial-A running on the top of the distributed
system described in Section 3 and satisfying properties 1 and 2. If |C| ≥ 2, then
trivial-A cannot ensure SO-mA property.

Proof Let us consider the following run where two honest-but-curious processes
are respectively the predecessor and the successor of an honest process pi in the
ring and the communication delay is bounded by δ (see Section 3). When pi−1

sends the token to pi and it decides to access a slot rj , if pi keeps the slot
for an interval of time greater than 2δ then pi−1 and pi+1 can collude to infer
deterministically that pi has acquired a slot. This can be simply accomplished
by looking at the timestamps of token messages sent from pi−1 to pi and from
pi to pi+1. This violates the SO-mA property. �Lemma 2

The next Lemma follows directly from the previous one:

Lemma 3. Consider a distributed system with a bound δ on message transfer
delay and an algorithm trivial-A running on top of it. If m = 1 and |C| ≥ 2,
trivial-A cannot ensure O-mA property.

5.2 A Rotating Token Algorithm Resilient to |C| ≤ n − 2
Honest-But-Curious Processes

Our algorithm is token-based and works in rounds. As in the trivial algorithm,
the token circulates on the top of a logical ring formed by the processes (i.e. each
process pi passes the token to its neighbor pi+1modn). Each round is character-
ized by two phases, allocation phase, where request() operations are handled and
resource slots are allocated to processes, and release phase, where each process
frees its assigned slot once it has finished with it. Each round is led by a co-
ordinator pc that takes care of the token creation, encoding, and dissemination
for that specific round. A round ends when all allocated slots are released. The
next round is coordinated by the process that follows pc in the logical ring. In
the following, we will use the term ticket to indicate a numerical representation
of a slot. The coordinator will create n tickets (that is, a ticket per process in
the system) regardless of the number of actual slots.
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Allocation Phase: The coordinator of the current round creates a token,
request token, containing a set of tickets {tk1, tk2, . . . , tkn}, each one identi-
fying a resource slot. Only m out of n tickets will univocally be associated to
actual slots of the resource (i.e. valid tickets) while the remaining n−m tickets
(i.e. invalid ticket) represent dummy slots. Invalid tickets help prevent leakage
of information on actual assignments.

At the beginning of each round, the coordinator picks one ticket, encrypts the
request token via ElGamal encryption [10], and forwards the token to the next
process in the ring. Upon the receipt of the token, a process pi picks a ticket,
re-encrypts the token to make it indistinguishable, and forwards it to the next
process in the ring. After getting the ticket, pi will decrypt it by asking other
processes for their ephemeral keys i.e., a temporary key that can be used only
to decrypt the current ticket; if the ticket is valid and pi requested a slot of R,
then it will trigger the grantResource event, otherwise it is ready for the release
phase.

Release Phase: The release phase starts when the request token returns to
the coordinator. The coordinator creates a release token, used to identify the
released tickets, and starts to circulate it in the logical ring. A ticket is released
by a process pi in two cases: (i) pi did not request a slot of R or, (ii) pi fin-
ished with the slot (i.e., when invoking the release() operation). Every time the
release token is passed to the next process, it is re-encrypted to avoid informa-
tion leakage.

The token release token circulates continuously till the coordinator verifies
that the number of released tickets is equal to n. At this point, the round is
completed and the next process in the ring becomes the new coordinator for a
new round.

5.3 ElGamal Encryption with Multiple Parties

Notation and Assumptions. In the following, we use y ← f(x) to indicate the
assignment to y of the value obtained evaluating a function f over the input x,
while we will use y

u←−S to indicate that y is a random element uniformly selected
from a set S. We indicate with Zq the class of residues modulo q. In the following,
we will assume to have a cyclic subgroupG of prime order q and generator g where
the Decisional Diffie-Hellman (DDH) assumption [7] holds. Informally, the DDH

assumption states that given a triple (gx, gy, gxy) with x, y
u←−Zq it can be distin-

guished from a triple in the form (gx, gy, gz), with z
u←−Zq, by using a probabilistic

polynomial time algorithm, with negligible probability. For a concrete instantia-
tion, we considerG to be the set of quadratic residues ofZ∗

p where p is a safe prime,
i.e., p = 2q + 1 with prime q. A generator g of the group G is simply found by se-
lecting ḡ

u←−Z∗
p and setting g = ḡ2 mod p whenever ḡ �= 1.

ElGamal Encryption. The idea behind ElGamal scheme is to use gxy as a
shared secret between sender and recipient. The private key is y

u←−Zq while the
public key is the value gy ∈ G.



194 G. Ateniese et al.

To encrypt an element m ∈ G, it is enough to randomly select an element r
u←−Zq and compute the ciphertext as a pair (c1, c2) = (gr,mgry) ∈ G × G. The
recipient of the ciphertext (c1, c2) recovers m by computing c2/c

y
1 ∈ G.

Note that, under the DDH assumption, ElGamal encryption is semantically
secure [7]. Intuitively, a semantically secure scheme does not leak any information
about the encrypted message. In particular, given a ciphertext (c1, c2) of one of
two messagesm0 andm1, an adversary cannot tell which message was encrypted.
This holds even if the adversary chooses both messages, as long as they are both
in G.

Adaptation. We adapt the ElGamal crypto-system to work with multiple par-
ties. Each process pi has a private key Pr keyi

u←−Zq, and the corresponding
public key is calculated as gPr keyi . In addition, pi also maintains the group

public key as the value gY = g
∑

pi∈Π Pr keyi .
We use the ElGamal crypto-system to encrypt tickets whose values contain

relevant information about slots of the resource R (e.g. such as network address,
memory location, printer ID, etc...). Thus, generic numerical tickets must be
mapped into elements of the subgroup G of quadratic residues in Z∗

p.
The standard mapping-then-encrypt procedure works as follows: (i) Consider

the ticket t as an element of Zq, (ii) set t̄ = t + 1, and (iii) encrypt the value
t̄2 mod p. The decryption phase is more involved: (i) decrypt and recover the
plaintext m̄ = t̄2 mod p, (ii) compute a square root of m̄ as m = m̄(p+1)/4 mod p,
and return the ticket m − 1 if m ≤ q, or p − (m − 1) when m > q. In the rest
of the paper we assume that tickets or any arbitrary messages are in G, either
directly or through the mapping described above.

A ticket t is encrypted for the group of precesses as (gr, tgrY ). Each process
must contribute to the decryption phase in order to recover the ticket by com-
puting the partial value grPr keyi . The product modulo p of these partial values
from all processes is equal to grY which is used to recover t as in standard ElGa-
mal. We define a function removeLayer that receives as input a valid ciphertext
and removes the component grPr keyi from it, effectively allowing other processes
to decrypt the message. This function is executed locally by the process pi.

Notice that, ElGamal ciphertexts can easily be randomized, i.e., given a ci-
phertext (c1, c2) anyone can produce a new ciphertext (c′1, c

′
2) on the same mes-

sage without knowing any secret key or learning the message itself. Indeed, given
(gr, tgrY ), it is enough to select r∗ u←−Zq and compute a new and unlinkable ci-
phertext (gr+r∗ , tg(r+r∗)Y ). The security of this randomized ElGamal encryption
still holds as shown in [13].

5.4 The Algorithm

In this section, we provide the details of the oblivious assignment scheme for our
system model. In particular, we first describe the data structures maintained
locally by each process pi, then we provide the details about the coordinator
selection and the round phases, i.e., the assignment phase and the release phase.
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Init:
(01) roundi ← 1; coordinatori ← false; statei ← NCS; releasingi ← true;
(02) Pr keyi ← init private key(pi); Pb keyi ← init public key();
(03) keysi ← ∅; ticketi ← ⊥; resourcei ← ⊥ ;

————————————————————————————————————————
(04) when Init or roundi changes
(05) reset variables();
(06) if (i = roundi mod(n))
(07) then coordinatori ← true
(08) endif

————————————————————————————————————————
(09) when coordinatori becomes true
(10) if (statei = waiting)
(11) then resourcei ← select valid slot({r1, r2, .., rn})
(12) statei ← CS
(13) releasingi ← false
(14) trigger grantResource (resourcei)
(15) else resourcei ← select notValid slot({r1, r2, .., rn})
(16) endIf
(17) request token ← create request token({r1, r2, .., rn} \ resourcei)
(18) send request (request token) to p(i+1)modn

Fig. 1. The rotating leader protocol (code for pi)

Data structures. Each process pi maintains locally the following data struc-
tures:
• roundi: is an integer representing the round pi is participating in;
• coordinatori: is a boolean variable set to true when pi is the coordinator for

the current round, false otherwise;
• statei: is a variable that can be set to {NCS,waiting, CS} and it represents

the state of pi, respectively pi is not interested in any resources, pi is waiting for
a resource, pi has obtained a resource;
• ticketi: is a pair < rd, tk > where tk is an encrypted ticket associated to a

slot (whether real or not) and rd is a random number used by the encryption
algorithm and it is necessary but not sufficient to recover the decrypted value of
the ticket;
• Pr keyi/Pb keyi: ElGamal private/public keys used to decrypt/encrypt

tickets;
• keysi: is a set variable, used in the assignment phase, to store all the tem-

porary keys (i.e. ephemeral keys) needed to decrypt the selected ticket.
• resourcei: is an integer representing the slot id obtained by pi;
• releasingi: is a boolean flag. It is set to true when pi has no assigned slot

of R, false otherwise.
In addition, the algorithm also employees two tokens, namely request token

and release token. A token is essentially a set containing encrypted tickets and
each ticket refers to real or dummy slots.

Round and Coordinator Change. The pseudo-code for the round and coor-
dinator change is shown in Figure 1.

We defined the following functions to simplify the code:
• init private key(pi)/init public key(): initialize pi’s private and public keys.
• reset variables(): reset all variables, except roundi, as declared into the Init

statement.
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upon event request()
(01) statei ← waiting

————————————————————————————————————————
(02) when request (request token) is delivered
(03) if (¬coordinatori)
(04) then request token ← shuffle(request token)
(05) request token ← randomize token(request token)
(06) ticketi ← select ticket(request token)
(07) send request (request token) to p(i+1)modn

(08) for each pj ∈ Π do
(09) send get ephemeral key (i, ticketi) to pj

(10) endfor
(11) else release token ← create release token()
(12) release token ← release resource(release token, releasingi, resourcei)
(13) send token release (release token) to p(i+1)modn

(14) endif
————————————————————————————————————————

(15) when get ephemeral key(j, tk) is delivered:
(16) ep keyi ← generate ephemeral key(Pr keyi, tk);
(17) send ephemeral key (ep keyi, i) to pj

————————————————————————————————————————
(18) when ephemeral key(ep key, j) is delivered:
(19) keysi ← keysi ∪ {< ep key, j >};

————————————————————————————————————————
(20) when (|keysi| = n)
(21) resourcei ← decodeElement(ticketi, (keysi ∪ {< Pr keyi, i >}));
(22) if ((resourcei ∈ valid) ∧ (statei = waiting))
(23) then statei ← CS
(24) releasingi ← false
(25) trigger grantResource (resourcei)
(26) endif

Fig. 2. The request() protocol (code for pi)

• select valid slot({r1, r2, .., rn}): given the set of (real and dummy) resource
slots {r1, r2, .., rn}, select a real slot.
• select notValid slot({r1, r2, .., rn}): given the set of (real and dummy) re-

source slots {r1, r2, .., rn}, select a dummy slot.
• create request token(r1, r2, . . . , rn−1): given the set of (real and dummy) re-

source slots {r1, r2, .., rn−1}, creates a set of tickets and the corresponding request
token.

A new round starts as soon as roundi is updated (line 04 Figure 1, line 19 Figure
3) and this causes all local variable, except roundi, to be reset (line 05). Each
process pi checks whether it is a coordinator of the current round. If so, it sets the
local coordinatori variable to true (lines 06 - 08). This triggers a new assignment
phase lead by pi (line 09). The new coordinator checks if it is in the waiting state
(line 10) (that is, it is waiting for a slot) and, in that case, it selects a real slot
of the resource (lines 11). Otherwise, the coordinator selects a dummy slot (line
15). After the selection, pi creates and encrypts the request token (line 17) and
sends it to its “neighbor” pi+1mod (n) (line 18).

The request() Operation and the Assignment Phase. The pseudo-code of
the request() operation and the assignment phase is shown in Figure 2. The
functions in the pseudo-code are defined as follows:
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• shuffle(T ): given a token T , randomly permute the sequence of tickets
• randomize token(T ): given token T , re-encrypt each ticket in T
• select ticket(T ): return a ticket tk randomly selected and removed from the

token T .
• generate ephemeral key(Pr keyj, ticketi): given a private key Pr keyj and a

ticket ticketi =< rd, tkj >, generates a temporary key (also called ephemeral)
starting from the number rd included in ticketi, that can be used to decrypt tkj
and get the slot r̂j .
• decodeElement(tk, {k1, k2 . . . kj}): given a set of keys {k1, k2 . . . kj} and a

ticket tk, decrypt tk and return its cleartext value
• create release token(): create the release token to collect released tickets.
• release resource(T, b, rj): given a token T , a boolean value b, and a slot rj ,

process the token T according to the boolean value b. In particular, if b is true
then the slot rj is released otherwise the function does nothing.

When a process pi needs a slot of R, it invokes the request() operation. The
variable statei is thus set to waiting (line 01). When the request token is de-
livered to pi, it checks if it is the coordinator for this round (line 02). If pi is
not the coordinator, then it means that the assignment phase for this round is
still running and a ticket can be chosen from the token. The selection consists
of three steps: token shuffling (line 04) , token re-randomization (line 05) and
finally ticket selection (line 06). Once a ticket has been selected, it has to be de-
crypted to recover the slot id. For this purpose, pi sends a get ephemeral key
message to other processes (lines 08 - 10).

If pi is the coordinator, then all slots have been assigned for the current
round and a release phase should start (line 11 - 14). Hence, pi creates the
release token (line 11), and embeds its encrypted releasingi flag into the token
(line 12). Finally, the token is passed to pi+1mod n (line 13).

When a process pi receives a get ephemeral key(j, tk) message, it gener-
ates a temporary key that can only be used to decrypt the ticket tk (line 16)
and returns it to pj. When all ephemeral keys are available (line 20), then pi
decrypts the ticket, recovers the slot id (line 21), and use the slot in case is a
real one (lines 22 - 25).

The release() Operation and the Release Phase. The pseudo-code of the
release() operation and the release phase is shown in Figure 3.

In the pseudo-code, we used release resource(T, b) and randomize token(T ) de-
fined earlier and we use the following new functions:

• remove layer(T ): given an encrypted release token T , removes the encrypted
layer of pi
• isFree(T ): given a token T , check if each slot in the release token T has been

released.

A slot is released by calling the release() operation. In this case, the variable
statei is set to NCS and the flag releasingi is set to true (lines 01 - 02). When
pi receives release token, it checks whether it is the coordinator for the current
round. If pi is not the coordinator, according to its state, it releases or keeps
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upon event release():
(01) statei ← NCS
(02) releasingi ← true

————————————————————————————————————————
(03) when token release (release token) is delivered
(04) if (¬coordinatori)
(05) then release token ← release resource(release token, releasingi , resourcei);
(06) release token ← randomize token(release token)
(07) release token ← remove layer(release token)
(08) send token release (release token) to p(i+1)modn

(09) else if (isFree(release token))
(10) then coordinatori ← false
(11) roundi ← roundi + 1;
(12) send new round (roundi) to p(i+1)modn

(13) else release token ← create release token()
(14) release token ← release resource(release token, releasingi, resourcei);
(15) send token release (release token) to p(i+1)modn

(16) endif
(17) endif

————————————————————————————————————————
(18) when new round(rd) is delivered
(19) if (rd > roundi)
(20) then roundi ← rd;
(21) endif
(22) send new round (rd) to p(i+1)modn

Fig. 3. The release() protocol (code for pi)

the assigned slot (line 05), it re-randomizes the token (line 06), removes its
encryption layer (line 07), and finally passes the token to its neighbor in the
logical ring (line 08). If pi is the coordinator for the current round, then it
checks whether all other processes released their assigned slots (lines 09 - 16).
If all slots were released, then pi sends a new round message to its neighbor
so that a new round can be started (line 12). Otherwise, the current token is
discarded and a new turn of the release phase is started (lines 13 - 16). Finally,
when a process pi receives a new round message, it updates the local variable
roundi and forwards the new round message to its neighbor (lines 19 - 22).

Correctness Proofs. Due to lack of space, we provide here only the statements
of the main Lemmas. Proof of lemma 6 can be found in [1].

Lemma 4. Let Π = {p1, p2, . . . , pn} be the set of processes of the distributed
system and let {r1, r2, . . . , rm} be the set of slots of the resource R. Given the
algorithm shown in Figures 1 - 3 and given two processes pi, pj ∈ Π, if pi and pj
access concurrently the resource R, then the slot rx assigned to pi and the slot
ry assigned to pj are distinct.

Lemma 5. Let Π = {p1, p2, . . . , pn} be the set of processes of the distributed
system and let {r1, r2, . . . , rm} be the slots of the resource R. Given the algorithm
shown in Figures 1 - 3, then any process pi that invokes the request() operation
will eventually obtain a slot rj of R.

Lemma 6. Let Π = {p1, p2 . . . pn} be the set of processes of the distributed
system and let {r1, r2, . . . rm} be the slots of the resource R. Given the algorithm
shown in Figures 1 - 3, if |C| ≤ n− 2 then the O-mA property is satisfied.
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5.5 Discussion

Improving Resource Utilization. The algorithm shown in Figures 1 - 3 might
suffer in some runs from poor resource utilization, i.e., a competing process
may not obtain a valid slot even if there are several available. Indeed, only the
coordinator is able to deterministically selects a valid ticket. All other processes
pick an encrypted ticket at random. As a consequence, even though fairness is
provided (because eventually every process will become a coordinator), resource
utilization is quite poor. As an example, consider a process pi that is m hops
away from the coordinator. It may happen that all m slots are assigned to the
intermediate processes (i.e., those between the coordinator and pi) that are not
interested in accessing a slot. One way to improve resource utilization could
be executing concurrent rounds with multiple coordinators. The idea is to let
coordinators start new rounds as soon as slots become available. There could
be up to m concurrent rounds in which each slot is managed by a distinct
coordinator.

Comparison with an Algorithm Based on a Trusted Third Party. In [1],
we considered an algorithm based on a fair Trusted Third Party (TTP) that
regulates access to the slots. Each process sends a request to access a slot of R
to the TTP. The TTP assigns one of the m slots, every time that one is available,
and sends a reply to the process. We proved a bound on the maximum number
of honest-but-curious processes (i.e., |C| ≤ n− 2) that can be tolerated to solve
O-mA with the TTP-based algorithm. Intuitively, the communication bound
δ creates an information leakage that can be exploited by a coalition C with
|C| = n− 1 processes. Processes in C may collude and issue requests to the TTP
exactly at the same time. If a slot is not allocated by the TTP to a honest-but-
curious process within the time bound, then it is possible to infer that the honest
process has received one slot. Such a slot can also be uniquely identified which
implies that O-mA is violated. This bound matches the one found in Lemma 6.
Thus our algorithms has the same resiliency to honest-but-curious processes as
the one based on a TTP.

Adapting the Algorithm to Satisfy SO-mA. Our basic scheme does not
provide the SO-mA property. Indeed, if the round leader belongs to C, it will
find out the number of processes that are using any slots of the resource. This
is enough to violate, in some runs, the SO-mA property. It is possible to avoid
this leakage by modifying the release phase implementing a secure − or of the
internal states of the processes. In particular, secure-or will return 1 if there is at
least one process in CS (critical section) state, false otherwise. But the number
of processes in CS state is kept private. The secure-or can be implemented by
simply exploiting the homomorphic property of ElGamal encryption. We will
investigate further this idea in future work.

6 Conclusion

This paper introduced the oblivious assignment problem, i.e., a coordination
problem, where n processes compete to get exclusive access to one of the m
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available slots of a resource R, while still maintaining the obliviousness of the
assignment. A rotating token algorithm solving the oblivious assignment problem
has been introduced. This algorithm has been proven correct as long as at least
two honest processes are in the distributed system. This bound matches the one
proved in [1] when considering a centralized TTP that assigns slots to processes.
All these results are versatile and take into account the fact that honest-but-
curious processes are aware of both when the communication delay is within a
certain bound and the value of the bound itself.

We are studying how to strengthen our algorithm to cope with byzantine
adversaries that can actively and arbitrarily disrupt the protocol. We believe
certain technical tools can be used to convert our scheme for honest-but-curious
adversaries into a scheme resilient against byzantine adversaries. For example,
it’s possible to prevent injection of spurious messages via insubvertible encryp-
tion [2], that is, ciphertexts can still be randomized as in our scheme but no
adversary can inject ciphertexts not produced by the round leader and no exist-
ing ciphertext can be corrupted unless it is a legitimate re-randomization. The
correctness of other operations can be performed via standard zero-knowledge
proofs. We leave the details of this approach to future work.
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Abstract. In this paper, we consider the scenario in which the profile of a user
is represented in a compact way, as a Bloom filter, and the main objective is to
privately compute in a distributed manner the similarity between users by rely-
ing only on the Bloom filter representation. In particular, we aim at providing a
high level of privacy with respect to the profile even if a potentially unbounded
number of similarity computations take place, thus calling for a non-interactive
mechanism. To achieve this, we propose a novel non-interactive differentially
private mechanism called BLIP (for BLoom-and-flIP) for randomizing Bloom
filters. This approach relies on a bit flipping mechanism and offers high privacy
guarantees while maintaining a small communication cost. Another advantage
of this non-interactive mechanism is that similarity computation can take place
even when the user is offline, which is impossible to achieve with interactive
mechanisms. Another of our contributions is the definition of a probabilistic in-
ference attack, called the “Profile Reconstruction attack”, that can be used to re-
construct the profile of an individual from his Bloom filter representation. More
specifically, we provide an analysis of the protection offered by BLIP against
this profile reconstruction attack by deriving an upper and lower bound for the
required value of the differential privacy parameter ε.

1 Introduction

Consider a distributed network in which each node is an individual that has a profile
representing his interests. In this context, many distributed applications, like recom-
mender systems or private matching, require computing some kind of pairwise simi-
larity between the profiles of different nodes1. Moreover, in a dynamic system, such
computation takes place continuously as new nodes join the system. Some of the chal-
lenges that such systems would face include privacy and scalability issues. For instance,
privacy concerns arise naturally due to the potentially sensitive nature of profiles, and
some users may even refuse to participate in the similarity computation if they have no
guarantees on the privacy of their profiles.

1 For the sake of simplicity, we consider in the rest of the paper a user per machine, and we refer
to it as a node.
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Dwork and Naor [12] have proved a strong impossibility result stating that for any
privacy mechanism whose output has some utility (measured in terms of min-entropy2),
there exists a piece of auxiliary information, which if available to an adversary, can
cause a privacy breach whose amount of information provided on the original database
(that was supposed to be protected) is at least of the same order than the utility. There-
fore, Dwork and Naor [12, Section 3] recommended to depart from an absolute defini-
tion of privacy to a relative one such as differential privacy, which is the one that we
adopt in this paper.

The main privacy guarantee provided by differential privacy is that for any privacy
breach the adversary is able to cause with respect to the database, adding or removing a
single row from the database will not significantly change the probability of success of
causing this privacy breach for an adversary observing the output of the differentially-
private mechanism. In general, in the literature the database model considered is such
that each row contains the data of a particular individual and therefore the database ef-
fectively corresponds to the collection of the individuals’ data. In this setting, protecting
a row through differential privacy means protecting the privacy of a particular individ-
ual (which corresponds to a row). In our setting, the database is actually the profile of
an individual, which is composed of the items he has liked, and therefore the guarantees
provided by differential privacy protects the items contained in the profile.

One of the usual limits of differential privacy is that each time a differentially private
interactive computation takes place, the user loses a little bit of privacy (as measured
by the value of some privacy parameter ε). Therefore, if this computation takes place
too many times, the user may spend all his privacy budget and remains with no privacy
left (i.e., the adversary will be able to reconstruct almost entirely the user’s profile).
However, in a dynamic system as the one we consider, there is no upper bound on the
maximum number of similarity computations that can occur (as nodes continuously
keep joining the system) and therefore an interactive mechanism would be of limited
applicability.

To simultaneously address the privacy and scalability issues, we propose BLIP (for
BLoom-then-flIP), a non-interactive differentially private mechanism, which computes
a standard Bloom filter [7] from the profile of a node, and then perturbs it prior to its
public release in order to ensure high privacy guarantees. This randomized Bloom filter
can be used an unbounded number of times to compute the similarity of this node with
other profile without breaching the privacy of the profiles. Moreover, this approach has
exactly the same communication cost as “plain” (i.e, non-private) Bloom filters, while
offering much higher privacy guarantees, but at the cost of a slight decrease of utility.

In differential privacy, the trade-off between utility and privacy can be set through
the privacy parameter ε. However, being able to choose an appropriate value for this
parameter is still an open research question, which has not really been investigated,
with a few exceptions [17,1]. In this paper, we address this issue by proposing an infer-
ence attack called the “Profile Reconstruction attack”, that can be used to reconstruct
the profile of a node from its perturbed Bloom filter representation. More specifically,
we provide an analysis of the protection and the utility offered by BLIP against this

2 We refer the interested reader to [1] for a discussion on the min-entropy of the output of a
differentially-private mechanism.
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attack, by deriving an upper and lower bound for the required value of the differential
privacy parameter ε. In short, the lower bound gives theoretical guarantees on the result-
ing approximation error generated by a specific value of the privacy parameter, while
the upper bound demonstrates experimentally that the privacy parameter must be below
a certain threshold to be able to prevent this attack. Furthermore, we evaluate experi-
mentally the trade-off between privacy and utility that can be reached with BLIP on a
semantic clustering task in which nodes are grouped based on the similarity between
their profiles.

The paper is organized as follows. First, in Section 2, we present the system model
and background on Bloom filters and differential privacy necessary to understand our
work. Afterwards, we propose BLIP, a non-interactive differentially private mechanism
for randomizing Bloom filters in Section 3 and analyze in details the privacy guarantees
it provides. In Section 4, we evaluate the impact of this mechanism on utility, as mea-
sured in terms of recall on a semantic clustering task. In Section 5, we describe a novel
inference attack, called the profile reconstruction attack, that can reconstruct a profile
from its Bloom filter representation and show how BLIP can be used to drastically re-
duce its impact. Finally, we give an overview of the related work in Section 6 before
concluding in Section 7.

2 System Model and Background

2.1 System Model

We consider a distributed system of nodes, in which nodes are characterized by their
profile representing the associated user’s interests. For example, the profile of a node
can be a vector of items that have been tagged using a collaborative platform [2] such
as Delicious3, or queries that have been performed on a search engine or ratings on
movies. We denote the profile of a user as c, a set of items, which is a subset of an
application domain I. While I may be infinite (e.g., the set of all possible URLs), a
specific profile is always finite.

We assume that the computation of similarity between pairs of nodes takes place on
a regular basis as nodes in the network get in contact with new nodes, and try to dy-
namically maintain a list of the most similar nodes in the network. For instance, in the
case of a distributed semantic clustering algorithm [6], nodes need to compute regularly
their similarity in order to update their semantic neighborhood. In our constructions, we
also assume that a node never releases directly its profile, but rather a Bloom filter rep-
resentation [7] (cf. Section 2.2) of it. When some node a wants to compute its similarity
with another node b, it will do so by using b’s public Bloom filter.

The profile is a personal and private information that should be protected, and there-
fore our main concern is how to compute the similarity measure while preserving its
privacy. In this context, this means not revealing the contents of the profile and restrict-
ing the possibility for an adversary observing the Bloom filter to infer the presence or
absence of a particular item in this profile. We consider a computationally-unbounded
adversary that can observe the released Bloom filter, but not the internal state of a node

3 http://delicious.com/

http://delicious.com/
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while computing the Bloom filter. In particular, the adversary does not have access to
the random coins used by the node when computing a perturbed version of the Bloom
filter’s representation of its profile.

2.2 Bloom Filters

A Bloom filter [7] is a probabilistic data structure composed of an array of m bits along
with a setH of k hash functions. Each hash function maps an item to a uniform random
position {0, . . . ,m−1} in the Bloom filter. Bloom filters form a compact representation
of sets as they can represent any set with just m bits, for a given trade-off between the
size of the structure and the false positive probability (i.e., the probability of an item
being considered to be in the Bloom filter while it is not). Bloom filters are often used
for applications in which the storage space is limited or for protocols for which the
communication cost has to be low but some false positives are tolerable.

Bloom filters are associated with two operations: the add operation inserts an item
into the Bloom filter while the query operation tests if an item is already present in
it (some types of Bloom filters also support the removal of items [23] but we do not
consider them in this paper). Both operations start by applying the k hash functions
fromH to the item in question to obtain a subset of {0, . . . ,m− 1} of positions in the
Bloom filter. The add operation inserts the item by setting the bits corresponding to
those positions to one in the Bloom filter, and does this independently of the previous
values of these bits. The query operation checks if an item is included in the Bloom
filter by verifying whether or not all those bits are set to one.

In short, the probability of false positive is a function of m, k, and n the number of
items inserted in the Bloom filter. In general, the values ofm and k are chosen according
to a trade-off decision between the space usage and the false positive rate (an upper and
lower bound for this trade-off is provided in [9]).

2.3 Similarity Measure

A similarity measure sim is a function that takes as input two sets A and B represent-
ing the profiles of two nodes and outputs a value in the range between 0 and 1 (i.e.,
sim(A,B) ∈ [0, 1]), where 0 indicates that the sets are entirely different (the profiles
have no items in common) while 1 means that the sets are identical (the nodes can be
considered as sharing exactly the same interests). Recall that in this paper, the profiles
are represented as Bloom filters and therefore the similarity is computed directly on
the Bloom filters and not on the profiles themselves. As a concrete instance, consider
the cosine similarity that is commonly used to assess the similarity between two sets
[6] and can be seen as a normalized overlap between the sets. The cosine similarity is
defined as

cos sim(A,B) =
|A ∩B|√
|A| × |B|

, (1)
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where |A| and |B| are the sizes of the sets A and B. The size of the set intersection
between A and B (i.e., |A ∩ B|) is equivalent to the scalar product4 in the case where
the sets are represented as binary vectors (i.e., characteristic function).

2.4 Differential Privacy

In this paper, we are interested in a recent notion of privacy, called differential privacy
[10]. Differential privacy aims at providing strong privacy guarantees with respect to
the input of some computation by randomizing the output of this computation, and this
independently of the auxiliary information that the adversary may have gathered. In our
setting, the input of the computation is the raw profile of a node and the randomized
output will be a perturbed version of the Bloom filter representation of this profile.

Two profiles x and x′ are said to differ in at most one element or said to be neighbors
if they are equal except for possibly one entry.

Definition 1 (Differential privacy [11]). A randomized function F : Dn → Dn is
ε-differentially private, if for all neighboring profiles x,x′ ∈ Dn and for all t ∈ Dn:

Pr[F(x) = t] � eε · Pr[F(x′) = t] .

This probability is taken over all the coin tosses of F and e is the base of the natural
logarithm.

The parameter ε is public and may take different values depending on the application
(for instance it could be 0.01, 0.1 or even 0.25). The smaller the value of ε, the higher
the privacy but also, as a result, the higher the impact might be on the utility of the
resulting output.

Dwork, McSherry, Nissim and Smith have designed a generic technique, called the
Laplacian mechanism [11], that achieves ε-differential privacy for a function f by
adding random noise to the true answer of f before releasing it. Subsequently, McSh-
erry and Talwar have proposed another mechanism, called the exponential mechanism
[19] that, unlike the Laplacian mechanism that works only for functions with numerical
output, provides differential privacy for functions whose output is more structured (e.g.,
graphs or trees). These mechanisms are interactive as they require a two-way communi-
cation protocol between the curator (the entity in charge of the database) and the client
performing the query. Therefore, during this computation, the curator has to be online
in order to receive the query and prepare the associate response to this query.

On the other hand, a non-interactive mechanism computes some function from the
original database and releases it once and for all, which corresponds to a one-way com-
munication protocol. The output released by the non-interactive mechanism can later
by used by anyone to compute the answer to a particular class of queries (usually not
just a single specific query), without requiring any further interactions with the curator.
It is important to understand that the answer is not computed by the non-interactive
mechanism, but rather that the answer can be computed from the output released by

4 The scalar product of two vectors of length l, a = (a1, · · · , a�) and b = (b1, · · · , b�), is
defined as

∑�
i=1 aibi.
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the non-interactive mechanism, thus after publishing this output the curator can go of-
fline. Examples of non-interactive mechanisms for differential privacy include [4,18].
Our proposition of differentially-private Bloom filter is based on the work of Beimel,
Nissim and Omri [4] in which the authors address the “binary sum” problem, which
deals with the computation of the number of ones in a private binary vector. More pre-
cisely, we adapt their non-interactive mechanism to Bloom filters rather than binary
vectors, with the goal of computing scalar product between two Bloom filters rather
than computing the number of ones.

3 The Bit-Flipping Mechanism

We propose a novel approach relying on bit flipping to achieve differential privacy. The
intuition behind our proposed mechanism is simple: before releasing a Bloom filter,
each bit is flipped with a given probability so as to ensure differential privacy on the
items of the profile from which the Bloom filter is derived. In this section, we provide
a formal definition of our mechanism and compute the flipping probability that has the
least impact on utility while preserving differential privacy. A particular challenging
task is to derive how the flipping of bits influences the privacy of the items themselves.

3.1 Bloom-then-flip

More formally, the proposed non-interactive mechanism is a randomized function that
for each bit of a Bloom filter, tosses a biased coin and based on the result, either out-
puts the original value of the bit or its opposite (i.e., flip it). Since the mechanism flips
the Bloom filter representation of a profile, we call it BLIP (for Bloom-then-flip). For
example, the mechanism may take as input the Bloom filter (0, 1, 1, 0) and randomly
decides to flip the first two bits with some bias, thus outputting (1, 0, 1, 0). BLIP can
be described as a randomized function F : {0, 1}n → {0, 1}n, where each bit of the
output is the opposite as the corresponding bit of the input with probability p (the flip-
ping probability), while otherwise it remains the same. Therefore, BLIP consists of (1)
generating the Bloom filter representation of the profile first, and then (2) flipping the
resulting Bloom filter (which is a binary vector).

