
Asynchronous Checkpointing

by Dedicated Checkpoint Threads

Faisal Shahzad1, Markus Wittmann1, Thomas Zeiser1, and Gerhard Wellein2

1 Erlangen Regional Computing Center, University of Erlangen-Nuremberg, Germany
2 Department of Computer Science, University of Erlangen-Nuremberg, Germany

{faisal.shahzad,markus.wittmann,thomas.zeiser,gerhard.wellein}@rrze.fau.de

Abstract. Checkpoint/restart (C/R) is a classical approach to intro-
duce fault tolerance in large HPC applications. Although it is relatively
easy as compared to other fault tolerance approaches, its overhead hin-
ders its wide usage. We present an application-level checkpointing tech-
nique that significantly reduces the checkpoint overhead. The checkpoint
I/O is overlapped with the computation of the application by following
a two-stage checkpointing mechanism with dedicated threads for doing
I/O.

1 Algorithm and Implementation

With each step closer towards the exascale barrier, the mean time between fail-
ure (MTBF) of these futuristic systems reduces. This raises the importance of
checkpoint/restart techniques [1]. As IO bandwidths cannot be increased arbitrar-
ily, it is important to investigate approaches which can hide IO time of checkpoint-
ing. One of these approaches is to utilize non-blocking asynchronous MPI-IO for
creating checkpoints. However, neither asynchronous non-blocking point-to-point
communication [2] nor asynchronous non-blocking MPI-IO is supported by most
of the MPI implementations. Therefore, we implement asynchronous checkpoint-
ing manually by creating a two-stage checkpointing mechanism and a dedicated
checkpoint thread (CP-thread) as shown in Fig. 1. Each MPI process is divided
into two threads, a worker thread and a CP-thread. The CP-thread of each MPI
process is pinned to a simultaneous multi-threaded (SMT) core for the present
Intel processor architectures, while the worker threads are pinned to the physi-
cal cores. If SMT is not available, physical cores may be oversubscribed. When
a checkpoint is triggered, an in-memory checkpoint is made first by the worker
thread. The second stage of checkpointing involves the copying of the in-memory
checkpoint to the external file system and is carried out by the CP-thread. For
benchmarking, we have utilized an MPI application based on a stencil type algo-
rithm with toggle grids. Thus, it is obvious to introduce an additional checkpoint-
ing grid (CP-grid) which is responsible for temporarily storing the in-memory
checkpoint. By switching the grid pointers, the extra in-memory copy of the CP-
grid from the most updated grid is completely avoided.

J.L. Träff, S. Benkner, and J. Dongarra (Eds.): EuroMPI 2012, LNCS 7490, pp. 289–290, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



290 F. Shahzad et al.

CP-thread

Write CP-grid to PFS

Worker task

Procs. 1

Procs. 2

Procs. N

iter 1 iter 2 iter 'n-1' iter 'n'

copy CP-Grid
to Memory

Make CP

... idle ... idle ...

Fig. 1. Diagram of the program flow.
Each MPI process is divided into worker
and checkpoint threads. At checkpoint
iteration, the worker thread signals the
checkpoint thread to write the check-
point.

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

A
pp

lic
at

io
n 

tim
el

in
e 

[s
]

0 1 2 3 4
Number of checkpoints

Sync. CP - computation time
Sync. CP - IO time
Async. CP - computation time
Async. CP - IO time (overlapped with computation)

Fig. 2. Checkpoint overhead for 128
LiMa nodes (1536 MPI-processes, 1 CP-
th./SMT-core) with aggregated check-
point size of 800GB/checkpoint

2 Results

Benchmarks were performed on an Intel based Infiniband cluster (LiMa)1, which
is connected to a Lustre parallel file system. In a näıve synchronous checkpoint-
ing technique, each MPI process interrupts its computation for the duration of
writing checkpoints, i.e., the complete IO time is added as overhead to the total
runtime. Figure 2 shows the checkpoint overhead comparison between a näıve
synchronous checkpointing and our presented asynchronous checkpointing tech-
nique for our application on 128 LiMa nodes with an aggregated checkpoint size
of 800GB. Each synchronous checkpoint adds ≈22% overhead to the applica-
tion, whereas each asynchronous checkpoint costs ≈0.6% overhead, i.e., almost
all the IO time is effectively hidden. This significantly reduces the checkpoint
overhead. The maximum number of low overhead asynchronous checkpoints can

be calculated as:
application runtime without checkpoints

IO time for a single checkpoint
.

Acknowledgements. This work was supported by BMBF grant No.
01IH11011C (FETOL).

References

1. Hursey, J.: Coordinated Checkpoint/Restart Process Fault Tolerance for MPI Ap-
plications on HPC Systems. PhD thesis, Indiana University, Bloomington, IN, USA
(July 2010)

2. Hager, G., Schubert, G., Schoenemeyer, T., Wellein, G.: Prospects for Truly Asyn-
chronous Communication with Pure MPI and Hybrid MPI/OpenMP on Current
Supercomputing Platforms. In: Cray Users Group Conference 2011, Fairbanks, AK,
USA (2011)

1 http://www.hpc.rrze.fau.de/systeme/lima-cluster.shtml

http://www.hpc.rrze.fau.de/systeme/lima-cluster.shtml

	Asynchronous Checkpointing by Dedicated Checkpoint Threads
	Algorithm and Implementation
	Results
	References




