
Verification of MPI Programs Using Session Types

Kohei Honda1, Eduardo R.B. Marques2, Francisco Martins2,
Nicholas Ng3, Vasco T. Vasconcelos2, and Nobuko Yoshida3

1 Queen Mary & West Field College, University of London, UK
2 LaSIGE, Faculty of Sciences, University of Lisbon, PT

3 Imperial College London, UK

Developing safe, concurrent (and parallel) software systems is a hard task in multiple
aspects, particularly the sharing of information and the synchronization among multi-
ple participants of the system. In the message passing paradigm, this is achieved by
sending and receiving messages among different participants, raising a number of ver-
ification problems. For instance, exchanging messages in a wrong order may prevent
the system from progressing, causing a deadlock. MPI is the most commonly used pro-
tocol for high-performance, message-based parallel programs, and the need for formal
verification approaches is well acknowledged by much recent work (e.g., see [1]).

Our proposal for verification of MPI programs is based on session types [3]. The
methodology considers the specification of a global interaction protocol among mul-
tiple participants, from which we can derive an endpoint protocol for each individual
participant, e.g., as in Scribble [2]. A well-formed protocol can be verified in polyno-
mial time and ensures type safety, communication safety, and deadlock freedom [4].
The idea is that we can ensure these properties for an MPI program by verifying con-
formance of the program against a given session type specification. This contrasts with
other state-of-the-art methodologies considered for MPI, like model checking or sym-
bolic execution [6], that require program-level analysis for all properties of interest, and
inherently lead to a state-explosion problem as the number of participants grows.

Session type

process r :
r in {0, ..., P-1},
N > 0

= loop {
float[N] to (r+1) % P
float[N] from (P+r-1) % P
float allreduce

}

MPI fragment

float err, localErr, sbuf[N], rbuf[N];
int r, P;
MPI_Comm_rank(MPI_COMM_WORLD, &r);
MPI_Comm_size(MPI_COMM_WORLD, &P);
...
for (i=0; i < MAX_ITER && err > MAX_ERROR; i++) {
MPI_Sendrecv(sbuf, N, MPI_FLOAT, (r+1) % P, 0,

rbuf, N, MPI_FLOAT, (P+r-1) % P, 0,
MPI_COMM_WORLD, &status);

// computation
...
MPI_Allreduce(&localErr, &err, 1, MPI_FLOAT,

MPI_MAX, MPI_COMM_WORLD);
}

To illustrate our proposal we sketch a ring pattern that can be found in many MPI pro-
grams, e.g., n-body pipeline computations, shown above. We depict a pseudo-session
type specification (left) and a corresponding MPI program fragment (right). The session
type specifies that in every turn each participant r should send a float array of size N
to its right neighbor and receive another array of the same size from its left neighbor.
Then, after some local computation involving the received data, all participants perform
a collective reduction (using MPI Allreduce).

J.L. Träff, S. Benkner, and J. Dongarra (Eds.): EuroMPI 2012, LNCS 7490, pp. 291–293, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



292 K. Honda et al.

We have identified two key challenges. The first is to refine session type abstrac-
tions to capture the general traits of MPI programs, e.g., rank-based communication,
collective operations, typical communication patterns (e.g., ring, mesh), and other MPI
operations that may correspond to multiple steps in the protocol (like MPI Sendrecv
in the example). Other features impose additional complexity, such as nondeterministic
operations (e.g., wildcard receives) or the possible choice/coexistence between block-
ing and nonblocking operations (e.g., an MPI Send operation can be matched by a
MPI Irecv/MPI Wait operation pair). Important work such as dependent-types or
parameterized multiparty session types [7] can provide insights on these topics.

Session types have already been used to describe and verify parallel programs, e.g.,
Session C [5]. The proposals so far, however, require that programs are specified using
a session type-specific programming abstraction and provide no support for common
traits of message-based parallel programs such as collective operations. In contrast, we
propose checking the conformance of standard MPI programs against session types.
This second challenge is far from trivial. In essence, we need to determine a sound
correspondence between a session type specification and the control flow graph of a
program for any process. The communication flow is dependent on the numerical rank
of each process, i.e., for any r in the example the endpoint type must be matched against
the concrete control flow of the MPI program when executed for rank r. Moreover, a
control flow synchrony needs to be established between processes. In the example we
would need to infer that the same number of loop iterations is executed for all ranks,
based on the assertion that err and i always have the same value in all processes
per each iteration (note that err results from MPI Allreduce). Beyond this simple
example, other MPI programs easily make this type of assertions more complex to infer,
e.g., manager-worker programs which combine such a parameterization with distinct
branches and communication operations for different process groups.

Acknowledgements. This work is partially supported by EPRSC funds
EP/G015635/01 and EP/G015481/01, Fundação para a Ciência e Tecnologia funds
PTDC/EIA-CCO/122547/2010, and the Ocean Observatories Initiative.

References

1. Gopalakrishnan, G., Kirby, R.M., Siegel, S., Thakur, R., Gropp, W., Lusk, E., De Supinski,
B.R., Schulz, M., Bronevetsky, G.: Formal analysis of MPI-based parallel programs. Commu-
nications ACM 54(12), 82–91 (2011)

2. Honda, K., Mukhamedov, A., Brown, G., Chen, T.-C., Yoshida, N.: Scribbling Interactions
with a Formal Foundation. In: Natarajan, R., Ojo, A. (eds.) ICDCIT 2011. LNCS, vol. 6536,
pp. 55–75. Springer, Heidelberg (2011)

3. Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and Type Discipline for
Structured Communication-Based Programming. In: Hankin, C. (ed.) ESOP 1998. LNCS,
vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

4. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In: POPL,
pp. 273–284. ACM (2008)



Verification of MPI Programs Using Session Types 293

5. Ng, N., Yoshida, N., Honda, K.: Multiparty Session C: Safe Parallel Programming with Message
Optimisation. In: Furia, C.A., Nanz, S. (eds.) TOOLS 2012. LNCS, vol. 7304, pp. 202–218.
Springer, Heidelberg (2012)

6. Siegel, S., Mironova, A., Avrunin, G., Clarke, L.: Combining symbolic execution with model
checking to verify parallel numerical programs. ACM TOSEM 17(2), 1–34 (2008)

7. Yoshida, N., Deniélou, P., Bejleri, A., Hu, R.: Parameterised Multiparty Session Types. In:
Ong, L. (ed.) FOSSACS 2010. LNCS, vol. 6014, pp. 128–145. Springer, Heidelberg (2010)


	Verification of MPI Programs Using Session Types
	References