The idea of randomizing each bit independently (as opposed to perturbing the final
answer itself) is also known as the randomized response technique [24], and precedes
the notion of differential privacy. The application of randomized response for differen-
tial privacy was previously studied [4] but the definition of differential privacy adopted
([4, Definition 2.4]) slightly differs from ours. Indeed, in the model adopted in this pre-
vious work [4], each individual bit belongs to and is held by a different node. Therefore,
this model is very close to the setting of secure multiparty computation, while in our
model all the bits of the Bloom filter belong to the same node. It is worth mentioning
that the node owning this Bloom filter will publishes the perturbed version of the Bloom
filter once and for all. This process may introduce permanent artifacts but the error they
induced is bounded by O(

√
n) with constant probability. Due to space constraints, we

leave the details of the proof of this bound to the full version of the paper.
The following is the definition for the local model of differential privacy that we also

use in the setting of non-interactive differential privacy.
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Definition 2 (Differential privacy (local model)). A randomized function F(x) =
(f (x1), . . . , f (xn)), where f : D → D and x = (x1, . . . , xn), is ε-differentially private,
if for all values y, y′ ∈ D, and for all output t ∈ D:

Pr[f (y) = t] � eε · Pr[f (y′) = t] ,

where the probability is taken over the randomness of f .

Definition 2 originally introduced in [4] is equivalent to Definition 1 as shown by
Lemma 1. In this local variant of the definition, the perturbation is applied individ-
ually to each row of the database, and then the function is computed on the collection
of perturbed rows. In contrast to the original (i.e., global) model of differential privacy
in which the function is computed first and then the answer is perturbed before releasing
it. Moreover, in the local model if the dataset is split among several nodes, each node
can perform the randomization locally before releasing its perturbed part of the data.

Lemma 1 (Equivalence of definitions.). Definition 1 is equivalent to Definition 2.

Proof. Let (x−i, y) denotes the vector resulting from replacing the i-th coordinate the
x with y (e.g., (x1, . . . , y, . . . , xn)). We proceed by first proving that the proposed def-
inition implies Definition 1 along the lines of [4].

Definition 2 =⇒ Definition 1. For any two neighboring vectors x and (x−i, y):

Pr[F(x) = t]

Pr[F(x−i, y) = t]
=

Pr[f (xi) = ti]

Pr[f (y) = ti]
·���������∏

j �=i Pr[f (xj) = tj]

���������∏
j �=i Pr[f (xj) = tj]

� eε ,

where t = (t1, . . . , tn). In the above formula, the equality is obtained by independence
while the inequality results from Definition 2.

Definition 1 =⇒ Definition 2. For all xi, y:

Pr[f (xi) = ti]

Pr[f (y) = ti]
=

Pr[f (xi) = ti]

Pr[f (y) = ti]
·
∏

j �=i Pr[f (xj) = tj ]
∏

j �=i Pr[f (xj) = tj ]
=

Pr[F(x) = t]

Pr[F(x−i, y) = t]
� eε ,

where t = (t1, . . . , tn). In the above formula, the last equality is obtained by indepen-
dence while the inequality results from Definition 1. ��

Clearly, the result holds only in case F could be decomposed to applications of a func-
tion f to each row independently. One of the consequence of this lemma is that it is
possible to analyze only the local perturbation at the level of a single bit of a Bloom
filter, while still guaranteeing differential privacy for the entire Bloom filter without
requiring to analyze the BLIP mechanism as a whole.

3.2 The Flipping Probability

The bit-flipping function (flip) plays the role of the local function f in Definition 2,
while the BLIP mechanism corresponds to F in this definition. The local perturbation
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function flip takes a bit x and outputs 1− x with probability p < 1/2 and x otherwise.
The main challenge is to find the optimal probability p that flip should use in order to
maximize utility as a function of the privacy parameter ε. With respect to the utility, the
smaller p, the more accurate the output and therefore the best utility can be obtained by
minimizing p.

It is important to realize that analyzing the flipping of a bit of the Bloom filter in
isolation is not sufficient to guarantee the privacy of individual items of the profile
that are encoded in the Bloom filter. Indeed, recall that an item can potentially impact
k different bits due to the use of k different hash functions. In particular, differential
privacy is guaranteed for individual items by the randomized mechanism F if for each
item i ∈ I and for each pair of neighboring profiles P1, P2 such that i /∈ P2 and
P1 = P2 ∪ {i}, and for all bit strings t ∈ {0, 1}m, the following condition holds:

∣∣∣∣ln Pr(F(B1) = t)

Pr(F(B2) = t)

∣∣∣∣ � ε , (2)

where B1 is the Bloom filter of P1 and B2 the Bloom filter of P2.

Theorem 1 (Privacy guarantees for items). Setting the bit-flipping probability p to
1/(1 + eε/k) satisfies condition (2) and thus provides ε-differential privacy for items.
In other words, flipping the bits of a Bloom filter with this probability guarantees ε-
differential privacy for the items encoded in this Bloom filter.

Proof. Given a Bloom filter B equipped with a set H of hash functions, and an item i,
let T =

⋃
h∈H{h(i)} be the set of positions whose corresponding bits in B are equal to

one if i is in B, and k = |T | be the number of those positions (not counting duplicates).
We divide the Bloom filter B into two partitions: BT and B−T , where the former is the
restriction to the bits whose positions are in T as defined earlier, and the latter is the
restriction to all other bits. A particular partition tT (respectively t−T ) is defined in a
similar manner. We denote by q = 1 − p, the inverse of the flipping probability (it is
always the case that q > p).

As the profiles (and therefore the Bloom filters as well) are universally quantified,
hence they can be treated as constants and not random variables. As a consequence, they
do not affect the independence properties of F , which is itself independent for each bit
by definition. The proof proceeds as follows:

∣∣∣∣ln Pr(F(B1) = t)

Pr(F(B2) = t)

∣∣∣∣ =
∣∣∣∣∣ln Pr(F(BT

1 ) = tT ) Pr(F(B−T
1 ) = t−T )

Pr(F(BT
2 ) = tT ) Pr(F(B−T

2 ) = t−T )

∣∣∣∣∣ by independence

=

∣∣∣∣∣ln Pr(F(BT
1 ) = tT )

Pr(F(BT
2 ) = tT )

∣∣∣∣∣ because B−T
1 = B−T

2

=

∣∣∣∣∣∣∣∣∣
ln

Pr(F(

k︷ ︸︸ ︷
1 . . . 1) = tT )

Pr(F(BT
2 ) = tT )

∣∣∣∣∣∣∣∣∣
as i is in B1

=

∣∣∣∣∣ln pzqk−z

δ

∣∣∣∣∣ =
∣∣∣∣∣ln

[
qk

δ

(
p

q

)z
]∣∣∣∣∣ ,

where pk � δ � qk (as BT
2 is just a fixed bit string) and 0 � z � k is the number

of zero bits in tT . If p = 1/(1 + eε/k) then qx = (1 − p)x = exp(εx/k)px and



210 M. Alaggan, S. Gambs, and A.-M. Kermarrec

(p/q)x = exp(−εx/k). Therefore pk � δ � exp(ε)pk or 1 � δ/pk � exp(ε) implying
that 1 � pk/δ � exp(−ε), and hence 0 � ln(pk/δ) � −ε.
∣∣∣∣ln

[
qk

δ

(
p

q

)z]∣∣∣∣ =
∣∣∣∣ln
[
exp(ε)pk

δ
exp(−εz/k)

]∣∣∣∣ =
∣∣ln(pk/δ) + ε(k − z)/k

∣∣ .

We have for the second term 0 � ε(k − z)/k � ε, from which it follows immediately
that the maximum value of

∣∣ln(pk/δ) + ε(k − z)/k
∣∣ is at most ε, thus proving the theo-

rem. Moreover, this maximum is tight showing that this choice of p is tight as well. ��

Remark 1 (Optimality of p.). The case k = 1 reduces to protecting individual bits. In
order to compute the values of p that ensures differential privacy for a single bit (in
accordance to Definition 2), it is easy to verify that p = 1

1+eε is the minimum value for
which ∣∣∣∣ln Pr(flip(y) = b)

Pr(flip(y′) = b)

∣∣∣∣ � ε ,

holds for all b, y, y′ in {0, 1}. This value coincides with the value obtained by substitut-
ing 1 for k in p = 1

1+eε/k
, thus showing its optimality.

We show how it is possible to address and correct the approximation error resulting from
the bit flipping mechanism in the full version of this paper due to space constraints.

4 Utility Evaluation

In this section, we evaluate experimentally how the utility is impacted by the BLIP
mechanism by applying it for the computation of a semantic clustering algorithm. More
precisely, we consider a semantic clustering protocol whose objective is to provide each
node of the system with its c closest nodes, as measured by the similarity based on the
scalar product on their Bloom filters. In this setting, we measure the utility in terms of
recall, which we formally define later [6]. We have used the three following datasets for
our experiments from the Delicious and Digg collaborative platforms traces and a news
survey conducted in our lab. The survey has been conducted on 120 users who gave
their (binary) opinion on 100 news items. The profile of a user in the Digg trace are the
items forwarded; in the Delicious trace, the items tagged; and in the survey trace, the
news items liked.

# of users # of items average profile size Bloom filter size (m) # of hash func. (k)
Delicious 500 51453 135 5000 18
Digg 500 1237 317 5000 18
Survey 120 196 68 5000 18

The experiment is conducted by simulating a clustering protocol, similarly to [6].
In this experiment, each node corresponds to one node from one of the three datasets
described previously. In a random manner, each node i divides its profile pi into two
disjoint subsets, the training subset ti and the search (or evaluation) subset si, such that
ti ∪ si = pi and |si|/|ti| ≈ 0.9 (the value 0.9 has been chosen to match the setting of
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[6]). The experiment is split into two steps: the clustering (i.e., training) phase and the
search phase.

The clustering phase is divided into 20 rounds. At each round, every node i ex-
changes its Bloom filter with its current neighbors and some other nodes picked at
random [15]. Based on the information acquired, the node keeps as new neighbors, the
nodes displaying a high similarity (if any). At the end of the clustering phase, each
node will have chosen the c most similar nodes met so far as its neighbors. Usually
after a sufficient number of rounds, the neighbors of a node should converge towards
the optimal ones in terms of the recall (as defined in the next paragraph) [6].

Afterwards, the utility is evaluated by checking if each node can find the items con-
tained in its search set si in the profiles of its neighbors. The number of the items found
is divided by |si| (for normalization) and forms the recall metric r (for 0 � ri � 1).
Considering a particular clustering, the higher r, the more useful the clustering is. More
formally, during the search phase, each node i computes its recall value ri defined as:

ri =
|si ∩ (∪j∈ni tj)|

|si|
,

where ni is the set of neighbors of the node i once the clustering phase is terminated.
The overall recall r = mean(r1, . . . , rn) simply corresponds to the average of the
recalls of all the n = 500 (or n = 120 for the survey dataset) nodes (cf. Figure 1).

We provide in Figure 1 the results of the experiments for the recall versus privacy
parameter ε (average over 100 runs). On this plot, we use p = 1/(1+ exp(ε/k)) for the
flipping probability (k = 18). The main plot displays the recall obtained when using
the cosine similarity based on the bias-corrected scalar product (which is developed in
the full version of the paper). The other lines show the recall obtained for two different
cases that act as a baseline: (1) when the similarity is computed on totally random
Bloom filters (i.e., Bloom filters whose bits are flipped with probability 0.5) and (2)
when the similarity is computed with a plain Bloom filters that have not been flipped at
all. Note that the intrinsic value of the recall that can be reached and the gap between the

Fig. 1. Recall obtained with BLIP. The bars correspond to the standard deviation.
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baseline (1) and baseline (2) are directly dependent of the characteristics of the dataset
considered.

From these plots, we can observe that the utility remains non-trivial even for values
of ε that are small, in comparison to the utility obtained with totally randomized Bloom
filters (which directly lead to a random neighborhood for each node). In general the
utility obtained is far from the non-private solution (for Delicious the value is about
0.261) in which nodes exchange directly their profiles but this is inherent to the fact that
the similarity is computed based on the Bloom filters (and not the profiles themselves)
and this is not a drawback due to our flipping mechanism. When combined with the
results of the experiments described in the next section (resilience to inference attacks),
it is possible to observe the trade-off between privacy (i.e., resilience against the profile
reconstruction attack) and utility (i.e., recall in the case of the semantic clustering task).

5 Profile Reconstruction Attack

In this section, we try to answer some of the fundamental questions raised by the use
of differential privacy such that “How to choose the value of ε?” or “What does it mean
for ε to be equal to 0.5 or 1?” by considering a particular inference attack. In a setting
in which each node has its profile represented in the form of a Bloom filter, the main
objective of the adversary is to infer the description of the profile of a node from its
Bloom filter representation. We assume that in the same manner as other nodes in the
network, the adversary (which in fact could simply be one of these nodes) can have eas-
ily access to the ε-differentially private Bloom filters released by the BLIP mechanism.
We describe thereafter an inference attack, called the “profile reconstruction attack”, by
which the adversary produces as output a guess of the original profile behind a given
Bloom filter. In doing so, we aim at empirically computing an upper bound on the pri-
vacy parameter that will prevent this attack from being effective.

5.1 Description of the Attack

Remember that we consider a computationally-unbounded adversary. In the profile re-
construction attack, the adversary exhausts the Bloom filter by querying it on all the
possible items of the application domain. More precisely, the attack works as follows:
the adversary is given a Bloom filter whose bits are independently and randomly flipped
with probability p to ensure ε-differential privacy (we assume the value of p to be a
public parameter and to be known by the adversary to avoid some kind of security by
obscurity). Afterwards, the adversary performs some computation (possibly during an
unbounded duration) and outputs a set of items that corresponds to its guess of the un-
derlying profile behind the given Bloom filter, hence the name “profile reconstruction
attack”. We measure the success of this attack by measuring how close the reconstructed
profile is to the original one in terms of the (squared) cosine similarity. Note that due
to the probability of false positives inherent to Bloom filters (and this even in the non-
perturbed case), the exact reconstruction of the original profile with 100% confidence
may be impossible.
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In a nutshell, the implementation of the profile reconstruction attack that we propose
works as follows. For each item in the application domain, the adversary checks its
corresponding bits in the Bloom filter it observed and sets k0 to be the number of those
bits that were found to be 0 while k1 is the complementary quantity. Using those two
values, the adversary calls a predicate q to determine if an item should be included or
not in the reconstructed profile. More precisely, the predicate q(k0, k1) > c is defined
as pk1(1 − p)k0

(
k1+k0

k0

)
> c, for 0 < c < 1 a constant and p the flipping probability

applied by the BLIP mechanism. The main intuition behind the use of q(k0, k1) is that
it represents exactly the probability that k0 bits were flipped while k1 bits were not
flipped. Note that k0 (respectively k1) is the number of bits in the subset of the Bloom
filter corresponding to the item currently considered that were set to 0 (respectively 1).
We also tried other possible predicates such as the predicate k1 > c′ · k0 for some other
appropriate constant c′, but the other predicates were always less efficient than the one
considered, therefore we disregarded them.

5.2 Experimental Evaluation

In order to assess how the variation of the privacy parameter ε affects the success of the
attack, we conduct an experiment on the three datasets introduced earlier. The objective
of this experiment is to derive empirically an upper bound on ε, such that for all c, the
success of the adversary in reconstructing the profile through the inference attack is as
low as possible. In this experiment, the adversary performs the profile reconstruction at-
tack on each Bloom filter of each user for different values of ε and c. Finally, the squared
cosine similarity is computed between the reconstructed profile outputted by the adver-
sary and the original profile. All values of c between 0 and 1 in steps of 0.01 have been
considered. Then, for each ε the adversary success is measured by the maximum mean
similarity value over all values of c, where the mean (and standard deviation) is taken
over the users.

Figure 2 shows significant diversity between the three considered datasets in the least
possible adversarial success. For instance, the smallest squared cosine similarity at-
tained in the Survey dataset is about 0.3whereas it is 0.002 in the Delicious dataset. This
may possibly stem from the difference in the size of item domain among the datasets.
Nonetheless, we can conclude that in the worst case BLIP successfully prevents the
adversary from producing a reconstructed profile having a cosine similarity with the
original one much higher than the baseline (which is different for each dataset) when
ε is less than 10, for all the considered datasets. As a consequence, we can derived an
empirical upper bound on ε.

To summarize, the exact value of the similarity threshold above which the profile
reconstructed attack is considered successful may depend not only upon the applica-
tion considered but also upon the privacy preferences of the individual from which the
Bloom filter is computed. However, choosing this value to be too conservative (i.e., too
low) is likely to decrease dramatically the utility of the output. Therefore, the achiev-
able trade-off between utility and privacy should be set by taking also into account the
error bounds discussed in the full version of the paper due to space constraints.
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6 Related Work

Non-interactive differential privacy. Most of the previous works studying non-
interactive mechanisms in the context of differential privacy [8,18] have considered
mechanisms that release a synthetic database that can be used to perform queries instead
of the original one. The first work [8] is very inefficient due to its high computational
complexity while [18] considers only input databases that have a sparse representation.

Fig. 2. Profile reconstruction attack. The vertical bars represent the standard deviation. The values
on the y-axis are squared cosine similarity between the original profile and the reconstructed
profile.

Privacy and Bloom filters. The literature on using Bloom filters for designing privacy-
preserving techniques is quite diverse but often assumed a kind of client-server model,
in which the owner of the Bloom filter (server) wants to answer some query asked by
the client. In this context, some solutions focus on concealing the content of the query
from the server, thus ensuring client’s privacy (similarly to private information retrieval
schemes), while others try to prevent the client from getting more information than
the answer to its query, thus ensuring server’s privacy (in the spirit of oblivious trans-
fer). The application domains of these techniques include searching document indexes
[13,3,5], private information retrieval [21], private matching [22], private publication of
search logs [14] and anti-counterfeiting in supply chains [16].

Due to lack of space we do not detailed these methods but for the closest to our work
is [14], which provides a probabilistic version of differential privacy (i.e., the privacy
guarantee holds for all except a small fraction of items). However, this technique only
works for multi-sets and it is not straightforward to apply it on normal sets such as user
profiles.
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7 Conclusion

In this paper, we have proposed BLIP (for BLoom-then-flIP), a differentially private
non-interactive mechanism that releases a randomized version of the Bloom filter rep-
resentation of a profile. The randomized Bloom filter offers high privacy guarantees
(in the sense of differential privacy) while still maintaining a good level of utility. For
instance, the differentially private Bloom filter can be used to compute a similarity
measure, such as cosine similarity or scalar product, with another Bloom filter in a
non-interactive manner. We have demonstrated how the BLIP mechanism affects the
privacy of the underlying profile and how to guarantee privacy at the level of items (as
opposed to bits of the Bloom filter) by tuning the flipping probability. We have also
described an generic inference attack against the flipped Bloom filter, called the profile
reconstruction attack, which enables reconstruction of the full original profile (almost)
if applied on a plain (i.e., non-randomized) Bloom filter but does not work anymore on
the perturbed Bloom filter if the value of the parameter ε is chosen wisely (we provide
a technique for choosing an upper bound to this parameter).

In the future, we plan to broaden the scope of inference attacks considered in order to
evaluate their rate of success on a Bloom filter released by the BLIP mechanism. In par-
ticular, we want to design more sophisticated inference attacks in which the adversary
has some partial knowledge about the profile of a user or that exploit the correlations
between items and assess empirically if the ε-differential privacy ensures an efficient
protection against these attacks. We also plan to study how the relaxation of the notion
of full differential privacy to computational differential privacy [20] and the combina-
tion with the compressive mechanism [18] can be used to provide a lower error bound
for the same privacy guarantees. Another avenue of research that we will explore is how
the difference of expectations in terms of privacy among different users (which could
lead to different values of ε) affect the privacy guarantees offered globally for different
types of users and items.
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Abstract. Platform-as-a-Service (PaaS) clouds free companies of build-
ing infrastructures dimensioned for peak service demand and allow them
to only pay for the resources they actually use. Being a PaaS cloud cus-
tomer, on the one hand, offers a company the opportunity to provide
applications in a dynamically scalable way. On the other hand, this scal-
ability may lead to financial loss due to costly use of vast amounts of
resources caused by program errors, attacks, or careless use.

To limit the effects of involuntary resource usage, we present DQMP,
a decentralized, fault-tolerant, and scalable quota-enforcement protocol.
It allows customers to buy a fixed amount of resources (e. g., CPU cycles)
that can be used flexibly within the cloud. DQMP utilizes the concept
of diffusion to equally balance unused resource quotas over all processes
running applications of the same customer. This enables the enforcement
of upper bounds while being highly adaptive to all kinds of resource-
demand changes. Our evaluation shows that our protocol outperforms a
lease-based centralized implementation in a setting with 1,000 processes.

1 Introduction

Cloud computing is considered a fundamental paradigm shift in the delivery ar-
chitecture of information services, as it allows to move services, computation,
and/or data off site to large utility providers. This offers customers substantial
cost reduction, as hard- and software infrastructure needs not to be owned and
dimensioned for peak service demand. With Platform-as-a-Service (PaaS) clouds
like Windows Azure [1] and Google App Engine [2] providing a scalable comput-
ing platform, customers are able to directly deploy their service applications in
the cloud. In the ideal case, cloud customers only pay for the resources their ap-
plications actually use; that is, “. . . pricing is based on direct storage use and/or
the number of CPU cycles expended. It frees service owners from coarser-grained
pricing models based on the commitment of whole servers or storage units.” [3]

While it is very inviting to have virtually unlimited scalability and pay for it
like electricity and water, this freedom poses a serious risk to cloud customers:
the use of vast amounts of resources, caused, for example, by program errors,
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attacks, or careless use, may lead to high financial losses. Imagine an unforeseen
input leads to a livelock that consumes massive amounts of CPU cycles. The
costs for the resources used unintentionally could be tremendous and may even
exceed the estimated profits of running the service.

To address this problem, we propose to employ a quota-enforcement service
that allows cloud customers to specify global quotas for the resources (e. g., CPU,
memory, network) used by their applications. Such a service can be integrated
with the cloud infrastructure in order to ensure that the combined usage of
all processes assigned to the same customer does not exceed the upper bound
defined for a particular resource.

In domains like grid computing, where application demands are predictable,
enforcing global quotas can be done statically during the deployment of an ap-
plication [4]. However, for user-accessed services in a dedicated utility computing
infrastructure [5] like a PaaS cloud, this problem needs to be solved at run time
once previously unknown services get dynamically deployed. Further, the quota-
enforcement service must not impose any specific usage restrictions: processes
must be able to freely allocate resources on demand as long as free quota is avail-
able. In this respect, the enforced global quota can be compared to a credit-card
limit, which protects the owner from overstepping his financial resources while
not making any assumptions on when and how the money is spent. All in all,
dealing with a dynamically varying number of processes with unknown resource
usage patterns makes quota enforcement a challenging task within clouds.

The straight-forward approach would be to set up a centralized service that
manages all quotas of a customer and grants resources to applications on de-
mand. However, as shown in our evaluation, such a service implementation does
not scale for applications comprising a large number of processes, which is a
common scenario in the context of cloud computing. Moreover, additional mech-
anisms like, for instance, state-machine replication had to be applied in order
to provide a fault-tolerant and highly available solution. Otherwise, the quota-
enforcement service would represent a single point of failure.

To avoid the shortcomings of a centralized approach, we devised a decentral-
ized quota-enforcement service including a novel protocol named Diffusive Quota
Management Protocol, short DQMP. DQMP is fault-tolerant and highly scalable
by design, two properties that are indispensable for cloud environments. Its basic
idea is to use the concept of diffusion to balance information about free quotas
across all machines hosting a certain application of a customer. By distributing
quota information, the permissions to allocate resources can be granted via local
calls. Our service offers a simple and lightweight interface that can be easily in-
tegrated to extend existing infrastructures with quota-enforcement support. An
evaluation of our prototype with up to 1,000 processes residing on 40 machines
shows that DQMP scales well and outperforms a centralized solution.

The remainder of this paper is structured as follows: Section 2 discusses
related approaches, Section 3 presents the architectural components of our quota-
enforcement service, Section 4 outlines the concept of diffusive quota enforce-
ment and presents the DQMP protocol, Section 5 presents results gained from
an experimental evaluation of our prototype, and Section 6 concludes.
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2 Related Approaches

Whereas earlier work on diffusion algorithms and distributed averaging ad-
dressed various areas such as dynamic load balancing [6,7,8], distributing replicas
in unstructured peer-to-peer networks [9], routing in multihop networks [10] and
distributed sensor fusion [11], none of them handles quota enforcement. Kar-
mon et al. [12] proposed a quota-enforcement protocol for grid environments
that relies on a decentralized mechanism to collect information about free re-
source quotas as soon as an application issues a demand. In contrast, our proto-
col proactively balances such information over all machines serving a customer,
which allows granting most demands for free quota instantly. Furthermore, this
paper goes beyond [12] in extending fault tolerance and in discussing how to
integrate with cloud computing. Raghavan et al. [13] proposed an approach
targeting distributed rate limiting using a gossip inspired algorithm in cloud-
computing environments. They specifically focus on network bandwidth and ne-
glect fault tolerance. Pollack et al. [14] proposed a micro-cash–inspired approach
for disk quotas that provides lower overhead and better scalability than central-
ized quota-tracking services. A quota server acts as a bank that issues resource
vouchers to clients. Clients can spend fractions of vouchers to allocate resources
on arbitrary nodes of a cluster system. For good resource utilization and to pre-
vent overload of the quota server bank, this requires previous knowledge about
the resource demand. Gardfjäll et al. [15] developed the SweGrid accounting sys-
tem that manages resources via a virtual bank that handles a hierarchical project
namespace using branches. Based on an extended name service, each branch can
be hosted on a separate node. This approach requires explicit management to
be scalable and misses support for fault tolerance. Furthermore, there are dis-
tributed lock systems [16,17] that provide fault-tolerant leases based on variants
of the Paxos algorithm. Contrary to the presented approach, they are dedicated
to manage low volume resources like specific files. As shown by the evaluation,
our decentralized protocol scales above such replicated service solutions.

3 Architecture

In this section, we present the key components of our quota-enforcement service
which is realized on basis of DQMP and explain how these components interact
with existing cloud infrastructures.

3.1 Host Architecture

DQMP uses a decentralized approach to manage the resource quota of customers.
It distributes information about free quota units across the machines running
applications of the same customer, providing each machine with a local quota.
Quota enforcement in DQMP spans two levels: (1) At the host level, a resource
controller guarantees that the local resource usage of an application process does
not exceed the local quota. (2) At the global level, a network of DQMP daemons
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PaaS computing platform

Application
(Customer A)

Application
(Customer B)

RCNRCM RCC RCNRCM RCC

DQMP Daemon A DQMP Daemon B

Fig. 1. Basic architecture of a PaaS cloud host running DQMP to enforce resource
quotas: quota requests issued by applications of different customers are handled by
different DQMP daemons relying on a set of resource controllers (e. g., for memory
usage (RCM), network transfer volume (RCN), and CPU cycles (RCC))

enforces a global quota by guaranteeing that the sum of all local quotas does not
exceed the total quota for a particular resource, as specified by the customer.

Figure 1 shows the basic architecture of a PaaS cloud host that relies on
our protocol to enforce quota for two customers A and B. For each of them, a
separate DQMP daemon is running on the host. Each DQMP daemon is assigned
a set of resource controllers (RC∗) which are responsible for enforcing quotas for
different resource types (e. g., memory, network, and CPU).

Resource Controller. In general, PaaS computing platforms provide means
to monitor the resource consumption of an application process [18]. For DQMP,
we extend these mechanisms with a set of resource controllers, one for each
resource type. Each time an application seeks to consume additional resources,
the corresponding resource controller issues a resource request to its local DQMP
daemon and blocks until the daemon grants the demand.

DQMP Daemon. A cloud host executes a separate DQMP daemon for every
customer executing at least one application process on the host; that is, a DQMP
daemon serving a certain customer is only executed on a host when there actually
runs a process that may demand resource quota. The main task of a DQMP
daemon is to fulfill the resource demands of its associated resource controllers.
To do so, the daemon is connected to a set of other DQMP daemons (assigned
to the same customer) that run on different cloud hosts, forming a peer-to-peer
network. For the remainder of this paper, we will refer to daemons connected in a
DQMP network as nodes. Moreover, the first node that joins the network is called
quota manager. It serves as a stable access point for the infrastructure, since the
composition of a DQMP network is dynamic as nodes join and leave depending
on whether their local machines currently host processes for the customer.
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Fig. 2. Example scenario for diffusion-based quota balancing: (a) The local free quotas
are balanced across nodes. (b) Processes on nodes i and k demand resources → the
diffusion of quota starts. (c) The free quotas have been rebalanced.

3.2 Node Registry

In addition to the DQMP components running on the same hosts as the customer
applications, we provide a node-registry service that manages information about
all nodes (i. e., DQMP daemons) assigned to the same customer. We assume
the node registry to be implemented as a fault-tolerant service; for example, by
using multiple registry instances. When a new node joins the DQMP network,
the registry sets up an entry for it. As each node periodically sends a heartbeat
message the registry is able to garbage collect entries of crashed nodes. When a
node leaves the DQMP network (e. g., due to the last local application process
having been shut down), the node instructs the registry to remove its entry.

4 The DQMP Protocol

This section presents the algorithms used by our decentralized quota-enforcement
protocol DQMP to enforce global resource quotas of customers. In addition to a
description of the basic protocol, we also discuss extensions for fault tolerance.

4.1 Diffusion-Based Quota Balancing

We give a basic example scenario to outline how the general concept of diffusion is
applied to balance free global quota information. In this example, three machines
have been selected to host the application of a customer. For simplicity, we
examine the diffusive balancing process of a single resource quota.

Each node (i. e., DQMP daemon) in the DQMP network is connected to a
set of neighbor nodes (or just “neighbors”). Quota balancing is done by pairwise
balancing the free local quota of neighbors. As neighbor sets of different nodes
overlap, a complete coverage is achieved. In our example (see Figure 2), nodes i
and j form a pair of neighbors, and nodes j and k form another pair of neighbors.
At start-up, the global quota of the customer (180 units in our example) is
balanced over all participating nodes (see Figure 2a).

When the application starts executing, the resource controller at node i de-
mands 50 resource units and the resource controller at node k demands 10 units.
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def initial connect (nodes):
for node in nodes:

if node.connect(self ):
neighbors.append(node)
if level == None

or level > node.level:
level = node.level + 1
uplink = node

def connect(node):
if node not in neighbors:
neighbors.append(node)
return true

return false

Fig. 3. Connecting nodes
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Fig. 4. Example tree in a DQMP network

Figure 2b shows that nodes i and k react by reducing the amount of locally
available free quota q. Thus, both nodes can grant their local resource demands
immediately. Changing the amounts of free quota starts the diffusive quota-
balancing process and causes nodes i and k to exchange quota information with
other nodes; in this case node j. As the free quota of node j exceeds the free
quota of node i (i. e., qj > qi), � qj−qi

2 � quota units are migrated to i. The same
applies to nodes j and k which, again, leads to different amounts of free quota
on nodes i and j. As a result, further balancing processes are triggered and bal-
ancing continues until equilibrium is reached. The equilibrium (see Figure 2c)
enables node i to be well prepared for future resource demands, as its amount
of free quota has risen to the global average of 40.

In case a resource controller issues a resource demand that exceeds q, a node
obtains the requested quota by successively reducing q after each balancing pro-
cess. As soon as the node has collected the full amount, it grants the resource
demand to the resource controller.

Using discrete quota, there might be an imbalance of one unit between two
neighboring nodes if mod(

∑
q, n) �= 0 (n is the total number of nodes), causing

balancing to never stop. To avoid this, we restrict balancing to differences above
one unit. As a result, this introduces a potential system-wide gradient, which
we cope with using probabilistic migration [19]. This strategy migrates small
amounts of quota with a certain probability, even if the imbalance is not reduced.

4.2 Basic Protocol

This section describes the basic DQMP protocol. We assume a fail-stop behavior
of nodes and the reliable detection of node and connection failures.

Connection Process. When a new application is deployed, our quota-enforce-
ment service starts local DQMP daemons on the corresponding hosts and selects
one of these nodes to be the quota manager (see Section 3.1). Then, our service
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Table 1. Data structures managed by a DQMP daemon

Field Description

level Level in the quota tree
neighbors List of neighbors, where each entry is a triple

of connection, counter, and level
quota Available local resource quota
consumed Consumed resource quota (see Section 4.3)

supplies all nodes of this first set with the addresses of all other nodes. Next,
each node establishes a connection to some of the other nodes, adding them to
its neighbor set (see initial connect() in Figure 3 and Table 1).

During this procedure, every node determines its level in a tree (see Figure 4)
that is formed as a by-product of the connection process. At first, only the quota
manager (representing the tree root) is part of the tree and is therefore assigned
level zero. Next, all other nodes join the tree using the following algorithm:
(1) A node collects the level information of all of its neighbors. (2) It selects the
neighbor n that has the lowest level ln (i. e., the node with the smallest distance
to the tree root) to be its parent node in the tree. From now on, we refer to the
connection to n as the uplink ; in Section 4.3, we investigate how the uplink is
used to provide fault tolerance. (3) The node sets its own level to ln + 1.

When a node has connected a predefined number of neighbors, it sends an
announcement including its contact details and level information to the node
registry managing a list of nodes assigned to the customer (see Section 3.2). In
case the application of a customer scales up capacity by starting processes on
additional hosts, newcomers query the node registry for addresses of nodes in the
DQMP network. This information is then used as input for initial connect().

Quota Balancing. When the set of initial nodes is connected, nodes can be
provided with quota by simply initializing the quota manager’s local free quota
with the amount of globally granted quota. In consequence, the diffusion process
starts and every node balances its free quota with all connected neighbors.

Figure 5 outlines the basic balancing process, organized in rounds, each com-
prising a single call to do balancing(). During a round, for each neighbor, a
node d determines the amount of free quota and sends it to the neighbor via
balance(). This method adjusts the free quota at the neighbor and returns the
amount by which to change the local free quota of d. The round ends when d

def do balancing():
for n in neighbors:

free = quota
# ask other node how to change my quota
quota += n.balance(free)

def balance(remote free):
free = quota
avg = (free + remote free) / 2
quota += avg − free
return −(avg − free)

Fig. 5. Simplified quota balancing process



224 J. Behl, T. Distler, and R. Kapitza

has balanced quota with each of its neighbors. Note that quota balancing with
a neighbor only takes a single message round-trip time.

If the local free quota has changed during a round of balancing, a node im-
mediately starts another round. Otherwise, the next round is triggered when
the node receives a demand from a local resource controller or when the quota
exchange with another node modifies the local free quota.

4.3 Extension for Fault Tolerance

In this section, we describe how to extend the basic protocol presented in Sec-
tion 4.2 in order to tolerate node failures.

