Asynchronous Checkpointing
by Dedicated Checkpoint Threads

Faisal Shahzad!, Markus Wittmann'!, Thomas Zeiser', and Gerhard Wellein?

! Erlangen Regional Computing Center, University of Erlangen-Nuremberg, Germany
2 Department of Computer Science, University of Erlangen-Nuremberg, Germany
{faisal .shahzad,markus.wittmann,thomas.zeiser,gerhard. wellein}@rrze .fau.de

Abstract. Checkpoint/restart (C/R) is a classical approach to intro-
duce fault tolerance in large HPC applications. Although it is relatively
easy as compared to other fault tolerance approaches, its overhead hin-
ders its wide usage. We present an application-level checkpointing tech-
nique that significantly reduces the checkpoint overhead. The checkpoint
1/0 is overlapped with the computation of the application by following
a two-stage checkpointing mechanism with dedicated threads for doing

1/0.

1 Algorithm and Implementation

With each step closer towards the exascale barrier, the mean time between fail-
ure (MTBF) of these futuristic systems reduces. This raises the importance of
checkpoint/restart techniques [I]. As IO bandwidths cannot be increased arbitrar-
ily, it is important to investigate approaches which can hide IO time of checkpoint-
ing. One of these approaches is to utilize non-blocking asynchronous MPI-10 for
creating checkpoints. However, neither asynchronous non-blocking point-to-point
communication [2] nor asynchronous non-blocking MPI-IO is supported by most
of the MPI implementations. Therefore, we implement asynchronous checkpoint-
ing manually by creating a two-stage checkpointing mechanism and a dedicated
checkpoint thread (CP-thread) as shown in Fig. [l Each MPI process is divided
into two threads, a worker thread and a CP-thread. The CP-thread of each MPI
process is pinned to a simultaneous multi-threaded (SMT) core for the present
Intel processor architectures, while the worker threads are pinned to the physi-
cal cores. If SMT is not available, physical cores may be oversubscribed. When
a checkpoint is triggered, an in-memory checkpoint is made first by the worker
thread. The second stage of checkpointing involves the copying of the in-memory
checkpoint to the external file system and is carried out by the CP-thread. For
benchmarking, we have utilized an MPI application based on a stencil type algo-
rithm with toggle grids. Thus, it is obvious to introduce an additional checkpoint-
ing grid (CP-grid) which is responsible for temporarily storing the in-memory
checkpoint. By switching the grid pointers, the extra in-memory copy of the CP-
grid from the most updated grid is completely avoided.

J.L. Traff, S. Benkner, and J. Dongarra (Eds.): EuroMPI 2012, LNCS 7490, pp. 289-P90] 2012.
(© Springer-Verlag Berlin Heidelberg 2012

290 F. Shahzad et al.

11000 [@ Sync. CP - computation time 1
10000 | M Sync. CP - 10 time]
9000 |® Async. CP - computation time
Async. CP - 10 time (overlapped with computation)
8000 F

7000 -
6000
5000
4000
3000
2000
1000

..idle ... Write CP-grid to PFS [idle ...

CP-thread
Procs. 1

copy CP-Grid
to Memory

Worker task

[iter 1 H iter2 |«

Application timeline [s]

2
Number of checkpoints

Fig.1. Diagram of the program flow. Fig.2. Checkpoint overhead for 128
Each MPI process is divided into worker LiMa nodes (1536 MPI-processes, 1 CP-
and checkpoint threads. At checkpoint th./SMT-core) with aggregated check-

iteration, the worker thread signals the point size of 800 GB/checkpoint
checkpoint thread to write the check-

point.

2 Results

Benchmarks were performed on an Intel based Infiniband cluster (LiMa, which
is connected to a Lustre parallel file system. In a naive synchronous checkpoint-
ing technique, each MPI process interrupts its computation for the duration of
writing checkpoints, i.e., the complete IO time is added as overhead to the total
runtime. Figure 2] shows the checkpoint overhead comparison between a naive
synchronous checkpointing and our presented asynchronous checkpointing tech-
nique for our application on 128 LiMa nodes with an aggregated checkpoint size
of 800 GB. Each synchronous checkpoint adds ~22% overhead to the applica-
tion, whereas each asynchronous checkpoint costs ~0.6% overhead, i.e., almost
all the IO time is effectively hidden. This significantly reduces the checkpoint

overhead. The maximum number of low overhead asynchronous checkpoints can
application runtime without checkpoints

be calculated as: 10 time for a single checkpoint

Acknowledgements. This work was supported by BMBF grant No.
01IH11011C (FETOL).

References

1. Hursey, J.: Coordinated Checkpoint/Restart Process Fault Tolerance for MPI Ap-
plications on HPC Systems. PhD thesis, Indiana University, Bloomington, IN, USA
(July 2010)

2. Hager, G., Schubert, G., Schoenemeyer, T., Wellein, G.: Prospects for Truly Asyn-
chronous Communication with Pure MPI and Hybrid MPI/OpenMP on Current
Supercomputing Platforms. In: Cray Users Group Conference 2011, Fairbanks, AK,
USA (2011)

! http://www.hpc.rrze.fau.de/systeme/lima-cluster. shtml

http://www.hpc.rrze.fau.de/systeme/lima-cluster.shtml

	Asynchronous Checkpointing by Dedicated Checkpoint Threads
	Algorithm and Implementation
	Results
	References

