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Abstract. Checkpoint/restart (C/R) is a classical approach to intro-
duce fault tolerance in large HPC applications. Although it is relatively
easy as compared to other fault tolerance approaches, its overhead hin-
ders its wide usage. We present an application-level checkpointing tech-
nique that significantly reduces the checkpoint overhead. The checkpoint
I/O is overlapped with the computation of the application by following
a two-stage checkpointing mechanism with dedicated threads for doing
I/O.

1 Algorithm and Implementation

With each step closer towards the exascale barrier, the mean time between fail-
ure (MTBF) of these futuristic systems reduces. This raises the importance of
checkpoint/restart techniques [1]. As IO bandwidths cannot be increased arbitrar-
ily, it is important to investigate approaches which can hide IO time of checkpoint-
ing. One of these approaches is to utilize non-blocking asynchronous MPI-IO for
creating checkpoints. However, neither asynchronous non-blocking point-to-point
communication [2] nor asynchronous non-blocking MPI-IO is supported by most
of the MPI implementations. Therefore, we implement asynchronous checkpoint-
ing manually by creating a two-stage checkpointing mechanism and a dedicated
checkpoint thread (CP-thread) as shown in Fig. 1. Each MPI process is divided
into two threads, a worker thread and a CP-thread. The CP-thread of each MPI
process is pinned to a simultaneous multi-threaded (SMT) core for the present
Intel processor architectures, while the worker threads are pinned to the physi-
cal cores. If SMT is not available, physical cores may be oversubscribed. When
a checkpoint is triggered, an in-memory checkpoint is made first by the worker
thread. The second stage of checkpointing involves the copying of the in-memory
checkpoint to the external file system and is carried out by the CP-thread. For
benchmarking, we have utilized an MPI application based on a stencil type algo-
rithm with toggle grids. Thus, it is obvious to introduce an additional checkpoint-
ing grid (CP-grid) which is responsible for temporarily storing the in-memory
checkpoint. By switching the grid pointers, the extra in-memory copy of the CP-
grid from the most updated grid is completely avoided.
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Fig. 1. Diagram of the program flow.
Each MPI process is divided into worker
and checkpoint threads. At checkpoint
iteration, the worker thread signals the
checkpoint thread to write the check-
point.
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Fig. 2. Checkpoint overhead for 128
LiMa nodes (1536 MPI-processes, 1 CP-
th./SMT-core) with aggregated check-
point size of 800GB/checkpoint

2 Results

Benchmarks were performed on an Intel based Infiniband cluster (LiMa)1, which
is connected to a Lustre parallel file system. In a näıve synchronous checkpoint-
ing technique, each MPI process interrupts its computation for the duration of
writing checkpoints, i.e., the complete IO time is added as overhead to the total
runtime. Figure 2 shows the checkpoint overhead comparison between a näıve
synchronous checkpointing and our presented asynchronous checkpointing tech-
nique for our application on 128 LiMa nodes with an aggregated checkpoint size
of 800GB. Each synchronous checkpoint adds ≈22% overhead to the applica-
tion, whereas each asynchronous checkpoint costs ≈0.6% overhead, i.e., almost
all the IO time is effectively hidden. This significantly reduces the checkpoint
overhead. The maximum number of low overhead asynchronous checkpoints can

be calculated as:
application runtime without checkpoints

IO time for a single checkpoint
.
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