General Approach. To handle faults, every node maintains a counter for
each neighbor link. This link counter represents the net amount of free quota
transferred to the neighbor and is updated on each quota exchange via the
corresponding link: if a node passes free quota to a neighbor, it increments the

def fix crashedNode(neighbor):
quota += neighbor.counter
neighbors.remove(neighbor)
# check if uplink is concerned
replace crashedNode()

Fig. 6. Recovery after neighbor crash

def do balancing():
for n in neighbors:

free = quota
if n. level < level :
# pass the consumed quota
# up to the root
n.counter += consumed
result = n.balance(id, free ,

consumed)[0]
consumed = 0

else:
# receive consumed quota
# from lower nodes
(remote consumed, result) =

n.balance(id, free )
n.counter −= remote consumed
consumed += remote consumed

n.counter −= result
quota += result

def balance(id, remote free,
remote consumed = 0):

neighbor = neighbors[id]
free = quota
avg = (free + remote free) / 2

# handle the consumed quota
if neighbor. level < level :
remote consumed = consumed
neighbor.counter += remote consumed
consumed = 0

else:
neighbor.counter −= remote consumed
consumed += remote consumed

# balance the remaining quota
if remote free < 0 and free < 0:
# nothing left on both sides
return (remote consumed, 0)

elif remote free < 0 or free < 0:
# take care of negative quotas
# [...]

else: # free quota on both sides
quota += avg − free
neighbor.counter −= avg − free
return (remote consumed,

−(avg − free))

Fig. 7. Issuing a balancing request Fig. 8. Responding to a balancing request



DQMP: A Decentralized Protocol to Enforce Global Quotas 225

local link counter by the amount transferred; the neighbor decrements its counter
by the same amount. A negative counter value indicates that a node has received
more free quota over that link than the node has passed to the neighbor.

When a node crashes, all connected neighbors detect the crash: each neighbor
removes the crashed node from its neighbor set and adds the counter value of
the failed link to its local amount of free quota (see Figure 6). This way, the
free quota originally held by the crashed node is reconstructed by all neighbors,
requiring no further coordination. Note that such a recovery may temporarily
leave single nodes with negative local free quota. However, the DQMP network
compensates this by quickly balancing quota among remaining nodes.

Consumed Quota. So far, this approach is only suitable for refundable quota
like disk space, since link counters are unaware that non-refundable quota, like
CPU cycles, transferred to a node may have been consumed by a local application
process. Thus, neighbors would reassign more free quota than the crashed node
actually had. To address this, nodes gather and distribute information about
consumed quota, and adjust their link counters to prevent its reassignment.

For each resource, a node maintains a consumed counter (see Table 1) that
is updated whenever a local application process consumes quota. Each node
periodically reports the value of its consumed counter to its uplink, which in
turn passes it to its own uplink, and so on, all up to the quota manager. Having
reported the consumed quota, a node increments its uplink link counter by the
amount announced; the uplink in turn decrements its link counter by the same
value, similar to the modifications triggered during quota balancing. As a result,
link counters are adjusted to reflect the reduced global free quota. Figures 7
and 8 show updated listings of the balancing process presented in Figure 5.

Handling Cluster Node Failures. Link counters are an easy and lightweight
mean to compensate link crashes and single node failures. They also allow toler-
ating multiple crashes of directly connected nodes, because adjacent nodes can
be seen as one large node with many neighbors. In case a node set is separated
from the rest of the network, the node set that is not part of the quota-manager
partition eventually runs out of quota, since free quota is always restored in the
direction of its origin (i. e., the quota manager). However, after reconnection,
the balancing process re-distributes the free quota, enabling the application pro-
cesses on all nodes to make progress again. To avoid permanent partitions within
the network, the protocol makes use of the level information. When a node except
the quota manager and its direct neighbors loses the connection to its uplink, it
has to select a node with a lower level than its own as new uplink. Preferably,
the node uses one of its current neighbors for that purpose; however, it can also
query the node registry (see Section 3.2) for possible candidates. If a suitable
uplink cannot be found, the node is shut down properly.

Handling Crashes of the Quota Manager. If the quota manager crashes, its
neighbors do not consolidate their link counters. If they did, all global quota of a
customer would vanish as it has been originally injected via the quota manager.
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Instead, all links to the quota manager are marked initial links and are therefore
ignored during failure handling, allowing the network to proceed execution.

However, we assume a timely recovery of the quota manager as an application
cannot be provided with additional quota while this node is down. We therefore
assume that its state can be restored (e. g., using a snapshot). Note that the state
of the quota manager to be saved is small: it only includes the set of neighbor
addresses as well as the quota, consumed, and counter values (see Table 1) for
every managed resource, making frequent snapshots and a fast recovery feasible.

At restart, the quota manager reconnects all level-one nodes. In case of one
or more of them having crashed in the meantime, it starts the regular failure
handling. At this point, we cannot tolerate network partitions between the quota
manager and its neighbors, as this would lead to a duplication of free quota.

5 Evaluation

We evaluate DQMP on basis of a prototype implemented in Java. The tests are
performed on 40 hosts, all equipped with 2.4GHz quad-core CPU, 8GB RAM,
and connected over switched Gigabit Ethernet. Each host executes up to three
Java virtual machines (JVMs) to support the simulation of larger networks. In
this set-up, raw ping times range from 0.2 to 0.5ms and simple Java RMI method
calls take between 0.7 and 1.0ms. On top of the physical network, two DQMP
networks, consisting of 100 and 1,000 nodes, are simulated, with the maximum
number of neighbors set to 6. Comparison measurements show, that simulating
up to nine nodes within a single JVM has no significant impact on the results.

Test runs are performed as follows: After the DQMP network is built up, a
quota amount of 50,000 units per node is injected. When the initial equilibrium
is established, all nodes are instructed to begin with the execution of the actual
test. After a test has finished, the local results of the nodes are collected. Except
time charts, all presented results are the average of at least three test runs.
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5.1 Response Time Behavior of DQMP

Single Demands. In the first test, we examine the response times of DQMP for
single demands within the small network containing 100 nodes. In this scenario,
a subset of nodes orders a predefined amount of quota at the same time. The
proportion of demanding nodes is raised stepwise from 1% to 100% and the
overall amount of quota requested by this proportion is varied between 25% and
100%. This means that in one case, for instance, a single node requests the entire
quota available and in another case, each of 100 nodes requests 1% of it.

From the results, as depicted in Figure 9, it can be inferred that the decisive
factor for the performance of our protocol is the ratio between the free local
quota held by each node and the size of the local demand: the smaller the demand
compared to the local quota, the faster it can be satisfied. Since DQMP aims to
an even distribution of free quota over all nodes, the demand size can be put into
relation to the globally free quota: if demands of single nodes exceed the average
size of free quota held by each node to a great extent, it is likely that quota has to
be transferred not only from nearer nodes but also from farther ones to satisfy the
demand. For instance, if a single node asks for the entire available quota, every
quota unit in the network has to reach the same destination. With our settings,
this takes about 7.8 seconds and 770 balancing rounds per node. However, this
case is not realistic as only such nodes participate in DQMP networks that are
actually used by processes demanding quota. If 50 nodes request 95% of the
overall quota, the provisioning time already drops below 30ms. Here, it takes
about 45 balancing rounds per node until the request is fulfilled and until the
network comes to a rest, that is, until no messages are transmitted anymore.
Moreover, if only a small amount of the overall quota is needed or a large demand
is split between many nodes, DQMP can provide extremely low response times.
When a demand of a node can be fulfilled by its local quota, the DQMP daemon
is even able to instantly grant the demanded amount, turning the assignment of
global quota within a distributed system into a local operation.

Crashes of Nodes. After this first evaluation, we now examine how our proto-
col behaves in the presence of node crashes, since fault tolerance was a primary
objective for the design of DQMP. As basis for this evaluation, we choose a
scenario in which nodes demand and release quota constantly. In detail, each
node performs the following in a loop: It adds a randomly chosen delta d, with
−10, 000 ≤ d ≤ +10, 000, to its previous quota demand. It ensures that the
new demand does not exceed the upper bound b of 50, 000 units, which limits
the demand of all nodes combined to 100% of the overall quota injected into
the system. According to the calculated value, the node issues a request either
demanding new or releasing already granted quota. Subsequently, it waits un-
til the request is fulfilled. Then it sleeps for a randomly chosen time between
25 and 75ms to simulate fluctuating resource requirements.

Figure 10 shows the course of response times from a single test run with
100 requesting nodes, issuing a total of approximately 14,000 requests within
8 seconds, and an induced crash of 25 nodes at t = 0. The first outcome of
this test is, that under the given scenario, which simulates the distribution of a
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large demand over all available nodes, almost all quota requests can be fulfilled
locally, leading to a standard response time below 0.2ms. For the same reason,
the processing of most requests is hardly affected by crashes of neighbors. Quota
releases are inherently not affected at all anyway. Consequently, despite the crash
of 25% of the nodes, there are only 4 requests for which it took between 10 and
30ms to process them and 8 requests that lie in the range between 1 and 10ms.
Thus, the balancing process of DQMP is able to compensate node crashes very
quickly by redistributing the quota over all remaining nodes.

5.2 Comparison of Different Architectures

Next, we compare DQMP to other architectures addressing quota enforcement in
distributed systems. For this purpose, we implemented a RMI-based quota server
and a passively replicated variant of it by means of the group communication
framework JGroups1. During test runs, the quota server as well as each replica
is executed by a dedicated machine. In the following, the term “node” is not
confined to DQMP daemons; it also denotes clients in the other architectures.2

As scenario for the comparison serves an extended variant of the scenario
used for examining the behavior of DQMP in the presence of nodes crashes
(see Section 5.1). Different to the previous scenario, here, a network of 1,000
nodes is used and the proportion p of requesting nodes is varied between 1%
and 100%. Further, the combined demand of all requesting nodes is limited to
75% of the overall injected quota in one case and to 100% in another. This is
achieved by setting the maximum demand of a single node b to b75% = 37.500

p

and b100% = 50.000
p , respectively. The delta d for every simulated demand change

is randomly chosen between −0.2b and +0.2b quota units.

Single-cluster Network. For a first comparison, all network connections have
similar latencies, just as in the previous tests and just as found within a local
area network, for instance within a single data center of a cloud provider. The
results of this scenario are depicted in Figure 11a. Since response times of the
central quota server and its replicated variant are only dependent on the number
of quota requests that have to be processed, and particularly are independent of
quota amounts, only a single set of results is reported for these architectures.

This test reveals the deficiencies of not completely decentralized systems in
terms of scalability: Due to limited resources such as CPU power, memory and
bandwidth and due to the contention arising from the shared usage of such
resources, these systems have a limited rate they can process requests at. In
our settings, for instance, all quota-server–based systems are able to process the
requests of a smaller number of requesting nodes within less than 2ms on average.
However, in the presence of 1,000 requesting nodes, a single quota server already

1 http://www.jgroups.org/
2 We also implemented a quota-enforcement service based on the coordination service
Apache ZooKeeper (http://zookeeper.apache.org/). However, the optimistic lock
approach of ZooKeeper is not suitable for the high number of concurrent writes
needed in such systems, resulting in some orders of magnitude higher response times.

http://www.jgroups.org/
http://zookeeper.apache.org/
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Fig. 11. DQMP compared to other architectures regarding response times

requires about 28ms. Using a more reliable replicated server system makes this
even worse. The increased communication overhead leads to an average response
time of over 40ms.

In contrary, using DQMP response times decrease when demands are split
up between more nodes. DQMP is able to fulfill requests within an average of
1ms, and is thus faster than the server systems when the proportion of request-
ing nodes exceeds 25%. Beyond 50% the response time drops constantly below
0.2ms. Since the total demand was fixed to either 75% or 100% of the globally
injected quota, single demands get smaller with an increasing number of re-
questing nodes, leading to a higher chance that requests can be fulfilled through
the local quotas of the nodes. That is the reason why, as shown by our results,
DQMP is even able to outperform a non-saturated central quota server in terms
of average response times when demands are distributed over multiple nodes.

Clustered Network. Normally, cloud providers do not maintain only a single
data center but multiple ones, spread all over the world. These data centers form
a clustered network, a network in which groups of well-connected nodes can only
communicate among each other over relatively slow connections. To simulate
such an environment, respectively wide area networks in general, we assign each
out of 1,000 nodes to one of 10 clusters and artificially delay message exchange
between nodes from different clusters by 20ms.

The results, as presented in Figure 11b, suggest the conclusion that a central
quota server is not well suited for the scenario described here. The server is lo-
cated in one of the 10 clusters, which entails that 90% of all nodes experience
prolonged delays while communicating with it. Thus, in 90% of all quota re-
quests, demands or releases, the delay of 20ms is fully added as an offset to the
processing time. In case of DQMP, nodes can exchange quota with all of their
neighbors in parallel, mitigating the effects of slower connections. Furthermore,
all requests that can be fulfilled locally, including all releases, are not affected
at all by communication delays. These are the reasons, why DQMP is able to
provide better response times than a quota server in this scenario already when
only 10% of the nodes demand and release quota.
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Protocol Overhead. Concerning the protocol overhead of DQMP regard-
ing network transfers, it can be observed that DQMP has completely different
characteristics than a traditional quota server. If a quota server is used, each
quota request leads to the exchange of two messages, a request message and its
reply. In our implementation, the two messages require about 100 bytes. With
DQMP instead, requests have only an indirect influence on the balancing process
and hence, on the number of messages transferred. For the unrealistic case (see
above) that relatively large demands are infrequently issued by a single node,
causing, in the worst case, continuous balancing processes all over the network,
the ratio between number of requests and messages transferred is unfavorable.
With an increasing number of requests, however, the ratio gets more appropriate.
In the scenario of 1,000 constantly requesting nodes our protocol requires about
3 kilobytes per request in average. Although this is still more than needed by
the quota-server system, it has to be noted, that DQMP provides fault-tolerant
operation while a central quota server does not and that network traffic between
hosts of the same data center is usually not billed by cloud providers, hence,
using DQMP would not generate additional transfer costs for cloud customers.

6 Conclusion

In this paper, we presented DQMP, a decentralized quota-enforcement protocol
that provides the fault tolerance and scalability required by cloud-computing
environments. DQMP can help customers of platform services, to prevent them-
selves from financial losses due to errors, attacks, or careless use causing involun-
tary resource usage. The utilized diffusion-based balancing of free quota enables
customers to enforce global limits on resource usage while retaining flexibility
and adaptability regarding the actual local demands within their deployments.
Nonetheless, DQMP is not confined to this application. Cloud providers can
employ it, for example, to restrict customers of their platform or infrastructure
services on a global level by enforcing quota for virtual machines. As the evalu-
ation of our prototype implementation shows, DQMP is able to provide better
response times than a centralized service in a setting with 1,000 nodes. Moreover,
our protocol is well suited for clustered networks as formed by interconnected
data centers. Both is important since traditional, not fully decentralized solu-
tions might soon reach their limit as distributed systems get larger and larger.
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KARYON, a kernel-based architecture for safety-critical control, is a European
project that proposes a new perspective to improve performance of smart vehi-
cle coordination focusing on Advanced Driver Assistance Systems (ADASs) and
Unmanned Aerial Systems (UAS). The key objective is to provide system solu-
tions for predictable and safe coordination of smart vehicles that autonomously
cooperate and interact in an open and inherently uncertain environment. Cur-
rently, these systems are not allowed to operate on the public roads or in the
air space, as the risk of causing severe damage cannot be excluded with suffi-
cient certainty. The impact of the project is two-fold; it will provide improved
vehicle density without driver involvement and increased traffic throughput to
maintain mobility without a need to build new traffic infrastructures. The re-
sults will improve interaction in cooperation scenarios while preserving safety
and assessing it according to standards. The prospective project results include
self-stabilizing algorithms for vehicle coordination, communication and synchro-
nization. In addition, we aim at showing that the safety kernel can be designed
to be a self-stabilizing one.

The key objective of KARYON is to provide system solutions for predictable
and safe coordination of smart vehicles that autonomously cooperate and in-
teract in an open and inherently uncertain environment. This is a challenging
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objective since the same increasingly complex control components and wireless
communication, which would allow improved performance, end up introducing
new safety risks, which have to be mitigated or neutralized. Addressing this
challenge requires innovative solutions for: (1) A high availability of the com-
plex control system investigating new ways of achieving fault-tolerant distributed
control that allow maintaining a high performance level in the presence of uncer-
tainties and failures, and (2) Provision of a safety kernel for constraining system
operation in order to avoid hazardous situations.

Thus far, vehicular application safety is typically based on worst-case analysis
and pessimistic allocation of resources to achieve the intended functionality. This
has a strong impact on the final cost of the solutions. Often, when considering
automotive systems, even a slight cost increment is not affordable.

Architectural Support for Safety-Critical Systems. Safety-critical systems call
for predictability, i.e., real-time operation. Traditionally, safety-critical solutions
have been based on synchronous system models. These are well understood, both
in terms of distributed systems theory and in the design of real-time systems and
solutions, in areas such as real-time communication [5,7,2] and real-time schedul-
ing [3,6]. However, when moving to distributed, large-scale, wireless and possibly
complex infrastructures, these infrastructures do not provide the timeliness guar-
antees required. Therefore, designing applications using the synchronous model
would cause incorrect system behavior due to assumption violation, and would
defeat any safety requirements.

Supporting Services for Sensor-Based Safe Coordination. Advanced control
systems rely on a correct perception of the environment and system state, e.g.,
consistent view on the system state in the presence of faults and concurrency [8].
Results in this field address synchrony and replication issues but often assume
correct information at its origin, and same state replicas. If reliable operation of
sensors and actuators are required dealing with the environment perception and
actuation on it, these methods have to be extended. Reliable operation has to
cope with continuous data where replication is not always possible and redun-
dancy mechanisms have to be different. One can find control models for fault
detection of the sensor-to-actuator chain, such as fault detection and isolation
(FDI) [4] or analytical redundancy methods [1]. Currently there is no consid-
eration for system impact on largely varying network latencies or dynamically
varying sensor information beyond mere statistical effects.

The Technical Approach. KARYON will define a safety architecture for
sensor-based cooperative systems, which is based on a small local safety kernel,
that will allow adaptive and dynamic behaviour whilst preventing dangerous
behaviour. Because this is a tiny subsystem compared to the overall complex
control system, and its design is guided by concepts of fault independence from
the rest of the system, possession of it’s own resources, highest reliability of
operation and autonomy of control decisions, its predictability can be justi-
fied. This is essential for guaranteeing overall safety along a set of safety rules.
The architecture will be defined in a generic way, like an architectural pattern,
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without restricting the concrete faults to be considered and the fault-tolerance
mechanisms to be deployed. In fact, since KARYON focuses on functional safety,
the safety kernel should guarantee that the specified functionality should not fail
in a hazardous way. To build a safe product, the integrity of the implementation
should be high enough to ensure acceptable risks, where the risks are derived
from an analysis of the potential hazards. Therefore, a set of safety rules will have
to be derived from each specific application, and will be guarded by the safety
kernel. The safety kernel will thus control the adaptive and dynamic behavior
of the system, based on information about the integrity of system components
and quality of perception (sensor data), and safeguard the system against unsafe
control commands, by checking them against the derived set of safety rules. The
project will further investigate the relevant fault detection concepts, particularly
for the sensor systems, needed to show fulfilment of dependability attributes and
argue about safety according to safety standards. At the same time, the idea is
to achieve improvements in the reliable and trustworthy environment percep-
tion, based on adequate fault models for complex sensor faults, on solutions for
increased communication predictability and on environment monitoring compo-
nents. Simulation and mixed reality techniques will be developed to validate the
approach. Furthermore, KARYON will integrate concepts in advanced event dis-
semination middleware and in improved simulation and fault-injection tools for
assessing the behaviour of autonomous, mobile systems under failure conditions
and to evaluate safety assurance according to the ISO 26262 safety standard.

Demonstration and Use. KARYON will explore the elaborated concepts
and results in the context of two major use cases from the automotive and avion-
ics areas. Application expertise provided by the respective industrial beneficiaries
from the automotive and avionics fields, will ensure that scenarios and evalu-
ation will always be aligned with industrial needs. The automotive use case is
related to Advanced Driver Assistance Systems (ADASs) for coordinating vehi-
cles. In particular, KARYON will examine scenarios in which vehicles cooperate
while: (1) Going on the road and keeping their distance from other vehicles, (2)
Cursing in their lanes and coordinating when lane changes are needed, and (3)
Crossing intersections in a coordinated way.

Conclusions. KARYON opens new perspectives by enabling the use of avail-
able technology for safe cooperative systems and for increased efficiency. Global
safety predicates are powerful abstractions for describing the intended safe be-
haviour of systems as a whole. Since that behaviour must be guaranteed at
run-time, KARYON will conduct research on the problem of deriving safety
monitors from the global safety predicates. We aim at providing a safety kernel
and mechanisms for detecting unsafe states and trigger appropriate responses.
We expect that KARYON’s impact will include benefits of overall increased
traffic throughput, safer roads and sustainable transportation.
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Abstract. We introduce the notion of digital arbitration which en-
ables resolving disputes between servers and users with the aid of ar-
bitrators. Arbitrators are semi-trusted entities in a social network that
facilitate communication or business transactions. The communicating
parties, users and servers, agree before a communication transaction on
a set of arbitrators that they trust (reputation systems may support their
choice). Then, the arbitrators receive digital goods, e.g. a deposit, and
a terms of use agreement between participants such that the goods of a
participant are returned if and only if the participant acts according to
the agreement.

Introduction. The number of transactions in the Internet grows exponentially.
The scalability of the Internet is based on the distribution of tasks among the
participants. Specifically, peer to peer, machine to machine, clients and servers
execute independent transactions with no central controlling entity. A Certificate
Authority (CA) is a prominent example of the opposite approach; a centralized
entity that is heavily used as part of public key infrastructures or as part of the
communication protocol to secure the transactions in the Internet.

We suggest the use of additional semi-trusted entities to relieve the load of
tasks handled by a CA. The entities are called arbitrators. An arbitrator can be
a semi-trusted peer in a social network or an agency (implemented by servers in
the system) that gains reputation for being trusted in a distributed reputation
system.
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The number of CAs is very small and the information they have is highly
classified. In contrast, the number of arbitrators can be huge (e.g., each peer can
act as an arbitrator) and the information given to the arbitrator is limited.

Arbitrators. Arbitrators in the real world are used to resolve disputes between
two parties outside the court of law. The parties in a dispute agree that a third
party (or parties), generally self-contained, will resolve their dispute. The reso-
lution of the arbitration process is binding for both parties.

We suggest using arbitrators in the digital world that resemble arbitrators in
the real world. They are P2P semi-trusted entities that function as a jury in the
technology court of law. However, there are naturally a few differences. There
is more than one arbitrator, the sanction that takes place in case of violation is
set in advance and only a collaboration of enough arbitrators is allowed to carry
out the sanction.

Digital Arbitration. Interaction between a user and a server in our setting
occurs as follows. At the beginning of the initial phase of the communication
between the user and the server, they agree on a contract. The contract contains
three parts. A terms of use agreement that defines what is legitimate, namely
what the user is allowed to do during the communication; a set of arbitrators;
and a resource (digital goods) the server receives in case the user violates the
agreement.

Note that the scheme requires a trusted party such as a Certificate Authority
(CA) in the initial phase. The CA must vouch for the users’ digital resource,
otherwise the server cannot be sure that the guaranteed resource is indeed dis-
tributed to the arbitrators.

The user then applies to the CA that validates the resource, and sends the
user a commitment for the resource. The user then uses a verifiable secret sharing
scheme to divide the resource into n shares (n is the number of arbitrators that
the user and the server agree on) and submits a share along with the commitment
and the user digital signature verification key within each arbitrator. The user
also sends the commitment and the user digital signature verification key to
the server that verifies with each arbitrator that it has received the share, the
commitment and the user digital signature verification key.

During the communication phase the user signs each message sent to the
server. If the server believes that the user has violated the agreement, then the
server applies to the arbitrators, and if large enough set of arbitrators (more
than t, where t is the threshold in the secret sharing scheme) agree that the
user actually violated the agreement, they give the server the information that
is needed to reconstruct the resource.

Related Work. Some ideas that appear in the literature and are related to our
ideas are revocable privacy, anonymous credential systems, digital money and
blacklisting.

Revocable privacy systems (e.g. [4,6,7]) are systems that protect personal
information unless a user violates the pre-established terms of service. These
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systems deal only with the privacy of the user, and the privacy is revoked by a
law enforcement entity.

Users in anonymous credential systems (e.g., [3]) communicate anonymously
with different servers in an unlinkable fashion. The CA (or open authority as
it is called in these systems) issues the credentials to the users and may revoke
the anonymity of the users. Our proposed system, on the other hand, separates
the entity that issues the credentials (CA) from the entity that revokes the
anonymity.

Another group of solutions, is k times anonymous authentication (k-TAA)
[8]. These systems provide anonymous authentication k times. Until the k-th
time, no one (not even the trusted party) can identify the user, whereas in the
k+1 attempt, the anonymity of the user is revoked. Camenisch et al. [2] extend
k-TAA to allow k anonymous authentications in a single time period. Namely,
after a predefined period of time, the counter is set to zero, and k is recounted.

Solutions such as BLAC [1] and Nymble [9] take a different approach. In
these works, the anonymity of a misbehaving user is not revoked. Instead, these
systems use blacklists in order to prevent the user from receiving service.
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Abstract. Ability to find and get services is a key requirement in the develop-
ment of large-scale distributed systems. We consider dynamic and unstable en-
vironments, namely Peer-to-Peer (P2P) systems. In previous work, we designed
a service discovery solution called Distributed Lexicographic Placement Table
(DLPT), based on a hierarchical overlay structure. A self-stabilizing version was
given using the Propagation of Information with Feedback (PIF) paradigm. In this
paper, we introduce the self-stabilizing COPIF (for Collaborative PIF) scheme.
An algorithm is provided with its correctness proof. We use this approach to
improve a distributed P2P framework designed for the services discovery. Signif-
icantly efficient experimental results are presented.

1 Introduction

Computing abilities (or services) offered by large distributed systems are constantly
increasing. Cloud environment grows in this way. Ability to find and get these services
(without the need for a centralized server) is a key requirement in the development of
such systems. Service discovery facilities in distributed systems led to the development
of various overlay structures built over Peer-to-Peer (P2P) systems, e.g., [12,18,26,27].
Some of them rely on spanning tree structures [12,27], mainly to handle range queries,
automatic completion of partial search strings, and to extend to multi-attribute queries.

Although fault-tolerance is a mandatory feature of systems targeted for large scale
platforms (to avoid data loss and to ensure proper routing), tree-based distributed struc-
tures, including tries, offer only a poor robustness in dynamic environment. The crash
of one or more nodes may lead to the loss of stored objects, and may split the tree into
several subtrees.

The concept of self-stabilization [16] is a general technique to design distributed
systems that can handle arbitrary transient faults. A self-stabilizing system, regardless
of the initial state of the processes and the initial messages in the links, is guaranteed to
converge to the intended behavior in finite time.

In [10], a self-stabilizing message passing protocol to maintain prefix trees over prac-
tical P2P networks is introduced. This protocol makes the data structure robust against
arbitrary transient faults. The protocol is based on self-stabilizing PIF (Propagation of
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Information with Feedback) waves that are used to evaluate the tree maintenance pro-
gression. The scheme of PIF can be informally described as follows: a node, called
initiator, initiates a PIF wave by broadcasting a message m into the network. Each non-
initiator node acknowledges to the initiator the receipt of m. The wave terminates when
the root has received an acknowledgment from all other nodes. In arbitrary distributed
systems, any node may need to initiate a PIF wave. Thus, any node can be the initiator
of a PIF wave and several PIF protocols may run concurrently (in that case, every node
maintains locally a data structure per initiator).

Contribution. We first present the scheme of collaborative PIF (referred as COPIF).
The main thrust of this scheme is to ensure that different waves may collaborate to im-
prove the overall parallelism of the mechanism of PIF waves. In other words, the waves
merge together so that they do not have to visit parts of the network already visited
by other waves. Of course, this scheme is interesting in environments were several PIF
waves may run concurrently. Next, we provide a self-stabilizing COPIF protocol with
its correctness proof. To the best of our knowledge, it is the first self-stabilizing solution
for this problem. Based on the snap-stabilizing PIF algorithm in [8], it merges waves
initiated at different points in the network. In the worst case where only one PIF wave
runs at a time, our scheme does not slow down the normal progression of the wave.
Finally, we present experimental results showing the efficiency of our scheme use in a
large scale P2P tree-based overlay designed for the services discovery.

Roadmap. The related works are presented in Section 2. Section 3 provides the con-
ceptual and computational models of our framework. In Section 4, we present our self-
stabilizing collaborative protocol—due to the lack of space, the correctness proofs are
omitted1. In Section 5, experiments show the benefit of the COPIF approach. Finally,
concluding remarks are given in Section 6.

2 Related Work

2.1 Self-stabilizing Propagation of Information

PIF wave algorithms have been extensively proposed in the area of self-stabilization,
e.g., [2,5,8,14,30] to quote only a few. Except [5,14,30], all the above solutions as-
sume an underlying self-stabilizing rooted spanning tree construction algorithm. The
solutions in [8,14] have the extra desirable property of being snap-stabilizing. A snap-
stabilizing protocol guarantees that the system always maintains the desirable behavior.
This property is very useful for wave algorithms and other algorithms that use PIF
waves as the underlying protocols. The basic idea is that, regardless of the initial con-
figuration of the system, when an initiator starts a wave, the messages and the tasks
associated with this wave will work as expected in a normal computation. A snap-
stabilizing PIF is also used in [11] to propose a snap-stabilizing service discovery tool
for P2P systems based on prefix tree.

1 The complete proofs of correctness can be found at
http://hal.inria.fr/hal-00714775.
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2.2 Resource Discovery

The resource discovery in P2P environments has been intensively studied [20]. Al-
though DHTs [24,25,28] were designed for very large systems, they only provide rigid
mechanisms of search. A great deal of research went into finding ways to improve the
retrieval process over structured peer-to-peer networks. Peer-to-peer systems use differ-
ent technologies to support multi-attribute range queries [6,18,26,27]. Trie-structured
approaches outperform others in the sense that logarithmic (or constant if we assume
an upper bound on the depth of the trie) latency is achieved by parallelizing the resolu-
tion of the query in several branches of the trie.

2.3 Trie-Based Related Work

Among trie-based approaches, Prefix Hash Tree (PHT) [22] dynamically builds a trie
of the given key-space (full set of possible identifiers of resources) as an upper layer
mapped over any DHT-like network. Fault-tolerance within PHT is delegated to the
DHT layer. Skip Graphs, introduced in [3], are similar to tries, and rely on skip lists,
using their own probabilistic fault-tolerance guarantees. P-Grid is a similar binary trie
whose nodes of different sub-parts of the trie are linked by shortcuts like in Kadem-
lia [19]. The fault-tolerance approach used in P-Grid [15] is based on probabilistic
replication.

In our approach, the DLPT was initially designed for the purpose of service discovery
over dynamic computational grids and aimed at solving some drawbacks of similar pre-
vious approaches. An advantage of this technology is its ability to take into account the
heterogeneity of the underlying physical network to build a more efficient tree overlay,
as detailed in [13].

3 P2P Service Discovery Framework

In this section we present the conceptual model of our P2P service discovery framework
and the DLPT data structure on which it is based. Next, we convert our framework into
the computational model on which our proof is based.

3.1 Conceptual Model

The two abstraction layers that compose our P2P service discovery framework are orga-
nized as follow: (i) a P2P network which consists of a set of asynchronous peer (physi-
cal machines) with distinct identifiers. The peer communicate by exchanging messages.
Any peer P1 is able to communicate with another peer P2 only if P1 knows the iden-
tifier of P2. The system is seen as an undirected graph G = (V,E) where V is the set
of peers and E is the set of bidirectional communication link; (ii) an overlay that is
built on the P2P system, which is considered as an undirected connected labeled tree
G′ = (V ′,E ′) where V ′ is the set of nodes and E ′ is the set of links between nodes. Two
nodes p and q are said to be neighbors if and only if there is a link (p,q) between the
two nodes. To simplify the presentation we refer to the link (p,q) by the label q in the
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code of p. The overlay can be seen as an indexing system whose nodes are mapped onto
the peers of the network. Henceforth, to avoid any confusion, the word node refers to a
node of the tree overlay, i.e., a logical entity, whereas the word peer refers to a physical
node part of the P2P system.

Reading and writing features of our service discovery framework are ensured as
follow. Nodes are indexed with service name and resource locations are stored on nodes.
So, client requests are treated by any node, rooted to the targeted service labeled node
along the overlay abstraction layer, indexed resource locations are returned to the clients
or updated . A more detailed description of the implementation of our framework is
given in [9] and briefly reminded in Section 5.1.

The Distributed Lexicographic Placement Table (DLPT [12,13]) is the hierarchical
data structure that ensures request routing across overlay layer. DLPT belongs to the cat-
egory of overlays that are distributed prefix trees, e.g., [4,23,1]. Such overlays have the
desirable property of efficiently supporting range queries by parallelizing the searches
in branches of the tree and exhibit good complexity properties due to the limited depth
of the tree. More particularly, DLPT is based on the particular Proper Greatest Common
Prefix Tree (PGCP tree) overlay structure. A Proper Greatest Common Prefix Tree (a.k.a
radix tree in [21]) is a labeled rooted tree such that the following properties are true for
every node of the tree: (i) the node label is a proper prefix of any label in its subtree;
(ii) the greatest common prefix of any pair of labels of children of a given node are the
same and equal to the node label.

Designed to evolve in very dynamic systems, the DLPT integrates a self-stabilization
mechanisms [10], providing the ability to recover a functioning state after arbitrary
transient failures. As such, the truthfulness of information returned to the client needs
to be guaranteed. We use the PIF mechanism to check whether DLPT is currently in a
recovering phase or not.

3.2 Computational Model

In a first step, we abstract the communication model to ease the reading and the expla-
nation of our solution. We assume that every pair of neighboring nodes communicate
in the overlay by direct reading of variables. So, the program of every node consists
in a set of shared variables (henceforth referred to as variables) and a finite number
of actions. Each node can write in its own variables and read its own variables and
those of its neighbors. Each action is constituted as follow: < Label >::<Guard >→<
Statement >. The guard of an action is a Boolean expression involving the variables of
p and its neighbors. The statement is an action which updates one or more variables of
the node p. Note that an action can be executed only if its guard is true. Each execution
is decomposed into steps. Let y be an execution and A an action of p (p ∈ V ). A is
enabled for p in y if and only if the guard of A is satisfied by p in y. Node p is enabled
in y if and only if at least one action is enabled at p in y.

The state of a node is defined by the value of its variables. The state of a system is
the product of the states of all nodes. The local state refers to the state of a node and
the global state to the state of the system. Each step of the execution consists of two
sequential phases atomically executed: (i) Every node evaluates its guard; (ii) One or
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more enabled nodes execute their enabled actions. When the two phases are done, the
next step begins.

Formal description (Section 4.2) and proof of correctness of the proposed collabo-
rative propagate information feedback algorithm will be done using this computational
model. Nevertheless, experiments are implemented using the classical message-passing
model over an actual peer-to-peer system [7,17].

4 Collaborative Propagation of Information with Feedback
Algorithm

In this section, we first present an overview of the proposed Collaborative Propaga-
tion of Information with Feedback Algorithm (COPIF). Next, we provide its formal
description.

4.1 Overview of the COPIF

Before explaining the idea behind COPIF, let us first recall the well-known PIF wave
execution. Starting from a configuration where no message has been broadcast yet, a
node, also called initiator, initiates the broadcast phase and all its descendant except
the leaf participate in this task by sending also the broadcast message to their descen-
dants. Once the broadcast message reaches a leaf node of the network, they notify their
ancestors of the end of the broadcast phase by initiating the feedback phase. During
both broadcast and feedback steps, it is possible to collect information or perform ac-
tions on the entire data structure. Once all the nodes of the structure have been reached
and returned the feedback message, the initiator retrieve collected information and exe-
cutes a special action related to the termination of the PIF-wave. In the sequel, we will
refer to this mechanism as classic-PIF.

However, the PIF mechanism is a costly broadcast mechanism that involves the
whole platform. In this paper, we aim to increase the parallelism of the PIF by mak-
ing several PIF waves collaborating together. Let us now define some notions that will
be used in the description of our solution:

Let an ordered alphabet A be a finite set of letters. Lets define ≺ an order on A. A
non empty word w over A is a finite sequence of letters a1, ... , ai, ..., al such as l > 0.
The concatenation of two words u and v, denoted as uv, is equal to the word a1, ..., ai,
..., ak, b1, ..., b j, ..., bl such that u = a1, ..., ai, ..., ak and v = b1, ..., b j, ..., bl . A word
u is a prefix (respectively, proper prefix) of a word v if there exists a word w such that
v = uw (respectively, v = uw and u �= v). The Greatest Common Prefix (respectively,
Proper Greatest Common Prefix) of w1 and w2, denoted GCP(w1,w2) (respectively
PGCP(w1,w2), is the longest prefix u shared by w1 and w2 (respectively, such that
∀i≥ 1, u �= wi).

Let us now describe the outline of the proposed solution through the P2P framework
use case.

Use Case. The idea of the algorithm is the following: When a user is looking for a
service, it sends a request to the DLPT to check whether the service exists or not. Once
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the request is on one node of the DLPT, it is routed according to the labelled tree in the
following manner: let lrequest be the label of the service requested by the user and let lp

be the label of the current node up. In the case of PGCP(lrequest , lp) is true, up checks
whether there exists a child uq in the DLPT having a label lq such that PGCP(lrequest , lq)
is satisfied. If such a node exists, then up forwards the request to its child uq. Otherwise
(PGCP(lrequest , lp) is not satisfied), if we keep exploring the sub-tree routed in up, the
service will not be found. up sends in this case the request to its father node in the
DLPT. By doing so, either (i) the request is sent to one node up such that lp = lrequest , or
(ii) the request reaches a node up such that it cannot be routed anymore. In the former
case, the service being found, a message containing the information about the service is
sent to the user. In the latter case, the service has not been found and the message “no
information about the service” is sent to the user. However, the node has no clue to trust
the received information or not. In other words, in the former case, up does not know
whether it contains the entire service information or if a part of the information is on a
node being at a wrong position in the tree due to transient faults. In the latter case, up

does not know whether the service is really not supported by the system or if the service
is missed because it is at a wrong position.

In order to solve this problem, up initiates a PIF wave to check the state of all the
nodes part of the DLPT. Note that several PIF waves can be initiated concurrently since
many requests can be made in different parts of the system. The idea of the solution
is to make the different PIF waves collaborating in order to check whether the tree is
under construction or not. For instance, assume that two PIF waves, PIF1 and PIF2,
are running concurrently on two different parts of the tree, namely on the subtrees T1
and T 2, respectively. Our idea is to merge PIF1 and PIF2 so that PIF1 (respectively,
PIF2) do not traverse T 2 (resp., T 1) by using data collected by PIF2 (resp.PIF1).
Furthermore, our solution is required to be self-stabilizing.

COPIF. Basically, the COPIF scheme is a mechanism enabling the collaboration be-
tween different PIF waves. Each node up of the DLPT has a state variable Sp that in-
cludes three parameters Sp = (Phase, id f , idPIF). Parameter idPIF refers to the identifier
of the PIF wave which consists of the couple (idpeer,lui), where idpeer is the identifier of
the peer hosting the node ui that initiated the PIF wave and lui is the label of the node
ui. The value id f refers to the identifier of the neighbor from which up received the
broadcast. It is set at NULL in the case up is the initiator. Phase can have four values:
C, B, FC and FI. The value C (Clean) denotes the initial state of any node before it
participates in a PIF wave. The value B (Broadcast) or FC (Feedback correct) or FI
(Feedback incorrect) means that the node is part of a PIF wave. Observe that in the case
there is just a single PIF wave that is executed on the DLPT, then its execution is similar
to the previously introduce classic-PIF.

When more than one PIF wave are executed, four cases are possible while the pro-
gression of the COPIF wave. First (i), if there is a node up in the C state having only
one neighboring node q in the B state and no other neighboring node in the FI or FC
state, then p changes its state to B. Second (ii), if there exists a leaf node up in the C
state having a neighbor uq in the B state, then up changes its state to FC (resp. FI) if
its position in the DLPT is correct (resp. incorrect). Next (iii), if there is a node up in
C-phase having two neighboring nodes uq and uq′ in the B state with different idPIF
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then, up changes its state to B and sets its id f to uq such that the idPIF of uq is smaller
than idPIF of uq′ . Finally (iv), if there exists a node up that is already in the B state such
that its id f is uq and there exists another neighboring node uq′ which is in the B state
with a smaller idPIF and a different id f , then up changes its father by setting id f at uq′ .

Notice that in the fourth cases, uq (previously, the id f of up) will have to change
its id f as well since it has now a neighbor up in the B state with a smaller idpeer. By
doing so, the node ui that initiated a PIF wave with a smaller id will change its idpeer.
Similarly, notice that ui is not an initiator anymore. Hence it changes its id f from NULL
to the id of its neighbor with a smallest idPIF . So, only one node will get the answer
(the feedback of the COPIF), this node being the one with the smallest idPIF . Therefore,
when an initiator sets its id f to a value different from NULL (as ui previously), it sends
a message to the new considered initiator (can be deduced from idPIF ) to subscribe to
the answer. So, when an initiator node receives the feedback that indicates the state of
the tree, it notifies all its subscribers of the answer.

4.2 Formal Description

In the following we first define the data and variables that are used for the description
of our algorithm. We then present the formal description in Algorithm 1.

– Predicates
• RequestPIF : Set at true when the peer wants to initiate a PIF wave (There is a

Service−Request which could not find the desired service).
– Variables

• Sp = (A,q,q′): refers to the state of the node p such that: A corresponds to
the phase of the PIF wave p is in. A ∈ {B,FI,FC,C} for respectively Broad-
cast, Feedback State-Incorrect, Feedback State-Correct, Clean. q refers to the
identity of the peer that initiates the PIF wave. q’ refers to the identity of the
neighboring node of p in the DLPT from which p got the Broadcast.

• Np: refers to the set of the identities of the nodes that are neighbor to p
• StateDLPT : refers to the state of the DLPT

• minp: q∈Np, Sq =(B, idq,z)∧ z �= p∧ idp =min{idq′ , q′ ∈Np, Sq′ =(B, idq′,z
′)

∧ z′ �= p}.
– Functions

• Send(@dest,@source, Msg): @source sends the message Msg to @dest.
• Add(Mylist, item): Add to my list the subject item.

Character ’-’ in the algorithm means any value.

Correctness Proof. We first show that starting from any arbitrary configuration, the
system eventually contains no abnormal sequence, i.e., incorrect process states due to
the unpredictable initial configurations and transient errors. Next, we show that each
node is able to generate a PIF wave in finite time. Furthermore, all the nodes of the
system are visited by the COPIF wave. Thus, all of them acknowledge the receipt of
the question (whether the tree overlay is in a correct state or not) and give an answer to
the latter. Finally, one node p of the system receives the answer (Sp = (B, id,NULL)).
Hence, the following statement holds:

Theorem 1. Algorithm 1 is a self-Stabilizing COPIF algorithm.
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5 Evaluation

In order to evaluate qualitatively and quantitatively the efficiency of COPIF, we drive
a set of experiments. As mentioned before, the DLPT approach and its different fea-
tures have been validated through analysis and simulation [29]. The scalability and
performance of its implementation, SBAM (Spades BAsed Middleware) has ever been
improved in [9]. Our goal is now to show the efficiency of the previously described

Algorithm 1. COPIF
– PIF Initiation

• R1: RequestPIF ∧ Sp = (C,−,−) ∧ ∀ q ∈ Np, Sq �= (−,−, p) → Sp = (B,(idpeer , lp),NULL), StateDLPT =
Unknown

• R2: RequestPIF ∧ Sp = (B, id,q) ∧ q �= NULL→ Send(@id, idpeer, Interested), StateDLPT =Unknown

– Broadcast propagation
• R3: Sp = (C,−,−) ∧ ¬RequestPIF ∧ ∃ q ∈Np, (Sq = (B,k,−) ∧ q = minp ∧ ¬∃ q′ ∈ Np, q �= q′ , Sq′ = (B,k,−))
∧ ∀ q′′ ∈ Np, Sq′′ �= (FI∨FC,−, p)→ Sp = (B,k,q)

– Father-Switch
• R4: ∃ q ∈ Np, Sp = (B, id,q) ∧ ∃ q′ ∈ Np, (q �= q′ ∧ Sq′ = (B, id′,?) ∧ id′ < id ∧ q = minp )→ Sp = (B, id′,q′)

– initiator resignation
• R5: Sp = (B, id,NULL) ∧ ∃ q ∈ Np, Sq = (B, id′,?) ∧ id′ < id ∧ q = minp) → Sp = (B, id′,q),

Send(@id, id′peer, Interested)
– Feedback initiation

• R6: |Np|= 1 ∧ State =Correct ∧ ∃ q ∈ Np, Sq = (B, id,?)→ Sp = (FC, id,q)
• R7: |Np|= 1 ∧ State = Incorrect ∧ ∃ q ∈ Np, Sq = (B, id,?)→ Sp = (FI, id,q)

– Feedback propagation
• R8: ∃ q ∈ Np, Sq = (B, id,−) ∧ Sp = (B,−,q) ∧ ∀ q′ ∈ Np/{q}, S′q = (FC,−, p)→ Sp = (FC, id,q)
• R9: ∃ q ∈ Np, Sq = (B, id,−) ∧ Sp = (B,−,q) ∧ ∀ q′ ∈ Np/{q}, S′q = (FI ∨ FC,−, p) ∧ ∃ q′′ ∈ Np/{q}

S′q = (FI,?, p)→ Sp = (FI, id,q)

– Cleaning phase initiation
• R10: ∀ q ∈Np, Sq = (FC, id′, p) ∧ Sp = (B, id,NULL) ∧ id = (idpeer , lp)→ StateDLPT =Correct, RequestPIF =

f alse, Sp = (C,NULL,NULL), Send(@ListToContact, ’DLPT Correct’), StateDLPT =Unknown
• R11: ∀ q ∈ Np, Sq = (FI∨FC, id′, p) ∧ Sp = (B, id,NULL) ∧ id = (idpeer , lp) ∧ ∃ q′′ ∈ Np/{q} S′q = (FI,−, p)
→ StateDLPT = Incorrect, RequestPIF = f alse, Sp = (C,NULL,NULL), Send(@ListToContact, ’DLPT
Incorrect’), StateDLPT =Unknown

– Cleaning phase propagation
• R12: ∃ q ∈ Np, Sp = (FI∨FC, id,q) ∧ (Sq = (C,−,−) ∨ q = NULL)→ Sp = (C,NULL,NULL)

– Correction Rules
• R13: Sp = (B, id,NULL) ∧ id �= (idpeer, lp)→ Sp = (C,NULL,NULL)
• R14: ∃q ∈ Np Sp = (FI∨FC, id,q) ∧ ∃ q′ ∈ Np, q �= q′ ∧ Sq′ �= (FI ∨FC,−,−)→ Sp = (C,NULL,NULL)
• R15: Sp = (B, id,q) ∧ (Sq �= (B,−,−) ∨ [Sq �= (B, id′,−) ∧ id′ > id]→ Sp = (C,NULL,NULL)
• R16: Sp = (B,−,q) ∧ Sq = (FI∨FC,−,−)→ Sp = (C,NULL,NULL)
• R17: ∃q ∈ Np, Sp = (B, id,q) ∧ Sq = (B, id, p)→ Sp(C,NULL,NULL)
• R18: ∃ q,q′ ∈ Np, Sp = (B, id,q) ∧ q �= q′ ∧ Sq′ = (B, id,z) ∧ z �= p→ Sp = (F, id,q)
• R19: ∃ q,q′ ∈ Np, Sp = (C,NULL,NULL) ∧ Sq = (B, id,z) ∧ z �= p ∧ Sq′ = (B, id,z′) ∧ z′ �= p→ Sp = (F, id,q)
• R20: ∃ q,q′ ∈ Np, Sp = (B, id,q) ∧ Sq = (B, id′,z) ∧ z �= p ∧ id′ < id ∧ Sq′ = (B, id′′,z′) ∧ z′ �= p ∧ id′ < id′′

→ Sp = (B, id′,q)

– Event: Message reception
• Message ’idpeer,Interested’: Add(ListToContact, idpeer)
• Message ’Contact id for an answer’: Send(@id, idpeer, Interested)
• Message ’DLPT Correct’: StateDLPT =Correct
• Message ’DLPT Incorrect’: StateDLPT = Incorrect
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QoS algorithm (Section 4). We will focus on the size of the tree, and number of PIF that
collaborate simultaneously. We will observe the behavior not only from the number
of exchanged messages point of view but also in term of duration needed to performs
COPIFS.

5.1 SBAM

We use the term peer to refer to a physical machine that is available on the network. In
our case, a peer is an instantiated Java Virtual Machine connected to other peers through
the communication bus. We call nodes the vertices of the prefix tree.

SBAM is the Java implementation of the DLPT. SBAM proposes 2-abstraction layers
in order to support the distributed data structure: the peer-layer and the agent-layer.
The peer-layer is the closest to the hardware layer. It relies on the Ibis Portability Layer
(IPL) [17] that enables the P2P communication. We instantiate one JVM per machine,
also called peer. JVM communicate all together as a P2P fashion using the IPL com-
munication bus. The agent-layer supports the data structure. Each node of the DLPT is
instantiated as a SBAM agent. Agents are uniformly distributed over peers and commu-
nicate together in a transparent way using a proxy interface. Since we want to guarantee
truthfulness of information exchanged between SBAM-agents, the implementation of an
efficient mechanism ensuring quality of large scale service discovery is quite challeng-
ing. In the state model described in the section 3.2 a node has to read the state and
the variables of its neighbors. In SBAM, the feature is implemented using synchronous
message exchange between agents. Indeed, when a node has to read its neighbor states,
it sends a message to each and wait all responses. Despite the fact that this kind of
implementation is expensive, especially on a large distributed data structure, experi-
ment (Section 5.6) shown that our model implementation stays efficient, even on a huge
prefix tree.

5.2 Experimental Platform

Experiments were run on the Grid’5000 platform2 [7], more precisely on a dedicated
cluster HP Proliant DL165 G7 17 units, each of them equipped with 2 AMD Opteron
6164 HE (1.7GHz) processors, each processor gathering 12 cores, thus offering a 264-
cores platform for these experiments. Each unit consists of 48 GB of memory. Units are
connected through two Gigabit Ethernet cards. For each experiment, we deployed one
peer per unit.

5.3 Scenario of Experiments

The initialization of an experiment works in three phases: (i) the communication bus is
started on a computing unit (Section 5.2), (ii) 16 peers are launched and connected to-
gether through the communication bus, and (iii) a pilot is elected using the elect feature
of the communication bus.

2 http://www.grid5000.fr/

http://www.grid5000.fr/
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After the initialization, the pilot drives the experiment. It consists in two sequential
steps. First, it sends n insertion requests to the distributed tree structure. An insertion
request leads to the addition of a new entry in the DLPT tree (Section 3). The insertion
requests are sent to a random node of the tree and routed following the lexicographic
pattern to the targeted node. Doing so, the node sharing the greatest common prefix with
the service name is reached. If the targeted label does not exist, a new node is created
on a randomly chosen peer and linked to the existing tree.

In the final step, the pilot selects a set of nodes to initiate classic-PIFs and COPIFS

(Section 4). In order to observe distributions, 10 replications of this basic scenario are
executed.

5.4 Failures

At this level of description we can distinguish two kind of failure: (i) failures in the
DLPT data structure, when the prefix tree data structure is corrupted; (ii) failures in the
COPIF state variables, when state variable dedicated to COPIF feature are corrupted.

In our experiments, we consider that the DLPT data structure is not corrupt. It cor-
responds to the worst case in term of COPIF truthfulness check. Indeed, if the entire
DLPT data structure is correct, the COPIF has to explore the entire DLPT data structure
to check it.

Next, remind that the objective of our experiment is to evaluate the efficiency of
COPIF compared to classic-PIF. So, we consider that the COPIF state variables are not
corrupted and we measure the number of messages and the duration of COPIF when
the self-stabilization COPIF has converged, it means after the clean part of the COPIF
state variables.

5.5 Parameters and Indicators

The experiments conducted are influenced by two main parameters. First, n denotes the
number of inserted services in the tree. Second, k refers to the number of PIF waves
that are collaborating together.

In these experiments, three trees were created with n in the set {2500,10000,
40000}. The number of PIF that collaborate (k) was taken from the set {1,2,4,8,
16,32,64}. For each couple (n,k), 10 replications are performed. Thus, 210 experi-
ments were conducted.

Strings used to label the nodes of the trees were randomly generated with an alphabet
of 2 digits and a maximum length of 18 (in a set of 524287 key).

For each experiment we observe two indicators: (i) the total number of exchanged
messages observed and (ii) the time required to perform k classic-PIFs or COPIFS over
distributed data structure, i.e., the time between the issue of the PIFs and the receipt of
the response on all nodes that initiate PIFs.

For each indicator we obtain 21 sets of 10 values. We present evolution of the
median-value of the 10-replication according to k, the number of PIFs (Figures 1(a)
and 1(b)). The comparison of these indicators for classic-PIFs and COPIFS provides us
a qualitative overview of the gain obtain using COPIF.
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In order to quantitatively evaluate the efficiency of the COPIF strategy, for an in-
dicator (I) and for a given number of PIFs k, we compute the efficiency criterion with
the following formula:

EI,k =
Iind,k

k× Icoll,k
,

where Iclassic,k (resp. ICoPIF,k) is the value of the indicator I for a given k and in an
classic-PIF (resp. COPIF) context. The evolution of this efficiency criterion are shown
in Figures 2(a) and 2(b).
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Fig. 1. COPIF behavior

5.6 Results

Figure 1(a) (resp. 1(b)) presents the evolution of the number of messages (resp. dura-
tion) needs to execute PIFs according to number of PIFs (k) that are simultaneously
performed and the size of the data structure on which PIFs are performed. The y-axis
represents the number of exchanged messages (resp. the duration). On these figures,
classic-PIFs and COPIFS strategies are compared. On both curve, the x-axis represents
the number of PIF (k) that are simultaneously performed. On these figures, we present
2 curve triplets. Solid (resp. dashed) curves triplet describes indicator in an classic-
PIF (resp. COPIF) context. For each triplet, red-triangle-curve (resp. green-+-curve
and blue-x-curve) describes behavior of indicator for n = 2500 (resp. n = 10000 and
n = 40000).

When the indicators explode in for classic-PIF strategy, they stay stable for COPIF
strategy. It qualitatively demonstrates gain of the COPIF strategy over classic-PIF ap-
proach. Notice that log-scale on Figure 1(b) figure out a time overhead associated with
the COPIFS approach for a single wave (= 1). This time overhead decreases when n
increases. We more detail this observation in the quantitative part of this analysis. The
introduction of the efficiency criterion in Section 5.5 allows us to measure quantitatively
this gain, this overhead and their behaviors.
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Figure 2(a) and 2(b) present the efficiency of COPIF according to the number of
exchanged messages and the duration. On these figures we want to observe the impact
of the size of the data structure on the efficiency of COPIF. Figure 2(a) reveals us
that, in term of number exchanged messages, on small data structure, the collaborative
mechanism is less efficient than on huge one. This result was expected because on
small data structure the number of messages due to collision between collaborative
PIFs (overhead) represents a more important part of the entire number of exchanged
messages. So, the bigger the data structure, the more efficient COPIF.

More interesting is the analyze of the Figure 2(b). Indeed we can observe the same
tendency in term of duration but the efficiency decrease faster with the number of PIFs
that are simultaneously performed. It is explain by the fact that overhead messages
introduced by COPIF are particularly expensive messages in term of duration. It quan-
titatively demonstrates gain of the COPIF strategy over classic-PIF approach.
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6 Conclusion and Future Work

In this paper we provide a self-stabilized collaborative algorithm called COPIF allow-
ing to check the truthfulness of a distributed prefix tree. COPIF implementation in a P2P
service discovery framework is experimentally validate, in qualitative and in quantita-
tive terms. Experiment demonstrates the efficiency of COPIF w.r.t. classic-PIF. COPIF
overhead represents a small part of the number of exchange messages and of the time
spend, specially on huge data structures.

We conjecture that the stabilization time is in O(h2) rounds and the worst case time
to merge several classic-PIF waves is in O(h) rounds, h being the height of the tree. We
plan to experimentally validate this two complexities. Indeed, experiment were driven
considering no corrupted COPIF variables. In order to do that, we need to define a
model of failure, implement or reuse a fault injector and couple it with SBAM before
driving a new experiment campaign.
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Abstract. We present two Monte Carlo algorithms for efficiently computing
Byzantine agreement in the partially synchronous communication model. The
algorithms assume the existence of a Random Beacon, which is a stream of ran-
dom bits, known to all the processors. Both algorithms terminate in O(1) ex-
pected time. The first algorithm sends O(M+n log2 n) messages in total, where
M is the maximum number of messages sent by the bad processors in any round
and n is the number of processors. It ensures all processors reach agreement. The
second algorithm sends Õ(1) messages per processor, and is thus load-balanced,
and ensures all but a o(1) fraction of the processors reach agreement. Both algo-
rithms succeed with probability 1−O(1/nk), even against an adaptive adversary
that takes over up to a 1/3− ε fraction of the processors for any ε > 0. We prove
the correctness of both algorithms and provide empirical evidence that they re-
quire significantly less bandwidth than previous algorithms for networks of size
greater than 4,000 processors. Our algorithms work in the full-information model
and thus make no cryptographic assumptions.

1 Introduction

As the size and complexity of the Internet and other large scale networks has grown,
so also has the frequency of malicious attacks. These attacks have grown in their scope
and severity as well as their economic impact which is on the order of about a hun-
dred billion dollars or more [1,2]. There is thus a growing need to design distributed
algorithms that are robust to attack. The growing size of networks also demands that
communication costs of any algorithms to be small enough to scale to large n.

A critical problem in reliable distributed computing is Byzantine agreement. Byzan-
tine agreement is defined as follows. There are n processors some of which are good
and some of which are bad. Good processors follow the protocol and bad processors can
deviate in an arbitrary way. The goal is to ensure all good processors output the same
bit and that this bit equals the input bit of some good processor. Intuitively, a solution to
Byzantine agreement allows us to build a reliable system from unreliable components.

In this paper, we show how to dramatically reduce the cost of Byzantine Agreement
algorithms by using a Random Beacon. A Random Beacon is a random stream of bits
available to all the processors. It was first defined by Rabin in [3] where it was used
to build a contract signing protocol. Maurer et al. in [4,5,6,7] describe a computation
model called the Memory Limited or Limited Storage space Model, which uses the ex-
istence of a Random Beacon, to build a secure communication system based on private
keys.
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1.1 Model

Our algorithms assume communication via message passing from processor to proces-
sor and the ID’s of the other processors in the network are known to each processor.
Our communication model is partially synchronous: In particular, we assume a known
upper bound on the time it takes to receive a message. Our algorithms work in the full-
information model, meaning that all messages being sent are public and can be seen
by the adversarial processors and so no cryptographic assumptions are required. We
assume t processors are controlled by an adaptive adversary where t ≤ (1/3− ε)n for
some 0 < ε ≤ 1/3 and n is the total number of processors. The adversary is adaptive
in the sense that: An adaptive adversary can take over processors at any point in the
protocol up taking over t processors and once processors are corrupted, they stay cor-
rupted [8]. We also assume that the bits from the Random Beacon are only available at
the beginning of a round.

1.2 Our Results

Our algorithms terminate in O(1) expected time. The first algorithm sends O(M +
n log2 n) messages in total, where M is the maximum number of messages sent by
the bad processors in any round. It ensures all processors reach agreement. The sec-
ond algorithm sends O(log3 n) messages per processor, and is thus load-balanced and
ensures all but a o(1) fraction of the processors reach agreement. Our algorithms are
Monte Carlo, in the sense that they succeed with probability 1 − O(1/nk), even if an
adaptive adversary that takes over up to a 1/3 − ε fraction of the processors for any
0 < ε ≤ 1/3.

1.3 Related Work

The Byzantine agreement problem was first proposed by Lamport et al. [9] as a way
to model basic fault-tolerant distributed computing. It was proved by Lamport, Shostak
and Pease proved in [9] that Byzantine agreement is only possible when less than n/3
of the processors are bad. Fischer, Lynch and Paterson in [10] also proved that a sin-
gle Byzantine fault in the asynchronous model of communication renders Byzantine
agreement impossible for a deterministic algorithm.

Dolev in [11] showed that if Θ(n) processors are bad, Ω(n2) messages must be sent
to ensure Byzantine agreement with probability 1. Dolev and Reishuck in [12] show
that even with the assumption of the existence of a digital signature scheme (computa-
tionally bounded adversary), there is a lower bound of Ω(n + t2) messages to ensure
Byzantine agreement with probability 1.

Rabin in [13] solved a randomized version of the Byzantine agreement problem us-
ing the notion of a common coin (we also refer to this as a Random Beacon). A common
coin is a value that is only available to all the processors at the beginning of each round
of computation. It is 0 with probability 1/2 and 1 with probability 1/2. Rabin’s algo-
rithm [13] takes O(1) expected rounds and requires Θ(n2) messages. Rabin’s algorithm
works in the asynchronous, full information model and is correct with probability 1.

Several results allow for solving Byzantine agreement with randomized algorithms
even without a global coin. In [14] Karlin and Yao prove a n− t > 2n/3 lower bound
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for randomized Byzantine agreement. Feldman and Micali [15] give a randomized al-
gorithm that has O(1) expected latency and tolerates t < n/3 adversarial faults. Their
algorithm works in the synchronous model of communication with private channels and
makes standard cryptographic assumptions. Their algorithm is correct with probability
1. Recently, King and Saia in [16] describe a Byzantine agreement algorithm that works
in the presence of an adaptive adversary but sends Õ(n3/2) messages. Also the series
of papers by King, Saia et al. [17,18] describe practical algorithms that send less than
O(n3/3) messages in the presence of a non-adaptive adversary. Some Byzantine agree-
ment algorithms result in having almost-everywhere agreement which was defined by
Dwork et al. in [19]. Almost-everywhere Byzantine agreement results in an 0 < ε < 1
fraction of the good processors not knowing the value of the bit.

In the empirical section of this chapter, we compare the resource costs of our al-
gorithm with the Byzantine agreement algorithm proposed by Cachin, Kursawe and
Shoup [20]. Cachin, Kursawe and Shoup give an algorithm that withstands up to n/3
bad processors, runs in constant expected time, and sends Θ(n2) messages. However,
unlike our algorithm, their algorithm requires a trusted dealer to distribute cryptographic
keys initially in order to set up a public key infrastructure. We emphasize that our algo-
rithm does not require the establishment of a public key infrastructure. As mentioned
earlier, the algorithm we describe in this paper is partially synchronous, while the algo-
rithm of Cachin, Kursawe and Shoup is asynchronous.

Lee, Clark et al. showed in [21,22] how to build a Random Beacon using publicly
available information on the Internet, specifically using information from the Dow Jones
Industrial Average (DJIA) or from other financial data. Eastlake in [23,24] also de-
scribes how to build a selection protocol out of a Random Beacon.

A concern is the actual amount of randomness present in implementations of a Ran-
dom Beacon from publicly available information, this could be a problem if the publicly
available data could be manipulated in some way and hence introducing some bias into
the Random Beacon bits. In particular, Clark and Hengartner in [22] determined via
experiments the entropy of the stock components of the Dow Jones Industrial Average
(DJIA) and show that the Shannon entropy for a single stock in the DJIA per day is be-
tween 6.83 and 9.45. They create a Random Beacon from the DJIA and show a Shannon
entropy of 218 bits for their Random Beacon.

We further note that there can be hardware implementations of a Random Beacon.
For example, a trusted node in a massively parallel computer, a wired node in a sensor
network, or a satellite broadcasting random bits may be useful in a broad range of
domains.

2 Algorithms and Their Description

We now describe our algorithms.

2.1 RBQUERY

The first algorithm RBQUERY is presented as Algorithm 2.1 (RBQUERY). In section
3.1, we prove the following theorem about this algorithm.
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Theorem 1. For any positive k, there exists sufficiently large C (in the algorithm), such
that Algorithm 2.1 has the following properties with probability at least 1− 1/nk:

– The algorithm is correct, that is each good processor terminates with the same
value and this value equals the input bit of some good processor; and

– All good processors terminate in O(log n) rounds; and
– All good processors terminate in O(1) rounds in expectation; and
– If all bad processor send no more than M messages per round then the total number

of bits sent by all good processors is O(M + n logn) in expectation.

We now describe the algorithm RBQUERY. In each round, each processor has a vote
which is the bit held by that processor at the start of the round. Also in each round, a
processor selects Θ(lnn) processors uniformly at random with replacement to query
for their votes. Each processor sends its vote to the processors that queried it, while it
receives votes from the processors that it queried. After each round, the fraction of votes
received that are for the majority bit is computed. If the fraction of processors that vote
for the majority bit is ≥ (1 − ε0)(2/3 + ε/2) for some ε0 to be determined later, then
the processor sets its vote to the majority bit. Otherwise the processor just sets its bit
to the value from the Random Beacon. A processor terminates after it has 1) computed
a fraction value at least ≥ (1 − ε0)(2/3 + ε/2) with a majority bit value b, and 2) the
global coin value equals b twice.

Initialize:

1. vote← bi
2. Match← FALSE

Repeat until termination:

1. Select C lnn processors uniformly at random with replacement. Set In− Neighbors
to these processors. Send request messages to all processors in In− Neighbors

2. Receive all request messages. Set Out−Neighbors to all processors from which
request messages were received

3. Send vote to all processors in Out−Neighbors
4. Collect votes from all processors in In− Neighbors
5. coin← next output of random beacon
6. If Match then

(a) If coin = vote then commit to value vote and terminate
7. Else

(a) maj ← majority bit among Out− Neighbors
(b) fraction← fraction of votes received for maj
(c) If fraction ≥ (1− ε0)(2/3 + ε/2) then

i. vote← maj
ii. If coin = vote then Match← TRUE

(d) else
i. If coin = “heads”, then vote← 1, else vote← 0;

Algorithm 2.1. RBQUERY
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Note that if all processors simply commit to the Beacon, then we would not be able
to solve Byzantine agreement as the bit from the Random Beacon may not be the input
bit of any good processor. Secondly, it may not be the bit held by a large fraction of the
good processors. These scenarios violate the conditions for Byzantine agreement.

We will analyze the correctness of the algorithm in Section 3.1.

2.2 RBSAMPLER

We now describe the algorithm RBSAMPLER. The main difference in this algorithm,
compared to RBQUERY, is that we make use of a sampler in determining the commu-
nication graph among the processors. RBSAMPLER is thus non-uniform in the sense
that there is a different version of the algorithm for each value of n. Also, the neighbors
of each processor are fixed and do not change between rounds unlike RBQUERY. Also,
unlike the RBQUERY, RBSAMPLER only achieves almost-everywhere agreement.

The algorithm makes the following assumptions: Bad nodes can send any number of
messages per round and we have a full information communication model. In section
3.2, we prove the following theorem about RBSAMPLER.

Theorem 2. For any positive k, there exists sufficiently large C (in the algorithm), such
that Algorithm 2.2 (RBSAMPLER) has the following properties with probability at least
1− 1/nk for almost all processors i.e. all but O(logd−1 n)

Initialize:

1. vote← bi
2. Match← FALSE
3. Set In− Neighbors (resp. Out− Neighbors) to all processors that have in-edges

(resp. out-edges) to this processor in the sampler.

Repeat until termination:

1. Send vote to all processors in Out−Neighbors
2. Collect votes from all processors in In− Neighbors
3. coin← next output of random beacon
4. If Match then

(a) If coin = vote then commit to value vote and terminate
5. Else

(a) maj ← majority bit among Out− Neighbors
(b) fraction← fraction of votes received for maj
(c) fraction← fraction of votes received for maj
(d) If fraction ≥ (1− ε0)(2/3 + ε/2) then

i. vote← maj
ii. If coin = vote then Match← TRUE

(e) else
i. If coin = “heads”, then vote← 1, else vote← 0;

Algorithm 2.2. RBSAMPLER
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– The algorithm is correct: almost all processors terminate with the same value and
this value equals the input bit of some good processor; and

– Almost all processors terminate in O(log n) rounds; and
– Almost all processors terminate in O(1) rounds in expectation; and
– Almost all processors send polylog(n) bits.

3 Analysis and Proofs

3.1 Analysis and Proofs for RBQUERY

For a fixed round, let b′ ∈ {0, 1} be the bit that the majority of good processors vote
for in that round. Let S′ be the set of good processors that will vote for b′ and let
f ′ = |S′|/n. Let 0 ≤ ε0 ≤ 1 be a fixed constant to be determined later. We call
a processor informed for the round if the fraction value for that processor obeys the
following inequalities:

(1− ε0)f
′ ≤ fraction ≤ (1 + ε0)(f

′ + 1/3− ε)

Lemma 1. For any positive integers C′ and k, there exists a sufficiently large C in
Algorithm 2.1 (RBQUERY) above, such that all good processors are informed for the
first k rounds with probability at least 1− 2k/nC′

.

Proof. Fix a round r. Let G be a bipartite multigraph induced by the In−Neighbors
and Out−Neighbors selection process defined in the algorithm for round r. Note that
G is constructed as follows. There are n nodes on the left hand side and copies of all
these nodes on the right hand side. The adversary chooses a subset of 1/3 − ε of the
nodes on the left that are bad and each good node on the right choosesC logn neighbors
on the left uniformly at random with replacement. Fix a round r and the set S′. We know
that S′ is of size at least (1/3 + ε/2)n since at least half of the good processors must
vote for the majority bit. Let f ′ = |S′|/n.

Fix a good node, p, on the right hand side of the graph. Note that In−Neighbors is
chosen independently of the set S′. Let X be the number of edges from p into the set
S′. Note that E(X) = f ′C lnn. Moreover, each edge from p falls into some processor
in S′ independently with probability f ′. Thus, we can apply Chernoff bounds to say
that for any positive ε0,

Pr(X < (1− ε0)E[X ]) < e−E[X]ε21/2 = e−(f ′Cε20/4) lnn.

Similarly, we can use Chernoff bounds to say that

Pr(Y > (1 + ε0)E[Y ]) < e−E[Y ]ε21/3 = e−(f ′Cε21/6) lnn.

Hence the probability that either of these bounds is violated is no greater than the sum of
these two probabilities, or less than 2/nC1 for any constant C1, where C = 18C1/ε0

2.
Let ξp,r be the event that either of these bounds is violated for fixed processor p in some
fixed round r. Further let ξ be the even that either of these bounds is violated for any
good processor p in any of the first k rounds. Then by a union bound, we have that
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Pr(ξ) =
∑
p,r

Pr(ξp,r)

≤ (nk)2/nC1

≤ (2k)/nC1−1

Where the last equation holds provided that C is sufficiently large, but depending only
on ε0.

In the following lemmas, we assume all good processors are informed in all rounds.

Lemma 2. Assume all good processors have vote value equal to b at the beginning of
some round r. Then all good processors will have vote value equal to b in all remaining
rounds.

Proof. If all good processors have vote value equal to b at the beginning of round r,
it means that f ′ = |S′|/n = 2/3 + ε. Since all processors are informed in round r, it
means that for each processor, fraction ≥ (1− ε0)f

′ ≥ (1− ε0)(2/3+ ε). Thus, each
processor in round r will set its vote to the majority value, which equals b. The same
argument holds for all remaining round in which all good processors are informed.

Lemma 3. For any round r, let Sf be the set of good processors in round r that have
fraction ≥ (1− ε0)(2/3+ ε/2). Then, at the end of round r, all processors in Sf will
have the same vote value

Proof. We show this by contradiction. Assume there are two processors, x and y, where
fractionx (fractiony) are the fraction values of x (y, resp.), such that both fractionx

and fractiony are greater than or equal to (1 − ε0)(2/3 + ε/2), and x sets its vote
to 0 at the end of the round, while y sets its vote to 1. Let f ′

0 (f ′
1) be the fraction of

good processors that vote for 0 (1) during the round. Then we have that fractionx ≥
(1 − ε0)(2/3 + ε/2). By the definition of informed, we also know that fractionx ≤
(1 + ε0)(f

′
0 + 1/3− ε). This implies that

(1− ε0)(2/3 + ε/2) ≤ (1 + ε0)(f
′
0 + 1/3− ε).

Isolating f ′
0 in this inequality, we get that

f ′
0 ≥

1/3 + (3/2)ε− ε0 + (1/2)εε0
1 + ε0

.

A similar analysis for fractiony implies that

f ′
1 ≥

1/3 + (3/2)ε− ε0 + (1/2)εε0
1 + ε0

.

But then we have that,

f ′
0 + f ′

1 ≥
2/3 + 3ε− 2ε0 + εε0

1 + ε0
> 2/3 + ε

where the last line is clearly a contradiction that holds provided that ε0 < (3/4)ε.
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Lemma 4. Assume the first round in which some good processor commits to a value
is round r, and assume that some processor commits to value b in that round. Then all
good processors that commit in rounds r or later will commit to the value b.

Proof. Consider a processor p that commits to bit value b in round r. Then processor p’s
Match value must be equal to true in round r. This means there must have been some
previous round, r′, in which p’s Match value was first set to true. Among processors
that commit to values in round r, let p be a processor with the smallest such r′ value.
Note that at the point that Match was set to true in round r′, p’s vote value must have
been b, since a processor’s vote value can not change after its Match value is set to
true.

Let Sf be the set of good processors in round r′ that have fraction ≥ (1−ε0)(2/3+
ε/2). By Lemma 3, all processors in Sf set their vote value to b at the end of the round.
Now since processor p set Match to true in round r′, it must be the case that the
outcome of the global coin in that round was equal to b. This means at the end of round
r′, all good processors set their vote values to b. But then, by Lemma 2, for all rounds
subsequent to round r′, all processors will have vote values equal to b and so if they
commit to any value, it will be the value b.

Lemma 5. In any round r, with probability at least 1/2, at the end of that round, all
good processors will have the same vote value.

Proof. Let Sf be the set of good processors in round r that have fraction ≥ (1 −
ε0)(2/3 + ε/2). By Lemma 3, all processors in Sf will set their vote value to the same
value, call it b, at the end of the round. But with probability 1/2, the global coin in round
r will have value b, and all the remaining good processors will set their vote value to b.

Lemma 6. Consider any round r in which all processors have the same vote value at
the beginning of the round. Then the expected number of remaining rounds before all
processors terminate is no more than 4.

Proof. By Lemma 2, in all remaining rounds, all good processors will have the same
value, and so all good processors will have fraction ≥ (1−ε0)(2/3+ε/2). Thus, there
are at most two events that must occur before any good processor terminates: the global
coin must match the processor’s vote value twice. The expected number of rounds until
these two events occur is 4.

We now prove Theorem 1 below.

Proof. By Lemmas 5, 6, 2 and 1, all processors terminate in O(log n) rounds with
probability at least 1−1/nk for any fixed positive k and all processors terminate in O(1)
rounds in expectation. Since the bad processors each send at most O(log n) messages
per round, it follows that the total number of bits sent by all processors is O(n log n)
in expectation. Finally, the fact that the algorithm is correct with probability at least
1− 1/nk follows from Lemmas 1, 2 and 4.

3.2 Analysis and Proofs for RBSAMPLER

For a fixed round, let b′ ∈ {0, 1} be the bit that the majority of good processors vote
for in that round. Let S′ be the set of good processors that will vote for b′ and let
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f ′ = |S′|/n. Let 0 ≤ ε0 ≤ be a fixed constant to be determined later. We call a
processor informed for the round if the processor is good and the fraction value for that
processor obeys the following inequalities:

(1− ε0)f
′ ≤ fraction ≤ (1 + ε0)(f

′ + 1/3− ε)

The proof of the following lemma is equivalent to that in King and Saia [16].

Lemma 7 (Graph existence). For any positive k and positive constants ε0 and d, there
exists a directed multigraph G on k vertices with maximum out-degree no more than
C3 log

d n, where C3 depends only on ε0 and d, such that if this communication graph is
used in Algorithm 2.2 (RBSAMPLER), then in every round all but a 1/ logd n fraction
of the good processors are informed.

The following simple corollary follows by summing up the number of processors that
are not informed in every round.

Corollary 1. Let C′ be an positive integer. If the conditions of Lemma 1 are met then
all but a C′/ logd−1 n fraction of the good processors are informed in every one of the
first C′ logn rounds.

We will say that a processor is always informed if it is informed for every round from
the start of Algorithm 2.2 (RBQUERY), to the round in which the processor terminates.

The proof of the following lemma is identical to the proof of Lemma 4 in the previous
section.

Lemma 8. For any round r, let Sf be the set of informed processors in round r that
have fraction ≥ (1 − ε0)(2/3 + ε/2). Then, at the end of round r, all processors in
Sf will have the same vote value.

The proof of the following lemmas are the same as in the previous section.

Lemma 9. Assume the first round in which some always informed processor commits
to a value is round r, and assume that some always informed processor commits to
value b in that round. Then all always informed processors that commit in rounds r or
later will commit to the value b.

Lemma 10. Assume all always informed processors have vote value equal to b at the
beginning of some round r. Then all always informed processors will have vote value
equal to b in all their remaining rounds.

Lemma 11. In any round r, with probability at least 1/2, at the end of that round, all
informed processors will have the same vote value.

Lemma 12. Consider any round r in which all always informed processors have the
same vote value at the beginning of the round. Then the expected number of remaining
rounds before all always informed processors terminate is no more than 4.

We now prove Theorem 2.

Proof. By Lemmas 11, 12, 10 and 7, almost all processors terminate in O(log n) rounds
with probability at least 1 − 1/nk for any fixed positive k and all processors terminate
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in O(1) rounds in expectation. Since the bad processors each send at most O(log n)
messages per round, it follows that the total number of bits sent by all processors is
O(n log n) in expectation. Finally, the fact that the algorithm is correct with probability
at least 1− 1/nk follows from Lemmas 7, 10 and 9.

4 Experimental Results

Fig. 1. Left: Log of number of nodes vs. number of messages sent; Right: Log of number of nodes
vs max messages sent by a node

Fig. 2. Left: Log of number of nodes vs. number of bits sent; Right: Log of number of nodes vs
max bits sent by a node

Fig. 3. Algorithm Latency
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4.1 Experimental Setup

We used the OpenMP compiler directives in conjunction with the C++11 multi-
threading primitives to speed up the simulation on a machine with 128G of memory
and 48 cores. Because of the computational resources used by the machine we tracked
only the total messages sent and the maximum number of messages sent by any proces-
sor. The size of the network simulated was between 1,000 and 1,024,000 processors.

For our simulations of RBQUERY, we selected a value of the constants as dictated
by our analysis in section 3.1, ε0 = 1/8, ε > 1/6, C = 40, we also made the size of
the neighbors of a node in the algorithm to be C ln2 n. Increasing by a factor of lnn
allows us to use a smaller C.

For our simulations of RBQUERY, we selected a value of the constants as dictated
by our analysis in 3.2, ε0 = 1/8, ε > 1/6, C = 6, d = 3, which implies that the size of
the neighbors of a node in the algorithm is C ln3 n.

We compare our algorithms with the CKS algorithm from the paper [20] which has
O(1) latency but uses cryptography. Our results are averaged over 30 trials.

We make the assumption that the latencies of our algorithms are dominated by the
time it takes to send a message and we can use this as the unit cost of an operation.
We cite the following paper by Bhatele and Kale [25] which provides information via
benchmarks about what these numbers might mean in real world applications. In [25]
the values for message latencies are between 5 and 16 milliseconds for the largest mes-
sage size in the paper (1MB). The benchmarks in the paper consider models that assume
the existence or lack thereof, of resource contention. Throughout this paper, we use this
assumption in our measurement of the latencies of our algorithms.

4.2 Results

Figure 1 (left) shows the logarithm of the total messages sent, We can see that our two
algorithms RBQUERY and RBSAMPLER send less messages than the other algorithms
when the network size is larger than 5,000 processors. In particular, RBQUERY sends
less messages than the other algorithms for network sizes greater than 2,000 processors.
Note that the RBQUERY algorithm sends slightly fewer messages than RBSAMPLER.
The slope of the RBQUERY and RBSAMPLER graph is about 3.5 while that of the CKS
is about 4.2.

Figure 1 (right) show the maximum messages sent by a processor. RBQUERY and
RBSAMPLER, have a maximum number of messages sent that is less than the other
algorithms. The crossover point at which RBQUERY and RBSAMPLER is better load-
balanced is when the network size is greater than 4,000 processors. RBQUERY is
slightly better load-balanced than RBSAMPLER. The slope of the CKS graph is about
1.0, while that of the RBQUERY and RBSAMPLER algorithms is about 0.1 .

Figure 2 (left) shows the total bits sent. Again RBQUERY and RBSAMPLER send
less bits than all the other algorithms for all network sizes we consider. The number of
bits sent is dramatically less than that of the CKS algorithm since the size of a message
in the CKS algorithm is about the same size as an RSA signature. Again the RBQUERY

algorithm has a slight edge over the RBSAMPLER. The slope of the graph for the CKS
algorithm is about 2.2, while the RBQUERY and RBSAMPLER algorithms have a slope
of about 1.3 .
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Figure 2 (right) shows the maximum bits sent by a processor. RBQUERY and RB-
SAMPLER again perform better than the CKS algorithm for all the network sizes we
consider. RBQUERY algorithm sends less bits than RBSAMPLER. The slope of the
graph for the CKS algorithm is about 1.0, while the slope for the RBQUERY and RB-
SAMPLER algorithms is about 0.4 .

Figure 3 shows the latency of the algorithms. The latency of our algorithms RB-
QUERY and RBSAMPLER, seem to be constant and about the same. The RBQUERY and
RBSAMPLER algorithms seem to have slightly smaller latency than CKS. Although the
latencies for both the RBQUERY and RBSAMPLER vary since the latencies are random
variables.

5 Conclusion

We have shown in this paper that with the Random Beacon assumption as a source of
global randomness that we can design efficient algorithms for Byzantine agreement.

Our algorithms bring up several interesting questions for future research:

– What is the effect of the Random Beacon not being completely random? How does
this affect our ability to perform Byzantine agreement? How much randomness is
really required to compute Byzantine agreement sending Õ(1) messages per pro-
cessor?

– Lower bounds: If less than a linear fraction of the processors are controlled by
an adversary, can we perform Byzantine agreement more efficiently (sending less
messages per processor)? Can we perform Byzantine agreement more efficiently
when the adversary is non-adaptive?

– Our algorithms work in the partially synchronous model of communication, is it
possible to modify our algorithms so that they work in the asynchronous model.
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Abstract. We study the dynamics of a social network. Each node has to decide
locally which other node it wants to befriend, i.e., to which other node it wants to
create a connection in order to maximize its welfare, which is defined as the sum
of the weights of incident edges. This allows us to model the cooperation between
nodes where every node tries to do as well as possible. With the limitation that
each node can only have a constant number of friends, we show that every local
algorithm is arbitrarily worse than a globally optimal solution. Furthermore, we
show that there cannot be a best local algorithm, i.e., for every local algorithm ex-
ists a social network in which the algorithm performs arbitrarily worse than some
other local algorithm. However, one can combine a number of local algorithms
in order to be competitive with the best of them. We also investigate a slightly
different valuation variant. Nodes include another node’s friends for their valua-
tion. There are scenarios in which this does not converge to a stable state, i.e., the
nodes switch friends indefinitely.

Keywords: distributed algorithms, social networks, dynamic networks, local
algorithms, stable states.

1 Introduction

Psychologists claim that you have a limit of how many friends you can handle [8].
Consequently, you should assess your current friends, and drop those that are unsatis-
factory, to make room for new ones! In this paper we study the computational side of
finding friends in social networks. We assume that people can only choose new friends
among their current social environment, i.e., one can only become friends with friends
of friends, or more generally with acquaintances in the �-hop neighborhood of the cur-
rent friendship graph. If people constantly improve on their friendships with this local
strategy, will this eventually lead to a social optimum, or at least an approximate solu-
tion? What is the best strategy to find new friends? Should one just greedily pick the
best available friends? Or should one rather try to be friends with a diverse set of people,
in order to profit from a larger set of possible new friends?

Not so surprisingly, we show that any local friend-finding strategy will only con-
verge to a solution that is arbitrarily worse than a global optimum. More surprisingly
however, there is no best local strategy. No matter what the strategy is, there is always
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a possible input scenario where other local strategies are much better. In addition we
study mixing strategies, i.e., we allow everyone to use several strategies to find their
friends. Additionally, we investigate slightly changed valuation models. We show that
judging a friend not on his own, but also by his friends, can lead to unstable states, i.e.,
nodes switch friends indefinitely. We also analyze a valuation model in which breaking
up a friendship reduces the valuation of the friendship permanently.

1.1 Related Work

An early ancestor of our work is the stable marriage problem, introduced by Gale and
Shapley [6] in 1962: We are given n nodes, partitioned into two sets commonly denoted
as men and women. Each woman has a strictly ordered preference list over all men and
vice versa. They now want to create a stable matching. A matching is called stable if
there is no pair of man and woman such that, instead of being matched to their current
partner, they would prefer to be matched to each other. The roommate problem [6] is
another related research area, where the nodes are not partitioned into two disjoint sets.
Each node again has a complete, strictly ordered preference list. In this basic setting
there might not be a stable matching. The problem is further investigated in [1,7], stating
restrictions to allow and find stable matchings. An overview on stable marriage can be
found in e.g., [11] and a more detailed analysis of matchings in bipartite graphs in [20].
Stable marriage has also been studied as an online problem where the preferences of
the men are revealed one at a time [17]. In this setting there are Ω(n2) initially unstable
marriages in the worst case.

Much research has been done in the stable marriage area on preference lists with
ties [9,16], i.e., when the constraint of strictly ordered preference lists is lifted. In our
model we assume locality of information, i.e., nodes do not know their complete pref-
erence list. Furthermore, we do not require the nodes to have a strict ordering. Finding a
maximum matching for stable marriage with these extensions, ties and incomplete pref-
erence lists, is known to beNP-hard [14,19]. It can be approximated within a factor of
2 [19]. It can also be approximated within a factor which depends on the number of ties
in the preference lists [12].

There have been several approaches to solve stable marriage in a distributed way. In
[10] the nodes can only try to be matched to a fixed set of adjacent nodes.

Generally related to our work are network formation games from the field of eco-
nomics. The nodes create links, as a one shot game or dynamically, to generate welfare
which depends on the created links. This welfare is allocated to the players accord-
ing to some specific rules. These games include models of so called market sharing
agreements, in which companies can agree not to sell goods on each others markets to
increase their profits [4], and labor markets, where workers get jobs offered and pass
the offer to one of their friends if they are already employed [5]. Another example is
the model of a general buyer and seller market in which a link represents a potential
transaction [18]. A survey on this area is in [15].

So far, the possible matching edges were a fixed set of edges. In [3], the nodes are
partitioned into two sets, workers and firms. There are static connections between some
workers which indicate friendship. The workers are matched using a local variant of
the Gale-Shapley algorithm, but only to firms which are known to their friends. This
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introduces a dynamic set of matching partners. If a worker changes his company, this
can change the set of possible matching partners for his friends. The model used by
Martin Hoefer generalizes this [13]. The set of nodes is not partitioned and nodes can
possibly have more than one matching partner. In his paper, Hoefer studies the con-
vergence time of matching edges in a social network, with a limited lookahead �. For
� = 2 this means that the nodes only know the neighbors of their neighbors. In gen-
eral, nodes can only create a connection to nodes which are in a distance of at most
� hops. Hoefer’s model distinguishes between social links and matching links. Social
links are static edges which already exist in the initial graph, and keep existing through-
out the execution of the algorithm. Matching links on the other hand are created and
possibly removed by the algorithm. In this paper, we drop this difference, and only use
one kind of (dynamic) edges. If needed, we can easily emulate social (static) links by
adding edges with maximal quality, which will not be removed at any point of the al-
gorithm. Whereas Hoefer’s focus was primarily on runtime, we primarily investigate
the achieved welfare. Since our model is used to describe cooperation between differ-
ent players or actual friendship, we also assume that both partners value a potential
relationship identically.

1.2 Our Contributions and Paper Structure

We explain our model and our assumptions in Section 2. We describe local algorithms
in the context of social networks which try to maximize the welfare of the participants.
This means that they try to find good partners for every node, i.e., edges of high quality.
The distributed algorithms executed on every node try selfishly to maximize the sum of
the qualities of incident edges. We prove in Section 3 that there cannot be an optimal,
local algorithm. We do this in two steps. First, in Subsection 3.1, we show that no local
algorithm can compete with a global, optimal algorithm, i.e., any local algorithm will
be arbitrarily worse in certain scenarios. Afterwards, in Subsection 3.2, in the spirit of
[2], we compare local algorithms with other local algorithms. We prove that there is
no best local algorithm, i.e., one which is always at least as good as every other local
algorithm. For every local algorithm there exists a scenario where it is arbitrarily worse
than another local algorithm. This includes randomized algorithms. In Subsection 3.3
we let the nodes execute several algorithms in parallel. Although every local algorithm
can be arbitrarily worse than a global optimum, we show that the nodes can achieve a
factor 2 approximation in comparison to the best applied strategy.

Furthermore, in Subsection 3.4 we study a slightly modified model, where friends
of potential friends also matter for the valuation. We show that there exist scenarios in
which a simple algorithm no longer achieves a stable state. In Subsection 3.5 we assume
that ending a friendship permanently damages the quality of a friendship. Assuming a
breakup reduces the quality of the friendship by a constant, the runtime of any algorithm
is limited.

2 Model

We model a social network with a set V of nodes (human beings), n = |V |. Between
any two nodes u, v ∈ V there is a quality function q(u, v) ∈ [0, 1], representing the
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quality of the friendship, a larger value means better quality. We do not consider neg-
ative edge qualities since no node has an incentive to create an edge which reduces its
welfare. The quality is symmetric, i.e., q(u, v) = q(v, u). Without symmetry we can
create the same cycling as in the roommate problem [6] and thus not reach a stable
state. Initially, the nodes are connected by an arbitrary graph G = (V,E), represent-
ing the initial knowledge graph. In other words, if two nodes are neighbors in G, they
are initially friends. Nodes might decide to create new friendships (edges), and friend-
ships can also be ended. We refrain from changing the friendship graph externally by
changing the quality of an edge during the execution of the algorithm, since we want to
analyze local algorithms. The set of edges E is as such highly dynamic.

A node’s welfare (happiness) depends on the quality of its friendships. Formally,
the welfare of a node v is defined as

∑
u∈N(v) q(u, v), where N(v) denotes the set

of neighbors (current friends) of v. Nodes try to maximize their personal welfare by
finding new friends with high quality values.

In reality, one cannot be friends with everybody. However, since our edge quali-
ties are non-negative, nodes could just accumulate more and more friends, until G is a
clique. We do not want this effect in our study; as such each node v has a maximum
number of possible friends kv, an individual constant parameter. If a node v already has
kv friends, and fancies a new friend, it must drop an old friend instead.

Nodes cannot choose friends arbitrarily. Instead, they can only choose friends that are
already within their visibility. More formally, we define the constant parameter � which
we call lookahead. A node can only get a friend within � hops of graph G. For example,
if � = 2, apart from its friends (neighbors in G) a node can only see its 2-hop neighbors
(friends of friends); new friends can only be found among these 2-hop neighbors. As
such we deal with so-called �-local algorithms. A node has all the information in its
�-hop neighborhood. In particular it knows about all the friendships and all the qualities
in the �-hop neighborhood.

Nodes run �-local algorithm in order to optimize their friendship graph. Since friend-
ships are a serious business with lots of potential for conflicts of interest, one needs to
be careful about the issue which node can propose friendships to which other node at
what time. There are various meaningful models here. Indeed, our proofs are relatively
robust and work in different kinds of algorithmic models.

For the sake of concreteness, we suggest the round-robin model. In this model, all
nodes take turns in a round-robin fashion. Whenever it is the turn of a node v, v can
propose friendship to different nodes in its �-hop neighborhood. The order in which it
asks these nodes is completely up to v; this order is basically the friend-finding algo-
rithm. If v has already kv friends, it only proposes to nodes whose friendship is more
valuable (edge quality is higher) than that of v’s worst friend, i.e., to better friends. A
node u that is asked by v evaluates the proposed friendship. If u still has room for a new
friend, or if v’s proposed friendship is better than the worst of u’s current friendships, u
will accept the edge (and drop its worst friendship if necessary). In other words, a new
edge is only added to the graph if both nodes u, v adjacent to edge (u, v) want the edge.
If a node gets rejected from a potential new friend, it continues to ask other candidates
according to the ordering.
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If a node does not find any better friend, the round-robin model asks the next node
to find a friend. The procedure ends if no new friendships can be discovered, i.e., if a
whole round-robin loop does not change the friendship graph anymore. We call this a
stable state.

Note that the initial friendship graph G constrains the final outcome. If two nodes
are in different components of the initial graph G, then they can never become friends
as they cannot learn about each other. Also, components may partition into smaller
components during the execution of the algorithm. For the sake of simplicity, we assume
that the initial friendship graph G is connected; however, alternatively, just think of our
analysis to take place in one of the original components.

We can imagine various ways to increase the power of the nodes. In particular, nodes
might have additional, constant size memory. Memory allows nodes to remember spe-
cial former partners, e.g., the best ones they dropped, nodes for which the creation of
the corresponding edge had some specific properties, or any other mechanism imagin-
able. Nodes stored in the memory can be added to the list of candidates which will be
asked by the algorithm. An algorithm might try to combine several algorithms into one
by executing them in parallel. This can be done by performing one round of each algo-
rithm alternately and using the memory to remember the states of the other algorithms.
Note that due to the constant memory, only a constant number of algorithms can be
combined in this way.

3 On Welfare

In this section we compare different algorithms. As a measurement we use the welfare
in the stable states. We compare the globally achieved welfares, i.e., the sum of welfare
achieved by all nodes. Algorithm A is said to be arbitrarily worse than algorithm B if
the welfare in the stable state of A is O(n · ε) whereas it is Ω(n) in the stable state
of algorithm B. Note that ε can be arbitrarily small, e.g., as small as any function in n
such as ε = 2−n.

In the model section we have described algorithms which only choose beneficial
partners. Let us justify why we focus on this class of algorithms. We show that tem-
porarily accepting worse friends results only in a constant increase in the lookahead.

Lemma 1. If all nodes are allowed to temporarily choose c worse neighbors, the length
of shortest path between two nodes u, v can only decrease by at most a constant factor
of �c.

Proof. The proof is omitted due to space limitations.

Hence, if nodes are allowed to temporarily choose worse partners, all the proofs still
hold by increasing the distances from � to �c. Thus, we will not treat this separately but
mention it briefly in the proofs.
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Fig. 1. Two subgraphs G1, G2 which are never in contact with each other because they are sepa-
rated by a bridge GB with a diameter of at least 


3.1 Local vs Global Algorithms

After having introduced the basic idea of local algorithms, let us now analyze how they
perform against a global optimum, i.e., a graph which maximizes the sum of welfare
achieved by all nodes.

Theorem 2. For nodes with a constant lookahead � and a constant size memory there
exist scenarios for every local algorithm such that its reached welfare is arbitrarily
worse than a global optimum.

Proof. Consider a scenario as depicted in Figure 1. The initial graph consists of three
subgraphs G1, G2 and GB . The two larger subgraphs G1, G2 are connected through a
bridge GB which has a diameter of at least � and each node v in the bridge has already
kv friends. The valuations are such that for every pair (u, v) ∈ G1×G2 the quality is 1,
for every pair (u, v) ∈ Gi ×Gi with i ∈ {1, 2}, we have q(u, v) = ε. Furthermore, for
every (u, v) ∈ Gi ×GB with i ∈ {1, 2}, q(u, v) = ε/2. Thus, we only need to specify
the valuations within GB . Every node v ∈ GB values other nodes u ∈ GB with 2ε if
the edge exists in the initial friendship graph and 0 otherwise.

Hence, the nodes in the bridge already have their best possible friends and therefore
will not change their friends. These valuations represent an initial friendship graph in
which no node really likes his friends but does not know any better candidates.

But this setting is a stable state, hence no local algorithm will create an edge between
any node from G1 with any node from G2 because of the sheer distance between those
subgraphs. This holds due to Lemma 1 even if the nodes are allowed to choose non-
beneficial partners. Furthermore, the connecting nodes are not appealing for any node
and thus remain isolated. Therefore, the best achievable stable state is O(n · ε). In the
optimal solution the nodes from the sets G1, G2 are connected to each other to achieve
a stable state with value Θ(n− |GB|) = Θ(n). ��
Note that this result relies on the fact that any reasonable, local algorithm is only willing
to create connections to beneficial partners or is only willing to accept a worse partner
a constant number of times. Let us further remark that the initial friendship graph and
any stable state reached by a local algorithm is not necessarily Pareto efficient. This
means that there are scenarios where we can easily improve the welfare of some nodes
without lowering the welfare of other nodes, e.g., by moving one node v from G1 to
G2. Now v can connect to nodes which it valuates higher. This increases v’s welfare
(and the welfare of the nodes which are connected to v) but does not lower the welfare
of any node.
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Fig. 2. A track going from left to right. The dashed, gray edges are created by the execution of a
local algorithm, the black edges are given in the initial friendship graph.

3.2 Local vs. Local Algorithms

We now show that there cannot even be a best local algorithm, i.e., an algorithm which
can achieve a stable state whose welfare is at least as good as the welfare of any other
local algorithm. We prove that for every local algorithm there exist scenarios in which
it is arbitrarily worse than another, local algorithm. But first, we need a few more terms.

Proposition 3. A track consists of two disjoint sets, each with j nodes. The nodes of
each set are initially arranged in a line as shown in Figure 2 (connected to each other
with the edges colored in black). The length of the track is j. The dashed, gray edges
have a strictly monotonic increasing quality from left to right. The black edges from the
initial friendship graph have a quality ofO(ε). The remaining edges have a quality of 0
and are therefore never used. Every node v of a track has kv ≥ 4. After the initial edge
e is created, any algorithm in our model will create the dashed, gray edges, starting
with e1, one by one from left to right, i.e., in increasing order regarding their quality.
The creation of one dashed, gray edge allows the creation of the next dashed, gray edge
since those nodes are now within � hops of each other. We call the creation of the edges
exploring a track.

Proposition 4. A successful track generates a welfare of Ω(n) if the initial edge e is
created. Without this initial edge the track has only a welfare of O(n · ε). A track of
length Ω(n) can have these properties. In such a track we can set the quality of the
edges in the initial friendship graph to O(ε) and the edge quality of the selected edges
connecting those two sets, i.e., the dashed, gray edges in Figure 2 to a constant.

Upon creating the initial edge e on the left, the track can be explored. After every
dashed, gray edge is created, the welfare is Ω(n); without the initial edge the welfare
is generated only by the edges of the initial friendship graph and thusO(n · ε).

Proposition 5. A track T is said to be blocked if, during the exploration, no further
edge is created because at least � consecutive nodes v have already kv edges which
are better than those of the track T . This stops the exploration since the nodes have no
incentive to continue to explore the track.

Similarly, a track T2 blocks another track T1 if the edges of T2 are part of the reason
why T1 is blocked. An example of this can be seen in Figure 3.

Theorem 6. For nodes with a constant lookahead � and a constant size memory there
exist scenarios for every deterministic, local algorithm such that its reached welfare is
arbitrarily worse than that of another deterministic, local algorithm.
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Fig. 3. Two tracks T1 and T2 interacting. T1 is blocked by T2 since the shared nodes of both
tracks have no incentive to create the edges of T1 since they are content with the edges of T2.

Proof. Consider two concatenated tracks T1, T2 each of length at least �. On top of each
of the � nodes of the first track T1 are four nodes in a line, i.e., each node ui is connected
to a different intermediate node v′i which is connected to node vi. This subgraph of the
initial friendship graph is depicted in Figure 4. We define kvi = 2 and kui = 4 for all
nodes ui, vi with i ∈ {1, . . . , �}, i.e., every node ui can create a connection to exactly
one more node whereas vi must sever an edge to create a new edge. Let v′i be vi’s worst
friend. The qualities are such that q(ui, vi) > q(ui, xi) holds. Let the edges from the
initial friendship graph have a quality larger than q(ui, vi) for all i ∈ {1, . . . , �}.

We assume that node vi has two options. It can either create a connection to node
ui or to node wi; all other nodes are valued with 0. If all nodes vi decide to create a
connection with ui, T1 is blocked. Let us explain this in more detail. Since q(ui, vi) >
q(ui, xi) and the quality of every edge of the initial friendship graph is also larger than
q(ui, xi), node ui has no incentive to create the edge (ui, xi) or any other edge. Thus,
the track T1 is not explored and the initial edge e of T2 is not created. But if all nodes vi
choose to create a connection with wi, track T1 and subsequently track T2 are explored.
Note that it is unimportant if the nodes vi may have the option to temporarily revise
their decision by using their constant memory. It only matters whether the track T2 is
explored at some point execution of the algorithm.

Since the nodes can only see the graph and a part of the track, they have to make a
decision with only a subset of the information available. Hence, they have to base their
decision on insufficient information because they cannot know whether the exploration
of the track T2 is necessary in order to create partnerships between most of the nodes.
This can occur if the track T2 turns out to be a successful track. But it might also happen
that this track blocks a successful track and should therefore not be explored. The latter
scenario is shown in Figure 3. In this scenario the chosen track prevents the exploring
of the other track. Since these scenarios are indistinguishable for any algorithm, the
remainder of the graph can be such that its choice is wrong. It is easy to see that there
is another local algorithm which decides correctly for this particular scenario. Limiting
the quality of the edges in the subgraph to O(ε) yields the theorem. ��
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Fig. 4. A subgraph of size O(1) with outgoing track. Node vi must now decide if it wants to
create a connection to node wi or to node ui. If all the connections to ui are made, the track
cannot be explored. Note that edge e is not part of the initial friendship graph.

We can prove a similar result for algorithms which try to execute a constant number of
different algorithms in parallel to avoid the aforementioned problem. This allows them
to emulate algorithms where one might explore a track whereas another might not.

Corollary 7. For nodes with a constant lookahead � and a constant size memory there
exist scenarios for every local algorithm, which executes several algorithms in parallel,
such that its reached welfare is arbitrarily worse than that of another local algorithm.

Proof. We concatenate tracks such that every executed algorithm fails at least once.
The complete proof is omitted due to space limitations.

Theorem 8. For nodes with a constant lookahead � and a constant size memory there
exist scenarios for every randomized, local algorithm such that its reached welfare is
arbitrarily worse than that of another deterministic, local algorithm.

Proof. We concatenate Ω(logn) tracks such that the executed algorithm fails with
probability at least 1 − n−α for a fixed α > 0. The complete proof is omitted due
to space limitations.

3.3 Executing Local Algorithms in Parallel

We have seen that the welfare in the stable states that different algorithms reach differs
significantly. Although, as seen in Corollary 7, none of them may produce an optimal
solution, we try to salvage as much as possible by selecting a constant number of algo-
rithms and trying to be as close as possible to the best achieved solution. If we execute
several algorithms in parallel, we obtain more than one solution. Due to the fact that the
nodes only have a local view, they cannot know which of their connections is part of the
best achieved solution. With their limited knowledge, the obvious strategy for the nodes
is to simply try to choose the best available connection if still available. This does not
yield the best solution as shown in the easy example depicted in Figure 5. But we get a
factor 2 approximation compared to the welfare achieved by any of the executed algo-
rithms. To be able to pick edges greedily at the end, we need to show an upper bound
on the runtime which allows the nodes to know when any algorithm has terminated.
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Fig. 5. The best solution consists of the edges {u, v} and {w, x} whereas our greedily picked
solution consists of {u, x} and {v, w} and is thus a factor of 2 worse than the best solution

Lemma 9. The runtime of any local algorithm that only chooses higher quality edges

is O
(
2n

2
)

.

Proof. We use a potential function to prove this. Consider a bitstring of length n2. The
i-th bit represents the edge with the i-th largest quality. There is a 1 at position i if the
corresponding edge with the i largest quality exists in the graph. The bitstring can be
regarded as a counter. Since we only allow beneficial changes, this potential function
increases with every change. This limits the total runtime of any algorithm of this type
to 2n

2

. ��

Note that the nodes cannot know when exactly the execution has terminated because
of their limited view, but only know the rather weak upper bound of 2n

2

. Hence, the
greedily selecting of the edges will be started after 2n

2

rounds. Since at least one edge is

picked every round, this allows the nodes to output a valid solution afterO
(
2n

2

+ n2
)

rounds.

Theorem 10. By running several algorithms in parallel and greedily selecting the best
edges at the end, we obtain a factor 2 approximation compared to the best of the exe-
cuted algorithms.

Proof. This proof is similar to the proof that any maximal matching is a factor 2 ap-
proximation of a maximum matching. Consider the union of edges of all solutions.
Whenever two nodes mutually agree to pick an edge, this edge can either be part of
the best solution in which case the choice is good. Otherwise, our choice might make
it impossible to pick at most two edges from the best solution since both are connected
to one of the vertices. But both must have a lower quality than our choice. Hence, our
solution is at least half as good as the union of all solutions and therefore at least half
as good as the best solution. Continuing this inductively yields the claim. ��
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3.4 Valuing Friends of My Friends

In a real social network it might not be sufficient to simply evaluate a friend by himself.
In order to evaluate a friendship, it is sometimes necessary to also consider the friends
of a friend. Thus, we want to introduce another friendship valuation variant. An edge
continues to represent an existing friendship, but the new edge quality is a weighted,
combined value of the node and its neighbors. More formally this can be expressed
as Q(u, v) := q(u, v) + c

∑
x∈N(v)\{u} q(u, x) where q denotes the quality function

as defined before and c is some constant. In this model every edge quality Q(·, ·) is
directed, i.e., Q(u, v) �= Q(v, u) is possible.

In this slightly advanced model, there may not be a stable state. This is due to the
asymmetric valuations of the nodes which can be used to create valuations similar as in
the roommate problem in [6].

Theorem 11. If we include the neighbors of a node in the valuation function, there are
scenarios in which a local algorithm does not reach a stable state.

Proof. It is sufficient to consider the nodes a, b, c, d, e and their friends with the fol-
lowing valuation for each other: q(a, b) = q(a, c) = q(b, c) > q(a, d) = q(b, d) =
q(c, d). This means the three nodes a, b, c prefer each other over node d. The valu-
ations of node e are such that it has no incentive to choose another friend. Now we
can set the edge qualities of the friends of each node such that the final edge qual-
ities are Q((a, b)) > Q((a, c)) > Q((a, d)). Node a prefers the friends of b over
those of node c and so on. Furthermore, we require Q(b, c) > Q(b, a) > Q(b, d) and
Q(c, a) > Q(c, b) > Q(c, d). The evaluations of node d do not matter. A brief techni-
cal remark has to be made. In order to achieve this, the friends of each node have to be
content with being paired up with their respective partners. Furthermore, neither node
must be willing to initiate a connection with any other node than a, b, c or d. For the
nodes to be able to know each other all the time, the fifth node e can be connected to
a, b, c, d but without any incentive to change its connections. This scenario is depicted
in Figure 6.

Fig. 6. The edges {a, b}, {c, d} exist. In this setting b prefers to be paired up with c and c would
be happier with that matching. Afterwards a would match with c and thus b with d. In the next
round, the cycle would start anew.
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This enables us to create a cycle. No matter which node is matched with node d, it
wants to change to another node which is willing to do so. Hence, no stable state can be
reached. ��

Clearly, neither a statement about the convergence time nor about the globally achieved
welfare is possible in this setting.

3.5 Breaking Up a Friendship Is Expensive

In a real social network, breaking up friendships is hardly without consequences to that
friendship. To model this we assume that the edge quality decreases every time the
corresponding edge is removed. There are two natural choices to reduce the quality of
an edge: Either reduce it by a constant term, or by a constant factor.

Theorem 12. If the edge quality q(e) gets reduced by a constant term every time the
edge e is removed, the runtime of any local algorithm is O

(
n2
)
.

Proof. The proof is omitted due to space limitations.

4 Conclusion and Outlook

We showed that any local algorithm for finding better friends that has constant memory
and constant lookahead is arbitrarily worse than the global optimum. We also compared
local algorithms to each other: For every local algorithm there exists a scenario in which
it performs arbitrarily worse than another local algorithm.

This was shown for some specific initial friendship graphs. An interesting open prob-
lem is how to characterize graph classes where a best local algorithm exists. Are there
also some general graph classes where the welfare of a local algorithm is only a constant
factor worse than the global optimum? Another open question is whether our results can
be generalized. Which problems cannot be solved well by a local algorithm; neither in
comparison to other local algorithms nor compared to the optimal solution?
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Abstract. We present a heuristic algorithm which leverages the topo-
logical properties of social networks to efficiently detect a small subgraph
on an OSN which connects a group of target users, particularly from the
perspective of a third-party analyst.

1 Introduction and Motivation

As Online Social Networks (OSNs) grow in popularity, more and more people
are surfing the Internet to network with others. These social sites have been
collecting a huge amount of data from their users’ online activities, part of which
are visible on the sites. For example, we can see a user’s friend list on his profile
page on Facebook which indicates his friendships with other users.

This brief announcement focuses on how to detect a small subgraph con-
necting a given group of users on the relationship network derived from users’
relationship information on the OSN. Particularly, we intend to cope with this
problem from the perspective of a third-party analyst, which leads to challenges
as the information a third-party analyst can glean is limited. Specifically, one
web access, namely one query, only provides the list of direct friends of a user
on the Facebook, which we therefore call local view. To picture the entire re-
lationship network, the third-party analyst may crawl the site by accessing all
users’ profile pages; however, the time for the brute force crawling is non-trivial.
Furthermore, intensively accessing the OSN will cause the overload of its server,
which is the main reason why nowadays many online social sites limit the number
of web accesses to them from one (or a group of) IP address(es).

Therefore, our goal is not only to detect a desirable subgraph with a small
size but also find it with a small number of web queries. Technically, we apply
the well-known topological properties of social networks, including small-world,
scale-free and the well-connectivity of high degree vertices in [7], to directing
query procedure aimed to efficiently discover target users’s connectivity on OSNs.

2 System Model and Problem Definition

We model an OSN by an undirected graph, G(V,E), in which each vertex in
V represents a user and each edge in E denotes a relationship between two
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users, such as friendship. Then querying a user’s profile page returns the list
of the user’s neighboring nodes in the graph. Under this model, detecting the
connectivity of a group of target users is based on the interactions with the OSN
by a sequence of queries. We keep track of not only vertices already queried but
also vertex candidates to be queried, where a candidate is referred to as a vertex
which has not been queried while has been seen by querying other vertices.
As more vertices are queried, the third-party analyst’s view on the OSN graph
becomes larger.

Problem 1. Local-view based Minimum Subgraph Detection (LMSD): Given a
set of target vertices S0 in the graph of an OSN G(V,E) the topology of which is
unknown initially, find the minimum number of vertices from V \ S0 to connect
all target vertices by the minimum number of queries for the local-view discovery.

Under the system model, we define our problem as Local-view based Minimum
Subgraph Detection in Problem 1. Note the LMSD problem requires both the
size of detected subgraph and the number of queries be minimized, which is hard
to achieve at the same time. Therefore, we heuristically handle them sequentially.
We first look for a subgraph connecting all target vertices through a small number
of queries, from which we detect an even smaller one linking all of the target
users. The rationale behind this is if the number of queried vertices is small, the
size of the finally detected subgraph should not be that large. We can prove that
even given the entire graph detecting the minimum subgraph covering a group of
nodes is an NP-hard problem by a polynomial reduction from Minimum Steiner
Tree problem which is a class NP-complete problem. Therefore, solving LMSD
is challenging.

3 Our Search Technique

Our technique starts with querying all target vertices on the OSN graph. Each
target vertex and its corresponding neighboring nodes returned form a subgraph.
Initially, these subgraphs are most likely disjoint due to the sparse topology of
social network graphs. Each of the subgraphs has its own set of vertex candidates
which have been seen while have not been queried yet, and they will grow as
their vertex candidates are queried. Now our LMSD problem becomes how to
select vertices to query so that the subgraphs of all target vertices can be merged
into one connected piece quickly.

Inspired by the critical role of high-degree vertices in searching on social net-
work graphs in [1,2], we also prioritize vertex candidates of high degrees to query.
However, as the real degree of a vertex candidate is unknown until we query it, we
define current degree for each vertex candidate - the number of the discovered edges
of the vertex upon searching. Moreover, we define subgraph degree - the maximum
degree of queried vertices in the subgraph. Our search technique runs the follow-
ing three steps: (1) query all target vertices on the OSN graph and form individual
subgraphs; (2) select the subgraph with minimum subgraph degree as the target
subgraph and (3) pick up a vertex of the highest current degree from the candidate
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set of the target subgraph to query (break tie arbitrarily). Steps 2 and 3 will be
repeated until the subgraphs of all target vertices are connected together.

If querying a vertex causes any subgraphs to overlap, they will be merged.
Their vertex candidate sets will be combined and the current degrees of their
vertices will be updated. Note that after querying a vertex, the subgraph degree
will be updated if the newly queried vertex has a degree higher than the current
degree of that subgraph. One can see that the degree of the target subgraph
may be increased as the search goes on, so that when it becomes greater than
the minimum subgraph degree among all subgraphs, the target subgraph will
be reassigned. In our technique, the target subgraph is dynamically changed to
take care of low-degree subgraphs, therefore, we call this technique Balanced
Multiple-Subgraph searching (BMS). Given the subgraph finally merged in the
above search, we apply a classic approximate Steiner Tree algorithm in [3] to
detecting a even smaller subgraph connecting all target users.

4 Findings and Conclusion

Through the experiments over the large-scale real-world data sets from Face-
book [6], Epinion [5], and Slashdot [4], we evaluated the effectiveness and effi-
ciency of our search technique with the size of detected subgraph and the number
of queries, respectively. We found that the size of detected subgraph by our tech-
nique is comparable to the size of the subgraph discovered by [3] even given the
entire graph. Furthermore, the size of our detected subgraph is similar to the
number of queries conducted in BMS, which indicates the effectiveness of us-
ing topological properties of social network graphs in design of our search. We
believe that an OSN graph is so different from a random graph that designing
search techniques based on its unique topological features will enhance search
efficiency. We will further investigate on this topic in our future work.
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Motivation. In discrete anonymous environments, robot algorithms consist in
a list of rules, where each rule takes a configuration of the system as input
and outputs the set of robots that are required to move when the system is in
this configuration. Based on these rules and on the robots’ activations by the
scheduler, the system globally evolves and, when the algorithm is correct, it
solves the targeted problem.

Such algorithms (i.e. sets of rules) are usually defined for a specific topology
and restricted to a certain number of robots. As example, we consider the ex-
clusive perpetual exploration problem (all robots must visit all nodes infinitely
often) studied in [1] for partial grids with sense of direction, in [2] for uniform
rings without sense of direction, and [3] for grids without sense of direction.
While each of these works was handcrafted, general conditions on the number
of robots and the network size had to be assumed for the generic solution to be
valid. The case of small instances typically requires ad hoc protocols that are
specifically designed. Moreover some cases are left open, e.g., the case of n <= 10
for more than k = 3 robots in [2]. Such a manual treatment is problematic both
for the sake of completeness and for the sake of correctness.

Proving that no protocol instance can work in a particular network requires
checking that every possible protocol leads to a contraction, which is highly
error-prone if humanly managed. The case of possibility is also tricky, since it
is relatively easy to find protocols for perpetual exclusive exploration in rings of
size 10 with 3, 4, 6, or 7 robots, but unlikely to find one with 5 robots. For the
same reasons, it is also difficult to prove analytically the optimality of a given
algorithm.

Contribution. We propose a tool that can automatically answers this kind of
questions by generating exhaustively all possible algorithms for a given num-
ber of robots and a given network topology. We target anonymous systems and
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therefor we suppose that all robots and nodes are respectively indistinguishable.
This constraint implies that an algorithm cannot distinguish isomorphic configu-
rations. The current work consider only rigid configurations (i.e., asymmetrical
and aperiodic) in ring and torus topologies but could be extended to include
other types of configurations and topologies.

In a few words, our approach can be decomposed in a 4-step process: (1)
the generation of all different configurations, (2) the generation of all possible
robots’ moves for each configuration and the corresponding evolution on the
global configuration, (3) the generation of all algorithms, and (4) the analysis
of the generated data. The two initial steps allow the creation of the graph of
configurations that describes all the possible evolutions of the considered system;
the key point lies in the bijection between the set of possible perpetual algorithms
and the set of simple cycles of this graph.

Application to the Perpetual Exploration Problem. As a matter of illustration, we
represent on Figure 1 the set of all rigid configurations for the 10-node ring topol-
ogy with 5 robots, and on Figure 2 the corresponding graph of configurations.

Config 0 Config 1 Config 2 Config 3 Config 4

Config 5 Config 6 Config 7 Config 8 Config 9

Fig. 1. List of all non-isomorphic rigid con-
figurations of 5 robots in the 10-node ring

01 2

3

4

5

6

7

8

9

Fig. 2. Graph of configurations

After analysis, it appears (and it is a new result/proof) that it is impossible
to solve the perpetual exploration problem under these assumptions; 5 robots in
a 10-node ring, even if one can choose the initial configuration to avoid complex
initial symmetry breaking. However we found 72 different algorithms that solve
a weaker version of the problem, namely, all nodes must be visited infinitely
often, but not necessarily by all robots. Among these algorithms, we can find
optimal ones with respect to some properties. For example, we discover the
algorithm proposed on Figure 3 that uses the minimum number of 2 different
configurations and solves the exploration problem in a partitioned way; each
node is visited infinitively often, but always by the same robot1.

1 The animation does (obviously) not appear on the printed version. Moreover it
requires the use of the official Adobe Reader to read it on a computer.
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Fig. 3. Exploration algorithm (click on the figure to start animation)

Extension. We believe our modeling (and automatic protocol generator) could
prove useful for various other problems that were investigated in the context of
mobile anonymous and oblivious robots evolving on graphs, such as gathering [4]
(all robots are requested to reach a single node, not known beforehand), and
exploration with stop [5] (all nodes must be visited by at least one robot, and
eventually all robots must stop moving).
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Abstract. This paper presents a method that uses forward error cor-
rection codes to minimize the message bit complexity when acquiring
consistent global information in the presence of faulty processes. We
show a modification to the gradecast algorithm that implements our
method. Gradecast, first proposed by Feldman and Micali, is a broad-
cast algorithm for distributed systems that can handle Byzantine fail-
ures. It can be used as a basic building block to solve many important
problems in distributed computing in the presence of Byzantine failures,
such as agreement, clock synchronization, and approximate agreement.
Many of these problems require a step where all processes need to send
information to all other processes. We refer to the version of gradecast
where all processes broadcast to all other processes as all-to-all grade-
cast. In a distributed system with n processes, n instances of the original
gradecast algorithm to perform all-to-all gradecast has a message bit
complexity of O(mn3), where m is the length of the message. In this
paper, we present an all-to-all gradecast algorithm that takes O(mtn2)
message bits, where t is the maximum number of faulty processes. This
is a significant reduction in message bit complexity in real systems where
t << n. Our all-to-all gradecast algorithm uses coding theory to mask
Byzantine failures and has wide applicability in distributed systems. For
example, by replacing the original gradecast in the byzantine agreement
algorithm proposed by Ben-Or, Dolev and Hoch with O(mtn3) mes-
sage bit complexity, we get a new byzantine agreement algorithm with
O(mt2n2) message bit complexity. Also, this algorithm can be used with
their approximate agreement algorithm to get O(kn2t) instead of O(kn3)
message bit complexity.

1 Introduction

Many distributed algorithms require a step in which every participating process
needs a value from every other process. For example, in a clock synchronization
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algorithm, every process may collect the values of clocks of all other processes.
In a sensor network, a group of sensors may collect values from each other to
compute the average value, or some other global function such as the minimum,
the maximum or the sum of all the values. In a system that requires a uniform
action, the processes may collect proposals from all other processes to determine
an action. This paper addresses these problems in the presence of Byzantine fail-
ures. Many fault tolerant algorithms need to have information about what other
processes know about other processes. We call this second-order information. In
order to perform a fault tolerant broadcast, second-order knowledge is required.
The usual method to acquire second-order information is for every process to
broadcast the information that they have; then, every process rebroadcasts what
they receive. But, rebroadcasting the information is inefficient when it is known
that the number of faulty processes is bounded. The technique described in this
paper uses a forward error correction (FEC) code to minimize the size of the mes-
sages that are rebroadcast. As an example, we apply the technique to gradecast.
Gradecast can be used as a basic building block for many distributed algorithms
that handle Byzantine failures.

The gradecast algorithm, first proposed by Feldman and Micali[1], is a broad-
cast algorithm that gives the receivers a confidence level in the value received.
Let valuej[k] be the value that process Pj outputs for process Pk, confidencej[k]
be the confidence value process Pj outputs for process Pk, and vk be the initial
input value to the algorithm for process Pk. The confidence level returned is
from the set {0, 1, 2} and the confidence value gives information about the state
of the other processes. The gradecast algorithm provides three main properties
of the confidence level that allow a process to reason about the knowledge of
other processes.

1. For all non-faulty process Pi, and non-faulty process Pj , and any process Pk,
if confidencej[k] > 0 and confidencei[k] > 0; then, valuej[k] = valuei[k].

2. For any non-faulty process Pi, and non-faulty process Pj , and any process
Pk, |confidencei[k]− confidencej[k]| ≤ 1.

3. If Pk is non-faulty, then for all non-faulty processes Pi, confidencei[k] = 2
and valuei[k] = vk.

The original one-to-all gradecast algorithm broadcasts a value from one process
to all the other processes. We define message bit complexity as the total number
of bits sent by all non-faulty processes in one invocation of the algorithm. The
one-to-all gradecast algorithm has a message bit complexity of O(mn2), where
m is the length of the message and n is the number of processes. The properties
of gradecast make it a useful primitive in distributed systems.

Consider the case where all processes wish to broadcast a value to all other
processes using gradecast. We call this all-to-all gradecast and it is used in
many applications such as Byzantine agreement, approximate agreement, and
multiconsensus[2]. The standard implementation of all-to-all gradecast, where n
instances of the one-to-all gradecast algorithm are used, has O(mn3) message
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bit complexity. We show a method, using coding, that gives an all-to-all gradecast
algorithm with only O(mtn2) message bit complexity, where t is the specified
maximum number of faulty processes. This is a significant reduction in mes-
sage bit complexity when t is much smaller than n, which is usually the case.
Gradecast requires t < n/3 for correctness.

Our all-to-all gradecast algorithm uses error correction codes[3] to mask Byzan-
tine failures and has wide applicability in distributed systems. For example, by
replacing the original gradecast in the byzantine agreement algorithm proposed
by Ben-Or, Dolev and Hoch[2] with O(mtn3) message bit complexity, a new
byzantine agreement algorithm with O(mt2n2) message bit complexity results.
If the number of actual failures is f ≤ t, then, the algorithm by Ben-Or, Dolev
and Hoch will take min(f +2, t+1) rounds. This property is often referred to as
early stopping. The bit complexity of approximate agreement algorithm [4,5,2]
is reduced from O(kn3) to O(kn2t), where k is the number of rounds used in
the approximate algorithm. Algorithms that have better message bit complexity
exist; but, they sacrifice round complexity or reduce the maximum number of
faulty processes tolerated. The example byzantine agreement algorithms in this
paper are given because of the simplicity of their implementation on top of an
all-to-all gradecast algorithm. There exist algorithms with better message bit
complexity. For example, the algorithm by Coan and Welch[6] has message bit
complexity of O(t2+nt) to agree on a single bit. This algorithm does not posses
an early stopping property.

Error correction codes can be viewed as a projection from a smaller space
to a larger space with good separation. Because the points in the larger space
are separated, small perturbations in the point in the larger space are still close
to the original mapped point and the point in the original smaller space can
be recovered. Generally, the spaces are high dimensional vector spaces over fi-
nite fields and the measure of distance between two elements of the space is
the number of coordinates that have a different value. Systematic codes can be
constructed that encode a vector as the original vector concatenated with an
error correction vector. Our method relies on the observation that every process
is sending a value to every other process and only the faulty processes will send
conflicting data. So, the vector built at each process will differ in at most t loca-
tions. This can be viewed as transmitting the vector and each process receiving
a corrupted version. Then, only the error correction part of the encoded vector
can be sent between processes to correct these “errors”. The original vector is
not actually transmitted. In a traditional application of error correction codes,
an input block is encoded and then the whole output codeword is transmitted.
We are not transmitting the whole codeword. Only a portion of the codeword
is transmitted. A proper selection of the code allows an error correction vector
that can correct t errors to be no longer than 2t+ 1.

This method of using coding is also applicable to other types of broad-
cast algorithms. Srikanth and Toueg[7] give a broadcast algorithm to simulate
authenticated broadcasts that has the important properties of authenticated
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messages. These are as follows: If a correct process Pi broadcasts a message; then,
all other correct processes receive that message and if a correct process Pi does
not broadcast a message; then, no correct process receives a message from Pi.
The message bit complexity of a consistent broadcast is O(mn2) and therefore,
the message bit complexity of all-to-all consistent broadcast is O(mn3). By using
our method, the bit complexity of all-to-all consistent broadcast can be reduced
to O(mtn2).

All-to-all gradecast can also be used to implement an interactive consistency
algorithm. Interactive consistency[8,9] is the problem in which each process has
a vector with an entry that needs to be filled from every other process and all
vectors should be the same at the end of the algorithm. Interactive consistency
is at least as difficult as Byzantine agreement.

There are earlier works that use error correcting codes for Byzantine broadcast
algorithms. Liang and Vaidya[10] give an algorithm that achieves communication
complexity of O(mn) bits for broadcast with Byzantine failures if m = Ω(n6).
This is quite useful in situations where the message being broadcast is a very long
stream of bits. An example of such messages is all the samples from a sensor in
a long running system. However, for small message size, m, the communication
complexity is O(nm + n4m1/2 + n6). Our work is useful when every process is
doing a broadcast and the message size may not be large. Friedman, Mostéfaoui,
Rajsbaum and Raynal [11] show a mapping from a distributed agreement prob-
lem to a coding problem. Our approach is to use coding to reduce the size of
the messages being sent. The work by Krol[12] gives a set of algorithms that
use coding to perform Byzantine consensus. Essentially, Krol[12] replaces broad-
cast with encoding, and decision making with decoding. These algorithms are
based on the original algorithm by Pease, Shostak and Lamport[13] and have
exponential message complexity.

The remainder of this paper is organized in the following manner. First, an
overview of the original algorithm is given in section 2. The algorithm is described
in section 3. Next, proofs of its correctness are in section 4. Then, in section
5, applications of an all-to-all gradecast algorithm are discussed. Concluding
remarks are in section 6.

Table 1. Notation

n number of processes

t maximum number of faulty processes

i, j, k process IDs

u, v, w, x, y, z scalar values

U,V,W,X, Y, Z non-scalar values

confidencei[j] confidence value Pi has in Pj ’s value

valuei[j] value process Pi received from process Pj

G set of all non-faulty processes
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2 One-to-All Gradecast

2.1 Execution Model

The execution model used in this paper is the standard reliable synchronous
message passing model. Processes can only communicate by passing messages.
Processes are assumed to be fully connected. Message passing is assumed to be
such that a process knows the identity of who sent the message. Only determin-
istic algorithms are considered. The algorithm assumes that only t out of the
n processes in the system may fail; but, they may be Byzantine, that is to say,
faulty in arbitrary ways. For algorithm correctness, we require that n − 2t > t
which simplifies to t < n/3. This bound is optimal because a Byzantine agree-
ment algorithm can be build on top of gradecast that has the same requirements
on t as the underlying gradecast algorithm. It has been proven that no Byzantine
agreement algorithm exists for t ≥ n/3. This model assumes that authenticated
messages are not available; otherwise, the broadcast problem becomes trivial.
Authenticated messages allow a process to verify the message’s contents and
source.

2.2 Overview of Original One-to-All Gradecast

This section gives a quick overview of the original algorithm presented by Feld-
man and Micali[1]. This algorithm broadcasts a value from one process to all
other processes. This can be modified to an all-to-all gradecast algorithm by
vectorizing. Pseudo-code for the algorithm is in Fig. 1. It assumes that the val-
ues n, t, and h are common knowledge to all processes, where n is the number of
processes, t is the maximum number of faulty processes, and h is the broadcasting
process. The algorithm proceeds in four steps. In the first step, the broadcaster
h sends out its value to all processes. After this step, the algorithm is symmetric.
In the second step, all process rebroadcast the value received from h to all other
processes. Then, in the third step, each process looks at the values received from
Step 2. If there is a common value that has been received at least n − t times;
then, it broadcasts that value. Otherwise, the process broadcasts no value. Fi-
nally, in Step 4, the received values from Step 3 are examined. Let x be the value
that appears the most in Zi. If there is a tie between two values, some common
agreed upon tie breaking strategy must be performed. For example, if values
are real numbers, we can always take the minimum. If x appears at least 2t+ 1
times; then, Pi outputs x with confidence 2. If x appears less than 2t + 1 and
more than t times; then, Pi outputs x with confidence 1. Otherwise, Pi outputs
⊥ with confidence 0.

This algorithm has message bit complexity O(mn2) and when replicated to
perform all-to-all gradecast, will have O(mn3) message bit complexity. The next
section gives a vectorized modification to this algorithm that reduces the all-to-
all gradecast message bit complexity to O(mtn2).
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Pi::
Inputs to Ph:

vh : input value for broadcaster
Common Knowledge:

n : number of processes
t : maximum number of faulty processes
h : broadcaster

Variables:
ui : value process Pi receives in Step 2
Xi[1..n] : vector of values received in Step 3
Zi[1..n] : vector of values received in Step 4

// Step 1
if i = h then

for j : 1 to n do Pi.send(Pj , vh); end
end
// Step 2
ui = Pi.receive(Ph);
for j : 1 to n do Pi.send(Pj , ui); end
// Step 3
for j : 1 to n do Xi[j] = Pi.receive(Pj); end
if ∃x such that |{k : Xi[k] = x}| ≥ n− t then

for j : 1 to n do Pi.send(Pj , x); end
end
// Step 4
for j : 1 to n do

if Pj sent a message then
Zi[j] = Pi.receive(Pj);

else Zi[i] =⊥; end
end
if maxx |{k : Zi[k] = x}| ≥ 2t+ 1 then

valuei = argmaxx |{k : Zi[k] = x}|;
confidencei = 2;

elseif maxx |{k : Zi[k] = x}| > t then
valuei = argmaxx |{k : Zi[k] = x}|;
confidencei = 1;

else
valuei =⊥; confidencei = 0;

end
Output valuei and confidencei.

Fig. 1. Original one-to-all gradecast algorithm

3 Algorithm for All-To-All Gradecast

This section gives our all-to-all gradecast algorithm that has O(mtn2) message
bit complexity. This algorithm is based on vectorizing the gradecast algorithm
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presented by Feldman andMicali[1]. As before, each process Pi has an input value
vi and the algorithm produces two vectors valuei and confidencei which are the
received values and the confidence level respectively. The algorithm assumes that
the set of all messages can be encoded as members of a finite field, with one field
member reserved to represent “no message” which we will denote as ⊥ . This
assumption only requires that there exists a mapping between the messages and
the field elements such that every message has a unique field element assigned
to it with at least one field element unassigned.

There is a standard technique, called interleaving, to apply a small code to
larger blocks without increasing the code length. The tool Parity Archive Volume
Set[14] uses this technique. Our usage of this technique relies on the fact that
only t blocks may be corrupt. It is very similar to breaking up the message to
be transmitted into blocks and running each block through the code, except
it is broken into interleaved blocks. What this means for the problem here, is
that, if a code that uses octets as the basic unit and one message is ten octets;
then, the first block will be the first octet from each message in the vector of
messages, the second block will be the second octet from each message, and so
on. Note, for the purposes here, the blocks are only interleaved in this manner
for the encoding and decoding process. For example, if the vector to encode
is [[a, b], [c, d], [e, f ]]; then, [a, c, e] would be run through the encoder to produce
[a, c, e, g, h] and [b, d, f ] to produce [b, d, f, i, j] and the final output of the encoder
is then [[a, b], [c, d], [e, f ], [g, i], [h, j]], which is then used in our algorithm. With
this method, messages longer than the field size can be used.

Pseudo-code for the algorithm is provided in Fig. 2. This algorithm proceeds
in four steps. The following description is from the point of view of process Pi,
because the algorithm is symmetric. First, in Step 1, Pi broadcasts its value to
every other process. Step 2 starts to differ from the original gradecast algorithm.
The original algorithm rebroadcasts the values received from Step 1. Because
of the messaging system reliability, ∀Pi, Pj , Pk ∈ G : Vi[k] = Vj [k], where G
is the set of all non-faulty processes. This implies that ∀Pi, Pj ∈ G : |{k :
Vi[k] �= Vj [k]}| ≤ t. This means that at least n − t values between non-faulty
processes are identical; so, sending the whole vector, Vi, is inefficient. Therefore,
our algorithm uses coding techniques to send at most 2t + 1 values, which can
be used in conjunction with the knowledge that the receiving process possesses
to recover everything the sender knows. To finish Step 2, Pi sends the error
correction vector of Vi.

In Step 3, Pi receives the encoded message from all other processes and uses
its current knowledge to construct matrix Xi of all the values that every process
claims that every other process possesses as their input value. The value Xi[j][k]
is the value that j claims k sent to it. The reliability of the messaging system
and how the coding process works implies that ∀Pi, Pj ∈ G, ∀k : Xi[j][k] = Vj [k].
Now an array Yi is constructed from Xi in the following manner. For each Pj ,
if there is a value that appears at least n− t times in the column Xi[·][j]; then,
set Yi[j] to that value, otherwise, set Yi[j] to ⊥ . Then, an encoding of Yi is sent
to all processes.
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Finally, in Step 4, Zi is constructed in the same manner as Xi in Step 3. Pi

uses its knowledge of Yi and the encoded value sent to it from each other process
j to recover Yj and then places that value in the row Zi[j][·]. That gives the
property ∀Pi, Pj ∈ G, ∀k : Zi[j][k] = Yj [k]. Then, Pi looks at columns of Zi[·][j]
for each Pj to decide its output. If maxx |{k : Zi[k][j] = x}| ≥ 2t + 1; then,
Pi sets valuei[j] = x and confidencei[j] = 2. If 2t + 1 > maxx |{k : Zi[k][j] =
x}| > t; then, Pi sets valuei[j] = x and confidencei[j] = 1. Otherwise, Pi sets
valuei[j] =⊥ and confidencei[j] = 0. Notice that the reduction in message bit
complexity comes from taking advantage of the knowledge that is known to be
common across processes, because of the constraint that at most t processes can
be faulty. The processes also do not know which of the t values are not common.
This is why they must exchange information in Step 2 and 3. But, coding is used
to ensure that the amount of information exchanged is small.

3.1 Example

The following example shows how the algorithm works. For this example, n =
4 and t = 1. The possible messages are the non-zero values over the finite
field GF (28) and the zero value is reserved to represent no message. Let P4

be the faulty process and let the initial value for the non-faulty processes be
{241, 86, 35}. For the encoder, we will use a Reed Solomon[15] code with a code
length of 28 that can correct one error. The error correction terms are calcu-
lated by taking the remainder of the values to encode as a polynomial with the
generator polynomial 102+ 164x+ x2 over the finite field GF (28). For example,
[241, 86, 35, 35] is encoded as the polynomial 35x251+35x252+86x253+241x254.
The remainder is taken, which gives us the polynomial 78 + 39x, which corre-
sponds to the values [39, 78]. Note that all the arithmetic operations are done
over the finite field GF (28). Decoding is much more involved and we recommend
the reader consult the literature on the subject[3,15]. The Schifra[16] library was
used to compute these values.

For Step 1, all processes send their values to all other processes. For this
example, the received values for each process are:

V1 = [241, 86, 35, 35]
V2 = [241, 86, 35, 35]
V3 = [241, 86, 35, 40]

(1)

Encoding these we get:

[V1, V ecc1] = [241, 86, 35, 35, 39, 78]
[V2, V ecc2] = [241, 86, 35, 35, 39, 78]
[V3, V ecc3] = [241, 86, 35, 40, 82, 30]

(2)

Then, each process sends the V ecci values which are of length two.
Next, for Step 3, all processes receive the values sent in Step 2. Since P4 is

faulty, it will send [22, 77] to P1, [0, 136] to P2 and [121, 159] to P3. For this
example, the processes then receive:
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Pi::
Inputs:

vi : Input value for Pi

Common knowledge:
n : The number of processes
t : Maximum number of faulty processes

Variables:
Vi[1..n] : Vector received in Step 2, initially ⊥
V ecci[1..2t + 1] : error correction vector for Vi

Xi[1..n][1..n] : Matrix of decoded values in Step 3
Yi[1..n] : Vector of values computed in Step 3
Y ecci[1..2t + 1] : Error correction vector for Yi

Zi[1..n][1..n] : Matrix of decoded values in Step 4
valuei[1..n] : Vector of output values
confidencei[1..n] : Vector of confidence levels

// Step 1
for j : 1 to n do Pi.send(Pj , vi); end
// Step 2
for j : 1 to n do Vi[j] = Pi.receive(Pj); end
V ecci = encode(Vi);
for j : 1 to n do Pi.send(Pj , V ecci); end
// Step 3
for j : 1 to n do Xi[j] = decode(Vi, Pi.receive(Pj)); end
∀j let Yi[j] = x if ∃x s.t. |{k : Xi[k][j] = x}| ≥ n− t otherwise Yi[j] =⊥
Y ecci = encode(Yi);
for j : 1 to n do Pi.send(Pj , Y ecci); end
// Step 4
for j : 1 to n do Zi[j] = decode(Yi, Pi.receive(Pj)); end
for j : 1 to n do

if maxx |{k : Zi[k][j] = x}| ≥ 2t+ 1 then
valuei[j] = argmaxx |{k : Zi[k][j] = x}|;
confidencei[j] = 2;

elseif maxx |{k : Zi[k][j] = x}| > t then
valuei[j] = argmaxx |{k : Zi[k][j] = x}|;
confidencei[j] = 1;

else valuei[j] =⊥; confidencei[j] = 0;
end

end
Output valuei and confidencei.

Fig. 2. All-to-all gradecast algorithm

P1.receive(P1) = [39, 78]
P1.receive(P2) = [39, 78]
P1.receive(P3) = [82, 30]
P1.receive(P4) = [22, 77]

(3)
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P2.receive(P1) = [39, 78]
P2.receive(P2) = [39, 78]
P2.receive(P3) = [82, 30]
P2.receive(P4) = [0, 136]

(4)

P3.receive(P1) = [39, 78]
P3.receive(P2) = [39, 78]
P3.receive(P3) = [82, 30]
P3.receive(P4) = [121, 159]

(5)

Each process concatenates the received value to the end of its Vi vector and runs
this through the decoder to get:

X1 =

⎡
⎢⎢⎣
241, 86, 35, 35
241, 86, 35, 35
241, 86, 35, 40
241, 49, 35, 35

⎤
⎥⎥⎦ (6)

X2 =

⎡
⎢⎢⎣

241, 86, 35, 35
241, 86, 35, 35
241, 86, 35, 40
241, 86, 129, 35

⎤
⎥⎥⎦ (7)

X3 =

⎡
⎢⎢⎣
241, 86, 35, 35
241, 86, 35, 35
241, 86, 35, 40
157, 86, 35, 40

⎤
⎥⎥⎦ (8)

Following the instructions for building Yi in Step 3 we get:

Y1 = [241, 86, 35, 35]
Y2 = [241, 86, 35, 35]
Y3 = [241, 86, 35, 0]

(9)

Then building Y ecci gets:

[Y1, Y ecc1] = [241, 86, 35, 35, 39, 78]
[Y2, Y ecc2] = [241, 86, 35, 35, 39, 78]
[Y3, Y ecc3] = [241, 86, 35, 0, 8, 182]

(10)

Each process i then sends its Y ecci. Let P4 send [87, 77] to process 1 and 2 and
[123, 149] to process 3.

Finally, in Step 4, each process constructs the Zi matrix in the same way it
constructed the Xi matrix. Then, we have:

Z1 = Z2 =

⎡
⎢⎢⎣
241, 86, 35, 35
241, 86, 35, 35
241, 86, 35, 0
241, 86, 0, 35

⎤
⎥⎥⎦ (11)
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Z3 =

⎡
⎢⎢⎣
241, 86, 35, 35
241, 86, 35, 35
241, 86, 35, 0
241, 86, 35, 82

⎤
⎥⎥⎦ (12)

Finally, the algorithm will output for each process:

value1 = [241, 86, 35, 35]
confidence1 = [2, 2, 2, 2]
value2 = [241, 86, 35, 35]
confidence2 = [2, 2, 2, 2]
value3 = [241, 86, 35, 35]
confidence3 = [2, 2, 2, 1]

(13)

4 Proof of Correctness

In this section, we show the correctness of our algorithm. The first lemma shows
a crucial property of Y in Step 3 of Fig. 2.

Lemma 1. Assume Pi and Pj are non-faulty processes. In Step 3 of Fig. 2,
if Pi sets Yi[k] to x �=⊥ and Pj sets Yj [k] to y �=⊥; then, x = y. Formally,
∀Pi, Pj ∈ G, ∀k : Yi[k] �=⊥ ∧Yj [k] �=⊥ =⇒ Yi[k] = Yj [k].

Proof. If Pi sets x �=⊥ to Yi[k], then the kth column of Xi contained at least
n − t copies of x. Only t rows can correspond to faulty processes, so at least
n − 2t of the rows that contain x in column k come from non-faulty processes.
This means that those n− 2t non-faulty processes also sent vectors to Pj which
set x to the kth column for those processes. Suppose y �= x and y �=⊥ . This
means that there must be n − 2t values which are ⊥ in the kth column of Xj

at process Pj . But, n− 2t > t so Pj will set Yj [k] to ⊥, which contradicts that
y �=⊥ and y �= x.

Theorem 1 (Property (1)). All non-faulty processes with positive confidence
about process k have identical value[k]. Formally,

∀Pi, Pj ∈ G, ∀k : confidencei[k] > 0 ∧ confidencej[k] > 0

implies

valuei[k] = valuej[k].

Proof. First note that the Zi matrix will contain the Yj vectors from Step 3 of
Fig. 2 for all Pj . By Lemma 1, if there is a majority of a value that is not ⊥ in
the kth column of Zi; then, all values in that column that are not the majority
and not ⊥ are from a faulty process. This implies that if any non-faulty process
Pj sets confidencei[k] ≥ 1; then, all other non-faulty processes Pj that set
confidencej[k] ≥ 1 also set valuej[k] = valuei[k].
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Theorem 2 (Property (2)). For any two non-faulty processes, the difference
in their confidence levels for any process Pk can differ by at most 1. Formally,
∀Pi, Pj ∈ G, ∀k : |confidencei[k]− confidencej[k]| ≤ 1.

Proof. Assume some non-faulty process Pi sets confidencei[k] = δ and valuei[k]
= x. Process Pi setting confidencei[k] = δ implies that a set R of processes sent
x to Pi in Step 3 of Fig. 2. Let Re ⊆ R be the faulty processes that sent x to Pi.
By problem setup, |Re| ≤ t. This means that the number of processes that also
sent x to any other process can differ by at most t. Let Pj be the process that
receive the most messages in support of x. Then, all other processes receive at
least |R|− t messages in support of x. Step 4 of the algorithm in Fig. 2 compares
the support of x to 2t + 1 and t to select the confidence level. By the above
reasoning, the support of x differs by at most t between any non-faulty process.
Therefore, the difference in confidence level between any non-faulty processes is
at most 1.

Theorem 3 (Property (3)). If Pk is non-faulty, then, all non-faulty processes
Pi have the value sent by process Pk and their confidence level on this value is
2. Formally,
∀Pi, Pk ∈ G : (confidencei[k] = 2) ∧ (valuei[k] = vk) .

Proof. If Pi is a non-faulty process, then, all processes will receive vi from Pi in
Step 2 of Fig. 2. Next, all non-faulty processes will also claim that Pi sent vi for
Step 3. Let G be the set of all non-faulty processes, by the assumptions of our
problem |G| ≥ n− t and all non-faulty processes will distribute error correction
vectors with vi in the ith entry in Step 3. So, every non-faulty process Pj will
set confidencej[i] = 2 and valuej[i] = vi in Step 4.

Theorem 4. The algorithms in Fig. 2 has bit message complexity of O(mtn2).

Proof. In Step 1, every process sends its value to every other process taking
mn2 message bits. In Step 2, each process computes V ecci which contains at
most 2t+1 values of length m bits. Every process then sends its V ecci to every
other process resulting in at most m(2t+1)n2 message bits. In Step 3, the same
number of message bits are sent as Step 2. This results in a total of at most
mn2+2m(2t+1)n2 message bits being sent by this algorithm. This is O(mtn2).

5 Application

The all-to-all gradecast algorithm can be used to create an exceptionally sim-
ple byzantine agreement algorithm. Ben-Or, Dolev and Hoch[2] give a simple
algorithm for Byzantine agreement and approximate agreement based on the
gradecast algorithm. A modification to the gradecast algorithm is needed for
their Byzantine agreement algorithm. The modification is to make the algo-
rithm take a set of known faulty processes that the algorithm will ignore and
set all values for processes in the faulty set to ⊥ . This has the effect of making
that process in the faulty set disappear as if they had crashed. The Byzantine
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consensus algorithm is symmetric, can agree upon an arbitrary value (as long
as there is some method of resolving a tie), and has an early stopping property.
They define early stopping to mean if there are f ≤ t actual failures; then, the
algorithm terminates in min(f + 2, t + 1) rounds. The message bit complexity
with our all-to-all gradecast algorithm is O(mt2n2).

The algorithm starts off with a faulty set which is initially empty. Then, for
each round r up to t+1 rounds the algorithm performs as follows: The algorithm
performs an all-to-all gradecast of the current value ignoring all processes in the
faulty set. The algorithm then adds up how often each value was received which
had a confidence greater than or equal to one. Next, it sets the current value to
the value that has the largest count. If there is more than one with the same
count; then, use some tie breaking scheme, such as always choosing the smaller
value. The algorithm adds all processes that have confidence one or less to the
faulty set. Next, the algorithm counts the number of processes that sent the
current value with confidence 2. If this count is greater than n− t, the algorithm
performs one more iteration of the loop and then exits the loop prematurely. To
finish, the algorithm returns the current value.

The approximate agreement algorithm presented by Ben-Or, Dolev and Hoch
is very similar to the byzantine agreement algorithm described above. The all-to-
all gradecast algorithm we describe can be plugged into their algorithm without
changing any of the properties of the original algorithm.

6 Conclusion

Many algorithms have a step where every process broadcasts a value. Gradecast
is a broadcast algorithm that gives a confidence level to each receiving process.
This confidence level gives information about the state of other processes. We
have presented an all-to-all gradecast with message bit complexity O(mtn2).
The original gradecast algorithm presented by Feldman and Micali[1] is a one
to all broadcast protocol. Using the original gradecast algorithm to produce all-
to-all gives O(mn3) message bit complexity. Our algorithm can be used in place
of the original gradecast algorithm when an all-to-all broadcasts is used. The
algorithm presented uses coding to reduce the amount of redundant information
being transmitted. We presented proofs that our modified algorithm maintains
the important properties of the original gradecast. Having an all-to-all gradecast
algorithm that is efficient in message bit complexity admits a simple symmetric
arbitrary valued Byzantine agreement with early stopping property that only
takes O(mt2n2) message bit complexity. Other algorithms may also benefit from
using coding in the fashion presented here.
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Abstract. Black hole search (Bhs) is the problem of mapping or ex-
ploring a network where there are dangerous sites (black holes) that
eliminate any incoming searcher without leaving a discernible trace.
Dangerous graph exploration (Dge) extends the Bhs problem to include
dangerous links (black links). In the literature, both problems have only
been studied under the assumption that no faults occur in the network
during the exploration. In this paper, we examine the impact that link
failures can have on the exploration of dangerous graphs. We study the
Dge problem under the following conditions: there are multiple black
holes and black links, the network topology is unknown, the searchers
are initially scattered in arbitrary locations, and the system is totally
asynchronous. In this difficult setting, we assume that links can fail
during the computation. We present an algorithm that solves the Dge in
the presence of such dynamic link failures. Our solution to the problem
works with an optimum number of searchers in a polynomial number of
moves. This is the first result dealing with fault-tolerant computations
in dangerous graphs.

1 Introduction

Network mapping is an important problem that goes all the way back to Claude
Shannon’s building of a physical maze solving machine [20]. Mapping and its
associated problem of exploration, the visiting of every node in a network or
the crossing of every edge, has been a significant focus of research in the mobile
agent model of distributed computing. In the last decade, a significant portion
of that work has focussed on exploration and mapping when the network is not
safe for the agents.

A particular kind of danger is the presence in the network of black holes,
network sites that eliminate agents arriving at them without leaving a discernible
trace. The black hole search (Bhs) problem is the problem of locating such
harmful sites. In order to solve the problem, a team of agents must work together
to find the black holes because some agents must be eliminated in order for
it be detected. The dangerous graph exploration (Dge) problem extends the
Bhs problem to include black links, network links that act in the same way as
black holes, destroying any agent traversing them without leaving a discernible
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trace. In both the Bhs and Dge problems, there are three basic requirements
for solvability and for termination: the safe portion of the network (i.e., the
remaining network once the black links, as well as the black holes and their
incident links are removed) has to be connected; the number k of agents must
be greater that the size f of the frontier (i.e., the links from the safe nodes to the
unsafe portion of the network); information about the number ns of safe nodes
or the size of the frontier must be known. We assume that such requirements
are met.

The Bhs problem was introduced by Dobrev et al. in [10], which focuses on
finding a single black hole in an asynchronous ring network, and there has been
extensive research since then [1–3, 5–9, 11, 13–19, 21]. The Dge problem was
first investigated by Chalopin, Das, and Santoro in [4], where agents scattered
in an anonymous network of unknown topology solved the Dge problem as a
consequence of solving the mobile agent rendezvous problem. The same problem
when the unknown network is not anonymous is examined in [12]. The solution
presented there works in O(nm) agent moves, where n is the number of nodes
and m is the number of links, a cost which is proven to be optimal in [19].

In all existing investigations of the Bhs and Dge problems, it is assumed that
the environment is fault-free—that is, the computation is dangerous by nature,
due to the presence of black holes and black links. What happens if the network
topology is not static or if links could go down while the computation takes
place? None of the existing solutions addresses these questions and none would
tolerate even a single link failure.

The goal of this paper is to start examining the problem of fault-tolerant
exploration of dangerous graphs. In particular, we focus on solving the Dge
problem in presence of dynamic link failures. Dealing with link failures is a first
step towards algorithms for fully dynamic networks, which would also have to
deal with link insertions, node failures or departures, and node insertions. Link
failures are of particular concern because if an adversary can take control of
a link or links in a network—either physically in a wired network or through
attacks such as the wormhole attack in wireless networks—a well-timed link
failure could wreak havoc.

Main Contributions: We consider a rather difficult setting: a network of
arbitrary topology with a multiplicity of black holes and black links. The agents
initially scattered in arbitrary safe locations are unaware of the network topology,
start at arbitrary times, and are totally asynchronous (that is, all their actions
take a finite but arbitrary amount of time). The initial location of the agents
and the timing and duration of their actions are arbitrary, as determined by an
adversary.

In this already difficult setting, we allow network links to fail by disappearing
during the computation; the timing, choice, and number of link failures is arbi-
trary, as determined by an adversary. We assume however that any such failure
occurs only when no agent is traversing that link, and that the failures do not
disconnect the safe part of the network (otherwise the Dge problem is clearly
unsolvable).
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The main contribution of this paper is the proof that it is still possible to solve
the Dge problem in spite of such dynamic link failures. Interestingly, this can be
done with the same optimal number f+1 of agents as in the fault-free case. The
proof is constructive. We present a protocol that using f + 1 agents solves this
new Dge with link deletions (Dge-ld) problem. Not surprisingly, the protocol,
based on the fault-free algorithm from [12], is rather complex; interestingly, its
cost is O(nm2) moves, showing that the price of fault-tolerance is at most a
factor O(m) from the optimal cost without faults.

This is the first result about fault-tolerant computations in dangerous graphs.
The rest of the paper is structured as follows. We describe the model and

introduce the terminology in Section 2. We describe the algorithm in detail in
Section 3. Finally, we prove the correctness and analyze the complexity of the
algorithm in Section 4. Some proofs are omitted due to space limitations.

2 Model

We model the network as a simple undirected graph G = (V,E) with n = |V |
vertices or nodes and m = |E| edges or links. The edges incident at a node are
locally labeled with distinct values (port numbers). There is a set A of k = |A|
agents working in G. They all follow the same protocol or algorithm. Each has
a distinct id, its own memory, and can move from node to neighbouring node.
They start scattered in the network at arbitrary times. They move and compute
asynchronously, meaning that all their actions take a finite but unpredictable
amount of time. The initial locations of the agents as well as the timing of their
actions are determined by an adversary.

The agents communicate with each other using shared memory in the form of
whiteboards located at each node. Each node’s whiteboard can be accessed in
fair mutual exclusion by the agents resident on that node. The mutual exclusion
property allows the agents to operate as if the links are first in, first out (FIFO)
and as if the nodes have unique ids. Without loss of generality, we assume that
the links and nodes have these properties.

In the network are sets of black holes and black links, nodes and links that
eliminate agents arriving at or traversing them without leaving a discernible
trace. Let VB ⊂ V be the set of black holes and EB ⊆ E be the set of black links.
All other nodes and links are said to be safe. Let EI = {[u, v] ∈ E : u, v ∈ VB}
be the set of inaccessible links, black or safe, connecting pairs of black holes.
Let FB = {[u, v] ∈ E : u ∈ V \ VB ∧ v ∈ VB} be the set of frontier links,
black or safe, connecting safe nodes to black holes. We can now define the safe
portion of the network as GS = (VS , ES), where VS = V \ VB is the set of
safe nodes and ES = E \ (EB ∪ EI ∪ FB) is the set of safe links. The choice of
the sets VB and EB is made by an adversary; however, the safe portion of the
graph is connected (the problem is otherwise unsolvable). The value nS = |VS |
is known to the agents (otherwise termination is impossible). Additionally, since
at least one agent must survive, the number of agents must be greater than the
number f of links incident on a safe node exploring which an agent will die:
f = |FB |+ 2|EB \ (EI ∪ FB)|; thus we assume that there are k ≥ f + 1 agents.
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In this setting, we allow network links to fail by disappearing during the
computation. An edge failure is locally detectable at an incident node only in
the sense that, if information about that edge (identified by its port number)
is written on the whiteboard, an agent can notice the absence of an edge with
such a port number; if no information is written, it is like the edge never existed.
The timing, choice, and number of link failures is arbitrary, as determined by an
adversary. However, any such failure occurs only when no agent is traversing that
link, and the failures do not disconnect the safe part of the network (otherwise,
the Dge problem is clearly unsolvable). Note that allowing failures during the
execution of the algorithm is not equivalent to removing the links that will fail
before the algorithm starts. Any solution to exploration in a dangerous graph
requires the team of agents to coordinate their search. A link failure during the
execution can severely disrupt this coordination.

The dangerous graph exploration with link deletions (Dge-ld) problem is for
a team of agents to visit every accessible link in a network and, within finite
time, to mark locally all frontier links FB and accessible black links EB \ EI as
dangerous. During the execution of the algorithm, an adversary can delete any
link as long as no agents are traversing it. We say that the problem is solved
if, within finite time, at least one agent survives, all accessible links have been
visited, all frontier links and accessible black links are marked locally as such,
and all surviving agents enter a terminal state.

3 The Algorithm

We present an algorithm, ExploreDG-LD, that solves the Dge-ld problem. We
start by describing the basic work activities of exploring, verifying, and merging.
We then describe how an agent deals with deletions during its work.

3.1 Overview

In general, algorithm ExploreDG-LD works as follows. The agents build spanning
trees of the safe area starting from their homebases in the exploration process.
The root of each tree contains coordinating information for the agents working on
the same tree. The cautious walk technique is used during exploration to ensure
that only one agent is eliminated per frontier link and at most two agents are
eliminated per black link. The verification process is used to detect when a newly
explored link connects two trees. When two trees are found to be adjacent, they
are merged in the merging process. An agent terminates the algorithm when the
current tree contains nS nodes and there is no verification or exploration work
left. In the absence of link deletions, algorithm ExploreDG-LD is very similar in
structure to the algorithm presented in [12] and solves the traditional fault-free
Dge problem.

Link deletions obviously complicate the entire process, in particular the pro-
cesses of building the trees and connecting them together. Some deletions—such
as the deletion of an unexplored link or an inaccessible link between two black
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holes—have no effect on the execution of the algorithm. On the other hand, the
deletion of a tree link can have a significant effect. The trees that the agents
build out from their homebases provide safe paths through the safe portion of
the network, GS . By eliminating a tree link, the adversary can cut an agent or
agents off from access to the coordinating information at the root of the tree in
which they are working.

In the following, we describe the algorithm from the point of view of an
agent and with the help of Figures 1–7, which show the movement of the agent
from the time it starts on a single work task until it finishes that task. The
square numbers in each of the diagrams refer to the cases where no deletion is
encountered. The circled letters in subsequent diagrams refer to cases where a
deletion is encountered.

3.2 Operations without Deletions

In the absence of link deletions, algorithm ExploreDG-LD solves the traditional
fault-free Dge problem using a logical structure similar to the algorithm pre-
sented in [12], which is however not fault-tolerant. Let us discuss the structure.

When an agent a first wakes up, it enters the initialization phase. It accesses
the whiteboard of its homebase to see if the node has a root marker. If there is
no root marker then agent a creates one. The root marker contains a map of the
tree rooted at the node, as well as all the information needed to find verification
and exploration work in the tree. In fact, every node visited by an agent has the
root marker for the subtree of which it is the root, even if that subtree is only
the node itself. We say that a root marker is active if its node has no parent;
otherwise, we say that a root marker is passive. Only active root markers are
used to coordinate work and, as we will see, a passive root marker only becomes
active because of the deletion of the link to its parent in the tree.

After initialization, the agent enters the main loop of the algorithm and
continues until the termination conditions are met. Each round, the agent looks
for work in the active root marker. If the current node does not have an active
root marker then the agent “grabs” the active root marker by following the
parent pointers at each node until the agent finds it. The agent first looks to see
if there is any verification work in the root marker. If there is no verification work
then it looks for exploration work. Finally, if there no exploration work then it
waits until work arrives, following the active root marker if it moves because of
a merger. We describe the work of the agent starting first with exploration, then
verification, and then merging.

Exploration is the work of exploring every accessible link in the network using
cautious walk. Agent a in tree T with root r, as shown in Figure 1, chooses a
link [u, v] for exploration and takes the tree path from r to u. The agent updates
all the passive root markers along the path noting that [u, v] is being explored.
It then uses the cautious walk technique to test if [u, v] is safe. It marks as
dangerous the port on u leading to [u, v] and then traverses [u, v] to v. If [u, v]
is a black link or v is a black hole then the agent is eliminated as shown in case
1 in Figure 1. The port on u remains marked as dangerous and no other agent
can enter it to be eliminated.
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Fig. 1. Exploration of unexplored link
[u, v] with no deletions. Cases include
encountering a black hole or black link

( 1 ), and successful return to its own

root ( 2 ) (possible movement of r due
to mergers is not shown).
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Fig. 2. Verification of internal link
[u, v] with no deletions. Cases include
the successful verification of the link
( 3 , 4 ).

If the agent is not eliminated then it checks to see if v has been previously
visited. If v has not been previously visited then a marks it as visited on its
whiteboard, creates a parent pointer pointing towards u, and creates a root
marker for the subtree rooted at v. It completes the cautious walk by returning
to u and marking the port to [u, v] as explored. It returns from u to r (or wherever
the active root marker is) by grabbing the root marker, adding v to all the
passive root markers along the way, marking [u, v] for verification, and marking
v’s other links for exploration. If v has been previously visited then a completes
the cautious walk and returns to r marking [u, v] for verification in all the root
markers along the way.

A safe return to r is shown as case 2 in Figure 1. Note that because of
merging, which we describe below, the active root marker may have moved. In
this case, the agent continues following the parent pointers up the tree, adding
the information about v to each root marker it passes, until it reaches the active
root marker. Its exploration is then done.

Verification is the work of determining whether every safely explored link is
internal or external to the tree in which the agent is working. If an external link
is found then the agent may try to merge the two trees connected by the link.

We look first at the verification of internal links as shown in Figure 2. Agent a
working in tree T with root r chooses link [u, v] for verification. By construction,
[u, v] can only be marked for verification if u ∈ T and [u, v] has already been
explored. The agent needs to determine if v ∈ T or v /∈ T . If v is in the map
of T ’s active root marker at r then the agent knows that [u, v] is internal and
it does not even have to leave r to complete the verification, which is shown as
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case 3 in Figure 2. Case 3 always occurs for tree links that have been marked
for verification.

If v is not in the map, it could be because v /∈ T or the agent from T that
explored v has not yet returned to the active root marker. For an internal link, it
must be the latter case. Agent a traverses to the root of v’s tree T ′ with root r′

to determine if T ⊆ T ′ (since r may have been merged with r′ during the agent’s
traversal). The agent traverses from r to u, across [u, v], and then from v to r′.
Since we can assume that the links are FIFO and we are looking at internal link
verification, we know that the agent that explored v must reach the active root
marker before a reaches it and a marks the link as internal on its return, which
is shown as case 4 in Figure 2. Agent a’s verification of [u, v] is finished.

Unlike during exploration, agent a does not mark [u, v] as being verified on all
the passive root markers on its traversal from r to u and v to r′, where T ⊆ T ′.
Instead, the agent checks to see if v is in the map of the subtree rooted at each
passive root marker it passes on the path from v to r′. If it is then a marks the
link as internal to that subtree. Otherwise, a does nothing. Note that all the root
markers from r to u already had [u, v] marked for verification by the agent that
explored [u, v] and the same is true for the link [v, u] on the path from r′ to v.
As a result, if a deletion were to create a new tree below the point where both u
and v are in the same subtree, the link would already be marked for verification
again in the new active root marker.

We now look at the verification of external links as show in Figure 3. Agent a
working in tree T with root r chooses link [u, v] for verification. In the external
case, node v belongs to some tree T ′ with root r′, where T �⊆ T ′. The agent
traverses from r to u, across [u, v], and from v to r′ using parent pointers to

find the active root marker in T ′, which is shown as case 5 in Figure 3. Along
the way it marks [v, u] for verification in every root marker, if it is not already
there. The agent must now decide whether to merge T ′ with T . If id(r′) > id(r),
where id() is a function that returns the id of a node’s root marker, it picks up
the active root marker to perform a merger. If id(r′) < id(r), it adds [v, u] to
the links in need of verification, if it is not already there, and begins working in
tree T ′. In either case, agent a’s verification of [u, v] is finished.

Merging is the work of adding one tree to another. Agent a has picked up the
active root marker in tree T ′ with root r′ and it traverses from r′ to v. Along
the way, it reverses the parent pointer to point towards the tree’s new root and
adjusts the maps of the passive root markers along the way to reflect the branch
of the subtree lost by the reversal. It then adds [v, u] as a tree link and traverses
from u to the active root marker, on r or elsewhere due to mergers, adding T ′

and its work information to the root markers along the way, including the active
root marker. The merger is then finished as shown in case 6 in Figure 3.

A reader familiar with the technique used in [12] would note two crucial
differences: unlike [12], in ExploreDG-LD every node visited by an agent has a
root marker, and there are no restrictions on the number of verifying agents for
the same tree. Precisely these two factors enable the agents to cope with link
failures and in particular to avoid deadlocks.
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r′

v

5

Unverified link

Fig. 3. Verification of external link [u, v] and merging across link [v, u] with no

deletions. Cases include successfully verifying the link is external ( 5 ), and successfully

merging the two trees ( 6 ) (possible movement of r or r′ due to mergers is not shown).

3.3 Operations with Deletions

There are certain types of deletion that an agent never encounters or which have
very little effect on the agent. For instance, the deletion of an inaccessible link
or the deletion of a link between two unvisited nodes would have no effect on
the agent’s execution of the algorithm. The deletion of a known non-tree link is
worth noting in the agent’s map if it passes by it, but it does not have an effect
on the actions taken by the agent. As a result, we are only concerned with the
deletion of a tree link or of a link being explored or verified. When we discover
such a deletion, we work around it while taking steps to repair the damage. The
actions taken often depend more on what was deleted than on the work being
performed by the agents, so many of the deletion handling cases overlap. We
look at the actions taken by the agent in each case and note any task specific
differences.

As a consequence of how we have defined work—the exploration or verification
of a link or the merging of one root marker with another—it is only possible
for an agent to encounter two deletions during a single piece of work. It can
encounter a single deletion either on its way away or back towards the root of
its own tree. It can only encounter two deletions if it encounters one on the way
away from the root of its own tree and another on the way back. If an agent is
unable to return to its own root, it simply starts working wherever it is. The
cases presented below take into account both possibilities, one deletion or two,
where necessary. In each case, we describe what the agent does when its work is
“interrupted” by a deletion.

The cases cover the following work. Let r, r′, and r′′ be the roots of trees
T , T ′, and T ′′, respectively. For exploration, an agent a is exploring link [u, v],
where u ∈ T . For internal verification, an agent a is verifying link [u, v], where
u ∈ T , v ∈ T ′, and T ⊆ T ′. For external verification, an agent a is verifying link
[u, v], where u ∈ T , v ∈ T ′, and T �= T ′. For merging, an agent a is merging
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Fig. 4. Exploration of unexplored link
[u, v] with one deletion. Cases include

the deletion of a tree link ( A , D )
and the deletion of the unexplored link,

( B , C ).

r

u v

A

B

E

Tree links

Unverified link

Fig. 5. Verification of internal link
[u, v] with one deletion. Cases include

the deletion of a tree link ( A , D ,

E ), and the deletion of the unverified

link ( B ).

across link [v, u], where v ∈ T ′ or v ∈ T ′′ depending on the number of deletions,
u ∈ T , T ′′ ⊂ T ′, and T �= T ′. Let [x, y] be a tree link on the path from the root
to the link being worked on, where x is closest to the root and y is closest to the
link.

Case A in Figures 4 to 6 applies to an exploring or verifying agent that finds
a tree link [x, y] deleted on the path from r to u. The agent returns from x to
the active root marker deleting the subtree rooted in x from the map of every
root marker along the way. The agent then looks for new work.

Case B in Figures 4 to 6 applies to an exploring or verifying agent that finds
that the link [u, v] it is meant to explore or verify has been deleted. The agent
returns from u to the active root marker marking the deletion on the map of
every root marker along the way. The agent then looks for new work.

Case C in Figure 4 applies to an exploring agent that finds that [u, v] has
been deleted after it has traversed it during the first step of its cautious walk. If
v is a new node, the agent creates a root marker and begins working in the new
tree rooted at v. If v has already been visited, the agent traverses from v to the
active root marker in v’s tree. The agent then looks for new work.

Case D in Figures 4 and 7 applies to an exploring agent that finds a tree
link [y, x] deleted on the path to r. The agent starts working for the new active
root marker at y.

Case E in Figures 5 and 6 applies to a verifying agent that finds a tree link
[y, x] deleted on the path from v to the root of v’s tree. If id(y) > id(r) then the
agent picks up y’s root marker and merges it. If id(y) < id(r) then the agent
adds [v, u] to the links to be verified, if it is not already there, and starts working
for the new active root marker at y.
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Fig. 6. Verification of external link [u, v] and merging across link [v, u] with one

deletion. Cases for verifying ( A , B , E ) and merging ( F , G , H ) include the

deletion of a tree link ( A , E , F , H ) and deletion of the unverified link, ( B , G ).

Case F in Figures 6 and 7 applies to a merging agent that finds a tree link
[x, y] deleted on the path to v. The agent deletes the subtree rooted in y from
the now active root marker on x and starts working there.

Case G in Figures 6 and 7 applies to a merging agent that finds the link
[v, u] deleted. The agent starts working for the active root marker at v.

Case H in Figures 6 and 7 applies to a merging agent that finds a tree link
[y, x] deleted on the path from u to r. The agent starts working for the new
active root marker at y.

4 Correctness and Complexity

4.1 Absence of Failures

We first prove that, in absence of failures, algorithm ExploreDG-LD is a correct
solution to the Dge problem. The proof follows a series of lemmas.

Lemma 1. In the absence of deletions, an agent that is verifying will finish
verifying within finite time.

Lemma 2. In the absence of deletions, an agent that is exploring will finish
exploring within finite time.

From Lemmas 1 and 2 it follows that:

Lemma 3. In the absence of deletions, at any time, there is at least one agent
alive that is not waiting.

Lemma 4. In the absence of deletions, every link in E\EI is eventually explored
and those in GS are also verified.
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Fig. 7. Agent encounters second deletion during exploration, verification, or merging.
Cases include, for returning exploring and verifying agents, the deletion of a tree link

( D ), and, for merging agents, the deletion of tree links ( F , H ) and the deletion of

the verified link ( G ).

Lemma 5. In the absence of deletions, the tree of a verifying agent that becomes
an exploring agent is merged within finite time.

Proof. When a verifying agent verifies an external link and finds the tree on the
other side has a lower id than its own tree, it starts working for that tree. Let
a2 be the verifying agent from tree T2 with root r2 that is verifying edge [v2, u1]
between T2 and T1 and has arrived on root r1. Let id(r1) < id(r2). Since T1 has
a lower id root marker, a2 marks the edge it was verifying, but in the opposite
direction, [u1, v2], for verification in T1’s root marker, and then starts working
there. Without loss of generality, assume that all other agents are currently
working on exploration and there are no other links to be verified. Agent a2
immediately chooses to verify [u1, v2] and returns to r2. Since T2 has a higher id
root marker, agent a2 picks it up and returns to r1 to merge T2’s root marker
with T1’s. Hence the lemma follows.

While it is possible that other agents are already trying to merge the two trees,
we know that the mergers are only performed by agents from lower id trees,
so we still have a finite number of mergers that can take place and no cycle of
mergers can emerge.

We can now prove the following.

Theorem 1. Algorithm ExploreDG-LD correctly solves the Dge problem in the
absence of failures.

4.2 Dynamic Link Failures

We now prove that algorithm ExploreDG-LD is also a correct solution to the
Dge-ld problem. That is
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Theorem 2. Algorithm ExploreDG-LD correctly and within finite time solves
the Dge-ld problem by constructing a rooted spanning tree of GS, marking all
safe edges as such, and marking all ports in GS leading to a black hole or to
a black edge as dangerous. The total number of moves by the agents is at most
O(k2 · nS + nS ·m+ k · nS ·D).

To prove the theorem, we prove the correctness of algorithm ExploreDG-LD
by showing that, while deletions can slow the algorithm, they cannot stop the
algorithm from making progress.

We start by noting that because of our use of cautious walk, a team size of
k = f + 1, where f = |FB | + 2|EB \ (EI ∪ FB)| is the number of links incident
on safe nodes whose traversal will cause an agent to be teliminated, and the
assumption that deletions do not eliminate agents, we can say that at any time,
there is always one agent alive.

We next look at work that is aborted as the result of deletion. We say that
a work task—exploration, verification, or merging—is aborted if the agent is
unable to reach the link being explored, verified, or merged over, respectively.

Lemma 6. Within finite time, an agent completes aborted work.

Note that in the case of exploration and verification, the active root marker may
have moved farther away due to a merger or closer due to a deletion.

We now show that there is always at least one edge leading out of any tree or
subtree explored by the agents that cannot be deleted by the adversary.

Let GE be the explored portion of the graph. Let GSD = (VSD , ESD ) be the
safe portion of the graph GS after the adversary has performed all its deletions.
Let T = (VT , ET ) be any tree or portion thereof, where VT �= ∅, built by the
agents during the algorithm. We define a tree border edge as any safe edge
connecting two safe nodes where one end is in the tree and one is not in the tree.
Let the set of tree border edges be ETF = {e ∈ ES : e = [u, v]∧u ∈ VT ∧v /∈ VT }.
For any such tree or subtree thereof that covers less than all the nodes, we show
that there is a tree border edge that cannot be deleted.

Lemma 7. For any tree or subtree T ⊆ GE , where VT ⊂ VS , there is a safe
edge e ∈ ETF such that e ∈ ESD .

Proof. By contradiction, assume that no such edge e ∈ ETF ∩ESD exists. Since
we have assumed that no edge is in ETF and ESD , the adversary deletes the
all edges in ETF . Since VT ⊂ VS , T cannot span the entire safe portion of the
graph. As a result, the deletions of all the edges in ETF disconnects T from the
rest of the graph, contradicting our assumption that deletions do not disconnect
the safe portion of the graph.

We now focus on work in the trees created by the agents. Each tree has an active
root marker. We show that, with one exception, all tree border edges are marked
for work in the tree’s active root marker, being worked on, or become internal
within finite time. The one exception comes as the result of the deletion of a
tree link. For the links that become internal, we assume that there is an agent
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available to do the work that leads to this outcome. We show later that such an
agent eventually becomes available.

When the adversary deletes a tree link, it creates a subtree in the tree where
the deletion takes place, even if that subtree is only a single node. We call a
subtree created in this way a deletion subtree and the tree to which the deleted
edge currently belongs the original tree.

Let TO be the original tree and TS be the deletion subtree created by the
deletion of tree edge eD. Let EOS be the tree border edges, if any, that connect TO

to TS and ESO be the same edges in the opposite direction. Let EOS = ESO = ∅,
if the tree is not an original tree or a deletion subtree, respectively.

Lemma 8. For any tree T ⊆ GE with an active root marker, where VT ⊂ VS,
all edges e ∈ ETF \ EOS are marked for work in T ’s active root marker, being
worked on, or are marked as internal within finite time.

We now consider what happens to the links in EOS . The reason that they are
not marked for work is because they are marked internal to TO even though
they are now external due to the deletion of eD. By contrast, the links of ESO ,
which are the same links as EOS but in the opposite direction, are automatically
marked for verification in TS’s active root marker. By construction, when an
agent verifies an internal link, it only marks the link as internal in the passive
root markers on its path if both ends are in the subtree rooted in the passive
root marker; otherwise, the link remains marked for verification. The set ESO

are exactly those links in TS that are internal to TO before the deletion but were
marked for verification in TS ’s passive root marker when it became active.

We now prove that the links in EOS are guaranteed to be marked for work in
TO’s active root marker if there is previously reported work in TS , there is an
agent working in TO, and there are no other connections to TS ; otherwise, there
is no guarantee they are marked for work.

Lemma 9. Let eW ∈ TS \ ESO be marked for work in TS and let TS have no
agents working for it. Let an agent a in TO choose to work on eW . Within finite
time, the links in EOS are marked for work in the active root marker of TO.

This result suggests that there is two circumstances when a deletion subtree is
never detected: the subtree contains no agents and no work except for the links
in ESO , or the subtree contains agents exploring frontier or black links and no
other work except for the links in ESO . We say such a deletion subtree is empty.

Lemma 10. The links EOS leading to an empty deletion subtree are never
marked for work.

These empty trees do not affect the correctness of the algorithm.

Lemma 11. The failure to detect a deletion subtree with no other work than
ESO does not affect the correctness of the algorithm.

The same is true of the deletion of non-tree links, although they can and do
affect the complexity of the algorithm.
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Lemma 12. The deletion of a non-tree link does not stop the agent from com-
pleting its current work.

We now need to deal with the assumption in Lemma 9 that there must be an
agent in TO that chooses to work on eW ∈ TS in order to guarantee that the links
in EOS are marked for work and in Lemma 8 that there is an agent available
to verify [v, u] in the deletion subtree Ti, where i ≥ 1. We show that before
termination there must always be an agent working in the network and because
that agent must eventually work on edges that cannot be deleted, every tree is
eventually worked on.

Lemma 13. At any time before termination, at least one agent is performing
work.

Corollary 1. An agent is eventually available to do the work in TO described
in Lemma 9 and in deletion subtree Ti, where i ≥ 1, described in Lemma 8.

We can now prove the correctness of the algorithm.

Lemma 14. Within finite time, all accessible links have been visited and all
surviving agents terminate.

Lemma 15. After at most O(k2 ·nS +nS ·m+k ·nS ·D) moves, all agents that
are still alive terminate.

The proof of the main result, Theorem 2, now follows.
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Abstract. This paper introduces a theory of fault recovery for
component-based models. We specify a model in terms of a set of atomic
components incrementally composed and synchronized by a set of glue
operators. We define what it means for such models to provide a recovery
mechanism, so that the model converges to its normal behavior in the
presence of faults (e.g., in self-stabilizing systems). We identify corrector
components whose presence in a model is essential to guarantee recovery
after the occurrence of faults. We also formalize component-based models
that effectively separate recovery from functional concerns. We also show
that any model that provides fault recovery can be transformed into an
equivalent model, where functional and recovery tasks are modularized
in different components.

Keywords: Fault-tolerance, Transformation, Separation of concerns,
BIP.

1 Introduction

Fault-tolerance has always been an active line of research in design and imple-
mentation of dependable systems. Intuitively, tolerating faults involves providing
a system with the means to handle unexpected defects, so that the system meets
its specification even in the presence of faults. In this context, the notion of spec-
ification may vary depending upon the guarantees that the system must deliver
in the presence of faults. Such guarantees can be broadly characterized by safety
and liveness properties. For instance, dependable mission-critical systems often
employ monitoring or control techniques to ensure safety properties in the pres-
ence of faults, and, provide a recovery mechanism to meet liveness properties,
if the system reaches an unexpected state. Self-stabilization is a special type of
fault-tolerance (largely concerned with liveness only), where a system always
reaches a correct state no matter what state it is initialized with.
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The concept of fault-tolerance as described above addresses the overall be-
havior of the system and is independent of the structure the system. In order to
associate fault-tolerance properties with the structure of a system and study their
interdependence, one has to focus on a specific methodology. The component-
based approach is a popular divide-and-conquer technique for designing and
implementing large systems as well as for reasoning about their correctness. Ide-
ally, in this approach, a system is designed incrementally by composing smaller
components, each responsible for delivering a certain set of tasks to separate
different concerns. Thus, component-based design and analysis of fault-tolerant
systems is highly desirable in order to achieve systematic modularization of such
systems.

We believe that we currently lack a formal approach that rigorously relates a
component-based methodology with fault-tolerance/self-stabilization concerns.
With this motivation, in this paper, we propose a novel formal framework for
component-based design and analysis of non-masking models [2], where recov-
ery and, hence, liveness is guaranteed in the presence of faults. We use the
semantics of the BIP (Behavior, Interaction, Priority) framework [12] to specify
components and their composition. In BIP, the behavior of an atomic compo-
nent is specified by a labelled transition system. A model (i.e., a composite
component) is represented as the composition of a set of atomic components
by using two types of operators: interactions describing synchronization con-
straints between components, and priorities to specify scheduling constraints.
Given a BIP model, the tool chain can automatically generate a stand-alone, dis-
tributed, real-time, multi-threaded, or synchronous C++ implementation that is
correct-by-construction (i.e., by preserving functional semantics of the original
model) [1, 4, 5, 8]. Thus, our results in this paper can be applied in model-based
design an analysis of component-based fault recovery for a wide range of settings
such as in distributed systems.

Contributions. Our contributions in this paper are the following:

– We formally define non-masking fault-tolerance for atomic and composite
components based on their observational behavior. This is different from
the approach in [2], where fault-tolerance is defined based on reachability of
predicates.

– We present a sufficient condition for incrementally constructing non-masking
composite components by starting from a set of non-masking atomic com-
ponents.

– Inspired by the work in [3], we define corrector components that establish a
desirable observational behavior and show that the necessary condition for a
composite component to be non-masking is to contain atomic or composite
correctors. We also introduce the notion of pure correctors that only exhibit
recovery behavior and do not participate in functional tasks of a composite
component. We show that models containing pure correctors can effectively
separate functional from recovery concerns and, hence, can be composition-
ally verified.
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– Leveraging the separation of concerns supported by pure components, we
provide an automated transformation of a component-based model into an
equivalent model consisting of pure components whose behaviors are or-
thogonal: when a normal execution phase is interrupted by the occurrence
of faults, control is transferred from the impacted functional components to
corrector components in charge of fault handling and recovery, and handed
back to the functional components once normal behavior is reestablished.

Organization. In Section 2, we present the preliminary concepts. Section 3 is
dedicated to describe our fault model and the notion of fault recovery while
Section 4 introduces our theory of component-based recovery. Then, in Section
5, we describe separation of recovery and functional concerns. Related work is
discussed in Section 6. Finally, we make concluding remarks in Section 7.

2 Basic Semantic Models of BIP

Atomic Components. We define an atomic component as a transition system
with a set of ports labeling individual transitions. These ports are used for
communication between different components.

Definition 1. An atomic component B is a labelled transition system repre-
sented by a tuple (Q,P,→, q0) where

– Q is a set of states,
– P is a set of communication ports,
– →⊆ Q × (P ∪ {τ}) × Q is a set of transitions including (1) observable

transitions labelled by ports, and unobservable τ transitions, and
– q0 ∈ Q is the initial state.

For any pair of states q, q′ ∈ Q and a port p ∈ P ∪ {τ}, we write q
p→ q′, iff

(q, p, q′) ∈→. When the label is irrelevant, we simply write q → q′. Similarly,

q
p→ means that there exists q′ ∈ Q, such that q

p→ q′. In this case, we say
that p is enabled in state q. Figure 1(a) shows an atomic component B, where
Q = {s, t}, q0 = s, P = {p, q, r}, and →= {(s, p, t), (t, q, s), (t, r, t)}.

A trace of a component B = (Q,P,→, q0) is a finite or infinite sequence of
ports π = p0p1p2 · · · , such that for all i ≥ 0:

1. pi ∈ P ∪ {τ},
2. there exists state sequence q0q1 · · · , such that:

– q0 = q0 (i.e., q0 is the initial state), and

– q0
p0→ q1

p1→ q2 · · ·

For a trace π = p1 · · · pn, by q
π−−→ q′, we denote ∃q1 · · · qn−1 : q

p1−−→ q1
p2−−→

· · · pn−1−−−→ qn−1
pn−−→ q′. The same concept applies for unobservable transitions

(e.g., q
τ∗π−−−→ q′ is a trace that includes a prefix of τ -transitions and then suffix

π).
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Fig. 1. A BIP atomic and composite component

Interaction For a given system built from a set of m atomic components {Bi =
(Qi, Pi,→i, q

0
i )}mi=1, we assume that their respective sets of ports are pairwise

disjoint, i.e., for any two i �= j from {1..m}, we have Pi ∩ Pj = ∅. We can
therefore define the set P =

⋃m
i=1 Pi of all ports in the system. An interaction

is a set a ⊆ P of ports. When we write a = {pi}i∈I , we suppose that for i ∈ I,
pi ∈ Pi, where I ⊆ {1..m}.
Definition 2. A composite component (or simply model) is defined by a compo-

sition operator parameterized by a set of interactions γ ⊆ 2P . B
def
= γ(B1 . . . Bm),

is a transition system (Q, γ,→, q0), where Q =
⊗m

i=1 Qi, q
0 = (q01 . . . q

0
m), and

→ is the least set of transitions satisfying the rule

a = {pi}i∈I ∈ γ ∀i ∈ I : qi
pi→i q

′
i ∀i �∈ I. qi = q′i

(q1, . . . , qm)
a→ (q′1, . . . , q

′
m)

In a composite component, τ-transitions do not synchronize but execute in an
interleaving fashion.

The inference rule in Definition 2 says that a composite component
B = γ(B1, . . . , Bm) can execute an interaction a ∈ γ, iff for each port pi ∈ a,
the corresponding atomic component Bi can execute a transition labelled with
pi; the states of components that do not participate in the interaction stay un-
changed.

In general, one can view a model γ(B1,B2), where B1 and B2 are two sets
of atomic components, as one component whose set of transitions is γ. Thus,
γ(B1,B2) denotes the composite component glued by γ, and, γ denotes the set
of interactions of this composite component. In practice, atomic components are
extended with variables. Transitions and interactions are associated with guards
on variables. Also, interactions can transfer data.

Figure 1(b) illustrates a composite component γ(B0, B1), where both B0 and
B1 are identical to the component in Figure 1(a) and
γ = {{p0, p1}, {r0, r1}, {q0}, {q1}}.

Similar to traces of an atomic component, a trace of a composite component
B = γ(B1, . . . , Bn) is a finite or infinite sequence of interactions a0a1a2 · · · , such
that for all i ≥ 0 (1) ai is an interaction of γ, and (2) there exists states q0q1 · · ·
of B, such that q0 = q0 and q0

a0→ q1
a1→ q2 · · · .
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Table 1. Interaction types based on the participating transitions

n r f

n N R F
f F F F
r R R F

3 Fault Model and Fault Recovery

3.1 Fault Model

Let B = (Q,P,→, q0) be an atomic component. We classify the observable tran-
sitions in → into the following three pairwise disjoint sets:

– A set→n of observable normal transitions that embodies the normal execu-
tion of the component.

– A set →f of observable fault transitions that expresses the faulty behavior
of the component.

– A set→r of observable recovery transitions that restore the normal behavior
of the component or help other components to restore their normal behavior
through participating in cross-component interactions.

Finally, →τ (i.e., τ -transitions of B) is the set of unobservable fault transitions
and expresses the local faulty behavior of B. Intuitively, a component normally
executes transitions in →n. However, faults in →f,τ may perturb the state of B
to a state that may or may not be reachable by other transitions and in partic-
ular, →n.

Notation. Let B = (Q,P,→, q0) be an atomic component. By →x, we denote
the union of transitions of the types in x, where x ∈ 2{n,f,τ,r}. By Bx, we mean
the component (Q,P,→x, q

0) induced by transitions in x only.

Definition 3. We say that B = (Q,P,→, q0) is a faulty component if →f,τ is
nonempty.

Now, let B = γ(B1, . . . , Bm) be a composite component. Observe that in an

interaction a = {pi}i∈I in γ, for any two j �= k in {1..m}, transitions pk→k and
pj→j may belong to any of the above classes of transitions of their respective
components. Thus, we define the type of interactions of a composite component
as follows (see Table 1):

– Following Definition 2, an unobservable fault does not participate in an in-
teraction; i.e., the corresponding component only takes a silent move from
one state to another without synchronizing with other components.

– If an interaction consists of transitions of the same type, then the interaction
type is equivalent to the type of participating transitions.
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f, τ, rn f, τ

n

Fig. 2. Non-masking atomic component; the gray state models unstable period

– Otherwise, the type of the interaction is determined by the greatest type of
the participating transitions in the total order n < r < f .

Thus, we partition interactions of B = γ(B1, . . . , Bn) into γN , γR, and γF .

3.2 Fault Recovery

Arora and Gouda [2] formally define the levels of fault-tolerance based on com-
binations of meeting safety and liveness in the presence of faults. In this paper,
our focus is on non-masking fault-tolerance. Non-masking systems are only con-
cerned with ensuring liveness in the presence of faults by guaranteeing deadlock-
and livelock-freedom through providing a finite-step recovery mechanism; i.e.,
the system always eventually reaches a good state even in the presence of faults.
However, in such a system, when faults occur, safety may be temporarily violated
during recovery, but not after the system reaches a good state.

Non-masking Atomic Components. We characterize fault recovery of an
atomic component by ω-regular expressions based on the behavior of transition
types identified in Subsection 3.1. For example, the ω-regular expression f∗rnω

is the set of infinite traces of an atomic component where a finite number of
observable fault transitions is followed by one recovery transition and an infinite
sequence of normal transitions.

Definition 4. We say that B = (Q,P,→, q0) is a non-masking atomic compo-
nent iff its set of traces satisfies the ω-regular expression [n∗((f + τ)r∗)∗n]ω.

The intuitive description of Definition 4 is the following (see Figure 2). If no
faults occur, the program executes only normal transitions (i.e., the left state in
Figure 2). If fault(s) occur, the component reaches a state from where execution
of normal transitions is not possible (the gray state in Figure 2). In this case,
we say that the component enters a finite unstable period (i.e., sub-trace (f +
τ)r∗). After a finite number of steps, the component recovers and only executes
normal transitions again. Also, note that according to Definition 4 the number of
occurrences of faults in each unstable period is finite. Observe that a non-masking
component does not exhibit deadlock or livelock in the absence or presence of
faults. Also, a non-masking component can use any recovery transition, be it
safe or unsafe, to converge to its normal behavior.

Non-masking Composite Components. We characterize fault recovery of a
composite component based on observational behavior of interaction types iden-
tified earlier; i.e., γN , γF , and γR. There is, however, an important difference
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between non-masking atomic and composite components. In a composite com-
ponent, if a fault occurs in an atomic component, the fault may force a set of
components to execute transitions other than their normal transitions, while a
set of other atomic components can resume their normal operation. Thus, un-
like non-masking atomic components, non-masking composite component may
as well exhibit normal interactions in their unstable period.

Definition 5. We say that B = γ(B0 · · ·Bm) is a non-masking composite com-
ponent iff:

1. Its set of traces satisfies the following ω-regular expression:

(N∗(F +R+N)∗N)ω.

2. If a trace prefix of B ends with NR, then there exists an atomic component
Bi, 0 ≤ i ≤ m, such that projection of the prefix on Bi results in a local
prefix that ends with nτ+.

Intuitively, in Definition 5, traces of a non-masking composite component behave
similarly to those of non-masking atomic components, except that normal inter-
actions can also occur during the unstable period. Moreover, in a non-masking
composite component if a recovery interaction occurs immediately after a normal
interaction, then we require the existence of an atomic component in which an
unobservable fault causes the execution of the recovery interaction. Notice that
in Definition 5, we do not require that atomic components of a non-masking com-
posite component should be non-masking as well. This is because we would like
our definition to cover cases where an atomic component is not subject to faults
locally, but it participates in recovery interactions in the composite component
that contains other faulty atomic components.

3.3 Example

Figure 3 illustrates a component-based non-masking communication protocol.
The behavior of the model is as follows. The component Sender sends a packet

A2

rec

Sender

s1

rec

s0 r1

snd

ack

ack

S

E

rem1

R

ack

ack

rcv

rcv

r0

Receiver

recovery

fault

normal

Legend

snd

Channel

f2

add2

rem1

add1

f1

add2

rem2
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c1c0

c2c3

A1

Fig. 3. A simple non-masking communication protocol
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via port snd and receives the corresponding acknowledgement through port ack .
Likewise, Receiver receives the sent packet through port rcv and sends an ac-
knowledgement through port ack . By each transmission, component Channel
adds an item to its single-space buffer (through ports add1 and add2) and by
each delivery, the item is removed (via ports rem1 and rem2). Our channel is
lossy and faults cause loss of the sent packet (i.e., transition f1) or the acknowl-
edgement (i.e., transition f2). Both faults are unobservable faults (i.e., f1 and
f2 are τ -transitions). Recovery involves re-transmitting the packet through the
rec port in Sender. Thus, the classification of transitions is as follows:

– Sender: →n= {s0 snd−−→ s1, s1
ack−−→ s0}, →f=→τ= ∅, →r= {s1 rec−−→ s1}.

– Receiver: →n= {r0 rcv−−→ r1, r1
ack−−→ r0}, →f=→τ=→r= ∅.

– Channel: →n= {c0
add1−−−→ c1, c1

rem1−−−→ c2, c2
add2−−−→ c3, c3

rem2−−−→ c0},
→f=→r= ∅, →τ= {c1 −−→ c0, c3 −−→ c0}.

In the composite component γ(Sender,Channel,Receiver), interactions
γ = {S,R,E,A1, A2} synchronize the atomic components as follows. A transmis-
sion by Sender or Receiver is synchronized with adding the item to the buffer of
Channel (i.e., interactions S and A1, respectively). Likewise, delivery of the item
to Sender or Receiver is synchronized with its removal by Channel (i.e., interac-
tions A2 and R, respectively). The recovery interaction E ensures re-transmission
of the message if a fault occurs. Thus, we have: γN = {S,R,A1, A2}, γR = {E},
and γF = ∅. In the absence of faults the set of traces of the composite com-
ponent satisfies expression: (SRA1A2)

ω. In the presence of faults, one possible
characterization of the model is the set of traces: (SE∗RA1(E

+RA1)
∗A2)

ω .
Notice that recovery interaction E occurs after normal interactions S or A1

only if a fault occurs in Channel. Also, although the model is non-masking,
atomic component Sender is not non-masking, as it has traces with prefix
(snd .ack )∗.snd .rec; i.e., Sender exhibits a recovery transition although no lo-
cal fault has occurred. Another interesting observation in this example is that
although all faults occur in component Channel, this component does not con-
tain any recovery transitions. In fact, the only way for Channel to recover after
the occurrence of a fault is by getting assistance from component Sender.

4 Correctors and Component-Based Recovery

4.1 Correctors

The concept of correctors is inspired by the work in [3, 7]. The definition of
correctors in [3,7] is based on correction of an invariant predicate, no matter how
it is reached. Our definition of correctors in this paper is based on observation of
recovery and normal transitions/interactions in atomic/composite components.
In other words, our notion of correctors is tailored for component-based models.

Roughly speaking, a corrector is concerned with two types of transitions: re-
covery and normal. A corrector component ensures two properties: (1) once a
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fault occurs, the component somehow recovers and eventually exhibits normal
behavior (i.e., recovery results in restoring the normal behavior), and (2) exe-
cution of normal transitions eventually stabilizes (i.e., once normal behavior is
restored the component behaves normally unless another fault occurs).

Definition 6. Let B = (Q,P,→, q0) be an atomic component. We say that B
is a corrector for the set →n of normal transitions, if there exists the set →r of
recovery transitions, such that →n ∩ →r= ∅ and any trace π = p0p1 · · · , where
pi ∈ P , satisfies the following two conditions:

1. (Progress) If there exists i ≥ 0, such that transition qi
pi−−→ qi+1 is not in

→r,n, then there exists j ≥ i+ 1, such that qj
pj−−→ qj+1 is in →n.

2. (Weak Stability) For all i ≥ 0, if qi
pi−−→ qi+1 is in →n, then qi+1

pi+1−−−→ qi+2

is either (1) in →n, or (2) not in →r,n.

A composite corrector component is defined in the same fashion for interactions
of types R and N . A composite component may be a corrector for a set of
transitions local to one of its atomic components. Such correctors are of interest
where a faulty component achieves recovery to its normal behavior by the help of
a set of other components. The model presented in Subsection 3.3 is an example
of such correctors.

Formally, let B = γ(B0 · · ·Bm) be a composite component and
Bi = (Qi, Pi,→i, q

0
i ), 0 ≤ i ≤ m, be an atomic component. We say that B

is a corrector for the set →in of normal transitions of Bi if and only if by pro-
jecting any trace π = a0a1 · · · , where aj ∈ γ for all j, on component Bi and
obtaining trace π′, there exists recovery transitions→ir , such that→ir and→in

satisfy Progress and Weak Stability.
In our example in Figure 3, component Channel is faulty and if fault f1 or f2

occurs the whole model (without recovery interactions) deadlocks. Component
Sender provides the recovery mechanism, when a fault occurs. It is straightfor-
ward to observe that the composite component γ(Channel, Sender) acts as a cor-
rector in the model for normal interactions of γN (Sender ,Channel) (γ is the set
of interactions identified in Subsection 3.3), where γR(Sender ,Channel ) = {E}.
Observe that our model allows delivery of duplicate messages, which may be
considered as violation of safety. However, this is not an issue, since by defini-
tion, a non-masking model allows temporary violation of safety while recovering
in the presence of faults. Observe that when the model recovers to its normal
behavior, each packet is delivered only once.

4.2 Containment of Correctors in Non-masking Models

In this subsection, we show that the necessary condition for a model to be
non-masking is to contain a subset of components that act a corrector for each
components that is subject to faults. Recall that in Definition 5, we allowed com-
ponents that do not interact with a faulty component to continue their normal
behavior, while interacting components with the faulty component recover. We
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note that in our model, fault propagation is possible in the sense that compo-
nents that do not interact with a faulty component may get involved in achieving
recovery as well. In order to ensure that recovery makes progress in non-masking
models, we assume that composite components are weakly fair.

Assumption 1. Let B = γ(B0 · · ·Bm) be a composite component. We assume
that if an interaction α ∈ γ is continuously enabled in a trace π = a0a1 · · · , then
there exists i ≥ 0, such that ai = α.

Assumption 1 is necessary to show containment of correctors in non-masking
models. The containment theorem is the following.

Theorem 1. Let B = γ(B0 · · ·Bm) be a non-masking composite component.
For each faulty atomic component Bl = (Ql, Pl,→l, q

0
l ), where 0 ≤ l ≤ m, there

exists a set C of atomic components, such that C ⊆ {B0 · · ·Bm} and γ(Bl, C) is
a corrector for γN (Bl, C).

For example, in Figure 3, one obtains the composite corrector γ(Channel, Sender).

5 Separation of Functional and Recovery Concerns

In Subsection 5.1, we formally define the concept of pure correctors and discuss
their role in a model that contains them. In Subsection 5.2, we show that any non-
masking model can be transformed into another model that is observationally
equivalent to the initial model and only contains pure components and, hence,
separates functional from recovery concerns.

5.1 Pure Components and Their Role in Models

Roughly speaking, a purely functional component is one that is responsible for
performing normal computational tasks of the containing composite component.
Such a component may be subject to faults, but is not concerned with achieving
fault recovery. On the contrary, a pure corrector is a component that only helps
a system restoring the normal behavior through achieving recovery and it does
not perform any functional tasks.

Definition 7. Let B = (Q,P,→, q0) be an atomic component. We say that B
is purely functional iff its set of traces satisfies the ω-regular expression:

((n+ τ)∗(f + r)n)ω.

Intuitively, in a purely functional component a sequence of normal and unobserv-
able fault transitions may occur (see also the left automaton in Figure 4). Then,
the component executes one fault or recovery transition (normally in order to
synchronize with a corrector) and reach normal behavior. Obviously, if no fault
occurs, a purely functional component continues executing normal transitions.
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f, τ, r

n

n, τ f, r

n

f, τ

Fig. 4. Pure functional component (left) and corrector (right)

Definition 8. Let B = (Q,P,→, q0) be an atomic component. We say that B
is a pure corrector for the set →n of normal transitions, iff

1. B is a corrector for →n.
2. (Strong Stability) For any trace π = p0p1 · · · of component B, for all i ≥ 0,

if qi
pi−−→ qi+1 is in →n, then qi+1

pi+1−−−→ qi+2 is not in →n,r.

Notice that in a pure corrector when a normal transition is executed, it does
not execute any more normal transitions (see also the right automaton in Fig-
ure 4). This intuitively means that this normal transition marks the completion
of recovery and the pure corrector stops working unless another fault occurs.
Thus, we require that this normal transition synchronizes with some normal or
recovery transition (normally a purely functional component) in the composite
component. The left state of the functional component models periods of nor-
mal behavior or where no fault has been detected yet; the right state models
a failure state where the pure functional component is inactive. Symmetrically,
the left state of the pure corrector models a period of normal behavior where
the corrector is inactive, and the right-hand side stands for an unstable period.

Theorem 2. Let B = γ(B0 · · ·Bm) be a composite component and Bi, 0 ≤ i ≤
m, be the one and only pure corrector in B. The set of traces of γN (B0 · · ·Bm)
and γ(B0n · · ·Bi−1n

, Bi+1n · · ·Bmn) are equal.

A trivial but important consequence of Theorem 2 is that pure correctors do not
interfere with pure functional components.

Corollary 1. Let B = γ(B0 · · ·Bm) be a composite component and
Bi = (Qi, Pi,→i, q

0
i ), 0 ≤ i ≤ m, be the one and only pure corrector in B.

Let π = a0a1 · · · be a trace of B. If for all j ≥ 0, aj ∈ γN , then no interaction
in π involves a port in Pi.

The other side of the coin is that when a fault occurs in a purely functional
faulty component, it stops working until recovery from the fault is complete.

Theorem 3. Let B = γ(B0 · · ·Bm) be a composite component and Bi, 0 ≤ i ≤
m, be the one and only purely functional atomic component in B. The set of
traces of γR(B0 · · ·Bm) and γ(B0r · · ·Bi−1r , Bi+1r · · ·Bmr ) are equal.

An immediate application of Corollary 1 and Theorem 3 is in compositional
analysis of fault-tolerant systems. For instance, in order to verify the correct-
ness of functional (respectively, recovery) properties of a non-masking compos-
ite component, one can simply remove pure correctors (respectively, functional
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components) from the model and verify the remaining composite component
with respect to functional (respectively, recovery) properties. Such decomposi-
tion clearly assists in reducing the size of state space in the context of model
checking.

5.2 Transforming a Non-masking Model to One That only Contains
Pure Components

The goal of this section is to show that any non-masking model can be trans-
formed into another model that behaves equivalently, but ensures separation of
concerns by only containing pure components. To this end, we provide an algo-
rithm that automatically transforms a non-masking componentB = γ(B1, ..., Bn)
into a non-masking component B′ = γ′(f(B1), ...f(Bn), c(B1), ..., c(Bn)

)
, such

that all f(Bi) (resp. c(Bi)) are purely functional (resp. pure corrector) com-
ponents, and the behaviors of B and B′ are related by a form of bisimulation.
defined next.

Definition 9 (+). Let Bi = (Qi, γi,→i, q
0
i ) with γi ⊆ 2Pi , i = 1, 2. We define

+ ⊆ Q1 ×Q2 as the largest relation such that

1. if q1 + q2 and q1
α1−−→1 q′1, then ∃q′2 ∈ Q2 ∃α2 ∈ γ2 : q2

α2−−→2 q′2 ∧ q′1 +
q′2 ∧ α1 ∩ P2 = α2 ∩ P1; and

2. if q1 + q2 and q2
α2−−→2 q′2, then ∃q′1 ∈ Q1 ∃α1 ∈ γ1 : q1

α1−−→1 q′1 ∧ q′1 +
q′2 ∧ α1 ∩ P2 = α2 ∩ P1.

B1 and B2 are equivalent, written B1 + B2, if q
0
1 + q02.

Intuitively, the transformation T r decomposes the behavior of each atomic com-
ponent Bi into its normal sub-behavior and its unstable sub-behavior. A pure
functional component f(Bi) is then obtained by replacing the unstable behavior
by a single state qT that is reached by the first fault or recovery transition after
a normal execution phase, and left again by the first normal transition after the
unstable phase, as in Figure 4 (left). Similarly, a pure corrector c(Bi) is obtained
by replacing the normal behavior of Bi with a single state qN, such that the ob-
tained behavior refines Figure 4 (right). Both f(Bi) and c(Bi) interact on the
transitions from and to qT and qN in such a way that the control is handed from
f(Bi) to c(Bi) at the beginning of an unstable phase, and back to f(Bi) again
at the first normal transition.

Theorem 4. If B is an atomic component, then γB
(
f(B), c(B)

)
+ B. If B is

a composite component, then T r(B) + B.

An immediate implication of Theorem 4 is that the output of our transformation
results in a non-masking model.

Corollary 2. If B is non-masking, then T r(B) is non-masking as well.
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Fig. 5. Transformation applied to the communication protocol in Figure 3

Example 1. Applied to the communication protocol of Figure 3, we obtain the
transformed protocol shown in Figure 5. In f(Sender), qT represents the unsta-
ble part of the behavior during which c(Sender) has control. Conversely, during
normal behavior c(Sender) is in state qN and inactive until the recovery in-
teraction {rec, rec, add1} is enabled. Maximal progress ensures that interaction
{ack, rem2} is disabled whenever interaction {ack, ack, rem2} is enabled.

In Figure 5, f(Sender) is a purely functional component and c(Sender) is
a pure corrector. Since the original protocol is non-masking, the transformed
protocol is non-masking by construction.

6 Related Work

Component-based analysis of fault-tolerant untimed models was first studied by
Arora and Kulkarni [3]. They show that a fault-tolerant program that satisfies
safety and liveness properties in the presence of faults can be decomposed into a
fault-intolerant program and a set of components called detectors and correctors.
Detectors ensure satisfaction of safety and correctors guarantee satisfaction of
liveness properties in the presence of faults. In their work, a program is repre-
sented as a set of guarded commands in the shared memory model. Moreover,
a detector (resp. corrector) component is defined based on state predicate de-
tection (resp. correction) properties that a set of computations meets. In other
words, unlike the results in this paper, the notion of a component in [3] does not
resemble normal software modules, each having their own state space, behavior,
and interface. The work in [3] is extended to the context of real-time systems
by Bonakdarpour, Kulkarni, and Arora [7] and is enriched by introducing non-
interference rules for compositional model checking in [6].
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In [10], the authors propose a formal component model that incorporates
the notion of a safety interface. This work is fundamentally different from our
work in that we focus on recovery which implies guaranteeing liveness in the
presence of faults. Lui and Joseph [15, 16] introduce a uniform framework for
specifying, refining, and transforming programs that provide fault-tolerance and
schedulability using the Temporal Logic of Actions [13]. Our work is different
from [16] in that we focus on the structure and analysis of component-based
programs that provide fault recovery. In particular, our transformation is funda-
mentally different in that we propose a method to separate fault recovery from
functional properties. A survey of similar methods on monolithic systems is pre-
sented in [11]. Leal and Arora [14] describe a compositional approach to ensure
stabilization. The approach relies on an acyclic dependency relation between
components, which is a more high-level (less fine-grained) approach compared
to ours. Finally, the approach proposed by Brukman and Dolev [9] is also more
high-level than ours, where they introduce a generic proof scheme for recovery-
oriented programming.

7 Conclusion

In this paper, we proposed a generic formal framework for specifying and reason-
ing about fault recovery (also called non-masking fault-tolerance) for component-
based models. We characterized component-based models based on the BIP
(Behavior, Interaction, Priority) framework [12]. However, our method is not
limited to BIP. Unlike the approaches in [3, 7, 13, 15, 16] where a monolithic
model is analyzed or components are defined in terms of properties of sets of
computations, our method is based on observational behavior of a model in the
presence of faults. Also, we use explicit components, each having its own private
state space and behavior. We defined what it means for a component to be a cor-
rector and showed that non-masking models must contain corrector components.
These components correct the observational behavior of a faulty model and we
illustrated they can be constructed as stand-alone components interacting with
components that provide functional tasks. We described the application of this
result in compositional model checking. Moreover, we illustrated that any non-
masking model can be transformed into an equivalent model, where functional
and recovery tasks are modularized in different components.

We plan to incorporate the results in this paper in our work on automated
derivation of distributed implementation from BIP models [5], where fault-
tolerance plays an important role. An interesting future research direction is
developing methods that transform an arbitrary non-masking model into a well-
structured model, where all atomic components are non-masking.
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